Hands-Or.r
Reactive

Programming
in Spring 5

s | A
Oleh Dokuka and Igor Lozynskyi




Hands-On Reactive
Programming in Spring 5

Build cloud-ready, reactive systems with Spring 5
and Project Reactor

Oleh Dokuka
Igor Lozynskyi

BIRMINGHAM - MUMBAI



Hands-On Reactive Programming in
Spring 5

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Aaron Lazar
Acquisition Editor: Alok Dhuri

Content Development Editor: Tiksha Sarang
Technical Editor: Abhishek Sharma

Copy Editor: Safis Editing

Project Coordinator: Prajakta Naik
Proofreader: Safis Editing

Indexer: Rekha Nair

Graphics: Jisha Chirayil

Production Coordinator: Arvindkumar Gupta

First published: October 2018
Production reference: 2041018
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78728-495-1

www.packtpub.com


http://www.packtpub.com

In the memory of my father, Ivan

—Igor Lozynskyi



A Mapt

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

¢ Spend less time learning and more time coding with practical eBooks and videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.Packt .com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.Packt .com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.


https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Foreword

Reactive programming is finally getting the attention it deserves with the help of famous
Java names such as Spring Boot and Spring Framework. Which qualifier would you use to
describe Spring solutions? The usual answer I hear and read from various
users—pragmatic. The reactive support offered is no exception, and the team has chosen to
keep supporting both reactive and non-reactive stacks. With choice comes responsibility, it
is, therefore, critical to understand when to design your application "the reactive way" and
what best practices you can apply to your next production-ready systems.

Spring positions itself as a provider of the best tooling available to write all kinds of
microservices. With its reactive stack, Spring helps developers to create incredibly efficient,
available, and resilient endpoints. As a byproduct, reactive Spring microservices tolerate
network latency and cope with failure in a much less impacting way. Think about it—it's
the right solution if you are writing an Edge API, a mobile backend, or a heavily
mutualized microservice! The secret? Reactive microservices isolate slow transactions and
reward the fastest.

Once you have qualified your needs, Project Reactor will be a reactive foundation of choice
that will naturally pair with your reactive Spring project. In its latest 3.x iterations, it
implements most of the Reactive extensions described first by Microsoft in 2011. Along
with a standard vocabulary, Reactor introduces first-class support for Reactive Streams
flow control at every functional stage and unique features such as Context passing.

In a synthetic but not simplistic set of example-driven chapters, Oleh and Igor describe a
fantastic journey into reactive programming and reactive systems. After a quick context
setting, reminding the history and challenges of Project Reactor, we quickly dive into
ready-to-use examples running on Spring Boot 2. The book never does miss an occasion to
seriously cover testing, giving a clear idea on how to produce quality reactive code.



Oleh and Igor perfectly introduce their readers to those reactive design patterns for the
scalability needs of today and tomorrow. The authors cover more than reactive
programming with plenty of guidance on Spring Boot or Spring Framework. In a forward-
looking chapter, authors stimulate the readers' curiosity with some details about reactive
communications using RSocket—a promising technology poised to deliver reactive benefits
to the transport layer.

I hope you will take as much pleasure from reading this book as I did and keep learning
new ways of writing applications.

Stéphane Maldini

Lead developer, Project Reactor



Contributors

About the authors

Oleh Dokuka is an experienced software engineer, Pivotal Champion, and one of the top
contributors to Project Reactor and Spring Framework. He knows the internals of both
frameworks very well and advocates reactive programming with Project Reactor on a daily
basis. Along with that, the author applies Spring Framework and Project Reactor in
software development, so he knows how to build reactive systems using these technologies.

Igor Lozynskyi is a senior Java developer who primarily focuses on developing reliable,
scalable, and blazingly fast systems. He has over seven years of experience with the Java
platform. He is passionate about interesting and dynamic projects both in life and in
software development.



About the reviewers

Mikalai Alimenkou is a senior delivery manager, Java tech lead, and experienced coach.
An expert in Java development, scalable architecture, agile engineering practices, QA
processes, and project management, he has more than 14 years of development experience,
specializes in complex, distributed, scalable systems, and global company transformations.
He's an active participant and speaker at many international conferences and is the founder
and an independent consultant at XP Injection—a training and consulting provider. He's an
organizer and founder of Selenium Camp, JEEConf, and XP Days Ukraine international
conferences, as well as the Active Anonymous Developers Club (UADEVCLUB).

Nazarii Cherkas works as a solutions architect at Hazelcast—a company that develops
open source projects such as Hazelcast IMDG and Hazelcast Jet. Nazarii has many years of
experience of working in different positions, from Java engineer to team lead. He has been
involved in various projects for different industries, from telecoms and healthcare to critical
systems serving the infrastructure of one of world's biggest airlines. He holds a master's
degree in computer science of the Yuriy Fedkovych Chernivtsi National University.

Tomasz Nurkiewicz is a Java champion. He had spent half of his life programming. On a
daily basis, he works in the e-commerce sector. He's involved in open source, is DZone's
most valuable blogger, and used to be very active on Stack Overflow. He's an author,
trainer, conference speaker, technical reviewer, and runner. He claims that code that's not
tested automatically is not a feature but just a rumor. He also wrote a book on RxJava.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.


http://authors.packtpub.com

Table of Contents

Preface

Chapter 1: Why Reactive Spring?
Why reactive?
Message-driven communication
Reactivity use cases
Why Reactive Spring?
Reactivity on the service level
Summary

Chapter 2: Reactive Programming in Spring - Basic Concepts
Early reactive solutions in Spring
Observer pattern
Observer pattern usage example
Publish-Subscribe pattern with @EventListener
Building applications with @EventListener
Bootstrapping a Spring application
Implementing business logic
Asynchronous HTTP with Spring Web MVC
Exposing the SSE endpoint
Configuring asynchronous support
Building a Ul with SSE support
Verifying application functionality
Criticism of the solution
RxJava as a reactive framework
Observer plus iterator equals Reactive Stream
Producing and consuming streams
Generating an asynchronous sequence
Stream transformation and marble diagrams
Map operator
Filter operator
Count operator
Zip operator
Prerequisites and benefits of RxJava
Rebuilding our application with RxJava
Implementing business logic
Custom SseEmitter
Exposing the SSE endpoint
Application configuration
Brief history of reactive libraries
Reactive landscape

Summary

10
15
19
20
29

30
30
31
35
38
40
41
42
43
44

46
47
48
49
50
52
55
56
56
57
58
59
60
63
63
65
66
67
68
69
72



Table of Contents

Chapter 3: Reactive Streams - the New Streams' Standard
Reactivity for everyone
The API's inconsistency problem
Pull versus push
The flow control problem
Slow producer and fast consumer
Fast producer and slow consumer
Unbounded queue

Bounded drop queue
Bounded blocking queue

The solution
The basics of the Reactive Streams spec
Reactive Streams spec in action
The introduction of the Processor notion
Reactive Streams technology compatibility kit
The Publisher verification
The Subscriber verification
JDK 9
Advanced - async and parallel in Reactive Streams
Transfiguration of the Reactive Landscape
RxJava transfiguration
Vert.x adjustments
Ratpack improvements
MongoDB Reactive Streams driver
A composition of reactive technologies in action
Summary

Chapter 4: Project Reactor - the Foundation for Reactive Apps

A brief history of Project Reactor
Project Reactor version 1.x
Project Reactor version 2.x
Project Reactor essentials
Adding Reactor to the project
Reactive types — Flux and Mono
Flux
Mono
Reactive types of RxJava 2
Observable
Flowable
Single
Maybe
Completable
Creating Flux and Mono sequences
Subscribing to Reactive Streams
Implementing custom subscribers
Transforming reactive sequences with operators
Mapping elements of reactive sequences
Filtering reactive sequences

73
74
74
77
83
84
84
85

86
87

88
88
96
99

104

105

107

113

115

118

118

121

123

124

126

129

130
131
131
134
136
138
139
139
141
142
143
143
143
143
144
144
146
149
152
153
155

[ii]



Table of Contents

Collecting reactive sequences
Reducing stream elements
Combining Reactive Streams
Batching stream elements
The flatMap, concatMap, and flatMapSequential operators
Sampling elements
Transforming reactive sequences into blocking structures
Peeking elements while sequence processing
Materializing and dematerializing signals
Finding an appropriate operator
Creating streams programmatically
Factory methods — push and create
Factory method — generate
Wrapping disposable resources into Reactive Streams
Wrapping reactive transactions with the usingWhen factory
Handling errors
Backpressure handling
Hot and cold streams
Multicasting elements of a stream
Caching elements of a stream
Sharing elements of a stream
Dealing with time
Composing and transforming Reactive Streams
Processors
Testing and debugging Project Reactor
Reactor Addons
Advanced Project Reactor
Reactive Streams life cycle
Assembly-time
Subscription-time
Runtime
The thread scheduling model in Reactor
The publishOn operator
Parallelization with the publishOn operator
The subscribeOn operator
The parallel operator
Scheduler
Rector Context
Internals of Project Reactor
Macro-fusion
Micro-fusion
Summary

Chapter 5: Going Reactive with Spring Boot 2

A fast start as the key to success
Using Spring Roo to try to develop applications faster
Spring Boot as a key to fast-growing applications
Reactive in Spring Boot 2.0

156
158
160
161
164
167
168
168
169
170
170
170
171
173
175
178
181
181
183
184
185
186
187
189
190
191
192
192
192
193
195
198
198
200
202
204
205
206
211
211
212

216

217
218
220
220
221

[ iii]



Table of Contents

Reactive in Spring Core
Support for reactive types conversion
Reactive 1/0

Reactive in web

Reactive in Spring Data

Reactive in Spring Session

Reactive in Spring Security

Reactive in Spring Cloud

Reactive in Spring Test

Reactive in monitoring

Summary

Chapter 6: WebFlux Async Non-Blocking Communication
WebFlux as a central reactive server foundation
The reactive web core
The reactive web and MVC frameworks
Purely functional web with WebFlux
Non-blocking cross-service communication with WebClient
Reactive WebSocket API
Server-side WebSocket API
Client-side WebSocket API
WebFlux WebSocket versus the Spring WebSocket module
Reactive SSE as a lightweight replacement for WebSockets
Reactive template engines
Reactive web security
Reactive access to SecurityContext
Enabling reactive security
Interaction with other reactive libraries
WebFlux versus Web MVC
Laws matter when comparing frameworks
Little's Law
Amdahl's Law
The Universal Scalability Law
Thorough analysis and comparison
Understanding the processing models in WebFlux and Web MVC
Impact of processing models on throughput and latency
Challenges with the WebFlux processing model
Impact of different processing models on memory consumption
Impact of processing models on usability
Application of WebFlux
Microservice-based systems
Systems that handle clients with slow connections
Streaming or real-time systems
WebFlux in action
Summary

Chapter 7: Reactive Database Access

222
222
224
226
229
230
230
231
232
232
233

234
235
238
242
246
251
255
255
257
258
259
261
264
264
267
268
270
270
271
272
276
279
279
282
291
294
301
302
302
304
304
305
309

311

[iv]



Table of Contents

Data handling patterns in the modern world 312
Domain-driven design 312
Data stores in the era of microservices 314
Polyglot persistence 317
Database as a Service 318
Sharing data across microservices 320

Distributed transactions 320
Event-driven architecture 321
Eventual consistency 322
The SAGA pattern 323
Event sourcing 323
Command Query Responsibility Segregation 324
Conflict-free replicated data types 325
Messaging system as a data store 326

Synchronous model for data retrieval 326
Wire protocol for database access 326
Database driver 329
JDBC 330

Connection management 331
Making relational database access reactive 332
Spring JDBC 332
Spring Data JDBC 334
Making Spring Data JDBC reactive 337
JPA 337
Making JPA reactive 338
Spring Data JPA 338
Making Spring Data JPA reactive 339
Spring Data NoSQL 340
Limitations of the synchronous model 343
Advantages of the synchronous model 344

Reactive data access with Spring Data 345
Using MongoDB reactive repository 347
Combining repository operations 350
How reactive repositories work 355

Pagination support 356
ReactiveMongoRepository implementation details 357
Using ReactiveMongoTemplate 358
Using reactive drivers (MongoDB) 359
Using asynchronous drivers (Cassandra) 361
Reactive transactions 364
Reactive transactions with MongoDB 4 365
Distributed transactions with the SAGA pattern 373
Spring Data reactive connectors 373
Reactive MongoDB connector 374
Reactive Cassandra connector 375
Reactive Couchbase connector 375
Reactive Redis connector 376

[v]



Table of Contents

Limitations and anticipated improvements
Asynchronous Database Access
Reactive Relational Database Connectivity
Using R2DBC with Spring Data R2DBC
Transforming a synchronous repository into reactive
Using the rxjava2-jdbc library
Wrapping a synchronous CrudRepository
Reactive Spring Data in action
Summary

Chapter 8: Scaling Up with Cloud Streams
Message brokers as the key to message-driven systems
Server-side load balancing
Client-side load balancing with Spring Cloud and Ribbon
Message brokers as an elastic, reliable layer for message transferring
The market of message brokers
Spring Cloud Streams as a bridge to Spring Ecosystem
Reactive programming in the cloud
Spring Cloud Data Flow
The finest-grained application with Spring Cloud Function
Spring Cloud — function as a part of a data flow
RSocket for low-latency, reactive message passing
RSocket versus Reactor-Netty
RSocket in Java
RSocket versus gRPC
RSocket in Spring Framework
RSocket in other frameworks
The ScaleCube Project
The Proteus Project
Summarizing RSocket
Summary

Chapter 9: Testing the Reactive Application
Why are reactive streams hard to test?
Testing reactive streams with StepVerifier
Essentials of StepVerifier
Advanced testing with StepVerifier
Dealing with virtual time
Verifying reactive context

Testing WebFlux
Testing Controllers with WebTestClient
Testing WebSocket

Summary

Chapter 10: And, Finally, Release It!
The importance of DevOps-friendly apps

377
378
380
382
383
384
386
390
394

396
397
397
400
406
411
412
423
423
426
434
439
440
444
448
450
452
453
453
454
454

456
457
457
458
461
463
466
467
467
473
476

478
478

[vil



Table of Contents

Monitoring the Reactive Spring application 482
Spring Boot Actuator 482
Adding an actuator to the project 482
Service info endpoint 483

Health information endpoint 485

Metrics endpoint 488
Loggers management endpoint 490

Other valuable endpoints 491

Writing custom actuator endpoints 492
Securing actuator endpoints 494
Micrometer 495
Default Spring Boot metrics 496
Monitoring Reactive Streams 497
Monitoring reactor flows 497
Monitoring reactor schedulers 498

Adding custom Micrometer meters 501
Distributed tracing with Spring Boot Sleuth 502
Pretty Ul with Spring Boot Admin 2.x 503
Deploying to the cloud 506
Deploying to Amazon Web Services 509
Deploying to the Google Kubernetes Engine 510
Deploying to Pivotal Cloud Foundry 510
Discovering RabbitMQ in PCF 512
Discovering MongoDB in PCF 513
Configurationless deployment with Spring Cloud Data Flow for PCF 515
Knative for FaaS over Kubernetes and Istio 515
Bits of advice for successful application deployment 516
Summary 517
Other Books You May Enjoy 519
Index 522

[ vii ]



Preface

Reactive systems are responsive at all times, which is what most businesses demand. The
development of such systems is a complex task and requires a deep understanding of the
domain. Fortunately, developers of the Spring Framework have created a new, reactive
version of the project.

With Reactive Programming in Spring 5, you'll explore the fascinating process of developing a
Reactive system using Spring Framework 5.

This book begins with the foundation of Spring Reactive programming. You will gain

an understanding of the possibilities of the framework and learn about the fundamentals of
reactivity. Further on, you will study the techniques of reactive programming, learn how to
apply them to databases, and use them for cross-server communication. All of these tasks
will be applied to a real project example, which will enable you to practice the skills
learned.

Get on board with the reactive revolution in Spring 5!

Who this book is for

This book is for Java developers who use Spring to develop their applications and want to
be able to build robust and reactive applications that can scale in the cloud. Basic
knowledge of distributed systems and asynchronous programming is assumed.

What this book covers

Chapter 1, Why Reactive Spring?, covers the business cases in which reactivity fits very well.
You will see why a reactive solution is better than a proactive one. Also, you will get an
overview of a few code examples that show different ways of cross-server communication,
as well as an understanding of today's business needs and their requirements of the
modern Spring Framework.



Preface

Chapter 2, Reactive Programming in Spring - Basic Concepts, expands on the potential of
reactive programming and its central concepts by means of code examples. The chapter
then shows the power of reactive, asynchronous, non-blocking programming in the Spring
Framework with code examples, and applies this technique in business cases. You'll garner
an overview of the publisher-subscriber model in examples of code, understand the power
of reactive Flow events, and learn about the application of these techniques in real-world
scenarios.

Chapter 3, Reactive Streams - the New Streams’ Standard, concentrates on the problems that
are introduced by Reactive Extensions. Code examples are used to explore the different
approaches and expand upon the nature of the problems. The chapter also delves into
problem-solving and the introduction of the Reactive Streams specification, which
introduces new components to the well-known publisher-subscriber model.

Chapter 4, Project Reactor - the Foundation for Reactive Apps, looks at the realization of the
reactive library; that is, fully implementing the Reactive Streams specification. Firstly, this
chapter emphasizes the advantages of implementing Reactor, and then it takes a survey of
the reasons that motivated Spring developers to develop their own new solution. Also, this
chapter embraces the fundamentals of this impressive library—here you'll get an
understanding of Mono and Flux, as well as the applications for reactive types.

Chapter 5, Going Reactive with Spring Boot 2, introduces the Spring 5 reactive modules
required for reactive application development. Here you'll learn how to get started with
modules, and how Spring Boot 2 helps developers configure applications fast.

Chapter 6, WebFlux Async Non-Blocking Communication, covers the primary module, Spring
WebFlux, which is the essential tool for the organization of asynchronous, non-blocking
communication with both the user and external services. This chapter gives an overview of
the advantages of this module and the comparison with Spring MVC.

Chapter 7, Reactive Database Access, goes into the Spring 5-based reactive programming
model for data access. This chapter's emphasis is upon reactive reinforcement in Spring
Data modules and explores the features that come out of the box with Spring 5, Reactive
Streams, and Project Reactor. In this chapter, you will encounter code that shows a reactive
approach for communication with different databases, such as SQL and NoSQL databases.

[2]



Preface

Chapter 8, Scaling Up with Cloud Streams, will introduce you to the reactive features of
Spring Cloud Streams. Before starting to learn about the new brilliant capabilities of the
module, you'll be given an overview of business case gaps and the problems that you can
be faced with when scaling on different servers. This chapter reveals to you the power of
the Spring Cloud solution, covering its implementation via code examples of the relevant
Spring Boot 2 configuration.

Chapter 9, Testing the Reactive Application, covers the basics required for reactive pipeline
testing. This chapter introduces the Spring 5 Test and Project Reactor Test modules for
writing tests. Here you will see how to manipulate the frequency of events, move timelines,
enhance thread pools, mock results, and assert passed messages.

Chapter 10, And, Finally, Release It!, is a step-by-step guide to current solution deployment
and monitoring. Here you will see how to monitoring reactive microservices, for which
Spring 5 modules are required. Also, the chapter covers the tools that will be useful for
monitoring the aggregation and display of results.

To get the most out of this book

The development of reactive systems is a complex task, requiring a deep understanding of
the domain. A knowledge of distributed systems and asynchronous programming is
required.

Download the example code files

You can download the example code files for this book from your account at
www . packt . com. If you purchased this book elsewhere, you can visit
www . packt . com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt . com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

L e

[3]


http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Hands-On-Reactive-Programming-in-Spring-5. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https://www.packtpub.com/sites/default/files/
downloads/9781787284951_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The first call invokes onSubscribe (), which stores Subscription locally and
then notifies Publisher about their readiness to receive newsletters via the request ()
method."

A block of code is set as follows:

@Override
public long maxElementsFromPublisher () {
return 1;

}

Any command-line input or output is written as follows:

./gradlew clean build

[4]


https://github.com/PacktPublishing/Hands-On-Reactive-Programming-in-Spring-5
https://github.com/PacktPublishing/Hands-On-Reactive-Programming-in-Spring-5
https://github.com/PacktPublishing/Hands-On-Reactive-Programming-in-Spring-5
https://github.com/PacktPublishing/Hands-On-Reactive-Programming-in-Spring-5
https://github.com/PacktPublishing/Hands-On-Reactive-Programming-in-Spring-5
https://github.com/PacktPublishing/Hands-On-Reactive-Programming-in-Spring-5
https://github.com/PacktPublishing/Hands-On-Reactive-Programming-in-Spring-5
https://github.com/PacktPublishing/Hands-On-Reactive-Programming-in-Spring-5
https://github.com/PacktPublishing/Hands-On-Reactive-Programming-in-Spring-5
https://github.com/PacktPublishing/Hands-On-Reactive-Programming-in-Spring-5
https://github.com/PacktPublishing/Hands-On-Reactive-Programming-in-Spring-5
https://github.com/PacktPublishing/Hands-On-Reactive-Programming-in-Spring-5
https://github.com/PacktPublishing/Hands-On-Reactive-Programming-in-Spring-5
https://github.com/PacktPublishing/Hands-On-Reactive-Programming-in-Spring-5
https://github.com/PacktPublishing/Hands-On-Reactive-Programming-in-Spring-5
https://github.com/PacktPublishing/Hands-On-Reactive-Programming-in-Spring-5
https://github.com/PacktPublishing/Hands-On-Reactive-Programming-in-Spring-5
https://github.com/PacktPublishing/Hands-On-Reactive-Programming-in-Spring-5
https://github.com/PacktPublishing/Hands-On-Reactive-Programming-in-Spring-5
https://github.com/PacktPublishing/Hands-On-Reactive-Programming-in-Spring-5
https://github.com/PacktPublishing/Hands-On-Reactive-Programming-in-Spring-5
https://github.com/PacktPublishing/Hands-On-Reactive-Programming-in-Spring-5
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781787284951_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781787284951_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781787284951_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781787284951_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781787284951_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781787284951_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781787284951_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781787284951_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781787284951_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781787284951_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781787284951_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781787284951_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781787284951_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781787284951_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781787284951_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781787284951_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781787284951_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781787284951_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781787284951_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781787284951_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781787284951_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781787284951_ColorImages.pdf

Preface

Bold: Indicates a new term, an important word, or words that you see onscreen.

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt .com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt .com.

[5]


http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

Why Reactive Spring?

In this chapter, we are going to explain the concept of reactivity, looking at why reactive
approaches are better than traditional approaches. To do this, we will look at examples in
which traditional approaches failed. In addition to this, we will explore the fundamental
principles of building a robust system, which is mostly referred to as reactive systems. We
will also take an overview of the conceptual reasons for building message-

driven communication between distributed servers, covering business cases in which
reactivity fits well. Then, we will expand the meaning of reactive programming to build a
fine-grained reactive system. We will also discuss why the Spring Framework team decided
to include a reactive approach as the core part of Spring Framework 5. Based on the
content of this chapter, we will understand the importance of reactivity and why it is a
good idea to move our projects to the reactive world.

In this chapter, we will cover the following topics:

e Why we need reactivity

The fundamental principles of the reactive system
¢ Business cases in which a reactive system design matches perfectly
e Programming techniques that are more suitable for a reactive system

Reasons for moving Spring Framework to reactivity

Why reactive?

Nowadays, reactive is a buzzword—so exciting but so confusing. However, should we still
care about reactivity even if it takes an honorable place in conferences around the world? If
we google the word reactive, we will see that the most popular association is

programming, in which it defines the meaning of a programming model. However, that is
not the only meaning for reactivity. Behind that word, there are hidden fundamental design
principles aimed at building a robust system. To understand the value of reactivity as an
essential design principle, let's imagine that we are developing a small business.



Why Reactive Spring? Chapter 1

Suppose our small business is a web store with a few cutting-edge products at an attractive
price. As is the case with the majority of projects in this sector, we will hire software
engineers to solve any problems that we encounter. We opted for the traditional
approaches to development, and, during a few development interactions, we created our
store.

Usually, our service is visited by about one thousand users per hour. To serve the usual
demand, we bought a modern computer and ran the Tomcat web server as well as
configuring Tomcat's thread pool with 500 allocated threads. The average response time for
the majority of user requests is about 250 milliseconds. By doing a naive calculation of the
capacity for that configuration, we can be sure that the system can handle about 2,000 user
requests per second. According to statistics, the number of users previously mentioned
produced around 1,000 requests per second on average. Consequently, the current system's
capacity will be enough for the average load.

To summarize, we configured our application with the margin regarding capacity.
Moreover, our web store had been working stably until the last Friday in November, which
is Black Friday.

Black Friday is a valuable day for both customers and retailers. For the customer, it is a
chance to buy goods at discounted prices. And for retailers, it is a way to earn money and
popularize products. However, this day is characterized by an unusual influx of clients,
and that may be a significant cause of failure in production.

And, of course, we failed! At some point in time, the load exceeded all expectations. There
were no vacant threads in the thread pool to process user requests. In turn, the backup
server was not able to handle such an unpredictable invasion, and, in the end, this caused a
rise in the response time and periodic service outage. At this point, we started losing

some user requests, and, finally, our clients became dissatisfied and preferred dealing with
competitors.

In the end, a lot of potential customers and money were lost, and the store's rating
decreased. This was all a result of the fact that we couldn't stay responsive under the
increased workload.

But, don't worry, this is nothing new. At one point in time, giants such as Amazon and
Walmart also faced this problem and have since found a solution. Nevertheless, we will
follow the same roads as our predecessors, gaining an understanding of the central
principles of designing robust systems and then providing a general definition for them.

[7]



Why Reactive Spring? Chapter 1

To learn more about giants failures see:

e Amazon.com hit with outages (https://www.cnet.com/news/
amazon-com-hit-with-outages/)

e Amazon.com Goes Down, Loses $66,240 Per Minute (https://
www.forbes.com/sites/kellyclay/2013/08/19/amazon—com—
goesfdownflosesf66240*perfminute/#deSdb37495c)

e Walmart's Black Friday Disaster: Website Crippled, Violence In
Stores (https://techcrunch.com/2011/11/25/walmart-black-
friday/)

Now, the central question that should remain in our minds is—How should we

be responsive? As we might now understand from the example given previously, an
application should react to changes. This should include changes in demand (load)

and changes in the availability of external services. In other words, it should be reactive to
any changes that may affect the system's ability to respond to user requests.

One of the first ways to achieve the primary goal is through elasticity. This describes the
ability to stay responsive under a varying workload, meaning that the throughput of the
system should increase automatically when more users start using it and it should
decrease automatically when the demand goes down. From the application perspective,
this feature enables system responsiveness because at any point in time the system can be
expanded without affecting the average latency.

Note that latency is the essential characteristic of responsiveness. Without
elasticity, growing demand will cause the growth of average latency,
which directly affects the responsiveness of the system.

For example, by providing additional computation resources or additional instances, the
throughput of our system might be increased. The responsiveness will then increase as a
consequence. On the other hand, if demand is low, the system should shrink in terms of
resource consumption, thereby reducing business expenses. We may achieve elasticity by
employing scalability, which might either be horizontal or vertical. However,

achieving scalability of the distributed system is a challenge that is typically limited by the
introduction of bottlenecks or synchronization points within the system. From the
theoretical and practical perspectives, such problems are explained by Amdahl's Law and
Gunther's Universal Scalability Model. We will discuss these in chapter 6, WebFlux Async
Non-Blocking Communication.

[8]


https://www.cnet.com/news/amazon-com-hit-with-outages/
https://www.cnet.com/news/amazon-com-hit-with-outages/
https://www.cnet.com/news/amazon-com-hit-with-outages/
https://www.cnet.com/news/amazon-com-hit-with-outages/
https://www.cnet.com/news/amazon-com-hit-with-outages/
https://www.cnet.com/news/amazon-com-hit-with-outages/
https://www.cnet.com/news/amazon-com-hit-with-outages/
https://www.cnet.com/news/amazon-com-hit-with-outages/
https://www.cnet.com/news/amazon-com-hit-with-outages/
https://www.cnet.com/news/amazon-com-hit-with-outages/
https://www.cnet.com/news/amazon-com-hit-with-outages/
https://www.cnet.com/news/amazon-com-hit-with-outages/
https://www.cnet.com/news/amazon-com-hit-with-outages/
https://www.cnet.com/news/amazon-com-hit-with-outages/
https://www.cnet.com/news/amazon-com-hit-with-outages/
https://www.cnet.com/news/amazon-com-hit-with-outages/
https://www.cnet.com/news/amazon-com-hit-with-outages/
https://www.cnet.com/news/amazon-com-hit-with-outages/
https://www.cnet.com/news/amazon-com-hit-with-outages/
https://www.cnet.com/news/amazon-com-hit-with-outages/
https://www.cnet.com/news/amazon-com-hit-with-outages/
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#3fd8db37495c
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#3fd8db37495c
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#3fd8db37495c
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#3fd8db37495c
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#3fd8db37495c
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#3fd8db37495c
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#3fd8db37495c
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#3fd8db37495c
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#3fd8db37495c
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#3fd8db37495c
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#3fd8db37495c
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#3fd8db37495c
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#3fd8db37495c
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#3fd8db37495c
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#3fd8db37495c
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#3fd8db37495c
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#3fd8db37495c
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#3fd8db37495c
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#3fd8db37495c
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#3fd8db37495c
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#3fd8db37495c
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#3fd8db37495c
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#3fd8db37495c
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#3fd8db37495c
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#3fd8db37495c
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#3fd8db37495c
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#3fd8db37495c
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#3fd8db37495c
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#3fd8db37495c
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#3fd8db37495c
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#3fd8db37495c
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#3fd8db37495c
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#3fd8db37495c
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#3fd8db37495c
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#3fd8db37495c
https://techcrunch.com/2011/11/25/walmart-black-friday/
https://techcrunch.com/2011/11/25/walmart-black-friday/
https://techcrunch.com/2011/11/25/walmart-black-friday/
https://techcrunch.com/2011/11/25/walmart-black-friday/
https://techcrunch.com/2011/11/25/walmart-black-friday/
https://techcrunch.com/2011/11/25/walmart-black-friday/
https://techcrunch.com/2011/11/25/walmart-black-friday/
https://techcrunch.com/2011/11/25/walmart-black-friday/
https://techcrunch.com/2011/11/25/walmart-black-friday/
https://techcrunch.com/2011/11/25/walmart-black-friday/
https://techcrunch.com/2011/11/25/walmart-black-friday/
https://techcrunch.com/2011/11/25/walmart-black-friday/
https://techcrunch.com/2011/11/25/walmart-black-friday/
https://techcrunch.com/2011/11/25/walmart-black-friday/
https://techcrunch.com/2011/11/25/walmart-black-friday/
https://techcrunch.com/2011/11/25/walmart-black-friday/
https://techcrunch.com/2011/11/25/walmart-black-friday/
https://techcrunch.com/2011/11/25/walmart-black-friday/
https://techcrunch.com/2011/11/25/walmart-black-friday/

Why Reactive Spring? Chapter 1

Here, the term business expenses refers to the cost of additional cloud
instances or extra power consumption in the case of physical machines.

However, building a scalable distributed system without the ability to stay responsive
regardless of failures is a challenge. Let's think about a situation in which one part of our
system is unavailable. Here, an external payment service goes down, and all user attempts
to pay for the goods will fail. This is something that breaks the responsiveness of the
system, which may be unacceptable in some cases. For example, if users cannot proceed
with their purchases easily, they will probably go to a competitor's web store. To deliver a
high-quality user experience, we must care about the system's responsiveness. The
acceptance criteria for the system are the ability to stay responsive under failures, or, in
other words, to be resilient. This may be achieved by applying isolation between functional
components of the system, thereby isolating all internal failures and enabling
independence. Let's switch back to the Amazon web store. Amazon has many different
functional components such as the order list, payment service, advertising service,
comment service, and many others. For example, in the case of a payment service outage,
we may accept user orders and then schedule a request auto-retry, thereby protecting the
user from undesired failures. Another example might be isolation from the comments
service. If the comments service goes down, the purchasing and orders list services should
not be affected and should work without any problems.

Another point to emphasize is that elasticity and resilience are tightly coupled, and we
achieve a truly responsive system only by enabling both. With scalability, we can have
multiple replicas of the component so that, if one fails, we can detect this, minimize its
impact on the rest of the system, and switch to another replica.

To learn more about terminology see the following links:

e Elasticity (https://www.reactivemanifesto.org/
glossary#Elasticity)

e Failure (https://www.reactivemanifesto.org/
glossary#Failure)

e Isolation (https://www.reactivemanifesto.org/
glossary#Isolation)

e Component (https://www.reactivemanifesto.org/
glossary#Component)

[9]


https://www.reactivemanifesto.org/glossary#Elasticity
https://www.reactivemanifesto.org/glossary#Elasticity
https://www.reactivemanifesto.org/glossary#Elasticity
https://www.reactivemanifesto.org/glossary#Elasticity
https://www.reactivemanifesto.org/glossary#Elasticity
https://www.reactivemanifesto.org/glossary#Elasticity
https://www.reactivemanifesto.org/glossary#Elasticity
https://www.reactivemanifesto.org/glossary#Elasticity
https://www.reactivemanifesto.org/glossary#Elasticity
https://www.reactivemanifesto.org/glossary#Elasticity
https://www.reactivemanifesto.org/glossary#Failure
https://www.reactivemanifesto.org/glossary#Failure
https://www.reactivemanifesto.org/glossary#Failure
https://www.reactivemanifesto.org/glossary#Failure
https://www.reactivemanifesto.org/glossary#Failure
https://www.reactivemanifesto.org/glossary#Failure
https://www.reactivemanifesto.org/glossary#Failure
https://www.reactivemanifesto.org/glossary#Failure
https://www.reactivemanifesto.org/glossary#Failure
https://www.reactivemanifesto.org/glossary#Failure
https://www.reactivemanifesto.org/glossary#Isolation
https://www.reactivemanifesto.org/glossary#Isolation
https://www.reactivemanifesto.org/glossary#Isolation
https://www.reactivemanifesto.org/glossary#Isolation
https://www.reactivemanifesto.org/glossary#Isolation
https://www.reactivemanifesto.org/glossary#Isolation
https://www.reactivemanifesto.org/glossary#Isolation
https://www.reactivemanifesto.org/glossary#Isolation
https://www.reactivemanifesto.org/glossary#Isolation
https://www.reactivemanifesto.org/glossary#Isolation
https://www.reactivemanifesto.org/glossary#Component
https://www.reactivemanifesto.org/glossary#Component
https://www.reactivemanifesto.org/glossary#Component
https://www.reactivemanifesto.org/glossary#Component
https://www.reactivemanifesto.org/glossary#Component
https://www.reactivemanifesto.org/glossary#Component
https://www.reactivemanifesto.org/glossary#Component
https://www.reactivemanifesto.org/glossary#Component
https://www.reactivemanifesto.org/glossary#Component
https://www.reactivemanifesto.org/glossary#Component

Why Reactive Spring? Chapter 1

Message-driven communication

The only question that is left unclear is how to connect components in the distributed
system and preserve decoupling, isolation, and scalability at the same time. Let's consider
communication between components over HTTP. The next code example, doing HTTP
communication in Spring Framework 4, represents this concept:

@RequestMapping ("/resource") // (1)
public Object processRequest () {
RestTemplate template = new RestTemplate(); // (2)
ExamplesCollection result = template.getForObject ( // (3)
"http://example.com/api/resource2", //
ExamplesCollection.class //
) //
/7 (4)
processResultFurther (result); // (5)

}
The previous code is explained as follows:

1. The code at this point is a request handler mapping declaration that uses
the @RequestMapping annotation.

2. The code declared in this block shows how we may create the RestTemplate
instance. RestTemplate is the most popular web client for doing request-
response communication between services in Spring Framework 4.

3. This demonstrates the request's construction and execution. Here, using
the RestTemplate API, we construct an HTTP request and execute it right after
that. Note that the response will be automatically mapped to the Java object and
returned as the result of the execution. The type of response body is defined by
the second parameter of the getForObject method. Furthermore, the
getXxxXxxxxx prefix means that the HTTP method, in that case, is GET.

4. These are the additional actions that are skipped in the previous example.
5. This is the execution of another processing stage.

[10]



Why Reactive Spring? Chapter 1

In the preceding example, we defined the request handler which will be invoked on users'
requests. In turn, each invocation of the handler produces an additional HTTP call to an
external service and then subsequently executes another processing stage. Despite the fact
that the preceding code may look familiar and transparent in terms of logic, it has some
flaws. To understand what is wrong in this example, let's take an overview of the
following request's timeline:

7]
o
@%Q

Blocking Waiting Processing
'%9(’@ roez
S 2
Sovieoz{ Tresas [ e ]
Time ;
Diagram 1.1. Components interaction timeline

This diagram depicts the actual behavior of the corresponding code. As we may notice,
only a small part of the processing time is allocated for effective CPU usage whereas the
rest of the time thread is being blocked by the I/O and cannot be used for handling other
requests.

In some languages, such as C#, Go, and Kotlin, the same code might be
non-blocking when green threads are used. However, in pure Java, we do
not have such features yet. Consequently, the actual thread will be
blocked in such cases.

On the other hand, in the Java world, we have thread pools, which may allocate additional
threads to increase parallel processing. However, under a high load, such a technique may
be extremely inefficient to process the new I/O task simultaneously. We will revisit this
problem again during this chapter and also analyze it thoroughly in chapter 6, WebFlux
Async Non-Blocking Communication.

[11]



Why Reactive Spring? Chapter 1

Nonetheless, we can agree that to achieve better resource utilization in I/O cases, we should
use an asynchronous and non-blocking interaction model. In real life, this kind of
communication is messaging. When we get a message (SMS, or email), all our time is taken
up by reading and responding. Moreover, we do not usually wait for the answer and work
on other tasks in the meantime. Unmistakably, in that case, work is optimized and the rest
of the time may be utilized efficiently. Take a look at the following diagram:

To learn more about terminology see the following links:

. NOH—BIOCking (https://www.reactivemanifesto.org/
glossary#Non—Blocking)
e Resource (https ://www.reactivemanifesto.org/

glossary#Resource)

Recipient

A

Incoming Message E

Reading
and Wiring
answer

E Outgoing Message

Processing
another
work

\ 4

A

Incoming Message g

Reacting to
Message

Diagram 1.2. Non-blocking message communication

[12]



https://www.reactivemanifesto.org/glossary#Non-Blocking
https://www.reactivemanifesto.org/glossary#Non-Blocking
https://www.reactivemanifesto.org/glossary#Non-Blocking
https://www.reactivemanifesto.org/glossary#Non-Blocking
https://www.reactivemanifesto.org/glossary#Non-Blocking
https://www.reactivemanifesto.org/glossary#Non-Blocking
https://www.reactivemanifesto.org/glossary#Non-Blocking
https://www.reactivemanifesto.org/glossary#Non-Blocking
https://www.reactivemanifesto.org/glossary#Non-Blocking
https://www.reactivemanifesto.org/glossary#Non-Blocking
https://www.reactivemanifesto.org/glossary#Non-Blocking
https://www.reactivemanifesto.org/glossary#Non-Blocking
https://www.reactivemanifesto.org/glossary#Resource
https://www.reactivemanifesto.org/glossary#Resource
https://www.reactivemanifesto.org/glossary#Resource
https://www.reactivemanifesto.org/glossary#Resource
https://www.reactivemanifesto.org/glossary#Resource
https://www.reactivemanifesto.org/glossary#Resource
https://www.reactivemanifesto.org/glossary#Resource
https://www.reactivemanifesto.org/glossary#Resource
https://www.reactivemanifesto.org/glossary#Resource
https://www.reactivemanifesto.org/glossary#Resource

Why Reactive Spring? Chapter 1

In general, to achieve efficient resource utilization when communicating between services
in a distributed system, we have to embrace the message-driven communication principle.
The overall interaction between services may be described as follows—each element awaits
the arrival of messages and reacts to them, otherwise lying dormant, and vice versa, a
component should be able to send a message in the non-blocking fashion. Moreover, such
an approach to communication improves system scalability by enabling location
transparency. When we send an email to the recipient, we care about the correctness of the
destination address. Then the mail server takes care of delivering that email to one of the
available devices of the recipient. This frees us from concerns about the certain device,
allowing recipients to use as many devices as they want. Furthermore, it improves failure
tolerance since the failure of one of the devices does not prevent recipients from reading an
email from another device.

One of the ways to achieve message-driven communication is by employing a message
broker. In that case, by monitoring the message queue, the system is able to control the load
management and elasticity. Moreover, the message communication gives clear flow control
and simplifies the overall design. We will not get into specific details of this in this chapter,
as we will cover the most popular techniques for achieving message-driven communication
in chapter 8, Scaling Up with Cloud Streams.

The phrase lying dormant was taken from the following original
document, which aims to emphasize message-driven communication:
https://www.reactivemanifesto.org/glossary#Message-Driven.

By embracing all of the previous statements, we will get the foundational principles of the
reactive system. This is depicted in the following diagram:

[13]


https://www.reactivemanifesto.org/glossary#Message-Driven
https://www.reactivemanifesto.org/glossary#Message-Driven
https://www.reactivemanifesto.org/glossary#Message-Driven
https://www.reactivemanifesto.org/glossary#Message-Driven
https://www.reactivemanifesto.org/glossary#Message-Driven
https://www.reactivemanifesto.org/glossary#Message-Driven
https://www.reactivemanifesto.org/glossary#Message-Driven
https://www.reactivemanifesto.org/glossary#Message-Driven
https://www.reactivemanifesto.org/glossary#Message-Driven
https://www.reactivemanifesto.org/glossary#Message-Driven
https://www.reactivemanifesto.org/glossary#Message-Driven
https://www.reactivemanifesto.org/glossary#Message-Driven
https://www.reactivemanifesto.org/glossary#Message-Driven

Why Reactive Spring? Chapter 1

/ \
\ /

Diagram 1.3. Reactive Manifesto

VALUE

FORM

As we may notice from the diagram, the primary value for any business implemented with
a distributed system is responsiveness. Achieving a responsive system means following
fundamental techniques such as elasticity and resilience. Finally, one of the fundamental
ways to attain a responsive, elastic, and resilient system is by employing message-driven
communication. In addition, systems built following such principles are highly
maintainable and extensible, since all components in the system are independent and
properly isolated.

We will not go all notions defined in the Reactive Manifesto in depth, but
it is highly recommended to revisit the glossary provided at the following
link: nttps://www.reactivemanifesto.org/glossary.

All those notions are not new and have already been defined in the Reactive Manifesto,
which is the glossary that describes the reactive system's concepts. This manifesto was
created to ensure that businesses and developers have the same understanding of
conventional notions. To emphasize, a reactive system and the Reactive Manifesto are
concerned with architecture, and this may be applied to either large distributed
applications or small one-node applications.

The importance of the Reactive Manifesto (https://www.
reactivemanifesto.org) is explained by Jonas Bonér, the Founder and
CTO of Lightbend, at the following link: https://www.lightbend.com/

blog/why_do_we_need_a_reactive_manifesto%3F.

[14]


https://www.reactivemanifesto.org/glossary
https://www.reactivemanifesto.org/glossary
https://www.reactivemanifesto.org/glossary
https://www.reactivemanifesto.org/glossary
https://www.reactivemanifesto.org/glossary
https://www.reactivemanifesto.org/glossary
https://www.reactivemanifesto.org/glossary
https://www.reactivemanifesto.org/glossary
https://www.reactivemanifesto.org/glossary
https://www.reactivemanifesto.org/glossary
https://www.reactivemanifesto.org/glossary
https://www.reactivemanifesto.org
https://www.reactivemanifesto.org
https://www.reactivemanifesto.org
https://www.reactivemanifesto.org
https://www.reactivemanifesto.org
https://www.reactivemanifesto.org
https://www.reactivemanifesto.org
https://www.reactivemanifesto.org
https://www.lightbend.com/blog/why_do_we_need_a_reactive_manifesto%3F
https://www.lightbend.com/blog/why_do_we_need_a_reactive_manifesto%3F
https://www.lightbend.com/blog/why_do_we_need_a_reactive_manifesto%3F
https://www.lightbend.com/blog/why_do_we_need_a_reactive_manifesto%3F
https://www.lightbend.com/blog/why_do_we_need_a_reactive_manifesto%3F
https://www.lightbend.com/blog/why_do_we_need_a_reactive_manifesto%3F
https://www.lightbend.com/blog/why_do_we_need_a_reactive_manifesto%3F
https://www.lightbend.com/blog/why_do_we_need_a_reactive_manifesto%3F
https://www.lightbend.com/blog/why_do_we_need_a_reactive_manifesto%3F
https://www.lightbend.com/blog/why_do_we_need_a_reactive_manifesto%3F
https://www.lightbend.com/blog/why_do_we_need_a_reactive_manifesto%3F
https://www.lightbend.com/blog/why_do_we_need_a_reactive_manifesto%3F
https://www.lightbend.com/blog/why_do_we_need_a_reactive_manifesto%3F
https://www.lightbend.com/blog/why_do_we_need_a_reactive_manifesto%3F
https://www.lightbend.com/blog/why_do_we_need_a_reactive_manifesto%3F
https://www.lightbend.com/blog/why_do_we_need_a_reactive_manifesto%3F
https://www.lightbend.com/blog/why_do_we_need_a_reactive_manifesto%3F
https://www.lightbend.com/blog/why_do_we_need_a_reactive_manifesto%3F
https://www.lightbend.com/blog/why_do_we_need_a_reactive_manifesto%3F
https://www.lightbend.com/blog/why_do_we_need_a_reactive_manifesto%3F
https://www.lightbend.com/blog/why_do_we_need_a_reactive_manifesto%3F
https://www.lightbend.com/blog/why_do_we_need_a_reactive_manifesto%3F
https://www.lightbend.com/blog/why_do_we_need_a_reactive_manifesto%3F
https://www.lightbend.com/blog/why_do_we_need_a_reactive_manifesto%3F

Why Reactive Spring? Chapter 1

Reactivity use cases

In the previous section, we learned the importance of reactivity and the fundamental
principles of the reactive system, and we have seen why message-driven communication is
an essential constituent of the reactive ecosystem. Nonetheless, to reinforce what we have
learned, it is necessary to touch on real-world examples of its application. First of all, the
reactive system is about architecture, and it may be applied anywhere. It may be used in
simple websites, in large enterprise solutions, or even in fast-streaming or big-data systems.
But let's start with the simplest—consider the example of a web store that we have already
seen in the previous section. In this section, we will cover possible improvement and
changes in the design that may help in achieving a reactive system. The following diagram
helps us get acquainted with the overall architecture of the proposed solution:

Register Instance

View Products Il_ist Products

«- - ‘Products Response- ~,

P A 4

ST Success Mail-----~ \

; Y i

oo Mail Notification: - - -~ ==~ -~~~ X< 0( ———————————— O Retry N times
A H
oo Failure Mail -~ -~~~ ‘

Payments Service

Diagram 1.4. Example of store application architecture

[15]



Why Reactive Spring? Chapter 1

The preceding diagram expands a list of useful practices that allow the reactive system to
be achieved. Here, we improved our small web store by applying modern microservice
patterns. In that case, we use an API Gateway pattern for achieving location transparency.
It provides the identification of a specific resource with no knowledge about particular
services that are responsible for handling requests.

However, it means that the client should know the resource name at least.
Once the API Gateway receives the service name as part of a request URIL,
then it can resolve a specific service address by asking the registry service.

In turn, the responsibility for keeping information about available services up to date is
implemented using the service registry pattern and achieved with the support of the client-
side discovery pattern. It should be noticed, that in the previous example, the service
gateway and service registry are installed on the same machine, which may be useful in the
case of a small distributed system. Additionally, the high responsiveness of the system is
achieved by applying replication to the service. On the other hand, failure tolerance is
attained by properly employed message-driven communication using Apache Kafka and
the independent Payment Proxy Service (the point with Retry N times description in
Diagram 1.4), which is responsible for redelivering payment in the case of unavailability of
the external system. Also, we use database replication to stay resilient in the case of

the outage of one of the replicas. To stay responsive, we return a response about an
accepted order immediately and asynchronously process and send the user payment to the
payments service. A final notification will be delivered later by one of the supported
channels, for example, via email. Finally, that example depicts only one part of the system
and in real deployments, the overall diagram may be broader and introduce much more
specific techniques for achieving a reactive system.

Note, we will cover design principles and their pros and cons thoroughly
in Chapter 8, Scaling Up with Cloud Streams.

To familiarize ourselves with API Gateway, Service Registry, and other patterns for
constructing a distributed system, please click on the following link: http://

microservices.io/patterns.

[16]


http://microservices.io/patterns
http://microservices.io/patterns
http://microservices.io/patterns
http://microservices.io/patterns
http://microservices.io/patterns
http://microservices.io/patterns
http://microservices.io/patterns
http://microservices.io/patterns

Why Reactive Spring? Chapter 1

Along with the plain, small web store example that may seem really complex, let's consider
another sophisticated area where a reactive system approach is appropriate. A more
complex but exciting example is analytics. The term analytics means that the system that is
able to handle a huge amount of data, process it in run-time, keep the user up to date with
live statistics, and so on. Suppose we are designing a system for monitoring a
telecommunication network based on cell site data. Due to the latest statistic report of the
number of cell towers, in 2016 there were 308,334 active sites in the USA.

The statistic report with the number of cell sites in the USA is available at
the fOllOWing link: https://www.statista.com/statistics/185854/
monthly-number-of-cell-sites-in-the-united-states-since-june-
1986/.

Unfortunately, we can just imagine the real load produced by that number of cell sites.
However, we can agree that processing such a huge amount of data and providing real-
time monitoring of the telecommunication network state, quality, and traffic is a challenge.

To design this system, we may follow one of the efficient architectural techniques called
streaming. The following diagram depicts the abstract design of such a streaming system:

Querying Service

& Request View————> H
e 8

: Replicas : Storage

Diagram 1.5. Example of an analytics real-time system architecture

Real-Time
View

Processing Pipe

[17]



https://www.statista.com/statistics/185854/monthly-number-of-cell-sites-in-the-united-states-since-june-1986/
https://www.statista.com/statistics/185854/monthly-number-of-cell-sites-in-the-united-states-since-june-1986/
https://www.statista.com/statistics/185854/monthly-number-of-cell-sites-in-the-united-states-since-june-1986/
https://www.statista.com/statistics/185854/monthly-number-of-cell-sites-in-the-united-states-since-june-1986/
https://www.statista.com/statistics/185854/monthly-number-of-cell-sites-in-the-united-states-since-june-1986/
https://www.statista.com/statistics/185854/monthly-number-of-cell-sites-in-the-united-states-since-june-1986/
https://www.statista.com/statistics/185854/monthly-number-of-cell-sites-in-the-united-states-since-june-1986/
https://www.statista.com/statistics/185854/monthly-number-of-cell-sites-in-the-united-states-since-june-1986/
https://www.statista.com/statistics/185854/monthly-number-of-cell-sites-in-the-united-states-since-june-1986/
https://www.statista.com/statistics/185854/monthly-number-of-cell-sites-in-the-united-states-since-june-1986/
https://www.statista.com/statistics/185854/monthly-number-of-cell-sites-in-the-united-states-since-june-1986/
https://www.statista.com/statistics/185854/monthly-number-of-cell-sites-in-the-united-states-since-june-1986/
https://www.statista.com/statistics/185854/monthly-number-of-cell-sites-in-the-united-states-since-june-1986/
https://www.statista.com/statistics/185854/monthly-number-of-cell-sites-in-the-united-states-since-june-1986/
https://www.statista.com/statistics/185854/monthly-number-of-cell-sites-in-the-united-states-since-june-1986/
https://www.statista.com/statistics/185854/monthly-number-of-cell-sites-in-the-united-states-since-june-1986/
https://www.statista.com/statistics/185854/monthly-number-of-cell-sites-in-the-united-states-since-june-1986/
https://www.statista.com/statistics/185854/monthly-number-of-cell-sites-in-the-united-states-since-june-1986/
https://www.statista.com/statistics/185854/monthly-number-of-cell-sites-in-the-united-states-since-june-1986/
https://www.statista.com/statistics/185854/monthly-number-of-cell-sites-in-the-united-states-since-june-1986/
https://www.statista.com/statistics/185854/monthly-number-of-cell-sites-in-the-united-states-since-june-1986/
https://www.statista.com/statistics/185854/monthly-number-of-cell-sites-in-the-united-states-since-june-1986/
https://www.statista.com/statistics/185854/monthly-number-of-cell-sites-in-the-united-states-since-june-1986/
https://www.statista.com/statistics/185854/monthly-number-of-cell-sites-in-the-united-states-since-june-1986/
https://www.statista.com/statistics/185854/monthly-number-of-cell-sites-in-the-united-states-since-june-1986/
https://www.statista.com/statistics/185854/monthly-number-of-cell-sites-in-the-united-states-since-june-1986/
https://www.statista.com/statistics/185854/monthly-number-of-cell-sites-in-the-united-states-since-june-1986/
https://www.statista.com/statistics/185854/monthly-number-of-cell-sites-in-the-united-states-since-june-1986/
https://www.statista.com/statistics/185854/monthly-number-of-cell-sites-in-the-united-states-since-june-1986/
https://www.statista.com/statistics/185854/monthly-number-of-cell-sites-in-the-united-states-since-june-1986/
https://www.statista.com/statistics/185854/monthly-number-of-cell-sites-in-the-united-states-since-june-1986/
https://www.statista.com/statistics/185854/monthly-number-of-cell-sites-in-the-united-states-since-june-1986/
https://www.statista.com/statistics/185854/monthly-number-of-cell-sites-in-the-united-states-since-june-1986/
https://www.statista.com/statistics/185854/monthly-number-of-cell-sites-in-the-united-states-since-june-1986/
https://www.statista.com/statistics/185854/monthly-number-of-cell-sites-in-the-united-states-since-june-1986/
https://www.statista.com/statistics/185854/monthly-number-of-cell-sites-in-the-united-states-since-june-1986/

Why Reactive Spring? Chapter 1

As may be noticed from this diagram, streaming architecture is about the construction of
the flow of data processing and transformation. In general, such a system is characterized
by low latency and high throughput. In turn, the ability to respond or simply deliver
analyzed updates of the telecommunication network state is therefore crucial. Thus, to
build such a highly-available system, we have to rely on fundamental principles, as
mentioned in the Reactive Manifesto. For example, achieving resilience might be done by
enabling backpressure support. Backpressure refers to a sophisticated mechanism of
workload management between processing stages in such a way that ensures we do not
overwhelm another. Efficient workload management may be achieved by using message-
driven communication over a reliable message broker, which may persist messages
internally and send messages on demand.

Note that other techniques for handling backpressure will be covered in
Chapter 3, Reactive Streams - the New Streams’ Standard.

Moreover, by properly scaling each component of the system, we will be able to elastically
expand or reduce system throughput.

To learn more about the terminology, see the following link:
Backpressure: https://www.reactivemanifesto.org/glossary#Back—

Pressure.

In a real-world scenario, the stream of the data may be persisted databases processed in a
batch, or partially processed in real-time by applying windowing or machine-learning
techniques. Nonetheless, all fundamental principles offered by the Reactive Manifesto are
valid here, regardless of the overall domain or business idea.

To summarize, there are a ton of different areas in which to apply the foundational
principles of building a reactive system. The area of application of the reactive system is not
limited to the previous examples and areas, since all of these principles may be applied to
building almost any kind of distributed system oriented to giving users effective,
interactive feedback.

Nonetheless, in the next section, we will cover the reasons for moving Spring Framework to
reactivity.

[18]


https://www.reactivemanifesto.org/glossary#Back-Pressure
https://www.reactivemanifesto.org/glossary#Back-Pressure
https://www.reactivemanifesto.org/glossary#Back-Pressure
https://www.reactivemanifesto.org/glossary#Back-Pressure
https://www.reactivemanifesto.org/glossary#Back-Pressure
https://www.reactivemanifesto.org/glossary#Back-Pressure
https://www.reactivemanifesto.org/glossary#Back-Pressure
https://www.reactivemanifesto.org/glossary#Back-Pressure
https://www.reactivemanifesto.org/glossary#Back-Pressure
https://www.reactivemanifesto.org/glossary#Back-Pressure
https://www.reactivemanifesto.org/glossary#Back-Pressure
https://www.reactivemanifesto.org/glossary#Back-Pressure

Why Reactive Spring? Chapter 1

Why Reactive Spring?

In the previous section, we looked at a few interesting examples in which reactive system
approaches shine. We have also expanded on the usage of fundamentals such as elasticity
and resilience, and seen examples of microservice-based systems commonly used to attain a
reactive system.

That gave us an understanding of the architectural perspective but nothing about the
implementation. However, it is important to emphasize the complexity of the reactive
system and the construction of such a system is a challenge. To create a reactive system
with ease, we have to analyze frameworks capable of building such things first and then
choose one of them. One of the most popular ways to choose a framework is by analyzing
its available features, relevance, and community.

In the JVM world, the most commonly known frameworks for building a reactive system
has been Akka and Vert.x ecosystems.

On the one hand, Akka is a popular framework with a huge list of features and a big
community. However, at the very beginning, Akka was built as part of the Scala ecosystem
and for a long time, it showed its power only within solutions written in Scala. Despite the
fact that Scala is a JVM-based language, it is noticeably different from Java. A few years
ago, Akka provided direct support for Java, but for some reason, it was not as popular

in the Java world as it was in Scala.

On the other hand, there is the Vert.x framework which is also a powerful solution for
building an efficient reactive system. Vert.x was designed as a non-blocking, event-driven
alternative to Node.js that runs on the Java Virtual Machine. However, Vert.x started being
competitive only a few years ago and during the last 15 years, the market for frameworks
for flexible robust application development has been held by the Spring Framework.

To get more information about the Java tools landscape, follow this link:
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-—

of-March-2016/answer/Krishna-Srinivasan—-6?srid=xCnf.

The Spring Framework provides wide possibilities for building a web application using a
developer-friendly programming model. However, for a long time, it had some limitations
in building a robust reactive system.

[19]


https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf
https://www.quora.com/Is-it-worth-learning-Java-Spring-MVC-as-of-March-2016/answer/Krishna-Srinivasan-6?srid=xCnf

Why Reactive Spring? Chapter 1

Reactivity on the service level

Fortunately, the growing demand for reactive systems initiated the creation of a new Spring
Project called Spring Cloud. The Spring Cloud Framework is a foundation of projects that
address particular problems and simplifies the construction of distributed systems.
Consequently, the Spring Framework ecosystem may be relevant for us to build reactive
systems.

To learn more about the essential functionality, components, and features
of that project please click on the following link: http://projects.

spring.io/spring-cloud/.

We will skip the details of Spring Cloud Framework functionality in this chapter and cover
the most important parts that help in the development of the reactive system in chapter 8,
Scaling Up with Cloud Streams. Nonetheless, it should be noticed that such a solution
building a robust, reactive microservices system with minimum effort.

However, the overall design is only one element of constructing the whole reactive system.
As may be noticed from the excellent Reactive Manifesto:

"Large systems are composed of smaller ones and therefore depend on the Reactive
properties of their constituents. This means that Reactive Systems apply design principles
so these properties apply at all levels of scale, making them able to be composed”.

Therefore, it is important to provide a reactive design and implementation on the
component level as well. In that context, the term design principle refers to a relationship
between components and, for example, programming techniques that are used to
compound elements. The most popular traditional technique for writing code in Java is
imperative programming.

[20]


http://projects.spring.io/spring-cloud/
http://projects.spring.io/spring-cloud/
http://projects.spring.io/spring-cloud/
http://projects.spring.io/spring-cloud/
http://projects.spring.io/spring-cloud/
http://projects.spring.io/spring-cloud/
http://projects.spring.io/spring-cloud/
http://projects.spring.io/spring-cloud/
http://projects.spring.io/spring-cloud/
http://projects.spring.io/spring-cloud/
http://projects.spring.io/spring-cloud/
http://projects.spring.io/spring-cloud/
http://projects.spring.io/spring-cloud/

Why Reactive Spring? Chapter 1

To understand whether imperative programming follows reactive system design principles,
let's consider the next diagram:

1

OrdersService

1
+ scService: ShoppingCardService [@—————

+ process(): void

Application

<<Interface>>
ShoppingCardService

+ calculate(Input in): output

Diagram 1.6. UML Schema of component relationship

Here, we have two components within the web store application. In that case,
OrdersService calls ShoppingCardService while processing the user request. Suppose
that under the hood shoppingCardService executes a long-running I/O operation, for
example, an HTTP request or database query. To understand the disadvantages of
imperative programming let's consider the following example of the most common
implementation of the aforementioned interaction between components:

interface ShoppingCardService { // (1)
Output calculate (Input value); //
} //
class OrdersService { /7 (2)
private final ShoppingCardService scService; //
//
void process () { //
Input input = ...; //
Output output = scService.calculate (input) ; // (2.1)
... /] (2.2)
} //
} //

[21]



Why Reactive Spring? Chapter 1

The aforementioned code is explained as follows:

1. This is the ShoppingCardService interface declaration. This corresponds to the
aforementioned class diagram and has only one calculate method, which
accepts one argument and returns a response after its processing.

2. This is the Orderservice declaration. Here, at point (2.1) we synchronously
call shoppingCardService and receive a result right after its execution. Point
(2.2) hides the rest of the code responsible for result processing.

3. In turn, in that case our services are tightly coupled in time, or simply the
execution of OrderService is tightly coupled to the execution
of ShoppingCardService. Unfortunately, with such a technique, we cannot
proceed with any other actions while ShoppingCardService is in the
processing phase.

As we can understand from the preceding code, in Java world, the execution

of scService.calculate (input) blocks the Thread on which the processing of

the Ordersservice logic takes place. Thus, to run a separate independent processing in
OrderService we have to allocate an additional Thread. As we will see in this chapter,
the allocation of an additional Thread might be wasteful. Consequently, from the reactive
system perspective, such system behavior is unacceptable.

Blocking communications directly contradicts the message-driven
principle, which explicitly offers us non-blocking communication. See the
following for more information on this: https://www.

reactivemanifesto.org/#message—-driven

Nonetheless, in Java, that problem may be solved by applying a callback technique for the
purpose of cross-component communication:

interface ShoppingCardService { // (1)
void calculate (Input value, Consumer<Output> c); //
} //
class OrdersService { // (2)
private final ShoppingCardService scService; //
//
void process () { //
Input input = ...; //
scService.calculate (input, output -> { // (2.1)
/] (2.2)
)i //
} //
} //

[22]


https://www.reactivemanifesto.org/#message-driven
https://www.reactivemanifesto.org/#message-driven
https://www.reactivemanifesto.org/#message-driven
https://www.reactivemanifesto.org/#message-driven
https://www.reactivemanifesto.org/#message-driven
https://www.reactivemanifesto.org/#message-driven
https://www.reactivemanifesto.org/#message-driven
https://www.reactivemanifesto.org/#message-driven
https://www.reactivemanifesto.org/#message-driven
https://www.reactivemanifesto.org/#message-driven
https://www.reactivemanifesto.org/#message-driven
https://www.reactivemanifesto.org/#message-driven

Why Reactive Spring? Chapter 1

Each point in the preceding code is explained in the following numbered list:

1. The preceding code is the ShoppingCardService interface declaration. In that
case, the calculate method accepts two parameters and returns a void.
It means that from the design perspective, the caller may be immediately
released from waiting and the result will be sent to the given Consumer<>
callback later.

2. This is the OrderService declaration. Here, at point (2.1) we asynchronously
call shoppingCardService and continue processing. In turn, when
the shoppingCardService executes the callback function we will be able to
proceed with the actual result processing (2.2).

Now, OrdersService passes the function-callback to react at the end of the operation. This
embraces the fact that Ordersservice is now decoupled from

ShoppingCardService and the first one may be notified via the functional callback where
the implementation of the ShoppingCardService#calculate method, which calls the
given function, may either be synchronous or asynchronous:

class SyncShoppingCardService implements ShoppingCardService { // (1)
public void calculate (Input value, Consumer<Output> c) { //
Output result = new Output (); //
c.accept (result); // (1.1)
} //
} //
class AsyncShoppingCardService implements ShoppingCardService { /7 (2)
public void calculate (Input value, Consumer<Output> c) { //
new Thread(() —> { // (2.1)
Output result = template.getForObject(...); // (2.2)
//
c.accept (result); // (2.3)
}) .start (); // (2.4)
} //
} //

[23]



Why Reactive Spring? Chapter 1

Each point in the preceding code is explained in the following numbered list:

1. This point is the SyncShoppingCardService class declaration. This
implementation assumes the absence of blocking operations. Since we do not
have an I/O execution, the result may be returned immediately by passing it to
the callback function (1.1).

2. This point in the preceding code is the AsyncShoppingCardservice class
declaration. In the case, when we have blocking I/O as depicted in point (2.2),
we may wrap it in the separate Thread (2.1) (2.4). After retrieving the result,
it will be processed and passed to the callback function.

In that example, we have the sync implementation of ShoppingCardsService, which keeps
synchronous bounds and offers no benefits from the API perspective. In the async case, we
achieve asynchronous bounds, and a request will be executed in the separate

Thread. OrdersService is decoupled from the execution process and will be notified of
the completion by the callback execution.

The advantage of that technique is that components are decoupled in time by the callback
function. This means that after calling the scService.calculate method, we will be able
to proceed with other operations immediately without waiting for the response in the
blocking fashion from ShoppingCardService.

The disadvantage is that callback requires the developer to have a good understanding of
multi-threading to avoid the traps of shared data modifications and callback hell.

Actually, the phrase callback hell is mentioned in relation to
JavaScript: http://callbackhell.com, butitis also applicable to Java as
well.

Fortunately, the callback technique is not the only option. Another one is
java.util.concurrent.Future, which, to some degree, hides the executional behavior
and decouples components as well:

interface ShoppingCardService { // (1)
Future<Output> calculate (Input value); //
} //
class OrdersService { // (2)
private final ShoppingCardService scService; //
//
void process () { //
Input input = ...; //
Future<Output> future = scService.calculate (input); // (2.1)

[24]


http://callbackhell.com
http://callbackhell.com
http://callbackhell.com
http://callbackhell.com
http://callbackhell.com
http://callbackhell.com
http://callbackhell.com

Why Reactive Spring? Chapter 1

//
Output output = future.get(); /] (2.2)

//
} //
} //

The numbered points are described in the following:

1. At this point is the ShoppingCardService interface declaration. Here,
the calculate method accepts one parameter and returns Future. Future is a
class wrapper which allows us to check whether there is an available result or
blocking to get it.

2. This is the Orderservice declaration. Here, in point (2.1), we asynchronously
call ShoppingCardService and receive the Future instance. In turn, we are
able to continue processing while the result is being processed asynchronously.
After some execution, which may be done independently from
ShoppingCardServicef#calculation, we get the result. This result may end
up waiting in the blocking fashion or it may immediately return the result (2.2).

As we may notice from the previous code, with the Future class, we achieve deferred
retrieval of the result. With the support of the Future class, we avoid callback hell and hide
multi-threading complexity behind a specific Future implementation. Anyway, to get the
result we need, we must potentially block the current Thread and synchronize with the
external execution that noticeably decreases scalability.

As an improvement, Java 8 offers CompletionStage and CompletableFuture as a direct
implementation for CompletionStage. In turn, those classes provide promise-like APIs
and make it possible to build code such as the following;:

To learn more about futures and promises, please see the following link:
https://en.wikipedia.org/wiki/Futures_and_promises.

interface ShoppingCardService { // (1)
CompletionStage<Output> calculate (Input wvalue); //
} //
class OrdersService { // (2)
private final ComponentB componentB; //
void process () { //
Input input = ...; //
componentB.calculate (input) // (2.1)
.thenApply (outl -> { ... }) // (2.2)

[25]


https://en.wikipedia.org/wiki/Futures_and_promises
https://en.wikipedia.org/wiki/Futures_and_promises
https://en.wikipedia.org/wiki/Futures_and_promises
https://en.wikipedia.org/wiki/Futures_and_promises
https://en.wikipedia.org/wiki/Futures_and_promises
https://en.wikipedia.org/wiki/Futures_and_promises
https://en.wikipedia.org/wiki/Futures_and_promises
https://en.wikipedia.org/wiki/Futures_and_promises
https://en.wikipedia.org/wiki/Futures_and_promises
https://en.wikipedia.org/wiki/Futures_and_promises
https://en.wikipedia.org/wiki/Futures_and_promises
https://en.wikipedia.org/wiki/Futures_and_promises
https://en.wikipedia.org/wiki/Futures_and_promises
https://en.wikipedia.org/wiki/Futures_and_promises
https://en.wikipedia.org/wiki/Futures_and_promises
https://en.wikipedia.org/wiki/Futures_and_promises
https://en.wikipedia.org/wiki/Futures_and_promises

Why Reactive Spring? Chapter 1

.thenCombine (out2 -> { ... }) //

.thenAccept (out3 -> { ... }) //

} //

} //

The aforementioned code is described in the following:

1. At this point, we have the ShoppingCardService interface declaration. In this
case, the calculate method accepts one parameter and returns
CompletionStage. CompletionStage is a class wrapper that is similar to
Future but allows processing the returned result in the functional declarative
fashion.

2. Thisis an OrdersService declaration. Here, at point (2.1) we asynchronously
call shoppingCardService and receive the CompletionStage immediately as
the result of the execution. The overall behavior of the CompletionStage is
similar to Future, but CompletionStage provides a fluent API which makes it
possible to write methods such as thenAccept and thenCombine. These define
transformational operations on the result and thenAccept, which defines
the final consumers, to handle the transformed result.

With the support of CompletionStage, we can write code in the functional and declarative
style, which looks clean and processes the result asynchronously. Furthermore, we may
omit the awaiting results and provide a function to handle the result when it becomes
available. Moreover, all of the previous techniques are valued by Spring teams and have
already been implemented within most of the projects within the framework. Even though
the CompletionStage gives better possibilities for writing efficient and readable code,
unfortunately, there are some missing points there. For example, Spring 4 MVC did not
support CompletionStage for a long time and for that purpose, it provided its own
ListenableFuture. This happened because Spring 4 aimed to become compatible with
older Java versions. Let's take an overview of AsyncRestTemplate usage to get an
understanding of how to work with Spring's ListenableFuture. The following code
shows how we may use ListenableFuture with AsyncRestTemplate:

AsyncRestTemplate template = new AsyncRestTemplate();

SuccessCallback onSuccess = r -> { ... };

FailureCallback onFailure = e -> { ... };

ListenableFuture<?> response = template.getForEntity (
"http://example.com/api/examples",
ExamplesCollection.class

)

response.addCallback (onSuccess, onFailure);

[26]




Why Reactive Spring? Chapter 1

The preceding code shows the callback style for handling an asynchronous call. Essentially,
this method of communication is a dirty hack, and Spring Framework wraps blocking
network calls in a separate thread under-the-hood. Furthermore, Spring MVC relies on
Servlet API, which obligates all implementations to use the thread-per-request model.

Many things have changed with the release of Spring Framework 5 and
the new Reactive WebClient, so with the support of WebClient, all
cross-service communication is non-blocking anymore. Also, Servlet 3.0
introduced asynchronous client-server communication, Servlet 3.1
allowed non-blocking writing to I/O, and in general new asynchronous
non-blocking features of the Servlet 3 API are well integrated into Spring
MVC. However, the only problem was that Spring MVC did not provide
an out of the box asynchronous non-blocking client that negates all
benefits from improved servlets.

This model is quite non-optimal. To understand why this technique is inefficient, we have
to revisit the costs of multi-threading. On the one hand, multi-threading is a complex
technique by nature. When we work with multi-threading, we have to think about many
things, such as access to shared memory from the different threads, synchronization, error
handling, and so on. In turn, the design of multi-threading in Java supposes that a few
threads may share a single CPU to run their tasks simultaneously. The fact that CPU time
will be shared between several threads introduces the notion of context switching. This
means that to resume a thread later, it is required to save and load registers, memory maps,
and other related elements which in general are computationally-intensive operations.
Consequently, its application with a high number of active threads, and few CPUs, will be
inefficient.

To learn more about the cost of context switching, please visit the
following link: https://en.wikipedia.org/wiki/Context_switch#Cost.

In turn, a typical Java thread has its overhead in memory consumption. A typical stack size
for a thread on a 64-bit Java VM is 1,024 KB. On the one hand, an attempt to handle ~6,4000
simultaneous requests in a thread per connection model may result in about 64 GB of used
memory. This might be costly from the business perspective or critical from the application
standpoint. On the other hand, by switching to traditional thread pools with a limited size
and a pre-configured queue for requests, the client waits too long for a response, which is
less reliable, increases the average response timeout, and finally may

cause unresponsiveness of the application.

[27]


https://en.wikipedia.org/wiki/Context_switch#Cost
https://en.wikipedia.org/wiki/Context_switch#Cost
https://en.wikipedia.org/wiki/Context_switch#Cost
https://en.wikipedia.org/wiki/Context_switch#Cost
https://en.wikipedia.org/wiki/Context_switch#Cost
https://en.wikipedia.org/wiki/Context_switch#Cost
https://en.wikipedia.org/wiki/Context_switch#Cost
https://en.wikipedia.org/wiki/Context_switch#Cost
https://en.wikipedia.org/wiki/Context_switch#Cost
https://en.wikipedia.org/wiki/Context_switch#Cost
https://en.wikipedia.org/wiki/Context_switch#Cost
https://en.wikipedia.org/wiki/Context_switch#Cost
https://en.wikipedia.org/wiki/Context_switch#Cost
https://en.wikipedia.org/wiki/Context_switch#Cost
https://en.wikipedia.org/wiki/Context_switch#Cost

Why Reactive Spring? Chapter 1

For that purpose, the Reactive Manifesto recommends using a non-blocking operation, and
this is an omission in the Spring ecosystem. On the other hand, there is no good integration
with reactive servers such as Netty, which solves the problem of context switching.

To get source information about the average amount of connections, see

the following link: https://stackoverflow.com/questions/2332741/
what—-is-the-theoretical-maximum-number-of-open-tcp-connections-

that-a-modern-1in/2332756#2332756.

The term thread refers to allocated memory for the thread object and
allocated memory for the thread stack. See the next link for more
information:
http://xmlandmore.blogspot.com/2014/09/jdk-8-thread-stack—-size-
tuning.html?m=1.

It is important to note that asynchronous processing is not limited to a plain request-
response pattern, and sometimes we have to deal with handling infinitive streams of data,
processing it in the manner of an aligned transformation flow with backpressure support:

Process

Diagram 1.7. Reactive pipeline example

Push

---Pull-----

One of the ways for handling such cases is through reactive programming, which embraces
the techniques of asynchronous event processing through chaining transformational stages.
Consequently, reactive programming is a good technique which fits the design
requirements for a reactive system. We will cover the value of applying reactive
programming for building a reactive system in the next chapters.

Unfortunately, the reactive programming technique was not well integrated inside Spring
Framework. That put another limitation on building modern applications and decreased
the competitiveness of the framework. As a consequence, all the mentioned gaps in the
growing hype around reactive systems and reactive programming simply increased the
need for dramatic improvements within the framework. Finally, that drastically stimulated
the improvement of Spring Framework by adding the support for Reactivity on all levels
and providing developers with a powerful tool for reactive system development. Its pivotal
developers decided to implement new modules that reveal the whole power of Spring
Framework as a reactive system foundation.

[28]


https://stackoverflow.com/questions/2332741/what-is-the-theoretical-maximum-number-of-open-tcp-connections-that-a-modern-lin/2332756#2332756
https://stackoverflow.com/questions/2332741/what-is-the-theoretical-maximum-number-of-open-tcp-connections-that-a-modern-lin/2332756#2332756
https://stackoverflow.com/questions/2332741/what-is-the-theoretical-maximum-number-of-open-tcp-connections-that-a-modern-lin/2332756#2332756
https://stackoverflow.com/questions/2332741/what-is-the-theoretical-maximum-number-of-open-tcp-connections-that-a-modern-lin/2332756#2332756
https://stackoverflow.com/questions/2332741/what-is-the-theoretical-maximum-number-of-open-tcp-connections-that-a-modern-lin/2332756#2332756
https://stackoverflow.com/questions/2332741/what-is-the-theoretical-maximum-number-of-open-tcp-connections-that-a-modern-lin/2332756#2332756
https://stackoverflow.com/questions/2332741/what-is-the-theoretical-maximum-number-of-open-tcp-connections-that-a-modern-lin/2332756#2332756
https://stackoverflow.com/questions/2332741/what-is-the-theoretical-maximum-number-of-open-tcp-connections-that-a-modern-lin/2332756#2332756
https://stackoverflow.com/questions/2332741/what-is-the-theoretical-maximum-number-of-open-tcp-connections-that-a-modern-lin/2332756#2332756
https://stackoverflow.com/questions/2332741/what-is-the-theoretical-maximum-number-of-open-tcp-connections-that-a-modern-lin/2332756#2332756
https://stackoverflow.com/questions/2332741/what-is-the-theoretical-maximum-number-of-open-tcp-connections-that-a-modern-lin/2332756#2332756
https://stackoverflow.com/questions/2332741/what-is-the-theoretical-maximum-number-of-open-tcp-connections-that-a-modern-lin/2332756#2332756
https://stackoverflow.com/questions/2332741/what-is-the-theoretical-maximum-number-of-open-tcp-connections-that-a-modern-lin/2332756#2332756
https://stackoverflow.com/questions/2332741/what-is-the-theoretical-maximum-number-of-open-tcp-connections-that-a-modern-lin/2332756#2332756
https://stackoverflow.com/questions/2332741/what-is-the-theoretical-maximum-number-of-open-tcp-connections-that-a-modern-lin/2332756#2332756
https://stackoverflow.com/questions/2332741/what-is-the-theoretical-maximum-number-of-open-tcp-connections-that-a-modern-lin/2332756#2332756
https://stackoverflow.com/questions/2332741/what-is-the-theoretical-maximum-number-of-open-tcp-connections-that-a-modern-lin/2332756#2332756
https://stackoverflow.com/questions/2332741/what-is-the-theoretical-maximum-number-of-open-tcp-connections-that-a-modern-lin/2332756#2332756
https://stackoverflow.com/questions/2332741/what-is-the-theoretical-maximum-number-of-open-tcp-connections-that-a-modern-lin/2332756#2332756
https://stackoverflow.com/questions/2332741/what-is-the-theoretical-maximum-number-of-open-tcp-connections-that-a-modern-lin/2332756#2332756
https://stackoverflow.com/questions/2332741/what-is-the-theoretical-maximum-number-of-open-tcp-connections-that-a-modern-lin/2332756#2332756
https://stackoverflow.com/questions/2332741/what-is-the-theoretical-maximum-number-of-open-tcp-connections-that-a-modern-lin/2332756#2332756
https://stackoverflow.com/questions/2332741/what-is-the-theoretical-maximum-number-of-open-tcp-connections-that-a-modern-lin/2332756#2332756
https://stackoverflow.com/questions/2332741/what-is-the-theoretical-maximum-number-of-open-tcp-connections-that-a-modern-lin/2332756#2332756
https://stackoverflow.com/questions/2332741/what-is-the-theoretical-maximum-number-of-open-tcp-connections-that-a-modern-lin/2332756#2332756
https://stackoverflow.com/questions/2332741/what-is-the-theoretical-maximum-number-of-open-tcp-connections-that-a-modern-lin/2332756#2332756
https://stackoverflow.com/questions/2332741/what-is-the-theoretical-maximum-number-of-open-tcp-connections-that-a-modern-lin/2332756#2332756
https://stackoverflow.com/questions/2332741/what-is-the-theoretical-maximum-number-of-open-tcp-connections-that-a-modern-lin/2332756#2332756
https://stackoverflow.com/questions/2332741/what-is-the-theoretical-maximum-number-of-open-tcp-connections-that-a-modern-lin/2332756#2332756
https://stackoverflow.com/questions/2332741/what-is-the-theoretical-maximum-number-of-open-tcp-connections-that-a-modern-lin/2332756#2332756
https://stackoverflow.com/questions/2332741/what-is-the-theoretical-maximum-number-of-open-tcp-connections-that-a-modern-lin/2332756#2332756
https://stackoverflow.com/questions/2332741/what-is-the-theoretical-maximum-number-of-open-tcp-connections-that-a-modern-lin/2332756#2332756
https://stackoverflow.com/questions/2332741/what-is-the-theoretical-maximum-number-of-open-tcp-connections-that-a-modern-lin/2332756#2332756
https://stackoverflow.com/questions/2332741/what-is-the-theoretical-maximum-number-of-open-tcp-connections-that-a-modern-lin/2332756#2332756
https://stackoverflow.com/questions/2332741/what-is-the-theoretical-maximum-number-of-open-tcp-connections-that-a-modern-lin/2332756#2332756
https://stackoverflow.com/questions/2332741/what-is-the-theoretical-maximum-number-of-open-tcp-connections-that-a-modern-lin/2332756#2332756
https://stackoverflow.com/questions/2332741/what-is-the-theoretical-maximum-number-of-open-tcp-connections-that-a-modern-lin/2332756#2332756
https://stackoverflow.com/questions/2332741/what-is-the-theoretical-maximum-number-of-open-tcp-connections-that-a-modern-lin/2332756#2332756
https://stackoverflow.com/questions/2332741/what-is-the-theoretical-maximum-number-of-open-tcp-connections-that-a-modern-lin/2332756#2332756
http://xmlandmore.blogspot.com/2014/09/jdk-8-thread-stack-size-tuning.html?m=1
http://xmlandmore.blogspot.com/2014/09/jdk-8-thread-stack-size-tuning.html?m=1
http://xmlandmore.blogspot.com/2014/09/jdk-8-thread-stack-size-tuning.html?m=1
http://xmlandmore.blogspot.com/2014/09/jdk-8-thread-stack-size-tuning.html?m=1
http://xmlandmore.blogspot.com/2014/09/jdk-8-thread-stack-size-tuning.html?m=1
http://xmlandmore.blogspot.com/2014/09/jdk-8-thread-stack-size-tuning.html?m=1
http://xmlandmore.blogspot.com/2014/09/jdk-8-thread-stack-size-tuning.html?m=1
http://xmlandmore.blogspot.com/2014/09/jdk-8-thread-stack-size-tuning.html?m=1
http://xmlandmore.blogspot.com/2014/09/jdk-8-thread-stack-size-tuning.html?m=1
http://xmlandmore.blogspot.com/2014/09/jdk-8-thread-stack-size-tuning.html?m=1
http://xmlandmore.blogspot.com/2014/09/jdk-8-thread-stack-size-tuning.html?m=1
http://xmlandmore.blogspot.com/2014/09/jdk-8-thread-stack-size-tuning.html?m=1
http://xmlandmore.blogspot.com/2014/09/jdk-8-thread-stack-size-tuning.html?m=1
http://xmlandmore.blogspot.com/2014/09/jdk-8-thread-stack-size-tuning.html?m=1
http://xmlandmore.blogspot.com/2014/09/jdk-8-thread-stack-size-tuning.html?m=1
http://xmlandmore.blogspot.com/2014/09/jdk-8-thread-stack-size-tuning.html?m=1
http://xmlandmore.blogspot.com/2014/09/jdk-8-thread-stack-size-tuning.html?m=1
http://xmlandmore.blogspot.com/2014/09/jdk-8-thread-stack-size-tuning.html?m=1
http://xmlandmore.blogspot.com/2014/09/jdk-8-thread-stack-size-tuning.html?m=1
http://xmlandmore.blogspot.com/2014/09/jdk-8-thread-stack-size-tuning.html?m=1
http://xmlandmore.blogspot.com/2014/09/jdk-8-thread-stack-size-tuning.html?m=1
http://xmlandmore.blogspot.com/2014/09/jdk-8-thread-stack-size-tuning.html?m=1
http://xmlandmore.blogspot.com/2014/09/jdk-8-thread-stack-size-tuning.html?m=1
http://xmlandmore.blogspot.com/2014/09/jdk-8-thread-stack-size-tuning.html?m=1
http://xmlandmore.blogspot.com/2014/09/jdk-8-thread-stack-size-tuning.html?m=1
http://xmlandmore.blogspot.com/2014/09/jdk-8-thread-stack-size-tuning.html?m=1
http://xmlandmore.blogspot.com/2014/09/jdk-8-thread-stack-size-tuning.html?m=1
http://xmlandmore.blogspot.com/2014/09/jdk-8-thread-stack-size-tuning.html?m=1
http://xmlandmore.blogspot.com/2014/09/jdk-8-thread-stack-size-tuning.html?m=1
http://xmlandmore.blogspot.com/2014/09/jdk-8-thread-stack-size-tuning.html?m=1

Why Reactive Spring? Chapter 1

Summary

In this chapter, we highlighted the requirements for cost-efficient IT solutions that often
arise nowadays. We described why and how big companies such as Amazon failed to force
old architectural patterns to work smoothly in current cloud-based distributed
environments.

We also established the need for new architectural patterns and programming techniques
to fulfill the ever-growing demand for convenient, efficient, and intelligent digital services.
With the Reactive Manifesto, we deconstructed and comprehended the term reactivity and
also described why and how elasticity, resilience, and message-driven approaches help to
achieve responsiveness, probably the primary non-functional system requirement in the
digital era. Of course, we gave examples in which the reactive system shines and easily
allows businesses to achieve their goals.

In this chapter, we have highlighted a clear distinction between a reactive system as an
architectural pattern and reactive programming as a programming technique. We described
how and why these two types of reactivity play well together and enable us to create highly
efficient die-hard IT solutions.

To go deeper into Reactive Spring 5, we need to gain a solid understanding of the reactive
programming basement, learning essential concepts and patterns that determine the
technique. Therefore, in the next chapter, we will learn the essentials of reactive
programming, its history, and the state of the reactive landscape in the Java world.

[29]



Reactive Programming in
Spring - Basic Concepts

The previous chapter explained why it is important to build reactive systems and how
reactive programming helps to do this. In this section, we will look at some toolsets that
have already been present in Spring Framework for some time. We will also learn the
important basic concepts of reactive programming by exploring the RxJava library, which is
the first and most well-known reactive library in the Java world.

In this chapter, we will cover the following topics:

e Observer pattern

Publish-Subscribe implementation provided by Spring
e Server-sent events

RxJava history and base concepts

Marble diagrams
¢ Business cases implemented by applying reactive programming

The current landscape of reactive libraries

Early reactive solutions in Spring

We have previously mentioned that there are a lot of patterns and programming techniques
that are capable of becoming building blocks for the reactive system. For example, callbacks
and CompletableFuture are commonly used to implement the message-driven
architecture. We also mentioned reactive programming as a prominent candidate for such a
role. Before we explore this in more detail, we need to look around and find other solutions
that we have already been using for years.



Reactive Programming in Spring - Basic Concepts Chapter 2

In chapter 1, Why Reactive Spring?, we saw that Spring 4.x introduced the
ListenableFuture class, which extends the Java Future and makes it possible to
leverage the asynchronous execution of operations such as HTTP requests. Unfortunately,
only a handful of Spring 4.x components support the newer Java 8 CompletableFuture,
which introduces some neat methods for asynchronous execution composition.

Nevertheless, Spring Framework provides other bits of infrastructure that will be very
useful for building our reactive application. Let's look through some of these features now.

Observer pattern

To move things along, we need to remind ourselves about a particular pretty old and well-
known design pattern—the Observer pattern. That is one of the twenty-three famous GoF
(Gang of Four) design patterns. At first glance, it may appear that the Observer pattern is
not related to reactive programming. However, as we will see later, with some small
modifications, it defines the foundations of reactive programming.

To read more about GoF design patterns, please refer to Design
Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides (https://en.

wikipedia. org/wiki/Design_Patterns).

The Observer pattern involves a subject that holds a list of its dependants, called
Observers. The subject notifies its observers of any state changes, usually by calling one of
their methods. This pattern is essential when implementing systems based on event
handling. The Observer pattern is a vital part of the MVC (Model-View-Controller)
pattern. Consequently, almost all Ul libraries apply it internally.

To simplify this, let's use an analogy from an everyday situation. We can apply this pattern
to the newsletter subscription from one of the technical portals. We have to register our
email address somewhere on the site of our interest, and then it will send us notifications in
the form of newsletters, as shown in the following diagram:

[31]


https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Design_Patterns

Reactive Programming in Spring - Basic Concepts

Chapter 2

& u1 & u2 & us
) No subscribers, ignore IZI
|:_| Subscribe o
J Send to U1
PRI IR IR chotlotiodgeatdl I |4
[ Subscribe o
< n g
T ( """" Send news to U1, U3 | |DX]
|:-| Subscribe o
—l »
D Bl St Send news 1o U1, U3, U2
¢ - - - Send newsto U1 s U2 | b
€-------- T --------------------

Diagram 2.1 Observer pattern analogy from day-to-day life: newsletter subscription from a technical portal

The Observer pattern makes it possible to register one-to-many dependencies between
objects at runtime. At the same time, it does this without knowing anything about the
component implementation details (to be type safe, an observer may be aware of a type of
incoming event). That gives us the ability to decouple application pieces even though these
parts actively interact. Such communication is usually one directional and helps efficiently
distribute events through the system, as shown in the following diagram:

Observer

Subject

—<>| + observerCollection

+ observe(event)

i

+ registerObserver(observer)
+ unregisterObserver(observer)
+ notifyObservers(event)

notifyObservers(event)

ConcreteObserverA

ConcreteObserverB for observer in observerCollection

+ observe(event)

call observer.observe(event)

+ observe(event)

Diagram 2.2 Observer pattern UML class diagram

[32]



Reactive Programming in Spring - Basic Concepts Chapter 2

As the preceding diagram shows, a typical Observer pattern consists of two

interfaces, Subject and Observer. Here, an Observer is registered in Subject and
listens for notifications from it. A Subject may generate events on its own or may be called
by other components. Let's define a Subject interface in Java:

public interface Subject<T> {
void registerObserver (Observer<T> observer);
void unregisterObserver (Observer<T> observer);
void notifyObservers (T event);

}

This generic interface is parametrized with the event type T, which improves the type
safety of our programme. It also contains methods for managing subscriptions

(the registerObserver, unregisterObserver, and notifyObservers methods) that
trigger an event's broadcasting. In turn, the Observer interface may look like the
following;:

public interface Observer<T> {
void observe (T event);

}

The Observer is a generic interface, which parametrized with the T type . In turn, it has
only one observe method in place to handle events. Both the Observer and subject do
not know about each other more than described in these interfaces.

The Observer implementation may be responsible for the subscription procedure, or

the Observer instance may not be aware of the existence of the Subject at all. In the latter
case, a third component may be responsible for finding all of the instances of

the subject and all registration procedures. For example, such a role may come into

play with the Dependency Injection container. This scans the classpath for each

Observer with the @EventListener annotation and the correct signature. After that, it
registers the found components to the Subject.

A classic example of a Dependency Injection container is Spring
Framework itself. If are not familiar with it, please read the article by
Martin Fowler at https://martinfowler.com/articles/injection.html.

Now, let's implement two very simple observers that simply receive St ring messages and
print them to the output stream:

public class ConcreteObserverA implements Observer<String> {

@Override
public void observe (String event) {
System.out.println ("Observer A: " + event);

[33]


https://martinfowler.com/articles/injection.html
https://martinfowler.com/articles/injection.html
https://martinfowler.com/articles/injection.html
https://martinfowler.com/articles/injection.html
https://martinfowler.com/articles/injection.html
https://martinfowler.com/articles/injection.html
https://martinfowler.com/articles/injection.html
https://martinfowler.com/articles/injection.html
https://martinfowler.com/articles/injection.html
https://martinfowler.com/articles/injection.html
https://martinfowler.com/articles/injection.html
https://martinfowler.com/articles/injection.html
https://martinfowler.com/articles/injection.html

Reactive Programming in Spring - Basic Concepts Chapter 2

}

public class ConcreteObserverB implements Observer<String> {

@Override
public void observe (String event) {
System.out.println ("Observer B: " + event);

}
}

We also need to write an implementation of the Subject<String>, which
produces string events, as shown in the following code:

public class ConcreteSubject implements Subject<String> {
private final Set<Observer<String>> observers = // (1)
new CopyOnWriteArraySet<>();

public void registerObserver (Observer<String> observer) {
observers.add (observer) ;

}

public void unregisterObserver (Observer<String> observer) {
observers.remove (observer) ;

}

public void notifyObservers (String event) { // (2)
observers.forEach (observer —-> observer.observe (event)) ; // (2.1)
;
}

As we can see from the preceding example, the implementation of the Subject holds the
Set of observers (1) that are interested in receiving notifications. In turn, a modification
(subscription or cancellation of the subscription) of the mentioned set <Observer> is
possible with the support of the registerObserver and unregisterObserver methods.
To broadcast events, the Subject has a notifyObservers method (2) that iterates over
the list of observers and invokes the ocbserve () method with the actual event (2.1) for
each Observer. To be secure in the multithreaded scenario, we

use CopyOnWriteArraySet, a thread-safe Set implementation that creates a new copy of
its elements each time the update operation happens. It is relatively expensive to update
the contents of the CopyOnWriteArraySet, especially when the container holds a lot of
elements. However, the list of subscribers does not usually change often, so it is a fairly
reasonable option for the thread-safe Subject implementation.

[34]



Reactive Programming in Spring - Basic Concepts

Chapter 2

Observer pattern usage example

Now, let's write a simple JUnit test that uses our classes and demonstrates how all of them
play together. Also, in the following example, we are using the Mockito library (http://
site.mockito.org) in order to verify expectations with the support of the Spies Pattern:

@Test

public void observersHandleEventsFromSubject () {

// given

Subject<String> subject = new ConcreteSubject();
Observer<String> observerA = Mockito.spy (new ConcreteObserverA());
Observer<String> observerB = Mockito.spy (new ConcreteObserverB());

// when

subject.

subject.
subject.

subject.
subject.

subject

subject.

subject

subject.

// then
Mockito
Mockito
Mockito

Mockito

Mockito

Mockito
s

notifyObservers ("No listeners");

registerObserver (observerh) ;
notifyObservers ("Message for A");

registerObserver (observerB) ;
notifyObservers ("Message for A & B");

.unregisterObserver (observerd) ;

notifyObservers ("Message for B");

.unregisterObserver (observerB) ;

notifyObservers ("No listeners");

.verify (observerA, times(1l)) .observe ("Message
.verify (observerA, times(1l)) .observe ("Message
.verifyNoMorelInteractions (observera);

.verify (observerB, times(1l)) .observe ("Message
.verify (observerB, times (1)) .observe ("Message
.verifyNoMorelInteractions (observerB) ;

for
for

for
for

A" ;
A & B");

By running the preceding test, the following output is produced. It shows which messages
have been received by which Observer:

Observer
Observer
Observer
Observer

o

Message for
Message for
Message for
Message for

W
[
o w

[35]


http://site.mockito.org
http://site.mockito.org
http://site.mockito.org
http://site.mockito.org
http://site.mockito.org
http://site.mockito.org
http://site.mockito.org
http://site.mockito.org

Reactive Programming in Spring - Basic Concepts Chapter 2

In the case when we do not need to cancel subscriptions, we may leverage Java 8 features
and replace the Observer implementation classes with lambdas. Let's write the
corresponding test:

@Test

public void subjectLeveragesLambdas () {
Subject<String> subject = new ConcreteSubject ();
subject.registerObserver (e —-> System.out.println("A: " + e));
subject.registerObserver (e —-> System.out.println("B: " + e));

subject.notifyObservers ("This message will receive A & B");

}

It is important to mention that the current Subject implementation is based on

the CopyOnWriteArraySet, which is not the most efficient one. However, that
implementation is thread-safe at least, which means that we are allowed to use our Subject
in the multithreaded environment. For example, it may be useful when events are
distributed through many independent components, that usually work from multiple
threads (it is especially valid nowadays, when most applications are not single threaded).
Throughout the course of this book, we will be covering thread safety and other
multithreaded concerns.

Do keep in mind that when we have a lot of observers that handle events with some
noticeable latency—as introduced by downstream processing—we may parallel message
propagation using additional threads or Thread pool. This approach may lead to the next
implementation of the notifyObservers method:

private final ExecutorService executorService =
Executors.newCachedThreadPool () ;

public void notifyObservers (String event) {
observers.forEach (observer ->
executorService.submit (
() —> observer.observe (event)

)

[36]



Reactive Programming in Spring - Basic Concepts Chapter 2

However, with such improvements, we are stepping on the slippery road of homegrown
solutions that are usually not the most efficient, and that most likely hide bugs. For
example, we may forget to limit the thread pool size, which eventually leads

to an OutOfMemoryError. A naively configured ExecutorService may create a growing
number of threads in situations where clients ask to schedule tasks more frequently than
the executors can finish their current ones. And because each Thread consumes around 1
MB in Java, a typical JVM application has a chance to exhaust all available memory by
creating a few thousand threads.

For a more detailed description of experiments with the JVM thread
capacity, please refer to Peter Lawrey's article at http://vanillajava.
blogspot.com/2011/07/java-what-is-limit-to-number-of-threads.
html. It is quite old, but not a lot has changed in the JVM memory model
since then. To get information about the default stack size of our Java
setup, run the following command:

java -XX:+PrintFlagsFinal -version | grep ThreadStackSize

To prevent excessive resource usage, we may restrict the thread pool size and violate

the liveness property of the application. Situations such as this arise when all available
threads attempt to push some events to the same sluggish Observer. Here, we have just
scratched the surface of the potential problems that can occur. Also, as stated in the white-

paper:

”bﬂPTOU&iA4ulﬁﬂﬂ€ad&iLbﬁtT?Sﬁng"(http://users.ece.utexas.edu/
~gligoric/papers/JagannathETALL1IMunit .pdf), "Multithreaded code is
notoriously hard to develop and test”.

Consequently, when the multithreaded Observer pattern is required, it is better to use
battle-proven libraries.

When talking about liveness, we are referring to the definition from
Concurrent computing that describes it as a set of properties that requires a
concurrent system in order to make progress, even though its executing
components may have to enter critical sections. This was initially defined
by Lasley Lamport in Proving the Correctness of Multiprocess Programs
(http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.
9454rep=repitype=pdf)

[371]


http://vanillajava.blogspot.com/2011/07/java-what-is-limit-to-number-of-threads.html
http://vanillajava.blogspot.com/2011/07/java-what-is-limit-to-number-of-threads.html
http://vanillajava.blogspot.com/2011/07/java-what-is-limit-to-number-of-threads.html
http://vanillajava.blogspot.com/2011/07/java-what-is-limit-to-number-of-threads.html
http://vanillajava.blogspot.com/2011/07/java-what-is-limit-to-number-of-threads.html
http://vanillajava.blogspot.com/2011/07/java-what-is-limit-to-number-of-threads.html
http://vanillajava.blogspot.com/2011/07/java-what-is-limit-to-number-of-threads.html
http://vanillajava.blogspot.com/2011/07/java-what-is-limit-to-number-of-threads.html
http://vanillajava.blogspot.com/2011/07/java-what-is-limit-to-number-of-threads.html
http://vanillajava.blogspot.com/2011/07/java-what-is-limit-to-number-of-threads.html
http://vanillajava.blogspot.com/2011/07/java-what-is-limit-to-number-of-threads.html
http://vanillajava.blogspot.com/2011/07/java-what-is-limit-to-number-of-threads.html
http://vanillajava.blogspot.com/2011/07/java-what-is-limit-to-number-of-threads.html
http://vanillajava.blogspot.com/2011/07/java-what-is-limit-to-number-of-threads.html
http://vanillajava.blogspot.com/2011/07/java-what-is-limit-to-number-of-threads.html
http://vanillajava.blogspot.com/2011/07/java-what-is-limit-to-number-of-threads.html
http://vanillajava.blogspot.com/2011/07/java-what-is-limit-to-number-of-threads.html
http://vanillajava.blogspot.com/2011/07/java-what-is-limit-to-number-of-threads.html
http://vanillajava.blogspot.com/2011/07/java-what-is-limit-to-number-of-threads.html
http://vanillajava.blogspot.com/2011/07/java-what-is-limit-to-number-of-threads.html
http://vanillajava.blogspot.com/2011/07/java-what-is-limit-to-number-of-threads.html
http://vanillajava.blogspot.com/2011/07/java-what-is-limit-to-number-of-threads.html
http://vanillajava.blogspot.com/2011/07/java-what-is-limit-to-number-of-threads.html
http://vanillajava.blogspot.com/2011/07/java-what-is-limit-to-number-of-threads.html
http://vanillajava.blogspot.com/2011/07/java-what-is-limit-to-number-of-threads.html
http://vanillajava.blogspot.com/2011/07/java-what-is-limit-to-number-of-threads.html
http://vanillajava.blogspot.com/2011/07/java-what-is-limit-to-number-of-threads.html
http://vanillajava.blogspot.com/2011/07/java-what-is-limit-to-number-of-threads.html
http://vanillajava.blogspot.com/2011/07/java-what-is-limit-to-number-of-threads.html
http://users.ece.utexas.edu/~gligoric/papers/JagannathETAL11IMunit.pdf
http://users.ece.utexas.edu/~gligoric/papers/JagannathETAL11IMunit.pdf
http://users.ece.utexas.edu/~gligoric/papers/JagannathETAL11IMunit.pdf
http://users.ece.utexas.edu/~gligoric/papers/JagannathETAL11IMunit.pdf
http://users.ece.utexas.edu/~gligoric/papers/JagannathETAL11IMunit.pdf
http://users.ece.utexas.edu/~gligoric/papers/JagannathETAL11IMunit.pdf
http://users.ece.utexas.edu/~gligoric/papers/JagannathETAL11IMunit.pdf
http://users.ece.utexas.edu/~gligoric/papers/JagannathETAL11IMunit.pdf
http://users.ece.utexas.edu/~gligoric/papers/JagannathETAL11IMunit.pdf
http://users.ece.utexas.edu/~gligoric/papers/JagannathETAL11IMunit.pdf
http://users.ece.utexas.edu/~gligoric/papers/JagannathETAL11IMunit.pdf
http://users.ece.utexas.edu/~gligoric/papers/JagannathETAL11IMunit.pdf
http://users.ece.utexas.edu/~gligoric/papers/JagannathETAL11IMunit.pdf
http://users.ece.utexas.edu/~gligoric/papers/JagannathETAL11IMunit.pdf
http://users.ece.utexas.edu/~gligoric/papers/JagannathETAL11IMunit.pdf
http://users.ece.utexas.edu/~gligoric/papers/JagannathETAL11IMunit.pdf
http://users.ece.utexas.edu/~gligoric/papers/JagannathETAL11IMunit.pdf
http://users.ece.utexas.edu/~gligoric/papers/JagannathETAL11IMunit.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.9454&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.9454&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.9454&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.9454&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.9454&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.9454&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.9454&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.9454&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.9454&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.9454&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.9454&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.9454&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.9454&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.9454&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.9454&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.9454&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.9454&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.9454&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.9454&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.9454&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.9454&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.9454&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.9454&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.9454&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.9454&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.9454&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.9454&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.9454&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.9454&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.9454&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.9454&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.9454&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.9454&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.9454&rep=rep1&type=pdf

Reactive Programming in Spring - Basic Concepts Chapter 2

Our overview of the Observer pattern would be incomplete without mentioning how

the Observer and Observable classes form a java.util package. These classes were
released with JDK 1.0, so they are pretty old. If we look into the source code, we find a
pretty straightforward implementation, which is very similar to the one that we made
previously in this chapter. Because these classes were introduced before Java generics, they
operate with events of an Object type and consequently are not type safe. Also, this
implementation is not very efficient, especially in a multithreaded environment. Taking
what we've mentioned into account (all of these issues and some others), these classes are
deprecated in Java 9, so it makes no sense to use them for new applications.

More details about the reasons to deprecate the JDK Observer and
Observable can be found at: https://dzone.com/articles/javas-

observer—-and-observable-are-deprecated-in-jd.

Of course, when developing applications, we may use hand-crafted implementations of the
Observer pattern. This gives us the ability to decouple a source of events and observers.
However, it is troublesome to address a lot of aspects that are crucial for modern
multithreaded applications. That includes error handling, asynchronous execution, thread-
safety, the demand for the highest performance, and so on. We have already seen that event
implementation shipped with JDK is not sufficient beyond an educational usage. As a
result, it is unquestionably better to use a more mature implementation that is provided by
the respectable authority.

Publish-Subscribe pattern with @EventListener

It would be awkward to develop software with the need to re-implement the same software
patterns again and again. Luckily, we have Spring Framework, plenty of adorable libraries,
and other superb frameworks (Spring is not the only one). As we all know, Spring
Framework provides most of the building blocks we could ever need for software
development. Of course, for a long time, the framework had its own implementation of the
Observer Pattern, and this was widely used for tracking the application's life cycle events.
Starting with Spring Framework 4.2, this implementation and concomitant API was
extended to be used for the handling of not only application events but also business logic
events. In turn, for the event distribution purposes, Spring now provides an
@EventListener annotation for event handling and the ApplicationEventPublisher
class for event publishing.

Here we need to clarify that the @EventListener and the ApplicationEventPublisher
implement the Publish-Subscribe pattern, which may be seen as a variation of the
Observer pattern.

[38]


https://dzone.com/articles/javas-observer-and-observable-are-deprecated-in-jd
https://dzone.com/articles/javas-observer-and-observable-are-deprecated-in-jd
https://dzone.com/articles/javas-observer-and-observable-are-deprecated-in-jd
https://dzone.com/articles/javas-observer-and-observable-are-deprecated-in-jd
https://dzone.com/articles/javas-observer-and-observable-are-deprecated-in-jd
https://dzone.com/articles/javas-observer-and-observable-are-deprecated-in-jd
https://dzone.com/articles/javas-observer-and-observable-are-deprecated-in-jd
https://dzone.com/articles/javas-observer-and-observable-are-deprecated-in-jd
https://dzone.com/articles/javas-observer-and-observable-are-deprecated-in-jd
https://dzone.com/articles/javas-observer-and-observable-are-deprecated-in-jd
https://dzone.com/articles/javas-observer-and-observable-are-deprecated-in-jd
https://dzone.com/articles/javas-observer-and-observable-are-deprecated-in-jd
https://dzone.com/articles/javas-observer-and-observable-are-deprecated-in-jd
https://dzone.com/articles/javas-observer-and-observable-are-deprecated-in-jd
https://dzone.com/articles/javas-observer-and-observable-are-deprecated-in-jd
https://dzone.com/articles/javas-observer-and-observable-are-deprecated-in-jd
https://dzone.com/articles/javas-observer-and-observable-are-deprecated-in-jd
https://dzone.com/articles/javas-observer-and-observable-are-deprecated-in-jd
https://dzone.com/articles/javas-observer-and-observable-are-deprecated-in-jd
https://dzone.com/articles/javas-observer-and-observable-are-deprecated-in-jd
https://dzone.com/articles/javas-observer-and-observable-are-deprecated-in-jd
https://dzone.com/articles/javas-observer-and-observable-are-deprecated-in-jd
https://dzone.com/articles/javas-observer-and-observable-are-deprecated-in-jd
https://dzone.com/articles/javas-observer-and-observable-are-deprecated-in-jd

Reactive Programming in Spring - Basic Concepts Chapter 2

A good description of the Publish-Subscribe pattern can be found at:

http://www.enterpriseintegrationpatterns.com/patterns/messaging/
PublishSubscribeChannel.html.

In contrast to the Observer pattern, in the Publish-Subscribe pattern publishers and
subscribers don’t need to know each other, as is depicted in the following diagram:

Subject Publisher

p Publish
’ Event
A4

’ Fire
‘ Event

Event Channel

AY .
\‘Subscnbe i -
\ , Fire
* { Subscribe  Event
~

A
A ~
A A

Observer Subscriber

Diagram 2.3 The Observer pattern (on the left) versus the Publish-Subscribe pattern (on the right)

A Publish-Subscribe pattern provides an additional level of indirection between the
publishers and subscribers. The subscribers are aware of the event channels that broadcast
notifications, but usually do not care about publishers' identities. Also, each event channel
may have a few publishers at the same time. The preceding diagram should help to spot the
difference between Observer and Publish-Subscribe patterns. The Event Channel (also
known as a message broker or event bus) may additionally filter incoming messages and
distribute them between subscribers. The filtering and routing may happen based on the
message content, message topic, or sometimes even both. Consequently, subscribers in a
topic-based system will receive all messages published to the topics of interest.

The Spring Framework's @EventListener annotation makes it possible to apply both
topic-based and content-based routing. Message types could play the role of

topics; the condition attribute enables content-based routing event handling based on
the Spring Expression Language (SpEL).

[39]


http://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html

Reactive Programming in Spring - Basic Concepts Chapter 2

As an alternative to the Spring-based implementation of the Publish-
Subscribe pattern, there is a popular open source Java library called
MBassador. It has the single purpose of providing a light-weight, high-
performance event bus that implements the Publish-Subscribe pattern.
Authors claim that MBassador preserves resources while delivering high
performance. This is because it has almost no dependencies and does not
restrict the design of our application. For more details, please refer to the
project page on GitHub (https://github.com/bennidi/mbassador). Also,
the Guava library provides EventBus, which implements the Publish-
Subscribe pattern. The following article describes the API and includes
code samples for Guava EventBus: (https://github.com/google/guava/
wiki /EventBusExplained).

Building applications with @EventListener

To play with the Publish-Subscribe pattern in Spring Framework, let's do an exercise. In
turn, assume that we have to implement a simple web service that shows the current
temperature in the room. For this purpose, we have a temperature sensor, which sends
events with the current temperature in Celsius from time to time. We potentially want to
have both mobile and web applications, but for the sake of conciseness, we are
implementing only a simple web application. Furthermore, as questions of communication
with microcontrollers are out of the scope of this book, we are simulating a temperature
sensor using a random number generator.

To make our application following the reactive design, we cannot use an old pulling model
for data retrieval. Fortunately, nowadays we have some well-adopted protocols for
asynchronous message propagation from a server to a client,

namely WebSockets and Server-Sent Events (SSE). In the current example, we will use the
last one. The SSE allows a client to receive automatic updates from a server, and is
commonly used to send message updates or continuous data streams to a browser. With
the inception of HTMLS5, all modern browsers have a JavaScript API called EventSource,
which is used by clients who request a particular URL to receive an event stream.

The Event Source also autoreconnects by default in the case of communication issues. It is
important to highlight that SSE is an excellent candidate for fulfilling communication needs
between components in the reactive system. On par with WebSocket, SSE is used a lot in
this book.

[40]


https://github.com/bennidi/mbassador
https://github.com/bennidi/mbassador
https://github.com/bennidi/mbassador
https://github.com/bennidi/mbassador
https://github.com/bennidi/mbassador
https://github.com/bennidi/mbassador
https://github.com/bennidi/mbassador
https://github.com/bennidi/mbassador
https://github.com/bennidi/mbassador
https://github.com/bennidi/mbassador
https://github.com/bennidi/mbassador
https://github.com/google/guava/wiki/EventBusExplained
https://github.com/google/guava/wiki/EventBusExplained
https://github.com/google/guava/wiki/EventBusExplained
https://github.com/google/guava/wiki/EventBusExplained
https://github.com/google/guava/wiki/EventBusExplained
https://github.com/google/guava/wiki/EventBusExplained
https://github.com/google/guava/wiki/EventBusExplained
https://github.com/google/guava/wiki/EventBusExplained
https://github.com/google/guava/wiki/EventBusExplained
https://github.com/google/guava/wiki/EventBusExplained
https://github.com/google/guava/wiki/EventBusExplained
https://github.com/google/guava/wiki/EventBusExplained
https://github.com/google/guava/wiki/EventBusExplained
https://github.com/google/guava/wiki/EventBusExplained

Reactive Programming in Spring - Basic Concepts Chapter 2

To read more about Server-Sent Events, please read the chapter of High
Performance Browser Networking by Ilya Grigorik at https://hpbn.co/

server—sent-events—-sse/.

Also, the following article by Mark Brown gives a good comparison

between WebSockets and Server-Sent Events:
https://www.sitepoint.com/real-time-apps-websockets—-server—-sent-
events/

Bootstrapping a Spring application

To implement our usecase, we are using the well-known Spring modules Spring Web and
Spring Web MVC. Our application will not use the new features of Spring 5, so it will run
similarly on Spring Framework 4.x. To simplify our development process and even more,
we are leveraging Spring Boot, which is described in more detail later. To bootstrap our
application, we may configure and download a Gradle project from the Spring Initializer
website at start.spring.io. For now, we need to select the preferred Spring Boot version
and dependency for the web (the actual dependency identifier in Gradle config will

be org.springframework.boot :spring-boot-starter—web), as shown in the
following screenshot:

SPRING INITIALIZR

Generate a crderriec: With 22 ¢ and Spring Boot 202

«

Project Metadata Dependencies
Artifact coordinates Add Spring Boot Starters and dependencies to your application
Group Search for dependencies
com.example.rpws.chapters Web, Security, JPA, Actuator, Devtools...
Artifact Selected Dependencies

Generate Project % + «

Diagram 2.4 Web-based Spring Initializer simplifies the bootstrapping of a new Spring Boot application

[41]


https://hpbn.co/server-sent-events-sse/
https://hpbn.co/server-sent-events-sse/
https://hpbn.co/server-sent-events-sse/
https://hpbn.co/server-sent-events-sse/
https://hpbn.co/server-sent-events-sse/
https://hpbn.co/server-sent-events-sse/
https://hpbn.co/server-sent-events-sse/
https://hpbn.co/server-sent-events-sse/
https://hpbn.co/server-sent-events-sse/
https://hpbn.co/server-sent-events-sse/
https://hpbn.co/server-sent-events-sse/
https://hpbn.co/server-sent-events-sse/
https://hpbn.co/server-sent-events-sse/
https://hpbn.co/server-sent-events-sse/
https://hpbn.co/server-sent-events-sse/
https://www.sitepoint.com/real-time-apps-websockets-server-sent-events/
https://www.sitepoint.com/real-time-apps-websockets-server-sent-events/
https://www.sitepoint.com/real-time-apps-websockets-server-sent-events/
https://www.sitepoint.com/real-time-apps-websockets-server-sent-events/
https://www.sitepoint.com/real-time-apps-websockets-server-sent-events/
https://www.sitepoint.com/real-time-apps-websockets-server-sent-events/
https://www.sitepoint.com/real-time-apps-websockets-server-sent-events/
https://www.sitepoint.com/real-time-apps-websockets-server-sent-events/
https://www.sitepoint.com/real-time-apps-websockets-server-sent-events/
https://www.sitepoint.com/real-time-apps-websockets-server-sent-events/
https://www.sitepoint.com/real-time-apps-websockets-server-sent-events/
https://www.sitepoint.com/real-time-apps-websockets-server-sent-events/
https://www.sitepoint.com/real-time-apps-websockets-server-sent-events/
https://www.sitepoint.com/real-time-apps-websockets-server-sent-events/
https://www.sitepoint.com/real-time-apps-websockets-server-sent-events/
https://www.sitepoint.com/real-time-apps-websockets-server-sent-events/
https://www.sitepoint.com/real-time-apps-websockets-server-sent-events/
https://www.sitepoint.com/real-time-apps-websockets-server-sent-events/
https://www.sitepoint.com/real-time-apps-websockets-server-sent-events/
https://www.sitepoint.com/real-time-apps-websockets-server-sent-events/
https://www.sitepoint.com/real-time-apps-websockets-server-sent-events/
https://www.sitepoint.com/real-time-apps-websockets-server-sent-events/
https://www.sitepoint.com/real-time-apps-websockets-server-sent-events/
https://start.spring.io

Reactive Programming in Spring - Basic Concepts Chapter 2

Alternatively, we may generate a new Spring Boot project using cURL and the HTTP API of
the Spring Boot Initializer site. The following command will effectively create and
download the same empty project with all the desired dependencies:

curl https://start.spring.io/starter.zip \
—d dependencies=web, actuator \
-d type=gradle-project \
—d bootVersion=2.0.2.RELEASE \
-d groupId=com.example.rpws.chapters \
-d artifactId=SpringBootAwesome \
—o SpringBootAwesome.zip

Implementing business logic

We may now outline the design of our system in the following diagram:

M REST M Event @

SSE Controller Publisher

Temperature
sensor

1

1

1

1
A

1

1

1

1

1
A

1

1

1

:

G

Diagram 2.5 Events flow from a temperature sensor to a user

In this use case, the domain model will consist only of the Temperature class with the only
double value inside. For simplicity purposes, it is also used as an event object, as shown in
the following code:

final class Temperature {
private final double value;
// constructor & getter...

}

To simulate the sensor, let's implement the TemperatureSensor class and decorate it with
a @Component annotation to register the Spring bean, as follows:

@Component

public class TemperatureSensor {
private final ApplicationEventPublisher publisher; // (1)
private final Random rnd = new Random(); // (2)
private final ScheduledExecutorService executor = // (3)

Executors.newSingleThreadScheduledExecutor () ;

public TemperatureSensor (ApplicationEventPublisher publisher) {
this.publisher = publisher;
}

[42]



Reactive Programming in Spring - Basic Concepts Chapter 2

@PostConstruct

public void startProcessing() { /7 (4)
this.executor.schedule (this::probe, 1, SECONDS) ;

}

private void probe () { // (5)
double temperature = 16 + rnd.nextGaussian() * 10;
publisher.publishEvent (new Temperature (temperature));

// schedule the next read after some random delay (0-5 seconds)
executor
.schedule (this: :probe, rnd.nextInt (5000), MILLISECONDS) ; //

So, our simulated temperature sensor only depends on the ApplicationEventPublisher
class (1), provided by Spring Framework. This class makes it possible to publish events to
the system. It is a requirement to have a random generator (2) to contrive temperatures
with some random intervals. An event generation process happens in a separate
ScheduledExecutorService (3), where each event's generation schedules the next
round of an event's generation with a random delay (5.1). All that logic is defined in the
probe () method (5). In turn, the mentioned class has the startProcessing () method
annotated with @PostConstruct (4), which is called by Spring Framework when the
bean is ready and triggers the whole sequence of random temperature values.

Asynchronous HTTP with Spring Web MVC

The introduced in Servlet 3.0 asynchronous support expands the ability to process an HTTP
request in non-container threads. Such a feature is pretty useful for long-running tasks.
With those changes, in Spring Web MVC we can return not only a value of type T in
@Controller butalsoaCallable<T> oraDeferredResult<T>. The Callable<T> may
be run inside a non-container thread, but still, it would be a blocking call. In

contrast, DeferredResult<T> allows an asynchronous response generation on a non-
container thread by calling the setResult (T result) method so it could be used within
the event-loop.

Starting from version 4.2, Spring Web MVC makes it possible to return
ResponseBodyEmitter, which behaves similarly to DeferredResult, but can be used to
send multiple objects, where each object is written separately with an instance of a message
converter (defined by the Ht t pMessageConverter interface).

[43]



Reactive Programming in Spring - Basic Concepts Chapter 2

The SseEmitter extends ResponseBodyEmitter and makes it possible to send many
outgoing messages for one incoming request in accordance with SSE's protocol
requirements. Alongside ResponseBodyEmitter and SseEmitter, Spring Web

MVC also respects the st reamingResponseBody interface. When returned

from @Controller, it allows us to send raw data (payload bytes) asynchronously.
StreamingResponseBody may be very handy for streaming large files without blocking
Servlet threads.

Exposing the SSE endpoint

The next step requires adding the TemperatureController class with the
@RestController annotation, which means that the component is used for HTTP
communication, as shown in the following code:

@RestController
public class TemperatureController {
private final Set<SseEmitter> clients = // (1)
new CopyOnWriteArraySet<>();

@RequestMapping (
value = "/temperature-stream", // (2)
method = RequestMethod.GET)

public SseEmitter events (HttpServletRequest request) { // (3)
SseEmitter emitter = new SseEmitter(); // (4)
clients.add (emitter) ; // (5)

// Remove emitter from clients on error or disconnect

emitter.onTimeout (() —> clients.remove (emitter)); // (6)
emitter.onCompletion(() —-> clients.remove (emitter)); // (7)
return emitter; // (8)
}
@Async /7 (9)
@EventListener // (10)
public void handleMessage (Temperature temperature) { // (11)
List<SseEmitter> deadEmitters = new ArrayList<>(); // (12)
clients.forEach (emitter —> {
try {
emitter.send (temperature, MediaType.APPLICATION_JSON) ; // (13)
} catch (Exception ignore) {
deadEmitters.add (emitter) ; // (14)
}
}) i
clients.removeAll (deadEmitters) ; // (15)

[44]



Reactive Programming in Spring - Basic Concepts Chapter 2

Now, to understand the logic of the TemperatureController class, we need to describe
the SseEmitter. Spring Web MVC provides that class with the sole purpose of sending
SSE events. When a request-handling method returns the SseEmitter instance, the actual
request processing continues until SseEnitter.complete (), an error, or a timeout
occurs.

The TemperatureController provides one request handler (3) for the URI
/temperature—-stream (2) and returns the SseEmitter (8).In the case when a client
requests that URI, we create and return the new SseEmitter instance (4) with its
previous registration in the list of the active clients (5). Furthermore, the SseEmitter
constructor may consume the t imeout parameter.

For the clients' collection, we may use the CopyOnWriteArraySet class from

the java.util.concurrent package (1).Such an implementation allows us to modify
the list and iterate over it at the same time. When a web client opens a new SSE session, we
add a new emitter to the clients' collection. The SseEmitter removes itself

from the clients'list when it has finished processing or has reached timeout (6) (7).

Now, having a communication channel with clients means that we need to be able to
receive events about temperature changes. For that purpose, our class has

a handleMessage () method (11).Itis decorated with the @EventListener annotation
(10) in order to receive events from Spring. This framework will invoke

the handleMessage () method only when receiving Temperature events, as this type of
method's argument is known as temperature. The @Async annotation (9) marks a
method as a candidate for the asynchronous execution, so it is invoked in the manually
configured thread pool. The handleMessage () method receives a new temperature event
and asynchronously sends it to all clients in JSON format in parallel for each event (13).
Also, when sending to individual emitters, we track all failing ones (14) and remove them
from the list of the active clients (15). Such an approach makes it possible to spot clients
that are not operational anymore. Unfortunately, SseEmitter does not provide any
callback for handling errors, and can be done by handling errors thrown by the send ()
method only.

Configuring asynchronous support

To run everything, we need an entry point for our application with the following
customized methods:

@EnableAsync /7 (1)
@SpringBootApplication /7 (2)
public class Application implements AsyncConfigurer {

[45]



Reactive Programming in Spring - Basic Concepts Chapter 2

public static void main(String[] args) {
SpringApplication.run (Application.class, args);

@Override

public Executor getAsyncExecutor () { // (3)
ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();// (4)
executor.setCorePoolSize (2);
executor.setMaxPoolSize (100);
executor.setQueueCapacity (5); // (5)
executor.initialize();
return executor;

@Override
public AsyncUncaughtExceptionHandler getAsyncUncaughtExceptionHandler () {
return new SimpleAsyncUncaughtExceptionHandler () ; // (6)

}

As we can see, the example is a Spring Boot application (2), with an asynchronous
execution enabled by the @EnableAsync annotation (1).Here, we may configure an
exception handler for exceptions thrown from the asynchronous execution (6). That is also
where we prepare Executor for asynchronous processing. In our case, we use
ThreadPoolTaskExecutor with two core threads that may be increased to up to one
hundred threads. It is important to note that without a properly configured queue

capacity (5), the thread pool is not able to grow. That is because the SynchronousQueue
would be used instead, limiting concurrency.

Building a Ul with SSE support

The last thing that we need in order to complete our use case is an HTML page with some
JavaScript code to communicate with the server. For the sake of conciseness, we will strip
all HTML tags and leave only the minimum that is required to achieve a result, as follows:

<body>

<ul id="events"></ul>

<script type="application/javascript">

function add(message) {
const el = document.createElement ("11i");
el.innerHTML = message;
document .getElementById ("events") .appendChild(el);

var eventSource = new EventSource ("/temperature-stream"); // (1)

[46]



Reactive Programming in Spring - Basic Concepts Chapter 2

eventSource.onmessage = e => { /7 (2)
const t = JSON.parse(e.data);
const fixed = Number (t.value) .toFixed(2);

add ('Temperature: ' + fixed + ' C');
t
eventSource.onopen = e => add('Connection opened'); // (3)
eventSource.onerror = e => add('Connection closed'); //
</script>
</body>

Here, we are using the EventSource object pointed at /temperature-stream (1). This
handles incoming messages by invoking the onmessage () function (2), error handling,
and reaction to the stream opening, which are done in the same fashion (3). We should
save this page as index.html and putitin the src/main/resources/static/ folder of
our project. By default, Spring Web MVC serves the content of the folder through HTTP.
Such behavior could be changed by providing a configuration that

extends the WebMvcConfigurerAdapter class.

Verifying application functionality

After rebuilding and completing our application's startup, we should be able to access

the mentioned web page in a browser at the following address: http://localhost:8080
(Spring Web MVC uses port 8080 for the web server as the default one. However, this can
be changed in the application.properties file using the configuration

line server.port=9090). After a few seconds, we may see the following output:

Connection opened
Temperature: 14.71 C
Temperature: 9.67 C
Temperature: 19.02 C
Connection closed
Connection opened
Temperature: 18.01 C
Temperature: 16.17 C

As we can see, our web page reactively receives events, preserving both client and server
resources. It also supports autoreconnect in the case of network issues or timeouts. As the
current solution is not exclusive to JavaScript, we may connect with other clients for
example, curl. By running the next command in a terminal, we receive the following
stream of raw, but not formatted, events:

> curl http://localhost:8080/temperature-stream
data: {"value":22.33210856124129}
data: {"value":13.83133638119636}

[47]



Reactive Programming in Spring - Basic Concepts Chapter 2

To explore more about Server-Sent Events technology and its integration
with Spring Framework, read an excellent article by Ralph Schaer
at https://golb.hplar.ch/p/Server-Sent-Events-with—-Spring.

Criticism of the solution

At this point, we may praise ourselves for implementing a resilient reactive application
using only a few dozen code lines (including HTML and JavaScript). However, the current
solution has a few issues. First of all, we are using the Publish-Subscribe infrastructure
provided by Spring. In Spring Framework, this mechanism was initially introduced for
handling application life cycle events, and was not intended for high-load, high-
performance scenarios. What would happen when, instead of one stream of temperature
data, we need thousands or even millions of separate streams? Will Spring's
implementation be able to handle such a load efficiently?

Furthermore, one significant downside of such an approach lies in the fact that we are
using an internal Spring mechanism to define and implement our business logic. This leads
to a situation in which some minor changes in the framework may break our application.
Besides, it is hard to unit test our business rules without running the application context. As
explained in chapter 1, Why Reactive Spring?, it is also reasonable to mention an
application that has a lot of methods that are decorated with the @EventListener
annotation, and without an explicit script that describes the whole workflow in one concise
piece of code.

Furthermore, SseEmitter has a notion for errors and the ends of streams,

whereas @EventListener does not. So, to signal the end of the stream or error between
components, we have to define some special objects or class hierarchies, and it is easy to
forget about handling them. Also, such specific markers may have slightly different
semantics in different situations, complicating the solution and reducing the attractiveness
of the approach.

One more drawback worth highlighting is that we allocate the thread pool to
asynchronously broadcast temperature events. In the case of a genuinely asynchronous and
reactive approach (framework), we wouldn't have to do this.

Our temperature sensor generates only one stream of events without regard to how many
clients are listening. However, it also creates them when nobody listens. That may lead to a
waste of resources, especially when creation actions are resource hungry. For example, our
component may communicate with real hardware and reduce hardware lifespan at the
same time.

[48]


https://golb.hplar.ch/p/Server-Sent-Events-with-Spring
https://golb.hplar.ch/p/Server-Sent-Events-with-Spring
https://golb.hplar.ch/p/Server-Sent-Events-with-Spring
https://golb.hplar.ch/p/Server-Sent-Events-with-Spring
https://golb.hplar.ch/p/Server-Sent-Events-with-Spring
https://golb.hplar.ch/p/Server-Sent-Events-with-Spring
https://golb.hplar.ch/p/Server-Sent-Events-with-Spring
https://golb.hplar.ch/p/Server-Sent-Events-with-Spring
https://golb.hplar.ch/p/Server-Sent-Events-with-Spring
https://golb.hplar.ch/p/Server-Sent-Events-with-Spring
https://golb.hplar.ch/p/Server-Sent-Events-with-Spring
https://golb.hplar.ch/p/Server-Sent-Events-with-Spring
https://golb.hplar.ch/p/Server-Sent-Events-with-Spring
https://golb.hplar.ch/p/Server-Sent-Events-with-Spring
https://golb.hplar.ch/p/Server-Sent-Events-with-Spring
https://golb.hplar.ch/p/Server-Sent-Events-with-Spring
https://golb.hplar.ch/p/Server-Sent-Events-with-Spring
https://golb.hplar.ch/p/Server-Sent-Events-with-Spring
https://golb.hplar.ch/p/Server-Sent-Events-with-Spring
https://golb.hplar.ch/p/Server-Sent-Events-with-Spring
https://golb.hplar.ch/p/Server-Sent-Events-with-Spring

Reactive Programming in Spring - Basic Concepts Chapter 2

To address all of these issues, as well as others, we need a reactive library that is specially
designed for such purposes. Fortunately, we have a few of these. We will now look at
RxJava, which was the first widely adopted reactive library, and changed the way we build
reactive applications using Java.

RxJava as a reactive framework

For some time, there was a standard library for reactive programming on Java
platforms—namely RxJava 1.x (see https://github.com/Reactivex/RxJava for more
details). That library paved the way for reactive programming as we know it in the Java
world today. At the moment, it is not the only library of this kind; we also have Akka
Streams and Project Reactor. The latter is covered in detail in chapter 4, Project Reactor - the
Foundation for Reactive Apps. So, currently, we have a few options from which we may
choose. Furthermore, RxJava itself has changed a lot with the release of version 2.x.
However, to understand the most basic concepts of reactive programming and the
reasoning behind them, we will be focusing on the most fundamental part of the

RxJava only, on the API, which has not changed since the early versions of the library. All
examples in this section should work fine with both RxJava 1.x and RxJava 2.x.

To enable simultaneous usage in one application classpath, RxJava 2.x and RxJava 1.x have
different group IDs (io.reactivex.rxjava2 versus io.reactivex) and namespaces
(io.reactivex versus rx).

Even though the end-of-life for RxJava 1.x was in March 2018, it is still
used in a handful of libraries and applications, mainly because of long-
standing, wide-spread adoption. The following article provides a good
description of what was changed in RxJava 2.x in comparison to RxJava
1.X: https://github.com/ReactiveX/RxJava/wiki/What's-different-
in-2.0.

The RxJava library is a Java VM implementation of Reactive Extensions (also known as
ReactiveX). Reactive Extensions is a set of tools that allows imperative languages to work
with data streams, regardless of a stream being synchronous or asynchronous. ReactiveX is
often defined as a combination of the Observer pattern, the Iterator pattern, and functional
programming. A good starting point to learn more about ReactiveX is at http://

reactivex.io.

[49]


https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/RxJava/wiki/What's-different-in-2.0
https://github.com/ReactiveX/RxJava/wiki/What's-different-in-2.0
https://github.com/ReactiveX/RxJava/wiki/What's-different-in-2.0
https://github.com/ReactiveX/RxJava/wiki/What's-different-in-2.0
https://github.com/ReactiveX/RxJava/wiki/What's-different-in-2.0
https://github.com/ReactiveX/RxJava/wiki/What's-different-in-2.0
https://github.com/ReactiveX/RxJava/wiki/What's-different-in-2.0
https://github.com/ReactiveX/RxJava/wiki/What's-different-in-2.0
https://github.com/ReactiveX/RxJava/wiki/What's-different-in-2.0
https://github.com/ReactiveX/RxJava/wiki/What's-different-in-2.0
https://github.com/ReactiveX/RxJava/wiki/What's-different-in-2.0
https://github.com/ReactiveX/RxJava/wiki/What's-different-in-2.0
https://github.com/ReactiveX/RxJava/wiki/What's-different-in-2.0
https://github.com/ReactiveX/RxJava/wiki/What's-different-in-2.0
https://github.com/ReactiveX/RxJava/wiki/What's-different-in-2.0
https://github.com/ReactiveX/RxJava/wiki/What's-different-in-2.0
https://github.com/ReactiveX/RxJava/wiki/What's-different-in-2.0
https://github.com/ReactiveX/RxJava/wiki/What's-different-in-2.0
https://github.com/ReactiveX/RxJava/wiki/What's-different-in-2.0
https://github.com/ReactiveX/RxJava/wiki/What's-different-in-2.0
https://github.com/ReactiveX/RxJava/wiki/What's-different-in-2.0
https://github.com/ReactiveX/RxJava/wiki/What's-different-in-2.0
http://reactivex.io
http://reactivex.io
http://reactivex.io
http://reactivex.io
http://reactivex.io
http://reactivex.io

Reactive Programming in Spring - Basic Concepts Chapter 2

Reactive programming may seem to be difficult, especially when we are approaching it
from the imperative world, but the main idea is actually straightforward. Here, we are
going to learn the basics of RxJava as the most wide-spread reactive library to date. We are
not going to dive into all of the details, but try to walk through all the vital concepts of
reactive programming,.

Observer plus iterator equals Reactive Stream

In this chapter, we have talked a lot about the Observer pattern, which gives us a clearly
separated view of the Producer event and Consumer event. Let's have a recap of
the interfaces defined by that pattern, as shown in the following code:

public interface Observer<T> {
void notify (T event);

}

public interface Subject<T> {
void registerObserver (Observer<T> observer) ;
void unregisterObserver (Observer<T> observer);
void notifyObservers (T event);

}

As we saw previously, this approach is charming for infinite streams of data, but it would
be great to have the ability to signal the end of the data stream. Also, we do not want the
Producer to generate events before the appearance of consumers. In the synchronous
world, we have a pattern for that—Iterator pattern. This may be described using the
following code:

public interface Iterator<T> {
T next ();
boolean hasNext () ;

}

To retrieve items one by one, Iterator provides the next () method and also makes it
possible to signal the end of the sequence by returning a false value as a result of

the hasNext () call. So what would happen if we tried to mix this idea with an
asynchronous execution provided by the Observer pattern? The result would look like the
following;:

public interface RxObserver<T> {
void onNext (T next);
void onComplete () ;

[50]



Reactive Programming in Spring - Basic Concepts Chapter 2

The RxObserver is pretty similar to the Iterator, but instead of calling the next ()
method of ITterator, RxObserver would be notified with a new value by the onNext ()
callback. And instead of checking whether the result of the hasNext () method is positive,
RxObserver is informed about the end of the stream through the invoked onComplete ()
method. That is fine, but what about errors? The Iterator may throw an Exception
during the processing of the next () method, and it would be great to have a mechanism
for an error propagation from the Producer to RxObserver. Let's add a special callback for
that—onError (). So, the final solution will look like the following;:

public interface RxObserver<T> {
void onNext (T next);
void onComplete () ;
void onError (Exception e);

}

This happened because we have just designed an Observer interface, the foundational
concept of RxJava. This interface defines how data flows between every part of a reactive
stream. By being the smallest part of the library, the Observer interface is found
everywhere. The RxObserver is similar to the Observer from the Observer pattern,

as previously described.

The Observable Reactive class is a counterpart to the Subject from the Observer pattern.
As a consequence, Observable plays a role as an events source as it emits items. It has
hundreds of stream transformation methods, as well as dozens of factory methods to
initialize a reactive stream.

A Subscriber abstract class implements the Observer interface and consumes items. It is
also used as a base for the actual Subscriber's implementation. The runtime relation
between Observable and Subscriber is controlled by a Subscription that makes it
possible to check the subscription status and cancel it if needed. This relationship is
illustrated in the following diagram:

onNext(T)
................... )
Observable - _°[‘C_°_m_p'_e‘_99 _____ > Observer
onError(Throwable) >

Diagram 2.6 Observable-Observer contract

[51]



Reactive Programming in Spring - Basic Concepts Chapter 2

RxJava defines rules about emitting items. The Observable is allowed to send any number
of elements (including zero). Then it signals the end of the execution either by claiming the
success or raising an error. So the Observable for each attached subscriber invokes
onNext () any number of times, then calls onComplete () or onError () (but not both).
Consequently, it is prohibited for it to call onNext () after onComplete () or onError ().

Producing and consuming streams

At this point, we should be familiar enough with the RxJava library to create our first small
application. Let's define a stream that is represented by the Observable class. At the
moment, we may assume that the Observable is a sort of generator that knows how to
propagate events for subscribers as soon as they subscribe:

Observable<String> observale = Observable.create (
new Observable.OnSubscribe<String> () {
@Override
public void call (Subscriber<? super String> sub) { // (1)
sub.onNext ("Hello, reactive world!"); // (2)
sub.onCompleted () ; /7 (3)

)i

So, here we create an Observable with a callback that will be applied as soon as

the Subscriber appears (1). At that moment, our Observer will produce a one string
value (2) and then signal the end of the stream to the subscriber (3). We can also improve
this code using the Java 8 lambdas:

Observable<String> observable = Observable.create (
sub -—> {
sub.onNext ("Hello, reactive world!");
sub.onCompleted();

)

In contrast with the Java Stream API, Observable is reusable, and each subscriber will
receive the Hello, reactive world! event just after the subscription.

Note that, from RxJava 1.2.7 onward, the Observable creation has been
deprecated and treated as unsafe because it may generate too many
elements and overload the subscriber. In other words, this approach does
not support backpressure, a concept that we are going to examine later in
detail. However, that code is still valid for the sake of introduction.

[52]



Reactive Programming in Spring - Basic Concepts Chapter 2

So, now we need a Subscriber, as shown in the following code:

Subscriber<String> subscriber = new Subscriber<String> () {
@Override
public void onNext (String s) { // (1)

System.out.println(s);

@Override
public void onCompleted() { /7 (2)
System.out.println ("Done!");

}

@Override

public void onError (Throwable e) { // (3)
System.err.println(e);

bi

As we can see, the Subscriber has to implement the Observer methods and define
the reactions for new events (1), stream completion (2), and errors (3). Now, let's hook
the observable and subscriber instances together:

observable.subscribe (subscriber) ;

When running the mentioned code, the program generates the following output:

Hello, reactive world!
Done!

Hooray! We have just written a small and simple reactive hello-world application! As we
may suspect, we may rewrite this example using lambdas, as shown in the following code:

Observable.create (
sub —> {
sub.onNext ("Hello, reactive world!");
sub.onCompleted() ;
}
) .subscribe (
System.out::println,
System.err::println,
() —> System.out.println("Done!")
)

[53]



Reactive Programming in Spring - Basic Concepts Chapter 2

The RxJava library gives a lot of flexibility in order to create Observable and
Subscriber instances. It is possible to create an Observable instance just by referencing
elements, by using an old-style array, or from the Iterable collection, as follows:

Observable.just ("1", "2", "3", "4");
Observable.from(new String[]{"A", "B", "C"});
Observable.from(Collections.emptyList ());

It is also possible to reference a Callable (1) orevenaFuture (2), as shown in the
following code:

Observable<String> hello = Observable.fromCallable(() -> "Hello "); // (1)
Future<String> future =

Executors.newCachedThreadPool () .submit (() -> "World");
Observable<String> world = Observable.from(future); // (2)

Moreover, along with the plain creational functionality, the Observable stream may be
created by combining other Observable instances, which allows for easy implementation
of pretty complicated workflows. For example, the concat () operator for each of

the incoming streams consumes all items by re-sending them to the downstream observer.
Incoming streams will then be processed until a terminal operation (onComplete (),
onError ()) occurs, and the order of processing is the same as the order of the concat ()
arguments. The following code demonstrates an example of the concat () usage:

Observable.concat (hello, world, Observable.just("!"))
.forEach (System.out: :print);

Here, as part of a straightforward combination of a few Observable instances that use
different origins, we also iterate through the result with the Observable. forEach ()
method in a way that is similar to the Java 8 Stream APIL Such a program generates the
following output:

Hello World!

Note that even though it is convenient to not define handlers for
exceptions, in the case where an error occurs, the default Ssubscriber
implementation throws
rx.exceptions.OnErrorNotImplementedException.

[54]



Reactive Programming in Spring - Basic Concepts Chapter 2

Generating an asynchronous sequence

RxJava makes it possible to generate not only one event in the future, but an asynchronous
sequence of events based, for example, on a time interval, as shown in the following code:

Observable.interval (1, TimeUnit.SECONDS)
.subscribe (e —-> System.out.println("Received: " + e));
Thread.sleep (5000); // (1)

In that case, the output is as following:

Received:
Received:
Received:
Received:
Received:

w W NPk o

Also, if we remove Thread.sleep(...) (1), our application will exit without any output.
This happens because events would be generated and therefore consumed in a separate
daemon thread. So, to prevent the main thread from finishing the execution, we may

sleep () or do some other useful tasks.

Of course, there is something that controls the Observer-Subscriber cooperation. This is
called subscription, and has the following interface declaration:

interface Subscription {
void unsubscribe () ;
boolean isUnsubscribed();

}

The unsubscribe () method allows the Subscriber to inform Observable that there is
no need to send new events. In other words, the aforementioned code is a subscription
cancellation. On the other hand, Observable uses isUnsubscribed () to check

that the Subscriber is still waiting for events.

[551]



Reactive Programming in Spring - Basic Concepts Chapter 2

To understand the mentioned unsubscribe functionality, let's consider the case where a
subscriber is the only party interested in the events, and consumes them until an external
signal is propagated by CountDawnLatch (1).The incoming stream generates a new event
every 100 milliseconds, and these events produce the endless sequence—0, 1, 2,

3... (3). The following code demonstrates how to get a Subscription (2) when
defining a reactive stream. It also shows how to unsubscribe from a stream (4):

CountDownLatch externalSignal = ...; // (1)
Subscription subscription = Observable // (2)
.interval (100, MILLISECONDS) // (3)

.subscribe (System.out::println);

externalSignal.await ();
subscription.unsubscribe () ; /] (4)

So here, the subscriber receives the events 0, 1, 2, 3, and then the externalSignal
invocation occurs, which leads to the subscription cancellation.

At this point, we have already learned that reactive programming consists of an
Observable stream, a Subscriber, and some sort of Subscription that communicates
the intention of the Subscriber to receive events from the Observable producer. It is
now time to transform the data flowing through the reactive streams.

Stream transformation and marble diagrams

Even though Observable and Subscriber alone make it possible to implement a lot of
workflows, the whole power of RxJava is hidden in its operators. Operators are used for
tweaking elements of the stream or changing the stream structure itself. RxJava provides a
huge amount of operators for almost every potential scenario, but it is out of the scope of
this book to study all of them. Let's now look at the most used and foundational operators;
most others are just a combination of the basic ones.

Map operator

Unquestioningly, the most used operator in RxJava is map, which has the following
signature:

<R> Observable<R> map (Funcl<T, R> func)

[561]



Reactive Programming in Spring - Basic Concepts Chapter 2

The preceding method declaration means that the func function can transform the T object
type to the R object type, and applying map transforms Observable<T> into
Observable<R>. However, a signature does not always describe the operator's behavior
well, especially if the operator is doing a complex transformation. For these purposes,
Marble diagrams were invented. Marble diagrams visually present stream transformations.
They are so effective for describing the operator's behavior that almost all RxJava operators
contain the image with a marble diagram in Javadoc. The map operator is represented by
the following diagram:

: S SR SR S
map (i = i*2)

Diagram 2.7 Operator map: transforms the items emitted by an Observable by applying a function to each item

From looking at the preceding diagram, it should be clear that the map makes a one-to-one
transformation. Furthermore, the output stream has the same number of elements as the
input stream.

Filter operator

In contrast with the map operator, the £ilter may produce fewer elements than it has
received. It only emits those elements that have successfully passed the predicate test, as
shown in the following diagram:

[571



Reactive Programming in Spring - Basic Concepts Chapter 2

D) (D)D)
AN AN VAV A
; ; ; ; ; ;
filter (i = 1% 2 ==0)
A A '
) O .

Diagram 2.8 Filter operator: emits only those items from an Observable that pass a predicate test

Count operator

The count operator is pretty descriptive; it emits the only value with the number of
elements in the input stream. However, the count emits at the moment when the original
stream completes, so, in the case of an endless stream, the count will not ever finish or
return anything, as shown in the following diagram:

(D)) (D))
WO 00—
;

€= = -

- - -

1 1 1
1 1 1
1 1 1

A 4 y Y

count

OF

Diagram 2.9 Count operator: counts the number of items emitted by the Observable source and emit only this value

[581]



Reactive Programming in Spring - Basic Concepts Chapter 2

Zip operator

One more operator that we will look at is zip. This has a more complex behavior, as it
combines values from two parallel streams by applying a zip function. It is often used for
data enrichment, especially when parts of an expected result are retrieved from different
sources, as shown in the following diagram:

2] =] c—"F—>
ey W o oo N R
A A U
v P P P
WBjOR
= e L
& & o

Diagram 2.10 Zip operator: combines the emissions of multiple Observables together via a specified function and emits single items for each combination based on the results of
this function

Here, Netflix uses a zip operator to combine movie descriptions, movie posters, and movie
ratings when streaming a list of recommended videos. However, for the sake of simplicity,
let's zip just two streams of string values, as shown in the following code:

Observable.zip(
Observable.just ("A", "B", "C"),
Observable.just ("1", "2", "3"),
(x, y) —> x + Yy

) .forEach (System.out::println);

The preceding code joins elements one by one from two streams, as depicted in the
preceding diagram, and produces the following console output:

Al
B2
c3

[591]



Reactive Programming in Spring - Basic Concepts Chapter 2

To learn more about operators that are commonly used in reactive programming (not only
in RxJava) visit http://rxmarbles.com. This site contains interactive diagrams that reflect
actual operator behavior. In turn, the interactive UI allows us to visualize the events'
transformation with regards to the order and time in which each event appeared in the
streams. Note that the site itself is built with the Rx]JS library (see https://github.com/
ReactiveX/rxjs for more details), which is RxJava's counterpart in the JavaScript world.

As previously mentioned, RxJava's Observable provides dozens of stream transformation
operators that confidently cover a lot of use cases. Of course, RxJava does not only limit
developers to operators provided by the library. One can also write a custom operator by
implementing a class that is derived from the Observable.Transformer<T, R>.Such
operator logic could be included in the workflow by applying the

Observable.compose (transformer) operator. At the moment, we are not going to dive
into the operator's building theory or practice; we are going to cover that in later chapters,
partially. So far, it will be enough to highlight that RxJava provides a robust set of
instruments for building complicated asynchronous workflows that are mainly limited by
our imagination, not by the library.

Prerequisites and benefits of RxJava

With RxJava, we have become acquainted with the basics of reactive programming. Different
reactive libraries may have slightly different APIs and somewhat various implementation
details, but the concept remains the same—the subscriber subscribes to an observable
stream that in turn triggers an asynchronous process of event generation. Between

the producer and subscriber, there usually exists some subscription that makes it possible
to break up the producer-consumer relationship. Such an approach is very flexible and
enables to have control over the amount of produced and consumed events, decreasing
the number of CPU cycles, which are usually wasted on creating data, and will never be
used.

To prove that reactive programming offers the ability to save resources, let's assume that
we need to implement a simple in-memory search engine service. This should return a
collection of URLs to documents that contain the desired phrase. Usually, the client
application (a web or mobile app) also passes a limit, for example, the maximum amount of
useful results. Without reactive programming, we would probably design such a service
using the following API:

public interface SearchEngine {
List<URL> search(String query, int limit);
}

[60]


http://rxmarbles.com
http://rxmarbles.com
http://rxmarbles.com
http://rxmarbles.com
http://rxmarbles.com
http://rxmarbles.com
http://rxmarbles.com
https://github.com/ReactiveX/rxjs
https://github.com/ReactiveX/rxjs
https://github.com/ReactiveX/rxjs
https://github.com/ReactiveX/rxjs
https://github.com/ReactiveX/rxjs
https://github.com/ReactiveX/rxjs
https://github.com/ReactiveX/rxjs
https://github.com/ReactiveX/rxjs
https://github.com/ReactiveX/rxjs
https://github.com/ReactiveX/rxjs

Reactive Programming in Spring - Basic Concepts Chapter 2

As we might note from the interface, our service performs a search operation, gathers all
results within the 1imit, puts them into a List, and returns it to the client. In the
preceding scenario, a client of the service receives the whole result set, even if someone
picks the first or second result on the page after drawing the result on the UI. In that case,
our service did a lot of work, and our client has been waiting for a long time, but the client
ignored most of the results. That is undoubtedly a waste of resources.

However, we can do better and process the search result iterating over the result set. So the
server will search for the next result items as long as a client continues consuming them.
Usually, the server search progression happens not for each row, but rather for some fixed
size bucket (let's say 100 items). Such an approach is called cursor and is often used by
databases. For a client, the resulting cursor is represented in the form of an iterator. The
following code represents our improved service API:

public interface IterableSearchEngine {
Iterable<URL> search(String query, int limit);
}

The only drawback in the case of an iterable is that our client's thread will be blocked when
it is actively waiting for a new piece of data. That would be a disaster for the Android Ul
thread. When the new result arrives, the search service is waiting for the next () call. In
other words, a client and the service are playing ping-pong through the Iterable
interface. Nevertheless, the mentioned interaction may be acceptable sometimes, but in
most cases, it is not efficient enough to build a high-performance application.

In turn, our search engine may return CompletableFuture in order to become an
asynchronous service. In that case, our client's thread may do something useful and not
bother about the search request, as the service invokes a callback as soon as a result arrives.
But here we again receive all or nothing, as CompletableFuture may hold only one value,
even if it is a list of results, as shown in the following code:

public interface FutureSearchEngine {
CompletableFuture<List<URL>> search(String query, int limit);
}

With RxJava, we will improve our solution and get both asynchronous processing and the
ability to react to each arriving event. Also, our client may unsubscribe () at any moment
and reduce the amount of work done by the process of searching a service, as shown in the
following code:

public interface RxSearchEngine {
Observable<URL> search (String query);
}

[61]



Reactive Programming in Spring - Basic Concepts Chapter 2

By using that approach, we are increasing the responsiveness of an application a lot. Even
though the client has not received all of the results yet, it may process the pieces that

have already arrived. As humans, we do not like to wait for results. Instead, we value Time
To First Byte or Critical Rendering Path metrics. In all of these cases, reactive programming is
not worse than conventional approaches, and usually brings better results.

To read more about Time To First Byte, please refer to https://www.
maxcdn.com/one/visual-glossary/time-to-first-byte. In addition to
this, Critical Rendering Path is described at https://developers.google.

com/web/fundamentals/performance/critical-rendering-path.

As we saw earlier, RxJava makes it possible to asynchronously compose data streams in a
way that is much more versatile and flexible. Similarly, we may wrap the old-school
synchronous code into an asynchronous workflow. To manage the actual execution thread
for a slow Callable, we may use the subscriberOn (Scheduler) operator. This operator
defines on which Scheduler (reactive counterpart of Java's ExecutorService) the stream
processing is started. The thread scheduling is covered in detail in chapter 4, Project
Reactor - the Foundation for Reactive Apps. The following code demonstrates such a use case:

String query = ...;

Observable.fromCallable(() —-> doSlowSyncRequest (query))
.subscribeOn (Schedulers.io())
.subscribe (this::processResult) ;

Sure, with such an approach we cannot rely on the fact that one thread will process the
whole request. Our workflow may start in one thread, migrate to a handful of other
threads, and finish processing in a completely different, newly created thread. It is essential
to highlight that with this approach, it's hazardous to mutate objects, and the only
reasonable strategy is immutability. It is not a new concept; it is one of the core principles of
functional programming. Once an object is created, it may not change. Such a simple rule
prevents a whole class of issues in parallel applications.

Before Java 8 introduced lambdas, it was hard to leverage the full power of reactive
programming as well as functional programming. Without lambdas, we had to create a lot
of anonymous or inner classes that polluted the application code and created more
boilerplate than meaningful lines. At the time of RxJava's inception, despite its slow

speed, Netflix extensively used Groovy for development purposes, mainly because of
lambda support. This leads us to the conclusion that functions as first-class citizens are
required for the successful and pleasant usage of reactive programming. Fortunately, this is
not a problem for Java anymore, even on the Android platform, where projects such as
Retrolambda (https://github.com/orfjackal/retrolambda) enable lambda support for
old Java versions.

[62]


https://www.maxcdn.com/one/visual-glossary/time-to-first-byte
https://www.maxcdn.com/one/visual-glossary/time-to-first-byte
https://www.maxcdn.com/one/visual-glossary/time-to-first-byte
https://www.maxcdn.com/one/visual-glossary/time-to-first-byte
https://www.maxcdn.com/one/visual-glossary/time-to-first-byte
https://www.maxcdn.com/one/visual-glossary/time-to-first-byte
https://www.maxcdn.com/one/visual-glossary/time-to-first-byte
https://www.maxcdn.com/one/visual-glossary/time-to-first-byte
https://www.maxcdn.com/one/visual-glossary/time-to-first-byte
https://www.maxcdn.com/one/visual-glossary/time-to-first-byte
https://www.maxcdn.com/one/visual-glossary/time-to-first-byte
https://www.maxcdn.com/one/visual-glossary/time-to-first-byte
https://www.maxcdn.com/one/visual-glossary/time-to-first-byte
https://www.maxcdn.com/one/visual-glossary/time-to-first-byte
https://www.maxcdn.com/one/visual-glossary/time-to-first-byte
https://www.maxcdn.com/one/visual-glossary/time-to-first-byte
https://www.maxcdn.com/one/visual-glossary/time-to-first-byte
https://www.maxcdn.com/one/visual-glossary/time-to-first-byte
https://www.maxcdn.com/one/visual-glossary/time-to-first-byte
https://www.maxcdn.com/one/visual-glossary/time-to-first-byte
https://www.maxcdn.com/one/visual-glossary/time-to-first-byte
https://www.maxcdn.com/one/visual-glossary/time-to-first-byte
https://developers.google.com/web/fundamentals/performance/critical-rendering-path
https://developers.google.com/web/fundamentals/performance/critical-rendering-path
https://developers.google.com/web/fundamentals/performance/critical-rendering-path
https://developers.google.com/web/fundamentals/performance/critical-rendering-path
https://developers.google.com/web/fundamentals/performance/critical-rendering-path
https://developers.google.com/web/fundamentals/performance/critical-rendering-path
https://developers.google.com/web/fundamentals/performance/critical-rendering-path
https://developers.google.com/web/fundamentals/performance/critical-rendering-path
https://developers.google.com/web/fundamentals/performance/critical-rendering-path
https://developers.google.com/web/fundamentals/performance/critical-rendering-path
https://developers.google.com/web/fundamentals/performance/critical-rendering-path
https://developers.google.com/web/fundamentals/performance/critical-rendering-path
https://developers.google.com/web/fundamentals/performance/critical-rendering-path
https://developers.google.com/web/fundamentals/performance/critical-rendering-path
https://developers.google.com/web/fundamentals/performance/critical-rendering-path
https://developers.google.com/web/fundamentals/performance/critical-rendering-path
https://developers.google.com/web/fundamentals/performance/critical-rendering-path
https://developers.google.com/web/fundamentals/performance/critical-rendering-path
https://developers.google.com/web/fundamentals/performance/critical-rendering-path
https://developers.google.com/web/fundamentals/performance/critical-rendering-path
https://github.com/orfjackal/retrolambda
https://github.com/orfjackal/retrolambda
https://github.com/orfjackal/retrolambda
https://github.com/orfjackal/retrolambda
https://github.com/orfjackal/retrolambda
https://github.com/orfjackal/retrolambda
https://github.com/orfjackal/retrolambda
https://github.com/orfjackal/retrolambda
https://github.com/orfjackal/retrolambda
https://github.com/orfjackal/retrolambda
https://github.com/orfjackal/retrolambda

Reactive Programming in Spring - Basic Concepts Chapter 2

Rebuilding our application with RxJava

To get a feel for RxJava, let's rewrite the previously written temperature sensing application
with RxJava. To use the library in the application, let's add the following dependency
to the build.gradle file:

compile('io.reactivex:rxjava:1.3.8")

Here, we are using the same value class to represent the current temperature, as shown in
the following code:

final class Temperature {
private final double value;
// constructor & getter

Implementing business logic

The TemperatureSensor class previously sent events to a

Spring ApplicationEventPublisher, but now it should return a reactive stream with
Temperature events. The Reactive implementation of TemperatureSensor may look like
the following:

@Component // (1)
public class TemperatureSensor A
private final Random rnd = new Random(); // (2)
private final Observable<Temperature> dataStream = // (3)
Observable
.range (0, Integer.MAX_VALUE) // (4)
.concatMap (tick —-> Observable // (5)
.just (tick) // (6)
.delay (rnd.nextInt (5000), MILLISECONDS) /7 (7)
.map (tickValue -> this.probe())) // (8)
.publish () /7 (9)
.refCount () ; // (10)
private Temperature probe () {
return new Temperature (16 + rnd.nextGaussian() * 10); // (11)
;
public Observable<Temperature> temperatureStream() A // (12)

return dataStream;

}

[63]



Reactive Programming in Spring - Basic Concepts Chapter 2

Here, we register the TemperatureSensor as a Spring bean by applying the @Component
annotation (1), so this bean can be autowired into other beans. The TemperatureSensor
implementation uses a RxJava API that was not previously explained in detail.

Nevertheless, we are trying to clarify the used transformation by exploring the class logic.

Our sensor holds the random number generator rnd to simulate actual hardware

sensor measurements (2).In a statement, (3), we define a private field

called datastream, which is returned by the public method temperatureStream()

(12). Thus, dataStreamis the only Observable stream defined by the component. This
stream generates an effectively endless flow of numbers (4) by applying the factory
method range (0, Integer.MAX_VALUE).The range () method generates a sequence of
integers starting from 0 that have Integer.MAX_VALUE elements. For each of these values,
we apply the transformation (5) —concatMap (tick —-> ...).The method concatMap ()
receives a function, f, that transforms an tick item into an observable stream of elements,
applies the f function to each element of the incoming stream, and joins the resulting
streams one by one. In our case, the f function makes a sensor measurement after a random
delay (to match the behavior of the previous implementation). To probe a sensor, we create
a new stream with only one element tick (6).To simulate a random delay, we apply

the delay (rnd.nextInt (5000), MILLISECONDS) (7) Operator, which shifts elements
forward in time.

For the next step, we probe the sensor and retrieve a temperature value by applying

the map (tickValue -> this.probe ())) transformation (8), which in turn calls

the probe () method with the same data generation logic as before (11).In that case, we
ignore the tickvalue, as it was required only to generate a one-element stream. So, after
applying the concatMap (tick -> ...), we have a stream that returns sensor values with
a random interval of up to five seconds between emitted elements.

Actually, we could return a stream without applying operators (9) and (10), but in that
case, each subscriber (SSE client) would trigger a new subscription for the stream and a
new sequence of sensor readings. This means that sensor readings would not be shared
among subscribers that could lead to hardware overload and degradation. To prevent this,
we use the publish () (9) operator, which broadcasts events from a source stream to all
destination streams. The publish () operator returns a special kind of Observable

called ConnectableObservable. The latter provides the refCount () (10) operator,
which creates a subscription to the incoming shared stream only when there is at least one
outgoing subscription. In contrast with the Publisher-Subscriber implementation, this one
makes it possible not to probe the sensor when nobody listens.

[64]



Reactive Programming in Spring - Basic Concepts Chapter 2

Custom SseEmitter

By using TemperatureSensor, which exposes a stream using temperature values, we may
subscribe each new SseEmitter to the Observable stream and send the received onNext
signals to SSE clients. To handle errors and the closing of a proper HTTP connection, let's
write the following SseEmitter extension:
class RxSeeEmitter extends SseEmitter {
static final long SSE_SESSION_TIMEOUT = 30 * 60 * 1000L;

private final Subscriber<Temperature> subscriber; // (1)

RxSeeEmitter () {

super (SSE_SESSION_TIMEOUT) ; // (2)
this.subscriber = new Subscriber<Temperature> () { // (3)
@Override
public void onNext (Temperature temperature) {
try {
RxSeeEmitter.this.send (temperature); // (4)
} catch (IOException e) {
unsubscribe () ; // (5)
}
3
@Override
public void onError (Throwable e) { } // (6)
@Override
public void onCompleted() { } /7 (7)
ti
onCompletion (subscriber: :unsubscribe); // (8)
onTimeout (subscriber: :unsubscribe); // (9)
3
Subscriber<Temperature> getSubscriber () { // (10)

return subscriber;

}

[65]



Reactive Programming in Spring - Basic Concepts Chapter 2

The RxSeeEmitter extends the well-known SseEmitter. It also encapsulates a subscriber
for Temperature events (1).In the constructor, RxSeeEmitter calls the super-class
constructor with a necessary SSE session timeout (2) and also creates an instance of

the Subscriber<Temperature> class (3). This subscriber reacts to the received onNext
signals by resending them to an SSE client (4). In cases where the data sending fails,

the subscriber unsubscribes itself from the incoming observable stream (5). In the
current implementation, we know that the temperature stream is infinite and cannot
produce any errors, so the onComplete () and onError () handlers are empty (6), (7),
but in real applications, it is better to have some handlers there.

Lines (8) and (9) register cleanup actions for SSE session completion or timeout.
The RxSeeEmitter subscribers should cancel the subscription. To use a
subscriber, RxSeeEmitter exposes it by utilizing the get Subscriber () method (10).

Exposing the SSE endpoint

To expose the SSE endpoint, we need a REST controller that is autowired with
the TemperatureSensor instance. The following code shows the controller, which
utilizes RxSeeEmitter:

@RestController
public class TemperatureController {
private final TemperatureSensor temperatureSensor; // (1)

public TemperatureController (TemperatureSensor temperatureSensor) {
this.temperatureSensor = temperatureSensor;

}

@RequestMapping (
value = "/temperature-stream",
method = RequestMethod.GET)
public SseEmitter events (HttpServletRequest request) {

RxSeeEmitter emitter = new RxSeeEmitter(); // (2)
temperatureSensor.temperatureStream() // (3)

.subscribe (emitter.getSubscriber()); // (4)
return emitter; // (5)

[66]



Reactive Programming in Spring - Basic Concepts Chapter 2

The TemperatureController is the same Spring Web MVC @RestController as before.
It holds a reference to the TemperatureSensor bean (1). When a new SSE session is
created, the controller instantiates our augmented RxSeeEmitter (2) and subscribes to
the RxSeeEmitter subscribers (4) to the temperature stream referenced from

the TemperatureSensor instance (3). Then the RxSeeEmitter instance is returned to the
Servlet container for processing (5).

As we can see with RxJava, the REST controller holds less logic, does not manage

the dead SseEmitter instances, and does not care about synchronization. In turn, the
reactive implementation manages the routine of the TemperatureSensor's values,
reading, and publishing. The RxSeeEmitter translates reactive streams to outgoing SSE
messages, and TemperatureController only binds a new SSE session to a

new RxSeeEmitter that is subscribed to a stream of temperature readings. Furthermore,
this implementation does not use Spring's EventBus, so it is more portable and can be
tested without initializing a Spring context.

Application configuration

As we do not use the Publish-Subject approach and Spring's @EventListener annotation,
we do not depend on Async Support, so the application configuration becomes simpler:

@SpringBootApplication
public class Application {
public static void main(String[] args) {
SpringApplication.run (Application.class, args);
}
}

As we can see, this time we do not need to enable Async Support using the @EnableAsync
annotation, and we also do not need to configure Spring's Executor for event handling. Of
course, if required, we may configure a RxJava Scheduler for fine-grained thread
management when processing reactive streams, but such a configuration would not
depend on Spring Framework.

In turn, we do not need to change the code for the Ul part of the application; it should work
the same way as before. Here, we have to highlight that with the RxJava-based
implementation, the temperature sensor is not probed when nobody listens. Such behavior
is a natural consequence of the fact that reactive programming has a notion of active
subscription. The Publish-Subject-based implementations do not have such properties, and
as such are more limited.

[671]



Reactive Programming in Spring - Basic Concepts Chapter 2

Brief history of reactive libraries

Now that we are acquainted with RxJava and have even written a few reactive workflows,
let's look at its history to recognize the context in which reactive programming was born
and the problems it was designed to solve.

Curiously, the RxJava history and the history of reactive programming as we know it today
began inside of Microsoft. In 2005, Erik Meijer and his Cloud Programmability Team were
experimenting with programming models appropriate for building large-scale asynchronous
and data-intensive internet service architectures. After some years of experimenting, the first
version of the Rx library was born in the summer of 2007. An additional two years were
devoted to different aspects of the library, including multithreading and cooperative re-
scheduling. The first public version of Rx.NET was shipped on November 18, 2009. Later,
Microsoft ported the library to different languages, such as JavaScript, C++, Ruby, and
Objective-C, and also to the Windows Phone platform. As Rx began to gain popularity,
Microsoft open sourced Rx.NET in the fall of 2012.

To read more about the birth of Rx library, please read Erik Meijer's
foreword in Reactive Programming with RxJava by Tomasz Nurkiewicz and
Ben Christensen.

At some point, Rx's ideas spread outside of Microsoft, and Paul Betts with Justin Spahr-
Summers from the GitHub Inc. company implemented and released ReactiveCocoa for
Objective-C in 2012. At the same time, Ben Christensen from Netflix ported Rx.NET to the
Java platform and, in early 2013, open sourced the RxJava library on GitHub.

At that time, Netflix was facing the very complicated problem of handling the tremendous
amount of internet traffic generated by streaming media. An asynchronous reactive library
called RxJava helped them to build the reactive system that boasted a 37% share of internet
traffic in North America in 2015! Now, a huge part of the traffic in the system is handled
with RxJava. To withstand all of that enormous load, Netflix had to invent new architecture
patterns and implement them in libraries. The most well-known of these are the following:

e Hystrix: This is a fault-tolerance library for bulkheads services (https://github.
com/Netflix/Hystrix)

¢ Ribbon: This is an RPC library with load-balancer support (https://github.
com/Netflix/ribbon)

e Zuul: This is a gateway service that provides dynamic routing, security,
resiliency, and monitoring (https://github.com/Netflix/zuul)

¢ RxNetty: This is a reactive adapter for Netty, an NIO client-server
framework (https ://github.com/React iveX/RxNetty)

[68]


https://github.com/Netflix/Hystrix
https://github.com/Netflix/Hystrix
https://github.com/Netflix/Hystrix
https://github.com/Netflix/Hystrix
https://github.com/Netflix/Hystrix
https://github.com/Netflix/Hystrix
https://github.com/Netflix/Hystrix
https://github.com/Netflix/Hystrix
https://github.com/Netflix/Hystrix
https://github.com/Netflix/Hystrix
https://github.com/Netflix/ribbon
https://github.com/Netflix/ribbon
https://github.com/Netflix/ribbon
https://github.com/Netflix/ribbon
https://github.com/Netflix/ribbon
https://github.com/Netflix/ribbon
https://github.com/Netflix/ribbon
https://github.com/Netflix/ribbon
https://github.com/Netflix/ribbon
https://github.com/Netflix/ribbon
https://github.com/Netflix/zuul
https://github.com/Netflix/zuul
https://github.com/Netflix/zuul
https://github.com/Netflix/zuul
https://github.com/Netflix/zuul
https://github.com/Netflix/zuul
https://github.com/Netflix/zuul
https://github.com/Netflix/zuul
https://github.com/Netflix/zuul
https://github.com/Netflix/zuul
https://github.com/Netflix/zuul
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty

Reactive Programming in Spring - Basic Concepts Chapter 2

In all cases, RxJava is a crucial ingredient of named libraries and consequently the whole
Netflix ecosystem itself. Netflix's success with microservices and streaming architecture
pushed other companies to adopt the same approaches, including RxJava.

Today, RxJava is used natively in some NoSQL Java drivers, such as Couchbase (https://
blog.couchbase. com/why—couchbase—chose—rxjava—new—java—sdk/) and
MO?lgODB (https://mongodb.github.io/mongo-java-driver—rx/).

It is also important to note that RxJava was welcomed by Android developers and
companies such as SoundCloud, Square, NYT, and SeatGeek to implement their mobile
applications with RxJava. Such active involvement lead to the appearance of the viral
library called RxAndroid. This simplifies the process of writing reactive applications in
Android quite significantly. On the iOS platform, developers have RxSwift, the Swift
variant of the Rx library.

At the moment, it is hard to find a popular programming language without the Rx library
ported to it. In the Java world, we have RxScala, RxGroovy, RxClojure, RxKotlin, and
RxJRuby, and this list is far from completion. To find an Rx implementation for our favorite
language, refer to this web-page at http://reactivex.io/languages.html.

It would be unfair to say that RxJava was the first and only pioneer of reactive
programming. Importantly, the wide-spread adoption of asynchronous programming
created a solid foundation and demand for reactive techniques. Probably the most
significant contribution in that direction was conducted by Node]S and its
community (https://nodejs.org).

Reactive landscape

In the previous sections, we learned how to use pure RxJava and how to combine it with
Spring Web MVC. To demonstrate the benefits of this, we have updated our temperature-
monitoring application and improved the design by applying RxJava. However, it is worth
noting that Spring Framework and RxJava is not the only valid combination. A lot of
application servers also value the power of the reactive approach. As such authors of a
successful reactive server called Ratpack decided to adopt RxJava as well.

[69]


https://blog.couchbase.com/why-couchbase-chose-rxjava-new-java-sdk/
https://blog.couchbase.com/why-couchbase-chose-rxjava-new-java-sdk/
https://blog.couchbase.com/why-couchbase-chose-rxjava-new-java-sdk/
https://blog.couchbase.com/why-couchbase-chose-rxjava-new-java-sdk/
https://blog.couchbase.com/why-couchbase-chose-rxjava-new-java-sdk/
https://blog.couchbase.com/why-couchbase-chose-rxjava-new-java-sdk/
https://blog.couchbase.com/why-couchbase-chose-rxjava-new-java-sdk/
https://blog.couchbase.com/why-couchbase-chose-rxjava-new-java-sdk/
https://blog.couchbase.com/why-couchbase-chose-rxjava-new-java-sdk/
https://blog.couchbase.com/why-couchbase-chose-rxjava-new-java-sdk/
https://blog.couchbase.com/why-couchbase-chose-rxjava-new-java-sdk/
https://blog.couchbase.com/why-couchbase-chose-rxjava-new-java-sdk/
https://blog.couchbase.com/why-couchbase-chose-rxjava-new-java-sdk/
https://blog.couchbase.com/why-couchbase-chose-rxjava-new-java-sdk/
https://blog.couchbase.com/why-couchbase-chose-rxjava-new-java-sdk/
https://blog.couchbase.com/why-couchbase-chose-rxjava-new-java-sdk/
https://blog.couchbase.com/why-couchbase-chose-rxjava-new-java-sdk/
https://blog.couchbase.com/why-couchbase-chose-rxjava-new-java-sdk/
https://blog.couchbase.com/why-couchbase-chose-rxjava-new-java-sdk/
https://blog.couchbase.com/why-couchbase-chose-rxjava-new-java-sdk/
https://blog.couchbase.com/why-couchbase-chose-rxjava-new-java-sdk/
https://blog.couchbase.com/why-couchbase-chose-rxjava-new-java-sdk/
https://blog.couchbase.com/why-couchbase-chose-rxjava-new-java-sdk/
https://mongodb.github.io/mongo-java-driver-rx/
https://mongodb.github.io/mongo-java-driver-rx/
https://mongodb.github.io/mongo-java-driver-rx/
https://mongodb.github.io/mongo-java-driver-rx/
https://mongodb.github.io/mongo-java-driver-rx/
https://mongodb.github.io/mongo-java-driver-rx/
https://mongodb.github.io/mongo-java-driver-rx/
https://mongodb.github.io/mongo-java-driver-rx/
https://mongodb.github.io/mongo-java-driver-rx/
https://mongodb.github.io/mongo-java-driver-rx/
https://mongodb.github.io/mongo-java-driver-rx/
https://mongodb.github.io/mongo-java-driver-rx/
https://mongodb.github.io/mongo-java-driver-rx/
https://mongodb.github.io/mongo-java-driver-rx/
https://mongodb.github.io/mongo-java-driver-rx/
https://mongodb.github.io/mongo-java-driver-rx/
https://mongodb.github.io/mongo-java-driver-rx/
https://mongodb.github.io/mongo-java-driver-rx/
http://reactivex.io/languages.html
http://reactivex.io/languages.html
http://reactivex.io/languages.html
http://reactivex.io/languages.html
http://reactivex.io/languages.html
http://reactivex.io/languages.html
http://reactivex.io/languages.html
http://reactivex.io/languages.html
http://reactivex.io/languages.html
http://reactivex.io/languages.html
http://reactivex.io/languages.html
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org

Reactive Programming in Spring - Basic Concepts Chapter 2

Along with callbacks and a promise-based API, Ratpack provides RxRatpack, a separate
module that allows to convert Ratpack Promise to RxJava Observable easily, and vice
versa, as shown in the following code:

Promise<String> promise = get(() -> "hello world");
RxRatpack

.observe (promise)

.map (String: :toUpperCase)

.subscribe (context::render) ;

To find out more about the Ratpack server, please visit the project's
official site at https://ratpack.io/manual/current/all.html.

Another example that is famous in the Android world is the HTTP client Retrofit, which
also creates a RxJava wrapper around its own implementation of Futures and Callbacks.
The following example shows that at least four different coding styles may be used in
Retrofit:

interface MyService {
@GET (" /user")
Observable<User> getUserWithRx();

QGET (" /user")
CompletableFuture<User> getUserWithJava8 () ;

@GET (" /user")
ListenableFuture<User> getUserWithGuava () ;

QGET ("user")
Call<User> getUserNatively ()
}

Even though RxJava may improve any solution, the reactive landscape is not limited to it or
its wrappers. In the JVM world, there are a lot of other libraries and servers that created
their reactive implementations. For instance, the well-known reactive server Vert.x only
used callback based communication for a period of time, but later created its own solution
with the io.vertx.core.streams package, which harbors the following interfaces:

e ReadStream<T>: This interface represents a stream of items that can be read
from

e WriteStream<T>: This describes a stream of data that can be written to

e pump: This is used for moving data from ReadStreamto aWriteStreamand
performing flow control

[70]


https://ratpack.io/manual/current/all.html
https://ratpack.io/manual/current/all.html
https://ratpack.io/manual/current/all.html
https://ratpack.io/manual/current/all.html
https://ratpack.io/manual/current/all.html
https://ratpack.io/manual/current/all.html
https://ratpack.io/manual/current/all.html
https://ratpack.io/manual/current/all.html
https://ratpack.io/manual/current/all.html
https://ratpack.io/manual/current/all.html
https://ratpack.io/manual/current/all.html
https://ratpack.io/manual/current/all.html
https://ratpack.io/manual/current/all.html
https://ratpack.io/manual/current/all.html
https://ratpack.io/manual/current/all.html

Reactive Programming in Spring - Basic Concepts Chapter 2

Let's look at the code snippet with the Vert . x example:

public void vertexExample (HttpClientRequest request, AsyncFile file) {
request.setChunked (true);
Pump pump = Pump.pump(file, request);
file.endHandler (v —-> request.end());
pump.start () ;

Eclipse Vert . x is an event-driven application framework that is similar in
design to Node.js. It provides a simple concurrency model, primitives for
asynchronous programming, and a distributed event bus that penetrates
into in-browser JavaScript. If interested in Vert . x and its implementation
of Reactive Streams, visit this web page: http://vertx.io/docs/.

The number of RxJava adoptions and alternative implementations is enormous, and far
from being limited to the mentioned solutions. A lot of companies and open source projects
around the world have created their own solutions similar to Rx]Java, or they have extended
ones that are already present.

Admittedly, there is nothing wrong with the natural evolution and competition between
libraries, but it is evident that problems will occur as soon as we try to compose a few
different reactive libraries or frameworks in one Java application. Moreover, we will
eventually find that the behavior of reactive libraries is similar in general, but differs
slightly in the details. Such a situation may compromise the whole project because of
hidden bugs that would be hard to spot and fix. So, with all these API discrepancies, it is
not a very good idea to mix a few different reactive libraries (let's say, Vert.x and RxJava) in
one application. At this point, it becomes apparent that the whole reactive landscape
demands some standard or universal API, which will provide compatibility guarantees
between any implementations. Of course, such a standard was designed; it

is called Reactive Streams. The next chapter will cover this in detail.

[71]


http://vertx.io/docs/
http://vertx.io/docs/
http://vertx.io/docs/
http://vertx.io/docs/
http://vertx.io/docs/
http://vertx.io/docs/
http://vertx.io/docs/
http://vertx.io/docs/
http://vertx.io/docs/
http://vertx.io/docs/

Reactive Programming in Spring - Basic Concepts Chapter 2

Summary

In this chapter, we have revisited a few well-known design patterns by GoF—including
Observer, Publish-Subscribe, and Iterator to build the basis of reactive programming. We
have written a few implementations to review both the strong and weak sides of the
instruments we already have for asynchronous programming. We have also leveraged
Spring Framework support for Server-Sent Events, WebSockets, and also played with
Event-Bus provided by Spring. Also, we have used Spring Boot and start.spring.io for
fast application bootstrapping. Even though our examples were pretty simple, they
demonstrated the potential issues that arise from immature approaches that are used for
asynchronous data processing.

We also looked at reactive programming's history to highlight architectural problems,
which reactive programming was invented to fight against. In this context, the success story
of Netflix demonstrates that a small library like RxJava may become a starting point toward
making a significant success in a very competitive business field. We have also discovered
that following RxJava's success, a lot of companies and open source projects re-
implemented reactive libraries bearing in mind these considerations, which led to the
versatile reactive landscape. This versatility motivated the need for Reactive Standard,
which we will talk about in the next chapter.

[72]



Reactive Streams - the New
Streams' Standard

In this chapter, we are going to cover some of the problems mentioned in the previous
chapter, along with those that arise when several reactive libraries meet in one project. We
will also dig deeper into backpressure control in reactive systems. Here, we are going to
oversee solutions proposed by RxJava as well as its limitations. We will explore how the
Reactive Streams specification solves those problems, learning the essentials of this
specification. We will also cover the reactive landscape changes that come with a new
specification. Finally, to reinforce our knowledge, we are going to build a simple
application and combine several reactive libraries within it.

In this chapter, the following topics are covered:

e Common API problems

e Backpressure control problems

® Reactive Stream examples

e Technology compatibility problems

¢ Reactive Streams inside JDK 9

e Advanced concepts of Reactive Streams
¢ Reinforcement of reactive landscape

¢ Reactive Streams in action



Reactive Streams - the New Streams’ Standard Chapter 3

Reactivity for everyone

In previous chapters, we have learned a lot of exciting things about reactive programming
in Spring, as well as the role RxJava plays in its story. We also looked at the need to use
reactive programming to implement the reactive system. We have also seen a brief
overview of the reactive landscape and available alternatives to RxJava, which makes it
possible to quickly start with reactive programming.

The API's inconsistency problem

On the one hand, the extensive list of competitive libraries, such as RxJava and features of
the Java Core library, such as CompletableStage, give us a choice as to the way in which
we write code. For example, we may rely on reaching the API of RxJava in order to

write a flow of the items being processed. Consequently, to build an uncomplicated
asynchronous request-response interaction, it is more than enough to rely

on CompletableStage. Alternatively, we may use framework specific classes such as
org.springframework.util.concurrent.ListenableFuture to build an
asynchronous interaction between components and simplify the work with that framework.

On the other hand, the abundance of choices may easily over-complicate the system. For
example, the presence of two libraries that rely on an asynchronous non-blocking
communication concept but have a different API leads to providing an additional utility
class in order to convert one callback into another and vice versa:

interface AsyncDatabaseClient { // (1)
<T> CompletionStage<T> store (CompletionStage<T> stage); //
} //
final class AsyncAdapters {
public static <T> CompletionStage<T> toCompletion ( // (2)
ListenableFuture<T> future) { //
//
CompletableFuture<T> completableFuture = // (2.1)
new CompletableFuture<>(); //
//
future.addCallback ( // (2.2)
completableFuture: :complete, //
completableFuture: :completeExceptionally //
); //
//
return completableFuture; //
} //

[74]



Reactive Streams - the New Streams’ Standard Chapter 3

public static <T> ListenableFuture<T> toListenable ( // (3)
CompletionStage<T> stage) { //
SettablelListenableFuture<T> future = // (3.1)
new SettablelListenableFuture<>(); //
//
stage.whenComplete ( (v, t) -> { // (3.2)
if (t == null) { //
future.set (v); //
} //
else { //
future.setException (t); //
} //
1) //
//
return future; //
} //
}
@RestController /7 (4)
public class MyController { //
. //
@RequestMapping //
public ListenableFuture<?> requestData () { // (4.1)
AsyncRestTemplate httpClient = ...; //
AsyncDatabaseClient databaseClient = ...; //
//
CompletionStage<String> completionStage = toCompletion ( // (4.2)
httpClient.execute(...) //
)i //
//
return toListenable ( // (4.3)
databaseClient.store (completionStage) //
) ; //
} //
} //

The numbered points in the preceding code are explained in the following:

1. This is the async Database client's interface declaration, which is the
representative sample of the possible client interface for asynchronous database
access.

[75]



Reactive Streams - the New Streams’ Standard Chapter 3

2. Thisis the ListenableFuture to CompletionStage adaptor method
implementation. At point (2.1), to provide manual control of
CompletionStage, we create its direct implementation called
CompletableFuture via the constructor with no arguments. To provide
integration with ListenableFuture, we have to add callback (2.2), where we
directly reuse the API of CompletableFuture.

3. This is the CompletionStage to ListenableFuture adapter method
implementation. At point (3.1) we declare the specific implementation
of ListenableFuture called SettableListenableFuture. This allows us to
manually supply the result of the CompletionStage execution at point (3.2).

4. This is the RestController's class declaration. Here at point (4.1), we declare
the request handler method, which acts asynchronously and returns
ListenableFuture to handle the result of the execution in a non-blocking
fashion. In turn, to store the result of the execution of AsyncRestTemplate, we
have to adapt it to the CompletionStage (4.2). Finally, to satisfy
the supported API, we have to adopt the result of
storing for ListenableFuture again (4.3).

As may be noticed from the preceding example, there is no direct integration with Spring
Framework 4.x ListenableFuture and CompletionStage. Moreover, that example is not
an exclusion case from the common usage of reactive programming. Many libraries and
frameworks provide their own interfaces and classes for asynchronous communication
between components, which include plain request-response communication along with the
streaming processing frameworks. In many cases, to solve that problem and make several
independent libraries compatible, we have to provide our own adaptation and reuse it in a
few places. Moreover, our own adaptation may contain bugs and require additional
maintenance.

In Spring Framework 5.x, ListenableFuture's APl was extended and an
additional method called completable was provided to solve that

incompatibility. Please see the following link to learn more about that:
https://docs.spring.io/spring-framework/docs/current/javadoc—
api/org/springframework/util/concurrent/ListenableFuture.

html#completable--.

Here, the central problem lies in the fact that there is no single method that allows library
vendors to build their aligned API. For example, as we might have seen in Chapter 2,
Reactive Programming in Spring - Basic Concepts, RxJava was valued by many frameworks
such as Vert.x, Ratpack, Retrofit, and so on.

[76]


https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/concurrent/ListenableFuture.html#completable--
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/concurrent/ListenableFuture.html#completable--
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/concurrent/ListenableFuture.html#completable--
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/concurrent/ListenableFuture.html#completable--
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/concurrent/ListenableFuture.html#completable--
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/concurrent/ListenableFuture.html#completable--
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/concurrent/ListenableFuture.html#completable--
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/concurrent/ListenableFuture.html#completable--
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/concurrent/ListenableFuture.html#completable--
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/concurrent/ListenableFuture.html#completable--
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/concurrent/ListenableFuture.html#completable--
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/concurrent/ListenableFuture.html#completable--
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/concurrent/ListenableFuture.html#completable--
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/concurrent/ListenableFuture.html#completable--
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/concurrent/ListenableFuture.html#completable--
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/concurrent/ListenableFuture.html#completable--
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/concurrent/ListenableFuture.html#completable--
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/concurrent/ListenableFuture.html#completable--
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/concurrent/ListenableFuture.html#completable--
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/concurrent/ListenableFuture.html#completable--
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/concurrent/ListenableFuture.html#completable--
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/concurrent/ListenableFuture.html#completable--
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/concurrent/ListenableFuture.html#completable--
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/concurrent/ListenableFuture.html#completable--
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/concurrent/ListenableFuture.html#completable--
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/concurrent/ListenableFuture.html#completable--
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/concurrent/ListenableFuture.html#completable--
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/concurrent/ListenableFuture.html#completable--
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/concurrent/ListenableFuture.html#completable--
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/concurrent/ListenableFuture.html#completable--
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/concurrent/ListenableFuture.html#completable--
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/concurrent/ListenableFuture.html#completable--
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/concurrent/ListenableFuture.html#completable--
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/concurrent/ListenableFuture.html#completable--

Reactive Streams - the New Streams’ Standard Chapter 3

In turn, all of them provided support for RxJava users and introduced additional modules,
which allow integrating existing projects easily. At first glance, this was wondrous since the
list of projects in which RxJava 1.x was introduced is extensive and includes frameworks
for web, desktop, or mobile development. However, behind that support for developer
needs, many hidden pitfalls affect library vendors. The first problem that usually happens
when several RxJava 1.x compatible libraries meet in one place is rough version
incompatibility. Since RxJava 1.x evolved very quickly over time, many library vendors did
not get the chance to update their dependency to the new releases. From time to time,
updates brought many internal changes that eventually made some versions incompatible.
Consequently, having different libraries and frameworks that depend on the different
versions of RxJava 1 may cause some unwanted issues. The second problem is similar to the
first. Customizations of RxJava are non-standardized. Here, customization refers to the
ability to provide an additional implementation of Observable or a specific transformation
stage, which is common during the development of RxJava extensions. Due to non-
standardized APIs and rapidly evolving internals, supporting the custom implementation
was another challenge.

An excellent example of significant changes in the version may be found
at the following link: https://github.com/ReactiveX/RxJava/issues/
802.

Pull versus push

Finally, to understand the problem described in the previous section, we have to go back in
history and analyze the initial interaction model between a source and its subscribers.

During the early period of the whole reactive landscape evolution, all libraries were
designed with the thought that data is pushed from the source to the subscriber. That
decision was made because a pure pull model is not efficient enough in some cases. An
example of this is when communication over the network appeared in the system with
network boundaries. Suppose that we filter a huge list of data but take only the first ten
elements from it. By embracing the PULL model for solving such a problem, we are left with
the following code:

final AsyncDatabaseClient dbClient = ... // (1)
public CompletionStage<Queue<Item>> list (int count) { /7 (2)
BlockingQueue<Item> storage = new ArrayBlockingQueue<> (count); //
CompletableFuture<Queue<Item>> result //
= new CompletableFuture<>(); //

//

[77 ]


https://github.com/ReactiveX/RxJava/issues/802
https://github.com/ReactiveX/RxJava/issues/802
https://github.com/ReactiveX/RxJava/issues/802
https://github.com/ReactiveX/RxJava/issues/802
https://github.com/ReactiveX/RxJava/issues/802
https://github.com/ReactiveX/RxJava/issues/802
https://github.com/ReactiveX/RxJava/issues/802
https://github.com/ReactiveX/RxJava/issues/802
https://github.com/ReactiveX/RxJava/issues/802
https://github.com/ReactiveX/RxJava/issues/802
https://github.com/ReactiveX/RxJava/issues/802
https://github.com/ReactiveX/RxJava/issues/802
https://github.com/ReactiveX/RxJava/issues/802
https://github.com/ReactiveX/RxJava/issues/802

Reactive Streams - the New Streams’ Standard Chapter 3

pull ("1", storage, result, count); // (2.1)
//
return result; //

} /7

void pull ( /7 (3)
String elementId, //
Queue<Item> queue, //
CompletableFuture resultFuture, //
int count //

) A //
dbClient.getNextAfterId(elementId) //

.thenAccept (item -> { //
if (isValid(item)) { // (3.1)
queue.offer (item); //
//
if (queue.size() == count) { // (3.2)
resultFuture.complete (queue) ; //
return; //
} //
} //
//
pull (item.getId (), // (3.3)
queue, //
resultFuture, //
count) ; //
)i //
} //

The annotated code is again explained as follows:

1. This is the AsyncDatabaseClient field declaration. Here, using that client, we
wire the asynchronous, non-blocking communication with the external database.

2. This is the 1ist method declaration. Here we declare an asynchronous contract
by returning CompletionStage as the result of the calling of the 1ist method.
In turn, to aggregate the pulling results and asynchronously sent it to the caller,
we declare Queue and CompletableFuture to store received values and then
manually send the collected Queue later. Here, at point (2.1) we start the first
call of the pull method.

[78]



Reactive Streams - the New Streams’ Standard Chapter 3

3. This is the pull method declaration. Inside that method, we
callAsyncDatabaseClient#getNextAfterId to execute the query and
asynchronously receive the result. Then when the result is received, we filter it at
point (3.1). In the case of the valid item, we aggregate it into the queue.
Additionally, at point (3.2), we check whether we collected enough elements,
send them to the caller, and exit pulling. If either of the mentioned i £ branches
has been bypassed, we recursively call the pull method again (3.3).

As may be noticed from the preceding code, we use an asynchronous, non-blocking
interaction between the service and the database. At first glance, there is nothing wrong
here. However, if we look at the following diagram, we see the gap:

Service Database

Network

. IetNe
- Sextge
L After,

I:I Processing

cesp00SS .-

[T Idle

gEtNeXt}ift@r‘Id
]
| rese?S
S
T T
B
cospensto

Time

.

== Completion

Diagram 3.1. Example of pulling processing flow

[79]



Reactive Streams - the New Streams’ Standard Chapter 3

As might be noticed from the preceding diagram, asking for the next element one by one
results in extra time spent on the request's delivery from Service to Database. From the
service perspective, most of the overall processing time is wasted in the idle state. Even if
the resources are not used there, the overall processing time is doubled or even tripled
because of the additional network activity. Moreover, the database is not aware of the
number of future requests, which means that the database cannot generate data in advance
and is therefore in the idle state. It means that the database is waiting for a new request and
is inefficient while the response is being delivered to the service and the service is
processing the incoming response and then asking for a new portion of data .

To optimize the overall execution and keep the pulling model as the first class citizen, we
may combine pulling with batching, as shown in the following modification of the central
example:

void pull ( // (1)
String elementId, //
Queue<Item> queue, //
CompletableFuture resultFuture, //
int count //

) A //
dbClient.getNextBatchAfterId(elementId, count) // (2)

.thenAccept (items —-> { //
for (Item item : items) { // (2.1)

if (isvValid(item)) { //

queue.offer (item) ; //

//

if (queue.size() == count) { //

resultFuture.complete (queue) ; //

return; //

} //

3 //

} //

pull (items.get (items.size () - 1) // (3)

.getId(), //

queue, //

resultFuture, //

count) ; //

)i //

[80]



Reactive Streams - the New Streams’ Standard Chapter 3

Again, the following key explains the code:

1. This is the same pull method declaration as in the previous example.

2. This is the getNextBatchAfterId execution. As may be noticed,
the AsyncbhatabaseClient method allows asking for a specific number of
elements, which are returned as the List<Item>. In turn, when the data is
available, they are processed in almost the same way, except an additional for-
loop is created to process each element of the batch separately (2.1).

3. This is the recursive pull method execution, which is designed to retrieve an
additional batch of items in the case of a lack of items from the previous pulling.

On one hand, by asking for a batch of elements we may significantly improve

the performance of the 1ist method execution and reduce the overall processing time. On
the other hand, there are still some gaps in the interaction model, which might be detected
by analyzing the following diagram:

Service Database
Network
‘----?_etNe)rtgat
""“n::hAfterId
Processing
N
05
&%?—Ci -

T L Idle
|: L. et
NeXtBatchA
~Afte
-- d
~~~~~~ J
05°
ieﬁ‘?ﬁ"'
)
£
= .
)
=== Completion
A\ 4

Diagram 3.2. Example of batch-based pulling processing flow

[81]



Reactive Streams - the New Streams’ Standard Chapter 3

As we may notice, we still have some inefficiency in the processing time. For example, the
client is still idle while the database is querying the data. In turn, sending a batch of
elements takes a bit more time than sending just one. Finally, an additional request for the
whole batch of elements may be effectively redundant. For instance, if only one

element remains to finish the processing and the first element from the next batch satisfies
the validation, then the rest of the items are going to be skipped and are totally redundant.

To provide the final optimization, we may ask for data once, and the source pushes them
asynchronously when they become available. The following modification of the code shows
how that might be achieved:

public Observable<Item> list (int count) { // (1)
return dbClient.getStreamOfItems () // (2)
.filter (item -> isValid(item)) // (2.1)
.take (count) // (2.2)
} //

The annotations are as follows:

1. This is the 1ist method declaration. Here, the Observable<Item> return type
identifies that elements are being pushed.

2. This is the querying the stream stage. By calling the
AsyncDatabaseClient#getStreamOfItems method, we subscribe to the
database once. Here, at point (2.1) we filter elements and, by using
the operator, . take () takes a specific amount of data, as requested by the caller.

Here, we use RxJava 1.x classes as first-class citizens to receive the pushed elements. In turn,
once all requirements are met, the cancellation signal is sent, and connection to the database
is closed. The current interaction flow is depicted in the following diagram:

[82]



Reactive Streams - the New Streams’ Standard

Chapter 3

_ Time

Service
Network
(T Jetg
.o l:?amofl.te
Idle <
es@f’?,s,—— ‘:
P
- o %
Completion

Database

Processing

L S S T T Y

Diagram 3.3. Example of Push processing flow

In the preceding diagram, the overall processing time is optimized again. During the
interaction, we have only one big idle when the service is waiting for the first response.
After the first element has arrived, the database starts sending subsequent elements as and
when they come. In turn, even if processing may be a bit faster than querying the next

element, the overall idle of the service is short. However, the database may still

generate excess elements that are ignored by the service once the required number of
elements have been collected.

The flow control problem

On the one hand, the preceding explanation may have taught us that the central reason to

embrace the PUSH model was the optimization of the overall processing time by

decreasing the amount of asking to the very minimum. That is why the RxJava 1.x and
similar libraries were designed for pushing data, and that is why streaming became a
valuable technique for communication between components within a distributed system.

[83]



Reactive Streams - the New Streams’ Standard Chapter 3

On the other hand, in combination with only the PUSH model, that technique has its
limitations. As we might remember from chapter 1, Why Reactive Spring?, the nature of
message-driven communication assumes that as a response to the request, the service may
receive an asynchronous, potentially infinite stream of messages. That is the tricky part
because if a producer disrespects the consumer's throughput possibility it may affect the
overall system stability in ways described in the following two sections.

Slow producer and fast consumer

Let's start with the simplest one. Suppose that we have a slow producer and very fast
consumer. This situation may arise because of some lean assumptions from the producer's
side about an unknown consumer.

On the one hand, such configurations are a particular business assumption. On the other
hand, the actual runtime might be different, and the possibilities for the consumer may
change dynamically. For example, we may always increase the number of producers by
scaling them, thereby increasing the load onto the consumer.

To tackle such a problem, the essential thing that we need is the actual demand.
Unfortunately, the pure push model can't give us such metrics, and therefore dynamically
increasing the system's throughput is impossible.

Fast producer and slow consumer

The second problem is much more complicated. Suppose we have a fast producer and slow
consumer. The problem here is that the producer may send much more data than the
consumer can process, which may lead to a catastrophic failure of the component under
stress.

One intuitive solution for such case is collecting unhandled elements into the queue, which
may stay between the producer and consumer or may even reside on the consumer side.
Even if the consumer is busy, such a technique makes it possible to handle new data by
processing the previous element or portion of data.

One of the critical factors for handling pushed data using the queue is to choose a queue
with proper characteristics. In general, there are three common types of queue, which are
considered in the following subsections.

[84]



Reactive Streams - the New Streams’ Standard Chapter 3

Unbounded queue

The first and most obvious solution is to provide a queue that is characterized by unlimited
size, or simply an unbounded queue. In that case, all produced elements are stored inside
the queue first and then drained by the actual subscriber. The following marble diagram
depicts the mentioned interaction (Diagram 3.4):

9,0,0,0,0,0,0,0,0,C

\%

T

v v A/ Y Y y v

UnboundedQueue()
{60} {60000 }{®. @rH{e .. ®}

|l - - = ===
|l - - == - =
e = = = = = =

OO

NN

Diagram 3.4.Example of Unbounded Queue

On the one hand, the central benefit that came with handling messages using an
unbounded queue is the deliverability of messages, which means that the consumer is
going to process all stored elements at some point in time.

On the other hand, by succeeding in the deliverability of messages, the resiliency of
the application decreases because there are no unbounded resources. For instance, the
whole system may be easily crushed once the memory limit is reached.

[85]




Reactive Streams - the New Streams’ Standard

Chapter 3

Bounded drop queue

Alternatively, to avoid a memory overflow, we may employ a queue that may ignore
incoming messages if it is full. The following marble diagram depicts a queue that has a
size of 2 elements and is characterized by dropping elements on overflow (Diagram 3.5):

>~
>

L]
:
1
Y Y

|l - - - == =
| - - - - - -
| - - - - - =
| - - - - - =

I

DropQueue(2)

I{@cwlu;@} .{@@}

.{@®}

D)

{ ®)

O—O—0O—0

S\ N\

\/

A\

Diagram 3.5. Example of Drop Queue with a capacity of two items

In general, this technique respects the resources' limitations and makes it possible to
configure the capacity of the queue based on the resources' capacities. In turn, embracing
this kind of queue is a common practice when the importance of the message is low. An

example of a business case may be a stream of dataset-changed events.

In turn, each event

triggers some statistical recalculation which uses the entire dataset aggregation and takes a
significant amount of time in comparison with the incoming events quantity. In that case,

the only important thing is the fact that the data set changed; it is not vital to known which
data has been affected.

The preceding mentioned example considers the simplest strategy for
dropping the newest element. In general, there are a few strategies for
choosing the element to drop. For example, dropping by priority,
dropping the oldest, and so on.

[86]



Reactive Streams - the New Streams’ Standard Chapter 3

Bounded blocking queue

On the other hand, this technique may not be acceptable in the case in which each message
is significant. For example, in a payment system, each user's submitted payment must be
processed, and it is inadmissible to drop some. Consequently, instead of dropping a
message and keeping the bounded queue as the method for handling the pushed data, we
may block the producer once the limit has been reached. The queues that are characterized
by the ability to block the producer are usually called blocking queues. An example of
interaction using a blocking queue with the capacity of three elements is depicted in the
following marble diagram:

000000000
P X X

BlockingQueue(3)
{00} (0.0} {0.0}{0.01{00}

O—O—0O0—0O0—0

Diagram 3.6.Example of Blocking Queue with a capacity of three items

~

|l - - - - - -
l€ - -----
l€ - - - - - -
|l - - - - - -
l€ - - - - - -
|l - - - - - -

Unfortunately, this technique negates all of the system's asynchronous behavior. In general,
once the producer reaches the queue's limit, it will start being blocked and will be in that
state until the consumer has drained an element and free space in the queue became
available. We may then conclude that the throughput of the slowest consumer limits the
overall throughput of the system. Subsequently, along with negating the asynchronous
behavior, that technique also denies the efficient resource utilization. Consequently, none of
the cases are acceptable if we want to achieve all three: Resilience, Elasticity, and
Responsiveness.

Moreover, the presence of the queues may complicate the overall design of the system and
add an additional responsibility of finding a trade-off between the mentioned solutions,
which is another challenge.

[871]



Reactive Streams - the New Streams’ Standard Chapter 3

In general, an uncontrolled semantic of a pure push model may cause many undesired
situations. This is why the Reactive Manifesto mentions the importance of

the mechanism that allows systems to gracefully respond to a load, or in other words the
need for the mechanism of backpressure control.

Unfortunately, reactive libraries are similar to RxJava 1.x and do not offer such
a standardized feature. There is no explicit API that might allow controlling backpressure
out of the box.

It should be mentioned that in a pure push mode, the producing rate can
be stabilized using batch processing. RxJava 1.x offers operators such as
.window or .buffer which make it possible to collect elements during
the specified period to a substream or a collection correspondingly. An
example of where such a technique shows a burst in performance is a
batch insert or batch update to a database. Unfortunately, not all services
support batch operations. Consequently, such a technique is really limited
in its application.

The solution

In late 2013, a band of genius engineers from Lightbend, Netflix, and Pivotal gathered to
solve the described problem and provide the JVM community with a standard. After a long
year of hard work, the world saw the first draft of the Reactive Streams specification. There
was nothing extraordinary behind this proposal—the conceptual idea was in the
standardization of the familiar reactive programming patterns that we saw in the previous
chapter. In the following section, we are going to cover this in detail.

The basics of the Reactive Streams spec

The Reactive Streams specification defines four primary interfaces: Publisher,
Subscriber, Subscription, and Processor. Since that initiative grew independently
from any organization, it became available as a separate JAR file where all interfaces live
within the org.reactivestreams package.

[881]



Reactive Streams - the New Streams’ Standard Chapter 3

In general, the specified interfaces are similar to what we had earlier (for example, in
RxJava 1.x). In a way, these reflect the well-known classes from RxJava. The first two of
those interfaces are similar to Observable-Observer, which resemble the classic
Publisher-Subscriber model. Consequently, the first two were named Publisher and
Subscriber. To check whether these two interfaces are similar to Observable and
Observer, let’s consider the declaration of those:

package org.reactivestreams;

public interface Publisher<T> {
void subscribe (Subscriber<? super T> s);

}

The preceding code depicts the internals of the Publisher interface. As might be noticed,
there is only one method that makes it possible to register the Subscriber. In comparison
with Observable, which was designed for providing a useful DSL, Publisher stands for
a standardized entry point for a straightforward Publisher and Subscriber connection.
As opposed to Publisher, the Subscriber side is a bit more of a verbose API which is
almost identical to what we have in the Observer interface from RxJava:

package org.reactivestreams;

public interface Subscriber<T> {
void onSubscribe (Subscription s);
void onNext (T t);
void onError (Throwable t);
void onComplete();

}

As we may have noticed, along with three methods that are identical to methods in the
RxJava Observer, the specification provides us with a new additional method
called onSubscribe.

The onSubscribe method is a conceptually new API method that provides us with a
standardized way of notifying the Subscriber about a successful subscription. In turn, the
incoming parameter of that method introduces us to a new contract called Subscription. To
understand the idea, let's take a closer look at the interface:

package org.reactivestreams;

public interface Subscription {
void request (long n);
void cancel ();

[891]



Reactive Streams - the New Streams’ Standard Chapter 3

As we may have noticed, Subscription provides the fundamentals in order to control the
elements' production. Similar to RxJava 1.x's Subscription#unsubscribe (), here we
had the cancel () method, allowing us to unsubscribe from a stream or even cancel the
publishing completely. However, the most significant improvement that comes along with
the cancellation feature is in the new request method. The Reactive Stream specification
introduced the request method to expand the ability of interaction

between the Publisher and Subscriber. Now, to notify the Publisher of how much
data should be pushed, the Subscriber should signal the size of the demand via

the request method, and may be sure that the number of incoming elements does not
exceed the limit. Let's take a look at the following marble diagram to understand the

underlying mechanism:
OO OO0+

A

318! A S A A S

i A LA B A S A
subscriber

Diagram 3.7. Backpressure mechanism

As may be noticed from the preceding diagram, the Publisher now guarantees that

the new portion of elements are only sent if the Subscriber asked for them. The overall
implementation of the Publisher is up to the Publisher, which may vary from purely
blocking waiting, to the sophisticated mechanism of generating data only

on the Subscriber's requests. However, we now don't have to pay the cost of additional
queues since we have the mentioned guarantees.

Moreover, as opposed to a pure push model, the specification provides us with the hybrid
push-pull model, which allows proper control of the backpressure.

[90]



Reactive Streams - the New Streams’ Standard Chapter 3

To understand the power of the hybrid model, let's revisit our previous example of
streaming from the database and see whether such a technique is as efficient as before:

public Publisher<Item> list (int count) { // (1)
Publisher<Item> source = dbClient.getStreamOflItems (); // (2)
TakeFilterOperator<Item> takeFilter = new TakeFilterOperator<>( // (2.1)

source, //
count, //
item -> isValid(item) //
)i //
return takeFilter; // (3)
} //
The key is as follows:

1. This is the list method declaration. Here we follow the Reactive Streams spec and
return the Publisher<> interface as a first-class citizen for communication.

2. Thisis the AsyncDatabaseClient#getStreamOfItems method execution.
Here we use an updated method, which returns Publisher<>. At point
(2.1), we instantiate a custom implementation of the Take and Filter
operators which accept the number of elements that should be taken. In addition,
we pass a custom Predicate implementation, which makes it possible to
validate the incoming items in the stream.

3. At that point, we return the previously created TakeFilterOperator instance.
Remember, even though the operator has a different type, it still extends the
Publisher interface.

In turn, it is essential to get a clear understanding of the internals of our custom
TakeFilterOperator. The following code expands the internals of that operator:

public class TakeFilterOperator<T> implements Publisher<T> { // (1)
//

public void subscribe (Subscriber s) { // (2)
source.subscribe (new TakeFilterInner<> (s, take, predicate)); //
} //

static final class TakeFilterInner<T> implements Subscriber<T>, // (3)
Subscription { //

final Subscriber<T> actual; //
final int take; //
final Predicate<T> predicate; //
final Queue<T> queue; //

[91]



Reactive Streams - the New Streams’ Standard Chapter 3

Subscription current; //
int remaining; //
int filtered; //
volatile long requested; //
//
TakeFilterInner ( /7 (4)
Subscriber<T> actual, //
int take, //
Predicate<T> predicate //
) { ...} //
public void onSubscribe (Subscription current) { // (5)
- //
current.request (take); // (5.1)
- //
} //
public void onNext (T element) { // (6)
- //
long r = requested; //
Subscriber<T> a = actual; //
Subscription s = current; //
if (remaining > 0) { /7 (7))
boolean isValid = predicate.test (element); //
boolean isEmpty = queue.isEmpty(); //
if (isValid && r > 0 && isEmpty) { //
a.onNext (element) ; // (T7.1)
remaining—-; //
- //
} //
else if (isvalid && (r == || 'isEmpty)) { //
queue.offer (element); /] (7.2)
remaining--; //
- //
} //
else if ('isvalid) { //
filtered++; /7 (7.3)
} //
} //
else { /) (T7.4)
s.cancel (); //
onComplete () ; //
} //
if (filtered > 0 && remaining / filtered < 2) { // (8)
s.request (take); //

[92]



Reactive Streams - the New Streams’ Standard Chapter 3

}

filtered = 0; //
} //

/7 (9)

The key points of the preceding code are explained in the following list:

1.

This is the TakeFilterOperator class declaration. This class extends
Publisher<>. Additionally, behind ... is hidden the constructor of the class
and related fields.

This is the Subscriber#subscribe method implementation. By considering the
implementation, we may conclude that to provide additional logic to the stream,
we have to wrap the actual Subscriber into an adapter class that extends the
same interface.

This is the TakeFilterOperator.TakeFilterInner class declaration. This
class implements the Subscriber interface and plays the most important role
since it is passed as the actual Subscriber to the main source. Once the element
is received in onNext, it is filtered and transferred to the downstream
Subscriber. In turn, along with the Subscriber interface,

the TakeFilterInner class implements the Subscription interface, making it
possible to get transferred to the downstream Subscriber and therefore take
control of all downstream demands. Note that here, Queue is the instance

of ArrayBlockingQueue which is equal in size to take. The technique of
creating an inner class that extends the Ssubscriber and Subscription
interfaces is the classic way of implementing the intermediate transformation
stage.

This is the constructor declaration. As might be noticed here, along with

the take and predicate parameters, we have the actual subscriber instance
that has been subscribed to TakeFilterOperator by calling the subscribe ()
method.

This is the Subscriber#onSubscribe method implementation. The most
interesting element here is found at point (5. 1). Here we have the execution of
the first Subscription#request to the remote database, which usually
happens during the first onSubscribe method invocation.

This is the Subscriber#onNext invocation, which has a list of useful
parameters required for the element processing declaration.

[93]



Reactive Streams - the New Streams’ Standard Chapter 3

7. This is the processing flow of the element declaration. Here, we have four key
points in that processing. Once the remaining number of elements that should
be taken is higher than zero, the actual Subscriber has requested the data, the
element is valid, and there are no elements in the queue, then we may send that
element directly to the downstream (7.1). If the demand has not been shown
yet, or there is something in the queue, we have to queue that element (to
preserve order) and deliver it later (7.2). In the case in which an element is not
valid, we have to increase the number of £iltered elements (7.3). Finally, if
the remaining number of elements is zero, then we have to cancel, (7.4) the
Subscription and complete the stream.

8. This is the mechanism of an additional data requesting a declaration. Here, if the
number of £iltered elements reaches a limit, we request an additional portion
of data from the database without blocking the whole process.

9. This is the rest of the Subscriber and Subscriptions method's
implementation.

In general, when the connection with the database is wired and the TakeFilterOperator
instance has received the subscription, the first request with the specified number of
elements is sent to the database. Right after that, the database starts generating the specified
amount of elements and pushing them as they come. In turn, the logic of the
TakeFilterOperator specifies the case in which the additional portion of data should be
requested. Once that happens, a new non-blocking request for the next portion of data is
sent from the service to the database. It is important to note here that the Reactive Streams
specification directly specifies that the calling of the Subscription#request should be a
non-obstructive execution, which means that blocking operations or any operations

that stall the caller’s thread of execution within that method are not recommended.

To get more information about the mentioned behavior, please see the
following link: https://github.com/reactive-streams/reactive-
streams-jvm/blob/v1.0.2/README.md#3.4.

Finally, the following diagram depicts the overall interaction between the service and the
database:

[94]


https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.4
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.4
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.4
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.4
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.4
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.4
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.4
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.4
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.4
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.4
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.4
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.4
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.4
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.4
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.4
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.4
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.4
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.4
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.4
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.4
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.4
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.4
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.4
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.4
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.4
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.4
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.4
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.4
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.4
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.4

Reactive Streams - the New Streams’ Standard Chapter 3

Service Database
Network
T-- Getg
.__\.“rieamofItem
Connected __ RIS
-"“"w-- ~-LI@S.t (10
.-\"‘*)LL
on __.--="T]
GosCEIIl-e T T
: quest( 0) "1 Processing
o PR ’—‘-—‘—__-
|_ —-—-‘——___—"——‘___-
R - i Yem"
Completion
\ 4

Diagram 3.8. The hybrid Push-Pull processing flow

As might be noticed from the preceding diagram, the first element from the database might
arrive a bit later because of the Reactive Streams specification's contract for interaction
between the Publisher and Subscriber. Requesting a new portion of data does not
require the interruption or blocking of ongoing elements handling. Consequently, the entire
processing time is almost unaffected.

On the other hand, there are some cases in which the pure push model is preferable.
Fortunately, Reactive Streams is flexible enough. Along with a dynamic push-pull model,
the specification provides separate push and pull models as well. According to the
documentation, to achieve a pure push model we may consider requesting a demand
equal to 2%-1 (java.lang.Long.MAX_VALUE).

[95]



Reactive Streams - the New Streams’ Standard Chapter 3

This number may be considered as unbounded because, with the current
or foreseen hardware, it is not feasible to fulfill a demand of 2*-1 within a
reasonable amount of time (1 element per nanosecond would take 292
years). Consequently, it is permitted for a Publisher to stop tracking
denunuibeyondthk;poﬂﬁ:https://github.com/reactive—streams/
reactive-streams-Jjvm/blob/v1.0.2/README.md#3.17.

In contrast, to switch to the pure pull model, we may request one new element each time
the Ssubscriber#onNext has been invoked.

Reactive Streams spec in action

In general, as we might notice from the previous section, even though the interfaces from
the Reactive Streams specification are straightforward, the overall concept is complex
enough. Thus, we are going to learn the central idea and conceptual behaviors of those
three interfaces in an everyday example.

Let's consider as an example a news subscription and how this may become smarter with
new Reactive Streams interfaces. Consider the following code for creating a Publisher for
a news service:

NewsServicePublisher newsService = new NewsServicePublisher();

Now let’s create a Subscriber and subscribe it to the NewsService:

NewsServiceSubscriber subscriber = new NewsServiceSubscriber (5);
newsService.subscribe (subscriber);

subscriber.eventuallyReadDigest () ;

By calling subscribe () on the newsService instance, we show the desire to get the latest
news. Usually, before sending any news digests, a high-quality service sends a
congratulation letter with the information about the subscription and the subscription's
cancellation. This action is absolutely identical to our Subscriber#onSubscribe ()
method, which informs the Subscriber about a successful subscription and gives them the
ability to unsubscribe. Since our service follows the rules of the Reactive Streams
specification, it allows the client to select as many news articles as it can read at once. Only
after the client specifies the number of the first portion of digests by calling

the Subscription#request does the news service starts sending digests over the
Subscriber#onNext method, and the subscriber can then read the news.

[961]


https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.17
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.17
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.17
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.17
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.17
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.17
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.17
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.17
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.17
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.17
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.17
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.17
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.17
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.17
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.17
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.17
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.17
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.17
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.17
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.17
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.17
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.17
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.17
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.17
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.17
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.17
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.17
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.17
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.17
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.2/README.md#3.17

Reactive Streams - the New Streams’ Standard Chapter 3

Here, eventually means that in real life we may postpone reading the newsletter to the
evening or the end of the week, which means that we manually check the inbox with the
news. From the subscriber's perspective, that logic is implemented with the support of

the NewsServiceSubscriberfeventuallyReadDigests (). In general, such behavior
means that the user's inbox collects news digests, and a usual service subscription model
may easily overflow the subscribers' inboxes. In turn, what usually happens when the news
service thoughtlessly sends messages to the subscriber and the subscriber does not read
them is that the mail service provider puts the news service email address on the blacklist.
Moreover, in that case, the Subscriber may miss an important digest. Even if this has not
happened, the subscriber would not be happy due to the overflowing mailbox with a bunch
of unread digests from the news service. Thus, to preserve the subscriber's happiness, the
news service is required to provide a strategy for delivering the news. Suppose that the
read state of the newsletter may acknowledge the service. Here, once we have ensured that
all messages are read, we may provide some specific logic for sending a new news digest
only when the previous one has been read. This mechanism may be easily implemented
within the specification. The next piece of code exposes an example of the whole mentioned
mechanism:

class NewsServiceSubscriber implements Subscriber<NewsLetter> { // (1)
final Queue<NewsLetter> mailbox = new ConcurrentLinkedQueue<>();//
final int take; //
final AtomicInteger remaining = new AtomicInteger(); //
Subscription subscription; //
public NewsServiceSubscriber (int take) { ... } // (2)
public void onSubscribe (Subscription s) { // (3)
e //
subscription = s; //
subscription.request (take); // (3.1)
e //
; //
public void onNext (NewsLetter newsLetter) < // (4)
mailbox.offer (newsLetter) ; //
; //
public void onError (Throwable t) { ... } // (5)
public void onComplete() { ... } //
public Optional<NewsLetter> eventuallyReadDigest () { // (6)
NewsLetter letter = mailbox.poll(); // (6.1)
if (letter != null) { //
if (remaining.decrementAndGet () == 0) { // (6.2)
subscription.request (take); //

[97]



Reactive Streams - the New Streams’ Standard Chapter 3

remaining.set (take); //
3 //
return Optional.of (letter); // (6.3)
} //
return Optional.empty () ; // (6.4)
3 //
} //
The key is as follows:

1. This is the NewsServiceSubscriber class declaration which implements
Subscriber<NewsLetter>. Here, along with the plain class definition, we have
the list of useful fields (such as the mailbox represented by a Queue, or
the subscription field) which represents the current subscription; in other
words, the agreement between the client and the news service.

2. This is the NewsServiceSubscriber constructor declaration. Here, the
constructor accepts one parameter called t ake which indicates the size of news
digests that the user can potentially read at once or at the near time.

3. This is the Subscriber#onSubscribe method implementation. Here, at point
(3.1), along with storing the received subscription, we send the
earlier preferenced users' new reading throughput to the server.

4. This is the Ssubscriber#onSubscribe method implementation. The entire logic
of new digests handling is straightforward and is just a process of putting
messages into the Queue mailbox.

5. This is the Subscriber#onError and Subscriber#onComplete method
declaration. Those methods are called on the subscription termination.

6. This is the public eventuallyReadDigest method declaration. First of all, to
indicate that the mailbox may be empty, we rely on the Optional. In turn, as the
first step, at point (6.1), we try to get the latest unread news digest from the
mailbox. If there are no available unread newsletters in the mailbox, we return an
Optional.empty (), (6.4).In the case in which there are available digests, we
decrease the counter (6.2), which represents the number of unread messages
that have previously been requested from the news service. If we are still waiting
for some messages, we return the fulfilled Optional. Otherwise, we additionally
request a new portion of digests and reset the counter of remaining new
messages (6.3).

[981]



Reactive Streams - the New Streams’ Standard Chapter 3

Due to the specification, the first call invokes onSubscribe (), which

stores Subscription locally and then notifies Publisher about their readiness to receive
newsletters via the request () method. In turn, when the first digest comes, it is stored in
the queue for future reading, which is what usually happens in a real mailbox. After all,
when the subscriber has already read all digests from the inbox, the Publisher is going to
be notified of that fact and prepare a new portion of the news. In turn, if the news service
changes the subscription policy—which in some cases means the completion of the current
user subscriptions—then the subscriber is going to be notified about that via

the onComplete method. The client will then be asked to accept a new policy and
automatically resubscribe to the service. An example of when onError may be handled

is (of course) an accidentally dropped database which holds the information about users'
preferences. In that case, it might be counted as a failure, and the subscriber would then
receive an excuse letter and be asked to resubscribe to the service with new preferences.
Finally, the implementation of the eventuallyReadDigest is nothing more than a real
user's actions such as opening the mailbox, checking new messages, reading letters and
marking them as read, or just closing the mailbox when there is nothing new to interact
with.

As we might see, Reactive Streams is naturally suitable for and solving problems of
unrelated business cases, at first glance. Just by providing such a mechanism, we can keep
our subscribers happy and not get into the blacklist of the mailbox provider.

The introduction of the Processor notion

We have learned about the primary three interfaces that constitute the Reactive Streams
specification. We have also seen how a proposed mechanism may improve the news service
that sends news digests via email. However, at the beginning of this section, it was
mentioned that there are four core interfaces in the specification. The last one is a
combination of Publisher and Subscriber and is called the Processor. Let's take a look
at the following implementation's code:

package org.reactivestreams;

public interface Processor<T, R> extends Subscriber<T>,
Publisher<R> {
}

[991]



Reactive Streams - the New Streams’ Standard

In contrast to the Publisher and Subscriber, which are start and end points by

definition, Processor is designed to add some processing stages between the Publisher
and subscriber. Since the Processor may represent some transformation logic, this
makes streaming pipeline behaviors and business logic flows easier to understand. The

shining example of the Processor's usage may be any business logic that may be

described in a custom operator or it may be to provide additional caching of streaming

data, and so on. To get a better understanding of the conceptual application

of the Processor, let's consider how the NewsServicePublisher may be improved
with the Processor interface.

The most uncomplicated logic that may be hidden behind the NewsServicePublisher is

database access with newsletter preparation and subsequent multi-casting to all

subscribers:

DBPublishe

T T T T T

Yy v

ScheduledPublisher

=

:MAX_VALUE)

SmartMulticastProcessor

request(2)

R T
o L
1

.
.
g

est(1)
request(1)

req

IR o

Diagram 3.9. Example of mailing flow for news service

[ 100 ]




Reactive Streams - the New Streams’ Standard Chapter 3

In this example, the NewsServicePublisher is split into four additional components:

1. This is the DBPublisher stage. Here, Publisher is responsible for providing
access to the database and returning the newest posts.

2. This is the NewsPreparationOperator stage. This stage is an intermediate
transformation that is responsible for aggregating all messages and then, when
the completion signal is emitted from the main source, combining all news into
the digest. Note that this operator always results in one element because of the
aggregation nature. Aggregation assumes the presence of storage, which might
be either in a queue or any other collection for storing received elements.

3. This is the ScheduledPublisher stage. This stage is responsible for scheduling
periodic tasks. In the previously mentioned case, a scheduled task is querying a
database (DBPublisher), processing the result and merging received data to the
downstream. Note that ScheduledPublisher is effectively an infinite stream
and the completion of the merged Publisher is ignored. In the case of a lack of
requests from the downstream, this Publisher throws an exception to the actual
Subscriber through the subscriber#onError method.

4. This is the SmartMulticastProcessor stage. This Processor plays a vital role
in the flow. First of all, it caches the latest digest. In turn, that stage supports
multi-casting, which means that there is no need to create the same flow for each
Subscriber separately. Also, SmartMulticastProcessor includes, as
mentioned earlier, a smart mailing tracking mechanism, and only sends
newsletters for those who have read the previous digest.

5. These are the actual subscribers, which are effectively
NewsServiceSubscriber.

In general, the preceding diagram shows what might be hidden behind the plain
NewsServicePublisher. In turn, that example exposes the real application of the
Processor. As might be noticed, we have three transformation stages, but only one of
those is required to be the Processor.

First of all, in cases in which we need just a plain transformation from A to B, we do not
need the interface that exposes the Publisher and Subscriber at the same time. The
presence of the Subscriber interface means that once the Processor has subscribed to
the upstream, the elements may start coming to the Subscriber#onNext method

and may potentially be lost because of the absence of the downstream Subscriber. In
turn, with such a technique, we have to bear in mind the fact that the Processor should be
subscribed before it subscribes to the main Publisher.

[101]



Reactive Streams - the New Streams’ Standard Chapter 3

Nevertheless, this over-complicates the business flow and does not allow us to create a
reusable operator that fits any case with ease. Moreover, the construction of a Processor's
implementation introduces an additional effort on independent (from the main
Publisher) management of the Subscriber and proper backpressure implementation
(for example, employing a queue if needed). Subsequently, that may cause degradation in
performance or merely decrease the whole stream throughput due to an unreasonably
complicated implementation of the Processor as a plain operator.

Since we know that we want to transform only A to B, we simply want to start the flow
when the actual Subscriber calls Publisher#subscribe, and we do not want to
over—complicate the internal implementation. Consequently, the composition of multiple
Publisher instances—which accept upstream as the parameter to the constructor and
simply provide the adapter logic—fits the requirements very well.

In turn, the Processor shines when we need to multicast elements, regardless of whether
there are subscribers or not. It also allows some kind of mutation, since it implements
the subscriber interface, which effectively allows mutations such as caching.

Valuing the fact that we have already seen the implementation of the
TakeFilterOperator operator and NewsServiceSubscriber, we may be sure that the
internals of most instances of Publisher, Subscriber, and Processor are similar to the
mentioned examples. Consequently, we do not get into the details of the internals of each
class, and consider only the final composition of all components:

Publisher<Subscriber<NewsLetter>> newsLetterSubscribersStream =... // (1)
ScheduledPublisher<NewsLetter> scheduler = //

new ScheduledPublisher<>( //

() —> new NewsPreparationOperator (new DBPublisher(...), ...),// (1.1)
1, TimeUnit.DAYS //

) ; //
SmartMulticastProcessor processor = new SmartMulticastProcessor(); //
scheduler.subscribe (processor) ; // (2)
newsLetterSubscribersStream.subscribe (new Subscriber<> () { // (3)

... //

public void onNext (Subscriber<NewsLetter>> s) { //

processor.subscribe (s); // (3.1)
} //
... //
1) //

[102]



Reactive Streams - the New Streams’ Standard Chapter 3

The key is as follows:

1. This is the publishers, operator, and processor declaration.
Here, newsLetterSubscribersStream represents the infinite stream of users
who subscribe to the mailing list. In turn, at point (1.1) we declare Supplier<?
extends Publisher<NewsLetter>>, which supplies the
DBPublisher wrapped into the NewsPreparationOperator.

2. This is the SmartMulticastProcessor to the
ScheduledPublisher<NewsLetter> subscription. That action immediately
starts the scheduler, which in turn subscribes to the inner Publisher.

3. This is the newsLetterSubscribersStream subscription. Here we declare the
anonymous class to implement the Subscriber. In turn, at point (3.1) we
subscribe each new incoming Subscriber to the processor, which multi-casts
the digest among all subscribers.

In this example, we have combined all processors in one chain, sequentially wrapping them
into each other or making components subscribe to each other.

In general, implementation of the Publisher/Processor is a challenge.
Because of that, we skip the detailed explanation of the implementation of
the mentioned operators or sources in that chapter. Nevertheless, to learn
more about pitfalls, patterns, and steps required to code our own
Publisher, please see the following link: https://medium.com/
@olehdokuka/mastering-own-reactive-streams—-implementation-part-
l-publisher-e8eaf928a78c.

To summarize, we have covered the basics of the Reactive Streams standard. We have seen
the transformation of the idea of reactive programming expressed in libraries such as
RxJava to the standard set of interfaces. Along with that, we saw that the mentioned
interfaces easily allow us to define an asynchronous and non-blocking interaction model
between components within the system. Finally, when embracing the Reactive Streams
specification, we are capable of building a reactive system not just on the high architecture
level but at the level of smaller components as well.

[103 ]



https://medium.com/@olehdokuka/mastering-own-reactive-streams-implementation-part-1-publisher-e8eaf928a78c
https://medium.com/@olehdokuka/mastering-own-reactive-streams-implementation-part-1-publisher-e8eaf928a78c
https://medium.com/@olehdokuka/mastering-own-reactive-streams-implementation-part-1-publisher-e8eaf928a78c
https://medium.com/@olehdokuka/mastering-own-reactive-streams-implementation-part-1-publisher-e8eaf928a78c
https://medium.com/@olehdokuka/mastering-own-reactive-streams-implementation-part-1-publisher-e8eaf928a78c
https://medium.com/@olehdokuka/mastering-own-reactive-streams-implementation-part-1-publisher-e8eaf928a78c
https://medium.com/@olehdokuka/mastering-own-reactive-streams-implementation-part-1-publisher-e8eaf928a78c
https://medium.com/@olehdokuka/mastering-own-reactive-streams-implementation-part-1-publisher-e8eaf928a78c
https://medium.com/@olehdokuka/mastering-own-reactive-streams-implementation-part-1-publisher-e8eaf928a78c
https://medium.com/@olehdokuka/mastering-own-reactive-streams-implementation-part-1-publisher-e8eaf928a78c
https://medium.com/@olehdokuka/mastering-own-reactive-streams-implementation-part-1-publisher-e8eaf928a78c
https://medium.com/@olehdokuka/mastering-own-reactive-streams-implementation-part-1-publisher-e8eaf928a78c
https://medium.com/@olehdokuka/mastering-own-reactive-streams-implementation-part-1-publisher-e8eaf928a78c
https://medium.com/@olehdokuka/mastering-own-reactive-streams-implementation-part-1-publisher-e8eaf928a78c
https://medium.com/@olehdokuka/mastering-own-reactive-streams-implementation-part-1-publisher-e8eaf928a78c
https://medium.com/@olehdokuka/mastering-own-reactive-streams-implementation-part-1-publisher-e8eaf928a78c
https://medium.com/@olehdokuka/mastering-own-reactive-streams-implementation-part-1-publisher-e8eaf928a78c
https://medium.com/@olehdokuka/mastering-own-reactive-streams-implementation-part-1-publisher-e8eaf928a78c
https://medium.com/@olehdokuka/mastering-own-reactive-streams-implementation-part-1-publisher-e8eaf928a78c
https://medium.com/@olehdokuka/mastering-own-reactive-streams-implementation-part-1-publisher-e8eaf928a78c
https://medium.com/@olehdokuka/mastering-own-reactive-streams-implementation-part-1-publisher-e8eaf928a78c
https://medium.com/@olehdokuka/mastering-own-reactive-streams-implementation-part-1-publisher-e8eaf928a78c
https://medium.com/@olehdokuka/mastering-own-reactive-streams-implementation-part-1-publisher-e8eaf928a78c
https://medium.com/@olehdokuka/mastering-own-reactive-streams-implementation-part-1-publisher-e8eaf928a78c
https://medium.com/@olehdokuka/mastering-own-reactive-streams-implementation-part-1-publisher-e8eaf928a78c

Reactive Streams - the New Streams’ Standard Chapter 3

Reactive Streams technology compatibility kit

While at first glance, Reactive Streams does not seem to be tricky, in reality it does contain a
lot of hidden pitfalls. Apart from Java interfaces, the specification includes a lot of
documented rules for implementation—perhaps this is the most challenging point. These
rules strictly constrain each interface, and it is vital to preserve all of the behaviors
mentioned in the specification. This allows further integration of implementations from
different vendors, which does not cause any problems. That is the essential point for which
these rules were formed. Unfortunately, building a proper test suit that covers all corner
cases may take much more time than the proper implementation of interfaces. On the other
hand, developers need a common tool that may validate all behaviors and ensure that
reactive libraries are standardized and compatible with each other. Luckily, a toolkit has
already been implemented by Konrad Malawski for that purpose, and this has the name
Reactive Streams Technology Compatibility Kit - or simply TCK.

To learn more about TCK, please see the following link: https://github.

com/reactive-streams/reactive-streams-jvm/tree/master/tck

TCK defends all Reactive Streams statements and tests corresponding implementations
against specified rules. Essentially, TCK is a bunch of TestNG test-cases, which should be
extended and prepared for verification by a corresponding Publisher or Subscriber.
TCK includes a full list of test-classes which aim to cover all of the defined rules in the
Reactive Streams specification. Actually, all tests are named to correspond to the specified
rules. For instance, one of the sample test-cases which might be found within
org.reactivestreams.tck.PublisherVerification is the following:

void
required_specl01l_subscriptionRequestMustResultInTheCorrectNumberOfProducedE
lements ()

throws Throwable {

ManualSubscriber<T> sub = env.newManualSubscriber (pub); // (1)

try |
sub.expectNone (..., pub)); /7 (2)
sub.request (1) ; //
sub.nextElement (..., pub)); //
sub.expectNone (..., pub)); //
sub.request (1) ; //
sub.request (2); //
sub.nextElements (3, ..., pub)); //
sub.expectNone (..., pub)); //

[104 ]


https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck

Reactive Streams - the New Streams’ Standard Chapter 3

} finally {
sub.cancel () ; // (3)
}

}
The key is as follows:

1. This is the manual subscription to the tested publisher. Reactive Streams' TCK
provides its own test classes, which allow the verification of the particular
behavior.

2. This is the expectations' declaration. As might be noticed from the preceding
code, here we have a particular verification of the given Publisher's behaviors
according to rule 1.01. In that case, we verify that the Publisher cannot signal
more elements than the Subscriber has requested.

3. This is the Subscription's cancellation stage. Once the test has passed or failed,
to close the opened resource and finalize the interaction, we unsubscribe from
the Publisher using the ManualSubscriber APL

The importance of the mentioned test is hidden behind the verification of the essential
guarantee of interaction that any implementation of the Publisher should provide.
Moreover, all test-cases within the PublisherVerification ensure that the given
Publisher is to some degree compliant to the Reactive Streams specification. Here, to some
degree means that it is impossible to verify all the rules in the full size. The example of such
rules is rule 3.04, which states that the request should not perform heavy computations that
cannot be meaningfully tested.

The Publisher verification

Along with the understanding of the importance of the Reactive Streams TCK, it is
necessary to get the essential knowledge of the toolkit usage. To acquire a basic knowledge
of how this kit works, we are going to verify one of the components of our news service.
Since a Publisher is an essential part of our system, we are going to start with its analysis.
As we remember, TCK

provides org.reactivestreams.tck.PublisherVerification to check the
fundamental behavior of the Publisher. In general, PublisherVerificationisan
abstract class which mandates us to extend just two methods. Let's take a look at the
following example in order to understand how to write a verification of the previously
developed NewsServicePublisher:

public class NewsServicePublisherTest // (1)
extends PublisherVerification<NewsLetter> ... { //

[105 ]



Reactive Streams - the New Streams’ Standard Chapter 3

public StreamPublisherTest () { // (2)
super (new TestEnvironment (...)); //
3 //
@Override // (3)
public Publisher<NewsLetter> createPublisher (long elements) { //
prepareltemsInDatabase (elements) ; // (3.1)
Publisher<NewsLetter> newsServicePublisher = //
new NewsServicePublisher(...); //
e //
return newsServicePublisher; //
3 //
@Override /7 (4)
public Publisher<NewsLetter> createFailedPublisher () { //
stopDatabase () // (4.1)
return new NewsServicePublisher(...); //
3 //
//
}
The key is as follows:
1. This is the NewsServicePublisherTest class declaration which

extends the PublisherVerification class.

This is the no-args constructor declaration. It should be noted

that PublisherVerification does not have the default constructor and
mandates the person who implements it to provide the TestEnvironment that is
responsible for specific configurations for the test, such as configurations of
timeouts and debug logs.

This is the createPublisher method implementation. This method is
responsible for generating a Publisher, which produces a given number of
elements. In turn, in our case, to satisfy the tests' requirements, we have to fill the
database with a certain amount of news entries (3.1).

This is the createFailedPublisher method implementation. Here, in contrast
to the createPublisher method, we have to provide a failed instance of the
NewsServicePublisher. One of the options in which we have a failed
Publisher is when the data source is unavailable, which in our case causes the
failure of the NewsServicePublisher, (4.1).

[ 106 ]



Reactive Streams - the New Streams’ Standard Chapter 3

The preceding test expands the basic configurations required in order to run

the verification of the NewsServicePublisher. It is assumed that the Publisher is
flexible enough to be able to provide the given number of elements. In other words, the test
can tell the Publisher how many elements it should produce and whether it should fail or
work normally. On the other hand, there are a lot of specific cases where the Publisher is
limited to only one element. For example, as we might remember, the
NewsPreparationOperator responds with only one element, regardless of the number of
incoming elements from the upstream.

By simply following the mentioned configurations of the test, we cannot check the accuracy
of that Publisher since many test-cases assume the presence of more than one element in
the stream. Fortunately, the Reactive Streams TCK respects such corner cases and allows
setting up an additional method called maxElementsFromPublisher () which returns a
value that indicates the maximum number of produced elements:

@Override
public long maxElementsFromPublisher () {
return 1;

}

On the one hand, by overriding that method, the tests that require more than one element
are skipped. On the other hand, the coverage of the Reactive Streams rules is decreased and
may require implementation of the custom test-cases.

The Subscriber verification

The mentioned configurations are the minimum that are required in order to start testing
our producer's behavior. However, along with the instances of Publisher, we have
instances of Subscriber that should be tested as well. Fortunately, that group of rules
in the Reactive Stream specification is less complex than Publisher's one, but it is still
required to satisfy all requirements.

[107 ]



Reactive Streams - the New Streams’ Standard Chapter 3

There are two different test suits to test NewsServiceSubscriber. The first one is called
org.reactivestreams.tck.SubscriberBlackboxVerification, which allows
verifying the Subscriber without knowledge or modification of its internals. Blackbox
verification is a useful test kit when the Subscriber comes from the external codebase,
and there is no legal way to extend the behavior. On the other hand, the Blackbox
verification covers only a few rules and does not ensure complete correctness of

the implementation. To see how the NewsServiceSubscriber may be examined, let’s
implement the Blackbox verification test first:

public class NewsServiceSubscriberTest /7 (1)
extends SubscriberBlackboxVerification<NewsLetter> { //
public NewsServiceSubscriberTest () { // (2)

super (new TestEnvironment ()); //
} //
@Override // (3)
public Subscriber<NewsLetter> createSubscriber () { //
return new NewsServiceSubscriber(...); //
} //
@Override /] (4)
public NewsLetter createElement (int element) { //
return new StubNewsLetter (element); //
} //
@Override // (5)
public void triggerRequest (Subscriber<? super NewsLetter> s) { //
((NewsServiceSubscriber) s).eventuallyReadDigest (); // (5.1)
} //
}
The key is as follows:

1. This is the NewsServiceSubscriberTest class declaration which extends the
SubscriberBlackboxVerification tests-suite.

2. This is the default constructor declaration. Here, identically to
PublisherVerification, we are mandated to provide a certain
TestEnvironment.

3. This is the createSubscriber method implementation. Here, that method
returns the NewsServiceSubscriber instance, which should be tested against
the specification.

[108 ]



Reactive Streams - the New Streams’ Standard Chapter 3

4. This is the createElement method implementation. Here, we are required to
provide an implementation of the method which plays the role of a new element
factory and generates a new instance of NewsLetter on demand.

5. This is the t riggerRequest method implementation. Since the Blackbox testing
assumes no access to the internals, it means that we do not have direct access to
the hidden Subscription inside the Subscriber. Subsequently, this means
that we have to trigger it somehow by manually using the given API (5.1).

The preceding example shows the available API for Subscriber verification. Apart from
the two required methods, createSubscriber and createElement, there is an additional
method which addresses the handling of the Ssubscription#request method externally.
In our case, it is a useful addition that allows us to emulate real user activity.

The second test kit is called
org.reactivestreams.tck.SubscriberWhiteboxVerification. Thisis a similar
verification to the previous one, but to pass the verification, the Subscriber should
provide additional interaction with the WhiteboxSubscriberProbe :

public class NewsServiceSubscriberWhiteboxTest // (1)
extends SubscriberWhiteboxVerification<NewsLetter> { //
//
@Override //(2)
public Subscriber<NewsLetter> createSubscriber ( //
WhiteboxSubscriberProbe<NewsLetter> probe //
) | //
return new NewsServiceSubscriber(...) { //
public void onSubscribe (Subscription s) { //
super.onSubscribe (s); // (2.1)
probe.registerOnSubscribe (new SubscriberPuppet () { // (2.2)
public void triggerRequest (long elements) { //
s.request (elements) ; //
} //
public void signalCancel () { //
s.cancel () ; //
} //
)i //
} //
public void onNext (NewsLetter newsLetter) { //
super.onNext (newsLetter) ; //
probe.registerOnNext (newsLetter) ; // (2.3)
} //
public void onError (Throwable t) { //
super.onError (t); //
probe.registerOnError (t); /] (2.4)

[109 ]



Reactive Streams - the New Streams’ Standard Chapter 3

} //
public void onComplete () { //
super.onComplete () ; //
probe.registerOnComplete () ; // (2.5)
} //
bi //
} //
. //
t //

The key is as follows:

1. This is the NewsServiceSubscriberWhiteboxTest class declaration which
extends the SubscriberWhiteboxVerification tests-suite.

2. This is the createSubscriber method implementation. This method works
identically to the Blackbox verification and returns the Ssubscriber instance, but
here there is an additional parameter called WhiteboxSubscriberProbe. In that
case, WhiteboxSubscriberProbe represents a mechanism that enables
embedded control of the demand and capture of the incoming signals. In
comparison to the Blackbox verification, by proper registration of probe hooks
inside NewsServiceSubscriber, (2.2), (2.3), (2.4), (2.5), the test suite is
capable not only of sending the demand but verifying that the demand was
satisfied and all elements have been received as well. In turn, the mechanism of
demand regulation is more transparent than it previously was. Here, at point

(2.2), we implement the SubscriberPuppet, which adapts direct access to the
received Subscription.

As we can see, opposite to the Blackbox verification, the Whitebox requires the extension of
the subscriber, providing additional hooks internally. While the Whitebox testing covers
a broader number of rules which ensure the correct behavior of the tested Subscriber, it
may be unacceptable for those cases when we want to make a class final to prevent it from
being extended.

[110]



Reactive Streams - the New Streams’ Standard

Chapter 3

The final part of the verification journey is the testing of the Processor. For that purpose,

TCK provides us with org.reactivestreams.tck.IdentityProcessorVerification.
This test suite can verify a Processor, which receives and produces the same type of

elements. In our example, only the martMulticastProcessor behaves in such a manner.

Since the test kit should verify the behavior of both Publisher and Subscriber, the

IdentityProcessorVerification inherits similar configurations as for the Publisher
and Subscriber tests. Consequently, we do not get into the details of the whole test's

implementation, but consider additional methods required for the
SmartMulticastProcessor verification:

public class SmartMulticastProcessorTest
extends IdentityProcessorVerification<NewsLetter> {

public SmartMulticastProcessorTest () {
super (..., 1);

;

@Override

public Processor<Integer, Integer> createldentityProcessor (
int bufferSize

) A
return new SmartMulticastProcessor<>();

}

@Override
public NewsLetter createElement (int element) {
return new StubNewsLetter (element);
;
}

The key is as follows:

1. This is the SmartMulticastProcessorTest class definition, which

extends IdentityProcessorVerification.

2. This is the default constructor definition. As we may notice from the code, (along
with the TestEnvironment configuration, which is skipped in that example) we
pass an additional parameter, which indicates the number of elements that
the processor must buffer without dropping. Since we know that our

//
//

//
//
//

//
//
//
//
//
//

//
//
//
//

Processor supports the buffering of only one element, we have to provide that

number manually before starting any verification.

[111]



Reactive Streams - the New Streams’ Standard Chapter 3

3. Thisis the createIdentityProcessor method implementation, which returns
an instance of the tested Processor. Here, the buf ferSize represents the
number of elements that the Processor must buffer without dropping. We may
skip that parameter now, since we know that the internal buffer size is equal to
the pre-configured one in the constructor.

4. This is the createElement method implementation. Similar to the verification
of Subscriber, we have to provide the factory method to create new elements.

The preceding example shows the essential configuration for SmartMulticastProcessor
verification. Since the IdentityProcessorVerification extends both
SubscriberWhiteboxVerification and PublisherVerification, the general
configurations are merged from each of them.

To generalize, we got an overview of the essential set of tests that help to

verify the specified behavior of the implemented Reactive Operators. Here, TCK may be
considered as initial integration tests. Nevertheless, we should bear in mind that along with
the TCK verification, each operator should carefully test for the desired behavior on its
own.

To learn more about verification, please visit the original TCK page
https://github.com/reactive-streams/reactive-streams—jvm/tree/

master/tck.

To look at more examples of TCK usage, visit the following Ratpack
repository
https://github.com/ratpack/ratpack/tree/master/ratpack-exec/src/
test/groovy/ratpack/stream/tck.

There is also a broader list of TCK usage examples for verification of the
RxJava 2 at the following link: https://github.com/ReactiveX/RxJava/

tree/2.x/src/test/java/io/reactivex/tck.

[112]


https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
https://github.com/ratpack/ratpack/tree/master/ratpack-exec/src/test/groovy/ratpack/stream/tck
https://github.com/ratpack/ratpack/tree/master/ratpack-exec/src/test/groovy/ratpack/stream/tck
https://github.com/ratpack/ratpack/tree/master/ratpack-exec/src/test/groovy/ratpack/stream/tck
https://github.com/ratpack/ratpack/tree/master/ratpack-exec/src/test/groovy/ratpack/stream/tck
https://github.com/ratpack/ratpack/tree/master/ratpack-exec/src/test/groovy/ratpack/stream/tck
https://github.com/ratpack/ratpack/tree/master/ratpack-exec/src/test/groovy/ratpack/stream/tck
https://github.com/ratpack/ratpack/tree/master/ratpack-exec/src/test/groovy/ratpack/stream/tck
https://github.com/ratpack/ratpack/tree/master/ratpack-exec/src/test/groovy/ratpack/stream/tck
https://github.com/ratpack/ratpack/tree/master/ratpack-exec/src/test/groovy/ratpack/stream/tck
https://github.com/ratpack/ratpack/tree/master/ratpack-exec/src/test/groovy/ratpack/stream/tck
https://github.com/ratpack/ratpack/tree/master/ratpack-exec/src/test/groovy/ratpack/stream/tck
https://github.com/ratpack/ratpack/tree/master/ratpack-exec/src/test/groovy/ratpack/stream/tck
https://github.com/ratpack/ratpack/tree/master/ratpack-exec/src/test/groovy/ratpack/stream/tck
https://github.com/ratpack/ratpack/tree/master/ratpack-exec/src/test/groovy/ratpack/stream/tck
https://github.com/ratpack/ratpack/tree/master/ratpack-exec/src/test/groovy/ratpack/stream/tck
https://github.com/ratpack/ratpack/tree/master/ratpack-exec/src/test/groovy/ratpack/stream/tck
https://github.com/ratpack/ratpack/tree/master/ratpack-exec/src/test/groovy/ratpack/stream/tck
https://github.com/ratpack/ratpack/tree/master/ratpack-exec/src/test/groovy/ratpack/stream/tck
https://github.com/ratpack/ratpack/tree/master/ratpack-exec/src/test/groovy/ratpack/stream/tck
https://github.com/ratpack/ratpack/tree/master/ratpack-exec/src/test/groovy/ratpack/stream/tck
https://github.com/ratpack/ratpack/tree/master/ratpack-exec/src/test/groovy/ratpack/stream/tck
https://github.com/ratpack/ratpack/tree/master/ratpack-exec/src/test/groovy/ratpack/stream/tck
https://github.com/ratpack/ratpack/tree/master/ratpack-exec/src/test/groovy/ratpack/stream/tck
https://github.com/ratpack/ratpack/tree/master/ratpack-exec/src/test/groovy/ratpack/stream/tck
https://github.com/ratpack/ratpack/tree/master/ratpack-exec/src/test/groovy/ratpack/stream/tck
https://github.com/ratpack/ratpack/tree/master/ratpack-exec/src/test/groovy/ratpack/stream/tck
https://github.com/ratpack/ratpack/tree/master/ratpack-exec/src/test/groovy/ratpack/stream/tck
https://github.com/ratpack/ratpack/tree/master/ratpack-exec/src/test/groovy/ratpack/stream/tck
https://github.com/ratpack/ratpack/tree/master/ratpack-exec/src/test/groovy/ratpack/stream/tck
https://github.com/ratpack/ratpack/tree/master/ratpack-exec/src/test/groovy/ratpack/stream/tck
https://github.com/ReactiveX/RxJava/tree/2.x/src/test/java/io/reactivex/tck
https://github.com/ReactiveX/RxJava/tree/2.x/src/test/java/io/reactivex/tck
https://github.com/ReactiveX/RxJava/tree/2.x/src/test/java/io/reactivex/tck
https://github.com/ReactiveX/RxJava/tree/2.x/src/test/java/io/reactivex/tck
https://github.com/ReactiveX/RxJava/tree/2.x/src/test/java/io/reactivex/tck
https://github.com/ReactiveX/RxJava/tree/2.x/src/test/java/io/reactivex/tck
https://github.com/ReactiveX/RxJava/tree/2.x/src/test/java/io/reactivex/tck
https://github.com/ReactiveX/RxJava/tree/2.x/src/test/java/io/reactivex/tck
https://github.com/ReactiveX/RxJava/tree/2.x/src/test/java/io/reactivex/tck
https://github.com/ReactiveX/RxJava/tree/2.x/src/test/java/io/reactivex/tck
https://github.com/ReactiveX/RxJava/tree/2.x/src/test/java/io/reactivex/tck
https://github.com/ReactiveX/RxJava/tree/2.x/src/test/java/io/reactivex/tck
https://github.com/ReactiveX/RxJava/tree/2.x/src/test/java/io/reactivex/tck
https://github.com/ReactiveX/RxJava/tree/2.x/src/test/java/io/reactivex/tck
https://github.com/ReactiveX/RxJava/tree/2.x/src/test/java/io/reactivex/tck
https://github.com/ReactiveX/RxJava/tree/2.x/src/test/java/io/reactivex/tck
https://github.com/ReactiveX/RxJava/tree/2.x/src/test/java/io/reactivex/tck
https://github.com/ReactiveX/RxJava/tree/2.x/src/test/java/io/reactivex/tck
https://github.com/ReactiveX/RxJava/tree/2.x/src/test/java/io/reactivex/tck
https://github.com/ReactiveX/RxJava/tree/2.x/src/test/java/io/reactivex/tck
https://github.com/ReactiveX/RxJava/tree/2.x/src/test/java/io/reactivex/tck
https://github.com/ReactiveX/RxJava/tree/2.x/src/test/java/io/reactivex/tck
https://github.com/ReactiveX/RxJava/tree/2.x/src/test/java/io/reactivex/tck
https://github.com/ReactiveX/RxJava/tree/2.x/src/test/java/io/reactivex/tck
https://github.com/ReactiveX/RxJava/tree/2.x/src/test/java/io/reactivex/tck
https://github.com/ReactiveX/RxJava/tree/2.x/src/test/java/io/reactivex/tck
https://github.com/ReactiveX/RxJava/tree/2.x/src/test/java/io/reactivex/tck
https://github.com/ReactiveX/RxJava/tree/2.x/src/test/java/io/reactivex/tck

Reactive Streams - the New Streams’ Standard Chapter 3

JDK 9

Likewise, the value of specification was seen by the JDK implementing team too. Not long
after the first release of the specification, Doug Lee created a proposal to add

the aforementioned interface in JDK 9. The proposal was supported by the fact that the
current Stream API offers just a pull model, and a push model was a missing point here:

”...there is no single best fluent async/parallel API. CompletableFuture/CompletionStage
best supports continuation style programming on futures, and java.util.Stream best
supports (multi-stage, possibly-parallel) “pull” style operations on the elements of
collections. Until now, one missing category was “push” style operations on items as they
become available from an active source.”

- Doug Lee, nttp://9srl66-concurrency.10961.n7.nabble.com/jdk9-Candidate-
classes-Flow—and-SubmissionPublisher-td11967.html

Note that under the hood, the Java Stream APl uses Spliterator, which
is nothing more than a modified version of Iterator, capable of parallel
execution. As we might remember, the Iterator is not designed for
pushing but for pulling over the Iterator#next method.

Similarly, Spliterator has the t ryAdvance method, which is a
combination of the Iterator's hasNext and next methods.

Consequently, we may conclude that in general the Stream API is pulling-
based.

The primary goal of the proposal was to specify interfaces for reactive streams inside JDK.
According to the proposal, all interfaces defined in the Reactive Streams specification are
provided within the java.util.concurrent.Flow class as static sub-classes. On the one
hand, that improvement is significant because Reactive Streams becomes a JDK standard.
On the other hand, many vendors have already relied on the specification provided
within the org. reactivestreams.* package. Since most vendors (such as RxJava)
support several versions of JDK, it is impossible to just implement these interfaces along
with the previous ones. Consequently, this improvement manifests an additional
requirement to be compatible with JDK 9+ and to somehow convert one specification to
another.

[113 ]


http://jsr166-concurrency.10961.n7.nabble.com/jdk9-Candidate-classes-Flow-and-SubmissionPublisher-td11967.html
http://jsr166-concurrency.10961.n7.nabble.com/jdk9-Candidate-classes-Flow-and-SubmissionPublisher-td11967.html
http://jsr166-concurrency.10961.n7.nabble.com/jdk9-Candidate-classes-Flow-and-SubmissionPublisher-td11967.html
http://jsr166-concurrency.10961.n7.nabble.com/jdk9-Candidate-classes-Flow-and-SubmissionPublisher-td11967.html
http://jsr166-concurrency.10961.n7.nabble.com/jdk9-Candidate-classes-Flow-and-SubmissionPublisher-td11967.html
http://jsr166-concurrency.10961.n7.nabble.com/jdk9-Candidate-classes-Flow-and-SubmissionPublisher-td11967.html
http://jsr166-concurrency.10961.n7.nabble.com/jdk9-Candidate-classes-Flow-and-SubmissionPublisher-td11967.html
http://jsr166-concurrency.10961.n7.nabble.com/jdk9-Candidate-classes-Flow-and-SubmissionPublisher-td11967.html
http://jsr166-concurrency.10961.n7.nabble.com/jdk9-Candidate-classes-Flow-and-SubmissionPublisher-td11967.html
http://jsr166-concurrency.10961.n7.nabble.com/jdk9-Candidate-classes-Flow-and-SubmissionPublisher-td11967.html
http://jsr166-concurrency.10961.n7.nabble.com/jdk9-Candidate-classes-Flow-and-SubmissionPublisher-td11967.html
http://jsr166-concurrency.10961.n7.nabble.com/jdk9-Candidate-classes-Flow-and-SubmissionPublisher-td11967.html
http://jsr166-concurrency.10961.n7.nabble.com/jdk9-Candidate-classes-Flow-and-SubmissionPublisher-td11967.html
http://jsr166-concurrency.10961.n7.nabble.com/jdk9-Candidate-classes-Flow-and-SubmissionPublisher-td11967.html
http://jsr166-concurrency.10961.n7.nabble.com/jdk9-Candidate-classes-Flow-and-SubmissionPublisher-td11967.html
http://jsr166-concurrency.10961.n7.nabble.com/jdk9-Candidate-classes-Flow-and-SubmissionPublisher-td11967.html
http://jsr166-concurrency.10961.n7.nabble.com/jdk9-Candidate-classes-Flow-and-SubmissionPublisher-td11967.html
http://jsr166-concurrency.10961.n7.nabble.com/jdk9-Candidate-classes-Flow-and-SubmissionPublisher-td11967.html
http://jsr166-concurrency.10961.n7.nabble.com/jdk9-Candidate-classes-Flow-and-SubmissionPublisher-td11967.html
http://jsr166-concurrency.10961.n7.nabble.com/jdk9-Candidate-classes-Flow-and-SubmissionPublisher-td11967.html
http://jsr166-concurrency.10961.n7.nabble.com/jdk9-Candidate-classes-Flow-and-SubmissionPublisher-td11967.html
http://jsr166-concurrency.10961.n7.nabble.com/jdk9-Candidate-classes-Flow-and-SubmissionPublisher-td11967.html
http://jsr166-concurrency.10961.n7.nabble.com/jdk9-Candidate-classes-Flow-and-SubmissionPublisher-td11967.html
http://jsr166-concurrency.10961.n7.nabble.com/jdk9-Candidate-classes-Flow-and-SubmissionPublisher-td11967.html
http://jsr166-concurrency.10961.n7.nabble.com/jdk9-Candidate-classes-Flow-and-SubmissionPublisher-td11967.html
http://jsr166-concurrency.10961.n7.nabble.com/jdk9-Candidate-classes-Flow-and-SubmissionPublisher-td11967.html
http://jsr166-concurrency.10961.n7.nabble.com/jdk9-Candidate-classes-Flow-and-SubmissionPublisher-td11967.html
http://jsr166-concurrency.10961.n7.nabble.com/jdk9-Candidate-classes-Flow-and-SubmissionPublisher-td11967.html
http://jsr166-concurrency.10961.n7.nabble.com/jdk9-Candidate-classes-Flow-and-SubmissionPublisher-td11967.html
http://jsr166-concurrency.10961.n7.nabble.com/jdk9-Candidate-classes-Flow-and-SubmissionPublisher-td11967.html

Reactive Streams - the New Streams’ Standard Chapter 3

Fortunately, the Reactive Streams specification provides an additional module for that
purpose, which allows the conversion of Reactive Streams types to JDK Flow types:

// (1)
import org.reactivestreams.Publisher; //
import java.util.concurrent.Flow; //
//
Flow.Publisher jdkPublisher = ...; /7 (2)
Publisher external = FlowAdapters.toPublisher (jdkPublisher) // (2.1)
Flow.Publisher jdkPublisher2 = FlowAdapters.toFlowPublisher ( //
external /] (2.2)
) //

The key is as follows:

1. These are the import definitions. As might be noticed from the imports'
statements, we have the import of the Publisher from the original Reactive
Streams library and the import of the F1ow, which is the access point to all
interfaces of Reactive Streams, but ported to JDK 9.

2. This is the Flow.Publisher instance definition. Here we define the instance
of Publisher from the JDK 9. In turn, at point (2.1), we use
the FlowAdapters.toPublisher method from the original Reactive Streams
library to convert Flow.Publisher to org.reactivestreams.Publisher.
Also, for demo purposes, at line (2.2) we use the
FlowAdapters.toFlowPublisher method to
convert org.reactivestreams.Publisher back to Flow.Publisher.

The preceding example shows how we may easily convert Flow.Publisher to
org.reactivestreams.Publisher. It should be noted that the example is unrelated to
the real business use-case because there were no well known reactive libraries written from
scratch on top of the JDK 9 Flow API at the time this book was published. Consequently,
there was no need to migrate from the Reactive Streams specification as the external library
that supports JDK 6 and higher. However, in the future, everything will most likely change,
and new iterations of reactive libraries will definitely be written on top of the Reactive
Streams specification and ported to JDK 9.

Note that the adapter functionality is delivered as a separate library. To
see all available libraries, please see the following link: http://www.

reactive-streams.org/#jvm-interfaces-completed.

[114]


http://www.reactive-streams.org/#jvm-interfaces-completed
http://www.reactive-streams.org/#jvm-interfaces-completed
http://www.reactive-streams.org/#jvm-interfaces-completed
http://www.reactive-streams.org/#jvm-interfaces-completed
http://www.reactive-streams.org/#jvm-interfaces-completed
http://www.reactive-streams.org/#jvm-interfaces-completed
http://www.reactive-streams.org/#jvm-interfaces-completed
http://www.reactive-streams.org/#jvm-interfaces-completed
http://www.reactive-streams.org/#jvm-interfaces-completed
http://www.reactive-streams.org/#jvm-interfaces-completed
http://www.reactive-streams.org/#jvm-interfaces-completed
http://www.reactive-streams.org/#jvm-interfaces-completed
http://www.reactive-streams.org/#jvm-interfaces-completed
http://www.reactive-streams.org/#jvm-interfaces-completed
http://www.reactive-streams.org/#jvm-interfaces-completed
http://www.reactive-streams.org/#jvm-interfaces-completed

Reactive Streams - the New Streams’ Standard Chapter 3

Advanced - async and parallel in Reactive
Streams

In the previous sections, we discussed the conceptual behaviors of Reactive Streams.
However, there was no mention of asynchronous and non-blocking behaviors of reactive
pipes. So, let's dig into the Reactive Streams standard and analyze those behaviors.

On one hand, the Reactive Streams API states, in rules 2.2 and 3.4, that the processing of all
signals produced by the Publisher and consumed by the Subscriber should be non-
blocking and non-obstructing. Consequently, we may be sure that we may efficiently utilize
one node or one core of the processor, depending on the execution's environment.

On the other hand, the efficient utilization of all processors or cores requires parallelization.
The usual understanding of the parallelization notion within the Reactive Streams
specification may be interpreted as the parallel invocation of the Subscriber#onNext
method. Unfortunately, the specification stated in rule 1.3 that the invocation of the on***
methods must be signaled in a thread-safe manner and—if performed by multiple

threads—use external synchronization. This assumes a serialized, or simply a sequential,
invocation of all on*** methods. In turn, this means that we cannot create something like
ParallelPublisher and perform a parallel processing of elements in the stream.

Consequently, the question is: how do we utilize the resources efficiently? To find the
answer, we have to analyze the usual stream processing pipe:

Source H Filter %

% Map H Destination

Other Transformations

Diagram 3.10. Example of processing flow with some business logic between the Source and Destination

As might be noted, the usual processing pipe—along with a data source and final
destination—includes a few processing or transformational stages. In turn, each processing
stage may take significant processing time and stall other executions.

[115]



Reactive Streams - the New Streams’ Standard Chapter 3

In such a case, one of the solutions is asynchronous messages passing between stages. For
in-memory stream processing, this means that one part of the execution is bound to one
Thread and another part to another Thread. For example, final element consumption may
be a CPU-intensive task, which will be rationally processed on the separate Thread:

Thread A

Thread B

Source Destination

% Map

Other Transformations

Diagram 3.11. The example of the asynchronous boundary between Source with Processing and Destination

In general, by splitting processing between the two independent Threads, we put the
asynchronous boundary between stages. In turn, by doing so, we parallelize the overall
processing of elements since both Threads may work independently from each other. To
achieve parallelization, we have to apply a data structure, such as Queue, to properly
decouple the processing. Hence, processing within Thread A independently supplies the
items to, and the Ssubscriber within Thread B independently consumes items from, the
same Queue.

Splitting the processing between threads leads to the additional overhead in a data
structure. Of course, owing to the Reactive Streams specification, such a data structure is
always bound. In turn, the number of items in the data structure is usually equal to the size
of the batch that a Subscriber requests from its Publisher, and this depends on the
general capacity of the system.

Along with that, the primary question that is addressed to API implementors and
developers is to which async boundary should the flow processing part be attached? At least three
simple choices may arise here. The first case is when a processing flow is attached to the
Source resource (Diagram 3.11), and all of the operations occur within the same boundaries
as the Source. In that case, all data is processed synchronously one by one, so one item is
transformed through all processing stages before it is sent to the processing on the other
Thread. The second and opposite configuration of asynchronous boundaries to the first
case is when the processing is attached to the Destination, or the Consumer's Thread, and
may be used in cases when the elements' production is a CPU-intensive task.

[116]



Reactive Streams - the New Streams’ Standard Chapter 3

The third case takes place when the production and consumption is a CPU-intensive task.
Hence, the most efficient way of running the intermediate transformation is to run it on
separate Thread objects:

Thread 1 Thread 2 Thread N

Filter %

Thread N-1

Destination

Source

Other Transformations

Diagram 3.12. The example of asynchronous boundaries between each component of the pipeline

As we can see in the preceding diagram, each processing stage may be bound to a separate
Thread. In general, there are a bunch of ways to configure the processing of the data flow.
Each of the cases is relevant in its best-fit conditions. For example, the first example is valid
when the Source resource is less loaded than the Destination one. Consequently, the
transformation operation is profitable to put within Source boundaries and vice versa,
when the Destination consumes fewer resources than the Source, it is logical to process all
data in the Destination boundary. Moreover, sometimes transformation may be the highest
resource consumable operation. In that case, it is better to separate transformations from
the Source and the Destination.

Nevertheless, it is crucial to remember that splitting the processing between different
Threads is not free and should be balanced between rational resource consumption to
achieve boundaries (Thread and additional data structure) and efficient element
processing. In turn, achieving such a balance is another challenge, and it is hard to
overcome the implementation and management thereof without the library's useful APL

Fortunately, such an API is offered by reactive libraries such as RxJava and Project Reactor.
We will not get into the details of the proposed features now, but are going to cover
them intensively in Chapter 4, Project Reactor - the Foundation for Reactive Apps.

[117]



Reactive Streams - the New Streams’ Standard Chapter 3

Transfiguration of the Reactive Landscape

The fact that JDK 9 includes the Reactive Streams specification enforces its significance, and
it has started to change the industry. The leaders in the Open Source Software industry
(such as Netflix, Red Hat, Lightbend, MongoDB, Amazon, and others) have started
adopting this excellent solution in their products.

RxJava transfiguration

In this way, RxJava provides an additional module that allows us to easily convert one
reactive type into another. Let's look at how to convert Observable<T> to Publisher<T>
and adopt rx.Subscriber<T> to org.reactivestreams.Subscriber<T>.

Suppose we have an application that uses RxJava 1.x and Observable as the central
communication type between components, as shown in the following example:

interface LogService {
Observable<String> stream() ;

}

However, with the publication of the Reactive Streams specification, we decide to follow
the standard and abstract our interfaces from the following particular dependency:

interface LogService {
Publisher<String> stream();

}

As might be noticed, we easily replaced the Observable with the Publisher. However,
the refactoring of the implementation may take much more time than just replacing the
return type. Fortunately, we may always easily adapt an existing Observable to

a Publisher, as shown in the following example:

class RxLogService implements LogService { // (1)
final HttpClient<...> rxClient = HttpClient.newClient(...); // (1.1)
@Override
public Publisher<String> stream() {

Observable<String> rxStream = rxClient.createGet ("/logs") // (2)
.flatMap(...) //

.map (Utils::toString); //

return RxReactiveStreams.toPublisher (rxStream); // (3)

[118]



Reactive Streams - the New Streams’ Standard Chapter 3

The key is as follows:

1. This is the RxLogService class declaration. That class represents the old Rx-
based implementation. At point (1.1) we use the RxNetty HttpClient, which
allows interaction with external services in asynchronous, non-blocking fashion
using a Netty Client wrapped into an RxJava based API.

2. This is the external request execution. Here, using the created instance of
HttpClient, we request the stream of logs from the external service,
transforming the incoming elements into St ring instances.

3. This is the rxStream adaption to the Publisher using the RxReactiveStreams
library.

As might be noticed, the developers of RxJava took care of us and provided an additional
RxReactiveStreams class, making it possible to convert Observable into a Reactive
Streams' Publisher. Moreover, with the appearance of the Reactive Streams specification,
RxJava developers have also provided non-standardized support for backpressure, which
allows a converted Observable to be compliant with the Reactive Streams specification.

Along with the conversion of Observable to Publisher, we may also convert
rx.Subscriber to org.reactivestreams. Subscriber. For example, streams of logs
were previously stored in the file. For that purpose, we had the custom Subscriber, which
was responsible for I/O interaction. In turn, the transfiguration of the code to migrate to
Reactive Streams specification looks like the following:

class RxFileService implements FileService { // (1)
QOverride // (2)
public void writeTo( //

String file, //

Publisher<String> content //

) A //
AsyncFileSubscriber rxSubscriber = // (3)

new AsyncFileSubscriber (file); //
content /7 (4)

.subscribe (RxReactiveStreams.toSubscriber (rxSubscriber)); //

[119]



Reactive Streams - the New Streams’ Standard Chapter 3

The key is as follows:

1. This is the RxFileService class declaration.

2. This is the writeTo method implementation which accepts the Publisher as the
central type for interaction between components.

3. This is the RxJava-based AsyncFileSubscriber instance declaration.

4. This is the content subscription. To reuse the RxJava based subscriber, we
adapt it using the same RxReactiveStreams utility class.

As we can see from the preceding example, the RxReactiveStreams provide a broad list
of converters, making it possible to convert a RxJava API to the Reactive Streams API.

In the same way, any Publisher<T> may be converted back to RxJava Observable:

Publisher<String> publisher = ...

RxReactiveStreams.toObservable (publisher)
.subscribe () ;

In general, RxJava started following the Reactive Streams specification in some way.
Unfortunately, because of backward compatibility, implementing the specification was not
possible, and there are no plans to extend the Reactive Streams specification for RxJava
1.x in the future. Moreover, starting from the 31* of March 2018, there are no plans to
support RxJava 1.x anymore.

Fortunately, the second iteration of RxJava brings new hope. Ddvid Karnok, the father of
the second version of the library, significantly improved the overall library's design and
introduced an additional type that is compliant with the Reactive Streams specification.
Along with Observable, which is left unchanged because of backward compatibility,
RxJava 2 offers the new reactive type called Flowable.

The Flowable reactive type gives the identical API as Observable but extends
org.reactivestreams.Publisher from the beginning. As shown in the next example,
in which it is incorporated with the fluent API, Flowable may be converted to any
common RxJava types and back to a Reactive Streams-compatible type:

Flowable.just (1, 2, 3)
.map (String::valueOf)
.toObservable ()
.toFlowable (BackpressureStrategy.ERROR)
.subscribe () ;

[120]



Reactive Streams - the New Streams’ Standard Chapter 3

As we may notice, the conversion of the Flowable to the Observable is an uncomplicated
application of one operator. However, to convert the Observable back to the Flowable, it
is necessary to provide some of the available backpressure strategies. In RxJava

2, Observable was designed as the push-only stream. Consequently, it is crucial to keep
the converted Observable compliant with the Reactive Streams specification.

BackpressureStrategy refers to the strategies that take place when the
producer does not respect the consumer's demand. In other words, a
BackpressureStrategy defines the behavior of the stream when we
have a Fast producer and a slow consumer. As we might remember, at the
beginning of the chapter, we covered identical cases and considered three
central strategies. These strategies included unbounded buffering of
elements, dropping elements on the overflow, or blocking the producer
based on a lack of demand from the consumer. In general,
BackapressureStrategy reflects all the described strategies in some
way, except the strategy of blocking producers. It also provides strategies
such as BackapressureStrategy.ERROR, which—upon a lack of
demand—sends an error to the consumer and automatically disconnects
it. We will not go into detail on each strategy in this chapter but will cover
them in chapter 4, Project Reactor - the Foundation for Reactive Apps.

Vert.x adjustments

Along with the transformation of RxJava, the rest of the reactive libraries and frameworks
vendors have also started adopting the Reactive Streams specification. Following the
specification, Vert . x included an additional module which provides support for the
Reactive Streams API. The following example demonstrates this addition:

.. // (1)
.requestHandler (request —> { //
ReactiveReadStream<Buffer> rrs = // (2)
ReactiveReadStream.readStream() ; //
HttpServerResponse response = request.response(); //
Flowable<Buffer> logs = Flowable // (3)
.fromPublisher (logsService.stream()) //
.map (Buffer: :buffer) //
.doOnTerminate (response: :end) ; //
logs.subscribe (rrs); /7 (4)

[121]



Reactive Streams - the New Streams’ Standard Chapter 3

response.setStatusCode (200) ; // (5)

response.setChunked (true) ; //

response.putHeader ("Content-Type", "text/plain"); //

response.putHeader ("Connection", "keep-alive"); //

Pump.pump (rrs, response) // (6)
.start (); //

)
The key is as follows:

1. This is the request handler declaration. This is a generic request handler that
allows handling any requests sent to the server.

2. This is the Ssubscriber and HTTP response declaration.
Here ReactiveReadStreamimplements both
org.reactivestreams.Subscriber and ReadStream, which allows
transforming any Publisher to the source of data compatible with a vert .x
APIL

3. This is the processing flow declaration. In that example, we refer to the new
Reactive Streams-based LogsService interface, and to write a functional
transformation of the elements in the stream we use the Flowable API from
RxJava 2.x.

4. This is the subscription stage. Once the processing flow is declared, we may
subscribe ReactiveReadStream to the Flowable.

5. This is a response preparation stage.

6. This is the final response being sent to the client. Here, the Pump class plays an
important role in a sophisticated mechanism of backpressure control to prevent
the underlying WriteStream buffer from getting too full.

As we can see, Vert . x does not provide a fluent API for writing a stream of element
processing. However, it provides an API that allows converting any Publisher to the
vert .x API, keeping the sophisticated backpressure management from Reactive Streams in
place.

[122]



Reactive Streams - the New Streams’ Standard Chapter 3

Ratpack improvements

Along with Vert.x, another well-known web framework called Ratpack also provides
support for Reactive Streams. In contrast to Vert . x, Ratpack offers direct support for
Reactive Streams. For example, sending streams of logs in a Ratpack case looks like the
following;:

RatpackServer.start (server —> // (1)
server.handlers (chain -> //
chain.all (ctx -> { //
Publisher<String> logs = logsService.stream(); // (2)
ServerSentEvents events = serverSentEvents ( // (3)
logs, //
event —> event.id(Objects::toString) // (3.1)
.event ("log") //
.data (Function.identity ()) //
)i //
ctx.render (events) ; /7 (4)
)
)
)
The key is as follows:

1. This is the server start's action and request handler declaration.

2. This is the logs stream declaration.

3. This is the serversentEvents preparation. Here, the mentioned class plays a
role in the mapping stage which converts the elements in the Publisher to the

Server-Sent Events' representative. As we may have noticed,
ServerSentEvents mandates the mapper function declaration, which describes

how to map an element to the particular Event's fields.
4. This is the rendering of the stream to I/O.

[123 ]



Reactive Streams - the New Streams’ Standard Chapter 3

As we may see from the example, Ratpack provides the support for Reactive Streams in the
core. Now, the same LogService#stream method may be reused without providing an
additional type conversion or a requirement for the additional modules to add support for
the particular reactive library.

Moreover, in contrast to Vert . x, which provides just plain support of the Reactive Streams
specification, Ratpack provides its own implementation of the interfaces of the
specification. This functionality is available within the ratpack.stream.Streams class,
which is similar to RxJava API:

Publisher<String> logs = logsService.stream();

TransformablePublisher publisher = Streams
.transformable (logs)
.filter(this::filterUsersSensitivelogs)
.map (this::escape);

Here, the Ratpack offers a static factory to convert any
Publisher to TransformablePublisher, which in turn gives the ability to flexibly
process a stream of events using familiar operators and transformational stages.

MongoDB Reactive Streams driver

In the previous sections, we took an overview of the support for Reactive Streams from the
reactive libraries and framework perspective. However, the area of the specification's
application is not limited to frameworks or reactive libraries only. The same rule of
interaction between the producer and consumer can be applied to communication with a
database via a database driver.

In that way, MongoDB provides a Reactive Streams-based driver along with callback-based
and RxJava 1.x drivers. In turn, MongoDB provides additional, fluent API implementation,
which gives some sort of querying based on the written transformation. For example, the
internal implementation of DBPublisher that we might have seen in the news service
example potentially may be implemented in the following way:

public class DBPublisher implements Publisher<News> { // (1)
private final MongoCollection<News> collection; //
private final Date publishedOnFrom; //
public DBPublisher ( /7 (2)

MongoClient client, //
Date publishedOnFrom //
)y { ...} //

[124]



Reactive Streams - the New Streams’ Standard Chapter 3
@Override /7 (3)
public void subscribe (Subscriber<? super News> s) { //

FindPublisher<News> findPublisher = // (3.1)
collection.find (News.class); //
//
findPublisher // (3.2)
.filter (Filters.and( //
Filters.eq("category", query.getCategory()), //
Filters.gt ("publishedOn", today()) //
) //
.sort (Sorts.descending ("publishedOn")) //
.subscribe (s); // (3.3)
} //

}
The key is as follows:

1. This is the DBPublisher class and related fields declaration. Here, the

publishedOnFron field refers to the date after which the news posts should be

searched.

2. This is the constructor declaration. Here, one of the accepted parameters in the

DBPublisher's constructor is the configured MongoDB client, which is
com.mongodb.reactivestreams.client .MongoClient.

3. This is the Publisher#subscriber method implementation. Here, we

simplified the DBPublisher's implementation by using the FindPublisher
from the Reactive Streams MongoDB driver at point (3.1) and subscribing to

the given Subscriber at point (3.3). As we may have noticed,

FindPublisher exposes a fluent API that allows the building of an executable

query using a functional programming style.

Along with the support of the Reactive Streams standard, the Reactive Streams-based

MongoDB driver provides a simplified means for data querying. We will not go into detail
about the implementation and behavior of that driver. Instead, we will cover this in

Chapter 7, Reactive Database Access.

[125 ]



Reactive Streams - the New Streams’ Standard

Chapter 3

A composition of reactive technologies in action

To learn more about the technologies' composability, let's try to combine several reactive
libraries in one Spring Framework 4-based application. In turn, our application is based on
the revisited news service functionality with access to it via a plain REST endpoint. This
endpoint is responsible for looking up news from the database and external services:

External News Service

response

request

&
<

Observable

RxNetty

response

P 8
GE) W
-
-
) 2
& request U)
__________________ = ¢ Transformable
< O
©
Q.
L
]
o

News Service App

FindPublisher

MongoDB

Diagram 3.13. Cross Library communication example inside one application

[126 ]



Reactive Streams - the New Streams’ Standard Chapter 3

The preceding diagram introduces three reactive libraries to our system. Here, we use
Ratpack as a web server. With the TransfromablePublisher, this allows us

to easily combine and process results from several sources. In turn, one of the sources is
MongoDB, which returns the FindPublisher as the result of querying. Finally, here we
have access to the external new service and grab a portion of data using the RxNetty HTTP
client, which returns the Observable and is adapted to the
org.reactivestreams.Publisher as a result.

To summarize, we have four components in the system, the first of which is Spring
Framework 4. The second is Retrofit, which plays the role of the web framework. Finally,
the third and fourth are RxNetty and MongoDB, for providing access to the news. We are
not going into too much detail on the implementation of the components responsible for
communication with the external services, but we are going to cover the implementation of
the endpoint instead. This highlights the value of the Reactive Streams specification as the
standard for the composability of the independent frameworks and libraries:

@SpringBootApplication /7 (1)
@EnableRatpack // (1.1)
public class NewsServiceApp { //
@Bean /7 (2)
MongoClient mongoClient (MongoProperties properties) { ... } // (2.1)
@Bean //
DatabaseNewsService databaseNews() { ... } // (2.2)
@Bean //
HttpNewsService externalNews() { ... } // (2.3)
@Bean // (3)
public Action<Chain> home () { //
return chain -> chain.get (ctx —> { // (3.1)
FindPublisher<News> databasePublisher = // (4)
databaseNews () . lookupNews () ; //
Observable<News> httpNewsObservable = //
externalNews () .retrieveNews () ; //
TransformablePublisher<News> stream = Streams.merge ( // (4.1)
databasePublisher, //
RxReactiveStreams.toPublisher (httpNewsObservable) //
) //
ctx.render ( // (5)
stream.toList () //
.map (Jackson: : json) // (5.1)
) //
) //
} //

[127]



Reactive Streams - the New Streams’ Standard Chapter 3

public static void main(String[] args) { // (6)
SpringApplication.run (NewsServiceApp.class, args); //
} //
t
The key is as follows:
1. This is the NewsServiceApp class declaration. This class is annotated

with the @SpringBootApplication annotation, which assumes the usage of
Spring Boot features. In turn, there is an additional @EnableRatpack annotation
at point (1.1) which is part of the ratpack-spring-boot module and enables
auto-configuration for the Ratpack server.

This is the common beans declaration. Here, at point (2.1) we configure the
MongoClient bean. At points (2.2) and (2.3) there are configurations of
services for news retrieval and lookup.

This is the request's handler declaration. Here, to create a Ratpack request
handler, we have to declare a Bean with the Action<Chain> type, which allows
providing the configuration of the handler at point (3.1).

This is the services invocation and results aggregation. Here we execute the
services' methods and merge the returned streams using Ratpack st reams

API (4.1).

This is the rendering of the merged streams stage. Here, we asynchronously
reduce all the elements into a list and then transform that list to the specific
rendering view such as JSON (5.1).

This is the main method's implementation. Here we use a common technique for
bringing the Spring Boot application to life.

The preceding example shows the power of the Reactive Streams standard in action. Here,
using an API of several unrelated libraries, we may easily build one processing flow and
return the result to the final user without there being any additional effort for adapting one
library to the another. The only exclusion from that rule is Ht t pNewsService, which in the
result of the ret rieveNews method execution returns the Observable. Nevertheless, as
we might remember, RxReactiveStreanms offers us a list of useful methods, allowing us
to easily convert the RxJava 1.x Observable to the Publisher.

[128]



Reactive Streams - the New Streams’ Standard Chapter 3

Summary

As we have learned from the previous example, Reactive Streams drastically increases
the composability of reactive libraries. We have also learned that the most useful way to
verify the compatibility of the Publisher is just to apply Technology Compatibility Test
Kits, which are provided with the Reactive Streams specification.

At the same time, the specification<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>