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Preface
This book will introduce you to many advanced features of the Python programming
language. The focus is on creating the highest quality Python programs possible. This
requires exploring design alternatives and determining which design offers the best
performance while still being a good fit for the problem that is being solved.

The majority of this book showcases a number of alternatives for a given design.
Some will offer better performance, while some will appear simpler or be a better
solution to the problem domain. It's essential to locate the best algorithms alongside
optimal data structures in order to create the most value with the least computer
processing. Time is money, and programs that save time will create more value for
their users. Python makes a number of internal features directly available to our
application programs. This means that our programs can be very tightly integrated
with existing Python features. We can leverage numerous Python features by
ensuring that our object-oriented designs (OODs) integrate well.

As we explore different algorithms and data structures, we'll discover different
memory and performance alternatives. It's an important OOD skill to be able to work
through alternate solutions in order to properly optimize the final application. One of
the more important themes of this book is that there's no single best approach to any
problem.

As many of the examples as possible have full type hints. A few of the examples rely
on packages outside the standard library, where you'll find that type hints are either
missing or are incomplete. The examples have to be processed with the mypy tool to
confirm the types are used consistently.

As we move toward achieving mastery of object-oriented Python, we'll spend a great
deal of time reading Python code from a variety of sources. We'll observe wide
variability even within the Python standard library modules. Rather than presenting
examples that are all perfectly consistent, we've opted for some inconsistency; the
lack of consistency will help to read kinds of code, as seen in various open source
projects encountered in the wild.



Preface

[ 2 ]

Who this book is for
This book uses advanced Python. You'll need to be relatively familiar with Python 3.
It helps to learn a programming language when you have a problem of your own to
solve.

If you are a skilled programmer in other languages, then you may find this book
useful if you want to switch to Python. Note that this book doesn't introduce any
syntax or other foundational concepts.

Python 2 programmers may find this particularly helpful when they switch to Python
3. We won't cover any of the conversion utilities (such as the 2to3 tool) or any of the
coexistence libraries (such as the six module). This book is focused on new
developments entirely in Python 3.

What this book covers
In this book, we'll cover three broad areas of advanced Python topics. Each topic will
be broken into a series of chapters examining a variety of details.

Section 1, Tighter Integration via Special Methods, looks at object-oriented
programming (OOP) techniques in depth and how we can more tightly integrate the
class definitions of our applications with Python's built-in features. This section
consists of nine chapters, which are as follows:

Chapter 1, Preliminaries, Tools, and Techniques, covers some preliminary
topics, such as unittest, doctest, docstring, and some special method
names.
Chapter 2, The _init_() Method, provides us with a detailed description and
implementation of the _init_() method. We will examine different forms
of initialization for simple objects. Following this, we can explore more
complex objects that involve collections and containers.
Chapter 3, Integrating Seamlessly – Basic Special Methods, explains, in detail,
how we can expand a simple class definition to add special methods. We'll
need to take a look at the default behavior inherited from the object so that
we can understand what overrides are required and when they're actually
required.
Chapter 4, Attribute Access, Properties, and Descriptors, explores how default
processing works in some detail. Here, we will learn how to decide where
and when to override the default behavior. We will also explore descriptors
and gain a much deeper understanding of how Python's internals work.



Preface

[ 3 ]

Chapter 5, The ABCs of Consistent Design, examines the abstract base classes
in the collections.abc module. In this chapter, we'll look at the general
concepts behind the various containers and collections that we might want
to revise or extend. Similarly, we'll look at the concepts behind the numbers
that we might want to implement.
Chapter 6, Using Callables and Contexts, uncovers several ways to create
context managers using the tools in contextlib. We'll demonstrate a
number of variant designs for callable objects. This will show you why a
stateful callable object is sometimes more useful than a simple function.
We'll also explore how to use some of the existing Python context managers
before we dive in and write our own context manager.
Chapter 7, Creating Containers and Collections, focuses on the basics of
container classes. We'll review the variety of special methods that are
involved in creating a container and the various features that containers
offer. We'll address extending built-in containers to add features. We'll also
look at wrapping built-in containers and delegating methods through the
wrapper to the underlying container.
Chapter 8, Creating Numbers, covers these essential arithmetic operators:
+, -, *, /, //, %, and **. We'll also explore these comparison operators: <, >,
<=, >=, ==, and !=. We'll finish by summarizing some of the
design considerations that go into extending or creating new numbers.
Chapter 9, Decorators and Mixins – Cross-Cutting Aspects, covers simple
function decorators, function decorators with arguments, class decorators,
and method decorators.

Section 2, Object Serialization and Persistence, explores a persistent object that has
been serialized to a storage medium; perhaps it's transformed to JSON and written to
the filesystem. An ORM layer can store the object in a database. This section examines
the alternatives for handling persistence. It contains five chapters, which are as
follows:

Chapter 10, Serializing and Saving – JSON, YAML, Pickle, CSV, and XML,
covers simple persistence using libraries focused on various data
representations such as JSON, YAML, pickle, XML, and CSV.
Chapter 11, Storing and Retrieving Objects via Shelve, explains basic database
operations with Python modules, such as shelve (and dbm).
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Chapter 12, Storing and Retrieving Objects via SQLite, uncovers the more
complex world of SQL and the relational database. Because SQL features
don't match OOP features well, we have an impedance mismatch problem.
A common solution is to use ORM to allow us to persist a large domain of
objects. The SQLAlchemy package will be used as an example of the many
ORMs that are available.
Chapter 13, Transmitting and Sharing Objects, looks at the HTTP protocol,
JSON, YAML, and XML representations to transmit an object.
Chapter 14, Configuration Files and Persistence, covers various ways in
which a Python application can work with a configuration file.
Chapter 15, Design Principles and Patterns, reviews the SOLID design
principles. These can help organize high-quality, maintainable Python
software by following some best practices.

Section 3, Object-Oriented Testing and Debugging, shows you how to gather data to
support and debug your own high-performance programs. It includes information on
creating the best possible documentation in order to reduce the confusion and
complexity of the support. This section contains the final five chapters, which are as
follows:

Chapter 16, The Logging and Warning Modules, looks at using the logging
and warning modules to create audit information, as well as debugging.
Additionally, we'll take a significant step beyond using the print()
function.
Chapter 17, Designing for Testability, covers designing for testability and
demonstrates how to use unittest and doctest.
Chapter 18, Coping with the Command Line, looks at using the
argparse module to parse options and arguments. We'll take this a step
further and use the command design pattern to create program
components that can be combined and expanded without resorting to
writing shell scripts.
Chapter 19, Module and Package Design, covers module and package design.
This is a higher-level set of considerations; we'll take a look at related
classes in a module and related modules in a package.
Chapter 20, Quality and Documentation, explores how we can document our
design to create some kind of trust that our software is correct and has been
properly implemented.
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To get the most out of this book
In order to compile and run the examples included in this book, you will require the
following software:

Python Version 3.7 or higher, with the standard suite of libraries:
We'll use mypy to check type hints (http:/ ​/​mypy- ​lang. ​org).

We'll take a look at these additional packages:
PyYAML (http:/ ​/ ​pyyaml. ​org).
SQLAlchemy (http:/ ​/ ​www.​sqlalchemy. ​org): When building
this, check the installation guide carefully. In particular, refer
to https:/ ​/​docs.​sqlalchemy. ​org/​en/ ​12/ ​intro.
html#installing- ​the- ​c-​extensions for information on
simplifying the installation by disabling the C extension. 
Flask (http:/ ​/​flask. ​pocoo. ​org).
Requests (https:/ ​/ ​2.​python- ​requests. ​org/ ​en/ ​master/ ​).
Jinja (http:/ ​/ ​jinja. ​pocoo. ​org/ ​).
PyTest (https:/ ​/ ​docs. ​pytest. ​org/ ​en/​latest/ ​).
Sphinx (http:/ ​/​sphinx- ​doc. ​org).

Optionally, you might want to use the Black tool to format your code
consistently (https:/ ​/ ​black. ​readthedocs. ​io/ ​en/​stable/ ​).
Additionally, the overall test suite for this book's code is run using the tox
tool (https:/ ​/ ​tox. ​readthedocs. ​io/​en/ ​latest/ ​).

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.
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Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of the following:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/​github. ​com/
PacktPublishing/ ​Mastering- ​Object- ​Oriented- ​Python- ​Second- ​Edition. In case
there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Code in Action
Visit the following link to see the code being executed:

http:/​/​bit.​ly/ ​2XIu8Tk

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Mount the downloaded WebStorm-10*.dmg disk image file as
another disk in your system."

A block of code is set as follows:

def F(n: int) -> int:
    if n in (0, 1):
        return 1
    else:
        return F(n-1) + F(n-2)

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

def factorial(n: int) -> int:
    """Compute n! recursively.

    :param n: an integer >= 0
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    :returns: n!

    Because of Python's stack limitation, this won't
    compute a value larger than about 1000!.

    >>> factorial(5)
    120
    """

Any command-line input or output is written as follows:

$ python3 -m pip install --upgrade pip
$ python3 -m pip install black

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an
example: "Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the
book title in the subject of your message and email us at
customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you would report this to us. Please visit www.packt.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website
name. Please contact us at copyright@packt.com with a link to the material.

http://www.packt.com/submit-errata
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If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and use
your unbiased opinion to make purchase decisions, we at Packt can understand what
you think about our products, and our authors can see your feedback on their book.
Thank you!

For more information about Packt, please visit packt.com.

http://authors.packtpub.com/
http://www.packt.com/
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Section 1: Tighter Integration

Via Special Methods
We'll extend the core object-oriented programming techniques to allow for increased
integration of the classes we create with other features of Python.

The following chapters will be covered in this section:

Chapter 1, Preliminaries, Tools, and Techniques
Chapter 2, The __init__() Method
Chapter 3, Integrating Seamlessly – Basic Special Methods
Chapter 4, Attribute Access, Properties, and Descriptors
Chapter 5, The ABCs of Consistent Design
Chapter 6, Using Callables and Contexts
Chapter 7, Creating Containers and Collections
Chapter 8, Creating Numbers
Chapter 9, Decorators and Mixins – Cross-Cutting Aspects
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Preliminaries, Tools, and

Techniques
To make the design issues in the balance of the book more clear, we need to look at
some the problems that serve as motivation. One of these is using object-
oriented programming (OOP) for simulation. Simulation was one of the early
problem domains for OOP. This is an area where OOP works out particularly
elegantly.

We've chosen a problem domain that's relatively simple: the strategies for playing the
game of blackjack. We don't want to endorse gambling; indeed, a bit of study will
show that the game is stacked heavily against the player. This should reveal that
most casino gambling is little more than a tax on the innumerate.

The first section of this chapter will review the rules of the game of Blackjack. After
looking at the card game, the bulk of this chapter will provide some background in
tools that are essential for writing complete Python programs and packages. We'll
look at the following concepts:

The Python runtime environment and how the special method names
implement the language features
Integrated Development Environments (IDEs)
Using the pylint or black tools to create a uniform style
Using type hints and the mypy tool to establish proper use of functions,
classes, and variables
Using timeit for performance testing
Using unittest, doctest, and pytest for unit testing
Using sphinx and RST-based markup to create usable documentation
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While some of these tools are part of the Python standard library, most of them are
outside the library. We'll discuss installation of tools when we talk about the Python
runtime in general.

This book will try to avoid digressing into the foundations of Python OOP. We're
assuming that you've already read Packt's Python3 Object-Oriented Programming. We
don't want to repeat things that are nicely stated elsewhere. We will focus on Python
3.

We'll refer to a number of common object-oriented design patterns and will try to
avoid repeating the presentation in Packt's Learning Python Design Patterns.

We'll cover the following topics in this chapter:

About the Blackjack game
The Python runtime and special methods
Interaction, scripting and tools
Selecting an IDE
Consistency and style
Type hints and the mypy program
Performance – the timeit module
Testing – unittest and doctest
Documentation – sphinx and RST markup
Installing components

Technical requirements
The code files for this chapter can be found at https:/ ​/​git. ​io/​fj2UB.

https://git.io/fj2UB
https://git.io/fj2UB
https://git.io/fj2UB
https://git.io/fj2UB
https://git.io/fj2UB
https://git.io/fj2UB
https://git.io/fj2UB
https://git.io/fj2UB
https://git.io/fj2UB
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About the Blackjack game
Many of the examples in the book will center on simulations of a process with a
number of moderately complex state changes. The card game of Blackjack involves a
few rules and a few state changes during play. If you're unfamiliar with the game of
Blackjack, here's an overview.

The objective of the game is to accept cards from the dealer to create a hand that has a
point total that is between the dealer's total and twenty-one. The dealer's hand is only
partially revealed, forcing the player to make a decision without knowing the dealer's
total or the subsequent cards from the deck.

The number cards (2 to 10) have point values equal to the number. The face cards
(Jack, Queen, and King) are worth 10 points. The Ace is worth either eleven points or
one point. When using an ace as eleven points, the value of the hand is soft. When
using an ace as one point, the value is hard.

A hand with an Ace and a seven, therefore, has a hard total of eight and a soft total of
18. This leads the player to choose to take extra cards. If the dealer is showing a face
card, it's very likely the dealer is holding twenty points, and the player may not want
to risk taking another card.

Each suit has four two-card combinations that total 21. These are all called
Blackjack, even though only one of the four combinations involves a Jack. These
combinations often provide a bonus payout, because there are only four of them
available.

Most of the game is about proper choice of cards. There is, of course, a betting
element. The distinction between playing and betting is made somewhat more
complicated by the provision to split one hand into two hands. This is allowed when
the player's two cards have the same rank. This option will be detailed in the next
section on how the game is played.
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Playing the game
The mechanics of play generally work as follows. The details can vary, but the outline
is similar:

First, the player and dealer each get two cards. The player, of course,
knows the value of both of their cards. They're dealt face up in a casino.
One of the dealer's cards is revealed to the player. It's displayed face up.
The player, therefore, knows a little bit about the dealer's hand, but not
everything. This is typical of more complex simulations where partial
information is available and statistical modeling is required to make
appropriate decisions.
If the dealer has an Ace showing, the player is offered the opportunity to
place an additional insurance bet. This is a special case, and is typical of
more complex simulations where there are exceptions.
For the balance of the game, the player can elect to receive cards, or stop
receiving cards. There are four choices available:

The player can hit, which means take another card.
They player can or stand or stand pat with the cards dealt.
If the player's cards match, the hand can be split. This entails
an additional bet, and the two hands are played separately. 
The player can double their bet before taking one last card.
This is called doubling down.

The final evaluation of the hand works as follows:

If the player went over 21, the hand is a bust, the player loses, and the
dealer's face-down card is irrelevant. This provides an advantage to the
dealer.
If the player's total is 21 or under, then the dealer takes cards according to a
simple, fixed rule. The dealer must hit a hand that totals less than 18; the
dealer must stand on a hand that totals 18 or more.
If the dealer goes bust, the player wins.
If both the dealer and player are 21 or under, the hands are compared. The
higher total is the winner. In the event of a tie, the game is a push, neither a
win nor a loss. If the player wins with 21, they win a larger payout, usually
1.5 times the bet.

The rules can vary quite a bit. We'll elide these details to focus on the Python code
required for simulation.
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Blackjack player strategies
In the case of blackjack, there are actually two kinds of strategies that the player must
use:

A strategy for deciding what play to make: take insurance, hit, stand, split,
or double down.
A strategy for deciding what amount to bet. A common statistical fallacy
leads players to raise and lower their bets in an attempt to preserve their
winnings and minimize their losses. These are interesting, stateful
algorithms in spite of the underlying fallacies.

These two sets of strategies are, of course, prime examples of the Strategy design
pattern.

Object design for simulating Blackjack
We'll use elements of the game, such as the player, hand, and card, as examples for
object modeling. We won't design the entire simulation. We'll focus on elements of
this game because they have some nuance, but aren't terribly complex.

The cards are relatively simple, immutable objects. There are a variety of modeling
techniques available. Cards fall into a simple class hierarchy of the number cards, face
cards, and the Ace.  There are simple containers, including hands of card instances,
and decks of cards as well. These are stateful collections with cards being added and
removed. There are a number of ways to implement this in Python and we'll look at
many alternatives. We also need to look at the player as a whole. A player will have a
sequence of hands, as well as a betting strategy and a Blackjack play strategy. This is a
rather complex composite object.

The Python runtime and special methods
One of the essential concepts for mastering object-oriented Python is to understand
how object methods are implemented. Let's look at a relatively simple Python
interaction:

>>> f = [1, 1, 2, 3]
>>> f += [f[-1] + f[-2]]
>>> f
[1, 1, 2, 3, 5]
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We've created a list, f, with a sequence of values. We then mutated this list using the
+= operator to append a new value. The f[-1] + f[-2] expression computes the
new value to be appended.

The value of f[-1] is implemented using the list object's __getitem__() method.
This is a core pattern of Python: the simple operator-like syntax is implemented by
special methods. The special methods have names surrounded with __ to make them
distinctive. For simple prefix and suffix syntax, the object is obvious; f[-1] is
implemented as f.__getitem__(-1).

The additional operation is similarly implemented by the __add__() special method.
In the case of a binary operator, Python will try both operands to see which one offers
the special method. In this example, both operands are integers, and both will
provide a suitable implementation. In the case of mixed types, the implementation of
the binary operator may coerce one value into another type. f[-1] + f[-2], then, is
implemented as f.__getitem__(-1).__add__(f.__getitem__(-2)).

The update of f by the += operator is implemented by the __iadd__() special
method. Consequently, f += [x] is implemented as f.__iadd__([x]).

Throughout the first eight chapters, we'll look very closely at these special methods
and how we can design our classes to integrate very tightly with Python's built-in
language features. Mastering the special methods is the essence of mastering object-
oriented Python.

Interaction, scripting, and tools
Python is often described as Batteries Included programming. Everything required is
available directly as part of a single download. This provides the runtime, the
standard library, and the IDLE editor as a simple development environment.

It's very easy to download and install Python 3.7 and start running it interactively on
the desktop. The example in the previous section included the >>> prompt from
interactive Python. 

If you're using the Iron Python (IPython) implementation, the interaction will look
like this:

In [1]: f = [1, 1, 2, 3]
In [3]: f += [f[-1] + f[-2]]
In [4]: f
Out[4]: [1, 1, 2, 3, 5]
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The prompt is slightly different, but the language is the same. Each statement is
evaluated as it is presented to Python. 

This is handy for some experimentation. Our goal is to build tools, frameworks, and
applications. While many of the examples will be shown in an interactive style, most
of the actual programming will be via script files.

Running examples interactively makes a profound statement. Well-written Python
code should be simple enough that it can be run from the command line.

Good Python is simple. We should be able to demonstrate a design
at the >>> prompt.

Interactive use is not our goal. Exercising code from the >>> prompt is a quality test
for complexity. If the code is too complex to exercise it from the >>> prompt, then
refactoring is needed.

The focus of this book is on creating complete scripts, modules, packages, and
applications. Even though some examples are shown in interactive mode, the
objective is to create Python files. These files may be as simple as a script or as
complex as a directory with files to create a web application.

Tools such as mypy, pytest, and pylint work with Python files. Preparing script
files can be done with almost any text editor. It's best, however, to work with an IDE,
where a number of tools can be provided to help develop applications and scripts.

Selecting an IDE
A common question is, "What is the best IDE for doing Python development?" The short
answer to this question is that the IDE choice doesn't matter very much. The number
of development environments that support Python is vast and they are all very easy
to use. The long answer requires a conversation about what attributes would rank an
IDE as being the best.

The Spyder IDE is part of the Anaconda distribution. This makes it readily accessible
to developers who've downloaded Anaconda. The IDLE editor is part of the Python
distribution, and provides a simple environment for using Python and building
scripts. PyCharm has a commercial license as well as a community edition, it provides
a large number of features, and was used to prepare all the examples in this book.
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The author makes use of having both an editor, an integrated Python prompt, and
unit test results all readily available. PyCharm works well with the conda
environments, avoiding confusion over what packages are installed. 

A search on the internet will provide a long list of other tools. See the IDE Python
wiki page for numerous alternatives (https:/ ​/ ​wiki. ​python. ​org/ ​moin/
IntegratedDevelopmentEnvironments).

Consistency and style
All of the examples in the book were prepared using the black tool to provide 
consistent formatting. Some additional manual adjustments were made to keep code
within the narrow sizes of printed material.

A common alternative to using black is to use pylint to identify formatting
problems. These can then be corrected. In addition to detailed analysis of code
quality, the pylint tool offers a numeric quality score. For this book, some pylint
rules needed to be disabled. For example, the modules often have imports that are not
in the preferred order; some modules also have imports that are relevant to doctest
examples, and appear to be unused; some examples use global variables; and some
class definitions are mere skeletons without appropriate method definitions. 

Using pylint to locate potential problems is essential. It's often helpful to silence
pylint warnings. In the following example, we need to silence a pylint warning
about the test_list variable name being invalid as a global variable:

# pylint: disable=invalid-name
test_list = """
   >>> f = [1, 1, 2, 3]
    >>> f += [f[-1] + f[-2]]
    >>> f
    [1, 1, 2, 3, 5]
   """

if __name__ == "__main__":
    import doctest
    __test__ = {name: value
        for name, value in locals().items()
            if name.startswith("test_")}
    doctest.testmod(verbose=False)

https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
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Besides helping enforce a consistent style, the pylint warnings are helpful for
identifying spelling mistakes and a list of common errors. For example, the instance
variable is commonly self. An accidental spelling error of sefl will be found by
pylint. 

Type hints and the mypy program
Python 3 permits the use of type hints. The hints are present in assignment
statements, function, and class definitions. They're not used directly by Python when
the program runs. Instead, they're used by external tools to examine the code for
improper use of types, variables, and functions. Here's a simple function with type
hints:

def F(n: int) -> int:
    if n in (0, 1):
        return 1
    else:
        return F(n-1) + F(n-2)

print("Good Use", F(8))
print("Bad Use", F(355/113))

When we run the mypy program, we'll see an error such as the following:

Chapter_1/ch01_ex3.py:23: error: Argument 1 to "F" has incompatible
type "float"; expected "int"

This message informs us of the location of the error: the file is
Chapter_1/ch01_ex3.py, which is the 23rd line of the file. The details tell us that the
function, F, has an improper argument value. This kind of problem can be difficult to
see. In some cases, unit tests might not cover this case very well, and it's possible for a
program to harbor subtle bugs because data of an improper type might be used.

Performance – the timeit module
We'll make use of the timeit module to compare the actual performance of different
object-oriented designs and Python constructs. We'll focus on the timeit() function
in this module. This function creates a Timer object that's used to measure the
execution of a given block of code. We can also provide some preparatory code that
creates an environment. The return value from this function is the time required to
run the given block of code.
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The default count is 100,000. This provides a meaningful time that averages out other
OS-level activity on the computer doing the measurement. For complex or long-
running statements, a lower count may be prudent.

Here's a simple interaction with timeit:

>>> timeit.timeit("obj.method()",
... """
... class SomeClass:
...     def method(self):
...         pass
... obj= SomeClass()
... """)
0.1980541350058047

The code to be measured is obj.method(). It is provided to timeit() as a string.
The setup code block is the class definition and object construction. This code block,
too, is provided as a string. It's important to note that everything required by the
statement must be in the setup. This includes all imports, as well as all variable
definitions and object creation.

This example showed that 100,000 method calls that do nothing costs 0.198 seconds.

Testing – unittest and doctest
Unit testing is absolutely essential.

If there's no automated test to show a particular element functionality, then the
feature doesn't really exist. Put another way, it's not done until there's a test that
shows that it's done.

We'll touch, tangentially, on testing. If we delved into testing each object-oriented
design feature, the book would be twice as long as it is. Omitting the details of testing
has the disadvantage of making good unit tests seem optional. They're emphatically
not optional.

Unit testing is essential.

When in doubt, design the tests first. Fit the code to the test cases.
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Python offers two built-in testing frameworks. Most applications and libraries will 
make use of both. One general wrapper for testing is the unittest module. In
addition, many public API docstrings will have examples that can be found and used
by the doctest module. Also, unittest can incorporate doctest.

The pytest tool can locate test cases and execute them. This is a very useful tool, but
must be installed separately from the rest of Python.

One lofty ideal is that every class and function has at least a unit test. The important,
visible classes and functions will often also have doctest. There are other lofty
ideals: 100% code coverage; 100% logic path coverage, and so on.

Pragmatically, some classes don't need testing. A class that
extends typing.NamedTuple, for example, doesn't really need a sophisticated unit
test. It's important to test the unique features of a class you've written and not the
features inherited from the standard library.

Generally, we want to develop the test cases first, and then write code that fits the test
cases. The test cases formalize the API for the code. This book will reveal numerous
ways to write code that has the same interface. Once we've defined an interface, there
are still numerous candidate implementations that fit the interface. One set of tests
will apply to several different object-oriented designs.

One general approach to using the unittest and pytest tools is to create at least
three parallel directories for your project:

myproject: This directory is the final package that will be installed in
lib/site-packages for your package or application. It has
an __init__.py file. We'll put our files in here for each module.
tests: This directory has the test scripts. In some cases, the scripts will
parallel the modules. In some cases, the scripts may be larger and more
complex than the modules themselves.
docs: This has other documentation. We'll touch on this in the next section,
as well as a chapter in part three.

In some cases, we'll want to run the same test suite on multiple candidate classes so
that we can be sure each candidate works. There's no point in doing
timeit comparisons on code that doesn't actually work.
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Documentation – sphinx and RST markup
All Python code should have docstrings at the module, class and method level. Not
every single method requires a docstring. Some method names are really well chosen,
and little more needs to be said. Most times, however, documentation is essential for
clarity.

Python documentation is often written using the reStructuredText (RST) markup.

Throughout the code examples in the book, however, we'll omit docstrings. The
omission keeps the book to a reasonable size. This gap has the disadvantage of
making docstrings seem optional. They're emphatically not optional.

This point is so important, we'll emphasize it again: docstrings are
essential.

The docstring material is used three ways by Python:

The internal help() function displays the docstrings.
The doctest tool can find examples in docstrings and run them as test
cases.
External tools, such as sphinx and pydoc, can produce elegant
documentation extracts from these strings.

Because of the relative simplicity of RST, it's quite easy to write good docstrings. We'll
look at documentation and the expected markup in detail in Chapter 18, Coping with
the Command Line. For now, however, we'll provide a quick example of what a
docstring might look like:

def factorial(n: int) -> int:
    """
    Compute n! recursively.

    :param n: an integer >= 0
    :returns: n!

    Because of Python's stack limitation, this won't compute a value
larger than about 1000!.

    >>> factorial(5)
    120
    """
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    if n == 0:
        return 1
    return n*factorial(n-1)

This shows the RST markup for the n parameter and the return value. It includes an
additional note about limitations. It also includes a doctest example that can be
used to validate the implementation using the doctest tool. The use of :param n:
and :return: identifies text that will be used by the sphinx tool to provide proper
formatting and indexing of the information.

Installing components
Most of the tools required must be added to the Python 3.7 environment. There are
two approaches in common use:

Use pip to install everything.
Use conda to create an environment. Most of the tools described in this
book are part of the Anaconda distribution.

The pip installation uses a single command:

python3 -m pip install pyyaml sqlalchemy jinja2 pytest sphinx mypy
pylint black

This will install all of the required packages and tools in your current Python
environment.

The conda installation creates a conda environment to keep the book's material
separate from any other projects:

Install conda. If you have already installed Anaconda, you have the Conda1.
tool, nothing more needs to be done. If you don't have Anaconda yet, then
install miniconda, which is the ideal way to get started. Visit https:/ ​/
conda. ​io/ ​miniconda. ​html and download the appropriate version of conda
for your platform.
Use conda to build and activate the new environment.2.

https://conda.io/miniconda.html
https://conda.io/miniconda.html
https://conda.io/miniconda.html
https://conda.io/miniconda.html
https://conda.io/miniconda.html
https://conda.io/miniconda.html
https://conda.io/miniconda.html
https://conda.io/miniconda.html
https://conda.io/miniconda.html
https://conda.io/miniconda.html
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Then upgrade pip. This is needed because the default pip installation in3.
the Python 3.7 environment is often slightly out of date.
Finally, install black. This is required because black is not currently in4.
any of the conda distribution channels.

Here are the commands:

$ conda create --name mastering python=3.7 pyyaml sqlalchemy jinja2
  pytest sphinx mypy pylint
$ conda activate mastering
$ python3 -m pip install --upgrade pip
$ python3 -m pip install black

The suite of tools (pytest, sphinx, mypy, pylint, and black) are essential for
creating high-quality, reliable Python programs. The other components, pyyaml,
sqlalchemy, and jinja2, are helpful for building useful applications.

Summary
In this chapter, we've surveyed the game of Blackjack. The rules have a moderate level
of complexity, providing a framework for creating a simulation. Simulation was one
of the first uses for OOP and remains a rich source of programming problems that
illustrate language and library strengths.

This chapter introduces the way the Python runtime uses special methods to
implement the various operators. The bulk of this book will show ways to make use
of the special methods names for creating objects that interact seamlessly with other
Python features.

We've also looked at a number of tools that will be required to build good Python
applications. This includes the IDE, the mypy program for checking type hints, and
the black and pylint programs for getting to a consistent style. We also looked at
the timeit, unittest, and doctest modules for doing essential performance and
functional testing. For final documentation of a project, it's helpful to install sphinx.
The installation of these extra components can be done with pip or conda. The pip
tool is part of Python, the conda tool requires another download to make it available.

In the next chapter, we'll start our exploration of Python with class definition. We'll
focus specifically on how objects are initialized using the __init__() special
method.



2
The __init__() Method

The __init__() method is a profound feature of Python class definitions for two
reasons. Firstly, initialization is the first big step in an object's life; every object must
have its state initialized properly. The second reason is that the argument values for
__init__() can take many forms.

Because there are so many ways to provide argument values to __init__(), there is
a vast array of use cases for object creation. We'll take a look at several of them. We
want to maximize clarity, so we need to define an initialization that characterizes the
problem domain and clearly sets the state of the object.

Before we can get to the __init__() method, however, we need to take a look at the
implicit class hierarchy in Python, glancing briefly at the class named object. This
will set the stage for comparing its default behavior with the different kinds of
behavior we want from our own classes.

In this chapter, we will take a look at different forms of initialization for simple
objects (for example, playing cards). After this, we will take a look at more complex
objects, such as hands, which involve collections, and players, which involve
strategies and states. Throughout these examples, we'll include type hints and explain
how mypy will examine this code to determine the correct use of objects.

In this chapter, we will cover the following topics:

All Python objects are subclasses of a common parent, the object class, so
we'll look at this first.
We'll look at how the default __init__() method for the object class
works.
The first design strategy we'll look at is using a common
__init__() method for all subclasses of a hierarchy. This can lead to
using a factory function, separate from the __init__() method, to help
initialize objects correctly.
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The second design strategy involves pushing the __init__() method into
each individual subclass of a complex hierarchy, and how this changes the
design of the classes.
We'll look at how to create composite objects, which involves a number of
related uses of the __init__() methods of different classes.
We'll also look at stateless objects, which don't need a sophisticated
__init__() method.
The chapter will finish with several more complex uses of class-level (or
static) initialization, and how to validate values before creating an invalid
object.

In the first section, we'll look at Python's superclass for all objects, the object class.

Technical requirements
The code files for this chapter can be found at https:/ ​/​git. ​io/​fj2U0.

The implicit superclass – object
Each Python class definition has an implicit superclass: object. It's a very simple
class definition that does almost nothing.

We can create instances of object, but we can't do much with them, because many of
the special methods simply raise exceptions.

When we define our own class, object is the superclass. The following is an example
class definition that simply extends object with a new name:

>>> class X:
>>>     pass

The following are some interactions with this tiny class definition:

>>> X.__class__
<class 'type'>
>>> X.__class__.__base__
<class 'object'>

https://git.io/fj2U0
https://git.io/fj2U0
https://git.io/fj2U0
https://git.io/fj2U0
https://git.io/fj2U0
https://git.io/fj2U0
https://git.io/fj2U0
https://git.io/fj2U0
https://git.io/fj2U0
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We can see that a class is an object of the class named type and that the base class for
our new class is the class named object. As we look at each method, we also take a
look at the default behavior inherited from object. In some cases, the superclass
special method's behavior will be exactly what we want. In other cases, we'll need to
override the behavior of the special method.

The base class object __init__() method
Fundamental to the life cycle of an object are its creation, initialization, and
destruction. We'll defer creation and destruction to a later chapter on more advanced
special methods and focus on initialization. This will set the initial state of the object.

The superclass of all classes, object, has a default implementation of __init__()
that amounts to pass. We aren't required to implement __init__(). If we don't
implement it, then no instance variables will be created when the object is created. In
some cases, this default behavior is acceptable.

We can add attributes to an object that's a subclass of object. Consider the following
class, which requires two instance variables, but doesn't initialize them:

class Rectangle:
    def area(self) -> float:
        return self.length * self.width

The Rectangle class has a method that uses two attributes to return a value. The
attributes have not been initialized anywhere in the class definition. While this is legal
Python, it's a little strange to avoid specifically setting attributes. The following is an
interaction with the Rectangle class:

>>> r = Rectangle()
>>> r.length, r.width = 13, 8
>>> r.area()
104

While this is legal, it's a potential source of deep confusion, which is a good reason to
avoid it. Setting ad-hoc attribute values outside the class body in the example shown
above defeats type hint checking by mypy, which is another reason for avoiding it.

This kind of design grants some flexibility, so there could be times when we needn't
set all of the attributes in the __init__() method. We walk a fine line here. An
optional attribute implies a kind of subclass that's not formally declared as a proper
subclass.
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We're creating polymorphism in a way that could lead to confusing and
inappropriate use of convoluted if statements. While uninitialized attributes may be
useful, they could be a symptom of bad design.

The Zen of Python, by Tim Peters, available from the standard library via import
this, offers the following advice:

"Explicit is better than implicit."

This statement has proven helpful over the years, to help keep Python programs
simple and consistent. This is Python Enhancement Proposal (PEP) number 20.
See https:/​/​www. ​python. ​org/ ​dev/ ​peps/ ​pep- ​0020/ ​ for further information.

An __init__() method should make instance variables explicit.

Pretty poor polymorphism
There's a fine line between flexibility and foolishness. We may have
stepped over the edge of flexible into foolish as soon as we feel the
need to write the following:

if 'x' in self.__dict__:
    code-to-handle-optional-attribute

Or, we could see the following:

try:
    self.x
except AttributeError:
    code-to-handle-optional-attribute

It's time to reconsider the API and add a common method or
attribute. Refactoring is better than adding if statements.

Implementing __init__() in a superclass
We initialize an object by implementing the __init__() method. When an object is
created, Python first creates an empty object and then calls the __init__() method
to set the state of the new object. This method generally creates the object's instance
variables and performs any other one-time processing.

https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
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The following are some example definitions of a Card class hierarchy. We'll define a
Card superclass and three subclasses that are variations of the basic theme of Card.
We have two instance variables that have been set directly from argument values and
two variables that have been calculated using an initialization method:

from typing import Tuple

class Card:

    def __init__(self, rank: str, suit: str) -> None:
        self.suit = suit
        self.rank = rank
        self.hard, self.soft = self._points()

    def _points(self) -> Tuple[int, int]:
        return int(self.rank), int(self.rank)

class AceCard(Card):

    def _points(self) -> Tuple[int, int]:
        return 1, 11

class FaceCard(Card):

    def _points(self) -> Tuple[int, int]:
        return 10, 10

In this example, we factored the __init__() method into the superclass so that a
common initialization in the superclass, Card, applies to two
subclasses, AceCard and FaceCard.

This example provides type hints for parameters of the __init__() method. Both
the rank and suit parameters are expected to have values of the str type. The result
of the __init__() method is always None, since it never returns a value. These hints
can be checked by the mypy tool to ensure that the class is used properly.

This shows a common polymorphic design. Each subclass provides a unique
implementation of the _points() method. The various _points() methods all
return a two-tuple with the different ways to evaluate a card. All the subclasses have
identical signatures – they have the same methods and attributes. Objects of these
three subclasses can be used interchangeably in an application.
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The leading _ in the name is a suggestion to someone reading the class that the
_points() method is an implementation detail, subject to change in a future
implementation. This can help to reveal which methods are part of a public interface
and which are details that aren't intended for general use by other classes.

If we simply use characters for suits, we will be able to create the Card instances, as 
shown in the following code snippet:

cards = [AceCard('A', '♠'), Card('2','♠'), FaceCard('J','♠'),]

We enumerated the class, rank, and suit for several cards in a list. In the long run,
we'll need a much smarter factory function to build Card instances; enumerating all
52 cards this way is tedious and error-prone. Before we get to factory functions, we
will take a look at a number of other issues.

Creating enumerated constants
We can define classes for the suits of our cards. The suits of playing cards are an
example of a type with a domain that can be exhaustively enumerated. Some other
types with very small domains of values include the None type, where there's only
one value, and the bool type, which has only two values.

The suit of a playing card could be thought of as an immutable object: the state
should not be changed. Python has one simple formal mechanism for defining an
object as immutable. We'll look at techniques to assure immutability in Chapter 4,
Attribute Access, Properties, and Descriptors. While it might make sense for the
attributes of a suit to be immutable, the extra effort has no tangible benefit.

The following is a class that we'll use to build four manifest constants:

from enum import Enum

class Suit(str, Enum):
    Club = "♣"
    Diamond = "♦"
    Heart = "♥"
    Spade = "♠"

This class has two parent classes. Each of the four values of the Suit class is both a
string as well as an Enum instance. Each string value is only a single Unicode
character. The enumerated values must be qualified by the class name, assuring that
there will be no collisions with other objects.
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Here's one of the enumerated constants built by this class:

>>> Suit.Club
<Suit.Club: '♣'>

The representation of an Enum instance shows the name within the Enum class, as well
as the value assigned by the other parent class. To see only the value, use an
expression such as Suit.Heart.value.

We can now create cards, as shown in the following code snippet:

cards = [AceCard('A', Suit.Spade), Card('2', Suit.Spade),
FaceCard('Q', Suit.Spade),]

For an example this small, this class isn't a huge improvement on single character suit
codes. It is very handy to have the explicit enumeration of the domain of values. An
expression such as list(Suit) will provide all of the available objects.

We do have to acknowledge that these objects aren't technically immutable. It's
possible to assign additional attributes to the Suit objects. While additional attributes
can be added, the value attribute cannot be changed. The following example shows
the exception raised:

>>> Suit.Heart.value = 'H'
Traceback (most recent call last):
    File "<doctest __main__.__test__.test_suit_value[1]>", line 1, in
<module>
        Suit.Heart.value = 'H'
    File "/Users/slott/miniconda3/envs/py37/lib/python3.7/types.py",
line 175, in __set__
        raise AttributeError("can't set attribute")
AttributeError: can't set attribute

The irrelevance of immutability
Immutability can become an attractive nuisance. It's sometimes
justified by a mythical malicious programmer who modifies the
constant value in their application. As a design consideration, this is
often silly. A mythical malicious programmer can't be stopped by
creating immutable objects. A malicious programmer would have
access to the Python source and be able to tweak it just as easily as
they could write poorly-crafted code to modify a constant.

In Chapter 4, Attribute Access, Properties, and Descriptors, we'll show you some ways to
provide suitable diagnostic information for a buggy program that's attempting to
mutate objects intended to be immutable.



The __init__() Method Chapter 2

[ 31 ]

Leveraging __init__() via a factory
function
We can build a complete deck of cards via a factory function. This beats enumerating
all 52 cards. In Python, there are two common approaches to factories, as follows:

We define a function that creates objects of the required classes.
We define a class that has methods for creating objects. This is the Factory
design pattern, as described in books on object-oriented design patterns. In
languages such as Java, a factory class hierarchy is required because the
language doesn't support standalone functions.

In Python, a class isn't required to create an object factory, but this can be a good idea
when there are related factories or factories that are complex. One of the strengths of
Python is that we're not forced to use a class hierarchy when a simple function might
do just as well.

While this is a book about object-oriented programming, a function
really is fine. It's common, idiomatic Python.

We can always rewrite a function to be a proper callable object if the need arises.
From a callable object, we can refactor it into a class hierarchy for our factories. We'll
look at callable objects in Chapter 6, Using Callables and Contexts.

The advantage of class definitions is code reuse via inheritance. The purpose of a
factory class is to encapsulate the complexities of object construction in a way that's
extensible. If we have a factory class, we can add subclasses when extending the
target class hierarchy. This can give us polymorphic factory classes; different factory
class definitions can have the same method signatures and can be used
interchangeably.

If the alternative factory definitions don't actually reuse any code, then a class
hierarchy won't be as helpful in Python. We can simply use functions that have the
same signatures.

The following is a factory function for our various Card subclasses:

def card(rank: int, suit: Suit) -> Card:
    if rank == 1:
        return AceCard("A", suit)
    elif 2 <= rank < 11:
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        return Card(str(rank), suit)
    elif 11 <= rank < 14:
        name = {11: "J", 12: "Q", 13: "K"}[rank]
        return FaceCard(name, suit)
    raise Exception("Design Failure")

This function builds a Card class from a numeric rank number and a suit object.
The type hints clarify the expected argument values. The -> Card hint describes the
result of this function, showing that it will create a Card object. We can now build
Card instances more simply. We've encapsulated the construction issues into a single
factory function, allowing an application to be built without knowing precisely how
the class hierarchy and polymorphic design works.

The following is an example of how we can build a deck with this factory function:

deck = [card(rank, suit)
    for rank in range(1,14)
        for suit in iter(Suit)]

This enumerates all the ranks and suits to create a complete deck of 52 cards. This
works nicely, because the Enum subclasses will iterate over the list of enumerated
values.

We do not need to use iter(Suit). We can use Suit in the preceding generator, and
it will work nicely. While the for suit in Suit form will work, mypy will signal
errors. Using list(Suit) or iter(Suit) will mute the errors by making the intent
clear.

Faulty factory design and the vague else
clause
Note the structure of the if statement in the card() function. We did not use a catch-
all else clause to do any processing; we merely raised an exception. The use of a
catch-all else clause is subject to debate.

On the one hand, it can be argued that the condition that belongs in an else clause
should never be left unstated because it may hide subtle design errors. On the other
hand, some else clause conditions are truly obvious.

It's important to avoid a vague else clause.
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Consider the following variant on this factory function definition:

def card2(rank: int, suit: Suit) -> Card:
    if rank == 1:
        return AceCard("A", suit)
    elif 2 <= rank < 11:
        return Card(str(rank), suit)
    else:
        name = {11: "J", 12: "Q", 13: "K"}[rank]
        return FaceCard(name, suit)

While this kind of code is common, it's not perfectly clear what condition applies to the
else: clause. 

The following looks like it might build a valid deck:

deck2 = [card2(rank, suit) for rank in range(13) for suit in
iter(Suit)]

This doesn't work. But the error is an obscure KeyError when trying to build a
FaceCard instance.

What if the if conditions were more complex? While some programmers will
understand this if statement at a glance, others will struggle to determine whether
all of the cases are properly exclusive.

We should not force the reader to deduce a complex condition for an else clause.
Either the condition should be obvious to the newest of noobz, or it should be explicit.

Catch-all else should be used rarely. Use it only when the condition
is obvious. When in doubt, be explicit and use else to raise an
exception. Avoid the vague else clause.

Simplicity and consistency using elif
sequences
The factory function, card(), is a mixture of two very common Factory design
patterns:

An if-elif sequence
A mapping



The __init__() Method Chapter 2

[ 34 ]

For the sake of simplicity, it can be better to focus on just one of these techniques
rather than on both.

We can always replace a mapping with elif conditions. (Yes, always. The reverse is
not true though; transforming elif conditions to a mapping can be challenging.)

The following is a Card factory without a mapping:

def card3(rank: int, suit: Suit) -> Card:
    if rank == 1:
        return AceCard("A", suit)
    elif 2 <= rank < 11:
        return Card(str(rank), suit)
    elif rank == 11:
        return FaceCard("J", suit)
    elif rank == 12:
        return FaceCard("Q", suit)
    elif rank == 13:
        return FaceCard("K", suit)
    else:
        raise Exception("Rank out of range")

We rewrote the card() factory function. The mapping was transformed into
additional elif clauses. This function has the advantage that it is more consistent
than the previous version.

Simplicity using mapping and class objects
In some cases, we can use a mapping instead of a chain of elif conditions. It's 
possible to find conditions that are so complex that a chain of elif conditions is the
only sensible way to express them. For simple cases, however, a mapping often works
better and can be easy to read.

Since class is a first-class object, we can easily map from the rank parameter to the
class that must be constructed.

The following is a Card factory that uses only a mapping:

def card4(rank: int, suit: Suit) -> Card:
    class_ = {1: AceCard, 11: FaceCard, 12: FaceCard,
        13: FaceCard}.get(rank, Card)
    return class_(str(rank), suit)
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We've mapped the rank object to a class. Then, we applied the class to the rank and
suit values to build the final Card instance.

The card4() function, however, has a serious deficiency. It lacks the translation from
1 to A and 13 to K that we had in previous versions. When we try to add that feature,
we run into a problem.

We need to change the mapping to provide both a Card subclass as well as the string
version of the rank object. How can we create this two-part mapping? There are four
common solutions:

We can do two parallel mappings. We don't suggest this, but we'll show it
to emphasize what's undesirable about it.
We can map to a two-tuple. This also has some disadvantages.
We can map to a partial () function. The partial() function is a
feature of the functools module. This won't work out perfectly, and we'll
use a lambda object to achieve the same goal.
We can also consider modifying our class definition to fit more readily with
this kind of mapping. We'll look at this alternative in the next section, on
pushing __init__() into subclass definitions.

We'll look at each of these with a concrete example.

Two parallel mappings
The following is the essence of the two-parallel mappings solution:

def card5(rank: int, suit: Suit) -> Card:
    class_ = {1: AceCard, 11: FaceCard, 12: FaceCard,
        13: FaceCard}.get(rank, Card)
    rank_str = {1: "A", 11: "J", 12: "Q",
        13: "K"}.get(rank, str(rank))
    return class_(rank_str, suit)

This is not desirable. It involves a repetition of the sequence of the mapping keys 1,
11, 12, and 13. Repetition is bad, because parallel structures never seem to stay that
way after the software has been updated or revised.

Don't use parallel structures
Two parallel structures should be replaced with tuples or some kind
of proper collection.
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Mapping to a tuple of values
The following is the essence of how mapping is done to a two-tuple:

def card6(rank: int, suit: Suit) -> Card:
    class_, rank_str = {
        1: (AceCard, "A"),
        11: (FaceCard, "J"),
        12: (FaceCard, "Q"),
        13: (FaceCard, "K")
    }.get(
        rank, (Card, str(rank))
    )
    return class_(rank_str, suit)

This is a reasonably pleasant design because it uses a simple mapping. It's not much
code to handle special cases of playing cards. We will see how it could be modified or
expanded if we needed to alter the Card class hierarchy to add additional subclasses
of Card.

It does feel odd to map a rank value to a class object and one of the two arguments
to that class initializer. It seems more sensible to map the rank to a simple class or
function object without the clutter of providing some (but not all) of the arguments.

The partial function solution
In the previous example, we mapped the rank to a two-tuple of the class and one of
the arguments for creating an instance. We can combine class and rank into a 
partial function. This is a function that has some argument values and is waiting for
the final argument value. In many cases, we can use the partial() function from the
functools library to create a partial function combining the class object with the
rank argument.

The partial() function is not designed to create objects; using it like this will raise
an exception. Instead of using the partial function, we can create a lambda object
instead. For example, the lambda suit: AceCard("A", suit) expression is a
function that is waiting for the suit value to create a complete Card.

The following is a mapping from rank to a lambda object that can be used to
construct Card objects:

def card7(rank: int, suit: Suit) -> Card:
    class_rank = {
        1: lambda suit: AceCard("A", suit),
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        11: lambda suit: FaceCard("J", suit),
        12: lambda suit: FaceCard("Q", suit),
        13: lambda suit: FaceCard("K", suit),
    }.get(
        rank, lambda suit: Card(str(rank), suit)
    )
    return class_rank(suit)

The mapping associates a rank object with a lambda object that contains a class and a
string. The lambda object is a function that is then applied to the suit object to create
the final Card instance.

This use of the partial() function is a common technique for functional
programming. It is one way to achieve a kind of polymorphism so that several
different functions can be used in a similar way.

In general, however, partial functions aren't helpful for most object-oriented
programming. When building complex objects, it is common to define methods that
accept arguments incrementally. Instead of using rank to create a partial function, a
more object-oriented approach is to use separate methods to set rank and suit.

Fluent APIs for factories
In Python, a fluent interface is built by creating methods that return the self instance
variable. Each method can set some of the object's state. By returning self, the
functions can be chained together.

We might have X().a().b() in an object notation. We can think of it as .
The x.a() function is a kind of partial() function that's waiting for b(). We can
think of X().a() as if it were an object with another function as its argument value, 

.

The idea here is that Python offers us two alternatives for initializing state. We can
either set all of the values in __init__(), or we can set values in a number of
separate methods. In the following example, we'll make the setting of the rank object
a fluent method that returns self. Setting the suit object will actually create the
Card instance. The following is a fluent Card factory class. An instance must use the
two method functions in the required order:

class CardFactory:

    def rank(self, rank: int) -> "CardFactory":
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        self.class_, self.rank_str = {
            1: (AceCard, "A"),
            11: (FaceCard, "J"),
            12: (FaceCard, "Q"),
            13: (FaceCard, "K"),
        }.get(
            rank, (Card, str(rank))
        )
        return self

    def suit(self, suit: Suit) -> Card:
        return self.class_(self.rank_str, suit)

The rank() method updates the state of the constructor, and the suit() method
actually creates the final Card object. The type hint for the rank() function shows the
function returning a CardFactory object. Because the class is not fully defined, the
name isn't known, and a quoted string has to be used. The mypy tool will resolve the 
string type name to create a circular reference from the class to itself.

This factory class can be used as follows:

card8 = CardFactory()
deck8 = [card8.rank(r + 1).suit(s) for r in range(13) for s in Suit]

First, we create a factory instance, then we use that instance to create the Card
instances. This doesn't materially change how __init__() itself works in the Card
class hierarchy. It does, however, change the way that our client application creates
objects.

Implementing __init__() in each subclass
As we look at the factory functions for creating Card objects, there are some
alternative designs for the Card class. We might want to refactor the conversion of the
rank number so that it is the responsibility of the Card class itself. This pushes the
initialization down into each subclass.

This often requires some common initialization of a superclass as well as subclass-
specific initialization. We need to follow the Don't Repeat Yourself (DRY) principle
to keep the code from getting cloned into each of the subclasses.
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This version of the Card3 class has an initializer at the superclass level that is used by
each subclass, as shown in the following code snippet:

class Card3:

    def __init__(
            self, rank: str, suit: Suit, hard: int, soft: int
    ) -> None:
        self.rank = rank
        self.suit = suit
        self.hard = hard
        self.soft = soft

class NumberCard3(Card3):

    def __init__(self, rank: int, suit: Suit) -> None:
        super().__init__(str(rank), suit, rank, rank)

class AceCard3(Card3):

    def __init__(self, rank: int, suit: Suit) -> None:
        super().__init__("A", suit, 1, 11)

class FaceCard3(Card3):

    def __init__(self, rank: int, suit: Suit) -> None:
        rank_str = {11: "J", 12: "Q", 13: "K"}[rank]
        super().__init__(rank_str, suit, 10, 10)

We've provided __init__() at both the subclass and superclass level. Each subclass
uses the super() function to locate the superclass version of __init__(). The
superclass version has a number of parameters that can be omitted from the subclass
initializers.

This has the small advantage that it simplifies our factory function, as shown in the
following code snippet:

def card10(rank: int, suit: Suit) -> Card3:
    if rank == 1:
        return AceCard3(rank, suit)
    elif 2 <= rank < 11:
        return NumberCard3(rank, suit)
    elif 11 <= rank < 14:
        return FaceCard3(rank, suit)
    else:
        raise Exception("Rank out of range")
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We can see from this variation that we've created rather complex __init__()
methods for a relatively minor improvement in the simplicity of a factory function.
This is a common trade-off. The complexity cannot be removed; it can only be
encapsulated. The real question is how should responsibility be allocated for this
complexity?

Factory functions encapsulate complexity
There's a trade-off that occurs between sophisticated __init__()
methods and factory functions. It's often better to push complex
constructors into factory functions. A factory function helps separate
construction and initial state-from-state change or other processing
concerns.

Composite objects
A composite object can also be called a container. We'll look at a simple composite
object: a deck of individual cards. This is a basic collection. Indeed, it's so basic that
we can, without too much struggle, use a simple list object as a deck.

Before designing a new class, we need to ask this question: is using a simple
list object appropriate?

We can use random.shuffle() to shuffle the deck and deck.pop() to deal cards
into a player's Hand.

Some programmers rush to define new classes as if using a built-in class violates
some object-oriented design principle. Avoiding a new class leaves us with the
following code snippet:

>>> d = [card(r + 1, s) for r in range(13) for s in iter(Suit)]
>>> random.shuffle(d)
>>> hand = [d.pop(), d.pop()]
>>> hand
[FaceCard(suit=<Suit.Club: '♣'>, rank='J'), Card(suit=<Suit.Spade:
'♠'>, rank='2')]

If it's that simple, why write a new class?

Defining a class has the advantage of creating a simplified, implementation-free
interface to the object. In the case of the list example shown in the preceding code,
it's not clear how much simpler a Deck class would be.
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The deck has two use cases. A class definition doesn't seem to simplify things very
much. It does have the advantage of concealing the implementation's details. In this
example, the details are so trivial that exposing them has little cost.

We're focused primarily on the __init__() method in this chapter, so we'll look at
some designs to create and initialize a collection. To design a collection of objects, we
have the following three general design strategies:

Wrap: This design pattern surrounds an existing collection definition with
a simplified interface. This is an example of the more general Facade design
pattern.
Extend: This design pattern starts with an existing collection class and
extends it to add features.
Invent: This is designed from scratch. We'll look at this in Chapter 7,
Creating Containers and Collections.

These three concepts are central to object-oriented design. Because Python has so
many features built into the language, we must always make this choice when
designing a class.

Wrapping a collection class
The following is a wrapper design that contains an internal collection:

class Deck:
    def __init__(self) -> None:
        self._cards = [card(r + 1, s)
            for r in range(13) for s in iter(Suit)]
        random.shuffle(self._cards)

    def pop(self) -> Card:
        return self._cards.pop()

We've defined Deck so that the internal collection is a list object. The pop() method
of Deck simply delegates to the wrapped list object.

We can then create a Hand instance with the following type of code:

d = Deck()
hand = [d.pop(), d.pop()]
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Generally, a Facade design pattern or wrapper class contains methods that delegate
the work to the underlying implementation class. This delegation can become wordy
when a lot of features are provided. For a sophisticated collection, we may wind up
delegating a large number of methods to the wrapped object.

Extending a collection class
An alternative to wrapping is to extend a built-in class. By doing this, we have the
advantage of not having to reimplement the pop() method; we can simply inherit it.

The pop() method has an advantage in that it creates a class without writing too
much code. In this example, extending the list class has the disadvantage that this
provides many more functions than we truly need.

The following is a definition of Deck2 that extends the built-in list object:

class Deck2(list):

    def __init__(self) -> None:
        super().__init__(
            card(r + 1, s)
                for r in range(13) for s in iter(Suit))
        random.shuffle(self)

In this case, we've initialized the list with Card instances. super().__init__()
reaches up to the superclass initialization to populate our list object with an initial
single deck of cards. After seeding the list, the initializer then shuffles the cards. The
pop() method is directly inherited from list and works perfectly. Other methods
inherited from the list class will also work.

While simpler, this exposes methods such as delete() and remove(). If these
additional features are undesirable, a wrapped object might be a better idea.

More requirements and another design
In a casino, cards are often dealt from a shoe that has half a dozen decks of cards all
mingled together. This additional complexity suggests that we need to build our own
implementation of Deck and not simply use the list class directly. Additionally, a
casino shoe is not dealt fully. Instead, a marker card is inserted. Because of the
marker, some cards are effectively set aside and not used for play. These cards are
said to be burned.
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The following Deck3 class definition contains multiple sets of 52-card decks:

class Deck3(list):

    def __init__(self, decks: int = 1) -> None:
        super().__init__()
        for i in range(decks):
            self.extend(
                card(r + 1, s)
                for r in range(13) for s in iter(Suit)
            )
        random.shuffle(self)
        burn = random.randint(1, 52)
        for i in range(burn):
            self.pop()

Here, we used the __init__() method of the superclass to build an empty
collection. Then, we used self.extend() to extend this collection with multiple 52-
card decks. This populates the shoe. We could also use super().extend(), since we
did not provide an overriding implementation in this class.

We could also carry out the entire task via super().__init__() using a more
deeply nested generator expression, as shown in the following code snippet:

super().__init__(
    card(r + 1, s)
        for r in range(13)
            for s in iter(Suit)
                for d in range(decks)
    )

This class provides us with a collection of Card instances that we can use to emulate
casino blackjack as dealt from a shoe.

Complex composite objects
The following is an example of a Blackjack Hand description that might be suitable for
emulating play strategies:

class Hand:

    def __init__(self, dealer_card: Card) -> None:
        self.dealer_card: Card = dealer_card
        self.cards: List[Card] = []
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    def hard_total(self) -> int:
        return sum(c.hard for c in self.cards)

    def soft_total(self) -> int:
        return sum(c.soft for c in self.cards)

    def __repr__(self) -> str:
        return f"{self.__class__.__name__} {self.dealer_card}
{self.cards}"

In this example, we have a self.dealer_card instance variable based on a
parameter of the __init__() method. The self.cards instance variable, however,
is not based on any parameter. This kind of initialization creates an empty collection.
Note that the assignment to the self.cards variable requires a type hint to inform
mypy of the expected contents of the self.cards collection.

To create an instance of Hand, we can use the following code:

>>> d = Deck()
>>> h = Hand(d.pop())
>>> h.cards.append(d.pop())
>>> h.cards.append(d.pop())

This has the disadvantage of consisting of a long-winded sequence of statements to
build an instance of a Hand object. It can become difficult to serialize the Hand object
and rebuild it with an initialization as complex as this. Even if we were to create an
explicit append() method in this class, it would still take multiple steps to initialize
the collection.

The definition of the __repr__() method illustrates this problem. We can't provide a
simple string representation that would rebuild the object. The typical use of
__repr__() is to create a Pythonic view of the object's state, but, with such a
complex initialization, there's no simple expression to represent it.

We could try to create a fluent interface, but that wouldn't really simplify things; it
would merely mean a change in the syntax of the way that a Hand object is built. A
fluent interface still leads to multiple method evaluations. When we take a look at the
serialization of objects in part 2, Persistence and Serialization, we'd like an interface
that's a single class-level function; ideally the class constructor. We'll look at this in
depth in Chapter 10, Serializing and Saving – JSON, YAML, Pickle, CSV, and XML.

You should also note that the hard total and soft total method functions shown here
don't fully follow the rules of Blackjack. We'll return to this issue in Chapter 3,
Integrating Seamlessly – Basic Special Methods.
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Complete composite object initialization
Ideally, the __init__() initializer method will create a complete instance of an
object. This is a bit more complex when creating a complete instance of a container
that contains an internal collection of other objects. It'll be helpful if we can build this
composite in a single step.

It's common to have both a method to incrementally accrete items, as well as the
initializer special method, which can load all of the items in one step.

For example, we might have a class such as the following code snippet:

class Hand2:

    def __init__(self, dealer_card: Card, *cards: Card) -> None:
        self.dealer_card = dealer_card
        self.cards = list(cards)

    def card_append(self, card: Card) -> None:
        self.cards.append(card)

    def hard_total(self) -> int:
        return sum(c.hard for c in self.cards)

    def soft_total(self) -> int:
        return sum(c.soft for c in self.cards)

    def __repr__(self) -> str:
        return f"{self.__class__.__name__}({self.dealer_card!r},
*{self.cards})"

This initialization sets all of the instance variables in a single step. The other methods
are copies from the previous class definition. The first positional argument value is
assigned to the dealer_card parameter. The use of * with the cards parameter
means that all of the remaining positional argument values are collected into a tuple
and assigned to the cards parameter.

We can build a Hand2 object in two ways. This first example loads one card at a time
into a Hand2 object:

d = Deck()
P = Hand2(d.pop())
p.cards.append(d.pop())
p.cards.append(d.pop())
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This second example uses the *cards parameter to load a sequence of the Cards
class in a single step:

d = Deck()
h = Hand2(d.pop(), d.pop(), d.pop())

For unit testing, it's often helpful to build a composite object in a single statement in
this way. More importantly, some of the serialization techniques from the next part
will benefit from a way of building a composite object in a single, simple evaluation.

Stateless objects without __init__()
The following is an example of a degenerate class that doesn't need an __init__()
method. It's a common design pattern for Strategy objects. A Strategy object is
plugged into some kind of master or owner object to implement an algorithm or
decision. The Strategy object often depends on data in the master object; the Strategy
object may not have any data of its own. We often design strategy classes to follow
the Flyweight design pattern so we can avoid internal storage in the strategy instance.
All values can be provided to a Strategy object as method argument values. In some
cases, a strategy object can be stateless; in this instance, it is more a collection of
method functions than anything else.

In the following examples, we'll show both stateless and stateful strategy class
definitions. We'll start with the strategy for making some of the player decisions
based on the state of the Hand object.

In this case, we're providing the gameplay decisions for a Player instance. The
following is an example of a (dumb) strategy to pick cards and decline other bets:

class GameStrategy:

    def insurance(self, hand: Hand) -> bool:
        return False

    def split(self, hand: Hand) -> bool:
        return False

    def double(self, hand: Hand) -> bool:
        return False

    def hit(self, hand: Hand) -> bool:
        return sum(c.hard for c in hand.cards) <= 17
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Each method requires the current Hand object as an argument value. The decisions
are based on the available information; that is, on the dealer's cards and the player's
cards. The result of each decision is shown in the type hints as a Boolean value. Each
method returns True if the player elects to perform the action.

We can build a single instance of this strategy for use by various Player instances, as
shown in the following code snippet:

dumb = GameStrategy()

We can imagine creating a family of related strategy classes, each one using different
rules for the various decisions a player is offered in Blackjack.

Some additional class definitions
As noted previously, a player has two strategies: one for betting and one for playing
their hand. Each Player instance has a sequence of interactions with a larger
simulation engine. We'll call the larger engine the Table class.

The Table class requires the following sequence of events by the Player instances:

The player must place an initial, or ante, bet based on the betting strategy.1.
The player will then receive a hand of cards.2.
If the hand is splittable, the player must decide whether to split it or not3.
based on their game strategy. This can create additional Hand instances. In
some casinos, the additional hands are also splittable.
For each Hand instance, the player must decide to hit, double, or stand4.
based on their game strategy.
The player will then receive payouts, and they must update their betting5.
strategy based on their wins and losses.

From this, we can see that the Table class has a number of API methods to receive a
bet, create a Hand object, offer a split, resolve each hand, and pay off the bets. This is a
large object that tracks the state of play with a collection of Players.

The following is the beginning of a Table class, which handles the bets and cards:

class Table:

    def __init__(self) -> None:
        self.deck = Deck()
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    def place_bet(self, amount: int) -> None:
        print("Bet", amount)

    def get_hand(self) -> Hand2:
        try:
            self.hand = Hand2(self.deck.pop(),
                self.deck.pop(), self.deck.pop())
            self.hole_card = self.deck.pop()
        except IndexError:
            # Out of cards: need to shuffle and try again.
            self.deck = Deck()
            return self.get_hand()
        print("Deal", self.hand)
        return self.hand

    def can_insure(self, hand: Hand) -> bool:
        return hand.dealer_card.insure

The Table class is used by the Player class to accept a bet, create a Hand object, and
determine whether the insurance bet is in play for this hand. Additional methods can
be used by the Player class to get cards and determine the payout.

The exception handling shown in get_hand() is not a precise model of casino play.
A may lead to minor statistical inaccuracies. A more accurate simulation requires the
development of a deck that reshuffles itself when empty instead of raising an
exception.

In order to interact properly and simulate realistic play, the Player class needs a
betting strategy. The betting strategy is a stateful object that determines the level of
the initial bet. Various betting strategies generally change a bet based on whether a
game was a win or a loss.

Ideally, we'd like to have a family of BettingStrategy objects. Python has a module
with decorators that allows us to create an abstract superclass. An informal approach
to creating Strategy objects is to raise an exception for methods that must be
implemented by a subclass.

We've defined an abstract superclass, as well as a specific subclass, as follows, to
define a flat betting strategy:

class BettingStrategy:

    def bet(self) -> int:
        raise NotImplementedError("No bet method")

    def record_win(self) -> None:
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        pass

    def record_loss(self) -> None:
        pass

class Flat(BettingStrategy):

    def bet(self) -> int:
        return 1

The superclass defines the methods with handy default values. The basic bet()
method in the abstract superclass raises an exception. The subclass must override the
bet() method. The type hints show the results of the various betting methods. 

We can make use of the abc module to formalize an abstract superclass definition. It
would look like the following code snippet:

import abc
from abc import abstractmethod

class BettingStrategy2(metaclass=abc.ABCMeta):

    @abstractmethod
    def bet(self) -> int:
        return 1

    def record_win(self):
        pass

    def record_loss(self):
        pass

This has the advantage that it makes the creation of an instance of
BettingStrategy2, or any subclass that failed to implement bet(), impossible. If
we try to create an instance of this class with an unimplemented abstract method, it
will raise an exception instead of creating an object.

And, yes, the abstract method has an implementation. It can be accessed via
super().bet(). This allows a subclass to use the superclass implementation, if
necessary.
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Multi-strategy __init__()
We may have objects that are created from a variety of sources. For example, we
might need to clone an object as part of creating a memento, or freeze an object so that
it can be used as the key of a dictionary or placed into a set; this is the idea behind the
set and frozenset built-in classes.

We'll look at two design patterns that offer multiple ways to build an object. One
design pattern uses a complex __init__() method with multiple strategies for
initialization. This leads to designing the __init__() method with a number of
optional parameters. The other common design pattern involves creating multiple
static or class-level methods, each with a distinct definition.

Defining an overloaded __init__() method can be confusing to mypy, because the
parameters may have distinct value types. This is solved by using the @overload
decorator to describe the different assignments of types to the __init__()
parameters. The approach is to define each of the alternative versions of
__init__() and decorate with @overload. A final version – without any decoration
– defines the parameters actually used for the implementation.

The following is an example of a Hand3 object that can be built in either of the two
ways:

class Hand3:

    @overload
    def __init__(self, arg1: "Hand3") -> None:
        ...

    @overload
    def __init__(self, arg1: Card, arg2: Card, arg3: Card) -> None:
        ...

    def __init__(
        self,
        arg1: Union[Card, "Hand3"],
        arg2: Optional[Card] = None,
        arg3: Optional[Card] = None,
    ) -> None:
        self.dealer_card: Card
        self.cards: List[Card]

        if isinstance(arg1, Hand3) and not arg2 and not arg3:
            # Clone an existing hand
            self.dealer_card = arg1.dealer_card
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            self.cards = arg1.cards
        elif (isinstance(arg1, Card)
            and isinstance(arg2, Card)
            and isinstance(arg3, Card)
        ):
            # Build a fresh, new hand.
            self.dealer_card = cast(Card, arg1)
            self.cards = [arg2, arg3]

    def __repr__(self) -> str:
        return f"{self.__class__.__name__}({self.dealer_card!r},
*{self.cards})"

In the first overloaded case, a Hand3 instance has been built from an existing Hand3
object. In the second case, a Hand3 object has been built from individual Card
instances. The @overload decorator provides two alternative versions of the
__init__() method. These are used by mypy to ensure this constructor is used
properly. The undecorated version is used at runtime. It is a kind of union of the two
overloaded definitions.

The @overload definitions are purely for mypy type-checking purposes. The non-
overloaded definition of __init__() provides a hint for arg1 as union of either a
Card object or a Hand3 object. The code uses the isinstance() function to decide
which of the two types of argument values were provided. To be more robust, the
if-elif statements should have an else: clause. This should raise a ValueError
exception.

This design parallels the way a frozenset object can be built from individual items
or an existing set object. We will look at creating immutable objects more in the next
chapter. Creating a new Hand3 object from an existing Hand3 object allows us to
create a memento of a Hand3 object using a construct such as the following code
snippet:

h = Hand3(deck.pop(), deck.pop(), deck.pop())
memento = Hand3(h)

We saved the Hand object in the memento variable. This can be used to compare the
final with the original hand that was dealt, or we can freeze it for use in a set or
mapping too.
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More complex initialization alternatives
In order to write a multi-strategy initialization, it can seem helpful to give up on
specific named parameters. This leads to trying to use the **kw construct to take only
named arguments. This design has the advantage of being very flexible, but the
disadvantage of bypassing automated type checking. It requires a great deal of
documentation explaining the variant use cases.

Instead of collecting all named parameters using the ** construct, it's often helpful to
use a standalone * construct. When we write def f(a: int, b: int, *, c:
int), we're expecting two positional argument values, and the third value must be
provided by name. We'd use this function as f(1, 2, c=3). This provides for
explicit names to cover special cases.

We can expand our initialization to also split a Hand object. The result of splitting a
Hand object is simply another constructor. The following code snippet shows how the
splitting of a Hand object might look:

class Hand4:

    @overload
    def __init__(self, arg1: "Hand4") -> None:
        ...

    @overload
    def __init__(self,
        arg1: "Hand4", arg2: Card, *, split: int) -> None:
        ...

    @overload
    def __init__(self,
        arg1: Card, arg2: Card, arg3: Card) -> None:
        ...

    def __init__(
        self,
        arg1: Union["Hand4", Card],
        arg2: Optional[Card] = None,
        arg3: Optional[Card] = None,
        split: Optional[int] = None,
    ) -> None:
        self.dealer_card: Card
        self.cards: List[Card]
        if isinstance(arg1, Hand4):
            # Clone an existing hand
            self.dealer_card = arg1.dealer_card
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            self.cards = arg1.cards

        elif isinstance(arg1, Hand4) and isinstance(arg2, Card) and
"split" is not None:
            # Split an existing hand
            self.dealer_card = arg1.dealer_card
            self.cards = [arg1.cards[split], arg2]

        elif (
            isinstance(arg1, Card)
            and isinstance(arg2, Card)
            and isinstance(arg3, Card)
        ):
            # Build a fresh, new hand from three cards
            self.dealer_card = arg1
            self.cards = [arg2, arg3]
        else:
            raise TypeError("Invalid constructor {arg1!r} {arg2!r}
{arg3!r}")

    def __str__(self) -> str:
        return ", ".join(map(str, self.cards))

This design reflects three separate use cases:

Creating a Hand4 object from an existing Hand4 object. In this case, arg1
will have the Hand4 type and the other arguments will have default values
of None.
Splitting a Hand4 object. This requires a value for the split keyword
argument that uses the position of the Card class from the original Hand4
object. Note how * is inserted into the parameter list to show that the
split value must be provided as a keyword argument value.
Building a Hand4 object from three Card instances. In this case, all three of
the positional parameters will have values of the Card type.

The @overload decorator information is used by mypy. It provides documentation
for people using this class. It has no runtime impact. 

The following code snippet shows how we'd use these definitions to create and split a
hand:

d = Deck()
h = Hand4(d.pop(), d.pop(), d.pop())
s1 = Hand4(h, d.pop(), split=0)
s2 = Hand4(h, d.pop(), split=1)
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We created an initial h instance of Hand4, split it into two other Hand4 instances, s1
and s2, and dealt an additional Card class into each. The rules of Blackjack only allow
this when the initial hand has two cards of equal rank.

While this __init__() method is rather complex, it has the advantage that it can
parallel the way in which fronzenset is created from an existing set. The
disadvantage is that it needs a large docstring to explain all these variations.

Initializing with static or class-level methods
When we have multiple ways to create an object, it's sometimes more clear to use
static methods to create and return instances rather than complex __init__()
methods.

The term static is borrowed from other languages. Python has three kinds of binding
for method functions. The default case is to bind a method to the instance; the first
positional parameter is self, the instance variable. A method can be bound to the
class; this requires the @staticmethod decorator. A method can also be bound to the
class, but receive the class as the first positional parameter; this requires the
@classmethod decorator.

In the case of freezing or splitting a Hand object, we might want to create two new
static methods to freeze or split a Hand object. Using static methods as surrogate
constructors is a tiny syntax change in construction, but it has huge advantages when
organizing code.

The following is a version of Hand with static methods that can be used to build new
instances of Hand from an existing Hand instance:

class Hand5:

    def __init__(self, dealer_card: Card, *cards: Card) -> None:
        self.dealer_card = dealer_card
        self.cards = list(cards)

    @staticmethod
    def freeze(other) -> "Hand5":
        hand = Hand5(other.dealer_card, *other.cards)
        return hand

    @staticmethod
    def split(other, card0, card1) -> Tuple["Hand5", "Hand5"]:
        hand0 = Hand5(other.dealer_card, other.cards[0], card0)
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        hand1 = Hand5(other.dealer_card, other.cards[1], card1)
        return hand0, hand1

    def __str__(self) -> str:
        return ", ".join(map(str, self.cards))

The freeze() method freezes or creates a memento version. The split() method
splits a Hand5 instance to create two new child instances of Hand5. The __init__()
method builds a hand from individual Card instances.

This is often more readable and preserves the use of the parameter names to explain
the interface. Note how the class name must be provided as a string when used as a
type hint within the class definition. You will recall that the class name doesn't exist
until after the execution of the class statement. Using strings instead of type objects
permits a reference to a type that doesn't exist yet. When mypy evaluates the type
hints, it will resolve the type objects from the strings.

The following code snippet shows how we can split a Hand5 instance with this
version of the class:

d = Deck()
h = Hand5(d.pop(), d.pop(), d.pop())
s1, s2 = Hand5.split(h, d.pop(), d.pop())

We created an initial h instance of Hand5, split it into two other hands, s1 and s2, and
dealt an additional Card class into each. The split() static method is much simpler
than the equivalent functionality implemented via __init__(). 

Yet more __init__() techniques
We'll take a look at a few other, more advanced __init__() techniques. These aren't
quite so universally useful as the techniques in the previous sections.

The following is a definition for the Player class that uses two Strategy objects and a
table object. This shows an unpleasant-looking __init__() method:

class Player:

    def __init__(
        self,
        table: Table,
        bet_strategy: BettingStrategy,
        game_strategy: GameStrategy
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    ) -> None:
        self.bet_strategy = bet_strategy
        self.game_strategy = game_strategy
        self.table = table

    def game(self):
        self.table.place_bet(self.bet_strategy.bet())
        self.hand = self.table.get_hand()
        if self.table.can_insure(self.hand):
            if self.game_strategy.insurance(self.hand):
                self.table.insure(self.bet_strategy.bet())
        # etc. (omitted for now)

The __init__() method for Player seems to do little more than bookkeeping.
We're simply transferring named parameters to instance variables with same name.
In many cases, the @dataclass decorator can simplify this.

We can use this Player class (and related objects) as follows:

table = Table()
flat_bet = Flat()
dumb = GameStrategy()
p = Player(table, flat_bet, dumb)
p.game()

We can provide a very short and very flexible initialization by simply transferring
keyword argument values directly into the internal instance variables.

The following is a way to build a Player class using keyword argument values:

class Player2(Player):

    def __init__(self, **kw) -> None:
        """Must provide table, bet_strategy, game_strategy."""
        self.bet_strategy: BettingStrategy = kw["bet_strategy"]
        self.game_strategy: GameStrategy = kw["game_strategy"]
        self.table: Table = kw["table"]

    def game(self) -> None:
        self.table.place_bet(self.bet_strategy.bet())
        self.hand = self.table.get_hand()

This sacrifices some readability for succinctness. Each individual instance variable
now requires an explicit type hint, because the parameters don't provide any
information. 
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Since the __init__() method is reduced to one line, it removes a certain level of
wordiness from the method. This wordiness, however, is transferred to each individual
object constructor expression. In effect, we provide type hints and parameter names
in each of the object initialization expressions.

Here's how we must provide the required parameters, as shown in the following code
snippet:

p2 = Player2(table=table, bet_strategy=flat_bet, game_strategy=dumb)

This syntax also works with the Player class, as shown in the preceding code. For
the Player2 class, it's a requirement. For the Player class, this syntax is optional. 

Using the ** construct to collect all keywords into a single variable does have a
potential advantage. A class defined like this is easily extended. We can, with only a
few specific concerns, supply additional keyword parameters to a constructor.

Here's an example of extending the preceding definition:

class Player2x(Player):

    def __init__(self, **kw) -> None:
        """Must provide table, bet_strategy, game_strategy."""
        self.bet_strategy: BettingStrategy = kw["bet_strategy"]
        self.game_strategy: GameStrategy = kw["game_strategy"]
        self.table: Table = kw["table"]
        self.log_name: Optional[str] = kw.get("log_name")

We've added a log_name attribute without touching the class definition. This could
be used, perhaps, as part of a larger statistical analysis. The Player2.log_name
attribute can be used to annotate logs or other collected data. The other initialization
was not changed.

We are limited in what we can add; we can only add parameters that fail to conflict
with the names already in use within a class. Some knowledge of a class
implementation is required to create a subclass that doesn't abuse the set of keywords
already in use. Since the **kw parameter is opaque, we need to read it carefully. In
most cases, we'd rather trust the class to work than review the implementation
details. The disadvantage of this technique is the obscure parameter names, which
aren't formally documented.
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We can (and should) hybridize this with a mixed positional and keyword
implementation, as shown in the following code snippet:

class Player3(Player):

    def __init__(
        self,
        table: Table,
        bet_strategy: BettingStrategy,
        game_strategy: GameStrategy,
        **extras,
    ) -> None:
        self.bet_strategy = bet_strategy
        self.game_strategy = game_strategy
        self.table = table
        self.log_name: str = extras.pop("log_name",
self.__class__.__name__)
        if extras:
            raise TypeError(f"Extra arguments: {extras!r}")

This is more sensible than a completely open definition. We've made the required
parameters positional parameters while leaving any nonrequired parameters as
keywords. This clarifies the use of any extra keyword arguments given to the
__init__() method.

The known parameter values are popped from the extras dictionary. After this is
finished, any other parameter names represent a type error. 

Initialization with type validation
Runtime type validation is rarely a sensible requirement. In a way, this might be a
failure to fully understand Python. Python's type system permits numerous
extensions. Runtime type checking tends to defeat this. Using mypy provides
extensive type checking without the runtime overheads.

The notional objective behind runtime checking is to validate that all of the
arguments are of a proper type. The issue with trying to do this is that the definition of
proper is often far too narrow to be truly useful.

Type checking is different from checking ranges and domains within a type. Numeric
range checking, for example, may be essential to prevent infinite loops at runtime. 
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What can create problems is trying to do something like the following in an
__init__() method:

class ValidPlayer:

    def __init__(self, table, bet_strategy, game_strategy):
        assert isinstance(table, Table)
        assert isinstance(bet_strategy, BettingStrategy)
        assert isinstance(game_strategy, GameStrategy)

        self.bet_strategy = bet_strategy
        self.game_strategy = game_strategy
        self.table = table

The isinstance() method checks circumvent Python's normal duck typing. We're
unable to provide instances without strictly following the class hierarchy defined
by isinstance() checks.

We write a casino game simulation in order to experiment with endless variations on
GameStrategy. These class definitions are very simple: they have four method
definitions. There's little real benefit to using inheritance from a GameStrategy
superclass. We should be allowed to define classes independently, not by referencing
an overall superclass.

The initialization error-checking shown in this example would force us to create
subclasses merely to pass a runtime error check. No usable code is inherited from the
abstract superclass.

One of the biggest duck typing issues surrounds numeric types. Different numeric
types will work in different contexts. Attempts to validate the types of arguments
may prevent a perfectly sensible numeric type from working properly. When
attempting validation, we have the following two choices in Python:

We write validation so that a relatively narrow collection of types is
permitted, and someday the code will break because a new type that would
have worked sensibly is prohibited.
We eschew validation so that a broad collection of types is permitted, and
someday the code will break because a type that does not work sensibly is
used.

Note that both are essentially the same: the code could perhaps break someday. It will
either break because a type is prevented from being used, even though it's sensible, or
because a type that's not really sensible is used.
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Just allow it
Generally, it's considered better Python style to simply permit any
type of data to be used. We'll return to this in Chapter 5, The ABCs
of Consistent Design.

The question is this: why add runtime type checking when it will restrict potential
future use cases?

If there's no good reason to restrict potential future use cases, then runtime type
checking should be avoided.

Rather than preventing a sensible, but possibly unforeseen, use case, we provide type
hints and use mypy to evaluate the hints. Additionally, of course, unit testing, debug
logging, and documentation can help us to understand any restrictions on the types
that can be processed.

With a few exceptions, all of the examples in this book use type hints to show the
types of values expected and produced. The mypy utility can be run to confirm that
the definitions are used properly. While the standard library has extensive type hints,
not all packages are fully covered by hints. In Chapter 12, Storing and Retrieving
Objects via SQLite, we'll use the SQLAlchemy package, which doesn't provide
complete type hints.

Initialization, encapsulation, and privacy
The general Python policy regarding privacy can be summed up as follows: we're all
adults here.

Object-oriented design makes an explicit distinction between interface and
implementation. This is a consequence of the idea of encapsulation. A class
encapsulates a data structure, an algorithm, an external interface, or something
meaningful. The idea is to have the capsule separate the class-based interface from the
implementation details.

However, no programming language reflects every design nuance. Python
doesn't typically implement all design considerations as explicit code.

One aspect of class design that is not fully carried into code is the distinction between
the private (implementation) and public (interface) methods or attributes of an object.
The notion of privacy in languages that support these attributes or methods (C++ or
Java are two examples) is already quite complex.
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These languages include settings such as private, protected, and public, as well as not
specified, which is a kind of semi-private. The private keyword is often used
incorrectly, making subclass definition needlessly difficult.

Python's notion of privacy is simple:

Attributes and methods are all essentially public. The source code is
available. We're all adults. Nothing can be truly hidden.
Conventionally, we treat some names in a way that's less public. They're
generally implementation details that are subject to change without notice,
but there's no formal notion of private.

Names that begin with _ are honored as being less public by some parts of Python.
The help() function generally ignores these methods. Tools such as Sphinx can
conceal these names from documentation.

Python's internal names begin (and end) with double underscores __, often
pronounced dunder. We might call __init__() dunder init. The use of __ names is
how Python internals are kept from colliding with other application features. The
collection of these internal names is fully defined by the language reference. Further,
there's no benefit to trying to use __ to attempt to create a truly private attribute or
method in our code. All that happens is that we create a potential future problem if a
release of Python ever starts using a name we chose for internal purposes. Also, we're
likely to run afoul of the internal name mangling that is applied to these names.

The rules for the visibility of Python names are as follows:

Most names are public.
Names that start with _ are somewhat less public. Use them for
implementation details that are truly subject to change.
Names that begin and end with __ are internal to Python. We never make
these up; we only use the names defined by the language reference.

Generally, the Python approach is to register the intent of a method (or attribute)
using documentation and a well-chosen name. Often, interface methods will have
elaborate documentation, possibly including doctest examples, while
implementation methods will have more abbreviated documentation and may not
have doctest examples.
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For programmers new to Python, it's sometimes surprising that privacy is not more
widely implemented. For programmers experienced in Python, it's surprising how
many brain calories get burned sorting out private and public declarations that aren't
really very helpful because the intent is obvious from the method names and the
documentation.

Summary
In this chapter, we have reviewed the various design alternatives of the __init__()
method. The __init__() method is how objects are created, and it sets the initial
state of an object.

We've looked at how all Python objects are subclasses of a common parent,
the object class, and how the default __init__() method for the object class
works. This consideration leads to two design strategies for placement of the
__init__() method:

We can define a common __init__() method for all subclasses of a
hierarchy. This can lead to using a factory function, separate from
the __init__() method, to help initialize objects correctly.
We can push the __init__() method into each individual subclass of a
complex hierarchy, and how this changes the design of classes.

After looking at building individual objects, we looked at how we can create
composite objects. This involves a number of related uses of the __init__()
methods of different classes. More advanced topics included defining stateless objects
that don't need a sophisticated initialization, using class-level (or static) initialization,
and how to validate values before creating an invalid object.

In the next chapter, we will take a look at special methods, along with a few advanced
ones as well.



3
Integrating Seamlessly -

Basic Special Methods
There are a number of special methods that permit close integration between our
classes and classes builtin Python. The Python standard library calls them basic. A
better term might be foundational or essential. These special methods form a
foundation for building classes that seamlessly integrate with other Python features.

For example, we often need string representations of a given object's value. The base
class, object, has default implementations of __repr__() and __str__() that
provide string representations of an object. Sadly, these default representations are
remarkably uninformative. We'll almost always want to override one or both of these
default definitions. We'll also look at __format__(), which is a bit more
sophisticated, but serves a similar purpose.

We'll also look at other conversions, specifically __hash__(), __bool__(),
and __bytes__(). These methods convert an object into a number, a true/false value,
or a string of bytes. When we implement __bool__(), for example, we can use an
object, x, in an if statement, as follows:

if x:

There's an implicit use of the bool() function, which relies on the object's
implementation of the __bool__() special method.

We can then look at the special methods that implement the __lt__(), __le__(),
__eq__(), __ne__(), __gt__(), and __ge__() comparison operators.

These basic special methods are almost always needed in class definitions.
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We'll look at __new__() and __del__() last, because the use cases for these
methods are rather complex. We don't need these as often as we need the other basic
special methods.

We'll look in detail at how we can expand a simple class definition to add these
special methods. We'll need to look at both of the default behaviors inherited from
object so that we can understand what overrides are needed and when they're
needed.

In this chapter, we will cover the following topics:

The __repr__() and __str__() methods
The __format__() method
The __hash__() method
The __bool__() method
The __bytes__() method
The comparison operator methods
The __del__() method
The __new__() method and immutable objects
The __new__() method and metaclasses

Technical requirements
The code files for this chapter can be found at https:/ ​/​git. ​io/​fj2UE.

The __repr__() and __str__() methods
Python generally offers two string representations of an object. These are closely
aligned with the built-in repr(), str(), and print() functions and the
string.format() method:

Generally, the str() method representation of an object is expected to be
more friendly to humans. It is built by an object's __str__() method.

https://git.io/fj2UE
https://git.io/fj2UE
https://git.io/fj2UE
https://git.io/fj2UE
https://git.io/fj2UE
https://git.io/fj2UE
https://git.io/fj2UE
https://git.io/fj2UE
https://git.io/fj2UE
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The repr() method representation is often more technical, and typically
uses a complete Python expression to rebuild an object. The
documentation for the __repr__() method in the Python documentation
(https:/ ​/ ​docs. ​python. ​org/ ​3/​reference/ ​datamodel. ​html? ​highlight= ​_​_
del_ ​_​#object. ​_ ​_​repr_ ​_ ​) states the following:

"If at all possible, this should look like a valid Python expression that
could be used to recreate an object with the same value (given an
appropriate environment)."

This is built by an object's __repr__() method.
The print() function generally uses str() to prepare an object for
printing.
The format() method of a string can also access these methods. When we
use a string format line, {x:d}, we're providing a "d" parameter to the
__format__() method of the x object. When we use {x!r} or {x!s}
formatting, we're requesting __repr__() or __str__(), respectively.

Let's look at the default implementations first. The following is a simple class
hierarchy:

class Card:

    def __init__(self, rank: str, suit: str) -> None:
        self.suit = suit
        self.rank = rank
        self.hard, self.soft = self._points()

    def _points(self) -> Tuple[int, int]:
        return int(self.rank), int(self.rank)

class AceCard(Card):

    def _points(self) -> Tuple[int, int]:
        return 1, 11

class FaceCard(Card):

    def _points(self) -> Tuple[int, int]:
        return 10, 10

We've defined three classes with four attributes in each class.
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The following is an interaction with an object of one of these classes:

>>> x = Card('2','♠')
>>> str(x)
'<__main__.Card object at 0x1078d4518>'
>>> repr(x)
'<__main__.Card object at 0x1078d4518>'
>>> print(x)
<__main__.Card object at 0x1078d4518>

We can see from this output that the default implementations of __str__()
and __repr__() are not very informative.

There are two broad design cases that we consider when overriding __str__() and
__repr__():

Simple objects: A simple object doesn't contain a collection of other objects
and generally doesn't involve very complex formatting.
Collection objects: An object that contains a collection involves somewhat
more complex formatting.

Simple __str__() and __repr__()
As we saw previously, the output from __str__() and __repr__() is not very
informative. We'll almost always need to override them. The following is an approach
to override __str__() and __repr__() when there's no collection involved. These
methods belong to the Card class, defined previously as follows:

def __repr__(self) -> str:
    return f"{self.__class__.__name__}(suit={self.suit!r},
rank={self.rank!r})"

def __str__(self) -> str:
    return f"{self.rank}{self.suit}"

These two methods rely on f-strings to interpolate values from the instance into a
string template. In the __repr__() method, the class name, suit, and rank were used
to create a string that could be used to rebuild the object. In the __str__() method,
the rank and suit were displayed in an easy-to-read form.
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The template string uses two kinds of format specifications:

The {self.__class__.__name__} format specification could also be
written as {self.__class__.__name__!s} to include an explicit
!s format specification. This is the default format, and implies using str()
to get a string representation of the object.
The {self.suit!r} and {self.rank!r} specifications both use the !r
format to use the repr() function to get representations of the attribute
values.

Collection __str__() and __repr__()
When there's a collection involved, we need to format each individual item in the
collection, as well as the overall container for those items. The following is a simple 
collection with both the __str__() and __repr__() methods:

class Hand:

    def __init__(self, dealer_card: Card, *cards: Card) -> None:
        self.dealer_card = dealer_card
        self.cards = list(cards)

    def __str__(self) -> str:
        return ", ".join(map(str, self.cards))

    def __repr__(self) -> str:
        cards_text = ', '.join(map(repr, self.cards))
        return f"{self.__class__.__name__}({self.dealer_card!r},
{cards_text})"

The __str__() method has a typical recipe for applying str() to the items in the
collection, as follows:

Map str() to each item in the collection. This will create an iterator over1.
the resulting string values.
Use ", ".join() to merge all the item strings into a single, long string.2.
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The __repr__() method is a similar recipe to apply repr() to the items in the
collection, as follows:

Map repr() to each item in the collection. This will create an iterator over1.
the resulting string values.
Use ", ".join() to merge all the item strings.2.
Use f"{self.__class__.__name__}({self.dealer_card!r},3.
{cards_text})" to combine the class name, the dealer card, and the long
string of item values. This format uses !r formatting to ensure that the
dealer_card attribute uses the repr() conversion too.

It's essential for __str__() to use str() and for __repr__() to use repr() when
building representations of complex objects. This simple consistency guarantees that
results from very complex objects with multiple layers of nesting will have consistent
string values. 

The __format__() method
The __format__() method is used by f-strings, the str.format() method, as well
as the format() built-in function. All three of these interfaces are used to create
presentable string versions of a given object.

The following are the two ways in which arguments will be presented to
the __format__() method of a someobject object:

someobject.__format__(""): This happens when an application uses a
string such as f"{someobject}", a function such
as format(someobject), or a string formatting method such
as "{0}".format(someobject). In these cases, there was no : in the
format specification, so a default zero-length string is provided as the
argument value. This should produce a default format.
someobject.__format__(spec): This happens when an application uses
a string such as f"{someobject:spec}", a function such
as format(someobject, spec), or something equivalent to
the "{0:spec}".format(someobject) string method.

Note that an f-string f"{item!r}" with !r or a "{0!r}".format(item) format
method with !r doesn't use the object's __format__() method. The portion after ! is
a conversion specification.
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A conversion specification of !r uses the repr() function, which is generally
implemented by an object's __repr__() method. Similarly, a conversion
specification of !s uses the str() function, which is implemented by the __str__()
method. The !a conversion specification uses the ascii() function. The ascii()
function generally depends on the __repr__() method to provide the underlying
representation. 

With a specification of "", a sensible implementation is return str(self). This
provides an obvious consistency between the various string representations of an
object.

The format specification provided as the argument value to __format__() will be all
the text after ":" in the original format string. When we write f"{value:06.4f}",
06.4f is the format specification that applies to the item value in the string to be
formatted.

Section 2.4.3 of the Python Language Reference defines the formatted string (f-string)
mini-language. Each format specification has the following syntax:

[[fill]align][sign][#][0][width][grouping_option][.precision][type]

We can parse these potentially complex standard specifications with a regular
expression (RE), as shown in the following code snippet:

re.compile(
    r"(?P<fill_align>.?[\<\>=\^])?"
    r"(?P<sign>[-+ ])?"
    r"(?P<alt>#)?"
    r"(?P<padding>0)?"
    r"(?P<width>\d*)"
    r"(?P<grouping_option>,)?"
    r"(?P<precision>\.\d*)?"
    r"(?P<type>[bcdeEfFgGnosxX%])?")

This RE will break the specification into eight groups. The first group will have both
the fill and alignment fields from the original specification. We can use these
groups to work out the formatting for the attributes of classes we've defined.

In some cases, this very general format specification mini-language might not apply
to the classes that we've defined. This leads to a need to define a format specification
mini-language and process it in the customized __format__() method.
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As an example, here's a trivial language that uses the %r character to show us the rank
and the %s character to show us the suit of an instance of the Card class. The %%
character becomes % in the resulting string. All other characters are repeated literally.

We could extend our Card class with formatting, as shown in the following code
snippet:

def __format__(self, format_spec: str) -> str:
    if format_spec == "":
        return str(self)
    rs = (
        format_spec.replace("%r", self.rank)
                   .replace("%s", self.suit)
                   .replace("%%", "%")
    )
    return rs

This definition checks for a format specification. If there's no specification, then the
str() function is used. If a specification was provided, a series of replacements is
done to fold rank, suit, and any % characters into the format specification, turning it
into the output string.

This allows us to format cards as follows:

print( "Dealer Has {0:%r of %s}".format( hand.dealer_card) )

The format specification ("%r of %s") is passed to our __format__() method as
the format parameter. Using this, we're able to provide a consistent interface for the
presentation of the objects of the classes that we've defined.

Alternatively, we can define things as follows:

    default_format = "some specification"
    def __str__(self) -> str:
        return self.__format__(self.default_format)
    def __format__(self, format_spec: str) -> str:
        if format_spec == "":
            format_spec = self.default_format
       # process using format_spec.

This has the advantage of putting all string presentations into the __format__()
method instead of spreading them between __format__() and __str__(). This
does have a disadvantage, because we don't always need to implement
__format__(), but we almost always need to implement __str__().
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Nested formatting specifications
The string.format() method can handle nested instances of {} to perform simple
keyword substitution into the format specification itself. This replacement is done to
create the final format string that's passed to our class's __format__() method. This
kind of nested substitution simplifies some kinds of relatively complex numeric
formatting by parameterizing an otherwise generic specification.

The following is an example where we've made width easy to change in the format
parameter:

width = 6
for hand, count in statistics.items():
    print(f"{hand} {count:{width}d}")

We've defined a generic format, f"{hand} {count:{width}d}", which requires a
width parameter to make it into a final format specification. In the example, width is
6, which means that the final format will be f"{hand} {count:6d}". The expanded
format string, "6d" will be the specification provided to the __format__() method
of the underlying object.

Collections and delegating format
specifications
When formatting a complex object that includes a collection, we have two formatting
issues: how to format the overall object and how to format the items in the collection.
When we look at Hand, for example, we see that we have a collection of individual
Cards objects. We'd like to have Hand delegate some formatting details to the
individual Card instances in the Hand collection.

The following is a __format__() method that applies to Hand:

def __format__(self, spec: str) -> str:
    if spec == "":
        return str(self)
    return ", ".join(f"{c:{spec}}" for c in self.cards)

The spec parameter will be used for each individual Card instance within the Hand
collection. f-string f"{c:{spec}}" uses the nested format specification technique to
push the spec string into the format. This creates a final format, which will be
applied to each Card instance.
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Given this method, we can format a Hand object, player_hand, as follows:

>>> d = Deck()
>>> h = Hand(d.pop(), d.pop(), d.pop())
>>> print("Player: {hand:%r%s}".format(hand=h))
Player: K♦, 9♥

This string in the print() function used the format() method of the Hand object.
This passed the %r%s format specification to each Card instance of the Hand object to
provide the desired formatting for each card of the hand.

The __hash__() method
The built-in hash() function invokes the __hash__() method of a given object. This
hash is a calculation that reduces a (potentially complex) value to a small integer
value. Ideally, a hash reflects all the bits of the source value. Other hash calculations –
often used for cryptographic purposes – can produce very large values.

Python includes two hash libraries. The cryptographic-quality hash functions are in
hashlib. The zlib module also has two high-speed hash functions: adler32() and
crc32(). For the most common cases, we don't use any of these library functions.
They're only needed to hash extremely large, complex objects.

The hash() function (and the associated __hash__() method) is used to create a
small integer key that is used to work with collections, such as set, frozenset, and
dict. These collections use the hash value of an immutable object to rapidly locate
the object in the collection.

Immutability is important here; we'll mention it many times. Immutable objects don't
change their state. The number 3, for example, cannot meaningfully change state. It's
always 3. Similarly, more complex objects can have an immutable state. Python
strings are immutable. These can then be used as keys to mappings and sets.

The default __hash__() implementation inherited from an object returns a value
based on the object's internal ID value. This value can be seen with the id() function,
as follows:

>>> x = object()
>>> hash(x)
280696151
>>> id(x)
4491138416
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>>> id(x) / 16
280696151.0

The id values shown in this example will vary from system to system.

From this, we can see that, on the author's system, the hash value is the object's
id//16. This detail might vary from platform to platform.

What's essential is the strong correlation between the internal ID and the default
__hash__() method. This means that the default behavior is for each object to be
hashable as well as utterly distinct, even if the objects appear to have the same value.

We'll need to modify this if we want to coalesce different objects with the same value
into a single hashable object. We'll look at an example in the next section, where we
would like two instances of a single Card instance to be treated as if they were the
same object.

Deciding what to hash
Not every object should provide a hash value. Specifically, if we're creating a class of
stateful, mutable objects, the class should never return a hash value. There should not
be an implementation of the __hash__() method.

Immutable objects, on the other hand, might sensibly return a hash value so that the
object can be used as the key in a dictionary, or as a member of a set. In this case, the
hash value needs to parallel the way the test for equality works. It's bad to have
objects that claim to be equal and have different hash values. The reverse—objects
with the same hash that are actually not equal – is acceptable and expected. Several
distinct objects may happen to have overlapping hash values.

There are three tiers of equality comparison:

The same hash value: This means that two objects could be equal. The hash
value provides us with a quick check for likely equality. If the hash value is
different, the two objects cannot possibly be equal, nor can they be the
same object.
Compare as equal: This means that the hash values must also have been
equal. This is the definition of the == operator. The objects may be the same
object.
Same ID value: This means that they are the same object. They also
compare as equal and will also have the same hash value. This is the
definition of the is operator.
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The Fundamental Law of Hash (FLH) has two parts:

Objects that compare as equal have the same hash value.
Objects with the same hash value may actually be distinct and not compare
as equal.

We can think of a hash comparison as being the first step in an equality test. This is a
very fast comparison to determine whether subsequent equality checks are
necessary. 

The __eq__() method, which we'll also look at in the section on comparison
operators, is intimately tied up with hashing. This provides a potentially slow field-
by-field comparison between objects.

Here's a contrived example of two distinct numeric values with the same hash value:

>>> v1 = 123_456_789
>>> v2 = 2_305_843_009_337_150_740
>>> hash(v1)
123456789
>>> hash(v2)
123456789
>>> v2 == v1
False

Notice that a v1 integer, equal to 123,456,789, has a hash value equal to itself. This
is typical of integers up to the hash modulus. The v2 integer has the same hash, but a
different actual value.

This hash collision is expected. It's part of the known processing overhead when
creating sets or dictionaries. There will be unequal objects that are reduced to
coincidentally equal hash values. 

There are three use cases for defining equality tests and hash values via the __eq__()
and __hash__() method functions:

Immutable objects: These are stateless objects of types such as tuples,
namedtuples, and frozensets that cannot be updated. We have two choices:

Define neither __hash__() nor __eq__(). This means
doing nothing and using the inherited definitions. In this
case, __hash__() returns a trivial function of the ID value
for the object, and __eq__() compares the ID values. 
Define both __hash__() and __eq__(). Note that we're
expected to define both for an immutable object.
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Mutable objects: These are stateful objects that can be modified internally.
We have one design choice:

Define __eq__() but set __hash__ to None. These cannot be
used as dict keys or items in sets.

The default behavior for immutable objects will be undesirable when an application
requires two distinct objects to compare as equal. For example we might want two
instances of Card(1, Clubs) to test as equal and compute the same hash; this will
not happen by default. For this to work, we'll need to override the __hash__() and
__eq__() methods.

Note that there's an additional possible combination: defining __hash__() but using
a default definition for __eq__(). This is simply a waste of code, as the default
__eq__() method is the same as the is operator. Using the default __hash__()
method would have involved writing less code for the same behavior.

We'll look at each of these three situations in detail.

Inheriting definitions for immutable objects
Let's see how default definitions operate. The following is a simple class hierarchy
that uses the default definitions of __hash__() and __eq__():

class Card:
    insure = False

    def __init__(self, rank: str, suit: "Suit", hard: int, soft: int)
-> None:
        self.rank = rank
        self.suit = suit
        self.hard = hard
        self.soft = soft

    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(suit={self.suit!r},
rank={self.rank!r})"

    def __str__(self) -> str:
        return f"{self.rank}{self.suit}"

class NumberCard(Card):

    def __init__(self, rank: int, suit: "Suit") -> None:
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        super().__init__(str(rank), suit, rank, rank)

class AceCard(Card):
    insure = True

    def __init__(self, rank: int, suit: "Suit") -> None:
        super().__init__("A", suit, 1, 11)

class FaceCard(Card):

    def __init__(self, rank: int, suit: "Suit") -> None:
        rank_str = {11: "J", 12: "Q", 13: "K"}[rank]
        super().__init__(rank_str, suit, 10, 10)

This is a class hierarchy for philosophically immutable objects. We haven't taken care
to implement the special methods that prevent the attributes from getting updated.
We'll look at attribute access in the next chapter. Here's the definition of the
enumerated class of Suit values:

from enum import Enum
class Suit(str, Enum):
    Club = "\N{BLACK CLUB SUIT}"
    Diamond = "\N{BLACK DIAMOND SUIT}"
    Heart = "\N{BLACK HEART SUIT}"
    Spade = "\N{BLACK SPADE SUIT}"

Let's see what happens when we use this class hierarchy:

>>> c1 = AceCard(1, Suit.Club)
>>> c2 = AceCard(1, Suit.Club)

We defined two instances of what appear to be the same Card instance. We can check
the id() values as shown in the following code snippet:

>>> id(c1), id(c2)
(4492886928, 4492887208)

They have different id() numbers; this means that they're distinct objects. This meets
our expectations.

We can check to see whether they're the same by using the is operator as shown in
the following code snippet:

>>> c1 is c2
False
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The is test is based on the id() numbers; it shows us that they are, indeed, separate
objects.

We can see that their hash values are different from each other:

>>> hash(c1), hash(c2)
(-9223372036575077572, 279698247)

These hash values come directly from the id() values. This was our expectation for
the inherited methods. In this implementation, we can compute the hash from the
id() function, as shown in the following code snippet:

>>> id(c1) / 16
268911077.0
>>> id(c2) / 16
268911061.0

As the hash values are different, they must not compare as equal. While this fits the
definitions of hash and equality, it violates our expectations for instances of this class.

We created the two objects with the same attributes. The following is an equality
check:

>>> c1 == c2
False

Even though the objects have the same attribute values, they don't compare as equal.
In some applications, this might not be good. For example, when accumulating
statistical counts of dealer cards, we don't want to have six counts for one card
because the simulation used a six-deck shoe.

We can see that these are proper immutable objects. The following example shows
that these objects can be put into a set:

>>> set([c1, c2])
{AceCard(suit=<Suit.Club: '♣'>, rank='A'), AceCard(suit=<Suit.Club:
'♣'>, rank='A')}

This is the documented behavior from the Standard Library Reference documentation.
By default, we'll get a __hash__() method based on the ID of the object so that each
instance appears unique. However, this isn't always what we want.
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Overriding definitions for immutable objects
The following is a simple class hierarchy that provides us with definitions
of __hash__() and __eq__():

import sys
class Card2:
    insure = False

    def __init__(self, rank: str, suit: "Suit", hard: int, soft: int)
-> None:
        self.rank = rank
        self.suit = suit
        self.hard = hard
        self.soft = soft

    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(suit={self.suit!r},
rank={self.rank!r})"

    def __str__(self) -> str:
        return f"{self.rank}{self.suit}"

    def __eq__(self, other: Any) -> bool:
        return (
            self.suit == cast(Card2, other).suit
            and self.rank == cast(Card2, other).rank
        )

    def __hash__(self) -> int:
        return (hash(self.suit) + 4*hash(self.rank)) %
sys.hash_info.modulus

class AceCard2(Card2):
    insure = True

    def __init__(self, rank: int, suit: "Suit") -> None:
        super().__init__("A", suit, 1, 11)

This object is immutable in principle. There's no formal mechanism to the immutable
instances. We'll look at how to prevent attribute value changes in Chapter 4, Attribute
Access, Properties, and Descriptors.

Also, note that the preceding code omits two of the subclasses that didn't change
significantly from the previous example, FaceCard and NumberCard.



Integrating Seamlessly - Basic Special Methods Chapter 3

[ 79 ]

The __eq__() method has a type hint, which suggests that it will compare an object
of any class and return a bool result. The implementation uses a cast() function to
provide a hint to mypy that the value of other will always be an instance of Card2 or
a runtime type error can be raised. The cast() function is part of mypy's type
hinting and has no runtime effect of any kind. The function compares two essential
values: suit and rank. It doesn't need to compare the hard and soft values; they're
derived from rank.

The rules for Blackjack make this definition a bit suspicious. Suit doesn't actually
matter in Blackjack. Should we merely compare rank? Should we define an additional
method that compares rank only? Or, should we rely on the application to compare
rank properly? There's no best answer to these questions; these are potential design
trade-offs.

The __hash__() function computes a unique value pattern from the two essential
attributes. This computation is based on the hash values for the rank and the suit. The
rank will occupy the most significant bits of the value, and suit will be the least
significant bits. This tends to parallel the way that cards are ordered, with rank being
more important than suit. The hash values must be computed using
the sys.hash_info.modulus value as a modulus constraint.

Let's see how objects of these classes behave. We expect them to compare as equal
and behave properly with sets and dictionaries. Here are two objects:

>>> c1 = AceCard2(1, '♣')
>>> c2 = AceCard2(1, '♣')

We defined two instances of what appear to be the same card. We can check the ID
values to be sure that they're distinct objects:

>>> id(c1), id(c2)
(4302577040, 4302577296)
>>> c1 is c2
False

These have different id() numbers. When we test with the is operator, we see that
they're distinct objects. This fits our expectations so far.

Let's compare the hash values:

>>> hash(c1), hash(c2)
(1259258073890, 1259258073890)

The hash values are identical. This means that they could be equal.
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The equality operator shows us that they properly compare as equal:

>>> c1 == c2
True

Because the objects produce a hash value, we can put them into a set, as follows:

>>> set([c1, c2])
{AceCard2(suit=<Suit.Club: '♣'>, rank='A')}

Since the two objects create the same hash value and test as equal, they appear to be
two references to the same object. Only one of them is kept in the set. This meets our
expectations for complex immutable objects. We had to override both special methods
to get consistent, meaningful results.

Overriding definitions for mutable objects
This example will continue using the Cards class. The idea of mutable cards is
strange, perhaps even wrong. However, we'd like to apply just one small tweak to the
previous examples.

The following is a class hierarchy that provides us with the definitions
of __hash__() and __eq__(), appropriate for mutable objects. The parent class is as
follows:

class Card3:
    insure = False

    def __init__(self, rank: str, suit: "Suit", hard: int, soft: int)
-> None:
        self.rank = rank
        self.suit = suit
        self.hard = hard
        self.soft = soft

    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(suit={self.suit!r},
rank={self.rank!r})"

    def __str__(self) -> str:
        return f"{self.rank}{self.suit}"

    def __eq__(self, other: Any) -> bool:
        return (
            self.suit == cast(Card3, other).suit
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            and self.rank == cast(Card3, other).rank
        )

A subclass of Card3 is shown in the following example:

class AceCard3(Card3):
    insure = True

    def __init__(self, rank: int, suit: "Suit") -> None:
        super().__init__("A", suit, 1, 11)

Let's see how objects of these classes behave. We expect them to compare as equal but
not work at all with sets or dictionaries. We'll create two objects as follows:

>>> c1 = AceCard3(1, '♣')
>>> c2 = AceCard3(1, '♣')

We've defined two instances of what appear to be the same card.

We'll look at their ID values to ensure that they really are distinct:

>>> id(c1), id(c2)
(4302577040, 4302577296)

No surprise here. Now, we'll see if we can get hash values:

>>> hash(c1), hash(c2)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'AceCard3'

The Card3 objects can't be hashed. They won't provide a value for the hash()
function. This is the expected behavior. However, we can perform equality
comparisons, as shown in the following code snippet:

>>> c1 == c2
True

The equality test works properly, allowing us to compare cards. They just can't be
inserted into sets or used as keys in a dictionary.

The following is what happens when we try to put them into a set:

>>> set([c1, c2])
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'AceCard3'
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We get a proper exception when trying to do so.

Clearly, this is not a proper definition for something that – in real life – is immutable,
such as a card. This style of definition is more appropriate for stateful objects, such as
Hand, where the content of the hand is always changing. We'll provide you with a
second example of stateful objects in the following section.

Making a frozen hand from a mutable hand
If we want to perform a statistical analysis of specific Hand instances, we might want
to create a dictionary that maps a Hand instance to a count. We can't use a mutable
Hand class as the key in a mapping. We can, however, parallel the design of set and
frozenset and create two classes: Hand and FrozenHand. This allows us to freeze a
Hand instance by creating FrozenHand; the frozen version is immutable and can be
used as a key in a dictionary. 

The following is a simple Hand definition:

class Hand:

    def __init__(self, dealer_card: Card2, *cards: Card2) -> None:
        self.dealer_card = dealer_card
        self.cards = list(cards)

    def __str__(self) -> str:
        return ", ".join(map(str, self.cards))

    def __repr__(self) -> str:
        cards_text = ", ".join(map(repr, self.cards))
        return f"{self.__class__.__name__}({self.dealer_card!r},
{cards_text})"

    def __format__(self, spec: str) -> str:
        if spec == "":
            return str(self)
        return ", ".join(f"{c:{spec}}" for c in self.cards)

    def __eq__(self, other: Any) -> bool:
        if isinstance(other, int):
            return self.total() == cast(int, other)
        try:
            return (
                self.cards == cast(Hand, other).cards
                and self.dealer_card == cast(Hand, other).dealer_card
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            )
        except AttributeError:
            return NotImplemented

This is a mutable object; it does not compute a hash value, and can't be used in a set
or dictionary key. It does have a proper equality test that compares two hands. As
with previous examples, the parameter to the __eq__() method has a type hint of
Any, and a do-nothing cast() function is used to tell the mypy program that the
argument values will always be instances of Hand. The following is a frozen version
of Hand:

import sys

class FrozenHand(Hand):

    def __init__(self, *args, **kw) -> None:
        if len(args) == 1 and isinstance(args[0], Hand):
            # Clone a hand
            other = cast(Hand, args[0])
            self.dealer_card = other.dealer_card
            self.cards = other.cards
        else:
            # Build a fresh Hand from Card instances.
            super().__init__(*args, **kw)

    def __hash__(self) -> int:
        return sum(hash(c) for c in self.cards) %
sys.hash_info.modulus

The frozen version has a constructor that will build one Hand class from another Hand
class. It defines a __hash__() method that sums the card's hash value, which is
limited to the sys.hash_info.modulus value. For the most part, this kind of
modulus-based calculation works out well for computing the hashes of composite
objects. We can now use these classes for operations such as the following code
snippet:

from collections import defaultdict
stats = defaultdict(int)

d = Deck()
h = Hand(d.pop(), d.pop(), d.pop())
h_f = FrozenHand(h)
stats[h_f] += 1

We've initialized a statistics dictionary, stats, as a defaultdict dictionary that can
collect integer counts. We could also use a collections.Counter object for this.
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By freezing an instance of the Hand class, we can compute a hash and use it as a key
in a dictionary. This makes it easy to create a defaultdict for collecting counts of
each hand that actually gets dealt.

The __bool__() method
Python has a pleasant definition of falsity. The reference manual lists a large number
of values that will test as equivalent to False. This includes things such as False, 0,
'', (), [], and {}. Objects not included in this list will test as equivalent to True.

Often, we'll want to check for an object being not empty with a simple statement, as
follows:

if some_object:
    process(some_object)

Under the hood, this is the job of the bool() built-in function. This function depends
on the __bool__() method of a given object.

The default __bool__() method returns as True. We can see this with the following
code:

>>> x = object()
>>> bool(x)
True

For most classes, this is perfectly valid. Most objects are not expected to be False. For
collections, however, the default behavior is not appropriate. An empty collection
should be equivalent to False. A non-empty collection should return True. We
might want to add a method like this to our Deck objects.

If the implementation of a collection involves wrapping a list, we might have
something as shown in the following code snippet:

def __bool__(self):
    return bool(self._cards)

This delegates the Boolean function to the internal self._cards collection.

If we're extending a list, we might have something as follows:

def __bool__(self):
    return super().__bool__(self)
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This delegates to the superclass definition of the __bool__() function.

In both cases, we're specifically delegating the Boolean test. In the wrap case, we're
delegating to the collection. In the extend case, we're delegating to the superclass.
Either way, wrap or extend, an empty collection will be False. This will give us a
way to see whether the Deck object has been entirely dealt and is empty.

We can do this as shown in the following code snippet:

d = Deck()
while d:
    card = d.pop()
    # process the card

This loop will deal all the cards without getting an IndexError exception when the
deck has been exhausted.

The __bytes__() method
There are relatively few occasions when you will need to transform an object into
bytes. Bytes representation is used for the serialization of objects for persistent storage
or transfer. We'll look at this in detail in Chapter 10, Serializing and Saving - JSON,
YAML, Pickle, CSV and XML through Chapter 14, Configuration Files and Persistence.

In the most common situation, an application will create a string representation, and
the built-in encoding capabilities of the Python IO classes can be used to transform
the string into bytes. This works perfectly for almost all situations. The main
exception would be when we're defining a new kind of string. In which case, we'd
need to define the encoding of that string.

The bytes() function does a variety of things, depending on the arguments:

bytes(integer): This returns an immutable bytes object with the given
number of 0x00 values.
bytes(string): This will encode the given string into bytes. Additional
parameters for encoding and error handling will define the details of the
encoding process.
bytes(something): This will invoke something.__bytes__() to create
a bytes object. The encoding of error arguments will not be used here.
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The base object class does not define __bytes__(). This means our classes don't
provide a __bytes__() method by default.

There are some exceptional cases where we might have an object that will need to be
encoded directly into bytes before being written to a file. It's often simpler to work
with strings and allow the str type to produce bytes for us. When working with
bytes, it's important to note that there's no simple way to decode bytes from a file or
interface. The built-in bytes class will only decode strings, not our unique, new
objects. This means that we'll need to parse the strings that are decoded from the
bytes. Or, we might need to explicitly parse the bytes using the struct module and
create our unique objects from the parsed values.

We'll look at encoding and decoding the Card2 instance into bytes. As there are only
52 card values, each card could be packed into a single byte. However, we've elected
to use a character to represent suit and a character to represent rank. Further, we'll
need to properly reconstruct the subclass of Card2, so we have to encode several
things:

The subclass of Card2 (AceCard2, NumberCard2, and FaceCard2)
The parameters to the subclass-defined __init__() methods.

Note that some of our alternative __init__() methods will transform a numeric
rank into a string, losing the original numeric value. For the purposes of reversible
byte encoding, we need to reconstruct this original numeric rank value.

The following is an implementation of __bytes__(), which returns a utf-8
encoding of the Card2 subclass name, rank, and suit:

def __bytes__(self) -> bytes:
    class_code = self.__class__.__name__[0]
    rank_number_str = {"A": "1", "J": "11", "Q": "12", "K": "13"}.get(
        self.rank, self.rank
    )
    string = f"({' '.join([class_code, rank_number_str, self.suit])})"
    return bytes(string, encoding="utf-8")

This works by creating a string representation of the Card2 object. The representation
uses the () objects to surround three space-separated values: code that represents the
class, a string that represents the rank, and the suit. This string is then encoded into
bytes. 
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The following snippet shows how bytes representation looks:

>>> c1 = AceCard2(1, Suit.Club)
>>> bytes(c1)
b'(A 1 \xe2\x99\xa3)'

When we are given a pile of bytes, we can decode the string from the bytes and then
parse the string into a new Card2 object. The following is a method that can be used
to create a Card2 object from bytes:

def card_from_bytes(buffer: bytes) -> Card2:
    string = buffer.decode("utf8")
    try:
        if not (string[0] == "(" and string[-1] == ")"):
            raise ValueError
        code, rank_number, suit_value = string[1:-1].split()
        if int(rank_number) not in range(1, 14):
            raise ValueError
        class_ = {"A": AceCard2, "N": NumberCard2, "F":
FaceCard2}[code]
        return class_(int(rank_number), Suit(suit_value))
    except (IndexError, KeyError, ValueError) as ex:
        raise ValueError(f"{buffer!r} isn't a Card2 instance")

In the preceding code, we've decoded the bytes into a string. We checked the string
for required (). We've then parsed the string into three individual values using
string[1:-1].split(). From those values, we converted the rank to an integer of
the valid range, located the class, and built an original Card2 object.

We can reconstruct a Card2 object from a stream of bytes as follows:

>>> data = b'(N 5 \xe2\x99\xa5)'
>>> c2 = card_from_bytes(data)
>>> c2
NumberCard2(suit=<Suit.Heart: '♥'>, rank='5')

It's important to note that an external bytes representation is often challenging to
design. In all cases, the bytes are the representation of the state of an object. Python
already has a number of representations that work well for a variety of class
definitions.

It's often better to use the pickle or json modules than to invent a low-level bytes
representation of an object. This will be the subject of Chapter 10, Serializing and
Saving - JSON, YAML, Pickle, CSV, and XML.
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The comparison operator methods
Python has six comparison operators. These operators have special method
implementations. According to the documentation, mapping works as follows:

x<y is implemented by x.__lt__(y).
x<=y is implemented by x.__le__(y).
x==y is implemented by x.__eq__(y).
x!=y is implemented by x.__ne__(y).
x>y is implemented by x.__gt__(y).
x>=y is implemented by x.__ge__(y).

We'll return to comparison operators again when looking at numbers in Chapter 8,
Creating Numbers.

There's an additional rule regarding what operators are actually implemented that's
relevant here. These rules are based on the idea that the object's class on the left-hand
side of an operator defines the required special method. If it doesn't, Python can try
an alternative operation by changing the order and considering the object on the
right-hand side of the operator.

Here are the two basic rules
First, the operand on the left-hand side of the operator is checked for
an implementation: A<B means A.__lt__(B).
Second, the operand on the right-hand side of the operator is
checked for a reversed implementation: A<B means B.__gt__(A).
The rare exception to this occurs when the right-hand operand is a
subclass of the left-hand operand; then, the right-hand operand is
checked first to allow a subclass to override a superclass.

We can see how this works by defining a class with only one of the operators defined
and then using it for other operations.

The following is a partial class that we can use:

class BlackJackCard_p:

    def __init__(self, rank: int, suit: Suit) -> None:
        self.rank = rank
        self.suit = suit

    def __lt__(self, other: Any) -> bool:
        print(f"Compare {self} < {other}")
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        return self.rank < cast(BlackJackCard_p, other).rank

    def __str__(self) -> str:
        return f"{self.rank}{self.suit}"

This follows the Blackjack comparison rules, where suits don't matter and cards are
only compared by their rank. We've omitted all but one of the comparison methods to
see how Python will fall back when an operator is missing. This class will allow us to
perform < comparisons. Interestingly, Python can also use this to perform >
comparisons by switching the argument order. In other words, . This
is the mirror reflection rule; we'll see it again in Chapter 8, Creating Numbers.

We see this when we try to evaluate different comparison operations. We'll create two
BlackJackCard_p instances and compare them in various ways, as shown in the
following code snippet:

>>> two = BlackJackCard_p(2, Suit.Spade)
>>> three = BlackJackCard_p(3, Suit.Spade)
>>> two < three
Compare 2♠ < 3♠
True
>>> two > three
Compare 3♠ < 2♠
False
>>> two == three
False

This example shows that a comparison using the < operator is implemented by the
defined __lt__() method, as expected. When using the > operator, then the
available __lt__() method is also used, but with the operands reversed.

What happens when we try to use an operator such as <=? This shows the exception:

>>> two <= three
Traceback (most recent call last):
 File "/Users/slott/miniconda3/envs/py37/lib/python3.7/doctest.py",
line 1329, in __run
 compileflags, 1), test.globs)
 File "<doctest __main__.__test__.test_blackjackcard_partial[5]>",
line 1, in <module>
 print("{0} <= {1} :: {2!r}".format(two, three, two <= three)) #
doctest: +IGNORE_EXCEPTION_DETAIL
TypeError: '<=' not supported between instances of 'BlackJackCard_p'
and 'BlackJackCard_p'

From this, we can see where two < three maps to two.__lt__(three).
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However, for two > three, there's no __gt__() method defined; Python uses
three.__lt__(two) as a fallback plan.

By default, the __eq__() method is inherited from object. You will recall that the
default implementation compares the object IDs and all unique objects will compare
as not equal. The objects participate in == tests as follows:

>>> two_c = BlackJackCard_p(2, Suit.Club)
>>> two_c == BlackJackCard_p(2, Suit.Club)
False

We can see that the results aren't quite what we expect. We'll often need to override
the default implementation of __eq__().

There's no logical connection among the operators either. Mathematically, we can
derive all the necessary comparisons from just two. Python doesn't do this
automatically. Instead, Python handles the following four simple reflection pairs by
default:

This means that we must, at a minimum, provide one from each of the four pairs. For
example, we could provide __eq__(), __ne__(), __lt__(), and __le__().

The @functools.total_ordering decorator can help overcome the default
limitation. This decorator deduces the rest of the comparisons from just __eq__()
and one of these: __lt__(), __le__(), __gt__(), or __ge__(). This provides all
the necessary comparisons. We'll revisit this in Chapter 8, Creating Numbers.

Designing comparisons
There are two considerations when defining comparison operators:

The obvious question of how to compare two objects of the same class.
The less obvious question of how to compare objects of different classes.
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For a class with multiple attributes, we often have a profound ambiguity when
looking at the comparison operators. It might not be perfectly clear which of the
available attributes participate in the comparison.

Consider the humble playing card (again!). An expression, such as card1 == card2,
is clearly intended to compare both rank and suit, right? Is that always true? After
all, suit doesn't matter in games such as Blackjack.

If we want to decide whether a Hand object can be split, we must decide whether the
split operation is valid. In Blackjack, a hand can only be split if the two cards are of the
same rank. The implementation we chose for equality testing will then change how
we implement the rules for splitting a hand.

This leads to some alternatives. In one case, the use of rank is implicit; the other
requires it to be explicit. The following is the first code snippet for rank comparison:

if hand.cards[0] == hand.cards[1]

The following is the second code snippet for rank comparison:

if hand.cards[0].rank == hand.cards[1].rank

While one is shorter, brevity is not always best. If we define equality to only consider
rank, we may have trouble creating unit tests. If we use only rank, then assert
expectedCard == actualCard will tolerate a wide variety of cards when a unit
test should be focused on exactly correct cards.

An expression such as card1 <= 7 is clearly intended to compare rank. Should the
ordering operators have slightly different semantics than equality testing?

There are more trade-off questions that stem from a rank-only comparison. How
could we order cards by suit if this attribute is not used for ordering comparisons?

Furthermore, equality checks must parallel the hash calculation. If we've included
multiple attributes in the hash, we also need to include them in the equality
comparison. In this case, it appears that equality (and inequality) between cards must
be full Card comparisons, because we're hashing the Card values to include rank and
suit.

The ordering comparisons between Card, however, could be rank only. Comparisons
against integers could similarly be rank only. For the special case of detecting a split,
hand.cards[0].rank == hand.cards[1].rank could be used, because it states
the rule for a valid split explicitly.
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Implementation of a comparison of objects of
the same class
We'll look at a simple same-class comparison by looking at a more complete
BlackJackCard class:

class BlackJackCard:

    def __init__(self, rank: int, suit: Suit, hard: int, soft: int) ->
None:
        self.rank = rank
        self.suit = suit
        self.hard = hard
        self.soft = soft

    def __lt__(self, other: Any) -> bool:
        if not isinstance(other, BlackJackCard):
            return NotImplemented
        return self.rank < other.rank

    def __le__(self, other: Any) -> bool:
        try:
            return self.rank <= cast(BlackJackCard, other).rank
        except AttributeError:
            return NotImplemented

    def __gt__(self, other: Any) -> bool:
        if not isinstance(other, BlackJackCard):
            return NotImplemented
        return self.rank > other.rank

    def __ge__(self, other: Any) -> bool:
        try:
            return self.rank >= cast(BlackJackCard, other).rank
        except AttributeError:
            return NotImplemented

    def __eq__(self, other: Any) -> bool:
        if not isinstance(other, BlackJackCard):
            return NotImplemented
        return (self.rank == other.rank
                and self.suit == other.suit)

    def __ne__(self, other: Any) -> bool:
        if not isinstance(other, BlackJackCard):
            return NotImplemented
        return (self.rank != other.rank
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                or self.suit != other.suit)

    def __str__(self) -> str:
        return f"{self.rank}{self.suit}"

    def __repr__(self) -> str:
        return (f"{self.__class__.__name__}"
                f"(rank={self.rank!r}, suit={self.suit!r}, "
                f"hard={self.hard!r}, soft={self.soft!r})")

This example class defines all six comparison operators.

The various comparison methods use two kinds of type checking: class and protocol:

Class-based type checking uses isinstance() to check the class
membership of the object. When the check fails, the method returns the
special NotImplemented value; this allows the other operand to
implement the comparison. The isinstance() check also informs mypy
of a type constraint on the objects named in the expression.
Protocol-based type checking follows duck typing principles. If the object
supports the proper protocol, it will have the necessary attributes. This is
shown in the implementation of the __le__() and __ge__() methods.
A try: block is used to wrap the attempt and provide a useful
NotImplemented value if the protocol isn't available in the object. In this
case, the cast() function is used to inform mypy that only objects with the
expected class protocol will be used at runtime. 

There's a tiny conceptual advantage to checking for support for a given protocol
instead of membership in a class: it avoids needlessly over-constraining operations.
It's entirely possible that someone might want to invent a variation on a card that
follows the protocol of BlackJackCard, but is not defined as a proper subclass of
BlackjackCard. Using isinstance() checks might prevent an otherwise valid
class from working correctly.

The protocol-focused try: block might allow a class that coincidentally happens to
have a rank attribute to work. The risk of this situation turning into a difficult-to-
solve problem is nil, as the class would likely fail everywhere else it was used in this
application. Also, who compares an instance of Card with a class from a financial
modeling application that happens to have a rank-ordering attribute?

In future examples, we'll focus on protocol-based comparison using a try: block.
This tends to offer more flexibility. In cases where flexibility is not desired, the
isinstance() check can be used.
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In our examples, the comparison uses cast(BlackJackCard, other) to insist to
mypy that the other variable  conforms to the BlackjackCard protocol. In many
cases, a complex class may have a number of protocols defined by various kinds of
mixins, and a cast() function will focus on the essential mixin, not the overall class.

Comparison methods explicitly return NotImplemented to inform Python that this
operator isn't implemented for this type of data. Python will try reversing the
argument order to see whether the other operand provides an implementation. If no
valid operator can be found, then a TypeError exception will be raised.

We omitted the three subclass definitions and the factory function, card21(). They're
left as an exercise.

We also omitted intraclass comparisons; we'll save that for the next section. With this
class, we can compare cards successfully. The following is an example where we
create and compare three cards:

>>> two = card21(2, "♠")
>>> three = card21(3, "♠")
>>> two_c = card21(2, "♣")

Given those three BlackJackCard instances, we can perform a number of
comparisons, as shown in the following code snippet:

>>> f"{two} == {three} is {two == three}"
2♠ == 3♠ is False
>>> two.rank == two_c.rank
True
>>> f"{two} < {three} is {two < three}"
2♠ < 3♠ is True

The definitions seem to have worked as expected.

Implementation of a comparison of the objects
of mixed classes
We'll use the BlackJackCard class as an example to see what happens when we
attempt comparisons where the two operands are from different classes.

The following is a Card instance that we can compare against the int values:

>>> two = card21(2, "♠")
>>> two < 2
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Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unorderable types: Number21Card() < int()
>>> two > 2
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unorderable types: Number21Card() > int()

This is what we expected: the subclass of BlackJackCard, Number21Card, doesn't
provide the required special methods to implement a comparison against integers, so
there's a TypeError exception. However, consider the following two examples:

>>> two == 2
False
>>> 2 == two
False

Why do these provide responses? When confronted with a NotImplemented value,
Python will reverse the operands. In this case, the integer value, 2, defines
the int.__eq__() method, which tolerates objects of an unexpected class.

Hard totals, soft totals, and polymorphism
Two classes are polymorphic when they share common attributes and methods. One
common example of this is objects of the int and float classes. Both have
__add__() methods to implement the + operator. Another example of this is that
most collections offer a __len__() method to implement the len() function. The
results are produced in different ways, depending on the implementation details.

Let's define Hand so that it will perform a meaningful mixed-class comparison among
several subclasses of Hand. As with same-class comparisons, we have to determine
precisely what we're going to compare. We'll look at the following three cases:

Equality comparisons between Hand instances should compare all cards in
the collection. Two hands are equal if all of the cards are equal.
Ordering comparisons between two Hand instances should compare an
attribute of each Hand object. In the case of Blackjack, we'll want to compare
the hard total or soft total of the hand's points.
Equality comparisons against an int value should compare the Hand
object's points against the int value. In order to have a total, we have to
sort out the subtlety of hard totals and soft totals in the game of Blackjack.
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When there's an ace in a hand, then the following are two candidate totals:

The soft total treats an ace as 11. 
The hard total treats an ace as 1. If the soft total is over 21, then only the
hard total is relevant to the game.

This means that the hand's total isn't a simple sum of the cards.

We have to determine whether there's an ace in the hand first. Given that
information, we can determine whether there's a valid (less than or equal to 21) soft
total. Otherwise, we'll fall back on the hard total.

One symptom of Pretty Poor Polymorphism is the reliance on isinstance() to
determine the subclass membership. Generally, this is a violation of the basic ideas of
encapsulation and class design. A good set of polymorphic subclass definitions
should be completely equivalent with the same method signatures. Ideally, the class
definitions are also opaque; we don't need to look inside the class definition. A poor
set of polymorphic classes uses extensive isinstance() class testing.

In Python, some uses of the isinstance() function are necessary. This will arise
when using a built-in class. It arises because we can't retroactively add method
functions to built-in classes, and it might not be worth the effort of subclassing them
to add a polymorphism helper method.

In some of the special methods, it's necessary to use the isinstance() function to
implement operations that work across multiple classes of objects where there's no
simple inheritance hierarchy. We'll show you an idiomatic use of isinstance() for
unrelated classes in the next section.

For our cards class hierarchy, we want a method (or an attribute) that identifies an
ace without having to use isinstance(). A well-designed method or attribute can
help to make a variety of classes properly polymorphic. The idea is to provide a
variant attribute value or method implementation that varies based on the class.

We have two general design choices for supporting polymorphism:

Define a class-level attribute in all relevant classes with a distinct value.
Define a method in all classes with distinct behavior.

In a situation where the hard total and soft total for the cards differ by 10, this is an
indication of at least one ace being present in the hand. We don't need to break
encapsulation by checking for class membership. The values of the attributes provide
all the information required.
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When card.soft != card.hard, this is sufficient information to work out the hard
total versus the soft total of the hand. Besides indicating the presence of AceCard, it
also provides the exact offset value between hard and soft totals. 

The following is a version of the total method that makes use of the soft versus hard
delta value:

def total(self) -> int:
    delta_soft = max(c.soft - c.hard for c in self.cards)
    hard = sum(c.hard for c in self.cards)
    if hard + delta_soft <= 21:
        return hard + delta_soft
    return hard

We'll compute the largest difference between the hard and soft total of each
individual card in the hand as delta_soft. For most cards, the difference is zero. For
an ace, the difference will be nonzero.

Given the hard total and delta_soft, we can determine which total to return. If
hard+delta_soft is less than or equal to 21, the value is the soft total. If the soft
total is greater than 21, then revert to a hard total.

A mixed class comparison example
Given a definition of a total for a Hand object, we can meaningfully define
comparisons between Hand instances and comparisons between Hand and int. In
order to determine which kind of comparison we're doing, we're forced to use
isinstance().

The following is a partial definition of Hand with comparisons. Here's the first part:

class Hand:

    def __init__(self, dealer_card: Card2, *cards: Card2) -> None:
        self.dealer_card = dealer_card
        self.cards = list(cards)

    def __str__(self) -> str:
        return ", ".join(map(str, self.cards))

    def __repr__(self) -> str:
        cards_text = ", ".join(map(repr, self.cards))
        return f"{self.__class__.__name__}({self.dealer_card!r},
{cards_text})"
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Here's the second part, emphasizing the comparison methods:

def __eq__(self, other: Any) -> bool:
    if isinstance(other, int):
        return self.total() == other
    try:
        return (
            self.cards == cast(Hand, other).cards
            and self.dealer_card == cast(Hand, other).dealer_card
        )
    except AttributeError:
        return NotImplemented

def __lt__(self, other: Any) -> bool:
    if isinstance(other, int):
        return self.total() < cast(int, other)
    try:
        return self.total() < cast(Hand, other).total()
    except AttributeError:
        return NotImplemented

def __le__(self, other: Any) -> bool:
    if isinstance(other, int):
        return self.total() <= cast(int, other)
    try:
        return self.total() <= cast(Hand, other).total()
    except AttributeError:
        return NotImplemented

def total(self) -> int:
    delta_soft = max(c.soft - c.hard for c in self.cards)
    hard = sum(c.hard for c in self.cards)
    if hard + delta_soft <= 21:
        return hard + delta_soft
    return hard

We've defined three of the comparisons, not all six. Python's default behavior can fill
in the missing operations. Because of the special rules for different types, we'll see
that the defaults aren't perfect.

In order to interact with Hands, we'll need a few Card objects:

>>> two = card21(2, '♠')
>>> three = card21(3, '♠')
>>> two_c = card21(2, '♣')
>>> ace = card21(1, '♣')
>>> cards = [ace, two, two_c, three]
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We'll use this sequence of cards to see two different hand instances.

This first Hands object has an irrelevant dealer's Card object and the set of four Cards
created previously. One of the Card objects is an ace:

>>> h = Hand(card21(10,'♠'), *cards)
>>> print(h)
A♣, 2♠, 2♣, 3♠
>>> h.total()
18

The total of 18 points is a soft total, because the ace is being treated as having 11
points. The hard total for these cards is 8 points.

The following is a second Hand object, which has an additional Card object:

>>> h2 = Hand(card21(10,'♠'), card21(5,'♠'), *cards)
>>> print(h2)
5♠, A♣, 2♠, 2♣, 3♠
>>> h2.total()
13

This hand has a total of 13 points. This is a hard total. The soft total would be over 21,
and therefore irrelevant for play.

Comparisons between Hands work very nicely, as shown in the following code
snippet:

>>> h < h2
False
>>> h > h2
True

These comparisons mean that we can rank Hands based on the comparison
operators. We can also compare Hands with integers, as follows:

>>> h == 18
True
>>> h < 19
True
>>> h > 17
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unorderable types: Hand() > int()
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The comparisons with integers work as long as Python isn't forced to try a fallback.
The h > 17 example shows us what happens when there's no __gt__() method.
Python checks the reflected operands, and the integer, 17, doesn't have a proper
__lt__() method for Hand either.

We can add the necessary __gt__() and __ge__() functions to make Hand work
properly with integers. The code for these two comparisons is left as an exercise for
the reader.

The __del__() method
The __del__() method has a rather obscure use case.

The intent is to give an object a chance to do any cleanup or finalization just before
the object is removed from memory. This use case is handled much more cleanly by
context manager objects and the with statement. This is the subject of Chapter 6,
Using Callables and Contexts. Creating a context is much more predictable than dealing
with __del__() and the Python garbage collection algorithm.

If a Python object has a related operating system resource, the __del__() method is
the last chance to cleanly disentangle the resource from the Python application. As
examples, a Python object that conceals an open file, a mounted device, or perhaps a
child subprocess might all benefit from having the resource released as part
of __del__() processing.

The __del__() method is not invoked at any easy-to-predict time. It's not always
invoked when the object is deleted by a del statement, nor is it always invoked when
an object is deleted because a namespace is being removed. The documentation on
the __del__() method describes the circumstances as precarious and provides this
additional note on exception processing—exceptions that occur during their
execution are ignored, and a warning is printed to sys.stderr instead. See the
warning here: https:/ ​/ ​docs. ​python. ​org/​3/ ​reference/ ​datamodel. ​html? ​highlight=
_​_​del_​_​#object. ​_ ​_​del_ ​_​.

For these reasons, a context manager is often preferable to implementing __del__().
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The reference count and destruction
For CPython implementation, objects have a reference count. The count is
incremented when the object is assigned to a variable and decremented when the
variable is removed. When the reference count is zero, the object is no longer needed
and can be destroyed. For simple objects, __del__() will be invoked and the object
will be removed.

For complex objects that have circular references among objects, the reference count
might never go to zero and __del__() can't be invoked easily. The following is a
class that we can use to see what happens:

class Noisy:

    def __del__(self) -> None:
        print(f"Removing {id(self)}")

We can create (and see the removal of) these objects as follows:

>>> x = Noisy()
>>> del x
Removing 4313946640

We created and removed a Noisy object, and, almost immediately, we saw the
message from the __del__() method. This indicates that the reference count went to
zero when the x variable was deleted. Once the variable is gone, there's no longer a
reference to the Noisy instance and it, too, can be cleaned up. The following is a
common situation that involves the shallow copies that are often created:

>>> ln = [Noisy(), Noisy()]
>>> ln2= ln[:]
>>> del ln

There's no response to this del statement. The Noisy objects have not had their 
reference counts go to zero yet; they're still being referenced somewhere, as shown in
the following code snippet:

>>> del ln2
Removing 4313920336
Removing 4313920208

The ln2 variable was a shallow copy of the ln list. The Noisy objects were referenced
in two lists. The Noisy instances could not be destroyed until both lists were
removed, reducing the reference counts to zero.
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There are numerous other ways to create shallow copies. The following are a few
ways to create shallow copies of objects:

a = b = Noisy()
c = [Noisy()] * 2

The point here is that we can often be confused by the number of references to an
object that exist because shallow copies are prevalent in Python.

Circular references and garbage collection
The following is a common situation that involves circularity. One class, Parent,
contains a collection of children. Each Child instance contains a reference to the
Parent class. We'll use these two classes to examine circular references:

class Parent:

    def __init__(self, *children: 'Child') -> None:
        for child in children:
            child.parent = self
        self.children = {c.id: c for c in children}

    def __del__(self) -> None:
        print(
            f"Removing {self.__class__.__name__} {id(self):d}"
        )

class Child:

    def __init__(self, id: str) -> None:
        self.id = id
        self.parent: Parent = cast(Parent, None)

    def __del__(self) -> None:
        print(
            f"Removing {self.__class__.__name__} {id(self):d}"
        )

A Parent instance has a collection of children in a simple dict. Note that the
parameter value, *children, has a type hint of 'Child'. The Child class has not
been defined yet. In order to provide a type hint, mypy will resolve a string to a type
that's defined elsewhere in the module. In order to have a forward reference or a
circular reference, we have to use strings instead of a yet-to-be-defined type.
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Each Child instance has a reference to the Parent class that contains it. The reference
is created during initialization, when the children are inserted into the parent's
internal collection.

We've made both classes noisy so that we can see when the objects are removed. The
following is what happens:

>>> p = Parent(Child('a'), Child('b'))
>>> del p

The Parent instance and two initial Child instances cannot be removed. They both
contain references to each other. Prior to the del statement, there are three references
to the Parent object. The p variable has one reference. Each child object also has a
reference. When the del statement removed the p variable, this decremented the
reference count for the Parent instance. The count is not zero, so the object remains
in memory, unusable. We call this a memory leak.

We can create a childless Parent instance, as shown in the following code snippet:

>>> p_0 = Parent()
>>> id(p_0)
4313921744
>>> del p_0
Removing Parent 4313921744

This object is deleted immediately, as expected.

Because of the mutual or circular references, a Parent instance and its list of Child
instances cannot be removed from the memory. If we import the garbage collector
interface, gc, we can collect and display these nonremovable objects.

We'll use the gc.collect() method to collect all the nonremovable objects that have
a __del__() method, as shown in the following code snippet:

>>> import gc
>>> gc.collect()
Removing Child 4536680176
Removing Child 4536680232
Removing Parent 4536679952
30

We can see that our Parent object is cleaned up by the manual use of the garbage
collector. The collect() function locates objects that are inaccessible, identifies any
circular references, and forces their deletion.
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Note that we can't break the circularity by putting code in the __del__() method.
The __del__() method is called after the circularity has been broken and the
reference counts are already zero. When we have circular references, we can no
longer rely on simple Python reference counting to clear out the memory of unused
objects. We must either explicitly break the circularity or use a weakref reference,
which permits garbage collection.

Circular references and the weakref module
In cases where we need circular references but also want __del__() to work nicely,
we can use weak references. One common use case for circular references is mutual
references: a parent with a collection of children where each child has a reference
back to the parent. If a Player class has multiple hands, it might be helpful for a
Hand object to contain a weak reference to the owning Player class.

The default object references could be called strong references; however, direct
references is a better term. They're used by the reference-counting mechanism in
Python; they cannot be ignored.

Consider the following statement:

a = B()

The a variable has a direct reference to the object of the B class that was created. The
reference count to the instance of B is at least one, because the a variable has a
reference.

A weak reference involves a two-step process to find the associated object. A weak
reference will use x.parent(), invoking the weak reference as a callable object to
track down the actual parent object. This two-step process allows the reference
counting or garbage collection to remove the referenced object, leaving the weak
reference dangling.

The weakref module defines a number of collections that use weak references
instead of strong references. This allows us to create dictionaries that, for example,
permit the garbage collection of otherwise unused objects.

We can modify our Parent and Child classes to use weak references from Child to
Parent, permitting simpler destruction of unused objects.
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The following is a modified class that uses weak references from Child to Parent:

from weakref import ref

class Parent2:

    def __init__(self, *children: 'Child2') -> None:
        for child in children:
            child.parent = ref(self)
        self.children = {c.id: c for c in children}

    def __del__(self) -> None:
        print(
            f"Removing {self.__class__.__name__} {id(self):d}"
        )

class Child2:

    def __init__(self, id: str) -> None:
        self.id = id
        self.parent: ref[Parent2] = cast(ref[Parent2], None)

    def __del__(self) -> None:
        print(
            f"Removing {self.__class__.__name__} {id(self):d}"
        )

We've changed the child to parent reference to be a weakref object reference
instead of a simple, direct reference.

From within a Child class, we must locate the parent object via a two-step
operation:

p = self.parent()
if p is not None:
    # Process p, the Parent instance.
else:
    # The Parent instance was garbage collected.

We should explicitly check to be sure the referenced object was found. Objects with
weak references can be removed, leaving the weak reference dangling – it not longer
refers to an object in memory. There are several responses, which we'll look at below.
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When we use this new Parent2 class, we see that del makes the reference counts go
to zero, and the object is immediately removed:

>>> p = Parent2(Child(), Child())
>>> del p
Removing Parent2 4303253584
Removing Child 4303256464
Removing Child 4303043344

When a weakref reference is dangling (because the referent was destroyed), we have
several potential responses:

Recreate the referent. You could, perhaps, reload it from a database.
Use the warnings module to write the debugging information in low-
memory situations where the garbage collector removed objects
unexpectedly and try to continue in degraded mode.
Ignore it.

Generally, weakref references are left dangling after objects have been removed for
very good reasons: variables have gone out of scope, a namespace is no longer in use,
or the application is shutting down. For these kinds of reasons, the third response is
quite common. The object trying to create the reference is probably about to be
removed as well.

The __del__() and close() methods
The most common use for __del__() is to ensure that files are closed.

Generally, class definitions that open files will have something like what's shown in
the following code:

__del__ = close

This will ensure that the __del__() method is also the close() method. When the 
object is no longer needed, the file will be closed, and any operating system resources
can be released.

Anything more complex than this is better done with a context manager. See Chapter
6, Using Callables and Contexts, for more information on context managers.



Integrating Seamlessly - Basic Special Methods Chapter 3

[ 107 ]

The __new__() method and immutable
objects
One use case for the __new__() method is to initialize objects that are otherwise
immutable. The __new__() method is where an uninitialized object is created prior
to the __init__() method setting the attribute values of the object.

The __new__() method must be overridden to extend an immutable class where
the __init__() method isn't used.

The following is a class that does not work. We'll define a version of float that
carries around information on units:

class Float_Fail(float):

    def __init__(self, value: float, unit: str) -> None:
        super().__init__(value)
        self.unit = unit

We're trying (improperly) to initialize an immutable object. Since immutable objects
can't have their state changed, the __init__() method isn't meaningful and isn't
used.

The following is what happens when we try to use this class definition:

>>> s2 = Float_Fail(6.5, "knots")
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
 TypeError: float expected at most 1 arguments, got 2

From this, we can see that we can't override the __init__() method for the built-in
immutable float class. We have similar problems with all other immutable classes.
We can't set the attribute values on the immutable object, self, because that would
break the definition of immutability. We can only set attribute values during the
object construction. The __new__() method supports this kind of processing.

The __new__() method is a class method: it will receive the class object as the first
argument value. This is true without using the @classmethod decorator. It doesn't
use a self variable, as its job is to create the object that will eventually be assigned to
the self variable.
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For any class we define, the default implementation of __new__() is inherited from
the parent class. Implicitly, the class object is the parent of all classes. The
object.__new__() method builds a simple, empty object of the required class. The
arguments and keywords to __new__(), with the exception of the cls argument, are
passed to __init__() as part of the standard Python behavior.

The following are two cases when this default behavior isn't perfect:

When we want to subclass an immutable class definition. We'll look at this
next.
When we need to create a metaclass. That's the subject of the next section,
as it's fundamentally different from creating immutable objects.

Instead of overriding __init__() when creating a subclass of a built-in immutable
type, we have to tweak the object at the time of creation by overriding __new__().
The following is an example class definition that shows us the proper way to extend
float:

class Float_Units(float):

    def __new__(cls, value, unit):
        obj = super().__new__(cls, float(value))
        obj.unit = unit
        return obj

This  implementation of __new__() does two things. It creates a new Float_Units
object with a float value. It also injects an additional unit attribute into the instance
that is being created.

It's difficult to provide appropriate type hints for this use of __new__(). The method
as defined in the typeshed used by mypy version 0.630 doesn't correspond precisely
to the underlying implementation. For this rare case, type hints don't seem helpful for
preventing problems.

The following code snippet gives us a floating-point value with attached unit
information:

>>> speed = Float_Units(6.8, "knots")
>>> speed*2
13.6
>>> speed.unit
'knots'
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Note that an expression such as speed * 2 does not create a Float_Units object.
This class definition inherits all the operator special methods from float; the float
arithmetic special methods all create float objects. Creating Float_Units objects
will be covered in Chapter 8, Creating Numbers.

The __new__() method and metaclasses
The other use case for the __new__() method is to create a metaclass to control how a
class definition is built. This use of __new__() to build a class object is related to
using __new__() to build a new immutable object, shown previously. In both cases,
__new__() gives us a chance to make minor modifications in situations where
__init__() isn't relevant.

A metaclass is used to build a class. Once a class object has been built, the class
object is used to build instance objects. The metaclass of all class definitions is type.
The type() function creates the class objects in an application. Additionally, the
type() function can be used to reveal the class of an object.

The following is a silly example of building a new, nearly useless class directly with
type() as a constructor:

Useless = type("Useless", (), {})

To create a new class, the type() function is given a string name for the class, a tuple
of superclasses, and a dictionary used to initialize any class variables. The return
value is a class value. Once we've created this class, we can create objects of this
Useless class. However, the objects won't do much because they have no methods or
attributes.

We can use this newly-minted Useless class to create objects, for what little it's
worth. The following is an example:

>>> Useless = type("Useless", (), {})
>>> u = Useless()
>>> u.attribute = 1
>>> dir(u)
['__class__', '__delattr__', '__dict__', '__dir__', '__doc__',
'__eq__', '__format__', '__ge__', '__getattribute__', '__gt__',
'__hash__', '__init__', '__init_subclass__', '__le__', '__lt__',
'__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__',
'__repr__', '__setattr__', '__sizeof__', '__str__',
'__subclasshook__', '__weakref__', 'attribute']
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This example created an instance of Useless, u. It's easy to add an attribute to the
objects of this class with an assignment to u.attribute.

This is almost equivalent to defining minimal classes, as follows:

from types import SimpleNamespace
Useless2 = SimpleNamespace

class Useless3: pass

The definition of Useless2 is the SimpleNamespace class from the types module.
The definition of Useless3 uses Python syntax to create a class that's the default
implementation of object. These all have nearly identical behaviors.

This brings up the important question: why would we change the way classes are
defined in the first place?

The answer is that some of the default features of a class aren't perfectly applicable to
some edge cases. We'll talk about three situations where we might want to introduce
a metaclass:

We can use a metaclass to add attributes or methods to a class. Note that
we're adding these to the class itself, not to any of the instances of the class.
The reason for using a metaclass is to simplify the creation of a large 
number of similar classes. In many respects, adding a @classmethod
decorator to a method can be similar to creating a metaclass.
Metaclasses are used to create Abstract Base Classes (ABC), which we'll
look at in Chapter 4, Attribute Access, Properties, and Descriptions through
Chapter 7, Creating Containers and Collections. An ABC relies on a metaclass
__new__() method to confirm that the concrete subclass is complete. We'll
introduce this in Chapter 5, The ABCs of Consistent Design.
Metaclasses can be used to simplify some aspects of object serialization.
We'll look at this in Chapter 10, Serializing and Saving - JSON, YAML, Pickle,
CSV, and XML. When a large number of classes will all be using similar
serialization techniques, a metaclass can ensure that all of the application
classes have a common serialization aspect.

In general, there are a great many things that can be done in a metaclass that cannot
be understood by the mypy tool. It's not always helpful to struggle with the details of
defining metaclasses.
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Metaclass example – class-level logger
When we have a large number of classes that all need a logger, it can be handy to
centralize the feature in a single definition. There are a number of ways of doing this,
one of which is to provide a metaclass definition that builds a class-level logger
shared by all instances of the class.

The recipe has the following three parts:

Create a metaclass. The __new__() method of the metaclass will add1.
attributes to the constructed class definition.
Create an abstract superclass that is based on the metaclass. This abstract2.
class will simplify inheritance for the application classes.
Create the subclasses of the abstract superclass that benefit from the3.
metaclass.

The following is an example metaclass, which will inject a logger into a class
definition:

import logging

class LoggedMeta(type):

    def __new__(
            cls: Type,
            name: str,
            bases: Tuple[Type, ...],
            namespace: Dict[str, Any]
    ) -> 'Logged':
        result = cast('Logged', super().__new__(cls, name, bases,
namespace))
        result.logger = logging.getLogger(name)
        return result

class Logged(metaclass=LoggedMeta):
    logger: logging.Logger

The LoggedMeta class extends the built-in default metaclass, type, with a new
version of the __new__() method.
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The __new__() metaclass method is executed after the class body elements have
been added to the namespace. The argument values are the metaclass, the new class
name to be built, a tuple of superclasses, and a namespace with all of the class items
used to initialize the new class. This example is typical: it uses super() to delegate
the real work of __new__() to the superclass. The superclass of this metaclass is the
built-in type class. 

The __new__() method in this example also adds an attribute, logger, into the class
definition. This was not provided when the class was written, but will be available to
every class that uses this metaclass.

We must use the metaclass when defining a new abstract superclass, Logged. Note
that the superclass includes a reference to the logger attribute, which will be injected
by the metaclass. This information is essential to make the injected attribute visible to
mypy.

We can then use this new abstract class as the superclass for any new classes that we
define, as follows:

class SomeApplicationClass(Logged):
    def __init__(self, v1: int, v2: int) -> None:
        self.logger.info("v1=%r, v2=%r", v1, v2)
        self.v1 = v1
        self.v2 = v2
        self.v3 = v1*v2
        self.logger.info("product=%r", self.v3)

The __init__() method of the SomeApplication class relies on the
logger attribute available in the class definition. The logger attribute was added by
the metaclass, with a name based on the class name. No additional initialization or
setup overhead is required to ensure that all the subclasses of Logged have loggers
available.

Summary
We've looked at a number of basic special methods, which are essential features of
any class that we design. These methods are already part of every class, but the
defaults that we inherit from the object may not match our processing requirements.

We'll almost always need to override __repr__(), __str__(), and __format__().
The default implementations of these methods aren't very helpful at all.
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We rarely need to override __bool__() unless we're writing our own collection.
That's the subject of Chapter 7, Creating Containers and Collections.

We often need to override comparison and __hash__() methods. These definitions
are suitable for simple immutable objects, but are not at all appropriate for mutable
objects. We may not need to write all the comparison operators; we'll look at the
@functools.total_ordering decorator in Chapter 9, Decorators and Mixins -
Cross-Cutting Aspects.

The other two basic special method names, __new__() and __del__(), are for more
specialized purposes. Using __new__() to extend an immutable class is the most
common use case for this method function.

These basic special methods, along with __init__(), will appear in almost every
class definition that we write. The rest of the special methods are for more specialized
purposes; they fall into six discrete categories:

Attribute access: These special methods implement what we see as
object.attribute in an expression, object.attribute on the left-
hand side of an assignment, and object.attribute in a del statement.
Callables: A special method implements what we see as a function applied
to arguments, much like the built-in len() function.
Collections: These special methods implement the numerous features of
collections. This involves operations such as sequence[index],
mapping[key], and set | set.
Numbers: These special methods provide the arithmetic operators and the
comparison operators. We can use these methods to expand the domain of
numbers that Python works with.
Contexts: There are two special methods that we'll use to implement a
context manager that works with the with statement.
Iterators: There are special methods that define an iterator. This isn't
essential, as generator functions handle this feature so elegantly. However,
we'll look at how we can design our own iterators.

In the next chapter, we will address attributes, properties, and descriptors.



4
Attribute Access, Properties,

and Descriptors
An object is a collection of features, including methods and attributes. The default
behavior of the object class involves setting, getting, and deleting named attributes.
We often need to modify this behavior to change the attributes available in an object.

This chapter will focus on the following five tiers of attribute access:

We'll look at built-in attribute processing.
We'll review the @property decorator. A property extends the concept of
an attribute to include the processing defined in method functions.
We'll look at how to make use of the lower-level special methods that
control attribute access: __getattr__(), __setattr__(), and
__delattr__(). These special methods allow us to build more
sophisticated attribute processing.
We'll also take a look at the __getattribute__() method, which
provides more granular control over attributes. This can allow us to write
very unusual attribute handling.
We'll take a look at descriptors. These objects mediate access to an attribute.
Therefore, they involve somewhat more complex design decisions.
Descriptors are the foundational structure used to implement properties,
static methods, and class methods.

In this chapter, we'll see how the default processing works in detail. This will help us
to decide where and when to override the default behavior. In some cases, we want
our attributes to do more than simply be instance variables. In other cases, we might
want to prevent the addition of attributes. We may have attributes that have even
more complex behaviors.
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Also, as we explore descriptors, we'll come to a much deeper understanding of how
Python's internals work. We don't often need to use descriptors explicitly. We often
use them implicitly, however, because they implement a number of Python features.

Since type hints are now available in Python, we'll take a look at how to annotate
attributes and properties so a tool like mypy can confirm that objects of appropriate
types are used.

Finally, we'll look at the new dataclasses module and how this can be used to
simplify class definition.

In this chapter, we will cover the following topics:

Basic attribute processing
Creating properties
Using special methods for attribute access
The getattribute_() method
Creating descriptors
Using Type Hints for attributes and properties
Using the dataclasses module

Technical requirements
The code files for this chapter can be found at https://git.io/fj2Uu.

Basic attribute processing
By default, any class we create will permit the following four behaviors with respect
to attributes:

To create a new attribute and set its value
To set the value of an existing attribute
To get the value of an attribute
To delete an attribute

https://git.io/fj2Uu
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We can experiment with this using something as simple as the following code. We
can create a simple, generic class and an object of that class:

>>> class Generic:
...     pass
...
>>> g = Generic()

The preceding code permits us to create, get, set, and delete attributes. We can easily
create and get an attribute. The following are some examples:

>>> g.attribute = "value"
>>> g.attribute
'value'
>>> g.unset
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'Generic' object has no attribute 'unset'
>>> del g.attribute
>>> g.attribute
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'Generic' object has no attribute 'attribute'

The example shows adding, changing, and removing attributes. We will get
exceptions if we try to get an otherwise unset attribute or delete an attribute that
doesn't exist yet.

A slightly better way to do this is to use an instance of the types.SimpleNamespace
class. The feature set is the same, but we don't need to create an extra class definition.
We create an object of the SimpleNamespace class instead, as follows:

>>> import types
>>> n = types.SimpleNamespace()

In the following code, we can see that the same use cases work for
a SimpleNamespace class:

>>> n.attribute = "value"
>>> n.attribute
'value'
>>> del n.attribute
>>> n.attribute
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'namespace' object has no attribute 'attribute'
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We can create attributes for this instance, n. Any attempt to use an undefined
attribute raises an exception.

An instance of the SimpleNamespace class has different behavior from what we saw
when we created an instance of the object class. An instance of the object class
doesn't permit the creation of new attributes; it lacks the internal __dict__ structure
that Python uses to store attributes and values.

Attributes and the __init__() method
Most of the time, we create an initial collection of attributes using the __init__()
method of a class. Ideally, we provide names and default values for all the attributes
in __init__().

While it's not required to provide all attributes in the __init__() method, it's the
place mypy checks to gather the expected list of attributes of an object. An optional
attribute can be used as part of an object's state, but there aren't easy ways to describe
the absence of an attribute as a valid state for an object.

An optional attribute also pushes the edge of the envelope in terms of class definition.
A class is defined by the unique collection of attributes. Attributes are best added (or
removed) by creating a subclass or superclass definition. Dynamic changes to the
attributes are confusing to tools such as mypy as well as to people.

Generally, optional attributes imply a concealed or informal subclass relationship.
Therefore, we bump up against Pretty Poor Polymorphism when we use optional
attributes. Multiple polymorphic subclasses are often a better implementation than
optional attributes.

Consider a Blackjack game in which only a single split is permitted. If a hand is split, it
cannot be re-split. There are several ways that we can model this constraint:

We can create an instance of a subclass, SplitHand, from the
Hand.split() method. We won't show this in detail. This subclass of
Hand has an implementation for split() that raises an exception. Once a
Hand has been split to create two SplitHand instances, these cannot be re-
split.
We can create a status attribute on an object named Hand, which can be
created from the Hand.split() method. Ideally, this is a Boolean value,
but we can implement it as an optional attribute as well.
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The following is a version of Hand.split() that can detect splittable versus
unsplittable hands via an optional attribute, self.split_blocker:

def  split(self, deck):
    assert self.cards[0].rank == self.cards[1].rank
    try:
        self.split_blocker
        raise CannotResplit
    except AttributeError:
        h0 = Hand(self.dealer_card, self.cards[0], deck.pop())
        h1 = Hand(self.dealer_card, self.cards[1], deck.pop())
        h0.split_blocker = h1.split_blocker = True
        return h0, h1

The split() method tests for the presence of a split_blocker attribute. If this
attribute exists, then this hand should not be re-split; the method raises a customized
CannotSplit exception. If the split_blocker attribute does not exist, then splitting
is allowed. Each of the resulting objects has the optional attribute, preventing further
splits.

An optional attribute has the advantage of leaving the __init__() method relatively
uncluttered with status flags. It has the disadvantage of obscuring an aspect of object
state. Furthermore, the mypy program will be baffled by the reference to an attribute
not initialized in __init__(). Optional attributes for managing object state must be
used carefully, if at all.

Creating properties
A property is a method function that appears (syntactically) to be a simple attribute.
We can get, set, and delete property values with syntax identical to the syntax for
attribute values. There's an important distinction, though. A property is actually a
method and can process, rather than simply preserve, a reference to another object.

Besides the level of sophistication, one other difference between properties and
attributes is that we can't attach new properties to an existing object easily, but we can
add dynamic attributes to an object very easily. A property is not identical to a simple
attribute in this one respect.

There are two ways to create properties. We can use the @property decorator, or we
can use the property() function. The differences are purely syntactic. We'll focus on
the decorator.
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We'll now take a look at two basic design patterns for properties:

Eager calculation: In this design pattern, when we set a value via a
property, other attributes are also computed.
Lazy calculation: In this design pattern, calculations are deferred until
requested via a property.

In order to compare the preceding two approaches to properties, we'll split some
common features of the Hand object into an abstract superclass, as follows:

class Hand:

    def __init__(
            self,
            dealer_card: BlackJackCard,
            *cards: BlackJackCard
        ) -> None:
        self.dealer_card = dealer_card
        self._cards = list(cards)

    def __str__(self) -> str:
        return ", ".join(map(str, self.card))

    def __repr__(self) -> str:
        return (
            f"{self.__class__.__name__}"
            f"({self.dealer_card!r}, "
            f"{', '.join(map(repr, self.card))})"
        )

In the preceding code, we defined the object initialization method, which actually
does nothing. There are two string representation methods provided. This class is a
wrapper around an internal list of cards, kept in an instance variable, _cards. We've
used a leading _ on the instance variable as a reminder that this is an implementation
detail that may change.

The __init__() is used to provide instance variable names and type hints for mypy.
An attempt to use None as a default in this kind of abstract class definition will violate
the type hints. The dealer_card attribute must be an instance of
BlackJackCard. To allow this variable to have an initial value of None, the type hint
would have to be Optional[BlackJackCard], and all references to this variable
would also require a guarding if statement to be sure the value was not None.
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The following is a subclass of Hand, where total is a lazy property that is computed
only when needed:

class Hand_Lazy(Hand):

    @property
    def total(self) -> int:
        delta_soft = max(c.soft - c.hard for c in self._cards)
        hard_total = sum(c.hard for c in self._cards)
        if hard_total + delta_soft <= 21:
            return hard_total + delta_soft
        return hard_total

    @property
    def card(self) -> List[BlackJackCard]:
        return self._cards

    @card.setter
    def card(self, aCard: BlackJackCard) -> None:
        self._cards.append(aCard)

    @card.deleter
    def card(self) -> None:
        self._cards.pop(-1)

The Hand_Lazy class sets the dealer_card and the _cards instance variables. The
total property is based on a method that computes the total only when requested.
Additionally, we defined some other properties to update the collection of cards in
the hand. The card property can get, set, or delete cards in the hand. We'll take a look
at these properties in the setter and deleter properties section.

We can create a Hand_Lazy object. total appears to be a simple attribute:

>>> d = Deck()
>>> h = Hand_Lazy(d.pop(), d.pop(), d.pop())
>>> h.total
19
>>> h.card = d.pop()
>>> h.total
29

The total is computed lazily by rescanning the cards in the hand each time the total is
requested. For the simple BlackJackCard instances, this is a relatively inexpensive
computation. For other kinds of items, this can involve considerable overhead.
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Eagerly computed properties
The following is a subclass of Hand, where total is a simple attribute that's 
computed eagerly as each card is added:

class Hand_Eager(Hand):

    def __init__(
            self,
            dealer_card: BlackJackCard,
            *cards: BlackJackCard
    ) -> None:
        self.dealer_card = dealer_card
        self.total = 0
        self._delta_soft = 0
        self._hard_total = 0
        self._cards: List[BlackJackCard] = list()
        for c in cards:
            # Mypy cannot discern the type of the setter.
            # https://github.com/python/mypy/issues/4167
            self.card = c  # type: ignore

    @property
    def card(self) -> List[BlackJackCard]:
        return self._cards

    @card.setter
    def card(self, aCard: BlackJackCard) -> None:
        self._cards.append(aCard)
        self._delta_soft = max(aCard.soft - aCard.hard,
self._delta_soft)
        self._hard_total = self._hard_total + aCard.hard
        self._set_total()

    @card.deleter
    def card(self) -> None:
        removed = self._cards.pop(-1)
        self._hard_total -= removed.hard
        # Issue: was this the only ace?
        self._delta_soft = max(c.soft - c.hard for c in self._cards)
        self._set_total()

    def _set_total(self) -> None:
        if self._hard_total + self._delta_soft <= 21:
            self.total = self._hard_total + self._delta_soft
        else:
            self.total = self._hard_total
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The __init__() method of the Hand_Eager class initializes the eagerly computed
total to zero. It also uses two other instance variables, _delta_soft, and
_hard_total, to track the state of ace cards in the hand. As each card is placed in the
hand, these totals are updated.

Each use of self.card looks like an attribute. It's actually a reference to the property
method decorated with @card.setter. This method's parameter, aCard, will be the
value on the right side of the = in an assignment statement. 

In this case, each time a card is added via the card setter property, the total
attribute is updated.

The other card property decorated with @card.deleter eagerly updates the total
attribute whenever a card is removed. We'll take a look at deleter in detail in
the next section.

A client sees the same syntax between these two subclasses (Hand_Lazy() and
Hand_Eager()) of Hand:

d = Deck()
h1 = Hand_Lazy(d.pop(), d.pop(), d.pop())
print(h1.total)
h2 = Hand_Eager(d.pop(), d.pop(), d.pop())
print(h2.total)

In both cases, the client software simply uses the total attribute. The lazy
implementation defers computation of totals until required, but recomputes them
every time. The eager implementation computes totals immediately, and only
recomputes them on a change to the hand. The trade-off is an important software
engineering question, and the final choice depends on how the overall application
uses the total attribute.

The advantage of using properties is that the syntax doesn't change when the 
implementation changes. We can make a similar claim for getter/setter method
functions. However, getter/setter method functions involve extra syntax that isn't
very helpful or informative. The following are two examples, one of which involves
the use of a setter method, while the other uses the assignment operator:

obj.set_something(value)
obj.something = value

The presence of the assignment operator (=) makes the intent very plain. Many
programmers find it clearer to look for assignment statements than to look for
setter method functions.
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The setter and deleter properties
In the previous examples, we defined the card property to deal additional cards into
an object of the Hand class.

Since setter (and deleter) properties are created from the getter property, we
must always define a getter property first using code that looks like the following
example:

@property
def card(self) -> List[BlackJackCard]:
    return self._cards

@card.setter
def card(self, aCard: BlackJackCard) -> None:
    self._cards.append(aCard)

@card.deleter
def card(self) -> None:
    self._cards.pop(-1)

This allows us to add a card to the hand with a simple statement like the following:

h.card = d.pop()

The preceding assignment statement has a disadvantage because it looks like it
replaces all the cards with a single card. On the other hand, it has an advantage in
that it uses simple assignment to update the state of a mutable object. We can use the
__iadd__() special method to do this a little more cleanly. However, we shall wait
until Chapter 8, Creating Numbers, to introduce the other special methods.

We will consider a version of split() that works like the following code:

def split(self, deck: Deck) -> "Hand":
    """Updates this hand and also returns the new hand."""
    assert self._cards[0].rank == self._cards[1].rank
    c1 = self._cards[-1]
    del self.card
    self.card = deck.pop()
    h_new = self.__class__(self.dealer_card, c1, deck.pop())
    return h_new

The preceding method updates the given Hand instance and returns a new Hand
object. Because this method is inside the Hand class definition, it must show the class
name as a string because the class has not been fully defined yet.
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The del statement will remove the last card from the current hand. This will use the
@card.deleter property to do the work of deleting the card. For a lazy hand,
nothing more needs to be done. For an eager hand, the totals must be updated. The
assignment statement in front of the del statement was used to save the last card into
a local variable, c1. 

The following is an example of a hand being split:

>>> d = Deck()
>>> c = d.pop()
>>> h = Hand_Lazy(d.pop(), c, c)  # Create a splittable hand
>>> h2 = h.split(d)
>>> print(h)
2♠, 10♠
>>> print(h2)
2♠, A♠

Once we have two cards, we can use split() to produce the second hand. A card
was removed from the initial hand to create the resulting hand.

This version of split() is certainly workable. However, it seems somewhat better to
have the split() method return two fresh new Hand objects. That way, the old, pre-
split Hand instance can be saved as a memento for auditing or statistical analysis.

Using special methods for attribute
access
We'll now look at the three canonical special methods for attribute access:
__getattr__(), __setattr__(), and __delattr__(). Additionally, we'll
acknowledge the __dir__() special method to reveal attribute names. We'll defer
__getattribute__() to the next section.

The default behavior shown in this section is as follows:

The __setattr__() method will create and set attributes.
The __getattr__() method is a fallback used when an attribute is not
defined. When an attribute name is not part of the instance variables of an
object, then the __getattr__() method is used. The default behavior of
this special method is to raise an AttributeError exception. We can
override this to return a meaningful result instead of raising an exception.
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The __delattr__() method deletes an attribute.
The __dir__() method returns a list of attribute names. This is often
coupled with __getattr__( ) to provide a seamless interface to
attributes computed dynamically.

The __getattr__() method function is only one step in a larger process; it is used
when the attribute name is unknown. If the name is a known attribute, this method is
not used. 

We have a number of design choices for controlling attribute access. Some of these
design choices are as follows:

We can replace the internal __dict__ with __slots__. This makes it
difficult to add new attributes. The named attributes remain mutable,
however.
We can use the two special methods to add attributes to a class by
overriding __setattr__() and __delattr__(). Dynamic attributes
make it difficult for mypy to evaluate type hints.
We can implement property-like behaviors in a class. Using
__getattr__() and __setattr__() methods, we can ensure that a
variety of property-like processing is centralized in these two methods.
We can create lazy attributes where the values aren't (or can't be) computed
until they're needed. For example, we can create an attribute that doesn't
have a value until it's read from a file, database, or network. This is a
common use for __getattr__().
We can have eager attributes, where setting an attribute creates values in
other attributes immediately. This is done via overrides to
__setattr__().

We won't look at all of these alternatives. Instead, we'll focus on the most commonly
used techniques. We'll create objects with a limited number of attributes and look at
other ways to compute dynamic attribute values.

When we are not able to set an attribute or create a new attribute, then the object is
immutable. The following is what we'd like to see in interactive Python:

>>> c = card21(1,'♠')
>>> c.rank = 12
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 30, in __setattr__
TypeError: Cannot set rank
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>>> c.hack = 13
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 31, in __setattr__
AttributeError: 'Ace21Card' has no attribute 'hack'

The preceding code shows a Card object, where we are not allowed to change an
attribute or add an attribute to the object.

The simplest way to implement completely immutable behavior is to
extend typing.NamedTuple. We'll look at this in the sections that follow. It is the
preferred approach. Prior to that, we'll look at some more complex alternatives for
selective features of immutability.

Limiting attribute names with __slots__
We can use __slots__ to create a class where we cannot add new attributes, but can
modify an attribute's value. This example shows how to restrict the attribute names:

class BlackJackCard:
    __slots__ = ("rank", "suit", "hard", "soft")

    def __init__(self, rank: str, suit: "Suit", hard: int, soft: int)
-> None:
        self.rank = rank
        self.suit = suit
        self.hard = hard
        self.soft = soft

We made one significant change to the previous definitions of this class: setting
the __slots__ attribute to the names of the attributes allowed. This turns off the
internal __dict__ feature of the object and limits us to these attribute names only.
The defined attribute values are mutable even though new attributes cannot be
added.

The primary use case for this feature is to limit the memory occupied by the internal
__dict__ structure created by default. The __slots__ structure uses less memory,
and is often used when a very large number of instances will be created.
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Dynamic attributes with __getattr__()
We can create objects where attributes are computed from a single, centralized
__getattr__() method. When attribute values are computed by separate
properties, the presence of many methods can be a convenient way to encapsulate a
variety of algorithms. In some cases, however, it might be sensible to combine all of
the computations into a single method. In this case, the names of the attributes are
essentially invisible to mypy, since they aren't an obvious part of the Python source
text.

A single computation method is shown in the following example:

class RTD_Solver:

    def __init__(
        self, *,
        rate: float = None,
        time: float = None,
        distance: float = None
    ) -> None:
        if rate:
            self.rate = rate
        if time:
            self.time = time
        if distance:
            self.distance = distance

    def __getattr__(self, name: str) -> float:
        if name == "rate":
            return self.distance / self.time
        elif name == "time":
            return self.distance / self.rate
        elif name == "distance":
            return self.rate * self.time
        else:
            raise AttributeError(f"Can't compute {name}")

An instance of the RTD_Solver class is built with two of three values. The idea is to
compute the missing third value from the other two. In this case, we've elected to
make the missing value an optional attribute, and compute the value of the attribute
when required. The attributes for this class are dynamic: two of the three possible
attributes will be in use.
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The class is used as shown in the following snippet:

>>> r1 = RTD_Solver(rate=6.25, distance=10.25)
>>> r1.time
1.64
>>> r1.rate
6.25

An instance of the RTD_Solver class was built with two of the three possible
attributes. In this example, it's rate and distance. A request for the time attribute
value leads to a computation of time from rate and distance.

A request for the rate attribute value, however, does not involve the __getattr__()
method. Because the instance has rate and distance attributes, these are provided
directly. To confirm that __getattr__() is not used, insert a print() function in
the computation of rate, as shown in the following code snippet:

if name == "rate":
    print("Computing Rate")
    return self.distance / self.time

When an instance of RTD_Solver is created with an attribute value set by the
__init__() method, the __getattr__() method is not used to fetch the attribute.
The __getattr__() method is only used for unknown attributes.

Creating immutable objects as a NamedTuple
subclass
The best approach in terms of creating immutable objects is to make our Card
property a subclass of typing.NamedTuple.

The following is an extension to the built-in typing.NamedTuple class:

class AceCard2(NamedTuple):
    rank: str
    suit: Suit
    hard: int = 1
    soft: int = 11

    def __str__(self) -> str:
        return f"{self.rank}{self.suit}"
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When we use the preceding code, we see the following kinds of interaction:

>>> c = AceCard2("A", Suit.Spade)
>>> c.rank
'A'
>>> c.suit
<Suit.Spade: '♠'>
>>> c.hard
1

We can create an instance, and it has the desired attribute values. We cannot,
however, add or change any attributes. All of the processing of attribute names is
handled by the NamedTuple class definition:

>>> c.not_allowed = 2
Traceback (most recent call last):
  File "/Users/slott/miniconda3/envs/py37/lib/python3.7/doctest.py",
line 1329, in __run
    compileflags, 1), test.globs)
  File "<doctest __main__.__test__.test_comparisons_2[3]>", line 1, in
<module>
    c.not_allowed = 2
AttributeError: 'AceCard2' object has no attribute 'not_allowed'
>>> c.rank = 3
Traceback (most recent call last):
  File "/Users/slott/miniconda3/envs/py37/lib/python3.7/doctest.py",
line 1329, in __run
    compileflags, 1), test.globs)
  File "<doctest __main__.__test__.test_comparisons_2[4]>", line 1, in
<module>
    c.rank = 3
AttributeError: can't set attribute

Eagerly computed attributes, dataclasses, and
__post_init__()
We can define an object where attributes are computed eagerly — as soon
as — possible after a value is set. An object such as this can optimize access by
performing a computation once and leaving the result to be used multiple times.

This can be done with property setters. However, a class with a lot of property setters,
each of which computes a number of attributes, can be rather complex-looking. In
some cases, all of the derived value computations can be centralized.
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The dataclasses module provides us with a class with an array of built-in features.
One of these features is a __post_init__() method that we can use to derive values
eagerly.

We'd like something that looks like the following code:

>>> RateTimeDistance(rate=5.2, time=9.5)
RateTimeDistance(rate=5.2, time=9.5, distance=49.4)
>>> RateTimeDistance(distance=48.5, rate=6.1)
RateTimeDistance(rate=6.1, time=7.950819672131148, distance=48.5)

We can set two of the three required values in this RateTimeDistance object. The 
additional attribute is computed immediately, as demonstrated in the following code
block: 

from dataclasses import dataclass

@dataclass
class RateTimeDistance:

    rate: Optional[float] = None
    time: Optional[float] = None
    distance: Optional[float] = None

    def __post_init__(self) -> None:
        if self.rate is not None and self.time is not None:
            self.distance = self.rate * self.time
        elif self.rate is not None and self.distance is not None:
            self.time = self.distance / self.rate
        elif self.time is not None and self.distance is not None:
            self.rate = self.distance / self.time

A class defined by the @dataclass decorator will accept a variety of initialization
values. After the values have been set, the __post_init__() method is invoked.
This can be used to compute additional values. 

 The attributes here are mutable, and it's relatively simple to create an object with
inconsistent values for rate, time, and distance. We can do the following to create an
object with improper internal relationships among the attribute values:

>>> r1 = RateTimeDistance(time=1, rate=0)
>>> r1.distance = -99

To prevent this, a @dataclass(frozen=True) decorator can be used. This variant
will behave quite a bit like a NamedTuple.
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Incremental computation with __setattr__()
We can create classes which use __setattr__() to detect changes in attribute
values. This can lead to incremental computation. The idea is to build derived values
after initial attribute values have been set.

Note the complexity of having two senses of attribute setting.

The client's view: An attribute can be set and other derived values may be
computed. In this case, a sophisticated __setattr__() is used.
The internal view: Setting an attribute must not result in any additional
computation. If additional computation is done, this leads to an infinite
recursion of setting attributes and computing derived values from those
attributes. In this case, the fundamental __setattr__() method of
the superclass must be used.

This distinction is important and easy to overlook. Here's a class that both sets
attributes and computes derived attributes in the __setattr__() method:

class RTD_Dynamic:
    def __init__(self) -> None:
        self.rate : float
        self.time : float
        self.distance : float

        super().__setattr__('rate', None)
        super().__setattr__('time', None)
        super().__setattr__('distance', None)

    def __repr__(self) -> str:
        clauses = []
        if self.rate:
            clauses.append(f"rate={self.rate}")
        if self.time:
            clauses.append(f"time={self.time}")
        if self.distance:
            clauses.append(f"distance={self.distance}")
        return (
            f"{self.__class__.__name__}"
            f"({', '.join(clauses)})"
        )

    def __setattr__(self, name: str, value: float) -> None:
        if name == 'rate':
            super().__setattr__('rate', value)
        elif name == 'time':
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            super().__setattr__('time', value)
        elif name == 'distance':
            super().__setattr__('distance', value)

        if self.rate and self.time:
            super().__setattr__('distance', self.rate * self.time)
        elif self.rate and self.distance:
            super().__setattr__('time', self.distance / self.rate)
        elif self.time and self.distance:
            super().__setattr__('rate', self.distance / self.time)

The __init__() method uses the __setattr__() superclass to set default attribute
values without starting a recursive computation. The instance variables are named
with type hints, but no assignment is performed.

The RTD_Dynamic class provides a __setattr__() method that will set an attribute.
If enough values are present, it will also compute derived values. The internal use of
super().__setattr__() specifically avoids any additional computations from
being done by using the object superclass attribute setting methods.

Here's an example of using this class:

>>> rtd = RTD_Dynamic()
>>> rtd.time = 9.5
>>> rtd
RTD_Dynamic(time=9.5)
>>> rtd.rate = 6.25
>>> rtd
RTD_Dynamic(rate=6.25, time=9.5, distance=59.375)
>>> rtd.distance
59.375

Note that we can't set attribute values inside some methods of this
class using simple self.name = syntax.

Let's imagine we tried to write the following line of code inside the __setattr__()
method of this class definition:

self.distance = self.rate*self.time
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If we were to write the preceding code snippet, we'd have infinite recursion in
the __setattr__() method. In the self.distance=x line, this is implemented as
self.__setattr__('distance', x). If a line such as self.distance=x occurs
within the body of __setattr__(), it means __setattr__() will have to be used
while trying to implement attribute settings. The __setattr__() superclass doesn't
do any additional work and is free from recursive entanglements with itself.

It's also important to note that once all three values are set, changing an attribute
won't simply recompute the other two attributes. The rules for computation are based
on an explicit assumption that one attribute is missing and the other two are
available.

To properly recompute values, we need to make two changes: 1) set the desired
attribute to None, and 2) provide a value to force a recomputation.

We can't simply set a new value for rate and compute a new value for time while
leaving distance unchanged. To tweak this model, we need to both clear one
variable and set a new value for another variable:

>>> rtd.time = None
>>> rtd.rate = 6.125
>>> rtd
RTD_Dynamic(rate=6.125, time=9.5, distance=58.1875)

Here, we cleared time and changed rate to get a new solution for time using the
previously established value for distance.

The __getattribute__() method
An even lower-level attribute processing is the __getattribute__() method. The
default implementation of this method attempts to locate the value as an existing
attribute in the internal __dict__ (or __slots__). If the attribute is not found, this
method calls __getattr__() as a fallback. If the value located is a descriptor (refer
to the following Creating descriptors section), then it processes the descriptor.
Otherwise, the value is simply returned.

By overriding this method, we can perform any of the following kinds of tasks:

We can effectively prevent access to attributes. This method, by raising an
exception instead of returning a value, can make an attribute more secret
than if we were to merely use the leading underscore (_) to mark a name as
private to the implementation.
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We can invent new attributes similarly to how __getattr__() can invent
new attributes. In this case, however, we can bypass the default lookup
done by the default version of __getattribute__().
We can make attributes perform unique and different tasks. This might
make the program very difficult to understand or maintain, and it could
also be a terrible idea.
We can change the way descriptors behave. While technically possible,
changing a descriptor's behavior sounds like a terrible idea.

When we implement the __getattribute__() method, it's important to note that
there cannot be any internal attribute references in the method's body. If we attempt
to get the value for self.name, it will lead to infinite recursion of the
__getattribute__() method.

The __getattribute__() method cannot use any simple
self.name attribute access; it will lead to infinite recursions.

In order to get attribute values within the __getattribute__() method, we must
explicitly refer to the base method defined in a superclass, or the base class object,
as shown in the following snippet:

object.__getattribute__(self, name)

We can use this kind of processing to inject debugging, audit, or security controls into
a class definition. We might, for example, write a line to a log when an attribute is
accessed in a particularly important class. A sensible security test might limit access
to people with defined access controls.

The following example will show a trivial use of __getattribute__() to prevent
access to the single leading _ instance variables and methods in a class. We'll do this
by raising an AttributeError exception for any of those kinds of names.

Here's the class definition: 

class SuperSecret:

    def __init__(self, hidden: Any, exposed: Any) -> None:
        self._hidden = hidden
        self.exposed = exposed

    def __getattribute__(self, item: str):
        if (len(item) >= 2 and item[0] == "_"
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                and item[1] != "_"):
            raise AttributeError(item)
        return super().__getattribute__(item)

We've overridden __getattribute__() to raise an attribute error on private names
only. This will leave Python's internal __ names visible, but any name with a single _
prefix will be concealed. The _hidden attribute will be nearly invisible. The following
is an example of an object of this class being used:

>>> x = SuperSecret('onething', 'another')
>>> x.exposed
'another'
>>> x._hidden  # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
  File "/Users/slott/miniconda3/envs/py37/lib/python3.7/doctest.py",
line 1329, in __run
    compileflags, 1), test.globs)
  File "<doctest __main__.__test__.test_secret[3]>", line 1, in
<module>
    x._hidden  #
  File "/Users/slott/Documents/Writing/Python/Mastering OO Python
2e/mastering-oo-python-2e/Chapter_4/ch04_ex4.py", line 132, in
__getattribute__
    raise AttributeError(item)
AttributeError: _hidden

The object, x, will respond to requests for the exposed attribute, but will raise an
exception for any reference to an attribute that begins with _. 

This does not fully conceal all of the _ names, however. The dir() function will show
the existence of the _hidden attribute. To correct this problem, the __dir__()
special method must be overridden to also conceal the names beginning with one _.

As general advice, it's rarely necessary to change the implementation
of __getattribute__(). The default implementation gives us access to flexible
features via property definitions or as changes to __getattr__().

Creating descriptors
A descriptor is a class that mediates attribute access. The descriptor class can be used
to get, set, or delete attribute values. Descriptor objects are built inside a class at class
definition time. Descriptors are the essence of how Python implements methods,
attributes, and properties.
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The descriptor design pattern has two parts: an owner class and the attribute
descriptor itself. The owner class uses one or more descriptors for its attributes. A 
descriptor class defines some combination of the __get__, __set__, and
__delete__ methods. An instance of the descriptor class will be an attribute of the
owner class.

A descriptor is an instance of a class that is separate from the owning class. Therefore,
descriptors let us create reusable, generic kinds of attributes. The owning class can
have multiple instances of each descriptor class to manage attributes with similar
behaviors.

Unlike other attributes, descriptors are created at the class level. They're not created
within the __init__() initialization. While descriptor instances can have values set
during initialization, the descriptor instances are generally built as part of the class,
outside any method functions. Each descriptor object will be an instance of a
descriptor class. The descriptor instance must be bound to an attribute name in the
owner class.

To be recognized as a descriptor, a class must implement any combination of the
following three methods:

Descriptor.__get__(self, instance, owner): In this method, the
instance parameter is the self variable of the object being accessed. The
owner parameter is the owning class object. If this descriptor is invoked in
a class context, the instance parameter will get a None value. This must
return the value of the descriptor.
Descriptor.__set__(self, instance, value): In this method, the
instance parameter is the self variable of the object being accessed. The
value parameter is the new value that the descriptor needs to be set to.
Descriptor.__delete__(self, instance): In this method, the
instance parameter is the self variable of the object being accessed. This
method of the descriptor must delete this attribute's value.

Sometimes, a descriptor class will also need an __init__() method function to
initialize the descriptor's internal state. There are two design patterns for descriptors
based on the methods defined, as follows:

A non-data descriptor: This kind of descriptor defines only
the __get__() method. The idea of a non-data descriptor is to provide an
indirect reference to another object via methods or attributes of its own. A
non-data descriptor can also take some action when referenced.
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A data descriptor: This descriptor defines both __get__() and __set__()
to create a mutable object. It may also define __delete__(). A reference to
an attribute with a value of a data descriptor is delegated to the
__get__(), __set__(), or __delete__() methods of the descriptor
object.

There are a wide variety of use cases for descriptors. Internally, Python uses
descriptors for several reasons:

The methods of a class are implemented as descriptors. These are non-data
descriptors that apply the method function to the object and the various
parameter values.
The property() function is implemented by creating a data descriptor for
the named attribute.
A class method, or static method, is implemented as a descriptor. In both
cases, the method will apply to the class instead of an instance of the class.

When we look at object-relational mapping in Chapter 12, Storing and Retrieving
Objects via SQLite, we'll see that many of the ORM class definitions make use of
descriptors to map Python class definitions to SQL tables and columns.

As we think about the purposes of a descriptor, we must also examine the three
common use cases for the data that a descriptor works with, as follows:

The descriptor object has, or acquires, the data value. In this case, the
descriptor object's self variable is relevant, and the descriptor object is
stateful. With a data descriptor, the __get__() method can return this
internal data. With a non-data descriptor, the descriptor may include other
methods or attributes to acquire or process data. Any descriptor state
applies to the class as a whole.
The owner instance contains the data. In this case, the descriptor object
must use the instance parameter to reference a value in the owning
object. With a data descriptor, the __get__() method fetches the data from
the instance. With a non-data descriptor, the descriptor's other methods
access the instance data.
The owner class contains the relevant data. In this case, the descriptor
object must use the owner parameter. This is commonly used when the
descriptor implements a static method or class method that applies to the
class as a whole.
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We'll take a look at the first case in detail. This means creating a data descriptor with
__get__() and __set__() methods. We'll also look at creating a non-data
descriptor without a __get__() method.

The second case (the data in the owning instance) is essentially what the @property
decorator does. There's a small possible advantage to writing a descriptor class
instead of creating a conventional property—a descriptor can be used to refactor the
calculations into the descriptor class. While this may fragment class design, it can
help when the calculations are truly of epic complexity. This is essentially
the Strategy design pattern, a separate class that embodies a particular algorithm.

The third case shows how the @staticmethod and @classmethod decorators are
implemented. We don't need to reinvent those wheels.

Using a non-data descriptor
Internally, Python uses non-data descriptors as part of the implementation for class
methods and static methods. This is possible because a descriptor provides access to
the owning class, as well as the instance.

We'll look at an example of a descriptor that updates the instance and also works with
the filesystem to provide an additional side-effect to use of the descriptor.

For this example, we'll add a descriptor to a class that will create a working directory
that is unique to each instance of a class. This can be used to cache state, or debugging
history, or even audit information in a complex application.

Here's an example of an abstract class that might use a StateManager internally:

class PersistentState:
    """Abstract superclass to use a StateManager object"""
    _saved: Path

The PersistentState class definition includes a reference to an attribute, _saved,
which has a type hint of Path. This formalizes the relationships among the objects in
a way that can be detected by mypy.

Here's an example of a descriptor that provides access to a file for saving the object
state:

class StateManager:
    """May create a directory. Sets _saved in the instance."""
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    def __init__(self, base: Path) -> None:
        self.base = base

    def __get__(self, instance: PersistentState, owner: Type) -> Path:
        if not hasattr(instance, "_saved"):
            class_path = self.base / owner.__name__
            class_path.mkdir(exist_ok=True, parents=True)
            instance._saved = class_path / str(id(instance))
        return instance._saved

When this descriptor is created in a class, a base Path is provided. When this instance
is referenced, it will ensure that a working directory exists. It will also save a working
Path object, setting the _saved instance attribute.

The following is a class that uses this descriptor for access to a working directory:

class PersistentClass(PersistentState):
    state_path = StateManager(Path.cwd() / "data" / "state")

    def __init__(self, a: int, b: float) -> None:
        self.a = a
        self.b = b
        self.c: Optional[float] = None
        self.state_path.write_text(repr(vars(self)))

    def calculate(self, c: float) -> float:
        self.c = c
        self.state_path.write_text(repr(vars(self)))
        return self.a * self.b + self.c

    def __str__(self) -> str:
        return self.state_path.read_text()

At the class level, a single instance of this descriptor is created. It's assigned to the
state_path attribute. There are three places where a reference to
self.state_path are made. Because the object is a descriptor, the __get__()
method is invoked implicitly each time the variable is referenced. This means that any
of those references will serve to create the necessary directory and working file path.

This implicit use of the __get__() method of the StateManager class will guarantee
consistent processing at each reference. The idea is to centralize the OS-level work
into a single method that is part of a reusable descriptor class.
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As an aid to debugging, the __str__() method dumps the content of the file into
which the state has been written. When we interact with this class, we see output like
the following example:

>>> x = PersistentClass(1, 2)
>>> str(x)
"{'a': 1, 'b': 2, 'c': None, '_saved': ...)}"
>>> x.calculate(3)
5
>>> str(x)
"{'a': 1, 'b': 2, 'c': 3, '_saved': ...)}"

We created an instance of the PersistentClass class, providing initial values for
two attributes, a, and b. The third attribute, c, is left with a default value of None. The
use of str() displays the content of the saved state file.

The reference to self.saved_state invoked the descriptor's __get__() method,
ensuring that the directory exists and could be written.

This example demonstrates the essential feature of a non-data descriptor. The implied
use of the __get__() method can be handy for performing a few, limited kinds of
automated processing where implementation details need to be hidden. In the case of
static methods and class methods, this is very helpful.

Using a data descriptor
A data descriptor is used to build property-like processing using external class
definitions. The descriptor methods of __get__(), __set__(), and __delete__()
correspond to the way @property can be used to build getter, setter, and
deleter methods. The important distinction of the descriptor is a separate and
reusable class definition, allowing reuse of property definitions.

We'll design an overly simplistic unit conversion schema using descriptors that can
perform appropriate conversions in their __get__() and __set__() methods.

The following is a superclass of a descriptor of units that will do conversions to and
from a standard unit:

class Conversion:
    """Depends on a standard value."""
    conversion: float
    standard: str

    def __get__(self, instance: Any, owner: type) -> float:
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        return getattr(instance, self.standard) * self.conversion

    def __set__(self, instance: Any, value: float) -> None:
        setattr(instance, self.standard, value / self.conversion)

class Standard(Conversion):
    """Defines a standard value."""
    conversion = 1.0

The Conversion class does simple multiplications and divisions to convert standard
units to other non-standard units, and vice versa. This doesn't work for temperature
conversions, and a subclass is required to handle that case.

The Standard class is an extension to the Conversion class that sets a standard
value for a given measurement without any conversion factor being applied. This
exists mostly to provide a very visible name to the standard for any particular kind of
measurement.

With these two superclasses, we can define some conversions from a standard unit.
We'll look at the measurement of speed. Some concrete descriptor class definitions are
as follows:

class Speed(Conversion):
    standard = "standard_speed"  # KPH

class KPH(Standard, Speed):
    pass

class Knots(Speed):
    conversion = 0.5399568

class MPH(Speed):
    conversion = 0.62137119

The abstract Speed class provides the standard source data for the various conversion
subclasses, KPH, Knots, and MPH. Any attributes based on subclasses of the Speed
class will consume standard values.

The KPH class is defined as a subclass of both Standard class and the Speed class.
From Standard, it gets a conversion factor of 1.0. From Speed, it gets the attribute
name to be used to keep the standard value for speed measurements.
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The other classes are subclasses of Speed, which performs conversions from a
standard value to the desired value.

The following Trip class uses these conversions for a given measurement:

class Trip:
    kph = KPH()
    knots = Knots()
    mph = MPH()

    def __init__(
        self,
        distance: float,
        kph: Optional[float] = None,
        mph: Optional[float] = None,
        knots: Optional[float] = None,
    ) -> None:
        self.distance = distance  # Nautical Miles
        if kph:
            self.kph = kph
        elif mph:
            self.mph = mph
        elif knots:
            self.knots = knots
        else:
            raise TypeError("Impossible arguments")
        self.time = self.distance / self.knots

    def __str__(self) -> str:
        return (
            f"distance: {self.distance} nm, "
            f"rate: {self.kph} "
            f"kph = {self.mph} "
            f"mph = {self.knots} knots, "
            f"time = {self.time} hrs"
        )

Each of the class-level attributes, kph, knots, and mph, are descriptors for a different
unit. When these attributes are referenced, the __get__() and __set__() methods
of the various descriptors will perform appropriate conversions to and from the
standard values.
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The following is an example of an interaction with the Trip class:

>>> m2 = Trip(distance=13.2, knots=5.9)
>>> print(m2)
distance: 13.2 nm, rate: 10.92680006993152 kph = 6.789598762345432 mph
= 5.9 knots, time = 2.23728813559322 hrs
>>> print(f"Speed: {m2.mph:.3f} mph")
Speed: 6.790 mph
>>> m2.standard_speed
10.92680006993152

We created an object of the Trip class by setting an attribute, distance, setting one
of the available descriptors, and then computing a derived value, time. In this
example, we set the knots descriptor. This is a subclass of the Speed class, which is a
subclass of the Conversion class, and therefore, the value will be converted to a
standard value.

When we displayed the value as a large string, each of the descriptors' __get__()
methods were used. These methods fetched the internal kph attribute value from the
owning object, applied a conversion factor, and returned the resulting values.

The process of creating the descriptors allows for reuse of the essential unit
definitions. The calculations can be stated exactly once, and they are separate from
any particular application class definition. Compare this with a @property method
that is tightly bound to the class including it. The various conversion factors,
similarly, are stated once, and can be widely reused by a number of related
applications. 

The core description, conversion, embodies a relatively simple computation. When
the computation is more complex, it can lead to a sweeping simplification of the
overall application. Descriptors are very popular when working with databases and
data serialization problems because the descriptor's code can involve complex
conversions to different representations.

Using type hints for attributes and
properties
When using mypy, we'll need to provide type hints for the attributes of a class. This is
generally handled through the __init__() method. Most of the time, the parameter
type hints are all that's required.
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In previous examples, we defined classes like this:

class RTD_Solver:

    def __init__(
        self, *,
        rate: Optional[float] = None,
        time: Optional[float] = None,
        distance: Optional[float] = None
    ) -> None:
        if rate:
            self.rate = rate
        if time:
            self.time = time
        if distance:
            self.distance = distance

The type hints on the parameters are used to discern the types for the instance
variables, self.rate, self.time, and self.distance.

When we assign default values in the __init__() method, we have two common
design patterns.

When we can compute a value eagerly, the type can be discerned by mypy
from the assignment statement.
When a default None value is provided, the type will have to be stated
explicitly.

We may see assignment statements such as the following:

self.computed_value: Optional[float] = None

This assignment statement tells mypy that the variable will either be an instance
of float or the None object. This style of initialization makes the class attribute types
explicit. 

For property definitions, the type hint is part of the property method definition. We'll
often see code like the following:

@property
def some_computed_value(self) -> float: ...

This definition provides a clear statement for the type of
object.some_computed_value. This is used by mypy to be sure the types all match
among the references to this property name.
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Using the dataclasses module
Starting with Python 3.7 the dataclasses module is available. This module offers a
superclass we can use to create classes with clearly-stated attribute definitions. The
core use case for a dataclass is a simple definition of the attributes of a class.

The attributes are used to automatically create common attribute access methods,
including __init__(), __repr__(), and __eq__(). Here's an example:

from dataclasses import dataclass
from typing import Optional, cast

@dataclass
class RTD:
    rate: Optional[float]
    time: Optional[float]
    distance: Optional[float]

    def compute(self) -> "RTD":
        if (
            self.distance is None and self.rate is not None
            and self.time is not None
        ):
            self.distance = self.rate * self.time
        elif (
            self.rate is None and self.distance is not None
            and self.time is not None
        ):
            self.rate = self.distance / self.time
        elif (
            self.time is None and self.distance is not None
            and self.rate is not None
        ):
            self.time = self.distance / self.rate
        return self

Each instance of this class will have three attributes, rate, time, and distance. The
decorator will create an __init__() method to set these attributes. It will also create
a __repr__() method to display the details of the attribute value. An __eq__()
method is written to perform a simple equality check on all of the attribute values.

Careful checking for None and non-None values is helpful for mypy. This explicit
checking provides an assurance that the Optional[float] types will have non-None
values.
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Note that the three names are written as part of the class definition. They're used to
build an __init__() method that's part of the resulting class. These will become
instance variables in the resulting objects.

The compute() method changes the internal state of the object. We've provided a
type hint that describes the return value as an instance of the class. Here's how we can
use an instance of this class:

>>> r = RTD(distance=13.5, rate=6.1, time=None)
>>> r.compute()
RTD(rate=6.1, time=2.2131147540983607, distance=13.5)

In this code snippet, we created an instance, providing non-None values for
distance and rate. The compute() method computed a value for the time
attribute.

The default @dataclass decorator will not have comparison methods. It will create a
mutable class where attribute values can be changed. 

We can request some additional, optional features. We can provide optional
parameters to the decorator to control optional features. We can create a class for
immutable objects with comparison operators with code such as the following:

@dataclass(frozen=True, order=True)
class Card:
    rank: int
    suit: str

    @property
    def points(self) -> int:
        return self.rank

The frozen parameter in this example leads the decorator to make the class into an
immutable, frozen object. The order parameter to the @dataclass decorator creates
the methods for comparison in the class definition. This is very helpful for creating
simple, immutable objects. Because the two attributes include type hints, mypy can
confirm that the Card dataclass is used properly. 

Inheritance works with dataclasses. We can declare classes as in the following
example:

class Ace(Card):

    @property
    def points(self) -> int:
        return 1
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class Face(Card):

    @property
    def points(self) -> int:
        return 10

These two classes inherit the __init__(), __repr__(), __eq__(), __hash__(),
and comparison methods from the Card superclass. These two classes differ in the
implementation of the points() method.

The @dataclass decorator simplifies the class definition. The methods that tend to
have a direct relationship with the attributes are generated by the decorator.

Attribute Design Patterns
Programmers coming from other languages (particularly Java and C++) can try to
make all attributes private and write extensive getter and setter functions. This
kind of design pattern can be necessary for languages where type definitions are
statically compiled into the runtime. It is not necessary in Python. Python depends on
a different set of common patterns.

In Python, it's common to treat all attributes as public. This means the following:

All attributes should be well documented.
Attributes should properly reflect the state of the object; they shouldn't be
temporary or transient values.
In the rare case of an attribute that has a potentially confusing (or brittle)
value, a single leading underscore character (_) marks the name as not part
of the defined interface. It's not technically private, but it can't be relied on in
the next release of the framework or package.

It's important to think of private attributes as a nuisance. Encapsulation isn't broken
by the lack of complex privacy mechanisms in the language; proper encapsulation can
only be broken by bad design.

Additionally, we have to choose between an attribute or a property which has the
same syntax as an attribute, but can have more complex semantics. 
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Properties versus attributes
In most cases, attributes can be set outside a class with no adverse consequences. Our
example of the Hand class shows this. For many versions of the class, we can simply
append to hand.cards, and the lazy computation of total via a property will work
perfectly.

In cases where the changing of an attribute should lead to consequential changes in
other attributes, a more sophisticated class design is required:

A method may clarify the state change. This will be necessary when
multiple parameter values are required and the changes must be
synchronized.
A setter property may be clearer than a method function. This will be a
sensible option when a single value is required.
We can also use Python's in-place operators, such as +=. We'll defer this
until Chapter 8, Creating Numbers.

There's no strict rule. The distinction between a method function and a property is
entirely one of syntax and how well the syntax communicates the intent. For
computed values, a property allows lazy computation, while an attribute requires
eager computation. This devolves to a performance question. The benefits of lazy
versus eager computation are based on the expected use cases.

Finally, for some very complex cases, we might want to use the underlying Python
descriptors.

Designing with descriptors
Many uses of descriptors are already part of Python. We don't need to reinvent
properties, class methods, or static methods.

The most compelling cases for creating new descriptors relate to mapping between
Python objects and other software outside Python. Object-relational database
mapping, for example, requires a great deal of care to ensure that a Python class has
the right attributes in the right order to match a SQL table and columns. Also, when
mapping to something outside Python, a descriptor class can handle the encoding
and decoding of data, or fetching the data from external sources.
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When building a web service client, we might consider using descriptors to make web
service requests. The __get__() method, for example, might turn into an HTTP GET
request, and the __set__() method might turn into an HTTP PUT request. In some
cases, a single request may populate the data of several descriptors. In this case, the
__get__() method would check the instance cache and return that value before
making an HTTP request.

Many data descriptor operations are more simply handled by properties. This
provides us with a place to start to write properties first. If the property processing
becomes too expansive or complex, then we can switch to descriptors to refactor the
class.

Summary
In this chapter, we looked at several ways to work with an object's attributes. We can
use the built-in features of the object class to get and set attribute values simply and
effectively. We can use @property to create attribute-like methods.

If we want more sophistication, we can tweak the underlying special method
implementations for __getattr__(), __setattr__(), __delattr__(), or
__getattribute__(). These allow us very fine-grained control over attribute
behaviors. We walk a fine line when we touch these methods because we can make
fundamental (and confusing) changes to Python's behavior.

Internally, Python uses descriptors to implement features such as class methods,
static methods, and properties. Many of the really good use cases for descriptors are
already first-class features of the language.

The use of type hints helps confirm that objects are used properly. They're strongly
encouraged as a supplement to unit tests for assuring that parameters and values
align. 

The new dataclasses module can help simplify class definition. In many cases, a
class created with the @dataclass decorator can be the essence of well-designed
software.

In the next chapter, we'll look closely at the ABCs (Abstract Base Classes) that we'll
exploit in Chapter 6, Using Callables and Contexts, Chapter 7, Creating Containers and
Collections, and Chapter 8, Creating Numbers. These ABCs will help us to define
classes that integrate nicely with existing Python features. They will also allow us to
create class hierarchies that enforce consistent design and extension.
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The ABCs of Consistent

Design
The Python standard library provides abstract base classes for a number of container
features. It provides a consistent framework for the built-in container classes, such as
list, dict, and set. Additionally, the standard library provides abstract base classes
for numbers. We can use these classes to extend the suite of numeric classes available
in Python.

In this chapter, we'll look in general at the abstract base classes in the
collections.abc module. From there, we can focus on a few use cases that will be
the subject of detailed examination in future chapters.

There are three common design strategies for reusing existing classes: wrap, extend,
and invent. We'll look at the general concepts behind the various containers and
collections that we might want to wrap or extend. Similarly, we'll look at the concepts
behind the numbers that we might want to implement.

Our goal is to ensure that our application classes integrate seamlessly with existing
Python features. If we create a collection, for example, it's appropriate to have that
collection create an iterator by implementing __iter__(). A collection that
implements __iter__() will work seamlessly with a for statement.

Technical requirements
The code files for this chapter can be found at https:/ ​/​git. ​io/​fj2Uz.

https://git.io/fj2Uz
https://git.io/fj2Uz
https://git.io/fj2Uz
https://git.io/fj2Uz
https://git.io/fj2Uz
https://git.io/fj2Uz
https://git.io/fj2Uz
https://git.io/fj2Uz
https://git.io/fj2Uz
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Abstract base classes
The core of the abstract base class (ABC) definition is defined in a module named
abc. This contains the required decorators and metaclasses to create abstractions.
Other classes rely on these definitions. The collections.abc module uses the abc
module to create abstractions focused on collections. We'll also look at the numbers
module, because it contains ABCs for numeric types. There are ABCs for I/O in the io
module, too.

An abstract base class has the following features:

Abstract means that these classes don't contain all the method definitions
required to work completely. For it to be a useful subclass, we will need to
provide some method definitions.
Base means that other classes will use it as a superclass.
An abstract class provides some definitions for methods. Most importantly,
the abstract base classes often provide the signatures for the missing
methods. A subclass must provide the right methods to create a concrete
class that fits the interface defined by the abstract class.

Bear in mind the following when using abstract base classes:

When we use them to define our classes, they will be consistent with
Python's internal classes.
We can use them to create some common, reusable abstractions that our
application extends.
We can use them to support the proper inspection of a class to determine
what it does. This allows better collaboration among library classes and
new classes in our applications. It helps to start from the formal definitions
of classes that will have similar behavior to other containers or numbers.

If we don't use abstract base classes, we can easily create a class that fails to provide
all the features of the abstract base Sequence class. This will lead to a class being
almost a sequence—we sometimes call it sequence-like. This can lead to odd
inconsistencies and kludgy workarounds for a class that doesn't quite provide all the
features of a Sequence class.

With an abstract base class, an application's class is guaranteed to have the advertised
features of the abstract base class. If it lacks a feature, the presence of an undefined
abstract method will make the class unusable for building object instances.
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We will use ABCs in several situations, as follows:

We will use ABCs as superclasses when defining our own classes.
We will use ABCs within a method to confirm that an operation is possible.
We will use ABCs within a diagnostic message or exception to indicate
why an operation can't work.

For the first use case, we can write modules with code that looks like the following:

import collections.abc
class SomeApplicationClass(collections.abc.Sequence):
    pass

Our SomeApplicationClass is defined as a Sequence class. It must then
implement the specific methods required by Sequence, or we will not be able to
create an instance.

For the second use case, we can write methods with code as follows:

def some_method(self, other: Iterator):
    assert isinstance(other, collections.abc.Iterator)

Our some_method() requires the other argument to be a subclass of Iterator. If
the other argument can't pass this test, we get an exception.

Instead of the assert statement, a common alternative is an if statement that raises
TypeError, which may be more meaningful than AssertError. We'll see this in the
following section.

For the third use case, we might have something like the following:

try:
    some_obj.some_method(another)
except AttributeError:
    warnings.warn(f"{another!r} not an Iterator, found
{another.__class__.__bases__!r}")
    raise

In this case, we wrote a diagnostic warning that shows the base classes for a given
object. This may help debug problems with application design.
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Base classes and polymorphism
In this section, we'll flirt with the idea of pretty poor polymorphism. Inspection of 
argument value types is a Python programming practice that should be isolated to a
few special cases. Later, when we look at numbers and numeric coercion, we'll learn
about cases where the inspection of types is recommended.

Well-done polymorphism follows what is sometimes called the Liskov substitution
principle. Polymorphic classes can be used interchangeably. Each polymorphic class
has the same suite of properties. For more information, visit
http://en.wikipedia.org/wiki/Liskov_substitution_principle.

Overusing isinstance() to distinguish between the types of arguments can lead to
a needlessly complex (and slow) program. Unit testing is a far better way to find
programming errors than verbose type inspection in the code.

Method functions with lots of isinstance() methods can be a symptom of a poor
(or incomplete) design of polymorphic classes. Rather than having type-specific
processing outside of a class definition, it's often better to extend or wrap classes
to make them more properly polymorphic and encapsulate the type-specific
processing within the class definition.

One potential use of the isinstance() method is to raise diagnostic errors. A simple
approach is to use the assert statement, as follows:

assert isinstance(some_argument, collections.abc.Container),
f"{some_argument!r} not a Container"

This will raise an AssertionError exception to indicate that there's a problem. This
has the advantage that it is short and to the point. This example has two
disadvantages: assertions can be silenced, and it would probably be better to raise a
TypeError for this. The preceding use of the assert statement is not very helpful,
and should be avoided.

The following example is slightly better:

if not isinstance(some_argument, collections.abc.Container):
    raise TypeError(f"{some_argument!r} not a Container")

The preceding code has the advantage that it raises the correct error. However, it has
the disadvantages of being long-winded and it creates a needless constraint on the
domain of objects. Objects that are not proper subclasses of the abstract Container
class may still offer the required methods, and should not be excluded.

http://en.wikipedia.org/wiki/Liskov_substitution_principle
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The Pythonic approach is summarized as follows:

"It's better to ask for forgiveness than to ask for permission."

This is generally taken to mean that we should minimize the upfront testing of
arguments (asking permission) to see if they're the correct type. Argument-type
inspections are rarely of any tangible benefit. Instead, we should handle the
exceptions appropriately (asking forgiveness).

Checking types in advance is often called look before you leap (LBYL) programming.
It's an overhead of relatively little value. The alternative is called easier to ask for
forgiveness than permission (EAFP) programming, and relies on try statements to
recover from problems.

What's best is to combine diagnostic information with the exception in the unlikely
event that an inappropriate type is used and somehow passed through unit testing
into operation.

The following is generally the best approach:

try:
    found = value in some_argument
except TypeError:
    if not isinstance(some_argument, collections.abc.Container):
        warnings.warn(f"{some_argument!r} not a Container")
    raise

The assignment statement to create the found variable assumes that some_argument
is a proper instance of a collections.abc.Container class and will respond to the
in operator.

In the unlikely event that someone changes the application and some_argument is of
a class that can't use the in operator, the application will write a diagnostic warning
message and crash with a TypeError exception.

Many classes work with the in operator. Trying to wrap this in LBYL if statements
may exclude a perfectly workable class. Using the EAFP style allows any class to be
used that implements the in operator.
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Callable
Python's definition of a callable object includes the obvious function definitions
created with the def statement. 

The Callable type hint is used to describe the __call__() method, a common
protocol in Python. We can see several examples of this in Python 3 Object-Oriented
Programming, by Dusty Phillips, from Packt Publishing.

When we look at any Python function, we see the following behavior:

>>> def hello(text: str):
...    print(f"hello {text}")

>>> type(hello)
<class 'function'>
>>> from collections.abc import Callable
>>> isinstance(hello, Callable)
True

When we create a function, it will fit the abstract base class Callable. Every function
reports itself as Callable. This simplifies the inspection of an argument value and
helps write meaningful debugging messages.

We'll take a look at callables in more detail in Chapter 6, Using Callables and Contexts.

Containers and collections
The collections module defines a number of collections above and beyond the
built-in container classes. The container classes include namedtuple(), deque,
ChainMap, Counter, OrderedDict, and defaultdict. All of these are examples of
classes based on ABC definitions.

The following is a quick interaction to show how we can inspect collections to see the
methods that they support:

>>> isinstance({}, collections.abc.Mapping)
True
>>> isinstance(collections.defaultdict(int), collections.abc.Mapping)
True

We can inspect the simple dict class to see that it follows the Mapping protocol and
will support the required methods.
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We can inspect a defaultdict collection to confirm that it is also part of the
Mapping class hierarchy.

When creating a new kind of container, we have the following two general
approaches:

Use the collections.abc classes to formally inherit behaviors that match
existing classes. This will also support mypy type hint checking and will
also provide some useful default behaviors.
Rely on type hinting to confirm that the methods match the protocol
definitions in the typing module. This will only support mypy type hint
checking.

It's clearer (and more reliable) to use a proper ABC as the base class for one of our
application classes. The additional formality has the following two advantages:

It advertises what our intention was to people reading (and possibly using
or maintaining) our code. When we make a subclass of
collections.abc.Mapping, we're making a very strong claim about how
that class will behave.
It creates some diagnostic support. If we somehow fail to implement all of
the required methods properly, an exception will be raised when trying to
create instances of the abstract base class. If we can't run the unit tests
because we can't create instances of an object, then this indicates a serious
problem that needs to be fixed.

The entire family tree of built-in containers is reflected in the abstract base classes.
Lower-level features include Container, Iterable, and Sized. These are a part of
higher-level constructs; they require a few specific methods, particularly
__contains__(), __iter__(), and __len__(), respectively.

Higher-level features include the following characteristics:

Sequence and MutableSequence: These are the abstractions of the list
and tuple concrete classes. Concrete sequence implementations also
include bytes and str.
MutableMapping: This is the abstraction of dict. It extends Mapping, but
there's no built-in concrete implementation of this.
Set and MutableSet: These are the abstractions of the frozenset and
set concrete classes.
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This allows us to build new classes or extend existing classes and maintain a clear and
formal integration with the rest of Python's built-in features.

We'll look at containers and collections in detail in Chapter 7, Creating Containers and
Collections.

Numbers
When creating new numbers (or extending existing numbers), we turn to the
numbers module. This module contains the abstract definitions of Python's built-in
numeric types. These types form a tall, narrow hierarchy, from the simplest to the
most elaborate. In this context, simplicity (and elaborateness) refers to the collection
of methods available.

There's an abstract base class named numbers.Number that defines all of the numeric
and number-like classes. We can see that this is true by looking at interactions like the
following one:

>>> import numbers
>>> isinstance(42, numbers.Number)
True
>>> 355/113
3.1415929203539825
>>> isinstance(355/113, numbers.Number)
True

Clearly, integer and float values are subclasses of the abstract numbers.Number
class. The subclasses of Number include numbers.Complex, numbers.Real,
numbers.Rational, and numbers.Integral. These definitions are roughly parallel
to the mathematical concepts used to define the various classes of numbers.

The decimal.Decimal class, however, doesn't fit this hierarchy very well. We can
check the relationships using the issubclass() method as follows:

>>> issubclass(decimal.Decimal, numbers.Number)
True
>>> issubclass(decimal.Decimal, numbers.Integral)
False
>>> issubclass(decimal.Decimal, numbers.Real)
False
>>> issubclass(decimal.Decimal, numbers.Complex)
False
>>> issubclass(decimal.Decimal, numbers.Rational)
False



The ABCs of Consistent Design Chapter 5

[ 158 ]

While the decimal.Decimal class seems closely aligned with numbers.Real, it is
not formally a subclass of this type.

For a concrete implementation of numbers.Rational, look at the fractions
module. We'll look at the various kinds of numbers in detail in Chapter 8, Creating
Numbers.

Some additional abstractions
We'll look at some other interesting ABC classes that are less widely extended. It's not
that these abstractions are less widely used: it's more that the concrete
implementations rarely need extensions or revisions.

We'll look at the iterator, which is defined by collections.abc.Iterator. We'll
also look at the unrelated concept of a context manager. This isn't defined with the
same formality as other ABC classes. We'll look at this in detail in Chapter 6, Using
Callables and Contexts.

In many cases, we'll create iterators using generator functions and the yield
statement. We'll use an explicit type hint of typing.Iterator for these functions.

The iterator abstraction
Iterator objects are created implicitly when we use an iterable container with a for
statement. We rarely expect to see the iterator object itself. For the most part, it will be
a concealed portion of the implementation of the for statement. The few times we do
care about the iterator object, we rarely want to extend or revise the class definition.

We can expose the implicit iterators that Python uses through the iter() function.
We can interact with an iterator in the following way:

>>> x = [1, 2, 3]
>>> iter(x)
<list_iterator object at 0x1006e3c50>
>>> x_iter = iter(x)
>>> next(x_iter)
1
>>> next(x_iter)
2
>>> next(x_iter)
3
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>>> next(x_iter)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration
>>> isinstance(x_iter, collections.abc.Iterator)
True

In the preceding code, we created an iterator over a list object, assigning it to the
x_iter variable. The next() function will step through the values in that iterator.
This shows how iterator objects are stateful, and the next() function both returns a
value and updates the internal state.

The final isinstance() expression confirmed that this iterator object is an instance
of collections.abc.Iterator.

Most of the time, we'll work with iterators that have been created by the collection
classes themselves; however, when we branch out and build our own collection
classes or extend a collection class, we may also need to build a unique iterator. We'll
look at iterators in Chapter 7, Creating Containers and Collections.

Contexts and context managers
A context manager is used with the with statement. We work with a context manager
when we write something like the following:

with function(arg) as context:
    process(context)

In the preceding code, function(arg) creates the context manager. Once the
manager is available, the object can be used as needed. In the example, it's an
argument to a function. A context manager class may have methods to perform
actions within the scope of the context. 

One very commonly used context manager is a file. Any time a file is opened, a
context should be used to guarantee that the file will also be properly closed.
Consequently, we should almost always use a file in the following way:

with open("some file") as the_file:
    process(the_file)

At the end of the with statement, we're assured that the file will be closed properly.
This will release any operating system resources, avoiding resource leaks or
incomplete processing when exceptions are raised.
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The contextlib module provides several tools for building proper context
managers. Rather than providing an abstract base class, this library offers decorators,
which will transform simple functions into context managers, as well as a
contextlib.ContextDecorator base class, which can be extended to build a class
that is a context manager.

We'll look at context managers in detail in Chapter 6, Using Callables and Contexts.

The abc and typing modules
The core method of creating ABCs is defined in the abc module. This module
includes the ABCMeta class, which provides several features.

First, the ABCMeta class ensures that abstract classes can't be instantiated. When a
method uses the @asbtractmethod decorator, then a subclass that fails to provide
this definition cannot be instantiated. A subclass that provides all of the required
definitions for the abstract methods can be instantiated properly.

Second, it provides definitions for __instancecheck__() and
__subclasscheck__(). These special methods implement the isinstance() and
issubclass() built-in functions. They provide the checks to confirm that an object
(or a class) belongs to the proper ABC. This includes a cache of subclasses to speed up
the testing.

The abc module also includes a number of decorators for creating abstract method
functions that must be provided by a concrete implementation of the abstract base
class. The most important of these is the @abstractmethod decorator.

If we wanted to create a new abstract base class, we would use something like the
following:

from abc import ABCMeta, abstractmethod

class AbstractBettingStrategy(metaclass=ABCMeta):
    @abstractmethod
    def bet(self, hand: Hand) -> int:
        return 1

    @abstractmethod
    def record_win(self, hand: Hand) -> None:
        pass

    @abstractmethod
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    def record_loss(self, hand: Hand) -> None:
        pass

This class includes ABCMeta as its metaclass, making it clear this will be an abstract
base class.

This abstraction uses the abstractmethod decorator to define three abstract
methods. Any concrete subclass must define these in order to be a complete
implementation of the abstract base class. For more complex situations, an abstract
base class can define the __subclasshook__() method to make more complex tests
for the required concrete method definitions.

An example of an abstract subclass of the AbstractBettingStrategy class is as
follows:

class Simple_Broken(AbstractBettingStrategy):
   def bet( self, hand ):
        return 1

The preceding code defines an abstract class. An instance can't be built because the 
class doesn't provide the necessary implementations for all three abstract methods. 

The following is what happens when we try to build an instance of this class:

>>> simple= Simple_Broken()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class Simple_Broken with
 abstract methods record_loss, record_win

The error message indicates that the concrete class is incomplete. The following is a
better concrete class that passes the completeness test:

class Simple(AbstractBettingStrategy):
    def bet(self, hand):
        return 1
    def record_win(self, hand):
        pass
    def record_loss(self, hand):
        pass

We can build an instance of this class and use it as part of our simulation. The
abstraction forces us to clutter up the implementation with two unused methods. The
bet() method should be the only required abstract method. The other two methods
should have already been provided with the default implementation of a single
pass statement by the abstract base class. 
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Using the __subclasshook__() method
We can define abstract base classes with complex rules for overrides to create
concrete subclasses. This is done by implementing the __subclasshook__() method
of the abstract base class, as shown in the following code:

class AbstractBettingStrategy2(ABC):

    @abstractmethod
    def bet(self, hand: Hand) -> int:
        return 1

    @abstractmethod
    def record_win(self, hand: Hand) -> None:
        pass

    @abstractmethod
    def record_loss(self, hand: Hand) -> None:
        pass

    @classmethod
    def __subclasshook__(cls, subclass: type) -> bool:
        """Validate the class definition is complete."""
        if cls is AbstractBettingStrategy2:
            has_bet = any(hasattr(B, "bet") for B in subclass.__mro__)
            has_record_win =  any(hasattr(B, "record_win") for B in
subclass.__mro__)
            has_record_loss = any(hasattr(B, "record_loss") for B in
subclass.__mro__)
            if has_bet and has_record_win and has_record_loss:
                return True
        return False

This class is an abstract base class, built by extension from the ABC superclass. As with
the previous example, a number of @abstractmethod definitions are provided. Any
subclass of this class would be like the previous examples of the
AbstractBettingStrategy class.

When trying to build an instance of the subclass, the __subclasshook__() method
is invoked to determine whether the object can be built. In this case, there are three
individual checks: has_bet, has_record_win, and has_record_loss. If all three
checks pass, then the function returns True to permit the object to be built; otherwise,
the function returns False to prevent it building an instance of an incomplete
concrete class.
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Using __subclasshook__() permits nuanced decision making with regard to the
validity of a subclass of an abstract class. It can also lead to confusion because the
obvious rule—that is, implement all @abstractmethod methods—isn't in use.

Abstract classes using type hints
We can also do some management of the implementation of concrete methods with
type hints and the typing module. A concrete class will be checked by mypy to be
sure it matches the abstract class type hints. This is not as stringent as the checks
made by the ABCMeta class, since they don't happen at runtime, but only when mypy
is used. We can do this by using raise NotImplementedError in the body of an
abstract class. This will create a runtime error if the application actually creates an 
instance of an abstract class.

The concrete subclasses define the methods normally. The presence of type hints
means mypy can confirm that the subclass provides a proper definition that matches
the superclass type hints. This comparison between type hints is perhaps the most
important part of creating concrete subclasses. Consider the following two class
definitions:

from typing import Tuple, Iterator

class LikeAbstract:
    def aMethod(self, arg: int) -> int:
        raise NotImplementedError

class LikeConcrete(LikeAbstract):
    def aMethod(self, arg1: str, arg2: Tuple[int, int]) ->
Iterator[Any]:
        pass

The LikeConcrete class implementation of the aMethod() method is clearly
different from the LikeAbstract superclass. When we run mypy, we'll see an error
message like the following:

Chapter_5/ch05_ex1.py:96: error: Signature of "aMethod" incompatible
with supertype "LikeAbstract"

This will confirm that the LikeConcrete subclass is not a valid implementation of
the aMethod() method. This technique for creating abstract class definitions via type
hinting is a feature of mypy, and can be used in conjunction with the ABCMeta class to
create a robust library that supports both mypy and runtime checks.
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Summary, design considerations, and
trade-offs
In this chapter, we looked at the essential ingredients of abstract base classes. We saw
a few features of each kind of abstraction.

We also learned that one rule for good class design is to inherit as much as possible.
We saw two broad patterns here. We also saw the common exceptions to this rule.

Some application classes don't have behaviors that overlap with internal features of
Python. From our Blackjack examples, a Card isn't much like a number, a container,
an iterator, or a context: it's just a playing card. In this case, we can generally invent a
new class because there aren't any built-in features to inherit from.

When we look at Hand, however, we can see that a hand is clearly a container. As we
noted when looking at hand classes in Chapters 2, The __init__() Method, and Chapter
3, Integrating Seamlessly - Basic Special Methods, the following are three fundamental
design strategies:

Wrapping an existing container
Extending an existing container
Inventing a wholly new kind of container

Most of the time, we'll be wrapping or extending an existing container. This fits with
our rule of inheriting as much as possible.

When we extend an existing class, our application class will fit into the class hierarchy
neatly. An extension to the built-in list is already an instance of
collections.abc.MutableSequence.

When we wrap an existing class, however, we have to carefully consider which parts
of the original interface we want to support and which parts we don't want to
support. In our examples in the previous chapters, we only wanted to expose the
pop() method from the list object we were wrapping.

Because a wrapper class is not a complete mutable sequence implementation, there
are many things it can't do. On the other hand, an extension class participates in a
number of use cases that just might turn out to be useful. For example, a hand that
extends list will turn out to be iterable.
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If we find that extending a class doesn't meet our requirements, we can resort to
building an entirely new collection. The ABC definitions provide a great deal of
guidance on what methods are required in order to create a collection that can
integrate seamlessly with the rest of the Python universe. We'll look at a detailed
example of inventing a collection in Chapter 7, Creating Containers and Collections.

In most cases, type hints will help us create abstraction classes that constrain aspects
of the concrete implementations. The abstract base class definitions are checked when
the application executes, introducing overheads that may be undesirable. The mypy
checks are made — along with unit tests checks — before an application is used,
reducing overheads, and improving confidence in the resulting application.

Looking forward
In the coming chapters, we'll make extensive use of the abstract base classes discussed
in this chapter. In Chapter 6, Using Callables and Contexts, we'll look at the relatively
simple features of callables and contexts. In Chapter 7, Creating Containers and
Collections, we'll look at the available containers and collections. We'll also look at
how to build a unique, new kind of container in this chapter. Lastly, in Chapter 8,
Creating Numbers, we'll look at the various numeric types and how we can create our
own kind of number.



6
Using Callables and Contexts

The callable concept in Python includes a variety of different ways to create functions
and objects that behave like functions. We can create callable objects that
use memoization to maintain a cache of answers, therefore performing very quickly.
In some cases, memoization is essential for creating an algorithm that finishes within
a reasonable amount of time.

The concept of context allows us to create elegant, reliable resource management. The
with statement defines a context and creates a context manager to control the
resources used in that context. Python files are generally context managers; when
used in a with statement, they are properly closed.

We'll look at several ways to create context managers using the tools in the
contextlib module. Some other useful abstract base classes are in a separate
submodule called collections.abc.

We'll show a number of variant designs for callable objects. This will show us why a
stateful callable object is sometimes more useful than a simple function. We'll also
look at how to use some of the existing Python context managers before we dive in
and write our own context manager.

The following concepts will be discussed in this chapter:

Designing callables
Improving performance
Using functools for memoization
Complexities and the callable interface
Managing contexts and the with statement
Defining the _enter_() and _exit_() methods
Context manager as a factory
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Technical requirements
The code files for this chapter can be found at https://git.io/fj2Ug.

Designing callables
There are two easy and commonly-used ways to create callable objects in Python,
which are as follows:

By using the def statement to create a function.
By creating an instance of a class that implements the _call()_ method.
This can be done by using collections.abc.Callable as its base class.

Beyond these two, we can also assign a lambda form to a variable. A lambda is a
small, anonymous function that consists of exactly one expression. We'd rather not
emphasize saving lambdas in a variable, as this leads to the confusing situation where
we have a function-like callable that's not defined with a def statement.

The following is a simple callable object, pow1, created from a class:

from typing import Callable
IntExp = Callable[[int, int], int]
class Power1:
    def __call__(self, x: int, n: int) -> int:
        p = 1
        for i in range(n):
            p *= x
        return p
pow1: IntExp = Power1()

There are three parts to creating a callable object, as follows:

The type hint defines the parameters and return values from the resulting
callable object. In this example, Callable[[int, int], int] defines a
function with two integer parameters and an integer result. To save
repeating it, a new type name, IntExp, is assigned.
We defined the class with a __call__() method. The type signature here
matches the IntExp type definition. 
We created an instance of the class, pow1(). This object is callable and
behaves like a function. We've also provided a type hint so that mypy can
confirm that the callable object will have the proper signature.

https://git.io/fj2Ug
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The algorithm for computing  seems to be inefficient. We'll address that later.

Clearly, the body of the __call__() method is so simple that a full class definition
isn't really necessary. In order to show the various optimizations, we'll start with this
simple callable object rather than mutate a function into a callable object.

We can now use the pow1() function just as we'd use any other function. Here's how
to use the pow1() function in a Python command line:

>>> pow1(2, 0)
1
>>> pow1(2, 1)
2
>>> pow1(2, 2)
4
>>> pow1(2, 10)
1024

We've evaluated the callable object with various kinds of argument values.

It's not required to make a callable object a subclass of abc.Callable when working
with mypy; however, using the abstract base class can help with debugging.

Consider this flawed definition:

class Power2(collections.abc.Callable):
    def __call_( self, x, n ):
        p= 1
        for i in range(n):
            p *= x
        return p

The preceding class definition has an error and doesn't meet the definition of the
callable abstraction.

The following is what happens when we try to create an instance of this class:

>>> pow2: IntExp = Power2()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class Power2 with abstract
 methods __call__

It may not be obvious exactly what went wrong, but we have a fighting chance to
debug this. If we hadn't subclassed collections.abc.Callable, we'd have a
somewhat more mysterious problem to debug.
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Here's a version of a broken callable that relies on type hints to detect the problem.
This is nearly identical to the correct Power class shown previously. The code that
contains a tragic flaw is as follows:

class Power3:

    def __call_(self, x: int, n: int) -> int:
        p = 1
        for i in range(n):
            p *= x
        return p

When we run mypy, we will see complaints about this code. The expected type of the
callable object doesn't match the defined IntExp type:

# Chapter_6/ch06_ex1.py:68: error: Incompatible types in assignment
(expression has type "Power3", variable has type "Callable[[int, int],
int]")

If we ignore the mypy error and try to use this class, we'll see runtime problems. The
following is what happens when we try to use Power3 as a class that doesn't meet the
expectations of callables and isn't a subclass of abc.Callable either:

>>> pow3: IntExp = Power3()
>>> pow3(2, 5)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: 'Power3' object is not callable

This error provides less guidance as to why the Power3 class definition is flawed. The
mypy hint provides some assistance in locating the problem.

Improving performance
We'll look at two performance tweaks for the Power1 class shown previously.

First, we need to switch to a better algorithm. Then, we will require a better algorithm
combined with memoization, which involves a cache; therefore, the function becomes
stateful. This is where callable objects shine.

The first modification is to use a divide-and-conquer design strategy. The previous
version chopped the computation of  into  steps; the loop carried out n
individual multiplication operations. If we can find a way to split the problem into
two equal portions, the problem decomposes into  steps.
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For example, pow1(2,1024), the Power1 callable, performs 1,024 individual
multiplication operations. We can optimize this down to 10 multiplications, a
significant speedup.

Rather than simply multiplying by a fixed value, we'll use the fast
exponentiation algorithm. It uses three essential rules for computing, as follows:

If , then , and the result is simply 1.
If n is odd, , and the result is . This involves a recursive
computation of . This does one multiplication. However, is an even
number, which can be optimized.
If n is even, , and the result is . This involves a
recursive computation of . This chops the number of multiplications in
half.

The following is these recursive callable object:

class Power4:

    def __call__(self, x: int, n: int) -> int:
        if n == 0:
            return 1
        elif n % 2 == 1:
            return self.__call__(x, n - 1) * x
        else:  # n % 2 == 0:
            t = self.__call__(x, n // 2)
            return t * t

pow4: IntExp = Power4()

We applied the three rules to the input value:

If n is zero, we'll return 1.
If n is odd, we'll make a recursive call and return .

If n is even, we'll make a recursive call and return .

The execution time is dramatically faster. We can use the timeit module to see the
difference in performance. See Chapter 1, Preliminaries, Tools, and Techniques for
information on using timeit. When we compare running pow1(2,1024) and
pow4(2,1024) 10,000 times, we'll see something like 183 seconds for the previous
version versus 8 seconds for this version.
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The following is how we can gather performance data using timeit:

import timeit

iterative = timeit.timeit( "pow1(2,1024)","""
class Power1():
    def __call__(self, x: int, n: int) -> int:
        p= 1
        for i in range(n):
            p *= x
        return p

pow1= Power1()
""", number=100_000 )
print("Iterative", iterative)

We imported the timeit module. The timeit.timeit() function will evaluate a
given statement in the defined context. In this case, our statement is
the pow1(2,1024) expression. The context for this statement is the definition of the
pow1() callable object; this includes the import, class definition, and creation of the
pow1 instance.

Note that we provided number=100_000 to speed things up. If we had used the
default value for the number of iterations, it could have taken almost two minutes.

Using memoization or caching
The idea behind memoization is to cache previous results to avoid recomputing them.
We'll use considerably more memory, but we can also dramatically speed up
performance by avoiding computation.

An ordinary function doesn't have a place to cache previous results. A function is not
expected to be stateful. A callable object, however, can be stateful. It can include a
cache of previous results.

The following is a memoized version of our Power callable object:

class Power5:

    def __init__(self):
        self.memo = {}

    def __call__(self, x: int, n: int) -> int:
        if (x, n) not in self.memo:
            if n == 0:
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                self.memo[x, n] = 1
            elif n % 2 == 1:
                self.memo[x, n] = self.__call__(x, n-1) * x
            elif n % 2 == 0:
                t = self.__call__(x, n // 2)
                self.memo[x, n] = t * t
            else:
                raise Exception("Logic Error")
        return self.memo[x, n]

pow5: IntExp = Power5()

We revised our algorithm to work with a self.memo cache. This is initialized to an
empty mapping. In the __call__() method, the cache is checked for previously
computed answers.

If the parameter values have been requested previously, the cached result is returned
and no computation is performed. This is the big speedup that we spoke of earlier.

Otherwise, the parameter values are not present in the cache. In this missing value
case,the value of  must be computed and saved. The three rules to compute the
fast exponent are used to get and put values in the cache. This assures us that future
calculations will be able to exploit the cached values.

The importance of memoization can't be stressed enough. The reduction in
computation can be dramatic. It is commonly done by replacing a slow, expensive
function with a callable object.

Memoization doesn't work well with float values. The lack of exact
match equality means some kind of approximately-equal test needs
to be made against the cached values. When working with float
values, either rounding needs to be used, or some more
sophisticated cache search will be required.

Using functools for memoization
The Python library includes a memoization decorator in the functools module. We
can use this module instead of creating our own callable object.

We can use this as follows:

from functools import lru_cache
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@lru_cache()
def pow6(x: int, n: int) -> int:
    if n == 0:
        return 1
    elif n % 2 == 1:
        return pow6(x, n-1) * x
    else:  # n % 2 == 0:
        t = pow6(x, n // 2)
        return t * t

This code defines a function, pow6(), which is decorated with a Least Recently Used
(LRU) cache. Previous requests are stored in a memoization cache. The idea behind
an LRU cache is that the most recently made requests are kept and the oldest requests
are quietly purged. We can use @lru_cache(256), for example, to limit the cache to
256 entries, thereby optimizing memory use.

Using timeit, we can see that 10,000 iterations of pow5() run in about 1 second,
while the iterations for pow6() run in about 8 seconds.

What this also shows is that a trivial use of timeit can misstate the performance of
the memoization algorithms. If each request is recomputing a previously cached
answer, only the first iteration – with an empty cache – performs the computation.

Aiming for simplicity using a callable interface
The idea behind a callable object is that we have a class interface focused on a single
method. This is also true for simple function definitions.

Some objects have multiple relevant methods. A Blackjack Hand, for example, has to
add cards and produce a total. A Blackjack Player has to place bets, accept hands,
and make play decisions (for example, hit, stand, split, insure, and double down).
These are more complex interfaces that are not suitable to be callables.

The betting strategy, however, is a candidate for being a callable. While it will be
implemented as several methods to set the state and get a bet, this seems excessive.
For this simple case, the strategy can be a callable interface with a few public
attributes.

The following is the straight betting strategy, which is always the same:

class BettingStrategy:
    def __init__(self) -> None:
       self.win = 0
       self.loss = 0
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    def __call__(self) -> int:
        return 1
bet = BettingStrategy()

The idea of this interface is that a Player object will inform the betting strategy of
win amounts and loss amounts. The Player object might have methods such as the
following to inform the betting strategy about the outcome:

    def win(self, amount) -> None:
        self.bet.win += 1
        self.stake += amount
    def loss(self, amount) -> None:
         self.bet.loss += 1
         self.stake -= amount

These methods inform a betting strategy object (the self.bet object) whether the
hand was a win or a loss. When it's time to place a bet, the Player object will perform
something like the following operation to get the current betting level:

    def initial_bet(self) -> int:
        return self.bet()

This is a pleasantly short method implementation. After all, the betting strategy
doesn't do much other than encapsulate a few, relatively simple rules.

The compactness of the callable interface can be helpful. We don't have many method
names, and we don't have a complex set of syntaxes for a class to represent something
as simple as bet amount.

Complexities and the callable interface
Let's see how well this interface design holds up as our processing becomes more
complex. The following is the double-up on each loss strategy (also known as
the Martingale betting system):

class BettingMartingale(BettingStrategy):

    def __init__(self) -> None:
        self._win = 0
        self._loss = 0
        self.stage = 1

    @property
    def win(self) -> int:
        return self._win
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    @win.setter
    def win(self, value: int) -> None:
        self._win = value
        self.stage = 1

    @property
    def loss(self) -> int:
        return self._loss

    @loss.setter
    def loss(self, value: int) -> None:
        self._loss = value
        self.stage *= 2

    def __call__(self) -> int:
        return self.stage

Each loss doubles the betting by multiplying the stage by two. This goes on until we
win and recoup our losses, reach the table limit, or go broke and can no longer place
any bets. Casinos limit this by imposing table limits.

Whenever we win, the betting is reset to the base bet. The stage variable is reset to
have a value of 1.

The goal is to easily access an attribute value. The client of this class will be able to
use bet.win += 1. This can depend on the property setter methods to make
additional state changes based on the wins and losses. We only really care about the
setter properties, but we must define the getter properties in order to clearly
create the setter properties. In addition to counting wins and losses, the setter
methods also set the stage instance variable.

We can see this class in action in the following code snippet:

>>> bet= BettingMartingale()
>>> bet()
1
>>> bet.win += 1
>>> bet()
1
>>> bet.loss += 1
>>> bet()
2

The interface to this object is still quite simple. We can either count the wins and reset
the bet to the base, or we can count the losses, and the bets will double.
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The use of properties made the class definition long and hideous. Since we're really
only interested in the setter properties and not the getter properties, we can use
__setattr__() to streamline the class definition somewhat, as shown in the
following code:

class BettingMartingale2(BettingStrategy):

    def __init__(self) -> None:
        self.win = 0
        self.loss = 0
        self.stage = 1

    def __setattr__(self, name: str, value: int) -> None:
        if name == "win":
            self.stage = 1
        elif name == "loss":
            self.stage *= 2
        super().__setattr__(name, value)

    def __call__(self) -> int:
        return self.stage

We used __setattr__() to monitor the changes to the win and loss attributes. In
addition to setting the instance variables using super().__setattr__(), we also
updated the internal state for the betting amount.

This is a nicer looking class definition, and it retains the same, simple interface as the
original callable object with two attributes.

Managing contexts and the with
statement
Contexts and context managers are used in several places in Python. We'll look at a
few examples to establish the basic terminology.

Python defines context using the with statement. The following program is a small
example that parses a log file to create a useful CSV summary of that log. Since there
are two open files, this will use the nested with contexts. The example uses a complex
regular expression, format_1_pat. We'll define this shortly.
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We might see something similar to the following in an application program:

from pathlib import Path
import gzip
import csv

source_path = Path.cwd()/"data"/"compressed_data.gz"
target_path = Path.cwd()/"data"/"subset.csv"

with target_path.open('w', newline='') as target:
    wtr= csv.writer( target )
    with gzip.open(source_path) as source:
        line_iter = (b.decode() for b in source)
        row_iter = Counter(format_1_pat.match(line) for line in
line_iter)
        non_empty_rows: Iterator[Match] = filter(None, row_iter)
        wtr.writerows(m.groups() for m in non_empty_rows)

Two contexts with two context managers are part of this example:

The outermost context starts with the with target_path.open('w',
newline='') as target: statement. The path.open() method opens a
file that is also a context manager and assigns it to the target variable for
further use.
The inner context starts with the with gzip.open(source_path, "r")
as source: statement. This gzip.open() function opens the given path
and also behaves as a context manager. 

When the with statements end, the contexts exit and the files are properly closed; this
means that all of the buffers are flushed and the operating system resources are
released. Even if there's an exception in the body of the with context, the context
manager's exit will be processed correctly and the file will be closed.

Always use a with statement around a path.open() and related file-
system operations

Since files involve operating system (OS) resources, it's important to
be sure that the entanglements between our applications and the OS
are released as soon as they're no longer needed. The with
statement ensures that resources are used properly.
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Just to complete the example, the following is the regular expression used to parse the
Apache HTTP server log files in the Common Log Format:

import re
format_1_pat= re.compile(
    r"([\d\.]+)\s+" # digits and .'s: host
    r"(\S+)\s+"     # non-space: logname
    r"(\S+)\s+"     # non-space: user
    r"\[(.+?)\]\s+" # Everything in []: time
    r'"(.+?)"\s+'   # Everything in "": request
    r"(\d+)\s+"     # digits: status
    r"(\S+)\s+"     # non-space: bytes
    r'"(.*?)"\s+'   # Everything in "": referrer
    r'"(.*?)"\s*'   # Everything in "": user agent
)

The preceding expression located the various log format fields used in the previous
example.

Using the decimal context
Another context that is used frequently is the decimal context. This context defines a
number of properties of the decimal.Decimal calculation, including the
quantization rules used to round or truncate values.

We might see application programming that looks similar to the following code
snippet:

import decimal
PENNY = decimal.Decimal("0.00")

price = decimal.Decimal('15.99')
rate = decimal.Decimal('0.0075')
print(f"Tax={(price * rate).quantize(PENNY)}, Fully={price * rate}")

with decimal.localcontext() as ctx:
    ctx.rounding = decimal.ROUND_DOWN
    tax = (price*rate).quantize(PENNY)
print(f"Tax={tax}")

The preceding example shows both a default context as well as a local context. The
default context is shown first, and it uses the default rounding rule.
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The localized context begins with the with decimal.localcontext() as ctx:
statement. Within this context, the decimal rounding has been defined to round down
for this particular calculation.

The with statement is used to assure that the original context is restored after the
localized change. Outside this context, the default rounding applies. Inside this
context, a modified rounding rule applies.

Other contexts
There are a few other common contexts. Almost all of them are associated with basic
input/output operations. Most modules that open a file create a context along with
the file-like object.

Contexts are also associated with locking and database transactions. We may acquire
and release an external lock, such as a semaphore, or we may want a database
transaction to properly commit when it's successful or roll back when it fails. These
are all the things that have defined contexts in Python.

The PEP 343 document provides a number of other examples of how the with
statement and context managers might be used. There are also other places where we
might like to use a context manager.

We may need to create classes that are simply context managers, or we may need to
create classes that can have multiple purposes, one of which is to be a context
manager. We'll look at a number of design strategies for contexts.

We'll return to this again in Chapter 9, Decorators and Mixins – Cross-Cutting Aspects,
where we can cover a few more ways to create classes that have context manager
features.

Defining the __enter__() and __exit__()
methods
The defining feature of a context manager is that it has two special
methods: __enter__() and __exit__(). These are used by the with statement to
enter and exit the context. We'll use a simple context so that we can see how they
work.
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We'll often use context managers to make global state changes. This might be a
change to the database transaction status or a change to the locking status of a
resource, something that we want to do and then undo when the transaction is
complete.

For this example, we'll make a global change to the random number generator. We'll
create a context in which the random number generator uses a fixed and known seed,
providing a fixed sequence of values.

The following is the context manager class definition:

import random
from typing import Optional, Type
from types import TracebackType

class KnownSequence:

    def __init__(self, seed: int = 0) -> None:
        self.seed = 0

    def __enter__(self) -> 'KnownSequence':
        self.was = random.getstate()
        random.seed(self.seed, version=1)
        return self

    def __exit__(
            self,
            exc_type: Optional[Type[BaseException]],
            exc_value: Optional[BaseException],
            traceback: Optional[TracebackType]
    ) -> Optional[bool]:
        random.setstate(self.was)
        return False

We defined the required __enter__() and __exit__() methods for the context
manager. The __enter__() method will save the previous state of the random
module and then reset the seed to a given value. The __exit__() method will
restore the original state of the random number generator.

Note that __enter__() returns self. This is common for mixin context managers
that have been added into other class definitions. We'll look at the concept of a mixin
in Chapter 9, Decorators And Mixins – Cross-Cutting Aspects. Note that the
__enter__() method cannot have a type hint that refers to the KnownSequence
class, because the class definition isn't complete. Instead, a string, 'KnownSequence',
is used; mypy will resolve this to the class when the type hint checking is done.
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The __exit__() method's parameters will have the value of None under normal
circumstances. Unless we have specific exception-handling needs, we generally
ignore the argument values. We'll look at exception handling in the following code.
Here's an example of using the context to print five bunches of random numbers:

print(tuple(random.randint(-1,36) for i in range(5)))
with KnownSequence():
    print(tuple(random.randint(-1,36) for i in range(5)))
print(tuple(random.randint(-1,36) for i in range(5)))
with KnownSequence():
    print(tuple(random.randint(-1,36) for i in range(5)))
print(tuple(random.randint(-1,36) for i in range(5)))

The two groups of random numbers created within the context managed by an
instance of KnownSequence, produce a fixed sequence of values. Outside the two
contexts, the random seed is restored, and we get random values.

The output will look like the following (in most cases):

(12, 0, 8, 21, 6)
(23, 25, 1, 15, 31)
(6, 36, 1, 34, 8)
(23, 25, 1, 15, 31)
(9, 7, 13, 22, 29)

Some of this output is machine-dependent. While the exact values may vary, the
second and fourth lines will match because the seed was fixed by the context. The
other lines will not necessarily match, because they rely on the random module's own
randomization features.

Handling exceptions
Exceptions that arise in a context manager's block will be passed to the __exit__()
method of the context manager. The standard bits of an exception – the class,
arguments, and the traceback stack – will all be provided as argument values.

The __exit__() method can do one of the following two things with the exception
information:

Silence the exception by returning some True value.
Allow the exception to rise normally by returning any other False value.
Returning nothing is the same as returning None, which is a False value;
this allows the exception to propagate.
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An exception might also be used to alter what the context manager does on exit. We
might, for example, have to carry out special processing for certain types of OS errors
that might arise.

Context manager as a factory
We can create a context manager class, which is a factory for an application object.
This gives us a pleasant separation of design considerations without cluttering up an
application class with context management features.

Let's say we want a deterministic Deck for dealing in Blackjack. This isn't as useful as
it might sound. For unit testing, we'll need a complete mock deck with specific
sequences of cards. This has the advantage that the context manager works with the
classes we already saw.

We'll extend the simple context manager shown earlier to create a Deck that can be
used within the with statement context.

The following is a class that is a factory for Deck and also tweaks the random module:

class Deterministic_Deck:

    def __init__(self, *args, **kw) -> None:
        self.args = args
        self.kw = kw

    def __enter__(self) -> Deck:
        self.was = random.getstate()
        random.seed(0, version=1)
        return Deck(*self.args, **self.kw)

    def __exit__(
            self,
            exc_type: Optional[Type[BaseException]],
            exc_value: Optional[BaseException],
            traceback: Optional[TracebackType]
    ) -> Optional[bool]:
        random.setstate(self.was)
        return False

The preceding context manager class preserves the argument values so that it can
create a Deck with the given arguments.
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The __enter__() method preserves the old random number state and then sets the
random module in a mode that provides a fixed sequence of values. This is used to
build and shuffle the deck.

Note that the __enter__() method returns a newly minted Deck object to be used in
the with statement context. This is assigned via the as clause in the with statement.
The type hint specifies Deck as the return type of this method. The following is a way
to use this factory context manager:

with Deterministic_Deck(size=6) as deck:
    h = Hand(deck.pop(), deck.pop(), deck.pop())

The preceding example of code guarantees a specific sequence of cards that we can
use for demonstration and testing purposes.

Cleaning up in a context manager
In this section, we'll discuss a more complex context manager that attempts some
cleanup when there are problems.

This addresses the common issue where we want to save a backup copy of a file that
our application is rewriting. We want to be able to do something similar to the
following:

with Updating(some_path):
    with some_path.open('w') as target_file:
        process(target_file)

The intent is to have the original file renamed to some_file copy. If the context
works normally, that is, no exceptions are raised, then the backup copy can be deleted
or renamed to some_file old.

If the context doesn't work normally, that is, an exception is raised, we want to
rename the new file to some_file error and rename the old file to some_file,
putting the original file back the way it was before the exception.

We will need a context manager similar to the following:

from pathlib import Path
from typing import Optional

class Updating:

    def __init__(self, target: Path) -> None:
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        self.target: Path = target
        self.previous: Optional[Path] = None

    def __enter__(self) -> None:
        try:
            self.previous = (
                self.target.parent
                    / (self.target.stem + " backup")
                ).with_suffix(self.target.suffix)
            self.target.rename(self.previous)
        except FileNotFoundError:
            self.previous = None

    def __exit__(
            self,
            exc_type: Optional[Type[BaseException]],
            exc_value: Optional[BaseException],
            traceback: Optional[TracebackType]
    ) -> Optional[bool]:
        if exc_type is not None:
            try:
                self.failure = (
                    self.target.parent
                        / (self.target.stem + " error")
                    ).with_suffix(self.target.suffix)
                self.target.rename(self.failure)
            except FileNotFoundError:
                pass  # Never even got created.
            if self.previous:
                self.previous.rename(self.target)
        return False

This context manager's __enter__() method will attempt to preserve any previous
copy of the named file if it already exists. If it didn't exist, there's nothing to preserve.
The file is preserved by simply renaming it to a name such as "file backup.ext".

The __exit__() method will be given information about any exception that
occurred in the body of context. If there is no exception, nothing more needs to be
done. If there is an exception, then the __exit__() method will try to preserve the
output (with a suffix of "error") for debugging purposes. It will also put any
previous copy of the file back in place by renaming the backup to the original name.

This is functionally equivalent to a try-except-finally block. However, it has the
advantage that it separates the relevant application processing from the context
management. The application processing is written in the with statement. The
context issues are set aside into a separate class.
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Summary
We looked at three of the special methods for class definition. The __call__()
method is used when creating a callable. The callable is used to create functions that
are stateful. Our primary example is a function that memoizes previous results.

The __enter__() and __exit__() methods are used to create a context manager.
The context is used to handle processing that is localized to the body of a with
statement. Most of our examples include input-output processing. Python also uses
localized contexts for the decimal state. Other examples include making patches for
unit testing purposes or acquiring and releasing locks.

Callable design considerations and trade-offs
When designing a callable object, we need to consider the following:

The first consideration is the interface of the object. If there's a reason for
the object to have a function-like interface, then a callable object is a
sensible design approach. Using collections.abc.Callable assures
that the callable API is built correctly, and it informs anyone reading the
code what the intent of the class is.
The secondary consideration is the statefulness of the function. Ordinary
functions in Python have no hysteresis – there's no saved state. A callable
object, however, can easily save a state. The memoization design pattern
makes good use of stateful callable objects.

The only disadvantage of a callable object is the amount of syntax that is required. An
ordinary function definition is shorter and therefore less error-prone and easier to
read.

It's easy to migrate a defined function to a callable object, as follows:

def x(args):
    body

The preceding function can be converted into the following callable object:

class X:
    def __call__(self, args):
        body
x= X()
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This is the minimal set of changes required to get the function to pass unit tests in the
new form. The existing body will work in the new context unmodified.

Once the change has been made, features can be added to the callable object's version
of the function.

Context manager design considerations and
trade-offs
A context is generally used for acquire/release, open/close, and lock/unlock types of
operation pairs. Most of the examples are file I/O related, and most of the file-like
objects in Python are already proper context managers.

A context manager is almost always required for anything that has steps that bracket
the essential processing. In particular, anything that requires a final close() method
should be wrapped by a context manager.

Some Python libraries have open/close operations, but the objects aren't proper
contexts. The shelve module, for example, doesn't create a proper context.

We can (and should) use the contextllib.closing() context on a shelve file.
We'll show this in Chapter 10, Serializing and Saving – JSON, YAML, Pickle, CSV, and
XML.

For our own classes that require a close() method, we can use the closing()
function. When confronted with a class that has any kind of acquire/release life cycle,
we want to acquire resources in __init__() or a class-level open() method and
release them in close(). That way, our class can integrate well with this closing()
function.

The following is an example of a class being wrapped that requires a close()
function:

with contextlib.closing(MyClass()) as my_object:
    process(my_object)

The contextllib.closing() function will invoke the close() method of the
object that is given as an argument. We can guarantee that my_object will have its
close() method evaluated.
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Looking forward
In the next two chapters, we'll look at the special methods used to create containers
and numbers. In Chapter 7, Creating Containers and Collections, we'll look at the
containers and collections in the standard library. We'll also look at building a unique,
new kind of container. In Chapter 8, Creating Numbers, we'll look at the various
numeric types and how we can create our own kind of number.



7
Creating Containers and

Collections
We can extend a number of the standard library abstract base classes (ABCs) to
create new kinds of collections. The ABCs also provide us with design guidelines to
extend the built-in containers. These allow us to fine-tune the features or define new
data structures that fit our problem domain more precisely.

We'll look at the basics of ABCs for container classes. There are a fairly large number
of abstractions that are used to assemble the built-in Python types, such as list,
tuple, dict, set, and frozenset. We'll review the variety of special methods that
are involved in being a container and offering the various features of containers. We'll
split these into the core container methods, separate from the more specialized
sequence, map, and set methods. We'll address extending built-in containers in
order to add features. We'll also look at wrapping built-in containers and delegating
methods through the wrapper to the underlying container.

Finally, we'll look at building entirely new containers. This is a challenging territory,
because there's a huge variety of interesting and useful collection algorithms already
present in the Python Standard Library. In order to avoid deep computer science
research, we'll build a pretty lame collection. Before starting on a real application, a
careful study of Introduction to Algorithms by Cormen, Leiserson, Rivest, and Stein is
essential. We'll finish by summarizing some of the design considerations that go into
extending or creating new collections.
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In this chapter, we will cover the following topics:

ABCs of collections
Examples of special methods
Using the standard library extensions
Creating new kinds of collections
Narrowing a collection's type
Defining a new kind of sequence
Creating a new kind of mapping
Creating a new kind of set

Technical requirements
The code files for this chapter are available at https:/ ​/ ​git.​io/ ​fj2U2.

ABCs of collections
The collections.abc module provides a wealth of ABCs that decompose
collections into a number of discrete feature sets. A related set of features of a class is
called a protocol: the idea is that things such as getting, setting, and deleting items are
the protocol for list-like behavior. Similarly, the __iter__() method is part of the
protocol for defining an iterable collection. A list often implements both protocols, but
some data structures may support fewer protocols. Support for a given protocol is
often exploited by mypy algorithms to determine whether an object is being used
properly.

We can successfully use the list class without thinking too deeply about the various
features and how they relate to the set class or the dict class. Once we start looking
at the ABCs, however, we can see that there's a bit of subtlety to these classes. By
decomposing the aspects of each collection, we can see areas of overlap that manifest
themselves as an elegant polymorphism, even among different data structures.

At the bottom of the base classes are some definitions of the core protocols for
collections.

https://git.io/fj2U2
https://git.io/fj2U2
https://git.io/fj2U2
https://git.io/fj2U2
https://git.io/fj2U2
https://git.io/fj2U2
https://git.io/fj2U2
https://git.io/fj2U2
https://git.io/fj2U2
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These are the base classes that often define a single special method:

The Container base class requires the concrete class to implement the
__contains__() method. This special method implements the in
operator.
The Iterable base class requires __iter__(). This special method is
used by the for statement and the generator expressions as well as the
iter() function.
The Sized base class requires __len__(). This method is used by the
len() function. It's also prudent to implement __bool__(), but it's not
required by this ABC.
The Hashable base class requires __hash__(). This is used by the hash()
function. If this is implemented, it means that the object is immutable.

Each of these abstract class definitions is used to build the higher-level, composite
definitions of structures we can use in our applications. These composite constructs
include the lower-level base classes of Sized, Iterable, and Container. Here are
some composite base classes that we might use in an application:

The Sequence and MutableSequence classes build on the basics and
include methods such as index(), count(), reverse(), extend(), and
remove().
The Mapping and MutableMapping classes include methods such as
keys(), items(), values(), and get(), among others.
The Set and MutableSet classes include comparison and arithmetic
operators to perform set operations.

If we look more deeply into the built-in collections, we can see how the ABC
definitions serve to organize the special methods that we need to write or modify.

The collections module also contains three concrete implementations: UserDict,
UserList and UserString. UserDict is a version of the built-in dictionary, with the
details exposed. Similarly, UserList and UserString provide implementations that
can be extended through subclasses. These can be helpful to see how a collection is
built. In older versions of Python, these were used as superclasses and were extended
because the built-in types could not easily be extended. In Python 3, the built-in types
are trivially extended: these are rarely used except as example code.

Let's take a look at some examples of special methods in the next section.
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Examples of special methods
When looking at a blackjack Hand object, we have an interesting special case for
containment. We often want to know if there's an ace in the hand. If we define Hand
as an extension of list, then we can't ask for a generic ace. We can only ask for
specific cards. We have to write something like the following example:

any(c.rank == 'A' for c in hand.cards)

This examines each card serially. For a small collection where the checking is rare, the
design has few consequences. If, on the other hand, we simulated millions of hands,
this search would be repeated often enough that the cost would be troubling.

For other problem domains, where the collection may contain millions of items, we
certainly can't scan millions of items serially. A better scheme for a collection of
objects can be helpful. Ideally, we'd like something like this:

'A' in hand.cards

This means that we're modifying the meaning of contains for a Hand object that
extends list. We're not looking for a Card instance; we're merely looking for the
rank property of a Card object. We can override the __contains__() method to do
this:

def __contains__(self, rank: int) -> bool:
    return any(c.rank==rank for rank in hand.cards)

This allows us to use a simpler in test for a given rank in a hand. The serial
examination of individual cards is still present, but it's encapsulated within the Hand
class, and we can introduce special-purpose indexes based on dictionaries to optimize
this. Similar design considerations can be applied to the __iter__() and
__len__(), special methods. Be cautious, however. Changing the semantics of len()
or how a collection interacts with the for statement, might be disastrous.

The next section explains how to use the standard library extensions.

Using the standard library extensions
We'll look at some extensions to built-in classes that are already part of the standard
library. These are the collections that extend or modify the built-in collections. Most of
these are covered in one form or another in books such as Python 3 Object-Oriented
Programming - Third Edition by Dusty Phillips.
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We'll look at the following four collection from this library:

deque (note the atypical class name) is a double-ended queue, a list-like
collection that can perform fast appends and pops on either end. A subset
of the features of this class will create single-ended stacks or queues.
ChainMap is a view of multiple mappings. Instead of merging mappings
together, we can keep them separate and chain among them to locate which
mapping contains a requested key. 
defaultdict (note the atypical spelling) is a dict subclass that uses a
factory function to provide values for missing keys.
Counter is a dict subclass that can be used for counting objects to create 
frequency tables. However, it's actually a more sophisticated data structure
called a multiset or bag.

There are two collections in this library that have been replaced by more advanced
versions:

The namedtuple() function creates a subclass of tuple with named
attributes. This has been replaced by the NamedTuple definition in the
typing module. We'll emphasize the new typing.NamedTuple class
because it permits type hints. The legacy function is no longer useful.
An OrderedDict collection is a mapping in which the original key entry
order is maintained. This feature of maintaining key order is now a first-
class part of the built-in dict class, so this special collection isn't necessary
anymore.

We'll see examples of the preceding collection classes. There are two important
lessons to be learned from studying the library collections:

What features are already present the standard library; this will save us
from reinvention
How to extend the ABCs to add interesting and useful structures to the
language



Creating Containers and Collections Chapter 7

[ 193 ]

Also, it can be helpful to read the source for the libraries. The source will show us
numerous Python object-oriented programming techniques. Beyond these basics are
even more modules. They are as follows:

The heapq module is a set of functions that impose a heap queue structure
on an existing list object. The heap queue invariant is the set of those
items in the heap that are maintained, in order to allow rapid retrieval in
ascending order. If we use the heapq methods on a list structure, we will
never have to explicitly sort the list. This can have significant performance
improvements.
The array module is a kind of sequence that optimizes storage for certain
kinds of values. This provides list-like features over potentially large 
collections of simple values.

We won't provide detailed examples of these advanced modules. In addition, of
course, there's the deeper computer science that supports these various data structure
definitions.

Let's take a look at the different classes in the next few sections.

The typing.NamedTuple class
The NamedTuple class expects a number of class-level attributes. These attributes will
typically have type hints, and provide a way to give names to the attributes of a
tuple. 

Using a NamedTuple subclass can condense a class definition into a very short
definition of a simple immutable object. It saves us from having to write longer and
more complex class definitions for the common case where we want to name a fixed
set of attributes.

For something like a playing card, we might want to insert the following code in a
class definition:

from typing import NamedTuple

class BlackjackCard_T(NamedTuple):
    rank: str
    suit: Suit
    hard: int
    soft: int
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We defined a new class and provided four named attributes: rank, suit, hard, and
soft. Since each of these objects is immutable, we don't need to worry about a badly
behaved application attempting to change the rank of a BlackjackCard instance.

We can use a factory function to create instances of this class, as shown in the
following code:

def card_t(rank: int, suit: Suit) -> BlackjackCard_T:
    if rank == 1:
        return BlackjackCard_T("A", suit, 1, 11)
    elif 2 <= rank < 11:
        return BlackjackCard_T(str(rank), suit, rank, rank)
    elif rank == 11:
        return BlackjackCard_T("J", suit, 10, 10)
    elif rank == 12:
        return BlackjackCard_T("Q", suit, 10, 10)
    elif rank == 13:
        return BlackjackCard_T("K", suit, 10, 10)
    else:
        raise ValueError(f"Invalid Rank {rank}")

The card_t() function will build an instance of BlackjackCard with the hard and
soft totals set properly for various card ranks. The intent here is to use card_t(7,
Suit.Hearts) to create an instance of the BlackjackCard class. The various points
will be set automatically by the card_t() function.

A subclass of NamedTuple will include a class-level attribute named _fields, which
names the fields. Additionally, a _field_types attribute provides details of the type
hints provided for the attributes. These permit sophisticated introspection
on NamedTuple subclasses.

We can, of course, include methods in a NamedTuple class definition.  An example of
including methods is as follows:

class BlackjackCard_T(NamedTuple):
    rank: str
    suit: Suit
    hard: int
    soft: int
    def is_ace(self) -> bool:
        return False

class AceCard(BlackjackCard):
    def is_ace(self) -> bool:
        return True
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A subclass can't add any new attributes. The subclass can, however, meaningfully 
override method definitions. This technique can create usefully polymorphic
subclasses of a NamedTuple class.

The deque class
A list object is designed to provide uniform performance for any element within the
container. Some operations have performance penalties. Most notably, any operation
extending from the front of a list, such as list.insert(0, item), or removing
from the front of a list, such as list.pop(0), will incur some overheads because the
list's size is changed, and the position of each element must then changed.

A deque – a double-ended queue – is designed to provide uniform performance for
the first and last elements of a list. The idea is that appending and popping will be
faster than the built-in list object.

Class names are usually in title case. However, the deque class
doesn't follow the common pattern.

Our design for a deck of cards avoids the potential performance pitfall of a list
object by always popping from the end, never from the beginning. Using the default
pop(), or an explicit pop(-1), leverages the asymmetry of a list by using the low-
cost location for removing at item.

The deque.pop() method is very fast and works from either end of the list. While
this can be handy, we can check whether the performance of shuffling may suffer. A
shuffle will make random access to the container, something for which deque is not
designed.

In order to confirm the potential costs, we can use timeit to compare list and
deque shuffling performance as follows:

>>> timeit.timeit('random.shuffle(x)',"""
... import random
... x=list(range(6*52))""")
597.951664149994
>>>
>>> timeit.timeit('random.shuffle(d)',"""
... from collections import deque
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... import random

... d=deque(range(6*52))""")
609.9636979339994

We invoked timeit using random.shuffle(). The first example works on a list
object; the second example works on a deque object.

These results indicate that shuffling a deque object is only a trifle slower than
shuffling a list object – about 2 percent slower. This distinction is a hair not worth
splitting. We can confidently try a deque object in place of list.

The change amounts to this:

from collections import dequeue
class Deck(dequeue):
    def __init__( self, size=1 ):
        super().__init__()
        for d in range(size):
           cards = [ card(r,s) for r in range(13) for s in Suits ]
            super().extend( cards )
        random.shuffle( self )

We replaced list with deque in the definition of Deck. Otherwise, the class is
identical.

What is the actual performance difference? Let's create decks of 100,000 cards and
deal them:

>>> timeit.timeit('x.pop()', "x=list(range(100000))",
 number=100000)
0.032304395994287916
>>> timeit.timeit('x.pop()', "from collections import deque;
 x=deque(range(100000))", number=100000)
0.013504189992090687

We invoked timeit using x.pop(). The first example works on a list; the second
example works on a deque object.

The dealing time is cut almost by half (42 percent, actually). We had big savings from
a tiny change in the data structure.

In general, it's important to pick the optimal data structure for the application. Trying
several variations can show us what's more efficient.
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The ChainMap use case
The use case for chaining maps together fits nicely with Python's concept of local
versus global definitions. When we use a variable in Python, first the local
namespaces and then the global namespaces are searched, in that order. In addition to
searching both namespaces for a variable, setting a variable is done in the local
namespace without disturbing the global namespace. This default behavior (without
the global or nonlocal statements) is also how ChainMap works.

When our applications start running, we often have properties that come from
command-line parameters, configuration files, OS environment variables, and
possibly a default file of settings installed with the software. These have a clear
precedence order where a value supplied on the command-line is most important,
and an installation-wide default setting is the least important. Because a ChainMap
object will search through the various mappings in order, it lets us merge many
sources of parameters into a single dictionary-like structure, so that we can easily
locate a setting. 

We might have an application startup that combines several sources of configuration
options like this:

import argparse
import json
import os
import sys
from collections import ChainMap
from typing import Dict, Any

def get_options(argv: List[str] = sys.argv[1:]) -> ChainMap:
    parser = argparse.ArgumentParser(
        description="Process some integers.")
    parser.add_argument(
        "-c", "--configuration", type=open, nargs="?")
    parser.add_argument(
        "-p", "--playerclass", type=str, nargs="?",
        default="Simple")
    cmdline = parser.parse_args(argv)

    if cmdline.configuration:
        config_file = json.load(cmdline.configuration)
        cmdline.configuration.close()
    else:
        config_file = {}

    default_path = (
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        Path.cwd() / "Chapter_7" / "ch07_defaults.json")
    with default_path.open() as default_file:
        defaults = json.load(default_file)

    combined = ChainMap(
        vars(cmdline), config_file, os.environ, defaults)
    return combined

The preceding code shows us the configuration from several sources, such as the
following:

The command-line arguments. In this example, there is only one argument,
called playerclass, but a practical application will often have many,
many more.
One of the arguments, configuration, is the name of a configuration file
with additional parameters. This is expected to be in the JSON format, and
the file's contents are read.
Additionally, there's a defaults.json file with yet another place to look
for the configuration values.

From the preceding sources, we can build a single ChainMap object. This object
permits looking for a parameter in each of the listed locations in the specified order.
The ChainMap instance use case will search through each mapping from highest
precedence to lowest, looking for the given key and returning the value. This gives us
a tidy, easy-to-use source for runtime options and parameters.

We'll look at this again in Chapter 14, Configuration Files and Persistence, and Chapter
18, Coping with the Command Line.

The OrderedDict collection
The OrderedDict collection is a Python dictionary with an added feature. The order
in which keys were inserted is retained.

One common use for OrderedDict is when processing HTML or XML files, where
the order of objects must be retained, but objects might have cross-references via the
ID and IDREF attributes. We can optimize the connections among objects by using the
ID as a dictionary key. We can retain the source document's ordering with the
OrderedDict structure.
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With release 3.7, the built-in dict class makes the same guarantee of preserving the
order in which dictionary keys were inserted. Here's an example:

>>> some_dict = {'zzz': 1, 'aaa': 2}
>>> some_dict['mmm'] = 3
>>> some_dict
{'zzz': 1, 'aaa': 2, 'mmm': 3}

In earlier releases of Python, the order of keys in a dictionary were not guaranteed to
match the order in which they were inserted. The ordering of keys used to be
arbitrary and difficult to predict. The OrderedDict class added the insertion order
guarantee in these older releases of Python. Since the order of the keys is now
guaranteed to be the order in which keys were inserted, the OrderedDict class is
redundant. 

The defaultdict subclass
An ordinary dict type raises an exception when a key is not found. A defaultdict
collection class does this differently. Instead of raising an exception, it evaluates a
given function and inserts the value of that function into the dictionary as a default
value.

Class names are usually in upper TitleCase. However, the
defaultdict class doesn't follow this pattern.

A common use case for the defaultdict class is to create indices for objects. When
several objects have a common key, we can create a list of objects that share this key.

Here's a function that accumulates a list of distinct values based on a summary of the
two values:

from typing import Dict, List, Tuple, DefaultDict
def dice_examples(n: int=12, seed: Any=None) -> DefaultDict[int,
List]:
    if seed:
        random.seed(seed)
    Roll = Tuple[int, int]
    outcomes: DefaultDict[int, List[Roll]] = defaultdict(list)
    for _ in range(n):
        d1, d2 = random.randint(1, 6), random.randint(1, 6)
        outcomes[d1+d2].append((d1, d2))
    return outcomes
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The type hint for Roll shows that we consider a roll of the dice to be a two-tuple
composed of integers. The outcomes object has a hint that it will be a dictionary that
has integer keys and the associated value will be a list of Roll instances.

The dictionary is built using outcomes[d1+d2].append((d1, d2)). Given two
random numbers, d1 and d2, the sum is the key value. If this key value does not
already exist in the outcomes mapping, the list() function is used to build a
default value of an empty list. If the key already exists, the value is simply fetched,
and the append() method is used to accumulate the actual pair of numbers.

As another example, we can use the a defaultdict collection class to provide a
constant value. We can use this instead of the
container.get(key,"N/A") expression.

We can create a zero-argument lambda object. This works very nicely. Here's an
example:

>>> from collections import defaultdict
>>> messages = defaultdict(lambda: "N/A")
>>> messages['error1']= 'Full Error Text'
>>> messages['other']
'N/A'
>>> messages['error1']
'Full Error Text'

In the first use of messages['error1'], a value was assigned to the
'error1' key. This new value will replace the default. The second use of
messages['other'] will add the default value to the dictionary. 

We can determine how many new keys were created by looking for all the keys that
have a value of "N/A":

>>> [k for k in messages if messages[k] == "N/A"]
['other']

As you can see in the preceding output, we found the key that was assigned the
default value of "N/A". This is often a helpful summary of the data that is being
accumulated. It shows us all of the keys associated with the default value.
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The counter collection
One of the most common use cases for a defaultdict class is when accumulating
counts of key instances. A simple way to count keys looks like this:

frequency = defaultdict(int)
for k in some_iterator():
    frequency[k] += 1

This example counts the number of times each key value, k, appears in the sequence
of values from some_iterator().

This use case is so common that there's a variation on the defaultdict theme that
performs the same operation shown in the preceding code–it's called Counter. A
Counter collection, however, is considerably more sophisticated than a simple
defaultdict class.

Here's an example that creates a frequency histogram from some source of data
showing values in descending order by frequency:

from collections import Counter
frequency = Counter(some_iterator())
for k, freq in frequency.most_common():
    print(k, freq)

This example shows us how we can easily gather statistical data by providing any
iterable item to Counter. It will gather frequency data on the values in that iterable
item. In this case, we provided an iterable function named some_iterator(). We
might have provided a sequence or some other collection.

We can then display the results in descending order of popularity. But wait! That's
not all.

The Counter collection is not merely a simplistic variation of the defaultdict
collection. The name is misleading. A Counter object is actually
a aaaaaaaaaaaaaaaamultiset, sometimes called a bag.

It's a collection that is set-like, but allows repeat values in the bag. It is not a sequence
with items identified by an index or position; order doesn't matter. It is not a mapping
with keys and values. It is like a set in which items stand for themselves and order
doesn't matter. But, it is unlike a set because, in this case, elements can repeat.
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As elements can repeat, the Counter object represents multiple occurrences with an
integer count. Hence, it's used as a frequency table. However, it does more than this.
As a bag is like a set, we can compare the elements of two bags to create a union or an
intersection.

Let's create two bags:

>>> bag1 = Counter("aardwolves")
>>> bag2 = Counter("zymologies")
>>> bag1
Counter({'a': 2, 'o': 1, 'l': 1, 'w': 1, 'v': 1, 'e': 1,
'd': 1,  's': 1, 'r': 1})
>>> bag2
Counter({'o': 2, 'm': 1, 'l': 1, 'z': 1, 'y': 1, 'g': 1,
'i': 1,  'e': 1, 's': 1})

We built each bag by examining a sequence of letters. For characters that occur more
than once, there's a count that is more than one.

We can easily compute the union of the two bags:

>>> bag1+bag2
Counter({'o': 3, 's': 2, 'l': 2, 'e': 2, 'a': 2, 'z': 1,
'y': 1,  'w': 1, 'v': 1, 'r': 1, 'm': 1, 'i': 1, 'g': 1,
'd': 1})

This shows us the entire suite of letters between the two strings. There were three
instances of o. Not surprisingly, other letters were less popular.

We can just as easily compute the difference between the bags:

>>> bag1-bag2
Counter({'a': 2, 'w': 1, 'v': 1, 'd': 1, 'r': 1})
>>> bag2-bag1
Counter({'o': 1, 'm': 1, 'z': 1, 'y': 1, 'g': 1, 'i': 1})

The first expression shows us characters in bag1 that were not in bag2.

The second expression shows us characters in bag2 that were not in bag1. Note that
the letter o occurred twice in bag2 and once in bag1. The difference only removed
one of the o characters from bag1.

In the next section, we'll see how to create new kinds of collections.
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Creating new kinds of collections
We'll look at some extensions we might make to Python's built-in container classes.
We won't show an example of extending each container.

We'll pick an example of extending a specific container and see how the process
works:

Define the requirements. This may include research on Wikipedia,1.
generally starting here: http://en.wikipedia.org/wiki/Data_structure.
Designs of data structures often involve complex edge cases around
missing items and duplicate items.
If necessary, look at the collections.abc module to see what methods2.
must be implemented to create the new functionality.
Create some test cases. This also requires careful study of the algorithms to3.
ensure that the edge cases are properly covered.
Write code based on the previous research steps.4.

We need to emphasize the importance of researching the fundamentals before trying
to invent a new kind of data structure. In addition to searching the web for overviews
and summaries, details will be necessary. See any of the following:

 Introduction to Algorithms by Cormen, Leiserson, Rivest, and Stein
Data Structures and Algorithms by Aho, Ullman, and Hopcroft
 The Algorithm Design Manual by Steven Skiena

As we saw earlier, the ABCs define three broad kinds of collections: sequences,
mappings, and sets. We have three design strategies that we can use to create new
kinds of collections of our own:

Extend: This is an existing sequence.
Wrap: This is an existing sequence.
Invent: This is a new sequence created from scratch.

In principle, we could give as many as nine examples – each basic flavor of collection
with each basic design strategy. We won't beat this subject to death like that. We'll dig
deep to create new kinds of sequences, learning how to extend and wrap
existing sequences.

http://en.wikipedia.org/wiki/Data_structure
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As there are so many extended mappings (such as ChainMap, OrderedDict,
defaultdict, and Counter), we'll only touch lightly on creating new kinds of
mappings. We'll also dig deep to create a new kind of ordered multiset or bag.

Let's narrow a collection's type in the next section.

Narrowing a collection's type
Python 3 allows us to provide extensive type hints for describing the contents of a
collection. This has two benefits:

It helps us visualize the data structure.
It supports running mypy to confirm that the code uses the data structures
properly.

The non-collection types (int, str, float, complex, and so on) all use the type name
as their type hint. The built-in collections all have parallel type definitions in the
typing module. It's common to see from typing import List, Tuple, Dict,
Set to import these type names into a module. 

Each of the type hints accepts parameters to further narrow the definition:

The List[T] hint claims the object will be a list and all the items will be
of type T. For example [1, 1, 2, 3, 5, 8] can be described as
List[int].
A Set[T] hint is similar to the List[T] hint. It claims all items in the set
will be of type T. For example, {'a', 'r', 'd'} can be described as
Set[str].
The Dict[K, V] hint claims the object will be a dict, the keys will all
have a type K, and the values will all have a type V. For example, {'A': 4,
'B' 12} can be described as Dict[str, int].



Creating Containers and Collections Chapter 7

[ 205 ]

The Tuple hint is often more complex. There are two common cases for tuples:

A hint such as Tuple[str, int, int, int] describes a four-tuple with
a string and three integer values, for example, ('crimson', 220, 20,
60).  The size is specified explicitly.
A hint such as Tuple[int, ...] describes a tuple of indefinite size. The
items will all be type int.  The size is not specified. The ... notation is a
token in the Python language, and is a first-class part of the syntax for this
type hint.

To describe objects where None values may be present in a collection, the Optional
type is used. We might have a type hint such as List[Optional[int]] to describe a
list that is a mixture of int and None objects, for example [1, 2, None, 42].

Because of the type coercion rules for numbers, we can often summarize numerical
algorithms using a float type hint, such as the following:

def mean(data: List[float]) -> float: ...

This function will also work with a list of integer values. The mypy program 
recognizes the type coercion rules and will recognize mean([8, 9, 10]) as a valid
use of this function.

In the next section, we'll define a new kind of sequence.

Defining a new kind of sequence
A common requirement that we have when performing statistical analysis is to
compute basic means, modes, and standard deviations on a collection of data. Our
blackjack simulation will produce outcomes that must be analyzed statistically to see
if we have actually invented a better strategy.

When we simulate the playing strategy for a game, we will develop some outcome
data that will be a sequence of numbers that show the final result of playing the game
several times with a given strategy. 

We could accumulate the outcomes into a built-in list class. We can compute the

mean via , where  is the number of elements in :

def mean(outcomes: List[float]) -> float:
    return sum(outcomes) / len(outcomes)
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Standard deviation can be computed via :

def stdev(outcomes: List[float]) -> float:
    n = float(len(outcomes))
    return math.sqrt(
        n * sum(x**2 for x in outcomes) - sum(outcomes)**2
    ) / n

Both of these are relatively simple calculation functions. As things get more complex,
however, loose functions such as these become less helpful. One of the benefits of
object-oriented programming is to bind the functionality with the data.

Our first example will not involve rewriting any of the special methods of list. We'll
simply subclass list to add methods that will compute the statistics. This is a very
common kind of extension.

We'll revisit this in the second example so that we can revise and extend the special
methods. This will require some study of the ABC special methods to see what we
need to add or modify so that our new list subclass properly inherits all the features
of the built-in list class.

Because we're looking at sequences, we also have to wrestle with the Python slice
notation. We'll look at what a slice is and how it works internally in the Working with
__getitem__, __setitem__, __delitem__, and slices section.

The second important design strategy is wrapping. We'll create a wrapper around a
list and see how we can delegate methods to the wrapped list. Wrapping has some
advantages when it comes to object persistence, which is the subject of Chapter 10,
Serializing and Saving – JSON, YAML, Pickle, CSV, and XML.

We can also look at the kinds of things that need to be done to invent a new kind of
sequence from scratch.

A statistical list
It makes good sense to incorporate mean and standard deviation features directly
into a subclass of list. We can extend list like this:

class StatsList(list):

    def __init__(self, iterable: Optional[Iterable[float]]) -> None:
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        super().__init__(cast(Iterable[Any], iterable))

    @property
    def mean(self) -> float:
        return sum(self) / len(self)

    @property
    def stdev(self) -> float:
        n = len(self)
        return math.sqrt(
            n * sum(x ** 2 for x in self) - sum(self) ** 2
        ) / n

With this simple extension to the built-in list class, we can accumulate data and
report statistics on the collection of data items.

Note the relative complexity involved in narrowing the type of the list class. The
built-in list structure's type, List, is effectively List[Any]. In order for the
arithmetic operations to work, the content really must be List[float]. By stating
the __init__() method will only accept an Iterable[float] value, mypy is
forced to confirm arguments to StatsList will meet this criteria. Let's imagine we
have a source of raw data:

def data_gen() -> int:
    return random.randint(1, 6) + random.randint(1, 6)

This little data_gen() function is a stand-in for a variety of possible functions. It
might be a complex simulation. It might be a source of actual measurements. The
essential feature of this function—defined by the type hint—is to create an integer
value.

We can imagine that an overall simulation script can use the StatsList class, as
follows:

random.seed(42)
data = [data_gen() for _ in range(100)]
stats = StatsList(data)
print(f"mean = {stats.mean:f}")
print(f"stdev= {stats.stdev:.3f}")

This snippet uses a list comprehension to create a raw list object with 100
samples. Because the data object is built from the data_gen() function, it's clear that
the data object has the type List[int]. From this, a StatsList object is created. The
resulting stats object has mean and stdev properties, which are extensions to the
base list class.
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Choosing eager versus lazy calculation
Note that the calculations in the previous example are lazy; they are only done when
requested. This also means that they're performed each and every time they're
requested. This can be a considerable overhead, depending on the context in which
objects of these classes are used.

It's may be sensible to transform these statistical summaries into eager calculations, as
we know when elements are added and removed from a list. Although there's a hair
more programming to create eager versions of these functions, it has a net impact of
improving performance when there's a lot of data being accumulated.

The point of eager statistical calculations is to avoid the loops that compute sums. If
we compute the sums eagerly, as the list is being created, we avoid extra looping
through the data.

When we look at the special methods for a Sequence class, we can see all of the
places where data is added to, removed from, and modified in the sequence. We can
use this information to recompute the two sums that are involved. We start with the
collections.abc section of the Python Standard Library documentation, section
8.4.1, at
http://docs.python.org/3.4/library/collections.abc.html#collections-abstra

ct-base-classes.

Here are the required methods for a MutableSequence class: __getitem__,
__setitem__, __delitem__, __len__, insert, append, reverse, extend, pop,
remove, and __iadd__. The documentation also mentions the Inherited Sequence
methods. However, as they are for immutable sequences, we can certainly ignore
them.

Here are the details of what must be done to update the statistical results in each
method:

__getitem__: There's no change in the state.
__setitem__: This changes an item. We need to take the old item out of
each sum and fold the new item into each sum.
__delitem__: This removes an item. We need to take the old item out of
each sum.
__len__: There's no change in the state.
insert: This adds a new item. We need to fold it into each sum.
append: This also adds a new item. We need to fold it into each sum.

http://docs.python.org/3.4/library/collections.abc.html#collections-abstract-base-classes
http://docs.python.org/3.4/library/collections.abc.html#collections-abstract-base-classes
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reverse: There's no change in the value of the mean or standard deviation.
extend: This adds many new items. All of the items must be folded into
the sums.
pop: This removes an item. We need to take the old item out of each sum.
remove: This removes an item. We need to take the old item out of each
sum.
__iadd__: This is the += augmented assignment statement, the in-place
addition. It's effectively the same as the extend keyword.

We won't look at each method in detail, because there are really combinations of two
use cases:

Fold in one new value
Remove one old value

The replacement case is a combination of the remove and fold in operations.

Here are the elements of an eager StatsList2 class. We're going to see
the insert() and pop() method:

class StatsList2(list):
    """Eager Stats."""

    def __init__(self, iterable: Optional[Iterable[float]]) -> None:
        self.sum0 = 0  # len(self), sometimes called "N"
        self.sum1 = 0.0  # sum(self)
        self.sum2 = 0.0  # sum(x**2 for x in self)
        super().__init__(cast(Iterable[Any], iterable))
        for x in self:
            self._new(x)

    def _new(self, value: float) -> None:
        self.sum0 += 1
        self.sum1 += value
        self.sum2 += value * value

    def _rmv(self, value: float) -> None:
        self.sum0 -= 1
        self.sum1 -= value
        self.sum2 -= value * value

    def insert(self, index: int, value: float) -> None:
        super().insert(index, value)
        self._new(value)
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    def pop(self, index: int = 0) -> None:
        value = super().pop(index)
        self._rmv(value)
        return value

We provided three internal variables with comments to show the invariants that this
class will maintain. We'll call these the sum invariants because each of them contains a
particular kind of sum that is maintained as invariant (always true) after each kind of
state change. The essence of this eager calculation are the _rmv() and _new()
methods, which update our three internal sums based on changes to the list, so that
the relationships really remain invariant.

When we remove an item, that is, after a successful pop() operation, we have to
adjust our sums. When we add an item (either initially, or via the insert() method),
we also have to adjust our sums. The other methods we need to implement will make
use of these two methods to ensure that the three sum invariants hold. For a given list

of values, L, we ensure that L.sum0 is always , L.sum1 is always ,

and L.sum2 is always . We can use the sums to compute the mean and standard
deviation.

Other methods, such as append(), extend(), and remove(), are similar in many
ways to these methods. We haven't shown them because they're similar.

We can see how this list works by playing with some data:

>>> sl2 = StatsList2( [2, 4, 3, 4, 5, 5, 7, 9, 10] )
>>> sl2.sum0, sl2.sum1, sl2.sum2
(9, 49, 325)
>>> sl2[2]= 4
>>> sl2.sum0, sl2.sum1, sl2.sum2
(9, 50, 332)
>>> del sl2[-1]
>>> sl2.sum0, sl2.sum1, sl2.sum2
(8, 40, 232)
>>> sl2.insert( 0, -1 )
>>> sl2.pop()
-1
>>> sl2.sum0, sl2.sum1, sl2.sum2
(8, 40, 232)
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We can create a list and the sums are computed initially. Each subsequent change
eagerly updates the various sums. We can change, remove, insert, and pop an item;
each change results in a new set of sums.

All that's left, is to add our mean and standard deviation calculations, which we can
do as follows:

@property
def mean(self) -> float:
    return self.sum1 / self.sum0

@property
def stdev(self) -> float:
    return math.sqrt(
        self.sum0*self.sum2 - self.sum1*self.sum1
    ) / self.sum0

These make use of the sums that have already been computed. There's no additional
looping over the data to compute these two statistics.

Working with __getitem__(), __setitem__(),
__delitem__(), and slices
The StatsList2 example didn't show us the implementation of __setitem__() or
__delitem__() because they involve slices. We'll need to look at the implementation
of a slice before we can implement these methods properly.

Sequences have two different kinds of indexes:

a[i]. This is a simple integer index.
a[i:j] or a[i:j:k]: These are slice expressions with
start:stop:step values. Slice expressions can be quite complex, with
seven different variations for different kinds of defaults.

This basic syntax works in three contexts:

In an expression, relying on __getitem__() to get a value
On the left-hand side of assignment, relying on __setitem__() to set a
value
On a del statement, relying on __delitem__() to delete a value
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When we do something like seq[:-1], we write a slice expression. The underlying
__getitem__() method will be given a slice object, instead of a simple integer.

The reference manual tells us a few things about slices. A slice object will have three
attributes: start, stop, and step. It will also have a method function called
indices(), which will properly compute any omitted attribute values for a slice.

We can explore the slice objects with a trivial class that extends list:

class Explore(list):
    def __getitem__( self, index ):
        print( index, index.indices(len(self)) )
        return super().__getitem__( index )

This class will dump the slice object and the value of the indices() function
result. Then, use the superclass implementation, so that the list behaves normally
otherwise.

Given this class, we can try different slice expressions to see what we get:

>>> x = Explore('abcdefg')
>>> x[:]
slice(None, None, None) (0, 7, 1)
['a', 'b', 'c', 'd', 'e', 'f', 'g']
>>> x[:-1]
slice(None, -1, None) (0, 6, 1)
['a', 'b', 'c', 'd', 'e', 'f']
>>> x[1:]
slice(1, None, None) (1, 7, 1)
['b', 'c', 'd', 'e', 'f', 'g']
>>> x[::2]
slice(None, None, 2) (0, 7, 2)
['a', 'c', 'e', 'g']

In the preceding slice expressions, we can see that a slice object has three
attributes, and the values for those attributes come directly from the Python syntax.
When we provide the proper length to the indices() function, it returns a three-
tuple value with start, stop, and step values.
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Implementing __getitem__(), __setitem__(),
and __delitem__()
When we implement the __getitem__(), __setitem__() and
__delitem__() methods, we must work with two kinds of argument values: int
and slice. This variant behavior requires two different type hints. The hints are
provided using the @overload decorator.

When we overload the various sequence methods, we must handle the slice situation
appropriately within the body of the method. This requires using the isinstance()
function to discern whether a slice object or a simple int has been provided as an
argument value.

Here is a __setitem__() method that works with slices:

@overload
def __setitem__(self, index: int, value: float) -> None: ...

@overload
def __setitem__(self, index: slice, value: Iterable[float]) -> None:
...

def __setitem__(self, index, value) -> None:
    if isinstance(index, slice):
        start, stop, step = index.indices(len(self))
        olds = [self[i] for i in range(start, stop, step)]
        super().__setitem__(index, value)
        for x in olds:
            self._rmv(x)
        for x in value:
            self._new(x)
    else:
        old = self[index]
        super().__setitem__(index, value)
        self._rmv(old)

The preceding method has two processing paths:

If the index is a slice object, we'll compute the start, stop, and step
values. Then, we'll locate all the old values that will be removed. We can
then invoke the superclass operation and fold in the new values that
replaced the old values.
If the index is a simple int object, the old value is a single item, and the
new value is also a single item.
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Note that __setitem__() expected multiple type hints, written using the
@overload descriptor. The __delitem__() definition, on the other hand, relies
on Union[int, slice], instead of two overloaded definitions.

Here's the __delitem__() method, which works with either a slice or an integer:

def __delitem__(self, index: Union[int, slice]) -> None:
    # Index may be a single integer, or a slice
    if isinstance(index, slice):
        start, stop, step = index.indices(len(self))
        olds = [self[i] for i in range(start, stop, step)]
        super().__delitem__(index)
        for x in olds:
            self._rmv(x)
    else:
        old = self[index]
        super().__delitem__(index)
        self._rmv(old)

The preceding code, too, expands the slice to determine what values could be
removed. If the index is a simple integer, then just one value is removed.

When we introduce proper slice processing to our StatsList2 class, we can create
lists that do everything the base list class does, and also (rapidly) return the mean
and standard deviation for the values that are currently in the list.

Note that these method functions will each create a temporary list
object, olds; this involves some overhead that can be removed. As
an exercise for the reader, it's helpful to rewrite the _rmv() function
to eliminate the use of the olds variable.

Wrapping a list and delegating
We'll look at how we might wrap one of Python's built-in container classes. Wrapping
an existing class means that some methods will have to be delegated to the
underlying container.

As there are a large number of methods in any of the built-in collections, wrapping a
collection may require a fair amount of code. When it comes to creating persistent
classes, wrapping has advantages over extending. That's the subject of Chapter 10,
Serializing and Saving - JSON, YAML, Pickle, CSV, and XML. In some cases, we'll want
to expose the internal collection to save writing a large number of sequence methods
that delegate to an internal list.
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A common restriction that applies to statistics data classes is that they need to be
insert only. We'll be disabling a number of method functions. This is the kind of
dramatic change in the class features that suggests using a wrapper class instead of an
extension.

We can design a class that supports only append and __getitem__, for example. It
would wrap a list class. The following code can be used to accumulate data from
simulations:

class StatsList3:
    def __init__(self) -> None:
        self._list: List[float] = list()
        self.sum0 = 0  # len(self), sometimes called "N"
        self.sum1 = 0.  # sum(self)
        self.sum2 = 0.  # sum(x**2 for x in self)

    def append(self, value: float) -> None:
        self._list.append(value)
        self.sum0 += 1
        self.sum1 += value
        self.sum2 += value * value

    def __getitem__(self, index: int) -> float:
        return self._list.__getitem__(index)

    @property
    def mean(self) -> float:
        return self.sum1 / self.sum0

    @property
    def stdev(self) -> float:
        return math.sqrt(
            self.sum0*self.sum2 - self.sum1*self.sum1
        ) / self.sum0

This class has an internal _list object that is the underlying list. We've provided an
explicit type hint to show the object is expected to be List[float]. The list is
initially empty. As we've only defined append() as a way to update the list, we can
maintain the various sums easily. We need to be careful to delegate the work to the
superclass to be sure that the list is actually updated before our subclass processes the
argument value.

We can directly delegate __getitem__() to the internal list object without
examining the arguments or the results.
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We can use this class as follows:

>>> sl3 = StatsList3()
>>> for data in 2, 4, 4, 4, 5, 5, 7, 9:
...     sl3.append(data)
...
>>> sl3.mean
5.0
>>> sl3.stdev
2.0

We created an empty list and appended items to the list. As we maintain the sums as
items are appended, we can compute the mean and standard deviation extremely
quickly.

We did not provide a definition of __iter__(). Instances of this class will, however,
be iterable in spite of this omission.

Because we've defined __getitem__(), several things now work. Not only can we
get items, but it also turns out that there will be a default implementation that allows
us to iterate through the sequence of values.

Here's an example:

>>> sl3[0]
2
>>> for x in sl3:
...     print(x)
...
2
4
4
4
5
5
7
9

The preceding output shows us that a minimal wrapper around a collection is often
enough to satisfy many use cases.
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Note that we didn't, for example, make the list sizeable. If we attempt to get the size,
it will raise an exception, as shown in the following snippet:

>>> len(sl3)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: object of type 'StatsList3' has no len()

We might want to add a __len__() method that delegates the real work to the
internal _list object. We might also want to set __hash__ to None, which would be
prudent as this is a mutable object.

We might want to define __contains__() and delegate this feature to the internal
_list too. This will create a minimalist container that offers the low-level feature set
of a container.

Creating iterators with __iter__()
When our design involves wrapping an existing class, we'll need to be sure our class
is iterable. When we look at the documentation for collections.abc.Iterable,
we see that we only need to define __iter__() to make an object iterable. The
__iter__() method can either return a proper Iterator object, or it can be
a generator function.

Creating an Iterator object, while not terribly complex, is rarely necessary. It's
much simpler to create generator functions. For a wrapped collection, we should
always simply delegate the __iter__() method to the underlying collection.

For our StatsList3 class, it would look like this:

    def __iter__(self):
        return iter(self._list)

This method function would delegate the iteration to the underlying list
object's Iterator.
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Creating a new kind of mapping
Python has a built-in mapping called dict, and numerous library mappings. In
addition to the collections module extensions to dict (defaultdict,
Counter, and ChainMap), there are several other library modules that contain
mapping-like structures.

The shelve module is an important example of another mapping. We'll look at this
in Chapter 11, Storing and Retrieving Objects via Shelve. The dbm module is similar to
shelve, in that it also maps a key to a value.

The mailbox module and email.message modules both have classes that
provide an interface that is similar to dict for the mailbox structure used to
manage local e-mails.

As far as design strategies go, we can extend or wrap one of the existing mappings to
add even more features.

We could upgrade Counter to add the mean and standard deviation to the data
stored as a frequency distribution. Indeed, we can also calculate the median and
mode very easily from this class.

Here's a StatsCounter extension to Counter that adds some statistical functions:

import math
from collections import Counter

class StatsCounter(Counter):
    @property
    def mean(self) -> float:
        sum0 = sum(v for k, v in self.items())
        sum1 = sum(k * v for k, v in self.items())
        return sum1 / sum0

    @property
    def stdev(self) -> float:
        sum0 = sum(v for k, v in self.items())
        sum1 = sum(k * v for k, v in self.items())
        sum2 = sum(k * k * v for k, v in self.items())
        return math.sqrt(sum0 * sum2 - sum1 * sum1) / sum0
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We extended the Counter class with two new methods to compute the mean and
standard deviation from the frequency distributions. The formulae are similar to the
examples shown earlier for the eager calculations on a list object, even though
they're lazy calculations on a Counter object.

We used sum0 = sum(v for k,v in self.items()) to compute a sum of the
values, v, ignoring the k keys. We could use an underscore (_) instead of k to
emphasize that we're ignoring the keys. We could also use sum(v for v in
self.values()) to emphasize that we're not using the keys. We prefer obvious
parallel structures for sum0 and sum1.

We can use this class to efficiently gather statistics and to perform quantitative
analysis on the raw data. We might run a number of simulations, using a Counter
object to gather the results.

Here's an interaction with a list of sample data that stands in for real results:

>>> sc = StatsCounter( [2, 4, 4, 4, 5, 5, 7, 9] )
>>> sc.mean
5.0
>>> sc.stdev
2.0
>>> sc.most_common(1)
[(4, 3)]
>>> list(sorted(sc.elements()))
[2, 4, 4, 4, 5, 5, 7, 9]

The results of most_common() are reported as a sequence of two-tuples with the
mode value (4) and the number of times the value occurred (3). We might want to get
the top three values to bracket the mode with the next two less-popular items. We get
several popular values with an evaluation such as sc.most_common(3).

The elements() method reconstructs a list that's like the original data with the
items repeated properly.

From the sorted elements, we can extract the median, the middle-most item:

@property
def median(self) -> Any:
    all = list(sorted(self.elements()))
    return all[len(all) // 2]
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This method is not only lazy, it's rather extravagant with memory; it creates an entire
sequence of the available values merely to find the middle-most item.

While it is simple, this is often an expensive way to use Python.

A smarter approach would be to compute the effective length and mid-point via
sum(self.values())//2. Once this is known, the keys can be visited in that order,
using the counts to compute the range of positions for a given key. Eventually, a key
will be found with a range that includes the midpoint.

The code would look something like the following:

@property
def median2(self) -> Optional[float]:
    mid = sum(self.values()) // 2
    low = 0
    for k, v in sorted(self.items()):
        if low <= mid < low + v: return k
        low += v
    return None

We stepped through the keys and the number of times they occur to locate the key
that is midmost. Note that this uses the internal sorted() function, which is not
without its own cost.

Via timeit, we can learn that the extravagant version takes 9.5 seconds; the smarter
version takes 5.2 seconds.

Let's take a look at how to create a new kind of set in the next section.

Creating a new kind of set
Creating a whole new collection requires some preliminary work. We need to have
new algorithms or new internal data structures that offer significant improvements
over the built-in collections. It's important to do thorough Big-O complexity
calculations before designing a new collection. It's also important to use timeit after
an implementation to be sure that the new collection really is an improvement over
available built-in classes.
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We might, for example, want to create a binary search tree structure that will keep the
elements in a proper order. As we want this to be a mutable structure, we'll have to
perform the following kinds of design activities:

Design the essential binary tree structure.
Decide which structure is the basis: MutableSequence,
MutableMapping, or MutableSet.
Look at the special methods for the collection in the collections.abc
section of the Python Standard Library documentation, section 8.4.1.

A binary search tree has nodes that contain a key value, and two branches: a less
than branch for all keys less than this node's key, and a greater than or equal to branch
for keys greater than, or equal to, this node's key.

We need to examine the fit between our collection and the Python ABCs:

A binary tree doesn't fit well with some sequence features. Notably, we
don't often use an integer index with a binary tree. We most often refer to
elements in a search tree by their key. While we can impose an integer
index without too much difficulty, it will involve tree traversals.
A tree could be used for the keys of a mapping; this would keep the keys in
a sorted order at a relatively low cost.
It is a good alternative to a set or a Counter class because it can tolerate
multiple copies of a key, making it easily bag-like.

We'll look at creating a sorted multiset or a bag. This can contain multiple copies of an
object. It will rely on relatively simple comparison tests among objects.

This is a rather complex design. There are a great many details. To create a
background, it's important to read articles such as
http://en.wikipedia.org/wiki/Binary_search_tree. At the end of the previous
Wikipedia page are a number of external links that will provide further information.
It's essential to study the essential algorithms in books such as Introduction to
Algorithms by Cormen, Leiserson, Rivest, and Stein; Data Structures and Algorithms by
Aho, Ullman, and Hopcroft; or The Algorithm Design Manual by Steven Skiena.

http://en.wikipedia.org/wiki/Binary_search_tree
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Some design rationale
We're going to split the collection into two classes: TreeNode and Tree. This will
allow us to separate the design into the essential data collection, and a Pythonic
Façade design pattern required to match other collections. 

The TreeNode class will contain the item as well as the more, less, and parent
references. This is the core collection of values. It handles insertion and removal. Also,
searching for a particular item in order to use __contains__() or discard() will
be delegated to the TreeNode class.

The essential search algorithm's outline looks like this.

If the target item is equal to the self item, then return self.
If the target item is less than self.item, then recursively use
less.find(target item).
If the target item is greater than self.item, then recursively use
more.find(target.item).

We'll use similar delegation to the TreeNode class for more of the real work of
maintaining the tree structure.

We'll use the Façade design pattern to wrap details of the TreeNode with a Pythonic
interface. This will define the visible, external definition the Tree itself. A Façade
design can also be called a wrapper; the idea is to add features required for a
particular interface. The Tree class provides the external interface required by a
MutableSet ABC and keeps these requirements distinct from the implementation
details in the TreeNode class.

The algorithms can be somewhat simpler if there's a root node that's empty and
always compares less than all other key values. This can be challenging in Python
because we don't know in advance what types of data the nodes might have; we can't
easily define a bottom value for the root node. Instead, we'll use a special case value
of None, and endure the overheads of if statements checking for the root node.
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Defining the Tree class
We'll start with the wrapper or Façade class, Tree. This is the core of an extension to
the MutableSet class that provides the minimal method functions:

class Tree(collections.abc.MutableSet):

    def __init__(self, source: Iterable[Comparable] = None) -> None:
        self.root = TreeNode(None)
        self.size = 0
        if source:
            for item in source:
                self.root.add(item)
                self.size += 1

    def add(self, item: Comparable) -> None:
        self.root.add(item)
        self.size += 1

    def discard(self, item: Comparable) -> None:
        if self.root.more:
            try:
                self.root.more.remove(item)
                self.size -= 1
            except KeyError:
                pass
        else:
            pass

    def __contains__(self, item: Any) -> bool:
        if self.root.more:
            self.root.more.find(cast(Comparable, item))
            return True
        else:
            return False

    def __iter__(self) -> Iterator[Comparable]:
        if self.root.more:
            for item in iter(self.root.more):
                yield item
        # Otherwise, the tree is empty.

    def __len__(self) -> int:
        return self.size
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The initialization design is similar to that of a Counter object; this class will accept an
iterable and load the elements into the structure. The source of data is provided with
a type hint of Iterable[Comparable]. This hint imposes a restriction on the kinds
of items which this collection can handle.  If the collection is used with items that do
not support the proper comparable protocol methods, then mypy will report an error.

Here's the definition of the Comparable type hint:

class Comparable(metaclass=ABCMeta):
    @abstractmethod
    def __lt__(self, other: Any) -> bool: ...
    @abstractmethod
    def __ge__(self, other: Any) -> bool: ...

The Comparable class definition is an abstraction which requires two methods:
__lt__() and __ge__(). This is the minimum required for a class of objects to work
properly with the <, <=, >, and >= operators. This defines the comparable protocol
among objects that can be sorted or ranked.

The add() and discard() methods both update the tree, and also keep track of the
overall size. That saves counting nodes via a recursive traversal of the tree. These
methods also delegate their work to the TreeNode object at the root of the tree.

The __contains__() special method performs a recursive find. The initial check to
be sure the tree contains a value in the root node is required by mypy. Without the if
statement, the type hints suggest the more attribute could be None. 

The __iter__() special method is a generator function. It also delegates the real
work to recursive iterators within the TreeNode class.

We defined discard(); mutable sets require this to be silent when attempting to
discard the missing keys. The abstract superclass provides a default implementation
of remove(), which raises an exception if a key is not found. Both method functions
must be present; we defined discard() based on remove(), by silencing the
exception. In some cases, it might be easier to define remove() based on discard(),
by raising an exception if a problem is found.

Because this class extends the MutableSet abstraction, numerous features are
provided automatically. This saves us from copy-and-paste programming to create a
number of boilerplate features. In some cases, our data structure may have more
efficient implementations than the defaults, and we may want to override additional
methods inherited from the abstract superclass.
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Defining the TreeNode class
The overall Tree class relies on the TreeNode class to handle the implementation
details of adding, removing, and iterating through the various items in the bag. This
class is rather large, so we'll present it in four sections.

The first part shows the essential elements of initialization, representation, and how
the attributes are made visible:

class TreeNode:

    def __init__(
        self,
        item: Optional[Comparable],
        less: Optional["TreeNode"] = None,
        more: Optional["TreeNode"] = None,
        parent: Optional["TreeNode"] = None,
    ) -> None:
        self.item = item
        self.less = less
        self.more = more
        if parent:
            self.parent = parent

    @property
    def parent(self) -> Optional["TreeNode"]:
        return self.parent_ref()

    @parent.setter
    def parent(self, value: "TreeNode"):
        self.parent_ref = weakref.ref(value)

    def __repr__(self) -> str:
        return f"TreeNode({self.item!r}, {self.less!r},
{self.more!r})"

Each individual node must have a reference to an item. Additional nodes with items
that compare as less than the given item, or more than the given item are optional.
Similarly, a parent node is also optional.
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The property definitions for the parent methods are used to ensure that the parent
attribute is actually a weakref attribute, but it appears like a strong reference. For
more information on weak references, see Chapter 3, Integrating Seamlessly - Basic
Special Methods. We have mutual references between a TreeNode parent object and its
children objects; this circularity could make it difficult to remove TreeNode objects.
Using a weakref breaks the circularity, allowing reference counting to remove nodes
quickly when they are no longer referenced.

Note that the TreeNode type hints are references to the class from inside the class
definition. This circularity can be a syntax problem because the class hasn't been fully
defined. To make valid self-referential type hints, mypy allows the use of a string.
When mypy is run, the string resolves to the proper type object.

Here are the methods for finding and iterating through the nodes:

def find(self, item: Comparable) -> "TreeNode":
    if self.item is None:  # Root
        if self.more:
            return self.more.find(item)
    elif self.item == item:
        return self
    elif self.item > item and self.less:
        return self.less.find(item)
    elif self.item < item and self.more:
        return self.more.find(item)
    raise KeyError

def __iter__(self) -> Iterator[Comparable]:
    if self.less:
        yield from self.less
    if self.item:
        yield self.item
    if self.more:
        yield from self.more

We saw the find() method, which performs a recursive search from a tree through
the appropriate subtree looking for the target item. There are a total of six cases:

When this is the root node of the tree, we'll simply skip it.
When this node has the target item, we'll return it.
When the target item is less than this node's item and there is a branch on
the less side, we'll descend into that subtree to search.
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When the target item is more than this node's item and there is a branch on
the more side, we'll descend into that subtree to search.
There are two remaining cases: the target item is less than the current node,
but there's no less branch or the target item is more than the current node,
but there's no more branch. These two cases both mean the item cannot be
found in the tree, leading to a KeyError exception.

The __iter__() method does what's called an inorder traversal of this node and its
subtrees. As is typical, this is a generator function that yields the values from iterators
over each collection of subtrees. Although we could create a separate iterator class
that's tied to our Tree class, there's little benefit when this generator function does
everything we need.

The result of the __iter__() has a type hint of Iterator[Comparable]. This
reflects the minimal constraint placed on the items contained in the tree.

Here's the next part of this class to add a new node to a tree:

def add(self, item: Comparable):
    if self.item is None:  # Root Special Case
        if self.more:
            self.more.add(item)
        else:
            self.more = TreeNode(item, parent=self)
    elif self.item >= item:
        if self.less:
            self.less.add(item)
        else:
            self.less = TreeNode(item, parent=self)
    elif self.item < item:
        if self.more:
            self.more.add(item)
        else:
            self.more = TreeNode(item, parent=self)

This is the recursive search for the proper place to add a new node. The structure
parallels the find() method.

Finally, we have the (more complex) processing to remove a node from the tree. This
requires some care to relink the tree around the missing node:

def remove(self, item: Comparable):
    # Recursive search for node
    if self.item is None or item > self.item:
        if self.more:
            self.more.remove(item)
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        else:
            raise KeyError
    elif item < self.item:
        if self.less:
            self.less.remove(item)
        else:
            raise KeyError
    else:  # self.item == item
        if self.less and self.more:  # Two children are present
            successor = self.more._least()
            self.item = successor.item
            if successor.item:
                successor.remove(successor.item)
        elif self.less:  # One child on less
            self._replace(self.less)
        elif self.more:  # One child on more
            self._replace(self.more)
        else:  # Zero children
            self._replace(None)

def _least(self) -> "TreeNode":
    if self.less is None:
        return self
    return self.less._least()

def _replace(self, new: Optional["TreeNode"] = None) -> None:
    if self.parent:
        if self == self.parent.less:
            self.parent.less = new
        else:
            self.parent.more = new
    if new is not None:
        new.parent = self.parent

The remove() method has two sections. The first part is the recursive search for the
target node.

Once the node is found, there are three cases to consider:

When we delete a node with no children, we simply delete it and update
the parent to replace the link with None. The use of a weak reference from
the removed node back to the parent, means memory cleanup and reuse is
immediate.
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When we delete a node with one child, we can push the single child up to
replace this node under the parent.
When there are two children, we need to restructure the tree. We locate the
successor node (the least item in the more subtree). We can replace the to-
be-removed node with the content of this successor. Then, we can remove
the duplicative former successor node.

We rely on two private methods. The _least() method performs a recursive search
for the least-valued node in a given tree. The _replace() method examines a parent
to see whether it should touch the less or more attribute.

Demonstrating the binary tree bag
We built a complete new collection. The ABC definitions included a number of
methods automatically. These inherited methods might not be particularly efficient,
but they're defined, they work, and we didn't write the code for them.

>>> s1 = Tree(["Item 1", "Another", "Middle"])
>>> list(s1)
['Another', 'Item 1', 'Middle']
>>> len(s1)
3
>>> s2 = Tree(["Another", "More", "Yet More"])
>>>
>>> union= s1 | s2
>>> list(union)
['Another', 'Another', 'Item 1', 'Middle', 'More', 'Yet More']
>>> len(union)
6
>>> union.remove('Another')
>>> list(union)
['Another', 'Item 1', 'Middle', 'More', 'Yet More']

This example shows us that the set union operator for set objects works properly,
even though we didn't provide code for it specifically. As this is a bag, items are
duplicated properly, too.
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Design considerations and tradeoffs
When working with containers and collections, we have a multistep design strategy:

Consider the built-in versions of sequence, mapping, and set.1.
Consider the library extensions in the collection module, as well as extras2.
such as heapq, bisect, and array.
Consider a composition of existing class definitions. In many cases, a list of3.
tuple objects or a dict of lists provides the needed features.
Consider extending one of the earlier mentioned classes to provide4.
additional methods or attributes.
Consider wrapping an existing structure as another way to provide5.
additional methods or attributes.
Finally, consider a novel data structure. Generally, there is a lot of careful6.
analysis available. Start with Wikipedia articles such as this
one: http://en.wikipedia.org/wiki/List_of_data_structures.

Once the design alternatives have been identified, there are two parts of the
evaluation left:

How well the interface fits with the problem domain. This is a relatively
subjective determination.
How well the data structure performs as measured with timeit. This is an
entirely objective result.

It's important to avoid the paralysis of analysis. We need to effectively find the proper
collection.

In most cases, it is best to profile a working application to see which data structure is
the performance bottleneck. In some cases, consideration of the complexity factors for
a data structure will reveal its suitability for a particular kind of problem before
starting the implementation.

Perhaps the most important consideration is this: for the highest
performance, avoid search.

Avoiding search is the reason sets and mappings require hashable objects. A hashable
object can be located in a set or mapping with almost no processing. Locating an item
by value (not by index) in a list can take a great deal of time.

http://en.wikipedia.org/wiki/List_of_data_structures
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Here's a comparison of a bad set-like use of a list and a proper use of a set:

>>> import timeit
>>> timeit.timeit('l.remove(10); l.append(10)', 'l =
 list(range(20))')
0.8182099789992208
>>> timeit.timeit('l.remove(10); l.add(10)', 'l = set(range(20))')
0.30278149300283985

We removed and added an item from a list, as well as a set.

Clearly, abusing a list to get it to perform set-like operations makes the collection take
2.7 times as long to run.

As a second example, we'll abuse a list to make it mapping-like. This is based on a
real-world example where the original code had two parallel lists to mimic the keys
and values of a mapping.

We'll compare a proper mapping with two parallel lists, as follows:

>>> timeit.timeit('i = k.index(10); v[i]= 0', 'k=list(range(20));
 v=list(range(20))')
0.6549435159977293
>>> timeit.timeit('m[10] = 0',
'm=dict(zip(list(range(20)),list(range(20))))' )
0.0764331009995658

The first example uses two parallel lists. One list is used to look up a value, and then a
change is made to the parallel list. In the other case, we simply updated a mapping.

Clearly, performing an index and update on two parallel lists is a horrifying mistake.
It takes 8.6 times as long to locate something via list.index() as it does to locate it
via a mapping and the hash value.

Summary
In this chapter, we looked at a number of built-in class definitions. The built-in
collections are the starting place for most design work. We'll often start with tuple,
list, dict, or set. We can leverage the extension to tuple, created by
namedtuple() for an application's immutable objects.
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Beyond these classes, we have other standard library classes in the collections
mode that we can use:

deque

ChainMap

defaultdict

Counter

We have three standard design strategies, too. We can wrap any of these existing
classes, or we can extend a class.

Finally, we can also invent an entirely new kind of collection. This requires defining a
number of method names and special methods.

In the next chapter, we'll closely look at the built-in numbers and how to create new
kinds of numbers. As with containers, Python offers a rich variety of built-in
numbers. When creating a new kind of number, we'll have to define numerous
special methods.

After looking at numbers, we can look at some more sophisticated design techniques.
We'll look at how we can create our own decorators and use those to simplify the
class definition. We'll also look at using mixin class definitions, which are similar to
the ABC definitions.



8
Creating Numbers

We can extend the ABC abstractions in the numbers module to create new kinds of
numbers. We might need to do this to create numeric types that fit our problem
domain more precisely than the built-in numeric types. The abstractions in the
numbers module need to be looked at first, because they define the existing built-in
classes. Before working with new kinds of numbers, it's essential to see how the
existing numbers work.

We'll digress to look at Python's operator-to-method mapping algorithm. The idea is
that a binary operator has two operands; either operand can define the class that
implements the operator. Python's rules for locating the relevant class are essential to
decide what special methods to implement.

The essential arithmetic operators, such as +, -, *, /, //, %, and **, form the backbone
of numeric operations. There are additional operators that include ^, |, and &; these
are used for the bit-wise processing of integers. They're also used as operators among
sets. There are some more operators in this class, including << and >>. The
comparison operators were covered in Chapter 3, Integrating Seamlessly – Basic Special
Methods. These include <, >, <=, >=, ==, and !=. We'll review and extend our study of
the comparison operators in this chapter.

There are a number of additional special methods for numbers. These include the
various conversions to other built-in types. Python also defines in-place combinations
of an assignment with an operator. These include +=, -=, *=, /=, //=, %=, **=, &=, |=,
^=, >>=, and <<=. These are more appropriate for mutable objects than numbers.
We'll finish the chapter by summarizing some of the design considerations that go
into extending or creating new numbers.
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In this chapter, we will cover the following topics:

ABCs of numbers
The arithmetic operator's special method
Creating a numeric class
Computing a numeric hash
Implementing other special methods
Optimization with the in-place operators

Technical requirements
The code files for this chapter are available at https:/ ​/ ​git.​io/ ​fj2Ua.

ABCs of numbers
The numbers package provides a tower of numeric types that are all implementations
of numbers.Number. Additionally, the fractions and decimal modules provide 
extension numeric types: fractions.Fraction and decimal.Decimal. These
definitions roughly parallel the mathematical thought on the various classes of
numbers. An article available at http://en.wikipedia.org/wiki/Number_theory
contains numerous links to in-depth explanations; for example, An Introduction to the
Theory of Numbers.

The essential question is how well computers can implement the underlying
mathematical abstractions. To be more specific, we want to be sure that anything that
is computable in the abstract world of mathematics can be computed (or
approximated) using a concrete computer. This is why the question of computability
is so important. The idea behind a Turing complete programming language is that it
can compute anything that is computable by an abstract Turing machine. A helpful
article can be found at http://en.wikipedia.org/wiki/Computability_theory;
additional links in this article include https:/ ​/ ​www.​encyclopediaofmath. ​org/ ​index.
php?​title=​p/ ​t094460. 

I recommend reading the Wikipedia articles on number theory and
computability theory, and other concepts that I discuss in the
chapter. The articles and the additional links present in the reference
sections of these sources will give you more background
information than can be covered here.

https://git.io/fj2Ua
https://git.io/fj2Ua
https://git.io/fj2Ua
https://git.io/fj2Ua
https://git.io/fj2Ua
https://git.io/fj2Ua
https://git.io/fj2Ua
https://git.io/fj2Ua
https://git.io/fj2Ua
http://en.wikipedia.org/wiki/Number_theory
https://books.google.com/books?id=rey9wfSaJ9EC
http://en.wikipedia.org/wiki/Computability_theory
https://www.encyclopediaofmath.org/index.php?title=p/t094460
https://www.encyclopediaofmath.org/index.php?title=p/t094460
https://www.encyclopediaofmath.org/index.php?title=p/t094460
https://www.encyclopediaofmath.org/index.php?title=p/t094460
https://www.encyclopediaofmath.org/index.php?title=p/t094460
https://www.encyclopediaofmath.org/index.php?title=p/t094460
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https://www.encyclopediaofmath.org/index.php?title=p/t094460
https://www.encyclopediaofmath.org/index.php?title=p/t094460
https://www.encyclopediaofmath.org/index.php?title=p/t094460
https://www.encyclopediaofmath.org/index.php?title=p/t094460
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https://www.encyclopediaofmath.org/index.php?title=p/t094460
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Python defines the following abstractions and their associated implementation
classes. Further, these classes form an inheritance hierarchy, where each abstract class
inherits from the class above it. As we move down the list, the classes have more
features. As there are very few classes, as follows, it forms a tower rather than a tree:

numbers.Complex implemented by complex
numbers.Real implemented by float
numbers.Rational implemented by fractions.Fraction
numbers.Integral implemented by int

Additionally, we have decimal.Decimal, which is a bit like float ; it isn't a proper
subclass of numbers.Real, but is somewhat like it. While it may be obvious, it's still
essential to repeat the fact that the float value is merely an approximation; it is not
exact. 

Don't be surprised by this sort of thing. The following example shows how a float
value is only an approximation for real numbers:

>>> (105+(1/29)-105)*29
0.9999999999998153

Ordinary algebra suggests that this value should be equal to one. Because of the
nature of the floating-point approximations, the actual result differs from the abstract
ideal. In addition to the numeric class definitions, there are also a number of
conversions among the various classes. It's not possible to convert from every type to
every other type, so we must work out a matrix that shows the conversions that work
and those conversions that can't work. The following list is a summary:

complex: This can't be converted to any other type. A complex value can
be decomposed into the real and imag portions, both of which are float
values.
float: This can be converted explicitly to any type, including
decimal.Decimal. Arithmetic operators won't implicitly coerce a float
value to Decimal.
Fractions.Fraction: This can be converted to any of the other types,
except decimal.Decimal. To get to decimal requires a two-part
operation: first to float, and second to decimal.Decimal. This leads to
an approximation.
int: This can be converted to any of the other types.
Decimal: This can be converted to any other type. It is not implicitly
coerced to other types via arithmetic operations.
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The up and down conversions come from the tower of numeric abstractions
mentioned earlier.

Let's see how to decide which type to use in the next section.

Deciding which types to use
Because of the conversions, we see the following four general domains of numerical
processing:

Complex: Once we get involved in complex math, we'll be using complex,
and float, plus the cmath module. We probably aren't going to use
Fraction or Decimal at all. However, there's no reason to impose
restrictions on the numeric types; most numbers can be converted to
complex.

Currency: For currency-related operations, we absolutely must use
Decimal. Generally, when doing currency calculations, there's no good
reason to mix the decimal values with non-decimal values. Sometimes,
we'll use the int values, but there's no good reason to work with float or
complex along with Decimal. Remember, floats are approximations, and
that's unacceptable when working with currency.
Bit Kicking: For operations that involve bit and byte processing, we'll
generally use int, only int, and nothing but int.
Conventional: This is a broad, vague everything else category. For most
conventional mathematical operations, int, float, and Fraction are all
interchangeable. Indeed, a well-written function can often be properly
polymorphic; it will work perfectly well with any numeric type. Python
types, particularly float and int, will participate in a variety of implicit
conversions. This makes the selection of a specific numeric type for these
kinds of problems somewhat moot.

These are generally obvious aspects of a given problem domain. It's often easy to
distinguish applications that might involve science or engineering and complex
numbers from applications that involve financial calculations, currency, and decimal
numbers. It's important to be as permissive as possible in the numeric types that are
used in an application. Needlessly narrowing the domain of types via the
isinstance() test is often a waste of time and code.

In the next section, we'll talk about method resolution and the reflected operator
concept.
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Method resolution and the reflected operator
concept
The arithmetic operators (+, -, *, /, //, %, **, and so on) all map to special method
names. When we provide an expression such as 355+113, the generic + operator will
be mapped to a concrete __add__() method of a specific numeric class. This example
will turn out to be evaluated as though we had written 355.__add__(113). The
simplest rule is that the left-most operand determines the class of the operator being
used.

But wait, there's more! When we have an expression with mixed types, Python may
end up with two available implementations of the special method, one in each class.
Consider 7-0.14 as an expression. Using the left-side int class, this expression will
be attempted as 7.__sub__(0.14). This involves an unpleasant complexity, since
the argument to an int operator is a float value 0.14 and converting float to int
could potentially lose precision. Converting up the tower of types (from int toward
complex) won't lose precision. Converting down the tower of types implies a
potential loss of precision.

Using the right-hand side float version, however, this expression will be attempted
as 0.14.__rsub__(7). In this case, the argument to a float operator is an
int value 7; converting int up the tower to float doesn't (generally) lose
precision. (A truly giant int value can lose precision; however, that's a technical
quibble, not a general principle.)

The __rsub__() operation is called reflected subtraction. The X.__sub__(Y)
operation is the expected subtraction, and the A.__rsub__(B) operation is the
reflected subtraction; the implementation method in the latter comes from the right-
hand side operand's class. So far, we've seen the following two rules:

Rule one: try the left-hand side operand's class first. If that works, good. If
the operand returns NotImplemented as a value, then use rule two.
Rule two: try the right-hand side operand with the reflected operator. If
that works, good. If it returns NotImplemented, then it really is not
implemented, so an exception must be raised.

The notable exception is when the two operands happen to have a subclass
relationship.
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The following additional rule applies before the first pair rules as a special case:

If the right operand is a subclass of the left, and the subclass defines the
reflected special method name for the operator, then the subclass reflected
operator will be tried. This allows a subclass override to be used, even if the
subclass operand is on the right-hand side of the operator.
Otherwise, use rule one and try the left side.

Imagine we wrote a subclass of float, called MyFloat. In an expression such
as  2.0-MyFloat(1), the right operand is of a subclass of the left operand's class.
Because of this subclass relationship, MyFloat(1).__rsub__(2.0) will be tried
first. The point of this rule is to give precedence to the subclass.

This means that a class that will do implicit coercion from other types must
implement the forward as well as the reflected operators. When we implement or
extend a numeric type, we must work out the conversions that our type is able to do.

In the next section, we'll take a look at the arithmetic operator's special methods.

The arithmetic operator's special
methods
There are a total of 13 binary operators and their associated special methods. We'll
focus on the obvious arithmetic operators first. The special method names match the
operators (and functions), as shown in the following table:

Method Operator
object.__add__(self, other) +

object.__sub__(self, other) -

object.__mul__(self, other) *

object.__truediv__(self, other) /

object.__floordiv__(self, other) //

object.__mod__(self, other) %

object.__divmod__(self, other) divmod()

object.__pow__(self, other[, modulo]) pow() as well as **
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And yes, interestingly, two functions are included with the various symbolic
operators. There are a number of unary operators and functions, which have special
method names as shown in the following table:

Method Operator
object.__neg__(self) -

object.__pos__(self) +

object.__abs__(self) abs()

object.__complex__(self) complex()

object.__int__(self) int()

object.__float__(self) float()

object.__round__(self[, n]) round()

object.__trunc__(self[, n]) math.trunc()

object.__ceil__(self[, n]) math.ceil()

object.__floor__(self[, n]) math.floor()

And yes, there are a lot of functions in this list, too. We can tinker with Python's
internal trace to see what's going on under the hood. We'll define a simplistic trace
function that will provide us with a little bit of visibility into what's going on:

def trace(frame, event, arg):
    if frame.f_code.co_name.startswith("__"):
        print(frame.f_code.co_name, frame.f_code.co_filename, event)

This function will dump special method names when the code associated with the
traced frame has a name that starts with "__". We can install this trace function in
Python using the following code:

import sys
sys.settrace(trace)

Once installed, everything passes through our trace() function. We're filtering the
trace events for special method names. We'll define a subclass of a built-in class so
that we can explore the method resolution rules:

class noisyfloat( float ):
    def __add__( self, other ):
        print( self, "+", other )
        return super().__add__( other )
    def __radd__( self, other ):
        print( self, "r+", other )
        return super().__radd__( other )
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This class overrides just two of the operator's special method names. When we add
noisyfloat values, we'll see a printed summary of the operation. Plus, the trace will
tell us what's going on. The following is the interaction that shows Python's choice of
class to implement a given operation:

>>> x = noisyfloat(2)
>>> x+3
__add__ <stdin> call
2.0 + 3
5.0
>>> 2+x
__radd__ <stdin> call
2.0 r+ 2
4.0
>>> x+2.3
__add__ <stdin> call
2.0 + 2.3
4.3
>>> 2.3+x
__radd__ <stdin> call
2.0 r+ 2.3
4.3

From x+3, we see how noisyfloat+int provided the int object, 3, to the
__add__() method. This value was passed to the superclass, float, which handled
the coercion of 3 to a float and did the addition, too. 2+x shows how the right-hand
side noisyfloat version of the operation was used. Again, int was passed to the
superclass that handled the coercion to float. From x+2.3, we come to know that
noisyfloat+float used the subclass that was on the left-hand side. On the other
hand, 2.3+x shows how float+noisyfloat used the subclass on the right-hand
side and the reflected __radd__() operator.

Let's see how to create a numeric class.

Creating a numeric class
We'll try to design a new kind of number. This is no easy task when Python already
offers integers of indefinite precision, rational fractions, standard floats, and decimal
numbers for currency calculations. There aren't many features missing from this list.
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We'll define a class of scaled numbers. These are numbers that include an integer
value coupled with a scaling factor. We can use these for currency calculations. For
many currencies of the world, we can use a scale of 100 and do all our calculations to
the nearest cent.

The advantage of scaled arithmetic is that it can be done very simply by using low-
level hardware instructions. We could rewrite this module to be a C-language module
and exploit hardware speed operations. The disadvantage of inventing new scaled
arithmetic is that the decimal package already does a very neat job of precise
decimal arithmetic.

We'll call this FixedPoint class because it will implement a kind of fixed decimal
point number. The scale factor will be a simple integer, usually a power of ten. In
principle, a scaling factor that's a power of two could be considerably faster, but
wouldn't be ideally suited for currency.

The reason a power of two scaling factor can be faster is that we can replace
value*(2**scale) with value << scale, and replace value/(2**scale) with
value >> scale. The left and right shift operations are often hardware
instructions that are much faster than multiplication or division.

Ideally, the scaling factor is a power of ten, but we don't explicitly enforce this. It's a
relatively simple extension to track both scaling power and the scale factor that goes
with the power. We might store two as the power and as the factor. We've simplified
this class definition to just track the factor.

Let's see how to define FixedPoint initialization in the next section.

Defining FixedPoint initialization
We'll start with initialization, which includes conversions of various types to the
FixedPoint values as follows:

import numbers
import math
from typing import Union, Optional, Any

class FixedPoint(numbers.Rational):
    __slots__ = ("value", "scale", "default_format")

    def __init__(self, value: Union['FixedPoint', int, float], scale:
int = 100) -> None:
        self.value: int
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        self.scale: int
        if isinstance(value, FixedPoint):
            self.value = value.value
            self.scale = value.scale
        elif isinstance(value, int):
            self.value = value
            self.scale = scale
        elif isinstance(value, float):
            self.value = int(scale * value + .5)  # Round half up
            self.scale = scale
        else:
            raise TypeError(f"Can't build FixedPoint from {value!r} of
{type(value)}")
        digits = int(math.log10(scale))
        self.default_format = "{{0:.{digits}f}}".format(digits=digits)

    def __str__(self) -> str:
        return self.__format__(self.default_format)

    def __repr__(self) -> str:
        return
f"{self.__class__.__name__:s}({self.value:d},scale={self.scale:d})"

    def __format__(self, specification: str) -> str:
        if specification == "":
            specification = self.default_format
        return specification.format(self.value / self.scale)

Our FixedPoint class is defined as a numbers.Rational subclass. We're going to
wrap two integer values, scale and value, and follow the general definitions for
fractions. This requires a large number of special method definitions. The
initialization is for an immutable object, so it overrides __new__() instead of
__init__(). It defines a limited number of slots to prevent the adding of any further
attributes. The initialization includes several kinds of conversions as follows:

If we're given another FixedPoint object, we'll copy the internal attributes
to create a new FixedPoint object that's a kind of clone of the original. It
will have a unique ID, but we can be sure it has the same hash value and
compares as equal, making the clone largely indistinguishable.
When given integral or rational values (concrete classes of int or float),
these are used to set the value and scale attributes.
We can add cases to handle decimal.Decimal and
fractions.Fraction, as well as parsing input string values.
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We've defined three special methods to produce string results: __str__(),
__repr__(), and __format__(). For the format operation, we've decided to
leverage the existing floating-point features of the format specification language.
Because this is a rational number, we need to provide numerator and denominator
methods.

Note that we could have also started with wrapping the existing
fractions.Fraction class. In order to show more of the programming required,
we opted to start from the abstract Rational class.

Let's see how to define FixedPoint binary arithmetic operators in the next section.

Defining FixedPoint binary arithmetic
operators
The sole reason for defining a new class of numbers is to overload the arithmetic
operators. Each FixedPoint object has two parts: value and scale. We can say

some value, , is a fraction of the value  divided by the scaling factor : .

Note that we've worked out the algebra in the following example using correct, but
inefficient, floating point expressions, we'll discuss the slightly more efficient, pure
integer operations.

The general form for addition (and subtraction) is this: ,
which can create a result with a lot of useless precision.

Imagine adding 9.95 and 12.95. We'd have (in principle) 229000/10000. This can be
properly reduced to 2290/100. The problem is that it also reduces to 229/10, which is
no longer in cents. We'd like to avoid reducing fractions in a general way and instead
stick with cents or mills to the extent possible.

We can identify two cases for :

The scale factors match: In this case,  and the sum is

. When adding a FixedPoint value and a plain old
integer value, this will also work. We can force the integer to have the
required scale factor.
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The scale factors don't match: When , it can help to produce a result
scale  with the maximum scale factor of the two input values: 

. From this, we can compute two intermediate scale factors: 
and . One of those scale factors will be 1, and the other will be less than 1.
We can now add with a common value in the denominator. Algebraically,

it's . This can be further optimized into two cases,
since one of the factors is 1 and the other is a power of 10.

We can't really optimize multiplication. It's . The precision really
must increase when we multiply the FixedPoint values.

Division is multiplication by an inverse: . If A and B have the same
scale, these values will cancel so that we do have a handy optimization available.
However, this changes the scale from cents to wholes, which might not be
appropriate.

The following is what the forward operators, built around a similar boilerplate, look
like:

def __add__(self, other: Union['FixedPoint', int]) -> 'FixedPoint':
    if not isinstance(other, FixedPoint):
        new_scale = self.scale
        new_value = self.value + other * self.scale
    else:
        new_scale = max(self.scale, other.scale)
        new_value = self.value * (new_scale // self.scale) +
other.value * (
            new_scale // other.scale
        )
    return FixedPoint(int(new_value), scale=new_scale)

def __sub__(self, other: Union['FixedPoint', int]) -> 'FixedPoint':
    if not isinstance(other, FixedPoint):
        new_scale = self.scale
        new_value = self.value - other * self.scale
    else:
        new_scale = max(self.scale, other.scale)
        new_value = self.value * (new_scale // self.scale) -
other.value * (
            new_scale // other.scale
        )
    return FixedPoint(int(new_value), scale=new_scale)
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def __mul__(self, other: Union['FixedPoint', int]) -> 'FixedPoint':
    if not isinstance(other, FixedPoint):
        new_scale = self.scale
        new_value = self.value * other
    else:
        new_scale = self.scale * other.scale
        new_value = self.value * other.value
    return FixedPoint(int(new_value), scale=new_scale)

def __truediv__(self, other: Union['FixedPoint', int]) ->
'FixedPoint':
    if not isinstance(other, FixedPoint):
        new_value = int(self.value / other)
    else:
        new_value = int(self.value / (other.value / other.scale))
    return FixedPoint(new_value, scale=self.scale)

def __floordiv__(self, other: Union['FixedPoint', int]) ->
'FixedPoint':
    if not isinstance(other, FixedPoint):
        new_value = int(self.value // other)
    else:
        new_value = int(self.value // (other.value / other.scale))
    return FixedPoint(new_value, scale=self.scale)

def __mod__(self, other: Union['FixedPoint', int]) -> 'FixedPoint':
    if not isinstance(other, FixedPoint):
        new_value = (self.value / self.scale) % other
    else:
        new_value = self.value % (other.value / other.scale)
    return FixedPoint(new_value, scale=self.scale)

def __pow__(self, other: Union['FixedPoint', int]) -> 'FixedPoint':
    if not isinstance(other, FixedPoint):
        new_value = (self.value / self.scale) ** other
    else:
        new_value = (self.value / self.scale) ** (other.value /
other.scale)
    return FixedPoint(int(new_value) * self.scale, scale=self.scale)

For the simple addition, subtraction, and multiplication cases, we've provided
versions that can be optimized to eliminate some of the relatively slow floating point
intermediate results.
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Each of these operators returns an instance of the FixedPoint class. We can't use the
name inside the class definition itself. We've provided a string version of the name.
The mypy utility will resolve this string to the proper type name when it is used to
check the type hints.

In some cases, we've used Union['FixedPoint', int] to explicitly support integer
coercion.  This type hint tells that mypy the method will accept either an instance of
the FixedPoint class or a simple int object. 

For the two divisions, the __mod__(), and __pow__() methods, we haven't done any
optimization to try and eliminate noise being introduced via floating-point division.
Instead, we've provided a working Python implementation that can be used with a
suite of unit tests as a basis for optimization and refactoring.

It's important to note that the division operations can properly reduce the scale
factors. However, changing the scale may be undesirable. When doing currency
work, we might divide the currency rate (dollars) by a non-currency value (hours) to
get the dollars-per-hour result. The proper answer might have zero relevant decimal
places.  This would be a scale of 1, but we might want to force the value to have a
cents-oriented scale of 100. This implementation ensures that the left-hand side
operand dictates the desired number of decimal places.

Now, let's see how to define FixedPoint unary arithmetic operators.

Defining FixedPoint unary arithmetic
operators
The following are the unary operator method functions:

def __abs__(self) -> 'FixedPoint':
    return FixedPoint(abs(self.value), self.scale)

def __float__(self) -> float:
    return self.value / self.scale

def __int__(self) -> int:
    return int(self.value / self.scale)

def __trunc__(self) -> int:
    return int(math.trunc(self.value / self.scale))

def __ceil__(self) -> int:
    return int(math.ceil(self.value / self.scale))
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def __floor__(self) -> int:
    return int(math.floor(self.value / self.scale))

def __round__(self, ndigits: Optional[int] = 0) -> Any:
    return FixedPoint(round(self.value / self.scale, ndigits=ndigits),
self.scale)

def __neg__(self) -> 'FixedPoint':
    return FixedPoint(-self.value, self.scale)

def __pos__(self) -> 'FixedPoint':
    return self

For the __round__(), __trunc__(), __ceil__(), and __floor__() operators,
we've delegated the work to a Python library function. There are some potential
optimizations, but we've taken the lazy route of creating a float approximation and
used that to create the desired result. This suite of methods ensures that our
FixedPoint objects will work with a number of arithmetic functions. Yes, there are a
lot of operators in Python. This isn't the entire suite. We haven't provided
implementations for the comparison or bit-kicking operators. The comparisons are
generally similar to arithmetic operations, and are left as an exercise for the reader.
The bit-wise operators (&, |, ^, and ~) don't have a clear meaning outside the
domains, like values or sets, so we shouldn't implement them.

In the next section, we'll see how to implement FixedPoint reflected operators.

Implementing FixedPoint reflected operators
Reflected operators are used in the following two cases:

The right-hand operand is a subclass of the left-hand operand. In this case,
the reflected operator is tried first to ensure that the subclass overrides the
parent class.
The left-hand operand's class doesn't implement the special method
required. In this case, the right-hand operand's reflected special method is
used.
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The following table shows the mapping between reflected special methods and
operators:

Method Operator
object.__radd__(self, other) +

object.__rsub__(self, other) -

object.__rmul__(self, other) *

object.__rtruediv__(self, other) /

object.__rfloordiv__(self, other) //

object.__rmod__(self, other) %

object.__rdivmod__(self, other) divmod()

object.__rpow__(self, other[, modulo]) pow() as well as **

These reflected operation special methods are also built around a common
boilerplate. Since these are reflected, the order of the operands in subtraction,
division, modulus, and power is important. For commutative operations, such as
addition and multiplication, the order doesn't matter. The following are the
implementations for the reflected operators:

def __radd__(self, other: Union['FixedPoint', int]) -> 'FixedPoint':
    if not isinstance(other, FixedPoint):
        new_scale = self.scale
        new_value = other * self.scale + self.value
    else:
        new_scale = max(self.scale, other.scale)
        new_value = other.value * (new_scale // other.scale) +
self.value * (
            new_scale // self.scale
        )
    return FixedPoint(int(new_value), scale=new_scale)

def __rsub__(self, other: Union['FixedPoint', int]) -> 'FixedPoint':
    if not isinstance(other, FixedPoint):
        new_scale = self.scale
        new_value = other * self.scale - self.value
    else:
        new_scale = max(self.scale, other.scale)
        new_value = other.value * (new_scale // other.scale) -
self.value * (
            new_scale // self.scale
        )
    return FixedPoint(int(new_value), scale=new_scale)

def __rmul__(self, other: Union['FixedPoint', int]) -> 'FixedPoint':
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    if not isinstance(other, FixedPoint):
        new_scale = self.scale
        new_value = other * self.value
    else:
        new_scale = self.scale * other.scale
        new_value = other.value * self.value
    return FixedPoint(int(new_value), scale=new_scale)

def __rtruediv__(self, other: Union['FixedPoint', int]) ->
'FixedPoint':
    if not isinstance(other, FixedPoint):
        new_value = self.scale * int(other / (self.value /
self.scale))
    else:
        new_value = int((other.value / other.scale) / self.value)
    return FixedPoint(new_value, scale=self.scale)

def __rfloordiv__(self, other: Union['FixedPoint', int]) ->
'FixedPoint':
    if not isinstance(other, FixedPoint):
        new_value = self.scale * int(other // (self.value /
self.scale))
    else:
        new_value = int((other.value / other.scale) // self.value)
    return FixedPoint(new_value, scale=self.scale)

def __rmod__(self, other: Union['FixedPoint', int]) -> 'FixedPoint':
    if not isinstance(other, FixedPoint):
        new_value = other % (self.value / self.scale)
    else:
        new_value = (other.value / other.scale) % (self.value /
self.scale)
    return FixedPoint(new_value, scale=self.scale)

def __rpow__(self, other: Union['FixedPoint', int]) -> 'FixedPoint':
    if not isinstance(other, FixedPoint):
        new_value = other ** (self.value / self.scale)
    else:
        new_value = (other.value / other.scale) ** self.value /
self.scale
    return FixedPoint(int(new_value) * self.scale, scale=self.scale)

We've tried to use math that is identical to the forward operators. The idea is to
switch the operands in a simple way. This follows from the most common situation.
Having the text of the forward and reverse methods match each other simplifies code
inspections, and yes, there is some redundancy in the commutative operator
implementations.
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As with the forward operators, we've kept the division, modulus, and power 
operators simple to avoid optimizations. The versions shown here can introduce
noise from the conversion to a floating-point approximation and back to a
FixedPoint value. In the next section, we'll see how to implement FixedPoint
comparison operators.

Implementing FixedPoint comparison
operators
The following are the six comparison operators and the special methods that
implement them:

Method Operator
object.__lt__(self, other) <

object.__le__(self, other) <=

object.__eq__(self, other) ==

object.__ne__(self, other) !=

object.__gt__(self, other) >

object.__ge__(self, other) >=

The is operator compares object IDs. We can't meaningfully override this since it's
independent of any specific class. The in comparison operator is implemented by
object.__contains__(self, value). This isn't meaningful for numeric values.

Note that equality testing is a subtle business. Since floats are approximations, we
have to be very careful to avoid direct equality testing with float values. We must
compare to see whether the values are within a small range, that is, epsilon. Equality
tests should never be written as a == b. The general approach to compare floating-
point approximations should be abs(a-b) <= eps, or, more generally, abs(a-b)/a
<= eps.

In our FixedPoint class, the scale indicates how close two values need to be for a
float value to be considered equal. For a scale of 100, the epsilon could be 0.01. We'll
actually be more conservative than that and use 0.005 as the basis for comparison
when the scale is 100.

Additionally, we have to decide whether FixedPoint(123, 100) should be equal
to FixedPoint(1230, 1000). While they're mathematically equal, one value is in
cents and one is in mills.
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This can be taken as a claim about the different accuracies of the two numbers; the
presence of an additional significant digit may indicate that they're not supposed to
simply appear equal. If we follow this approach, then we need to be sure that the
hash values are different too.

For this example, we've decided that distinguishing among scale values is not
appropriate. We want FixedPoint(123, 100) to be equal to FixedPoint(1230,
1000). This is the assumption behind the recommended __hash__()
implementation too. The following are the implementations for our FixedPoint class
comparisons:

def __eq__(self, other: Any) -> bool:
    if isinstance(other, FixedPoint):
        if self.scale == other.scale:
            return self.value == other.value
        else:
            return self.value * other.scale // self.scale ==
other.value
    else:
        return abs(self.value / self.scale - float(other)) < .5 /
self.scale

def __ne__(self, other: Any) -> bool:
    return not (self == other)

def __le__(self, other: 'FixedPoint') -> bool:
    return self.value / self.scale <= float(other)

def __lt__(self, other: 'FixedPoint') -> bool:
    return self.value / self.scale < float(other)

def __ge__(self, other: 'FixedPoint') -> bool:
    return self.value / self.scale >= float(other)

Each of the comparison functions tolerates a value that is not a FixedPoint value.
This is a requirement imposed by the superclass: the Any type hint must be used to be
compatible with that class. The only requirement is that the other value must have a
floating-point representation. We've defined a __float__() method for the
FixedPoint objects, so the comparison operations will work perfectly well when
comparing the two FixedPoint values.

We don't need to write all six comparisons. The @functools.total_ordering
decorator can generate the missing methods from just two FixedPoint values. We'll
look at this in Chapter 9, Decorators and Mixins – Cross-Cutting Aspects.
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In the next section, we'll see how to compute a numeric hash.

Computing a numeric hash
We do need to define the __hash__() method properly. See section 4.4.4 of the
Python Standard Library for information on computing hash values for numeric types.
That section defines a hash_fraction() function, which is the recommended
solution for what we're doing here. Our method looks like this:

def __hash__(self) -> int:
    P = sys.hash_info.modulus
    m, n = self.value, self.scale
    # Remove common factors of P.  (Unnecessary if m and n already
coprime.)
    while m % P == n % P == 0:
        m, n = m // P, n // P

    if n % P == 0:
        hash_ = sys.hash_info.inf
    else:
        # Fermat's Little Theorem: pow(n, P-1, P) is 1, so
        # pow(n, P-2, P) gives the inverse of n modulo P.
        hash_ = (abs(m) % P) * pow(n, P - 2, P) % P
    if m < 0:
        hash_ = -hash_
    if hash_ == -1:
        hash_ = -2
    return hash_

This reduces a two-part rational fraction value to a single, standardized hash. This
code is copied with a few modifications from the reference manual. The core of the
calculation, which is bolded in the preceding code, multiplies the numerator by the
inverse of the denominator. In effect, it carries out the division of the numerator by
the denominator, mod P. We can optimize this to make it more specific to our
problem domain.

First, we could modify the __new__() method for this class to assure that the scale is
non-zero, eliminating any need for sys.hash_info.inf. Second, we could explicitly
limit the range of the scale factor to be less than sys.hash_info.modulus (generally

 for 64-bit computers). We can eliminate the need to remove common factors of
P. That would boil the hash down to hash_ = (abs(m) % P) * pow(n, P - 2,
P) % P, sign handling, and the special case that -1 is mapped to -2.
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Finally, we might want to cache the result of any hash calculation. This requires an
additional slot that's only populated once, the first time a hash is requested. The
pow(n, P - 2, P) expression is relatively expensive to evaluate and we don't want
to compute it more often than necessary.

In the next section, we'll show how to implement a simple rounding schema for these
FixedPoint objects.

Designing more useful rounding
We truncated the presentation on rounding. We defined the required functions for
round() and trunc() without further explanation. These definitions are the
minimum requirements of the abstract superclass. However, these definitions are not
quite enough for our purposes.

To process currency, we'll often have code that looks like this:

>>> price = FixedPoint(1299, 100)
>>> tax_rate = FixedPoint(725, 1000)
>>> price * tax_rate
FixedPoint(941775, scale=100000)

Then, we need to round this value to a scale of 100 to get a value of 942. We need
methods that will round (as well as truncate) a number to a new scale factor. The
following is a method to round to a specific scale:

def round_to(self, new_scale: int) -> 'FixedPoint':
    f = new_scale / self.scale
    return FixedPoint(int(self.value * f + .5), scale=new_scale)

The following code allows us to properly rescale the value:

>>> price = FixedPoint(1299, 100)
>>> tax_rate = FixedPoint(725, 1000)
>>> tax = price * tax_rate
>>> tax.round_to(100)
FixedPoint(942, scale=100)

This shows that we have a minimal set of functions to calculate currency.

In the next section, we'll see how to implement other special methods.
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Implementing other special methods
In addition to the core arithmetic and comparison operators, we have a group of 
additional operators that (generally) we only define for the numbers.Integral
values. As we're not defining integral values, we can avoid these special methods:

Method Operator
object.__lshift__(self, other) <<

object.__rshift__(self, other) >>

object.__and__(self, other) &

object.__xor__(self, other) ^

object.__or__(self, other) |

Also, there are reflected versions of these operators:

Method Operator
object.__rlshift__(self, other) <<

object.__rrshift__(self, other) >>

object.__rand__(self, other) &

object.__rxor__(self, other) ^

object.__ror__(self, other) |

Additionally, there is a unary operator for a bit-wise inverse of the value:

Method Operator
object.__invert__(self) ~

Interestingly, some of these operators are defined for the set collection, as well as
integral numbers. They don't apply to our rational value. The principles to define
these operators are the same as the other arithmetic operators.

Now, let's see how to optimize using the in-place operators.
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Optimization with the in-place operators
Generally, numbers are immutable. However, the numeric operators are also used for
mutable objects. Lists and sets, for example, respond to a few of the defined
augmented assignment operators. As an optimization, a class can include an in-place
version of a selected operator. The methods in the following table implement the
augmented assignment statements for mutable objects. Note that these methods are
expected to end with return self to be compatible with ordinary assignment:

Method Operator
object.__iadd__(self, other) +=

object.__isub__(self, other) -=

object.__imul__(self, other) *=

object.__itruediv__(self, other) /=

object.__ifloordiv__(self, other) //=

object.__imod__(self, other) %=

object.__ipow__(self, other[, modulo]) **=

object.__ilshift__(self, other) <<=

object.__irshift__(self, other) >>=

object.__iand__(self, other) &=

object.__ixor__(self, other) ^=

object.__ior__(self, other) |=

As our FixedPoint objects are immutable, we should not define any of them.

Stepping outside this FixedPoint class example for a moment, we can see a more
typical use for in-place operators. We could easily define some in-place operators for
our Blackjack Hand objects. We might want to add this definition to Hand as follows:

def __iadd__(self, aCard):
    self._cards.append(aCard)
    return self

This allows us to deal into hand with the following code:

player_hand += deck.pop()

This seems to be an elegant way to indicate that hand is updated with another card.
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Summary
We've looked at the built-in numeric types and the vast number of special methods
required to invent a new numeric type. Specialized numeric types that integrate
seamlessly with the rest of Python is one of the core strengths of the language. That
doesn't make the job easy. It merely makes it elegant and useful when done properly.

When working with numbers, we have a multistep design strategy:

Consider the built-in versions of complex, float, and int.1.
Consider the library extensions, such as decimal and fractions.2.
For financial calculations, decimal must be used; there is no alternative.
Consider extending one of the preceding classes with additional methods3.
or attributes.
Finally, consider a novel number. This is particularly challenging since4.
Python's variety of available numbers is already very rich.

Defining new numbers involves several considerations:

Completeness and consistency: The new number must perform a complete
set of operations and behave consistently in all kinds of expressions. This is
really a question of properly implementing the formal mathematical
definitions of this new kind of computable number.
Fit with the problem domain: Is this number truly suitable? Does it help
clarify the solution?
Performance: As with other design questions, we must be sure that our
implementation is efficient enough to warrant writing all that code. Our
example in this chapter uses some inefficient floating-point operations that
could be optimized by doing a little more math and a little less coding.

The next chapter is about using decorators and mixins to simplify and normalize class
design. We can use decorators to define features that should be present in a number
of classes, which are not in a simple inheritance hierarchy. Similarly, we can use
mixin class definitions to create a complete application class from component class
definitions. One of the decorators that is helpful for defining comparison operators is
the @functools.total_ordering decorator.
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Decorators and Mixins -

Cross-Cutting Aspects
A software design often has aspects that apply across several classes, functions, or
methods. We might have a concern, such as logging, auditing, or security, that must
be implemented consistently. One general method for reuse of functionality in object-
oriented programming is inheritance through a class hierarchy. However, inheritance
doesn't always work out well. For example, one aspect of a software design could be
orthogonal to the class hierarchy. These are sometimes called cross-cutting concerns.
They cut across the classes, making design more complex.

A decorator provides a way to define functionality that's not bound to the inheritance
hierarchy. We can use decorators to design an aspect of our application and then
apply the decorators across classes, methods, or functions.

Additionally, we can use multiple inheritances in a disciplined way to create cross-
cutting aspects. We'll consider a base class plus mixin class definitions to introduce
features. Often, we'll use the mixin classes to build cross-cutting aspects.

It's important to note that cross-cutting concerns are rarely specific to the application
at hand. They're often generic considerations. The common examples of logging,
auditing, and security could be considered as infrastructure separate from the
application's details.

Python comes with many decorators, and we can expand this standard set of
decorators. There are several different use cases. This chapter will start with a look at
class definitions and the meaning of a class. With that context, we'll look at simple
function decorators, function decorators with arguments, class decorators, and
method decorators.
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In this chapter, we will cover the following topics:

Class and meaning
Using built-in decorators
Using standard library mixin classes
Writing a simple function decorator
Parameterizing a decorator
Creating a method function decorator
Creating a class decorator
Adding methods to a class
Using decorators for security

Technical requirements
The code files for this chapter are available at https:/ ​/ ​git.​io/ ​fj2UV.

Class and meaning
One essential feature of objects is that they can be classified: every object belongs to a
class. This leads to a straightforward relationship between an object and class when
using simple, single-inheritance design.

With multiple inheritance, the classification problem can become complex. When we
look at real-world objects, such as coffee cups, we can classify them as containers
without too much difficulty. That is, after all, their primary use case. The problem
they solve is that of holding coffee. However, in another context, we may be
interested in other use cases. Within a decorative collection of ceramic mugs, we
might be more interested in size, shape, and glaze than we are in the coffee-carrying
aspect of a cup.

Most objects have a straightforward is-a relationship with a class. In our coffee-
holding problem domain, the mug sitting on the desk is in the class of coffee cups as
well as the more general class of containers. Objects may also have several acts-as
relationships with other classes. A mug acts as a piece of ceramic art with size, shape,
and glaze properties. A mug acts as a paper weight with mass and friction properties.

https://git.io/fj2UV
https://git.io/fj2UV
https://git.io/fj2UV
https://git.io/fj2UV
https://git.io/fj2UV
https://git.io/fj2UV
https://git.io/fj2UV
https://git.io/fj2UV
https://git.io/fj2UV
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Generally, these other features can be seen as mixin classes, and they define the
additional interfaces or behaviors for an object. The mixin classes may have their own
hierarchies; for example, ceramic art is a specialization of the more general sculpture
and art classes.

When doing object-oriented design in Python, it's helpful to identify the is-a class and
the essential aspects defined by that class. Other classes provide acts-as aspects, which
mix in additional interfaces or behaviors for an object.

In the next section, we'll look at function definition and decoration because it's
simpler than class construction. After looking at how function decoration works, we'll
return to mixin classes and class decoration.

Type hints and attributes for decorators
We construct decorated functions in two stages. The first stage is the def statement 
with an original definition.

A def statement provides a name, parameters, defaults, a docstring, a code object,
and a number of other details. A function is a collection of 11 attributes, defined in
section 3.2 of the Python Standard Library, which is the standard type hierarchy.

The second stage involves the application of a decorator to the original definition.
When we apply a decorator, (@d), to a function (F), the effect is as if we have created a
new function, . The name, F, is the same, but the functionality can be
different, depending on the kinds of features that have been added, removed, or
modified. Generally, we can write the following code:

@decorate
def function():
    pass

The decorator is written immediately in front of the function definition. What
happens to implement this can be seen by the following:

def function():
    pass
function = decorate(function)

The decorator modifies the function definition to create a new function. The essential
technique here is that a decorator function accepts a function and returns a modified
version of that function. Because of this, a decorator has a rather complex type hint.
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This second style, function=decorate(function), also works with functions
created by assigning a lambda to a variable. It works with callable objects, also. The
@decorate notation only works with the def statement.

When there are multiple decorators, they are applied as nested function calls.
Consider the following example:

@decorator1
@decorator2
def function(): ...

This is equivalent to function=decorator1(decorator2(function)). When
decorators have side effects, the order of applying the decorations will matter. In the
Flask framework, for example, the @app.route decoration should always be at the
top of the stack of decorators so that it is applied last and includes the results of other
decorators' behaviors.

The following is a typical set of type hints required to define a decorator:

from typing import Any, Callable, TypeVar, cast

FuncType = Callable[..., Any]
F = TypeVar('F', bound=FuncType)

def my_decorator(func: F) -> F:
   ...

We've defined a function type, FuncType, based on the Callable type hint. From
this, the type variable, F, is derived as a generic description of anything that adheres
to the FuncType protocol. This will include functions, lambdas, and callable objects.
The decorator function, my_decorator(), accepts a parameter, func, with the type
hint of F, and returns a function, using the type hint of F. What's essential is that any
kind of object with the callable protocol can be described as having an upper
boundary of the very generic FuncType. We've omitted the details of
my_decorator() for now. This snippet is intended to show the general approach to
type hints.

The decorator for a class is simpler, because the signature is def
class_decorator(class: Type) -> Type: .... There are a few ways to create
classes, and the upper limit is already defined as the type hint Type.

Now, let's examine the different attributes of a function.
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Attributes of a function
A decorator can change the attributes of a function. Here is the list of attributes of a
function:

__doc__ The docstring, or none
__name__ The original name of the function
__module__ The name of the module the function was defined in, or none
__qualname__ The function's fully-qualified name, __module__.__name__
__defaults__ The default argument values, or none if there are no defaults
__kwdefaults__ The default values for keyword-only parameters
__code__ The code object representing the compiled function body
__dict__ A namespace for the function's attributes

__annotations__
The annotations of parameters, including 'return' for the
return annotation

__globals__
The global namespace of the module that the function was
defined in; this is used to resolve global variables and is read-
only

__closure__ Bindings for the function's free variables or none; it is read-only

Except for __globals__ and __closure__, a decorator can change any of these
attributes. As a practical matter, it's best to only copy the __name__ and __doc__
from the original function to the decorated function. Most of the other attributes,
while changeable, are easier to manage with a simple technique of defining a new
function inside the decorator and returning the new function. We'll look into this in
the following several examples.

Now, let's see how to construct a decorated class.

Constructing a decorated class
A decorated class construction is a nested set of several two-stage processes. Making
class construction more complex is the way references are made to class methods. The
references involve a multistep lookup. An object's class will define a Method
Resolution Order (MRO). This defines how base classes are searched to locate an 
attribute or method name. The MRO works its way up the inheritance hierarchy; this
is how a subclass name can override a name in a superclass. 
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The outermost part of the nesting is processing the class statement as a whole. This
has two stages: building the class, and applying the decorator functions. Within the
class statement processing, the individual method definitions can also have
decorations, and each of those is a two-stage process.

The first stage in class construction is the execution of the class statement. This stage
involves the evaluation of the metaclass followed by the execution of the sequence of
assignment and def statements within a class. Each def statement within the class
expands to a nested two-stage function construction as described previously.
Decorators can be applied to each method function as part of the process of building
the class.

The second stage in class construction is to apply an overall class decorator to a class
definition. Generally, this can add features. It's somewhat more common to add
attributes rather than methods. While it is possible for decorators to add method
functions, it can be hopelessly confusing for software maintainers to locate the source
for a method injected by a decorator. These kinds of features need to be designed
with considerable care.

The features inherited from the superclasses cannot be modified through decorators
since they are resolved lazily by method resolution lookup. This leads to some
important design considerations. We generally want to introduce methods and
attributes through classes and mixin classes. We should limit ourselves to defining
new attributes via decorators.

Here's a list of some of the attributes that are built for a class. A number of additional
attributes are part of the metaclass; they are described in the following table:

__doc__ The class's documentation string, or none if undefined
__name__ The class name
__module__ The module name that the class was defined in
__dict__ The dictionary containing the class's namespace

__bases__
A tuple (possibly empty or a singleton) containing the base classes, in
the order of their occurrence in the base class list; it is used to work out
the method resolution order

__class__ The superclass of this class, often type

Some additional method functions that are part of a class include
__subclasshook__, __reduce__, and __reduce_ex__, which are part of the
interface for pickle.
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Some class design principles
When defining a class, we have the following sources of attributes and methods:

Any decorators applied to the class definition. These are applied to the
definition last.
The body of the class statement.
Any mixin classes. These definitions tend to override the base class
definitions in the method resolution order algorithm.
The base class. If unspecified, the base class is object, which provides a
minimal set of definitions.

These are presented in order of their visibility. The final changes from a decorator
overwrite everything below it, making these changes most visible. The body of the
class statement overrides anything inherited from mixins or the base class. The base
class is the last place used to resolve names. 

We need to be cognizant about how easy it is for software maintainers to see each of
these. The class statement is the most obvious place for someone to look for the
definition of an attribute or methods. The mixins and the base class are somewhat less
obvious than the class body. It's helpful to make sure that the base class name clarifies
its role and uses terminology that is clearly essential. For example, it helps to name
base classes after real-world objects.

The application of the decorator to the class can lead to obscure features. A strong
focus on one or a few features helps to clarify what the decorator does. While some
aspects of an application can be suitable for generic decorators, the lack of visibility
can make them difficult to test, debug, and maintain.

The mixin classes will generally define additional interfaces or behaviors of a class.
It's important to be clear about how the mixin classes are used to build the final class
definitions. While a docstring class is an important part of this, the overall
docstring module is also important to show how a proper class can be assembled
from the various parts.

When writing the class statement, the mixins are listed first, and the essential
superclass is listed last. This is the search order for name resolution. The last listed
class is the class that defines the essential is-a relationship. The last class on a list
defines what a thing IS. The previous class names can define what a thing DOES. The
mixins provide ways to override or extend this base behavior.

Aspect-oriented programming is discussed in the next section.
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Aspect-oriented programming
Parts of aspect-oriented programming (AOP) are implemented by decorators in
Python. Our purpose here is to leverage a few aspect-oriented concepts to help show
the purpose of decorators and mixins in Python. The idea of a cross-cutting concern
is central to AOP. While the Wikipedia page
(http://en.wikipedia.org/wiki/Cross-cutting_concern) is generally kept up-to-
date, older information is available here: https:/ ​/ ​web.​archive. ​org/ ​web/
20150919015041/ ​http:/ ​/​www. ​aosd. ​net/​wiki/ ​index. ​php? ​title= ​Glossary. The
Spring framework provides some ideas; see also https:/ ​/​docs. ​spring. ​io/​spring-
python/​1.​2.​x/​sphinx/ ​html/ ​aop. ​html. There are several common examples of cross-
cutting concerns, as follows:

Logging: We often need to have logging features implemented consistently
in many classes. We want to be sure that the loggers are named consistently
and that logging events follow the class structure in a consistent manner.
Auditability: A variation of the logging theme is to provide an audit trail
that shows each transformation of a mutable object. In many commerce-
oriented applications, the transactions are business records that represent
bills or payments. Each step in the processing of a business record needs to
be auditable to show that no errors have been introduced by processing.
Security: Our applications will often have security aspects that pervade
each HTTP request and each piece of content downloaded by the website.
The idea is to confirm that each request involves an authenticated user who
is authorized to make the request. Cookies, secure sockets, and other
cryptographic techniques must be used consistently to assure that an entire
web application is secured.

Some languages and tools have deep, formal support for AOP. Python borrows a few
of the concepts. The Pythonic approach to AOP involves the following language
features:

Decorators: Using a decorator, we can establish a consistent aspect
implementation at one of two simple join points in a function. We can
perform the aspect's processing before or after the existing function. We
can't easily locate join points inside the code of a function. It's easiest for
decorators to transform a function or method by wrapping it with
additional functionality.
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Mixins: Using a mixin, we can define a class that exists as part of several
class hierarchies. The mixin classes can be used with the base class to
provide a consistent implementation of cross-cutting aspects. Generally,
mixin classes are considered abstract, since they can't be meaningfully
instantiated.

The next section shows how to use built-in decorators

Using built-in decorators
Python has several built-in decorators that are part of the language. The @property,
@classmethod, and @staticmethod decorators are used to annotate methods of a
class. The @property decorator transforms a method function into a descriptor. The
@property decorator, when applied to a method function, changes the function into
an attribute of the object. The property decorator, when applied to a method, also
creates an additional pair of properties that can be used to create a setter and
deleter property. We looked at this in Chapter 4, Attribute Access, Properties, and
Descriptors.

The @classmethod and @staticmethod decorators transform a method function
into a class-level function. The decorated method is now part of the class, not an
object. In the case of a static method, there's no explicit reference to the class. With a
class method, on the other hand, the class is the first argument of the method
function. The following is an example of a class that includes @staticmethod and
some @property definitions:

class Angle(float):
    __slots__ = ("_degrees",)

    @staticmethod
    def from_radians(value: float) -> 'Angle':
        return Angle(180 * value / math.pi)

    def __init__(self, degrees: float) -> None:
        self._degrees = degrees

    @property
    def radians(self) -> float:
        return math.pi * self._degrees / 180

    @property
    def degrees(self) -> float:
        return self._degrees
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This class defines an Angle that can be represented in degrees or radians. The
constructor expects degrees. However, we've also defined a from_radians()
method function that emits an instance of the class. This function does not set values
on an existing instance variable the way __init__() does; it creates a new instance
of the class. 

Additionally, we provide the degrees() and radians() method functions that have
been decorated so that they are properties. Under the hood, these decorators create a
descriptor so that accessing the attribute name degrees or radians will invoke the
named method function. We can use the static method to create an instance and
then use a property method to access a method function as follows:

>>> b = Angle.from_radians(.227)
>>> round(b.degrees, 1)
13.0

The static method is similar to a function because it's not tied to the self instance
variable. It has the advantage that it is syntactically bound to the class. Using
Angle.from_radians can be more helpful than using a function named
angle_from_radians. The use of these decorators ensures that implementation is
handled correctly and consistently.

Now, let's see how to use standard library decorators.

Using standard library decorators
The standard library has a number of decorators. Modules such as contextlib,
functools, unittest, atexit, importlib, and reprlib contain decorators that
are excellent examples of cross-cutting aspects of a software design.

One particular example, the functools library, offers the total_ordering
decorator that defines comparison operators. It leverages __eq__() and either
__lt__(), __le__(), __gt__(), or __ge__() to create a complete suite of
comparisons.

First, we'll need this class to fully define a playing card as follows:

from enum import Enum
class Suit(Enum):
    Clubs = "♣"
    Diamonds = "♦"
    Hearts = "♥"
    Spades = "♠"
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This class provides the enumerated values for the suits of the playing cards.

The following is a variation on the Card class that defines just two comparisons:

import functools

@functools.total_ordering
class CardTO:
    __slots__ = ("rank", "suit")

    def __init__(self, rank: int, suit: Suit) -> None:
        self.rank = rank
        self.suit = suit

    def __eq__(self, other: Any) -> bool:
        return self.rank == cast(CardTO, other).rank

    def __lt__(self, other: Any) -> bool:
        return self.rank < cast(CardTO, other).rank

    def __str__(self) -> str:
        return f"{self.rank:d}{self.suit:s}"

Our class, CardTO, is wrapped by a class-level decorator,
@functools.total_ordering. This decorator creates the missing method functions
to be sure all comparisons work. From some combinations of operators, the
remainder can be derived. The general idea is to provide some form of equality (or
inequality) test, and an ordering test, and the remainder of the operations can be
derived logically from those two.

In the example, we provided < and =. Here's how the other comparisons can be
derived:

We can use this class to create objects that can be compared using all of the
comparison operators, even though only two were defined as follows:

>>> c1 = Card( 3, '♠' )
>>> c2 = Card( 3, '♥' )
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>>> c1 == c2
True
>>> c1 < c2
False
>>> c1 <= c2
True
>>> c1 >= c2
True

This interaction shows that we are able to make comparisons that are not defined in
the original class. The decorator added the required method functions to the original
class definition.

Let's see how to use standard library mixin classes in the next section.

Using standard library mixin classes
The standard library makes use of mixin class definitions. There are several modules
that contain examples, including io, socketserver, urllib.request,
contextlib, and collections.abc. Next, we'll look at an example using mixing
features of the Enum class in the enum module.

When we define our own collection based on the collections.abc abstract base
classes, we're making use of mixins to ensure that cross-cutting aspects of the
containers are defined consistently. The top-level collections (Set, Sequence, and
Mapping) are all built from multiple mixins. It's very important to look at section 8.4
of the Python Standard Library to see how the mixins contribute features as the overall
structure is built up from pieces.

Looking at just one line, the summary of Sequence, we see that it inherits from
Sized, Iterable, and Container. These mixin classes lead to methods of
__contains__(), __iter__(), __reversed__(), index(), and count().

The final behavior of the list class is a composition of aspects from each of the
mixins present in its definition. Fundamentally, it's a Container with numerous
protocols added to it.

Let's look at how to use the enum with mixin classes in the next section.
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Using the enum with mixin classes
The enum module provides the Enum class. One common use case for this class is to
define an enumerated domain of values; for example, we might use this to enumerate
the four suits for playing cards.

An enumerated type has the following two features:

Member names: The member names are proper Python identifiers for the
enumerated values.
Member values: The member values can be any Python object.

In several previous examples, we've used a simplistic definition for the enumerated
members. Here's a typical class definition:

from enum import Enum
class Suit(Enum):
    Clubs = "♣"
    Diamonds = "♦"
    Hearts = "♥"
    Spades = "♠"

This provides four members. We can use Suit.Clubs to reference a specific string.
We can also use list(Suit) to create a list of the enumerated members. 

The base Enum class imposes constraints on the member names or values that will be
part of the class. We can narrow the definition using mixin class definitions.
Specifically, the Enum class can work with a data type as well as additional feature
definitions.

We often want a richer definition of the underlying values for the members of the
enumeration. This example shows the mixing of str into Enum:

class SuitS(str, Enum):
    Clubs = "♣"
    Diamonds = "♦"
    Hearts = "♥"
    Spades = "♠"

The base class is Enum. Features of the str class will be available to each member. The
order of the definitions is important: the mixins are listed first; the base class is listed
last. 
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When str is mixed in, it provides all of the string methods to the member itself
without having to make an explicit reference to the internal value of each member.
For example, SuitS.Clubs.center(5) will emit the string value centered in a
string of length five. 

We can also incorporate additional features in an Enum. In this example, we'll add a
class-level feature to enumerate the values:

class EnumDomain:
    @classmethod
    def domain(cls: Type) -> List[str]:
        return [m.value for m in cls]

class SuitD(str, EnumDomain, Enum):
    Clubs = "♣"
    Diamonds = "♦"
    Hearts = "♥"
    Spades = "♠"

The following two mixin protocols are added to this class:

The str methods will apply to each member directly.
The class also has a domain() method, which will emit only the values. We
can use SuitD.domain() to get the list of string values associated with the
members.

This mixin technique allows us to bundle features together to create complex class
definitions from separate aspects. 

A mixin design is better than copy and paste among several related
classes.

It can be difficult to create classes that are generic enough to be used as mixins. One
approach is to look for duplicated copypasta code across multiple classes. The
presence of duplicated code is an indication of a possible mixin to refactor and
eliminate the duplication.

Let's see how to write a simple function decorator in the next section. 
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Writing a simple function decorator
A decorator is a function (or a callable object) that accepts a function as an
argument and returns a new function. The result of decoration is a function that has
been wrapped. Generally, the additional features of the wrapping surround the
original functionality, either by transforming actual argument values or by
transforming the result value. These are the two readily available join points in a
function.

When we use a decorator, we want to be sure that the resulting decorated function
has the original function's name and docstring. These details can be handled for us
by a decorator to build our decorators. Using functools.wraps to write new
decorators simplifies the work we need to do because the bookkeeping is handled for
us.

Additionally, the type hints for decorators can be confusing because the parameter
and return are both essentially of the Callable type. To be properly generic, we'll
use an upper-bound type definition to define a type, F, which embraces any variation
on callable objects or functions.

To illustrate the two places where functionality can be inserted, we can create a debug
trace decorator that will log parameters and return values from a function. This puts
functionality both before and after the called function. The following is a defined
function, some_function, that we want to wrap. In effect, we want code that
behaves like the following:

logging.debug("function(%r, %r)", args, kw)
result = some_function(*args, **kw)
logging.debug("result = %r", result)

This snippet shows how we'll have new log-writing to wrap the original,
some_function(), function.

The following is a debug decorator that inserts logging before and after function
evaluation:

import logging, sys
import functools
from typing import Callable, TypeVar

FuncType = Callable[..., Any]
F = TypeVar('F', bound=FuncType)

def debug(function: F) -> F:
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    @functools.wraps(function)
    def logged_function(*args, **kw):
        logging.debug("%s(%r, %r)", function.__name__, args, kw)
        result = function(*args, **kw)
        logging.debug("%s = %r", function.__name__, result)
        return result

    return cast(F, logged_function)

We've used the @functools.wraps decorator to ensure that the original function
name and docstring are preserved as attributes of the result function. The
logged_function() definition is the resulting function returned by the debug()
decorator. The internal, logged_function() does some logging, then invokes the
decorated function, function, and does some more logging before returning the
result of the decorated function. In this example, no transformation of argument
values or results was performed.

When working with the logger, f-strings are not the best idea. It can help to provide
individual values so the logging filters can be used to redact or exclude entries from a
sensitive log. 

Given this @debug decorator, we can use it to produce noisy, detailed debugging. For
example, we can do this to apply the decorator to a function, ackermann(), as
follows:

@debug
def ackermann(m: int, n: int) -> int:
    if m == 0:
        return n + 1
    elif m > 0 and n == 0:
        return ackermann(m - 1, 1)
    elif m > 0 and n > 0:
        return ackermann(m - 1, ackermann(m, n - 1))
    else:
        raise Exception(f"Design Error: {vars()}")

This definition wraps the ackermann() function with debugging information written
via the logging module to the root logger. We've made no material changes to the
function definition. The @debug decorator injects the logging details as a separate
aspect. 

We configure the logger as follows:

logging.basicConfig(stream=sys.stderr, level=logging.DEBUG)



Decorators and Mixins - Cross-Cutting Aspects Chapter 9

[ 273 ]

We'll revisit logging in detail in Chapter 16, The Logging and Warning Modules. We'll
see this kind of result when we evaluate ackermann(2,4) as follows:

DEBUG:root:ackermann((2, 4), {})
DEBUG:root:ackermann((2, 3), {})
DEBUG:root:ackermann((2, 2), {})
.
.
.
DEBUG:root:ackermann((0, 10), {})
DEBUG:root:ackermann = 11
DEBUG:root:ackermann = 11
DEBUG:root:ackermann = 11

In the next section, we will see how to create separate loggers.

Creating separate loggers
As a logging optimization, we might want to use a specific logger for each wrapped
function and not overuse the root logger for this kind of debugging output. We'll
return to the logger in Chapter 16, The Logging and Warning Modules.

The following is a version of our decorator that creates a separate logger for each
individual function:

def debug2(function: F) -> F:
    log = logging.getLogger(function.__name__)

    @functools.wraps(function)
    def logged_function(*args, **kw):
        log.debug("call(%r, %r)", args, kw)
        result = function(*args, **kw)
        log.debug("result = %r", result)
        return result

    return cast(F, logged_function)

This version modifies the output to look like the following:

DEBUG:ackermann:call((2, 4), {})
DEBUG:ackermann:call((2, 3), {})
DEBUG:ackermann:call((2, 2), {})
.
.
.
DEBUG:ackermann:call( (0, 10), {} )
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DEBUG:ackermann:result = 11
DEBUG:ackermann:result = 11
DEBUG:ackermann:result = 11

The function name is now the logger name. This can be used to fine-tune the
debugging output. We can now enable logging for individual functions rather than
enabling debugging for all functions. 

Note that we can't trivially change the decorator and expect the decorated function to
also change. After making a change to a decorator, we need to apply the revised
decorator to a function. This means that debugging and experimenting with
decorators can't be done trivially from the >>> interactive prompt.

Decorator development often involves creating and rerunning a script to define the
decorator and apply it to example functions. In some cases, this script will also
include tests or a demonstration to show that everything works as expected.

Now, let's see how to parameterize a decorator.

Parameterizing a decorator
Sometimes, we need to provide parameters to a decorator. The idea is that we are
going to customize the wrapping function. When we do this, decoration becomes a
two-step process.

Here's a snippet showing how we provide a parameterized decorator to a function
definition:

@decorator(arg)
def func( ):
    pass

The implementation is as follows:

def func( ):
    pass
func = decorator(arg)(func)

We've done the following three things:

Defined a function, func
Applied the abstract decorator to its arguments to create a concrete
decorator, decorator(arg)
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Applied the concrete decorator to the defined function to create the
decorated version of the function, decorator(arg)(func)

It can help to think of func = decorate(arg)(func) as having the following
implementation:

concrete = decorate(arg)
func = concrete(func)

This means that a decorator with arguments is implemented as indirect construction
of the final function. Now, let's tweak our debugging decorator yet again. We'd like to
do the following:

@debug("log_name")
def some_function( args ):
    pass

This kind of code allows us to specify the name of the log that the debugging output
will go to. This means we won't use the root logger or create a distinct logger for each
function.

The outline of a parameterized decorator will be the following:

def decorator(config) -> Callable[[F], F]:
    def concrete_decorator(function: F) -> F:
        def wrapped(*args, **kw):
            return function(*args, **kw)
        return cast(F, wrapped)
    return concrete_decorator

Let's peel back the layers of this onion before looking at the example. The decorator
definition (def decorator(config)) shows the parameters we will provide to the
decorator when we use it. The body of this is the concrete decorator, which is
returned after the parameters are bound to it. The concrete decorator (def
concrete_decorator(function):) will then be applied to the target function. The
concrete decorator is like the simple function decorator shown in the previous section.
It builds the wrapped function (def wrapped(*args, **kw):), which it returns.

The following is our named logger version of debug:

def debug_named(log_name: str) -> Callable[[F], F]:
    log = logging.getLogger(log_name)

    def concrete_decorator(function: F) -> F:

        @functools.wraps(function)
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        def wrapped(*args, **kw):
            log.debug("%s(%r, %r)", function.__name__, args, kw)
            result = function(*args, **kw)
            log.debug("%s = %r", function.__name__, result)
            return result

        return cast(F, wrapped)

    return concrete_decorator

This @debug_named decorator accepts an argument that is the name of the log to use.
It creates and returns a concrete decorator function with a logger of the given name 
bound into it. When this concrete decorator is applied to a function, the concrete
decorator returns the wrapped version of the given function. When the function is
used in the following manner, the decorator adds noisy debug lines.

Here's an example of creating a logged named recursion with output from a given
function:

@debug_named("recursion")
def ackermann3(m: int, n: int) -> int:
    if m == 0:
        return n + 1
    elif m > 0 and n == 0:
        return ackermann3(m - 1, 1)
    elif m > 0 and n > 0:
        return ackermann3(m - 1, ackermann3(m, n - 1))
    else:
        raise Exception(f"Design Error: {vars()}")

The decorator wraps the given ackermann3() function with logging output. Since
the decorator accepts a parameter, we can provide a logger name. We can reuse the
decorator to put any number of individual functions into a single logger, providing
more control over the debug output from an application.

Now, let's see how to create a method function decorator.

Creating a method function decorator
A decorator for a method of a class definition is identical to a decorator for a
standalone function. While it's used in a different context, it will be defined like any
other decorator. One small consequence of the different context is that we often, must
explicitly name the self variable in decorators intended for methods.
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One application for method decoration is to produce an audit trail for object state
changes. Business applications often create stateful records; commonly, these are
represented as rows in a relational database. We'll look at object representation in
Chapter 10, Serializing and Saving – JSON, YAML, Pickle, CSV, and XML, Chapter 11,
Storing and Retrieving Objects via Shelve, and Chapter 12, Storing and Retrieving Objects
via SQLite.

When we have stateful records, the state changes often need to be
auditable. An audit can confirm that appropriate changes have been
made to the records. In order to do the audit, the before and after
version of each record must be available somewhere. Stateful
database records are a long-standing tradition but are not in any
way required. Immutable database records are a viable design
alternative.

When we design a stateful class, any setter method will cause a state change. If we do
this, we can fold in an @audit decorator that can track changes to the object so that
we have a proper trail of changes. We'll create an audit log via the logging module.
We'll use the __repr__() method function to produce a complete text representation
that can be used to examine changes.

The following is an audit decorator:

def audit(method: F) -> F:

    @functools.wraps(method)
    def wrapper(self, *args, **kw):
        template = "%s\n     before %s\n     after %s"
        audit_log = logging.getLogger("audit")
        before = repr(self)  # preserve state as text
        try:
            result = method(self, *args, **kw)
        except Exception as e:
            after = repr(self)
            audit_log.exception(template, method.__qualname__, before,
after)
            raise
        after = repr(self)
        audit_log.info(template, method.__qualname__, before, after)
        return result

    return cast(F, wrapper)
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This audit trail works by creating text mementos of the before setting and after setting
state of the object. After capturing the before state, the original method function is
applied. If there was an exception, an audit log entry includes the exception details.
Otherwise, an INFO entry is written with the qualified name of the method name, the
before memento, and the after memento of the object.

The following is a modification of the Hand class that shows how we'd use this
decorator:

class Hand:

    def __init__(self, *cards: CardDC) -> None:
        self._cards = list(cards)

    @audit
    def __iadd__(self, card: CardDC) -> "Hand":
        self._cards.append(card)
        self._cards.sort(key=lambda c: c.rank)
        return self

    def __repr__(self) -> str:
        cards = ", ".join(map(str, self._cards))
        return f"{self.__class__.__name__}({cards})"

This definition modifies the __iadd__() method function so that adding a card
becomes an auditable event. This decorator will perform the audit operation, saving
text mementos of Hand before and after the operation.

This use of a method decorator makes a visible declaration that a particular method
will make a significant state change. We can easily use code reviews to be sure that all
of the appropriate method functions are marked for audit like this. 

In the event that we want to audit object creation as well as state change, we can't use
this audit decorator on the __init__() method function. That's because there's no
before image prior to the execution of __init__(). There are two things we can do
as a remedy to this, as follows:

We can add a __new__() method that ensures that an empty _cards
attribute is seeded into the class as an empty collection.
We can tweak the audit() decorator to tolerate AttributeError that will
arise when __init__() is being processed.
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The second option is considerably more flexible. We can do the following:

try:
    before = repr(self)
except AttributeError as e:
    before = repr(e)

This would record a message such as AttributeError: 'Hand' object has no
attribute '_cards' for the before status during initialization.

In the next section, we'll see how to create a class decorator.

Creating a class decorator
Analogous to decorating a function, we can write a class decorator to add features to
a class definition. The essential rules are the same. The decorator is a function (or
callable object); it receives a class object as an argument and returns a class object as a
result.

We have a limited number of join points inside a class definition as a whole. For the
most part, a class decorator can fold additional attributes into a class definition. While
it's technically possible to create a new class that wraps an original class definition,
this doesn't seem to be very useful as a design pattern. It's also possible to create a
new class that is a subclass of the original decorated class definition. This may be
baffling to users of the decorator. It's also possible to delete features from a class
definition, but this seems perfectly awful.

One sophisticated class decorator was shown previously. The
functools.Total_Ordering decorator injects a number of new method functions
into the class definition. The technique used in this implementation is to create
lambda objects and assign them to attributes of the class.

In general, adding attributes often leads to problems with mypy type hint checking.
When we add attributes to a class in a decorator, they're essentially invisible to mypy.

As an example, consider the need to debug object creation. Often, we'd like to have a
unique logger for each class.
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We're often forced to do something like the following:

class UglyClass1:

    def __init__(self) -> None:
        self.logger = logging.getLogger(self.__class__.__qualname__)
        self.logger.info("New thing")

    def method(self, *args: Any) -> int:
        self.logger.info("method %r", args)
        return 42

This class has the disadvantage that it creates a logger instance variable that's really
not part of the class's operation, but is a separate aspect of the class. We'd like to
avoid polluting the class with this additional aspect. Even though
logging.getLogger() is very efficient, the cost's non-zero. We'd like to avoid this
additional overhead every time we create an instance of UglyClass1.

Here's a slightly better version. The logger is promoted to be a class-level instance
variable and is separate from each individual object of the class:

class UglyClass2:
    logger = logging.getLogger("UglyClass2")

    def __init__(self) -> None:
        self.logger.info("New thing")

    def method(self, *args: Any) -> int:
        self.logger.info("method %r", args)
        return 42

This has the advantage that it implements logging.getLogger() just once.
However, it suffers from a profound Don't Repeat Yourself (DRY) problem. We can't
automatically set the class name within the class definition. The class hasn't been
created yet, so we're forced to repeat the name.

The DRY problem can be partially solved by a small decorator as follows:

def logged(class_: Type) -> Type:
    class_.logger = logging.getLogger(class_.__qualname__)
    return class_

This decorator tweaks the class definition to add the logger reference as a class-level
attribute. Now, each method can use self.logger to produce audit or debug
information. When we want to use this feature, we can use the @logged decorator on
the class as a whole.
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This presents a profound problem for mypy, more easily solved with a mixin than a
decorator.

Continuing to use the class decorator, the following is an example of a logged class,
SomeClass:

@logged
class SomeClass:

    def __init__(self) -> None:
        self.logger.info("New thing")  # mypy error

    def method(self, *args: Any) -> int:
        self.logger.info("method %r", args)  # mypy error
        return 42

The decorator guarantees that the class has a logger attribute that can be used by
any method. The logger attribute is not a feature of each individual instance, but a
feature of the class as a whole. This attribute has the added benefit that it creates the
logger instances during module import, reducing the overhead of logging slightly.
Let's compare this with UglyClass1, where logging.getLogger() was evaluated
for each instance creation.

We've annotated two lines that will report mypy errors. The type hint checks whether
attributes injected by decorators are not robust enough to detect the additional
attribute. The decorator can't easily create attributes visible to mypy. It's better to use
the following kind of mixin:

class LoggedWithHook:
    def __init_subclass__(cls, name=None):
        cls.logger = logging.getLogger(name or cls.__qualname__)

This mixin class defines the __init_subclass__() method to inject an additional
attribute into the class definition. This is recognized by mypy, making the logger
attribute visible and useful. If the name of the parameter is provided, it becomes the
name of the logger, otherwise the name of the subclass will be used. Here's an
example class making use of this mixin:

class SomeClass4(LoggedWithHook):

    def __init__(self) -> None:
        self.logger.info("New thing")

    def method(self, *args: Any) -> int:
        self.logger.info("method %r", args)
        return 42
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This class will have a logger built when the class is created. It will be shared by all
instances of the class. And the additional attribute will be visible to mypy. In most
ordinary application programming, class-level decorators are a rarity. Almost
anything needed can be done using the __init_subclass__() method.

Some complex frameworks, such as the @dataclasses.dataclass decorator,
involve extending the class from the available scaffolding. The code required to 
introduce names into the attributes used by mypy is unusual.

Let's see how to add methods to a class in the next section.

Adding methods to a class
A class decorator can create new methods using a two-step process. First, it must
create a method function and then insert it into the class definition. This is often better
done via a mixin class than a decorator. The obvious and expected use of a mixin is to
insert methods. Inserting methods with a decorator is less obvious and can
be astonishing to people reading the code and trying to find where the methods of a
class are defined.

In the example of the Total_Ordering decorator, the exact method functions
inserted were flexible and depended on what was already provided. This was a kind
of special case that doesn't tend to astonish people reading the code.

We'll look at a technique to create a snapshot of an object's state by creating a text
memento of the object. This can be implemented via a standardized memento()
method. We'd like to include this standard method function in a variety of classes.
First, we'll look at a decorator implementation. After that, we'll look at a mixin
version of this design.

The following is the decorator version of adding this standardized memento()
method:

def memento(class_: Type) -> Type:

    def memento_method(self):
        return f"{self.__class__.__qualname__}(**{vars(self)!r})"

    class_.memento = memento_method
    return class_
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This decorator includes a method function definition that is inserted into the class.
The vars(self) expression exposes the instance variables usually kept the internal
__dict__ attribute of an instance. This produces a dictionary that can be included in
the output string value.

The following is how we use this @memento decorator to add the memento() method
to a class:

@memento
class StatefulClass:

    def __init__(self, value: Any) -> None:
        self.value = value

    def __repr__(self) -> str:
        return f"{self.value}"

The decorator incorporates a new method, memento(), into the decorated class.
Here's an example of using this class and extracting a memento that summarizes the
state of the object:

>>> st = StatefulClass(2.7)
>>> print(st.memento())
StatefulClass(**{'value': 2.7})

This implementation has the following disadvantages:

We can't override the implementation of the memento() method function
to handle special cases. It's built into the class after the definition.
We can't extend the decorator function easily. Doing this would involve
creating either a very complex memento() method, or perhaps some other
unwieldy design to incorporate some kind of plug-in feature.

An alternative is to use a mixin class. Variations on this class allow customization.
The following is the mixin class that adds a standard method:

class Memento:

    def memento(self) -> str:
        return (
            f"{self.__class__.__qualname__}"
            f"(**{vars(self)!r})"
        )
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The following is how we use this Memento mixin class to define an application class:

class StatefulClass2(Memento):

    def __init__(self, value):
        self.value = value

    def __repr__(self):
        return f"{self.value}"

The mixin provides a new method, memento(); this is the expected, typical purpose
of a mixin. We can more easily extend the Memento mixin class to add features. In
addition, we can override the memento() method function to handle special cases.

Now, let's see how to use decorators for security.

Using decorators for security
Software is filled with cross-cutting concerns, aspects that need to be implemented
consistently, even if they're in separate class hierarchies. It's often a mistake to try and
impose a class hierarchy around a cross-cutting concern. We've looked at a few
examples, such as logging and auditing.

We can't reasonably demand that every class that might need to write to the log also
be a subclass of some single Loggable superclass. It's much easier to design a
Loggable mixin or a @loggable decorator. These don't interfere with the proper
inheritance hierarchy that we need to design to make polymorphism work correctly.

Some important cross-cutting concerns revolve around security. Within a web
application, there are two aspects to the security question as follows:

Authentication: Do we know who's making the request?
Authorization: Is the authenticated user permitted to make the request?

Some web frameworks allow us to decorate our request handlers with security
requirements. The Django framework, for example, has a number of decorators that
allow us to specify security requirements for a view function or a view class.
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Some of these decorators are as follows:

user_passes_test: This is a low-level decorator that's very generalized
and is used to build the other two decorators. It requires a test function; the
logged-in User object associated with the request must pass the given
function. If the User instance is not able to pass the given test, they're
redirected to a login page so that the person can provide the credentials
required to make the request.
login_required: This decorator is based on user_passes_test. It
confirms that the logged-in user is authenticated. This kind of decorator is
used on web requests that apply to all people accessing the site. Requests,
such as changing a password or logging out, shouldn't require any more
specific permissions.
permission_required: This decorator works with Django's internally
defined database permission scheme. It confirms that the logged-in user (or
the user's group) is associated with the given permission. This kind of
decorator is used on web requests where specific administrative
permissions are required to make the request.

Other packages and frameworks also have ways to express this cross-cutting aspect of
web applications. In many cases, a web application may have even more stringent
security considerations. We might have a web application where user features are
selectively unlocked based on contract terms and conditions. Perhaps, additional fees
will unlock a feature. We might have to design a test like the following:

def user_has_feature(feature_name):
    def has_feature(user):
        return feature_name in (f.name for f in user.feature_set())
    return user_passes_test(has_feature)

This decorator customizes a version of the Django user_passes_test() decorator
by binding in a specific feature test. The has_feature() function checks a
feature_set() value of each User object. This is not built-in in Django. The
feature_set() method would be an extension, added onto the Django User class
definition. The idea is for an application to extend the Django definitions to define
additional features.

The has_feature() function checks to see whether the named feature is associated
with the feature_set() results for the current User instance. We've used our
has_feature() function with Django's user_passes_test decorator to create a
new decorator that can be applied to the relevant view functions.
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We can then create a view function as follows:

@user_has_feature('special_bonus')
def bonus_view(request):
    pass

This ensures that the security concerns will be applied consistently across a number
of view functions.

Summary
We've looked at using decorators to modify function and class definitions. We've also
looked at mixins that allow us to decompose a larger class into components that are
knitted together.

The idea of both of these techniques is to separate application-specific features from
generic features, such as security, audit, or logging. We're going to distinguish
between the inherent features of a class and aspects that aren't inherent but are
additional concerns. The inherent features are part of the explicit design. They're part
of the inheritance hierarchy; they define what an object is. The other aspects can be
mixins or decorations; they define how an object might also act.

In most cases, this division between is-a and acts-as is quite clear. Inherent features are
a part of the overall problem domain. When talking about simulating Blackjack play,
things such as cards, hands, betting, hitting, and standing are clearly part of the
problem domain. Similarly, the data collection and statistical analysis of outcomes is
part of the solution. Other things, such as logging, debugging, security checks, and
auditing are not part of the problem domain; these other aspects are associated with
the solution technology. In some cases, they are part of regulatory compliance or
another background context in which the software is used.

While most cases are quite clear, the dividing line between inherent and decorative
aspects can be fine. In some cases, it may devolve to an aesthetic judgment. Generally,
the decision becomes difficult when writing framework and infrastructure classes
because they aren't focused on a specific problem. A general strategy for creating
good designs is as follows:

Aspects that are central to the problem will contribute directly to class
definitions. Many classes are based on nouns and verbs present in the
problem domain. These classes form simple hierarchies; polymorphism
among data objects works as expected when compared with real-world
objects.
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Some aspects are peripheral to the problem and will lead to mixin class
definitions. These are things related to operational aspects of using the
software more than solving the essential problem.

A class that involves mixins can be said to be multidimensional. It has more than one
independent axis; aspects belong to orthogonal design considerations. When we
define separate mixins, we can have separate inheritance hierarchies for the mixins.
For our casino game simulations, there are two aspects: the rules of the game and a
betting strategy. These are orthogonal considerations. The final player simulation
classes must have mixin elements from both class hierarchies.

The type hints for decorators can become complex. In the most generic case, a
decorator can be summarized as a function with an argument that's a Callable and
a result that's a Callable. If we want to be specific about the arguments and results
of the callable, there will be complex-looking type hints, often involving type
variables to show how the Callable argument and the Callable result align. This
can become very complex if the decorator changes the signature of the decorated
function by modifying parameters or results.

As noted previously, object-oriented programming lets us follow a variety of design
strategies, as follows:

Composition: We introduce functionality through wrapping one class with
another class. This may involve the composition of various aspects under a
façade. It may involve using mixins classes to add features, or decorators to
add features.
Extension: This is the ordinary case of inheritance. This is appropriate
where there is a clear is-a relationship among the class definitions. It works
out best when the superclass is a unsurprising generalization of the
subclass details. In this case, ordinary inheritance techniques work out
well.

The forthcoming chapters will change direction. We've seen almost all of Python's
special method names. The next five chapters are going to focus on object persistence
and serialization. We'll start out with serializing and saving objects in various
external notations, including JSON, YAML, Pickle, CSV, and XML.

Serialization and persistence introduce yet more object-oriented design
considerations for our classes. We'll also have a look at object relationships and how
they're represented. We'll also have a look at the cost complexity of serializing and
deserializing objects, and at the security issues related to the deserialization of objects
from untrustworthy sources.



2
Section 2: Object

Serialization and Persistence
A persistent object has been serialized to a storage medium. Perhaps it has been
transformed to JSON and written to the filesystem. Perhaps an object-relational
management (ORM) layer can store the object in a database.

The following chapters will be covered in this section:

Chapter 10, Serializing and Saving – JSON, YAML, Pickle, CSV, and XML
Chapter 11, Storing and Retrieving Objects via Shelve
Chapter 12, Storing and Retrieving Objects via SQLite
Chapter 13, Transmitting and Sharing Objects
Chapter 14, Configuration Files and Persistence
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Serializing and Saving -

JSON, YAML, Pickle, CSV,
and XML

To make a Python object persistent, we must convert it into bytes and write the bytes
to a file. We'll call this transformation serialization; it is also called marshaling,
deflating, or encoding. We'll look at several ways to serialize a Python object to a
stream of bytes. It's important to note that we're focused on representing the state of
an object, separate from the full definition of the class and its methods and
superclasses.

A serialization scheme includes a physical data format. Each format offers some
advantages and disadvantages. There's no best format to represent the state of objects.
 helps to distinguish the format from the logical data layout, which may be a simple
reordering or change in the use of whitespace; the layout changes don't change the
value of the object but change the sequence of bytes in an irrelevant way. For
example, the CSV physical format can have a variety of logical layouts and still
represent the same essential data. If we provide unique column titles, the order of the
columns doesn't matter.

Some serialized representations are biased toward representing a single Python
object, while others can save collections of individual objects. Even when the single
object is a list of items, it's still a single Python object. In order to update or replace
one of the items within the list, the entire list must be de-serialized and re-serialized.
When it becomes necessary to work with multiple objects flexibly, there are better
approaches described in Chapters 11, Storing and Retrieving Objects via Shelve,
Chapter 12, Storing and Retrieving Objects via SQLite, and Chapter 13, Transmitting
and Sharing Objects.



Serializing and Saving - JSON, YAML, Pickle, CSV, and XML Chapter 10

[ 290 ]

For the most part, we're limited to objects that fit in working memory. We'll look at
the following serialization representations:

JavaScript Object Notation (JSON): This is a widely used representation.
For more information, visit http://www.json.org. The json module 
provides the classes and functions necessary to load and dump data in this
format. In the Python Standard Library, look at section 19, Internet Data
Handling, not section 12, Persistence. The json module is focused narrowly
on JSON serialization. The more general problem of serializing arbitrary
Python objects isn't handled well.
YAML Ain't Markup Language (YAML): This is an extension to JSON and
can lead to some simplification of the serialized output. For more
information, check out http://yaml.org. This is not a standard part of the
Python library; we must add a module to handle this. The PyYaml package,
specifically, has numerous Python persistence features.
pickle: The pickle module has its own unique representation for data. As
this is a first-class part of the Python library, we'll look closely at how to
serialize an object in this way. This has the disadvantage of being a poor
format for the interchange of data with non-Python programs. It's the basis
for the shelve module in Chapter 11, Storing and Retrieving Objects via
Shelve, as well as message queues in Chapter 13, Transmitting and Sharing
Objects.
Comma Separated Values (CSV): This can be inconvenient for
representing complex Python objects. As it's so widely used, we'll need to
work out ways to serialize Python objects in the CSV notation. For
references, look at section 14, File Formats, of the Python Standard Library,
not section 12, Persistence, because it's simply a file format and little more.
CSV allows us to perform an incremental representation of the Python
object collections that cannot fit into memory.
XML: In spite of some disadvantages, this is very widely used, so it's 
important to be able to convert objects into an XML notation and recover
objects from an XML document. XML parsing is a huge subject. The
reference material is in section 20, Structured Markup Processing Tools, of
the Python Standard Library. There are many modules to parse XML, each
with different advantages and disadvantages. We'll focus on
ElementTree.

http://www.json.org
http://yaml.org
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Beyond these simple serialization formats, we can also have hybrid problems. One
example of a hybrid problem is a spreadsheet encoded in XML. This means that we
have a row-and-column data representation problem wrapped in the XML parsing
problem. This leads to more complex software for disentangling the various kinds of
data that were flattened to CSV-like rows so that we can recover useful Python
objects. 

In this chapter, we will cover the following topics:

Understanding persistence class, state, and representation
Filesystem and network considerations
Defining classes to support persistence
Dumping and loading with JSON
Dumping and loading with YAML
Dumping and loading with pickle
Dumping and loading with CSV
Dumping and loading with XML

Technical requirements
The code files for this chapter are available at https:/ ​/ ​git.​io/ ​fj2Uw.

Understanding persistence, class, state,
and representation
Primarily, our Python objects exist in volatile computer memory. The upper bound on
the life of an object is the duration of the Python process. This lifetime is further
constrained by objects only lasting as long there are references to them. If we want an
object with a longer duration, we need to make it persistent. If we want to extract the
state of an object from one process and provide this state information to another
process, the same serialization techniques for persistence can be used for the transfer
of object state.

https://git.io/fj2Uw
https://git.io/fj2Uw
https://git.io/fj2Uw
https://git.io/fj2Uw
https://git.io/fj2Uw
https://git.io/fj2Uw
https://git.io/fj2Uw
https://git.io/fj2Uw
https://git.io/fj2Uw
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Most operating systems offer persistent storage in the form of a filesystem. This can
include disk drives, flash drives, or other forms of non-volatile storage. Persisting the
bytes from memory to the filesystem turns out to be surprisingly difficult.

The complexity arises because our in-memory Python objects have references to other
objects. An object refers to its class. The class refers to any base classes. The object
might be a container and refer to other objects. The in-memory version of an object is
a web of references and relationships. The references are generally based on the
locations in memory, which are not fixed: the relationships would be broken by
trying to simply dump and restore memory bytes.

The web of references surrounding an object contains other objects that are largely
static. Class definitions, for example, change very slowly compared to instance
variables within an object. Python gives us a formal distinction between the instance
variables of an object and other methods defined in the class. Consequently,
serialization techniques focus on persisting the dynamic state of an object based on its
instance variables.

We don't actually have to do anything extra to persist class definitions; we already
have a very simple method for handling classes. Class definitions exist primarily as
source code. The class definition in the volatile memory is rebuilt from the source (or
the byte-code version of the source) every time it's needed. If we need to exchange a
class definition, we exchange Python modules or packages.

Let's take a look at common Python terminology in the next section.

Common Python terminology
Python serialization terminology tends to focus on the words dump and load. Most of
the classes we're going to work with will define methods such as the following:

dump(object, file): This will dump the given object to a file.
dumps(object): This will dump an object, returning a string
representation.
load(file): This will load an object from a file, returning the constructed
object.
loads(string): This will load an object from a string representation,
returning the constructed object.
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There's no formal standard; the method names aren't guaranteed by any formal ABC
inheritance or mixin class definition. However, they're widely used. Generally, the
file used for the dump or load can be any file-like object.

To be useful, the file-like object must implement a short list of methods.
Generally, read() and readline() are required for the load. We can, therefore, use
the io.StringIO objects as well as the urllib.request objects as sources for the
load. Similarly, dump places few requirements on the data source, mostly a write()
method is used. We'll dig into these file object considerations next.

Filesystem and network considerations
As the OS filesystem (and network) works in bytes, we need to represent the values of
an object's instance variables as a serialized stream of bytes. Often, we'll use a two-
step transformation to get the bytes: firstly, we'll represent the state of an object as a
string; secondly, we'll rely on the Python str class to provide bytes in a standard
encoding. Python's built-in features for encoding a string into bytes neatly solves the
second part of the problem. This allows most serialization methods to focus on
creating strings.

When we look at our OS filesystems, we see two broad classes of devices: block-mode
devices and character-mode devices. Block-mode devices can also be called seekable
because the OS supports a seek operation that can access any byte in the file in an
arbitrary order. Character-mode devices are not seekable; they are interfaces where
bytes are transmitted serially. Seeking would involve some kind of time travel to
recover past bytes or see future bytes.

This distinction between the character and block mode can have an impact on how we
represent the state of a complex object or a collection of objects. The serializations
we'll look at in this chapter focus on the simplest common feature set: an ordered
stream of bytes. The stream of bytes can be written to either kind of device.

The formats we'll look at in Chapter 11, Storing and Retrieving Objects via Shelve, and
Chapter 12, Storing and Retrieving objects via SQLite, however, will require block-
mode storage in order to encode more objects than could possibly fit into memory.
The shelve module and the SQLite database require seekable files on block-mode
devices.
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To an extent, the OS unifies block- and character-mode devices into a single
filesystem metaphor. Some parts of the Python Standard Library implement the
common feature set between the block and character devices. When we use Python's
urllib.request, we can access the network resources as well as local files. When
we open a local file, the urllib.request.urlopen() function imposes the limited
character-mode interface on an otherwise seekable file on a block-mode device.
Because the distinction is invisible, it lets a single application work with network or
local resources.

Let's define classes to support persistence.

Defining classes to support persistence
In order to work with persistence, we need some objects that we want to save. We'll
look at a simple microblog and the posts on that blog. Here's a class definition for
Post:

from dataclasses import dataclass
import datetime

@dataclass
class Post:
    date: datetime.datetime
    title: str
    rst_text: str
    tags: List[str]

    def as_dict(self) -> Dict[str, Any]:
        return dict(
            date=str(self.date),
            title=self.title,
            underline="-" * len(self.title),
            rst_text=self.rst_text,
            tag_text=" ".join(self.tags),
        )

The instance variables are the attributes of each microblog post – a date, a title, some
text, and some tags. Our attribute name provides us with a hint that the text should
be in reStructuredText(reST) markup, even though that's largely irrelevant to the rest
of the data model.
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To support simple substitution into templates, the as_dict() method returns a
dictionary of values that have been converted into string format. We'll look at the
processing templates using string.Template later. The type hint reflects the
general nature of JSON, where the resulting object will be a dictionary with string
keys and values chosen from a small domain of types. In this example, all of the
values are strings, and Dict[str, str] could also be used; this seems overly
specific, however, so Dict[str, Any] is used to provide future flexibility.

In addition to the essential data values, we've added a few values to help with
creating the reST output. The tag_text attribute is a flattened text version of the
tuple of tag values. The underline attribute produces an underline string with a
length that matches the title string; this helps the reST formatting work out nicely.

We'll also create a blog as a collection of posts. We'll make this collection more than a
simple list by including an additional attribute of a title for the collection of posts. We
have three choices for the collection design: wrap, extend, or invent a new class. We'll
head off some confusion by providing this warning: don't extend a list if you intend
to make it persistent.

Extending an iterable object can be confusing
When we extend a sequence class, we might get confused with some
serialization algorithms. This may wind up bypassing the extended
features we put in a subclass of a sequence. Wrapping a sequence is
usually a better idea than extending it.

This encourages us to look at wrapping or inventing. Since the blog posts form a
simple sequence, there will be few places for confusion, and we can extend a list.
Here's a collection of microblog posts. We've built in a list to create the Blog class:

from collections import defaultdict

class Blog_x(list):

    def __init__(self, title: str, posts: Optional[List[Post]]=None)
-> None:
        self.title = title
        super().__init__(posts if posts is not None else [])

    def by_tag(self) -> DefaultDict[str, List[Dict[str, Any]]]:
        tag_index: DefaultDict[str, List[Dict[str, Any]]] =
defaultdict(list)
        for post in self:
            for tag in post.tags:
                tag_index[tag].append(post.as_dict())
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        return tag_index

    def as_dict(self) -> Dict[str, Any]:
        return dict(
            title=self.title,
            entries=[p.as_dict() for p in self]
        )

In addition to extending the list class, we've also included an attribute that is the
title of the microblog. The initializer uses a common technique to avoid providing a
mutable object as a default value. We've provided None as the default value for
posts. If posts is None, we use a freshly-minted empty list, []. Otherwise, we use
the given value for posts.

Additionally, we've defined a method that indexes the posts by their tags. In the
resulting defaultdict, each key is a tag's text. Each value is a list of posts that shares
the given tag.

To simplify the use of string.Template, we've added another as_dict() method
that boils the entire blog down to a simple dictionary of strings and dictionaries. The 
idea here is to produce only built-in types that have simple string representations. In
this case, the Dict[str, Any] type hint reflects a general approach the return value.
Practically, the tile is a str, and the entries are a List[Dict[str, Any]], based on
the definition of the Post entries. The extra details don't seem to be completely
helpful, so we've left the hint as Dict[str, Any].

In the next section, we'll see how to render blogs and posts.

Rendering blogs and posts
We'll show you the template-rendering process next. In order to see how the 
rendering works, here's some sample data:

travel_x = Blog_x("Travel")
travel_x.append(
    Post(
        date=datetime.datetime(2013, 11, 14, 17, 25),
        title="Hard Aground",
        rst_text="""Some embarrassing revelation. Including ☹ and
⚓""",
        tags=["#RedRanger", "#Whitby42", "#ICW"],
    )
)
travel_x.append(
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    Post(
        date=datetime.datetime(2013, 11, 18, 15, 30),
        title="Anchor Follies",
        rst_text="""Some witty epigram. Including < & >
characters.""",
        tags=["#RedRanger", "#Whitby42", "#Mistakes"],
    )
)

We've serialized the Blog and Post objects in the form of Python code. This can be a
nice way to represent the blog. There are some use cases where Python code is a
perfectly fine representation for an object. In Chapter 14, Configuration Files and
Persistence, we'll look more closely at using Python to encode data.

Here's one way to render the blog into reST; a similar approach can be used to create
Markdown (MD). From this output file, the docutils rst2html.py tool can
transform the reST output into the final HTML file. This saves us from having to
digress into HTML and CSS. Also, we're going to use reST to write the documentation
in Chapter 20, Quality and Documentation. For more information on docutils, see
Chapter 1, Preliminaries, Tools, and Techniques.

We can use the string.Template class to do this. However, it's clunky and
complex. There are a number of add-on template tools that can perform a more
sophisticated substitution, including loops and conditional processing within the
template itself. You can find a list of alternatives
at https://wiki.python.org/moin/Templating. We're going to show you an example
using the Jinja2 template tool (https://pypi.python.org/pypi/Jinja2). Here's a
script to render this data in reST using a template:

from jinja2 import Template
blog_template= Template( """
{{title}}
{{underline}}

{% for e in entries %}
{{e.title}}
{{e.underline}}

{{e.rst_text}}

:date: {{e.date}}

:tags: {{e.tag_text}}
{% endfor %}

Tag Index

https://wiki.python.org/moin/Templating
https://pypi.python.org/pypi/Jinja2
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=========
{% for t in tags %}

*   {{t}}
    {% for post in tags[t] %}

    -   `{{post.title}}`_
    {% endfor %}
{% endfor %}
""")
print(blog_template.render(tags=travel.by_tag(), **travel.as_dict()))

The {{title}} and {{underline}} elements (and all similar elements) show us
how values are substituted into the text of the template. The render() method is
called with **travel.as_dict() to ensure that attributes such as title and
underline will be keyword arguments.

The {%for%} and {%endfor%} constructs show us how Jinja can iterate through the
sequence of Post entries in Blog. Within the body of this loop, the e variable will be
the dictionary created from each Post. We've picked specific keys out of the
dictionary for each post, such as {{e.title}} and {{e.rst_text}}.

We also iterated through a tags collection for the Blog. This is a dictionary with the
keys of each tag and the posts for the tag. The loop will visit each key, assigned to t.
The body of the loop will iterate through the posts in the dictionary value, tags[t].

The `{{post.title}}`_ construct uses reST markup to generate a link to the
section that has that title within the document. This kind of very simple markup is
one of the strengths of reST. It lets us use the blog titles as sections and links within
the index. This means that the titles must be unique or we'll get reST rendering errors.

Because this template iterates through a given blog, it will render all of the posts in
one smooth motion. The string.Template, which is built-in for Python, can't
iterate. This makes it a bit more complex to render all of the Posts of a Blog.

Let's see how to dump and load using JSON.
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Dumping and loading with JSON
What is JSON? A section from the https:/ ​/​www. ​json. ​org/​ web page states the
following:

"JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is
easy for humans to read and write. It is easy for machines to parse and generate. It is
based on a subset of the JavaScript Programming Language, Standard ECMA-262
3rd Edition - December 1999. JSON is a text format that is completely language
independent but uses conventions that are familiar to programmers of the C-family
of languages, including C, C++, C#, Java, JavaScript, Perl, Python, and many
others. These properties make JSON an ideal data-interchange language."

This format is used by a broad spectrum of languages and frameworks. Databases
such as CouchDB represent their data as JSON objects, simplifying the transmission
of data between applications. JSON documents have the advantage of looking
vaguely like Python list and dict literal values. They're easy to read and easy to
edit manually.

The json module works with the built-in Python types. It does not work with classes
defined by us until we take some additional steps. We'll look at these extension
techniques next. For the following Python types, there's a mapping to JavaScript types
that JSON uses:

Python type JSON
dict object

list, tuple array

str string

int, float number

True true

False false

None null

Other types are not supported; this means an values of another type must be coerced
to one of these types. This is often done via the extension functions that we can plug
into the dump() and load() functions. We can explore these built-in types by
transforming our microblog objects into simpler Python lists and dicts. When we
look at our Post and Blog class definitions, we have already defined the as_dict()
methods that reduce our custom class objects to built-in Python objects.

https://www.json.org/
https://www.json.org/
https://www.json.org/
https://www.json.org/
https://www.json.org/
https://www.json.org/
https://www.json.org/
https://www.json.org/
https://www.json.org/
https://www.json.org/
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Here's the code required to produce a JSON version of our blog data:

import json
print(json.dumps(travel.as_dict(), indent=4))

Here's the output:

{
    "entries": [
        {
            "title": "Hard Aground",
            "underline": "------------",
            "tag_text": "#RedRanger #Whitby42 #ICW",
            "rst_text": "Some embarrassing revelation. Including
\u2639 and \u2693",
            "date": "2013-11-14 17:25:00"
        },
        {
            "title": "Anchor Follies",
            "underline": "--------------",
            "tag_text": "#RedRanger #Whitby42 #Mistakes",
            "rst_text": "Some witty epigram. Including < & >
characters.",
            "date": "2013-11-18 15:30:00"
        }
    ],
    "title": "Travel"
}

The preceding output shows us how each of the various objects are translated from
Python to the JSON notation. What's elegant about this is that our Python objects
have been written into a standardized notation. We can share them with other
applications. We can write them to disk files and preserve them. There are several
unpleasant features of the JSON representation:

We had to rewrite our Python objects into dictionaries. It would be much
nicer to transform Python objects more simply, without explicitly creating
additional dictionaries.
We can't rebuild our original Blog and Post objects easily when we load
this JSON representation. When we use json.load(), we won't get Blog
or Post objects; we'll just get dict and list objects. We need to provide
some additional hints to rebuild the Blog and Post objects.
There are some values in the object's __dict__ that we'd rather not persist,
such as the underlined text for a Post.
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We need something more sophisticated than the built-in JSON encoding.

Let's take a look at JSON type hints in the next section.

JSON type hints
The as_dict() methods in both the Blog class and Post class shown earlier use a
simplistic Dict[str, Any] type hint for a data structure that's compatible with
JSON serialization. While the type hint was meaningful for those examples, this isn't
an ideal general description of the types used by JSON serialization.

The actual type that can be readily serialized could be defined like this:

from typing import Union, Dict, List, Type
JSON = Union[Dict[str, 'JSON'], List['JSON'], int, str, float, bool,
Type[None]]

Currently, mypy doesn't handle recursive types gracefully. Therefore, we're forced to
use the following:

JSON = Union[Dict[str, Any], List[Any], int, str, float, bool,
Type[None]]

The classes defined in this chapter don't use this more general JSON type hint. In this
chapter, we're only interested in working with the Dict[str, Any] subset of JSON-
compatible Python objects. It can be helpful in some contexts to include the more
sophisticated hint to be sure the types involved are correct.

Let's see how to support JSON in our classes.

Supporting JSON in our classes
In order to properly support creating strings in JSON notation, we need encoders and
decoders for classes outside the types that can be converted automatically. To encode
our unique objects into JSON, we need to provide a function that will reduce our
objects to Python primitive types. The json module calls this a default function; it
provides a default encoding for an object of an unknown class.
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To decode strings in JSON notation and create Python objects of an application class,
a class outside the baseline types supported by JSON, we need to provide an extra
function. This extra function will transform a dictionary of Python primitive
values into an instance of the one of our application classes. This is called the object
hook function; it's used to transform dict into an object of a customized class.

The json module documentation suggests that we might want to make use of class
hinting. The Python documentation includes a reference to the JSON-RPC version 1
specification (see http://json-rpc.org/wiki/specification). Their suggestion is to
encode an instance of a customized class as a dictionary, like the following:

{"__jsonclass__": ["ClassName", [param1,...]]}

The suggested value associated with the "__jsonclass__" key is a list of two items:
the class name, and a list of arguments required to create an instance of that class. The
specification allows for more features, but they're not relevant to Python.

To decode an object from a JSON dictionary, an object hook function can look for the
"__jsonclass__" key as a hint that one of our classes needs to be built, not a built-
in Python object. The class name can be mapped to a class object and the argument
sequence can be used to build the instance.

When we look at other sophisticated JSON encoders (such as the one that comes with
the Django Web framework), we can see that they provide a bit more complex an
encoding of a custom class. They include the class, a database primary key, and the
attribute values. We'll look at how to implement customized encoding and decoding.
The rules are represented as simple functions that are plugged into the JSON
encoding and decoding functions.

Let's see how to customize JSON encoding.

Customizing JSON encoding
For class hinting, we'll provide three pieces of information. We'll include a
__class__ key that names the target class. The __args__ key will provide a
sequence of positional argument values. A __kw__ key will provide a dictionary of
keyword argument values. (We will not use the __jsonclass__ key; it's too long
and doesn't seem Pythonic.) This will cover all the options of __init__().

http://json-rpc.org/wiki/specification
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Here's an encoder that follows this design:

def blog_encode(object: Any) -> Dict[str, Any]:
    if isinstance(object, datetime.datetime):
        return dict(
            __class__="datetime.datetime",
            __args__=[],
            __kw__=dict(
                year=object.year,
                month=object.month,
                day=object.day,
                hour=object.hour,
                minute=object.minute,
                second=object.second,
            ),
        )
    elif isinstance(object, Post):
        return dict(
            __class__="Post",
            __args__=[],
            __kw__=dict(
                date=object.date,
                title=object.title,
                rst_text=object.rst_text,
                tags=object.tags,
            ),
        )
    elif isinstance(object, Blog):
        return dict(
            __class__="Blog", __args__=[object.title, object.entries],
__kw__={}
        )
    else:
        return object

This function shows us two different flavors of object encodings for the three classes:

We encoded a datetime.datetime object as a dictionary of individual
fields using keyword arguments.
We encoded a Post instance as a dictionary of individual fields, also using
keyword arguments.
We encoded a Blog instance as a sequence of title and post entries using a
sequence of positional arguments.
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The else: clause is used for all other classes: this invokes the existing encoder's
default encoding. This will handle the built-in classes. We can use this function to
encode as follows:

text = json.dumps(travel, indent=4, default=blog_encode)

We provided our function, blog_encode(), as the default= keyword parameter to
the json.dumps() function. This function is used by the JSON encoder to determine
the encoding for an object. This encoder leads to JSON objects that look like the
following:

{
    "__args__": [
        "Travel",
        [
            {
                "__args__": [],
                "__kw__": {
                    "tags": [
                        "#RedRanger",
                        "#Whitby42",
                        "#ICW"
                    ],
                    "rst_text": "Some embarrassing revelation.
Including \u2639 and \u2693\ufe0e",
                    "date": {
                        "__args__": [],
                        "__kw__": {
                            "minute": 25,
                            "hour": 17,
                            "day": 14,
                            "month": 11,
                            "year": 2013,
                            "second": 0
                        },
                        "__class__": "datetime.datetime"
                    },
                    "title": "Hard Aground"
                },
                "__class__": "Post"
            },
.
.
.
    "__kw__": {},
    "__class__": "Blog"
}
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We've taken out the second blog entry because the output was rather long. A Blog
object is now wrapped with a dict that provides the class and two positional 
argument values. The Post and datetime objects, similarly, are wrapped with the
class name and the keyword argument values.

Let's see how to customize JSON decoding.

Customizing JSON decoding
In order to decode objects from a string in JSON notation, we need to work within the
structure of a JSON parsing. Objects of our customized class definitions were encoded
as simple dicts. This means that each dict decoded by the JSON decoder could be
one of our customized classes. Or, what is serialized as a dict should be left as a
dict.

The JSON decoder object hook is a function that's invoked for each dict to see whether
it represents a customized object. If dict isn't recognized by the hook function, it's an
ordinary dictionary and should be returned without modification. Here's our object
hook function:

def blog_decode(some_dict: Dict[str, Any]) -> Dict[str, Any]:
    if set(some_dict.keys()) == {"__class__", "__args__", "__kw__"}:
        class_ = eval(some_dict["__class__"])
        return class_(*some_dict["__args__"], **some_dict["__kw__"])
    else:
        return some_dict

Each time this function is invoked, it checks for the keys that define an encoding of
our objects. If the three keys are present, the given function is called with the
arguments and keywords. We can use this object hook to parse a JSON object, as
follows:

blog_data = json.loads(text, object_hook=blog_decode)

This will decode a block of text, encoded in a JSON notation, using our
blog_decode() function to transform dict into proper Blog and Post objects.

In the next section, we'll take a look at security and the eval() issue.
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Security and the eval() issue
Some programmers will object to the use of the eval() function in our
preceding blog_decode() function, claiming that it is a pervasive security problem.
What's silly is the claim that eval() is a pervasive problem. It's a potential security
problem if malicious code is written into the JSON representation of an object by
some malicious actor. A local malicious actor has access to the Python source. Why
waste their time on subtly tweaking JSON files? Why not just edit the Python source?

As a practical issue, we have to look at the transmission of the JSON documents
through the internet; this is an actual security problem. However, even this problem
does not indict eval() in general.

Some provisions can be made for a situation where an untrustworthy document has
been tweaked by a Man-in-the-Middle (MITM) attack. Assume a JSON document is
doctored while passing through a web interface that includes an untrustworthy
server acting as a proxy. (SSL is the preferred method to prevent this problem, so we
have to assume parts of the connection are also unsecured.)

If necessary, to cope with possible MITM attacks, we can replace eval() with a
dictionary that maps from name to class. We can change the class_
=eval(some_dict['__class__']) expression to the following:

class_ = {
    "Post": Post,
    "Blog": Blog,
    "datetime.datetime": datetime.datetime
}[some_dict['__class__']]

This will prevent problems in the event that a JSON document is passed through a
non-SSL-encoded connection. It also leads to a maintenance requirement to tweak this
mapping each time the application design changes to introduce new classes.

Let's see how to refactor the encode function in the next section.

Refactoring the encode function
The encoding function shouldn't expose information on the classes being converted
into JSON. To keep each class properly encapsulated, it seems better to refactor the
creation of a serialized representation into each application class. We'd rather not pile
all of the encoding rules into a function outside the class definitions.
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To do this with library classes, such as datetime, we would need to extend
datetime.datetime for our application. This leads to making our application use
the extended datetime instead of the datetime library. This can become a bit of a
headache to avoid using the built-in datetime classes. Consequently, we may elect to
strike a balance between our customized classes and library classes. Here are two
class extensions that will create JSON-encodable class definitions. We can add a
property to Blog:

    @property
    def _json( self ) -> Dict[str, Any]:
        return dict(
            __class__=self.__class__.__name__,
            __kw__={},
            __args__=[self.title, self.entries]
        )

This property will provide initialization arguments that are usable by our decoding
function. We can add this property to Post:

    @property
    def _json(self) -> Dict[str, Any]:
        return dict(
            __class__=self.__class__.__name__,
            __kw__=dict(
                date= self.date,
                title= self.title,
                rst_text= self.rst_text,
                tags= self.tags,
            ),
            __args__=[]
        )

As with Blog, this property will provide initialization arguments that are usable by
our decoding function. The type hint emphasizes the intermediate, JSON-friendly
representation of Python objects as Dict[str, Any]. 

These two properties let us modify the encoder to make it somewhat simpler. Here's a
revised version of the default function provided for encoding:

def blog_encode_2(object: Union[Blog, Post, Any) -> Dict[str, Any]:
    if isinstance(object, datetime.datetime):
        return dict(
            __class__="datetime.datetime",
            __args__=[],
            __kw__=dict(
                year= object.year,
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                month= object.month,
                day= object.day,
                hour= object.hour,
                minute= object.minute,
                second= object.second,
            )
        )
    else:
        try:
            encoding = object._json
        except AttributeError:
            encoding = json.JSONEncoder().default(o)
        return encoding

There are two kinds of cases here. For a datetime.datetime library class, this
function includes the serialization, exposing details of the implementation. For
our Blog and Post application classes, we can rely on these classes having a
consistent _json() method that emits a representation suitable for encoding.

Let's see how to standardize a date string in the next section.

Standardizing the date string
Our formatting of dates doesn't make use of the widely-used ISO standard text
format. To be more compatible with other languages, we should properly encode the
datetime object in a standard string and parse a standard string.

As we're already treating dates as a special case, this seems to be a sensible
implementation. It can be done without too much change to our encoding and
decoding. Consider this small change to the encoding:

    if isinstance(object, datetime.datetime):
        fmt= "%Y-%m-%dT%H:%M:%S"
        return dict(
            __class__="datetime.datetime.strptime",
            __args__=[object.strftime(fmt), fmt],
            __kw__={}
        )

The encoded output names the static method datetime.datetime.strptime()
and provides the argument-encoded datetime as well as the format to be used to
decode it. The output for a post now looks like the following snippet:

            {
                "__args__": [],
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                "__class__": "Post_J",
                "__kw__": {
                    "title": "Anchor Follies",
                    "tags": [
                        "#RedRanger",
                        "#Whitby42",
                        "#Mistakes"
                    ],
                    "rst_text": "Some witty epigram.",
                    "date": {
                        "__args__": [
                            "2013-11-18T15:30:00",
                            "%Y-%m-%dT%H:%M:%S"
                        ],
                        "__class__": "datetime.datetime.strptime",
                        "__kw__": {}
                    }
                }
            }

This shows us that we now have an ISO-formatted date instead of individual fields.
We've also moved away from the object creation using a class name. The __class__
value is expanded to be a class name or a static method name.

Writing JSON to a file
When we write JSON files, we generally do something like this:

from pathlib import Path
with Path("temp.json").open("w", encoding="UTF-8") as target:
    json.dump(travel3, target, default=blog_j2_encode)

We open the file with the required encoding. We provide the file object to the
json.dump() method. When we read JSON files, we will use a similar technique:

from pathlib import Path
with Path("some_source.json").open(encoding="UTF-8") as source:
     objects = json.load(source, object_hook=blog_decode)

The idea is to segregate the JSON representation as text from any conversion to bytes
on the resulting file. There are a few formatting options that are available in JSON.
We've shown you an indent of four spaces because that seems to produce nice-
looking JSON. As an alternative, we can make the output more compact by leaving
the indent option. We can compact it even further by making the separators more
terse.
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The following is the output created in temp.json:

{"__class__":"Blog_J","__args__":["Travel",[{"__class__":"Post_J","__a
rgs__":[],"__kw__":{"rst_text":"Some embarrassing
revelation.","tags":["#RedRanger","#Whitby42","#ICW"],"title":"Hard
Aground","date":{"__class__":"datetime.datetime.strptime","__args__":[
"2013-11-14T17:25:00","%Y-%m-
%dT%H:%M:%S"],"__kw__":{}}}},{"__class__":"Post_J","__args__":[],"__kw
__":{"rst_text":"Some witty
epigram.","tags":["#RedRanger","#Whitby42","#Mistakes"],"title":"Ancho
r
Follies","date":{"__class__":"datetime.datetime.strptime","__args__":[
"2013-11-18T15:30:00","%Y-%m-
%dT%H:%M:%S"],"__kw__":{}}}}]],"__kw__":{}}

Let's see how to dump and load using YAML.

Dumping and loading with YAML
The https:/​/ ​yaml. ​org/ ​ web page states the following about YAML:

YAML™ (rhymes with "camel") is a human-friendly, cross-language, Unicode-
based data serialization language designed around the common native data types of
agile programming languages.

The Python Standard Library documentation for the json module explains the
following about JSON and YAML:

JSON is a subset of YAML 1.2. The JSON produced by this module's default
settings (in particular, the default separators value) is also a subset of YAML 1.0
and 1.1. This module can thus also be used as a YAML serializer.

Technically, then, we can prepare YAML data using the json module. However, the
json module cannot be used to de-serialize more sophisticated YAML data. There are
two benefits to using YAML. First, it's a more sophisticated notation, allowing us to
encode additional details about our objects. Second, the PyYAML implementation has
a deep level of integration with Python that allows us to very simply create YAML
encodings of Python objects. The drawback of YAML is that it is not as widely used as
JSON. We'll need to download and install a YAML module. A good one can be found
at http://pyyaml.org/wiki/PyYAML.

https://yaml.org/
https://yaml.org/
https://yaml.org/
https://yaml.org/
https://yaml.org/
https://yaml.org/
https://yaml.org/
https://yaml.org/
http://pyyaml.org/wiki/PyYAML
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Once we've installed the package, we can dump our objects into the YAML notation:

import yaml
text = yaml.dump(travel2)
print(text)

Here's what the YAML encoding for our microblog looks like:

!!python/object:__main__.Blog
entries:
- !!python/object:__main__.Post
  date: 2013-11-14 17:25:00
  rst_text: Some embarrassing revelation. Including ☹ and ⚓
  tags: !!python/tuple ['#RedRanger', '#Whitby42', '#ICW']
  title: Hard Aground
- !!python/object:__main__.Post
  date: 2013-11-18 15:30:00
  rst_text: Some witty epigram. Including < & > characters.
  tags: !!python/tuple ['#RedRanger', '#Whitby42', '#Mistakes']
  title: Anchor Follies

The output is relatively terse but also delightfully complete. Also, we can easily edit
the YAML file to make updates. The class names are encoded with a YAML !! tag.
YAML contains 11 standard tags. The yaml module includes a dozen Python-specific
tags, plus five complex Python tags.

The Python class names are qualified by the defining module. In our case, the module
happened to be a simple script, so the class names are __main__.Blog and
__main__.Post. If we had imported these from another module, the class names
would reflect the module that defined the classes.

Items in a list are shown in a block sequence form. Each item starts with a - sequence;
the rest of the items are indented with two spaces. When list or tuple is small
enough, it can flow onto a single line. If it gets longer, it will wrap onto multiple lines.
To load Python objects from a YAML document, we can use the following code:

copy = yaml.load(text)

This will use the tag information to locate the class definitions and provide the values
found in the YAML document to the constructor class. Our microblog objects will
be fully reconstructed.

In the next chapter, we'll format YAML data on a file.
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Formatting YAML data on a file
When we write YAML files, we generally do something like this:

from pathlib import Path
import yaml
with Path("some_destination.yaml").open("w", encoding="UTF-8") as
target:
    yaml.dump(some_collection, target)

We open the file with the required encoding. We provide the file object to the
yaml.dump() method; the output is written there. When we read YAML files, we
will use a similar technique:

from pathlib import Path
import yaml
with Path("some_source.yaml").open(encoding="UTF-8") as source:
     objects= yaml.load(source)

The idea is to segregate the YAML representation as text from any conversion to bytes
on the resulting file. We have several formatting options to create a prettier YAML
representation of our data. Some of the options are shown in the following table:

explicit_start If true, writes a --- marker before each object.

explicit_end

If true, writes a ... marker after each object. We might use this
or explicit_start if we're dumping a sequence of YAML
documents into a single file and need to know when one ends and
the next begins.

version
Given a pair of integers (x, y), writes a %YAML x.y directive at the
beginning. This should be version=(1,2).

tags
Given a mapping, it emits a YAML %TAG directive with different
tag abbreviations.

canonical
If true, includes a tag on every piece of data. If false, a number
of tags are assumed.

indent If set to a number, changes the indentation used for blocks.

width
If set to a number, changes the width at which long items are
wrapped to multiple, indented lines.

allow_unicode
If set to true, permits full Unicode without escapes. Otherwise,
characters outside the ASCII subset will have escapes applied.

line_break Uses a different line-ending character; the default is a newline.

Of these options, explicit_end and allow_unicode are perhaps the most useful.
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Extending the YAML representation
Sometimes, one of our classes has a tidy representation that is nicer than the default
YAML dump of attribute values. For example, the default YAML for our Blackjack
Card class definitions will include several derived values that we don't really need to
preserve.

The yaml module includes a provision for adding a representer and constructor
to a class definition. The representer is used to create a YAML representation,
including a tag and value. The constructor is used to build a Python object from
the given value. Here's yet another Card class hierarchy:

from enum import Enum
class Suit(str, Enum):
    Clubs = "♣"
    Diamonds = "♦"
    Hearts = "♥"
    Spades = "♠"

class Card:

    def __init__(self, rank: str, suit: Suit,
        hard: Optional[int]=None,
        soft: Optional[int]=None
    ) -> None:
        self.rank = rank
        self.suit = suit
        self.hard = hard or int(rank)
        self.soft = soft or int(rank)

    def __str__(self) -> str:
        return f"{self.rank!s}{self.suit.value!s}"

class AceCard(Card):

    def __init__(self, rank: str, suit: Suit) -> None:
        super().__init__(rank, suit, 1, 11)

class FaceCard(Card):

    def __init__(self, rank: str, suit: Suit) -> None:
        super().__init__(rank, suit, 10, 10)
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We've used the superclass, Card, for number cards and defined two subclasses,
AceCard and FaceCard, for aces and face cards. In previous examples, we made
extensive use of a factory function to simplify the construction. The factory handled
mapping from a rank of 1 to a class of AceCard, and from ranks of 11, 12, and 13 to a
class of FaceCard. This was essential so that we could easily build a deck using a
simple range(1,14) for the rank values.

When loading from YAML, the class will be fully spelled out via the YAML !! tags.
The only missing information would be the hard and soft values associated with each
subclass of the card. The hard and soft points have three relatively simple cases that
can be handled through optional initialization parameters. Here's how it looks when
we dump these objects into the YAML format using default serialization:

- !!python/object:Chapter_10.ch10_ex2.AceCard
  hard: 1
  rank: A
  soft: 11
  suit: !!python/object/apply:Chapter_10.ch10_ex2.Suit
  - ♣
- !!python/object:Chapter_10.ch10_ex2.Card
  hard: 2
  rank: '2'
  soft: 2
  suit: !!python/object/apply:Chapter_10.ch10_ex2.Suit
  - ♥
- !!python/object:Chapter_10.ch10_ex2.FaceCard
  hard: 10
  rank: K
  soft: 10
  suit: !!python/object/apply:Chapter_10.ch10_ex2.Suit
  - ♦

These are correct, but perhaps a bit wordy for something as simple as a playing card.
We can extend the yaml module to produce smaller and more focused output for
these simple objects. Let's define representer and constructor for our Card
subclasses. Here are the three functions and registrations:

def card_representer(dumper: Any, card: Card) -> str:
    return dumper.represent_scalar(
        "!Card", f"{card.rank!s}{card.suit.value!s}")

def acecard_representer(dumper: Any, card: Card) -> str:
    return dumper.represent_scalar(
        "!AceCard", f"{card.rank!s}{card.suit.value!s}")
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def facecard_representer(dumper: Any, card: Card) -> str:
    return dumper.represent_scalar(
        "!FaceCard", f"{card.rank!s}{card.suit.value!s}")

yaml.add_representer(Card, card_representer)
yaml.add_representer(AceCard, acecard_representer)
yaml.add_representer(FaceCard, facecard_representer)

We've represented each Card instance as a short string. YAML includes a tag to show
which class should be built from the string. All three classes use the same format
string. This happens to match the __str__() method, leading to a potential
optimization.

The other problem we need to solve is constructing Card instances from the parsed
YAML document. For that, we need constructors. Here are three constructors and the
registrations:

def card_constructor(loader: Any, node: Any) -> Card:
    value = loader.construct_scalar(node)
    rank, suit = value[:-1], value[-1]
    return Card(rank, suit)

def acecard_constructor(loader: Any, node: Any) -> Card:
    value = loader.construct_scalar(node)
    rank, suit = value[:-1], value[-1]
    return AceCard(rank, suit)

def facecard_constructor(loader: Any, node: Any) -> Card:
    value = loader.construct_scalar(node)
    rank, suit = value[:-1], value[-1]
    return FaceCard(rank, suit)

yaml.add_constructor("!Card", card_constructor)
yaml.add_constructor("!AceCard", acecard_constructor)
yaml.add_constructor("!FaceCard", facecard_constructor)

As a scalar value is parsed, the tag will be used to locate a specific constructor. The
constructor can then decompose the string and build the proper subclass of a Card
instance. Here's a quick demo that dumps one card of each class:

deck = [AceCard("A", Suit.Clubs), Card("2", Suit.Hearts),
FaceCard("K", Suit.Diamonds)]
text = yaml.dump(deck, allow_unicode=True)
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The following is the output:

- !AceCard 'A♣'
- !Card '2♥'
- !FaceCard 'K♦'

This gives us short, elegant YAML representations of cards that can be used to
reconstruct Python objects.

We can rebuild our three-card deck using the following statement:

yaml.load(text, Loader=yaml.Loader)

This will parse the representation, use the constructor functions, and build the
expected objects. Because the constructor function ensures that proper
initialization gets done, the internal attributes for the hard and soft values are
properly rebuilt.

It's essential to use a specific Loader when adding new constructors to the yaml
module. The default behavior is to ignore these additional constructor tags. When
we want to use them, we need to provide a Loader that will handle extension tags.

Let's take a look at security and safe loading in the next section.

Security and safe loading
In principle, YAML can build objects of any type. This allows an attack on an
application that transmits YAML files over the internet without proper SSL controls
in place.

The YAML module offers a safe_load() method that refuses to execute arbitrary
Python code as part of building an object. This severely limits what can be loaded. For
insecure data exchanges, we can use yaml.safe_load() to create Python dict and
list objects that contain only built-in types. We can then build our application
classes from the dict and list instances. This is vaguely similar to the way we use
JSON or CSV to exchange dict that must be used to create a proper object.

A better approach is to use the yaml.YAMLObject mixin class for our own objects.
We use this to set some class-level attributes that provide hints to yaml and ensure
the safe construction of objects.
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Here's how we define a superclass for safe transmission:

class Card2(yaml.YAMLObject):
    yaml_tag = '!Card2'
    yaml_loader = yaml.SafeLoader

The two attributes will alert yaml that these objects can be safely loaded without
executing arbitrary and unexpected Python code. Each subclass of Card2 only has to
set the unique YAML tag that will be used:

class AceCard2(Card2):
    yaml_tag = '!AceCard2'

We've added an attribute that alerts yaml that these objects use only this class
definition. The objects can be safely loaded; they don't execute arbitrary
untrustworthy code.

With these modifications to the class definitions, we can now use
yaml.safe_load() on the YAML stream without worrying about the document
having malicious code inserted over an unsecured internet connection. The explicit
use of the yaml.YAMLObject mixin class for our own objects coupled with setting the
yaml_tag attribute has several advantages. It leads to slightly more compact files. It
also leads to a better-looking YAML files—the long, generic
!!python/object:Chapter_10.ch10_ex2.AceCard tags are replaced with shorter
!AceCard2 tags.

Let's see how to dump and load using pickle.

Dumping and loading with pickle
The pickle module is Python's native format to make objects persistent. The Python
Standard Library (https:/ ​/​docs. ​python. ​org/ ​3/​library/ ​pickle. ​html) says this
about pickle:

The pickle module can transform a complex object into a byte stream and it can
transform the byte stream into an object with the same internal structure. Perhaps
the most obvious thing to do with these byte streams is to write them onto a file, but
it is also conceivable to send them across a network or store them in a database.

The focus of pickle is Python, and only Python. This is not a data-interchange
format, such as JSON, YAML, CSV, or XML, that can be used with applications
written in other languages.

https://docs.python.org/3/library/pickle.html
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The pickle module is tightly integrated with Python in a variety of ways. For
example, the __reduce__() and __reduce_ex__() methods of a class exist to
support the pickle processing.

We can easily pickle our microblog in the following manner:

import pickle
from pathlib import Path
with Path("travel_blog.p").open("wb") as target:
    pickle.dump(travel, target)

This exports the entire travel object to the given file. The file is written as raw bytes,
so the open() function uses the "wb" mode.

We can easily recover a picked object in the following manner:

import pickle
from pathlib import Path
with Path("travel_blog.p").open("rb") as source:
    copy = pickle.load(source)

As pickled data is written as bytes, the file must be opened in the "rb" mode. The
pickled objects will be correctly bound to the proper class definitions. The underlying
stream of bytes is not intended for human consumption. It is readable after a fashion,
but it is not designed for readability as YAML is.

We'll design a class for reliable pickle processing in the next section.

Designing a class for reliable pickle
processing
The __init__() method of a class is not actually used to unpickle an object. The
__init__() method is bypassed by using __new__() and setting the pickled values
into the object's __dict__ directly. This distinction matters when our class definition
includes some processing in __init__(). For example, if __init__() opens
external files, creates some part of a GUI, or performs some external update to a
database, then this will not be performed during unpickling.
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If we compute a new instance variable during the __init__() processing, there is no
real problem. For example, consider a Blackjack Hand object that computes the total of
the Card instances when the Hand is created. The ordinary pickle processing will
preserve this computed instance variable. It won't be recomputed when the object is
unpickled. The previously computed value will simply be unpickled.

A class that relies on processing during __init__() has to make special
arrangements to be sure that this initial processing will happen properly. There are
two things we can do:

Avoid eager startup processing in __init__(). Instead, do only the
minimal initialization processing. For example, if there are external file
operations, these should be deferred until required. If there are any eager
summarization computations, they must be redesigned to be done lazily.
Similarly, any initialization logging will not be executed properly.
Define the __getstate__() and __setstate__() methods that can be
used by pickle to preserve the state and restore the state. The
__setstate__() method can then invoke the same method that
__init__() invokes to perform a one-time initialization processing in
ordinary Python code.

We'll look at an example where the initial Card instances loaded into a Hand are
logged for audit purposes by the __init__() method. Here's a version of Hand that
doesn't work properly when unpickling:

audit_log = logging.getLogger("audit")

class Hand_bad:

    def __init__(self, dealer_card: Card, *cards: Card) -> None:
        self.dealer_card = dealer_card
        self.cards = list(cards)
        for c in self.cards:
            audit_log.info("Initial %s", c)

    def append(self, card: Card) -> None:
        self.cards.append(card)
        audit_log.info("Hit %s", card)

    def __str__(self) -> str:
        cards = ", ".join(map(str, self.cards))
        return f"{self.dealer_card} | {cards}"
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This has two logging locations: during __init__() and append(). The __init__()
processing works nicely for most cases of creating a Hand_bad object. It doesn't work
when unpickling to recreate a Hand_bad object. Here's the logging setup to see this
problem:

import logging,sys
audit_log = logging.getLogger("audit")
logging.basicConfig(stream=sys.stderr, level=logging.INFO)

This setup creates the log and ensures that the logging level is appropriate for seeing
the audit information. Here's a quick script that builds, pickles, and unpickles Hand:

>>> h = Hand_bad(FaceCard("K", "♦"), AceCard("A", "♣"), Card("9",
"♥"))
INFO:audit:Initial A♣
INFO:audit:Initial 9♥
>>> data = pickle.dumps(h)
>>> h2 = pickle.loads(data)

When we execute this, we see that the log entries written during __init__()
processing. These entries are not written when unpickling Hand. Any other
__init__() processing would also be skipped.

In order to properly write an audit log for unpickling, we could put lazy logging tests
throughout this class. For example, we could extend __getattribute__() to write
the initial log entries whenever any attribute is requested from this class. This leads to
stateful logging and an if statement that is executed every time a hand object does
something. A better solution is to tap into the way state is saved and recovered by
pickle.

class Hand2:

    def __init__(self, dealer_card: Card, *cards: Card) -> None:
        self.dealer_card = dealer_card
        self.cards = list(cards)
        for c in self.cards:
            audit_log.info("Initial %s", c)

    def append(self, card: Card) -> None:
        self.cards.append(card)
        audit_log.info("Hit %s", card)

    def __str__(self) -> str:
        cards = ", ".join(map(str, self.cards))
        return f"{self.dealer_card} | {cards}"
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    def __getstate__(self) -> Dict[str, Any]:
        return vars(self)

    def __setstate__(self, state: Dict[str, Any]) -> None:
        # Not very secure -- hard for mypy to detect what's going on.
        self.__dict__.update(state)
        for c in self.cards:
            audit_log.info("Initial (unpickle) %s", c)

The __getstate__() method is used while picking to gather the current state of the
object. This method can return anything. In the case of objects that have internal
memoization caches, for example, the cache might not be pickled in order to save
time and space. This implementation uses the internal __dict__ without any
modification.

The __setstate__() method is used while unpickling to reset the value of the
object. This version merges the state into the internal __dict__ and then writes the
appropriate logging entries.

In the next section, we'll take a look at security and the global issue.

Security and the global issue
During unpickling, a global name in the pickle stream can lead to the evaluation of 
arbitrary code. Generally, the global names inserted into the bytes are class names or
a function name. However, it's possible to include a global name that is a function in a
module such as os or subprocess. This allows an attack on an application that
attempts to transmit pickled objects through the internet without strong SSL controls
in place. In order to prevent the execution of arbitrary code, we must extend the
pickle.Unpickler class. We'll override the find_class() method to replace it
with something more secure. We have to account for several unpickling issues, such
as the following:

We have to prevent the use of the built-in exec() and eval() functions.
We have to prevent the use of modules and packages that might be
considered unsafe. For example, sys and os should be prohibited.
We have to permit the use of our application modules.

Here's an example that imposes some restrictions:

import builtins

class RestrictedUnpickler(pickle.Unpickler):
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    def find_class(self, module: str, name: str) -> Any:
        if module == "builtins":
            if name not in ("exec", "eval"):
                return getattr(builtins, name)
        elif module in ("__main__", "Chapter_10.ch10_ex3",
"ch10_ex3"):
            # Valid module names depends on execution context.
            return globals()[name]
        # elif module in any of our application modules...
        elif module in ("Chapter_10.ch10_ex2",):
            return globals()[name]
        raise pickle.UnpicklingError(
            f"global '{module}.{name}' is forbidden"
        )

This version of the Unpickler class will help us avoid a large number of potential
problems that could stem from a pickle stream that was doctored. It permits the use
of any built-in function except exec() and eval(). It permits the use of classes
defined only in __main__. In all other cases, it raises an exception.

Let's see how to dump and load using CSV.

Dumping and loading with CSV
The csv module encodes and decodes simple list or dict instances into a CSV
notation. As with the json module, discussed previously, this is not a very complete
persistence solution. The wide adoption of CSV files, however, means that it often
becomes necessary to convert between Python objects and CSV.

Working with CSV files involves a manual mapping between potentially complex
Python objects and very simplistic CSV structures. We need to design the mapping
carefully, remaining cognizant of the limitations of the CSV notation. This can be
difficult because of the mismatch between the expressive powers of objects and the
tabular structure of a CSV file.

The content of each column of a CSV file is, by definition, pure text. When loading
data from a CSV file, we'll need to convert these values into more useful types inside
our applications. This conversion can be complicated by the way spreadsheets
perform unexpected type coercion. We might, for example, have a spreadsheet where
US zip codes have been changed into floating-point numbers by the spreadsheet
application. When the spreadsheet saves to CSV, the zip codes could become a
confusing numeric value. Bangor, Maine, for example, has a zip code of 04401. This
becomes 4401 when converted into a number by a spreadsheet program.
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Consequently, we might need to use a conversion such as
row['zip'].zfill(5) or ('00000'+row['zip'])[-5:] to restore the leading
zeroes. Also, don't forget that a file might have a mixture of ZIP and ZIP and four
postal codes, making this data cleansing even more challenging.

To further complicate working with CSV files, we have to be aware that they're often
touched manually and are become subtly incompatible because of human tweaks. It's
important for software to be flexible in the face of real-world irregularities that arise.

When we have relatively simple class definitions, we can often transform each
instance into a simple, flat row of data values. Often, NamedTuple is a good match
between a CSV source file and Python objects. Going the other way, we might need to
design our Python classes around NamedTuple if our application will save data in the
CSV notation.

When we have classes that are containers, we often have a difficult time determining
how to represent structured containers in flat CSV rows. This is an impedance
mismatch between object models and the flat normalized tabular structure used for
CSV files or relational databases. There's no good solution for the impedance
mismatch; it requires careful design. We'll start with simple, flat objects to show you
some CSV mappings.

Let's see how to dump simple sequences into CSV.

Dumping simple sequences into CSV
An ideal mapping is between the NamedTuple instances and rows in a CSV file. Each
row represents a different NamedTuple. Consider the following Python class
definition:

from typing import NamedTuple

class GameStat(NamedTuple):
    player: str
    bet: str
    rounds: int
    final: float

We've defined the objects in this application to have a simple, flat sequence of
attributes. The Database architects call this First Normal Form. There are no repeating
groups and each item is an atomic piece of data.
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We might produce these objects from a simulation that looks like the following code:

from typing import Iterator, Type

def gamestat_iter(
    player: Type[Player_Strategy], betting: Type[Betting], limit: int
= 100
) -> Iterator[GameStat]:
    for sample in range(30):
        random.seed(sample)  # Assures a reproducible result
        b = Blackjack(player(), betting())
        b.until_broke_or_rounds(limit)
        yield GameStat(player.__name__, betting.__name__, b.rounds,
b.betting.stake)

This iterator will create Blackjack simulations with a given player and betting
strategy. It will execute the game until the player is broke or has sat at the table for
100 individual rounds of play. At the end of each session, it will yield a GameStat
object with the player strategy, betting strategy, the number of rounds, and the final
stake. This will allow us to compute statistics for each play, betting strategy, or
combination. Here's how we can write this to a file for later analysis:

import csv
from pathlib import Path

with (Path.cwd() / "data" / "ch10_blackjack_1.csv").open("w",
newline="") as target:
    writer = csv.DictWriter(target, GameStat._fields)
    writer.writeheader()
    for gamestat in gamestat_iter(Player_Strategy, Martingale_Bet):
        writer.writerow(gamestat._asdict())

There are three steps to create a CSV writer:

Open a file with the newline option set to "". This will support the1.
(possibly) nonstandard line ending for CSV files.
Create a CSV writer. In this example, we created DictWriter because it2.
allows us to easily create rows from dictionary objects.
The GameStat._fields attribute provides the Python attribute names so
the CSV columns will precisely match the attributes of
the GameStat subclass of the NamedTuple class.
Write a header in the first line of the file. This makes data exchange slightly3.
simpler by providing some hint as to what's in the CSV file.
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Once the writer object has been prepared, we can use the writer's writerow()
method to write each dictionary to the CSV file. We can, to an extent, simplify this
slightly by using the writerows() method. This method expects an iterator instead
of an individual row. Here's how we can use writerows() with an iterator:

data = gamestat_iter(Player_Strategy, Martingale_Bet)
with (Path.cwd() / "data" / "ch10_blackjack_2.csv").open("w",
newline="") as target:
    writer = csv.DictWriter(target, GameStat._fields)
    writer.writeheader()
    writer.writerows(g._asdict() for g in data)

We've assigned the iterator to a variable, data. For the writerows() method, we get
a dictionary from each row produced by the iterator.

Let's load a simple sequence from CSV.

Loading simple sequences from CSV
We can load simple, sequential objects from a CSV file with a loop like the following:

with (Path.cwd() / "data" / "ch10_blackjack_1.csv").open() as source:
    reader = csv.DictReader(source)
    assert set(reader.fieldnames) == set(GameStat._fields)
    for gs in (GameStat(**r) for r in reader):
        print( gs )

We've defined a reader for our file. As we know that our file has a proper heading,
we can use DictReader. This will use the first row to define the attribute names. We
can now construct the GameStat objects from the rows in the CSV file. We've used a
generator expression to build rows.

In this case, we've assumed that the column names match the attribute names of our
GameStat class definition. We can, if necessary, confirm that the file matches the
expected format by comparing reader.fieldnames with GameStat._fields. As
the order doesn't have to match, we need to transform each list of field names into a
set. Here's how we can check the column names:

assert set(reader.fieldnames) == set(GameStat._fields)

We've ignored the data types of the values that were read from the file. The two
numeric columns will wind up being string values when we read from the CSV file.
Because of this, we need a more sophisticated row-by-row transformation to create
proper data values.
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Here's a typical factory function that performs the required conversions:

def gamestat_rdr_iter(
        source_data: Iterator[Dict[str, str]]
    ) -> Iterator[GameStat]:
    for row in source_data:
        yield GameStat(row["player"], row["bet"], int(row["rounds"]),
int(row["final"]))

We've applied the int function to the columns that are supposed to have numeric
values. In the rare event where the file has the proper headers but improper data,
we'll get an ordinary ValueError from a failed int() function. We can use this
generator function as follows:

with (Path.cwd()/"data"/"ch10_blackjack_1.csv").open() as source:
    reader = csv.DictReader(source)
    assert set(reader.fieldnames) == set(GameStat._fields)
    for gs in gamestat_rdr_iter(reader):
        print(gs)

This version of the reader has properly reconstructed the GameStat objects by
performing conversions on the numeric values.

Let's see how to handle containers and complex classes.

Handling containers and complex classes
When we look back at our microblog example, we have a Blog object that contains
many Post instances. We designed Blog as a wrapper around list, so that the Blog
would contain a collection. When working with a CSV representation, we have to
design a mapping from a complex structure to a tabular representation. We have
three common solutions:

We can create two files, a blog file and a posting file. The blog file has only
the Blog instances. Each Blog has a title in our example. Each Post row
can then have a reference to the Blog row that the posting belongs to. We
need to add a key for each Blog. Each Post would then have a foreign key
reference to the Blog key.
We can create two kinds of rows in a single file. We will have the Blog
rows and Post rows. Our writers entangle the various types of data; our
readers must disentangle the types of data.
We can perform a relational database join between the various kinds of
rows, repeating the Blog parent information on each Post child.



Serializing and Saving - JSON, YAML, Pickle, CSV, and XML Chapter 10

[ 327 ]

There's no best solution among these choices. We have to design a solution to cope
with an impedance mismatch between flat CSV rows and more structured Python
objects. The use cases for the data will define some of the advantages and
disadvantages.

Creating two files requires that we create some kind of unique identifier for each
Blog so that a Post can properly refer to the Blog. We can't easily use the Python
internal ID, as these are not guaranteed to be consistent each time Python runs.

A common assumption is that the Blog title is a unique key; as this is an attribute of
Blog, it is called a natural primary key. This rarely works out well; we cannot change
a Blog title without also updating all of the Posts that refer to the Blog. A better
plan is to invent a unique identifier and update the class design to include that
identifier. This is called a surrogate key. The Python uuid module can provide
unique identifiers for this purpose.

The code to use multiple files is nearly identical to the previous examples. The only
change is to add a proper primary key to the Blog class. Once we have the keys
defined, we can create writers and readers as shown previously to process the Blog
and Post instances into their separate files.

In the next section, we'll dump and load multiple row types into a CSV file.

Dumping and loading multiple row types into
a CSV file
Creating multiple kinds of rows in a single file makes the format a bit more complex.
The column titles must become a union of all the available column titles. Because of
the possibility of name clashes between the various row types, we can either access
rows by position (preventing us from simply using csv.DictReader) or we must
invent a more sophisticated column title that combines class and attribute names.

The process is simpler if we provide each row with an extra column that acts as a
class discriminator. This extra column shows us what type of object the row
represents. The object's class name would work well for this. Here's how we might
write blogs and posts to a single CSV file using two different row formats:

with (Path.cwd() / "data" / "ch10_blog3.csv").open("w", newline="") as
target:
    wtr = csv.writer(target)
    wtr.writerow(["__class__", "title", "date", "title", "rst_text",
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"tags"])
    for b in blogs:
        wtr.writerow(["Blog", b.title, None, None, None, None])
        for p in b.entries:
            wtr.writerow(["Post", None, p.date, p.title, p.rst_text,
p.tags])

We created two varieties of rows in the file. Some rows have 'Blog' in the first
column and contain just the attributes of a Blog object. Other rows have 'Post' in
the first column and contain just the attributes of a Post object.

We did not make the column titles unique, so we can't use dictionary writers or
readers. When allocating columns by position like this, each row allocates unused
columns based on the other types of rows it must coexist with. These additional
columns are filled with None. As the number of distinct row types grows, keeping
track of the various positional column assignments can become challenging.

Also, the individual data type conversions can be somewhat baffling. In particular,
we've ignored the data type of the timestamp and tags. We can try to reassemble our
Blogs and Posts by examining the row discriminators:

with (Path.cwd() / "data" / "ch10_blog3.csv").open() as source:
    rdr = csv.reader(source)
    header = next(rdr)
    assert header == ["__class__", "title", "date", "title",
"rst_text", "tags"]
    blogs = []
    for r in rdr:
        if r[0] == "Blog":
            blog = Blog(*r[1:2])  # type: ignore
            blogs.append(blog)
        elif r[0] == "Post":
            post = Post(*r[2:])  # type: ignore
            blogs[-1].append(post)

This snippet will construct a list of Blog objects. Each 'Blog' row uses columns in
slice(1,2) to define the Blog object. Each 'Post' row uses columns in
slice(2,6) to define a Post object. This requires that each Blog be followed by the
relevant Post instances. A foreign key is not used to tie the two objects together.

We've used two assumptions about the columns in the CSV file that has the same
order and type as the parameters of the class constructors. For Blog objects, we used
blog = Blog(*r[1:2]) because the one-and-only column is text, which matches
the constructor class. When working with externally-supplied data, this
assumption might prove to be invalid.
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The # type: ignore comments are required because the data types from the reader
will be strings and those types don't match the dataclass type definitions provided
above. Subverting mypy checks to construct objects isn't ideal.

To build the Post instances and perform the appropriate type conversion, a separate
function is required. This function will map the types and invoke
the constructor class. Here's a mapping function to build Post instances:

import ast

def post_builder(row: List[str]) -> Post:
    return Post(
        date=datetime.datetime.strptime(row[2], "%Y-%m-%d %H:%M:%S"),
        title=row[3],
        rst_text=row[4],
        tags=ast.literal_eval(row[5]),
    )

This will properly build a Post instance from a row of text. It converts the text for
datetime and the text for the tags into their proper Python types. This has the
advantage of making the mapping explicit.

In this example, we're using ast.literal_eval() to decode more complex Python
literal values. This allows the CSV data to include the literal representation of a tuple
of string values: "('#RedRanger', '#Whitby42', '#ICW')". Without using
ast.literal_eval(), we'd have to write our own parser for the rather complex
regular expression around this data type. Instead of writing our own parser, we
elected to serialize a tuple-of-string object that could be deserialized securely.

Let's see how to filter CSV rows with an iterator.

Filtering CSV rows with an iterator
We can refactor the previous load example to iterate through the Blog objects rather
than constructing a list of the Blog objects. This allows us to skim through a large
CSV file and locate just the relevant Blog and Post rows. This function is a generator
that yields each individual Blog instance separately:

def blog_iter(source: TextIO) -> Iterator[Blog]:
    rdr = csv.reader(source)
    header = next(rdr)
    assert header == ["__class__", "title", "date", "title",
"rst_text", "tags"]
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    blog = None
    for r in rdr:
        if r[0] == "Blog":
            if blog:
                yield blog
            blog = blog_builder(r)
        elif r[0] == "Post":
            post = post_builder(r)
            blog.append(post)
    if blog:
        yield blog

This blog_iter() function creates the Blog object and appends the Post objects.
Each time a Blog header appears, the previous Blog is complete and can be yielded.
At the end, the final Blog object must also be yielded. If we want the large list of
Blog instances, we can use the following code:

with (Path.cwd()/"data"/"ch10_blog3.csv").open() as source:
    blogs = list(blog_iter(source))

This will use the iterator to build a list of Blogs in the rare cases that we actually
want the entire sequence in memory. We can use the following to process each Blog
individually, rendering it to create reST files:

with (Path.cwd()/"data"/"ch10_blog3.csv").open() as source:
    for b in blog_iter(source):
        with open(blog.title+'.rst','w') as rst_file:
            render(blog, rst_file)

We used the blog_iter() function to read each blog. After being read, it can be
rendered into an .rst format file. A separate process can run rst2html.py to
convert each blog into HTML.

We can easily add a filter to process only selected Blog instances. Rather than simply
rendering all the Blog instances, we can add an if statement to decide which Blogs
should be rendered.

Let's see how to dump and load joined rows into a CSV file.
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Dumping and loading joined rows into a CSV
file
Joining the objects together means creating a collection where each row has a
composite set of columns. The columns will be a union of the child class attributes
and the parent class attributes. The file will have a row for each child. The parent
attributes of each row will repeat the parent attribute values for the parent of that
child. This involves a fair amount of redundancy, since the parent values are repeated
with each individual child. When there are multiple levels of containers, this can lead
to large amounts of repeated data.

The advantage of this repetition is that each row stands alone and doesn't belong to a
context defined by the rows above it. We don't need a class discriminator. The parent
values are repeated for each child object.

This works well for data that forms a simple hierarchy; each child has some parent
attributes added to it. When the data involves more complex relationships, the
simplistic parent-child pattern breaks down. In these examples, we've lumped the
Post tags into a single column of text. If we tried to break the tags into separate
columns, they would become children of each Post, meaning that the text of Post
might be repeated for each tag. Clearly, this isn't a good idea!

The CSV column titles must be a union of all the available column titles. Because of
the possibility of name clashes between the various row types, we'll qualify each
column name with the class name. This will lead to column titles such as
'Blog.title' and 'Post.title'. This allows for the use of DictReader and
DictWriter rather than the positional assignment of the columns. However, these
qualified names don't trivially match the attribute names of the class definitions; this
leads to somewhat more text processing to parse the column titles. Here's how we can
write a joined row that contains parent as well as child attributes:

with (Path.cwd() / "data" / "ch10_blog5.csv").open("w", newline="") as
target:
    wtr = csv.writer(target)
    wtr.writerow(
        ["Blog.title", "Post.date", "Post.title", "Post.tags",
"Post.rst_text"]
    )
    for b in blogs:
        for p in b.entries:
            wtr.writerow([b.title, p.date, p.title, p.tags,
p.rst_text])
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We saw qualified column titles. In this format, each row now contains a union of the
Blog attribute and the Post attributes. We can use the b.title and p.title
attributes to include the blog title on each posting.

This data file layout is somewhat easier to prepare, as there's no need to fill unused
columns with None. Since each column name is unique, we can easily switch to a
DictWriter instead of a simple csv.writer().

Rebuilding the blog entry becomes a two-step operation. The columns that represent
the parent and Blog objects must be checked for uniqueness. The columns that
represent the child and Post objects are built in the context of the most-recently-
found parent. Here's a way to reconstruct the original container from the CSV rows:

def blog_iter2(source: TextIO) -> Iterator[Blog]:
    rdr = csv.DictReader(source)
    assert (
        set(rdr.fieldnames)
        == {"Blog.title", "Post.date", "Post.title", "Post.tags",
"Post.rst_text"}
    )
    # Fetch first row, build the first Blog and Post.
    row = next(rdr)
    blog = blog_builder5(row)
    post = post_builder5(row)
    blog.append(post)

    # Fetch all subsequent rows.
    for row in rdr:
        if row["Blog.title"] != blog.title:
            yield blog
            blog = blog_builder5(row)
        post = post_builder5(row)
        blog.append(post)
    yield blog

The first row of data is used to build a Blog instance and the first Post in that Blog.
The invariant condition for the loop that follows assumes that there's a proper Blog
object. Having a valid Blog instance makes the processing logic much simpler. The
Post instances are built with the following function:

import ast

def post_builder5(row: Dict[str, str]) -> Post:
    return Post(
        date=datetime.datetime.strptime(
            row["Post.date"],
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            "%Y-%m-%d %H:%M:%S"),
        title=row["Post.title"],
        rst_text=row["Post.rst_text"],
        tags=ast.literal_eval(row["Post.tags"]),
    )

We mapped the individual columns in each row through a conversion to the
parameters of the constructor class. This properly handles all of the type
conversions from the CSV text into Python objects.

The blog_builder5() function is similar to the post_builder5() function. Since
there are fewer attributes and no data conversion involved, it's not shown, and is left
as an exercise for the reader.

Let's see how to dump and load using XML.

Dumping and loading with XML
Python's xml package includes numerous modules that parse XML files. There is also
a Document Object Model (DOM) implementation that can produce an XML
document. As with the previous json module, XML is not a complete persistence
solution for Python objects. Because of the wide adoption of the XML files, however,
it often becomes necessary to convert between Python objects and XML documents.

Working with XML files involves a manual mapping between Python objects and
XML structures. We need to design the mapping carefully, remaining mindful of the
constraints of XML's notation. This can be difficult because of the mismatch between
the expressive powers of objects and the strictly hierarchical nature of an XML
document.

The content of an XML attribute or tag is pure text. When loading an XML document,
we'll need to convert these values into more useful types inside our applications. In
some cases, the XML document might include attributes or tags to indicate the
expected type.

If we are willing to put up with some limitations, we can use the plistlib module to
emit some built-in Python structures as XML documents. We'll examine this module
in Chapter 14, Configuration Files and Persistence, where we'll use it to load the
configuration files.
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The json module offers ways to extend the JSON encoding to
include our customized classes; the plistlib module doesn't offer
this additional hook.

When we look at dumping a Python object to create an XML document, there are
three common ways to build the text:

Include XML output methods in our class design: In this case, our classes
emit strings that can be assembled into an XML document. This conflates
serialization into the class in a potentially brittle design.
Use xml.etree.ElementTree to build the ElementTree nodes and
return this structure: This can be then be rendered as text. This is
somewhat less brittle because it builds an abstract document object model
rather than text.
Use an external template and fill attributes into that template: Unless we
have a sophisticated template tool, this doesn't work out well. The
string.Template class in the standard library is only suitable for very
simple objects. More generally, Jinja2 or Mako should be used. This
divorces XML from the class definitions.

There are some projects that include generic Python XML serializers. The problem
with trying to create a generic serializer is that XML is extremely flexible; each
application of XML seems to have unique XML Schema Definition (XSD) or
Document Type Definition (DTD) requirements.

One open-XML document-design question is how to encode an atomic value. There
are many choices. We could use a type-specific tag with an attribute name in the tag's
attributes, such as <int name="the_answer">42</int>. Another possibility is to
use an attribute-specific tag with the type in the tag's attributes: <the_answer
type="int">42</the_answer>. We can also use nested tags:
<the_answer><int>42</int></the_answer>. Or, we could rely on a separate
schema definition to suggest that the_answer should be an integer and merely
encode the value as text: <the_answer>42</the_answer>. We can also use adjacent
tags: <key>the_answer</key><int>42</int>. This is not an exhaustive list; XML
offers us a lot of choices.

When it comes to recovering Python objects from an XML document, there will be
two steps. Generally, we have to parse the document to create the document object.
Once this is available, we can then examine the XML document, assembling Python
objects from the available tags.
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Some web frameworks, such as Django, include XML serialization of Django-defined
classes. This isn't a general serialization of arbitrary Python objects. The serialization
is narrowly defined by Django's data-modeling components. Additionally, there are
packages, such as dexml, lxml, and pyxser, as alternative bindings between Python
objects and XML. Check out http://pythonhosted.org/dexml/api/dexml.html,
http://lxml.de and http://coder.cl/products/pyxser/ for more information. A
longer list of candidate packages can be found at:
https://wiki.python.org/moin/PythonXml.

Now, let's see how to dump objects using string templates.

Dumping objects using string templates
One way to serialize a Python object into XML is by including a method to emit XML
text. In the case of a complex object, the container must get the XML for each item
inside the container. Here are two simple extensions to our microblog class structure
that add the XML output capability as text:

from dataclasses import dataclass, field, asdict

@dataclass
class Blog_X:
    title: str
    entries: List[Post_X] = field(default_factory=list)
    underline: str = field(init=False)

    def __post_init__(self) -> None:
        self.underline = "="*len(self.title)

    def append(self, post: 'Post_X') -> None:
        self.entries.append(post)

    def by_tag(self) -> DefaultDict[str, List[Dict[str, Any]]]:
        tag_index: DefaultDict[str, List[Dict[str, Any]]] =
defaultdict(list)
        for post in self.entries:
            for tag in post.tags:
                tag_index[tag].append(asdict(post))
        return tag_index

    def as_dict(self) -> Dict[str, Any]:
        return asdict(self)

    def xml(self) -> str:

http://pythonhosted.org/dexml/api/dexml.html
http://lxml.de
http://coder.cl/products/pyxser/
https://wiki.python.org/moin/PythonXml
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        children = "\n".join(c.xml() for c in self.entries)
        return f"""\
<blog><title>{self.title}</title>
<entries>
{children}
<entries>
</blog>
"""

We've included several things in this dataclass-based definition. First, we defined the
core attributes of a Blog_X object, a title and a list of entries. In order to make the
entries optional, a field definition was provided to use the list() function as a
factory for default values. In order to be compatible with the Blog class shown
earlier, we've also provided an underline attribute that is built by the
__post_init__() special method.

The append() method is provided at the Blog_X class level to be compatible with the
Blog class from the xxx section. It delegates the work to the entries attribute. The
by_tag() method can be used to build an index by hashtags. 

The as_dict() method was defined for Blog objects, and emitted a dictionary built
from the object. When working with dataclasses, the dataclasses.asdict()
function does this for us. To be compatible with the Blog class, we wrapped the
asdict() function into a method of the Blog_X dataclass. 

The xml() method emits XML-based text for this object. It uses relatively
unsophisticated f-string processing to inject values into strings. To assemble a
complete entry, the entries collection is transformed into a series of lines, assigned
to the children variable, and formatted into the resulting XML text.

The Post_X class definition is similar. It's shown here:

@dataclass
class Post_X:
    date: datetime.datetime
    title: str
    rst_text: str
    tags: List[str]
    underline: str = field(init=False)
    tag_text: str = field(init=False)

    def __post_init__(self) -> None:
        self.underline = "-"*len(self.title)
        self.tag_text = ' '.join(self.tags)
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    def as_dict(self) -> Dict[str, Any]:
        return asdict(self)

    def xml(self) -> str:
        tags = "".join(f"<tag>{t}</tag>" for t in self.tags)
        return f"""\
<entry>
    <title>{self.title}</title>
    <date>{self.date}</date>
    <tags>{tags}</tags>
    <text>{self.rst_text}</text>
</entry>"""

This, too, has two fields that are created by the __post_init__() special method. It
includes an as_dict() method to remain compatible with the Post class shown
earlier. This method uses the asdict() function to do the real work of creating a
dictionary from the dataclass object.

Both classes include highly class-specific XML output methods. These will emit the
relevant attributes wrapped in XML syntax. This approach doesn't generalize well.
The Blog_X.xml() method emits a <blog> tag with a title and entries. The
Post_X.xml() method emits a <post> tag with the various attributes. In both of
these methods, subsidiary objects were created using "".join() or "\n".join() to
build a longer string from shorter string elements. When we convert a Blog object
into XML, the results look like this:

<blog><title>Travel</title>
<entries>
<entry>
    <title>Hard Aground</title>
    <date>2013-11-14 17:25:00</date>
<tags><tag>#RedRanger</tag><tag>#Whitby42</tag><tag>#ICW</tag></tags>
    <text>Some embarrassing revelation. Including ☹ and ⚓</text>
</entry>
<entry>
    <title>Anchor Follies</title>
    <date>2013-11-18 15:30:00</date>
<tags><tag>#RedRanger</tag><tag>#Whitby42</tag><tag>#Mistakes</tag></t
ags>
    <text>Some witty epigram.</text>
</entry>
<entries></blog>
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This approach has two disadvantages:

We've ignored the XML namespaces. That's a small change to the literal
text for emitting the tags.
Each class would also need to properly escape the <, &, >, and " characters
into the &lt;, &gt;, &amp;, and &quot; XML entities. The html module
includes the html.escape() function which does this.

This emits proper XML; it can be relied upon to work; but it isn't very elegant and
doesn't generalize well.

In the next section, we'll see how to dump objects with xml.etree.ElementTree.

Dumping objects with xml.etree.ElementTree
We can use the xml.etree.ElementTree module to build Element structures that
can be emitted as XML. It's challenging to use xml.dom and xml.minidom for this.
The DOM API requires a top-level document that then builds individual elements.
The presence of this necessary context object creates clutter when trying to serialize a
simple class with several attributes. We have to create the document first and then
serialize all the elements of the document, providing the document context as an
argument.

Generally, we'd like each class in our design to build a top-level element and return
that. Most top-level elements will have a sequence of subelements. We can assign text
as well as attributes to each element that we build. We can also assign a tail, which is
the extraneous text that follows a closed tag. In some content models, this is just
whitespace. Because of the long name, it might be helpful to import ElementTree in
the following manner:

import xml.etree.ElementTree as XML

Here are two extensions to our microblog class structure that add the XML output
capability as the Element instances. We can use the following extension to the
Blog_X class:

import xml.etree.ElementTree as XML
from typing import cast

class Blog_E(Blog_X):

    def xmlelt(self) -> XML.Element:
        blog = XML.Element("blog")
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        title = XML.SubElement(blog, "title")
        title.text = self.title
        title.tail = "\n"
        entities = XML.SubElement(blog, "entries")
        entities.extend(cast('Post_E', c).xmlelt() for c in
self.entries)
        blog.tail = "\n"
        return blog

We can use the following extension to the Post_X class:

class Post_E(Post_X):

    def xmlelt(self) -> XML.Element:
        post = XML.Element("entry")
        title = XML.SubElement(post, "title")
        title.text = self.title
        date = XML.SubElement(post, "date")
        date.text = str(self.date)
        tags = XML.SubElement(post, "tags")
        for t in self.tags:
            tag = XML.SubElement(tags, "tag")
            tag.text = t
        text = XML.SubElement(post, "rst_text")
        text.text = self.rst_text
        post.tail = "\n"
        return post

We've written highly class-specific XML output methods. These will build the
Element objects that have the proper text values.

There's no fluent shortcut for building the subelements. We have to
insert each text item individually.

In the Blog.xmlelt() method, we were able to perform Element.extend() to put
all of the individual post entries inside the <entry> element. This allows us to build
the XML structure flexibly and simply. This approach can deal gracefully with the
XML namespaces. We can use the QName class to build qualified names for XML
namespaces. The ElementTree module correctly applies the namespace qualifiers to
the XML tags. This approach also properly escapes the <, &, >, and " characters into
the &lt;, &gt;, &amp;, and &quot; XML entities. The XML output from these
methods will mostly match the previous section. The whitespace will be different.
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To build the final output, we use two additional features of the element tree module.
It will look like this snippet:

tree = XML.ElementTree(travel5.xmlelt())
text = XML.tostring(tree.getroot())

The travel5 object is an instance of Blog_E. The result of evaluating
travel5.xmlelt() is an XML.Element; this is wrapped into a complete
XML.ElementTree object. The tree's root object can be transformed into a valid XML
string and printed or saved to a file.

Let's see how to load XML documents.

Loading XML documents
Loading Python objects from an XML document is a two-step process. First, we need
to parse the XML text to create the document objects. Then, we need to examine the
document objects to produce Python objects. As noted previously, the tremendous
flexibility of XML notation means that there isn't a single XML-to-Python
serialization.

One approach to walk through an XML document involves making XPath-like
queries to locate the various elements that were parsed. Here's a function to walk
through an XML document, emitting the Blog and Post objects from the available
XML:

def build_blog(document: XML.ElementTree) -> Blog_X:
    xml_blog = document.getroot()
    blog = Blog_X(xml_blog.findtext("title"))
    for xml_post in xml_blog.findall("entries/entry"):
        optional_tag_iter = (
            t.text for t in xml_post.findall("tags/tag")
        )
        tags = list(
            filter(None, optional_tag_iter)
        )
        post = Post_X(
            date=datetime.datetime.strptime(
                xml_post.findtext("date"), "%Y-%m-%d %H:%M:%S"
            ),
            title=xml_post.findtext("title"),
            tags=tags,
            rst_text=xml_post.findtext("rst_text"),
        )
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        blog.append(post)
    return blog

This function traverses a <blog> XML document. It locates the <title> tag and
gathers all of the text within that element to create the top-level Blog instance. It then
locates all the <entry> subelements found within the <entries> element. These are
used to build each Post object. The various attributes of the Post object are
converted individually. The text of each individual <tag> element within the <tags>
element is turned into a list of text values. The date is parsed from its text
representation. The Post objects are each appended to the overall Blog object. This
manual mapping from XML text to Python objects is an essential feature of parsing
XML documents.

The value of the (t.text for t in
xml_post.findall("tags/tag")) generator expression does not have
the Iterator[str] type. It turns out that the values of the t.text attribute have an
Optional[str] type. The resulting expression would create a list with a type hint of
List[Optional[str]], which isn't directly compatible with the Post_X class.

There are two resolutions to this problem: we could expand the definition in Post_X
to use List[Optional[str]]. This could lead to a need to filter out None objects
elsewhere in the application. Instead, we pushed the removal of None objects into this
parser. The filter(None, iterable) function will remove all None values from
the iterable; this transforms a value with the List[Optional[str]] type hint into a
value with the List[str] type hint.

This kind of transformation and filtering is an essential part of XML processing. Each
distinct data type or structure will have to be serialized as an XML-compatible string
and deserialized from the XML string. XML provides a structure, but the details of
serialization remain an essential part of the Python application programming.

Summary
We looked at a number of ways to serialize Python objects. We can encode our class
definitions in notations, including JSON, YAML, pickle, XML, and CSV. Each of these
notations has a variety of advantages and disadvantages.

These various library modules generally work around the idea of loading objects
from an external file or dumping objects into a file. These modules aren't completely
consistent with each other, but they're very similar, allowing us to apply some
common design patterns.
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Using CSV and XML tends to expose the most difficult design problems. Our class
definitions in Python can include object references that don't have a good
representation in the CSV or XML notation.

Design considerations and tradeoffs
There are many ways to serialize and persist Python objects. We haven't seen all of
them yet. The formats in this section are focused on two essential use cases:

Data interchange with other applications: We might be publishing data
for other applications or accepting data from other applications. In this
case, we're often constrained by the other applications' interfaces. Often,
JSON and XML are used by other applications and frameworks as their
preferred form of data interchange. In some cases, we'll use CSV to
exchange data.
Persistent data for our own applications: In this case, we're usually going
to choose pickle because it's complete and is already part of the Python
Standard Library. However, one of the important advantages of YAML is
its readability; we can view, edit, and even modify the file.

When working with each of these formats, we have a number of design
considerations. First and foremost, these formats are biased towards serializing a
single Python object. It might be a list of other objects, but it is essentially a single
object. JSON and XML, for example, have ending delimiters that are written after the
serialized object. For persisting individual objects from a larger domain, we can look
at shelve and sqlite3 in Chapter 11, Storing and Retrieving Objects via Shelve, and
Chapter 12, Storing and Retrieving Objects via SQLite.

JSON is a widely-used standard, but it's inconvenient for representing complex
Python classes. When using JSON, we need to be cognizant of how our objects can be
reduced to a JSON-compatible representation. JSON documents are human-readable.
JSON's limitations make it potentially secure for the transmission of objects through
the internet.

YAML is not as widely used as JSON, but it solves numerous problems in
serialization and persistence. YAML documents are human-readable; for editable
configuration files, YAML is ideal. We can make YAML secure using the safe-load
options.
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Pickle is ideal for the simple, fast, local persistence of Python objects. It is a compact
notation for the transmission from Python to Python. CSV is a widely-used standard.
Working out representations for Python objects in CSV notation is challenging. When
sharing data in CSV notation, we often end up using NamedTuple objects in our
applications. We have to design a mapping from Python to CSV and CSV to Python.

XML is another widely-used notation for serializing data. XML is extremely flexible,
leading to a wide variety of ways to encode Python objects in XML notation. Because
of the XML use cases, we often have external specifications in the form of an XSD or
DTD. The process for parsing XML to create Python objects is always rather complex.

Because each CSV row is largely independent of the others, CSV allows us to encode
or decode extremely large collections of objects. For this reason, CSV is often handy
for encoding and decoding gargantuan collections that can't fit into memory.

In some cases, we have a hybrid design problem. When reading most modern
spreadsheet files, we have the CSV row-and-column problem wrapped in the XML
parsing problem. Consider, for example, OpenOffice. ODS files are zipped archives.
One of the files in the archive is the content.xml file. Using an XPath search for
body/spreadsheet/table elements will locate the individual tabs of the
spreadsheet document. Within each table, we'll find the table-row elements that
(usually) map to Python objects. Within each row, we'll find the table-cell
elements that contain the individual values that build up the attributes of an object.

Schema evolution
When working with persistent objects, we have to address the problem of schema
evolution. Our objects have a dynamic state and a static class definition. We can easily
persist the dynamic state. Our class definitions are the schema for the persistent data.
The class, however, is not absolutely static. When a class changes, we need to make a
provision to load data that was dumped by the previous release of our application.

It's best to think of external file compatibility to distinguish between major and minor
release numbers. A major release should mean that a file is no longer compatible and
a conversion must be done. A minor release should mean that the file formats are
compatible and no data conversion will be involved in the upgrade.
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One common approach is to include the major version number in the file extension.
We might have filenames that end in .json2 or .json3 to indicate which format of
data is involved. Supporting multiple versions of a persistent file format often
becomes rather complex. To provide a seamless upgrade path, an application should
be able to decode previous file formats. Often, it's best to persist data in the latest and
greatest file format, even if the other formats are supported for input.

In the next chapters, we'll address serialization that's not focused on a single object.
The shelve and sqlite3 modules give us ways to serialize a multitude of distinct
objects. After that, we'll return to using these techniques for REpresentational State
Transfer (REST) to transmit objects from process to process. Also, we'll use these
techniques yet again to process the configuration files.

Looking forward
In Chapter 11, Storing and Retrieving Objects via Shelve, and Chapter 12, Storing and
Retrieving Objects via SQLite, we'll look at two common approaches to making larger
collections of persistent objects. These two chapters show us different approaches we
can use to create a database of Python objects.

In Chapter 13, Transmitting and Sharing Objects, we'll apply these serialization
techniques to the problem of making an object available in another process. We'll
focus on RESTful web services as a simple and popular way to transmit an object
among processes.

In Chapter 14, Configuration Files and Persistence, we'll apply these serialization
techniques yet again. In this case, we'll use representations such as JSON and YAML
to encode the configuration information for an application.



11
Storing and Retrieving

Objects via Shelve
There are many applications where we need to persist objects individually. The
techniques we looked at in Chapter 10, Serializing and Saving – JSON, YAML, Pickle,
CSV, and XML, were biased toward handling a single object. Sometimes, we need to
persist separate, individual objects from a larger domain.

Applications with persistent objects may demonstrate four use cases, summarized as
the CRUD operations: create, retrieve, update, and delete. The idea here is any of
these operations may be applied to any object in the domain; this leads to the need for
a more sophisticated persistence mechanism than a monolithic load or dump of all
the objects into a file. In addition to squandering memory, simple loads and dumps
are often less efficient than fine-grained, distinct, object-by-object storage.

Using more sophisticated storage will lead us to look more closely at the allocation of
responsibility. Separating the various concerns give us overall design patterns for the
architecture of the application software. One example of these higher-level design
patterns is the multi-tier architecture:

Presentation layer: This includes web browsers or mobile apps. It can also
include a graphical user interface (GUI) for a locally-installed application.
In some cases, this can also be a textual command-line interface.
Application layer: While this is often based on a web server, it may also be
a portion of a locally-installed software. The application tier can be usefully
subdivided into a processing layer and a data model layer. The processing
layer involves the classes and functions that embody an application's
behavior. The data model layer defines the problem domain's object model.
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Data layer: This can be further subdivided into an access layer and a
persistence layer. The access layer provides uniform access to persistent
objects. The persistence layer serializes objects and writes them to the
persistent storage. This is where the more sophisticated storage techniques
are implemented.

Because some of these tiers can be subdivided, there are a number of variations on
this model. It can be called a three-tier architecture to recognize the clearest
distinctions. It can also be called an n-tier architecture to permit fine degrees of hair-
splitting. 

The data layer can use modules, such as the shelve module, for persistence. This
module defines a mapping-like container in which we can store objects. Each stored
object is pickled and written to a file. We can also unpickle and retrieve any object
from the file. The shelve module relies on the dbm module to save and retrieve
objects.

This section will focus on the access and persistence layers within the overall data
layer. The interface between these layers will be a class interface within a single
application. We'll focus on the simple class-to-class interface in this chapter. We'll
look at a network-based interface to a data layer in Chapter 13, Transmitting and
Sharing Objects, using REST.

In this chapter, we will cover the following topics:

Analyzing persistent object use cases
Creating a shelf
Designing shelvable objects
Searching, scanning, and querying
Designing an access layer for shelve
Creating indexes to improve efficiency
Adding yet more index maintenance
The writeback alternative to index updates

Technical requirements
The code files for this chapter are available at https:/ ​/ ​git.​io/ ​fj2Ur.

https://git.io/fj2Ur
https://git.io/fj2Ur
https://git.io/fj2Ur
https://git.io/fj2Ur
https://git.io/fj2Ur
https://git.io/fj2Ur
https://git.io/fj2Ur
https://git.io/fj2Ur
https://git.io/fj2Ur
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Analyzing persistent object use cases
The persistence mechanisms we looked at in Chapter 10, Serializing and Saving –
JSON, YAML, Pickle, CSV, and XML, focused on reading and writing a compact file
with the serialized representation of one or more objects. If we wanted to update any
part of the file, we were forced to replace the entire file. This is a consequence of using
a compact notation for the data: it's difficult to reach the position of an individual
object within a file, and it's difficult to replace an object if the size changes. Rather
than addressing these difficulties with smart, complex algorithms, all of the data was
serialized and written.

When we have a larger problem domain with many persistent, independent, and
mutable objects, we introduce some additional depth to the use cases:

We may not want to load all of the objects into the memory at one time. For
many big data applications, it might be impossible to load all the objects into
the memory at one time.
We may be updating only small subsets – or individual instances – from
our domain of objects. Loading and then dumping all the objects to update
one object is relatively inefficient processing.
We may not be dumping all the objects at one time; we may be
accumulating objects incrementally. Some formats, such as YAML and
CSV, allow us to append themselves to a file with little complexity. Other
formats, such as JSON and XML, have terminators that make it difficult to
simply append to a file.

There are still more features we might consider. It's common to conflate serialization,
persistence, transactional consistency, as well as concurrent write access into a single
umbrella concept of database. The shelve module is not a comprehensive database
solution by itself. The underlying dbm module used by shelve does not directly
handle concurrent writes. It doesn't handle multi-operation transactions either. It's
possible to use low-level OS locking on the files to tolerate concurrent updating. For
concurrent write access, it's better to either use a proper database or a RESTful data
server. See Chapter 12, Storing and Retrieving Objects via SQLite, and Chapter 13,
Transmitting and Sharing Objects, for more information.

Let's take a look at the ACID properties in the next section.
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The ACID properties
Our design must consider how the ACID properties apply to our shelve database.
Often, an application will make changes in bundles of related operations; the bundle
should change the database from one consistent state to the next consistent state. The
intent of a transactional bundle is to conceal any intermediate states that may not be
consistent with other users of the data.

An example of multiple-operation transactions could involve updating two objects so
that a total is kept invariant. We might be deducting funds from one financial account
and depositing into another. The overall balance must be held constant for the
database to be in a consistent, valid state.

The ACID properties characterize how we want the database transactions to behave
as a whole. There are four rules that define our expectations:

Atomicity: A transaction must be atomic. If there are multiple operations
within a transaction, either all the operations should be completed or none
of them should be completed. It should never be possible to view a
partially completed transaction.
Consistency: A transaction must assure consistency of the overall database.
It must change the database from one valid state to another. A transaction
should not corrupt the database or create inconsistent views among
concurrent users. All users see the same net effect of completed
transactions.
Isolation: Each transaction should operate as if it processed in complete
isolation from all other transactions. We can't have two concurrent users
interfering with each other's attempted updates. We should always be able
to transform concurrent access into (possibly slower) serial access and the
database updates will produce the same results. Locks are often used to
achieve this.
Durability: The changes to the database should persist properly in the
filesystem.

When we work with in-memory Python objects, clearly, we can get ACI, but we don't
get D. In-memory objects are not durable by definition. If we attempt to use the
shelve module from several concurrent processes without locking or versioning, we
may get only D, but lose the ACI properties.
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The shelve module doesn't provide direct support for atomicity; it lacks an
integrated technique to handle transactions that consist of multiple operations. If we
have multiple-operation transactions and we need atomicity, we must ensure that
they all work or all fail as a unit. This can involve saving the state prior to a try:
statement; in the event of a problem, the exception handlers must restore the previous
state of the database.

The shelve module doesn't guarantee durability for all kinds of changes. If we place
a mutable object onto the shelf and then change the object in memory, the persistent
version on the shelf file will not change automatically. If we're going to mutate shelved
objects, our application must be explicit about updating the shelf object. We can ask a
shelf object to track changes via the writeback mode, but using this feature can lead to
poor performance.

These missing features are relatively simple to implement with some additional
locking and logging. They aren't default features of a shelf instance. When full
ACID capabilities are needed, we often switch to other forms of persistence. When an
application doesn't need the full ACID feature set, however, the shelve module can
be very helpful.

In the next section, we'll see how to create a shelf.

Creating a shelf
The first part of creating a shelf is done using a module-level function,
shelve.open(), to create a persistent shelf structure. The second part is closing the
file properly so that all changes are written to the underlying filesystem. We'll look at
this in a more complete example, in the Designing an access layer for shelve section.

Under the hood, the shelve module is using the dbm module to do the real work of
opening a file and mapping from a key to a value. The dbm module itself is a wrapper
around an underlying DBM-compatible library. Consequently, there are a number of
potential implementations for the shelve features. The good news is that the
differences among the dbm implementations are largely irrelevant.

The shelve.open() module function requires two parameters: the filename and the
file access mode. Often, we want the default mode of 'c' to open an existing shelf or
create one if it doesn't exist.
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The alternatives are for specialized situations:

'r' is a read-only shelf.
'w' is a read-write shelf that must exist or an exception will be raised.
'n' is a new, empty shelf; any previous version will be overwritten.

It's absolutely essential to close a shelf to be sure that it is properly persisted to disk.
The shelf is not a context manager itself, but the contextlib.closing() function
should always be used to make sure that the shelf is closed. For more information on
context managers, see Chapter 6, Using Callables and Contexts.

Under some circumstances, we might also want to explicitly synchronize a shelf to a
disk without closing the file. The shelve.sync() method will persist changes prior
to a close. An idealized life cycle looks something like the following code:

import shelve
from contextlib import closing
from pathlib import Path

db_path = Path.cwd() / "data" / "ch11_blog"
with closing(shelve.open(str(db_path))) as shelf:
    process(shelf)

We've opened a shelf and provided that open shelf to some function that does the real
work of our application. When this process is finished, the context will ensure that the
shelf is closed. If the process() function raises an exception, the shelf will still be
properly closed.

Let's see how to design shelvable objects.

Designing shelvable objects
If our objects are relatively simple, putting them on a shelf will be trivial. For objects
that are not complex containers or large collections, we only have to work out a key-
to-value mapping. For objects that are more complex – typically objects that contain
other objects – we have to make some additional design decisions regarding the
granularity of access and references among objects. We'll look at the simple case first,
where all we have to design is the key that is used to access our objects. Then, we'll
look at the more complex cases, where granularity and object references come into
play.

Let's see how to design objects with type hints.
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Designing objects with type hints
The Python type hints provide considerable help in defining objects for a shelf.
Throughout this chapter, we'll emphasize the use of the @dataclass decorator to
create objects suitable for persistence.

The data class concept is helpful because it makes the attributes that define object
state extremely clear. The attributes are not concealed inside method definitions.
Without @dataclass, the attributes are often implied by the __init__() method. In
some classes, however, attributes are defined dynamically, making the attributes
inconsistent and leading to possible problems in recovering object state from a
shelved representation.

The pickle module is used to do the serialization of the objects. For more
information on object pickling, see Chapter 10, Serializing and Saving – JSON, YAML,
Pickle, CSV, and XML.

In the following sections, we'll look at ways to define the keys used to uniquely
identify objects in a shelf collection. A single unique key is essential. In some problem
domains, there will be an attribute, or combination of attributes, that is unique. In
spite of this, it's often advantageous to create a surrogate key that is generated by the
application and assigned to each persistent object to assure uniqueness.

Let's see how to design keys for our objects.

Designing keys for our objects
The shelve and dbm modules provide immediate access to any object in an
arbitrarily huge universe of objects. The shelve module creates a mapping that is
much like a dictionary. The shelf mapping exists on persistent storage, so any object
we put onto the shelf will be serialized and saved.

We must identify each shelved object with a unique key. String values are a common
choice for keys. This imposes some design considerations on our classes to provide an
appropriately unique key. In some cases, the problem domain will have an attribute
that is an obvious unique key. In that case, we can simply use that attribute to
construct this key. For example, if our class has a unique attribute value,
key_attribute, we can use shelf[object.key_attribute] = object. This is
the simplest case and sets the pattern for more complex cases.
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When our application problem doesn't offer an appropriate unique key, we'll have to
fabricate a surrogate key value. This problem arises frequently when every attribute
of an object is potentially mutable or potentially non-unique. In this case, we may
have to create a surrogate key because there is no value, nor any combination of
values, that is unique. 

Our application may have non-string values that are candidates for primary keys. For
example, we might have a datetime object, or a number. In these cases, we might
want to encode the value as a string.

In cases where there is no obvious primary key, we can try to locate a combination of
values that create a unique composite key. This can become complex, because now
the key is not atomic, and a change to any part of the key may create data update
problems.

It's often simplest to follow a design pattern called a surrogate key. This key doesn't 
depend on data within an object; it's a surrogate for the object. This means that any of
the attributes of the object can be changed without leading to complications or
restrictions. Python's internal object IDs are an example of a kind of surrogate key.

The string representation of a shelf key can follow this pattern:
class_name:oid. The key string includes the class of the object, class_name, paired
with the unique identifier for an instance of the class, oid. We can easily store diverse
classes of objects in a single shelf using keys of this form. Even when we think there
will be only one type of object in the shelf, this format is still helpful to save a
namespace for indexes, administrative metadata, and future expansion.

When we have a suitable natural key, we might do something like this to persist
objects in the shelf:

shelf[f"{object.__class__.__name__}:{object.key_attribute}"] = object

This uses an f-string to create a key with a distinct class name along with the unique
key value. This string identifier must be unique for each object. For surrogate keys,
we'll need to define some kind of generator to emit distinct values.

The next section discusses how to generate surrogate keys for objects.
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Generating surrogate keys for objects
One way to generate unique surrogate keys is to use an integer counter. To be sure
that we keep this counter properly updated, we will store it in the shelf along with
the rest of our data. Even though Python has an internal object ID, we should not use
Python's internal identifier for a surrogate key. Python's internal ID numbers have no
guarantees of any kind.

As we're going to add some administrative objects to our shelf, we must give these
objects unique keys with a distinctive prefix. We'll use _DB. This will be a class name
for the administrative objects in our shelf. The design decisions for these
administrative objects are similar to the design of the application objects. We need to
choose the granularity of storage. We have two choices:

Coarse-grained: We can create a single dict object with all of the
administrative overheads for surrogate key generations. A single key, such
as _DB:max, can identify this object. Within this dict, we could map class
names to the maximum identifier values used. Every time we create a new
object, we assign the ID from this mapping and then also replace the
mapping in the shelf. We'll show the coarse-grained solution in the
following Designing a class with a simple key section.
Fine-grained: We can add many items to the database, each of which has
the maximum key value for a different class of objects. Each of these
additional key items has the form of _DB:max:class. The value for each of
these keys is just an integer, the largest sequential identifier assigned so far
for a given class.

An important consideration here is that we've separated the key design from the class
design for our application's classes. We can (and should) design our application
objects as simply as possible. We should add just enough overhead to make shelve
work properly, but no more.

Let's see how to design a class with a simple key.

Designing a class with a simple key
It is helpful to store the shelve key as an attribute of a shelved object. Keeping the
key in the object makes the object easier to delete or replace. Clearly, when creating
an object, we'll start with a keyless version of the object until it's stored in the shelf.
Once stored, the Python object needs to have a key attribute set so that each object in
the memory contains a correct key.
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When retrieving objects, there are two use cases. We might want a specific object that
is known by the key. In this case, the shelf will map the key to the object. We might
also want a collection of related objects not known by their keys, but perhaps known
by the values of some other attributes. In this case, we'll discover the keys of objects
through some kind of search or query. We'll look at the search algorithms in the
following Designing CRUD operations for complex objects section.

To support saving the shelf keys in objects, we'll add an _id attribute to each object. It
will keep the shelve key in each object that has been put onto the shelf or retrieved
from the shelf. This will simplify managing objects that need to be replaced in or
removed from the shelf. A surrogate key won't have any method functions, for
example, and it is never part of the processing layer of the application tier or the
presentation tier. Here's a definition for an overall Blog:

from dataclasses import dataclass, asdict, field
@dataclass
class Blog:

    title: str
    entries: List[Post] = field(default_factory=list)
    underline: str = field(init=False, compare=False)

    # Part of the persistence, not essential to the class.
    _id: str = field(default="", init=False, compare=False)

    def __post_init__(self) -> None:
        self.underline = "=" * len(self.title)

We've provided the essential title attribute. The entries attribute is optional, and
has a default value of an empty list. underline is computed as a string with a length
that matches the title; this makes some part of reStructuredText formatting slightly
simpler. 

We can create a Blog object in the following manner:

>>> b1 = Blog(title="Travel Blog")

This will have an empty list of individual postings within the blog. When we store
this simple object in the shelf, we can do operations including the following:

>>> import shelve
>>> from pathlib import Path
>>> shelf = shelve.open(str(Path.cwd() / "data" / "ch11_blog"))
>>> b1._id = 'Blog:1'
>>> shelf[b1._id] = b1
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We started by opening a new shelf. The file will end up being called ch11_blog.db.
We put a key, Blog:1, into our Blog instance, b1. We stored that Blog instance in the
shelf using the key given in the _id attribute.

We can fetch the item back from the shelf like this:

>>> shelf['Blog:1']
Blog(title='Travel Blog', entries=[], underline='===========',
_id='Blog:1')
>>> shelf['Blog:1'].title
'Travel Blog'
>>> shelf['Blog:1']._id
'Blog:1'
>>> list(shelf.keys())
['Blog:1']
>>> shelf.close()

When we refer to shelf['Blog:1'], it will fetch our original Blog instance from the
shelf. We've put only one object on the shelf, as we can see from the list of keys.
Because we closed the shelf, the object is persistent. We can quit Python, start it back
up again, open the shelf, and see that the object remains on the shelf, using the
assigned key. Previously, we mentioned a second use case for retrieval—locating an
item without knowing the key. Here's a search that locates all the blogs with a given
title:

>>> path = Path.cwd() / "data" / "ch11_blog"
>>> shelf = shelve.open(str(path))
>>> results = (shelf[k]
...     for k in shelf.keys()
...     if k.startswith('Blog:') and shelf[k].title == 'Travel Blog'
... )
>>> list(results)
[Blog(title='Travel Blog', entries=[], underline='===========',
_id='Blog:1')]

We opened the shelf to get access to the objects. The results generator expression
examines each item in the shelf to locate those items where the key starts with
'Blog:', and the object's title attribute is the 'Travel Blog' string.

What's important is that the key, 'Blog:1', is stored within the object itself. The _id
attribute ensures that we have the proper key for any item that our application is 
working with. We can now mutate any attribute of the object (except the key) and
replace it in the shelf using its original key.

Now, let's see how to design classes for containers or collections.
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Designing classes for containers or
collections
When we have more complex containers or collections, we have more complex design
decisions to make. One question is about the granularity of our shelved objects.

When we have an object, such as Blog, which is a container, we can persist the entire
container as a single, complex object on our shelf. To an extent, this might defeat the
purpose of having multiple objects on a shelf in the first place. Storing large
containers involves coarse-grained storage. If we change a contained object, the entire
container must be serialized and stored. If we wind up effectively pickling the entire
universe of objects in a single container, why use shelve? We must strike a balance
that is appropriate to the application's requirements.

One alternative is to decompose the collection into separate, individual items. In this
case, our top-level Blog object won't be a proper Python container anymore. The
parent might refer to each child with a collection of keys. Each child object could refer
to the parent by the key. This use of keys is unusual in object-oriented design.
Normally, objects simply contain references to other objects. When using shelve (or
other databases), we can be forced to use indirect references by the key.

Each child will now have two keys: its own primary key, plus a foreign key that is the
primary key of the parent object. This leads to a second design question about
representing the key strings for the parents and their children.

The next section shows how to refer to objects via foreign keys.

Referring to objects via foreign keys
The key that we use to uniquely identify an object is its primary key. When child
objects refer to a parent object, we have additional design decisions to make. How do
we structure the children's primary keys? There are two common design strategies for
child keys, based on the kind of dependence that exists between the classes of objects:

"Child:cid": We can use this when we have children that can exist
independently of an owning parent. For example, an item on an invoice
refers to a product; the product can exist even if there's no invoice item for
the product.
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"Parent:pid:Child:cid": We can use this when the child cannot exist
without a parent. A customer address doesn't exist without a customer to
contain the address in the first place. When the children are entirely
dependent on the parent, the child's key can contain the owning parent's ID
to reflect this dependency.

As with the parent class design, it's easiest if we keep the primary key and all foreign
keys associated with each child object. We suggest not initializing them in the
__init__() method, as they're just features of persistence. Here's the general
definition for Post within Blog:

import datetime
from dataclasses import dataclass, field, asdict
from typing import List
@dataclass
class Post:
    date: datetime.datetime
    title: str
    rst_text: str
    tags: List[str]
    underline: str = field(init=False)
    tag_text: str = field(init=False)

    # Part of the persistence, not essential to the class.
    _id: str = field(default='', init=False, repr=False,
compare=False)
    _blog_id: str = field(default='', init=False, repr=False,
compare=False)

    def __post_init__(self) -> None:
        self.underline = "-" * len(self.title)
        self.tag_text = " ".join(self.tags)

We've provided several attributes for each microblog post. The asdict() function of
the dataclasses module can be used with a template to provide a dictionary usable
to create JSON notation. We've avoided mentioning the primary key or any foreign
keys for Post. Here are two examples of the Post instances:

p2 = Post(date=datetime.datetime(2013,11,14,17,25),
        title="Hard Aground",
        rst_text="""Some embarrassing revelation. Including ☹ and
⚓""",
        tags=("#RedRanger", "#Whitby42", "#ICW"),
        )

p3 = Post(date=datetime.datetime(2013,11,18,15,30),
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        title="Anchor Follies",
        rst_text="""Some witty epigram. Including < & >
characters.""",
        tags=("#RedRanger", "#Whitby42", "#Mistakes"),
        )

We can now associate these two post objects with their owning blog object by setting
attributes. We'll do this through the following steps:

Open the shelf and retrieve the parent Blog object. Save it in the owner1.
variable so we have access to the _id attribute:

>>> import shelve
>>> shelf = shelve.open("blog")
>>> owner = shelf['Blog:1']

Assign this owner's key to each Post object and persist the objects. Put the2.
parent information into each Post. We used the parent information to
build the primary key. For this dependent kind of key, the _parent
attribute value is redundant; it can be deduced from the key. If we used an
independent key design for Posts, however, _parent would not be
duplicated in the key:

>>> p2._blog_id = owner._id
>>> p2._id = p2._blog_id + ':Post:2'
>>> shelf[p2._id]= p2

>>> p3._blog_id = owner._id
>>> p3._id = p3._blog_id + ':Post:3'
>>> shelf[p3._id]= p3

When we look at the keys, we can see the Blog plus both Post instances:

>>> list(shelf.keys())
['Blog:1:Post:3', 'Blog:1', 'Blog:1:Post:2']

When we fetch any child Post, we'll know the proper parent Blog for the individual
posting:

>>> p2._parent 'Blog:1'
>>> p2._id 'Blog:1:Post:2'

Following the keys the other way – from parent, Blog, down to its child, Post –
becomes a matter of locating the matching keys in the shelf collection.

How to design CRUD operations for complex objects is discussed in the next section.



Storing and Retrieving Objects via Shelve Chapter 11

[ 359 ]

Designing CRUD operations for complex
objects
When we decompose a larger collection into a number of separate fine-grained
objects, we will have multiple classes of objects on the shelf. Because they are
independent objects, they will lead to separate sets of CRUD operations for each class.
In some cases, the objects are independent, and operations on an object of one class
have no impact outside that individual object. In some relational database products,
these become cascading operations. Removing a Blog entry can cascade into removing
the related Post entries.

In our previous example, the Blog and Post objects have a dependency relationship.
The Post objects are children of a parent Blog; the child can't exist without the
parent. When we have these dependent relationships, we have a more entangled
collection of operations to design. Here are some of the considerations:

Consider the following for CRUD operations on independent (or parent)
objects:

We may create a new, empty parent, assigning a new
primary key to this object. We can later assign children to
this parent. Code such as shelf['parent:'+object._id]
= object creates a parent object in the shelf.
We may update or retrieve this parent without any effect on
the children. We can perform shelf['parent:'+some_id]
on the right side of the assignment to retrieve a parent. Once
we have the object, we can perform
shelf['parent:'+object._id] = object to persist a
change.
Deleting the parent can lead to one of two behaviors. One
choice is to cascade the deletion to include all the children
that refer to the parent. Alternatively, we may write code to
prohibit the deletion of parents that still have child
references. Both are sensible, and the choice is driven by the
requirements imposed by the problem domain.

Consider the following for CRUD operations on dependent (or child)
objects:

We can create a new child that refers to an existing parent.
We must also decide what kind of keys we want to use for
children and parents.
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We can update, retrieve, or delete the child outside the
parent. This can include assigning the child to a different
parent.

As the code to replace an object is the same as the code to update an object, half of the
CRUD processing is handled through the simple assignment statement. Deletion is
done with the del statement. The issue of deleting children associated with a parent
might involve a retrieval to locate the children. What's left, then, is an examination of
retrieval processing, which can be a bit more complex.

Searching, scanning, and querying are discussed in the next section.

Searching, scanning, and querying
A search can be inefficient if we examine all of the objects in a database, and apply a
filter. We'd prefer to work with a more focused subset of items. We'll look at how we
can create more useful indices in the Creating indexes to improve efficiency section. The
fallback plan of brute-force scanning all the objects, however, always works. For
searches that occur rarely, the computation required to create a more efficient index
may not be worth the time saved. 

Don't panic; searching, scanning, and querying are synonyms. We'll
use the terms interchangeably.

When a child class has an independent-style key, we can scan a shelf for all instances
of some Child class using an iterator over the keys. Here's a generator expression
that locates all the children:

children = (shelf[k]
    for k in shelf.keys()
    if k.startswith("Child:"))

This looks at every single key in the shelf to pick the subset that begins with
"Child:". We can build on this to apply more criteria by using a more complex
generator expression:

children_by_title = (c
    for c in children
    if c.startswith("Child:") and c.title == "some title")
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We've used a nested generator expression to expand on the initial children query,
adding criteria. Nested generator expressions such as this are remarkably efficient in
Python. This does not make two scans of the database. It's a single scan with two
conditions. Each result from the inner generator feeds the outer generator to build the
result.

When a child class has a dependent-style key, we can search the shelf for children of a
specific parent using an iterator with a more complex matching rule. Here's a
generator expression that locates all the children of a given parent:

children_of = (shelf[k]
    for k in shelf.keys()
    if k.startswith(parent+":Child:"))

This dependent-style key structure makes it particularly easy to remove a parent and
all children in a simple loop:

query = (key
    for key in shelf.keys()
    if key.startswith(parent))
for k in query:
    del shelf[k]

When using hierarchical "Parent:pid:Child:cid" keys, we do have to be careful
when separating parents from their children. With this multi-part key, we'll see lots of
object keys that start with "Parent:pid". One of these keys will be the proper
parent, simply "Parent:pid". The other keys will be children with
"Parent:pid:Child:cid". We have three kinds of conditions that we'll often use
for these brute-force searches:

key.startswith(f"Parent:{pid}"): Finds a union of parents and
children; this isn't a common requirement.
key.startswith(f"Parent:{pid}:Child:"): Finds children of the
given parent. An alternative to startswith() is a regular expression, such
as r"^(Parent:\d+):(Child:\d+)$", to match the keys.
key.startswith(f"Parent:{pid}") and ":Child:" not in key:
Finds parents, excluding any children. An alternative is to use a regular
expression, such as r"^Parent:\d+$", to match the keys.

All of these queries can be optimized by building indices to restrict the search space
to more meaningful subsets.

Let's take a look at how to design an access layer for shelve.
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Designing an access layer for shelve
Here's how shelve might be used by an application. We'll look at parts of an 
application that edits and saves microblog posts. We'll break the application into two
tiers: the application tier and the data tier. Within an application tier, we'll distinguish
between two layers:

Application processing: Within the application layer, objects are not
persistent. These classes will embody the behavior of the application as a
whole. These classes respond to the user selection of commands, menu
items, buttons, and other processing elements.
Problem domain data model: These are the objects that will get written to a
shelf. These objects embody the state of the application as a whole.

The classes to define an independent Blog and Post will have to be modified so that
we can process them separately in the shelf container. We don't want to create a
single, large container object by turning Blog into a collection class.

Within the data tier, there might be a number of features, depending on the
complexity of the data storage. We'll focus on these two features:

Access: These components provide uniform access to the problem domain
objects. We'll focus on the access tier. We'll define an Access class that
provides access to the Blog and Post instances. It will also manage the
keys to locate the Blog and Post objects in the shelf.
Persistence: The components serialize and write problem domain objects to
persistent storage. This is the shelve module. The Access tier will depend
on this.

We'll break the Access class into three separate pieces. Here's the first part, showing
the file open and close operations:

import shelve
from typing import cast

class Access:

    def __init__(self) -> None:
        self.database: shelve.Shelf = cast(shelve.Shelf, None)
        self.max: Dict[str, int] = {"Post": 0, "Blog": 0}

    def new(self, path: Path) -> None:
        self.database: shelve.Shelf = shelve.open(str(path), "n")
        self.max: Dict[str, int] = {"Post": 0, "Blog": 0}
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        self.sync()

    def open(self, path: Path) -> None:
        self.database = shelve.open(str(path), "w")
        self.max = self.database["_DB:max"]

    def close(self) -> None:
        if self.database:
            self.database["_DB:max"] = self.max
            self.database.close()
        self.database = cast(shelve.Shelf, None)

    def sync(self) -> None:
        self.database["_DB:max"] = self.max
        self.database.sync()

    def quit(self) -> None:
        self.close()

For Access.new(), we'll create a new, empty shelf. For Access.open(), we'll open
an existing shelf. For closing and synchronizing, we've made sure to post a small
dictionary of the current maximum key values into the shelf.

The cast() function is used to allow us to break the type hint for self.database by
assigning a None object to it. The type hint for this attribute is shelve.Shelf. The
cast() function tells mypy that we're fully aware None is not an instance of Shelf.

We haven't addressed how to implement a Save As... method to make a copy of
the file. Nor have we addressed a quit-without-saving option to revert to the previous
version of a database file. These additional features involve the use of the os module
to manage the file copies.

In addition to the basic methods for opening and closing the database, we need
methods to perform CRUD operations on blogs and posts. In principle, we would
have eight separate methods for this. Here are some of the methods to update the
shelf with Blog and Post objects:

def create_blog(self, blog: Blog) -> Blog:
    self.max['Blog'] += 1
    key = f"Blog:{self.max['Blog']}"
    blog._id = key
    self.database[blog._id] = blog
    return blog

def retrieve_blog(self, key: str) -> Blog:
    return self.database[key]
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def create_post(self, blog: Blog, post: Post) -> Post:
    self.max['Post'] += 1
    post_key = f"Post:{self.max['Post']}"
    post._id = post_key
    post._blog_id = blog._id
    self.database[post._id] = post
    return post

def retrieve_post(self, key: str) -> Post:
    return self.database[key]

def update_post(self, post: Post) -> Post:
    self.database[post._id] = post
    return post

def delete_post(self, post: Post) -> None:
    del self.database[post._id]

We've provided a minimal set of methods to put Blog in the shelf with its associated
Post instances. When we create a Blog, the create_blog() method first computes a
new key, then updates the Blog object with the key, and finally, it persists the Blog
object in the shelf. We've highlighted the lines that change the shelf contents. Simply
setting an item in the shelf, similar to setting an item in a dictionary, will make the
object persistent.

When we add a post, we must provide the parent Blog so that the two are properly
associated on the shelf. In this case, we get the Blog key, create a new Post key, and
then update Post with the key values. This updated Post can be persisted on the
shelf. The highlighted line in create_post() makes the object persistent in the shelf.

In the unlikely event that we try to add a Post without having previously added the
parent Blog, we'll have attribute errors because the Blog._id attribute will not be
available.

We've provided representative methods to replace Post and delete Post. There are
several other possible operations; we didn't include methods to replace Blog or delete
Blog. When we write the method to delete Blog, we have to address the question of
preventing the deletion when there are still Post objects, or cascading the deletion to
include Post objects. Finally, there are some search methods that act as iterators to
query Blog and Post instances:

def __iter__(self) -> Iterator[Union[Blog, Post]]:
    for k in self.database:
        if k[0] == "_":
            continue  # Skip the administrative objects
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        yield self.database[k]

def blog_iter(self) -> Iterator[Blog]:
    for k in self.database:
        if k.startswith('Blog:'):
            yield self.database[k]

def post_iter(self, blog: Blog) -> Iterator[Post]:
    for k in self.database:
        if k.startswith('Post:'):
            if self.database[k]._blog_id == blog._id:
                yield self.database[k]

def post_title_iter(self, blog: Blog, title: str) -> Iterator[Post]:
    return (p for p in self.post_iter(blog) if p.title == title)

We've defined a default iterator, __iter__(), to filter out the internal objects that
have keys beginning with _. So far, we've only defined one such key, _DB:max, but
this design leaves us with room to invent others.

The blog_iter() method iterates through the Blog entries. Because the database
contains a number of different kinds of objects, we must explicitly discard entries that
don't begin with "Blog:". A separate index object is often a better approach than this
kind of brute-force filter applied to all keys. We'll look at that in the following Writing
a demonstration script section.

The post_iter() method iterates through posts that are a part of a specific blog. The
membership test is based on looking inside each Post object to check the _blog_id
attribute. The title_iter() method examines posts that match a particular title.
This examines each key in the shelf, which is a potentially inefficient operation.

We also defined an iterator that locates posts that have the requested title in a given
blog, post_title_iter(). This is a simple generator function that uses the
post_iter() method function and returns only matching titles.

In the next section, we'll write a demonstration script.

Writing a demonstration script
We'll use a technology spike to show you how an application might use this Access
class to process the microblog objects. The spike script will save some Blog and Post
objects to a database to show a sequence of operations that an application might use.
This demonstration script can be expanded into unit test cases.
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More complete unit tests would show us that all the features are present and work
correctly. This small spike script shows us how Access works:

from contextlib import closing
from pathlib import Path

path = Path.cwd() / "data" / "ch11_blog"
with closing(Access()) as access:
    access.new(path)

    # Create Example
    access.create_blog(b1)
    for post in p2, p3:
        access.create_post(b1, post)

    # Retrieve Example
    b = access.retrieve_blog(b1._id)
    print(b._id, b)
    for p in access.post_iter(b):
        print(p._id, p)

We've created the Access class on the access layer so that it's wrapped in a context
manager. The objective is to be sure that the access layer is closed properly,
irrespective of any exceptions that might get raised.

With Access.new(), we've created a new shelf named 'blog'. This might be done
by a GUI through navigating to File | New. We added the new blog, b1, to the shelf.
The Access.create_blog() method will update the Blog object with its shelf key.
Perhaps someone filled in the blanks on a page and clicked on New Blog on their GUI
application.

Once we've added Blog, we can add two posts to it. The key from the parent Blog
entry will be used to build the keys for each of the child Post entries. Again, the idea
is that a user filled in some fields and clicked on New Post on the GUI.

There's a final set of queries that dumps the keys and objects from the shelf. This
shows us the final outcome of this script. We can perform
Access.retrieve_blog() to retrieve a blog entry that was created. We can iterate
through the posts that are part of that blog using Access.post_iter().
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The use of the contextlib.closing() context manager ensures that a final
Access.close() function evaluation will save the database to persistent storage.
This will also flush the self.max dictionary used to generate unique keys.

The next section talks about how to create indexes to improve efficiency.

Creating indexes to improve efficiency
One of the rules of efficiency is to avoid search. Our previous example of using an
iterator over the keys in a shelf is inefficient. To state that more strongly, use of search
defines an inefficient application. We'll emphasize this.

Brute-force search is perhaps the worst possible way to work with
data. Try to design indexes based on subsets or key mappings to
improve performance.

To avoid searching, we need to create indexes that list the items users are most likely
to want. This saves you reading through the entire shelf to find an item or subset of
items. A shelf index can't reference Python objects, as that would change the
granularity at which the objects are stored. An index will only list key values, a
separate retrieval is done to get the object in question. This makes navigation among
objects indirect but still much faster than a brute-force search of all items in the shelf.

As an example of an index, we can keep a list of the Post keys associated with each
Blog in the shelf. We can easily change the add_blog(), add_post(), and
delete_post() methods to update the associated Blog entry too. Here are the
revised versions of these blog update methods:

class Access2(Access):

    def create_post(self, blog: Blog, post: Post) -> Post:
        super().create_post(blog, post)
        # Update the index; append doesn't work.
        blog_index = f"_Index:{blog._id}"
        self.database.setdefault(blog_index, [])
        self.database[blog_index] = self.database[blog_index] +
[post._id]
        return post

    def delete_post(self, post: Post) -> None:
        super().delete_post(post)
        # Update the index.
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        blog_index = f"_Index:{post._blog_id}"
        index_list = self.database[post._blog_id]
        index_list.remove(post._id)
        self.database[post._blog_id] = index_list

    def post_iter(self, blog: Blog) -> Iterator[Post]:
        blog_index = f"_Index:{blog._id}"
        for k in self.database[blog_index]:
            yield self.database[k]

Most of the methods are inherited without change from the Access class. We've
extended three methods to create a useful index of children for a given blog:

create_post()

delete_post()

post_iter()

The create_post() method uses the create_post() superclass to save
the Post object to the shelf. Then it makes sure the "_Index:{blog}" object is in the
shelf, by using setdefault(). This object will be a list with the keys for related
posts. The list of keys is updated using the following statement:

self.database[blog_index] = self.database[blog_index] + [post._id]

This is required to update the shelf. We cannot simply
use self.database[blog_index].append(post._id). These kind of update-in-
place methods of a dictionary don't work as expected with a shelf object. Instead, we
must retrieve the object out of the shelf with self.database[blog_index]. Update
the retrieved object, and then replace the object in the shelf using a simple assignment
statement.

Similarly, the delete_post() method keeps the index up to date by removing
unused posts from _post_list of the owning blog. As with create_post(), two
updates are done to the shelf: a del statement removes Post, and then the Blog
object is updated to remove the key from the associated index.

This change alters our queries for a Post object in a profound way. We're able to
replace a scan of all the items in post_iter() with a much more efficient operation.
This loop will rapidly yield the Post objects based on the keys saved in the
_post_list attribute of Blog. An alternative body is this generator expression:

return (self.database[k] for k in blog._post_list)
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The point of this optimization to the post_iter() method is to eliminate the search
of all the keys for the matching keys. We've replaced searching all keys with a simple
iteration over an appropriate sequence of relevant keys. A simple timing test, which
alternates between updating Blog and Post and rendering Blog to RST, shows us
the following results:

Access Layer Access: 33.5 seconds
Access Layer Access2: 4.0 seconds

As expected, eliminating the search reduced the time required to process Blog and its
individual Posts. The change is profound: almost 86% of the processing time was
wasted in the search for relevant posts.

Let's see how to create a cache.

Creating a cache
We added an index to each Blog that locates Posts that belong to the Blog. We can
also add a top-level cache to the shelf that is slightly faster to locate all Blog instances.
The essential design is similar to what's been shown in the previous section. For each
blog to be added or deleted, we must update a cache of valid keys. We must also
update the iterators to properly use the index. Here's another class design to mediate
the access to our objects:

class Access3(Access2):

    def new(self, path: Path) -> None:
        super().new(path)
        self.database["_Index:Blog"] = list()

    def create_blog(self, blog: Blog) -> Blog:
        super().create_blog(blog)
        self.database["_Index:Blog"] += [blog._id]
        return blog

    def blog_iter(self) -> Iterator[Blog]:
        return (self.database[k] for k in
        self.database["_Index:Blog"])

When creating a new database, we add an administrative object and an index, with a
key of "_Index:Blog". This index will be a list with the keys to each Blog entry.
When we add a new Blog object, we also update this "_Index:Blog" object with the
revised list of keys.
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When we iterate through Blog posts, we use the index list instead of a brute-force
search of keys in the database. This is slightly faster than using the shelf object's built-
in keys() method to locate Blog posts.

Here are the results as measured:

Access Layer Access: 33.5 seconds
Access Layer Access2: 4.0 seconds
Access Layer Access3: 3.9 seconds

In the next section, we will learn how to add more index maintenance.

Adding yet more index maintenance
Clearly, the index maintenance aspect of a shelf can grow. With our simple data
model, we could easily add more top-level indexes for tags, dates, and titles of Posts.
Here's another access-layer implementation that defines two indices for Blogs. One
index simply lists the keys for Blog entries. The other index provides keys based on
the Blog title. We'll assume that the titles are not unique. We'll present this access
layer in three parts. Here's the create part of the CRUD processing:

class Access4(Access3):

    def new(self, path: Path) -> None:
        super().new(path)
        self.database["_Index:Blog_Title"] = dict()

    def create_blog(self, blog):
        super().create_blog(blog)
        blog_title_dict = self.database["_Index:Blog_Title"]
        blog_title_dict.setdefault(blog.title, [])
        blog_title_dict[blog.title].append(blog._id)
        self.database["_Index:Blog_Title"] = blog_title_dict
        return blog

We added yet another index. In this example, there is a dict that provides us with a
list of keys for a given title string. If each title is unique, each of these lists will be a
singleton key. If the titles are not unique, each title will have a list of the Blog keys.
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When we add a Blog instance, we also update the title index. The title index requires
us to get the existing dict from the shelf, append to the list of keys mapped to the
Blog's title, and then put the defaultdict back onto the shelf.

An update to the Blog object might involve changing the title of the Blog attribute. If
there is a title change, this will lead to a complex pair of updates:

Remove the old title from the index. Since each title has a list of keys, this1.
operation removes one key from the list. If the list is now empty, the entire
title entry can be removed from the dictionary.
Add the new title to the index. This echoes the operation shown for adding2.
a new Blog object.

Is this additional complexity needed? The only way to be sure is to gather actual
performance details for the queries actually used by an application. There is a cost to
maintaining an index, and time-saving from using an index to avoid search. There's a
fine balance between these, and it often requires some data gathering and
experimentation to determine the optimal use of a shelf.

Let's take a look at the writeback alternative to index updates.

The writeback alternative to index
updates
We can request that a shelf be opened with writeback=True. This will track changes
to mutable objects by keeping a cached version of each object in the active memory.
This changes the design of the Access class. The examples of the Access class,
shown in the previous sections of this chapter, forced the application to make method
calls to update_blog() and update_post() to be sure a change was persisted to
external files. When working in writeback mode, the application is free to mutate an
object's values and the shelf module will persist the change without any extra
method invocations. This automatic update will not update the ancillary indices,
however, since they were made by our application's access layer.

In an application where a shelf does not make extensive use of additional index
values, the writeback mode can be advantageous. It simplifies application processing,
and reduces the need for a sophisticated Access class. 
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Schema evolution
When working with shelve, we have to address the problem of schema evolution. The
class definitions define the schema for the persistent data. The class, however, is not
absolutely static. If we change a class definition, the schema evolves. How will we
fetch objects from the shelf after this change? A good design often involves some
combination of the following techniques.

Changes to methods don't change the persisted object representation. We can classify
these changes as minor because the shelved data is still compatible with the changed
class definition. A new software release can have a new minor version number and
users should be confident that it will work without problems.

Changes to attributes will change the persisted object representation. We can call
these major changes, and the shelved data will no longer be compatible with the new
class definition. Major changes to the representation should not made by modifying a
class definition. These kinds of changes should be made by adding a new subclass
and providing an updated factory function to create instances of either version of the
class.

We can be flexible about supporting multiple versions, or we can use one-time
conversions. To be flexible, we must rely on factory functions to create instances of
objects. A flexible application will avoid creating objects directly. By using a factory
function, we're assured that all parts of an application can work consistently. We
might do something like this to support flexible schema changes:

def make_blog(*args, **kw):
    version = kw.pop('_version',1)
    if version == 1: return Blog(*args, **kw)
    elif version == 2: return Blog2(*args, **kw)
    else: raise ValueError(f"Unknown Version {version}")

This kind of factory function requires a _version keyword argument to specify
which Blog class definition to use. This allows us to upgrade a schema to use
different classes without breaking our application. The Access layer can rely on this
kind of function to instantiate correct versions of objects.

An alternative to this level of flexibility is a one-time conversion. This feature of the
application will fetch all shelved objects using their old class definition, convert to the
new class definition, and store them on a new shelf in the new format.
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Summary
We saw the basics of how to use the shelve module. This includes creating a shelf
and designing keys to access the objects that we've placed in the shelf. We also
understood the need for an access layer to perform the lower-level CRUD operations
on the shelf. The idea is that we need to distinguish between the class definitions that
are focused on our application and other administrative details that support
persistence.

Design considerations and tradeoffs
One of the strengths of the shelve module is allowing us to persist distinct items
very simply. This imposes a design burden to identify the proper granularity, of the
items. Too fine a granularity and we waste time assembling a container object from
pieces scattered through the database. Too coarse a granularity, and we waste time
fetching and storing items that aren't relevant.

Since a shelf requires a key, we must design appropriate keys for our objects. We
must also manage the keys for our various objects. This means using additional
attributes to store keys, and possibly creating additional collections of keys to act as
indices for items on the shelf.

A key used to access an item in a shelve database is like a weakref; it's an indirect
reference. This means that extra processing is required to track and access the items
from the reference. For more information on weakref, see Chapter 3, Integrating
Seamlessly - Basic Special Methods.

One choice for a key is to locate an attribute or combination of attributes that are
proper primary keys and cannot be changed. Another choice is to generate surrogate
keys that cannot be changed; this allows all other attributes to be changed. As shelve
relies on pickle to represent the items on the shelf, we have a high-performance
native representation of the Python objects. This reduces the complexity of designing
classes that will be placed onto a shelf. Any Python object can be persisted.
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Application software layers
Because of the relative sophistication available when using shelve, our application
software must become more properly layered. Generally, we'll look at software
architectures with layers such as the following:

Presentation layer: The top-level user interface, either a web presentation
or a desktop GUI.
Application layer: The internal services or controllers that make the
application work. This could be called the processing model, which is
different from the logical data model.
Business layer or problem domain model layer: The objects that define the
business domain or problem space. This is sometimes called the logical
data model. We've looked at how we might model these objects, using a
microblog Blog and Post example.
Infrastructure aspects: Some applications include a number of cross-
cutting concerns or aspects such as logging, security, and network access.
These tend to be pervasive and cut across multiple layers.
Data access layer. These are protocols or methods to access data objects.
We looked at designing classes to access our application objects from the
shelve storage.
Persistence layer. This is the physical data model as seen in file storage.
The shelve module implements persistence.

When looking at this chapter and Chapter 12, Storing and Retrieving Objects with
SQLite, it becomes clear that mastering object-oriented programming involves some
higher-level design patterns. We can't simply design classes in isolation; we need to
look at how classes are going to be organized into larger structures. Finally, and most
importantly, brute-force search is a terrible thing; it must be avoided.



Storing and Retrieving Objects via Shelve Chapter 11

[ 375 ]

Looking forward
The next chapter will roughly parallel this chapter. We'll look at using SQLite instead
of shelve for the persistence of our objects. This gets a bit tricky because a SQL
database doesn't provide a way to store complex Python objects, leading to the
impedance mismatch problem. We'll look at two ways to solve this problem when
using a relational database such as SQLite.

In Chapter 13, Transmitting and Sharing Objects, we'll shift the focus from simple
persistence to transmitting and sharing objects. This will rely on the persistence we
saw in this chapter, and it will add network protocols into the mix.
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Storing and Retrieving

Objects via SQLite
There are many applications where we need to persist a large number of distinct
objects. The techniques we looked at in Chapter 10, Serializing and Saving - JSON,
YAML, Pickle, CSV, and XML, were biased toward persistence for a single, monolithic
object. Sometimes, we need to persist separate, individual objects from a larger
domain. For example, we might be saving blog entries, blog posts, authors, and
advertisements; each of which must be handled separately.

In Chapter 11, Storing and Retrieving Objects via Shelve, we looked at storing distinct
Python objects in a shelve data store. This allowed us to implement the CRUD
processing on a domain of individual objects. Each object can be created, retrieved,
updated, or deleted without having to load and dump the entire file.

In this chapter, we'll look at mapping Python objects to a relational database;
specifically, the sqlite3 database that is bundled with Python. This will be another
example of the three-tier architecture design pattern.

In this case, the SQLite data tier is a more sophisticated database than shelve. SQLite
can allow concurrent database updates via locking. SQLite offers an access layer
based on the SQL language. It offers persistence by saving SQL tables to the
filesystem. Web applications are one example where a database is used instead of
simple file persistence to handle concurrent updates to a single pool of data. RESTful
data servers, too, frequently use a relational database to provide access to persistent
objects.

For scalability, a standalone database server process can be used to isolate all the
database transactions. This means persistence can be allocated to a relatively secure
host computer, separate from the web application servers and behind appropriate
firewalls. MySQL, for example, can be implemented as a standalone server process.



Storing and Retrieving Objects via SQLite Chapter 12

[ 377 ]

The SQLite3 database that is part of Python is not a standalone database server; it
must be embedded into a host application.

In this chapter, we will cover the following topics:

SQL databases, persistence, and objects
Processing application data with SQL
Mapping Python objects to SQLite BLOB columns
Mapping Python objects to database rows manually
Improving performance with indices
Adding an ORM layer
Querying pasts given a tag
Improving performance with indices

Technical requirements
The code files for this chapter are available at https:/ ​/ ​git.​io/ ​fj2UK.

SQL databases, persistence, and objects
When using SQLite, our application works with an implicit access layer based on the
SQL language. The SQL language is a legacy from an era when object-oriented
programming was a rarity. It is heavily biased toward procedural programming. The
row-and-column concepts of relational design creates what's termed an impedance
mismatch with the more complex object model of data. Within SQL databases, we 
generally focus on three tiers of data modeling, which are shown here:

The conceptual model: These are the entities and relationships implied by
the SQL model. These may not be the tables and columns, but may be
views of tables and columns. The views may involve selecting rows,
projecting columns, or joining multiple tables into the conceptual result. In
most cases, the conceptual model can map to Python objects and should
correspond with the data model layer of the application tier. This is the
place where an Object-Relational Mapping (ORM) layer is useful.

https://git.io/fj2UK
https://git.io/fj2UK
https://git.io/fj2UK
https://git.io/fj2UK
https://git.io/fj2UK
https://git.io/fj2UK
https://git.io/fj2UK
https://git.io/fj2UK
https://git.io/fj2UK
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The logical model: These are the tables, rows, and columns that appear to
be in the SQL database. We'll address these entities in our SQL data 
manipulation statements. We say that these appear to exist because the
tables and columns are implemented by a physical model that may be
somewhat different from the objects defined in the database schema. The
results of an SQL query, for example, look table-like, but may not involve
storage that parallels the storage of any single, defined table.
The physical model: These are the files, blocks, pages, bits, and bytes of
persistent physical storage. These entities are defined by the administrative
SQL statements. In some more complex database products, we can exercise
some control over the physical model of the data to further tweak the
performance. In SQLite, however, we have almost no control over this.

We are confronted with a number of design decisions when using SQL databases.
Perhaps the most important one is deciding how to cover the impedance mismatch.
How do we handle the mapping between SQL's legacy data model to a Python object
model? The following are three common strategies:

Minimal mapping to Python: This means that we won't build Python
objects from the rows retrieved from the database. The application will
work entirely within the SQL framework of independent atomic data
elements and processing functions. Following this approach tends to avoid
a deep emphasis on object-oriented programming. This approach limits us
to the four essential SQLite types of NULL, INTEGER, REAL, and TEXT, plus
the Python additions of datetime.date and datetime.datetime. While
this can be difficult for more complex applications, it is appropriate for
certain kinds of scripts when doing database maintenance and support.
Manual mapping to Python: We can define an access layer to map between
our Python class definitions and the SQL logical model of tables, columns,
rows, and keys. For some specialized purposes, this may be necessary.
ORM layer: We can download and install an ORM layer to handle the
mapping between Python objects and the SQL logical model. There are a
large number of ORM choices; we'll look at SQLAlchemy as a
representative example. An ORM layer is often the simplest and most
general approach. 

We'll look at all three choices in the following examples. Before we can look at the 
mappings from SQL to objects, we'll look at the SQL logical model in some detail and
cover the no-mapping, pure SQL design strategy first.
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The SQL data model – rows and tables
Conceptually, the SQL data model is based on named tables with named columns. A
table definition is a flat list of columns with no other structure to the data. Each row is
essentially a mutable @dataclass. The idea is to imagine the contents within a table
as a list of individual @dataclass objects. The relational model can be described
by Python type hints as if it had definitions similar to the following:

from dataclasses import dataclass
from typing import Union, Text
import datetime
SQLType = Union[Text, int, float, datetime.datetime, datetime.date,
bytes]
@dataclass
class Row:
    column_x: SQLType
    ...
Table = Union[List[Row], Dict[SQLType, Row]]

From the type hints, we can see that a database Table can be viewed as a list of Row
instances, or a Dict mapping a column to a Row instance. The definition of a Row is a
collection of SQLType column definitions. There is much more to the relational
model, but this tiny overview suggests ways we'll use a database in Python. An SQL
database has relatively few atomic data types. Generally, the only data structure
available is the Table, which is a collection of rows. Each Row is a simple list of 
individual column definitions. The data within a Table can be used as a simple list of
Row objects. When we select a column to be a key and the remaining columns to be
values, we can consider the table to behave like a dictionary or mapping from key to
row value. We didn't clutter up the conceptual type definitions with additional details
like multi-column keys, and the nullability of column values.

More complex data structures are built by having rows in one table contain references
to a row in another table. These references are built around simply having common
values shared by separate tables. When a row's key in one table is referenced by rows
in another table, we've effectively defined a hierarchical, one-to-many relationship;
this implements a Python nested list or nested dictionary. We can define many-to-
many relationships using an intermediate association table, which provides a list of
key pairs from each of the associated tables. A set can be built with a table that has a
unique, primary key to assure only unique values are collected into the table.

When we define an SQL database, we define a collection of tables and their columns.
When we use an SQL database, we manipulate the rows of data collected into the
tables.
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In the case of SQLite, we have a narrow domain of data types that SQL will process.
SQLite handles NULL, INTEGER, REAL, TEXT, and BLOB data.

The Python types of None, int, float, str, and bytes are mapped to these SQL
types. Similarly, when data of these types is fetched from an SQLite database, the
items are converted into Python objects.

The BLOB type is a binary large object, a collection of bytes of a type defined outside of
SQL. This can be used to introduce Python-specific data types into an SQL database.
SQLite allows us to add conversion functions for encoding and decoding Python
objects into bytes. The sqlite3 module has already added the datetime.date and
datetime.datetime extensions this way for us. We can add more conversion
functions for more specialized processing.

The SQL language can be partitioned into three sublanguages: the data definition
language (DDL), the data manipulation language (DML), and the data control
language (DCL). The DDL is used to define tables, their columns, and indices. For an
example of DDL, we might have some tables defined the following way:

CREATE TABLE blog(
    id INTEGER PRIMARY KEY AUTOINCREMENT,
    title TEXT
);
CREATE TABLE post(
    id INTEGER PRIMARY KEY AUTOINCREMENT,
    date TIMESTAMP,
    title TEXT,
    rst_text TEXT,
    blog_id INTEGER REFERENCES blog(id)
);
CREATE TABLE tag(
    id INTEGER PRIMARY KEY AUTOINCREMENT,
    phrase TEXT UNIQUE ON CONFLICT FAIL
);
CREATE TABLE assoc_post_tag(
  post_id INTEGER REFERENCES post(id),
  tag_id INTEGER REFERENCES tag(id)
);

We've created four tables to represent the Blog and Post objects for a microblogging
application. For more information on the SQL language processed by SQLite, see
http://www.sqlite.org/lang.html. For a broader background in SQL, books such as
Creating your MySQL Database: Practical Design Tips and Techniques will introduce the
SQL language in the context of the MySQL database. The SQL language is case
insensitive.

http://www.sqlite.org/lang.html
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For no good reason, we prefer to see SQL keywords in all uppercase to distinguish it
from the surrounding Python code.

The blog table defines a primary key with the AUTOINCREMENT option; this will allow
SQLite to assign the key values, saving us from having to generate the keys in our
code. The title column is the title for a blog. We've defined it to be TEXT. In some
database products, we must provide a maximum size for a character string. This can
help the database engine optimize storage. Since this size is not required in SQLite, so
we'll avoid the clutter.

The post table defines a primary key as well as date, title, and RST text for the body
of the post. Note that we did not reference the tags for a post in this table definition.
We'll return to the design patterns required for the following SQL tables. The post
table does, however, include a formal REFERENCES clause to show us that this is a
foreign key reference to the owning blog.

The tag table defines the individual tag text items, and nothing more. The SQL
defines the text column as being unique. An attempt to insert a duplicate will cause
the transaction to fail.

Finally, we have an association table between post and tag. This table has only two
foreign keys. It associates tags and posts, allowing an unlimited number of tags per
post as well as an unlimited number of posts to share a common tag. This association
table is a common SQL design pattern to handle this kind of many-to-many
relationship. We'll look at some other SQL design patterns in the following section.
We can execute the preceding definitions to create our database:

import sqlite3
database = sqlite3.connect('p2_c11_blog.db')
database.executescript(sql_ddl)

All database access requires a connection, created with the module function,
sqlite3.connect(). We provided the name of the file to assign to our database.

The DB-API standard for Python database modules is defined by PEP 249, available
at https:/​/​www. ​python. ​org/ ​dev/ ​peps/ ​pep-​0249/ ​. This standard presumes that there
is a separate database server process to which our application process will connect. In
the case of SQLite, there isn't really a separate process. A connect() function is used,
however, to comply with the standard. The sql_ddl variable in the previous
example is simply a long string variable with the four CREATE TABLE statements. If
there are no error messages, then it means that the table structures have been defined.

https://www.python.org/dev/peps/pep-0249/
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The executescript() method of a Connection object is described in the Python
standard library as a nonstandard shortcut. Technically, database operations must
involve creating a cursor object. The following is a standardized approach:

from contextlib import closing
with closing(database.cursor()) as cursor:
    for stmt in sql_ddl.split(";"):
        cursor.execute(stmt)

While conceptually helpful, this isn't practical. It doesn't work well when there are
";" characters in comments or text literals. It's better to use the handy
executescript() shortcut. If we were concerned about the portability to other
databases, we'd shift focus to a more strict compliance with the Python DB-API
specification. We'll return to the nature of a cursor object in the following section,
when looking at queries.

In the next section, we'll discuss CRUD processing via SQL DML statements.

CRUD processing via SQL DML statements
The following four canonical CRUD operations map directly to SQL language
statements:

Creation is done via the INSERT statement.
Retrieval is done via the SELECT statement.
Update is done via the UPDATE statement. Some SQL dialects also include a
REPLACE statement.
Deletion is done via the DELETE statement.

We have to note that we'll often look at literal SQL syntax with all values supplied.
This is separate from SQL syntax with binding variable placeholders instead of literal
values. The literal SQL syntax is acceptable for scripts; it is perfectly awful for
application programming. Building literal SQL statements in an application involves
endless string manipulation and famous security problems. See the XKCD comic
at http://xkcd.com/327/ for a specific security issue with assembling literal SQL
from user-provided text. We'll focus exclusively on SQL with binding variables.

Literal SQL is widely used for scripts. Building literal SQL with user-supplied text is a
mistake.

http://xkcd.com/327/
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Never build literal SQL DML statements with string manipulation.
It is very high risk to attempt to sanitize user-supplied text.

The Python DB-API interface defines several ways to bind application variables into
SQL statements. SQLite can use positional bindings with ? or named bindings with
:name. We'll show you both styles of binding variables. We use an INSERT statement
to create a new BLOG row as shown in the following code snippet:

create_blog = """
    INSERT INTO blog(title) VALUES(?)
"""
with closing(database.cursor()) as cursor:
    cursor.execute(create_blog, ("Travel Blog",))
database.commit()

We created an SQL statement with a positional bind variable, ?, for the title column
of the blog table. A cursor object is used to execute the statement after binding a
tuple of values. There's only one bind variable, so there's only one value in the tuple.
Once the statement has been executed, we have a row in the database. The final
commit makes this change persistent, releasing any locks that were held. 

We show the SQL statements clearly separated from the surrounding Python code in
triple-quoted long string literals. In some applications, the SQL is stored as a separate
configuration item. Keeping SQL separate is best handled as a mapping from a
statement name to the SQL text. This can simplify application maintenance by
keeping the SQL out of the Python programming.

The DELETE and UPDATE statements require a WHERE clause to specify which rows
will be changed or removed. To change a blog's title, we might do something like the
following:

update_blog = """
    UPDATE blog SET title=:new_title WHERE title=:old_title
"""
with closing(database.cursor()) as cursor:
    cursor.execute(
        update_blog,
        dict(
            new_title="2013-2014 Travel",
            old_title="Travel Blog"
        )
    )
database.commit()
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The UPDATE statement shown here has two named bind variables: :new_title and
:old_title. This transaction will update all the rows in the blog table that have the
given old title, setting the title to the new title. Ideally, the title is unique, and only a
single row is touched. SQL operations are defined to work on sets of rows. It's a
matter of database design to ensure that a desired row is the content of a set. Hence,
the suggestion is to have a unique primary key for every table.

When implementing a delete operation, we always have two choices. We can either
prohibit deletes of a parent when children still exist, or we can cascade the deletion of
a parent to also delete the relevant children. We'll look at a cascading delete of blog,
post, and tag associations. Here's a DELETE sequence of statements:

delete_post_tag_by_blog_title = """
    DELETE FROM assoc_post_tag
    WHERE post_id IN (
        SELECT DISTINCT post_id
        FROM blog JOIN post ON blog.id = post.blog_id
        WHERE blog.title=:old_title)
"""
delete_post_by_blog_title = """
    DELETE FROM post WHERE blog_id IN (
        SELECT id FROM BLOG WHERE title=:old_title)
"""
delete_blog_by_title ="""
    DELETE FROM blog WHERE title=:old_title
"""
try:
    with closing(database.cursor()) as cursor:
        title = dict(old_title="2013-2014 Travel")
        cursor.execute("BEGIN")
        cursor.execute(delete_post_tag_by_blog_title, title)
        cursor.execute(delete_post_by_blog_title, title)
        cursor.execute(delete_blog_by_title, title)
    database.commit()
    print("Delete finished normally.")
except Exception as ex:
    print(f"Rollback due to {ex!r}")
    database.rollback()

The DELETE operation for an entire blog cascades into three separate delete operation.
First, we deleted all the rows from assoc_post_tag for a given blog based on the
title. Note the nested query inside the value of delete_post_tag_by_blog_title;
we'll look at queries in the next section. Navigation among tables is a common issue
with SQL construction.
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In this case, we have to query the blog-to-post relationship to locate the post table
keys that will be removed; then, we can remove rows from assoc_post_tag for the
posts associated with a blog that will be removed. Next, we deleted all the posts
belonging to a particular blog. This too involves a nested query to locate the IDs of the
blog based on the title. Finally, we can delete the blog itself.

This is an example of an explicit cascade delete design, where we have to cascade the
operation from the blog table to two other tables. We wrapped the entire suite of
delete in a with context so that it would all commit as a single transaction. In the
event of failure, it would roll back the partial changes, leaving the database as it was.

It seems like this kind of operation would benefit from using the executescript()
method of the database. The problem with executescript() is that all of the values
in the SQL statements must be literal; it does not bind values. It works nicely for data
definition. It is a poor choice for data manipulation shown here, where the blog title
must be bound into each statement.

Let's discuss row querying with the SQL SELECT statement in the next section.

Querying rows with the SQL SELECT
statement
It's possible to write a substantial book on the SELECT statement alone. We'll skip all
but the most fundamental features of SELECT. Our purpose is to cover just enough
SQL to store and retrieve objects from a database.

In most of the previous examples, we've created a cursor to execute SQL statements.
For DDL and other DML statements, the presence or absence of a cursor doesn't
matter very much. A nonstandard shortcut that eliminates the explicit creation of the
cursor and greatly simplifies SQL programming.

For a query, however, the cursor is essential for retrieving the rows from the
database. A cursor object maintains the query state so that multiple rows can be
fetched. When a cursor is closed, any internal buffers or locks are released. To locate a
blog by title, we can start with something as simple as the following code:

SELECT * FROM blog WHERE title=?
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After executing the SQL query, we need to fetch the resulting collection of row
objects. Even when we're expecting one row as a response, in the SQL world,
everything is a collection. Generally, every result set from a SELECT query looks like a
table with rows and columns defined by the SELECT statement.

In this case, using SELECT * means we've avoided enumerating the expected result
columns. This might lead to a large number of columns being retrieved. Using an
explicit cursor, we'd execute this as follows:

query_blog_by_title = """
    SELECT * FROM blog WHERE title=?
"""
with closing(database.cursor()) as blog_cursor:
    blog_cursor.execute(query_blog_by_title, ("2013-2014 Travel",))
    for blog in blog_cursor.fetchall():
        print("Blog", blog)

This follows the previous pattern of creating a cursor and executing the SQL query
statement with a bound value. The fetchall() method of a cursor will retrieve all of
the result rows. This query will process all blogs with the same title.

Here's a common optimization for doing this using the SQLite shortcuts:

query_blog_by_title= """
    SELECT * FROM blog WHERE title=?
"""
cursor = database.execute(
    query_blog_by_title, ("2013-2014 Travel",))
for blog in cursor:
    print(blog[0], blog[1])

We've bound the requested blog title to the "?" parameter in the SELECT statement.
The result of the execute() function will be a cursor object. When used as an
iterable, the cursor will yield all the rows in the result set, and close the cursor when
the iteration is complete.

This shortened form can be handy for queries or simple transactions. For more 
complex transactions, like a cascading delete, then an explicit cursor with a commit()
is required to assure the transaction is either executed completely or not at all. We'll
look at the semantics of SQL transactions next.
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SQL transactions and the ACID properties
As we've seen, the SQL DML statements map to the CRUD operations. When 
discussing the features of the SQL transactions, we'll be looking at the sequences of
the INSERT, SELECT, UPDATE, and DELETE statements.

The ACID properties are Atomic, Consistent, Isolated, and Durable. These are essential
features of a transaction that consists of multiple database operations. For more
information, see Chapter 11, Storing and Retrieving Objects via Shelve.

All the SQL DML statements operate within the context of an SQL transaction. The
entire transaction must be committed as a whole, or rolled back as a whole. This
supports the atomicity property by creating a single, atomic, indivisible change from
one consistent state to the next.

SQL DDL statements (that is, CREATE, DROP) do not work within a transaction. They
implicitly end any previous in-process transaction. After all, they're changing the
structure of the database; they're a different kind of statement, and the transaction
concept doesn't really apply. Each SQL database product varies slightly in whether or
not a commit is necessary when creating tables or indices. Issuing a
database.commit() can't hurt; for some database engines, it may be required.

Unless working in a special read uncommitted mode, each connection to the database
sees a consistent version of the data containing only the results of the committed
transactions. Uncommitted transactions are generally invisible to other database
client processes, supporting the consistency property.

An SQL transaction also supports the isolation property. SQLite supports several
different isolation level settings. The isolation level defines how the SQL DML
statements interact among multiple, concurrent processes. This is based on how locks
are used and how a process' SQL requests are delayed waiting for locks. From
Python, the isolation level is set when the connection is made to the database.

Each SQL database product takes a different approach to the isolation level and
locking. There's no single model.

In the case of SQLite, there are four isolation levels that define the locking and the
nature of transactions. For details, see http://www.sqlite.org/isolation.html.

http://www.sqlite.org/isolation.html
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The following bullet list talks about these isolation levels:

isolation_level=None: This is the default, otherwise known as the
autocommit mode. In this mode, each individual SQL statement is
committed to the database as it's executed. This can break the atomicity of
complex transactions. For a data warehouse query application, however,
it's ideal.
isolation_level='DEFERRED': In this mode, locks are acquired late in
the transaction. The BEGIN statement, for example, does not immediately
acquire any locks. Other read operations (examples include the SELECT
statements) will acquire shared locks. Write operations will acquire
reserved locks. While this can maximize the concurrency, it can also lead to
deadlocks among competing transaction processes.
isolation_level='IMMEDIATE': In this mode, the transaction BEGIN
statement acquires a lock that prevents all writes. Reads, however, will
continue normally. This avoids deadlocks, and works well when
transactions can be completed quickly.
isolation_level='EXCLUSIVE': In this mode, the transaction BEGIN
statement acquires a lock that prevents all access except for connections in a
special read uncommitted mode. 

The durability property is guaranteed for all committed transactions. The data is
written to the database storage.

The SQL rules require us to execute the BEGIN TRANSACTION and COMMIT
TRANSACTION statements to bracket a sequence of steps. In the event of an error, a
ROLLBACK TRANSACTION statement is required to unwind the potential changes. The
Python interface simplifies this. We can execute an SQL BEGIN statement. The other
statements are provided as functions of the sqlite3.Connection object; we don't
execute SQL statements to end a transaction. We might write things like the following
code to be explicit:

database = sqlite3.connect('p2_c11_blog.db',
isolation_level='DEFERRED')
try:
    with closing(database.cursor()) as cursor:
        cursor.execute("BEGIN")
        # cursor.execute("some statement")
        # cursor.execute("another statement")
    database.commit()
except Exception as e:
    database.rollback()
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We selected an isolation level of DEFERRED when we made the database connection.
This leads to a requirement that we explicitly begin and end each transaction. One
typical scenario is to wrap the relevant DML in a try block and commit the
transaction if things worked, or roll back the transaction in the case of a problem. We
can simplify this by using the sqlite3.Connection object as a context manager as
follows:

database = sqlite3.connect('p2_c11_blog.db',
isolation_level='DEFERRED')
with database:
    database.execute("some statement")
    database.execute("another statement")

This is similar to the previous example. We opened the database in the same way.
Rather than executing an explicit BEGIN statement, we entered a context; the context
executes the BEGIN statement for us.

At the end of the with context, database.commit() will be done automatically. In
the event of an exception, a database.rollback() will be done, and the exception
will be raised by the with statement.

This kind of shorthand is helpful in a web server where a connection only needs to
last for the duration of a single web request. When doing queries, the isolation level
can be left as the default, resulting in a very quick access to data. 

In the next section, we'll design primary and foreign database keys.

Designing primary and foreign database keys
SQL tables don't require a primary key. However, it's a rather poor design that omits 
primary keys for the rows of a given table. As we noted in Chapter 11, Storing and
Retrieving Objects via Shelve, there might be an attribute (or a combination of
attributes) that makes a proper primary key. It's also entirely possible that no
attribute is suitable as a primary key and we must define surrogate keys.

The previous examples use surrogate keys created by SQLite. This is perhaps the
simplest kind of design because it imposes the fewest constraints on the data. If we
don't generate surrogate keys, then a primary key value cannot be updated; this
becomes a rule that the application programming must enforce. This creates a
complex edge case if we need to correct an error in the primary key value. One way to
do this is to drop and recreate the constraints. Another way to do this is to delete the
faulty row and reinsert the row with the corrected key.
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When there are cascading deletes, then the transaction required to correct a primary
key can become very complex. Using a surrogate key prevents these kinds of
problems. All relationships among tables are done via the primary keys and foreign
key references. There are two extremely common design patterns for relationships.
The preceding tables show us these two principle design patterns. There are three
design patterns for relationships, as follows:

One-to-many: A number of children belong to a single parent object. For
example, this is the relationship between one parent blog and many child
posts. The REFERENCES clause shows us that many rows in the post table
will reference one row from the blog table.
Many-to-many: This relationship is between many posts and many tags.
This requires an intermediate association table between the post and tag
tables; the intermediate table has two (or more) foreign key associations.
The many-to-many association table can also have attributes of its own.
One-to-one: This relationship is a less common design pattern. There's no
technical difference from a one-to-many relationship. This is a question of
the cardinality of rows on the child side of the relationship. To enforce a
one-to-one relationship, some processing must prevent the creation of
additional children.

In a database design, there are several kinds of constraints on a relationship: the
relationship might be described as optional or mandatory; there might be cardinality
limits on the relationship. Sometimes, these optionality and cardinality constraints are
summarized with short descriptions such as 0:m meaning zero to many or optional one
to many. The optionality and cardinality constraints are often an important part of the
application programming logic; there are no formal ways to state these constraints in
the SQLite database. The essential table relationships can be implemented in the 
database in either or both of the following ways:

Explicit: We could call these declared, as they're part of the DDL
declaration for a database. Ideally, they're enforced by the database server,
and failure to comply with the relationship's constraints can lead to an
error of some kind. These relationships will also be repeated in queries.
Implicit: These are relationships that are stated only in queries; they are not
a formal part of the DDL.

Note that our table definitions implemented a one-to-many relationship between a
blog and the various entries within that blog. We've made use of these relationships
in the various queries that we wrote.

In the next section, we'll see how to process application data with SQL.



Storing and Retrieving Objects via SQLite Chapter 12

[ 391 ]

Processing application data with SQL
The examples in the previous sections show us what we can call procedural SQL
processing. We've eschewed any object-oriented design from our problem domain
objects. Rather than working with the Blog and Post objects, we're working with the
data elements that SQLite can process string, date, float, and integer values. We've
used mostly procedural-style programming.

We can see that a series of queries can be done to locate a blog, all posts that are part
of the blog, and all tags that are associated with a post associated with a blog. The
processing to retrieve a complete blog, all posts, and all tags on the posts would look
like the following code:

query_blog_by_title = """
    SELECT * FROM blog WHERE title=?
"""
query_post_by_blog_id = """
    SELECT * FROM post WHERE blog_id=?
"""
query_tag_by_post_id = """
    SELECT tag.*
    FROM tag
    JOIN assoc_post_tag ON tag.id = assoc_post_tag.tag_id
    WHERE assoc_post_tag.post_id=?
"""
with closing(database.cursor()) as blog_cursor:
    blog_cursor.execute(query_blog_by_title, ("2013-2014 Travel",))
    for blog in blog_cursor.fetchall():
        print("Blog", blog)
        with closing(database.cursor()) as post_cursor:
            post_cursor.execute(query_post_by_blog_id, (blog[0],))
            for post in post_cursor:
                print("Post", post)
                with closing(database.cursor()) as tag_cursor:
                    tag_cursor.execute(query_tag_by_post_id,
(post[0],))
                    for tag in tag_cursor.fetchall():
                        print("Tag", tag)

We defined three SQL queries. The first fetches the blogs by the title. For each blog,
we fetched all the posts that belong to this blog. Finally, we fetched all tags that are
associated with a given post.

The second query implicitly repeats the REFERENCES definition between the post
table and the blog table. We're finding child posts of a specific blog parent; we need
to repeat some of the table definitions during the query.



Storing and Retrieving Objects via SQLite Chapter 12

[ 392 ]

The third query involves a relational join between rows of the assoc_post_tag table
and the tag table. The JOIN clause recapitulates the foreign key reference in the table
definitions. The WHERE clause also repeats a REFERENCES clause in the table
definitions.

Because multiple tables were joined in the third query, using SELECT * will produce
columns from all of the tables. We're really only interested in attributes of the TAG
table, so we use SELECT TAG.* to produce only the desired columns.

These queries provide us with all of the individual bits and pieces of the data.
However, these queries don't reconstruct Python objects for us. If we have more
complex class definitions, we have to build objects from the individual pieces of data
that we retrieved. In particular, if our Python class definitions have important method
functions, we'll need a better SQL-to-Python mapping to make use of more complete
Python class definitions.

In the next section, we'll see how to implement class-like processing in pure SQL.

Implementing class-like processing in pure
SQL
Let's look at a somewhat more complex definition of a Blog class. This definition is
repeated from Chapter 10, Serializing and Saving - JSON, YAML, Pickle, CSV, and
XML, as well as Chapter 11,  Storing and Retrieving Objects via Shelve. This definition is
as follows:

from dataclasses import dataclass, field, asdict

@dataclass
class Blog:

    title: str
    underline: str = field(init=False)

    # Part of the persistence, not essential to the class.
    _id: str = field(default="", init=False, compare=False)

    def __post_init__(self) -> None:
        self.underline = "=" * len(self.title)

This dataclass provides the essential title attribute for a blog. It has an optional
attribute with the internal database ID assigned to the blog entry.
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Here's the start of an Access class to retrieve Blog and Post objects:

class Access:

    def open(self, path: Path) -> None:
        self.database = sqlite3.connect(path)
        self.database.row_factory = sqlite3.Row

    def get_blog(self, id: str) -> Blog:
        query_blog = """
            SELECT * FROM blog WHERE id=?
        """
        row = self.database.execute(query_blog, (id,)).fetchone()
        blog = Blog(title=row["TITLE"])
        blog._id = row["ID"]
        return blog

This Access class has a method that creates a Blog object from the columns in the
relational database. The __post_init__() method will create the expected
underline attribute value. This shows the essential technique for working from
relational data to an object.

Retrieving the Post instances associated with a Blog instance isn't trivial. It requires
using an access object to fetch more rows from the database. It can't be done directly
via some kind of attribute defined solely within the Blog class. We'll look at this in 
more depth when we look at the access layers and object-relational management
(ORM).

Mapping Python objects to SQLite BLOB
columns
We can map SQL columns to class definitions so that we can create proper Python
object instances from data in a database. SQLite includes a Binary Large Object
(BLOB) data type. We can pickle our Python objects and store them in the BLOB
columns. We can work out a string representation of our Python objects (for example,
using the JSON or YAML notation) and use SQLite text columns too.

This technique must be used cautiously because it effectively defeats SQL processing.
A BLOB column cannot be used for SQL DML operations. We can't index it or use it
in the search criteria of DML statements.
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SQLite BLOB mapping should be reserved for objects where it's acceptable to be
opaque to the surrounding SQL processing. The most common examples are media
objects such as videos, still images, or sound clips. SQL is biased towards text and
numeric fields. It doesn't generally handle more complex objects.

If we're working with financial data, our application should use the
decimal.Decimal values. . The reasons were discussed in Chapter 8, Creating
Numbers; currency computations will be incorrect when performed with float values.
We might want to query or calculate in SQL using this kind of data. As
decimal.Decimal is not directly supported by SQLite, we need to extend SQLite to
handle values of this type.

There are two directions to this: conversion and adaptation. We need to adapt Python
data to SQLite, and we need to convert SQLite data back to Python. Here are two 
functions and the requests to register them:

import decimal
def adapt_currency(value):
    return str(value)
sqlite3.register_adapter(decimal.Decimal, adapt_currency)
def convert_currency(bytes):
    return decimal.Decimal(bytes.decode())
sqlite3.register_converter("DECIMAL", convert_currency)

We've written an adapt_currency() function that will adapt decimal.Decimal
objects into a suitable form for the database. In this case, we've done nothing more
than a simple conversion to a string. We've registered the adapter function so that
SQLite's interface can convert objects of class decimal.Decimal using the registered
adapter function. We've also written a convert_currency() function that will
convert SQLite bytes objects into the Python decimal.Decimal objects. We've
registered the converter function so that columns of the DECIMAL type will be
properly converted to Python objects.

Once we've defined the adapters and converters, we can use DECIMAL as a fully
supported column type. For this to work properly, we must inform SQLite by setting
detect_types=sqlite3.PARSE_DECLTYPES when making the database connection.
Here's a table definition that uses our new column data type:

CREATE TABLE budget(
    year INTEGER,
    month INTEGER,
    category TEXT,
    amount DECIMAL
)
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As with text fields, a maximum size isn't required by SQLite. Other database products
require a size to optimize storage and performance. We can use our new column type
definition like this:

database = sqlite3.connect('p2_c11_blog.db',
detect_types=sqlite3.PARSE_DECLTYPES)
database.execute(decimal_ddl)

insert_budget= """
    INSERT INTO budget(year, month, category, amount)
    VALUES(:year, :month, :category, :amount)
"""
database.execute(insert_budget,
    dict(year=2013, month=1, category="fuel",
amount=decimal.Decimal('256.78')))
database.execute(insert_budget,
    dict(year=2013, month=2, category="fuel",
amount=decimal.Decimal('287.65')))

query_budget= """
    SELECT * FROM budget
"""
for row in database.execute(query_budget):
    print(row)

We created a database connection that requires declared types to be mapped via a
converter function. Once we have the connection, we can create our table using a new
DECIMAL column type.

When we insert rows into the table, we use proper decimal.Decimal objects. When
we fetch rows from the table, we'll see that we get proper decimal.Decimal objects
back from the database. The following is the output:

(2013, 1, 'fuel', Decimal('256.78'))
(2013, 2, 'fuel', Decimal('287.65'))

This shows us that our decimal.Decimal objects were properly stored and
recovered from the database. We can write adapters and converters for any Python
class. To do this, we need to invent a proper byte representation of the object. As a
string is so easily transformed into bytes, creating and parsing strings is often the
simplest way to proceed. Bytes can be created from strings using the encode()
method of a string. Similarly, strings can be recovered from bytes using the bytes
decode() method.

Let's take a look at how to map Python objects to database rows manually.
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Mapping Python objects to database
rows manually
We can map SQL rows to class definitions so that we can create proper Python object
instances from the data in a database. If we're careful with our database and class
definitions, this isn't impossibly complex. If, however, we're careless, we can create
Python objects where the SQL representation is quite complex. One consequence of
the complexity is that numerous queries are involved in mapping between object and
database rows. The challenge is to strike a balance between object-oriented design
and the constraints imposed by the SQL database.

We will have to modify our class definitions to be more aware of the SQL
implementation. We'll make several modifications to the Blog and Post class designs
shown in Chapter 11, Storing and Retrieving Objects via Shelve.

Here's a Blog class definition:

@dataclass
class Blog:

    title: str
    underline: str = field(init=False)

    # Part of the persistence, not essential to the class.
    _id: str = field(default="", init=False, compare=False)
    _access: Optional[ref] = field(init=False, repr=False,
default=None, compare=False)

    def __post_init__(self) -> None:
        self.underline = "=" * len(self.title)

    @property
    def entries(self) -> List['Post']:
        if self._access and self._access():
            posts = cast('Access', self._access()).post_iter(self)
            return list(posts)
        raise RuntimeError("Can't work with Blog: no associated Access
instance")

    def by_tag(self) -> Dict[str, List[Dict[str, Any]]]:
        if self._access and self._access():
            return cast('Access', self._access()).post_by_tag(self)
        raise RuntimeError("Can't work with Blog: no associated Access
instance")
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The core elements of a Blog instance are present: the title and a property that
provides a list of Post entries. This precisely matches the feature set shown in
previous chapters.

In order to work with the persistence of objects, it's convenient to include the 
database key value. In this definition, it's the _id field. This field is not part of the
initialization, nor is it part of the comparison for instances of the Blog class. The
underline attribute is computed, as in previous examples.

The entries property relies on the optional _access field. This provides a reference
to the Access class that provides a database connection and handles the SQL
mappings from the database tables. This value is injected by the Access class when
an object is retrieved.

The list of Post objects requires a definition of the required class. The  Post class
definition is as follows:

@dataclass
class Post:

    date: datetime.datetime
    title: str
    rst_text: str
    tags: List[str] = field(default_factory=list)
    _id: str = field(default="", init=False, compare=False)

    def append(self, tag):
        self.tags.append(tag)

The fields describe an individual Post; these fields include the date, the title, the
body in RST notation, and a list of tags to further categorize posts. As with Blog,
we've allowed for a database _id field as a first-class part of the object.

Once we have these class definitions, we can write an access layer that moves data
between objects of these classes and the database. The access layer implements a more
complex version of converting and adapting Python classes to rows of a table in the
database.

Let's see how to design an access layer for SQLite.
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Designing an access layer for SQLite
For this small object model, we can implement the entire access layer in a single class.
This class will include methods to perform CRUD operations on each of our
persistent classes. 

This example won't painstakingly include all of the methods for a complete access
layer. We'll show you the important ones. We'll break this down into several sections
to deal with Blogs, Posts, and iterators. Here's the first part of our access layer:

# An access layer to map back and forth between Python objects and SQL
rows.
class Access:
    get_last_id = """
        SELECT last_insert_rowid()
    """

    def open(self, path: Path) -> None:
        self.database = sqlite3.connect(path)
        self.database.row_factory = sqlite3.Row

    def get_blog(self, id: str) -> Blog:
        query_blog = """
            SELECT * FROM blog WHERE id=?
        """
        row = self.database.execute(query_blog, (id,)).fetchone()
        blog = Blog(title=row["TITLE"])
        blog._id = row["ID"]
        blog._access = ref(self)
        return blog

    def add_blog(self, blog: Blog) -> Blog:
        insert_blog = """
            INSERT INTO blog(title) VALUES(:title)
        """
        self.database.execute(insert_blog, dict(title=blog.title))
        row = self.database.execute(self.get_last_id).fetchone()
        blog._id = str(row[0])
        blog._access = ref(self)
        return blog

In addition to opening the database, the open() method sets
Connection.row_factory to use the sqlite3.Row class instead of a simple tuple.
The Row class allows access via the numeric index, as well as the column name.
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The get_blog() method constructs a Blog object from the database row that is
fetched. Because we're using the sqlite3.Row object, we can refer to columns by
name. This clarifies the mapping between SQL and the Python class. The two
additional attributes, _id and _access must be set separately; they're part of the
access layer, and not central to the problem domain.

The add_blog() method inserts a row into the blog table based on the value of a
Blog object. This is a three-step operation. First, we create the new row. Then, we
perform an SQL query to get the row key that was assigned to the row. Finally, the
original blog instance is updated with the assigned database key and a reference to
the Access instance.

Note that our table definitions use INTEGER PRIMARY KEY AUTOINCREMENT.
Because of this, the table's primary key is the _id attribute of the row, and the
assigned row key will be available through the last_insert_rowid() function.
This allows us to retrieve the row key that was created by SQLite; we can then put
this into the Python object for future reference. Here's how we can retrieve an
individual Post object from the database:

def get_post(self, id: str) -> Post:
    query_post = """
        SELECT * FROM post WHERE id=?
    """
    row = self.database.execute(query_post, (id,)).fetchone()
    post = Post(
        title=row["TITLE"], date=row["DATE"], rst_text=row["RST_TEXT"]
    )
    post._id = row["ID"]
    # Get tag text, too
    query_tags = """
        SELECT tag.*
        FROM tag JOIN assoc_post_tag ON tag.id = assoc_post_tag.tag_id
        WHERE assoc_post_tag.post_id=?
    """
    results = self.database.execute(query_tags, (id,))
    for tag_id, phrase in results:
        post.append(phrase)
    return post

To build Post, we have two queries: first, we fetch a row from the post table to build
part of the Post object. This includes injecting the database ID into the resulting
instance. Then, we fetch the association rows joined with the rows from the tag table.
This is used to build the tag list for the Post object.
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When we save a Post object, it will also have several parts. A row must be added to
the POST table. Additionally, rows need to be added to the assoc_post_tag table. If
a tag is new, then a row might need to be added to the tag table. If the tag exists, then
we simply associate the post with an existing tag's key. Here's the add_post()
method function:

def add_post(self, blog: Blog, post: Post) -> Post:
    insert_post = """
        INSERT INTO post(title, date, rst_text, blog_id)
VALUES(:title, :date, :rst_text, :blog_id)
    """
    query_tag = """
        SELECT * FROM tag WHERE phrase=?
    """
    insert_tag = """
        INSERT INTO tag(phrase) VALUES(?)
    """
    insert_association = """
        INSERT INTO assoc_post_tag(post_id, tag_id) VALUES(:post_id,
:tag_id)
    """
    try:
        with closing(self.database.cursor()) as cursor:
            cursor.execute(
                insert_post,
                dict(
                    title=post.title,
                    date=post.date,
                    rst_text=post.rst_text,
                    blog_id=blog._id,
                ),
            )
            row = cursor.execute(self.get_last_id).fetchone()
            post._id = str(row[0])
            for tag in post.tags:
                tag_row = cursor.execute(query_tag, (tag,)).fetchone()
                if tag_row is not None:
                    tag_id = tag_row["ID"]
                else:
                    cursor.execute(insert_tag, (tag,))
                    row = cursor.execute(self.get_last_id).fetchone()
                    tag_id = str(row[0])
                cursor.execute(
                    insert_association,
                    dict(tag_id=tag_id, post_id=post._id)
                )
        self.database.commit()



Storing and Retrieving Objects via SQLite Chapter 12

[ 401 ]

    except Exception as ex:
        self.database.rollback()
        raise
    return post

The process of creating a complete post in the database involves several SQL steps.
We've used the insert_post statement to create the row in the post table. We'll also
use the generic get_last_id query to return the assigned primary key for the new
post row.

The query_tag statement is used to determine whether the tag exists in the database
or not. If the result of the query is not None, it means that a tag row was found, and
we have the ID for that row. Otherwise, the insert_tag statement must be used to
create a row; the get_last_id query must be used to determine the assigned key.

Each post is associated with the relevant tags by inserting rows into the
assoc_post_tag table. The insert_association statement creates the necessary
row. Here are two iterator-style queries to locate Blogs and Posts:

def blog_iter(self) -> Iterator[Blog]:
    query = """
        SELECT * FROM blog
    """
    results = self.database.execute(query)
    for row in results:
        blog = Blog(title=row["TITLE"])
        blog._id = row["ID"]
        blog._access = ref(self)
        yield blog

def post_iter(self, blog: Blog) -> Iterator[Post]:
    query = """
        SELECT id FROM post WHERE blog_id=?
    """
    results = self.database.execute(query, (blog._id,))
    for row in results:
        yield self.get_post(row["ID"])

The blog_iter() method function locates all the BLOG rows and builds Blog
instances from the rows. The post_iter() method function locates POST IDs that
are associated with a BLOG ID. The POST IDs are used with the get_post() method
to build the Post instances. As get_post() will perform another query against the
POST table, there's an optimization possible between these two methods.

Let's see how to implement container relationships in the next section.
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Implementing container relationships
When we looked at Blog objects in Chapter 11, Storing and Retrieving Objects via
Shelve, we defined a by_tag() method to emit useful dictionary representations of
the posts organized by the relevant tag strings. The method had a definition with a
type hint that was Dict[str, List[Dict[str, Any]]]. Because it provided
information useful for creating tags with links, the by_tag() method was a helpful
part of rendering a Blog instance as RST or HTML. Additionally, the
entries property returns the complete collection of Post instances attached to the
Blog. 

Ideally, the application model class definitions such as Blog and Post are utterly
divorced from the access layer objects, which persist them in the external storage.
These two use cases suggest the model layer objects must have references to the
access layer. There are several strategies, including the following:

A global Access object is used by client classes to perform these query
operations. This breaks the encapsulation idea: a Blog is no longer a
container for Post entries. Instead, an Access object is a container for both.
The class definitions are simplified. All other processing is made more
complex.

Include a reference to an access layer object within each Blog object,
allowing a client class to work with a Blog object unaware of an access
layer. This makes the model layer class definitions a bit more complex. It
makes the client work somewhat simpler. The advantage of this technique
is it makes the model layer objects behave more like complex Python
objects. A complex object may be forced to fetch child objects from the
database, but if this can be done transparently, it makes the overall
application somewhat simpler.

As a concrete example, we'll add a Blog.by_tag() feature. The idea is to return a
dictionary of tags and post information as a complex dictionary. This requires
considerable work by an access layer object to locate and fetch the dictionary
representations of Post instances.

There's no trivial mapping from the relational columns to objects. Therefore, an
Access class must build each class of object. As an example, the method for fetching
a Blog instance is shown as follows:

def get_blog(self, id: str) -> Blog:
    query_blog = """
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        SELECT * FROM blog WHERE id=?
    """
    row = self.database.execute(query_blog, (id,)).fetchone()
    blog = Blog(id=row["ID"], title=row["TITLE"])
    blog._access = ref(self)
    return blog

The relational query retrieves the various attributes for recreating a Blog instance. In
addition to creating the core fields, each Blog object has an optional _access
attribute. This is not provided at initialization, nor is it part of the representation or 
comparison of Blog objects. The value is a weak reference to an instance of an
Access class. This object will embody the rather complex SQL query required to do
the work. This association is inserted by the access object each time a blog instance is
retrieved.

Associating blogs, posts, and tags will require a rather complex SQL query. Here's the
SELECT statement required to traverse the associations and locate tag phrases and
associated post identifiers:

query_by_tag = """
    SELECT tag.phrase, post.id
    FROM tag
    JOIN assoc_post_tag ON tag.id = assoc_post_tag.tag_id
    JOIN post ON post.id = assoc_post_tag.post_id
    JOIN blog ON post.blog_id = blog.id
    WHERE blog.title=?
"""

This query's result set is a table-like sequence of rows with two attributes:
tag.phrase, post.id. The SELECT statement defines three join operations between
the blog, post, tag, and assoc_post_tag tables. The rules are provided via the ON
clauses within each JOIN specification. The tag table is joined with the
assoc_post_tag table by matching values of the tag.id column with values of
the assoc_post_tag.tag_id column. Similarly, the post table is associated by
matching values of the post.id column with values of
the assoc_post_tag.post_id column. Additionally, the blog table is associated by
matching values of the post.blog_id column with values of the blog.id column. 

The by_tag() method of the Access class using this query is as follows:

def post_by_tag(self, blog: Blog) -> Dict[str, List[Dict[str, Any]]]:
    results = self.database.execute(
        self.query_by_tag, (blog.title,))
    tags: DefaultDict[str, List[Dict[str, Any]]] = defaultdict(list)
    for phrase, post_id in results.fetchall():
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        tags[phrase].append(asdict(self.get_post(post_id)))
    return tags

It's important to note this complex SQL query is dissociated from the table definitions.
SQL is not an object-oriented programming language. There's no tidy class to bundle
data and processing together. Using procedural programming with SQL like this
tends to break the object model.

The by_tag() method of the blog class uses this method of the Access class to do
the actual fetches of the various posts. A client application can then do the following:

blog = some_access_object.get_blog(id=1)
tag_link = blog.by_tag()

The returned Blog instance behaves as if it was a simple Python class definition with
a simple collection of Post instances. To make this happen, we require some careful 
injection of access layer references into the returned objects.

In the next section, we'll see how to improve the performance with indices.

Improving performance with indices
One of the ways to improve the performance of a relational database such as SQLite is
to make join operations faster. The ideal way to do this is to include enough index
information that slow search operations aren't done to find matching rows.

When we define a column that might be used in a query, we should consider building
an index for that column. This means adding yet more SQL DDL statements to our
table definitions.

An index is a separate storage but is tied to a specific table and column. The SQL
looks like the following code:

CREATE INDEX ix_blog_title ON blog(title);

This will create an index on the title column of the blog table. Nothing else needs
to be done. The SQL database will use the index when performing queries based on
the indexed column. When data is created, updated, or deleted, the index will be
adjusted automatically.
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Indexes involve storage and computational overheads. An index that's rarely used
might be so costly to create and maintain that it becomes a performance hindrance
rather than a help. On the other hand, some indexes are so important that they can
have spectacular performance improvements. In all cases, we don't have direct
control over the database algorithms being used; the best we can do is create the
index and measure the performance's impact.

In some database products, defining a column to be a key might automatically
include having an index added. In other cases, it's the presence of an index that forces
a column to be considered as a unique key. The rules for this are usually stated quite
clearly in the database's DDL section. The documentation for SQLite, for example,
says this:

In most cases, UNIQUE and PRIMARY KEY constraints are implemented by
creating a unique index in the database.

It goes on to list two exceptions. One of these, the integer primary key exception, is
the design pattern we've been using to force the database to create surrogate keys for
us. Therefore, our integer primary key design will not create any additional indices.

In the next section, we'll discuss adding an ORM layer.

Adding an ORM layer
There are a fairly large number of Python ORM projects. A list of these can be found
at https://wiki.python.org/moin/HigherLevelDatabaseProgramming.

We're going to pick just one of these as an example. We'll use SQLAlchemy because it
offers us a number of features and is reasonably popular. As with many things,
there's no best; other ORM layers have different advantages and disadvantages.

Because of the popularity of using a relational database to support web development,
web frameworks often include ORM layers. Django has its own ORM layer, as does
web.py. In some cases, we can tease the ORMs out of the larger framework.
However, it seems simpler to work with a standalone ORM.

The documentation, installation guide, and code for SQLAlchemy is available at
http://www.sqlalchemy.org. When installing, using --without-cextensions can
simplify the process if the high-performance optimizations aren't required.

https://wiki.python.org/moin/HigherLevelDatabaseProgramming
http://www.sqlalchemy.org
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It's important to note that SQLAlchemy can completely replace all of an application's
SQL statements with first-class Python constructs. This has the profound advantage
of allowing us to write applications in a single language, Python, even though a
second language, SQL, is used under the hood as part of the data access layer. This
can save some complexity in the development and debugging stages.

This does not, however, remove the obligation to understand the underlying SQL
database constraints and how our design must fit within these constraints. An ORM
layer doesn't magically obviate the design considerations. It merely changes the
implementation language from SQL to Python.

We'll design an ORM-friendly class in the next section.

Designing ORM-friendly classes
When using an ORM, we will fundamentally change the way we design and
implement our persistent classes. We're going to expand the semantics of our class
definitions to have the following three distinct levels of meaning:

The class will be used to create Python objects. The method functions are
used by these objects.
The class will also describe an SQL table and can be used by the ORM to
create the SQL DDL that builds and maintains the database structure. The
attributes will be mapped to SQL columns.
The class will also define the mappings between the SQL table and Python
class. It will be the vehicle to turn Python operations into SQL DML and
build Python objects from SQL query results.

Most ORMs are designed to use descriptors to formally define the attributes of our
class. We do not simply define attributes in the __init__() method. For more
information on descriptors, see Chapter 4, Attribute Access, Properties, and Descriptors.

SQLAlchemy requires us to build a declarative base class. This base class provides a
metaclass for our application's class definitions. It also serves as a repository for the
metadata that we're defining for our database. If we follow the defaults, it's easy to
call this class Base.

Here's the list of imports that might be helpful:

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Table
from sqlalchemy import (
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    BigInteger,
    Boolean,
    Date,
    DateTime,
    Enum,
    Float,
    Integer,
    Interval,
    LargeBinary,
    Numeric,
    PickleType,
    SmallInteger,
    String,
    Text,
    Time,
    Unicode,
    UnicodeText,
    ForeignKey,
)
from sqlalchemy.orm import relationship, backref

We imported the essential definitions to create a column of a table, column, and to
create the rare table that doesn't specifically map to a Python class, Table. We
imported all of the generic column type definitions. We'll only use a few of these
column types. Not only does SQLAlchemy define these generic types; it defines the
SQL standard types, and it also defines vendor-specific types for the various
supported SQL dialects. It is best to stick to the generic types and allow SQLAlchemy
to map between generic, standard, and vendor types.

We also imported two helpers to define the relationships among tables,
relationship, and backref. SQLAlchemy's metaclass is built by the
declarative_base() function as follows:

Base = declarative_base()

The Base object must be the superclass for any persistent class that we're going to
define. We'll define three tables that are mapped to Python classes. We'll also define a
fourth table that's simply required by SQL to implement a many-to-many
relationship.

Here's the Blog class:

class Blog(Base):
    __tablename__ = "BLOG"
    id = Column(Integer, primary_key=True)
    title = Column(String)
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    def as_dict(self):
        return dict(
            title=self.title,
            underline="=" * len(self.title),
            entries=[e.as_dict() for e in self.entries],
        )

Our Blog class is mapped to a table named "BLOG". We've included two descriptors
for the two columns we want in this table. The id column is defined as an Integer
primary key. Implicitly, this will be an autoincrement field so that surrogate keys are
generated for us.

The title column is defined as a generic string. We could have used Text, Unicode, or
even UnicodeText for this. The underlying engine might have different
implementations for these various types. In our case, SQLite will treat all of these
nearly identically. Also note that SQLite doesn't need an upper limit on the length of
a column; other database engines might require an upper limit on the size of String.

The as_dict() method function refers to an entries collection that is clearly not
defined in this class. When we look at the definition of the Post class, we'll see how
this entries attribute is built. Here's the definition of the Post class:

class Post(Base):
    __tablename__ = "POST"
    id = Column(Integer, primary_key=True)
    title = Column(String)
    date = Column(DateTime)
    rst_text = Column(UnicodeText)
    blog_id = Column(Integer, ForeignKey("BLOG.id"))
    blog = relationship("Blog", backref="entries")
    tags = relationship("Tag", secondary=assoc_post_tag,
backref="posts")

    def as_dict(self):
        return dict(
            title=self.title,
            underline="-" * len(self.title),
            date=self.date,
            rst_text=self.rst_text,
            tags=[t.phrase for t in self.tags],
        )

This class has five attributes, two relationships, and a method function. The id
attribute is an integer primary key; this will have an autoincremented value by
default. The title attribute is a simple string.
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The date attribute will be a DateTime column; rst_text is defined as UnicodeText
to emphasize our expectation of any Unicode character in this field.

The blog_id is a foreign key reference to the parent blog that contains this post. In
addition to the foreign key column definition, we also included an explicit
relationship definition between the post and the parent blog. This relationship
definition becomes an attribute that we can use for navigation from the post to the
parent blog.

The backref option includes a backward reference that will be added to the Blog
class. This reference in the Blog class will be the collection of Posts that are
contained within the Blog. The backref option names the new attribute in the Blog
class to reference the child Posts.

The tags attribute uses a relationship definition; this attribute will navigate via an
association table to locate all the Tag instances associated with the post. We'll look at
the following association table. This, too, uses backref to include an attribute in the
Tag class that references the related collection of the Post instances.

The as_dict() method makes use of the tags attribute to locate all of Tags
associated with this Post. Here's a definition for the Tag class:

class Tag(Base):
    __tablename__ = "TAG"
    id = Column(Integer, primary_key=True)
    phrase = Column(String, unique=True)

We defined a primary key and a String attribute. We included a constraint to ensure
that each tag is explicitly unique. An attempt to insert a duplicate will lead to a
database exception. The relationship in the Post class definition means that
additional attributes will be created in this class.

As required by SQL, we need an association table for the many-to-many relationship
between tags and posts. This table is purely a technical requirement in SQL and need
not be mapped to a Python class:

assoc_post_tag = Table(
    "ASSOC_POST_TAG",
    Base.metadata,
    Column("POST_ID", Integer, ForeignKey("POST.id")),
    Column("TAG_ID", Integer, ForeignKey("TAG.id")),
)
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We have to explicitly bind this to the Base.metadata collection. This binding is
automatically a part of the classes that use Base as the metaclass. We defined a table
that contains two Column instances. Each column is a foreign key to one of the other
tables in our model.

Let's see how to build the schema with the ORM layer.

Building the schema with the ORM layer
In order to connect to a database, we'll need to create an engine. One use for the
engine is to build the database instance with our table declarations. The other use for
the engine is to manage the data from a session, which we'll look at later. Here's a
script that we can use to build a database:

from sqlalchemy import create_engine
engine = create_engine('sqlite:///./p2_c11_blog2.db', echo=True)
Base.metadata.create_all(engine)

When we create an Engine instance, we use a URL-like string that names the vendor
product and provides all the additional parameters required to create the connection
to that database. In the case of SQLite, the connection is a filename. In the case of
other database products, there might be server host names and authentication
credentials.

Once we have the engine, we've done some fundamental metadata operations. We've
shown you create_all(), which builds all of the tables. We might also perform a
drop_all(), which will drop all of the tables, losing all the data. We can, of course,
create or drop an individual schema item too.

If we change a table definition during software development, it will not automatically
mutate the SQL table definition. We need to explicitly drop and rebuild the table. In
some cases, we might want to preserve some operational data, leading to potentially
complex surgery to create and populate new table(s) from old table(s).

The echo=True option writes log entries with the generated SQL statements. This can
be helpful to determine whether the declarations are complete and create the
expected database design. Here's a snippet of the output that is produced:

CREATE TABLE "BLOG" (
    id INTEGER NOT NULL,
    title VARCHAR,
    PRIMARY KEY (id)
)
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CREATE TABLE "TAG" (
    id INTEGER NOT NULL,
    phrase VARCHAR,
    PRIMARY KEY (id),
    UNIQUE (phrase)
)

CREATE TABLE "POST" (
    id INTEGER NOT NULL,
    title VARCHAR,
    date DATETIME,
    rst_text TEXT,
    blog_id INTEGER,
    PRIMARY KEY (id),
    FOREIGN KEY(blog_id) REFERENCES "BLOG" (id)
)

CREATE TABLE "ASSOC_POST_TAG" (
    "POST_ID" INTEGER,
    "TAG_ID" INTEGER,
    FOREIGN KEY("POST_ID") REFERENCES "POST" (id),
    FOREIGN KEY("TAG_ID") REFERENCES "TAG" (id)
)

This shows SQL that the CREATE TABLE statements were created based on our class
definitions. This can be helpful to see how the ORM definitions are implemented in a
database. 

Once the database has been built, we can create, retrieve, update, and delete objects.
In order to work with database objects, we need to create a session that acts as a cache
for the ORM-managed objects.

We'll see how to manipulate objects with the ORM layer in the next section.

Manipulating objects with the ORM layer
In order to work with objects, we'll need a session cache. This is bound to an engine.
We'll add new objects to the session cache. We'll also use the session cache to query
objects in the database. This assures us that all objects that need to be persistent are in
the cache. Here is a way to create a working session:

from sqlalchemy.orm import sessionmaker
Session = sessionmaker(bind=engine)
session = Session()
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We used the SQLAlchemy sessionmaker() function to create a Session class. This
is bound to the database engine that we created previously. We then used the
Session class to build a session object that we can use to perform data
manipulation. A session is required to work with the objects in general.

Generally, we build one sessionmaker class along with the engine. We can then use
that one sessionmaker class to build multiple sessions for our application
processing.

For simple objects, we create them and load them into the session, as in the following
code:

blog = Blog(title="Travel 2013")
session.add(blog)

This puts a new Blog object into the session named session. The Blog object is not
necessarily written to the database. We need to commit the session before the database
writes are performed. In order to meet the atomicity requirements, we'll finish
building a post before committing the session.

First, we'll look up the Tag instances in the database. If they don't exist, we'll create
them. If they do exist, we'll use the tag found in the database as follows:

tags = []
for phrase in "#RedRanger", "#Whitby42", "#ICW":
    try:
        tag = session.query(Tag).filter(Tag.phrase == phrase).one()
    except sqlalchemy.orm.exc.NoResultFound:
        tag = Tag(phrase=phrase)
        session.add(tag)
    tags.append(tag)

We use the session.query() function to examine instances of the given class. Each
filter() function appends a criterion to the query. The one() function ensures that
we've found a single row. If an exception is raised, then it means that Tag doesn't
exist. We need to build a new Tag and add it to the session.

Once we've found or created the Tag instance, we can append it to a local list named
tags; we'll use this list of Tag instances to create the Post object. Here's how we
build a Post:

p2 = Post(date=datetime.datetime(2013,11,14,17,25),
    title="Hard Aground",
    rst_text="""Some embarrassing revelation. Including ☹ and ⚓""",
    blog=blog,
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    tags=tags
    )
session.add(p2)
blog.posts = [p2]

This includes a reference to the parent blog. It also includes the list of Tag instances
that we built (or found in the database).

The Post.blog attribute was defined as a relationship in the class definitions. When
we assign an object, SQLAlchemy plucks out the proper ID values to create the
foreign key reference that the SQL database uses to implement the relationship.

The Post.tags attribute was also defined as a relationship. The Tag objects are
referenced via the association table. SQLAlchemy tracks the ID values properly to
build the necessary rows in the SQL association table for us.

In order to associate the Post with the Blog, we'll make use of the Blog.posts
attribute. This, too, was defined as a relationship. When we assign a list of Post
objects to this relationship attribute, the ORM will build the proper foreign key
reference in each Post object. This works because we provided the backref attribute
when defining the relationship. Finally, we commit the session as follows:

session.commit()

The database inserts are all handled in a flurry of automatically generated SQL. The
objects remained cached in the session. If our application continues using this session
instance, then the pool of objects remains available without necessarily performing
any actual queries against the database.

If, on the other hand, we would like to be absolutely sure that any updates written by
other concurrent processes are included in a query, we can create a new, empty
session for that query. When we discard a session and use an empty session, objects
must be fetched from the database to refresh the session.

We can write a simple query as follows to examine and print all of the Blog objects:

session = Session()
for blog in session.query(Blog):
    print("{title}\n{underline}\n".format(**blog.as_dict()))
    for p in blog.entries:
        print(p.as_dict())

This will retrieve all the Blog instances. The Blog.as_dict() method will retrieve
all of the posts within a blog. The Post.as_dict() will retrieve all of the tags. The
SQL queries will be generated and executed automatically by SQLAlchemy.
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We didn't include the rest of the template-based formatting from Chapter 10,
Serializing and Saving - JSON, YAML, Pickle, CSV, and XML. It doesn't change. We are
able to navigate from the Blog object via the entries list to the Post objects without
writing elaborate SQL queries. Translating navigation into queries is the job of
SQLAlchemy. Using a Python iterator is sufficient for SQLAlchemy to generate the
right queries to refresh the cache and return the expected objects.

If we have echo=True defined for the Engine instance, then we'll be able to see the
sequence of SQL queries performed to retrieve the Blog, Post, and Tag instances.
This information can help us understand the workload that our application places on
the database server process.

Let's see how to query posts that are given a tag.

Querying posts that are given a tag
An important benefit of a relational database is our ability to follow the relationships
among the objects. Using SQLAlchemy's query capability, we can follow the
relationship from Tag to Post and locate all Posts that share a given Tag.

A query is a feature of a session. This means that objects already in the session don't
need to be fetched from the database, which is a potential time saver. Objects not in
the session are cached in the session so that updates or deletes can be handled at the
time of the commit.

To gather all of the posts that have a given tag, we need to use the intermediate
association table as well as the Post and Tag tables. We'll use the query method of
the session to specify what kinds of objects we expect to get back. We'll use the fluent
interface to join in the various intermediate tables and the final table that we want
with the selection criteria. Here's how it looks:

session2 = Session()
results = (
    session2.query(Post).join(assoc_post_tag).join(Tag).filter(
        Tag.phrase == "#Whitby42"
    )
)
for post in results:
    print(
        post.blog.title, post.date,
        post.title, [t.phrase for t in post.tags]
    )
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The session.query() method specifies the table that we want to see. The join()
methods identify the additional tables that must be matched. Because we provided
the relationship information in the class definitions, SQLAlchemy can work out the
SQL details required to use primary keys and foreign keys to match rows. The final
filter() method provides the selection criteria for the desired subset of rows.
Here's the SQL that was generated:

SELECT "POST".id AS "POST_id",
    "POST".title AS "POST_title",
    "POST".date AS "POST_date",
    "POST".rst_text AS "POST_rst_text",
    "POST".blog_id AS "POST_blog_id"
FROM "POST"
JOIN "ASSOC_POST_TAG" ON "POST".id = "ASSOC_POST_TAG"."POST_ID"
JOIN "TAG" ON "TAG".id = "ASSOC_POST_TAG"."TAG_ID"
WHERE "TAG".phrase = ?

The Python version is a bit easier to understand, as the details of the key matching
can be elided. The print() function uses post.blog.title to navigate from the
Post instance to the associated blog and show the title attribute. If the blog was in
the session cache, this navigation is done quickly. If the blog was not in the session
cache, it will be fetched from the database.

This navigation behavior applies to [t.phrase for t in post.tags] too. If the
object is in the session cache, it's simply used. In this case, the collection of the Tag
objects associated with a post might lead to a complex SQL query as follows:

SELECT
    "TAG".id AS "TAG_id",
    "TAG".phrase AS "TAG_phrase"
FROM "TAG", "ASSOC_POST_TAG"
WHERE ? = "ASSOC_POST_TAG"."POST_ID"
AND "TAG".id = "ASSOC_POST_TAG"."TAG_ID"

In Python, we simply navigated via post.tags. SQLAlchemy generated and
executed the SQL for us.

Defining indices in the ORM layer
One of the ways to improve the performance of a relational database such as SQLite is
to make join operations faster. The ideal way to do this is to include enough index
information so that slow search operations aren't done to find matching rows.
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When we define a column that might be used in a query, we should consider building
an index for that column. This is a simple process that uses SQLAlchemy. We simply
annotate the attribute of the class with index=True.

We can make fairly minor changes to our Post table, for example. We can do this to
add indexes:

class Post(Base):
    __tablename__ = "POST"
    id = Column(Integer, primary_key=True)
    title = Column(String, index=True)
    date = Column(DateTime, index=True)
    blog_id = Column(Integer, ForeignKey('BLOG.id'), index=True)

Adding two indexes for the title and date will usually speed up queries for the posts
by the title or by the date. There's no guarantee that there will be an improvement in
the performance. Relational database performance involves a number of factors. It's
important to measure the performance of a realistic workload both with the index and
without it.

Adding an index by blog_id, similarly, might speed up the join operation between
rows in the Blog and Post tables. It's also possible that the database engine uses an
algorithm that doesn't benefit from having this index available.

Indexes involve storage and computational overheads. An index that's rarely used
might be so costly to create and maintain that it becomes a problem, not a solution.
On the other hand, some indexes are so important that they can have spectacular
performance improvements. In all cases, we don't have direct control over the
database algorithms being used; the best we can do is create the index and measure
the performance impact.

Let's take a look at schema evolution in the next section.

Schema evolution
When working with an SQL database, we have to address the problem of schema
evolution. Our objects have a dynamic state and a (relatively) static class definition.
We can easily persist the dynamic state of an object. Our class defines the schema for
the persistent data. The ORM provides mappings from our class to an SQL
implementation.
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When we change a class definition, how can we fetch objects from the database? If the
database must change, how do we upgrade the Python mappings and still access the
data? A good design often involves some combination of several techniques.

The changes to the methods and properties of a Python class will not change the
mapping to the SQL rows. These can be termed minor changes, as the tables in the
database are still compatible with the changed class definition. A new software
release can have a new minor version number.

Some changes to Python class attributes will not necessarily change the persisted
object state. Adding an index, for example, doesn't change the underlying table. SQL
can be somewhat flexible when converting the data types from the database to the
Python objects. An ORM layer can also add flexibility. In some cases, we can make
some class or database changes and call it a minor version update because the
existing SQL schema will still work with new class definitions. 

Other changes to the SQL table definitions will need to involve modifying the
persisted objects. These can be called major changes when the existing database rows
will no longer be compatible with the new class definition. These kinds of changes
should not be made by modifying the original Python class definitions. These kinds of
changes should be made by defining a new subclass and providing an updated
factory function to create instances of either the old or new class.

Tools such as Alembic (see https:/ ​/ ​pypi.​org/ ​project/ ​alembic/ ​) and Migrate
(https:/​/​sqlalchemy- ​migrate. ​readthedocs. ​io/​en/ ​latest/ ​) can help manage 
schema evolution. A disciplined history of schema migration steps is often essential
for properly converting from old data to new data. 

There are two kinds of techniques used for transforming the schema from one version
to the next. Any given application will use some combination of these techniques, as
follows:

SQL ALTER statements modify a table in place. There are a number of
constraints and restrictions on what changes can be done with an ALTER.
This generally covers a number of minor changes.
Creating new tables and dropping old tables. Often, SQL schema changes
require a new version of tables from data in the old tables. For a large
database, this can be a time-consuming operation. For some kinds of
structural changes, it's unavoidable.
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SQL database schema changes typically involve running a one-time conversion script.
This script will use the old schema to query the existing data, transform it to new
data, and use the new schema to insert new data into the database. Of course, this
must be tested on a backup database before being run on the user's live operational
database. Once the schema change has been accomplished, the old schema can be
safely ignored and later dropped to free up storage.

Tools such as Alembic require two separate conversion scripts. The upgrade script
will move the schema forward to the new state. A downgrade script will move the
schema back to the previous state. Debugging a migration may involve doing an
upgrade, finding a problem, doing a downgrade, and using the previous software
until the problem can be sorted out.

Summary
We looked at the basics of using SQLite in three ways: directly, via an access layer,
and via the SQLAlchemy ORM. We have to create SQL DDL statements; we can do
this directly in our applications or in an access layer. We can also have DDL built by
the SQLAlchemy class definitions. To manipulate data, we'll use SQL DML
statements; we can do this directly in a procedural style, or we can use our own
access layer or SQLAlchemy to create the SQL.

Design considerations and tradeoffs
One of the strengths of the sqlite3 module is that it allows us to persist distinct
objects, each with its own unique change history. When using a database that
supports concurrent writes, we can have multiple processes updating the data,
relying on SQLite to handle concurrency via its own internal locking.

Using a relational database imposes numerous restrictions. We must consider how to
map our objects to rows of tables in the database as follows:

We can use SQL directly, using only the supported SQL column types and
largely eschewing object-oriented classes.
We can use a manual mapping that extends SQLite to handle our objects as
SQLite BLOB columns.
We can write our own access layer to adapt and convert between our
objects and SQL rows.
We can use an ORM layer to implement a row-to-object mapping.
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Mapping alternatives
The problem with mixing Python and SQL is that there can be an impetus toward
something that we might call the All Singing, All Dancing, All SQL solution. The idea
here is that the relational database is somehow the ideal platform and Python
corrupts this by injecting needless object-oriented features.

The all-SQL, object-free design strategy is sometimes justified as being more
appropriate for certain kinds of problems. Specifically, the proponents will point out
summarizing large sets of data using the SQL GROUP BY clause as an ideal use for
SQL.

This kind of processing is implemented very effectively by Python's defaultdict
and Counter. The Python version is often so effective that a small Python program
querying lots of rows and accumulating summaries using defaultdict might be
faster than a database server performing SQL with GROUP BY.

When in doubt, measure. When confronted with claims that SQL should magically be
faster than Python, you should gather evidence. This data gathering is not confined to
one-time initial technical spike situations, either. As usage grows and changes, the
relative merit of SQL database versus Python will shift too. A home-brewed access
layer will tend to be highly specific to a problem domain. This might have the
advantage of high performance and relatively transparent mapping from row to
object. It might have the disadvantage of being annoying to maintain every time a
class changes or the database implementation changes.

A well-established ORM project might involve some initial effort to learn the features
of the ORM, but the long-term simplifications are important benefits. Learning the
features of an ORM layer can involve both initial work and rework as lessons are
learned. The first attempts at a design that has good object features and still fits
within the SQL framework will have to be redone as the application trade-offs and
considerations become clearer.

Key and key design
Because SQL depends on keys, we must take care to design and manage keys for our
various objects. We must design a mapping from an object to the key that will be used
to identify that object. One choice is to locate an attribute (or combination of
attributes) that contains proper primary keys and cannot be changed. Another choice
is to generate surrogate keys that cannot be changed; this allows all other attributes to
be changed.
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Most relational databases can generate surrogate keys for us. This is usually the best
approach. For other unique attributes or candidate key attributes, we can define SQL
indexes to improve the processing performance.

We must also consider the foreign key relationships among objects. There are several
common design patterns: one-to-many, many-to-one, many-to-many, and optional
one-to-one. We need to be aware of how SQL uses keys to implement these
relationships and how SQL queries will be used to fill in the Python collections.

Application software layers
Because of the relative sophistication available when using sqlite3, our application
software must become more properly layered. Generally, we'll look at software
architectures with the following layers:

The presentation layer: This is a top-level user interface, either a web
presentation or a desktop GUI.
The application layer: This is the internal service or controllers that make
the application work. This could be called the processing model, and is
different from the logical data model.
The business layer or the problem domain model layer: These are the
objects that define the business domain or the problem space. This is
sometimes called the logical data model. We looked at how we might
model these objects using a microblog blog and post example.
Infrastructure: This often includes several layers, as well as other cross-
cutting concerns, such as logging, security, and network access.
The data access layer: These are protocols or methods to access the data
objects. It is often an ORM layer. We've looked at SQLAlchemy. There are
numerous other choices for this.
The persistence layer: This is the physical data model as seen in file
storage. The sqlite3 module implements persistence. When using an
ORM layer such as SQLAlchemy, we only reference SQLite when creating
an engine.

When looking at sqlite3 in this chapter and shelve in Chapter 11, Storing and
Retrieving Objects via Shelve, it becomes clear that mastering object-oriented
programming involves some higher-level design patterns. We can't simply design
classes in isolation—we need to look at how classes are going to be organized into
larger structures.
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Looking forward
In the next chapter, we'll look at transmitting and sharing objects using REST. This
design pattern shows us how to manage the representation of the state and how to
transfer the object state from process to process. We'll leverage a number of
persistence modules to represent the state of an object that is being transmitted.

In Chapter 14, Configuration Files and Persistence, we'll look at the configuration files.
We'll look at several ways to make use of persistent representations of data that
controls an application.



13
Transmitting and Sharing

Objects
We'll expand on our serialization techniques for the object representation started in
Chapter 10, Serializing and Saving – JSON, YAML, Pickle, CSV, and XML. When we
need to transmit an object, we perform some kind of REpresentational State Transfer
(REST), which includes serializing a representation of the state of the object. This
representation can then be transferred to another process (usually on another host
computer); the receiving process can then build a version of the original object from
the representation of the state and a local copy of the class definition.

Decomposing REST processing into the two aspects of representation and transfer lets
us solve these problems independently. There are a variety of solutions that will lead
to many workable combinations. We'll limit ourselves to two popular mechanisms:
the RESTful web service, and the multiprocessing queue. Both will serialize and
transmit objects between processes.

For web-based transfers, we'll leverage the Hypertext Transfer Protocol (HTTP). This
allows us to implement the Create-Retrieve-Update-Delete (CRUD) processing 
operations based on the HTTP methods of POST, GET, PATCH, PUT, and DELETE. We
can use this to build a RESTful web service. Python's Web Service Gateway Interface
(WSGI) standard defines a general pattern for web services. Any practical application
will use one of the available web frameworks that implement the WSGI
standard. RESTful web services often use a JSON representation of object state.

In addition to HTTP, we'll look at local transfers among processes on the same host.
This can be done more efficiently using local message queues provided by the
multiprocessing module. There are numerous sophisticated third-party queue
management products. We'll focus on the Python Standard Library offering.
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There is an additional consideration when working with RESTful transfers: a client
providing data to a server might not be trustworthy. To cope with this, we must
implement some security in cases where untrustworthy data might be present. For
some representations, specifically JSON, there are few security considerations. YAML
introduces a security concern and supports a safe load operation; see Chapter 10,
Serializing and Saving – JSON, YAML, Pickle, CSV, and XML, for more information on
this. Because of this security issue, the pickle module also offers a restricted
unpickler that can be trusted to not import unusual modules and execute damaging
code.

In this chapter, we will cover the following topics:

Class, state, and representation
Using HTTP and REST to transmit objects
Using Flask to build a RESTful web service
Handling stateful RESTful services
Creating a secure RESTful service
Implementing REST with a web application framework
Using a message queue to transmit objects

Technical requirements
The code files for this chapter are available at https:/ ​/ ​git.​io/ ​fj2U6.

Class, state, and representation
Many applications can be decomposed into the processing done by servers and by
clients. A single server will exchange data with multiple remote clients. In a hybrid
situation, an application can be both a client of other remote computers, and a server
to remote clients. There is an intentional asymmetry that is used to simplify the
definition of the protocol: a client makes a request to the server, and the server
responds to the client. The client initiates each request and waits for the response.
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Separating clients and servers means that objects must be transmitted between the
two processes. We can decompose the larger problem into two smaller problems. The
inter-networking protocols define a way to transmit bytes from a process on one host
to a process on another host. Serialization techniques transform our objects into bytes
and then reconstruct the bytes from the objects. It helps, when designing classes,
to focus on object state as the content exchanged between processes.

Unlike the object state, we transmit class definitions through an entirely separate
method. Class definitions change relatively slowly, so we exchange the class
definitions by the definition of the class in the form of the Python source. If we need
to supply a class definition to a remote host, we can install the Python source code on
that host.

When a client is written in a language other than Python, then an equivalent class
definition must be provided. A JavaScript client, for example, will construct an object
from the serialized JSON state of the Python object on the server. Two objects will
have a similar state by sharing a common representation.

We're making a firm distinction between the entire, working object in Python's
working memory, and the representation of the object's state that is transmitted. The
whole Python object includes the class, superclasses, and other relationships in the
Python runtime environment. The object's state may be represented by a simple
string. Consider the following:

>>> from dataclasses import dataclass, asdict
>>> import json

>>> @dataclass
... class Greeting:
...     message: str
>>> g = Greeting("Hello World")
>>> text = json.dumps(asdict(g))
>>> text
'{"message": "Hello World"}'
>>> text.encode('utf-8')
b'{"message": "Hello World"}'

This example shows a simple class definition, Greeting, where the state is
characterized by a single attribute value, message. The asdict() function, applied
to an instance of a dataclass, creates a dictionary that we can serialize in JSON
notation. Because the networks transmit bytes, the use of text.encode() creates a
stream of bytes. This tiny example shows how the data class definition is entirely 
separate from the representation of the state of this example instance of the class.
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Let's see how we can use HTTP and REST to transmit objects.

Using HTTP and REST to transmit objects
HTTP is defined through a series of Request for Comments (RFC) documents. We
won't review all of the particulars, but we will touch on the three main points.

The HTTP protocol includes requests and replies. A request includes a method, a
Uniform Resource Identifier (URI), some headers, and optional attachments. A
number of available methods are defined in the standards. Most browsers focus on
making GET and POST requests. The standard browsers include the GET, POST, PUT,
and DELETE requests, which are the ones that we'll leverage, because they correspond
to CRUD operations. We'll ignore most of the headers and focus on the path portion
of the URI.

An HTTP reply includes a status code number and reason text, as well as any headers
and attached data. There are a variety of status code numbers. The response codes are
generally understood according to these patterns:

The 1xx codes are informational, and not used widely in RESTful services.
The 2xx replies indicate success.
The 3xx status codes indicate the redirection of a request to a different host
or a different URI path.
The 4xx response codes tell the client that the request is erroneous, and the
reply should include a more detailed error message.
The 5xx codes generally mean that the server has had some kind of
problem.

Of these general ranges, we're interested in just a few, as follows:

The 200 status code is the generic OK response from a server.
The 201 status code is the Created response, which might be used to show
us that a POST request worked and an object was successfully created.
The 204 status code is the No Content response, which might be used for
a DELETE request. 
The 400 status code is a Bad Request response, used to reject invalid data
used to POST, PUT, or PATCH an object.
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The 401 status code is Unauthorized; this would be used in a secure
environment to reject invalid credentials. It may also be used if valid user
credentials are used, but the user lacks the authorization to take the action
they requested.
The 404 status code is Not Found, which is generally used when the URI
path information does not identify a resource. 

HTTP is defined as stateless. The server is not expected to have any recollection of
previous interactions with a client. In some cases, this is a profound limitation, and
there are several commonly used workarounds to manage state by exchanging state
details with the client of the transaction. For interactive websites, cookies are sent
from the server to the client. The client embeds the cookies with the request to the
server, allowing the server to recover the transaction state and offer rich, stateful
application behavior.

Cookies are often used when a web server provides the user experience through
HTML forms. By sending cookies back to the browser, a server can track user login
and session information. As the user takes actions, the server records details in the
session objects that are serialized as cookies. 

For RESTful web services, however, the client will not be a person sitting at a
browser. The client of a RESTful service will be an application that can maintain the
state of the user experience. This means that RESTful services can leverage simpler,
stateless HTTP without cookies. This also means that states such as logged-in and
logged-out don't apply to web services. For authentication purposes, credentials of
some kind are often provided with each request. This imposes an obligation to secure
the connection. In practice, all RESTful web servers will use a Secure Sockets Layer
(SSL) and an HTTPS connection.

In the next section, we'll look at how to implement CRUD operations via REST.

Implementing CRUD operations via REST
We'll look at three fundamental ideas behind the REST protocols. The first idea is to
use the text serialization of an object's state. The second is to use the HTTP request
URI to name an object; a URI can include any level of detail, including a schema,
module, class, and object identity in a uniform format. Finally, we can use the HTTP
method to map to CRUD rules to define the action to be performed on the named
object.
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The use of HTTP for RESTful services pushes the envelope of the original definitions
of HTTP requests and replies. This means that some of the request and reply
semantics are open to active, ongoing discussion. Rather than presenting all of the
alternatives, we'll suggest an approach. Our focus is on the Python language, not the
more general problem of designing RESTful web services. A REST server will often
support CRUD operations via the following five abstract use cases:

Create: We'll use an HTTP POST request to create a new object and a URI
that provides class information only. A path such as /app/blog/ might
name the class. The response could be a 201 message that includes a copy
of the object as it was finally saved. The returned object information may
include the URI assigned by the RESTful server for the newly created object
or the relevant keys to construct the URI. A POST request is expected to
change the RESTful resources by creating something new.
Retrieve – Search: This is a request that can retrieve multiple objects. We'll
use an HTTP GET request and a URI that provides search criteria, usually in
the form of a query string after the ? character. The URI might be
/app/blog/?title="Travel 2012-2013". Note that GET never makes a
change to the state of any RESTful resources.
Retrieve – Single Instance: This is a request for a single object. We'll use an
HTTP GET request and a URI that names a specific object in the URI path.
The URI might be /app/blog/id/. While the response is expected to be a
single object, it might still be wrapped in a list to make it compatible with a
search response. As this response is GET, there's no change in the state.
Update: We'll use an HTTP PUT request and a URI that identifies the object
to be replaced. We can also use an HTTP PATCH request with a document
payload that provides an incremental update to an object. The URI might
be /app/blog/id/. The response could be a 200 message that includes a
copy of the revised object. 
Delete: We'll use an HTTP DELETE request and a URI that looks like
/app/blog/id/. The response could be a simple 204 NO
CONTENT message without any object details in the response.

As the HTTP protocol is stateless, there's no provision for logon and logoff. Each
request must be separately authenticated. We will often make use of the HTTP
Authorization header to provide the username and password credentials. When
doing this, we absolutely must also use SSL to provide security for the content of the
Authorization header. There are more sophisticated alternatives that leverage
separate identity management servers to provide authentication tokens rather than
credentials.
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The next section shows how to implement non-CRUD operations.

Implementing non-CRUD operations
Some applications will have operations that can't easily be characterized via CRUD
verbs. We might, for example, have a Remote Procedure Call (RPC) style application 
that performs a complex calculation. Nothing is really created on the server. We
might think of RPC as an elaborate retrieve operation where the calculation's
arguments are provided in each request.

Most of the time, these calculation-focused operations can be implemented as the GET
requests, where there is no change to the state of the objects in the server. An RPC-
style request is often implemented via the HTTP POST method. The response can
include a Universally Unique Identifier (UUID) as part of tracking the request and
responses. It allows for the caching of responses in the cases where they are very
complex or take a very long time to compute. HTTP headers, including ETag and If-
None-Match, can be used to interact with the caching to optimize performance.

This is justified by the idea of preserving a log of the request and reply as part of a
non-repudiation scheme. This is particularly important in websites where is a fee is
charged for the services.

Let's take a look at the REST protocol and ACID in the next section.

The REST protocol and ACID
The ACID properties were defined in Chapter 11, Storing and Retrieving Objects via
Shelve. These properties can be summarized as Atomic, Consistent, Isolated, and
Durable. These are the essential features of a transaction that consists of multiple
database operations. These properties don't automatically become part of the REST
protocol. We must consider how HTTP works when we also need to ensure that the
ACID properties are met.

Each HTTP request is atomic; therefore, we should avoid designing an application
that makes a sequence of related POST requests and hopes that the individual steps
are processed as a single, atomic update. Instead, we should look for a way to bundle
all of the information into a single request to achieve a simpler, atomic transaction.
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Additionally, we have to be aware that requests will often be interleaved from a
variety of clients; therefore, we don't have a tidy way to handle isolation among
interleaved sequences of requests. If we have a properly multilayered design, we
should delegate the durability to a separate persistence module. In order to achieve
the ACID properties, a common technique is to define bodies for the POST, PUT, or
DELETE requests that contain all the relevant information. By providing a single
composite object, the application can perform all of the operations in an atomic
request. These larger objects become documents that might contain several items that
are part of a complex transaction.

When looking at our blog and post relationships, we see that we might want to
handle two kinds of HTTP POST requests to create a new Blog instance. The two
requests are as follows:

A blog with only a title and no additional post entries: We can easily
implement the ACID properties for this, as it's only a single object.
A composite object that is a blog plus a collection of post entries: We
need to serialize the blog and all of the relevant Post instances. This needs
to be sent as a single POST request. We can then implement the ACID
properties by creating the blog, the related posts, and returning a single
201 Created status when the entire collection of objects have been made
durable. This may involve a complex multi-statement transaction in the
database that supports the RESTful web server.

Let's look at how we can choose a representation out of JSON, XML, or YAML.

Choosing a representation – JSON, XML, or
YAML
There's no clear reason to pick a single representation; it's relatively easy to support a
number of representations. The client should be permitted to demand a
representation. There are several places where a client can specify the representation:

The client can use a part of a query string, such
as https://host/app/class/id/?form=XML. The portion of the URL
after ? uses the form value to define the output format.
The client can use a part of the URI, such
as https://host/app;XML/class/id/. The app;XML syntax names the
application, app, and the format, XML, by using a sub-delimiter of ; within
the path.
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The client can use the https://host/app/class/id/#XML fragment
identifier. The portion of the URL after # specifies a fragment, often a tag
on a heading within an HTML page. For a RESTful request, the #XML
fragment provides the format.
The client can use a separate header. The Accept header, for example, can
be used to specify the representation as part of the MIME type. We might
include Accept: application/json to specify that a JSON-formatted
response is expected.

None of these are obviously superior, but compatibility with some existing RESTful
web services may suggest a particular format. The relative ease with which a
framework parses a URI pattern may also suggest a particular format.

JSON is preferred by many JavaScript presentation layers. Other representations,
such as XML or YAML, can be helpful for other presentation layers or other kinds of
clients. In some cases, there may be yet another representation. For example, MXML
or XAML might be required by a particular client application.

In the next section, we'll see how to use Flask to build a RESTful web service.

Using Flask to build a RESTful web
service
Since the REST concepts are built on the HTTP protocol, a RESTful API is an
extension to an HTTP service. For robust, high-performance, secure operations, a
common practice is to build on a server such as Apache HTTPD or NGINX. These
servers don't support Python directly; they require an extension module to interface
with a Python application. 

Any interface between externally-facing web servers and Python will adhere to the
Web Services Gateway Interface (WSGI). For more information, see
http://www.wsgi.org. The Python standard library includes a WSGI reference
implementation. See PEP 3333, http://www.python.org/dev/peps/pep-3333/, for
details on this standard. See https://wiki.python.org/moin/WebServers for a
number of web servers that support WSGI. When working with NGINX, for example,
the uWSGI plugin provides the necessary bridge to Python.

http://www.wsgi.org
http://www.python.org/dev/peps/pep-3333/
https://wiki.python.org/moin/WebServers
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The WSGI standard defines a minimal set of features shared by all Python web
frameworks. It's challenging to work with, however, because many features of web
services aren't part of this minimal interface. For example, authentication and session
management can be implemented in a way that adheres to the WSGI standard, but it
can be rather complex.

There are several high-level application frameworks that adhere to the WSGI
standard. When we build a RESTful web service, we'll often use a framework that
makes it very easy to create our application. For the examples in this chapter, we'll
use the Flask framework. For more information, see http:/ ​/​flask. ​pocoo. ​org/ ​docs/
1.​0/​. 

A Flask application is an instance of the Flask class. An essential feature of Flask is
the routing table to map URI paths to specific functions. We'll start with a simple
application with a few routes to show how this works. First, however, we need some
objects to transfer via RESTful services.

Let's take a look at the problems faced while transferring domain objects. 

Problem-domain objects to transfer
A RESTful web server works by transferring representations of object state. We'll
define a few simple objects to transfer from a RESTful server to a RESTful client. This
application serves a collection of tuples that represent dominoes. We'll include a
property to discern whether a domino has the same value on both sides; a piece
sometimes called a spinner or a double. The core definition of the Domino class is as
follows:

from dataclasses import dataclass, asdict, astuple
from typing import List, Dict, Any, Tuple, NamedTuple
import random

@dataclass(frozen=True)
class Domino:
    v_0: int
    v_1: int

    @property
    def double(self):
        return self.v_0 == self.v_1

    def __repr__(self):
        if self.double:

http://flask.pocoo.org/docs/1.0/
http://flask.pocoo.org/docs/1.0/
http://flask.pocoo.org/docs/1.0/
http://flask.pocoo.org/docs/1.0/
http://flask.pocoo.org/docs/1.0/
http://flask.pocoo.org/docs/1.0/
http://flask.pocoo.org/docs/1.0/
http://flask.pocoo.org/docs/1.0/
http://flask.pocoo.org/docs/1.0/
http://flask.pocoo.org/docs/1.0/
http://flask.pocoo.org/docs/1.0/
http://flask.pocoo.org/docs/1.0/
http://flask.pocoo.org/docs/1.0/
http://flask.pocoo.org/docs/1.0/
http://flask.pocoo.org/docs/1.0/
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            return f"Double({self.v_0})"
        else:
            return f"Domino({self.v_0}, {self.v_1})"

When we play a game of dominoes, the tiles are often shuffled by the players and
dealt into hands. The remaining dominoes form a pile sometimes called a boneyard.
This is analogous to a deck of cards, but dominoes aren't often stacked, and can
instead be left lying in a corner of the table. In some four-player games, all 28
dominoes are used. The Boneyard class definition is as follows:

class Boneyard:

    def __init__(self, limit=6):
        self._dominoes = [
            Domino(x, y) for x in range(0, limit + 1) for y in
range(0, x + 1)
        ]
        random.shuffle(self._dominoes)

    def deal(self, tiles: int = 7, hands: int = 4) ->
List[List[Tuple[int, int]]]:
        if tiles * hands > len(self._dominoes):
            raise ValueError(f"tiles={tiles}, hands={hands}")
        return [self._dominoes[h:h + tiles]
            for h in range(0, tiles * hands, tiles)]

The individual Domino instances are created from a rather complex-looking list
comprehension. The two for clauses can be transformed into for statements that
look like the following:

for x in range(0, limit+1):
    for y in range(0, x+1):
        Domino(x, y)

This design assures that ; it will generate a Domino(2, 1) instance but will not
create a Domino(1, 2) instance. This will create the 28 dominoes in a standard
double-six set. 

Once the dominoes are shuffled, then dealing them is a matter of taking slices from
the list. When dealing hands of seven tiles, the h variable has values of 0, 7, 14, and 21.
This leads to slices as [0: 7], [7: 14], [14: 21], and [21: 28]; this divides the
pool into four hands of seven tiles each.
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A simple demonstration of how this works is shown as follows:

>>> random.seed(2)
>>> b = Boneyard(limit=6)
>>> b.deal(tiles=7, hands=2)
[[Domino(2, 0), Double(5), Domino(5, 2), Domino(5, 0), Double(0),
Domino(6, 3), Domino(2, 1)], [Domino(3, 1), Double(4), Domino(5, 1),
Domino(5, 4), Domino(6, 2), Domino(4, 2), Domino(5, 3)]]

First, a Boneyard object is built; the limit value defines this as a double-six set of 28
individual pieces. When two hands of seven tiles are dealt, a predictable pair of hands
are created because the random number generator is seeded with a fixed value, two,
for the seed.

In some games, the highest double determines who plays first. In these two hands,
the player with Double(5) would be the first to play.

Let's look at how we can create a simple application and server.

Creating a simple application and server
We'll write a very simple REST server that provides a series of hands of dominoes.
This will work by routing a URI to a function that will provide the hands. The
function must create a response object that includes one or more of the following
items:

A status code: The default is 200, which indicates success.
Headers: The default is a minimal set of response headers with the content
size.
Content: This can be a stream of bytes. In many cases, RESTful web services
will return a document using JSON notation. The Flask framework
provides us with a handy function for converting objects to JSON Notation,
jsonify().

A Flask application that deals a simple hand of dominoes can be defined as follows:

from flask import Flask, jsonify, abort
from http import HTTPStatus

app = Flask(__name__)

@app.route("/dominoes/<n>")
def dominoes(n: str) -> Tuple[Dict[str, Any], int]:
    try:
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        hand_size = int(n)
    except ValueError:
        abort(HTTPStatus.BAD_REQUEST)

    if app.env == "development":
        random.seed(2)
    b = Boneyard(limit=6)
    hand_0 = b.deal(hand_size)[0]
    app.logger.info("Send %r", hand_0)

    return jsonify(status="OK", dominoes=[astuple(d) for d in
hand_0]), HTTPStatus.OK

This shows us some of the ingredients in a Flask application. The most essential
ingredient is the Flask object itself, assigned to an app variable. In small
applications, this is often located in a module that provides a useful __name__ string
for the application. In larger applications, a __name__ string may be more helpful
than a module name to help identify log messages from the Flask object. If the
application is assigned to the app variable, then the automated Flask execution
environment will locate it. If we don't call it app, we'll have to provide a function to
start the execution.

The @app.route decorator is used for each function that will handle requests and
create responses. There are a number of features of the route definition. In this
example, we've used the parsing capability. The second item on the path is separated
and assigned to the n parameter for the dominoes() function.

Generally, there are four important steps in completing a RESTful transaction:

Parsing: The routing did some of the parsing. After the initial path
decomposition, the parameter value was checked to be sure that it would
lead to valid behavior. In case of a problem, the abort() function is used
to return an HTTP status code showing a bad request.
Evaluating: This section computes the response. In this case, a fresh set of
dominoes is created. The limit of double-six is hard-wired into this
application. To make this more useful for other games, the limit should be a
configuration value. The deal() method of the Boneyard class creates a
list of hands. This function, however, only returns a single hand, so hand_0
is assigned the first of the hands in the list returned by deal().
Logging. The Flask logger is used to write a message to a log showing the
response. In larger applications, the logging will be more complex. In some
cases, there can be multiple logs to provide separate details of
authentication or audit history.
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Responding. The response from a function in Flask can have from one to
three items in it. In this case, two values are provided. The jsonify()
function is used to return the JSON representation of a dictionary with two
keys: "status", and "dominoes". The status code is built from the value
of HTTPStatus.OK. Note that each of the Domino objects were converted
into a tuple using the dataclasses.astuple() function. These kind of
serialization considerations are an important part of REST.

The type hints that Flask functions use are generally very simple. Most functions in a
RESTful application will have some combination of the following results:

Dict[str, Any]: This is the simple result produced by jsonify(). It will
yield the default status of HTTPStatus.OK.
Tuple[Dict[str, Any], int]: This is a result with a non-default status
code.
Tuple[Dict[str, Any], int, Dict[str, str]]: This is a result with
headers in addition to a status code and a document.

Other combinations of return values are possible, but are relatively rare. A function
that implements a deletion, for example, might return only
HTTPStatus.NO_CONTENT to show success without any further details.

We can start a demonstration version of this server from the Bash or Terminal prompt
as follows:

$ FLASK_APP=ch13_ex2.py FLASK_ENV=development python -m flask run

This command sets two environment variables, then runs the flask module. The
FLASK_APP variable defines which module contains the app object. The FLASK_ENV
environment variable sets this as a development server, providing some additional
debugging support. This will produce an output similar to the following:

 * Serving Flask app "ch13_ex2.py" (lazy loading)
 * Environment: development
 * Debug mode: on
 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
 * Restarting with stat
 * Debugger is active!
 * Debugger PIN: 154-541-338
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The Flask app name, ch13_ex2.py, came from the FLASK_APP environment
variable. The development environment came from the FLASK_ENV environment
variable. debug mode was enabled because the environment was development. We
can browse the given URL to interact with those portions of the application that
happen to be browser-friendly.

This application responds to GET requests. We can use a browser to perform a request
on http://127.0.0.1:5000/dominoes/7 and see a result similar to the following:

{"dominoes": [[2, 0], [5, 5], [5, 2], [5, 0], [0, 0], [6, 3], [2, 1]],
"status": "OK"}

In the development mode, the random number generator is seeded with a fixed
value, so the value is always as shown in the preceding code. 

The response document shown above contains two features that are typical of
RESTful web services:

A status item: This is a summary of the response. In some cases, the HTTP
status code will provide similar information. In many cases, this will be far
more nuanced than the simplistic HTTP status code of 200 OK. 
The requested object: In this case, dominoes is a list of two-tuples. This is
a representation of the state of a single hand. From this, the original
Domino instances can be reconstructed by a client.

The original documents can be rebuilt with the following code:

document = response.get_json()
hand = list(Domino(*d) for d in document['dominoes'])

The client software must include the capability of parsing the JSON from the body of
the response. The Domino class definition is used to reproduce objects from the
transferred representation.

In the next section, we'll discuss more sophisticated routing and responses.

More sophisticated routing and responses
We'll look at two additional features common to Flask applications and RESTful APIs:

The first is more sophisticated path parsing.
The second is an Open API specification document.
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Flask provides several clever parsing features to decompose the path in a URI.
Perhaps one of the most useful parsers is used to extract individual field items from
the URL string. We can use this as shown in the following example:

@app.route("/hands/<int:h>/dominoes/<int:c>")
def hands(h: int, c: int) -> Tuple[Dict[str, Any], int]:
    if h == 0 or c == 0:
        return jsonify(
            status="Bad Request", error=[f"hands={h!r}, dominoes={c!r}
is invalid"]
        ), HTTPStatus.BAD_REQUEST

    if app.env == "development":
        random.seed(2)
    b = Boneyard(limit=6)
    try:
        hand_list = b.deal(c, h)
    except ValueError as ex:
        return jsonify(
            status="Bad Request", error=ex.args
        ), HTTPStatus.BAD_REQUEST
    app.logger.info("Send %r", hand_list)

    return jsonify(
        status="OK",
        dominoes=[[astuple(d) for d in hand] for hand in hand_list]
    ), HTTPStatus.OK

This uses <int:h> and <int:c> to both parse the values from the path and ensure
that the values are integers. Any requests with paths that don't match this pattern will
receive a 404 Not Found error status.

The four steps of handling the response are slightly more complex. The details are as
follows:

The parsing step includes a range check on the parameter values. In the
case of a 0 value, this will lead to 400 Bad Request errors. The pattern of
the request fits the route's template, but the values were invalid.
The evaluating step includes an exception handler. If the underlying
application model, the Boneyard object in this example, raises an
exception, this Flask container will produce a useful, informative error
message. Without this exception-handling block, ValueError would lead
to an HTTP status code of 500 Internal Server Error.
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The logging step didn't change from the previous example.
The responding step builds the list of individual hands by dealing tiles.
This uses a more complex nested list comprehension. The nested
comprehension can be read from right to left. The Python syntax is as
follows:

[[astuple(d) for d in hand] for hand in hand_list]

If we read the code in reverse, we can see that the nested comprehension
has the following structure. It processes each hand in hand_list.
Given hand, it then processes each domino in hand. The processing is
provided first, which represents the domino object, d, as a tuple. 

The goal of most RESTful web services development is to create an underlying
application model that permits simple wrapper functions such as the following
example. 

An additional feature that is central to a successful RESTful server is a specification of
the contract that the server adheres to. A document that follows the
OpenAPI specification is a useful way to present this contract. For more information
on the Open API specification, see https:/ ​/​swagger. ​io/​specification/ ​. The
document service will look as follows:

OPENAPI_SPEC = {
    "openapi": "3.0.0",
    "info": {
        "description": "Deals simple hands of dominoes",
        "version": "2019.02",
        "title": "Chapter 13. Example 2",
    },
    "paths": {}
}

@app.route("/openapi.json")
def openapi() -> Dict[str, Any]:
    return jsonify(OPENAPI_SPEC)

The specification in this example is a tiny skeleton with only a few required fields. In
many applications, the specification will be kept in a static file and served separately.
In very complex environments, there will be external references and the document
may be provided in multiple, separate sections. To an extent, it's possible to deduce
elements of the OpenAPI specification from the Flask routes themselves.

https://swagger.io/specification/
https://swagger.io/specification/
https://swagger.io/specification/
https://swagger.io/specification/
https://swagger.io/specification/
https://swagger.io/specification/
https://swagger.io/specification/
https://swagger.io/specification/
https://swagger.io/specification/
https://swagger.io/specification/
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While this is technically possible, it subverts the idea of having a formal and
independent contract for the features of the RESTful API. It seems better to have an
external contract and check compliance against that contract.

The function that implements the route does almost nothing to transform the Python 
dictionary into JSON notation and respond with a document and the default status of
200 OK.

We'll see how to implement a REST client in the next section.

Implementing a REST client
Before looking at a smarter REST server application, we'll look at writing a REST
client. The standard library has two packages useful for creating a client:
http.client and urllib. These packages both provide features required to make
RESTful requests over HTTP. Both packages include features to create requests with
bodies, include headers, add complex URLs and retrieve a result, save the result
headers, save any attachments, and track the status code. A popular alternative to
urllib is the requests package. For further information, check out http:/ ​/​docs.
python-​requests. ​org/ ​en/ ​master/ ​.

You can get the Open API specification with the following simple code:

import requests
get_openapi = requests.get(
    "http://127.0.0.1:5000/openapi.json")
if get_openapi.status_code == 200:
    document = get_openapi.json()

This will make an HTTP GET request to the given URI. The response object,
get_openapi, will be examined and a few useful fields extracted. The value
of get_openapi.status_code is the HTTP status code returned from the server.
The get_openapi.json() method will attempt to read and parse the body of the
response. If it is valid JSON, the resulting Python object can be examined further. In
the case of Open API specifications, the object will be a Python dictionary. For these
examples, we'd expect document['info']['version'] != '2019.02'. Any other
result indicates a potential problem between the client and server.

In the next section, we'll unit test the RESTful services.

http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
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Demonstrating and unit testing the RESTful
services
For proper unit testing, we want a more formal exchange between a client and a
server. The Flask framework provides test_client(), which gives us the features
required to make requests of a Flask server to be sure that the responses are correct.
Once a test client object has been created, we can make our get, post, put, patch,
and delete requests to confirm that a function behaves correctly. 

The doctest module will locate Python examples inside document strings for a
module or function. This makes it easy to include examples inside the definition of
the relevant function. Here's an example of using the doctest features to test a Flask
module:

@app.route("/openapi.json")
def openapi() -> Dict[str, Any]:
    """
    >>> client = app.test_client()
    >>> response = client.get("/openapi.json")
    >>> response.get_json()['openapi']
    '3.0.0'
    >>> response.get_json()['info']['title']
    'Chapter 13. Example 2'
    """
    return jsonify(OPENAPI_SPEC)

This test code uses app.test_client() to create a client. Then, client.get() is
used to execute a GET request to the /openapi.json path. The results can be
examined to be sure that an Open API specification document really will be provided
by the defined route. This test case depends on the value of app being the Flask
application module. This is usually true, because this code is in the same module
where the app object is defined.

There are a variety of approaches to packaging unit tests:

In a separate tests package: This will contain a number of test modules. If
the filenames all begin with test_, then tools such as pytest can locate
and execute these tests. This is appropriate when tests are relatively
complex. This often happens when mock objects must be provided.
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In module and function docstrings: This is the technique that was shown
previously. The doctest tool can locate examples within docstrings and
execute these tests. The doctest module can also locate tests as the values
of a global __test__ dictionary. This is appropriate when the tests are
relatively simple and the setup for each test is easily accomplished through
application configuration.

The preceding test can be executed from the command line by using a command such
as the following:

$ python3 -m doctest ch13_ex2.py

This command runs the doctest module. The command-line argument is the 
module to be examined. All Python examples marked with >>> will be executed to
confirm that the function operates properly.

Handling stateful REST services
A RESTful server is often called upon to maintain the state of the resources it
manages. The canonical CRUD operations map nicely to the HTTP methods available
in RESTful processing. There may be POST requests to create new resources, PATCH
requests to update those resources, and DELETE requests to remove resources.

In order to properly work with individual resources, unique resource identification
becomes important. We'll look into RESTful object identification, before looking at the
Flask server design that works with multiple objects.

Designing RESTful object identifiers
Object serialization involves defining some kind of identifier for each object. For
shelve or sqlite, we need to define a string key for each object. A RESTful web
server makes the same kinds of demands to define a workable key that can be used to
unambiguously track down objects. A simple, surrogate key can also work out for a
RESTful web service identifier. It can easily parallel the key used for shelve or
sqlite.

What's important is this idea: cool URIs don't change. See
http://www.w3.org/Provider/Style/URI.html.

http://www.w3.org/Provider/Style/URI.html
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It is important for us to define a URI that is never going to change. It's essential that
the stateful aspects of an object are never used as part of the URI. For example, a
microblogging application may support multiple authors. If we organize blog posts
into folders by the author, we create problems for shared authorship and we create
larger problems when one author takes over another author's content. We don't want
the URI to switch when a purely administrative feature, such as the ownership,
changes.

A RESTful application may offer a number of indices or search criteria. However, the
essential identification of a resource or object should never change as the indices are
changed or reorganized.

For relatively simple objects, we can often identify some sort of identifier – often a
database surrogate key. In the case of blog posts, it's common to use a publication
date (as that can't change) and a version of the title with punctuation and spaces
replaced by _ characters. The idea is to create an identifier that will not change, no
matter how the site gets reorganized. Adding or changing indexes can't change the
essential identification of a microblog post.

For more complex objects that are containers, we have to decide on the granularity
with which we will refer to these more complex objects. Continuing the microblog
example, we have blogs as a whole, which contain a number of individual posts.

The URI for a blog can be something simple like this:

/microblog/blog/bid/

The top-most name (microblog) is the overall application. Then, we have the type of
resource (blog) and finally, an ID, bid, for a specific instance.

The URI names for a post, however, have several choices:

/microblog/post/title_string/
/microblog/post/bid/title_string/
/microblog/blog/bid/post/title_string/

The first URI doesn't work well if multiple posts have the same title. In this case,
something would have to be done to make the title unique. An author may see their
title made unique with an extra _2 or some other decoration. This is often
undesirable.



Transmitting and Sharing Objects Chapter 13

[ 443 ]

The second URI uses the blog ID (bid) as a context or namespace to ensure that the
Post titles are treated as unique within the context of a blog. This kind of technique is
often extended to include additional subdivisions, such as a date, to further shrink the
search space. This example is a little awkward, because the classification, post, is
followed by the blog's ID.

The third example uses an explicit class/object naming at two levels:
blog/bid and post/title_string. This has the disadvantage of a longer path, but
it has the advantage of allowing a complex container to have multiple items in
distinct internal collections.

Note that REST services have the effect of defining paths to resources in persistent
storage. The URIs must be chosen with an eye toward clarity, meaning, and
durability. A cool URI doesn't change.

Let's learn about the different layers of REST services.

Multiple layers of REST services
It's common for a complex RESTful application to use a database to save persistent
objects, as well as change the state of those persistent objects. This often leads to a
multi-tier web application. One view of a design will focus on these three tiers:

Presentation to people is handled by HTML pages, possibly including
JavaScript. The HTML content often starts as templates, and a tool such as
Jinja (http:/ ​/ ​jinja. ​pocoo. ​org) is used to inject data into the HTML
template. In many cases, the presentation layer is a separate Flask
application focused on supporting features of a rich user experience,
including stateful sessions and secure authentication. This layer will make
a request to the application layer via RESTful requests.
Application processing is done via a RESTful server that models the
problem domain. Concerns such as user authentication or stateful
interactions are not part of this layer.
Persistence is done via a database of some kind. In many practical
applications, a complex module will define an init_app() function to
initialize a database connection.

As we saw in Chapter 11, Storing and Retrieving Objects with Shelve, it's quite easy to
have a database that has an interface similar to a dictionary. We'll leverage this
simple-looking interface to create a RESTful service that tracks a stateful object.

http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
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Using a Flask blueprint
Before defining the blueprint, we'll define some classes and functions that establish
the problem domain. We'll define an enumeration of the Status values, with
"Updated" and "Created" as the only two values. We'll define a set of dice using a
dataclass named Dice. This class includes the current state of the dice, a unique
identifier for this particular collection of dice, and an overall status to show whether it
was initially created or has been updated. Separate from the class, it's helpful to have
a make_dice() function to create a Dice instance.

For this example, here are the definitions:

from typing import Dict, Any, Tuple, List
from dataclasses import dataclass, asdict
import random
import secrets
from enum import Enum

class Status(str, Enum):
    UPDATED = "Updated"
    CREATED = "Created"

@dataclass
class Dice:
    roll: List[int]
    identifier: str
    status: str

    def reroll(self, keep_positions: List[int]) -> None:
        for i in range(len(self.roll)):
            if i not in keep_positions:
                self.roll[i] = random.randint(1, 6)
        self.status = Status.UPDATED

def make_dice(n_dice: int) -> Dice:
    return Dice(
        roll=[random.randint(1, 6) for _ in range(n_dice)],
        identifier=secrets.token_urlsafe(8),
        status=Status.CREATED
    )

The Dice class represents a handful of six-sided dice. A particular roll of the dice also
has an identifier; this is a surrogate key used to identify an initial toss of the dice.
Selected dice can be rerolled, which is consistent with a number of dice games.
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The status attribute is used as part of a RESTful response to show the current state of
the object. The status attribute is either the "Created" or "Updated" string based on
the Status class definition.

The make_dice() function creates a new Dice instance. It's defined outside the Dice
class definition to emphasize its roll as creating a Dice instance. This could be
defined as a method within the Dice class, and decorated with the @classmethod or
@staticmethod decorator. 

While a very strict object-oriented design approach mandates that everything be part
of a class, Python imposes no such restriction. It seems simpler to have a function
outside a class, rather than a decorated function within the class. Both are defined in a
common module, so the relationship between function and class is clear.

The reroll() method of a Dice instance updates the object's internal state. This is
the important new feature in this section. 

The Open API Specification for this service has a skeleton definition as follows:

OPENAPI_SPEC = {
    "openapi": "3.0.0",
    "info": {
        "title": "Chapter 13. Example 3",
        "version": "2019.02",
        "description": "Rolls dice",
    },
    "paths": {
        "/rolls": {
            "post": {
                "description": "first roll",
                "responses": {201: {"description": "Created"}},
            },
            "get": {
                "description": "current state",
                "responses": {200: {"description": "Current state"}},
            },
            "patch": {
                "description": "subsequent roll",
                "responses": {200: {"description": "Updated"}},
            }
        }
    }
}
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This specification provides one path, /rolls, which responds to a variety of method
requests. A post request has a very terse description of "first roll"; only one of
the possible responses is defined in this example specification. Similarly, the get and
patch requests have the minimal definition required to pass a simple schema check.

This specification omits the lengthy definition of the parameters required for the post
and patch requests. The post request requires a document in JSON Notation. Here's
an example: {"dice": 5}. The patch request also requires a document in JSON
Notation, the body of this document specifies which dice must be left alone, and
which must be re-rolled. The content of the document only specifies which dice to
keep; all of the others will be re-rolled. It will look like this: {"keep": [0, 1, 2]}. 

One of the tools for decomposing a complex Flask application is a blueprint. A
blueprint is registered with a Flask application with a specific path prefix. This allows
us to have multiple, related portions of a complex application by using several
instances of a common blueprint.

For this example, we'll only register a single instance of a Blueprint object. The
definition of a Blueprint object starts as follows:

from flask import Flask, jsonify, request, url_for, Blueprint,
current_app, abort
from typing import Dict, Any, Tuple, List

SESSIONS: Dict[str, Dice] = {}

rolls = Blueprint("rolls", __name__)

@rolls.route("/openapi.json")
def openapi() -> Dict[str, Any]:
    return jsonify(OPENAPI_SPEC)

@rolls.route("/rolls", methods=["POST"])
def make_roll() -> Tuple[Dict[str, Any], HTTPStatus, Dict[str, str]]:
    body = request.get_json(force=True)
    if set(body.keys()) != {"dice"}:
        raise BadRequest(f"Extra fields in {body!r}")
    try:
        n_dice = int(body["dice"])
    except ValueError as ex:
        raise BadRequest(f"Bad 'dice' value in {body!r}")

    dice = make_dice(n_dice)
    SESSIONS[dice.identifier] = dice
    current_app.logger.info(f"Rolled roll={dice!r}")
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    headers = {
        "Location":
        url_for("rolls.get_roll", identifier=dice.identifier)
    }
    return jsonify(asdict(dice)), HTTPStatus.CREATED, headers

The SESSIONS object uses an all-caps name to show that it is a global module. This
can become our database. Currently, it's initialized as an empty dictionary object. In a
more sophisticated application, it could be a shelve object. Pragmatically, this would
be replaced with a proper database driver to handle locking and concurrent access.

The Blueprint object, like the Flask object, is assigned a name. In many cases, the
module name can be used. For this example, the module name will be used by the
overall Flask application, so the name "rolls" was used.

In this example, we've assigned the Blueprint object to a rolls variable. It's also
common to see a name such as bp used for this. A shorter name makes it slightly
easier to type the route decorator name.

The preceding example defines two routes:

One route is for the Open API Specification document.
The second route is for the /rolls path, when used with the POST method.

This combination will lead to the typical four-part process of handling a RESTful
request:

 Parsing: The Flask request object is interrogated to get the body of the
request. The request.get_json(force=True) will use a JSON parser on
the body of the request, irrespective of Content-Type header. While a
well-written client application should provide appropriate headers, this
code will tolerate a missing or incorrect header. A few validity checks are
applied to the body of the request. In this example, a specialized exception
is raised if the request doesn't include the 'dice' key, and if the value for
the 'dice' key isn't a valid integer. More checks for valid inputs might
include being sure the number of dice was between 1 and 100; this can help
to avoid the problem of rolling millions or billions of dice. In the following
example, we'll see how this exception is mapped to a proper HTTP status
code of 400 Bad Request.
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Evaluating: The make_dice() function creates a Dice instance. This is
saved into the global module SESSIONS database. Because each Dice
instance is given a unique, randomized key, the SESSIONS database retains
a history of all of the Dice objects. This is a simple in-memory database,
and the information only lasts as long as the server is running. A more
complete application would use a separate persistence layer.
Logging. The Flask current_app object is used to get access to the Flask
logger and write a log message on the response.
Responding. The Flask jsonify() function is used to serialize the
response into JSON Notation. This includes an additional Location
header. This additional header is offered to a client to provide the correct,
canonical URI for locating the object that was created. We've used the Flask
url_for() function to create the proper URL. This function uses the name
of the function, qualified by the "rolls.get_roll" blueprint name; the
URI path is reverse-engineered from the function and the argument value.

The function for retrieving a roll uses a GET request, and is as follows:

@rolls.route("/rolls/<identifier>", methods=["GET"])
def get_roll(identifier) -> Tuple[Dict[str, Any], HTTPStatus]:
    if identifier not in SESSIONS:
        abort(HTTPStatus.NOT_FOUND)

    return jsonify(asdict(SESSIONS[identifier])), HTTPStatus.OK

This function represents a minimalist approach. If the identifier is unknown, a 404
Not Found message is returned. There's no additional evaluation or logging, since no
state change occurred. This function serializes the current state of the dice.

The response to a PATCH request is as follows:

@rolls.route("/rolls/<identifier>", methods=["PATCH"])
def patch_roll(identifier) -> Tuple[Dict[str, Any], HTTPStatus]:
    if identifier not in SESSIONS:
        abort(HTTPStatus.NOT_FOUND)
    body = request.get_json(force=True)
    if set(body.keys()) != {"keep"}:
        raise BadRequest(f"Extra fields in {body!r}")
    try:
        keep_positions = [int(d) for d in body["keep"]]
    except ValueError as ex:
        raise BadRequest(f"Bad 'keep' value in {body!r}")

    dice = SESSIONS[identifier]
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    dice.reroll(keep_positions)

    return jsonify(asdict(dice)), HTTPStatus.OK

This has two kinds of validation to perform:

The identifier must be valid.
The document provided in the body of the request must also be valid.

This example performs a minimal validation to develop a list of positions assigned to
the keep_positions variable.

The evaluation is performed by the reroll() method of the Dice instance. This fits
the idealized notion of separating the Dice model from the RESTful application that
exposes the model. There's relatively little substantial state-change processing in the
Flask application. 

Consider a desire for additional validation to confirm that the position values are
between zero and the number of dice in SESSIONS[identifier].roll. Is this a part
of the Flask application? Or, is this the responsibility of the Dice class definition?

There are two kinds of validations involved here:

Serialization syntax: This validation includes a JSON syntax, a data type
representation, and the isolated constraints expressed in the Open API
Specification. This validation is limited to simple constraints on the values
that can be serialized in JSON. We can formalize the {"dice": d}
document schema to ensure that k is a positive integer. Similarly, we can
formalize the {"keep": [k, k, k, ...]} document schema to require
the values for k to be positive integers. However, there's no way to express
a relationship between the values for n and k. There's also no way to
express the requirement that the values for k be unique. 
Problem domain data: This validation goes beyond what can be specified
in the Open API specification. It is tied to the problem domain and requires
the JSON serialization be valid. This can include actions such as
validating relationships among objects, confirming that state changes are
permitted, or checking more nuanced rules such as string formats for email
addresses.

This leads to multiple tiers of RESTful request parsing and validation. Some features
of the request are tied directly to serialization and simple data type questions. Other
features of a request are part of the problem domain, and must be deferred to the
classes that support the RESTful API.
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Registering a blueprint 
A Flask application must have the blueprints registered. In some cases, there will be
multiple instances of a blueprint, each at a different point in the URI path. In our case,
we only have a single instance of the blueprint at the root of the URI path.

In the preceding examples, the bad request data was signaled by raising a
BadRequest exception. A Flask error handler can be defined to transform an
exception object to a standardized RESTful response document in JSON format.

The example Flask application is shown here:

class BadRequest(Exception):
    pass

def make_app() -> Flask:

    app = Flask(__name__)

    @app.errorhandler(BadRequest)
    def error_message(ex) -> Tuple[Dict[str, Any], HTTPStatus]:
        current_app.logger.error(f"{ex.args}")
        return jsonify(status="Bad Request", message=ex.args),
HTTPStatus.BAD_REQUEST

    app.register_blueprint(rolls)

    return app

The function name, make_app(), is expected by Flask. Using this standard name
makes it easy to launch the application. It also makes it easier to integrate with
products such as uWSGI or Gunicorn.

Once the Flask object, app, is created, the @app.errorhandler decorator can be
used to map Python exceptions to generic responses. This technique will replace
Flask's default HTML-based responses with JSON-based responses. The advantage of
JSON-format responses is that they make the RESTful API provide more consistent
behavior.

The rolls blueprint, defined in previous examples, is registered at the root of the
URI path. This make_app() function can also be used to include configuration
parameters. It's also common to see a sequence of extension.init_app(app)
function calls for any of the Flask extensions being used.

Let's look at how we can create a secure REST service in the next section.
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Creating a secure REST service
We can decompose application security into two considerations: authentication and
authorization. We need to authenticate who the user is and we also need to be sure
that the user is authorized to execute a particular function. There are a variety of
techniques available for offering a secure RESTful service. All of them depend on
using SSL. It's essential to create proper certificates and use them to ensure that all
data transmissions are encrypted.

The details of setting up a certificate for SSL encryption are outside the scope of this
book. The OpenSSL toolkit can be used to create self-signed certificates. The Flask
application can then use these certificates as part of a testing or development
environment.

When HTTP over SSL (HTTPS) is used, then the handling of credentials and
authentication can be simplified. Without HTTPS, the credentials must be encrypted
in some way to be sure they aren't sniffed in transmission. With HTTPS, credentials
such as usernames and passwords can be included in headers by using a simple
base-64 serialization of the bytes.

There are a number of ways of handling authentication; here are two common
techniques:

The HTTP Authorization header can be used (the header's purpose is
authentication, but it's called Authorization). The Basic type is used to
provide username and password. The Bearer type can be used to provide
an OAuth token. This is often used by the presentation layer where a
human supplies their password. 
The HTTP Api-Key header can be used to provide a role or authorization.
This is often provided by an API client application, and is configured by
trusted administrators. This can involve relatively simple authorization
checks.

We'll show the simpler approach of working with internal Api-Key headers first. It's
best to use a library such as https:/ ​/​authlib. ​org for dealing with user credentials
and the Authorization header. While the essential rules for handling passwords are
generally simple, it's easier to use a well-respected package.

https://authlib.org
https://authlib.org
https://authlib.org
https://authlib.org
https://authlib.org
https://authlib.org
https://authlib.org
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Using an Api-Key header for authorization checks is something that's designed to fit
within the Flask framework. The general approach requires three elements:

A repository of valid Api-Key values, or an algorithm for validating a key.
An init_app() function to do any one-time preparation. This might
include reading a file, or opening a database.
A decorator for the application view functions.

Each of these elements is shown in the following example:

from functools import wraps
from typing import Callable, Set

VALID_API_KEYS: Set[str] = set()

def init_app(app):
    global VALID_API_KEYS
    if app.env == "development":
        VALID_API_KEYS = {"read-only", "admin", "write"}
    else:
        app.logger.info("Loading from {app.config['VALID_KEYS']}")
        raw_lines = (
            Path(app.config['VALID_KEYS'])
                .read_text()
                .splitlines()
        )
        VALID_API_KEYS = set(filter(None, raw_lines))

def valid_api_key(view_function: Callable) -> Callable:

    @wraps(view_function)
    def confirming_view_function(*args, **kw):
        api_key = request.headers.get("Api-Key")
        if api_key not in VALID_API_KEYS:
            current_app.logger.error(f"Rejecting Api-Key:{api_key!r}")
            abort(HTTPStatus.UNAUTHORIZED)
        return view_function(*args, **kw)

    return confirming_view_function

VALID_API_KEYS is a global module that contains the current set of valid values for
the Api-Keys header. It has a type hint suggesting that it is a set of string values.
We're using this instead of a more formal database. In many cases, this is all that's
required to confirm that the Api-Key values sent by a client application meets the
authorization requirement.
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The init_app() function will load this global module from a file. For development,
a simple set of Api-Key values are provided. This allows simple unit tests to proceed.

valid_api_key() is a decorator. It's used to make a consistent check that can be
used in all view function definitions to be sure that an Api-Key header is present and
the value is known. It's a common practice to use the Flask g object to save this
information for use in later logging messages. We might also add a line such
as g.api_key = api_key in this function to save the value for the duration of the
interaction.

Here's how we would modify a view function to use this new decorator:

@roll.route("/roll/<identifier>", methods=["GET"])
@valid_api_key
def get_roll(identifier) -> Tuple[Dict[str, Any], HTTPStatus]:
    if identifier not in SESSIONS:
        abort(HTTPStatus.NOT_FOUND)

    return jsonify(
        roll=SESSIONS[identifier], identifier=identifier, status="OK"
    ), HTTPStatus.OK

This is a copy of the get_roll() function shown in an earlier example. The change is
to add the @valid_api_key authorization decorator after the route decorator. This
provides assurance that only requests with an Api-Key header in the short list of
valid keys will be able to retrieve the roll values.

A parameterized version of the @valid_api_key decorator is a bit more complex.

Hashing user passwords will be discussed in the next section.

Hashing user passwords
Perhaps the most important advice that can possibly be offered on the subject of
security is the following:

Never Store Passwords
Only a repeated cryptographic hash of password plus salt can be
stored on a server. The password itself must be utterly
unrecoverable. Do not ever store any recoverable password as part
of an application.
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Here's an example class that shows us how salted password hashing might work:

from hashlib import sha256
import os

class Authentication:
    iterations = 1000

    def __init__(self, username: bytes, password: bytes) -> None:
        """Works with bytes. Not Unicode strings."""
        self.username = username
        self.salt = os.urandom(24)
        self.hash = self._iter_hash(
            self.iterations, self.salt, username, password)

    @staticmethod
    def _iter_hash(iterations: int, salt: bytes, username: bytes,
password: bytes):
        seed = salt + b":" + username + b":" + password
        for i in range(iterations):
            seed = sha256(seed).digest()
        return seed

    def __eq__(self, other: Any) -> bool:
        other = cast("Authentication", other)
        return self.username == other.username and self.hash ==
other.hash

    def __hash__(self) -> int:
        return hash(self.hash)

    def __repr__(self) -> str:
        salt_x = "".join("{0:x}".format(b) for b in self.salt)
        hash_x = "".join("{0:x}".format(b) for b in self.hash)
        return f"{self.username}
{self.iterations:d}:{salt_x}:{hash_x}"

    def match(self, password: bytes) -> bool:
        test = self._iter_hash(
            self.iterations, self.salt,
            self.username, password)
        return self.hash == test  # Constant Time is Best

This class defines an Authentication object for a given username. The object
contains the username, a unique random salt created each time the password is set or
reset, and the final hash of the salt plus the password.
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This class also defines a match() method that will determine whether a given
password will produce the same hash as the original password.

There are several ways to transform bytes to strings. The
"".join("{0:x}".format(b) for b in self.salt) expression transforms the
salt value into a string of hexadecimal digit pairs. Here's an example showing the
result of the transformation.

>>> salt = b'salt'
>>> "".join("{0:x}".format(b) for b in salt)
'73616c74'

Note that no password is stored by this class. Only hashes of passwords are retained.
We provided a comment (# Constant Time is Best) on the comparison function
as a note that this implementation is incomplete. An algorithm that runs in constant
time and isn't particularly fast is better than the built-in equality comparison among
strings.

We also included a hash computation to emphasize that this object is immutable. An
additional design feature would be to consider using __slots__ to save storage. 

Note that these algorithms work with byte strings, not Unicode strings. We either
need to work with bytes or we need to work with the ASCII encoding of a Unicode
username or password.

Let's see how to implement REST with a web application framework.

Implementing REST with a web
application framework
A RESTful web server is a web application. This means we can leverage any of the
popular Python web application frameworks. The complexity of creating RESTful
services is low. The preceding examples illustrate how simple it is to map the CRUD
rules to HTTP Methods.

Some of the Python web frameworks include one or more REST components. In some
cases, the RESTful features are almost entirely built-in. In other cases, an add-on
project can help define RESTful web services with minimal programming. For
example, https:/ ​/​flask- ​restful. ​readthedocs. ​io/ ​en/​latest/ ​ is a REST framework
that can be used as a Flask extension.

https://flask-restful.readthedocs.io/en/latest/
https://flask-restful.readthedocs.io/en/latest/
https://flask-restful.readthedocs.io/en/latest/
https://flask-restful.readthedocs.io/en/latest/
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Searching PyPI (https://pypi.python.org) for REST will turn up a large number of
packages. There are numerous solutions that are already available. Most of these will
offer some levels of simplification for common cases. 

A list of Python web frameworks can be found
at https://wiki.python.org/moin/WebFrameworks. The point of these projects is to
provide a reasonably complete environment to build web applications. Any of these
can be used in place of Flask to create RESTful web services.

There are several compelling reasons for writing a RESTful service directly in Flask,
and some are listed here:

The REST service views are generally short and involve the minimal
overheads required to deserialize JSON requests and serialize JSON
responses. The remainder of the processing is unique to the problem
domain.
If there is unique processing that does not map to a REST package in an
obvious way, it may be better to simply write the view functions. In
particular, validation rules and state transition rules are often difficult to
standardize and may be difficult to integrate with the built-in assumptions
behind an existing REST package. 
If there's an unusual or atypical access layer or persistence mechanism,
many REST packages have default assumptions about database operations,
and are often tailored toward a package such as SQLAlchemy; for
example, https:/ ​/​flask- ​restless. ​readthedocs. ​io/ ​en/ ​stable/ ​.

Security, in particular, can be challenging. There are several best practices including
the following:

Always use SSL. For final production use, purchase a certificate from a
trusted Certification Authority (CA).
Never encrypt or store passwords, always use salted hashing.
Avoid building home-brewed authentication. Use project such as https:/ ​/
flask- ​dance. ​readthedocs. ​io/​en/ ​latest/ ​ or https:/ ​/ ​authlib. ​org.

For the final production deployment, there are a number of alternatives. See http:/ ​/
flask.​pocoo.​org/ ​docs/ ​1.​0/ ​deploying/ ​ for a long list of the ways that Flask
applications can be deployed at scale.

Let's see how to use a message queue to transmit objects.
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Using a message queue to transmit
objects
The multiprocessing module uses both the serialization and transmission of
objects. We can use queues and pipes to serialize objects that are then transmitted to
other processes. There are numerous external projects to provide sophisticated
message queue processing. We'll focus on the multiprocessing queue because it's
built in to Python and works nicely.

For high-performance applications, a faster message queue may be necessary. It may
also be necessary to use a faster serialization technique than pickling. For this chapter,
we'll focus only on the Python design issues. The multiprocessing module relies on
pickle to encode objects. See Chapter 10, Serializing and Saving – JSON, YAML,
Pickle, CSV, and XML, for more information. We can't provide a restricted unpickler
easily; therefore, this module offers us some relatively simple security measures put
into place to prevent any unpickle problems.

There is one important design consideration when using multiprocessing: it's
generally best to avoid having multiple processes (or multiple threads) attempting to
update shared objects. The synchronization and locking issues are so profound (and
easy to get wrong) that the standard joke goes as follows:

When confronted with a problem, the programmer thinks, "I'll use multiple
threads."

problems Now. two programmer the has

It's very easy for locking and buffering to make a mess of multithreaded processing.

Using process-level synchronization via RESTful web services or multiprocessing
can prevent synchronization issues because there are no shared objects. The essential
design principle is to look at the processing as a pipeline of discrete steps. Each
processing step will have an input queue and an output queue; the step will fetch an
object, perform some processing, and write the object.

The multiprocessing philosophy matches the POSIX concept of a shell pipeline,
written as process1 | process2 | process3. This kind of shell pipeline involves
three concurrent processes interconnected with pipes. The important difference is that
we don't need to use STDIN, STDOUT, or an explicit serialization of the objects. We can
trust the multiprocessing module to handle the operating system (OS)-level
infrastructure.
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The POSIX shell pipelines are limited in that each pipe has a single producer and a
single consumer. The Python multiprocessing module allows us to create message
queues that include multiple consumers. This allows us to have a pipeline that fans
out from one source process to multiple sink processes. A queue can also have
multiple consumers that allow us to build a pipeline where the results of multiple
source processes can be combined by a single sink process.

To maximize throughput on a given computer system, we need to have enough work
pending so that no processor or core is ever left with nothing useful to do. When any
given OS process is waiting for a resource, at least one other process should be ready
to run.

When looking at our simulations, for example, we need to gather statistically
significant simulation data by exercising a player strategy or betting strategy (or both)
a number of times. The idea is to create a queue of processing requests so that our
computer's processors (and cores) are fully engaged in processing our simulations.

Each processing request can be a Python object. The multiprocessing module will
pickle that object so that it is transmitted via the queue to another process.

We'll revisit this in Chapter 16, The Logging and Warning Modules, when we look at
how the logging module can use multiprocessing queues to provide a single,
centralized log for separate producer processes. In these examples, the objects
transmitted from process to process will be the logging.LogRecord instances.

In the next section, we'll learn how to define processes.

Defining processes
We must design each processing step as a simple loop that gets a request from a
queue, processes that request, and places the results into another queue. This
decomposes the larger problem into a number of stages that form a pipeline. Because
each of these stages runs concurrently, the system resource use will be maximized.
Furthermore, as the stages involve simple gets and puts into independent queues,
there are no problems with complex locking or shared resources. A process can be a
simple function or a callable object. We'll focus on defining processes as subclasses of
multiprocessing.Process. This gives us the most flexibility.
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For the simulation of a stateful process such as a game, we can break the simulation
down into a three-step pipeline:

An overall driver puts simulation requests into a processing queue.1.
A pool of simulators will get a request from the processing queue, perform2.
the simulation, and put the statistics into a results queue.
A summarizer will get the results from the result queue and create a final3.
tabulation of the results.

Using a process pool allows us to have as many simulations running concurrently as
our CPU can handle. The pool of simulators can be configured to ensure that
simulations run as quickly as possible.

Here's a definition of the simulator process:

import multiprocessing

class Simulation(multiprocessing.Process):

    def __init__(
        self,
        setup_queue: multiprocessing.SimpleQueue,
        result_queue: multiprocessing.SimpleQueue,
    ) -> None:
        self.setup_queue = setup_queue
        self.result_queue = result_queue
        super().__init__()

    def run(self) -> None:
        """Waits for a termination"""
        print(f"{self.__class__.__name__} start")
        item = self.setup_queue.get()
        while item != (None, None):
            table, player = item
            self.sim = Simulate(table, player, samples=1)
            results = list(self.sim)
            self.result_queue.put((table, player, results[0]))
            item = self.setup_queue.get()
        print(f"{self.__class__.__name__} finish")

We've extended multiprocessing.Process. This means that we must do two
things to work properly with multiprocessing: we must ensure that
super().__init__() is executed, and we must override run().
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Within the body of run(), we're using two queues. setup_queue will contain two-
tuples of the Table and Player objects. The process will use these two objects to run
a simulation. It will put the resulting three-tuple into result_queue. The API for the
Simulate class is this:

class Simulate:

    def __init__(
            self,
            table: Table,
            player: Player,
            samples: int
    ) -> None: ...

    def __iter__(self) -> Iterator[Tuple]: ...

The iterator will yield the requested number, samples, of statistical summaries.
We've included a provision for a sentinel object to arrive via setup_queue. This
object will be used to gracefully close down the processing. If we don't use a sentinel
object, we'll be forced to terminate the processes, which can disrupt locks and other
system resources. Here's the summarization process:

class Summarize(multiprocessing.Process):

    def __init__(self, queue: multiprocessing.SimpleQueue) -> None:
        self.queue = queue
        super().__init__()

    def run(self) -> None:
        """Waits for a termination"""
        print(f"{self.__class__.__name__} start")
        count = 0
        item = self.queue.get()
        while item != (None, None, None):
            print(item)
            count += 1
            item = self.queue.get()
        print(f"{self.__class__.__name__} finish {count}")

This also extends multiprocessing.Process. In this case, we're fetching items
from a queue and simply counting them. A more useful processing might use several
collection.Counter objects to accumulate more interesting statistics.
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As with the Simulation class, we're also going to detect a sentinel and gracefully
close down the processing. The use of a sentinel object allows us to close down
processing as soon as the work is completed by the process. In some applications, the
child process can be left running indefinitely.

Let's see how to build queues and supply data in the next section.

Building queues and supplying data
Objects are transferred among processes through queues or pipes. Building queues
involves creating instances of multiprocessing.Queue or one of its subclasses. For
this example, we can use the following:

setup_q = multiprocessing.SimpleQueue()
results_q = multiprocessing.SimpleQueue()

We created two queues that define the processing pipeline. When we put a simulation
request into setup_q, we expect that a Simulation process will get the request pair
and run the simulation. This should generate a results triple, which is put in
results_q. The results triple should, in turn, lead the work being done by the
Summarize process. Here's how we can start a single Summarize process:

result = Summarize(results_q)
result.start()

Here's how we can create four concurrent simulation processes:

    simulators = []
    for i in range(4):
        sim = Simulation(setup_q, results_q)
        sim.start()
        simulators.append(sim)

The four concurrent simulators will be competing for work. Each one will be
attempting to grab the next request from the queue of pending requests. Once all the
four simulators are busy working, the queue will start to get filled with unprocessed
requests. The ideal size of the pool of workers is difficult to predict. It depends on the
number of cores a processor has, and it also depends on the workload. A pool of
processors doing a great deal of input and output (I/O) work will also do a lot of
waiting for I/O to complete; so, the pool can be very large. On a smaller machine with
only a four cores and a compute-intensive workload, the pool will be smaller.
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After the queues and processes are waiting for work, the driver function can start
putting requests into the setup_q queue. Here's a loop that will generate a flood of
requests:

table = Table(
    decks=6, limit=50, dealer=Hit17(), split=ReSplit(),
    payout=(3, 2)
)
for bet in Flat, Martingale, OneThreeTwoSix:
    player = Player(SomeStrategy(), bet(), 100, 25)
    for sample in range(5):
        setup_q.put((table, player))

We have created a Table object. For each of the three betting strategies, we have
created a Player object, and then queued up a simulation request. The pickled two-
tuple will be fetched from the queue by the Simulation object and then it will be
processed. In order to have an orderly termination, we'll need to queue sentinel
objects for each simulator:

for sim in simulators:
    setup_q.put((None, None))

# Wait for the simulations to all finish.
for sim in simulators:
    sim.join()

We put a sentinel object into the queue for each simulator to consume. Once all the
simulators have consumed the sentinels, we can wait for the processes to finish
execution and join back into the parent process.

Once the Process.join() operation is finished, no more simulation data will be
created. We can enqueue a sentinel object into the simulation results queue, as well:

results_q.put((None, None, None))
result.join()

Once the results sentinel object is processed, the Summarize process will stop 
accepting input and we can join() it as well.

We used multiprocessing to transmit objects from one process to another. This gives
us a relatively simple way to create high-performance, multi-processing data
pipelines. The multiprocessing module uses pickle, so there are few limitations
on the nature of objects that can be pushed through the pipelines.



Transmitting and Sharing Objects Chapter 13

[ 463 ]

It's informative to adjust the pool size to see the impact of more workers and fewer
workers on the elapsed runtime. The interaction among processing cores, memory,
and the nature of the workload is difficult to predict, and an empirical study is
helpful to find the optimum number of workers in the pool.

Summary
We have looked at transmitting and sharing objects using RESTful web services.
RESTful web services via Flask are one way to do this. The multiprocessing
module embodies a radically different solution to the same problem. Both of these
architectures provide for communicating a representation of an object's state. In the
case of multiprocessing, pickle is used to represent the state. In the case of
building RESTful web services, we have to choose the representation(s) used. In the
examples used here, we focused on JSON, because it's widely used and has a simple
implementation.

RESTful web services often use a framework to simplify the code required for the
standard features of HTTP request and response processing. In the examples, we
identified four steps: parsing, evaluating, logging, and responding. The Flask
framework provides a simple, extensible framework for this. Because WSGI
applications have a simple, standardized API, we can easily a variety of frameworks
for web applications. In this chapter, we looked at using Flask for implementing
RESTful services.

We also looked at using multiprocessing to enqueue and dequeue messages from
shared queues. This works nicely for passing objects from process to process. The
beauty of using interprocess message queues is that we can avoid the locking
problems associated with concurrent updates to objects shared by multiple threads.

Design considerations and tradeoffs
When building applications that involve concurrency, we must decide what grain of
objects to make available and how to identify those objects with sensible URIs. With
larger objects, we can easily achieve ACID properties. However, we may also be
uploading and downloading too much data for our application's use cases. In some
cases, we'll need to provide alternative levels of access: large objects to support ACID
properties, and small objects to allow rapid response when a client application wants
a subset of the data.
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To implement more localized processing, we can leverage the multiprocessing
module. This is focused more on building high-performance processing pipelines
within a trusted host or network of hosts.

In some cases, the two design patterns are combined such that a RESTful request is
handled by a multiprocessing pipeline. A conventional web server (such as NGINX)
working through uWSGI will use multiprocessing techniques to pass the request
through a named pipe from the frontend to the uWSGI-compliant Python application
backend.

Schema evolution
When working with a public-facing API for RESTful services, we have to address the
schema evolution problem. If we change a class definition, how will we change the
response messages? If the external RESTful API must change for compatibility with
other programs, how do we upgrade the Python web services to support a changing
API?

Often, we'll have to provide a major release version number as part of our API. This
might be provided explicitly as part of the path, or implicitly via data fields included
in the POST, PUT, and DELETE requests.

We need to distinguish between changes that don't alter the URI paths or responses,
and changes that will alter a URI or response. Minor changes to functionality will not
change a URI or the structure of a response.

Changes to the URIs or the structure of a response may break an existing application.
These are major changes. One way to make an application work gracefully through
schema upgrades is to include version numbers in the URI paths. For example,
/roulette_2/wheel/ specifically names the second release of the roulette server.

Application software layers
Because of the relative sophistication available when using sqlite3, our application
software must become more properly layered. For a REST client, we might look at a
software architecture with layers.

When we are building a RESTful server, the presentation layer becomes greatly
simplified. It is pared down to the essential request-response processing. It parses
URIs and responds with documents in JSON or XML (or some other representation.)
This layer should be reduced to a thin RESTful facade over the lower-level features.
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In some complex cases, the front-most application, as viewed by human users,
involves data from several distinct sources. One easy way to integrate data from
diverse sources is to wrap each source in a RESTful API. This provides us with a
uniform interface over distinct sources of data. It also allows us to write applications
that gather these diverse kinds of data in a uniform way.

Looking forward
In the next chapter, we'll use persistence techniques to handle configuration files. A
file that's editable by humans is the primary requirement for the configuration data. If
we use a well-known persistence module, then our application can parse and validate
the configuration data with less programming on our part.



14
Configuration Files and

Persistence
A configuration file is a form of object persistence. It contains a serialized, plain-text,
editable representation of some default state for an application program. We'll
expand on the serialization techniques shown in Chapter 10, Serializing and Saving –
JSON, YAML, Pickle, CSV, and XML to create files that are specifically used for
application configuration. The focus on plain text means that pickle representation
will be excluded. Due to the relative complexity of application configurations, CSV
files aren't often used for this purpose, either.

Before a user can make use of an editable plain-text configuration file, we must design
our application to be configurable. This can often require careful consideration of
dependencies and limitations. Additionally, we must define some kind of
configuration object that our application will use. In many cases, a configuration will
be based on default values; we might want to allow for system-wide defaults with
user-specific overrides to those defaults. We'll explore six representations for the
configuration data, as follows:

INI files use a format that was pioneered as part of Windows. The file is
popular, in part, because it is an incumbent among available formats and
has a long history.
PY files are plain-old Python code. They have numerous advantages
because of the familiarity and simplicity of the syntax. The configuration
can be used by an import statement in the application.
JSON and YAML are both designed to be user-friendly and easy to edit.
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Properties files are often used in a Java environment. They're relatively
easy to work with and they are also designed to be human-friendly. There's
no built-in parser for this, and this chapter includes regular expressions for
this file format.
XML files are popular but they are wordy, which means that, sometimes,
they are difficult to edit properly. macOS uses an XML-based format called
a property list or a PLIST file.

Each of these forms offers us some advantages and some disadvantages; there's no
single technique that can be described as the best. In many cases, the choice is based
on familiarity and compatibility with other software. In Chapter 15, Design Principles
and Patterns, we'll return to this topic of configuration. Additionally, in later chapters,
we'll make extensive use of configuration options. In this chapter, we will cover the
following topics:

Configuration file use cases
Representation, persistence, state, and usability
Storing configurations in INI files and PY files
Handling more literals via the eval() variant
Storing configurations in PY files
Why exec() is a non-problem
Using ChainMap for defaults and overrides
Storing configurations in JSON or YAML
Using XML files such as PLIST and others

Technical requirements
The code files for this chapter are available at https:/ ​/ ​git.​io/ ​fj2UP.

Configuration file use cases
There are two configuration file use cases. Sometimes, we can stretch the definition
slightly to add a third use case. The first two should be pretty clear:

A person needs to edit a configuration file
A piece of software will read a configuration file and make use of the
options and arguments to tailor its behavior

https://git.io/fj2UP
https://git.io/fj2UP
https://git.io/fj2UP
https://git.io/fj2UP
https://git.io/fj2UP
https://git.io/fj2UP
https://git.io/fj2UP
https://git.io/fj2UP
https://git.io/fj2UP
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Configuration files are rarely the primary input of an application program. Generally,
they only tailor the program's behavior. For example, a web server's configuration file
might tailor the behavior of the server, but the web requests are one primary input,
and the database or filesystem is the other primary input. In the case of a GUI
application, the user's interactive events are one input, and the files or database may
be another input; a configuration file may fine-tune the application. The most notable
exception to this general pattern is a simulation application; in this case, the
configuration parameters might be the primary input. 

There's also a blurry edge to the distinction between the application program and
configuration input. Ideally, an application has one behavior irrespective of the
configuration details. Pragmatically, however, the configuration might introduce
additional strategies or states to an existing application, changing its behavior in
fundamental ways. In this case, the configuration parameters become part of the code,
not merely options or limits applied to a fixed code base.

In addition to being changed by a person, another use case for a configuration file is
to save an application's current state. For example, in GUI applications, it's common
to save the locations and sizes of various windows. As another example, a web
interface often uses cookies to save the transaction state. It's generally helpful to
segregate slowly-changing user-oriented configuration from the more dynamic
attributes of the application's current operating state. The same types of file formats
can be used, but the two kinds of uses are distinct.

A configuration file can provide a number of domains of arguments and parameter
values to an application. We need to explore some of these various kinds of data in
more detail in order to decide how to represent them best. Some common types of
parameters are listed as follows:

Device names, which may overlap with the filesystem's location
Filesystem locations and search paths
Limits and boundaries
Message templates and data format specifications
Message text, possibly translated for internationalization
Network names, addresses, and port numbers
Optional behaviors, which are sometimes called feature toggles
Security keys, tokens, usernames, and passwords
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These values come from a number of distinct domains. Often, the
configuration values have relatively common representations using strings, integers,
and floating-point numbers. The intent is to use a tidy textual representation that's
relatively easy for a person to edit. This means our Python applications must parse
the human-oriented input.

In some cases, we may have lists of values where separators are required. We may
also have large, multiline blocks of text. In these cases, the representation of the
values may involve more complex punctuation and more complex parsing
algorithms.

There is one additional configuration value that isn't a simple type with a tidy text
representation. We could add this bullet to the preceding list:

Additional features, plugins, and extensions; in effect, additional code

This kind of configuration value is challenging. We're not necessarily providing a
simple string input or numeric limitation. In fact, we're providing the code to extend
the application. When the plugin is in Python code, one option is to provide the path
to an installed Python module as it would be used in an import statement using this
dotted name: package.module.object. An application can then perform a variation
of from package.module import object and use the given class or function as
part of the application.

For a configuration that introduces non-Python code as part of a plugin or extension,
we have two other techniques to make the external code usable:

For binaries that aren't proper executable programs, we can try using the
ctypes module to call defined API methods
For binaries that are executable programs, the subprocess module gives
us ways to execute them

Both of these techniques are beyond the scope of this book. This chapter will focus on
the core issue of getting the arguments or the parameter values, which are 
conventional Python values.

Representation, persistence, state, and usability are discussed in the next section.
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Representation, persistence, state, and
usability
When looking at a configuration file, we're looking at a human-friendly version of an 
object state. Often, we'll provide the state of more than one object. When we edit a
configuration file, we're changing the persistent state of an object that will get
reloaded when the application is started (or restarted). We have two common ways of
looking at a configuration file:

A mapping or a group of mappings from parameter names to configuration
values. Note that even when there are nested mappings, the structure is
essentially keys and values.
A serialized object that has complex attributes and properties with the
configuration values. The distinguishing feature is the possibility of
properties, methods, and derived values in addition to the user-supplied
values.

Both of these views are equivalent; the mapping view relies on a built-in dictionary or
namespace object. The serialized object will be a more complex Python object, which
has been created from an external, human editable representation of the object. The
advantage of a dictionary is the simplicity of putting a few parameters into a simple
structure. The advantage of a serialized object is its ability to track the number of
complex relationships.

For a flat dictionary or namespace to work, the parameter names must be chosen
carefully. Part of designing the configuration is to design useful keys, which is
something we looked at in Chapter 11, Storing and Retrieving Objects via Shelve, and
Chapter 12, Storing and Retrieving Objects via SQLite. A mapping requires unique
names so that other parts of the application can refer to it properly.

When we try to reduce a configuration file to a single mapping, we often discover
that there are groups of related parameters. This leads to namespaces within the
overall collection of names. Let's consider a web application that uses other web
services; we might have two parallel groups of parameters:
service_one_host_name and service_one_port_number, as well
as service_two_host_name and service_two_port_number. These could be four
separate names, or we could use a more complex structure to combine the names into
two related groups; for example, by perhaps creating a configuration data structure
such as {"service_one": {"host_name": "example.com", "port_number":
8080}, etc.}. 
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There is a blurry space between using simple mappings and using more complex
serialized Python objects. Some of the modules we'll look at in this chapter use
complex nested dictionaries and namespace objects. The variety of alternative
solutions suggests there is no single best way to organize the configuration
parameters.

It's helpful to look at the logging configuration for examples of how it can be very
challenging to configure a complex system. The relationships between Python
logging object-loggers, formatters, filters, and handlers must all be bound together to
create a logger usable by the application. If any pieces are missing, the logger will not
produce output. Section 16.8 of the Standard Library Reference describes two different
syntaxes for logging configuration files. We'll look at logging in Chapter 16, The
Logging and Warning Modules.

In some cases, it may be simpler to use Python code directly as the configuration file.
In this case, the configuration is a Python module, and the details are brought in
using a simple import statement. If a configuration file's syntax adds too much
complexity, then it may not be of any real value.

Once we've decided on the overall data structure, there are two common design
patterns for the scope of that structure.

Application configuration design patterns
There are two core design patterns for the scope of objects used to configure a Python
application:

A global property map: A global object can contain all of the configuration
parameters. A simple class definition is perhaps an ideal way to provide
names and values; this tends to follow the Singleton design pattern
ensuring that only one instance exists. Alternatives include a dictionary
with pairs of name: value, or a types.SimpleNamespace object of
attribute values.
Object construction: Instead of a single object, we'll define a kind of
Factory or collection of Factories that use the configuration data to build
the objects of the application. In this case, the configuration information is
used once when a program is started and never again. The configuration
information isn't kept around as a global object.
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The global property map design is very popular because it is simple and extensible.
The first example of this is using a class object, which is defined as follows:

class Configuration:
   some_attribute = "default_value"

We can use the preceding class definition as a global container of attributes. During
the initialization, we might have something similar to this as part of parsing the
configuration file:

Configuration.some_attribute = "user-supplied value"

Everywhere else in the program, we can use the value of
Configuration.some_attribute. A variation on this theme is to make a more
formal Singleton class design pattern. This is often done with a global module, as it
can be easily imported in a way that provides us with an accessible global definition.

The second example involves using a module for the configuration. We might have a
module named configuration.py. In that file, we can have a definition like the
following:

settings = {
    "some_attribute": "user-supplied value"
}

Now, the application can use configuration.settings as a global repository for
all of the application's settings. A function or class can parse the configuration file,
loading this dictionary with the configuration values that the application will then
use.

In a Blackjack simulation, we might see the following code:

shoe = Deck(configuration.settings['decks'])

Alternatively, we might possibly see the following code:

If bet > configuration.settings['limit']: raise InvalidBet()

Generally, we'll try to avoid having a global variable for the configuration. Because a
global variable is implicitly present everywhere, it can be misused to carry stateful
processing in addition to configuration values. Instead of a global variable, we can
often handle the configuration relatively more neatly through object construction. In
the next section, we will look at examples of constructing objects as a way to
implement the configuration changes.
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Configuring via object construction
When configuring an application through object construction, the objective is to build
the required objects at startup time. In effect, the configuration file defines the various
initialization parameters for the objects that will be built.

We can often centralize much of this initial object construction in a single main()
function. This will create the objects that do the real work of the application. We'll
revisit and expand on these design issues in Chapter 18, Coping with the Command
Line.

Let's now consider a simulation of Blackjack playing and betting strategies. When we
run a simulation, we want to gather the performance of a particular combination of
independent variables. These variables might include some casino policies including
the number of decks, table limits, and dealer rules. The variables might include the
player's game strategies for when to hit, stand, split, and double down. It could also
include the player's betting strategies of flat betting, Martingale betting, or some more
Byzantine type of betting system; our baseline code starts out like this:

import csv

def simulate_blackjack() -> None:
    # Configuration
    dealer_rule = Hit17()
    split_rule = NoReSplitAces()
    table = Table(
        decks=6, limit=50, dealer=dealer_rule,
        split=split_rule, payout=(3, 2)
    )
    player_rule = SomeStrategy()
    betting_rule = Flat()
    player = Player(
        play=player_rule, betting=betting_rule,
        max_rounds=100, init_stake=50
    )

    # Operation
    simulator = Simulate(table, player, samples=100)
    result_path = Path.cwd() / "data" / "ch14_simulation.dat"
    with result_path.open("w", newline="") as results:
        wtr = csv.writer(results)
        wtr.writerows(gamestats)
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In this example, the Configuration part of the code builds the six individual objects
to be used in the Operation phase. These objects include dealer_rule,
split_rule, table, player_rule, betting_rule, and player. Additionally, there
is a complex set of dependencies between table and subsidiary objects as well as
player and two other objects.

The second part of the code, Operation, builds a Simulate instance using table
and player. A csv writer object then writes rows from the simulator instance. This
final writerows() function depends on the Simulate class providing a
__next__() method.

The preceding example is a kind of technology spike – an initial draft solution – with
hardcoded object instances and initial values. Any change is essentially a rewrite. A
more polished application will rely on externally-supplied configuration parameters
to determine the classes of objects and their initial values. When we separate the
configuration parameters from the code, it means we don't have to tweak the code to
make a change. This gives us consistent, testable software. A small change is
accomplished by changing the configuration inputs instead of changing the code.

The Simulate class has an API that is similar to the following code:

from dataclasses import dataclass

@dataclass
class Simulate:
    """Mock simulation."""

    table: Table
    player: Player
    samples: int

    def __iter__(self) -> Iterator[Tuple]:
        """Yield statistical samples."""
        # Actual processing goes here...

This allows us to build the Simulate() object with some appropriate initialization
parameters. Once we've built an instance of Simulate(), we can iterate through that
object to get a series of statistical summary objects.
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The next version of this can use configuration parameters from a configuration file
instead of the hardcoded class names. For example, a parameter should be used to
decide whether to create an instance of Hit17 or Stand17 for the dealer_rule
value. Similarly, the split_rule value should be a choice among several classes that
embody several different split rules used in casinos.

In other cases, parameter values should be used to provide arguments to the
Simulate class __init__() method. For example, the number of decks, the house
betting limit, and the Blackjack payout values are configuration values used to create
the Table instance.

Once the objects are built, they interact normally through the Simulate.__next__()
method to produce a sequence of statistical output values. No further need of a global
pool of parameters is required: the parameter values are bound into the objects
through their instance variables.

The object construction design is not as simple as a global property map. While more
complex, it has the advantage of avoiding a global variable, and it also has the
advantage of making the parameter processing central and obvious in the main
factory function.

Adding new parameters when using object construction may lead to refactoring the 
application to expose a parameter or a relationship. This can make it seem more
complex than a global mapping from name to value.

One significant advantage of this technique is the removal of the complex if
statements deep within the application. Using the Strategy design pattern tends to
push decision-making forward into object construction. In addition to simplifying the
processing, the elimination of the if statements means there are fewer statements to
execute and this can lead to a performance boost.

In the next section, we will demonstrate how to implement a configuration hierarchy.
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Implementing a configuration hierarchy
We often have several choices as to where a configuration file should be placed. There
are several common locations, and we can use any combination of choices to create a
kind of inheritance hierarchy for the parameters:

The Python installation directory: We can find the installed location for a
module using the __file__ attribute of the module. From here, we can use
a Path object to locate a configuration file:

>>> import this
>>> from pathlib import Path
>>> Path(this.__file__)
PosixPath('/Users/slott/miniconda3/envs/mastering/lib/python3.
7/this.py')

The system application installation directory: This is often based on an
owning username. In some cases, we can simply create a special user ID to
own the application itself. This lets us use ~theapp/ as a configuration
location. We can use Path("~theapp").expanduser() to track down the
configuration defaults. In other cases, the application's code may live in
the /opt or /var directories.
A system-wide configuration directory: This is often present in /etc. Note
that this can be transformed into C:\etc on Windows.
The current user's home directory: We generally use Path.home() to
identify the user's home directory.
The current working directory: We generally use Path.cwd() to identify
the current working directory.
A file named in the command-line parameters: This is an explicitly named
file and no further processing should be done to the name.

An application can integrate configuration options from all of these sources. Any
installation default values should be considered the most generic and least user-
specific; these defaults can be overridden by more specific values.

This can lead to a list of files like the following code:

from pathlib import Path

config_locations = (
    Path(__file__),
    # Path("~thisapp").expanduser(), requires special username
    Path("/opt") / "someapp",
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    Path("/etc") / "someapp",
    Path.home(),
    Path.cwd(),
)
candidates = (dir / "someapp.config"
     for dir in config_locations)
config_paths = [path for path in candidates if path.exists()]

Here, the config_locations variable is a tuple of alternative paths where a
configuration file might be located. The candidates generator will create paths that
include a base path with a common base name, someapp.config. A final list object,
config_paths, is built for those paths that actually exist. The idea is to provide the
most generic names first, and the most user-specific names last.

Once we have this list of configuration filenames, we can append any filename
supplied through the command-line arguments to the end of the list with the 
following code:

config_paths.append(command_line_option)

This gives us a list of locations to place a user-updated configuration file as well as
the configuration default values.

Let's take a look at how to store the configuration in INI files.

Storing the configuration in INI files
The INI file format has historical origins from early Windows OS. The module to
parse these files is configparser. For additional details on the INI file, you can refer
to this Wikipedia article for numerous useful links:
http://en.wikipedia.org/wiki/INI_file.

An INI file has sections and properties within each section. Our sample main program
has three sections: the table configuration, player configuration, and overall
simulation data gathering. For this simulation, we will use an INI file that is similar to
the following example:

; Default casino rules
[table]
    dealer= Hit17
    split= NoResplitAces
    decks= 6
    limit= 50
    payout= (3,2)

http://en.wikipedia.org/wiki/INI_file
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; Player with SomeStrategy
; Need to compare with OtherStrategy
[player]
    play= SomeStrategy
    betting= Flat
    max_rounds= 100
    init_stake= 50

[simulator]
    samples= 100
    outputfile= p2_c13_simulation.dat

We've broken the parameters into three sections. Within each section, we've provided
some named parameters that correspond to the class names and initialization values
shown in our preceding model application initialization.

A single file can be parsed with the code shown in this example:

import configparser
config = configparser.ConfigParser()
config.read('blackjack.ini')

Here, we've created an instance of the parser and provided the target configuration
filename to that parser. The parser will read the file, locate the sections, and locate the
individual properties within each section.

If we want to support multiple locations for files, we can use
config.read(config_names). When we provide the list of filenames to
ConfigParser.read(), it will read the files in a particular order. We want to
provide the files from the most generic first to the most specific last. The generic
configuration files that are part of the software installation will be parsed first to
provide defaults. The user-specific configuration will be parsed later to override these
defaults.

Once we've parsed the file, we need to make use of the various parameters and
settings. Here's a function that constructs our objects based on a given configuration
object created by parsing the configuration files. We'll break this into three parts;
here's the part that builds the Table instance:

def main_ini(config: configparser.ConfigParser) -> None:
    dealer_nm = config.get("table", "dealer", fallback="Hit17")
    dealer_rule = {
        "Hit17": Hit17(),
        "Stand17": Stand17(),
    }.get(dealer_nm, Hit17())
    split_nm = config.get("table", "split", fallback="ReSplit")
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    split_rule = {
        "ReSplit": ReSplit(),
        "NoReSplit": NoReSplit(),
        "NoReSplitAces": NoReSplitAces(),
    }.get(split_nm, ReSplit())
    decks = config.getint("table", "decks", fallback=6)
    limit = config.getint("table", "limit", fallback=100)
    payout = eval(
        config.get("table", "payout", fallback="(3,2)")
    )
    table = Table(
        decks=decks, limit=limit, dealer=dealer_rule,
        split=split_rule, payout=payout
    )

We've used properties from the [table] section of the INI file to select class names
and provide initialization values. There are three broad kinds of cases here:

Mapping a string to a class name: We've used a mapping to look up an
object based on a string class name. This was done to create dealer_rule
and split_rule. If the pool of classes was subject to considerable change,
we might move this mapping into a separate factory function. The .get()
method of a dictionary includes a default object instance, for
example, Hit17().
Getting a value that ConfigParser can parse for us: The class can directly
handle values of built-in types such as str, int, float, and bool.
Methods such as getint() handle these conversions. The class has a
sophisticated mapping from a string to a Boolean, using a wide variety of
common codes and synonyms for True and False.
Evaluating something that's not built-in: In the case of payout, we had a
string value, '(3,2)', that is not a directly supported data type for
ConfigParser. We have two choices to handle this. We can try and parse
it ourselves, or we can insist that the value be a valid Python expression
and make Python do this. In this case, we've used eval(). Some
programmers call this a security problem. The next section deals with this.

Here's the second part of this example, which uses properties from the [player]
section of the INI file to select classes and argument values:

    player_nm = config.get(
        "player", "play", fallback="SomeStrategy")
    player_rule = {
        "SomeStrategy": SomeStrategy(),
        "AnotherStrategy": AnotherStrategy()
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    }.get(player_nm, SomeStrategy())
    bet_nm = config.get("player", "betting", fallback="Flat")
    betting_rule = {
        "Flat": Flat(),
        "Martingale": Martingale(),
        "OneThreeTwoSix": OneThreeTwoSix()
    }.get(bet_nm, Flat())
    max_rounds = config.getint("player", "max_rounds", fallback=100)
    init_stake = config.getint("player", "init_stake", fallback=50)
    player = Player(
        play=player_rule,
        betting=betting_rule,
        max_rounds=max_rounds,
        init_stake=init_stake
    )

This uses string-to-class mapping as well as built-in data types. It initializes two
strategy objects and then creates Player from those two strategies, plus two integer 
configuration values.

Here's the final part; this creates the overall simulator:

outputfile = config.get(
    "simulator", "outputfile", fallback="blackjack.csv")
samples = config.getint("simulator", "samples", fallback=100)
simulator = Simulate(table, player, samples=samples)
with Path(outputfile).open("w", newline="") as results:
    wtr = csv.writer(results)
    wtr.writerows(simulator)

We've used two parameters from the [simulator] section that are outside the
narrow confines of object creation. The outputfile property is used to name a file;
the samples property is provided as an argument to a method function.

The next section demonstrates how to handle more literals through the eval()
variants.
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Handling more literals via the eval()
variants
A configuration file may have values of types that don't have simple string
representations. For example, a collection might be provided as a tuple or a list
literal; a mapping might be provided as a dict literal. We have several choices to
handle these more complex values.

The choices resolve the issue of how much Python syntax the conversion is able to
tolerate. For some types (int, float, bool, complex, decimal.Decimal,
and fractions.Fraction), we can safely convert the string to a literal value
because the __init__() object for these types can handle string values.

For other types, however, we can't simply do the string conversion. We have several
choices on how to proceed:

Forbid these data types and rely on the configuration file syntax plus
processing rules to assemble complex Python values from very simple
parts; this is tedious but it can be made to work. In the case of the table
payout, we need to break the payout into two separate configuration items
for the numerator and denominator. This is a lot of configuration file
complexity for a simple two-tuple.
Use ast.literal_eval() as it handles many cases of Python literal
values. This is often the ideal solution.
Use eval() to simply evaluate the string and create the expected Python
object. This will parse more kinds of objects than ast.literal_eval().
But, do consider whether this level of generality is really needed.
Use the ast module to compile and then vet the resulting code object. This
vetting process can check for the import statements as well as use some
small set of permitted modules. This is quite complex; if we're effectively
allowing code, perhaps we should be designing a framework and simply
including Python code.

If we are performing RESTful transfers of Python objects through the network,
eval() of the resulting text cannot be trusted. You can refer to Chapter 10, Serializing
and Saving – JSON, YAML, Pickle, CSV, and XML.

In the case of reading a local configuration file, however, eval() is certainly usable.
In some cases, the Python application code is as easily modified as the configuration
file. Worrying about eval() may not be helpful when the base code can be tweaked.
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Here's how we use ast.literal_eval() instead of eval():

>>> import ast
>>> ast.literal_eval('(3,2)')
(3, 2)

This broadens the domain of possible values in a configuration file. It doesn't allow
arbitrary Python objects, but it allows a broad spectrum of literal values including
tuples.

Let's take a look at how to store the configuration in PY files.

Storing the configuration in PY files
The PY file format means using Python code as the configuration file. This pairs
nicely with the use of the same language implementing the application. We will have
a configuration file that's simply a module; the configuration is written in the Python
syntax. This can remove the need for sophisticated parsing to get the configuration
values.

Using Python gives us a number of design considerations. We have two overall
strategies to use Python as the configuration file:

A top-level script: In this case, the configuration file is simply the top-most
main program.
An exec() import: In this case, our configuration file provides parameter
values that are collected into module global variables.

We can design a top-level script file that looks like the following code:

from simulator import *

def simulate_SomeStrategy_Flat() -> None:
    dealer_rule = Hit17()
    split_rule = NoReSplitAces()
    table = Table(
        decks=6, limit=50, dealer=dealer_rule, split=split_rule,
payout=(3, 2)
    )
    player_rule = SomeStrategy()
    betting_rule = Flat()
    player = Player(
        play=player_rule, betting=betting_rule, max_rounds=100,
init_stake=50)
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    simulate(table, player, Path.cwd()/"data"/"ch14_simulation2a.dat",
100)

if __name__ == "__main__":
    simulate_SomeStrategy_Flat()

This presents a number of configuration parameters used to create and initialize
objects. In this kind of application, the configuration is simply written as code. We've
factored out the common processing into a separate function, simulate(), which
uses the configured objects, table and player; the Path target; and the number of
samples to generate. Rather than parsing and converting strings, the configuration is
presented as code.

One potential disadvantage of using Python as the configuration language is the
potential complexity of the Python syntax. This is usually an irrelevant problem for
two reasons. First, with some careful design, the syntax of the configuration should be
simple assignment statements with a few () and , instances.  Second, and more
importantly, other configuration files have their own complex syntax, which are
distinct from the Python syntax. Using a single language is a net reduction in
complexity.

The simulate() function is imported from the overall simulator application. This
simulate() function is similar to the following code:

import csv
from pathlib import Path

def simulate(table: Table, player: Player, outputpath: Path, samples:
int) -> None:
    simulator = Simulate(table, player, samples=samples)
    with outputpath.open("w", newline="") as results:
        wtr = csv.writer(results)
        for gamestats in simulator:
            wtr.writerow(gamestats)

This function is generic with respect to the table, player, filename, and number of
samples. Given the required configuration objects, it builds the final Simulate
instance and collects the resulting data.

A potential difficulty with this kind of configuration technique is the lack of handy
default values. The top-level script must be complete, that is, all of the configuration
parameters must be present. In most cases, this is not a limitation. In the few cases
where default values are important, we'll look at two ways to provide helpful default
values.
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Configuration via class definitions
The difficulty that we sometimes have with top-level script configuration is the lack
of handy default values. To provide defaults, we can use ordinary class inheritance.
Here's how we can use the class definition to build an object with the configuration
values:

class Example2(simulation.AppConfig):
    dealer_rule = Hit17()
    split_rule = NoReSplitAces()
    table = Table(
        decks=6, limit=50, dealer=dealer_rule, split=split_rule,
payout=(3, 2)
    )
    player_rule = SomeStrategy()
    betting_rule = Flat()
    player = Player(play=player_rule, betting=betting_rule,
max_rounds=100, init_stake=50)
    outputfile = Path.cwd()/"data"/"ch14_simulation2b.dat"
    samples = 100

This allows us to define the AppConfig class with default configuration values. The
class that we've defined here, Example2, can override the default values defined in
the AppConfig class.

We can also use mixins to break the definition down into reusable pieces. We might
break our classes down into the table, player, and simulation components and
combine them via mixins. For more information on the mixin class design, see
Chapter 9, Decorators and Mixins – Cross-Cutting Aspects.

In two small ways, this use of a class definition pushes the envelope on object-
oriented design. This kind of class has no method definitions; we're only going to use
this class as a Singleton object. However, it is a very tidy way of packing up a small
block of code so that the assignment statements fill in a small namespace.

We can modify our simulate() function to accept this class definition as an
argument:

def simulate_c(config: Union[Type[AppConfig], SimpleNamespace]) ->
None:
    simulator = Simulate(config.table, config.player, config.samples)
    with Path(config.outputfile).open("w", newline="") as results:
        wtr = csv.writer(results)
        wtr.writerow(simulator)
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This function has picked out the relevant values, config.table, config.player,
and config.samples, from the overall configuration object and used them to build a
Simulate instance and execute that instance. The results are the same as the previous
simulate() function, but the argument structure is different. Here's how we provide
the single instance of the class to this function:

if __name__ == "__main__":
    simulation.simulate_c(Example2)

Note that we're not providing an instance of the Example2 class. We're using the
class object itself. The Type[AppConfig] type hint shows the class itself is expected,
not an instance of the class.

One potential disadvantage of this approach is that it is not compatible with
argparse to gather command-line arguments. We can solve this by defining the
interface to be compatible with a types.SimpleNamespace object. This overlap is
formalized in the type hint: Union[Type[AppConfig], SimpleNamespace]. This
type definition permits a wide variety of objects to be used to provide configuration
parameters.

In addition to using a class, we can also create a SimpleNamespace object to have a
similar-looking syntax for using the configuration parameter values.

Configuration via SimpleNamespace
Using a types.SimpleNamespace object allows us to simply add attributes as
needed; this is similar to using a class definition. When defining a class, all of the
assignment statements are localized to the class. When creating a SimpleNamespace
object, we'll need to explicitly qualify every name with the NameSpace object that
we're populating. Ideally, we can create SimpleNamespace like the following code:

>>> import types
>>> config = types.SimpleNamespace(
...     param1="some value",
...     param2=3.14,
... )
>>> config
namespace(param1='some value', param2=3.14)
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This works delightfully well if all of the configuration values are independent of each
other. In our case, however, we have some complex dependencies among the
configuration values. We can handle this in one of the following two ways:

Provide only the independent values and leave it to the application to build
the dependent values
Build the values in the namespace incrementally

To create only the independent values, we might do something like this:

import types
config2c = types.SimpleNamespace(
  dealer_rule=Hit17(),
  split_rule=NoReSplitAces(),
  player_rule=SomeStrategy(),
  betting_rule=Flat(),
  outputfile=Path.cwd()/"data"/"ch14_simulation2c.dat",
  samples=100,
  )
config2c.table = Table(
    decks=6,
    limit=50,
    dealer=config2c.dealer_rule,
    split=config2c.split_rule,
    payout=(3, 2),
)
config2c.player = Player(
    play=config2c.player_rule,
    betting=config2c.betting_rule,
    max_rounds=100,
    init_stake=50
)

Here, we created SimpleNamespace with the six independent values for the
configuration. Then, we updated the configuration to add two more values that are
dependent on four of the independent values.

The config2c object is nearly identical to the object that was created by evaluating
Example4() in the preceding example. Note that the base class is different, but the
set of attributes and their values are identical. Here's the alternative, where we build
the configuration incrementally in a top-level script:

from types import SimpleNamespace

config2d = SimpleNamespace()
config2d.dealer_rule = Hit17()
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config2d.split_rule = NoReSplitAces()
config2d.table = Table(
    decks=6,
    limit=50,
    dealer=config2d.dealer_rule,
    split=config2d.split_rule,
    payout=(3, 2),
)
config2d.player_rule = SomeStrategy()
config2d.betting_rule = Flat()
config2d.player = Player(
    play=config2d.player_rule,
    betting=config2d.betting_rule,
    max_rounds=100,
    init_stake=50
)
config2d.outputfile = Path.cwd() / "data" / "ch14_simulation2d.dat"
config2d.samples = 100

The same simulate_c() function shown previously can be used for this
configuration object.

Sadly, this suffers from the same problem as configuration using a top-level script.
There's no handy way to provide default values to a configuration object.

An easy way to provide defaults is through a function that includes default parameter
values.

We might want to have a factory function that we can import, which creates
SimpleNamespace with the appropriate default values:

From simulation import  make_config
config2 = make_config()

If we used something like the preceding code, then the config2 object would have
the default values assigned by the factory function, make_config(). A user-supplied
configuration only needs to provide overrides for the default values.

Our default-supplying make_config() function can use the following code:

def make_config(
    dealer_rule: DealerRule = Hit17(),
    split_rule: SplitRule = NoReSplitAces(),
    decks: int = 6,
    limit: int = 50,
    payout: Tuple[int, int] = (3, 2),
    player_rule: PlayerStrategy = SomeStrategy(),
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    betting_rule: BettingStrategy = Flat(),
    base_name: str = "ch14_simulation2e.dat",
    samples: int = 100,
) -> SimpleNamespace:
    return SimpleNamespace(
        dealer_rule=dealer_rule,
        split_rule=split_rule,
        table=Table(
            decks=decks,
            limit=limit,
            dealer=dealer_rule,
            split=split_rule,
            payout=payout,
        ),
        payer_rule=player_rule,
        betting_rule=betting_rule,
        player=Player(
            play=player_rule,
            betting=betting_rule,
            max_rounds=100,
            init_stake=50
        ),
        outputfile=Path.cwd() / "data" / base_name,
        samples=samples,
    )

Here, the make_config() function will build a default configuration through a
sequence of assignment statements. The derived configuration values, including the
table attribute and the player attribute, are built from the original inputs.

An application can then set only the interesting override values, as follows:

config_b = make_config(dealer_rule=Stand17())
simulate_c(config_b)

This seems to maintain considerable clarity by specifying only the override values.

All of the techniques from Chapter 2, The __init__() Method, apply to the definition of
this kind of configuration factory function. We can build in a great deal of flexibility if
we need to. This has the advantage of fitting nicely with the way that the argparse
module parses command-line arguments. We'll expand on this in Chapter 18, Coping
with the Command Line.

Let's explore how to use Python with exec() for configuration.
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Using Python with exec() for the configuration
When we decide to use Python as the notation for a configuration, we can use the
exec() function to evaluate a block of code in a constrained namespace. We can
imagine writing configuration files that look like the following code:

# SomeStrategy setup

# Table
dealer_rule = Hit17()
split_rule = NoReSplitAces()
table = Table(decks=6, limit=50, dealer=dealer_rule,
        split=split_rule, payout=(3,2))

# Player
player_rule = SomeStrategy()
betting_rule = Flat()
player = Player(play=player_rule, betting=betting_rule,
        max_rounds=100, init_stake=50)

# Simulation
outputfile = Path.cwd()/"data"/"ch14_simulation3a.dat"
samples = 100

This is a pleasant, easy-to-read set of configuration parameters. It's similar to the INI
file and properties file that we'll explore in the following section. We can evaluate this
file, creating a kind of namespace, using the exec() function:

code = compile(py_file.read(), "stringio", "exec")
assignments: Dict[str, Any] = dict()
exec(code, globals(), assignments)
config = SimpleNamespace(**assignments)

simulate(config.table, config.player, config.outputfile,
config.samples)

In this example, the code object, code, is created with the compile() function. Note
that this isn't required; we can simply provide the text of the file to the exec()
function and it will compile the code and execute it.

The call to exec() provides three arguments:

The compiled code object
A dictionary that should be used to resolve any global names
A dictionary that will be used for any locals that get created
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When the code block is finished, the assignment statements will have been used to
build values in the local dictionary; in this case, the assignments variable. The keys
will be the variable names. This is then transformed into a SimpleNamespace object
so it's compatible with other initialization techniques mentioned previously.

The assignments dictionary will have a value that looks like the following output:

{'betting_rule': Flat(),
 'dealer_rule': Hit17(),
 'outputfile': PosixPath('/Users/slott/mastering-oo-
python-2e/data/ch14_simulation3a.dat'),
 'player': Player(play=SomeStrategy(), betting=Flat(), max_rounds=100,
init_stake=50, rounds=100, stake=50),
 'player_rule': SomeStrategy(),
 'samples': 100,
 'split_rule': NoReSplitAces(),
 'table': Table(decks=6, limit=50, dealer=Hit17(),
split=NoReSplitAces(), payout=(3, 2))}

This is used to create a SimpleNamespace object, config. The namespace object can
then be used by the simulate() function to perform the simulation. Using a
SimpleNamespace object makes it easier to refer to the individual configuration
settings. The initial dictionary requires code such as assignments['samples']. The
resulting config object can be used with code such as config.samples. 

The next section is a digression on why using exec() to parse Python code is not a
security risk.

Why exec() is a non-problem
The previous section discussed eval(); the same considerations also apply to
exec().

Generally, the set of available globals() is tightly controlled. Access to the os and
subprocess modules, or the __import__() function, can be eliminated by
removing them from the globals provided to exec().

If you have an evil programmer who will cleverly corrupt the configuration files, then
recall that they have complete access to the entire Python source. So, why would they
waste time cleverly tweaking configuration files when they can just change the
application code itself?
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One question can be summarized like this: What if someone thinks they can monkey patch
the application by forcing new code in via the configuration file? The person trying this is
just as likely to break the application through a number of other equally clever or
deranged channels. Avoiding Python configuration files won't stop the unscrupulous
programmer from breaking things by doing something else that's ill-advised. The
Python source is directly available for modification, so unnecessarily worrying about
exec() may not be beneficial.

In some cases, it may be necessary to change the philosophy. An application that's
highly customizable might actually be a general framework, not a tidy, finished
application. A framework is designed to be extended with additional code.

In the case where configuration parameters are downloaded through a web
application, then exec(), eval(), and Python syntax should not be used. For these
cases, the parameters need to be in a language such as JSON or YAML. Accepting a
configuration file from a remote computer is a type of RESTful state transfer. This is
covered in Chapter 13, Transmitting and Sharing Objects.

In the next section, we'll explore one of the collections as a way to provide override
values and default values in a single, convenient object.

Using ChainMap for defaults and
overrides
We'll often have a configuration file hierarchy. Previously, we listed several locations
where configuration files can be installed. The configparser module, for example,
is designed to read a number of files in a particular order and integrate the settings by
having later files override values from earlier files.

We can implement elegant default-value processing using the
collections.ChainMap class. You can refer to Chapter 7, Creating Containers and
Collections for some background on this class. We'll need to keep the configuration
parameters as dict instances, which is something that works out well using exec()
to evaluate Python-language initialization files.

Using this will require us to design our configuration parameters as a flat dictionary
of values. This may be a bit of a burden for applications with a large number of
complex configuration values, which are integrated from several sources. We'll show
you a sensible way to flatten the names.
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First, we'll build a list of files based on the standard locations:

from collections import ChainMap
from pathlib import Path
config_name = "config.py"
config_locations = (
    Path.cwd(),
    Path.home(),
    Path("/etc/thisapp"),
    # Optionally Path("~thisapp").expanduser(), when an app has a
"home" directory
    Path(__file__),
)
candidates = (dir / config_name for dir in config_locations)
config_paths = (path for path in candidates if path.exists())

We started with a list of directories showing the order in which to search for values.
First, look at the configuration file found in the current working directory; then, look
in the user's home directory. An /etc/thisapp directory (or possibly a ~thisapp
directory) can contain installation defaults. Finally, the Python library will be
examined. Each candidate location for a configuration file was used to create a
generator expression, assigned to the candidates variable. The config_paths
generator applies a filter so only the files that actually exist are loaded into the
ChainMap instance.

Once we have the names of the candidate files, we can build ChainMap by folding
each file into the map, as follows:

cm_config: typing.ChainMap[str, Any] = ChainMap()
for path in config_paths:
    config_layer: Dict[str, Any] = {}
    source_code = path.read_text()
    exec(source_code, globals(), config_layer)
    cm_config.maps.append(config_layer)

simulate(config.table, config.player, config.outputfile,
config.samples)

Each file is included by creating a new, empty map that can be updated with local
variables. The exec() function will add the file's local variables to an empty map.
The new maps are appended to the maps attribute of the ChainMap object,
cm_config.
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In ChainMap, every name is resolved by searching through the sequence of maps and
looking for the requested key and associated value. Consider loading two 
configuration files into ChainMap, giving a structure that is similar to the following
example:

ChainMap({},
 {'betting_rule': Martingale(),
 ...
 },
 {'betting_rule': Flat(),
 ...
 })

Here, many of the details have been replaced with ... to simplify the output. The
chain has a sequence of three maps:

The first map is empty. When values are assigned to the ChainMap object,1.
they go into this initial map, which will be searched first.
The second map is from the most local file, that is, the first file loaded into2.
the map; they are overrides to the defaults.
The last map has the application defaults; they will be searched last.3.

The only downside is that the reference to the configuration values will be using
dictionary notation, for example, config['betting_rule']. We can extend
ChainMap() to implement the attribute access in addition to the dictionary item
access.

Here's a subclass of ChainMap, which we can use if we find the
getitem() dictionary notation too cumbersome:

class AttrChainMap(ChainMap):

    def __getattr__(self, name: str) -> Any:
        if name == "maps":
            return self.__dict__["maps"]
        return super().get(name, None)

    def __setattr__(self, name: str, value: Any) -> None:
        if name == "maps":
            self.__dict__["maps"] = value
            return
        self[name] = value
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We can now say config.table instead of config['table']. This reveals an
interesting restriction on our extension to ChainMap, that is, we can't use maps as an
attribute. The maps key is a first-class attribute of the parent ChainMap class, and
must be left untouched by this extension.

We can define mappings from keys to values using a number of different syntaxes. In
the next section, we'll take a look at JSON and YAML format for defining the
parameter values.

Storing the configuration in JSON or
YAML files
We can store configuration values in JSON or YAML files with relative ease. The 
syntax is designed to be user-friendly. While we can represent a wide variety of
things in YAML, we're somewhat restricted to representing a narrower variety of
object classes in JSON. We can use a JSON configuration file that is similar to the
following code:

{
    "table":{
        "dealer":"Hit17",
        "split":"NoResplitAces",
        "decks":6,
        "limit":50,
        "payout":[3,2]
    },
    "player":{
        "play":"SomeStrategy",
        "betting":"Flat",
        "rounds":100,
        "stake":50
    },
    "simulator":{
        "samples":100,
        "outputfile":"p2_c13_simulation.dat"
    }
}
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The JSON document looks like a dictionary of dictionaries; this is precisely the same
object that will be built when we load this file. We can load a single configuration file
using the following code:

import json
config = json.load("config.json")

This allows us to use config['table']['dealer'] to look up the specific class to
be used for the dealer's rules. We can use config['player']['betting'] to locate
the player's particular betting strategy class name.

Unlike INI files, we can easily encode tuple like a sequence of values. So, the
config['table']['payout'] value will be a proper two-element sequence. It
won't, strictly speaking, be tuple, but it will be close enough for us to use it without
having to use ast.literal_eval().

Here's how we'd use this nested structure. We'll only show you the first part of the
main_nested_dict() function:

def main_nested_dict(config: Dict[str, Any]) -> None:
    dealer_nm = config.get("table", {}).get("dealer", "Hit17")
    dealer_rule = {
        "Hit17": Hit17(),
        "Stand17": Stand17()
    }.get(dealer_nm, Hit17())
    split_nm = config.get("table", {}).get("split", "ReSplit")
    split_rule = {
        "ReSplit": ReSplit(),
        "NoReSplit": NoReSplit(),
        "NoReSplitAces": NoReSplitAces()
    }.get(split_nm, ReSplit())
    decks = config.get("table", {}).get("decks", 6)
    limit = config.get("table", {}).get("limit", 100)
    payout = config.get("table", {}).get("payout", (3, 2))
    table = Table(
        decks=decks, limit=limit, dealer=dealer_rule,
split=split_rule, payout=payout
    )

This is very similar to the main_ini() function mentioned previously. When we
compare this with the preceding version, using configparser, it's clear that the
complexity is almost the same. The naming is slightly simpler, that is, we use
config.get('table',{}).get('decks') instead of
config.getint('table','decks').
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The main difference is shown in the highlighted line. JSON format provides us with
properly decoded integer values and proper sequences of values. We don't need to
use eval() or ast.literal_eval() to decode the tuple. The other parts, to build
Player and configure the Simulate object, are similar to the main_ini() version.

In some cases, the nested structure of a JSON file can be confusing to edit. One way to
simplify the syntax is to use a slightly different approach to organizing the data. In
the next section, we'll explore a way to remove some of the complexity by using a
flatter structure.

Using flattened JSON configurations
If we want to provide for default values by integrating multiple configuration files,
we can't use both ChainMap and a nested dictionary-of-dictionaries like this. We have
to either flatten out our program's parameters or look at an alternative to merging the
parameters from different sources.

We can easily flatten the names by using simple . separators between names to reflect
a top-level section and a lower-level property within the section. In that case, our
JSON file might look like the following code:

{'player.betting': 'Flat',
  'player.play': 'SomeStrategy',
  'player.rounds': '100',
  'player.stake': '50',
  'simulator.outputfile': 'data/ch14_simulation5.dat',
  'simulator.samples': '100',
  'table.dealer': 'Hit17',
  'table.decks': '6',
  'table.limit': '50',
  'table.payout': '(3,2)',
  'table.split': 'NoResplitAces'}

This has the advantage of allowing us to use ChainMap to accumulate the
configuration values from various sources. It also slightly simplifies the syntax to
locate a particular parameter value. Given a list of configuration filenames,
config_names, we might do something like this:

config = ChainMap(*[json.load(file) for file in config_names])
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This builds a proper ChainMap from a list of configuration filenames. Here, we're
loading a list of dict literals into ChainMap and the first dict literal will be the first
one searched for by the key.

We can use a method like this to exploit ChainMap. We'll only show you the first part,
which builds the Table instance:

def main_cm(config: Dict[str, Any]) -> None:
    dealer_nm = config.get("table.dealer", "Hit17")
    dealer_rule = {"Hit17": Hit17(), "Stand17":
Stand17()}.get(dealer_nm, Hit17())
    split_nm = config.get("table.split", "ReSplit")
    split_rule = {
        "ReSplit": ReSplit(),
        "NoReSplit": NoReSplit(),
        "NoReSplitAces": NoReSplitAces()
    }.get(
        split_nm, ReSplit()
    )
    decks = int(config.get("table.decks", 6))
    limit = int(config.get("table.limit", 100))
    payout = config.get("table.payout", (3, 2))
    table = Table(
        decks=decks,
        limit=limit,
        dealer=dealer_rule,
        split=split_rule,
        payout=payout
    )

The other parts, to build Player and configure the Simulate object, are similar to
the main_ini() version. However, they're omitted from this example.

When we compare this to the previous version, using configparser, it's clear that
the complexity is almost the same. But, the naming is slightly simpler; here, we use
int(config.get('table.decks')) instead of
config.getint('table','decks').

The JSON format for properties is convenient to use. The syntax, however, isn't very
friendly for people to use. In the next section, we'll take a look at using YAML syntax
instead of JSON syntax.
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Loading a YAML configuration
As YAML syntax contains JSON syntax, the previous examples can be loaded with
YAML as well as JSON. Here's a version of the nested dictionary-of-dictionaries
technique from the JSON file:

# Complete Simulation Settings
table: !!python/object:Chapter_14.simulation_model.Table
  dealer: !!python/object:Chapter_14.simulation_model.Hit17 {}
  decks: 6
  limit: 50
  payout: !!python/tuple [3, 2]
  split: !!python/object:Chapter_14.simulation_model.NoReSplitAces {}
player: !!python/object:Chapter_14.simulation_model.Player
  betting:  !!python/object:Chapter_14.simulation_model.Flat {}
  init_stake: 50
  max_rounds: 100
  play: !!python/object:Chapter_14.simulation_model.SomeStrategy {}
  rounds: 0
  stake: 63.0
samples: 100
outputfile: data/ch14_simulation4c.dat

This is often easier for people to edit than pure JSON. For applications where the
configuration is dominated by strings and integers, this has a number of advantages.
The process to load this file is the same as the process to load the JSON file:

import yaml
config = yaml.load("config.yaml")

This has the same limitations as the nested dictionaries. We don't have an easy way to
handle default values unless we flatten out the names.

When we move beyond simple strings and integers, however, we can try to leverage
YAML's ability to encode class names and create instances of our customized classes.
Here's a YAML file that will directly build the configuration objects that we need for
our simulation:

# Complete Simulation Settings
table: !!python/object:__main__.Table
  dealer: !!python/object:__main__.Hit17 {}
  decks: 6
  limit: 50
  payout: !!python/tuple [3, 2]
  split: !!python/object:__main__.NoReSplitAces {}
player: !!python/object:__main__.Player
  betting:  !!python/object:__main__.Flat {}
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  init_stake: 50
  max_rounds: 100
  play: !!python/object:__main__.SomeStrategy {}
  rounds: 0
  stake: 63.0
samples: 100
outputfile: data/ch14_simulation4c.dat

We have encoded class names and instance construction in YAML, allowing us to
define the complete initialization for Table and Player. We can use this initialization
file as follows:

import yaml

if __name__ == "__main__":

    config = yaml.load(yaml1_file)
    print(config)

    simulate(
        config["table"],
        config["player"],
        Path(config["outputfile"]),
        config["samples"]
    )

This shows us that a YAML configuration file can be used for human editing. YAML
provides us with the same capabilities as Python but with a different syntax. For this
type of example, a Python configuration script might be better than YAML.

Another format available for configuration parameters is called the properties file.
We'll examine the structure and parsing of properties files, and learn how to use them
in the next section.

Storing the configuration in properties
files
The properties files are often used with Java programs. However, there's no reason
why we can't use them with Python. They're relatively easy to parse and allow us to
encode the configuration parameters in a handy, easy-to-use format. For more
information about the format, you can refer
to http://en.wikipedia.org/wiki/.properties and https:/ ​/​docs. ​oracle. ​com/
javase/​10/​docs/ ​api/ ​java/ ​util/ ​Properties. ​html#load(java. ​io. ​Reader).
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https://docs.oracle.com/javase/10/docs/api/java/util/Properties.html#load(java.io.Reader)
https://docs.oracle.com/javase/10/docs/api/java/util/Properties.html#load(java.io.Reader)
https://docs.oracle.com/javase/10/docs/api/java/util/Properties.html#load(java.io.Reader)
https://docs.oracle.com/javase/10/docs/api/java/util/Properties.html#load(java.io.Reader)
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Here's what a properties file might look like:

# Example Simulation Setup

player.betting: Flat
player.play: SomeStrategy
player.rounds: 100
player.stake: 50

table.dealer: Hit17
table.decks: 6
table.limit: 50
table.payout: (3,2)
table.split: NoResplitAces

simulator.outputfile = data/ch14_simulation5.dat
simulator.samples = 100

This has some advantages in terms of simplicity. The section.property qualified
names are commonly used to structure related properties into sections. These can
become long in a very complex configuration file if too many levels of nesting are
used.

This format has a great deal of flexibility. The individual lines, however, can be
parsed to create a mapping from property name to property value. In the next section,
we'll take a look at parsing a properties file.

Parsing a properties file
There's no built-in properties parser in the Python standard library. We can
download a properties file parser from the Python Package Index
(https://pypi.python.org/pypi). However, it's not a very complex class, and it's a
good exercise in advanced object-oriented programming.

We'll break the class down into the top-level API functions and the lower-level
parsing functions. Here are some of the overall API methods:

import re

class PropertyParser:

    def read_string(self, data: str) -> Iterator[Tuple[str, str]]:
        return self._parse(data)

    def read_file(self, file: IO[str]) -> Iterator[Tuple[str, str]]:

https://pypi.python.org/pypi
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        data = file.read()
        return self.read_string(data)

    def read(self, path: Path) -> Iterator[Tuple[str, str]]:
        with path.open("r") as file:
            return self.read_file(file)

The essential feature here is that it will parse a filename, a file, or a block of text. This
follows the design pattern from configparser. A common alternative is to have
fewer methods and use isinstance() to determine the type of the argument and to
also determine what processing to perform on it.

Filenames are given as Path objects. While the file is generally an instance of
io.TextIOBase, the typing module provides the IO[str] hint; a block of text is also
a string. For this reason, many libraries use load() to work with files or filenames
and use loads() to work with a simple string. Something like this would echo the
design pattern of json:

def load(self, file_name_or_path: Union[TextIO, str, Path]) ->
Iterator[Tuple[str, str]]:
    if isinstance(file_name_or_path, io.TextIOBase):
        return self.loads(file_name_or_path.read())
    else:
        name_or_path = cast(Union[str, Path], file_name_or_path)
        with Path(name_or_path).open("r") as file:
            return self.loads(file.read())

def loads(self, data: str) -> Iterator[Tuple[str, str]]:
    return self._parse(data)

These methods will also handle a file, filename, or block of text. When a file is
provided, it can be read and parsed. When a path or a string is provided, it's used to
open a file with the given name. These extra methods give us an alternative API that
might be easier to work with. The deciding factor is achieving a coherent design
among the various libraries, packages, and modules. Here's the _parse() method:

key_element_pat = re.compile(r"(.*?)\s*(?<!\\)[:=\s]\s*(.*)")

def _parse(self, data: str) -> Iterator[Tuple[str, str]]:
    logical_lines = (
        line.strip() for line in re.sub(r"\\\n\s*", "",
data).splitlines()
    )
    non_empty = (line for line in logical_lines if len(line) != 0)
    non_comment = (
        line
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        for line in non_empty
        if not (line.startswith("#") or line.startswith("!"))
    )
    for line in non_comment:
        ke_match = self.key_element_pat.match(line)
        if ke_match:
            key, element = ke_match.group(1), ke_match.group(2)
        else:
            key, element = line, ""
        key = self._escape(key)
        element = self._escape(element)
        yield key, element

This method starts with three generator expressions to handle some overall features
of the physical lines and logical lines within a properties file. The generator
expressions separate three syntax rules. Generator expressions have the advantage of
being executed lazily; this means that no intermediate results are created from these
expressions until they're evaluated by the for line in non_comment statement.

The first expression, assigned to logical_lines, merges physical lines that end with
\ to create longer logical lines. The leading (and trailing) spaces are stripped away,
leaving just the line content. The r"\\\n\s*" Regular Expression (RE) is intended to
locate continuations. It matches \ at the end of a line and all of the leading spaces
from the next line.

The second expression, assigned to non_empty, will only iterate over lines with a
nonzero length; note that blank lines will be rejected by this filter.

The third expression, non_comment, will only iterate over lines that do not start with
# or !. Lines that start with # or ! will be rejected by this filter; this eliminates
comment lines.

Because of these three generator expressions, the for line in non_comment loop
only iterates through non-comment, non-blank, and logical lines that are properly
stripped of extra spaces. The body of the loop picks apart each remaining line to
separate the key and element and then apply the self._escape() function to
expand any escape sequences.
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The key-element pattern, key_element_pat, looks for explicit separators of non-
escaped characters, such as :, =, or a space. This pattern uses the negative lookbehind
assertion, that is, a RE of (?<!\\), to indicate that the following RE must be non-
escaped; therefore, the following pattern must not be preceded by \.
The (?<!\\)[:=\s] subpattern matches the non-escaped :, =, or space characters. It
permits a strange-looking property line such as a\:b: value; the property is a:b.
The element is value. The : in the key must be escaped with a preceding \.

The brackets in the RE capture the property and the element associated with it. If a
two-part key-element pattern can't be found, there's no separator and the line is just
the property name, with an element of "".

The properties and elements form a sequence of two-tuples. The sequence can easily
be turned into a dictionary by providing a configuration map, which is similar to
other configuration representation schemes that we've seen. They can also be left as a
sequence to show the original content of the file in a particular order. The final part is
a small method function to transform any escape sequences in an element to their
final Unicode character:

def _escape(self, data: str) -> str:
    d1 = re.sub(r"\\([:#!=\s])", lambda x: x.group(1), data)
    d2 = re.sub(r"\\u([0-9A-Fa-f]+)", lambda x: chr(int(x.group(1),
16)), d1)
    return d2

This _escape() method function performs two substitution passes. The first pass
replaces the escaped punctuation marks with their plain-text versions: \:, \#, \!, \=,
and \ all have \ removed. For the Unicode escapes, the string of digits is used to
create a proper Unicode character that replaces the \uxxxx sequence. The hex digits
are turned into an integer, which is turned into a character for the replacement.

The two substitutions can be combined into a single operation to save creating an
intermediate string that will only get discarded. This will improve the performance; it
should look like the following code:

d2 = re.sub(
    r"\\([:#!=\s])|\\u([0-9A-Fa-f]+)",
    lambda x: x.group(1) if x.group(1) else chr(int(x.group(2), 16)),
    data,
)

The benefit of better performance might be outweighed by the complexity of the RE
and the replacement function.
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Once we have parsed the properties values, we need to use them in an application. In
the next section, we'll examine ways of using a properties file.

Using a properties file
We have two choices for how we use a properties file. We could follow the design
pattern of configparser and parse multiple files to create a single mapping from the
union of the various values. Alternatively, we could follow the ChainMap pattern and
create a sequence of property mappings for each configuration file.

The ChainMap processing is reasonably simple and provides us with all the required
features:

pp = PropertyParser()

candidate_list = [prop_file]
config = ChainMap(
    *[dict(pp.read_file(file))
      for file in reversed(candidate_list)
      ]
)

We've taken the list in reverse order: the most specific settings will be first in the
internal list, while the most general settings will be the last. Once ChainMap has been
loaded, we can use the properties to initialize and build our Player, Table, and
Simulate instances.

This seems simpler than updating a single mapping from several sources.
Additionally, this follows the pattern used to process JSON or YAML configuration
files.

We can use a method like this to exploit ChainMap. This is very similar to the
main_cm() function mentioned previously. We'll only show you the first part, which
builds the Table instance:

import ast

def main_cm_prop(config):
    dealer_nm = config.get("table.dealer", "Hit17")
    dealer_rule = {"Hit17": Hit17(), "Stand17":
Stand17()}.get(dealer_nm, Hit17())
    split_nm = config.get("table.split", "ReSplit")
    split_rule = {
        "ReSplit": ReSplit(), "NoReSplit": NoReSplit(),
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"NoReSplitAces": NoReSplitAces()
    }.get(
        split_nm, ReSplit()
    )
    decks = int(config.get("table.decks", 6))
    limit = int(config.get("table.limit", 100))
    payout = ast.literal_eval(config.get("table.payout", "(3,2)"))
    table = Table(
        decks=decks, limit=limit, dealer=dealer_rule,
split=split_rule, payout=payout
    )

The difference between this version and the main_cm() function is the handling of
the payout tuple. In the previous version, JSON (and YAML) could parse the tuple.
When using the properties files, all values are simple strings. We must use eval() or
ast.literal_eval() to evaluate the given value. The other portions of this
main_cm_str() function are identical to main_cm().

Using the properties file format is one way to persist configuration data. In the next
section, we'll look at using XML syntax to represent configuration parameters.

Using XML files – PLIST and others
As we noted in Chapter 10, Serializing and Saving – JSON, YAML, Pickle, CSV, and
XML, Python's xml package includes numerous modules that parse the XML files.
Because of the wide adoption of the XML files, it often becomes necessary to convert
between XML documents and Python objects. Unlike JSON or YAML, the mapping
from XML is not simple.

One common way to represent the configuration data in XML is the PLIST file. For
more information on the PLIST format, you can refer to https:/ ​/​developer. ​apple.
com/​library/​archive/ ​documentation/ ​Cocoa/ ​Conceptual/ ​PropertyLists/
Introduction/​Introduction. ​html. 

Macintosh users with XCode installed can perform man plist to see extensive
documentation on the XML-based format. The advantage of the PLIST format is that
it uses a few, very general tags. This makes it easy to create PLIST files and parse
them. Here's the sample PLIST file with our configuration parameters:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">

https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/PropertyLists/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/PropertyLists/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/PropertyLists/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/PropertyLists/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/PropertyLists/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/PropertyLists/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/PropertyLists/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/PropertyLists/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/PropertyLists/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/PropertyLists/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/PropertyLists/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/PropertyLists/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/PropertyLists/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/PropertyLists/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/PropertyLists/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/PropertyLists/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/PropertyLists/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/PropertyLists/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/PropertyLists/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/PropertyLists/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/PropertyLists/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/PropertyLists/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/PropertyLists/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/PropertyLists/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/PropertyLists/Introduction/Introduction.html
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<dict>
  <key>player</key>
  <dict>
    <key>betting</key>
    <string>Flat</string>
    <key>play</key>
    <string>SomeStrategy</string>
    <key>rounds</key>
    <integer>100</integer>
    <key>stake</key>
    <integer>50</integer>
  </dict>
  <key>simulator</key>
  <dict>
    <key>outputfile</key>
    <string>ch14_simulation6a.dat</string>
    <key>samples</key>
    <integer>100</integer>
  </dict>
  <key>table</key>
  <dict>
    <key>dealer</key>
    <string>Hit17</string>
    <key>decks</key>
    <integer>6</integer>
    <key>limit</key>
    <integer>50</integer>
    <key>payout</key>
    <array>
      <integer>3</integer>
      <integer>2</integer>
    </array>
    <key>split</key>
    <string>NoResplitAces</string>
  </dict>
</dict>
</plist>

Here, we're showing you the nested dictionary-of-dictionary structure in this
example. There are a number of Python-compatible types encoded with XML tags:

Python type Plist tag
str <string>

float <real>

int <integer>

datetime <date>
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boolean <true/> or <false/>

bytes <data>

list <array>

dict <dict>

As shown in the preceding example, the dict <key> values are strings. This makes the
PLIST file a very pleasant encoding of our parameters for our simulation application.
We can load a PLIST-compliant XML file with relative ease:

import plistlib
print(plistlib.load(plist_file))

This will reconstruct our configuration parameter from the XML serialization. We can
then use this nested dictionary-of-dictionaries structure with the
main_nested_dict() function shown in the preceding section on JSON
configuration files.

Using a single module function to parse the file makes the PLIST format very
appealing. The lack of support for any customized Python class definitions makes this
equivalent to JSON or a properties file. 

In addition to the standardized PLIST schema, we can define our own customized
schema. In the next section, we'll look at creating XML that's unique to our problem
domain.

Customized XML configuration files
For a more complex XML configuration file, you can refer
to http://wiki.metawerx.net/wiki/Web.xml. These files contain a mixture of special-
purpose tags and general-purpose tags. These documents can be challenging to parse.
There are two general approaches:

Write a document processing class that uses XPath queries to locate the
tags in the XML document structure. In this case, we'll create a class with
properties (or methods) to locate the requested information in the XML
document.
Unwind the XML document into a Python data structure. This is the
approach followed by the plist module, mentioned previously. This will
convert the XML text values into native Python objects.

http://wiki.metawerx.net/wiki/Web.xml
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Based on examples of the web.xml files, we'll design our own customized XML
document to configure our simulation application:

<?xml version="1.0" encoding="UTF-8"?>
<simulation>
    <table>
        <dealer>Hit17</dealer>
        <split>NoResplitAces</split>
        <decks>6</decks>
        <limit>50</limit>
        <payout>(3,2)</payout>
    </table>
    <player>
        <betting>Flat</betting>
        <play>SomeStrategy</play>
        <rounds>100</rounds>
        <stake>50</stake>
    </player>
    <simulator>
        <outputfile>data/ch14_simulation6b.dat</outputfile>
        <samples>100</samples>
    </simulator>
</simulation>

This is a specialized XML file. We didn't provide a DTD or an XSD, so there's no
formal way to validate the XML against a schema. However, this file is small, easily
debugged, and parallels other example initialization files. Here's a Configuration
class that can use XPath queries to retrieve information from this file:

import xml.etree.ElementTree as XML

class Configuration:

    def read_file(self, file):
        self.config = XML.parse(file)

    def read(self, filename):
        self.config = XML.parse(filename)

    def read_string(self, text):
        self.config = XML.fromstring(text)

    def get(self, qual_name, default):
        section, _, item = qual_name.partition(".")
        query = "./{0}/{1}".format(section, item)
        node = self.config.find(query)
        if node is None:
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            return default
        return node.text

    def __getitem__(self, section):
        query = "./{0}".format(section)
        parent = self.config.find(query)
        return dict((item.tag, item.text) for item in parent)

We've implemented three methods to load the XML document: read(),
read_file(), and read_string(). Each of these simply delegates itself to an
existing method function of the xml.etree.ElementTree class. This parallels the
configparser API. We could use load() and loads() method names too, as they
would delegate themselves to parse() and fromstring(), respectively.

For access to the configuration data, we implemented two methods: get() and
__getitem__(). These methods build XPath queries to locate the section and item
within the XML structure. The get() method allows us to use code like this: stake
= int(config.get('player.stake', 50)). The __getitem__() method allows
us to use code like this: stake = config['player']['stake'].

The parsing is a trifle more complex than a PLIST file. However, the XML document
is much simpler than an equivalent PLIST document.

We can use the main_cm_prop() function, mentioned in the previous section on the
properties files, to process this configuration.

Summary
In this chapter, we explored a number of ways to represent the configuration
parameters. Most of these are based on more general serialization techniques that we
saw in Chapter 10, Serializing and Saving – JSON, YAML, Pickle, CSV, and XML. The
configparser module provides an additional format that's comfortable for some
users.

The key feature of a configuration file is that the content can be easily edited by a
human. For this reason, pickle files aren't recommended as a good representation.
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Design considerations and trade-offs
Configuration files can simplify running application programs or starting servers.
This can put all the relevant parameters in one easy-to-read and easy-to-modify file.
We can put these files under the configuration control, track change history, and
generally use them to improve the software's quality.

We have several alternative formats for these files, all of which are reasonably
human-friendly to edit. They vary in how easy they are to parse and any limitations
on the Python data that can be encoded:

INI files: These files are easy to parse and are limited to strings and
numbers.
Python code (PY files): We can use the main script for the configuration; in
this case, there will be no additional parsing and no limitations. We can
also use exec() to process a separate file; this makes it trivial to parse and,
again, there are no limitations.
JSON or YAML files: These files are easy to parse. They support strings,
numbers, dicts, and lists. YAML can encode Python, but then why not just
use Python?
Properties files: These files require a special parser. They are limited to
strings.
XML files:

PLIST files: These files are easy to parse. They support
strings, numbers, dicts, and lists.
Customized XML: These files require a special parser. They
are limited to strings, but a mapping to a Python object
allows a variety of conversions to be performed by the class.

Coexistence with other applications or servers will often determine a preferred format
for the configuration files. If we have other applications that use PLIST or INI files,
then our Python applications should make choices that are more comfortable for
users to work with.

Viewed from the breadth of objects that can be represented, we have four broad
categories of configuration files:

Simple files with only strings: Custom XML and properties files.
Simple files with Python literals: INI files.
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More complex files with Python literals, lists, and dicts: JSON, YAML,
PLIST, and XML.
Anything that is Python: We can use YAML for this, but it seems silly
when Python has a clearer syntax than YAML. Providing configuration
values through Python class definitions is very simple and leads to a
pleasant hierarchy of default and override values.

Creating a shared configuration
When we look at module design considerations in Chapter 19, Module and Package
Design, we'll see how a module conforms to the Singleton design pattern. This means
that we can import a module only once, and the single instance is shared.

Because of this, it's often necessary to define a configuration in a distinct module and
import it. This allows separate modules to share a common configuration. Each
module will import the shared configuration module; the configuration module will
locate the configuration file(s) and create the actual configuration objects.

Schema evolution
The configuration file is part of the public-facing API. As application designers, we
have to address the problem of schema evolution. If we change a class definition, how
will we change the configuration?

Because configuration files often have useful defaults, they are often very flexible. In
principle, the content is entirely optional.

As a piece of software undergoes major version changes – changes that alter the APIs
or the database schema – the configuration files too might undergo major changes.
The configuration file's version number may have to be included in order to
disambiguate legacy configuration parameters from current release parameters.

For minor version changes, the configuration files, such as database, input and output
files, and APIs, should remain compatible. Any configuration parameter handling
should have appropriate alternatives and defaults to cope with minor version
changes.
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A configuration file is a first-class input to an application. It's not an afterthought or a
workaround. It must be as carefully designed as the other inputs and outputs. When
we look at larger application architecture design in Chapter 16, The Logging and
Warning Modules, and Chapter 18, Coping with the Command Line, we'll expand on the
basics of parsing a configuration file.

Looking forward
In the following chapters, we'll explore larger-scale design considerations. Chapter
15, Design Principles and Patterns will address some general principles that can help
structure the class definitions of an object-oriented program. Chapter 16, The Logging
and Warning Modules will look at using the logging and warnings modules to create
audit information as well as to debug. We'll look at designing for testability and how
we use unittest and doctest in Chapter 17, Designing for Testability. Chapter 18,
Coping with the Command Line will look at using the argparse module to parse
options and arguments. We'll take this a step further and use the Command design
pattern to create program components that can be combined and expanded without
resorting to writing shell scripts. In Chapter 19, Module and Package Design, we'll look
at module and package design. In Chapter 20, Quality and Documentation, we'll look
at how we can document our design to ensure that our software is correct and is
properly implemented.



3
Section 3: Object-Oriented

Testing and Debugging
A finished application includes automated unit testing, as well as support for
debugging via the Python logging system. Beyond that, documentation of the
application's structure, support, and operation is also essential. This section looks at
logging, testing, and documenting your code.

The following chapters will be covered in this section:

Chapter 15, Design Principles and Patterns
Chapter 16, The Logging and Warning Modules
Chapter 17, Designing for Testability
Chapter 18, Coping with the Command Line
Chapter 19, Module and Package Design
Chapter 20, Quality and Documentation



15
Design Principles and

Patterns
There are a number of considerations for object-oriented design. In this chapter, we'll
take a step back from the details of the Python language to look at a few general
principles. These principles provide fundamental guidance on how to design stateful
objects. We'll look at concrete applications of the principles in Python.

The general approach we'll follow is defined by the SOLID design principles, which
are as follows:

Single Responsibility
Open/Closed
Liskov Substitution
Interface Segregation
Dependency Inversion

While the principles have a clever mnemonic, we won't cover them in this order. The
Interface Segregation Principle (ISP) seems to be the most helpful for decomposing a
complex problem into individual class definitions. Most of the remaining principles
help to refine the features of class definitions. The Single Responsibility Principle
(SRP) seems a little less focused than the others, making it more useful as a summary
than a starting point. For more information, see http:/ ​/​butunclebob. ​com/​ArticleS.
UncleBob.​PrinciplesOfOod for the original concepts. The linked site also includes a
number of additional concepts. Our purpose in this book is to provide some Pythonic
context to these principles. In this chapter, we will cover the following topics:

The SOLID design principles
SOLID principle design test
Building features through inheritance or composition
Parallels between Python and libstdc++

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
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Technical requirements
The code files for this chapter are available at https:/ ​/ ​git.​io/ ​fj2UX.

The SOLID design principles
One goal for the SOLID design principles is to limit the effects of change or extension
on a design. Making a change to established software is a bit like casting a pebble into
the sea: there will be an initial splash, followed by ripples of change spreading
outward. When trying to fix or extend badly designed software, the initial splash
radius covers everything; the ripples are large and lead to numerous problems. In
well-designed software, the splash radius is tiny.

As a concrete example, consider a class to represent dominoes. Each tile has 2
numbers, from 0 to 6, leading to 28 distinct tiles. The class design looks more or less
like a two-tuple. The overall collection of 28 tiles can be generated with a nested pair
of for statements, or a generator expression with two for clauses.

In some games, however, the tiles could have an upper limit of 9, 12, or even 15.
Having different upper limits leads to a change to the class that represents the overall
collection of dominoes. In Python, this change may be as tiny as adding a default
parameter, limit=6, to an object constructor. In poorly-designed software, the
number 6 appears in more than one place in the class definition, and the change has a
large splash radius.

While playing, some dominoes with double numbers, especially the double-six, can
have special roles. In some games, double-numbers tiles are called spinners and have a
dramatic impact on the state of play. In other games, the double-number tiles are
merely used to determine who plays first, and have little overall impact. These
changes in role can lead to changes in the design for a class definition. A SOLID
design will isolate changes to one portion of the application, limiting the ripples from
disturbing unrelated portions of the software.

In many games, the sum of the two numbers is the value of the tile; the winner's
points are based on the sum of the values of the unplayed tiles in the other player's
hands. This means that tiles with higher point values should often be played first, and
tiles with lower point values represent less risk. This suggests a variety of policies for
sorting tiles into order, leading to design variations.

https://git.io/fj2UX
https://git.io/fj2UX
https://git.io/fj2UX
https://git.io/fj2UX
https://git.io/fj2UX
https://git.io/fj2UX
https://git.io/fj2UX
https://git.io/fj2UX
https://git.io/fj2UX
https://git.io/fj2UX
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All of these variations in the rules suggest we need to be flexible in our class design. If
we focus on the rules for one specific game, then our class definition cannot easily be
reused or modified for other games. To maximize the value of a class definition
means providing a class general enough to solve a number of closely related
problems. We'll start with a class definition containing a number of design flaws. The
poor design is as follows:

import random
from typing import Tuple, List, Iterator

class DominoBoneYard:

    def __init__(self, limit: int = 6) -> None:
        self._dominoes = [
            (x, y) for x in range(limit + 1)
            for y in range(x + 1)
        ]
        random.shuffle(self._dominoes)

    def double(self, domino: Tuple[int, int]) -> bool:
        x, y = domino
        return x == y

    def score(self, domino: Tuple[int, int]) -> int:
        return domino[0] + domino[1]

    def hand_iter(self, players: int = 4) -> Iterator[List[Tuple[int,
int]]]:
        for p in range(players):
            yield self._dominoes[p * 7:p * 7 + 7]

    def can_play_first(self, hand: List[Tuple[int, int]]) -> bool:
 for d in hand:
 if self.double(d) and d[0] == 6:
 return True
 return False

    def score_hand(self, hand: List[Tuple[int, int]]) -> int:
        return sum(d[0]+d[1] for d in hand)

    def rank_hand(self, hand: List[Tuple[int, int]]) -> None:
        hand.sort(key=self.score, reverse=True)

    def doubles_indices(self, hand: List[Tuple[int, int]]) ->
List[int]:
        return [i for i in range(len(hand)) if self.double(hand[i])]
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While this class can be used for some common games, it has many problems. If we
want to extend or modify this definition for other games, almost any change seems to
create a large splash with extensive ripples.

We'll call out a particularly difficult method, the can_play_first() method. In a
double-6 game with 4 players, it's common for all 28 dominoes to be dealt. One of the
4 hands will have the double-6; that player goes first. In a 2-player variation,
however, only 14 dominoes will be dealt, and there's a 50% chance that neither player
has the double-6. To cover that common case, the rule is often stated as highest double
plays first. This class doesn't easily find any double other than double-6.

This class should have been decomposed into a number of smaller classes. We'll look
at each of the SOLID design principles in the following sections to see how they
guide us toward better design. We want to build object models to better support
solving a variety of closely related problems.

The Interface Segregation Principle
One definition of the Interface Segregation Principle (ISP) is that clients should not be
forced to depend on methods that they do not use. The idea is to provide the smallest
number of methods in a class. This leads to focused definitions, often separating a
design into multiple classes to isolate the impact of any changes.

This principle seems to have the most dramatic impact on a design because it
decomposes the model into a number of classes, each with a focused interface. The
other four principles seem to follow from this beginning by providing improvements
after the initial decomposition.

The type hints embedded in the class definition shown earlier suggest there are at
least three different interfaces involved in the class. We can see type hints for the
following:

The overall collection of dominoes, List[Tuple[int, int]], used to
deal hands. 
Each individual domino, defined by a type hint in the form of Tuple[int,
int].
A hand of dominoes, also defined by the type hint in the form
of List[Tuple[int, int]]. This is, perhaps, an ambiguity that is
exposed by having similar types with different purposes.



Design Principles and Patterns Chapter 15

[ 518 ]

The doubles_indices() query about specific dominoes within a hand,
where the result is List[int]. This may not be different enough to merit
yet another class definition.

If we decompose the initial class based on these separate interfaces, we'll have a
number of classes that can then evolve independently. Some classes can be reused
widely in a variety of games; other classes will have to have game-specific extensions
created. The revised pair of classes is shown in the following code:

class Domino(NamedTuple):
    v1: int
    v2: int

    def double(self) -> bool:
        return self.v1 == self.v2

    def score(self) -> int:
        return self.v1 + self.v2

class Hand(list):

    def __init__(self, *args: Domino) -> None:
        super().__init__(cast(Tuple[Any], args))

    def score(self) -> int:
        return sum(d.score() for d in self)

    def rank(self) -> None:
        self.sort(key=lambda d: d.score(), reverse=True)

    def doubles_indices(self) -> List[int]:
        return [i for i in range(len(self)) if self[i].double()]

The Domino class preserves the essential Tuple[int, int] structure, but provides a
sensible name for the class and names for the two values shown on the tile. A
consequence of using a NamedTuple is a more useful repr() value when we print
objects.

The __init__() method of the Hand class doesn't really do much useful work. The
cast() function applied to a type, Type[Any], and the args object does nothing at
runtime. The cast() is a hint to mypy that the values of args should be considered
as having the Tuple[Any] type, instead of the more restrictive Domino type. Without
this, we get a misleading error about the list.__init__() method expecting
objects of the Any type.
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The score of a Hand instance depends on scores of the various Domino objects in the
Hand collection. Compare this with the score_hand() and score() functions
shown previously. The poor design repeats important algorithmic details in two
places. A small change to one of these places must also be made to another place,
leading to a wider splash from a change.

The double_indices() function is rather complex because it works with index
positions of dominoes rather than the domino objects themselves. Specifically, the use
of for i in range(len(self)) means the value of the i variable will be an
integer, and self[i] will be the Domino object with the index value equal to the
value of the i variable. This function provides the indices of dominoes for which the
double() method is True.

To continue this example, the overall collection of dominoes is shown in the following
code:

class DominoBoneYard2:

    def __init__(self, limit: int = 6) -> None:
        self._dominoes = [Domino(x, y) for x in range(limit + 1) for y
in range(x + 1)]
        random.shuffle(self._dominoes)

    def hand_iter(self, players: int = 4) -> Iterator[Hand]:
        for p in range(players):
            yield Hand(self._dominoes[p * 7:p * 7 + 7])

This creates individual Domino instances when the initial set of dominoes is created.
Then, it creates individual Hand instances when dealing dominoes to players.

Because the interfaces have been minimized, we can consider changing the way
dominoes are dealt without breaking the essential definition of each tile or a hand of
tiles. Specifically, the design as shown doesn't work well with the tiles not dealt to the
players. In a 2-player game, for example, there will be 14 unused tiles. In some games,
these are simply ignored. In other games, players are forced to choose from this pool.
Adding this feature to the original class runs the risk of disturbing other interfaces,
unrelated to the mechanics of dealing. Adding a feature to the DominoBoneyard2
class doesn't introduce the risk of breaking the behavior of Domino or Hand objects.

We can, for example, make the following code change:

class DominoBoneYard3(DominoBoneYard2):

    def hand_iter(self, players: int = 4) -> Iterator[Hand3]:
        for p in range(players):
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            hand, self._dominoes = Hand3(self._dominoes[:7]),
self._dominoes[7:]
            yield hand

This would preserve any undealt dominoes in the self._dominoes sequence. A
draw() method could consume dominoes one at a time after the initial deal. This
change does not involve changes to any other class definitions; this isolation reduces
the risk of introducing astonishing or confusing problems in other classes.

The Liskov Substitution Principle
The Liskov Substitution Principle (LSP) is named after computer scientist Barbara
Liskov, inventor of the CLU language. This language emphasizes the concept of a
cluster containing a description of the representation of an object and the
implementations of all the operations on that object. For more information on this
early object-oriented programming language, see http:/ ​/​www. ​pmg. ​lcs. ​mit. ​edu/​CLU.
html. 

The LSP is often summarized as subtypes must be substitutable for their base types. This
advice tends to direct us toward creating polymorphic type hierarchies. If, for
example, we wish to add features to the Hand class, we should make sure any
subclass of Hand can be used as a direct replacement for Hand. 

In Python, a subclass that extends a superclass by adding new methods is an ideal
design. This subclass extension demonstrates the LSP directly.

When a subclass method has a different implementation but the same type hint
signature as a superclass, this also demonstrates elegant Liskov substitutability. The
examples shown previously include DominoBoneYard2 and DominoBoneYard3.
Both of these classes have the same methods with the same type hints and
parameters. The implementations are different. The subclass can substitute for the
parent class.

In some cases, we'd like to have a subclass that uses additional parameters or has a
slightly different type signature. A design where a subclass method doesn't match the
superclass method is often less than ideal, and an alternative design should be
considered. In many cases, this should be done by wrapping the superclass instead of
extending it.
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Wrapping a class to add features is a way to create a new entity without creating
Liskov Substitution problems. Here is an example:

class FancyDealer4:

    def __init__(self):
        self.boneyard = DominoBoneYard3()

    def hand_iter(self, players: int, tiles: int) -> Iterator[Hand3]:
        if players * tiles > len(self.boneyard._dominoes):
            raise ValueError(f"Can't deal players={players}
tiles={tiles}")
        for p in range(players):
            hand = Hand3(self.boneyard._dominoes[:tiles])
            self.boneyard._dominoes = self.boneyard._dominoes[tiles:]
            yield hand

The FancyDealer4 class definition is not a subclass of the previous
DominoBoneYard2 or DominoBoneYard3 classes. This wrapper defines a distinct
signature for the hand_iter() method: this is an additional parameter, and there are
no default values. Each instance of FancyDealer4 wraps a DominoBoneYard3
instance; this object is used to manage the details of the available tiles. 

Wrapping a class makes an explicit claim that the LSP is not a feature of the class
design. The choice between writing a wrapper or creating a subclass is often informed
by the LSP.

Python's use of default values and keyword parameters provides a tremendous
amount of flexibility. In many cases, we can consider rewriting a superclass to
provide suitable defaults. This is often a way to avoid creating more subclasses or
more wrapper classes. In some languages, the compiler rules for inheritance require
considerable cleverness to get to a class hierarchy where a subclass can be used in
place of the superclass. In Python, cleverness is rarely required; instead, we can often
add optional parameters.

The Open/Closed Principle
The Open/Closed Principle (OCP) suggests two complementary objectives. On the
one hand, a class should be open to extension. On the other hand, it should also be
closed to modification. We want to design our classes to support extension via
wrapping or subclasses. As a general habit, we'd like to avoid modifying classes.
When new features are needed, a sound approach is to extend classes to add the
features.
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When we want to introduce changes or new features, the ideal path is via extension of
existing classes. This leaves all of the legacy features in place, leaving the original
tests in place to confirm no previous feature was broken by adding a new feature.

When keeping a class open to extension, there are two kinds of design changes or
adaptations that arise:

A subclass needs to be added where the method signatures match the
parent class. The subclass may have additional methods, but it will contain
all of the parent class features and can be used in place of the parent class.
This design also follows the LSP.
A wrapper class needs to be added to provide additional features that are
not compatible with another class hierarchy. A wrapper class steps outside
direct Liskov Substitution because the new features of the wrapper will not
be directly compatible with the other classes.

In either case, the original class definitions remain unmodified as the design evolves.
The new features are either extensions that satisfy the LSP, or wrappers that create a
new class from an old class definition. This kind of design is a consequence of
keeping the classes open to extension.

Our example classes, DominoBoneYard2 and DominoBoneYard3, shown previously,
both suffer from a profound failure to follow the OCP. In both of these classes, the
number of tiles in a hand is fixed at seven. This literal value makes the class difficult
to extend. We were forced to create the FancyDealer4 class to work around this
design flaw.

A better design of the DominoBoneYard2 class would lead to easier extension to all of
the classes in this hierarchy. A small change that works very nicely in Python is to
make the constant value into a class-level attribute. This change is shown in the
following code sample:

class DominoBoneYard2b:

    hand_size: int = 7

    def __init__(self, limit: int = 6) -> None:
        self._dominoes = [Domino(x, y) for x in range(limit + 1) for y
in range(x + 1)]
        random.shuffle(self._dominoes)

    def hand_iter(self, players: int = 4) -> Iterator[Hand3]:
        for p in range(players):
            hand = Hand3(self._dominoes[:self.hand_size])
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            self._dominoes = self._dominoes[self.hand_size:]
            yield hand

The DominoBoneYard2b class introduces a class-level variable to make the size of
each hand into a parameter. This makes the class more open to extension: a subclass
can make changes without the need to modify any further programming. This isn't 
always the best kind of rework, but it has the advantage of being a very small change.
The Python language facilitates these kinds of changes. The self.hand_size
reference can either be a property of the instance, or a property of the class as a whole.

There are other places we can open this class to extension. We'll look at some of them
as part of the Dependency Inversion Principle. 

The Dependency Inversion Principle
The Dependency Inversion Principle (DIP) has an unfortunate name; the word
inversion seems to imply there's some kind of obvious dependency and we should
invert the obvious dependency rules. Practically, the principle is described as having
class dependencies based on the most abstract superclass possible, not on a specific,
concrete implementation class.

In languages with formal type declarations, for example, Java or C++, this advice to
refer to abstract superclasses can be helpful to avoid complex recompiles for small
changes. These languages also need fairly complex dependency injection frameworks
to be sure that classes can be altered via runtime configuration changes. In Python,
the runtime flexibility means the advice changes somewhat.

Because Python uses duck typing, there isn't always a single, abstract superclass
available to summarize a variety of alternative implementations. We may, for
example, define a function parameter to be Iterable, telling mypy to permit any
object that follows the Iterable protocol: this will include iterators as well as
collections. 

In Python, the DIP leads us to two techniques:

Type hints should be as abstract as possible. In many cases, it will name a
relevant protocol used by a method or a function.
Concrete type names should be parameterized.
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In our preceding examples, the various DominoBoneYard class definitions all suffer
from a dependency problem: they all refer to concrete class names when creating the
initial pool of Domino objects and when creating the Hand objects. We are not free to
replace these classes as needed, but need to create subclasses to replace a reference.

A more flexible definition of the class is shown in the following example:

class DominoBoneYard3c:

    domino_class: Type[Domino] = Domino

    hand_class: Type[Hand] = Hand3

    hand_size: int = 7

    def __init__(self, limit: int = 6) -> None:
        self._dominoes = [
            self.domino_class(x, y) for x in range(limit + 1) for y in
range(x + 1)
        ]
        random.shuffle(self._dominoes)

    def hand_iter(self, players: int = 4) -> Iterator[Hand]:
        for p in range(players):
            hand = self.hand_class(
                self._dominoes[:self.hand_size])
            self._dominoes = self._dominoes[self.hand_size:]
            yield hand

This example shows how the dependencies can be defined in a central place, as
attributes of the class definition. This refactors the dependencies from deep within
several methods to a much more visible position. We've provided a complete type
hint in order to help spot potential misuse of the type expectations. For the Domino
class, we don't have any alternatives, and the hint, Type[Domino], does seem
redundant. For the Hand3 class, however, we've provided the hint of Type[Hand] to
show the most abstract class that will be usable here.

Because these values are variables, it becomes very easy to perform dependency
injection and supply configuration information at runtime. We can use code along the
lines of DominoBoneYard3c.hand_class = Hand4 to change the class used to build
a hand. Generally, this should be done before any instances are created. The class
identification can be taken from a configuration file and used to tailor the details of
the application's operation.
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We can imagine a top-level program that includes the following:

configuration = get_configuration()
DominoBoneYard3c.hand_class = configuration['hand_class']
DominoBoneYard3c.domino_class = configuration['domino_class']

Once the class definitions have the proper dependencies injected into them, the
application can then work with those configured class definitions. For more ideas on
providing the configuration, see Chapter 14, Configuration Files and Persistence. It's
important to note that the type hints are not used to check runtime configuration
values. The type hints are only used to confirm that the source code appears to be
consistent in its use of objects and types.

The Single Responsibility Principle
The Single Responsibility Principle (SRP) can be the most difficult principle to
understand. The general statement that "a class should have one, and only one, reason to
change" shifts the definition of responsibility to the understanding of change in an
object-oriented design. There are several reasons for change; the most salient reason
for changing a class is to add a new feature. As noted earlier in the Open/Closed
principle section, a feature should be added as an extension rather than a modification.

In many cases, the Interface Segregation Principle (ISP) seems to provide more
concrete guidance for class design than the SRP. The SRP seems to be a summary of
how a class looks when we've followed the other principles.

When we review the classes defined in the preceding examples, there are some
potential changes that this principle implies. In particular, the
various DominoBoneYard class definitions provide the features listed here:

Build the collection of Domino instances.
Deal the initial hands to the players. Often this is four hands of seven
dominoes, but this rule varies from game to game. This may exhaust the
collection of dominoes, or it may leave some dominoes undealt.
When there is a collection of undealt dominoes, manage the collection by
allowing players to draw, to supplement their hands.

We can claim this is a single responsibility: dealing dominoes to players. There are
two different ways players get dominoes (the initial deal and drawing later in the
game) and both mechanisms are part of the responsibilities of a single class. This is a
fairly high level of abstraction, looking at the pool of dominoes as a single thing.
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We can also claim there are two responsibilities here. We can argue that creating the
initial collection of Domino objects is a different responsibility from dealing Domino
objects to players. We can counter-argue that adding and removing dominoes is the
single responsibility of maintaining the collection contents. This is a fairly low level of
abstraction.

The general guiding principles often lead to situations where expert judgment is
required to make the final decision. There is no simple rule for distinguishing the
level of abstraction appropriate for a design.

These principles must be used to guide the design process. They aren't immutable
laws. The final decisions depend on a number of other factors, like the overall
complexity of the application and the sweep of anticipated programming changes. It
helps to consider the SOLID design principles as conversation starters. When
reviewing a design, the splash radius around a change and the consequences of the
change need to be evaluated and these principles provide a few dimensions for 
evaluating the quality of the design.

Let's take a look at the SOLID principle design test in the next section.

A SOLID principle design test
We generally think of testing as something applied to the final code (in Chapter 17,
Design for Testability, we'll look at automated testing in detail). However, we can also 
apply a test to a SOLID design. The test is to replace a given class with an equivalent
class to provide an alternative algorithm to accomplish the same purpose. If we've
done our design job well, then a change to one class should have a minimal splash
with few ripples.

As a concrete example, consider the Domino class shown earlier in this chapter, under
the Interface Segregation Principle section. We used a NamedTuple to represent the pair
of numbers. Some alternatives are possible:

Use a frozenset to retain one or two distinct values. If there's one value in
the set, the tile is actually a double, or spinner.
Use a Counter to retain the counts for the values. If there's a single value,
with a count of two, the tile is a double. Otherwise, there will be two values
with counts of one each.
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Do these kinds of change to the Domino class have any effect on other classes in the
design? If not, then the design is nicely encapsulated. If these kinds of changes do
break the design, then the design effort should continue to rearrange the class
definitions in a way where the impact of a change is minimized.

In the next section, we'll build features through inheritance and composition.

Building features through inheritance and
composition
As noted earlier in the Liskov Substitution Principle section, there are two general ways
to add features to a class definition:

Inheritance to extend a class by creating a subclass
Composition of a new class from one or more other classes

In general, these choices are always present. Every object-oriented design decision
involves choosing between inheritance and composition.

To make the decision more nuanced, Python allows multiple inheritance. While
combining multiple mixing classes is partially a kind of inheritance, it is more
fundamentally an exercise in composition. 

The LSP can lead to avoiding inheritance in favor of composition. The general
suggestion is to reserve inheritance for those situations where the child class can fully
replace the parent class. When features are changed in some way to create a child that
is not a direct replacement for the parent, then composition may be more appropriate.

Consider the consequences of adding some features to the Hand class shown earlier.
Here are two examples: 

The Hand3 subclass extended the Hand class by introducing an additional
method. This extension is compatible with the superclass, and Hand3 can
be used as a substitute for Hand. This seems to be a sensible extension via
inheritance.
The FancyDealer4 class introduced a new class composed of a new
method making use of the DominoBoneYard3 class. This class introduced a
profound change to the hand_iter() method; the change was not trivially
compatible with the superclass.
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There are yet more composition techniques available in Python. In Chapter 9,
Decorators and Mixins – Cross-cutting Aspects, we addressed two additional
composition techniques. We'll look at some other patterns of class composition in the
next section.

Advanced composition patterns
One of the classic books of design patterns, Design Patterns: Elements of Reusable
Object-Oriented Software, identified a number of common patterns of object
composition. Some of these patterns are more relevant to C++ or Java programming,
and less relevant to Python programming. For example, the Singleton pattern is a
first-class aspect of a Python module and a Python class definition; the complexities
of Java static variables aren't necessary to implement this pattern.

A better source for Python design patterns is available at https:/ ​/​python- ​patterns.
guide. The pattern descriptions on this Python Patterns website are focused on
Python specifically. It's important to recognize that some of the complexity in object-
oriented design pattern literature stems from creating elegant ways to create a
runtime behavior in the presence of very strict compile-time checking. Python doesn't
suffer from the same kinds of type management issues, making Python programming
simpler. 

A central concept in Python is duck typing. The concept is based on the following
quote:

"When I see a bird that walks like a duck and swims like a duck and quacks like a
duck, I call that bird a duck."

In Python, an object is usable when the methods and attributes fit a needed protocol.
The actual base type doesn't matter; the available methods are what defines a class's
suitability in a particular context.

We can, for example, define two similar-looking classes as shown in the following
code. The first uses the typing.NamedTuple as a base class:

from typing import NamedTuple
from dataclasses import dataclass

class Domino_1(NamedTuple):
    v1: int
    v2: int

    @property

https://python-patterns.guide
https://python-patterns.guide
https://python-patterns.guide
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    def double(self):
        return self.v1 == self.v2

This alternative version uses a @dataclass decorator to create a frozen object, similar
to a tuple:

from dataclasses import dataclass

@dataclass(frozen=True, eq=True, order=True)
class Domino_2:
    v1: int
    v2: int

    @property
    def double(self):
        return self.v1 == self.v2

These two classes have nearly identical behavior. The only class they have in common
is the superclass for all objects, the object class. Yet, these two classes are
functionally interchangeable, and can be freely substituted for each other.

This ability to have equivalent types without a common superclass permits flexibility,
but can also lead to a difficulty when trying to check types with mypy. In some cases,
we may find the need to define an abstract superclass purely for the purposes of
providing assurance that several distinct implementations all provide common
features. In other cases, we may need to add a type hint like the following:

Domino = Union[Domino_1, Domino_2]

This definition provides a type name, Domino, with two concrete implementations.
This provides information mypy can use to validate our software without the needless
complexity of creating an abstract superclass. We can introduce new classes to this
Union type without having to worry about inheritance. In order for this to work, the
only requirement is for the classes to support the methods actually used by the
application.

With this definition, we can use the following kind of factory method for building
Domino instances:

class DominoBoneYard:

    domino_class: Type[Domino] = Domino_1

    def __init__(self, limit: int = 6) -> None:
        self._dominoes: List[Domino] = [
            self.domino_class(x, y)
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            for x in range(limit + 1)
                for y in range(x + 1)
        ]
        random.shuffle(self._dominoes)

The __init__() method builds the self._dominoes object with a type hint of
List[Domino]. This hint embraces all of the classes in the Union[] type hint for the
Domino type name. 

If we were to make a terrible mistake in using this class and try to use some code
like DominoBoneYard.domino_class = tuple to create tuple objects, the mypy
program would spot the type incompatibility and report an error with a message
along the lines of Incompatible types in assignment (expression has
type "Type[Tuple[Any, ...]]", variable has type

"Union[Type[Domino_1], Type[Domino_2]]"). This message would inform us
that the configuration choice of tuple is unlikely to work correctly.

Parallels between Python and libstdc++
The C++ Standard Template Library provides a number of design patterns realized as
class templates. These templates must be filled in with specific types in order to
satisfy the C++ compiler requirements. We can use this library as a suggestion for
common design patterns. We'll look at a few elements of the modern GNU libstdc++
implementation as a representative sample of current thinking from other languages.
The website at https:/ ​/ ​en. ​cppreference. ​com/​w/ ​ provides a thorough reference.

The intent here is to use this library as a list of suggestions or hints about design
patterns. This can provide a perspective on the features available in Python. There is
no single, correct, gold standard for class libraries. Any comparison among languages
is fraught with difficulties because it can appear as if one language is deficient
because of a missing feature. In all cases when comparing languages, any
missing feature can be trivially built from existing components.

An overview of various classes and templates in C++ library is available in chapters 4
to 15 of The GNU C++ Library Manual. Here is a comparison of some common patterns 
from another language and the mapping to similar features available in Python; they
are as follows:

Support describes some foundational features, including the atomic data
types. The types defined here parallel int, float, and str in Python.

https://en.cppreference.com/w/cpp
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Diagnostics describes the C++ implementation of exceptions and error
handling.
Utilities describes Functors and Pairs, which correspond to Python
functions and two-tuples. Python extends the Pair concept to the more
general tuple and adds NamedTuple.
Strings describes more string features. Some of this is part of the str type,
the string module, and the shlex module.
Localization describes some additional features of the C++ libraries for
localization. This is part of the Python locale module.
Containers describes a number of C++ container class templates. We'll
provide details in a following section. 
Iterators describes the C++ features similar to Python iterator. The C++
implementations include a variety of iterator categories. A random access
iterator, for example, is similar to integer index values for a list. A forward
iterator parallels the Python implementation of iterators. An input or
output iterator in C++ is similar to iterable file-like objects in Python. In
Python, a class that offers the __iter__() method is iterable. An object
with the __next__() method is an iterator. There are bidirectional
iterators available in C++ – it's not clear how important these are, but there
is a place in the class hierarchy for them.
Algorithms describes classes, and expands on features in the Iterators
chapter. It provides some tools for parallelizing algorithms. Most
importantly, it contains a number of common operations. Some of these are
parts of Python collections, others are part of itertools, and others
are Python built-in functions.
Numeric's describes some more advanced numeric types. The Python
complex type and the numbers module provide Python versions of these
features. The array module and packages, such as numpy and pandas,
amplify these core features.
Input and Output describes the C++ I/O classes. The Python io module 
defines equivalents for these C++ features.
Atomics provides a way to define thread-safe objects where writes to
memory are guaranteed to be completed before another thread can read
them. In Python, the threading library can be used to build objects with
this behavior.
Concurrency describes additional ways of handling threads in an
application. This is also part of the Python threading library.
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The containers library in C++ includes the following kinds of categories and container
class definitions:

Sequences include the following:
Array. This is for fixed-size arrays. We can use a built-in
list, or the array module, or even the numpy package for
this.
Vector. This corresponds to the Python list class.
Deque. While the list class has these features, the
Collections.deque class provides better performance.
List. This also corresponds to the Python list class.
Forward List. This is an extension to a list that permits
removing elements while iterating through them. Because
this isn't directly available in Python, we'll often use
list(filter(rule, data)) to create a new list that is a
subset of the old list.

Associations are essentially the same as the unordered associations listed
in
the following bullet point. In the C++ implementation, a tree data structure
is used to keep keys in order. In Python, an equivalent set of features can be
built by using sorted() on the keys.
Unordered Associations include the following:

Set. This corresponds roughly to the Python set class.
Multiset. This corresponds to the Python
collections.Counter class.
Map. This corresponds to the Python dict class.
Multimap. This can be built using defaultdict(list).
Several add-on packages provide implementations for this.
See http:/ ​/ ​werkzeug. ​pocoo. ​org/ ​docs/ ​0.​14/
datastructures/ ​ for the MultiDict class, as one example.

When we consider the C++ libraries as a kind of benchmark, it appears Python
provides similar features. This is a way to judge the completeness of Python design
patterns. This alternative organization of these classes can be helpful to visualize the
variety of implementation patterns present in Python.
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Summary
In this chapter, we took a step back from the details of Python to look at the SOLID
design principles. These considerations are fundamental to how a stateful object
should be designed. The principles provide us a useful collection of ideas for
structuring an object-oriented design. It seems most useful to consider the principles
in the following order:

Interface Segregation: Build the smallest interface to each class, refactoring
to split a big class definition into smaller pieces.
Liskov Substitution: Be sure that any subclass can replace the parent class;
otherwise, consider a composition technique instead of inheritance.
Open/Closed: A class should be open to extension but closed to direct
modification. This requires careful consideration of what extensions are
sensible for a given class.
Dependency Inversion: A class shouldn't have a simple, direct
dependency on another class. A class should be provided via a variable so
a runtime configuration can change the class used.
Single Responsibility: This summarizes the objective of defining classes
with a single, narrow purpose, so changes are confined to one or a very few
classes.

These principles will be implicit in the following chapters. The next
chapter, Chapter 16, The Logging and Warning Modules, will look at using the logging
and warnings modules to create audit information as well as to debug. We'll look at
designing for testability and how we use unittest and doctest in Chapter 17,
Designing for Testability. Later chapters will look at the design of applications,
packages, and the general concepts of producing high-quality software.



16
The Logging and Warning

Modules
We often need to make internal object state and state transitions more visible. There
are the following three common cases for increased visibility:

One case is for auditing an application, where we want to keep a history of
state changes for an object.
Another situation is to track the secure operations of an application and
identify who is carrying out sensitive actions.
A third common situation is to help debug problems that arise during use.

The Python logger is a flexible way to make internal object states and state transitions
visible. 

There are times when we have multiple logs with different kinds of information. We
might distribute security, audit, and debugging into separate logs. In other cases, we
might want a unified log. The logging module permits a variety of configurations.

Some users may want verbose output to confirm that the program works as they
understand it. Allowing them to set a verbosity level produces a variety of log details
focused on the needs of users.

The warnings module can also provide helpful information for developers as well as
users, including the following:

In the case of developers, we may use warnings to show them that an API
has been deprecated
In the case of users, we might want to show them the results are
questionable but not erroneous

There might be questionable assumptions or possibly confusing default values that
should be pointed out to users.
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Software maintainers will need to selectively enable logging to perform useful
debugging. We rarely want blanket debugging output: the resulting log might be
unreadably dense. We often need focused debugging to track down a specific
problem in a specific class or module. The idea of multiple logs being sent a single
handler can be used to enable detailed logging in some places and summary logging
in others. The logging package in the Python 3.7.2 version of the standard library
doesn't have complete type hints. Consequently, the examples in this chapter won't
have type details. In this chapter, we will cover the following topics:

Creating a basic log
Configuration Gotcha
Specialized logging for control, debug, audit, and security
Using the warnings module
Advanced logging—the last few messages and network destinations

Technical requirements
The code files for this chapter are available at https:/ ​/ ​git.​io/ ​fj2U1.

Creating a basic log
There are three steps to producing a log. The two necessary steps are the following:

Get a logging.Logger instance with the logging.getLogger()1.
function; for example, logger=logging.getLogger("demo").
Create messages with that Logger. There are a number of methods, with2.
names such as warn(), info(), debug(), error(), and fatal(), that
create messages with different levels of importance. For example,
logger.info("hello world").

These two steps are not sufficient to give us any output, however. There's a third,
optional step that we take when we want to see logged messages. The reason for
having a third step is because seeing a log isn't always required. Consider a
debugging log that is generally left silent. The optional step is to configure the
logging module's handlers, filters, and formatters. We can use the
logging.basicConfig() function for this; for example,
logging.basicConfig(stream=sys.stderr, level=logging.INFO).

https://git.io/fj2U1
https://git.io/fj2U1
https://git.io/fj2U1
https://git.io/fj2U1
https://git.io/fj2U1
https://git.io/fj2U1
https://git.io/fj2U1
https://git.io/fj2U1
https://git.io/fj2U1
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It's technically possible to skip the first step. We can use the default logger, which is
part of the logging module's top-level functions. We showed you this in Chapter 9,
Decorators and Mixins – Cross-Cutting Aspects, because the focus was on decoration,
not logging. It is advisable not to use the default root logger and suggest that it's
universally more configurable to use named loggers that are children of the root
logger.

Instances of the Logger class are identified by a name attribute. The names are dot-
separated strings that form a hierarchy. There's a root logger with the name "", the
empty string. All other Logger instances are children of this root Logger instance. A
complex application named foo might have an internal package named services
with a module named persistence and a class named SQLStore. This could lead to
loggers named "", "foo", "foo.services", "foo.services.persistence", and
"foo.services.persistence.SQLStore". 

We can often use the root Logger to configure the entire tree of Logger instances.
When we choose names to form a proper hierarchy, we can enable or disable whole
subtrees of related instances by configuring an appropriate parent Logger object. In
our preceding example, we might enable debugging for
"foo.services.persistence" to see messages from all of the classes with a
common prefix for their logger name.

In addition to a name, each Logger object can be configured with a list of Handler
instances that determines where the messages are written and a list of Filter objects
to determine which kinds of messages are passed or rejected. These Logger instances
have the essential API for logging; we use a Logger object to create LogRecord
instances. These records are then routed to Filter and Handler objects; the passed
records are formatted and eventually wind up getting stored in a local file, or
transmitted over a network.

The best practice is to have a distinct logger for each of our classes or modules. As
Logger object names are dot-separated strings, the Logger instance names can
parallel class or module names; our application's hierarchy of component definitions
will have a parallel hierarchy of loggers. We might have a class that starts like the
following code:

import logging
class Player:

    def __init__(self, bet: str, strategy: str, stake: int) -> None:
        self.logger = logging.getLogger(
            self.__class__.__qualname__)
        self.logger.debug(
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            "init bet %r, strategy %r, stake %r",
            bet, strategy, stake
        )

The unique value of self.__class__.__qualname__ will ensure that the Logger
object used for this class will have a name that matches the qualified name of the
class.

As a general approach to logging, this works well. The only downside of this
approach is that each logger instance is created as part of the object, a tiny
redundancy. It would be a somewhat better use of memory to create the logger as
part of the class instead of each instance of the class.

In the next section, we'll look at a few ways to create a class-level logger shared by all
instances of the class.

Creating a class-level logger
As we noted in Chapter 9, Decorators and Mixins – Cross-Cutting Aspects, creating a
class-level logger can be done with a decorator. This will separate logger creation
from the rest of the class. A common decorator idea that is very simple has a hidden
problem. Here's the example decorator:

def logged(cls: Type) -> Type:
    cls.logger = logging.getLogger(cls.__qualname__)
    return cls

The @logged decorator creates the logger attribute as a feature of a class. This can
then be shared by all of the instances. With this decorator, we can define a class with
code like the following example:

@logged
class Player_1:

    def __init__(self, bet: str, strategy: str, stake: int) -> None:
        self.logger.debug("init bet %s, strategy %s, stake %d", bet,
        strategy, stake)

This will assure us that the Player_1 class has the logger with the expected name of
logger. We can then use self.logger in the various methods of this class.
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The problem with this design is mypy is unable to detect the presence of the logger
instance variable. This gap will lead mypy to report potential problems. There are
several better approaches to creating loggers.

We can create a class-level debugger using code like the following example:

class Player_2:
    logger = logging.getLogger("Player_2")

    def __init__(self, bet: str, strategy: str, stake: int) -> None:
        self.logger.debug("init bet %s, strategy %s, stake %d", bet,
strategy, stake)

This is simple and very clear. It suffers from a small Don't Repeat Yourself (DRY)
problem. The class name is repeated within the class-level logger creation. This is a
consequence of the way classes are created in Python, and there is no easy way to
provide the class name to an object created before the class exists. It's the job of the
metaclass to do any finalization of the class definition; this can include providing the
class name to internal objects.

We can use the following design to build a consistent logging attribute in a variety of
related classes:

class LoggedClassMeta(type):

    def __new__(cls, name, bases, namespace, **kwds):
        result = type.__new__(cls, name, bases, dict(namespace))
        result.logger = logging.getLogger(result.__qualname__)
        return result

class LoggedClass(metaclass=LoggedClassMeta):
    logger: logging.Logger

This metaclass uses the __new__() method to create the resulting object and add a
logger to the class. As an example, a class named C will then have a C.logger object.
The LoggedClass can be used as a mixin class to provide the visible logger
attribute name and also be sure it's properly initialized.

We'll use this class as shown in the following example:

class Player_3(LoggedClass):

    def __init__(self, bet: str, strategy: str, stake: int) -> None:
        self.logger.debug(
            "init bet %s, strategy %s, stake %d",
            bet, strategy, stake)



The Logging and Warning Modules Chapter 16

[ 539 ]

When we create an instance of Player_3, we're going to exercise the logger
attribute. Because this attribute is set by the metaclass for LoggedClass, it is
dependably set for every instance of the Player_3 class.

The metaclass and superclass pair is superficially complex-looking. It creates a shared
class-level logger for each instance. The name of the class is not repeated in the code.
The only obligation on the client is to include LoggedClass as a mixin.

By default, we won't see any output from a definition like this. The initial
configuration for the logging module doesn't include a handler or a level that
produces any output. We'll also need to change the logging configuration to see any
output.

The most important benefit of the way the logging module works is that we can
include logging features in our classes and modules without worrying about the
overall configuration. The default behavior will be silent and introduce very little
overhead. For this reason, we can always include logging features in every class that
we define.

Configuring loggers
There are the following two configuration details that we need to provide in order to
see the output in our logs:

The logger we're using needs to be associated with at least one handler that
produces conspicuous output.
The handler needs a logging level that will pass our logging messages.

The logging package has a variety of configuration methods. We'll show you
logging.basicConfig() here. We'll take a look at
logging.config.dictConfig() separately.

The logging.basicConfig() method permits a few parameters to create a single
logging.handlers.StreamHandler for logging the output. In many cases, this is
all we need:

>>> import logging
>>> import sys
>>> logging.basicConfig(stream=sys.stderr, level=logging.DEBUG)
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This will configure a StreamHandler instance that will write to sys.stderr. It will
pass messages that have a level that is greater than or equal to the given level. By
using logging.DEBUG, we're assured of seeing all the messages. The default level is
logging.WARN.

After performing the basic configuration, we'll see our debugging messages when we
create the class, as follows:

>>> pc3 = Player_3("Bet3", "Strategy3", 3)
DEBUG:Player_3:init bet Bet3, strategy Strategy3, stake 3

The default log format shows us the level (DEBUG), the name of the logger
(Player_3), and the string that we produced. There are more attributes in
LogRecord that can also be added to the output. Often, this default format is
acceptable.

Starting up and shutting down the logging
system
The logging module is defined in a way that avoids manually managing the global
state information. The global state is handled within the logging module. We can
write applications in separate parts and be well assured that those components will
cooperate properly through the logging interface. We can, for example, include
logging in some modules and omit it entirely from other modules without worrying
about the compatibility or configuration.

Most importantly, we can include logging requests throughout an application and
never configure any handlers. A top-level main script can omit import logging
entirely. In this case, logging is a stand-by feature, ready for use when needed for
debugging.

Because of the decentralized nature of logging, it's best to configure it only once, at
the top level of an application. We should configure logging inside the if
__name__ == "__main__": portion of an application. We'll look at this in more
detail in Chapter 18, Coping with the Command Line.

Many of our logging handlers involve buffering. For the most part, data will be
flushed from the buffers in the normal course of events. While we can ignore how
logging shuts down, it's slightly more reliable to use logging.shutdown() to be
sure that all of the buffers are flushed to the devices.
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When handling top-level errors and exceptions, we have two explicit techniques to
ensure that all buffers are written. One technique is to use a finally clause on a
try: block, as follows:

import sys

if __name__ == "__main__":
    logging.config.dictConfig(yaml.load("log_config.yaml"))
    try:
        application = Main()
        status = application.run()
    except Exception as e:
        logging.exception(e)
        status = 1
    finally:
        logging.shutdown()
    sys.exit(status)

This example shows us how we configure logging as early as possible and shut
down logging as late as possible. This ensures that as much of the application as
possible is properly bracketed by properly configured loggers. This includes an
exception logger; in some applications, the main() function handles all exceptions,
making the except clause here redundant.

Another approach is to include an atexit handler to shut down logging, as follows:

import atexit
import sys
if __name__ == "__main__":
    logging.config.dictConfig(yaml.load("log_config.yaml"))
    atexit.register(logging.shutdown)
    try:
        application = Main()
        status = application.run()
    except Exception as e:
        logging.exception(e)
        status = 2
    sys.exit(status)

This version shows us how to use the atexit handler to invoke
logging.shutdown(). When the application exits, the given function will be called.
If the exceptions are properly handled inside the main() function, the try: block can
be replaced with the much simpler status = main(); sys.exit(status).

There's a third technique, which uses a context manager to control logging. We'll look
at that alternative in Chapter 18, Coping with the Command Line.
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Naming loggers
There are four common use cases for using logging.getLogger() to name our
Loggers. We often pick names to parallel our application's architecture, as described
in the following examples:

Module names: We might have a module global Logger instance for
modules that contain a large number of small functions or classes for which
a large number of objects are created. When we extend tuple, for example,
we don't want a reference to Logger in each instance. We'll often do this
globally, and usually close to the front of the module, as follows:

import logging
logger = logging.getLogger(__name__)

Object instances: This was shown previously, when we created Logger in
the __init__() method. This Logger will be unique to the instance; using
only a qualified class name might be misleading, because there will be
multiple instances of the class. A better design is to include a unique
instance identifier in the logger's name, as follows:

def __init__(self, player_name)
    self.name = player_name
    self.logger = logging.getLogger(
        f"{self.__class__.__qualname__}.{player_name}")

Class names: This was shown previously, when we defined a simple
decorator. We can use __class__.__qualname__ as the Logger name
and assign Logger to the class as a whole. It will be shared by all instances
of the class.
Function names: For small functions that are used frequently, we'll often
use a module-level log, as shown previously. For larger functions that are
rarely used, we might create a log within the function, as follows:

def main():
    log = logging.getLogger("main")

The idea here is to be sure that our Logger names match the names of components in
our software architecture. This provides us with the most transparent logging,
simplifying debugging.



The Logging and Warning Modules Chapter 16

[ 543 ]

In some cases, however, we might have a more complex collection of Loggers. We
might have several distinct types of informational messages from a class. Two
common examples are financial audit logs and security access logs. We might want
several parallel hierarchies of Loggers; one with names that start with audit. and
another with names that start with security. A class might have more specialized
Loggers, with names such as audit.module.Class or security.module.Class,
as shown in the following example:

self.audit_log = logging.getLogger(
    f"audit.{self.__class__.__qualname__}")

Having multiple logger objects available in a class allows us to finely control the
kinds of output. We can configure each Logger to have different handlers. We'll use
the more advanced configurations in the following section to direct the output to
different destinations.

Extending logger levels
The logging module has five predefined levels of importance. Each level has a global
variable (or two) with the level number. The level of importance represents a
spectrum of optionality, from debugging messages (rarely important enough to
show) to critical or fatal errors (always important), as shown in the following table:

Logging module variable Value
DEBUG 10
INFO 20
WARNING or WARN 30
ERROR 40
CRITICAL or FATAL 50

We can add additional levels for even more nuanced control over what messages are
passed or rejected. For example, some applications support multiple levels of
verbosity. Similarly, some applications include multiple levels of debugging details.
We might want to add an additional, verbose output level, set to 15, for example. This
fits between information and debugging. It can follow the pattern of informative
messages without devolving to the details of a debugging log.
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For ordinary, silent processing, we might set the logging level to logging.WARNING
so that only warnings and errors are shown. For the first level of verbosity, we can set
the level of logging.INFO to see informational messages. For the second level of
verbosity, we might want to add a level with a value of 15 and set the root logger to
include this new level.

We can use the following to define our new level of verbose messages:

logging.addLevelName(15, "VERBOSE")
logging.VERBOSE = 15

This code needs to be written prior to the configuration of the loggers. It would be
part of a top-level, main script. We can use our new levels via the Logger.log( )
method, which takes the level number as an argument, as follows:

self.logger.log(logging.VERBOSE, "Some Message")

While there's little overhead to add levels such as these, they can be overused. The
subtlety is that a level conflates multiple concepts—visibility and erroneous
behavior—into a single numeric code. The levels should be confined to a simple
visibility or error spectrum. Anything more complex must be done via the Logger
names or the actual Filter objects.

Defining handlers for multiple destinations
We have several use cases for sending the log output to multiple destinations, which
are shown in the following bullet list:

We might want duplicate logs to improve the reliability of operations.
We might be using sophisticated Filter objects to create distinct subsets
of messages.
We might have different levels for each destination. We can use the
debugging level to separate debugging messages from informational
messages.
We might have different handlers based on the Logger names to represent
different foci.

Of course, we can also combine these different choices to create quite complex
scenarios. In order to create multiple destinations, we must create multiple Handler
instances. Each Handler might contain a customized Formatter; it could contain an
optional level, and an optional list of filters that can be applied.
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Once we have multiple Handler instances, we can bind one or more Logger objects
to the desired Handler instances. A Handler object can have a level filter. Using this,
we can have multiple handler instances; each can have a different filter to show
different groups of messages based on the level. Also, we can explicitly create Filter
objects if we need even more sophisticated filtering than the built-in filters, which
only check the severity level.

While we can configure this through the logging module API, it's often more clear to
define most of the logging details in a separate configuration file. One elegant way to
handle this is to use YAML notation for a configuration dictionary. We can then load
the dictionary with a relatively straightforward use of
logging.config.dictConfig(yaml.load(somefile)).

The YAML notation is somewhat more compact than the notation accepted by
configparser. The documentation for logging.config in the Python standard
library uses YAML examples because of their clarity. We'll follow this pattern.

Here's an example of a configuration file with two handlers and two families of
loggers:

version: 1
handlers:
  console:
    class: logging.StreamHandler
    stream: ext://sys.stderr
    formatter: basic
  audit_file:
    class: logging.FileHandler
    filename: data/ch16_audit.log
    encoding: utf-8
    formatter: basic
formatters:
  basic:
    style: "{"
    format: "{levelname:s}:{name:s}:{message:s}"
loggers:
  verbose:
    handlers: [console]
    level: INFO
  audit:
    handlers: [audit_file]
    level: INFO
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We defined two handlers: console and audit_file. The console is
StreamHandler that is sent to sys.stderr. Note that we have to use a URI-style
syntax of ext://sys.stderr to name an external Python resource. In this context,
external means external to the configuration file. This complex string is mapped to the
sys.stderr object. The audit_file is FileHandler that will write to a given file.
By default, files are opened with a mode of a to append.

We also defined the formatter, named basic, with a format to produce messages that
match the ones created when logging is configured via basicConfig(). If we don't
use this, the default format used by dictConfig() only has the message text.

Finally, we defined two top-level loggers, verbose and audit. The verbose instance
will be used by all the loggers that have a top-level name of verbose. We can then
use a Logger name such as verbose.example.SomeClass to create an instance that
is a child of verbose. Each logger has a list of handlers; in this case, there's just one
element in each list. Additionally, we've specified the logging level for each logger.

Here's how we can load this configuration file:

import logging.config
import yaml
config_dict = yaml.load(config)
logging.config.dictConfig(config_dict)

We parsed the YAML text into dict and then used the dictConfig() function to
configure the logging with the given dictionary. Here are some examples of getting
loggers and writing messages:

verbose = logging.getLogger("verbose.example.SomeClass")
audit = logging.getLogger("audit.example.SomeClass")
verbose.info("Verbose information")
audit.info("Audit record with before and after state")

We created two Logger objects; one under the verbose family tree and the other
under the audit family tree. When we write to the verbose logger, we'll see the
output on the console. When we write to the audit logger, however, we'll see
nothing on the console; the record will go to the file that is named in the
configuration.
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When we look at the logging.handlers module, we see a large number of handlers
that we can leverage. By default, the logging module uses old-style % style
formatting specifications. These are not like the format specifications for the
str.format() method. When we defined our formatter parameters, we used { style
formatting, which is consistent with str.format().

Managing propagation rules
The default behavior for Loggers is for a logging record to propagate from the
named Logger up through all parent-level Logger instances to the root Logger
instance. We may have lower-level Loggers that have special behaviors and a root
Logger that defines the default behavior for all Loggers.

Because logging records propagate, a root-level logger will also handle any log
records from the lower-level Loggers that we define. If child loggers allow
propagation, this will lead to duplicated output: first, there will be output from the
child, and then the output when the log record propagates to the parent. If we want
to avoid duplication, we must turn the propagation off for lower-level loggers when
there are handlers on several levels.

Our previous example does not configure a root-level Logger. If some part of our
application creates a logger with a name that doesn't start with audit. or verbose.,
then that additional logger won't be associated with Handler. Either we need more
top-level names or we need to configure a catch-all, root-level logger.

If we add a root-level logger to capture all these other names, then we have to be
careful about propagation rules. Here's a modification to the configuration file:

loggers:
  verbose:
    handlers: [console]
    level: INFO
    propagate: False # Added
  audit:
    handlers: [audit_file]
    level: INFO
    propagate: False # Added
root: # Added
  handlers: [console]
  level: INFO
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We turned propagation off for the two lower-level loggers, verbose and audit. We
added a new root-level logger. As this logger has no name, this was done as a
separate top-level dictionary named root: in parallel with the loggers: entry.

If we didn't turn propagation off in the two lower-level loggers, each verbose or
audit record would have been handled twice. In the case of an audit log, double
handling may actually be desirable. The audit data would go to the console as well as
the audit file.

What's important about the logging module is that we don't have to make any
application changes to refine and control the logging. We can do almost anything 
required through the configuration file. As YAML is relatively elegant notation, we
can encode a lot of capability very simply.

Configuration Gotcha
The basicConfig() method of logging is careful about preserving any loggers
created before the configuration is made. The logging.config.dictConfig()
method, however, has the default behavior of disabling any loggers created prior to
configuration.

When assembling a large and complex application, we may have module-level
loggers that are created during the import process. The modules imported by the
main script could potentially create loggers before logging.config is created. Also,
any global objects or class definitions might have loggers created prior to the
configuration.

We often have to add a line such as this to our configuration file:

disable_existing_loggers: False

This will ensure that all the loggers created prior to the configuration will still
propagate to the root logger created by the configuration.
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Specialized logging for control,
debugging, audit, and security
There are many kinds of logging; we'll focus on these four varieties:

Errors and Control: Basic errors and the control of an application leads to a
main log that helps users confirm that the program really is doing what it's
supposed to do. This would include enough error information with which
users can correct their problems and rerun the application. If a user enables
verbose logging, it will amplify this main error and control the log with
additional user-friendly details.
Debugging: This is used by developers and maintainers; it can include
rather complex implementation details. We'll rarely want to enable blanket
debugging, but will often enable debugging for specific modules or classes.
Audit: This is a formal confirmation that tracks the transformations applied
to data so that we can be sure that processing was done correctly.
Security: This can be used to show us who has been authenticated; it can
help confirm that the authorization rules are being followed. It can also be
used to detect some kinds of attacks that involve repeated password
failures.

We often have different formatting and handling requirements for each of these kinds
of logs. Also, some of these are enabled and disabled dynamically. The main error
and control log is often built from non-debug messages. We might have an
application with a structure like the following code:

from collections import Counter
from Chapter_16.ch16_ex1 import LoggedClass

class Main(LoggedClass):

    def __init__(self) -> None:
        self.counts: Counter[str] = collections.Counter()

    def run(self) -> None:
        self.logger.info("Start")

        # Some processing in and around the counter increments
        self.counts["input"] += 2000
        self.counts["reject"] += 500
        self.counts["output"] += 1500

        self.logger.info("Counts %s", self.counts)
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We used the LoggedClass class to create a logger with a name that matches the class
qualified name (Main). We've written informational messages to this logger to show
you that our application started normally and finished normally. In this case, we used
Counter to accumulate some balance information that can be used to confirm that the
right amount of data was processed.

In some cases, we'll have more formal balance information displayed at the end of the
processing. We might do something like this to provide a slightly easier-to-read
display:

    for k in self.counts:
        self.logger.info(
            f"{k:.<16s} {self.counts[k]:>6,d}")

This version will show us the keys and values on separate lines in the log. The errors
and control log often uses the simplest format; it might show us just the message text
with little or no additional context. A formatter like this might be used:

formatters:
  control:
    style: "{"
    format: "{levelname:s}:{message:s}"

This configures formatter to show us the level name (INFO, WARNING, ERROR,
or CRITICAL) along with the message text. This eliminates a number of details,
providing just the essential facts for the benefit of the users. We called the formatter
control.

In the following code, we associate the formatter with the handler:

handlers:
  console:
    class: logging.StreamHandler
    stream: ext://sys.stderr
    formatter: control

This will use the control formatter with the console handler.

It's important to note that loggers will be created when the Main class, is created. This
is long before the logging configuration is applied. In order to be sure the loggers that
are defined as part of the classes are honored properly, the configuration must
include the following:

disable_existing_loggers: False
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This will guarantee that loggers created as part of the class definition will be
preserved when logging.config.dictConfig() is used to set the configuration.

Creating a debugging log
A debugging log is usually enabled by a developer to monitor a program under
development. It's often narrowly focused on specific features, modules, or classes.
Consequently, we'll often enable and disable loggers by name. A configuration file
might set the level of a few loggers to DEBUG, leaving others at INFO, or possibly even
a WARNING level.

We'll often design debugging information into our classes. Indeed, we might use the
debugging ability as a specific quality feature for a class design. This may mean
introducing a rich set of logging requests. For example, we might have a complex
calculation for which the class state is essential information as follows:

from Chapter_16.ch16_ex1 import LoggedClass

class BettingStrategy(LoggedClass):
    def bet(self) -> int:
        raise NotImplementedError("No bet method")

    def record_win(self) -> None:
        pass

    def record_loss(self) -> None:
        pass

class OneThreeTwoSix(BettingStrategy):
    def __init__(self) -> None:
        self.wins = 0

    def _state(self) -> Dict[str, int]:
        return dict(wins=self.wins)

    def bet(self) -> int:
        bet = {0: 1, 1: 3, 2: 2, 3: 6}[self.wins % 4]
        self.logger.debug(f"Bet {self._state()}; based on {bet}")
        return bet

    def record_win(self) -> None:
        self.wins += 1
        self.logger.debug(f"Win: {self._state()}")

    def record_loss(self) -> None:
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        self.wins = 0
        self.logger.debug(f"Loss: {self._state()}")

In these class definitions, we defined a superclass, BettingStrategy, which
provides some features of a betting strategy. Specifically, this class defines methods
for getting a bet amount, recording a win, or recording a loss. The idea behind this
class is the common fallacy that the modification of bets can somehow mitigate losses
in a game of chance.

The concrete implementation, OneThreeTwoSix, created a _state() method that
exposes the relevant internal state. This method is only used to support debugging.
We've avoided using self.__dict__ because this often has too much information to
be helpful. We can then audit the changes to the self._state information in several
places in our method functions.

In many of the previous examples, we relied on the logger's use of %r and %s
formatting. We might have used a line like self.logger.info("template with
%r and %r", some_item, another_variable). This kind of line provides a
message with fields that pass through the filters before being handled by the
formatter. A great deal of control can be exercised over lines like this. 

In this example, we've used self.logger.debug(f"Win: {self._state()}"),
which uses an f-string. The logging package's filter and formatter cannot be used to
provide fine-grained control over this output. In the cases of audit and security logs,
the logging % style formatting, controlled by the logger, is preferred. It allows a log
filter to redact sensitive information in a consistent way. For informal log entries, f-
strings can be handy. It's important, however, to be very careful of what information
is placed in a log using f-string.

Debugging output is often selectively enabled by editing the configuration file to
enable and disable debugging in certain places. We might make a change such as this
to the logging configuration file:

loggers:
    betting.OneThreeTwoSix:
       handlers: [console]
       level: DEBUG
       propagate: False
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We identified the logger for a particular class based on the qualified name for the
class. This example assumes that there's a handler named console already defined.
Also, we've turned off the propagation to prevent the debugging messages from
being duplicated into the root logger.

Implicit in this design is the idea that debugging is not something we want to simply
enable from the command line via a simplistic -D option or a --DEBUG option. In
order to perform effective debugging, we'll often want to enable selected loggers via a
configuration file. We'll look at command-line issues in Chapter 18, Coping with the
Command Line.

Creating audit and security logs
Audit and security logs are often duplicated between two handlers: the main control
handler and a file handler that is used for audit and security reviews. This means that
we'll do the following things:

Define additional loggers for audit and security
Define multiple handlers for these loggers
Optionally, define additional formats for the audit handler

As shown previously, we'll often create separate hierarchies of the audit
and security logs. Creating separate hierarchies of loggers is considerably simpler
than trying to introduce audit or security via a new logging level. Adding new levels
is challenging because the messages are essentially INFO messages; they don't belong
on the WARNING side of INFO because they're not errors, nor do they belong on the
DEBUG side of INFO because they're not optional.

Here's an extension to the metaclass shown earlier. This new metaclass will build a
class that includes an ordinary control or debugging logger as well as a special
auditing logger:

from Chapter_16.ch16_ex1 import LoggedClassMeta

class AuditedClassMeta(LoggedClassMeta):

    def __new__(cls, name, bases, namespace, **kwds):
        result = LoggedClassMeta.__new__(cls, name, bases,
dict(namespace))
        for item, type_ref in result.__annotations__.items():
            if issubclass(type_ref, logging.Logger):
                prefix = "" if item == "logger" else f"{item}."
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                logger = logging.getLogger(
                    f"{prefix}{result.__qualname__}")
                setattr(result, item, logger)
        return result

class AuditedClass(LoggedClass, metaclass=AuditedClassMeta):
    audit: logging.Logger
    pass

The AuditedClassMeta definition extends LoggedClassMeta. The base metaclass
initialized the logged attribute with a specific logger instance based on the class
name. This extension does something similar. It looks for all type annotations that
reference the logging.Logger type. All of these references are automatically
initialized with a class-level logger with a name based on the attribute name and the
qualified class name. This lets us build an audit logger or some other specialized
logger with nothing more than a type annotation.

The AuditedClass definition extends the LoggedClass definition to provide a
definition for a logger attribute of the class. This class adds the audit attribute to
the class. Any subclass will be created with two loggers. One logger has a name
simply based on the qualified name of the class. The other logger uses the qualified
name, but with a prefix that puts it in the audit hierarchy. Here's how we can use
this class:

class Table(AuditedClass):

    def bet(self, bet: str, amount: int) -> None:
        self.logger.info("Betting %d on %s", amount, bet)
        self.audit.info("Bet:%r, Amount:%r", bet, amount)

We created a class that will produce records on a logger with a name that has a prefix
of 'audit.'. The idea is to have two separate streams of log records from the
application. In the main console log, we might want to see a simplified view, like the
following example records:

INFO:Table:Betting 1 on Black
INFO:audit.Table:Bet:'Black', Amount:1

In the detailed audit file, however, we want more information, as shown in the
following example records:

INFO:audit.Table:2019-03-19 07:34:58:Bet:'Black', Amount:1
INFO:audit.Table:2019-03-19 07:36:06:Bet:'Black', Amount:1
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There are two different handlers for the audit.Table records. Each handler has a
different format. We can configure logging to handle this additional hierarchy of
loggers. We'll look at the two handlers that we need, as follows:

handlers:
  console:
    class: logging.StreamHandler
    stream: ext://sys.stderr
    formatter: basic
  audit_file:
    class: logging.FileHandler
    filename: data/ch16_audit.log
    encoding: utf-8
    formatter: detailed

The console handler has the user-oriented log entries, which use the basic format.
The audit_file handler uses a more complex formatter named detailed. Here are
the two formatters referenced by these handlers:

formatters:
  basic:
    style: "{"
    format: "{levelname:s}:{name:s}:{message:s}"
  detailed:
    style: "{"
    format: "{levelname:s}:{name:s}:{asctime:s}:{message:s}"
    datefmt: "%Y-%m-%d %H:%M:%S"

The basic format shows us just three attributes of the message. The detailed
format rules are somewhat complex because the date formatting is done separately
from the rest of the message formatting. The datetime module uses % style
formatting. We used { style formatting for the overall message. Here are the two
Logger definitions:

loggers:
  audit:
    handlers: [console,audit_file]
    level: INFO
    propagate: True
root:
  handlers: [console]
  level: INFO
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We defined a logger for the audit hierarchy. All the children of audit will write
their messages to both console Handler and audit_file Handler. The root
logger will define all the other loggers to use the console only. We'll now see two
forms of the audit messages.

The duplicate handlers provide us with the audit information in the context of the
main console log, plus a focused audit trail in a separate log that can be saved for later
analysis. 

Using the warnings module
Object-oriented development often involves performing a significant refactoring of a
class or module. It's difficult to get the API exactly right the very first time we write
an application. Indeed, the design time required to get the API exactly right might get
wasted. Python's flexibility permits us great latitude in making changes, as we learn
more about the problem domain and the user's requirements.

One of the tools that we can use to support the design evolution is the warnings
module. There are the following two clear use cases for warnings and one fuzzy use
case:

Warnings should be used to alert developers of API changes; usually,
features that are deprecated or pending deprecation. Deprecation and
pending deprecation warnings are silent by default. These messages are not
silent when running the unittest module; this helps us ensure that we're
making proper use of upgraded library packages.
Warnings should alert users about a configuration problem. For example,
there might be several alternative implementations of a module; when the
preferred implementation is not available, we might want to provide a
warning that an optimal implementation is not being used.
We might push the edge of the envelope by using warnings to alert users
that the results of the computation may have a problem. From outside the
Python environment, one definition of a warning says, ...indicate that the
service might have performed some, but not all, of the requested functions. This
idea of an incomplete result leading to a warning is open to dispute: it may
be better to produce no result rather than a potentially incomplete result.
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For the first two use cases, we'll often use Python's warnings module to show you
that there are correctable problems. For the third blurry use case, we might use the
logger.warn() method to alert the user about the potential issues. We shouldn't
rely on the warnings module for this, because the default behavior is to show a
warning just once.

The value of the warnings module is to provide messages that are optional and aimed
at optimizations, compatibility, and a small set of runtime questions. The use of
experimental features of a complex library or package, for example, might lead to a
warning. 

Showing API changes with a warning
When we change the API for one of our modules, packages, or classes, we can
provide a handy marker via the warnings module. This will raise a warning in the
method that is deprecated or is pending deprecation, as follows:

import warnings

class Player:
    """version 2.1"""

    def bet(self) -> None:
        warnings.warn(
            "bet is deprecated, use place_bet",
            DeprecationWarning, stacklevel=2)
        pass

When we do this, any part of the application that uses Player.bet() will receive
DeprecationWarning. By default, this warning is silent. We can, however, adjust the
warnings filter to see the message, as shown here:

>>> warnings.simplefilter("always", category=DeprecationWarning)
>>> p2 = Player()
>>> p2.bet() __main__:4: DeprecationWarning: bet is deprecated, use
    place_bet

This technique allows us to locate all of the places where our application must change
because of an API change. If we have unit test cases with close to 100 percent code
coverage, this simple technique is likely to reveal all the uses of deprecated methods.
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Some integrated development environments (IDEs) can spot the use of warnings
and highlight the deprecated code. PyCharm, for example, will draw a small line
through any use of the deprecated bet() method.

Because this is so valuable for planning and managing software changes, we have the
following three ways to make the warnings visible in our applications:

The command-line -Wd option will set the action to default for all
warnings. This will enable the normally silent deprecation warnings. When
we run python3.7 -Wd, we'll see all the deprecation warnings.
Using unittest, which always executes in the
warnings.simplefilter('default') mode.
Including warnings.simplefilter('default') in our application
program. This will also apply the default action to all warnings; it's
equivalent to the -Wd command-line option.

Showing configuration problems with a
warning
We may have multiple implementations for a given class or module. We'll often use a
configuration file parameter to decide which implementation is appropriate. See
Chapter 14, Configuration Files and Persistence, for more information on this technique.

In some cases, however, an application may silently depend on whether or not other
packages are part of the Python installation. One implementation may be optimal,
and another implementation may be the fallback plan. This is used by a number of
Python library modules to choose between optimized binary modules and pure
Python modules.

A common technique is to try multiple import alternatives to locate a package that's
installed. We can produce warnings that show us the possible configuration
difficulties. Here's a way to manage this alternative implementation import:

import warnings

try:
    import simulation_model_1 as model
except ImportError as e:
    warnings.warn(repr(e))
if 'model' not in globals():
    try:
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        import simulation_model_2 as model
    except ImportError as e:
        warnings.warn(repr(e))
if 'model' not in globals():
    raise ImportError("Missing simulation_model_1 and
simulation_model_2")

We tried one import for a module. If this had failed, we'd have tried another import.
We used an if statement to reduce the nesting of exceptions. If there are more than
two alternatives, nested exceptions can lead to a very complex-looking exception. By
using extra if statements, we can flatten a long sequence of alternatives so that the
exceptions aren't nested.

We can better manage this warning message by changing the class of the message. In
the preceding code, this will be UserWarning. These are shown by default, providing
users with some evidence that the configuration is not optimal.

If we change the class to ImportWarning, it will be silent by default. This provides a
normally silent operation in cases where the choice of package doesn't matter to
users. The typical developer's technique of running with the -Wd option will reveal
the ImportWarning messages.

To change the class of the warning, we change the call to warnings.warn(), as
follows:

warnings.warn(e, ImportWarning)

This changes the warning to a class that is silent by default. The message can still be
visible to developers, who should be using the -Wd option.

Showing possible software problems with a
warning
The idea of warnings aimed at end users is a bit nebulous; did the application work or
did it fail? What does a warning really mean? Is there something the user should do
differently?

Because of this potential ambiguity, warnings in the user interface aren't a great idea.
To be truly usable, a program should either work correctly or should not work at all.
When there's an error, the error message should include advice for the user's response
to the problem. We shouldn't impose a burden on the user to judge the quality of the
output and determine its fitness for purpose. We'll elaborate on this point.
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A program should either work correctly or it should not work at all.

One potential unambiguous use for end user warnings is to alert the user that the
output is incomplete. An application may have a problem completing a network
connection, for example; the essential results are correct, but one of the data sources
didn't work properly.

There are situations where an application takes an action that is not what the user
requested, and the output is valid and useful. In the case of a network problem, a
default behavior can be used in spite of the network problem. Generally, replacing
something faulty with something correct but not exactly what the user requested is a
good candidate for a warning. This kind of warning is best done with logging at the
WARN level, not with the warnings module. The warnings module produces one-
time messages; we may want to provide more details to the user. Here's how we
might use a simple Logger.warn() message to describe the problem in the log:

try:
    with urllib.request.urlopen("http://host/resource/", timeout=30)
as resource:
        content = json.load(resource)
except socket.timeout as e:
    self.log.warn(
        "Missing information from  http://host/resource")
    content= []

If a timeout occurs, a warning message is written to the log and the program keeps
running. The content of the resource will be set to an empty list. The log message will
be written every time. A warnings module warning is ordinarily shown only once
from a given location in the program and is suppressed after that.

Advanced logging – the last few
messages and network destinations
We'll look at two more advanced techniques that can help provide useful debugging
information. The first of these is a log tail; this is a buffer of the last few log messages
before some significant event. The idea is to have a small file that can be read to show
why an application died. It's a bit like having the OS tail command automatically
applied to the full log output.
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The second technique uses a feature of the logging framework to send log messages
through a network to a centralized log-handling service. This can be used to
consolidate logs from a number of parallel web servers. We need to create both
senders and receivers for the logs.

Building an automatic tail buffer
The log tail buffer is an extension to the logging framework. We're going to extend
MemoryHandler to slightly alter its behavior. The built-in behavior for
MemoryHandler includes three use cases for writing—it will write to another
handler when the capacity is reached; it will write any buffered messages when
logging shuts down; most importantly, it will write the entire buffer when a
message of a given level is logged.

We'll change the first use case slightly. Instead of writing to the output file when the
buffer is full, we'll remove the oldest messages, leaving the others in the buffer. The
other two use cases for writing on exit and writing when a high-severity record is
handled will be left alone. This will have the effect of dumping the last few messages
before the shutdown, as well as dumping the last few messages before an error.

The default configuration for a MemoryHandler instance is to buffer messages until a
message greater than or equal to the ERROR level is logged. This will lead to dumping
the buffer when logging an error. It will tend to silence the business as usual messages
that aren't immediate precursors of the error.

In order to understand this example, it's important to locate your Python installation
and review the logging.handlers module in detail.

This extension to MemoryHandler will keep the last few messages, based on the
defined capacity when the TailHandler class is created, as follows:

class TailHandler(logging.handlers.MemoryHandler):
    def shouldFlush(self, record: logging.LogRecord) -> bool:
        """
        Check for buffer full
        or a record at the flushLevel or higher.
        """
        if record.levelno >= self.flushLevel:
            return True
        while len(self.buffer) > self.capacity:
            self.acquire()
            try:
                del self.buffer[0]
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            finally:
                self.release()
        return False

We extended MemoryHandler so that it will accumulate log messages up to the given
capacity. When the capacity is reached, old messages will be removed as new
messages are added. Note that we must lock the data structure to permit
multithreaded logging.

If a message with an appropriate level is received, then the entire structure is emitted
to the target handler. Usually, the target is FileHandler, which writes to a tail file
for debugging and support purposes.

Additionally, when logging shuts down, the final few messages will also be written to
the tail file. This should indicate a normal termination that doesn't require any
debugging or support.

Generally, we'd send DEBUG level messages to this kind of handler so that we have a
great deal of detail surrounding a crash situation. The configuration should
specifically set the level to DEBUG rather than allowing the level to default.

Here's a configuration that uses this TailHandler:

version: 1
disable_existing_loggers: False
handlers:
  console:
    class: logging.StreamHandler
    stream: ext://sys.stderr
    formatter: basic
  tail:
    (): __main__.TailHandler
    target: cfg://handlers.console
    capacity: 5
formatters:
  basic:
    style: "{"
    format: "{levelname:s}:{name:s}:{message:s}"
loggers:
  test:
    handlers: [tail]
    level: DEBUG
    propagate: False
root:
  handlers: [console]
  level: INFO
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The definition of TailHandler shows us several additional features of the logging
configuration. It shows us class references as well as other elements of the
configuration file.

We referred to a customized class definition in the configuration. A label of ()
specifies that the value should be interpreted as a module and class name. In this
case, it is an instance of our __main__.TailHandler class. A label of class instead
of () uses a module and class that are part of the logging package.

We referred to another logger that's defined within the configuration.
cfg://handlers.console refers to the console handler defined within the
handlers section of this configuration file. For demonstration purposes, we used the
StreamHandler tail target, which uses sys.stderr. As noted previously, a better
design might be using FileHandler, which targets a debugging file.

We created the test hierarchy of loggers that used our tail handler. The messages
written to these loggers will be buffered and only shown on the error or shutdown.

Here's a demonstration script:

logging.config.dictConfig(yaml.load(config8))
log = logging.getLogger("test.demo8")

log.info("Last 5 before error")
for i in range(20):
    log.debug(f"Message {i:d}")
log.error("Error causes dump of last 5")

log.info("Last 5 before shutdown")
for i in range(20, 40):
    log.debug(f"Message {i:d}")
log.info("Shutdown causes dump of last 5")

logging.shutdown()

We generated 20 messages prior to an error. Then, we generated 20 more messages
before shutting down the logging and flushing the buffers. This will produce output
like the following:

DEBUG:test.demo8:Message 15
DEBUG:test.demo8:Message 16
DEBUG:test.demo8:Message 17
DEBUG:test.demo8:Message 18
DEBUG:test.demo8:Message 19
ERROR:test.demo8:Error causes dump of last 5
DEBUG:test.demo8:Message 36
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DEBUG:test.demo8:Message 37
DEBUG:test.demo8:Message 38
DEBUG:test.demo8:Message 39
INFO:test.demo8:Shutdown causes dump of last 5

The intermediate messages were silently dropped by the TailHandler object. As the
capacity was set to five, the last five messages prior to an error (or shutdown) are
displayed. The last five messages include four debug messages plus a final
informational message.

Sending logging messages to a remote
process
One high-performance design pattern is to have a cluster of processes that are being
used to solve a single problem. We might have an application that is spread across
multiple application servers or multiple database clients. For this kind of architecture,
we often want a centralized log among all of the various processes.

One technique for creating a unified log is to include accurate timestamps and then
sort records from separate log files into a single, unified log. This sorting and merging
is extra processing that can be avoided. Another, more responsive technique is to
send log messages from a number of concurrent producer processes to a single
consumer process.

Our shared logging solution makes use of the shared queues from the
multiprocessing module. For additional information on multiprocessing, see
Chapter 13, Transmitting and Sharing Objects.

The following is the three-step process to build a multiprocessing application:

Firstly, we'll create a queue object shared by producers and consumers.
Secondly, we'll create the consumer process, which gets the logging records
from the queue. The logging consumer can apply filters to the messages
and write them to a unified file.
Thirdly, we'll create the pool of producer processes that do the real work of
our application and produce logging records in the queue they share with
the consumer.
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As an additional feature, the ERROR and FATAL messages can provide immediate
notification via an SMS or email to concerned users. The consumer can also handle
the (relatively) slow processing associated with rotating log files.

Here's the definition of a consumer process:

import collections
import logging
import multiprocessing

class Log_Consumer_1(multiprocessing.Process):

    def __init__(self, queue):
        self.source = queue
        super().__init__()
        logging.config.dictConfig(yaml.load(consumer_config))
        self.combined =
logging.getLogger(f"combined.{self.__class__.__qualname__}")
        self.log = logging.getLogger(self.__class__.__qualname__)
        self.counts = collections.Counter()

    def run(self):
        self.log.info("Consumer Started")
        while True:
            log_record = self.source.get()
            if log_record == None:
                break
            self.combined.handle(log_record)
            self.counts[log_record.getMessage()] += 1
        self.log.info("Consumer Finished")
        self.log.info(self.counts)

This process is a subclass of multiprocessing.Process. The
multiprocessing.Process class provides a start() method, which will fork a
subprocess and executes the run() method provided here.

The self.counts object tracks individual messages from the producers. The idea here is
to create a summary showing the types of messages received. This is not a common
practice, but it helps here to reveal how the demonstration works.

While the process is running, this object will use the Queue.get() method to get the
log records from the queue. The messages will be routed to a logger instance. In this
case, we're going to create a special logger named with a parent name of combined.;
this will be given each record from a source process.
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A sentinel object, None, will be used to signal the end of processing. When this is
received, the while statement will finish and the final log messages will be written.
The self.counts object will demonstrate how many messages were seen. This lets
us tune the queue size to be sure messages aren't lost due to queue overruns.

Here's a logging configuration file for this process:

version: 1
disable_existing_loggers: False
handlers:
  console:
    class: logging.StreamHandler
    stream: ext://sys.stderr
    formatter: basic
formatters:
  basic:
    style: "{"
    format: "{levelname:s}:{name:s}:{message:s}"
loggers:
  combined:
    handlers: [console]
    formatter: detail
    level: INFO
    propagate: False
root:
  handlers: [console]
  level: INFO

We defined a simple console Logger with a basic format. We also defined the top-
level of a hierarchy of loggers with names that begin with combined.. These loggers
will be used to display the combined output of the various producers.

Here's a logging producer:

import multiprocessing
import time
import logging
import logging.handlers

class Log_Producer(multiprocessing.Process):
    handler_class = logging.handlers.QueueHandler

    def __init__(self, proc_id, queue):
        self.proc_id = proc_id
        self.destination = queue
        super().__init__()
        self.log = logging.getLogger(
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            f"{self.__class__.__qualname__}.{self.proc_id}")
        self.log.handlers = [self.handler_class(self.destination)]
        self.log.setLevel(logging.INFO)

    def run(self):
        self.log.info(f"Started")
        for i in range(100):
            self.log.info(f"Message {i:d}")
            time.sleep(0.001)
        self.log.info(f"Finished")

The producer doesn't do much in the way of configuration. It gets a logger to use the
qualified class name and an instance identifier (self.proc_id). It sets the list of
handlers to be just QueueHandler wrapped around the destination—a Queue
instance. The level of this logger is set to INFO.

We made handler_class an attribute of the class definition because we plan to
change it. For the first example, it will be logging.handlers.QueueHandler. It
allows the example producer to be reused with other kinds of handlers.

The process to actually do this work uses the logger to create log messages. These
messages will be enqueued for processing by the centralized consumer. In this case,
the process simply floods the queue with 102 messages as quickly as possible.

Here's how we can start the consumer and producers. We'll show this in small groups
of steps. First, we create the queue as follows:

import multiprocessing
queue= multiprocessing.Queue(10)

This queue is way too small to handle 10 producers blasting 102 messages in a
fraction of a second. The idea of a small queue is to see what happens when messages
are lost. Here's how we start the consumer process:

consumer = Log_Consumer_1(queue)
consumer.start()

Here's how we start an array of producer processes:

producers = []
for i in range(10):
    proc= Log_Producer(i, queue)
    proc.start()
    producers.append(proc)
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As expected, 10 concurrent producers will overflow the queue. Each producer will
receive a number of queues full of exceptions to show us that the messages were lost.

Here's how we cleanly finish the processing:

for p in producers:
    p.join()
queue.put(None)
consumer.join()

First, we wait for each producer process to finish and then rejoin the parent process.
Then, we put a sentinel object into the queue so that the consumer will terminate
cleanly. Finally, we wait for the consumer process to finish and join the parent
process.

Preventing queue overrun
The default behavior of the logging module puts messages into the queue with the
Queue.put_nowait() method. The advantage of this is that it allows the producers
to run without the delays associated with logging. The disadvantage of this is that
messages will get lost if the queue is too small to handle a very large burst of logging
messages.

We have the following two choices to gracefully handle a burst of messages:

We can switch from Queue to SimpleQueue. SimpleQueue has an
indefinite size. As it has a slightly different API, we'll need to extend
QueueHandler to use Queue.put() instead of Queue.put_nowait().
We can slow down the producer in the rare case that the queue is full. This
is a small change to QueueHandler to use Queue.put() instead of
Queue.put_nowait().

Interestingly, the same API change works for both Queue and SimpleQueue. Here's
the change:

class WaitQueueHandler(logging.handlers.QueueHandler):

    def enqueue(self, record):
        self.queue.put(record)
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We replaced the body of the enqueue() method to use a different method of Queue.
Now, we can use SimpleQueue or Queue. If we use Queue, it will wait until the
queue is full, preventing the loss of logging messages. If we use SimpleQueue, the
queue will silently expand to hold all the messages.

Here's the revised producer class:

class Log_Producer_2(Log_Producer):
    handler_class = WaitQueueHandler

This class uses our new WaitQueueHandler. Otherwise, the producer is identical to
the previous version.

The rest of the script to create Queue and start the consumer is identical. The
producers are instances of Log_Producer_2, but otherwise, the script to start and
join remains identical to the first example.

This variation runs more slowly, but never loses a message. We can improve the
performance by creating a larger queue capacity. If we create a queue with a capacity
of 1,020 messages, the performance is maximized because that's the largest possible
size of a burst. Finding an optimal queue capacity requires some experimentation.
While the exact size depends on the operating system, a size of 30, for example,
doesn't lose too many messages. The relative performance of the producer and
consumer is important. To see the effects, change the sleep time in the producer to
larger or smaller numbers. Also, it can be helpful to experiment by changing the
number of producers from 10 to 100.

Summary
We saw how to use the logging module with more advanced object-oriented design
techniques. We created logs associated with modules, classes, instances, and
functions. We used decorators to create logging as a consistent cross-cutting aspect
across multiple class definitions.

We saw how to use the warnings module to show you that there's a problem with
the configuration or the deprecated methods. We can use warnings for other
purposes, but we need to be cautious about the overuse of warnings and creating
murky situations where it's not clear whether the application worked correctly or not.
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Design considerations and trade-offs
The logging module supports auditability and debugging ability, as well as some
security requirements. We can use logging as a simple way to keep records of the
processing steps. By selectively enabling and disabling logging, we can support
developers who are trying to learn what the code is really doing when processing
real-world data.

The warnings module supports the debugging ability as well as maintainability
features. We can use warnings to alert developers about API problems, configuration
problems, and other potential sources of bugs.

When working with the logging module, we'll often be creating large numbers of
distinct loggers that feed a few handlers. We can use the hierarchical nature of
Logger names to introduce new or specialized collections of logging messages.
There's no reason why a class can't have two loggers: one for audit and one for more
general-purpose debugging.

We can introduce new logging level numbers, but this should be done reluctantly.
Levels tend to conflate developer focus (debug, info, and warning) with user focus
(info, error, and fatal). There's a kind of spectrum of optionality from debug messages
that is not required for fatal error messages, which should never be silenced. We
might add a level for verbose information or possibly detailed debugging, but that's
about all that should be done with levels.

The logging module allows us to provide a number of configuration files for
different purposes. As developers, we may use a configuration file that sets the
logging levels to DEBUG and enables specific loggers for modules under development.
For final deployment, we can provide a configuration file that sets the logging levels
to INFO and provides different handlers to support more formal audit or security
review needs.

We'll include some thoughts from The Zen of Python (https:/ ​/​www. ​python. ​org/​dev/
peps/​pep-​0020/ ​):

"Errors should never pass silently.
Unless explicitly silenced."

The warnings and logging modules directly support this idea.
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These modules are oriented more toward overall quality than toward the specific
solution of a problem. They allow us to provide consistency via fairly simple
programming. As our object-oriented designs become larger and more complex, we
can focus more on the problem being solved without wasting time on the
infrastructure considerations. Further, these modules allow us to tailor the output to
provide information needed by the developer or user.

Looking ahead
In the following chapters, we'll take a look at designing for testability and how we use
unittest, doctest, and the pytest package for testing. Automated testing is
essential; no program should be considered complete until there are automated unit
tests that provide ample evidence to show us that the code works. We'll also look at
object-oriented design techniques that make software easier to test.



17
Designing for Testability

High-quality programs have automated tests. We need to use everything at our
disposal to be sure that our software works. The golden rule is this: to be deliverable, a
feature must have an automated unit test. Without an automated unit test, a feature
cannot be trusted to work and should not be used. According to Kent Beck, in Extreme
Programming Explained:

"Any program feature without an automated test simply doesn't exist."

There are the following two essential points regarding the automated testing of
program features:

Automated: This means that there's no human judgment involved. The
testing involves a script that compares actual responses to expected
responses.
Features: Elements of the software are tested in isolation to be sure that
they work separately. In some contexts, features are quite broad concepts
involving functionality observed by the user. When unit testing, features
are often much smaller, and refer to behaviors of single software
components. Each unit is enough software to implement a given feature.
Ideally, it's a Python class. However, it can also be a larger unit, such as a
module or package.

Python has two built-in testing frameworks, making it easy to write automated unit
tests. We'll look at using both doctest and unittest for automated testing.
doctest offers a very simple approach to test writing. The unittest package is
much more sophisticated.

We'll also look at the popular pytest framework, which is simpler to use than
unittest. In some cases, we'll write tests using the unittest.TestCase class, but
execute the tests using pytest's sophisticated test discovery. In other cases, we'll do
almost everything with pytest.
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We'll look at some of the design considerations required to make testing practical. It's
often necessary to decompose complex classes for testability. As we noted in Chapter
15, Design Principles and Patterns, we want expose dependencies to have a flexible
design; the dependency inversion principle will also help to create testable classes.

For more ideas, read about Ottinger and Langr's FIRST unit test properties—Fast,
Isolated, Repeatable, Self-Validating, and Timely. For the most part, Repeatable
and Self-Validating require an automated test framework. Timely means that the test
is written before the code under test. For more information, refer
to http://pragprog.com/magazines/2012-01/unit-tests-are-first.

In this chapter, we will cover the following topics:

Defining and isolating units for testing
Using doctest to define test cases
Using setup and teardown
The TestCase class hierarchy
Using externally defined expected results
Using pytest and fixtures
Automated integration testing or automated performance testing

Technical requirements
The code files for this chapter are available at https:/ ​/ ​git.​io/ ​fj2UM.

Defining and isolating units for testing
When we consider testing to be essential, testability is an important design
consideration for object-oriented programming. Our designs must also support
testing and debugging, because a class that merely appears to work is of no value. A
class that has evidence that it works is much more valuable.

http://pragprog.com/magazines/2012-01/unit-tests-are-first
https://git.io/fj2UM
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Different types of tests form a kind of hierarchy. At the foundation of that hierarchy is
unit testing. Here, we test each class or function in isolation to be sure that it meets
the contractual obligations of the API. Each class or function is an isolated unit under
test. Above this layer comes integration testing. Once we know that each class and
function works individually, we can test groups and clusters of classes. We can test
whole modules and whole packages too. Once the integration tests work, the next
layer is the automated testing of the complete application. This is not an exhaustive
list of the types of tests. We can do performance testing and security vulnerability
testing too.

In this chapter, we'll focus on automated unit testing because it is central to all
applications. The hierarchy of testing reveals important complexity. Test cases for an
individual class or group of classes can be very narrowly defined. As we introduce
more units into integration testing, the domain of inputs grows. When we attempt to
test a whole application, the entire spectrum of human behavior becomes potential
input. As we look more broadly, we see that it could include shutting devices off,
pulling out plugs, or even pushing devices off tables to see whether they still work
after being dropped three feet onto a hardwood floor. The hugeness of the domain of
human behavior makes it difficult to fully automate all possible kinds of application
testing. We'll focus on the things that are easiest to test automatically. Once the unit
tests work, the larger aggregate systems are more likely to work.

Minimizing dependencies
When we design a class, we must also consider the network of dependencies around
that class: classes on which it depends and classes that depend on it. In order to
simplify testing a class definition, we need to isolate it from the surrounding classes.
For more ideas on this, refer to Chapter 15, Design Principles and Patterns.

An example of this is the Deck class, which depends on the Card class. We can easily
test Card in isolation, but when we want to test the Deck class, we need to tease it
away from the definition of Card.

Here's one (of many) previous definition of Card that we've looked at:

import enum

class Suit(enum.Enum):
    CLUB = "♣"
    DIAMOND = "♦"
    HEART = "♥"
    SPADE = "♠"
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class Card:
    def __init__(
        self, rank: int, suit: Suit, hard: int = None, soft: int =
None
    ) -> None:
        self.rank = rank
        self.suit = suit
        self.hard = hard or int(rank)
        self.soft = soft or int(rank)
    def __str__(self) -> str:
        return f"{self.rank!s}{self.suit.value!s}"
class AceCard(Card):
    def __init__(self, rank: int, suit: Suit) -> None:
        super().__init__(rank, suit, 1, 11)
class FaceCard(Card):
    def __init__(self, rank: int, suit: Suit) -> None:
        super().__init__(rank, suit, 10, 10)

We can see that each of these classes has a straightforward inheritance dependency.
Each class can be tested in isolation because there are only two methods and four
attributes.

We can (mis-)design the Deck class. The following is a bad example, and has some
problematic dependencies:

import random

class Deck1(list):

    def __init__(self, size: int=1) -> None:
        super().__init__()
        self.rng = random.Random()
        for d in range(size):
            for s in iter(Suit):
                cards: List[Card] = (
                    [cast(Card, AceCard(1, s))]
                    + [Card(r, s) for r in range(2, 12)]
                    + [FaceCard(r, s) for r in range(12, 14)]
                )
                super().extend(cards)
        self.rng.shuffle(self)

This design has two deficiencies. First, it's intimately bound to the three classes in the
Card class hierarchy. We can't isolate Deck from Card for a standalone unit test.
Second, it is dependent on the random number generator, making it difficult to create
a repeatable test. When we look back at Chapter 15, Design Principles and Patterns, we
can see these problems as a failure to follow the dependency inversion principle.
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On the one hand, Card is a pretty simple class. We could test this version of Deck
with Card left in place. On the other hand, we might want to reuse Deck with poker
cards or pinochle cards, which have different behaviors from blackjack cards.

The ideal situation is to make Deck independent of any particular Card
implementation. If we do this well, then we can not only test Deck independently of
any Card implementation, but we can also use any combination of Card and Deck
definitions.

Here's our preferred method to separate one of the dependencies. We can put these
dependencies into a factory function, as shown in the following example:

class LogicError(Exception):
    pass

def card(rank: int, suit: Suit) -> Card:
    if rank == 1:
        return AceCard(rank, suit)
    elif 2 <= rank < 11:
        return Card(rank, suit)
    elif 11 <= rank < 14:
        return FaceCard(rank, suit)
    else:
        raise LogicError(f"Rank {rank} invalid")

The card() function will build proper subclasses of Card based on the requested
rank. This allows the Deck class to use this function instead of directly building
instances of the Card class. We separated the two class definitions by inserting an
intermediate function.

There are other techniques to separate the Card class from the Deck class. We can
refactor the factory function to be a method of Deck. We can also make the class
names a separate binding via class-level attributes or even initialization method
parameters. Here's an example that avoids a factory function by using more complex
bindings in the initialization method:

class Deck2(list):

    def __init__(
        self,
        size: int=1,
        random: random.Random=random.Random(),
        ace_class: Type[Card]=AceCard,
        card_class: Type[Card]=Card,
        face_class: Type[Card]=FaceCard,
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    ) -> None:
        super().__init__()
        self.rng = random
        for d in range(size):
            for s in iter(Suit):
                cards = (
                    [ace_class(1, s)]
                    + [card_class(r, s) for r in range(2, 12)]
                    + [face_class(r, s) for r in range(12, 14)]
                )
                super().extend(cards)
        self.rng.shuffle(self)

While this initialization is wordy, the Deck class is no longer intimately bound to the
Card class hierarchy or a specific random number generator. For testing purposes, we
can provide a random number generator that has a known seed. We can also replace
the various Card class definitions with other classes (such as tuple) that can simplify
our testing.

Note the type hints for the default values provided to this class. The object provided
for the random parameter should be an instance of the random.Random type, and the
default value is an object of that exact type. Similarly, for the three card classes, each
must be a Type, and a subclass of the Card class. The Type[Card] hint permits any
class derived from Card. This permits mypy to confirm that overrides are likely to
work. It can be difficult to check type hints in the test modules because, as of version
3.8.2, pytest doesn't have complete type hint stubs.

In the next section, we'll focus on another variation of the Deck class. This will use the
card() factory function. That factory function encapsulates the Card hierarchy
bindings and the rules for separating card classes by rank into a single, testable
location.

Creating simple unit tests
We'll create some simple unit tests of the Card class hierarchy and the card() factory
function.

As the Card classes are so simple, there's no reason for overly sophisticated testing.
It's always possible to err on the side of needless complication. An unthinking slog
through a test-driven development process can make it seem like we need to write a
fairly large number of not very interesting unit tests for a class that only has a few
attributes and methods.
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It's important to understand that test-driven development is advice, not a natural law
like the conservation of mass. Nor is it a ritual that must be followed without
thinking.

There are several schools of thought on naming test methods. We'll focus on a style of
naming that includes describing a test condition and the expected results. Here are
three variations on this theme:

StateUnderTest_should_ExpectedBehavior

when_StateUnderTest_should_ExpectedBehavior

UnitOfWork_StateUnderTest_ExpectedBehavior

For more information, refer to:

 http:/​/​osherove. ​com/ ​blog/ ​2005/ ​4/ ​3/​naming- ​standards- ​for- ​unit- ​tests. ​html

The StateUnderTest portion of the name is often evident from the class that
contains the test, and can be omitted from the method name. This means the
individual test cases can emphasize the should_ExpectedBehavior portion of the
name. In order to comply with the way the unittest.TestCase class works, each
test behavior must begin with test_. This leads us to suggest
test_should_ExpectedBehavior as a pattern for test case names when using
individual test methods for a unittest.TestCase subclass. For pytest functions,
we'll use a different pattern of naming.

It's possible to configure the unittest module to use different patterns for naming
the test methods. We could change it to look for when_ instead of test_. The
improvement in names doesn't seem to be worth the effort required.

This, for example, is a test of the Card class:

class TestCard(unittest.TestCase):

    def setUp(self) -> None:
        self.three_clubs = Card(3, Suit.CLUB)

    def test_should_returnStr(self) -> None:
        self.assertEqual("3♣", str(self.three_clubs))

    def test_should_getAttrValues(self) -> None:
        self.assertEqual(3, self.three_clubs.rank)
        self.assertEqual(Suit.CLUB, self.three_clubs.suit)
        self.assertEqual(3, self.three_clubs.hard)
        self.assertEqual(3, self.three_clubs.soft)
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We defined a test setUp() method that creates an object of the class that is being
tested. We also defined two tests on this object. As there's no real interaction here,
there's no state under test in the test names; they're simple universal behaviors that
should always work.

This is a lot of test code for a very small class definition. This raises a question as to
whether or not the volume of test code is in some way excessive. The answer is no; this
is not an excessive amount of test code. There's no law that says that there should be
more application code than test code. Indeed, it doesn't make sense to compare the
volume of test code with the volume of application code. Most importantly, even a
tiny class definition can still have bugs, and it may require complex tests to assure the
bugs don't exist.

Simply testing the values of attributes doesn't seem to test the processing in this class.
There are two perspectives on testing attribute values:

The black-box perspective means that we disregard the implementation. In
this case, we need to test all of the attributes. The attributes could, for
example, be properties, and they must be tested.
The white-box perspective means that we can examine the implementation
details. When performing this style of testing, we can be a little more
circumspect in which attributes we test. The suit attribute, for example,
doesn't deserve much testing. The hard and soft attributes, however, do
require testing.

For more information, refer to:

 http://en.wikipedia.org/wiki/White-box_testing and
http://en.wikipedia.org/wiki/Black-box_testing

Of course, we need to test the rest of the Card class hierarchy. We'll just show you the
AceCard test case. The FaceCard test case should be clear after this example:

class TestAceCard(unittest.TestCase):

    def setUp(self) -> None:
        self.ace_spades = AceCard(1, Suit.SPADE)

    @unittest.expectedFailure
    def test_should_returnStr(self) -> None:
        self.assertEqual("A♠", str(self.ace_spades))

    def test_should_getAttrValues(self) -> None:
        self.assertEqual(1, self.ace_spades.rank)

http://en.wikipedia.org/wiki/White-box_testing
http://en.wikipedia.org/wiki/Black-box_testing
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        self.assertEqual(Suit.SPADE, self.ace_spades.suit)
        self.assertEqual(1, self.ace_spades.hard)
        self.assertEqual(11, self.ace_spades.soft)

This test case also sets up a particular Card instance so that we can test the string
output. It checks the various attributes of this fixed card.

Note that the test_should_returnStr() test will fail. The definition of the
AceCard class does not display the value as shown in this test definition. Either the
test is incorrect or the class definition is incorrect. The unit test uncovered this fault in
the class design.

A similar test is required for the FaceCard class. It will be similar to the test shown
for the AceCard class. We won't present it here, but will leave it as an exercise for
you.

When we have a number of tests, it can be helpful to combine them into a suite of
tests. We'll turn to this next.

Creating a test suite
It is often helpful to formally define a test suite. The unittest package is capable of
discovering tests by default. When aggregating tests from multiple test modules, it's
sometimes helpful to create a test suite in every test module. If each module defines a
suite() function, we can replace test discovery with importing the suite()
functions from each module. Also, if we customize TestRunner, we must use a suite.
We can execute our tests as follows:

def suite2() -> unittest.TestSuite:
    s = unittest.TestSuite()
    load_from = unittest.defaultTestLoader.loadTestsFromTestCase
    s.addTests(load_from(TestCard))
    s.addTests(load_from(TestAceCard))
    s.addTests(load_from(TestFaceCard))
    return s

We build a suite from our three TestCase class definitions and then provide that
suite to a unittest.TextTestRunner() instance. We use the default TestLoader
in unittest. This TestLoader examines a TestCase class to locate all the test
methods. The value of TestLoader.testMethodPrefix is test, which is how test
methods are identified within a class. Each method name is used by the loader to
create a separate test object.
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Using TestLoader to build test instances from appropriately named methods of
TestCase is one of the two ways to use TestCase. In a later section, we'll look at
creating instances of TestCase manually; we won't rely on TestLoader for these
examples. We can run this suite with the following code:

if __name__ == "__main__":
    t = unittest.TextTestRunner()
    t.run(suite2())

We'll see output like the following code:

...F.F
======================================================================
FAIL: test_should_returnStr (__main__.TestAceCard)
----------------------------------------------------------------------
Traceback (most recent call last):
  File "p3_c15.py", line 80, in test_should_returnStr
    self.assertEqual("A♠", str(self.ace_spades))
AssertionError: 'A♠' != '1♠'
- A♠
+ 1♠

======================================================================
FAIL: test_should_returnStr (__main__.TestFaceCard)
----------------------------------------------------------------------
Traceback (most recent call last):
  File "p3_c15.py", line 91, in test_should_returnStr
    self.assertEqual("Q♥", str(self.queen_hearts))
AssertionError: 'Q♥' != '12♥'
- Q♥
+ 12♥

----------------------------------------------------------------------
Ran 6 tests in 0.001s

FAILED (failures=2)

The TestLoader class created two tests from each TestCase class. This gives us a
total of six tests. The test names are the method names, which begin with test.

Clearly, we have a problem. Our tests provide an expected result that our class
definitions don't meet. We've got more development work to do for the Card classes
in order to pass this simple suite of unit tests. We'll leave the fixes as exercises for
you.
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Starting to design tests can seem daunting at first. There are a few guidelines that can
be helpful. In the next section, we will talk about edges—often limits, and
corners—often the interfaces between components, which can help us design better
tests.

Including edge and corner cases
When we move to testing the Deck class as a whole, we'll need to have some things
confirmed: that it produces all of the required Cards class, and that it actually
shuffles properly. We don't really need to test that it deals properly because we're
depending on the list and list.pop() method; as these are first-class parts of
Python, they don't require additional testing.

We'd like to test the Deck class construction and shuffling independently of any
specific Card class hierarchy. As noted previously, we can use a factory function to
make the two Deck and Card definitions independent. Introducing a factory function
introduces yet more testing. Not a bad thing, considering the bugs previously
revealed in the Card class hierarchy.

Here's a test of the factory function:

class TestCardFactory(unittest.TestCase):

    def test_rank1_should_createAceCard(self) -> None:
        c = card(1, Suit.CLUB)
        self.assertIsInstance(c, AceCard)

    def test_rank2_should_createCard(self) -> None:
        c = card(2, Suit.DIAMOND)
        self.assertIsInstance(c, Card)

    def test_rank10_should_createCard(self) -> None:
        c = card(10, Suit.HEART)
        self.assertIsInstance(c, Card)

    def test_rank10_should_createFaceCard(self) -> None:
        c = card(11, Suit.SPADE)
        self.assertIsInstance(c, Card)

    def test_rank13_should_createFaceCard(self) -> None:
        c = card(13, Suit.CLUB)
        self.assertIsInstance(c, Card)

    def test_otherRank_should_exception(self) -> None:
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        with self.assertRaises(LogicError):
            c = card(14, Suit.DIAMOND)
        with self.assertRaises(LogicError):
            c = card(0, Suit.DIAMOND)

We didn't test all 13 ranks, as 2 through 10 should all be identical. Instead, we
followed this advice from Boris Beizer in the book Software Testing Techniques:

"Bugs lurk in corners and congregate at boundaries."

The test cases involve the edge values for each card range. Consequently, we have test
cases for the values 1, 2, 10, 11, and 13, as well as the illegal values 0 and 14. We
bracketed each range with the least value, the maximum value, one below the least
value, and one above the maximum value.

We've modified the pattern for test naming. In this case, we have several different
states being tested. We've modified the simpler names from these to followthe pattern
test_StateUnderTest_should_ExpectedBehavior. There doesn't seem to be a
compelling reason to break these tests into separate classes to decompose the state
under test. 

In the next section, we'll look at ways to handle dependent objects. This will allow us
to test each unit in isolation.

Using mock objects to eliminate
dependencies
In order to test Deck, we have the following two choices for handling the 
dependencies in the Card class hierarchy:

Mocking: We can create a mock (or stand-in) class for the Card class and a
mock card() factory function that produces instances of the mock class.
The advantage of using mock objects is that we create real confidence that
the unit under test is free from workarounds in one class, which make up
for bugs in another class. A rare potential disadvantage is that we may
have to debug the behavior of a super-complex mock class to be sure it's a
valid stand-in for a real class. A complex mock object suggests the real
object is too complex and needs to be refactored.
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Integrating: If we have a degree of trust that the Card class hierarchy
works, and the card() factory function works, we can leverage these to
test Deck. This strays from the high road of pure unit testing, in which all
dependencies are omitted for test purposes. The disadvantage of this is that
a broken foundational class will cause a large number of testing failures in
all the classes that depend on it. Also, it's difficult to make detailed tests of
API conformance with non-mock classes. Mock classes can track the call
history, making it possible to track the details of calls to mock objects.

The unittest package includes the unittest.mock module which can be used to
patch the existing classes for test purposes. It can also be used to provide complete
mock class definitions. Later, when we look at pytest, we'll combine
unittest.mock objects with the pytest test framework.

The examples in this section do not use extensive type hinting in the tests. For the
most part, the tests should pass through mypy without difficulty. As we noted earlier,
pytest version 3.8.2. doesn't have a complete set of type stubs, so the --ignore-
missing-imports option must be used when running mypy. The mock objects, for
the most part, provide type hints that permit mypy to confirm that they are being used
properly.

When we design a class, we must consider the dependencies that must be mocked for
unit testing. In the case of Deck, we have the following three dependencies to mock:

The Card class: This class is so simple that we could create a mock for this
class without basing it on an existing implementation. As the Deck class
behavior doesn't depend on any specific feature of Card, our mock object
can be simple.
The card() factory: This function needs to be replaced with a mock that
we can use to determine whether Deck makes proper calls to this function.
The random.Random.shuffle() method: To determine whether the
method was called with proper argument values, we can provide a mock
that will track usage rather than actually doing any shuffling.

Here's a version of Deck that uses the card() factory function:

class DeckEmpty(Exception):
    pass

class Deck3(list):

    def __init__(



Designing for Testability Chapter 17

[ 585 ]

            self,
            size: int=1,
            random: random.Random=random.Random(),
            card_factory: Callable[[int, Suit], Card]=card
    ) -> None:
        super().__init__()
        self.rng = random
        for d in range(size):
            super().extend(
                [card_factory(r, s)
                 for r in range(1, 14)
                 for s in iter(Suit)])
        self.rng.shuffle(self)

    def deal(self) -> Card:
        try:
            return self.pop(0)
        except IndexError:
            raise DeckEmpty()

This definition has two dependencies that are specifically called out as arguments to
the __init__() method. It requires a random number generator, random, and a card
factory, card_factory. It has suitable default values so that it can be used in an
application very simply. It can also be tested by providing mock objects instead of the
default objects.

We've included a deal() method that makes a change to the object by using pop()
to remove an instance of Card from the collection. If the deck is empty, the deal()
method will raise a DeckEmpty exception.

Here's a test case to show you that the deck is built properly:

import unittest
import unittest.mock

class TestDeckBuild(unittest.TestCase):

    def setUp(self) -> None:
        self.mock_card =
unittest.mock.Mock(return_value=unittest.mock.sentinel.card)
        self.mock_rng = unittest.mock.Mock(wraps=random.Random())
        self.mock_rng.shuffle = unittest.mock.Mock()

    def test_Deck3_should_build(self) -> None:
        d = Deck3(size=1, random=self.mock_rng,
card_factory=self.mock_card)
        self.assertEqual(52 * [unittest.mock.sentinel.card], d)
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        self.mock_rng.shuffle.assert_called_with(d)
        self.assertEqual(52, len(self.mock_card.mock_calls))
        expected = [
            unittest.mock.call(r, s)
            for r in range(1, 14)
            for s in (Suit.CLUB, Suit.DIAMOND, Suit.HEART, Suit.SPADE)
        ]
        self.assertEqual(expected, self.mock_card.mock_calls)

We created two mocks in the setUp() method of this test case. The mock card factory
function, mock_card, is a Mock function. The defined return value is a single
mock.sentinel,card object instead of a distinct Card instances. When we refer to
an attribute of the mock.sentinel object, with an expression like
mock.sentinel.card, this expression creates a new object if necessary, or retrieves
an existing object. It implements a Singleton design pattern; there's only one
sentinel object with a given name. This will be a unique object that allows us to
confirm that the right number of instances were created. Because the sentinel is
distinct from all other Python objects, we can distinguish functions without proper
return statements that return None.

We created a mock object, mock_rng, to wrap an instance of the random.Random()
generator. This Mock object will behave as a proper random object, with one
difference. We replaced the shuffle() method with a Mock behaving as a function
that returns None. This provides us with an appropriate return value for the method
and allows us to determine that the shuffle() method was called with the proper
argument values.

Our test creates a Deck3 instance with our two mock objects. We can then make the
following assertions about the Deck3 instance, d:

52 objects were created. These are expected to be 52 copies of
mock.sentinel, showing us that only the factory function was used to
create objects; all of the objects are sentinels, created by the mock.
The shuffle() method was called with the Deck instance as the
argument. This shows us how a mock object tracks its calls. We can use
assert_called_with() to confirm that the argument values were as
required when shuffle() was called.
The factory function was called 52 times. The mock_calls attribute of a
mock object is the entire history of the object's use. This assertion is,
technically, redundant, since the next test will imply this condition.
The factory function was called with a specific list of expected rank and suit
values.
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The mock objects will record the sequence of methods that were invoked. In the next
section, we'll look at ways to examine a mock object to ensure that other units are
using the mock object correctly.

Using mocks to observe behaviors
The preceding mock objects were used to test how a Deck class was built. Having 52
identical sentinels makes it difficult to confirm that a Deck deals properly. We'll
define a different mock to test the deal feature.

Here's a second test case to ensure that the Deck class deals properly:

class TestDeckDeal(unittest.TestCase):

    def setUp(self) -> None:
        self.mock_deck = [
            getattr(unittest.mock.sentinel, str(x)) for x in range(52)
        ]
        self.mock_card = unittest.mock.Mock(
            side_effect=self.mock_deck)
        self.mock_rng = unittest.mock.Mock(
            wraps=random.Random())
        self.mock_rng.shuffle = unittest.mock.Mock()

    def test_Deck3_should_deal(self) -> None:
        d = Deck3(size=1, random=self.mock_rng,
card_factory=self.mock_card)
        dealt = []
        for i in range(52):
            card = d.deal()
            dealt.append(card)
        self.assertEqual(dealt, self.mock_deck)

    def test_empty_deck_should_exception(self) -> None:
        d = Deck3(size=1, random=self.mock_rng,
card_factory=self.mock_card)
        for i in range(52):
            card = d.deal()
        self.assertRaises(DeckEmpty, d.deal)

This mock for the card factory function uses the side_effect argument to Mock().
When provided with an iterable, the side_effect feature returns another value of
the iterable each time it's called.
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In this case, we used the sentinel object to build 52 distinct sentinel objects; we'll
use these instead of Card objects to isolate the Deck3 class from the Card class
hierarchy. The getattr(unittest.mock.sentinel, str(x)) expression will use
a string version of a number, x, and create 52 unique sentinel objects.

We mocked the shuffle() method to be sure that the cards aren't actually
rearranged. The wrapper means that most features of the Random class will be
accessible. The shuffle method, however, was replaced. We want the sentinel
objects to stay in their original order so that our tests have a predictable expected
value.

The first test, test_Deck3_should_deal, accumulates the results of dealing 52 cards
into a variable, dealt. It then asserts that this variable has the 52 expected values
from the original mock card factory. Because the card factory was a mock object, it
returned the various sentinel objects via the side_effect feature of Mock.

The second test, test_empty_deck_should_exception, deals all of the cards from
a Deck instance. However, it makes one more API request. The assertion is that the
Deck.deal() method will raise the proper exception after dealing all of the cards.

Because of the relative simplicity of the Deck class, it's possible to combine both
TestDeckBuild and TestDeckDeal into a single, more sophisticated mock. While
that's possible with this example, it's neither essential, nor necessarily desirable to
refactor the test cases to make them simpler. Indeed, the overs simplification of tests
may fail to properly test API features.

Using doctest to define test cases
The doctest module provides us with a way to validate documentation strings. In 
addition to docstrings in the code, any document with a Python REPL-style response
can be tested via doctest. This will combine the documentation for modules, classes,
functions, and test cases into one tidy package.

doctest cases are written into docstrings. A doctest case shows us the interactive
Python prompt, >>>; statements; and the expected responses. The doctest module
contains an application that looks for these examples in docstrings. It runs the given
examples and compares the expected results shown in the docstrings with the actual
outputs.
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With the careful design of an API, we can create a class that can be used interactively.
If it can be used interactively, then a doctest example can be built to show the
expected results of the interaction.

Indeed, two attributes of a well-designed class are that it can be used interactively
and it has doctest examples in the documentation strings. Many built-in modules
contain doctest examples of the API. Many other packages that we might choose to
download will also include doctest examples.

With a simple function, we can provide documentation such as the following:

def ackermann(m: int, n: int) -> int:
    """Ackermann's Function
    ackermann(m, n) = $2 \\uparrow^{m-2} (n+3)-3$

    See http://en.wikipedia.org/wiki/Ackermann_function and
    http://en.wikipedia.org/wiki/Knuth%27s_up-arrow_notation.

    >>> from Chapter_17.ch17_ex1 import ackermann
    >>> ackermann(2,4)
    11
    >>> ackermann(0,4)
    5
    >>> ackermann(1,0)
    2
    >>> ackermann(1,1)
    3

    """
    if m == 0:
        return n + 1
    elif m > 0 and n == 0:
        return ackermann(m - 1, 1)
    elif m > 0 and n > 0:
        return ackermann(m - 1, ackermann(m, n - 1))
    else:
        raise LogicError()

We've defined a version of the Ackermann function. The function is rather complex,
and the definition involves some odd-looking mathematical notation. The formal
definition is shown in the following two ways:

. This definition uses the extended up-arrow
notation for recursive exponentiation.
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. This is the recursive definition
implemented previously.

The definition includes docstring comments that include five sample responses from
interactive Python. The first sample output is the import statement, which should
produce no output. The other four sample outputs show us the different values of the
function.

We can run these tests with the doctest module. When the doctest module is run
as a program, the command-line argument is the file that should be tested. The
doctest program locates all docstrings and looks for interactive Python examples in
those strings. It's important to note that the doctest documentation provides details
on the regular expressions used to locate the strings. In our example, we added a
hard-to-see blank line after the last doctest example to help the doctest parser.

We can run doctest from the command line as follows:

$ python3 -m doctest Chapter_17/ch17_ex1.py

If everything is correct, this is silent. We can make it show us some details by adding
the -v option as follows:

$ python3 -m doctest -v Chapter_17/ch17_ex1.py

This will provide us with the details of each docstring parsed and each test case
gleaned from the docstrings.

The output will include the following:

Trying:
 from Chapter_17.ch17_ex1 import ackermann
Expecting nothing
ok
Trying:
 ackermann(2,4)
Expecting:
 11
ok
Trying:
 ackermann(0,4)
Expecting:
 5
ok
Trying:
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 ackermann(1,0)
Expecting:
 2
ok
Trying:
 ackermann(1,1)
Expecting:
 3
ok

The Trying: clause shows the statement found in a >>> example. Expecting:
shows the following result lines. The final ok tells us the example worked as
expected. The verbose output will show us all of the classes, functions, and methods
without any tests, as well as the components that have tests. This provides some
confirmation that our tests were properly formatted in the docstrings.

In some cases, we will have output that will not match interactive Python easily. In
these cases, we may need to supplement the docstring with some annotations that
modify how the test cases and expected results are parsed.

There's a special comment string that we can use for more complex outputs. We can
append any one of the following two commands to enable (or disable) the various
kinds of directives that are available. The following is the first command:

# doctest: +DIRECTIVE

The following is the second command:

# doctest: -DIRECTIVE

There are a dozen modifications that we can make to how the expected results are
handled. Most of them are rare situations regarding spacing and how actual and
expected values should be compared.

The doctest documentation emphasizes the Exact Match Principle:

"doctest is serious about requiring exact matches in expected output."

If even a single character doesn't match, the test fails. You'll need to
build flexibility into some of the expected outputs. If building in
flexibility gets too complex, it suggests that unitest might be a
better choice.
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Here are some specific situations where the expected and actual values of doctest
won't match easily:

The id() and default repr() of an object involve physical memory
addresses; Python makes no guarantee that they will be consistent. If you
show id() or repr(), use the #doctest: +ELLIPSIS directive and
replace the ID or address with ... in the sample output.
Floating-point results may not be consistent across platforms. Always show
floating-point numbers with formatting or rounding to reduce the number
of digits to digits that are meaningful. Use "{:.4f}".format(value) or
round(value,4) to ensure that insignificant digits are ignored.
While dictionary keys are now ordered, set ordering is not guaranteed by
Python. Use a construct such as sorted(some_set) instead of some_set.
The current date or time, of course, cannot be used, as that won't be
consistent. A test that involves date or time needs to force a specific date or
time generally by mocking time or datetime.
Operating system details, such as file sizes or timestamps, are likely to vary
and should not be used without ellipses. Sometimes, it's possible to include
a useful setup or teardown in the doctest script to manage OS resources.
In other cases, mocking the os module is helpful.

These considerations mean that our doctest module may contain some additional
processing that's not simply a part of the API. We may have done something such as
this at the interactive Python prompt:

>>> sum(values)/len(values)
3.142857142857143

This shows us the full output from a particular implementation. We can't simply copy
and paste this into a docstring. The floating-point results might differ. We'll need to
do something like the following code:

>>> round(sum(values)/len(values), 4)
3.1429

This is rounded to a value that should not vary between implementations.

It is sometimes helpful to combine the doctest and unit tests in a comprehensive test
package. We'll look at ways to include doctest cases with unittest test cases later.
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Combining doctest and unittest
There's a hook in the doctest module that will create a proper
unittest.TestSuite from docstring comments. This allows us to use both
doctest and unittest in a large application.

What we'll do is create an instance of doctest.DocTestSuite(). This will build a
suite from a module's docstrings. If we don't specify a module, the module that is
currently running is used to build the suite. We can use a module such as the
following one:

    import doctest
    suite5 = doctest.DocTestSuite()
    t = unittest.TextTestRunner(verbosity=2)
    t.run(suite5)

We built a suite, suite5, from the doctest strings in the current module. We used
unittestTextTestRunner on this suite. As an alternative, we can combine the
doctest suite with other TestCase to create a larger, more complete suite.

As our tests become more complex, we need to organize our test modules. In the next
section, we'll look at the big picture of creating a tests folder within a Python
project.

Creating a more complete test package
For larger applications, each application module can have a parallel module that
includes TestCase for that module. This can form two parallel package structures:
an src structure with the application module and a test structure with the test
modules. Here are two parallel directory trees that show us the collections of
modules:

src
    __init__.py
    __main__.py
    module1.py
    module2.py
    setup.py
tests
    __init__.py
    module1.py
    module2.py
    all.py
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Clearly, the parallelism isn't exact. We don't usually have an automated unit test for
setup.py. A well-designed __main__.py may not require a separate unit test, as it
shouldn't have much code in it. We'll look at some ways to design __main__.py in
Chapter 18, Coping with the Command Line.

We can create a top-level test/all.py module with a body that builds all of the
tests into a single suite as follows:

import module1
import module2
import unittest
import doctest
all_tests = unittest.TestSuite()
for mod in module1, module2:
    all_tests.addTests(mod.suite())
    all_tests.addTests(doctest.DocTestSuite(mod))
t = unittest.TextTestRunner()
t.run(all_tests)

We built a single suite, all_tests, from the suites within the other test modules.
This provides us with a handy script that will run all of the tests that are available as
part of the distribution.

There are ways to use the test discovery features of the unittest module to do this
as well. We perform package-wide testing from the command line, with something
like the following code:

python3 -m unittest tests/*.py

This will use the default test discovery features of unittest to locate TestCase in
the given files. This has the disadvantage of relying on shell script features rather
than pure Python features. The wildcard file specification can sometimes make
development more complex because incomplete modules might get tested.

Using pytest has some advantages over using unittest to discover and run the
overall suite of tests. As we'll see later, pytest is somewhat simpler. More
importantly, it can locate a wider variety of test cases, including functions as well as
subclasses of unittest.TestCase. This allows even more flexibility and more rapid
development of new software features.
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Using setup and teardown
There are three levels of setup and teardown available for the unittest modules.
These define different kinds of testing scopes: method, class, and module, as follows:

Test case setUp() and tearDown() methods: These methods ensure that
each individual test method within a TestCase class has a proper context.
Often, we'll use the setUp() method to create the units being tested and
any mock objects that are required. 
Test case setUpClass() and tearDownClass() methods: These methods
perform a one-time setup (and teardown) of all the tests in a TestCase
class. These methods bracket the sequence of setUp()-testMethod()-
tearDown() for each method. This can be a good place to insert and delete
the data required by the test inside a database.
Module setUpModule() and tearDownModule() functions: These two
standalone functions provide us with a one-time setup before all of the
TestCase classes in a module. This is a good place to create and destroy a
test database as a whole before running a series of TestCase classes.

We rarely need to define all of these setUp() and tearDown() methods. There are
several testing scenarios that are going to be part of our design for testability. The
essential difference between these scenarios is the degree of integration involved. As
noted previously, we have three tiers in our testing hierarchy: isolated unit tests,
integration tests, and overall application tests. There are several ways in which these
tiers of testing work with the various setup and teardown features including the
following:

Isolated unit, no integration, no dependencies. Some classes or functions
have no external dependencies; they don't rely on files, devices, other
processes, or other hosts. Other classes have some external resources that
can be mocked. When the cost and complexity of the TestCase.setUp()
method is small, we can create the necessary objects there. If the mock
objects are particularly complex, a class-level TestCase.setUpClass()
might be more appropriate to amortize the cost of recreating the mock
objects over several test methods.
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Internal integration, some dependencies: Automated integration testing
among classes or modules often involves more complex setup situations.
We may have a complex setUpClass() or even a module-level
setUpModule() to prepare a context for integration testing. When
working with the database access layers in Chapter 11, Storing and
Retrieving Objects via Shelve, and Chapter 12, Storing and Retrieving Objects
via SQLite, we often perform integration testing that includes our class
definitions as well as our access layer. This may involve seeding a test
database or shelf with appropriate data for the tests.
External integration: We may perform automated integration testing on
larger and more complex pieces of an application. In these cases, we may
need to spawn external processes or create databases and seed them with
data. In this case, we may have setUpModule() to prepare an empty
database for use by all of the TestCase classes in a module. When working
with RESTful web services in Chapter 13, Transmitting and Sharing Objects,
or testing Programming In The Large (PITL) in Chapter 19, Module and
Package Design, this approach could be helpful.

Note that the concept of unit testing does not define what the unit under test is. The
unit can be a class, a module, a package, or even an integrated collection of software
components. The unit needs to be isolated from its environment to create a focused
test.

When designing automated integration tests, it's important to choose the components
to be tested. For example, we don't need to test Python libraries; they have their own
tests. Similarly, we don't need to test the OS. For example, if our software deletes a
file, we don't need to include a check of the filesystem integrity after the file is
removed. We don't need to be sure the space was reclaimed. We generally need to
trust that libraries and operating systems work correctly. If we're doubtful of the
infrastructure, we can run the test suite for the OS or libraries; we don't need to
reinvent it. An integration test must focus on testing the code we wrote, not the code
we downloaded and installed. 

Using setup and teardown with OS resources
In many cases, a test case may require a particular OS environment. When working
with external resources such as files, directories, or processes, we may need to create
or initialize them before a test. We may also need to remove the resources before a
test, or we may need to tear down the resources at the end of the test.
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Let's assume that we have a function, rounds_final(), which is supposed to
process a given file. We need to test the function's behavior in the rare case that the
file doesn't exist. It's common to see TestCase with a structure such as the following
one:

import os

class Test_Missing(unittest.TestCase):

    def setUp(self) -> None:
        try:
            (Path.cwd() / "data" / "ch17_sample.csv").unlink()
        except OSError as e:
            pass  # OK if file didn't exist

    def test_missingFile_should_returnDefault(self) -> None:
        self.assertRaises(
            FileNotFoundError, rounds_final, (Path.cwd() / "data" /
"ch17_sample.csv")
        )

We have to handle the possible exception of trying to remove a file that doesn't exist
in the first place. This test case has a setUp() method that ensures that the required
file is missing. Once setuUp()ensures that the file is truly gone, we can execute the
rounds_final() function with an argument of the missing file,
p3_c15_sample.csv. We expect this to raise a FileNotFoundError error.

Note that raising FileNotFoundError is a default behavior of Python's open()
method. This may not require testing at all. This leads to an important question: why
test a built-in feature? If we're performing black box testing, we need to exercise all
features of the external interface, including the expected default behaviors. If we're
performing white box testing, we may need to test the exception handling try:
statement within the body of the rounds_final() function.

The ch17_sample.csv filename is repeated within the body of the test. Some folks
feel that the DRY rule should apply even to test code. There's a limit to how much of
this kind of optimization is valuable while writing tests:

It's okay for test code to be brittle. If a small change to the
application leads to test failures, this really is a good thing. Tests
should value simplicity and clarity, not robustness and reliability.
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In the next section, we'll look at some other examples of using setUp() and
tearDown() for databases.

Using setup and teardown with databases
When working with a database and ORM layer, we often have to create test
databases, files, directories, or server processes. We may need to tear down a test
database after the tests pass, to be sure that the other tests can run. We may not want
to tear down a database after failed tests; we may need to leave the database alone so
that we can examine the resulting rows to diagnose the test failures.

It's important to manage the scope of testing in a complex, multilayered architecture.
Looking back at Chapter 12, Storing and Retrieving Objects via SQLite, we don't need to
specifically test the SQLAlchemy ORM layer or the SQLite database. These
components have their own test procedures outside our application tests. However,
because of the way the ORM layer creates database definitions, SQL statements, and
Python objects from our code, we can't easily mock SQLAlchemy and hope that we've
used it properly. We need to test the way our application uses the ORM layer without
digressing into testing the ORM layer itself.

One of the more complex test case setup situations will involve creating a database
and then populating it with appropriate sample data for the given test. When
working with SQL, this can involve running a fairly complex script of SQL DDL to
create the necessary tables and then another script of SQL DML to populate those
tables. The associated teardown will be another complex SQL DDL script.

This kind of test case can become long-winded, so we'll break it into three sections: a
useful function to create a database and schema, the setUpClass() method, and the
rest of the unit test.

Here's the create database function:

from Chapter_12.ch12_ex4 import Base, Blog, Post, Tag, assoc_post_tag
import datetime
import sqlalchemy.exc
from sqlalchemy import create_engine

def build_test_db(name="sqlite:///./data/ch17_blog.db"):
    """
    Create Test Database and Schema
    """
    engine = create_engine(name, echo=True)
    Base.metadata.drop_all(engine)
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    Base.metadata.create_all(engine)
    return engine

This builds a fresh database by dropping all of the tables associated with the ORM
classes and recreating the tables. The idea is to ensure a fresh, empty database that
conforms to the current design, no matter how much that design has changed since
the last time the unit tests were run.

In this example, we built an SQLite database using a file. We can use the in-memory
SQLite database feature to make the test run somewhat more quickly. The downside
of using an in-memory database is that we have no database that we can use to debug
failed tests.

Here's how we use this in a TestCase subclass:

from sqlalchemy.orm import sessionmaker

class Test_Blog_Queries(unittest.TestCase):

    @staticmethod
    def setUpClass():
        engine = build_test_db()
        Test_Blog_Queries.Session = sessionmaker(bind=engine)
        session = Test_Blog_Queries.Session()

        tag_rr = Tag(phrase="#RedRanger")
        session.add(tag_rr)
        tag_w42 = Tag(phrase="#Whitby42")
        session.add(tag_w42)
        tag_icw = Tag(phrase="#ICW")
        session.add(tag_icw)
        tag_mis = Tag(phrase="#Mistakes")
        session.add(tag_mis)

        blog1 = Blog(title="Travel 2013")
        session.add(blog1)
        b1p1 = Post(
            date=datetime.datetime(2013, 11, 14, 17, 25),
            title="Hard Aground",
            rst_text="""Some embarrassing revelation. Including ☹ and
⚓""",
            blog=blog1,
            tags=[tag_rr, tag_w42, tag_icw],
        )
        session.add(b1p1)
        b1p2 = Post(



Designing for Testability Chapter 17

[ 600 ]

            date=datetime.datetime(2013, 11, 18, 15, 30),
            title="Anchor Follies",
            rst_text="""Some witty epigram. Including ☺ and ☀""",
            blog=blog1,
            tags=[tag_rr, tag_w42, tag_mis],
        )
        session.add(b1p2)

        blog2 = Blog(title="Travel 2014")
        session.add(blog2)
        session.commit()

We defined setUpClass() so that a database is created before the tests from this
class are run. This allows us to define a number of test methods that will share a
common database configuration. Once the database has been built, we can create a
session and add data.

We've put the session maker object into the class as a class-level attribute,
Test_Blog_Queries.Session = sessionmaker(bind=engine). This class-level
object can then be used in setUp() and individual test methods.

Here is setUp() and two of the individual test methods:

def setUp(self):
    self.session = Test_Blog_Queries.Session()

def test_query_eqTitle_should_return1Blog(self):
    results = self.session.query(Blog).filter(Blog.title == "Travel
2013").all()
    self.assertEqual(1, len(results))
    self.assertEqual(2, len(results[0].entries))

def test_query_likeTitle_should_return2Blog(self):
    results = self.session.query(Blog).filter(Blog.title.like("Travel
%")).all()
    self.assertEqual(2, len(results))

The setUp() method creates a new, empty session object from the class-level
sessionmaker instance. This will ensure that every query is able to properly
generate SQL and fetch data from the database using an SQLAlchemy session.

The query_eqTitle_should_return1Blog() test will find the requested Blog
instance and navigate to the Post instances via the entries relationship. The
filter() portion of the request doesn't really test our application definitions; it
exercises SQLAlchemy and SQLite. The results[0].entries test in the final
assertion is a meaningful test of our class definitions.
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The query_likeTitle_should_return2Blog() test is almost entirely a test of
SQLAlchemy and SQLite. It isn't really making meaningful use of anything in our
application except the presence of an attribute named title in Blog. These kinds of
tests are often left over from creating initial technical spikes. They can help clarify an
application API, even if they don't provide much value as a test case.

Here are two more test methods:

def test_query_eqW42_tag_should_return2Post(self):
    results =
self.session.query(Post).join(assoc_post_tag).join(Tag).filter(
        Tag.phrase == "#Whitby42"
    ).all()
    self.assertEqual(2, len(results))

def test_query_eqICW_tag_should_return1Post(self):
    results =
self.session.query(Post).join(assoc_post_tag).join(Tag).filter(
        Tag.phrase == "#ICW"
    ).all()
    self.assertEqual(1, len(results))
    self.assertEqual("Hard Aground", results[0].title)
    self.assertEqual("Travel 2013", results[0].blog.title)
    self.assertEqual(
        set(["#RedRanger", "#Whitby42", "#ICW"]),
        set(t.phrase for t in results[0].tags),
    )

The query_eqW42_tag_should_return2Post() test performs a more complex
query to locate the posts that have a given tag. This exercises a number of
relationships defined in the classes. When both of the relevant blog entries are
located, this test has been passed.

The query_eqICW_tag_should_return1Post() test, similarly, exercises a complex
query. It tests the navigation from Post to the Blog instance which contains the
Post via results[0].blog.title. It also tests navigation from Post to an
associated collection of Tags via set(t.phrase for t in results[0].tags).
We must use an explicit set() because the order of results in SQL is not guaranteed.

What's important about this Test_Blog_Queries subclass of TestCase is that it
creates a database schema and a specific set of defined rows via the setUpClass()
method. This kind of test setup is helpful for database applications. It can become
rather complex and is often supplemented by loading sample rows from files or JSON
documents, rather than coding the rows in Python.
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The TestCase class hierarchy
Inheritance works among the TestCase classes. Ideally, each TestCase is unique.
Pragmatically, there may be common features among cases. There are the following
three common ways in which TestCase classes may overlap:

Common setUp(): We may have some data that is used in multiple
TestCase. There's no reason to repeat the data. A TestCase class that only
defines setUp() or tearDown() with no test methods is legal, but it may
lead to a confusing log, because there are zero tests involved.
Common tearDown(): It's common to have a common cleanup for tests
that involve OS resources. We might need to remove files and directories or
kill subprocesses.
Common results checking: For algorithmically complex tests, we may
have a results checking method that verifies some properties of a result.

Looking back at Chapter 4, Attribute Access, Properties, and Descriptors, for example,
consider the RateTimeDistance class. This class fills in a missing value in a
dictionary based on two other values, as follows:

@dataclass
class RateTimeDistance:

    rate: Optional[float] = None
    time: Optional[float] = None
    distance: Optional[float] = None

    def __post_init__(self) -> None:
        if self.rate is not None and self.time is not None:
            self.distance = self.rate * self.time
        elif self.rate is not None and self.distance is not None:
            self.time = self.distance / self.rate
        elif self.time is not None and self.distance is not None:
            self.rate = self.distance / self.time

Each unit test method for the RateTimeDistance class can include the following
code:

self.assertAlmostEqual(
    self.rtd.distance, self.rtd.rate * self.rtd.time, places=2
)
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If we use a number of TestCase subclasses, we can inherit this validity check as a
separate method as follows:

def validate(self, object):
    self.assertAlmostEqual(
        self.rtd.distance, self.rtd.rate * self.rtd.time, places=2
    )

This way, each test need only include self.validate(object) to be sure that all
the tests provide a consistent definition of correctness.

An important feature of the definition of the unittest module is that the test cases
are proper classes with proper inheritance. We can design the TestCase class 
hierarchy with the same care and attention to detail that we apply to the application
classes.

Using externally defined expected results
For some applications, the users can articulate processing rules that describe the
software's behavior. In other cases, the job of an analyst or a designer transforms the
user's desires into procedural descriptions of the software.

It's often easiest to provide concrete examples of expected results. Either the ultimate
users or intermediary analysts may find it helpful to create a spreadsheet that shows
sample inputs and expected results. Working from user-supplied, concrete sample
data can simplify the software being developed.

Whenever possible, have real users produce concrete examples of correct results.
Creating procedural descriptions or software specifications is remarkably difficult.
Creating concrete examples and generalizing from the examples to a software
specification is less fraught with complexity and confusion. Further, it plays into a
style of development where test cases drive development efforts. A suite of test cases
provides a developer with a concrete definition of done. Tracking the software
development project status leads to asking how many test cases we have today and
how many of them pass.

Given a spreadsheet of concrete examples, we need to turn each row into a TestCase
instance. We can then build a suite from these objects.
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For the previous examples in this chapter, we loaded the test cases from a TestCase-
based class. We used unittest.defaultTestLoader.loadTestsFromTestCase to
locate all the methods with a name that starts with test. The loader creates a test
object from each method with the proper name prefix and combines them into a test
suite.

There's an alternative approach, however. For this example, we're going to build test
case instances individually. This is done by defining a class with a single runTest()
method. We can load multiple instances of this class into a suite. For this to work, the
TestCase class must define only one test with the name runTest(). We won't be
using the loader to create the test objects; we'll be creating them directly from rows of
externally supplied data.

Let's take a look at a concrete function that we need to test. This is from Chapter 4,
Attribute Access, Properties, and Descriptors:

from Chapter_4.ch04_ex3 import RateTimeDistance

This is a class that eagerly computes a number of attributes when it is initialized. The
users of this simple function provided us with some test cases as a spreadsheet, from
which we extracted the CSV file. For more information on CSV files, see Chapter 10,
Serializing and Saving - JSON, YAML, Pickle, CSV, and XML. We need to transform each
row into a TestCase. Here's the data in the CSV file:

rate_in,time_in,distance_in,rate_out,time_out,distance_out
2,3,,2,3,6
5,,7,5,1.4,7
,11,13,1.18,11,13

We're not going to define a class using a name that starts with test because the class
isn't going to be simply discovered by a loader. Instead, the class is used to build
instances into a larger suit of tests. Here's the test case template that we can use to
create test instances from each row of the CSV file:

class Test_RTD(unittest.TestCase):

    def runTest(self) -> None:
        with (Path.cwd() / "data" / "ch17_data.csv").open() as source:
            rdr = csv.DictReader(source)
            for row in rdr:
                self.example(**row)

    def example(
        self,
        rate_in: str,
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        time_in: str,
        distance_in: str,
        rate_out: str,
        time_out: str,
        distance_out: str,
    ) -> None:
        args = dict(
            rate=float_or_none(rate_in),
            time=float_or_none(time_in),
            distance=float_or_none(distance_in),
        )
        expected = dict(
            rate=float(rate_out), time=float(time_out),
distance=float(distance_out)
        )
        rtd = RateTimeDistance(**args)
        assert rtd.distance and rtd.rate and rtd.time
        self.assertAlmostEqual(rtd.distance, rtd.rate * rtd.time,
places=2)
        self.assertAlmostEqual(rtd.rate, expected["rate"], places=2)
        self.assertAlmostEqual(rtd.time, expected["time"], places=2)
        self.assertAlmostEqual(rtd.distance, expected["distance"],
places=2)

The testing is embodied in the runTest() method of this class. In previous examples,
we used method names starting with test_ to provide the test case behavior. Instead
of multiple test_ method names, a single runTest() method can be provided. This
will also change the way a test suite is built, as we'll see next.

This method parses a row of a spreadsheet into a dictionary. For this to work
correctly, the sample data column headings must match the parameter names
required by the example() method. The input values are placed in a dictionary
named args; the expected result values are, similarly, placed into a dictionary named
expected.

The float_or_none() function helps handle the CSV source data where a None
value will be represented by an empty string. It converts the text of a cell to a float
value or None. The function is defined as follows:

def float_or_none(text: str) -> Optional[float]:
    if len(text) == 0:
        return None
    return float(text)
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Each row of the spreadsheet is processed through the example() method. This gives
us a relatively flexible approach to testing. We can permit users or business analysts
to create all the examples required to clarify proper operation.

We can build a suite from this test object as follows:

def suite9():
    suite = unittest.TestSuite()
    suite.addTest(Test_RTD())
    return suite

Note that we do not use the loadTestsFromTestCase method to discover the
methods with test_ names. Instead, we create an instance of the test case that can
simply be added to the test suite.

The suite is executed using the kind of script we've seen earlier. Here's an example:

if __name__ == "__main__":
    t = unittest.TextTestRunner()
    t.run(suite9())

The output looks like this:

..F
======================================================================
FAIL: runTest (__main__.Test_RTD)
{'rate': None, 'distance': 13.0, 'time': 11.0} -> {'rate': 1.18,
'distance': 13.0, 'time': 11.0}
----------------------------------------------------------------------
Traceback (most recent call last):
  File "p3_c15.py", line 504, in runTest
    self.assertAlmostEqual( self.rtd.rate, self.result['rate'] )
AssertionError: 1.1818181818181819 != 1.18 within 7 places

----------------------------------------------------------------------
Ran 3 tests in 0.000s

FAILED (failures=1)

The user-supplied data has a small problem. The users provided a value that has been
rounded off to only two places. Either the sample data needs to provide more digits,
or our test assertions need to cope with the rounding.
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This can also be run from the command line using unittest test discovery. Here's
the command we can run to use the built-in test discovery features of the unittest
module:

python3 -m unittest Chapter_17/ch17_ex1.py

This produces an abbreviated output with many of the testing examples from this
chapter. It looks like this:

.x............x..Run time 0.931446542

..
----------------------------------------------------------------------
Ran 19 tests in 0.939s

Each . is a test that passed. The x marks are tests that are expected to fail. As we
noted previously, some of the tests reveal problems with the defined classes, and
those tests will fail until the classes are fixed.

The Run time 0.931446542 output is from a print() within a test. It's not a
standard part of the output. Because of the way the output is structured, it can be
difficult to print other debugging or performance data output inside a test case. This
example shows how it can be confusing to have the additional output in the middle of
the simple line of periods showing test execution progress.

Using pytest and fixtures
An alternative to the unittest runner is the pytest test runner. The pytest
framework has an excellent test discovery feature that goes beyond what the
unittest tool can discover.

The unittest runner can be used in the following two ways.

With a test suite object. The previous examples have focused on this.
To search for classes that are extensions of unittest.TestCase, build a
test suite from those, and then run the suite. This offers considerable
flexibility. We can add test cases without also having to update the code to
build the test suite.
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The pytest tool can also locate unittest.TestCase class definitions, build a suite
of tests, and execute the tests. It can go beyond this and also locate functions with
names starting with test_ in modules where the name starts with test_. Using
simple functions has some advantages over the more complex unittest.TestCase
class definitions.

The primary advantage of using separate functions is the resulting simplification of
the test module. In particular, when we look back at the TestCardFactory example,
we see that there is no setUp() required for the tests within the class. Because all of
the methods are independent, there's no real need to bind these methods into a single
class definition. Even though this is a book on object-oriented Python, there's no
reason to use class definitions when they don't improve the code. In many cases,
class-oriented test case definition isn't helpful and separate functions executed by
pytest have advantages.

The pytest approach leads to the following two other consequences:

The self.assert...() methods are not available. When using pytest,
the Python assert statement is used to compare expected results with
actual results.
The stateful class variables used by setUp() and tearDown() aren't
available. In order to set up and tear down test contexts, we'll use the
pytest @fixture functions.

As a concrete example of the simplifications possible, we'll review some examples
from earlier, starting with tests for the Card class. The pytest version is as follows:

def test_card():
    three_clubs = Card(3, Suit.CLUB)
    assert "3♣" == str(three_clubs)
    assert 3 == three_clubs.rank
    assert Suit.CLUB == three_clubs.suit
    assert 3 == three_clubs.hard
    assert 3 == three_clubs.soft

The function's name must begin with test_ to be sure pytest can discover it. The
test setup creates a card instance, and a number of assert statements to confirm that
it has the expected behavior. We don't have quite as much overhead when using
functions with the assert statement as we do when using unitest.TestCase
subclasses.
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Assertion checking
To confirm the exception raised by a test, the unittest.TestCase class has methods
like assertRaises(). When working with pytest, we have a distinct approach to
testing this feature. The pytest package offers a context manager named raises to
help detect the exception that is raised. The raises context is shown in this example: 

from pytest import raises

def test_card_factory():

    c1 = card(1, Suit.CLUB)
    assert isinstance(c1, AceCard)

    c2 = card(2, Suit.DIAMOND)
    assert isinstance(c1, Card)

    c10 = card(10, Suit.HEART)
    assert isinstance(c10, Card)

    cj = card(11, Suit.SPADE)
    assert isinstance(cj, FaceCard)

    ck = card(13, Suit.CLUB)
    assert isinstance(ck, FaceCard)

    with raises(LogicError):
        c14 = card(14, Suit.DIAMOND)

    with raises(LogicError):
        c0 = card(0, Suit.DIAMOND)

We've used pytest.raises as a context manager. When this is provided with a class
definition, the statements within the context are expected to raise the named
exception. If the exception is raised, the test passes; if the exception is not raised, this
is a test failure.

Using fixtures for test setup
The test setup and teardown features of pytest are often handled by @fixture
functions. These functions form the fixture into which a unit is connected for testing.
In the realm of hardware testing, it might also be called a test harness or test bench.
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Fixtures can be used to do any kind of setup or teardown related to a test. Because of
the way pytest invokes a test, it implicitly calls the fixture functions, simplifying our
test code considerably. The fixtures can reference other fixtures, letting us create
composite objects that can help to isolate the unit being tested.

Previously, we looked at two complex test case subclasses: TestDeckBuild and
TestDeckDeal. These two test cases covered separate features of the Deck3 class
definition. We can build similar test cases using a common fixture. Here's the fixture
definition:

import unittest.mock
from types import SimpleNamespace
from pytest import fixture

@fixture
def deck_context():
    mock_deck = [
        getattr(unittest.mock.sentinel, str(x))
        for x in range(52)
    ]
    mock_card = unittest.mock.Mock(side_effect=mock_deck)
    mock_rng = unittest.mock.Mock(
        wraps=random.Random,
        shuffle=unittest.mock.Mock(return_value=None)
    )
    return SimpleNamespace(**locals())

The deck_context() function, creates the following three mock objects:

The mock_deck object is a list of 52 individual mock.sentinel objects.
Each sentinel object is customized by getting a unique attribute of the
sentinel. The attribute name is a string built from the integer values in
range(52). There will be objects with names such as mock.sentinel.0.
This is not a valid syntax for a simple Python attribute reference in source
code, but we only need to be sure the sentinel is unique.
The mock_card object is a mock with a side_effect. This will behave
like a function. Each time it's invoked, it will return another value from the
list provided to the side_effect parameter. This can be used to simulate
a function that reads values from files or a network connection.
The mock_rng object is a wrapped version of the random.Random class.
This will behave like a random object, except for two features. First, the
shuffle() method doesn't do anything. And, second, the Mock wrapper
will track individual calls to the methods of this object so we can determine
whether it's being used properly by the unit being tested.
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The return step packages all of the local variables into a single SimpleNamespace
object. This object lets us use syntax such as deck_context.mock_card to refer to
the Mock function. We can use this fixture in a test function. The following is an
example:

def test_deck_build(deck_context):
    d = Deck3(
        size=1,
        random=deck_context.mock_rng,
        card_factory=deck_context.mock_card
    )
    deck_context.mock_rng.shuffle.assert_called_once_with(d)
    assert 52 == len(deck_context.mock_card.mock_calls)
    expected = [
        unittest.mock.call(r, s) for r in range(1, 14) for s in
iter(Suit)
    ]
    assert expected == deck_context.mock_card.mock_calls

This test references the deck_context fixture. Nothing special is done in the code;
pytest will implicitly evaluate the function, and the resulting SimpleNamespace
object will be the value of the deck_context parameter. The mapping between
the parameter and the fixture is very simple: all parameter names must be the names
of fixture functions, and these functions are evaluated automatically.

The test builds a Deck3 instance using mock objects for the random parameter and
the card_factory parameter. Once the Deck3 instance is built, we can examine the
mock objects to see if they had the proper number of calls with the expected
argument values.

Using fixtures for setup and teardown
The fixture functions can also provide a teardown capability as well as a setup
capability. This relies on the lazy way generator functions work. Some example code
for a fixture that does setup and teardown is as follows:

@fixture
def damaged_file_path():
    file_path = Path.cwd() / "data" / "ch17_sample.csv"
    with file_path.open("w", newline="") as target:
        print("not_player,bet,rounds,final", file=target)
        print("data,1,1,1", file=target)
    yield file_path
    file_path.unlink()
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The damaged_file_path() function creates a file with a relative path of
data/ch17_sample.csv. A few lines of data are written to the file.

The yield statement provides an initial result value. This is used by a test function.
When the test completes, then a second value is retrieved from the fixture. When this
second result is requested, the fixture function can do any teardown work that is
required. In this example, the teardown work deletes the test file that was created.

The fixture function will be called implicitly when the test is run. Here is an example
test that uses this fixture:

def test_damaged(damaged_file_path):
    with raises(AssertionError):
        stats = rounds_final(Path.cwd()/"data"/"ch17_sample.csv")

This test confirms that the rounds_final() function, when given the example file,
will raise AssertionError. Because the damaged_file_path fixture uses yield, it
can tear down the test context, removing the file.

Building parameterized fixtures
It's common to have a large number of similar examples for a test case. In previous
sections, we talked about having users or analysts create spreadsheets with examples
of inputs and outputs. This can be helpful for permitting direct input to the software
development process. We need our testing tools to work with the CSV example files
as directly as possible.

With pytest, we can apply parameters to a fixture. The pytest runner will use each
object in the parameter collection to run the test function repeatedly. To build a
parameterized fixture, we can use code like the following example:

import csv

with (Path.cwd() / "Chapter_17" / "ch17_data.csv").open() as source:
    rdr = csv.DictReader(source)
    rtd_cases = list(rdr)

@fixture(params=rtd_cases)
def rtd_example(request):
    yield request.param
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We've opened the CSV file in a context manager. The file is used to build a reader that
transforms each row of data into a dictionary. The keys are the column titles and the
values are the strings from each cell in a given row. The final rtd_cases variable will
be a list of dictionaries; a type hint of List[Dict[str, str]] would capture the
structure.

The rtd_example fixture was built with the params= argument. Each item in the
params collection will be provided as a context to a function under test. This means
the test will be run several times, and each time it will use a different value from the
params sequence. To use this fixture, we'll have a test case like the following
example:

from pytest import approx

def test_rtd(rtd_example):
    args = dict(
        rate=float_or_none(rtd_example['rate_in']),
        time=float_or_none(rtd_example['time_in']),
        distance=float_or_none(rtd_example['distance_in']),
    )
    result = dict(
        rate=float_or_none(rtd_example['rate_out']),
        time=float_or_none(rtd_example['time_out']),
        distance=float_or_none(rtd_example['distance_out']),
    )

    rtd = RateTimeDistance(**args)

    assert rtd.distance == approx(rtd.rate * rtd.time)
    assert rtd.rate == approx(result["rate"], abs=1E-2)
    assert rtd.time == approx(result["time"])
    assert rtd.distance == approx(result["distance"])

This case depends on the rtd_example fixture. Since the fixture had a list of values
for the params, this case will be called multiple times; each time, the value
of rtd_example will be a different row from the sequence of values. This makes it
convenient to write a common test for a variety of input values. 

This test also uses the pytest.approx object. This object is used to wrap floating-
point values so the __eq__() method is an approximately equal algorithm instead of
a simple exact equality test. This is a very convenient way to ignore the tiny floating-
point discrepancies that arise from the truncation of the binary representation of a
number.
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Automated integration or performance
testing
We can use the unittest package to perform testing that isn't focused on a single,
isolated class definition. As noted previously, we can use unittest automation to
test a unit that is an integration of multiple components. This kind of testing can only
be performed on software that has passed unit tests on isolated components. There's
no point in trying to debug a failed integration test when a component's unit test
didn't work correctly.

Performance testing can be done at several levels of integration. For a large
application, performance testing with the entire build may not be completely helpful.
One traditional view is that a program spends 90 percent of its time executing just 10
percent of the available code. Therefore, we don't often need to optimize an entire
application; we only need to locate the small fraction of the program that represents
the real performance bottleneck.

In some cases, it will be clear that we have a data structure that involves searching.
We know that removing searching will lead to a tremendous improvement in
performance. As we saw in Chapter 6, Using Callables and Contexts, implementing
memoization can lead to dramatic performance improvements by avoiding
recalculation.

In order to perform proper performance testing, we need to follow this three-step
work cycle:

Use a combination of design reviews and code profiling to locate the parts1.
of the application that are likely to be a performance problem. Python has
two profiling modules in the standard library. Unless there are more
complex requirements, cProfile will locate the part of the application that
requires focus.
Create an automated test scenario with unittest to demonstrate any2.
actual performance problems. Collect the performance data with timeit or
time.perf_counter().
Optimize the code for the selected test case until the performance is3.
acceptable.

The point is to automate as much as possible and avoid vaguely tweaking things in
the hope of an improvement in performance. Most of the time, a central data structure
or algorithm (or both) must be replaced, leading to extensive refactoring. Having
automated unit tests makes wholesale refactoring practical.
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An awkward situation can arise when a performance test lacks specific pass-fail
criteria. There can be a drive to make software faster without a concrete definition of
fast enough. It's always simpler when there are measurable performance objectives.
Given a concrete objective, then formal, automated testing can be used to assert both
that the results are correct and that the time taken to get those results is acceptable.

For performance testing, we might use something like the following code:

import unittest
import timeit

class Test_Performance(unittest.TestCase):

    def test_simpleCalc_shouldbe_fastEnough(self):
        t = timeit.timeit(
            stmt="""RateTimeDistance(rate=1, time=2)""",
            setup="""from Chapter_4.ch04_ex3 import
RateTimeDistance""",
        )
        print("Run time", t)
        self.assertLess(t, 10, f"run time {t} >= 10")

This use of unittest can create an automated performance test. As the timeit
module executes the given statement 1,000,000 times, this should minimize the
variability in the measurements from the background work on the computer that
does the testing.

In the preceding example, each execution of the RTD constructor is required to take
less than 1/100,000 of a second. A million executions should take less than 10 seconds.

Summary
We looked at using unittest and doctest to create automated unit tests. We also
looked at creating a test suite so that collections of tests can be packaged for reuse and
aggregation into suites with larger scopes, without relying on the automated test
discovery process.

We looked at how to create mock objects so that we can test software units in
isolation. We also looked at the various kinds of setup and teardown features. These
allowed us to write tests with complex initial states or persistent results.
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The FIRST unit test properties fit well with both doctest and unittest. The FIRST
properties are as follows:

Fast: Unless we write egregiously bad tests, the performance of doctest
and unitest should be very fast.
Isolated: The unittest package offers us a mock module that we can use
to isolate our class definitions. In addition, we can exercise some care in our
design to ensure that our components are isolated from each other.
Repeatable: Using doctest and unittest for automated testing ensures
repeatability.
Self-validating: Both doctest and unittest bind test results with the test
case condition, ensuring that no subjective judgment is involved in testing.
Timely: We can write and run test cases as soon as we have the skeleton of
a class, function, or module. A class whose body has simply pass is
sufficient to run the test script.

For the purposes of project management, a count of written tests and passed tests is
sometimes a very useful status report.

Design considerations and trade-offs
Test cases are required to be deliverable when creating software. Any feature that is
without an automated test might as well not exist. A feature certainly can't be trusted
to be correct if there's no test. If it can't be trusted, it shouldn't be used.

The only real trade-off question is whether to use doctest or unittest or both. For
simple programming, doctest may be perfectly suitable. For more complex
situations, unittest will be necessary. For frameworks where the API
documentation needs to include examples, a combination works well.

In some cases, simply creating a module full of TestCase class definitions may be
sufficient. The TestLoader class and test discovery features may be perfectly
adequate to locate all of the tests.

More generally, unittest involves using TestLoader to extract multiple test
methods from each TestCase subclass. We package the test methods into a single
class based on who they can share class-level setUp(), and possibly setUpClass(),
methods with.
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We can also create TestCase instances without TestLoader. In this case, the default
method of runTest() is defined to have the test case assertions. We can create a suite
from instances of this kind of class.

The most difficult part can be designing for testability. Removing dependencies so
that units can be tested independently can sometimes feel like adding to the software
design's complexity. In most cases, the time expended exposing dependencies is time
invested in creating more maintainable and more flexible software.

The general rule is this: an implicit dependency between classes is bad design.

A testable design has explicit dependencies; these can easily be replaced with mock
objects. The pytest framework provides the monkeypatch fixture. This permits us to
write tests that isolate the unit being tested by patching the dependencies. While this
is handy, it's often simpler and more reliable to provide for simple, visible
dependency injection.

Looking forward
In the Chapter 18, Coping With the Command Line, we will look at writing complete
applications that are started from the command line. We'll look at ways to handle
startup options, environment variables, and configuration files in Python
applications.

In Chapter 19, Module and Package Design, we'll expand on the application design.
We'll add the ability to compose applications in larger applications, as well as to
decompose applications into smaller modules or packages.



18
Coping with the Command

Line
Command-line startup options, environment variables, and configuration files are
important to many applications, particularly when it comes to the implementation of
servers. There are a number of ways of dealing with program startup and object
creation. This chapter will focus on argument parsing, and the overall architecture of
an application.

This chapter will extend the configuration file handling from Chapter 14,
Configuration Files and Persistence, with yet more techniques for command-line
programs and the top level of a server. The core design principles from Chapter 15,
Design Principles and Patterns, are essential when designing an application of any size.
This chapter will also extend some logging design features from Chapter 16, The
Logging and Warning Modules.

In Chapter 19, Module and Package Design, we'll extend these principles to look at a
kind of architectural design that we'll call programming in the large. We'll use the
Command design pattern to define software components that can be aggregated
without resorting to shell scripts. This is particularly helpful when writing the
background processing components used by application servers.

Technical requirements
The code files for this chapter are available at https:/ ​/ ​git.​io/ ​fj2UD.

https://git.io/fj2UD
https://git.io/fj2UD
https://git.io/fj2UD
https://git.io/fj2UD
https://git.io/fj2UD
https://git.io/fj2UD
https://git.io/fj2UD
https://git.io/fj2UD
https://git.io/fj2UD
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The OS interface and the command line
Generally, the operating system's shell starts applications with several pieces of
information that constitute the OS API:

The shell provides each application with its collection of environment
variables. In Python, these are accessed through os.environ.
The shell prepares three standard files. In Python, these are mapped to
sys.stdin, sys.stdout, and sys.stderr. There are some other
modules, such as fileinput, that can provide access to sys.stdin.
The command line is parsed by the shell into words. Parts of the command
line are available in sys.argv. For POSIX operating systems, the shell may
replace shell environment variables and glob wildcard filenames. In
Windows, the simple cmd.exe shell will not glob filenames for us.
The OS also maintains context settings, such as the current working
directory, user identity, and user group information, among many other
things. These are available through the os module. They aren't provided as
arguments on the command line.

The OS expects an application to provide a numeric status code when it terminates. If
we want to return a specific numeric code, we can use sys.exit() in our
applications. The os module defines a number of values, such as os.EX_OK, to help
return codes with common meanings. Python will return a zero if our program is
terminated normally, a value of one if the program ended with an unhandled
exception, and a value of two if the command-line arguments were invalid.

The shell's operation is an important part of this OS API. Given a line of input, the
shell performs a number of substitutions, depending on the (rather complex) quoting
rules and substitution options. It then parses the resulting line into space-delimited
words. The first word must be either a built-in shell command (such as cd or set) or
it must be the name of a file, such as python3. The shell searches its defined PATH for
this file.
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To make effective use of executable files, it's imperative that you are sure that the
directory with those files is named by the PATH environment variable. In most OSes,
you should append a colon (:) and the directory for your script. In Windows, you
should append a semicolon (;) and the directory for your script.

The file named on the first word of a command must have execute, x, permission.
The chmod +x somefile.py shell command marks a file as executable. A filename
that isn't executable gets an OS Permission Denied error. Use the OS ls -l (or the
Windows equivalent) command to see file permissions.

The first bytes of an executable file have a magic number that is used by the shell to
decide how to execute that file. Some magic numbers indicate that the file is a binary
executable; the shell can fork a subshell and execute it. Other magic numbers,
specifically the value encoded by two bytes b'#!', indicate that the file is a
proper text script and requires an interpreter. The rest of the first line of this kind of
file is the name of the interpreter.

We often use a line like the following in a Python file:

#!/usr/bin/env python3

If the Python file has permission to execute, and has this as the first line, then the shell
will run the env program. The env program's argument (python3) will cause it to set
up an environment and run the Python 3 program with the Python file as the first
positional argument.

After setting the PATH correctly, what happens when we enter ch18_demo.py -s
someinput.csv at the command line? The sequence of steps that the program works 
through from the OS shell via an executable script to Python looks like the following:

The shell parses the ch18_demo.py -s someinput.csv line. The first1.
word is ch18_demo.py. This file is on the shell's PATH and has the x
executable permission. The shell opens the file and finds the #! bytes. The
shell reads the rest of this line and finds the /usr/bin/env python3
command.



Coping with the Command Line Chapter 18

[ 621 ]

The shell parses the new /usr/bin/env command, which is a binary2.
executable. The shell starts the env program. This program, in turn, starts
python3. The sequence of words from the original command line, as
parsed by the shell ['ch18_demo.py', '-s', 'someinput.csv'], is
provided to Python.
Python will extract any options that are prior to the first argument. Options3.
are distinguished from arguments by having a leading hyphen, -. These
first options are used by Python during startup. In this example, there are
no options. The first argument must be the Python filename that is to be
run. This filename argument and all of the remaining words on the line will
be assigned to sys.argv.
The Python startup is based on the options found. Depending on the -s4.
option, the site module may be used to set up the import path, sys.path.
If we used the -m option, then Python will use the runpy module to start
our application. The given script files may be (re)compiled to byte code.
The -v option will expose the imports that are being performed.
Our application can make use of sys.argv to parse options and arguments5.
with the argparse module. Our application can use environment variables
in os.environ. It can also parse configuration files; you can read Chapter
14, Configuration Files and Persistence, for more on this topic.

If there is no filename, the Python interpreter will read from standard input. If the
standard input is a console (called a TTY, in Linux parlance), then Python will enter a
read-execute-print loop (REPL) and display the >>> prompt. While we use this mode
as developers, we don't generally make use of this mode for a finished application.

Because of Python's flexibility, there are some other ways of providing input to the
Python runtime. The standard input can be a redirected file—for example, python
<some_file or some_app | python. While both examples are valid uses of Python,
they are potentially confusing because the application source is not very obvious.
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Arguments and options
In order to run programs, the shell parses a command line into words. The words can
be understood as a mixture of options and arguments. The following are some essential
guidelines:

Options come first. They are preceded by - or --. There are two formats: -
l and --word. There are two species of options: options with no arguments
and options with arguments. A couple of examples of options without
arguments involve using -V to show a version or using --version to
show the version. An example of an option with arguments is -m module,
where the -m option must be followed by a module name.
Short format (single-letter) options with no arguments can be grouped
behind a single -. We might use -bqv to combine the -b -q -v options for
convenience.
Generally, arguments come after options, and they don't have a leading -
or -- (although some Linux applications break this rule). There are two
common kinds of arguments:

Positional arguments, where the order is semantically
significant. We might have two positional arguments: an
input filename and an output filename. The order matters
because the output file will be modified. When files will be
overwritten, simply distinguishing by position needs to be
done carefully to prevent confusion. The cp, mv, and ln
commands are rare examples of positional arguments where
the order matters. It's slightly more clear to use an option to
specify the output file—for example, -o output.csv.
A list of arguments, all of which are semantically equivalent.
We might have arguments that are all the names of input
files. This fits nicely with the way the shell performs filename
globing. When we say process.py *.html, the *.html
command is expanded by the shell to filenames that become
the positional parameters. (This doesn't work in Windows, so
the glob module must be used.)

For more information, refer
to: http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap12.html
#tag_12_02.

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap12.html#tag_12_02
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap12.html#tag_12_02
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The Python command line has a dozen or so options that can control some details of
Python's behavior. See the Python Setup and Usage document (https:/ ​/​docs. ​python.
org/​3/​using/​index. ​html) for more information on what these options are. The
positional argument to the Python command is the name of the script that is to be
run; this will be our application's topmost file.

Using the pathlib module
One of our principle forms of interaction with the OS is working with files. The
pathlib module makes this particularly flexible. While the OS can represent a path
to a file as a string, there is considerable syntactic subtlety to the strings that are used.
Rather than try to parse the strings directly, it's much more pleasant to create Path
objects. These can both compose and decompose paths from their constituent parts.

Path composition uses the / operator to assemble a Path from starting Path and str
objects. This operator works for Windows as well as POSIX-compliant operating
systems, such as Linux and macOS. Because a single operator will build appropriate
paths, it's best to use Path objects for all filesystem access.

Here are some examples of building a Path object:

Path.home() / "some_file.dat": This names a given file in the user's
home directory.
Path.cwd() / "data" / "simulation.csv": This names a file relative
to the current working directory.
Path("/etc") / "profile": This names a file starting from the root of
the filesystem.

There are a number of interesting inquiries that we can make to find details about a
given Path object. In some cases, we might want to know a path's parent directory or
the extension on a filename. Here are some examples:

p = Path.cwd() / "data" / "simulation.csv"
>>> p.parent
PosixPath('/Users/slott/mastering-oo-python-2e/data')
>>> p.name
'simulation.csv'
>>> p.suffix
'.csv'
>>> p.exists()
False

https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html
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Note that these queries about a Path object do not depend on the path representing
an actual object in the filesystem. In this example, the various properties of parent,
name, and suffix are all reported correctly for a file that does not actually exist. This
is very useful for creating output filenames from input files.

For example, we might do the following:

>>> results = p.with_suffix('.json')
>>> results
PosixPath('/Users/slott/mastering-oo-python-2e/data/simulation.json')

We've taken an input Path object, p, and created an output Path object, results.
The resulting object has the same name, but a different suffix. The new name was
built by the with_suffix() method of a Path. This lets us create related files
without having to parse the (relatively) complex path names.

As we noted in Chapter 6, Using Callables and Contexts, a file should be used as a
context manager to ensure that it's closed properly. A Path object can open a file
directly, leading to programs that work like the following example:

output = Path("directory") / "file.dat"
with output.open('w') as output_file:
    output_file.write("sample data\n")

This example creates a Path object. An OS will use a path without a leading / relative
to the current working directory. The open() method of a Path will create a file
object that can then be used for reading or writing. In this case, we're writing a
constant string to a file.

We can use Path objects to manage directories as well as files. We often want to
create working directories with code like the following:

>>> target = Path("data")/"ch18_directory"
>>> target.mkdir(exist_ok=True, parents=True)

We've assembled the Path object from a relative reference to the data directory and a
specific subdirectory, ch18_directory. The mkdir() method of this Path object
will ensure that the required directory structures are present in the filesystem. We've
provided two common options. The exists_ok option will suppress the
FileExistsError exception that would be raised if the file already exists. The
parents option will create all of the required parent directories. This can be handy
when creating complex, nested directory trees.
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A common use case when working with web logs is to segregate the logs by date. We
can create date-specific directories with code similar to the following example:

>>> import datetime
>>> today = datetime.datetime.today()
>>> target = Path("data")/today.strftime("%Y%m%d")
>>> target.mkdir(exists_ok=True)

In this example, we've computed the current date. From this, we can create a
directory path using the data subdirectory and the year, month, and day of the
current date. We want to be tolerant of the directory that already exists, so we
suppress the exception. This will not create parent directories, and if the data
directory does not exist, there will be a FileNotFoundError exception raised.

Parsing the command line with argparse
The general approach to using argparse involves the following four steps:

First, we create an ArgumentParser instance. We can provide this object1.
with overall information about the command-line interface. This might
include a description, format changes for the displayed options and
arguments, and whether or not -h is the help option. Generally, we only
need to provide the description; the rest of the options have sensible
defaults.
Then, we define the command-line options and arguments. This is done by2.
adding arguments with the ArgumentParser.add_argument() method
function.
Next, we parse the sys.argv command line to create a namespace object3.
that details the options, option arguments, and overall command-line
arguments.
Lastly, we use the namespace object to configure the application and4.
process the arguments. There are a number of alternative approaches to
handle this gracefully. This may involve parsing configuration files as well
as command-line options. We'll look at several designs in this section.

An important feature of argparse is that it provides us with a unified view of
options and arguments. The principle difference between the two is the number of
times an option or argument value can occur. Options are—well, optional, and can
occur one or no times. Arguments generally occur one or more times.
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We can create a parser with code like the following:

parser = argparse.ArgumentParser(
    description="Simulate Blackjack")

We provided the description, as there's no good default value for that. Here are some
common patterns to define the command-line API for an application:

A simple on–off option: We'll often see this as a -v or --verbose option.
An option with an argument: This might be a -s ',' or --separator
'|' option.
Any positional argument: This might be used when we have an input file
and an output file as command-line arguments. This is rare, and should be
avoided because it's never perfectly clear what the order should be.
All other arguments: We'd use these when we have a list of input files.
--version: This is a special option to display the version number and exit.
--help: This option will display help and exit. This is a default, and so we
don't need to do anything to make this happen.

Once the arguments have been defined, we can parse them and use them. Here's how
we parse them:

config = parser.parse_args()

The config object is an argparse.Namespace object; the class is similar to
types.SimpleNamespace. It will have a number of attributes, and we can easily add
more attributes to this object.

We'll look at each of these six common kinds of arguments individually. There are a
lot of clever and sophisticated parsing options available in the ArgumentParser
class. Most of them go beyond the simplistic guidelines commonly suggested for
command-line argument processing. In general, we should avoid the kind of super-
complex options that characterize programs such as find. When command-line
options get terribly complex, we may have drifted into creating a domain-specific
language on top of Python. This often means we're creating a kind of framework, not
simply creating an application.
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A simple on–off option
We will define a simple on–off option with a one-letter short name or a longer name.
We should also provide an explicit action. We might want to provide a destination
variable if we omit the longer name, or if the longer name is unpleasant as a Python
variable. Let's set this up using the following code:

parser.add_argument(
    '-v', '--verbose', action='store_true', default=False)

This will define the long and short versions of the command-line option. If the option
is present, the action will set the verbose option to True. If the option is absent, the
verbose option will default to False. Here are some common variations of this
theme:

We might change the action to 'store_false' with a default of True.
Sometimes, we'll have a default of None instead of True or False.
Sometimes, we'll use an action of 'store_const' with an additional
const= argument. This allows us to move beyond simple Boolean values
and store things such as logging levels or other objects.
We might also have an action of 'count', which allows the option to get
repeated, increasing the count. In this case, the default is often zero.

If we're using the logger, we might define a debugging option like the following code:

parser.add_argument(
    '--debug', action='store_const', const=logging.DEBUG,
    default=logging.INFO, dest="logging_level" )

We changed the action to store_const, which stores a constant value and provides
a specific constant value of logging.DEBUG. This means that the resulting options
object will directly provide the value needed to configure the root logger. We can
then simply configure the logger using config.logging_level without any further
mapping or conditional processing.
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An option with an argument
We'll define an option that has an argument with the long and optional short name.
We'll provide an action that stores the value provided with the argument. We can also
provide a type conversion, in case we want float or int values instead of a string.
Let's set this up using the following code:

parser.add_argument(
    "-b", "--bet", action="store", default="Flat",
    choices=["Flat", "Martingale", "OneThreeTwoSix"],
    dest='betting_rule')
parser.add_argument(
    "-s", "--stake", action="store", default=50, type=int)

The first example will define two versions of the command-line syntax, both long and
short version. When parsing the command-line argument values, a string value must
follow the option, and it must be from the available choices. The destination name,
betting_rule, will receive the option's argument string.

The second example also defines two versions of the command-line syntax. It
includes a type conversion. When parsing argument values, this will store an integer
value that follows the option. The long name, stake, will be the value in the options
object created by the parser.

In some cases, there may be a list of values associated with the argument. In this case,
we may provide a nargs="+" option to collect multiple values separated by spaces in
a list.

Positional arguments
We define positional arguments using a name with no "-" decoration. In a case where
we have a fixed number of positional arguments, we'll add them appropriately to the
parser, as shown in the following code:

parser.add_argument("input_filename", action="store")
parser.add_argument("output_filename", action="store")

When parsing argument values, the two positional argument strings will be stored in
the final namespace object. We can use config.input_filename and
config.output_filename to work with these argument values.
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As noted previously, using simple positional parameters to identify output files can
cause problems for users. The GNU/Linux cp, mv, and ln programs should be
considered exceptional cases where a file can get overwritten. The preferred approach
is to use an option with a value to specify the files that can be destroyed. It's almost
always safer to force users to use an option like -o name.csv to make it perfectly
clear what the output filename will be.

Avoid defining commands where the exact order of arguments is
significant.

All other arguments
We define argument lists with a name that has no - decoration and a piece of advice
in the nargs= parameter. If the rule is one or more argument values, we specify
nargs="+". If the rule is zero or more argument values, we specify nargs="*", as
shown in the following code. If the rule is optional, we specify nargs="?". This will
collect all other argument values into a single sequence in the resulting namespace:

parser.add_argument(
    "filenames", action="store", nargs="*", metavar="file...")

When the list of filenames is optional, it generally means that STDIN or STDOUT will
be used if no specific filenames are provided.

If we specify a nargs= value, then the result becomes a list. If we specify nargs=1,
then the resulting object is a one-element list; this generalizes nicely if we need to
change to nargs='+'. As a special case, omitting nargs, leads to a result that is a
single value; this does not generalize well.

Creating a list (even if it has only one element) is handy because we might want to
process the arguments in the following manner:

for filename in config.filenames:
    process(filename)
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In some cases, we may want to provide a sequence of input files that includes STDIN.
The common convention for this is a filename of - as an argument. We'll have to
handle this within our application with something like the following code:

for filename in config.filenames:
    if filename == '-':
        process(sys.stdin)
    else:
        with open(filename) as input:
            process(input)

This shows us a loop that will attempt to handle a number of filenames, potentially
including - to show when to process standard input among a list of files. A try:
block should probably be used around the with statement.

--version display and exit
The option to display the version number is so common that there's a special shortcut
to show us the version information:

parser.add_argument(
    "-V", "--version", action="version", version=__version__ )

This example assumes that we have a global __version__= "3.3.2" module
somewhere in the file. This special action="version" will have the side effect of
exiting the program after displaying the version information.

--help display and exit
An option to display help is a default feature of argparse. Another special case
allows us to change the help option from the defaults to-h or --help. This requires
two things. First, we must create the parser with add_help=False. This will turn off
the built-in -h, --help feature. After doing that, we will add the argument that we
want to use (for example, '-?') with action="help". This will display the help text
and exit.
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Integrating command-line options and
environment variables
The general policy for environment variables is to provide configuration inputs,
similar to command-line options and arguments. For the most part, we use
environment variables for settings that rarely change. We'll often set them via the
.bashrc or .bash_profile files so that the values are set every time we log in. We
may set the environment variables more globally in an /etc/bashrc file so that they
apply to all users. We can also set environment variables on the command line, but
these settings only apply to the program being run.

In some cases, all of our configuration settings can be provided on the command line.
In this case, the environment variables could be used as a kind of backup syntax for
slowly changing variables.

In other cases, the configuration values providing environment variables may be
disconnected from the configuration performed by command-line options. We may
need to get some values from the environment and merge in values that come from
the command line.

We can leverage environment variables to set the default values in a configuration
object. We want to gather these values prior to parsing the command-line arguments.
This way, command-line arguments can override environment variables. There are
two common approaches to this:

Explicitly setting the values when defining the command-line options:
This has the advantage of making the default value show up in the help
message. It only works for environment variables that overlap with
command-line options. We might do something like the following to use
the SIM_SAMPLES environment variable to provide a default value that can
be overridden:

parser.add_argument(
    "--samples",
    action="store",
    default=int(os.environ.get("SIM_SAMPLES",100)),
    type=int,
    help="Samples to generate")



Coping with the Command Line Chapter 18

[ 632 ]

Implicitly setting the values as part of the parsing process: This makes it
simple to merge environment variables with command-line options into a
single configuration. We can populate a namespace with default values and
then overwrite it with the parsed values from the command line. This
provides us with three levels of option values: the default defined in the
parser, an override value seeded into the namespace, and finally, any
override value provided on the command line, as shown in the following
code:

config4 = argparse.Namespace()
config4.samples = int(os.environ.get("SIM_SAMPLES",100))
config4a = parser.parse_args(sys.argv[1:], namespace=config4)

The argument parser can perform type conversions for values that
are not simple strings. However, gathering environment variables
doesn't automatically involve a type conversion. For options that
have non-string values, we must perform the type conversion in our
application.

Providing more configurable defaults
We can incorporate configuration files along with environment variables and the
command-line options. This gives us three ways to provide a configuration to an
application program:

A hierarchy of configuration files can provide default values. See Chapter
14, Configuration Files and Persistence, for examples of the various ways to
do this.
Environment variables can provide overrides to the configuration files.
This may mean translating from an environment variable namespace to the
configuration namespace.
The command-line options define the final overrides.

Using all three may be too much of a good thing. Tracking down a setting can become
difficult if there are too many places to search. The final decision about the
configuration often rests on staying consistent with the overall collection of
applications and frameworks. We should strive to make our programming fit
seamlessly with other components.
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Overriding configuration file settings with
environment variables
We'll use a three-stage process to incorporate environment variables. For this
application, the environment variables will be used to override configuration file
settings. The first stage is to gather the default values from the various files. This is
based on the examples shown in Chapter 14, Configuration Files and Persistence. We
can use code like the following:

config_locations = (
    Path.cwd(),
    Path.home(),
    Path.cwd() / "opt",  # A testing stand-in for Path("/opt")
    Path(__file__) / "config",
    # Other common places...
    # Path("~someapp").expanduser(),
)

candidate_paths = (dir / "ch18app.yaml" for dir in config_locations)
config_paths = (path for path in candidate_paths if path.exists())
files_values = [yaml.load(str(path)) for path in config_paths]

This example uses a sequence of locations, ranked in order of importance. The value
in the current working directory provides the most immediate configuration. For
values not set here, the user's home directory is a place to keep general settings. We
should use an opt subdirectory of the current working directory,
Path.cwd()/"opt"; this stands in place of Path("/etc") or Path("/opt"). A
standard name, "ch18app.yaml", is put after the various directory paths to create a
number of concrete paths for configuration files to set the candidate_paths
variable. A generator expression assigned to config_paths will yield an iterable
sequence of paths that actually exists.

The final result in files_values is a sequence of configuration values taken from
the files that are found to exist. Each file should create a dictionary that maps
parameter names to parameter values. This list can be used as part of a final
ChainMap object.

The second stage is to build the user's environment-based settings. We can use code
like the following to set this up:

env_settings = [
    ("samples", nint(os.environ.get("SIM_SAMPLES", None))),
    ("stake", nint(os.environ.get("SIM_STAKE", None))),
    ("rounds", nint(os.environ.get("SIM_ROUNDS", None))),
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]
env_values = {k: v for k, v in env_settings if v is not None}

Creating a mapping like this has the effect of rewriting external environment variable
names like SIM_SAMPLES into internal configuration names like samples. Internal
names will match our application's configuration attributes. External names are often
defined in a way that makes them unique in a complex environment.

For environment variables that were not defined, the nint() function, shown in the
following code, will provide None as a default value if the environment variable is not
defined. When we create the env_values, the None objects are removed from the
initial collection of environment values.

Given a number of dictionaries, we can use ChainMap to combine them, as shown in
the following code:

defaults = argparse.Namespace(
    **ChainMap(
        env_values,  # Checks here first
        *files_values  # All of the files, in order
    )
)

We combined the various mappings into a single ChainMap. The environment
variables are searched first. When values are present there, the values are looked up
from the user's configuration file first and then other configurations, if the user
configuration file didn't provide a value.

The *files_values ensures that the list of values will be provided as a sequence of
positional argument values. This allows a single sequence (or iterable) to provide
values for a number of positional parameters. **ChainMap ensures that a dictionary
is turned into a number of named parameter values. Each key becomes a parameter
name associated with the value from the dictionary. Here's an example of how this
works:

>>> argparse.Namespace(a=1, b=2)
Namespace(a=1, b=2)
>>> argparse.Namespace(**{'a': 1, 'b': 2})
Namespace(a=1, b=2)
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The resulting Namespace object can be used to provide defaults when parsing the
command-line arguments. We can use the following code to parse the command-line
arguments and update these defaults:

config = parser.parse_args(sys.argv[1:], namespace=defaults)

We transformed our ChainMap of configuration file settings into an
argparse.Namespace object. Then we parsed the command-line options to update
that namespace object. As the environment variables are first in ChainMap, they
override any configuration files.

Making the configuration aware of the None
values
This three-stage process to set the environment variables includes many common
sources of parameters and configuration settings. We don't always need environment
variables, configuration files, and command-line options; some applications may only
need a subset of these techniques.

We often need type conversions that will preserve None values. Keeping the None
values will ensure that we can tell when an environment variable was not set. Here's
a more sophisticated type conversion that can be called None-aware:

from typing import Optional

def nint(x: Optional[str]) -> Optional[int]:
    if x is None:
        return x
    return int(x)

We use this when converting environment variable values to integers. If an
environment variable is not set, a default of None will be used. If the environment
variable is set, then the value will be converted to an integer. In later processing steps,
we can depend on the None value to build a dictionary from only the proper values
that are not None.

We can use similar None-aware conversions to handle float values. We don't need
to do any conversion for strings, and os.environ.get("SIM_NAME") will provide
the environment variable value or None.
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Customizing the help output
Here's some typical output that comes directly from the default
argparse.print_help() code:

usage: ch18_ex1.py [-v] [--debug] [--dealerhit {Hit17,Stand17}]
                   [--resplit {ReSplit,NoReSplit,NoReSplitAces}]
                   [--decks DECKS] [--limit LIMIT] [--payout PAYOUT]
                   [-p {SomeStrategy,AnotherStrategy}]
                   [-b {Flat,Martingale,OneThreeTwoSix}] [-r ROUNDS]
                   [-s STAKE] [--samples SAMPLES] [-V] [-?]
                   output

Simulate Blackjack

positional arguments:
  output

optional arguments:
  -v, --verbose
  --debug
  --dealerhit {Hit17,Stand17}
  --resplit {ReSplit,NoReSplit,NoReSplitAces}
  --decks DECKS Decks to deal (default: 6)
  --limit LIMIT
  --payout PAYOUT
  -p {SomeStrategy,AnotherStrategy}, --playerstrategy
{SomeStrategy,AnotherStrategy}
  -b {Flat,Martingale,OneThreeTwoSix}, --bet
{Flat,Martingale,OneThreeTwoSix}
  -r ROUNDS, --rounds ROUNDS
  -s STAKE, --stake STAKE
  --samples SAMPLES Samples to generate (default: 100)
  -V, --version show program's version number and exit
  -?, --help

The default help text is built from four things in our parser definition:

The usage: line is a summary of the options. We can replace the default
calculation with our own usage text that omits the less commonly used
details.
This is followed by the description. By default, the text we provide is
cleaned up a bit. In this example, we provided a shabby two-word
description, Simulate Blackjack, so there's no obvious cleanup.
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Then, the arguments are shown. These come in two subgroups:
The positional arguments
The options, in the order that we defined them.

After this, an optional epilogue text may be shown; we didn't provide any
for this definition.

In some cases, this kind of terse reminder is adequate. In other cases, however, we
may need to provide more details. We have three tiers of support for more detailed
help:

Add help= to the argument definitions: This is the place to start when
customizing the help details. This will supplement the option description
with more meaningful details.
Use one of the other help formatter classes: This is done with the
formatter_class= argument when building ArgumentParser. If we
want to use ArgumentDefaultsHelpFormatter, then this works with the
help= values for each argument definition.
Extend the ArgumentParser class and override the print_usage() and
print_help() methods: This allows us to write very sophisticated output.
This should not be used casually. If we have options so complex that
ordinary help features don't work, then perhaps we've gone too far.

Our goal is to improve usability. Even if our programs work correctly, we can build
trust by providing command-line support that makes our program easier to use.

Creating a top-level main() function
In Chapter 14, Configuration Files and Persistence, we suggested two application
configuration design patterns:

A global property map: In the previous examples, we implemented the
global property map with a Namespace object created by
ArgumentParser.
Object construction: The idea behind object construction was to build the
required object instances from the configuration parameters, effectively
demoting the global property map to a local property map inside the
main() function and not saving the properties.



Coping with the Command Line Chapter 18

[ 638 ]

What we showed you in the previous section was the use of a local Namespace object
to collect all of the parameters. From this, we can build the necessary application
objects that will do the real work of the application. The two design patterns aren't a
dichotomy; they're complementary. We used Namespace to accumulate a consistent
set of values and then built the various objects based on the values in that namespace.

This leads us to a design for a top-level function. Before looking at the
implementation, we need to consider a proper name for this function. There are two
ways to name the function:

Name it main(), because that's a common term for the starting point of the
application as a whole; everyone expects this.
Don't name it main(), because main() is too vague to be meaningful in the
long run and limits reuse. If we follow this path, we can make a meaningful
top-level function with a name that's a verb_noun() phrase to describe the
operation fairly. We can also add a line main = verb_noun that provides
an alias of main().

Using the second, two-part implementation, lets us change the definition of main()
through extension. We can add a new function and reassign the name main to the
newer function. Old function names are left in place as part of a stable, growing API.

Here's a top-level application script that builds objects from a configuration
Namespace object:

import ast
import csv
import argparse

def simulate_blackjack(config: argparse.Namespace) -> None:
    dealer_classes = {"Hit17": Hit17, "Stand17": Stand17}
    dealer_rule = dealer_classes[config.dealer_rule]()
    split_classes = {
        "ReSplit": ReSplit, "NoReSplit": NoReSplit, "NoReSplitAces":
NoReSplitAces
    }
    split_rule = split_classes[config.split_rule]()
    try:
        payout = ast.literal_eval(config.payout)
        assert len(payout) == 2
    except Exception as ex:
        raise ValueError(f"Invalid payout {config.payout}") from ex
    table = Table(
        decks=config.decks,
        limit=config.limit,
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        dealer=dealer_rule,
        split=split_rule,
        payout=payout,
    )
    player_classes = {"SomeStrategy": SomeStrategy, "AnotherStrategy":
AnotherStrategy}
    player_rule = player_classes[config.player_rule]()
    betting_classes = {
        "Flat": Flat, "Martingale": Martingale, "OneThreeTwoSix":
OneThreeTwoSix
    }
    betting_rule = betting_classes[config.betting_rule]()
    player = Player(
        play=player_rule,
        betting=betting_rule,
        max_rounds=config.rounds,
        init_stake=config.stake,
    )
    simulate = Simulate(table, player, config.samples)
    with Path(config.outputfile).open("w", newline="") as target:
        wtr = csv.writer(target)
        wtr.writerows(simulate)

main = simulate_blackjack

The simulate_blackjack function depends on an externally supplied Namespace
object with the configuration attributes. It's not named main() so that we can make
future additions and changes. We can reassign main to any new function that
replaces or extends this function.

This function builds the various objects—Table, Player, and Simulate—that are
required. We configured these objects based on the supplied configuration
parameters.

We've set up the object that does the real work. After the object construction, the
actual work is a single, highlighted line: wtr.writerows(simulate). About 90
percent of the program's time will be spent here, generating samples and writing
them to the required file.

A similar pattern holds for GUI applications. They enter a main loop to process GUI
events. The pattern also holds for servers that enter a main loop to process requests.
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We've depended on having a configuration object passed in as an argument. This
follows from our testing strategy of minimizing dependencies. This top-level
simulate_blackjack() function doesn't depend on the details of how the
configuration was created. We can then use this function in an application script, as
follows:

if __name__ == "__main__":
    logging.config.dictConfig(yaml.load("logging.config"))
    config5 = get_options_2(sys.argv[1:])
    simulate_blackjack(config5)
    logging.shutdown()

This represents a separation of concerns. The work of the application is separated into
three separate parts:

The outermost level is defined by logging. We configured logging outside
of all other application components to ensure that there are no conflicts
between other top-level packages configuring logging. When we look at
combining applications into larger composite processing, we need to be
sure that several applications being combined doesn't result in conflicting
logging configurations.
The inner level is defined by the application's configuration. We don't want
conflicts among separate application components. We'd like to allow a
single command-line API to evolve separately from our application
implementations. We'd like to be able to embed our application processing
into separate environments, perhaps defined by multiprocessing or a
RESTful web server.
The final portion is the simulate_blackjack() function. This is
separated from the logging and configuration issues. This allows a variety
of techniques to be used to provide a configuration of parameters.
Furthermore, when we look at combining this with other processing, the
separation of logging and configuration will be helpful.

Ensuring DRY for the configuration
We have a potential Don't Repeat Yourself (DRY) issue between our construction of
the argument parser and the use of the arguments to configure the application. We
built the arguments using some keys that are repeated.
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We can eliminate this repetition by creating some internal configurations that map to
the externally visible values. For example, we might define this global as follows:

dealer_rule_map = {"Hit17": Hit17, "Stand17", Stand17}

We can use it to create the argument parser, as follows:

parser.add_argument(
    "--dealerhit", action="store", default="Hit17",
    choices=dealer_rule_map.keys(),
    dest='dealer_rule')

We can use it to create the working objects, as follows:

dealer_rule = dealer_rule_map[config.dealer_rule]()

This eliminates the repetition. It allows us to add new class definitions and parameter
key mappings in one place as the application evolves. It also allows us to abbreviate
or otherwise rewrite the external API, as shown here:

dealer_rule_map ={"H17": Hit17, "S17": Stand17}

There are four of these kinds of mappings from the command-line (or configuration
file) string to the application class. Using these internal mappings simplifies the
simulate_blackjack() function.

Managing nested configuration contexts
In a way, the presence of nested contexts means that top-level scripts ought to look
like the following code:

if __name__ == "__main__":
    with Setup_Logging():
        with Build_Config(arguments) as config_3:
            simulate_blackjack_betting(config_3)

We've added two context managers to formalize the creation of the working context.
For more information, see Chapter 6, Using Callables and Contexts. Here is a context
manager for logging:

class Setup_Logging:
    def __enter__(self, filename="logging.config") -> "Setup_Logging":
       logging.config.dictConfig(yaml.load(filename))

    def __exit__(self, *exc) -> None:
       logging.shutdown()
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The idea is to be sure that the logging process is properly configured and shut down
when the application runs. This removes any doubts about whether or not a final
buffer was saved and the log file was properly closed.

Similarly, we can define a context manager to build the configuration required to run
the application. In this case, the context manager is a very thin wrapper around the
get_options_2() function, as shown in the preceding code. The context manager
looks like this:

from typing import List

class Build_Config:

    def __init__(self, argv: List[str]) -> None:
        self.options = get_options_2(argv)

    def __enter__(self) -> argparse.Namespace:
        return self.options

    def __exit__(self, *exc) -> None:
        return

The Build_Config context manager can gather the configuration from a number of
files, as well as command-line arguments. The use of a context manager isn't essential
in this case; however, it leaves room for extension in case the configuration becomes
more complex.

This design pattern may clarify the various concerns that surround the application
startup and shutdown. While it may be a bit much for most applications, the essential
fit with the Python context managers seems like it could be helpful as an application
grows and expands.

When we're confronted with an application that grows and expands, we often wind
up doing larger-scale programming. For this, it's important to separate the changeable
application processing from the less changeable processing context.
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Programming in the large
Let's add a feature to our blackjack simulation: analysis of results. We have several
paths to implement this added feature. There are two dimensions to the
considerations that we must make, leading to a large number of combinations. One
dimension is how to design the new features:

We can add a function and work out ways to integrate it into the whole.
We can use the Command design pattern and create a hierarchy of
commands, some of which are single functions and others of which are
sequences of functions.

Another dimension of the design that we must consider is how to package the new
features:

We can write a new top-level script file. This tends to create new
commands based on filenames. We might start with commands such as
simulate.py and analyze.py.
We can add a parameter to an application that allows one script to perform
either the simulation or the analysis, or both. We would have commands
that look like app.py simulate and app.py analyze.

This leads to four combinations of implementation choices. We'll focus on using the
Command design pattern. First, we'll revise our existing application to use the
Command design pattern. Then, we'll extend our application by adding features in
the form of new command subclasses.

Designing command classes
Many applications involve an implicit Command design pattern; after all, we're
processing data. To do this, there must be at least one active-voice verb, or command,
that defines how the application transforms, creates, or consumes data. A simple
application may have only a single verb, implemented as a function. Using the
command class design pattern may not be helpful for simple applications.

More complex applications will have multiple, related verbs. One of the key features
of GUIs and web servers is that they can do multiple things, leading to multiple
commands. In many cases, the GUI menu options define the domain of the verbs for
an application.
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In some cases, an application's design stems from a decomposition of a larger, more
complex verb. We may factor the overall processing into several smaller command
steps that are combined in the final application.

When we look at the evolution of an application, we often see a pattern where new
functionality is accreted. In these cases, each new feature can become a kind of
separate command subclass that is added to the application class hierarchy.

An abstract superclass for commands has the following design:

class Command:

    def __init__(self) -> None:
        self.config: Dict[str, Any] = {}

    def configure(self, namespace: argparse.Namespace) -> None:
        self.config.update(vars(namespace))

    def run(self) -> None:
        """Overridden by a subclass"""
        pass

We configure this Command class by setting the config property to
argparse.Namespace. This will populate the instance variables from the given
namespace object.

Once the object is configured, we can set it to doing the work of the command by
calling the run() method. This class implements a relatively simple use case, as
shown in the following code:

    main = SomeCommand()
    main.configure = some_config
    main.run()

This captures the general flavor of creating an object, configuring it, and then letting it
do the work it was configured for. We can expand on this idea by adding features to
the command subclass definition.

Here's a concrete subclass that implements a blackjack simulation:

class Simulate_Command(Command):
    dealer_rule_map = {
        "Hit17": Hit17, "Stand17": Stand17}
    split_rule_map = {
        "ReSplit": ReSplit, "NoReSplit": NoReSplit, "NoReSplitAces":
NoReSplitAces
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    }
    player_rule_map = {
        "SomeStrategy": SomeStrategy, "AnotherStrategy":
AnotherStrategy}
    betting_rule_map = {
        "Flat": Flat, "Martingale": Martingale, "OneThreeTwoSix":
OneThreeTwoSix
    }

    def run(self) -> None:
        dealer_rule =
self.dealer_rule_map[self.config["dealer_rule"]]()
        split_rule = self.split_rule_map[self.config["split_rule"]]()
        payout: Tuple[int, int]
        try:
            payout = ast.literal_eval(self.config["payout"])
            assert len(payout) == 2
        except Exception as e:
            raise Exception(f"Invalid payout
{self.config['payout']!r}") from e
        table = Table(
            decks=self.config["decks"],
            limit=self.config["limit"],
            dealer=dealer_rule,
            split=split_rule,
            payout=payout,
        )
        player_rule =
self.player_rule_map[self.config["player_rule"]]()
        betting_rule =
self.betting_rule_map[self.config["betting_rule"]]()
        player = Player(
            play=player_rule,
            betting=betting_rule,
            max_rounds=self.config["rounds"],
            init_stake=self.config["stake"],
        )
        simulate = Simulate(table, player, self.config["samples"])
        with Path(self.config["outputfile"]).open("w", newline="") as
target:
            wtr = csv.writer(target)
            wtr.writerows(simulate)
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This class implements the essential top-level function that configures the various
objects and then executes the simulation. This class refactors the
simulate_blackjack() function shown previously to create a concrete extension of
the Command class. This can be used in the main script, as shown in the following
code:

if __name__ == "__main__":
    with Setup_Logging():
        with Build_Config(sys.argv[1:]) as config:
            main = Simulate_Command()
            main.configure(config)
            main.run()

While we could make this command into Callable and use main() instead of
main.run(), the use of a callable can be confusing. We're explicitly separating the
following three design issues:

Construction: We've specifically kept the initialization empty. In a later
section, we'll show you some examples of PITL, where we'll build a larger
composite command from smaller component commands.
Configuration: We've put the configuration in via a property setter,
isolated from the construction and control.
Control: This is the real work of the command after it's been built and
configured.

When we look at a callable or a function, the construction is part of the definition. The
configuration and control are combined into the function call itself. We sacrifice a
small bit of flexibility if we try to define a callable.

Adding the analysis command subclass
We'll extend our application by adding the analysis feature. As we're using the
Command design pattern, we can add yet another subclass for analysis.

Here's our analysis feature, also designed as a subclass of the Command class:

class Analyze_Command(Command):

    def run(self) -> None:
        with Path(self.config["outputfile"]).open() as target:
            rdr = csv.reader(target)
            outcomes = (float(row[10]) for row in rdr)
            first = next(outcomes)
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            sum_0, sum_1 = 1, first
            value_min = value_max = first
            for value in outcomes:
                sum_0 += 1  # value**0
                sum_1 += value  # value**1
                value_min = min(value_min, value)
                value_max = max(value_max, value)
            mean = sum_1 / sum_0
            print(
                f"{self.config['outputfile']}\n"
                f"Mean = {mean:.1f}\n"
                f"House Edge = {1 - mean / 50:.1%}\n"
                f"Range = {value_min:.1f} {value_max:.1f}"
            )

This class inherits the general features of the Command class. In this case, there's only
one small feature, which is to save the configuration information. The work
performed by the run() method is not too statistically meaningful—true, but the
point is to show you a second command that uses the configuration namespace to do
work related to our simulation. We used the outputfile configuration parameter to
name the file that is read to perform some statistical analysis.

Adding and packaging more features into an
application
Previously, we noted one common approach to supporting multiple features. Some
applications use multiple top-level main programs in separate .py script files. If we
do this, then combining commands from separate files forces us to write a shell script.
It doesn't seem optimal to introduce yet another tool and another language to do
programming in-the-large (PITL).

A slightly more flexible alternative to creating separate script files is using a
positional parameter to select a specific top-level Command object. For our example,
we'd like to select either the simulation or the analysis command. To do this, we
would add a parameter to the command-line argument parsing the following code:

parser.add_argument(
    "command", action="store", default='simulate',
    choices=['simulate', 'analyze'])
parser.add_argument("outputfile", action="store", metavar="output")
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This would change the command-line API to add the top-level verb to the command
line. We can then map our argument values to class names that implement the
desired command, as shown in the following code:

command_map = {
    'simulate': Simulate_Command,
    'analyze': Analyze_Command
}
command = command_map[options.command]
command.configure(options)
command.run()

This allows us to create even higher-level composite features. For example, we might
want to combine simulation and analysis into a single, overall program. We also
might like to do this without resorting to using the shell.

Designing a higher-level, composite command
We can also design a composite command that's built from other commands. For this,
we have two design strategies: object composition and class composition.

If we use object composition, then our composite command is based on the built-in
list or tuple. We can extend or wrap one of the existing sequences. We'll create the
composite Command object as a collection of instances of other Command objects. We
might consider writing something like the following code:

simulate_and_analyze = [Simulate(), Analyze()]

This has the disadvantage that we haven't created a new class for our unique
composite command. We created a generic composite and populated it with
instances. If we want to create even higher-level compositions, we'll have to address
this asymmetry between low-level Command classes and higher-level composite
Command objects based on built-in sequence classes.

We'd prefer to have a composite command that was also a subclass of a command. If
we use class composition, then we'll have a more consistent structure for our low-
level commands and our higher-level composite commands.

Here's a class that implements a sequence of other commands:

class Command_Sequence(Command):
    steps: List[Type[Command]] = []

    def __init__(self) -> None:
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        self._sequence = [class_() for class_ in self.steps]

    def configure(self, config: argparse.Namespace) -> None:
        for step in self._sequence:
            step.configure(config)

    def run(self) -> None:
        for step in self._sequence:
            step.run()

We defined a class-level variable, steps, to contain a sequence of command classes.
During the object initialization, __init__() will construct an internal instance
variable, _sequence, with objects of the named classes in self.steps.

When the configuration is set, it will be pushed into each constituent object. When the
composite command is executed via run(), it is delegated to each component in the 
composite command.

Here's a Command subclass built from two other Command subclasses:

class Simulate_and_Analyze(Command_Sequence):
    steps = [Simulate_Command, Analyze_Command]

This class is only a single line of code to define the sequence of steps. As this is a
subclass of the Command class itself, it has the necessary polymorphic API. We can
now create compositions with this class because it's compatible with all other
subclasses of Command.

We can now make the following very small modification to the argument parsing to
add this feature to the application:

parser.add_argument(
    "command", action="store", default='simulate',
    choices=['simulate', 'analyze', 'simulate_analyze']
)

We simply added another choice to the argument option values. We'll also need to
tweak the mapping from the argument option string to the class, as follows:

command_map = {
    'simulate': Simulate_Command,
    'analyze': Analyze_Command,
    'simulate_analyze': Simulate_and_Analyze}
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Note that we shouldn't use a vague name such as both to combine two commands. If
we avoid vagueness, we create opportunities to expand or revise our application.
Using the Command design pattern makes it pleasant to add features. We can define
composite commands, or we can decompose a larger command into smaller
subcommands.

Packaging and implementation may involve adding an option choice and mapping
that choice to a class name. If we use a more sophisticated configuration file (see
Chapter 14, Configuration Files and Persistence), we can provide the class name directly
in the configuration file and save the mapping from an option string to a class.

Additional composite Command design
patterns
We can identify a number of composite Command design patterns. In the previous
example, we designed a composite object that implemented a sequence of operations.
For inspiration, we can look at the bash shell composite operators: ;, &amp;, |, as well
as () for grouping. Beyond these, we have if, for, and while loops within the shell.

We looked at the semantic equivalent of the shell sequence operator, ;, in the
Command_Sequence class definition. This concept of a sequence is so ubiquitous that
many programming languages (such as the shell and Python) don't require an explicit
operator; the shell's syntax simply uses end-of-line as an implied sequence operator.

The shell's &amp; operator creates two commands that run concurrently instead of
sequentially. We can create a Command_Concurrent class definition with a run()
method that uses multiprocessing to create two subprocesses and waits for both to
finish.

The | operator in the shell creates a pipeline: one command's output buffer is another
command's input buffer—the commands run concurrently. In Python, we'd need to
create a queue as well as two processes to read and write that queue. This is a more
complex situation: it involves populating the queue objects into the configurations of
each of the various children. Chapter 13, Transmitting and Sharing Objects, has some
examples of using multiprocessing with queues to pass objects among concurrent
processes.
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The if command in the shell has a number of use cases; however, there's no
compelling reason to provide anything more than a native Python implementation
via a method in a subclass of Command. Creating a complex Command class to mimic
Python's if-elif-else processing isn't helpful; we can—and should—use Python
directly.

The while and for commands in the shell, similarly, aren't the sorts of things we
need to define in a higher-level Command subclass. We can simply write this in a
method in Python.

Here's an example of a for-all class definition that applies an existing command to all
the values in a collection:

class ForAllBets_Simulate(Command):

    def run(self) -> None:
        for bet_class in "Flat", "Martingale", "OneThreeTwoSix":
            self.config["betting_rule"] = bet_class
            self.config["outputfile"] =
Path("data")/f"ch18_simulation7_{bet_class}.dat"
            sim = Simulate_Command()
            sim.configure(argparse.Namespace(**self.config))
            sim.run()

We enumerated the three classes of betting in our simulation. For each of these
classes, we tweaked the configuration, created a simulation, and executed that
simulation.

Note that this for-all class won't work with the Analyze_Command class defined
previously. We can't simply create composites that reflect different scopes of work.
The Analyze_Command class runs a single simulation, but the
ForAllBets_Simulate class runs a collection of simulations. We have two choices
to create compatible scopes of work: we could create an Analyze_All command or a
ForAllBets_Sim_and_Analyze command. The design decision depends on the
needs of the users.
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Integrating with other applications
There are several ways in which we can use Python when integrating with other
applications. It's difficult to provide a comprehensive overview, as there are so many
applications, each with unique, distinctive features. We can show you some broad
design patterns in the following list:

Python can be the application's scripting language. You can find a list of
applications that simply include Python as the primary method to add
features at https://wiki.python.org/moin/AppsWithPythonScripting.
A Python module can implement the application's API. There are
numerous applications that include Python modules that provide a binding
to the application's API. Application developers working in one language
will often provide API libraries for other languages, including Python.
We can use the ctypes module to implement another application's API
directly in Python. This works out well in the case of an application library
that is focused on C or C++.
We can use sys.stdin and sys.stdout to create a shell-level pipeline
that connects us to another application. We might also want to look at the
fileinput module when building shell-compatible applications.
We can use the subprocess module to access an application's command-
line interface. This may also involve connecting to an application's stdin
and stdout to interact properly with it.
We can also write our own Python-compatible module in C or C++. In this
case, we can implement the foreign application's API in C, offering classes
or functions that a Python application can leverage. This may offer better
performance than using the ctypes API. As this requires compiling C or
C++, it's also a bit more tool intensive.

This level of flexibility means that we often use Python as the integration framework
or glue to create a larger, composite application from smaller applications. When
using Python for integration, we'll often have Python classes and objects that mirror
the definitions in another application.

There are some additional design considerations that we'll save for Chapter 19,
Modules and Package Design. These are higher-level architectural design
considerations, above and beyond coping with the command line.

https://wiki.python.org/moin/AppsWithPythonScripting
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Summary
In this chapter, we looked at how to use argparse and os.environ to gather
command-line argument and configuration parameters. This builds on the techniques
shown in Chapter 14, Configuration Files and Persistence.

We learned how to implement a number of common command-line features using
argparse. This includes common features, such as showing the version number and
exiting or showing the help text and exiting.

We looked at using the Command design pattern to create applications that can be
expanded or refactored to offer new features. Our goal is to explicitly keep the body
of the top-level main function as small as possible.

Design considerations and trade-offs
The command-line API is an important part of a finished application. While most of
our design effort focuses on what the program does while it's running, we do need to
address two boundary states: startup and shutdown. An application must be easy to
configure when we start it up. It must also shut down gracefully, properly flushing all
of the output buffers and releasing all of the OS resources.

When working with a public-facing API, we have to address a variation on the
problem of schema evolution. As our application evolves—and as our knowledge of
the users evolves—we will modify the command-line API. This may mean that we'll
have legacy features or legacy syntax. It may also mean that we need to break the
compatibility with the legacy command-line design.

In many cases, we'll need to be sure that the major version number is part of our
application's name. We shouldn't write a top-level module named someapp. When
we need to make major release three, which is incompatible with major release two,
we may find it awkward to explain that the name of the application has changed to
someapp3. We should consider starting with someapp1 so that the number is always
part of the application name.
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Looking forward
In the next chapter, we'll expand some of these top-level design ideas and look at
module and package design. A small Python application can also be a module, which
means it can be imported into a larger application. A complex Python application
may be a package. It may include other application modules and it may be included
in larger-scale applications.



19
Module and Package Design

Python gives us several constructs to group and organize our software. In
Section 1, Tighter Integration via Special Methods, we looked at several techniques for
using a class definition to combine data structures and behavior together, and create
discrete objects defined by structure and behavior. In this chapter, we'll look at
modules to encapsulate class and function definitions, as well as shared objects. We'll
also look at packages as a design pattern to group related modules together.

Python makes it very easy to create simple modules. Any time we create a Python
file, we're creating a module. As the scope of our designs gets larger and more
sophisticated, the use of packages becomes more important to maintain a clear
organization among the modules. This chapter will suggest patterns for module
definition.

Some languages encourage putting a single class in a single file; this rule doesn't
apply to Python. The Pythonic practice is to treat a whole module as a unit of reuse;
it's common practice to have many closely-related class and function definitions in a
single module.

Python has some specialized, reserved module names. For a larger application, we
may implement a __main__ module. This module must be designed to expose the OS
command-line interface for a complex application. We also have some flexibility in
how we install the modules associated with an application. We can use the default
working directory, an environment variable setting, or the Python lib/site-
packages directory. Each of these approaches has advantages and disadvantages.

Technical requirements
The code files for this chapter are available at https:/ ​/ ​git.​io/ ​fj2US.

https://git.io/fj2US
https://git.io/fj2US
https://git.io/fj2US
https://git.io/fj2US
https://git.io/fj2US
https://git.io/fj2US
https://git.io/fj2US
https://git.io/fj2US
https://git.io/fj2US
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One common approach is a single module. The overall organization can be imagined
this way:

module.py
 ┣━━ class A:
 ┃    ┗━━ def method(self): ...
 ┣━━ class B:
 ┃    ┗━━ def method(self): ...
 ┗━━ def function(): ...

This example shows a single module with a number of classes and functions. We'll
turn to module design in the Designing a module section, later in this chapter.

A more complex approach is a package of modules, which can be imagined as
follows:

package
 ┣━━ __init__.py
 ┣━━ module1.py
 ┃    ┣━━ class A:
 ┃    ┃    ┗━━ def method(self): ...
 ┃    ┗━━ def function(): ...
 ┗━━ module2.py
 ┗━━ ...

This example shows a single package with two modules. Each module contains
classes and functions. We'll look at package design in the Designing a package section
later in this chapter.

We're going to avoid the more complex problem of distributing Python code. There
are a number of techniques to create a source distribution for a Python project. The
various distribution technologies are outside the scope of this book. The Software
Packaging and Distribution section of the Python Standard Library addresses some of the
physical file packaging issues. The Distributing Python Modules document provides
information on creating a code distribution.

In this chapter, we will cover the following topics:

Designing a module
Whole modules versus module items
Designing a package
Designing a main script and the main module
Designing long-running applications
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Organizing code into src, scripts, tests, and docs
Installing Python modules

Designing a module
In chapters two through nine of this book, we looked at a number of techniques for
designing classes, which are the foundation of object-oriented design and
programming. The module is a collection of classes; it is a higher-level grouping of
related classes and functions. It's rare to try to reuse a single class in isolation. 

Consequently, the module is a fundamental component of Python implementation
and reuse. A properly designed module can be reused because the needed classes and
functions are bundled together. All Python programming is provided at the module
level.

A Python module is a file. The filename extension must be .py. The filename in front
of .py must be a valid Python name. Section 2.3 of Python Language Reference provides
us with the complete definition of a name. One of the clauses in this definition is as
follows:

"Within the ASCII range (U+0001..U+007F), the valid characters for identifiers are
the uppercase and lowercase letters A through Z, the underscore _ and, except for
the first character, the digits 0 through 9."

Operating system (OS) filenames permit more characters from the ASCII range than
Python names; this extra OS complexity must be avoided. In particular, hyphens are a
potential problem in Python module names; use underscores instead in complex file
names. Because the stem of the filename (without the .py extension) becomes the
module name, these names should also be valid Python identifiers.

The Python runtime may also create additional .pyc and .pyo files
for its own private purposes; it's best to simply ignore these files.
Generally, they're cached copies of code objects used to reduce the
time to load a module. These files should be ignored.

Every time we create a .py file, we create a module. Often, we'll create Python files
without doing much design work. This simplicity is a benefit of using Python. In this
chapter, we'll take a look at some of the design considerations to create a reusable
module.

Now let's take a look at some of the design patterns for Python modules.
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Some module design patterns
There are three commonly seen design patterns for Python modules:

Importable library modules: These are meant to be imported. They contain
definitions of classes, functions, and perhaps some assignment statements
to create a few global variables. They do not do any real work; they can be
imported without any worry about the side effects of the import operation.
There are two use cases that we'll look at:

Whole module: Some modules are designed to be imported
as a whole, creating a module namespace that contains all of
the items.
Item collection: Some modules are designed to allow
individual items to be imported, instead of creating a module
object; the math module is a prime example of this design.

Runnable script modules: These are meant to be executed from the
command line. They contain more than class and function definitions. A
script will include statements to do the real work. The presence of side
effects means they cannot be meaningfully imported.
Conditional Script modules: These modules are hybrids of the two
aforementioned use cases: they can be imported and they can also be run
from the command line. These modules will have the main-import switch
as described in the Python Standard Library, in the __main__ – Top-level script
environment section.

Here's the conditional script switch from the library documentation:

if __name__ == "__main__":
    main()

This requires a main() function to do the work of the script. This design supports
two use cases: both runnable and importable. When the module is run from the
command line, it evaluates main() and does the expected work. When the module is
imported, the function will not be evaluated, and the import will simply create the
various definitions without doing any real work.

We suggest something a bit more sophisticated, as shown in Chapter 18, Coping with
the Command Line:

if __name__ == "__main__":
    with Setup_Logging():
        with Build_Config() as config:
            main = Simulate_Command()
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            main.configure(config)
            main.run()

This leads to the following essential design tip:

Importing a module should have few side effects.

Creating a few module-level variables is an acceptable side effect of an import. The
real work – accessing network resources, printing output, updating files, and other
kinds of processing – should not happen when a module is being imported.

A main script module without a __name__ == "__main__" section is often a bad
idea because it can't be imported and reused. Beyond that, it's difficult for
documentation tools to work with a main script module, and it's difficult to test. The
documentation tools tend to import modules, causing work to be done unexpectedly.
Similarly, testing requires care to avoid importing the module as part of a test setup.

In the next section, we'll compare a module with a class definition. The two concepts
are similar in many respects.

Modules compared with classes
There are numerous parallels between the definitions for modules and classes:

Both modules and classes have names defined by the Python syntax rules.
To help distinguish them, modules usually have a leading lowercase letter;
classes usually have a leading uppercase letter.
Module and class definitions are namespaces that contain other objects.
A module is a Singleton object within a global namespace, sys.modules.
A class definition is unique within a namespace, either the global
namespace, __main__, or some local namespace. A class definition is
slightly different from a module Singleton, because a class definition can
be replaced. Once imported, a module can't be imported again without
using special functions such as importlib.reload().
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The definitions of both class and module are evaluated as a sequence of
statements within a namespace.
A function defined in a module is analogous to a static method within a
class definition.
A class defined in a module is analogous to a class defined within another
class.

There are two significant differences between a module and class:

We can't create an instance of a module; it's always a Singleton. We can
create multiple instances of a class.
An assignment statement in a module creates a variable that's global within
the module's namespace; it can be used by other functions in a module
without using the module name as a qualifier for the namespace. An
assignment statement within a class definition, however, creates a variable
that's part of the class namespace: it requires a qualifier to distinguish it
from the global variables outside the class.

Modules, packages, and classes can all be used to encapsulate data
and process it into a tidy object. Classes can have multiple instances;
modules cannot.

The similarities between modules and classes mean that choosing between them is a
design decision, with tradeoffs and alternatives. In most cases, the need for
multiple instances with distinct states is the deciding factor. Because a module is a
Singleton, we cannot have discrete instances.

A module's Singleton pattern means that we'll use a module (or package) to contain
class and function definitions. These definitions are then created exactly once, even if
an import statement mentions them multiple times. This is a wonderful
simplification, allowing us to repeat import statements in a variety of contexts. 

The logging module, for example, is often imported in multiple other modules. The
Singleton pattern means that the logging configuration can be done once, and will
apply to all other modules. A configuration module, similarly, might be imported in
several places. The singleton nature of a module ensures that the configuration can be
imported by any module but will be truly global.
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When writing applications that work with a single connected database, a module
with a number of access functions will be similar to a singleton class. The database
access layer can be imported throughout an application but will be a single, shared
global object.

Once we've decided on the general design pattern for a module, the next
consideration is to be sure it has all of the commonly-expected elements.

In the next section, we'll look at the expected content of a module.

The expected content of a module
Python modules have a typical organization. To an extent, this is defined by PEP 8,
about which more information can be found
at http://www.python.org/dev/peps/pep-0008/.

The first line of a module can be a #! comment; a typical version looks like the
following code:

#!/usr/bin/env python3

This is used to help OS tools, such as bash, locate the Python interpreter for an
executable script file. For Windows, this line may be something along the lines
of #!C:\Python3\python.exe.

Older Python 2 modules may include a coding comment to specify the encoding for
the rest of the text. This may look like the following code:

# -*- coding: utf-8 -*-

The coding comment is avoided for Python 3; the OS encoding information is
adequate.

The next lines of a module should be a triple-quoted module docstring that defines
the contents of the module file. As with other Python docstrings, the first paragraph
of the text should be a summary. This should be followed by a more complete
definition of the module's contents, purpose, and usage. This may include RST
markup so that the documentation tools can produce elegant-looking results from the
docstring. We'll address this in Chapter 20, Quality and Documentation.

After the docstring, we can include any version control information. For example, we
might have the following code:

__version__ = "2.7.18"

http://www.python.org/dev/peps/pep-0008/
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This is a module global variable that we might use elsewhere in our application to
determine the version number of the module. This is included after the docstring, but
before the body of the module. Below this, come all of the module's import
statements. Conventionally, they're in a big block at the front of the module.

After the import statements, come the various class and function definitions of the
module. These are presented in whatever order is required to ensure that they work
correctly and make sense to someone who is reading the code.

Java and C++ tend to focus on one class per file.  That's a silly
limitation. It doesn't apply to Python.

If the file has a lot of classes, we might find that the module is a bit hard to follow. If
we find ourselves using big comment billboards to break a module into sections, this
is a hint that what we're writing may be more complex than a single module.

A billboard comment looks like the following example:

################################
# FUNCTIONS RELATED TO API USE #
################################

Rather than use a billboard-style comment, it's better to decompose the module into
separate modules. The billboard comment should become the docstring for a new
module. In some cases, class definitions might be a good idea for decomposing a
complex module. 

Sometimes, global variables within a module are handy. The logging module makes
use of this to keep track of all of loggers that an application might create. Another 
example is the way the random module creates a default instance of the Random class.
This allows a number of module-level functions to provide a simple API for random
numbers. We're not forced to create an instance of random.Random.

The PEP-8 conventions suggest these module globals should have ALL_CAPS style
names to make them visible. Using a tool like pylint for code quality checks will
result in this suggestion for global variables.

The next section compares whole modules with module items.
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Whole modules versus module items
There are two approaches to designing the contents of a library module. Some
modules are an integrated whole, while others are more like a collection of loosely
related items. When we've designed a module as a whole, it will often have a few
classes or functions that are the public-facing API of the module. When we've
designed a module as a collection of loosely related items, each individual class or
function tends to stand alone.

We often see this distinction in the way we import and use a module. We'll look at
three variations:

Using the import some_module command: This leads to the
some_module.py module being evaluated and the resulting objects are
collected into a single namespace called some_module. This requires us to
use qualified names for all of the objects in the module, for
example, some_module.this and some_module.that. This use of
qualified names makes the module an integrated whole.
Using the from some_module import this, that command: This
leads to the some_module.py module file being evaluated and only the
named objects are created in the current local namespace. We can now use
this or that without the module namespace as a qualifier. This use of
unqualified names is why a module can seem like a collection of disjointed
objects. A common example is a statement like from math import sqrt,
sin, cos to import a few math functions.
Using the from some_module import * command: This will import the
module and make all non-private names part of the namespace performing
the import. A private name begins with _, and will not be retained as one
of the imported names. We can explicitly limit the number of names
imported by a module by providing an __all__ list within the module.
This list of string object names will be elaborated by the import *
statement. We often use the __all__ variable to conceal the utility
functions that are part of building the module, but not part of the API that's
provided to clients of the module.
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When we look back at our design for decks of cards, we could elect to keep the suits
as an implementation detail that's not imported by default. If we had a cards.py
module, we could include the following code:

from enum import Enum

__all__ = ["Deck", "Shoe"]

class Suit(str, Enum):
    Club = "\N{BLACK CLUB SUIT}"
    Diamond = "\N{BLACK DIAMOND SUIT}"
    Heart = "\N{BLACK HEART SUIT}"
    Spade = "\N{BLACK SPADE SUIT}"

class Card: ...

def card(rank: int, suit: Suit) -> Card: ...

class Deck: ...

class Shoe(Deck): ...

The use of the __all__ variable makes the Suit and Card names visible. The
card() function, the Suit class, and the Deck class are implementation details not
imported by default. For example, suppose we perform the following code:

from cards import *

The preceding statement will only create Deck and Shoe in an application script, as
those are the only explicitly given names in the __all__ variable.

When we execute the following command, it will import the module without putting 
any names into the global namespace:

import cards

Even though it's not imported into the namespace, we can still access the qualified
cards.card() method to create a Card instance.

There are advantages and disadvantages of each technique. A whole module requires
using the module name as a qualifier; this makes the origin of an object explicit.
Importing items from a module shortens their names, which can make complex
programming more compact and easier to understand.

In the next section, we'll see how to design a package.
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Designing a package
One important consideration when designing a package is don't. The Zen of Python
poem (also known as import this) includes this line:

"Flat is better than nested"

We can see this in the Python standard library. The structure of the library is
relatively flat; there are few nested modules. Deeply nested packages can be
overused. We should be skeptical of excessive nesting.

A Python package is a directory with an extra file, __init__.py. The directory name
must be a proper Python name. OS names include a lot of characters that are not
allowed in Python names.

We often see three design patterns for packages:

Simple packages are a directory with an empty __init__.py file. This
package name becomes a qualifier for a collection of modules inside the
package. We'll use the following code to pick one of the modules from the
package:

import package.module

A module-package hybrid can have an __init__.py file that is effectively
a module definition. This top-level module will import elements from
modules inside the package, exposing them via the __init__  module.
We'll use the following code to import the whole package as if it was a
single module:

import package

Another variation on the module-package hybrid uses the __init__.py
file to choose among alternative implementations. We use the package as if
it was a single module via code, as in the following example:

import package

The first kind of package is relatively simple. We add an __init__.py file to a
directory, and, with that, we're done creating a package. The other two are a bit more
involved; we'll look at these in detail.

Let's see how to design a module-package hybrid.
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Designing a module-package hybrid
In some cases, a design evolves into a module that is very complex; it can become so
complex that a single file becomes a bad idea. When we start putting billboard
comments in a module, it's a hint that we should consider refactoring a complex
module into a package built from several smaller modules.

In this case, the package can be as simple as the following kind of structure. We can
create a directory, named blackjack; within this directory, the __init__.py file
would look like the following example:

"""Blackjack package"""
from blackjack.cards import Shoe
from blackjack.player import Strategy_1, Strategy_2
from blackjack.casino import ReSplit, NoReSplit, NoReSplitAces,
Hit17, Stand17
from blackjack.simulator import Table, Player, Simulate
from betting import Flat, Martingale, OneThreeTwoSix

This shows us how we can build a module-like package that is actually an assembly
of parts imported from subsidiary modules. An overall application could be named
simulate.py, containing code that looks like the following:

from blackjack import *
table = Table(
    decks=6, limit=500, dealer=Hit17(), split=NoReSplitAces(),
    payout=(3,2))
player = Player(
    play=Strategy_1(), betting=Martingale(), rounds=100,
    stake=100)
simulate = Simulate(table, player, 100)
for result in simulate:
    print(result)

This snippet shows us how we can use from blackjack import * to create a
number of class definitions that originate in a number of other modules within the
blackjack package. Specifically, there's an overall blackjack package that has the
following modules within it:

The blackjack.cards package contains the Card, Deck, and Shoe
definitions.
The blackjack.player package contains various strategies for play.
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The blackjack.casino package contains a number of classes that
customize how casino rules vary.
The blackjack.simulator package contains the top-level simulation
tools.
The betting package is also used by the application to define various
betting strategies that are not unique to Blackjack but apply to any casino
game.

The architecture of this package may simplify how we upgrade or extend our design.
If each module is smaller and more focused, it's more readable and more
understandable. It may be simpler to update each module in isolation.

Let's see how to design a package with alternate implementations.

Designing a package with alternate
implementations
In some cases, we'll have a top-level __init__.py file that chooses between some
alternative implementations within the package directory. The decision might be
based on the platform, CPU architecture, or the availability of OS libraries.

There are two common design patterns and one less common design pattern for
packages with alternative implementations:

Examine platform or sys to determine the details of the implementation
and decide what to import with an if statement.
Attempt import and use a try block exception handling to work out the
configuration details.
As a less common alternative, an application may examine a configuration
parameter to determine what should be imported. This is a bit more
complex. We have an ordering issue between importing an application
configuration and importing other application modules based on the
configuration. It's far simpler to import without this potentially complex
sequence of steps.
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We'll show the structure of a hypothetical package named some_algorithm. This
will be the name of the top-level directory. To create the complex package, the
some_algorithm directory must include a number of files, described as follows:

An __init__.py module will decide which of the two implementations to
import. This name is required to define a package. The contents of this
module will be shown in the following code block.
An abstraction.py can provide any necessary abstract definitions for the
two implementations. Using a single, common module can help to
provided consistent type hints for mypy checking.
Each implementation will be another module in the package. We'll outline
two implementation choices, called short_module.py and
long_module.py. Neither of these module names will be visible outside
the package.

Here's __init__.py for a some_algorithm package. This module chooses an
implementation based on the platform information. This might look like the following
example:

import sys
from typing import Type

from Chapter_19.some_algorithm.abstraction import
AbstractSomeAlgorithm

SomeAlgorithm: Type[AbstractSomeAlgorithm]

if sys.platform.endswith("32"):
    from Chapter_19.some_algorithm.short_version import *
    SomeAlgorithm = Implementation_Short
else:
    from Chapter_19.some_algorithm.long_version import *
    SomeAlgorithm = Implementation_Long

This module defines the SomeAlgorithm class based on one of two available
implementation modules. For 32-bit platforms, the short_version.py module
provides a class named Implementation_Short that will be used. For 64-bit
platforms, the long_version.py module provides the
Implementation_Long class.
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We need to also provide two modules within the some_algorithm package; the
long_version.py module provides an implementation appropriate for a 64-bit
architecture; the short_version module provides an alternate implementation. The
design must have module isomorphism; this is similar to class isomorphism. Both the
modules must contain classes and functions with the same names and same APIs.

If both the files define a class named SomeClass, then we can write the following
code in an application:

from Chapter_19 import some_algorithm
x = some_algorithm.SomeAlgorithm()

We can import the some_algorithm package as if it were a module. This will import
the some_algorithm/__init__.py module. This module locates an appropriate
implementation and provides the needed class definition.

Each implementation is similar. Both will incorporate the abstract class to make it
clear to tools such as mypy that the two implementations are identical. Here is the
content of the short_implementation.py module.

from .abstraction import AbstractSomeAlgorithm

class Implementation_Short(AbstractSomeAlgorithm):

    def value(self) -> int:
        return 42

This module imports an abstract class definition. It then defines a proper subclass.
This overhead helps mypy confirm the defined class is a complete implementation of
the abstract class definition.

For complex applications, this kind of alternative implementation strategy can be
very helpful. It lets a single code base work in a number of environments where
configuration changes are made as late in the deployment pipelines as possible.

The next section shows how to use the ImportError exception.

Using the ImportError exception
An alternative to an if statement is to use a try statement to locate a candidate's
implementation. This technique works well when there are different distributions.
Often, a platform-specific distribution may include files that are unique to the
platform.



Module and Package Design Chapter 19

[ 670 ]

In Chapter 16, The Logging and Warning Modules, we showed you this design pattern
in the context of providing warnings in the event of a configuration error or problem.
In some cases, tracking down variant configurations doesn't deserve a warning,
because the variant configuration is a design feature.

Here's __init__.py for a some_algorithm package, which chooses an
implementation based on the availability of the module files within the package:

try:
    from some_algorithm.long_version import *
except ImportError as e:
    from some_algorithm.short_version import *

This depends on having two distinct distributions that will include either the
some_algorithm/long_version.py file or the
some_algorithm/short_version.py file. If the some_algorithm.long_version
module is not found, then some_alogirithm.short_version will be imported.
The content of the implementation modules doesn't change from what was shown in
the preceding code block. Only the __init__.py module will change.

Creating variant distributions is outside the scope of this book. The Python Packaging
Authority, PyPA, has documentation showing how platform-specific wheel and egg
files can be created.

This try/except technique doesn't scale to more than two or three alternative
implementations. As the number of choices grows, the except blocks will become
very deeply nested. 

Let's see how to design a main script and the main module.

Designing a main script and the __main__
module
A top-level main script will execute our application. In some cases, we may have
multiple main scripts because our application does several things. We have three
general approaches to writing the top-level main script:

For very small applications, we can run the application with python3
some_script.py. This is the style that we've shown you in most
examples.
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For some larger applications, we'll have one or more files that we mark as
executable with the OS chmod +x command. We can put these executable
files into Python's scripts directory with our setup.py installation. We
run these applications with some_script.py at the command line.
For complex applications, we might add a __main__.py module in the
application's package. To provide a tidy interface, the standard library
offers the runpy module and the -m command-line option that will use this
specially named module. We can run this with python3 -m some_app.

We'll look at the last two options in detail.

Creating an executable script file
To use an executable script file, we have a two-step implementation: make it
executable and include a #! (sharp-bang, or shebang) line. We will take a look at the
details.

The Linux command to mark a script file as executable looks like the following
example:

chmod +x some_script.py

The shebang line will often look like this example:

#!/usr/bin/env python3

This line will direct the OS to use the named program to execute the script file. In this
case, we used the /usr/bin/env program to locate the python3 program to run the
script. The python3 program will be given the script file as its input.

When a script file is marked executable, and the file includes the #! line, we can use
some_script.py at the command line to run the script.

For a more complex application, this top-level script may import other modules and
packages. It's important that these top-level executable script files should be as simple
as possible to promote reuse of the various components. Key design principles
include the following:

Keep the script module as small as possible. Any complexity should be in
the modules which are imported. 
A script module should have no new or distinctive code. It should
emphasize importing and using code from other modules.
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In the long run, no program will ever stand alone. Any valuable software
will be extended and repurposed. Even the top-level script for an
application may be integrated into an even larger wrapper.

Our design goals must always include the idea of composite, larger-scale
programming. A main script file should be as short as possible. Here's our example:

import simulation

if __name__ == "__main__":
    with simulation.Setup_Logging():
       with simulation.Build_Config() as config:
           main = simulation.Simulate_Command()
           main.configure(config)
           main.run()

All of the relevant working code is imported from a module named simulation.
There's no unique or distinctive new code introduced in this module.

In the next section, we'll see how to create a _main_ module .

Creating a __main__ module
To work with the runpy interface, we must add a small __main__.py module to our
application's top-level package. We have emphasized the design of this top-level
executable script file.

We should always permit refactoring an application to build a larger, more
sophisticated composite application. If there's functionality buried in __main__.py,
we need to pull this into a module with a clear, importable name so that it can be
used by other applications.

A __main__.py module follows the kind of code shown in the previous section,
Creating an executable script file.  The only real distinction is using the special
name, __main__.py, to make it easier for the Python runtime to locate the main
module of a package. It also makes it easier for other people to locate the main part of
a package's processing.

One of the important considerations in Python programming is combining multiple,
smaller programs into useful, larger programs. In the next section, we'll look at
aggregation, or programming in the large.
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Programming in the large
Here's an example that shows us why we shouldn't put unique, working code into the
__main__.py module. We'll show you a quick hypothetical example based on
extending an existing package.

Imagine that we have a generic statistical package, named analysis, with a top-level
__main__.py module. This implements a command-line interface that will compute
descriptive statistics of a given CSV file. This application has a command-line API as
follows:

python3 -m analysis -c 10 some_file.csv

This command uses a -c option to specify which column to analyze. The input
filename is provided as a positional argument on the command line.

Let's assume, further, that we have a terrible design problem. We've defined a high-
level function, analyze(), in the analysis/__main__.py module. Here's an
outline of the __main__.py module:

import argparse
from analysis import some_algorithm

def analyze(config: argparse.Namespace) -> None: ...

def main(argv: List[str] = sys.argv[1:]) -> None: ...

if __name__ == "__main__":
    main(sys.argv[1:])

The analysis package includes a __main__.py module. This module does more
than just simply run functions and classes defined elsewhere. It also includes a
unique, reusable function definition, analyze(). This is not a problem until we try to
reuse elements of the analysis package.

Our goal is to combine this with our Blackjack simulation. Because of the design error
here, this won't work out well. We might think we can do this:

import analysis
import simulation
import types

def sim_and_analyze():
    with simulation.Build_Config() as config_sim:
        config_sim.outputfile = "some_file.csv"
        s = simulation.Simulate()
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        s.configure(config_sim)
        s.run()
    config_stats = types.SimpleNamespace(
        column=10, input="some_file.csv")
    analysis.analyze(config_stats)

We tried to use analysis.analyze(), assuming that the useful analyze() function
was part of a simple module. The Python naming rules make it appear as though
analysis is a module with a function named analyze(). Most of the time, the
implementation details of the module and package structure don't matter for
successful use. This, however, is an example of reuse and Programming In The Large,
where the structure needs to be transparent.

This kind of simple composition was made needlessly difficult by defining a function
in __main__. We want to avoid being forced to do this:

def analyze(column, filename):
    import subprocess
    subprocess.run(
        ["python3", "-m", "stats", "-c", column, filename])

We shouldn't need to create composite Python applications via the command-line
API. In order to create a sensible composition of the existing applications, we might
be forced to refactor analysis/__main__.py to remove any definitions from this
module and push them up into the package as a whole.

The next section shows how to design long-running applications.

Designing long-running applications
A long-running application server will be reading requests from some kind of queue
and formulating responses to those requests. In many cases, we leverage the HTTP
protocol and build application servers into a web server framework. See Chapter 13,
Transmitting and Sharing Objects, for details on how to implement RESTful web
services following the Web Server Gateway Interface (WSGI) design pattern.

A desktop GUI application has a lot of features in common with a server. It reads
events from a queue that includes mouse and keyboard actions. It handles each event
and gives some kind of GUI response. In some cases, the response may be a small
update to a text widget. In other cases, a file might get opened or closed, and the state
of menu items may change.
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In both cases, the central feature of the application is a loop that runs forever,
handling events or requests. Because these loops are simple, they're often part of the
framework. For a GUI application, we might have a loop like that in the following
code:

root = Tkinter.Tk()
app = Application(root)
root.mainloop()

For Tkinter applications, the top-level widget's mainloop() gets each GUI event
and hands it to the appropriate framework component for handling. When the object
handling events—the top-level widget, root, in the example—executes the quit()
method, then the loop will be gracefully terminated.

For a WSGI-based web server framework, we might have a loop like the following
code:

httpd = make_server('', 8080, debug)
httpd.serve_forever()

In this case, the server's serve_forever() method gets each request and hands it to
the application—debug in this example—for handling. When the application executes
the server's shutdown() method, the loop will be gracefully terminated.

We often have some additional requirements that distinguish long-running
applications:

Robust: When dealing with external OS or network resources, there are
timeouts and other errors that must be confronted successfully. An
application framework that allows for plugins and extensions, enjoys the
possibility of an extension component harboring an error that the overall
framework must handle gracefully. Python's ordinary exception handling
is perfectly adequate for writing robust servers. In Chapter 15, Design
Principles and Patterns, we addressed some of the high-level considerations.
Auditable: A simple, centralized log is not always sufficient. In Chapter
16, The Logging and Warning Modules, we addressed techniques to create 
multiple logs to support the security or financial audit requirements.
Debuggable: Ordinary unit testing and integration testing reduces the
need for complex debugging tools. However, external resources and
software plugins or extensions create complexities that may be difficult to
handle without providing some debugging support. More sophisticated
logging can be helpful.



Module and Package Design Chapter 19

[ 676 ]

Configurable: Except for simple technology spikes, we want to be able to
enable or disable the application features. Enabling or disabling debugging
logs, for example, is a common configuration change. In some cases, we
want to make these changes without completely stopping and restarting an
application. In Chapter 14, Configuration Files and Persistence, we looked at
some techniques to configure an application. In Chapter 18, Coping with the
Command Line, we extended these techniques.
Controllable. A simplistic long-running server can simply be killed in
order to restart it with a different configuration. In order to ensure that 
buffers are flushed properly and OS resources are released properly, it's
better to use a signal other than SIGKILL to force termination. Python has
signal-handling capabilities available in the signal module.

These last two requirements for a dynamic configuration and clean way to shut down
a server, lead us to separate the primary input stream from a secondary control input.
This control input can provide additional requests for configuration or shutdown.

We have a number of ways to provide asynchronous inputs through an additional
channel:

One of the simplest ways is to create a queue using the multiprocessing
module. In this case, a simple administrative client can interact with this
queue to control or interrogate the server or GUI. For more examples of
multiprocessing, see Chapter 13, Transmitting and Sharing Objects. We
can transmit the control or status objects between the administrative client
and the server.
Lower-level techniques are defined in the Networking and Interprocess
Communication section of the Python Standard Library. These modules can
also be used to coordinate with a long-running server or GUI application.
Use persistent storage of state so the long-running process can be killed
and restarted with a different configuration. We looked at persistence
techniques in Chapter 10, Serializing and Saving - JSON, YAML Pickle, CSV
and Shelve; Chapter 11, Storing and Retrieving Objects via Shelve; and
Chapter 12, Storing and Retrieving Objects via SQLite. Any of these can be
used to save the state of a server leading to a seamless restart.
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There are two common use cases for web-based servers:

Some servers provide a RESTful API.
Some servers are focused on providing the User Experience (UX).

The RESTful API servers are often used by mobile applications, and the UX is
packaged separately. A RESTful API server generally maintains state in a persistent
database. As part of server reliability engineering, there may be multiple copies of the
server to share the workload, and software upgrades often happen by introducing the
new release and shifting the workload from the old servers to the new servers. When
there are multiple copies of a server, then shared persistent storage is required to
keep the state of a user's transaction when each individual request could be handled
by different servers. The dynamic configuration and control is handled by shifting
workloads and stopping the old servers so the work is handled by new servers.

Providing a UX from a web server often requires maintaining session state on the
server. In this case, killing the server means the user's session state is lost. We don't
want to have angry users losing the contents of their shopping carts  because we
reconfigured a server. If the session information is cached in a database, and the
cookie sent to the user is nothing more than a database key, we can create very robust
web servers. The FlaskSession project (more info available at https:/ ​/​pythonhosted.
org/​Flask-​Session) provides a number of ways of saving session information in a
cache so servers can be stopped and restarted.

The next section shows how to organize code into src, scripts, tests, and docs.

Organizing code into src, scripts, tests,
and docs
As we noted in the previous section, there's no essential need for a complex directory
structure in a Python project. The ideal structure follows the standard library, and is a
relatively flat list of modules. This will include overheads such as the  setup.py and
README files. This is pleasantly simple and easy to work with.
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When the modules and packages get more complex, we'll often need to impose some
structure. For complex applications, one common approach is to segregate Python
code into a few bundles. To make the examples concrete, let's assume that our
application is called my_app:

my_app/src: This directory has all of the working application code. All of
the various modules and packages are here. In some cases, there's only a
single top-level package name in this src directory. In other cases, there
may be many modules or packages listed under src. The advantage of a
src directory is the simplicity of doing static analysis with mypy, pylint,
or pyflakes.
my_app/scripts or my_app/bin: This directory can have any scripts that
form an OS-level command-line API. These scripts can be copied to the
Python scripts directory by setup.py. As noted previously, these
should be like the __main__.py module; they should be very short, and
they can be thought of as OS filename aliases for Python code.
my_app/tests: This directory can have the various test modules. Most of
the modules will have names beginning with test_ so they can be
discovered by pytest automatically.
my_app/docs: This directory will have the documentation. We'll look at
this in Chapter 20, Quality and Documentation.

The top-level directory name, my_app, might be augmented with a version number to
permit having multiple branches or versions available, leading to my_app-v1.1 as a
top-level directory name. A better strategy is to use a sophisticated version control
tool, such as git. This can manage having multiple versions of software in a single
directory structure. Using git commands to switch branches works out better than
trying to have multiple branches in adjacent directories.

The top-level directory will contain the setup.py file to install the application into
Python's standard library structure. See Distributing Python Modules (https:/ ​/​docs.
python.​org/​3/​distributing/ ​index. ​html) for more information. Additionally, of
course, a README.rst file would be placed in this directory. Other common files
found here are the tox.ini file, for configuring the overall testing environment, and
the environment.yaml file, for building the Conda environment for using the
application.
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When the application modules and test modules are in separate directories, we need
to refer to the application as an installed module when running tests. We can use the
PYTHONPATH environment variable for this. We can run the test suite as in the
following code:

PYTHONPATH=my_app/src python3 -m test

We set an environment variable on the same line where we execute a command. This
may be surprising, but it's a first-class feature of the bash shell. This allows us to
make a very localized override to the PYTHONPATH environment variable.

The next section shows how to install Python modules.

Installing Python modules
We have several techniques to install a Python module or package:

We can write setup.py and use the distribution utilities module,
distutils, to install the package into Python's lib/site-packages
directory. This is described in detail in the Python Packaging Authority
documentation. See https:/ ​/​www.​pypa. ​io/ ​en/ ​latest/ ​ for information.
Building software for other people to install can be complex, and will often
require sophisticated test cases using the tox tool to build environments,
run tests, and create distribution kits. See https:/ ​/​tox. ​readthedocs. ​io/
en/​latest/ ​ for more information.
We can set the PYTHONPATH environment variable to include our packages
and modules. We can set this temporarily in a shell, or we can set it more
permanently by editing our ~/.bash_profile or the system's
/etc/profile. We'll take a look at this later in this section.
The current working directory is a package as well. It's always first on the
sys.path list. When working on a simple one-module Python application,
this is very handy. 

Setting the environment variable can be done transiently or persistently. We can set it
in an interactive session with a command, as follows:

export PYTHONPATH=~/my_app-v1.2/src

This sets PYTHONPATH to include the named directory when searching for a module.
The module is effectively installed through this simple change to the environment.
Nothing is written to Python's lib/site-packages.
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This is a transient setting that may be lost when we end the terminal session. The
alternative is to update our ~/.bash_profile to include a more permanent change
to the environment. We simply append that export line to .bash_profile so that
the package is used every time we log in.

For web server applications, the Apache, NGINX, or uWSGI configuration may need
to be updated to include access to the necessary Python modules. There are two
approaches to creating web servers:

Install Everything. Use Python package installation to create the entire
web server. This will involve using a local package index for customized
application components. More work is done in the integration phase of
continuous integration/continuous deployment (CI/CD).
Install Open Source Only. Use Python package installation for open
source components. Use Git checkout and PYTHONPATH for the customized
application components. More work is done in the deployment phase of
CI/CD.

Either approach will work nicely. While the install everything approach has the
superficial advantage of simplicity, it leads to creating installable versions of all of our
customized application software. For software that is proprietary, and will not be
released as open source, this seems like needless integration work to create an
installable version.

Installing only open source components leads to a more complex application
deployment. There will be a conda (or pip) installation of open source components,
in addition to git checkout of proprietary components. 

Summary
We looked at a number of considerations to design modules and packages. The
parallels between a module and singleton class are deep. When we design a module,
the essential questions of the encapsulation of the structure and processing are as
relevant as they are for class design.

When we design a package, we need to be skeptical of the need for deeply nested
structures. We'll need to use packages when there are varying implementations; we
looked at a number of ways to handle this variability. We may also need to define a
package to combine a number of modules into a single module-like package. We
looked at how __init__.py can import from within the package.
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Design considerations and tradeoffs
We have a deep hierarchy of packaging techniques. We can simply organize the
functionality into defined functions. We can combine the defined functions and their
related data into a class. We can then combine related classes into a module. Lastly,
we can combine related modules into a package.

When we think of software as a language to capture knowledge and representation,
we have to consider what a class or module means. A module is the unit of the Python
software construction, distribution, use, and reuse. With rare exceptions, modules
must be designed around the possibility of reuse.

In most cases, we'll use a class, because we expect to have multiple objects that are
instances of the class. Often – but not always – a class will have stateful instance
variables.

When we look at classes with only a single instance, it's not perfectly clear if a class is
truly necessary. Standalone functions may be as meaningful as a single-instance class.
In some instances, a module of separate functions may be an appropriate design,
because modules are inherently singletons.

The general expectation is a simple stateful collection of definitions. A module is a
namespace that can also contain some local variables. This parallels a class definition,
but lacks the ability to create instances.

While we can create immutable classes (using __slots__, extending NamedTuple,
using a frozen @dataclass, or overriding the attribute setter methods), we can't
easily create an immutable module. There doesn't seem to be a use case for an
immutable module object.

A small application may be a single module. A larger application will often be a
package. As with module design, packages should be designed for reuse. A larger
application package should properly include a __main__ module.

Looking forward
In the next chapter, we'll consolidate a number of our object-oriented design
techniques. We'll take a look at the overall quality of our design and implementation.
One consideration is assuring others that our software is trustworthy. One aspect of
trustworthy software is coherent, easy-to-use documentation.
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Quality and Documentation

To be valuable, software must be trusted. The general goal of trustworthiness relies
on a number of software quality attributes. For more information on this, refer to the
S-Cube Quality Reference Model section in https:/ ​/​s-​cube- ​network. ​eu/ ​km/​qrm/ ​index.
html. Good documentation is an underlying technique for demonstrating that the
various quality attributes have been met.

In this chapter, we'll look at two tools to produce the documentation from the code:
pydoc and Sphinx. The pydoc tool extracts documentation from the Python code
and produces useful views of the docstrings. The Sphinx tool allows us to create
complete and sophisticated documentation using a lightweight markup language
coupled with the source code. We'll describe some features of reStructuredText (RST)
to help make our documentation more readable.

For more information, refer to PEP 257 in https:/ ​/​www. ​python. ​org/ ​dev/ ​peps/ ​pep-
0257/​. This describes the minimum standard for docstrings. The use of formatting
markup such as RST extends this baseline proposal.

Complete test cases are another aspect of high-quality software. We can use
the doctest module to execute test cases. Doing this addresses two quality
aspects—documentation and testing—with a single tool.

We'll also take a brief look at literate programming techniques. The idea is to write a
pleasant, easy-to-understand document that contains the entire body of the source
code along with explanatory notes and design details. Literate programming isn't
simple, but it can produce good code coupled with a resulting document that is very
clear and complete.
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In this chapter, we will cover the following topics:

Writing docstrings for the help() function
Using pydoc for documentation
Better output via RST markup
Writing effective docstrings
Writing file-level docstrings, including modules and packages
More sophisticated markup techniques
Using Sphinx to produce the documentation
Writing the documentation
Literate programming

Technical requirements
The code files for this chapter are available at https:/ ​/ ​git.​io/ ​fj2U9.

Writing docstrings for the help() function
Python provides numerous places to include the documentation. The definition of a
package, module, class, or function has room for a string that includes a description
of the object that is being defined.

Throughout this book, we avoided showing you lengthy docstrings in each example
because our focus is on the Python programming details, not the overall software
product that is being delivered.

As we move beyond advanced OO design and look at the overall deliverable product,
docstrings become an important part of the deliverable. Docstrings can provide us
with several key pieces of information:

The API: the parameters, return values, and exceptions raised.
A description of what to expect.
Optionally, the doctest test results. For more information, refer
to Chapter 17, Designing for Testability.

https://git.io/fj2U9
https://git.io/fj2U9
https://git.io/fj2U9
https://git.io/fj2U9
https://git.io/fj2U9
https://git.io/fj2U9
https://git.io/fj2U9
https://git.io/fj2U9
https://git.io/fj2U9
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We can, of course, write even more in a docstring. We can provide more details on the
design, architecture, and requirements. At some point, these more abstract, higher-
level considerations are not directly tied to the Python code. This higher-level design
and the requirements don't properly belong to the code or the docstrings.

The help() function extracts and displays the docstrings. It performs some minimal
formatting on the text. The help() function is installed in the interactive Python
environment by the site package. The function is actually defined in the pydoc
package. In principle, we can import and extend this package to customize the
help() output.

Writing documentation that is suitable for help() is relatively simple. Here's a
typical example of output from help(round):

Help on built-in function round in module builtins:
round(number, ndigits=None)
    Round a number to a given precision in decimal digits.

    The return value is an integer if ndigits is omitted or None.
Otherwise
    the return value has the same type as the number. ndigits may be
negative.

This shows us the required elements: the summary, the API, and the description. The
API and the summary are the first line: round(number, ndigits=None).

The description text defines what the function does. More complex functions may
describe exceptions or edge cases that may be important or unique to this function.
The round() function, for example, doesn't detail elements such as TypeError that
might get raised.

A help()-oriented docstring is expected to be pure text with no markup. We can add
some RST markup, but it isn't used by help().

To make help() work, we simply provide docstrings. As it's so simple, there's no 
reason not to do it. Every function or class needs a docstring so that help() shows us
something useful.

Now, let's see how to use pydoc for documentation.
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Using pydoc for documentation
We use the library module, pydoc, to produce HTML documentation from Python
code. It turns out that we're using it when we evaluate help() in interactive Python.
This function produces the text mode documentation with no markup.

When we use pydoc to produce the documentation, we'll use it in one of the
following ways:

Prepare text-mode documentation files and view them with command-line
tools such as more or less.
Run an HTTP server and browse the documentation directly.

We can run the following command-line tool to prepare the text-based
documentation for a module:

pydoc somemodule

We can also use the following code:

python3 -m pydoc somemodule

Either command will create text documentation based on the Python code. The
output will be displayed with programs such as less (on Linux or macOS) or more
(on Windows), which paginate the long stream of output.

Ordinarily, pydoc presumes that we're providing a module name to import. This
means that the module must be on the Python path for ordinary import. As an
alternative, we can specify a physical filename. Something along the lines of pydoc
./mymodule.py will work to pick a file instead of a module.

The program can also start a special-purpose web server to browse a package or
module's documentation. In addition to simply starting the server, we can combine
starting the server and launching our default browser. The -b option starts a browser.
Here's a way to simply start a server and also launch a browser at the same time:

python3 -m pydoc -b

This will locate an unused port, start a server, and then launch your default browser
to point at the server. 

It's not easy to customize the output from pydoc. The various styles and colors are
effectively hardcoded into the class definitions. Revising and expanding pydoc to use
the external CSS styles would be an interesting exercise.
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The following screenshot shows the default styling:

Now, let's see how to obtain a better output using RST markup.

Better output via RST markup
Our documentation could be much nicer if we use a more sophisticated toolset.

There are several things that we'd like to be able to do, such as the following:

Fine-tune the presentation to include emphasis such as bold, italic, or color.
Provide the semantic markup for the parameters, return values, exceptions,
and cross-references among Python objects.
Provide a link to view the source code.
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Filter the code that's included or rejected. This includes fine-tuning the
presence of standard library modules, private objects with a leading _,
system objects with a leading __, or superclass members.
Adjust the CSS to provide a different style for the resulting HTML pages.

We can address the first two requirements through more sophisticated markup in our
docstrings. We'll need to use the RST markup language, and we'll also need an
additional tool to address the last three requirements.

Once we start using more sophisticated markup, we can branch out beyond HTML to
include  for even better-looking documentation. This allows us to also
produce the PostScript or PDF output in addition to HTML from a single source.

RST is a simple, lightweight markup. There are plenty of good tutorials and
summaries associated with the Python docutils project. Refer
to http://docutils.sourceforge.net for details.

A quick overview is available here:
http://docutils.sourceforge.net/docs/user/rst/quickstart.html.

The point of the docutils toolset is that a very smart parser allows us to use very
simple markup. HTML and XML rely on a relatively unsophisticated parser and put
the burden on the human (or an editing tool) to create the complex markup. While
XML and HTML allow for a wide variety of use cases, the docutils parser is more
narrowly focused on the natural language text. Because of the narrow focus,
docutils is able to deduce our intent, based on the use of blank lines and some
ASCII punctuation characters.

For our purposes, the docutils parser recognizes the following three fundamental
things:

Blocks of text: paragraphs, headings, lists, block quotes, code samples, and
the doctest blocks. These are all separated by blank lines.
Inline markup can appear inside the text blocks. This involves the use of
simple punctuation to mark the characters within the text block. There are
two kinds of inline markup; we'll look at the details in the later section.

http://docutils.sourceforge.net
http://docutils.sourceforge.net/docs/user/rst/quickstart.html
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Directives are also blocks of text, but they begin with .. as the first two
characters of the line. Directives are open-ended and can be extended to
add features to docutils.

The essential ingredient in writing text that can be transformed into good-looking
documents is to clearly separate the blocks of text. In the next section, we'll look at the
different kinds of text blocks.

Blocks of text
A block of text is simply a paragraph, set off from other paragraphs, by a blank line.
This is the fundamental unit of the RST markup. RST recognizes a number of kinds of
paragraphs, based on the pattern that is followed. Here's an example of a heading:

This Is A Heading
=================

This is recognized as a heading because it's underlined with a repeated string of special
characters.

The docutils parser deduces the hierarchy of title underlines based entirely on their
usage. We must be consistent with our headings and their nesting. It helps to pick a
standard and stick to it. It also helps to keep documents fairly flat without complex,
nested headings. Three levels are often all that's needed; this means that we can use
====, ----, and ~~~~ for the three levels.

A bullet list item begins with a special character; the content must also be indented.
As Python uses a 4-space indent, this is common in RST as well. However, almost any
consistent indent will work:

Bullet Lists

-   Leading Special Character.

-   Consistent Indent.
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Note the blank line between paragraphs. For some kinds of simple bullet lists, the
blank lines aren't required. In general, blank lines are a good idea.

A numerical list begins with a digit or letter and a roman numeral. To have numbers
generated automatically, # can be used as the list item:

Number Lists

1.  Leading digit or letter.

#.  Auto-numbering with #.

#.  Looks like this.

We can use the indent rules to create lists within lists. It can be complex, and the
docutils RST parser will usually figure out what you meant.

A block quote is simply indented text:

Here's a paragraph with a cool quote.

    Cool quotes might include a tip.

Here's another paragraph.

Code samples are indicated with a :: double colon; they are indented, and they end
with a blank line. While :: can be at the end of a line or on a line by itself, putting ::
on a separate line makes it slightly easier to find code samples.

Here's a code sample:

Here's an example:
::

    x = Deck()
    first_card = x.pop()

This shows two lines of code. It will be distinguished from
surrounding text.

The docutils parser will also locate the doctest material and set it aside for special
formatting, similar to a code block. They begin with >>> and end with a blank line.
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Here's some sample output from doctest:

Here's an example:
::

    >>> x = Unsorted_Deck()
    >>> x.pop()
    'A♣'

This shows how the :class:`Unsorted_Deck` class works.

A blank line at the end of the test output is essential and is easily overlooked. When
the doctest error messages include the surrounding text, this means that additional
blank lines are required. 

One way in which we can annotate our text is by providing inline markup to identify
things that should be emphasized in different ways. It might be code, or an important
word, or a cross-reference. In the next section, we'll show how inline markup is used
in RST.

The RST inline markup
Within most blocks of text, we can include inline markup. We can't include inline
markup in the code samples or doctest blocks. Note that we cannot nest inline
markup, either.

The RST inline markup includes a variety of common ASCII treatments of text. For
example, we have *emphasis* and **strong emphasis**, which will usually
produce italic and bold, respectively. We may want to emphasize code segments
within a block of text; we use ``literal`` to force a monospaced font.

We can also include cross-references as the inline markup. A trailing _ indicates a
reference, and it points away from the preceding words; a leading _ indicates a target,
and it points toward the following words. For example, we might have `some
phrase`_ as a reference. We can then use _`some phrase` as the target for that
reference. We don't need to provide explicit targets for section titles: we can reference
`This Is A Heading`_ because all the section titles are already defined as targets.
For the HTML output, this will generate the expected <a> tags. For the PDF output,
in-text links will be generated.

We cannot nest inline markup. There's little need for nested inline markup; too many
typographic tricks devolve to visual clutter. If our writing is so sensitive to
typography, we should probably use LaTeX directly.
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Inline markup can also have explicit role indicators; this is :role:, followed by
`text`. Simple RST has relatively few roles. We might use :code:`some code` to
be more explicit regarding the presence of a code sample in the text. When we look at
Sphinx, there are numerous role indicators. The use of explicit roles can provide a
great deal of semantic information.

When doing things that have more complex math, we might use the LaTeX math
typesetting capabilities. This uses the :math: role; it looks like this: :math:`a=\pi
r^2`. 

Roles are open-ended. We can provide a configuration to docutils that adds new
roles. This is done by means of tools such as Sphinx. 

In addition to inline role definitions, RST has a number of directives. In the next
section, we'll look at these directives.

RST directives
RST also includes directives. A directive is written in a block that starts with ... A
directive may contain content that's indented. It may also have parameters. RST has a
large number of directives that we might use to create a more sophisticated
document. For docstring preparation, we'll rarely use more than a few of the
directives available. The directives are open-ended; tools such as Sphinx will add
directives to produce more sophisticated documentation.

Three commonly used directives are image, csv-table, and math. If we have an
image that should be part of our document, we might include it in the following way:

..  image:: media/some_file.png
    :width: 6in

We named the file media/some_file.png. We also provided it with a width
parameter to ensure that our image fits our document page layout. There are a
number of other parameters that we can use to adjust the presentation of an image.

:align:: We can provide keywords such as top, middle, bottom, left,
center, or right. This value will be provided to the align attribute of the
HTML <img> tag.
:alt:: This is the alternative text for the image. This value will be
provided to the alt attribute of the HTML <img> tag.
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:height:: This is the height of the image.
:scale:: This is a scale factor that can be provided instead of the height
and width.
:width:: This is the width of the image.
:target:: This is a target hyperlink for the image. This can be a complete
URI or an RST reference of the `name`_ form.

For the height and width, any of the length units available in CSS can be used. These
include em (the height of the element's font), ex (the height of the letter x), px (pixels),
as well as absolute sizes; in, cm, mm, pt (point), and pc (pica).

We can include a table in our document in the following manner:

..  csv-table:: Suits
    :header: symbol, name
    "'♣'", Clubs
    "'♦'", Diamonds
    "'♥'", Hearts
    "'♠'", Spades

This allows us to prepare data that will become a complex HTML table in a simple
CSV notation. We can have a more complex formula using the math directive:

..  math::

    \textbf{O}(2^n)

This allows us to write larger LaTeX math to create a separate equation. These can be
numbered and cross-referenced as well. Note the blank lines and the indentation
around the formula; these are essential for helping the RST tools locate the relevant
text to be treated as math.

There are a number of other RST markup techniques. In the next section, we'll suggest
some ways to learn how to annotate text so that it is properly formatted and indexed.

Learning RST
One way to build skills in RST is to install docutils and use the rst2html.py script
to parse an RST document and convert it to HTML pages. A simple practice
document can easily show us the various RST features.
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All of a project's requirements, architecture, and documentation can be written using
RST and transformed into HTML or LaTeX. It's relatively inexpensive to write user
stories in RST and drop those files into a directory that can be organized and
reorganized, since stories are groomed, put into development, and implemented.
More complex tools may not be any more valuable than docutils.

The advantage of using pure text files and the RST markup is that we can easily
manage our documentation in parallel with our source code. We're not using a
proprietary word processing file format. We're not using a wordy and long-winded
HTML or XML markup that must be compressed to be practical. We're simply storing
more text along with the source code.

If we're using RST to create the documentation, we can also use the rst2latex.py
script to create a .tex file that we can run through a LaTeX toolset to create
postscript or PDF documents. This requires a LaTeX toolset, and usually, the TeXLive
distribution is used for this. Refer to http://www.tug.org/texlive/ for a
comprehensive set of tools to transform TeX into elegant, final documents. TeXLive
includes the pdfTeX tool, which can be used to convert the LaTeX output to a PDF
file.

 In the next section, we'll see how to write effective docstrings.

Writing effective docstrings
When writing docstrings, we need to focus on the essential information that our
audience needs. When we look at using a library module, what do we need to know?
Whatever questions we ask means that other programmers will often have similar
questions. There are two boundaries that we should stay inside when we write
docstrings:

It's best to avoid abstract overviews, high-level requirements, user stories,
or background that is not tied directly to the code. We should provide the
background in a separate document. A tool such as Sphinx can combine
background material and code in a single document.
It's best to also avoid overly detailed how it works implementation trivia.
The code is readily available, so there's no point in recapitulating the code
in the documentation. If the code is too obscure, perhaps it should be
rewritten to make it clearer.

http://www.tug.org/texlive/


Quality and Documentation Chapter 20

[ 694 ]

Perhaps the single most important thing that developers want is a working example
of how to use the Python object. The RST :: literal block is the backbone of these
examples.

We'll often write RST code samples in the following manner:

Here's an example::

    d = Deck()
    c = d.pop()

The double colon, ::, precedes an indented block. The indented block is recognized
by the RST parser as code and will be literally passed through to the final document.

In addition to an example, the formal API is also important. We'll take a look at
several API definition techniques in the later section. These rely on the RST field list
syntax. It's very simple, which makes it very flexible.

Once we're past the example and the API, there are a number of other things that
compete for the third place. What else we need to write depends on the context. There
appear to be three cases:

Files, including packages and modules: In these cases, we're providing an
overview or introduction to a collection of modules, classes, or function
definitions. We need to provide a simple roadmap or overview of the
various elements in the file. In the case where the module is relatively
small, we might provide the doctest and code samples at this level.
Classes, including method functions: This is where we often provide code
samples and doctest blocks that explain the class API. Because a class
may be stateful and may have a relatively complex API, we may need to
provide rather lengthy documentation. Individual method functions will
often have detailed documentation.
Functions: We may provide code samples and doctest blocks that explain
the function. Because a function is often stateless, we may have a relatively
simple API. In some cases, we may avoid more sophisticated RST markup
and focus on the help() function's documentation.

We'll take a look at each of these broad, vague documentation contexts in some detail.
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Writing file-level docstrings, including
modules and packages
A package or a module's purpose is to contain a number of elements. A package
contains modules as well as classes, global variables, and functions. A module
contains classes, global variables, and functions. The top-level docstrings on these
containers can act as roadmaps to explain the general features of the package or
module. The details are delegated to the individual classes or functions.

We might have a module docstring that looks like the following code:

Blackjack Cards and Decks
=========================

This module contains a definition of :class:`Card`,
:class:`Deck` and :class:`Shoe` suitable for Blackjack.

The :class:`Card` class hierarchy
---------------------------------

The :class:`Card` class hierarchy includes the following class
definitions.

:class:`Card` is the superclass as well as being the class for number
cards.
:class:`FaceCard` defines face cards: J, Q and K.
:class:`AceCard` defines the Ace. This is special in Blackjack because
it creates a soft total for a hand.

We create cards using the :func:`card` factory function to create the
proper
:class:`Card` subclass instances from a rank and suit.

The :class:`Suit` enumeration has all of the Suit instances.

::

    >>> from ch20_ex1 import cards
    >>> ace_clubs= cards.card( 1, cards.suits[0] )
    >>> ace_clubs
    'A♣'
    >>> ace_diamonds= cards.card( 1, cards.suits[1] )
    >>> ace_clubs.rank ==  ace_diamonds.rank
    True

The :class:`Deck` and :class:`Shoe` class hierarchy
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---------------------------------------------------

The basic :class:`Deck` creates a single 52-card deck.
The :class:`Shoe` subclass creates a given number of decks.
A :class:`Deck` can be shuffled before the cards can be
extracted with the :meth:`pop` method.
A :class:`Shoe` must be shuffled and
*burned*. The burn operation sequesters a random number of cards
based on a mean and standard deviation. The mean is a number of
cards (52 is the default.)
The standard deviation for the burn is
also given as a number of cards (2 is the default.)

Most of the text in this docstring provides a roadmap to the contents of this module.
It describes the class hierarchies, making it slightly easier to locate a relevant class.
References to classes use RST inline markup. There is a role prefix followed by the
reference; for example, :class:`Card` generates text that will be a hyperlink to the
definition of the Card class. We'll look at these references later. In a purely Python
environment, these simple references work nicely; in a polyglot environment, or
when using Sphinx outside Python, there are some important variations on the role
names.

The docstring includes a simple example of the card() factory function based on
doctest. This advertises this function as an important feature of the module as a
whole. It might make sense to provide the doctest explanation of the Shoe class, as
that's perhaps the most important part of this module.

This docstring includes some inline RST markup to put class names into a 
monospaced font. The section titles are underlined with === and --- lines. The RST
parser can determine that the heading underlined with === is the parent of the
headings underlined with ---.

We'll look at using Sphinx to produce the documentation in a later section. Sphinx
will leverage the RST markup to produce great-looking HTML documentation.

Now, let's look at how to write API details in RST markup.
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Writing API details in RST markup
One of the benefits of using the RST markup is that we can provide formal API
documentation. The API parameters and return values are formatted using an RST
field list. Generally, a field list has the following form:

:field1: some value
:field2: another value

A field list is a sequence of field labels (as :label:) and a value associated with that
label. The label is generally short, and the value can be as long as needed. Field lists
are also used to provide parameters to directives.

We'll use an extended form of the RST field list syntax to write the API
documentation. We'll extend the field name to become a multipart item. We'll add
prefixes with keywords such as param or type. The prefix will be followed by the
parameter's name.

There are several field prefixes. We can use any of these: param, parameter, arg,
argument, key, and keyword. For example, we might write the following code:

:param rank: Numeric rank of the card
:param suit: Suit of the card

We generally use param (or parameter) for the positional parameters, and key (or
keyword) for the keyword parameters. These field list definitions will be collected in
an indented section. The Sphinx tool will also compare the names in the
documentation with the names in the function argument list, to be sure that they
match.

We can also define the type of a parameter using type as a prefix:

:type rank: integer in the range 1-13.

While this can be helpful, it's far better to use proper type hints in the function and
method definitions. The type hints are used by Sphinx and other tools. They are
checked by mypy, also.

For functions that return a value, we should describe the result. We can summarize
the return value with the field label of returns or return. 

:returns: soft total for this card
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Additionally, we should also include information about exceptions that are unique to
this function. We have four aliases for this field: raises, raise, except, and
exception. We would write the following code:

:raises TypeError: rank value not in range(1, 14).

We can also describe the attributes of a class. For this, we can use var, ivar, or cvar.
We might write the following code:

:ivar soft: soft points for this card; usually hard points, except for
aces.
:ivar hard: hard points for this card; usually the rank, except for
face cards.

We should use ivar for instance variables, and cvar for class variables. However,
there's no visible difference in the final HTML output.

These field list constructs are used to prepare docstrings for classes, class methods,
and standalone functions. We'll look at each case in the later section.

Now, let's see how to write class and method function docstrings.

Writing class and method function docstrings
A class will often contain a number of elements, including attributes and method
functions. A stateful class may also have a relatively complex API. Objects will be
created, undergo changes in state, and possibly be garbage-collected at the end of
their lives. We might want to describe some (or all) of these state changes in the class
docstring or the method function docstrings.

We'll use the field list technique to document the class variables in the overall class
docstring. This will generally focus on using the :ivar variable:, :cvar
variable:, and :var variable: field list items.

Each individual method function will also use field lists to define the parameters and
return the values and exceptions raised by each method function. Here's how we
might start to write a class with docstrings for the class and method functions:

class Card:
    """
    Definition of a numeric rank playing card.
    Subclasses will define :py:class:`FaceCard` and
:py:class:`AceCard`.
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    :ivar rank: int rank of the card
    :ivar suit: Suit suit of the card
    :ivar hard: int Hard point total for a card
    :ivar soft: int Soft total; same as hard for all cards except
Aces.
    """

    def __init__(
        self, rank: int, suit: Suit, hard: int, soft: Optional[int] =
None
    ) -> None:
        """Define the values for this card.

        :param rank: Numeric rank in the range 1-13.
        :param suit: Suit object from :class:`Suits`
        :param hard: Hard point total (or 10 for FaceCard or 1 for
AceCard)
        :param soft: The soft total for AceCard, otherwise defaults to
hard.
        """
        self.rank = rank
        self.suit = suit
        self.hard = hard
        self.soft = soft if soft is not None else hard

    def __str__(self) -> str:
        return f"{self.rank}{self.suit}"

    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(rank={self.rank},
suit={self.suit})"

When we include this kind of RST markup in the docstring, then a tool such as
Sphinx can format very nice-looking HTML output. We've provided you with both
class-level documentation of the instance variables as well as method-level
documentation of the parameters to one of the method functions.

This example uses the text :py:class:`Card` to generate a reference to the class
card. The role name in this markup is a complex-looking :py:class: to help
distinguish the Python language domain. In complex projects, there may be multiple 
language domains, and the role names can reflect the variety of domains.

When we look at this class with help(Card), the RST markup will be visible. It's not
too objectionable, as it's semantically meaningful. This points out a balance that we
may need to strike between the help() text and the Sphinx documents.
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Writing function docstrings
A function docstring can be formatted using field lists to define the parameters and
return the values and raised exceptions. Here's an example of a function that includes
a docstring:

def card(rank: int, suit: Suit) -> Card:
    """
    Create a :py:class:`Card` instance from rank and suit.

    :param suit: Suit object
    :param rank: Numeric rank in the range 1-13
    :returns: :py:class:`Card` instance
    :raises TypeError: rank out of range

    >>> from Chapter_20.ch20_ex1 import card
    >>> str(card(3, Suit.Heart))
    '3♥'
    >>> str(card(1, Suit.Heart))
    'A♥'
    """
    if rank == 1:
        return AceCard(rank, suit, 1, 11)
    elif 2 <= rank < 11:
        return Card(rank, suit, rank)
    elif 11 <= rank < 14:
        return FaceCard(rank, suit, 10)
    else:
        raise TypeError

The docstring for this function includes parameter definitions, return values, and the
raised exceptions. There are four individual field list items that formalize the API.
We've included a doctest sequence as well. When we document this module in
Sphinx, we'll get very nice-looking HTML output. Additionally, we can use the
doctest tool to confirm that the function matches the simple test case.

Sphinx will expand the type hints slightly. The preceding code uses the
source, card(rank: int, suit: Suit) -> Card. This will be expanded
to ch20_ex1.card(rank: int, suit: ch20_ex1.Suit) -> ch20_ex1.Card in
the HTML page that's created by Sphinx. The class names have a prefix added to help
readers understand the software.
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More sophisticated markup techniques
There are some additional markup techniques that can make a document easier to
read. In particular, we often want useful cross-references between class definitions.
We may also want cross-references between sections and topics within a document.

In pure RST (that is, without Sphinx), we need to provide proper URLs that reference
different sections of our documents. We have three kinds of references:

Implicit references to section titles: We can use `Some Heading`_ to
refer to the Some Heading section. This will work for all the headings that
docutils recognizes.
Explicit references to targets: We can use target_ to reference the location
of _target in the document.
Inter-document references: We have to create a full URL that explicitly
references a section title. Docutils will translate section titles into all
lowercase, replacing the punctuation with -. This allows us to create a
reference to a section title in an external document like this: `Design
<file:build.py.html#design>`_.

When we use Sphinx, we get more inter-document, cross-reference capabilities. These
extensions to basic RST allow us to avoid trying to write detailed URLs. To do this,
we'll include a target label in front of a heading, and use the :ref:`label` syntax to
refer to the label.

We might have one document with some RST, as shown in the following code
snippet:

.. _user_stories:
User Stories
============

The user generally has three tasks: customize the simulation's
parameters, run a simulation, and analyze the results of a simulation.

Note that the label begins with _ to show it's a target; the label itself follows the
leading _. The .. at the beginning of the line, and the : make this a directive to RST.
The rules of the RST process specifically stipulate ignoring unknown directives. RST
can be processed by many tools, and tool-specific directives are common. One tool
will quietly ignore directives intended for a different tool. For that reason, this label-
as-directive technique works very elegantly.
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In a separate document, we might have :ref:`user_stories`. Note the lack of a
leading _; this is a reference to the label, not a definition of a label. Sphinx tracks all of
the labels and the associated titles so that it can create a proper HTML reference.

Now, let's see how to use Sphinx to produce documentation.

Using Sphinx to produce the
documentation
The Sphinx tool produces very good-looking documentation in a variety of formats. It
can easily combine documentation from source code as well as external files with
additional design notes, requirements, or background.

The Sphinx tool can be found at http://sphinx-doc.org. The download can become
complex because Sphinx depends on several other projects. The Sphinx tutorial is
outstanding.

Most projects will start by using sphinx-quickstart to create the initial set of files.
Once the files are available, details can be added. To finalize the documentation,
the sphinx-build program will be used.

Often, running sphinx-build is handled via the make program, which slightly
simplifies the command-line use of Sphinx. In some cases, make may not be available.

macOS users won't have make available by default. It's part of the XCode
package of developer tools from Apple. While the download is very large,
the XCode tools are easy to install and use. Instead of XCode, some people
like to use Homebrew to install make. Visit https://brew.sh for
information on the Homebrew tool. The brew install make command
will create a useful make utility for macOS. 
For Window users, sphinx-quickstart will create a make.bat script
that behaves like the make utility.

The make utility is not required, but it's convenient. We can always use sphinx-
build directly.

Let's learn how to use Sphinx quickstart in the next section.

http://sphinx-doc.org


Quality and Documentation Chapter 20

[ 703 ]

Using Sphinx quickstart
The handy feature of sphinx-quickstart is that it populates the rather complex
config.py file via an interactive question-and-answer session. Here's a part of one
such session that shows how the dialog looks; we've highlighted a few responses
where the defaults don't seem to be optimal.

For more complex projects, it's simpler in the long run to separate the documentation
from the working code. It's often a good idea to create a doc directory within the
overall project tree:

Enter the root path for documentation. > Root path for the
documentation [.]: docs

For very small documents, it's fine to interleave the source and HTML. For larger
documents, particularly documents where there may be a need to produce LaTeX and
PDF, it's handy to keep these files separate from the HTML version of the
documentation:

You have two options for placing the build directory for Sphinx
output.
Either, you use a directory "_build" within the root path, or you
separate
"source" and "build" directories within the root path.
> Separate source and build directories (y/N) [n]: n

The next batch of questions identifies specific add-ons. It starts with the following
note:

Please indicate if you want to use one of the following Sphinx
extensions:

We'll suggest a set of add-ons that seem most useful for general Python development.
For first-time users of Sphinx, this will be enough to get started and produce excellent
documentation. Clearly, specific project needs and objectives will override these
generic suggestions.

We'll almost always want to include the autodoc feature to produce the
documentation from the docstrings. If we're using Sphinx to produce the
documentation outside of the Python programming, we may want to turn autodoc
off:

> autodoc: automatically insert docstrings from modules (y/N) [n]: y
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If we have doctest examples, we can have Sphinx run the doctest for us. For small
projects, where most of the testing is done via doctest, this can be very handy. For
larger projects, we'll often have a unit test script that includes doctest. Performing the
doctest via Sphinx, as well as through the formal unit test, is still a good idea:

> doctest: automatically test code snippets in doctest blocks (y/N)
[n]: y

A mature development effort may have many projects that are closely related;
closely-related projects might have multiple, related Sphinx documentation
directories:

> intersphinx: link between Sphinx documentation of different projects
(y/N) [n]:

The todo extension allows us to include a .. todo:: directive in our docstrings. We
can then add a special .. todolist:: directive to create an official to-do list in the
documentation:

> todo: write "todo" entries that can be shown or hidden on build
(y/N) [n]:

The coverage report could be a handy quality assurance metric:

> coverage: checks for documentation coverage (y/N) [n]:

For projects that involve any math, having a LaTeX toolset allows us to have the math
nicely typeset as graphic images and included in HTML. It also leaves the raw math
in the LaTeX output. MathJax is a web-based JavaScript library that also works in the
following manner:

> pngmath: include math, rendered as PNG images (y/N) [n]: y
> mathjax: include math, rendered in the browser by MathJax (y/N) [n]:

For very complex projects, we might need to produce the variant documentation:

> ifconfig: conditional inclusion of content based on config values
(y/N) [n]:

Most application documentations describe an API. We should include both the
autodoc and viewcode features. The viewcode option allows the reader to view the
source so that they can understand the implementation in detail:

> viewcode: include links to the source code of documented Python
objects (y/N) [n]: y
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Finally, when working with GitHub, it helps to include a special file to prevent using
the Jekyll tools to render the pages.

> githubpages: create .nojekyll file to publish the document on GitHub
pages (y/n) [n]: y

The autodoc and doctest features mean that we can focus on writing docstrings
within our code. We only need to write very small Sphinx documentation files to
extract the docstring information. For some developers, the ability to focus on the
code reduces the fear factor associated with writing the documentation.

In the next section, we'll see how to write the Sphinx documentation.

Writing Sphinx documentation
It's often helpful to start with an outline of placeholders for the documentation that
will accumulate as the software development proceeds. One structure that might be
helpful is based on the 4+1 views of an architecture. For more information, refer
to The Software Architects Handbook available from Packt Publishing.

We can create five top-level documents under our index.html root: user_stories,
logical, process, implementation, and physical. Each of these needs an RST
title paragraph, but nothing more is required.

We can then update the .. toctree:: directive that's generated in the Sphinx
index.rst file by default:

.. Mastering OO Python documentation master file, created by
   sphinx-quickstart on Fri Jan 31 09:21:55 2014.
   You can adapt this file completely to your liking, but it should at
least
   contain the root `toctree` directive.

Welcome to Mastering OO Python's documentation!
===============================================

Contents:

.. toctree::
   :maxdepth: 2

   user_stories
   logical
   process
   implementation
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   physical

Indices and tables
==================

* :ref:`genindex`
* :ref:`modindex`
* :ref:`search`

Once we have a top-level structure, we can use the make command to build our
documentation:

make doctest html

This will run our doctests, and, if all the tests pass, it will create the HTML
documentation.

In the next section, we'll look at filling in the details for the various views of the
application software.

Filling in the 4+1 views for documentation
As the development proceeds, the 4+1 views can be used to organize the details that
accumulate. The idea is to collect the information that belongs outside the narrow
focus of docstrings in the code.

The user_stories.rst document is where we can collect user stories,
requirements, and other high-level background notes. This might evolve into a
directory tree if the user stories become complex.

The logical.rst document is a place to collect our initial OO designs for the class,
module, and package. This should be the origin of our design thinking. It might
contain alternatives, notes, mathematical backgrounds, proofs of correctness, and
diagrams of the logical software design. For relatively simple projects, where the
design is relatively clear, this may remain empty. For complex projects, this may
describe some sophisticated analysis and design that serves as the background or
justification for the implementation.

The final OO design will be the Python modules and classes that belong in the
implementation.rst file. We'll take a look at this in a little more detail, as this will
become our API documentation. This part will be based in a direct way on our
Python code and the RST-markup docstrings.
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The process.rst document can collect information about the dynamic, runtime
behavior. This would include topics such as concurrency, distribution, and
integration. It may also contain information on performance and scalability. The
network design and protocols used might be described here.

For smaller applications, it may not be perfectly clear what material should go into
the process document. This document may overlap with the logical design and the
overall architectural information. When in doubt, we have to strive for clarity based
on the audience's need for information. For some users, many small documents are
helpful. For other users, a single large document is preferred.

The physical.rst file is where the deployment details can be recorded. A
description of the configuration details would go here, specifically, the environment
variables, the configuration file format details, the available logger names, and other
information required for administration and support. This may also include
configuration information such as server names, IP addresses, account names,
directory paths, and related notes. In some organizations, an administrator may feel
that some of these details are not appropriate for general software documentation.

In the next section, we'll see how to write the implementation document.

Writing the implementation document
The implementation.rst document can be based on the use of automodule to 
create the documentation. Here's how an implementation.rst document might
start:

Implementation
==============

Here's a reference to the `inception document
<_static/inception_doc/index.html>`_

Here's a reference to the :ref:`user_story`

The ch20_ex1 module
-------------------

..  automodule:: ch20_ex1
    :members:
    :undoc-members:
    :special-members:

Some Other Module
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-----------------

We'd have an ``..  automodule::`` directive here, too.

We used two kinds of RST headings: there's a single, top-level heading, and two
subheadings. RST deduces the relationship between the parent and the children. In
this example, we've used === for the parent heading (also the title) and --- for the
subheadings.

We've provided you with an explicit reference to a document that was copied into the
_static directory as inception_doc. We created a sophisticated RST link from the
words inception document to the actual document's index.html file.

:ref:`user_story` is an internal cross-reference to another section. Sphinx tracks
all of the titles and headings that are preceded by directives used as labels. In this
case, there will be title with .. _user_story: on the line in front of the title.
_user_story is an RST target; it must begin with _. The title following the target will
be referred to by the :ref:`user_story` link. We can change the title, and the
HTML will be updated properly.

Within the two subheadings, we used the Sphinx .. automodule:: directive to
extract the docstrings from two modules. We've provided you with three parameters
to the automodule directives:

:members:: This includes all the members of the module. We can list
explicit member classes and functions, instead of listing all the members.
:undoc-members:: This includes members who lack proper docstrings.
This is handy when starting development; we'll still get some API
information, but it will be minimal.
:special-members:: This includes special-method name members, which
are not included in the Sphinx documentation by default.

This gives us a relatively complete view. If we leave out all of these parameters,
:undoc-members: and :special-members:, we'll get a smaller, more focused
document.

Our implementation.rst can evolve as our project evolves. We'll add the
automodule references as the modules are completed.
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The organization of the .. automodule:: directives can provide us with a useful
roadmap or overview of a complex collection of modules or packages. A little time
spent organizing the presentation so that it shows us how the software components
work together is more valuable than a great deal of verbiage. The point is not to
create great narrative literature; the point is to provide guidance to the other
developers.

Creating Sphinx cross-references
Sphinx expands the cross-reference techniques available via RST. The most important
set of cross-reference capabilities is the ability to directly refer to specific Python code
features. These make use of the inline RST markup using the :role:`text` syntax.
In this case, a large number of additional roles are part of Sphinx.

We have the following kinds of cross-reference roles available:

The :py:mod:`some_module` syntax will generate a link to the definition
of this module or package.
The :py:func:`some_function` syntax will generate a link to the
definition of the function. A qualified name with module.function or
package.module.function can be used.
The :py:data:`variable` and :py:const:`variable` syntax will
generate a link to a module variable that's defined with a .. py:data::
variable directive. A constant is simply a variable that should not be
changed.
The :py:class:`some_class` syntax will link to the class definition.
Qualified names such as module.class can be used.
The :py:meth:`class.method` syntax will link to a method definition.
The :py:attr:`class.attribute` syntax will link to an attribute that's
defined with a .. py:attribute:: name directive.
The :py:exc:`exception` syntax will link to a defined exception.
The :py:obj:`some_object` syntax can create a generic link to an object.

If we use ``SomeClass`` in our docstring, we'll get the class name in a monospaced
font. If we use :py:class:`SomeClass`, we get a proper link to the class definition,
which is often far more helpful.



Quality and Documentation Chapter 20

[ 710 ]

The :py: prefix on each role is there because Sphinx can be used to write the
documentation about other languages in addition to Python. By using this :py:
prefix on each role, Sphinx can provide proper syntax additions and highlighting.

Here's a docstring that includes explicit cross-references to other classes and
exceptions:

def card(rank: int, suit: Suit) -> Card:
    """
    Create a :py:class:`Card` instance from rank and suit.
    Can raise :py:exc:`TypeError` for ranks out of the range 1 to 13,
inclusive.

    :param suit: Suit object
    :param rank: Numeric rank in the range 1-13
    :returns: :py:class:`Card` instance
    :raises TypeError: rank out of range
    """

By using :py:class:`Card` instead of ``Card``, we're able to create explicit links
between this comment block and the definition of the Card class. While it's a bit of
typing overhead to include the role prefix, the resulting web of cross-references leads
to very useful documentation.

When our projects get larger, we may need to use directories to organize the files. In
the next section, we'll look at techniques for refactoring a long flat sequence of files
into directories to impose some structure and organization.

Refactoring Sphinx files into directories
For larger projects, we'll need to use directories instead of simple files. It's common to
have a project expand from a few simple files to a more complex structure, where the
files are replaced by directories. In this case, we'll perform the following steps to
refactor an RST file into a directory that contains RST files:

Add the directory – implementation, for example.1.
Move the original implementation.rst to2.
implementation/index.rst.
Change the original index.rst file. Switch the .. toctree:: directive to3.
reference implementation/index instead of implementation.
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We can then work within the implementation directory using the .. toctree::
directive in the implementation/index.rst file to include other files that are in
this directory.

When our documentation is split into simple directories of simple text files, we can
edit small, focused files. Individual developers can make significant contributions
without encountering any file-sharing conflicts that arise when trying to edit a word-
processing document.

Handling legacy documents
A software development project often starts with a collection of documents
describing the reasons for the project. These documents can be called
inception documents because they describe the project at its inception. These
documents may include memos and presentations justifying the project. They often 
describe the most essential user stories.

Ideally, these inception documents are already text files. Pragmatically, they're almost
never text. Often, the inception document is a slideshow format, perhaps Microsoft
PowerPoint, Apple Keynote, or Google Slides. These documents mix text with
diagrams, making them a challenge to work with.

The goal is to create a text file that can be part of the RST-based documentation. For
example, many word processors can save a document as text. Some word processors
can produce Markdown markup; this is easily converted to RST. In some cases, we
might want to use a tool such as pandoc to extract RST markup from the original
document. This lets us import the document into the project and work with it via the
Sphinx tools. For more information on pandoc, refer to https:/ ​/ ​pandoc. ​org.

One of the difficult cases is a project where some of the inception documentation is a
slideshow. The diagrams and images are first-class parts of the content and don't
have handy text representations. In these cases, it's sometimes best to export the
presentation as an HTML document and put this into the Sphinx
doc/source/_static directory. This will allow us to integrate the original material
into Sphinx via simple RST links of the `Inception
<_static/inception_doc/index.html>`_ form.

https://pandoc.org
https://pandoc.org
https://pandoc.org
https://pandoc.org
https://pandoc.org
https://pandoc.org
https://pandoc.org
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In some cases, an interactive, web-based tool, such as Trello, is used to manage the
project or user stories. In this case, the inception and background documentation can
be handled via simple URL references of this form: `Background
<http://someservice/path/to/page.html>`_.

In the next section, we'll see how to write the documentation.

Writing the documentation
An important part of software quality comes from noting that the final product of
software development is far more than the code. As we noted in Chapter 17,
Designing for Testability, code that cannot be trusted cannot be used. In that chapter,
we suggested testing was essential to establishing trust. We'd like to generalize that a
bit. In addition to detailed testing, there are several other quality attributes that make
the code usable. Trustworthiness supports usability.

There are a number of aspects of trustworthy code:

We understand the use cases
We understand the data model and processing model
We understand the test cases

When we look at more technical quality attributes, we see that these are really about
understanding. For example, debugging seems to mean that we can confirm our
understanding of how the application works. Auditability also seems to mean that we
can confirm our understanding of processing by viewing specific examples to show
that they work as expected.

Documentation creates trust. For more information on the software quality, start here:
https:/​/​s-​cube- ​network. ​eu/ ​km/ ​qrm/ ​index. ​html. There is a lot to learn about
software quality; it's a very large area, and this is only one small aspect. 

One way to create detailed documentation is to produce both the final human-
readable document and the working source code from the same source. This is the
idea of literate programming, which is the subject of the next section.

https://s-cube-network.eu/km/qrm/index.html
https://s-cube-network.eu/km/qrm/index.html
https://s-cube-network.eu/km/qrm/index.html
https://s-cube-network.eu/km/qrm/index.html
https://s-cube-network.eu/km/qrm/index.html
https://s-cube-network.eu/km/qrm/index.html
https://s-cube-network.eu/km/qrm/index.html
https://s-cube-network.eu/km/qrm/index.html
https://s-cube-network.eu/km/qrm/index.html
https://s-cube-network.eu/km/qrm/index.html
https://s-cube-network.eu/km/qrm/index.html
https://s-cube-network.eu/km/qrm/index.html
https://s-cube-network.eu/km/qrm/index.html
https://s-cube-network.eu/km/qrm/index.html
https://s-cube-network.eu/km/qrm/index.html
https://s-cube-network.eu/km/qrm/index.html
https://s-cube-network.eu/km/qrm/index.html
https://s-cube-network.eu/km/qrm/index.html
https://s-cube-network.eu/km/qrm/index.html
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Literate programming
The idea of separating documentation from code can be viewed as an artificial
distinction. Historically, we wrote documentation outside the code because the 
programming languages were relatively opaque and biased toward efficient
compilation rather than clear exposition. Different techniques have been tried to
reduce the distance between the working code and documentation pertaining to the
code. Embedding more sophisticated comments, for example, is a long-standing
tradition for reducing the distance between code and notes. Python takes this a step
further by including a formal docstring in packages, modules, classes, and functions.

The literate programming approach to software development was pioneered by
Donald Knuth. The idea is that a single source document can produce efficient code,
as well as good-looking documentation. For machine-oriented assembler languages,
and languages such as C, there's an additional benefit of moving away from the
source language – a notation that emphasizes translation – toward a document that
emphasizes clear exposition. Additionally, some literate programming languages act
as a higher-level programming language; this might be appropriate for C or Pascal,
but it is decidedly unhelpful for Python.

Literate programming is about promoting a deeper understanding of the code. In the
case of Python, the source starts out very readable. Sophisticated literate
programming isn't required to make a Python program understandable. Indeed, the
main benefit of literate programming for Python is the idea of carrying deeper design
and use case information in a form that is more readable than simple Unicode text.

For more information, refer to http://www.literateprogramming.com and
http://xml.coverpages.org/xmlLitProg.html. The book Literate Programming, by
Donald Knuth, is the seminal title on this topic.

Use cases for literate programming
There are two essential goals when creating a literate program:

A working program: This is the code, extracted from the source
document(s) and prepared for the compiler or interpreter.
Easy-to-read documentation: This is the explanation, plus the code, plus
any helpful markup prepared for the presentation. This document could be
in HTML, ready to be viewed, or it could be in RST, and we'd use docutils
rst2html.py to convert it to HTML. Alternatively, it could be in LaTeX
and we run it through a LaTeX processor to create a PDF document.

http://www.literateprogramming.com
http://xml.coverpages.org/xmlLitProg.html
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The working program goal means that our literate programming document will cover
the entire suite of the source code files. While this seems daunting, we have to
remember that well-organized code snippets don't require a lot of complex hand-
waving; in Python, code itself can be clear and meaningful.

The easy-to-read documentation goal means that we want to produce a document that
uses something other than a single font. While most code is written in a monospaced
font, it isn't the easiest on our eyes. The essential Unicode character set doesn't
include helpful font variants such as bold or italic either. These additional display
details (the font change, size change, style change) have evolved over the centuries to
make a document more readable.

In many cases, our Python IDE will color-code the Python source. This is helpful, too.
The history of written communication includes a lot of features that can enhance
readability, none of which are available in simple Python source using a single font.

Additionally, a document should be organized around the problem and the solution.
In many languages, the code itself cannot follow a clear organization because it's
constrained by purely technical considerations of syntax and the order of the
compilation.

Our two goals boil down to two technical use cases:

Converting an original source text into the code.
Converting an original source text into the final documentation.

We can, to an extent, refactor these two use cases in some profound ways. For
example, we can extract the documentation from the code. This is what the pydoc
module does, but it doesn't handle the markup very well.

Both versions, code and final document, can be made isomorphic. This is the
approach taken by the PyLit project. The final documentation can be embedded
entirely in Python code via docstrings as well as # comments. The code can be
embedded entirely in RST documents using :: literal blocks.

The next section shows how to work with a literate programming tool.
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Working with a literate programming tool
Many Literate Programming (LP) tools are available. The essential ingredient, which 
varies from tool to tool, is the high-level markup language that separates the
explanation from the code.

The source files that we write will contain the following three things:

Text with markup that constitutes the explanation and the description
Working Code in Python
High-level markup to separate the text (with markup) from the code

Because of the flexibility of XML, this can be used as the high-level markup for
literate programming. It's not easy to write, however. There are tools that work with a
LaTeX-like markup based on the original web (and later CWeb) tools. There are some
tools that work with RST as the high-level markup.

The essential step in choosing a tool, then, is to take a look at the high-level markup
that is used. If we find that the markup is easy to write, we can comfortably use it to
produce the source document.

Python presents an interesting challenge. Because we have RST-based tools such as
Sphinx, we can have very literate docstrings. This leads us to two tiers of
documentation:

Explanations and background. This is outside the code. It provides
supporting information on the design decisions that helped to organize the
code.
Reference and API. This is inside the Python docstrings.

This leads to a pleasant, evolutionary approach to literate programming:

Initially, we can start by embedding the RST markup in our docstrings. A
Sphinx-produced document looks good and provides a tidy explanation for
the implementation choices.
We can step beyond the docstrings to create the background
documentation. This might include information on the design decisions,
architecture, requirements, and user stories. In particular, descriptions of
non-functional quality requirements belong outside the code.
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Once we've started to formalize this higher-level design documentation, we
can more easily pick an LP tool. This tool will then dictate how we combine
the documentation and code into a single, overall documentation structure.
We can use an LP tool to extract the code and produce the documentation.
Some LP tools can be used to run the test suite too.

Our goal is to create software that is not only well designed, but also trustworthy. As
noted previously, we create trust in a number of ways, including providing a tidy,
clear explanation of why our design is good.

We'll show some examples using PyLit3. For more information, see https:/ ​/ ​pypi.
org/​project/​pylit3/ ​3. ​1.​1/ ​.  The conversion from RST to HTML can be done with
Python's docutils package, specifically, the rst2html.py script. The math typesetting
can be handled through MathJax or one of the TeX tools. Refer to https:/ ​/​www.
mathjax.​org or  https:/ ​/​www. ​tug. ​org/ ​texlive/ ​. 

If we use a tool such as PyLit3, we might create RST files that look like the following
code:

#############
Combinations
#############

..  contents::

Definition
==========

For some deeper statistical calculations,
we need the number of combinations of *n* things
taken *k* at a time, :math:`\binom{n}{k}`.

..  math::

    \binom{n}{k} = \dfrac{n!}{k!(n-k)!}

The function will use an internal ``fact()`` function because
we don't need factorial anywhere else in the application.

We'll rely on a simplistic factorial function without memoization.

Test Case
=========

Here are two simple unit tests for this function provided
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as doctest examples.

>>> from combo import combinations
>>> combinations(4,2)
6
>>> combinations(8,4)
70

Implementation
===============

Here's the essential function definition, with docstring:
::

  def combinations(n: int, k: int) -> int:
      """Compute :math:`\binom{n}{k}`, the number of
      combinations of *n* things taken *k* at a time.

      :param n: integer size of population
      :param k: groups within the population
      :returns: :math:`\binom{n}{k}`
      """

An important consideration here is that someone hasn't confused
the two argument values.
::

      assert k <= n

Here's the embedded factorial function. It's recursive. The Python
stack limit is a limitation on the size of numbers we can use.
::

      def fact(a: int) -> int:
          if a == 0: return 1
          return a*fact(a-1)

Here's the final calculation. Note that we're using integer division.
Otherwise, we'd get an unexpected conversion to float.
::

      return fact(n)//(fact(k)*fact(n-k))
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This is a file written entirely in an RST markup. It contains some explanatory text,
some formal math, and even some test cases. These provide us with additional details
to support the relevant code sections. Because of the way PyLit works, we named the
file combo.py.txt. There are three things we can do with this file:

We can use PyLit3 to extract the code from this text file in the following
manner:

python3 -m pylit combo.py.txt

This creates combo.py from combo.py.txt. This is a Python module that is ready to
be used.

We can also use docutils to format this RST into an HTML page that
provides the documentation and code in a form that we can read more
easily than the original single-font text:

rst2html.py combo.py.txt combo.py.html

This creates combo.py.html ready for browsing. The mathjax package will be used
by docutils to typeset the mathematical portions, leading to very nice-looking output.

We can, additionally, use PyLit to run doctest and confirm that this
program really works:

python3 -m pylit --doctest combo.py.txt

This will extract the doctest blocks from the code and run them through the
doctest tool. We'll see that the three tests (the import and the two function
evaluations) all produce the expected results.
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The final web page produced by this would look something like the following
screenshot:

The HTML details are handled seamlessly by the RST to HTML tool, letting us focus
on simple markup and correct software.
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Our goal is to create software that is trustworthy. A tidy, clear explanation of why our
design is good is an important part of this trust. By writing the software and the
documentation side-by-side in a single source text, we can be sure that our
documentation is complete and provides a sensible review of the design decisions
and the overall quality of the software. A simple tool can extract working code and
documentation from a single source, making it easy for us to create the software and
the documentation.

Summary
In this chapter, we looked at four ways to create usable documentation. We can
incorporate the information into the docstrings in our software. We can use pydoc to
extract the API reference information from our software. We can use Sphinx to create
more sophisticated and elaborate documentation. Also, we can use a literate
programming tool to create even deeper and more meaningful documentation.

Design considerations and tradeoffs
The docstring should be considered as essential as any other part of the Python
source. This ensures that the help() function and pydoc will work correctly. As with
unit test cases, this should be viewed as a mandatory element of the software.

The documentation created by Sphinx can be very good looking; it will tend to
parallel the Python documentation. Our objective all along has been seamless
integration with the other features of Python. Using Sphinx tends to introduce an
additional directory structure for the documentation source and build.

As we design our classes, the question of how to describe the design is almost as
important as the resulting design itself. Software that can't be explained quickly and
clearly will be viewed as untrustworthy.

Taking the time to write an explanation may identify hidden complexities or
irregularities. In these cases, we might refactor a design, neither to correct a bug nor
to improve performance, but to make it easier to explain. The ability to explain is a
quality factor that has tremendous value.
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