Mastering

Object-Oriented
Python

Second Edition

Mastering Object-Oriented
Python
Second Edition

Build powerful applications with reusable code using
OOP design patterns and Python 3.7

Steven F. Lott

BIRMINGHAM - MUMBAI

Mastering Object-Oriented Python
Second Edition

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Chaitanya Nair

Content Development Editor: Zeeyan Pinheiro
Senior Editor: Afshaan Khan

Technical Editor: Ketan Kamble

Copy Editor: Safis Editing

Project Coordinator: Vaidehi Sawant
Proofreader: Safis Editing

Indexer: Manju Arasan

Production Designer: Jayalaxmi Raja

First published: April 2014
Second edition: June 2019

Production reference: 1130619

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78953-136-7

www.packtpub.com

http://www.packtpub.com

Packh

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos,
as well as industry leading tools to help you plan your personal development and
advance your career. For more information, please visit our website.

Why subscribe?

¢ Spend less time learning and more time coding with practical eBooks and
Videos from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.packt .com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.packt . com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author

Steven F. Lott has been programming since the 1970s, when computers were large,
expensive, and rare. As a contract software developer and architect, he has worked on
hundreds of projects, from very small to very large ones. He's been using Python to
solve business problems for over 10 years. His other titles with Packt include Python
Essentials, Mastering Object-Oriented Python, Functional Python Programming Second
Edition, Python for Secret Agents, and Python for Secret Agents II. Steven is currently a
technomad who lives in various places on the East Coast of the US. You can follow
him on Twitter via the handle @s_lott.

About the reviewers

Cody Jackson is a disabled military veteran, the founder of Socius Consulting — an IT
and business management consulting company in San Antonio — and a cofounder of
Top Men Technologies. He is currently employed at CACI International as the lead
ICS/SCADA modeling and simulations engineer. He has been involved in the tech
industry since 1994, when he joined the Navy as a nuclear chemist and Radcon
Technician. Prior to CACI, he worked at ECPI University as a computer information
systems adjunct professor. A self-taught Python programmer, he is the author of
Learning to Program Using Python and Secret Recipes of the Python Ninja. He holds an
Associate in Science degree, a Bachelor of Science degree, and a Master of Science
degree.

Hugo Solis is an assistant professor in the Physics Department at the University of
Costa Rica. His current research interests are computational cosmology, complexity,
cryptography, and the influence of hydrogen on material properties. He has vast
experience with languages, including C/C++ and Python for scientific programming.
He is a member of the Free Software Foundation and has contributed code to some
free software projects. He has also been a technical reviewer for Hands-On Qt for
Python Developers and Learning Object-Oriented Programming, and he is the author of
the Kivy Cookbook from Packt Publishing. Currently, he is in charge of the IFT, a Costa
Rican scientific nonprofit organization for the multidisciplinary practice of physics.

1'd like to thank Katty Sanchez, my beloved mother, for her support and vanguard
thoughts.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit
authors.packtpub.com and apply today. We have worked with thousands of
developers and tech professionals, just like you, to help them share their insight with
the global tech community. You can make a general application, apply for a specific
hot topic that we are recruiting an author for, or submit your own idea.

http://authors.packtpub.com

Table of Contents

Preface 1
Section 1: Tighter Integration Via Special
Methods
Chapter 1: Preliminaries, Tools, and Techniques 10
Technical requirements 11
About the Blackjack game 12
Playing the game 13
Blackjack player strategies 14
Object design for simulating Blackjack 14
The Python runtime and special methods 14
Interaction, scripting, and tools 15
Selecting an IDE 16
Consistency and style 17
Type hints and the mypy program 18
Performance — the timeit module 18
Testing — unittest and doctest 19
Documentation — sphinx and RST markup 21
Installing components 22
Summary 23
Chapter 2: The __init__() Method 24
Technical requirements 25
The implicit superclass — object 25
The base class object __init__() method 26
Implementing __init__() in a superclass 27
Creating enumerated constants 29
Leveraging __init__() via a factory function 31
Faulty factory design and the vague else clause 32
Simplicity and consistency using elif sequences 33
Simplicity using mapping and class objects 34
Two parallel mappings 35
Mapping to a tuple of values 36
The partial function solution 36
Fluent APIs for factories 37
Implementing __init__() in each subclass 38
Composite objects 40

Wrapping a collection class 41

Table of Contents

Extending a collection class

More requirements and another design
Complex composite objects

Complete composite object initialization
Stateless objects without __init__()
Some additional class definitions
Multi-strategy __init__()

More complex initialization alternatives

Initializing with static or class-level methods
Yet more __init__() techniques

Initialization with type validation

Initialization, encapsulation, and privacy
Summary

Chapter 3: Integrating Seamlessly - Basic Special Methods
Technical requirements
The __repr__() and __str__() methods
Simple __str_()and __repr_ ()
Collection __str__()and __repr__ ()
The __format__ () method
Nested formatting specifications
Collections and delegating format specifications
The __hash__() method
Deciding what to hash
Inheriting definitions for immutable objects
Overriding definitions for immutable objects
Overriding definitions for mutable objects
Making a frozen hand from a mutable hand
The __bool__() method
The __bytes__ () method
The comparison operator methods
Designing comparisons
Implementation of a comparison of objects of the same class
Implementation of a comparison of the objects of mixed classes
Hard totals, soft totals, and polymorphism
A mixed class comparison example
The __del__() method
The reference count and destruction
Circular references and garbage collection
Circular references and the weakref module
The _del_ () and close() methods
The __new__ () method and immutable objects
The __new__ () method and metaclasses
Metaclass example — class-level logger
Summary

42
42
43
45
46
47
50
52
54
55
58
60
62

63
64
64
66
67
68
71
71
72
73
75
78
80
82
84
85
88
90
92
94
95
97
100
101
102
104
106
107
109
111
112

[ii]

Table of Contents

Chapter 4: Attribute Access, Properties, and Descriptors 114
Technical requirements 115
Basic attribute processing 115

Attributes and the __init__() method 117
Creating properties 118
Eagerly computed properties 121
The setter and deleter properties 123
Using special methods for attribute access 124
Limiting attribute names with __slots__ 126
Dynamic attributes with __getattr_ () 127
Creating immutable objects as a NamedTuple subclass 128
Eagerly computed attributes, dataclasses, and __post_init__ () 129
Incremental computation with __setattr__ () 131
The __getattribute__ () method 133
Creating descriptors 135
Using a non-data descriptor 138
Using a data descriptor 140
Using type hints for attributes and properties 143
Using the dataclasses module 145
Attribute Design Patterns 147
Properties versus attributes 148
Designing with descriptors 148
Summary 149

Chapter 5: The ABCs of Consistent Design 150
Technical requirements 150
Abstract base classes 151
Base classes and polymorphism 153
Callable 155
Containers and collections 155
Numbers 157
Some additional abstractions 158

The iterator abstraction 158
Contexts and context managers 159
The abc and typing modules 160
Using the __subclasshook__ () method 162
Abstract classes using type hints 163
Summary, design considerations, and trade-offs 164
Looking forward 165

Chapter 6: Using Callables and Contexts 166
Technical requirements 167
Designing callables 167
Improving performance 169

Using memoization or caching 171

[iii]

Table of Contents

Using functools for memoization 172
Aiming for simplicity using a callable interface 173
Complexities and the callable interface 174
Managing contexts and the with statement 176
Using the decimal context 178
Other contexts 179
Defining the __enter__ () and _exit__() methods 179
Handling exceptions 181
Context manager as a factory 182
Cleaning up in a context manager 183
Summary 185
Callable design considerations and trade-offs 185
Context manager design considerations and trade-offs 186
Looking forward 187
Chapter 7: Creating Containers and Collections 188
Technical requirements 189
ABCs of collections 189
Examples of special methods 191
Using the standard library extensions 191
The typing.NamedTuple class 193
The deque class 195
The ChainMap use case 197
The OrderedDict collection 198
The defaultdict subclass 199
The counter collection 201
Creating new kinds of collections 203
Narrowing a collection's type 204
Defining a new kind of sequence 205
A statistical list 206
Choosing eager versus lazy calculation 208
Working with __getitem__ (), __setitem__ (), __delitem__ (), and slices 211
Implementing __getitem__ (), __setitem__ (), and __delitem__ () 213
Wrapping a list and delegating 214
Creating iterators with __iter__ () 217
Creating a new kind of mapping 218
Creating a new kind of set 220
Some design rationale 222
Defining the Tree class 223
Defining the TreeNode class 225
Demonstrating the binary tree bag 229
Design considerations and tradeoffs 230
Summary 231
Chapter 8: Creating Numbers 233

[iv]

Table of Contents

Technical requirements 234
ABCs of numbers 234
Deciding which types to use 236
Method resolution and the reflected operator concept 237
The arithmetic operator's special methods 238
Creating a numeric class 240
Defining FixedPoint initialization 241
Defining FixedPoint binary arithmetic operators 243
Defining FixedPoint unary arithmetic operators 246
Implementing FixedPoint reflected operators 247
Implementing FixedPoint comparison operators 250
Computing a numeric hash 252
Designing more useful rounding 253
Implementing other special methods 254
Optimization with the in-place operators 255
Summary 256
Chapter 9: Decorators and Mixins - Cross-Cutting Aspects 257
Technical requirements 258
Class and meaning 258
Type hints and attributes for decorators 259
Attributes of a function 261
Constructing a decorated class 261
Some class design principles 263
Aspect-oriented programming 264
Using built-in decorators 265
Using standard library decorators 266
Using standard library mixin classes 268
Using the enum with mixin classes 269
Writing a simple function decorator 271
Creating separate loggers 273
Parameterizing a decorator 274
Creating a method function decorator 276
Creating a class decorator 279
Adding methods to a class 282
Using decorators for security 284
Summary 286
Section 2: Object Serialization and Persistence
Chapter 10: Serializing and Saving - JSON, YAML, Pickle, CSV,
and XML 289
Technical requirements 291
Understanding persistence, class, state, and representation 291
Common Python terminology 292

[v]

Table of Contents

Filesystem and network considerations
Defining classes to support persistence
Rendering blogs and posts
Dumping and loading with JSON
JSON type hints
Supporting JSON in our classes
Customizing JSON encoding
Customizing JSON decoding
Security and the eval() issue
Refactoring the encode function
Standardizing the date string
Writing JSON to a file
Dumping and loading with YAML
Formatting YAML data on a file
Extending the YAML representation
Security and safe loading
Dumping and loading with pickle
Designing a class for reliable pickle processing
Security and the global issue
Dumping and loading with CSV
Dumping simple sequences into CSV
Loading simple sequences from CSV
Handling containers and complex classes
Dumping and loading multiple row types into a CSV file
Filtering CSV rows with an iterator
Dumping and loading joined rows into a CSV file
Dumping and loading with XML
Dumping objects using string templates
Dumping objects with xml.etree.ElementTree
Loading XML documents
Summary
Design considerations and tradeoffs
Schema evolution
Looking forward

Chapter 11: Storing and Retrieving Objects via Shelve
Technical requirements
Analyzing persistent object use cases
The ACID properties
Creating a shelf
Designing shelvable objects
Designing objects with type hints
Designing keys for our objects
Generating surrogate keys for objects
Designing a class with a simple key

293
294
296
299
301
301
302
305
306
306
308
309
310
312
313
316
317
318
321
322
323
325
326
327
329
331
333
335
338
340
341
342
343
344

345
346
347
348
349
350
351
351
353
353

[vil

Table of Contents

Designing classes for containers or collections 356
Referring to objects via foreign keys 356
Designing CRUD operations for complex objects 359
Searching, scanning, and querying 360
Designing an access layer for shelve 362
Writing a demonstration script 365
Creating indexes to improve efficiency 367
Creating a cache 369
Adding yet more index maintenance 370
The writeback alternative to index updates 371
Schema evolution 372
Summary 373
Design considerations and tradeoffs 373
Application software layers 374
Looking forward 375
Chapter 12: Storing and Retrieving Objects via SQLite 376
Technical requirements 377
SQL databases, persistence, and objects 377
The SQL data model — rows and tables 379
CRUD processing via SQL DML statements 382
Querying rows with the SQL SELECT statement 385
SQL transactions and the ACID properties 387
Designing primary and foreign database keys 389
Processing application data with SQL 391
Implementing class-like processing in pure SQL 392
Mapping Python objects to SQLite BLOB columns 393
Mapping Python objects to database rows manually 396
Designing an access layer for SQLite 398
Implementing container relationships 402
Improving performance with indices 404
Adding an ORM layer 405
Designing ORM-friendly classes 406
Building the schema with the ORM layer 410
Manipulating objects with the ORM layer 411
Querying posts that are given a tag 414
Defining indices in the ORM layer 415
Schema evolution 416
Summary 418
Design considerations and tradeoffs 418
Mapping alternatives 419
Key and key design 419
Application software layers 420
Looking forward 421

[vii]

Table of Contents

Chapter 13: Transmitting and Sharing Objects
Technical requirements
Class, state, and representation
Using HTTP and REST to transmit objects
Implementing CRUD operations via REST
Implementing non-CRUD operations
The REST protocol and ACID
Choosing a representation — JSON, XML, or YAML
Using Flask to build a RESTful web service
Problem-domain objects to transfer
Creating a simple application and server
More sophisticated routing and responses
Implementing a REST client
Demonstrating and unit testing the RESTful services
Handling stateful REST services
Designing RESTful object identifiers
Multiple layers of REST services
Using a Flask blueprint
Registering a blueprint
Creating a secure REST service
Hashing user passwords

Implementing REST with a web application framework

Using a message queue to transmit objects

Defining processes

Building queues and supplying data
Summary

Design considerations and tradeoffs

Schema evolution

Application software layers

Looking forward

Chapter 14: Configuration Files and Persistence
Technical requirements
Configuration file use cases
Representation, persistence, state, and usability
Application configuration design patterns
Configuring via object construction
Implementing a configuration hierarchy
Storing the configuration in INI files
Handling more literals via the eval() variants
Storing the configuration in PY files
Configuration via class definitions
Configuration via SimpleNamespace
Using Python with exec() for the configuration
Why exec() is a non-problem

422
423
423
425
426
428
428
429
430
431
433
436
439
440
441
441
443
444
450
451
453
455
457
458
461
463
463
464
464
465

466
467
467
470
471
473
476
477
481
482
484
485
489
490

[viii]

Table of Contents

Using ChainMap for defaults and overrides 491
Storing the configuration in JSON or YAML files 494
Using flattened JSON configurations 496
Loading a YAML configuration 498
Storing the configuration in properties files 499
Parsing a properties file 500
Using a properties file 504
Using XML files — PLIST and others 505
Customized XML configuration files 507
Summary 509
Design considerations and trade-offs 510
Creating a shared configuration 511
Schema evolution 511
Looking forward 512
Section 3: Object-Oriented Testing and
Debugging
Chapter 15: Design Principles and Patterns 514
Technical requirements 515
The SOLID design principles 515
The Interface Segregation Principle 517
The Liskov Substitution Principle 520
The Open/Closed Principle 521
The Dependency Inversion Principle 523
The Single Responsibility Principle 525
A SOLID principle design test 526
Building features through inheritance and composition 527
Advanced composition patterns 528
Parallels between Python and libstdc++ 530
Summary 533
Chapter 16: The Logging and Warning Modules 534
Technical requirements 535
Creating a basic log 535
Creating a class-level logger 537
Configuring loggers 539
Starting up and shutting down the logging system 540
Naming loggers 542
Extending logger levels 543
Defining handlers for multiple destinations 544
Managing propagation rules 547
Configuration Gotcha 548
Specialized logging for control, debugging, audit, and security 549
Creating a debugging log 551

[ix]

Table of Contents

Creating audit and security logs
Using the warnings module
Showing API changes with a warning
Showing configuration problems with a warning
Showing possible software problems with a warning
Advanced logging — the last few messages and network
destinations
Building an automatic tail buffer
Sending logging messages to a remote process
Preventing queue overrun
Summary
Design considerations and trade-offs
Looking ahead

Chapter 17: Designing for Testability
Technical requirements
Defining and isolating units for testing
Minimizing dependencies
Creating simple unit tests
Creating a test suite
Including edge and corner cases
Using mock objects to eliminate dependencies
Using mocks to observe behaviors
Using doctest to define test cases
Combining doctest and unittest
Creating a more complete test package
Using setup and teardown
Using setup and teardown with OS resources
Using setup and teardown with databases
The TestCase class hierarchy
Using externally defined expected results
Using pytest and fixtures
Assertion checking
Using fixtures for test setup
Using fixtures for setup and teardown
Building parameterized fixtures
Automated integration or performance testing
Summary
Design considerations and trade-offs
Looking forward

Chapter 18: Coping with the Command Line
Technical requirements
The OS interface and the command line
Arguments and options

553
556
557
558
559

560
561
564
568
569
570
571

572
573
573
574
577
580
582
583
587
588
593
593
595
596
598
602
603
607
609
609
611
612
614
615
616
617

618
618
619
622

[x]

Table of Contents

Using the pathlib module 623
Parsing the command line with argparse 625
A simple on—off option 627

An option with an argument 628
Positional arguments 628

All other arguments 629
--version display and exit 630
--help display and exit 630
Integrating command-line options and environment variables 631
Providing more configurable defaults 632
Overriding configuration file settings with environment variables 633
Making the configuration aware of the None values 635
Customizing the help output 636
Creating a top-level main() function 637
Ensuring DRY for the configuration 640
Managing nested configuration contexts 641
Programming in the large 643
Designing command classes 643
Adding the analysis command subclass 646
Adding and packaging more features into an application 647
Designing a higher-level, composite command 648
Additional composite Command design patterns 650
Integrating with other applications 652
Summary 652
Design considerations and trade-offs 653
Looking forward 654
Chapter 19: Module and Package Design 655
Technical requirements 655
Designing a module 657
Some module design patterns 658
Modules compared with classes 659
The expected content of a module 661
Whole modules versus module items 663
Designing a package 665
Designing a module-package hybrid 666
Designing a package with alternate implementations 667
Using the ImportError exception 669
Designing a main script and the __main__ module 670
Creating an executable script file 671
Creating a __main__ module 672
Programming in the large 673
Designing long-running applications 674
Organizing code into src, scripts, tests, and docs 677
Installing Python modules 679

[xi]

Table of Contents

Summary 680
Design considerations and tradeoffs 681
Looking forward 681

Chapter 20: Quality and Documentation 682

Technical requirements 683

Writing docstrings for the help() function 683

Using pydoc for documentation 685

Better output via RST markup 686
Blocks of text 688
The RST inline markup 690
RST directives 691
Learning RST 692

Writing effective docstrings 693

Writing file-level docstrings, including modules and packages 695
Writing API details in RST markup 697
Writing class and method function docstrings 698
Writing function docstrings 700

More sophisticated markup techniques 701

Using Sphinx to produce the documentation 702
Using Sphinx quickstart 703
Writing Sphinx documentation 705
Filling in the 4+1 views for documentation 706
Writing the implementation document 707
Creating Sphinx cross-references 709
Refactoring Sphinx files into directories 710
Handling legacy documents 711

Writing the documentation 712

Literate programming 713
Use cases for literate programming 713
Working with a literate programming tool 715

Summary 720
Design considerations and tradeoffs 720

Other Books You May Enjoy 721
Index 724

[xii]

Preface

This book will introduce you to many advanced features of the Python programming
language. The focus is on creating the highest quality Python programs possible. This
requires exploring design alternatives and determining which design offers the best
performance while still being a good fit for the problem that is being solved.

The majority of this book showcases a number of alternatives for a given design.
Some will offer better performance, while some will appear simpler or be a better
solution to the problem domain. It's essential to locate the best algorithms alongside
optimal data structures in order to create the most value with the least computer
processing. Time is money, and programs that save time will create more value for
their users. Python makes a number of internal features directly available to our
application programs. This means that our programs can be very tightly integrated
with existing Python features. We can leverage numerous Python features by
ensuring that our object-oriented designs (OODs) integrate well.

As we explore different algorithms and data structures, we'll discover different
memory and performance alternatives. It's an important OOD skill to be able to work
through alternate solutions in order to properly optimize the final application. One of
the more important themes of this book is that there's no single best approach to any
problem.

As many of the examples as possible have full type hints. A few of the examples rely
on packages outside the standard library, where you'll find that type hints are either
missing or are incomplete. The examples have to be processed with the mypy tool to
confirm the types are used consistently.

As we move toward achieving mastery of object-oriented Python, we'll spend a great
deal of time reading Python code from a variety of sources. We'll observe wide
variability even within the Python standard library modules. Rather than presenting
examples that are all perfectly consistent, we've opted for some inconsistency; the
lack of consistency will help to read kinds of code, as seen in various open source
projects encountered in the wild.

Preface

Who this book is for

This book uses advanced Python. You'll need to be relatively familiar with Python 3.
It helps to learn a programming language when you have a problem of your own to
solve.

If you are a skilled programmer in other languages, then you may find this book
useful if you want to switch to Python. Note that this book doesn't introduce any
syntax or other foundational concepts.

Python 2 programmers may find this particularly helpful when they switch to Python
3. We won't cover any of the conversion utilities (such as the 2to3 tool) or any of the
coexistence libraries (such as the six module). This book is focused on new
developments entirely in Python 3.

What this book covers

In this book, we'll cover three broad areas of advanced Python topics. Each topic will
be broken into a series of chapters examining a variety of details.

section 1, Tighter Integration via Special Methods, looks at object-oriented
programming (OOP) techniques in depth and how we can more tightly integrate the
class definitions of our applications with Python's built-in features. This section
consists of nine chapters, which are as follows:

e Chapter 1, Preliminaries, Tools, and Techniques, covers some preliminary
topics, such as unittest, doctest, docstring, and some special method
names.

e chapter 2, The _init_() Method, provides us with a detailed description and
implementation of the _init_ () method. We will examine different forms
of initialization for simple objects. Following this, we can explore more
complex objects that involve collections and containers.

e Chapter 3, Integrating Seamlessly — Basic Special Methods, explains, in detail,
how we can expand a simple class definition to add special methods. We'll
need to take a look at the default behavior inherited from the object so that
we can understand what overrides are required and when they're actually
required.

® Chapter 4, Attribute Access, Properties, and Descriptors, explores how default
processing works in some detail. Here, we will learn how to decide where
and when to override the default behavior. We will also explore descriptors
and gain a much deeper understanding of how Python's internals work.

[2]

Preface

e chapter 5, The ABCs of Consistent Design, examines the abstract base classes

in the collections.abc module. In this chapter, we'll look at the general
concepts behind the various containers and collections that we might want
to revise or extend. Similarly, we'll look at the concepts behind the numbers
that we might want to implement.

Chapter 6, Using Callables and Contexts, uncovers several ways to create
context managers using the tools in context1ib. We'll demonstrate a
number of variant designs for callable objects. This will show you why a
stateful callable object is sometimes more useful than a simple function.
We'll also explore how to use some of the existing Python context managers
before we dive in and write our own context manager.

Chapter 7, Creating Containers and Collections, focuses on the basics of
container classes. We'll review the variety of special methods that are
involved in creating a container and the various features that containers
offer. We'll address extending built-in containers to add features. We'll also
look at wrapping built-in containers and delegating methods through the
wrapper to the underlying container.

Chapter 8, Creating Numbers, covers these essential arithmetic operators:

+, - % /,//,% and **. We'll also explore these comparison operators: <, >,
<=, >=, ==, and !=. We'll finish by summarizing some of the

design considerations that go into extending or creating new numbers.
Chapter 9, Decorators and Mixins — Cross-Cutting Aspects, covers simple
function decorators, function decorators with arguments, class decorators,
and method decorators.

section 2, Object Serialization and Persistence, explores a persistent object that has
been serialized to a storage medium; perhaps it's transformed to JSON and written to
the filesystem. An ORM layer can store the object in a database. This section examines
the alternatives for handling persistence. It contains five chapters, which are as

follows:

® Chapter 10, Serializing and Saving — [SON, YAML, Pickle, CSV, and XML,

covers simple persistence using libraries focused on various data
representations such as JSON, YAML, pickle, XML, and CSV.

e Chapter 11, Storing and Retrieving Objects via Shelve, explains basic database

operations with Python modules, such as shelve (and dbm).

[31]

Preface

® Chapter 12, Storing and Retrieving Objects via SQLite, uncovers the more
complex world of SQL and the relational database. Because SQL features
don't match OOP features well, we have an impedance mismatch problem.
A common solution is to use ORM to allow us to persist a large domain of
objects. The SQLAlchemy package will be used as an example of the many
ORMs that are available.

e Chapter 13, Transmitting and Sharing Objects, looks at the HTTP protocol,
JSON, YAML, and XML representations to transmit an object.

e Chapter 14, Configuration Files and Persistence, covers various ways in
which a Python application can work with a configuration file.

e Chapter 15, Design Principles and Patterns, reviews the SOLID design
principles. These can help organize high-quality, maintainable Python
software by following some best practices.

section 3, Object-Oriented Testing and Debugging, shows you how to gather data to
support and debug your own high-performance programs. It includes information on
creating the best possible documentation in order to reduce the confusion and
complexity of the support. This section contains the final five chapters, which are as
follows:

e Chapter 16, The Logging and Warning Modules, looks at using the logging
and warning modules to create audit information, as well as debugging.
Additionally, we'll take a significant step beyond using the print ()
function.

e Chapter 17, Designing for Testability, covers designing for testability and
demonstrates how to use unittest and doctest.

e chapter 18, Coping with the Command Line, looks at using the
argparse module to parse options and arguments. We'll take this a step
further and use the command design pattern to create program
components that can be combined and expanded without resorting to
writing shell scripts.

e Chapter 19, Module and Package Design, covers module and package design.
This is a higher-level set of considerations; we'll take a look at related
classes in a module and related modules in a package.

e Chapter 20, Quality and Documentation, explores how we can document our
design to create some kind of trust that our software is correct and has been
properly implemented.

[4]

Preface

To get the most out of this book

In order to compile and run the examples included in this book, you will require the

following software:

¢ Python Version 3.7 or higher, with the standard suite of libraries:

We'll use mypy to check type hints (http://mypy-lang.org).

o We'll take a look at these additional packages:

PyYAML (http://pyyaml.org).

SQLAlchemy (http://www.sqlalchemy.org): When building
this, check the installation guide carefully. In particular, refer
to https://docs.sqlalchemy.org/en/12/intro.
html#installing-the-c-extensions for information on
simplifying the installation by disabling the C extension.

Flask (http://flask.pocoo.org).

Requests (https://2.python-requests.org/en/master/).
Jinja (http://jinja.pocoo.org/).

PyTest (https://docs.pytest.org/en/latest/).

Sphinx (http://sphinx-doc.org).

¢ Optionally, you might want to use the Black tool to format your code
consistently (https://black.readthedocs.io/en/stable/).

¢ Additionally, the overall test suite for this book's code is run using the tox
tool (https ://tox.readthedocs. io/en/latest/).

Download the example code files

You can download the example code files for this book from your account at
www.packt . com. If you purchased this book elsewhere, you can visit
www . packt . com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

L e

instructions.

Log in or register at www.packt . com.

Select the SUPPORT tab.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen

[5]

http://mypy-lang.org
http://mypy-lang.org
http://mypy-lang.org
http://mypy-lang.org
http://mypy-lang.org
http://mypy-lang.org
http://mypy-lang.org
http://mypy-lang.org
http://mypy-lang.org
http://pyyaml.org
http://pyyaml.org
http://pyyaml.org
http://pyyaml.org
http://pyyaml.org
http://pyyaml.org
http://pyyaml.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
https://docs.sqlalchemy.org/en/12/intro.html#installing-the-c-extensions
https://docs.sqlalchemy.org/en/12/intro.html#installing-the-c-extensions
https://docs.sqlalchemy.org/en/12/intro.html#installing-the-c-extensions
https://docs.sqlalchemy.org/en/12/intro.html#installing-the-c-extensions
https://docs.sqlalchemy.org/en/12/intro.html#installing-the-c-extensions
https://docs.sqlalchemy.org/en/12/intro.html#installing-the-c-extensions
https://docs.sqlalchemy.org/en/12/intro.html#installing-the-c-extensions
https://docs.sqlalchemy.org/en/12/intro.html#installing-the-c-extensions
https://docs.sqlalchemy.org/en/12/intro.html#installing-the-c-extensions
https://docs.sqlalchemy.org/en/12/intro.html#installing-the-c-extensions
https://docs.sqlalchemy.org/en/12/intro.html#installing-the-c-extensions
https://docs.sqlalchemy.org/en/12/intro.html#installing-the-c-extensions
https://docs.sqlalchemy.org/en/12/intro.html#installing-the-c-extensions
https://docs.sqlalchemy.org/en/12/intro.html#installing-the-c-extensions
https://docs.sqlalchemy.org/en/12/intro.html#installing-the-c-extensions
https://docs.sqlalchemy.org/en/12/intro.html#installing-the-c-extensions
https://docs.sqlalchemy.org/en/12/intro.html#installing-the-c-extensions
https://docs.sqlalchemy.org/en/12/intro.html#installing-the-c-extensions
https://docs.sqlalchemy.org/en/12/intro.html#installing-the-c-extensions
https://docs.sqlalchemy.org/en/12/intro.html#installing-the-c-extensions
https://docs.sqlalchemy.org/en/12/intro.html#installing-the-c-extensions
https://docs.sqlalchemy.org/en/12/intro.html#installing-the-c-extensions
http://flask.pocoo.org
http://flask.pocoo.org
http://flask.pocoo.org
http://flask.pocoo.org
http://flask.pocoo.org
http://flask.pocoo.org
http://flask.pocoo.org
http://flask.pocoo.org
http://flask.pocoo.org
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
http://jinja.pocoo.org/
http://jinja.pocoo.org/
http://jinja.pocoo.org/
http://jinja.pocoo.org/
http://jinja.pocoo.org/
http://jinja.pocoo.org/
http://jinja.pocoo.org/
http://jinja.pocoo.org/
http://jinja.pocoo.org/
http://jinja.pocoo.org/
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/
http://sphinx-doc.org
http://sphinx-doc.org
http://sphinx-doc.org
http://sphinx-doc.org
http://sphinx-doc.org
http://sphinx-doc.org
http://sphinx-doc.org
http://sphinx-doc.org
http://sphinx-doc.org
https://black.readthedocs.io/en/stable/
https://black.readthedocs.io/en/stable/
https://black.readthedocs.io/en/stable/
https://black.readthedocs.io/en/stable/
https://black.readthedocs.io/en/stable/
https://black.readthedocs.io/en/stable/
https://black.readthedocs.io/en/stable/
https://black.readthedocs.io/en/stable/
https://black.readthedocs.io/en/stable/
https://black.readthedocs.io/en/stable/
https://black.readthedocs.io/en/stable/
https://black.readthedocs.io/en/stable/
https://black.readthedocs.io/en/stable/
https://black.readthedocs.io/en/stable/
https://tox.readthedocs.io/en/latest/
https://tox.readthedocs.io/en/latest/
https://tox.readthedocs.io/en/latest/
https://tox.readthedocs.io/en/latest/
https://tox.readthedocs.io/en/latest/
https://tox.readthedocs.io/en/latest/
https://tox.readthedocs.io/en/latest/
https://tox.readthedocs.io/en/latest/
https://tox.readthedocs.io/en/latest/
https://tox.readthedocs.io/en/latest/
https://tox.readthedocs.io/en/latest/
https://tox.readthedocs.io/en/latest/
https://tox.readthedocs.io/en/latest/
https://tox.readthedocs.io/en/latest/
http://www.packt.com
http://www.packt.com/support
http://www.packt.com

Preface

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of the following:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Mastering-Object-Oriented-Python-Second-Edition. In case
there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Code in Action

Visit the following link to see the code being executed:

http://bit.1ly/2XIu8Tk

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Mount the downloaded WebStorm-10* . dmg disk image file as
another disk in your system."

A block of code is set as follows:

def F(n: int) -> int:
if n in (0, 1):
return 1
else:
return F(n-1) + F(n-2)

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

def factorial(n: int) —-> int:
"""Compute n! recursively.

:param n: an integer >= 0

[6]

https://github.com/PacktPublishing/Mastering-Object-Oriented-Python-Second-Edition
https://github.com/PacktPublishing/Mastering-Object-Oriented-Python-Second-Edition
https://github.com/PacktPublishing/Mastering-Object-Oriented-Python-Second-Edition
https://github.com/PacktPublishing/Mastering-Object-Oriented-Python-Second-Edition
https://github.com/PacktPublishing/Mastering-Object-Oriented-Python-Second-Edition
https://github.com/PacktPublishing/Mastering-Object-Oriented-Python-Second-Edition
https://github.com/PacktPublishing/Mastering-Object-Oriented-Python-Second-Edition
https://github.com/PacktPublishing/Mastering-Object-Oriented-Python-Second-Edition
https://github.com/PacktPublishing/Mastering-Object-Oriented-Python-Second-Edition
https://github.com/PacktPublishing/Mastering-Object-Oriented-Python-Second-Edition
https://github.com/PacktPublishing/Mastering-Object-Oriented-Python-Second-Edition
https://github.com/PacktPublishing/Mastering-Object-Oriented-Python-Second-Edition
https://github.com/PacktPublishing/Mastering-Object-Oriented-Python-Second-Edition
https://github.com/PacktPublishing/Mastering-Object-Oriented-Python-Second-Edition
https://github.com/PacktPublishing/Mastering-Object-Oriented-Python-Second-Edition
https://github.com/PacktPublishing/Mastering-Object-Oriented-Python-Second-Edition
https://github.com/PacktPublishing/Mastering-Object-Oriented-Python-Second-Edition
https://github.com/PacktPublishing/Mastering-Object-Oriented-Python-Second-Edition
https://github.com/PacktPublishing/Mastering-Object-Oriented-Python-Second-Edition
https://github.com/PacktPublishing/Mastering-Object-Oriented-Python-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://bit.ly/2XIu8Tk
http://bit.ly/2XIu8Tk
http://bit.ly/2XIu8Tk
http://bit.ly/2XIu8Tk
http://bit.ly/2XIu8Tk
http://bit.ly/2XIu8Tk
http://bit.ly/2XIu8Tk
http://bit.ly/2XIu8Tk
http://bit.ly/2XIu8Tk

Preface

:returns: n!

Because of Python's stack limitation, this won't
compute a value larger than about 1000!.

>>> factorial (5)
120

Any command-line input or output is written as follows:

$ python3 -m pip install —--upgrade pip
$ python3 -m pip install black

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an
example: "Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the
book title in the subject of your message and email us at
customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you would report this to us. Please visit www.packt .com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website
name. Please contact us at copyright@packt .com with a link to the material.

[7]

http://www.packt.com/submit-errata

Preface

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and use
your unbiased opinion to make purchase decisions, we at Packt can understand what
you think about our products, and our authors can see your feedback on their book.

Thank you!

For more information about Packt, please visit packt .com.

[81]

http://authors.packtpub.com/
http://www.packt.com/

Section 1: Tighter Integration

Via Special Methods

We'll extend the core object-oriented programming techniques to allow for increased
integration of the classes we create with other features of Python.

The following chapters will be covered in this section:

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

1, Preliminaries, Tools, and Techniques

2, The __init_ () Method

3, Integrating Seamlessly — Basic Special Methods
4, Attribute Access, Properties, and Descriptors

5, The ABCs of Consistent Design

6, Using Callables and Contexts

7, Creating Containers and Collections

8, Creating Numbers

9, Decorators and Mixins — Cross-Cutting Aspects

Preliminaries, Tools, and
Techniques

To make the design issues in the balance of the book more clear, we need to look at
some the problems that serve as motivation. One of these is using object-

oriented programming (OOP) for simulation. Simulation was one of the early
problem domains for OOP. This is an area where OOP works out particularly
elegantly.

We've chosen a problem domain that's relatively simple: the strategies for playing the
game of blackjack. We don't want to endorse gambling; indeed, a bit of study will
show that the game is stacked heavily against the player. This should reveal that
most casino gambling is little more than a tax on the innumerate.

The first section of this chapter will review the rules of the game of Blackjack. After
looking at the card game, the bulk of this chapter will provide some background in
tools that are essential for writing complete Python programs and packages. We'll
look at the following concepts:

¢ The Python runtime environment and how the special method names
implement the language features

¢ Integrated Development Environments (IDEs)
¢ Using the pylint or black tools to create a uniform style

¢ Using type hints and the mypy tool to establish proper use of functions,
classes, and variables

e Using timeit for performance testing
e Using unittest, doctest, and pytest for unit testing
¢ Using sphinx and RST-based markup to create usable documentation

Preliminaries, Tools, and Techniques Chapter 1

While some of these tools are part of the Python standard library, most of them are
outside the library. We'll discuss installation of tools when we talk about the Python
runtime in general.

This book will try to avoid digressing into the foundations of Python OOP. We're
assuming that you've already read Packt's Python3 Object-Oriented Programming. We
don't want to repeat things that are nicely stated elsewhere. We will focus on Python

3.

We'll refer to a number of common object-oriented design patterns and will try to
avoid repeating the presentation in Packt's Learning Python Design Patterns.

We'll cover the following topics in this chapter:

About the Blackjack game

The Python runtime and special methods
Interaction, scripting and tools

Selecting an IDE

Consistency and style

Type hints and the mypy program
Performance - the t imeit module

Testing — unittest and doctest
Documentation — sphinx and RST markup
Installing components

Technical requirements

The code files for this chapter can be found at https://git.io/£j2UB.

[11]

https://git.io/fj2UB
https://git.io/fj2UB
https://git.io/fj2UB
https://git.io/fj2UB
https://git.io/fj2UB
https://git.io/fj2UB
https://git.io/fj2UB
https://git.io/fj2UB
https://git.io/fj2UB

Preliminaries, Tools, and Techniques Chapter 1

About the Blackjack game

Many of the examples in the book will center on simulations of a process with a
number of moderately complex state changes. The card game of Blackjack involves a
few rules and a few state changes during play. If you're unfamiliar with the game of
Blackjack, here's an overview.

The objective of the game is to accept cards from the dealer to create a hand that has a
point total that is between the dealer's total and twenty-one. The dealer's hand is only
partially revealed, forcing the player to make a decision without knowing the dealer's
total or the subsequent cards from the deck.

The number cards (2 to 10) have point values equal to the number. The face cards
(Jack, Queen, and King) are worth 10 points. The Ace is worth either eleven points or
one point. When using an ace as eleven points, the value of the hand is soft. When
using an ace as one point, the value is hard.

A hand with an Ace and a seven, therefore, has a hard total of eight and a soft total of
18. This leads the player to choose to take extra cards. If the dealer is showing a face
card, it's very likely the dealer is holding twenty points, and the player may not want
to risk taking another card.

Each suit has four two-card combinations that total 21. These are all called
Blackjack, even though only one of the four combinations involves a Jack. These
combinations often provide a bonus payout, because there are only four of them
available.

Most of the game is about proper choice of cards. There is, of course, a betting
element. The distinction between playing and betting is made somewhat more
complicated by the provision to split one hand into two hands. This is allowed when
the player's two cards have the same rank. This option will be detailed in the next
section on how the game is played.

[12]

Preliminaries, Tools, and Techniques Chapter 1

Playing the game
The mechanics of play generally work as follows. The details can vary, but the outline
is similar:

e First, the player and dealer each get two cards. The player, of course,
knows the value of both of their cards. They're dealt face up in a casino.

¢ One of the dealer's cards is revealed to the player. It's displayed face up.
The player, therefore, knows a little bit about the dealer's hand, but not
everything. This is typical of more complex simulations where partial
information is available and statistical modeling is required to make
appropriate decisions.

e If the dealer has an Ace showing, the player is offered the opportunity to
place an additional insurance bet. This is a special case, and is typical of
more complex simulations where there are exceptions.

e For the balance of the game, the player can elect to receive cards, or stop
receiving cards. There are four choices available:

¢ The player can hit, which means take another card.

e They player can or stand or stand pat with the cards dealt.

e If the player's cards match, the hand can be split. This entails
an additional bet, and the two hands are played separately.

¢ The player can double their bet before taking one last card.
This is called doubling down.

The final evaluation of the hand works as follows:

o If the player went over 21, the hand is a bust, the player loses, and the
dealer's face-down card is irrelevant. This provides an advantage to the
dealer.

o If the player's total is 21 or under, then the dealer takes cards according to a
simple, fixed rule. The dealer must hit a hand that totals less than 18; the
dealer must stand on a hand that totals 18 or more.

e If the dealer goes bust, the player wins.

e If both the dealer and player are 21 or under, the hands are compared. The
higher total is the winner. In the event of a tie, the game is a push, neither a
win nor a loss. If the player wins with 21, they win a larger payout, usually
1.5 times the bet.

The rules can vary quite a bit. We'll elide these details to focus on the Python code
required for simulation.

[13]

Preliminaries, Tools, and Techniques Chapter 1

Blackjack player strategies

In the case of blackjack, there are actually two kinds of strategies that the player must
use:

¢ A strategy for deciding what play to make: take insurance, hit, stand, split,
or double down.

¢ A strategy for deciding what amount to bet. A common statistical fallacy
leads players to raise and lower their bets in an attempt to preserve their
winnings and minimize their losses. These are interesting, stateful
algorithms in spite of the underlying fallacies.

These two sets of strategies are, of course, prime examples of the Strategy design
pattern.

Object design for simulating Blackjack

We'll use elements of the game, such as the player, hand, and card, as examples for
object modeling. We won't design the entire simulation. We'll focus on elements of
this game because they have some nuance, but aren't terribly complex.

The cards are relatively simple, immutable objects. There are a variety of modeling
techniques available. Cards fall into a simple class hierarchy of the number cards, face
cards, and the Ace. There are simple containers, including hands of card instances,
and decks of cards as well. These are stateful collections with cards being added and
removed. There are a number of ways to implement this in Python and we'll look at
many alternatives. We also need to look at the player as a whole. A player will have a
sequence of hands, as well as a betting strategy and a Blackjack play strategy. This is a
rather complex composite object.

The Python runtime and special methods

One of the essential concepts for mastering object-oriented Python is to understand
how object methods are implemented. Let's look at a relatively simple Python
interaction:

>> £ = [1, 1, 2, 3]
>>> £ += [£[-1] + £[-2]]
>>> £

[1, 1, 2, 3, 5]

[14]

Preliminaries, Tools, and Techniques Chapter 1

We've created a list, £, with a sequence of values. We then mutated this list using the
+= operator to append a new value. The £[-1] + f[-2] expression computes the
new value to be appended.

The value of £[-1] is implemented using the list object's __getitem__ () method.
This is a core pattern of Python: the simple operator-like syntax is implemented by
special methods. The special methods have names surrounded with ___ to make them
distinctive. For simple prefix and suffix syntax, the object is obvious; £ [-1] is
implemented as £.__getitem__ (-1).

The additional operation is similarly implemented by the __add__ () special method.
In the case of a binary operator, Python will try both operands to see which one offers
the special method. In this example, both operands are integers, and both will

provide a suitable implementation. In the case of mixed types, the implementation of
the binary operator may coerce one value into another type. £[-1] + £[-2], then, is

implemented as £.__getitem_ (-1).__add__(f.__getitem__(-2)).
The update of £ by the += operator is implemented by the __iadd__ () special
method. Consequently, £ += [x] isimplemented as £.__iadd__([x]).

Throughout the first eight chapters, we'll look very closely at these special methods
and how we can design our classes to integrate very tightly with Python's built-in
language features. Mastering the special methods is the essence of mastering object-
oriented Python.

Interaction, scripting, and tools

Python is often described as Batteries Included programming. Everything required is
available directly as part of a single download. This provides the runtime, the
standard library, and the IDLE editor as a simple development environment.

It's very easy to download and install Python 3.7 and start running it interactively on
the desktop. The example in the previous section included the >>> prompt from
interactive Python.

If you're using the Iron Python (IPython) implementation, the interaction will look
like this:

In [1]: £ = [1, 1, 2, 3]

In [3]: £ += [£[-1] + £[-2]]
In [4]: £

Out[4]: [1, 1, 2, 3, 5]

[15]

Preliminaries, Tools, and Techniques Chapter 1

The prompt is slightly different, but the language is the same. Each statement is
evaluated as it is presented to Python.

This is handy for some experimentation. Our goal is to build tools, frameworks, and
applications. While many of the examples will be shown in an interactive style, most
of the actual programming will be via script files.

Running examples interactively makes a profound statement. Well-written Python
code should be simple enough that it can be run from the command line.

Good Python is simple. We should be able to demonstrate a design
at the >>> prompt.

Interactive use is not our goal. Exercising code from the >>> prompt is a quality test
for complexity. If the code is too complex to exercise it from the >>> prompt, then
refactoring is needed.

The focus of this book is on creating complete scripts, modules, packages, and
applications. Even though some examples are shown in interactive mode, the
objective is to create Python files. These files may be as simple as a script or as
complex as a directory with files to create a web application.

Tools such as mypy, pytest, and pylint work with Python files. Preparing script
files can be done with almost any text editor. It's best, however, to work with an IDE,
where a number of tools can be provided to help develop applications and scripts.

Selecting an IDE

A common question is, “What is the best IDE for doing Python development?” The short
answer to this question is that the IDE choice doesn't matter very much. The number
of development environments that support Python is vast and they are all very easy
to use. The long answer requires a conversation about what attributes would rank an
IDE as being the best.

The Spyder IDE is part of the Anaconda distribution. This makes it readily accessible
to developers who've downloaded Anaconda. The IDLE editor is part of the Python
distribution, and provides a simple environment for using Python and building
scripts. PyCharm has a commercial license as well as a community edition, it provides
a large number of features, and was used to prepare all the examples in this book.

[16]

Preliminaries, Tools, and Techniques Chapter 1

The author makes use of having both an editor, an integrated Python prompt, and
unit test results all readily available. PyCharm works well with the conda
environments, avoiding confusion over what packages are installed.

A search on the internet will provide a long list of other tools. See the IDE Python
wiki page for numerous alternatives (https://wiki.python.org/moin/

IntegratedDevelopmentEnvironments}

Consistency and style

All of the examples in the book were prepared using the black tool to provide
consistent formatting. Some additional manual adjustments were made to keep code
within the narrow sizes of printed material.

A common alternative to using black is to use pylint to identify formatting
problems. These can then be corrected. In addition to detailed analysis of code
quality, the pylint tool offers a numeric quality score. For this book, some pylint
rules needed to be disabled. For example, the modules often have imports that are not
in the preferred order; some modules also have imports that are relevant to doctest
examples, and appear to be unused; some examples use global variables; and some
class definitions are mere skeletons without appropriate method definitions.

Using pylint to locate potential problems is essential. It's often helpful to silence
pylint warnings. In the following example, we need to silence a pylint warning
about the test_1list variable name being invalid as a global variable:

pylint: disable=invalid-name
test_list = """
>>> £ = [1
>>> f +=
>>> f
(1, 1, 2, 3, 51

wnn

1y 2, 3]
(£0-1] + £[-2]]

if _ name_ == "_ main__ ":
import doctest
__test_ = {name: value
for name, value in locals () .items ()
if name.startswith("test_")}

doctest.testmod (verbose=False)

[17]

https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments

Preliminaries, Tools, and Techniques Chapter 1

Besides helping enforce a consistent style, the pylint warnings are helpful for
identifying spelling mistakes and a list of common errors. For example, the instance
variable is commonly self. An accidental spelling error of sef1 will be found by
pylint.

Type hints and the mypy program

Python 3 permits the use of type hints. The hints are present in assignment
statements, function, and class definitions. They're not used directly by Python when
the program runs. Instead, they're used by external tools to examine the code for
improper use of types, variables, and functions. Here's a simple function with type
hints:

def F(n: int) -> int:
if n in (0, 1):
return 1
else:
return F(n-1) + F(n-2)

print ("Good Use", F(8))
print ("Bad Use", F(355/113))

When we run the mypy program, we'll see an error such as the following;:

Chapter_1/ch01_ex3.py:23: error: Argument 1 to "F" has incompatible
type "float"; expected "int"

This message informs us of the location of the error: the file is
Chapter_1/ch01_ex3.py, which is the 23" line of the file. The details tell us that the
function, F, has an improper argument value. This kind of problem can be difficult to
see. In some cases, unit tests might not cover this case very well, and it's possible for a
program to harbor subtle bugs because data of an improper type might be used.

Performance - the timeit module

We'll make use of the t imeit module to compare the actual performance of different
object-oriented designs and Python constructs. We'll focus on the timeit () function
in this module. This function creates a Timer object that's used to measure the
execution of a given block of code. We can also provide some preparatory code that
creates an environment. The return value from this function is the time required to
run the given block of code.

[18]

Preliminaries, Tools, and Techniques Chapter 1

The default count is 100,000. This provides a meaningful time that averages out other
OS-level activity on the computer doing the measurement. For complex or long-
running statements, a lower count may be prudent.

Here's a simple interaction with timeit:

>>> timeit.timeit ("obj.method ()",

wnun

. class SomeClass:
def method (self):
.. pass
. obj= SomeClass ()

. """)

0.1980541350058047

The code to be measured is obj.method (). Itis provided to timeit () as a string.
The setup code block is the class definition and object construction. This code block,
too, is provided as a string. It's important to note that everything required by the
statement must be in the setup. This includes all imports, as well as all variable
definitions and object creation.

This example showed that 100,000 method calls that do nothing costs 0.198 seconds.

Testing — unittest and doctest

Unit testing is absolutely essential.

If there's no automated test to show a particular element functionality, then the
feature doesn't really exist. Put another way, it's not done until there's a test that
shows that it's done.

We'll touch, tangentially, on testing. If we delved into testing each object-oriented
design feature, the book would be twice as long as it is. Omitting the details of testing
has the disadvantage of making good unit tests seem optional. They're emphatically
not optional.

Unit testing is essential.

When in doubt, design the tests first. Fit the code to the test cases.

[19]

Preliminaries, Tools, and Techniques Chapter 1

Python offers two built-in testing frameworks. Most applications and libraries will
make use of both. One general wrapper for testing is the unittest module. In
addition, many public API docstrings will have examples that can be found and used
by the doctest module. Also, unittest can incorporate doctest.

The pytest tool can locate test cases and execute them. This is a very useful tool, but
must be installed separately from the rest of Python.

One lofty ideal is that every class and function has at least a unit test. The important,
visible classes and functions will often also have doctest. There are other lofty
ideals: 100% code coverage; 100% logic path coverage, and so on.

Pragmatically, some classes don't need testing. A class that

extends typing.NamedTuple, for example, doesn't really need a sophisticated unit
test. It's important to test the unique features of a class you've written and not the
features inherited from the standard library.

Generally, we want to develop the test cases first, and then write code that fits the test
cases. The test cases formalize the API for the code. This book will reveal numerous
ways to write code that has the same interface. Once we've defined an interface, there
are still numerous candidate implementations that fit the interface. One set of tests
will apply to several different object-oriented designs.

One general approach to using the unittest and pytest tools is to create at least
three parallel directories for your project:

e myproject: This directory is the final package that will be installed in
lib/site-packages for your package or application. It has
an__init__ .py file. We'll put our files in here for each module.

¢ tests: This directory has the test scripts. In some cases, the scripts will
parallel the modules. In some cases, the scripts may be larger and more
complex than the modules themselves.

e docs: This has other documentation. We'll touch on this in the next section,
as well as a chapter in part three.

In some cases, we'll want to run the same test suite on multiple candidate classes so
that we can be sure each candidate works. There's no point in doing
timeit comparisons on code that doesn't actually work.

[20]

Preliminaries, Tools, and Techniques Chapter 1

Documentation — sphinx and RST markup

All Python code should have docstrings at the module, class and method level. Not
every single method requires a docstring. Some method names are really well chosen,
and little more needs to be said. Most times, however, documentation is essential for

clarity.
Python documentation is often written using the reStructuredText (RST) markup.

Throughout the code examples in the book, however, we'll omit docstrings. The
omission keeps the book to a reasonable size. This gap has the disadvantage of
making docstrings seem optional. They're emphatically not optional.

This point is so important, we'll emphasize it again: docstrings are
essential.

The docstring material is used three ways by Python:

e The internal help () function displays the docstrings.

¢ The doctest tool can find examples in docstrings and run them as test
cases.

¢ External tools, such as sphinx and pydoc, can produce elegant
documentation extracts from these strings.

Because of the relative simplicity of RST, it's quite easy to write good docstrings. We'll
look at documentation and the expected markup in detail in chapter 18, Coping with
the Command Line. For now, however, we'll provide a quick example of what a
docstring might look like:

def factorial(n: int) —-> int:

Compute n! recursively.

:param n: an integer >= 0
:returns: n!

Because of Python's stack limitation, this won't compute a value
larger than about 1000!.

>>> factorial (5)
120

[21]

Preliminaries, Tools, and Techniques Chapter 1

if n ==
return 1
return n*factorial (n-1)

This shows the RST markup for the n parameter and the return value. It includes an
additional note about limitations. It also includes a doctest example that can be
used to validate the implementation using the doctest tool. The use of :param n:
and :return: identifies text that will be used by the sphinx tool to provide proper
formatting and indexing of the information.

Installing components

Most of the tools required must be added to the Python 3.7 environment. There are
two approaches in common use:

¢ Use pip to install everything.

e Use conda to create an environment. Most of the tools described in this
book are part of the Anaconda distribution.

The pip installation uses a single command:

python3 -m pip install pyyaml sqglalchemy jinja2 pytest sphinx mypy
pylint black

This will install all of the required packages and tools in your current Python
environment.

The conda installation creates a conda environment to keep the book's material
separate from any other projects:

1. Install conda. If you have already installed Anaconda, you have the Conda
tool, nothing more needs to be done. If you don't have Anaconda yet, then
install miniconda, which is the ideal way to get started. Visit https://
conda.io/miniconda.html and download the appropriate version of conda
for your platform.

2. Use conda to build and activate the new environment.

[22]

https://conda.io/miniconda.html
https://conda.io/miniconda.html
https://conda.io/miniconda.html
https://conda.io/miniconda.html
https://conda.io/miniconda.html
https://conda.io/miniconda.html
https://conda.io/miniconda.html
https://conda.io/miniconda.html
https://conda.io/miniconda.html
https://conda.io/miniconda.html

Preliminaries, Tools, and Techniques Chapter 1

3. Then upgrade pip. This is needed because the default pip installation in
the Python 3.7 environment is often slightly out of date.

4. Finally, install black. This is required because black is not currently in
any of the conda distribution channels.

Here are the commands:

$ conda create —--name mastering python=3.7 pyyaml sqlalchemy jinja2
pytest sphinx mypy pylint

$ conda activate mastering

$ python3 -m pip install --upgrade pip

$ python3 -m pip install black

The suite of tools (pytest, sphinx, mypy, pylint, and black) are essential for
creating high-quality, reliable Python programs. The other components, pyyaml,
sglalchemy, and jinja2, are helpful for building useful applications.

Summary

In this chapter, we've surveyed the game of Blackjack. The rules have a moderate level
of complexity, providing a framework for creating a simulation. Simulation was one
of the first uses for OOP and remains a rich source of programming problems that
illustrate language and library strengths.

This chapter introduces the way the Python runtime uses special methods to
implement the various operators. The bulk of this book will show ways to make use
of the special methods names for creating objects that interact seamlessly with other
Python features.

We've also looked at a number of tools that will be required to build good Python
applications. This includes the IDE, the mypy program for checking type hints, and
the black and pylint programs for getting to a consistent style. We also looked at
the timeit, unittest, and doctest modules for doing essential performance and
functional testing. For final documentation of a project, it's helpful to install sphinx.
The installation of these extra components can be done with pip or conda. The pip
tool is part of Python, the conda tool requires another download to make it available.

In the next chapter, we'll start our exploration of Python with class definition. We'll
focus specifically on how objects are initialized using the __init__ () special
method.

[23]

The __init_ () Method

The __init__ () method is a profound feature of Python class definitions for two
reasons. Firstly, initialization is the first big step in an object's life; every object must
have its state initialized properly. The second reason is that the argument values for
__init__ () can take many forms.

Because there are so many ways to provide argument values to __init__ (), thereis
a vast array of use cases for object creation. We'll take a look at several of them. We
want to maximize clarity, so we need to define an initialization that characterizes the
problem domain and clearly sets the state of the object.

Before we can get tothe __init__ () method, however, we need to take a look at the
implicit class hierarchy in Python, glancing briefly at the class named object. This
will set the stage for comparing its default behavior with the different kinds of
behavior we want from our own classes.

In this chapter, we will take a look at different forms of initialization for simple
objects (for example, playing cards). After this, we will take a look at more complex
objects, such as hands, which involve collections, and players, which involve
strategies and states. Throughout these examples, we'll include type hints and explain
how mypy will examine this code to determine the correct use of objects.

In this chapter, we will cover the following topics:

¢ All Python objects are subclasses of a common parent, the object class, so
we'll look at this first.

o We'll look at how the default __init__ () method for the object class
works.

e The first design strategy we'll look at is using a common
__init__ () method for all subclasses of a hierarchy. This can lead to
using a factory function, separate from the __init__ () method, to help
initialize objects correctly.

The __init__() Method Chapter 2

¢ The second design strategy involves pushing the __init__ () method into
each individual subclass of a complex hierarchy, and how this changes the
design of the classes.

e We'll look at how to create composite objects, which involves a number of
related uses of the __init__ () methods of different classes.

e We'll also look at stateless objects, which don't need a sophisticated
__init__ () method.

¢ The chapter will finish with several more complex uses of class-level (or
static) initialization, and how to validate values before creating an invalid
object.

In the first section, we'll look at Python's superclass for all objects, the object class.

Technical requirements

The code files for this chapter can be found at https://git.io/£j2U0.

The implicit superclass - object

Each Python class definition has an implicit superclass: object. It's a very simple
class definition that does almost nothing.

We can create instances of object, but we can't do much with them, because many of
the special methods simply raise exceptions.

When we define our own class, object is the superclass. The following is an example
class definition that simply extends object with a new name:

>>> class X:
>>> pass

The following are some interactions with this tiny class definition:

>>> X._ class___

<class 'type'>

>>> X._ class__._ _base__
<class 'object'>

[25]

https://git.io/fj2U0
https://git.io/fj2U0
https://git.io/fj2U0
https://git.io/fj2U0
https://git.io/fj2U0
https://git.io/fj2U0
https://git.io/fj2U0
https://git.io/fj2U0
https://git.io/fj2U0

The __init__() Method Chapter 2

We can see that a class is an object of the class named type and that the base class for
our new class is the class named object. As we look at each method, we also take a
look at the default behavior inherited from object. In some cases, the superclass
special method's behavior will be exactly what we want. In other cases, we'll need to
override the behavior of the special method.

The base class object __init__ () method

Fundamental to the life cycle of an object are its creation, initialization, and
destruction. We'll defer creation and destruction to a later chapter on more advanced
special methods and focus on initialization. This will set the initial state of the object.

The superclass of all classes, object, has a default implementation of __init__ ()
that amounts to pass. We aren't required to implement __init__ ().If we don't
implement it, then no instance variables will be created when the object is created. In
some cases, this default behavior is acceptable.

We can add attributes to an object that's a subclass of object. Consider the following
class, which requires two instance variables, but doesn't initialize them:

class Rectangle:
def area(self) -> float:
return self.length * self.width

The Rectangle class has a method that uses two attributes to return a value. The
attributes have not been initialized anywhere in the class definition. While this is legal
Python, it's a little strange to avoid specifically setting attributes. The following is an
interaction with the Rectangle class:

>>> r = Rectangle()

>>> r.length, r.width = 13, 8
>>> r.area()

104

While this is legal, it's a potential source of deep confusion, which is a good reason to
avoid it. Setting ad-hoc attribute values outside the class body in the example shown
above defeats type hint checking by mypy, which is another reason for avoiding it.

This kind of design grants some flexibility, so there could be times when we needn't
set all of the attributesinthe __init__ () method. We walk a fine line here. An
optional attribute implies a kind of subclass that's not formally declared as a proper
subclass.

[26]

The __init__() Method Chapter 2

We're creating polymorphism in a way that could lead to confusing and
inappropriate use of convoluted i f statements. While uninitialized attributes may be
useful, they could be a symptom of bad design.

The Zen of Python, by Tim Peters, available from the standard library via import
this, offers the following advice:

"Explicit is better than implicit.”

This statement has proven helpful over the years, to help keep Python programs
simple and consistent. This is Python Enhancement Proposal (PEP) number 20.
See https://www.python.org/dev/peps/pep-0020/ for further information.

An__init__ () method should make instance variables explicit.

Pretty poor polymorphism

There's a fine line between flexibility and foolishness. We may have
stepped over the edge of flexible into foolish as soon as we feel the
need to write the following:

if 'x' in self._ _dict_ :
code-to-handle-optional-attribute

Or, we could see the following:

try:
self.x

except AttributeError:
code-to-handle-optional-attribute

It's time to reconsider the API and add a common method or
attribute. Refactoring is better than adding i f statements.

Implementing __init__ () in a superclass

We initialize an object by implementing the __init__ () method. When an object is
created, Python first creates an empty object and then calls the __init__ () method
to set the state of the new object. This method generally creates the object's instance
variables and performs any other one-time processing.

[27]

https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/

The __init__() Method Chapter 2

The following are some example definitions of a Card class hierarchy. We'll define a
Card superclass and three subclasses that are variations of the basic theme of Card.
We have two instance variables that have been set directly from argument values and
two variables that have been calculated using an initialization method:

from typing import Tuple
class Card:

def _ _init_ (self, rank: str, suit: str) -> None:
self.suit = suit
self.rank = rank
self.hard, self.soft = self._points()

def _points(self) -> Tuplel[int, int]:
return int (self.rank), int(self.rank)

class AceCard(Card) :

def _points(self) -> Tuplel[int, int]:
return 1, 11

class FaceCard(Card) :

def _points(self) -> Tuplel[int, int]:
return 10, 10

In this example, we factored the __init__ () method into the superclass so that a
common initialization in the superclass, Card, applies to two
subclasses, AceCard and FaceCard.

This example provides type hints for parameters of the __init__ () method. Both
the rank and suit parameters are expected to have values of the str type. The result
of the __init__ () method is always None, since it never returns a value. These hints
can be checked by the mypy tool to ensure that the class is used properly.

This shows a common polymorphic design. Each subclass provides a unique
implementation of the _points () method. The various _points () methods all
return a two-tuple with the different ways to evaluate a card. All the subclasses have
identical signatures — they have the same methods and attributes. Objects of these
three subclasses can be used interchangeably in an application.

[28]

The __init__() Method Chapter 2

The leading _ in the name is a suggestion to someone reading the class that the
_points () method is an implementation detail, subject to change in a future
implementation. This can help to reveal which methods are part of a public interface
and which are details that aren't intended for general use by other classes.

If we simply use characters for suits, we will be able to create the Card instances, as
shown in the following code snippet:

cards = [AceCard('A', '#'), Card('2','#'), FaceCard('J','e"),]

We enumerated the class, rank, and suit for several cards in a list. In the long run,
we'll need a much smarter factory function to build Card instances; enumerating all
52 cards this way is tedious and error-prone. Before we get to factory functions, we
will take a look at a number of other issues.

Creating enumerated constants

We can define classes for the suits of our cards. The suits of playing cards are an
example of a type with a domain that can be exhaustively enumerated. Some other
types with very small domains of values include the None type, where there's only
one value, and the bool type, which has only two values.

The suit of a playing card could be thought of as an immutable object: the state
should not be changed. Python has one simple formal mechanism for defining an
object as immutable. We'll look at techniques to assure immutability in chapter 4,
Attribute Access, Properties, and Descriptors. While it might make sense for the
attributes of a suit to be immutable, the extra effort has no tangible benefit.

The following is a class that we'll use to build four manifest constants:

from enum import Enum

class Suit (str, Enum) :

Club = "&"
Diamond = "é"
Heart = "¥"
Spade = "&"

This class has two parent classes. Each of the four values of the suit class is both a
string as well as an Enum instance. Each string value is only a single Unicode
character. The enumerated values must be qualified by the class name, assuring that
there will be no collisions with other objects.

[29]

The __init__() Method Chapter 2

Here's one of the enumerated constants built by this class:

>>> Suit.Club
<Suit.Club: 'e&'>

The representation of an Enum instance shows the name within the Enum class, as well
as the value assigned by the other parent class. To see only the value, use an
expression such as Suit.Heart.value.

We can now create cards, as shown in the following code snippet:

cards = [AceCard('A', Suit.Spade), Card('2', Suit.Spade),
FaceCard('Q', Suit.Spade),]

For an example this small, this class isn't a huge improvement on single character suit
codes. It is very handy to have the explicit enumeration of the domain of values. An
expression such as 1ist (Suit) will provide all of the available objects.

We do have to acknowledge that these objects aren't technically immutable. It's
possible to assign additional attributes to the Suit objects. While additional attributes
can be added, the value attribute cannot be changed. The following example shows
the exception raised:

>>> Suit.Heart.value = 'H'
Traceback (most recent call last):
File "<doctest _ main__._ test__ .test_suit_value[l]>", line 1, in
<module>
Suit .Heart.value = 'H'

File "/Users/slott/miniconda3/envs/py37/1lib/python3.7/types.py",
line 175, in __set__
raise AttributeError("can't set attribute")
AttributeError: can't set attribute

The irrelevance of immutability

Immutability can become an attractive nuisance. It's sometimes
justified by a mythical malicious programmer who modifies the
constant value in their application. As a design consideration, this is
often silly. A mythical malicious programmer can't be stopped by
creating immutable objects. A malicious programmer would have
access to the Python source and be able to tweak it just as easily as
they could write poorly-crafted code to modify a constant.

In chapter 4, Attribute Access, Properties, and Descriptors, we'll show you some ways to
provide suitable diagnostic information for a buggy program that's attempting to
mutate objects intended to be immutable.

[30]

The __init__() Method Chapter 2

Leveraging __init__ () via a factory
function

We can build a complete deck of cards via a factory function. This beats enumerating
all 52 cards. In Python, there are two common approaches to factories, as follows:

e We define a function that creates objects of the required classes.

e We define a class that has methods for creating objects. This is the Factory
design pattern, as described in books on object-oriented design patterns. In
languages such as Java, a factory class hierarchy is required because the
language doesn't support standalone functions.

In Python, a class isn't required to create an object factory, but this can be a good idea

when there are related factories or factories that are complex. One of the strengths of
Python is that we're not forced to use a class hierarchy when a simple function might
do just as well.

While this is a book about object-oriented programming, a function
really is fine. It's common, idiomatic Python.

We can always rewrite a function to be a proper callable object if the need arises.
From a callable object, we can refactor it into a class hierarchy for our factories. We'll
look at callable objects in Chapter 6, Using Callables and Contexts.

The advantage of class definitions is code reuse via inheritance. The purpose of a
factory class is to encapsulate the complexities of object construction in a way that's
extensible. If we have a factory class, we can add subclasses when extending the
target class hierarchy. This can give us polymorphic factory classes; different factory
class definitions can have the same method signatures and can be used
interchangeably.

If the alternative factory definitions don't actually reuse any code, then a class
hierarchy won't be as helpful in Python. We can simply use functions that have the
same signatures.

The following is a factory function for our various Card subclasses:

def card(rank: int, suit: Suit) -> Card:
if rank == 1:
return AceCard("A", suit)
elif 2 <= rank < 11:

[31]

The __init__() Method Chapter 2

return Card(str (rank), suit)

elif 11 <= rank < 14:
name = {11: "J", 12: "Q", 13: "K"}[rank]
return FaceCard (name, suit)

raise Exception("Design Failure")

This function builds a card class from a numeric rank number and a suit object.
The type hints clarify the expected argument values. The —> Card hint describes the
result of this function, showing that it will create a Card object. We can now build
Card instances more simply. We've encapsulated the construction issues into a single
factory function, allowing an application to be built without knowing precisely how
the class hierarchy and polymorphic design works.

The following is an example of how we can build a deck with this factory function:

deck = [card(rank, suit)
for rank in range(1,14)
for suit in iter (Suit)]

This enumerates all the ranks and suits to create a complete deck of 52 cards. This
works nicely, because the Enum subclasses will iterate over the list of enumerated
values.

We do not need to use iter (Suit). We can use Suit in the preceding generator, and
it will work nicely. While the for suit in Suit form will work, mypy will signal
errors. Using 1ist (Suit) or iter (Suit) will mute the errors by making the intent
clear.

Faulty factory design and the vague else
clause

Note the structure of the if statement in the card () function. We did not use a catch-
all else clause to do any processing; we merely raised an exception. The use of a
catch-all else clause is subject to debate.

On the one hand, it can be argued that the condition that belongs in an else clause
should never be left unstated because it may hide subtle design errors. On the other
hand, some else clause conditions are truly obvious.

It's important to avoid a vague else clause.

[32]

The __init__() Method Chapter 2

Consider the following variant on this factory function definition:

def card2(rank: int, suit: Suit) -> Card:

if rank ==
return AceCard("A", suit)

elif 2 <= rank < 11:
return Card(str(rank), suit)

else:
name = {11: "J", 12: "Q", 13: "K"}[rank]
return FaceCard(name, suit)

While this kind of code is common, it's not perfectly clear what condition applies to the
else: clause.

The following looks like it might build a valid deck:

deck2 = [card2(rank, suit) for rank in range(13) for suit in
iter (Suit)]

This doesn't work. But the error is an obscure KeyError when trying to build a
FaceCard instance.

What if the i f conditions were more complex? While some programmers will
understand this i f statement at a glance, others will struggle to determine whether
all of the cases are properly exclusive.

We should not force the reader to deduce a complex condition for an else clause.
Either the condition should be obvious to the newest of noobz, or it should be explicit.

Catch-all else should be used rarely. Use it only when the condition
is obvious. When in doubt, be explicit and use else to raise an
exception. Avoid the vague else clause.

Simplicity and consistency using elif
sequences

The factory function, card (), is a mixture of two very common Factory design
patterns:

e An if-elif sequence
e A mapping

[33]

The __init__() Method Chapter 2

For the sake of simplicity, it can be better to focus on just one of these techniques
rather than on both.

We can always replace a mapping with e1if conditions. (Yes, always. The reverse is
not true though; transforming e1if conditions to a mapping can be challenging.)

The following is a Card factory without a mapping:

def card3(rank: int, suit: Suit) -> Card:
if rank ==
return AceCard("A", suit)
elif 2 <= rank < 11:

return Card(str (rank), suit)
elif rank == 11:

return FaceCard("J", suit)
elif rank == 12:

return FaceCard("Q", suit)
elif rank == 13:

return FaceCard("K", suit)
else:

raise Exception ("Rank out of range")

We rewrote the card () factory function. The mapping was transformed into
additional e11if clauses. This function has the advantage that it is more consistent
than the previous version.

Simplicity using mapping and class objects
In some cases, we can use a mapping instead of a chain of e1if conditions. It's
possible to find conditions that are so complex that a chain of e1if conditions is the

only sensible way to express them. For simple cases, however, a mapping often works
better and can be easy to read.

Since class is a first-class object, we can easily map from the rank parameter to the
class that must be constructed.

The following is a Card factory that uses only a mapping:

def card4 (rank: int, suit: Suit) -> Card:
class_ = {1: AceCard, 11: FaceCard, 12: FaceCard,
13: FaceCard}.get (rank, Card)
return class_ (str(rank), suit)

[34]

The __init__() Method Chapter 2

We've mapped the rank object to a class. Then, we applied the class to the rank and
suit values to build the final Card instance.

The card4 () function, however, has a serious deficiency. It lacks the translation from
1 to A and 13 to K that we had in previous versions. When we try to add that feature,
we run into a problem.

We need to change the mapping to provide both a Card subclass as well as the string
version of the rank object. How can we create this two-part mapping? There are four
common solutions:

e We can do two parallel mappings. We don't suggest this, but we'll show it
to emphasize what's undesirable about it.

e We can map to a two-tuple. This also has some disadvantages.

e Wecanmap toapartial () function. The partial () functionisa
feature of the functools module. This won't work out perfectly, and we'll
use a lambda object to achieve the same goal.

e We can also consider modifying our class definition to fit more readily with
this kind of mapping. We'll look at this alternative in the next section, on
pushing __init__ () into subclass definitions.

We'll look at each of these with a concrete example.

Two parallel mappings

The following is the essence of the two-parallel mappings solution:

def card5(rank: int, suit: Suit) -> Card:
class_ = {1: AceCard, 11: FaceCard, 12: FaceCard,
13: FaceCard}.get (rank, Card)
rank_str = {1: "aA", 11: "g", 12: "Q",
13: "K"}.get (rank, str(rank))
return class_ (rank_str, suit)

This is not desirable. It involves a repetition of the sequence of the mapping keys 1,
11, 12, and 13. Repetition is bad, because parallel structures never seem to stay that
way after the software has been updated or revised.

Don't use parallel structures
Two parallel structures should be replaced with tuples or some kind
of proper collection.

[35]

The __init__() Method Chapter 2

Mapping to a tuple of values

The following is the essence of how mapping is done to a two-tuple:

def cardé6(rank: int, suit: Suit) -> Card:
class_, rank_str = {
1: (AceCard, "A"™),
11: (FaceCard, "J"),
12: (FaceCard, "Qm"),
13: (FaceCard, "K")
}.get(
rank, (Card, str(rank))

)

return class_ (rank_str, suit)

This is a reasonably pleasant design because it uses a simple mapping. It's not much
code to handle special cases of playing cards. We will see how it could be modified or
expanded if we needed to alter the Card class hierarchy to add additional subclasses
of Card.

It does feel odd to map a rank value to a class object and one of the two arguments
to that class initializer. It seems more sensible to map the rank to a simple class or
function object without the clutter of providing some (but not all) of the arguments.

The partial function solution

In the previous example, we mapped the rank to a two-tuple of the class and one of
the arguments for creating an instance. We can combine class and rank into a
partial function. This is a function that has some argument values and is waiting for
the final argument value. In many cases, we can use the partial () function from the
functools library to create a partial function combining the class object with the
rank argument.

The partial () function is not designed to create objects; using it like this will raise
an exception. Instead of using the partial function, we can create a 1ambda object
instead. For example, the 1ambda suit: AceCard("A", suit) expressionisa
function that is waiting for the suit value to create a complete Card.

The following is a mapping from rank to a 1ambda object that can be used to
construct Card objects:

def card7(rank: int, suit: Suit) -> Card:
class_rank = {
1: lambda suit: AceCard("A", suit),

[36]

The __init__() Method Chapter 2

11: lambda suit: FaceCard("Jd", suit),

12: lambda suit: FaceCard("Q", suit),

13: lambda suit: FaceCard("K", suit),
}.get(

rank, lambda suit: Card(str(rank), suit)

)

return class_rank (suit)

The mapping associates a rank object with a 1ambda object that contains a class and a
string. The 1ambda object is a function that is then applied to the suit object to create
the final Card instance.

This use of the partial () function is a common technique for functional
programming. It is one way to achieve a kind of polymorphism so that several
different functions can be used in a similar way.

In general, however, partial functions aren't helpful for most object-oriented
programming. When building complex objects, it is common to define methods that
accept arguments incrementally. Instead of using rank to create a partial function, a
more object-oriented approach is to use separate methods to set rank and suit.

Fluent APIs for factories

In Python, a fluent interface is built by creating methods that return the self instance
variable. Each method can set some of the object's state. By returning self, the
functions can be chained together.

We might have X () .a () .b () in an object notation. We can think of it as b(a(X)).
The x.a () function is a kind of partial () function that's waiting for b (). We can
think of X () .a () as if it were an object with another function as its argument value,

ax (b).

The idea here is that Python offers us two alternatives for initializing state. We can
either set all of the valuesin __init__ (), or we can set values in a number of
separate methods. In the following example, we'll make the setting of the rank object
a fluent method that returns sel1f£. Setting the suit object will actually create the
Card instance. The following is a fluent Card factory class. An instance must use the
two method functions in the required order:

class CardFactory:

def rank(self, rank: int) -> "CardFactory":

[37]

The __init__() Method Chapter 2

self.class_, self.rank_str = {
1: (AceCard, "A"),
11: (FaceCard, "Jm),
12: (FaceCard, "Qm"),
13: (FaceCard, "K"),
}.get(
rank, (Card, str(rank))

)

return self

def suit (self, suit: Suit) -> Card:
return self.class_(self.rank_str, suit)

The rank () method updates the state of the constructor, and the suit () method
actually creates the final Card object. The type hint for the rank () function shows the
function returning a CardFactory object. Because the class is not fully defined, the
name isn't known, and a quoted string has to be used. The mypy tool will resolve the
string type name to create a circular reference from the class to itself.

This factory class can be used as follows:

card8 = CardFactory ()
deck8 = [card8.rank(r + 1).suit(s) for r in range(13) for s in Suit]

First, we create a factory instance, then we use that instance to create the Card
instances. This doesn't materially change how __init__ () itself works in the Card
class hierarchy. It does, however, change the way that our client application creates
objects.

Implementing __init__ () in each subclass

As we look at the factory functions for creating Card objects, there are some
alternative designs for the Card class. We might want to refactor the conversion of the
rank number so that it is the responsibility of the Card class itself. This pushes the
initialization down into each subclass.

This often requires some common initialization of a superclass as well as subclass-
specific initialization. We need to follow the Don't Repeat Yourself (DRY) principle
to keep the code from getting cloned into each of the subclasses.

[38]

The __init__() Method Chapter 2

This version of the Card3 class has an initializer at the superclass level that is used by
each subclass, as shown in the following code snippet:

class Card3:

def __init_ (
self, rank: str, suit: Suit, hard: int, soft: int

) —> None:
self.rank = rank
self.suit = suit

self.hard = hard
self.soft = soft

class NumberCard3 (Card3) :

def _ _init_ (self, rank: int, suit: Suit) -> None:
super () .__init__ (str(rank), suit, rank, rank)

class AceCard3 (Card3) :

def _ _init_ (self, rank: int, suit: Suit) -> None:
super () .__init__ ("A", suit, 1, 11)

class FaceCard3 (Card3) :

def _ _init_ (self, rank: int, suit: Suit) -> None:
rank_str = {11: "Jg", 12: "Q", 13: "K"}[rank]
super () .__init__ (rank_str, suit, 10, 10)

We've provided __init__ () at both the subclass and superclass level. Each subclass
uses the super () function to locate the superclass version of __init__ (). The
superclass version has a number of parameters that can be omitted from the subclass
initializers.

This has the small advantage that it simplifies our factory function, as shown in the
following code snippet:

def cardl0(rank: int, suit: Suit) -> Card3:
if rank ==
return AceCard3 (rank, suit)
elif 2 <= rank < 11:
return NumberCard3 (rank, suit)
elif 11 <= rank < 14:
return FaceCard3 (rank, suit)
else:
raise Exception ("Rank out of range")

[39]

The __init__() Method Chapter 2

We can see from this variation that we've created rather complex __init__ ()
methods for a relatively minor improvement in the simplicity of a factory function.
This is a common trade-off. The complexity cannot be removed; it can only be
encapsulated. The real question is how should responsibility be allocated for this
complexity?

Factory functions encapsulate complexity

There's a trade-off that occurs between sophisticated __init__ ()
methods and factory functions. It's often better to push complex
constructors into factory functions. A factory function helps separate
construction and initial state-from-state change or other processing
concerns.

Composite objects

A composite object can also be called a container. We'll look at a simple composite
object: a deck of individual cards. This is a basic collection. Indeed, it's so basic that
we can, without too much struggle, use a simple 1ist object as a deck.

Before designing a new class, we need to ask this question: is using a simple
list object appropriate?

We can use random.shuffle () to shuffle the deck and deck.pop () to deal cards
into a player's Hand.

Some programmers rush to define new classes as if using a built-in class violates
some object-oriented design principle. Avoiding a new class leaves us with the
following code snippet:

>>> d = [card(r + 1, s) for r in range(13) for s in iter(Suit)]
>>> random.shuffle (d)

>>> hand = [d.pop(), d.pop()]

>>> hand

[FaceCard (suit=<Suit.Club: '#'>, rank='J'), Card(suit=<Suit.Spade:
'a'>, rank='2")]

If it's that simple, why write a new class?

Defining a class has the advantage of creating a simplified, implementation-free
interface to the object. In the case of the 1ist example shown in the preceding code,
it's not clear how much simpler a Deck class would be.

[40]

The __init__() Method Chapter 2

The deck has two use cases. A class definition doesn't seem to simplify things very
much. It does have the advantage of concealing the implementation's details. In this
example, the details are so trivial that exposing them has little cost.

We're focused primarily on the __init__ () method in this chapter, so we'll look at
some designs to create and initialize a collection. To design a collection of objects, we
have the following three general design strategies:

e Wrap: This design pattern surrounds an existing collection definition with
a simplified interface. This is an example of the more general Facade design
pattern.

¢ Extend: This design pattern starts with an existing collection class and
extends it to add features.

e Invent: This is designed from scratch. We'll look at this in chapter 7,
Creating Containers and Collections.

These three concepts are central to object-oriented design. Because Python has so
many features built into the language, we must always make this choice when
designing a class.

Wrapping a collection class

The following is a wrapper design that contains an internal collection:

class Deck:
def _ _init_ (self) -> None:
self._cards = [card(r + 1, s)
for r in range(13) for s in iter (Suit)]
random.shuffle(self._cards)

def pop(self) —-> Card:
return self._cards.pop ()

We've defined Deck so that the internal collection is a 1ist object. The pop () method
of Deck simply delegates to the wrapped 1ist object.

We can then create a Hand instance with the following type of code:

d = Deck ()
hand = [d.pop (), d.pop()]

[41]

The __init__() Method Chapter 2

Generally, a Facade design pattern or wrapper class contains methods that delegate
the work to the underlying implementation class. This delegation can become wordy
when a lot of features are provided. For a sophisticated collection, we may wind up
delegating a large number of methods to the wrapped object.

Extending a collection class

An alternative to wrapping is to extend a built-in class. By doing this, we have the
advantage of not having to reimplement the pop () method; we can simply inherit it.

The pop () method has an advantage in that it creates a class without writing too
much code. In this example, extending the 1ist class has the disadvantage that this
provides many more functions than we truly need.

The following is a definition of Deck2 that extends the built-in 1ist object:
class Deck2 (list):

def _ _init_ (self) -> None:
super ().__init__ (
card(r + 1, s)
for r in range(13) for s in iter(Suit))
random.shuffle (self)

In this case, we've initialized the list with Card instances. super () .__init__ ()
reaches up to the superclass initialization to populate our 1ist object with an initial
single deck of cards. After seeding the list, the initializer then shuffles the cards. The
pop () method is directly inherited from 1ist and works perfectly. Other methods
inherited from the 1ist class will also work.

While simpler, this exposes methods such as delete () and remove (). If these
additional features are undesirable, a wrapped object might be a better idea.

More requirements and another design

In a casino, cards are often dealt from a shoe that has half a dozen decks of cards all
mingled together. This additional complexity suggests that we need to build our own
implementation of Deck and not simply use the 1ist class directly. Additionally, a
casino shoe is not dealt fully. Instead, a marker card is inserted. Because of the
marker, some cards are effectively set aside and not used for play. These cards are
said to be burned.

[42]

The __init__() Method Chapter 2

The following Deck 3 class definition contains multiple sets of 52-card decks:

class Deck3(list):

def _ _init_ (self, decks: int = 1) —-> None:
super () .__init__ ()
for i in range (decks):
self.extend
card(r + 1, s)
for r in range(13) for s in iter(Suit)
)
random.shuffle (self)

burn = random.randint (1, 52)
for i in range (burn):
self.pop()
Here, we used the __init__ () method of the superclass to build an empty

collection. Then, we used self.extend () to extend this collection with multiple 52-
card decks. This populates the shoe. We could also use super () .extend (), since we
did not provide an overriding implementation in this class.

We could also carry out the entire task via super () .__init__ () using a more
deeply nested generator expression, as shown in the following code snippet:

super () .__init__ (
card(r + 1, s)
for r in range (13)
for s in iter (Suit)
for d in range (decks)

)

This class provides us with a collection of Card instances that we can use to emulate
casino blackjack as dealt from a shoe.

Complex composite objects

The following is an example of a Blackjack Hand description that might be suitable for
emulating play strategies:

class Hand:

def _ _init_ (self, dealer_card: Card) -> None:
self.dealer_card: Card = dealer_card
self.cards: List[Card] = []

[43]

The __init__() Method Chapter 2

def hard_total(self) -> int:
return sum(c.hard for c¢ in self.cards)

def soft_total(self) -> int:
return sum(c.soft for c¢ in self.cards)

def __repr__ (self) -> str:
return f"{self._ _class__ ._ name_ } {self.dealer_card}
{self.cards}"

In this example, we have a self.dealer_card instance variable based on a
parameter of the __init__ () method. The self.cards instance variable, however,
is not based on any parameter. This kind of initialization creates an empty collection.
Note that the assignment to the self.cards variable requires a type hint to inform
mypy of the expected contents of the self.cards collection.

To create an instance of Hand, we can use the following code:

>>> d Deck ()
h Hand (d.pop())

>>> h.cards.append(d.pop())
h.

>>> cards.append (d.pop())

>>>

This has the disadvantage of consisting of a long-winded sequence of statements to
build an instance of a Hand object. It can become difficult to serialize the Hand object
and rebuild it with an initialization as complex as this. Even if we were to create an
explicit append () method in this class, it would still take multiple steps to initialize
the collection.

The definition of the __repr__ () method illustrates this problem. We can't provide a
simple string representation that would rebuild the object. The typical use of
__repr__ () is to create a Pythonic view of the object's state, but, with such a
complex initialization, there's no simple expression to represent it.

We could try to create a fluent interface, but that wouldn't really simplify things; it
would merely mean a change in the syntax of the way that a Hand object is built. A
fluent interface still leads to multiple method evaluations. When we take a look at the
serialization of objects in part 2, Persistence and Serialization, we'd like an interface
that's a single class-level function; ideally the class constructor. We'll look at this in
depth in chapter 10, Serializing and Saving — JSON, YAML, Pickle, CSV, and XML.

You should also note that the hard total and soft total method functions shown here
don't fully follow the rules of Blackjack. We'll return to this issue in Chapter 3,
Integrating Seamlessly — Basic Special Methods.

[44]

The __init__() Method Chapter 2

Complete composite object initialization

Ideally, the __init__ () initializer method will create a complete instance of an
object. This is a bit more complex when creating a complete instance of a container
that contains an internal collection of other objects. It'll be helpful if we can build this
composite in a single step.

It's common to have both a method to incrementally accrete items, as well as the
initializer special method, which can load all of the items in one step.

For example, we might have a class such as the following code snippet:

class Hand2:

def __init__ (self, dealer_card: Card, *cards: Card) -> None:
self.dealer_card = dealer_card
self.cards = list (cards)

def card_append(self, card: Card) -> None:
self.cards.append (card)

def hard_total (self) —-> int:
return sum(c.hard for c¢ in self.cards)

def soft_total(self) —-> int:
return sum(c.soft for c¢ in self.cards)

def __repr__ (self) —-> str:
return f"{self.__class__._ _name__ } ({self.dealer_card!r},
*{self.cards})"

This initialization sets all of the instance variables in a single step. The other methods
are copies from the previous class definition. The first positional argument value is
assigned to the dealer_card parameter. The use of * with the cards parameter
means that all of the remaining positional argument values are collected into a tuple
and assigned to the cards parameter.

We can build a Hand2 object in two ways. This first example loads one card at a time
into a Hand2 object:

Deck ()

Hand2 (d.pop())
.cards.append(d.pop())
.cards.append (d.pop())

T O Yo

[45]

The __init__() Method Chapter 2

This second example uses the *cards parameter to load a sequence of the Cards
class in a single step:

d = Deck ()
h Hand2 (d.pop (), d.pop(), d.pop())

For unit testing, it's often helpful to build a composite object in a single statement in
this way. More importantly, some of the serialization techniques from the next part
will benefit from a way of building a composite object in a single, simple evaluation.

Stateless objects without __init__ ()

The following is an example of a degenerate class that doesn't need an __init__ ()
method. It's a common design pattern for Strategy objects. A Strategy object is
plugged into some kind of master or owner object to implement an algorithm or
decision. The Strategy object often depends on data in the master object; the Strategy
object may not have any data of its own. We often design strategy classes to follow
the Flyweight design pattern so we can avoid internal storage in the strategy instance.
All values can be provided to a Strategy object as method argument values. In some
cases, a strategy object can be stateless; in this instance, it is more a collection of
method functions than anything else.

In the following examples, we'll show both stateless and stateful strategy class
definitions. We'll start with the strategy for making some of the player decisions
based on the state of the Hand object.

In this case, we're providing the gameplay decisions for a P1ayer instance. The
following is an example of a (dumb) strategy to pick cards and decline other bets:

class GameStrategy:

def insurance(self, hand: Hand) -> bool:
return False

def split(self, hand: Hand) -> bool:
return False

def double(self, hand: Hand) -> bool:
return False

def hit (self, hand: Hand) -> bool:
return sum(c.hard for ¢ in hand.cards) <= 17

[46]

The __init__() Method Chapter 2

Each method requires the current Hand object as an argument value. The decisions
are based on the available information; that is, on the dealer's cards and the player's
cards. The result of each decision is shown in the type hints as a Boolean value. Each
method returns True if the player elects to perform the action.

We can build a single instance of this strategy for use by various Player instances, as
shown in the following code snippet:

dumb = GameStrategy ()

We can imagine creating a family of related strategy classes, each one using different
rules for the various decisions a player is offered in Blackjack.

Some additional class definitions

As noted previously, a player has two strategies: one for betting and one for playing
their hand. Each Player instance has a sequence of interactions with a larger
simulation engine. We'll call the larger engine the Table class.

The Table class requires the following sequence of events by the P1ayer instances:

1. The player must place an initial, or ante, bet based on the betting strategy.

2. The player will then receive a hand of cards.

3. If the hand is splittable, the player must decide whether to split it or not
based on their game strategy. This can create additional Hand instances. In
some casinos, the additional hands are also splittable.

4. For each Hand instance, the player must decide to hit, double, or stand
based on their game strategy.

5. The player will then receive payouts, and they must update their betting
strategy based on their wins and losses.

From this, we can see that the Table class has a number of API methods to receive a
bet, create a Hand object, offer a split, resolve each hand, and pay off the bets. This is a
large object that tracks the state of play with a collection of Players.

The following is the beginning of a Table class, which handles the bets and cards:
class Table:

def _ _init_ (self) -> None:
self.deck = Deck ()

[47]

The __init__() Method Chapter 2

def place_bet (self, amount: int) -> None:
print ("Bet", amount)

def get_hand(self) -> Hand2:

try:

self.hand = Hand2 (self.deck.pop(),
self.deck.pop (), self.deck.pop())

self.hole_card = self.deck.pop()

except IndexError:
Out of cards: need to shuffle and try again.
self.deck = Deck()
return self.get_hand()

print ("Deal", self.hand)

return self.hand

def can_insure(self, hand: Hand) -> bool:
return hand.dealer_card.insure

The Table class is used by the Player class to accept a bet, create a Hand object, and
determine whether the insurance bet is in play for this hand. Additional methods can
be used by the Player class to get cards and determine the payout.

The exception handling shown in get_hand () is not a precise model of casino play.
A may lead to minor statistical inaccuracies. A more accurate simulation requires the
development of a deck that reshuffles itself when empty instead of raising an
exception.

In order to interact properly and simulate realistic play, the Player class needs a
betting strategy. The betting strategy is a stateful object that determines the level of
the initial bet. Various betting strategies generally change a bet based on whether a
game was a win or a loss.

Ideally, we'd like to have a family of Bett ingStrategy objects. Python has a module
with decorators that allows us to create an abstract superclass. An informal approach
to creating Strategy objects is to raise an exception for methods that must be
implemented by a subclass.

We've defined an abstract superclass, as well as a specific subclass, as follows, to
define a flat betting strategy:

class BettingStrategy:

def bet (self) —-> int:
raise NotImplementedError ("No bet method")

def record_win(self) —-> None:

[48]

The __init__() Method Chapter 2

pass

def record_loss(self) —-> None:
pass

class Flat (BettingStrategy) :

def bet (self) -> int:
return 1

The superclass defines the methods with handy default values. The basic bet ()
method in the abstract superclass raises an exception. The subclass must override the
bet () method. The type hints show the results of the various betting methods.

We can make use of the abc module to formalize an abstract superclass definition. It
would look like the following code snippet:

import abc
from abc import abstractmethod

class BettingStrategy2 (metaclass=abc.ABCMeta) :

@abstractmethod
def bet (self) —-> int:
return 1

def record_win(self):
pass

def record_loss(self):
pass

This has the advantage that it makes the creation of an instance of
BettingStrategy2, or any subclass that failed to implement bet (), impossible. If
we try to create an instance of this class with an unimplemented abstract method, it
will raise an exception instead of creating an object.

And, yes, the abstract method has an implementation. It can be accessed via
super () .bet (). This allows a subclass to use the superclass implementation, if
necessary.

[49]

The __init__() Method Chapter 2

Multi-strategy __init__ ()

We may have objects that are created from a variety of sources. For example, we
might need to clone an object as part of creating a memento, or freeze an object so that
it can be used as the key of a dictionary or placed into a set; this is the idea behind the
set and frozenset built-in classes.

We'll look at two design patterns that offer multiple ways to build an object. One
design pattern uses a complex __init__ () method with multiple strategies for
initialization. This leads to designing the __init__ () method with a number of
optional parameters. The other common design pattern involves creating multiple
static or class-level methods, each with a distinct definition.

Defining an overloaded __init__ () method can be confusing to mypy, because the
parameters may have distinct value types. This is solved by using the Goverload
decorator to describe the different assignments of types tothe __init__ ()
parameters. The approach is to define each of the alternative versions of

__init__ () and decorate with Goverload. A final version — without any decoration
— defines the parameters actually used for the implementation.

The following is an example of a Hand3 object that can be built in either of the two
ways:
class Hand3:
@overload

def __init__ (self, argl: "Hand3") -> None:

@overload
def __init__ (self, argl: Card, arg2: Card, arg3: Card) -> None:

def _ _init_ (
self,
argl: Union[Card, "Hand3"],
arg2: Optional[Card] = None,
arg3: Optional[Card] = None,
) —> None:

self.dealer_card: Card
self.cards: List[Card]

if isinstance(argl, Hand3) and not arg2 and not arg3:
Clone an existing hand
self.dealer_card = argl.dealer_card

[50]

The __init__() Method Chapter 2

self.cards = argl.cards
elif (isinstance(argl, Card)

and isinstance (arg2, Card)

and isinstance (arg3, Card)

Build a fresh, new hand.
self.dealer_card = cast (Card, argl)

self.cards = [arg2, arg3]
def __repr__ (self) -> str:
return f"{self._ class_ ._ name__ } ({self.dealer_card!r},

*{self.cards})"

In the first overloaded case, a Hand3 instance has been built from an existing Hand3
object. In the second case, a Hand3 object has been built from individual card
instances. The @overload decorator provides two alternative versions of the
__init__ () method. These are used by mypy to ensure this constructor is used
properly. The undecorated version is used at runtime. It is a kind of union of the two
overloaded definitions.

The @overload definitions are purely for mypy type-checking purposes. The non-
overloaded definition of __init__ () provides a hint for argl as union of either a
Card object or a Hand3 object. The code uses the isinstance () function to decide
which of the two types of argument values were provided. To be more robust, the
if-elif statements should have an else: clause. This should raise a ValueError
exception.

This design parallels the way a frozenset object can be built from individual items
or an existing set object. We will look at creating immutable objects more in the next
chapter. Creating a new Hand3 object from an existing Hand3 object allows us to
create a memento of a Hand3 object using a construct such as the following code
snippet:

h = Hand3 (deck.pop (), deck.pop(), deck.pop())
memento = Hand3 (h)

We saved the Hand object in the mement o variable. This can be used to compare the
final with the original hand that was dealt, or we can freeze it for use in a set or
mapping too.

[51]

The __init__() Method Chapter 2

More complex initialization alternatives

In order to write a multi-strategy initialization, it can seem helpful to give up on
specific named parameters. This leads to trying to use the * *kw construct to take only
named arguments. This design has the advantage of being very flexible, but the
disadvantage of bypassing automated type checking. It requires a great deal of
documentation explaining the variant use cases.

Instead of collecting all named parameters using the ** construct, it's often helpful to
use a standalone * construct. When we write def f(a: int, b: int, *, c:
int), we're expecting two positional argument values, and the third value must be
provided by name. We'd use this function as £ (1, 2, c¢=3). This provides for
explicit names to cover special cases.

We can expand our initialization to also split a Hand object. The result of splitting a
Hand object is simply another constructor. The following code snippet shows how the
splitting of a Hand object might look:

class Hand4:
@overload

def __init__ (self, argl: "Hand4") -> None:

@overload
def _ _init__ (self,
argl: "Hand4", arg2: Card, *, split: int) -> None:

@overload
def _ _init__ (self,
argl: Card, arg2: Card, arg3: Card) —-> None:

def __init__ (

self,

argl: Union["Hand4", Card],
arg2: Optional[Card] = None,
arg3: Optional[Card] = None,
split: Optional[int] = None,

) —> None:
self.dealer_card: Card
self.cards: List[Card]
if isinstance(argl, Hand4):
Clone an existing hand
self.dealer_card = argl.dealer_card

[52]

The __init__() Method Chapter 2

self.cards = argl.cards

elif isinstance(argl, Hand4) and isinstance(arg2, Card) and
"split" is not None:
Split an existing hand
self.dealer_card = argl.dealer_card
self.cards = [argl.cards[split], arg2]

elif (
isinstance (argl, Card)
and isinstance (arg2, Card)
and isinstance (arg3, Card)

Build a fresh, new hand from three cards
self.dealer_card = argl
self.cards = [arg2, arg3]
else:
raise TypeError ("Invalid constructor {argl'!r} {arg2!r}
{arg3!r}i")

def _ str_ (self) -> str:
return ", ".join(map(str, self.cards))

This design reflects three separate use cases:

¢ Creating a Hand4 object from an existing Hand4 object. In this case, arg1
will have the Hand4 type and the other arguments will have default values
of None.

e Splitting a Hand4 object. This requires a value for the split keyword
argument that uses the position of the Card class from the original Hand4
object. Note how * is inserted into the parameter list to show that the
split value must be provided as a keyword argument value.

e Building a Hand4 object from three Card instances. In this case, all three of
the positional parameters will have values of the card type.

The @overload decorator information is used by mypy. It provides documentation
for people using this class. It has no runtime impact.

The following code snippet shows how we'd use these definitions to create and split a
hand:

d = Deck ()

h = Hand4 (d.pop (), d.pop(), d.pop())
sl Hand4 (h, d.pop(), split=0)

s2 Hand4 (h, d.pop (), split=1)

[53]

The __init__() Method Chapter 2

We created an initial h instance of Hand4, split it into two other Hand4 instances, s1
and s2, and dealt an additional card class into each. The rules of Blackjack only allow
this when the initial hand has two cards of equal rank.

While this __init__ () method is rather complex, it has the advantage that it can
parallel the way in which fronzenset is created from an existing set. The
disadvantage is that it needs a large docstring to explain all these variations.

Initializing with static or class-level methods

When we have multiple ways to create an object, it's sometimes more clear to use
static methods to create and return instances rather than complex __init__ ()
methods.

The term static is borrowed from other languages. Python has three kinds of binding
for method functions. The default case is to bind a method to the instance; the first
positional parameter is self, the instance variable. A method can be bound to the
class; this requires the @staticmethod decorator. A method can also be bound to the
class, but receive the class as the first positional parameter; this requires the
@classmethod decorator.

In the case of freezing or splitting a Hand object, we might want to create two new
static methods to freeze or split a Hand object. Using static methods as surrogate
constructors is a tiny syntax change in construction, but it has huge advantages when
organizing code.

The following is a version of Hand with static methods that can be used to build new
instances of Hand from an existing Hand instance:

class Handb:

def _ _init_ (self, dealer_card: Card, *cards: Card) -> None:
self.dealer_card = dealer_card
self.cards = list (cards)

@staticmethod

def freeze (other) —-> "Handb":
hand = Handb5 (other.dealer_card, *other.cards)
return hand

@staticmethod
def split (other, card0, cardl) -> Tuple["Hand5", "Hand5"]:
hand0 = Handb5 (other.dealer_card, other.cards[0], card0)

[54]

The __init__() Method Chapter 2

handl = Hand5 (other.dealer_card, other.cards[1l], cardl)
return handO, handl

def _ str_ (self) -> str:
return ", ".join(map(str, self.cards))

The freeze () method freezes or creates a memento version. The split () method
splits a Hand5 instance to create two new child instances of Hand5. The __init__ ()
method builds a hand from individual Card instances.

This is often more readable and preserves the use of the parameter names to explain
the interface. Note how the class name must be provided as a string when used as a
type hint within the class definition. You will recall that the class name doesn't exist
until after the execution of the class statement. Using strings instead of type objects
permits a reference to a type that doesn't exist yet. When mypy evaluates the type
hints, it will resolve the type objects from the strings.

The following code snippet shows how we can split a Hand5 instance with this
version of the class:

d = Deck ()
h = Hand5 (d.pop(), d.pop(), d.pop())
sl, s2 = Hand5.split (h, d.pop (), d.pop())

We created an initial h instance of Hand5, split it into two other hands, s1 and s2, and
dealt an additional Card class into each. The split () static method is much simpler
than the equivalent functionality implemented via __init__ ().

Yet more __init_ () techniques

We'll take a look at a few other, more advanced __init__ () techniques. These aren't
quite so universally useful as the techniques in the previous sections.

The following is a definition for the Player class that uses two Strategy objects and a
table object. This shows an unpleasant-looking __init__ () method:

class Player:

def __init__ (
self,
table: Table,
bet_strategy: BettingStrategy,
game_strategy: GameStrategy

[55]

The __init__() Method Chapter 2

) —> None:
self.bet_strategy = bet_strategy
self.game_strategy = game_strategy
self.table = table

def game (self):
self.table.place_bet (self.bet_strategy.bet ())
self.hand = self.table.get_hand()
if self.table.can_insure(self.hand) :
if self.game_strategy.insurance (self.hand) :
self.table.insure(self.bet_strategy.bet())
etc. (omitted for now)

The __init__ () method for Player seems to do little more than bookkeeping.
We're simply transferring named parameters to instance variables with same name.
In many cases, the @dataclass decorator can simplify this.

We can use this P1layer class (and related objects) as follows:

table = Table ()

flat_bet = Flat ()

dumb = GameStrategy ()

p = Player (table, flat_bet, dumb)
p.game ()

We can provide a very short and very flexible initialization by simply transferring
keyword argument values directly into the internal instance variables.

The following is a way to build a P1layer class using keyword argument values:
class Player2 (Player) :

def _ _init__ (self, **kw) —-> None:
"""Must provide table, bet_strategy, game_strategy."""
self.bet_strategy: BettingStrategy = kw["bet_strategy"]
self.game_strategy: GameStrategy = kw["game_strategy"]
self.table: Table = kw["table"]

def game (self) —-> None:
self.table.place_bet (self.bet_strategy.bet ())
self.hand = self.table.get_hand()

This sacrifices some readability for succinctness. Each individual instance variable
now requires an explicit type hint, because the parameters don't provide any
information.

[56]

The __init__() Method Chapter 2

Since the __init__ () method is reduced to one line, it removes a certain level of
wordiness from the method. This wordiness, however, is transferred to each individual
object constructor expression. In effect, we provide type hints and parameter names
in each of the object initialization expressions.

Here's how we must provide the required parameters, as shown in the following code
snippet:

p2 = Player?2(table=table, bet_strategy=flat_bet, game_strategy=dumb)

This syntax also works with the P1layer class, as shown in the preceding code. For
the Player2 class, it's a requirement. For the Player class, this syntax is optional.

Using the ** construct to collect all keywords into a single variable does have a
potential advantage. A class defined like this is easily extended. We can, with only a
few specific concerns, supply additional keyword parameters to a constructor.

Here's an example of extending the preceding definition:

class Player2x (Player) :

def _ _init_ (self, **kw) -> None:
"""Must provide table, bet_strategy, game_strategy."""
self.bet_strategy: BettingStrategy = kw["bet_strategy"]
self.game_strategy: GameStrategy = kw["game_strategy"]
self.table: Table = kw["table"]
self.log_name: Optional[str] = kw.get ("log_name")

We've added a 1og_name attribute without touching the class definition. This could
be used, perhaps, as part of a larger statistical analysis. The Player2.log_name
attribute can be used to annotate logs or other collected data. The other initialization
was not changed.

We are limited in what we can add; we can only add parameters that fail to conflict
with the names already in use within a class. Some knowledge of a class
implementation is required to create a subclass that doesn't abuse the set of keywords
already in use. Since the **kw parameter is opaque, we need to read it carefully. In
most cases, we'd rather trust the class to work than review the implementation
details. The disadvantage of this technique is the obscure parameter names, which
aren't formally documented.

[57]

The __init__() Method Chapter 2

We can (and should) hybridize this with a mixed positional and keyword
implementation, as shown in the following code snippet:

class Player3 (Player):

def _ _init_ (
self,
table: Table,
bet_strategy: BettingStrategy,
game_strategy: GameStrategy,
**extras,
) —> None:
self.bet_strategy = bet_strategy
self.game_strategy = game_strategy
self.table = table
self.log_name: str = extras.pop("log_name",
self._class_ _._ _name_)
if extras:
raise TypeError (f"Extra arguments: {extras!r}")

This is more sensible than a completely open definition. We've made the required
parameters positional parameters while leaving any nonrequired parameters as
keywords. This clarifies the use of any extra keyword arguments given to the
__init__ () method.

The known parameter values are popped from the extras dictionary. After this is
finished, any other parameter names represent a type error.

Initialization with type validation

Runtime type validation is rarely a sensible requirement. In a way, this might be a
failure to fully understand Python. Python's type system permits numerous
extensions. Runtime type checking tends to defeat this. Using mypy provides
extensive type checking without the runtime overheads.

The notional objective behind runtime checking is to validate that all of the
arguments are of a proper type. The issue with trying to do this is that the definition of
proper is often far too narrow to be truly useful.

Type checking is different from checking ranges and domains within a type. Numeric
range checking, for example, may be essential to prevent infinite loops at runtime.

[58]

The __init__() Method Chapter 2

What can create problems is trying to do something like the following in an
__init__ () method:

class ValidPlayer:

def __init__ (self, table, bet_strategy, game_strategy):
assert isinstance(table, Table)
assert isinstance (bet_strategy, BettingStrategy)
assert isinstance (game_strategy, GameStrategy)

self.bet_strategy = bet_strategy
self.game_strategy = game_strategy
self.table = table

The isinstance () method checks circumvent Python's normal duck typing. We're
unable to provide instances without strictly following the class hierarchy defined
by isinstance () checks.

We write a casino game simulation in order to experiment with endless variations on
GameStrategy. These class definitions are very simple: they have four method
definitions. There's little real benefit to using inheritance from a GameStrategy
superclass. We should be allowed to define classes independently, not by referencing
an overall superclass.

The initialization error-checking shown in this example would force us to create
subclasses merely to pass a runtime error check. No usable code is inherited from the
abstract superclass.

One of the biggest duck typing issues surrounds numeric types. Different numeric
types will work in different contexts. Attempts to validate the types of arguments
may prevent a perfectly sensible numeric type from working properly. When
attempting validation, we have the following two choices in Python:

e We write validation so that a relatively narrow collection of types is
permitted, and someday the code will break because a new type that would
have worked sensibly is prohibited.

e We eschew validation so that a broad collection of types is permitted, and
someday the code will break because a type that does not work sensibly is
used.

Note that both are essentially the same: the code could perhaps break someday. It will
either break because a type is prevented from being used, even though it's sensible, or
because a type that's not really sensible is used.

[59]

The __init__() Method Chapter 2

Just allow it
9 Generally, it's considered better Python style to simply permit any

type of data to be used. We'll return to this in chapter 5, The ABCs
of Consistent Design.

The question is this: why add runtime type checking when it will restrict potential
future use cases?

If there's no good reason to restrict potential future use cases, then runtime type
checking should be avoided.

Rather than preventing a sensible, but possibly unforeseen, use case, we provide type
hints and use mypy to evaluate the hints. Additionally, of course, unit testing, debug
logging, and documentation can help us to understand any restrictions on the types
that can be processed.

With a few exceptions, all of the examples in this book use type hints to show the
types of values expected and produced. The mypy utility can be run to confirm that
the definitions are used properly. While the standard library has extensive type hints,
not all packages are fully covered by hints. In chapter 12, Storing and Retrieving
Objects via SQLite, we'll use the SQLAIchemy package, which doesn't provide
complete type hints.

Initialization, encapsulation, and privacy

The general Python policy regarding privacy can be summed up as follows: were all
adults here.

Object-oriented design makes an explicit distinction between interface and
implementation. This is a consequence of the idea of encapsulation. A class
encapsulates a data structure, an algorithm, an external interface, or something
meaningful. The idea is to have the capsule separate the class-based interface from the
implementation details.

However, no programming language reflects every design nuance. Python
doesn't typically implement all design considerations as explicit code.

One aspect of class design that is not fully carried into code is the distinction between
the private (implementation) and public (interface) methods or attributes of an object.
The notion of privacy in languages that support these attributes or methods (C++ or
Java are two examples) is already quite complex.

[60]

The __init__() Method Chapter 2

These languages include settings such as private, protected, and public, as well as not
specified, which is a kind of semi-private. The private keyword is often used
incorrectly, making subclass definition needlessly difficult.

Python's notion of privacy is simple:

¢ Attributes and methods are all essentially public. The source code is
available. We're all adults. Nothing can be truly hidden.

¢ Conventionally, we treat some names in a way that's less public. They're
generally implementation details that are subject to change without notice,
but there's no formal notion of private.

Names that begin with _ are honored as being less public by some parts of Python.
The help () function generally ignores these methods. Tools such as Sphinx can
conceal these names from documentation.

Python's internal names begin (and end) with double underscores __, often
pronounced dunder. We might call __init__ () dunder init. The use of __names is
how Python internals are kept from colliding with other application features. The
collection of these internal names is fully defined by the language reference. Further,
there's no benefit to trying to use __ to attempt to create a truly private attribute or
method in our code. All that happens is that we create a potential future problem if a
release of Python ever starts using a name we chose for internal purposes. Also, we're
likely to run afoul of the internal name mangling that is applied to these names.

The rules for the visibility of Python names are as follows:

e Most names are public.

e Names that start with _ are somewhat less public. Use them for
implementation details that are truly subject to change.

e Names that begin and end with __ are internal to Python. We never make
these up; we only use the names defined by the language reference.

Generally, the Python approach is to register the intent of a method (or attribute)
using documentation and a well-chosen name. Often, interface methods will have
elaborate documentation, possibly including doctest examples, while
implementation methods will have more abbreviated documentation and may not
have doctest examples.

[61]

The __init__() Method Chapter 2

For programmers new to Python, it's sometimes surprising that privacy is not more
widely implemented. For programmers experienced in Python, it's surprising how
many brain calories get burned sorting out private and public declarations that aren't
really very helpful because the intent is obvious from the method names and the
documentation.

Summary

In this chapter, we have reviewed the various design alternatives of the __init__ ()
method. The __init__ () method is how objects are created, and it sets the initial
state of an object.

We've looked at how all Python objects are subclasses of a common parent,

the object class, and how the default __init__ () method for the object class
works. This consideration leads to two design strategies for placement of the
__init_ () method:

o We can define a common __init__ () method for all subclasses of a
hierarchy. This can lead to using a factory function, separate from
the __init__ () method, to help initialize objects correctly.

e Wecan pushthe __init__ () method into each individual subclass of a
complex hierarchy, and how this changes the design of classes.

After looking at building individual objects, we looked at how we can create
composite objects. This involves a number of related uses of the __init__ ()
methods of different classes. More advanced topics included defining stateless objects
that don't need a sophisticated initialization, using class-level (or static) initialization,
and how to validate values before creating an invalid object.

In the next chapter, we will take a look at special methods, along with a few advanced
ones as well.

[62]

Integrating Seamlessly -
Basic Special Methods

There are a number of special methods that permit close integration between our
classes and classes builtin Python. The Python standard library calls them basic. A
better term might be foundational or essential. These special methods form a
foundation for building classes that seamlessly integrate with other Python features.

For example, we often need string representations of a given object's value. The base
class, object, has default implementations of __repr__ () and __str__ () that
provide string representations of an object. Sadly, these default representations are
remarkably uninformative. We'll almost always want to override one or both of these
default definitions. We'll also look at ___format__ (), which is a bit more
sophisticated, but serves a similar purpose.

We'll also look at other conversions, specifically __hash__ (), __bool__ (),

and _ bytes__ (). These methods convert an object into a number, a true/false value,
or a string of bytes. When we implement __bool__ (), for example, we can use an
object, %, in an i f statement, as follows:

if x:

There's an implicit use of the bool () function, which relies on the object's

implementation of the __bool__ () special method.
We can then look at the special methods that implementthe __ 1t_ (), __le_ (),
eq(),_ne_ (),__gt_ (),and __ge__ () comparison operators.

These basic special methods are almost always needed in class definitions.

Integrating Seamlessly - Basic Special Methods Chapter 3

We'lllook at __new__ () and __del__ () last, because the use cases for these
methods are rather complex. We don't need these as often as we need the other basic
special methods.

We'll look in detail at how we can expand a simple class definition to add these
special methods. We'll need to look at both of the default behaviors inherited from
object so that we can understand what overrides are needed and when they're
needed.

In this chapter, we will cover the following topics:

e The __repr_ () and__str__ () methods

e The format__ () method

e The __hash__ () method

e The _ bool_ () method

e The _ bytes__ () method

¢ The comparison operator methods

e The del_ () method

e The _ new__ () method and immutable objects
e The __new__ () method and metaclasses

Technical requirements

The code files for this chapter can be found at https://git.io/£j2UE.

The __repr__ () and __str__ () methods

Python generally offers two string representations of an object. These are closely
aligned with the built-in repr (), str (), and print () functions and the
string.format () method:

¢ Generally, the str () method representation of an object is expected to be
more friendly to humans. It is built by an object's __str__ () method.

[64]

https://git.io/fj2UE
https://git.io/fj2UE
https://git.io/fj2UE
https://git.io/fj2UE
https://git.io/fj2UE
https://git.io/fj2UE
https://git.io/fj2UE
https://git.io/fj2UE
https://git.io/fj2UE

Integrating Seamlessly - Basic Special Methods Chapter 3

e The repr () method representation is often more technical, and typically
uses a complete Python expression to rebuild an object. The
documentation for the __repr__ () method in the Python documentation
(https://docs.python.org/3/reference/datamodel .html?highlight=__
del_ #object.__repr_) states the following:

“If at all possible, this should look like a valid Python expression that
could be used to recreate an object with the same value (given an
appropriate environment).”

e This is built by an object's __repr__ () method.

e The print () function generally uses str () to prepare an object for
printing.

e The format () method of a string can also access these methods. When we
use a string format line, {x:d}, we're providing a "d" parameter to the
__format__ () method of the x object. When we use {x!r} or {x!s}
formatting, we're requesting __repr__ () or __str__ (), respectively.

Let's look at the default implementations first. The following is a simple class
hierarchy:

class Card:

def _ _init_ (self, rank: str, suit: str) -> None:
self.suit = suit
self.rank = rank

self.hard, self.soft = self._points()

def _points(self) -> Tuple[int, int]:
return int (self.rank), int (self.rank)

class AceCard(Card) :

def _points(self) -> Tuple[int, int]:
return 1, 11

class FaceCard(Card) :

def _points(self) -> Tuple[int, int]:
return 10, 10

We've defined three classes with four attributes in each class.

[65]

https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__repr__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__repr__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__repr__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__repr__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__repr__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__repr__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__repr__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__repr__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__repr__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__repr__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__repr__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__repr__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__repr__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__repr__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__repr__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__repr__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__repr__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__repr__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__repr__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__repr__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__repr__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__repr__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__repr__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__repr__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__repr__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__repr__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__repr__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__repr__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__repr__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__repr__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__repr__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__repr__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__repr__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__repr__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__repr__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__repr__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__repr__

Integrating Seamlessly - Basic Special Methods Chapter 3

The following is an interaction with an object of one of these classes:

>>> x = Card('2','a")

>>> str(x)

'<__main__ .Card object at 0x1078d4518>'
>>> repr (x)

'<__main__ .Card object at 0x1078d4518>'
>>> print (x)

<__main__ .Card object at 0x1078d4518>

We can see from this output that the default implementations of __str__ ()

and __repr__ () are not very informative.
There are two broad design cases that we consider when overriding __str__ () and
__repr__():

¢ Simple objects: A simple object doesn't contain a collection of other objects
and generally doesn't involve very complex formatting.

¢ Collection objects: An object that contains a collection involves somewhat
more complex formatting.

Simple _str_()and _repr__ ()

As we saw previously, the output from __str__ () and __repr__ () is not very
informative. We'll almost always need to override them. The following is an approach
tooverride __str__ () and __repr__ () when there's no collection involved. These

methods belong to the Card class, defined previously as follows:

def __repr__ (self) -> str:
return f"{self. class_ _._ name__ } (suit={self.suit!r},
rank={self.rank!r})"

def _ str_ (self) -> str:
return f"{self.rank}{self.suit}"

These two methods rely on f-strings to interpolate values from the instance into a
string template. In the __repr__ () method, the class name, suit, and rank were used
to create a string that could be used to rebuild the object. Inthe __str__ () method,
the rank and suit were displayed in an easy-to-read form.

[66]

Integrating Seamlessly - Basic Special Methods Chapter 3

The template string uses two kinds of format specifications:

e The {self.__class__.__name__} format specification could also be
written as {self.__class__._ name__!s} toinclude an explicit
!'s format specification. This is the default format, and implies using str ()
to get a string representation of the object.

e The {self.suit!r} and {self.rank!r} specifications both use the ! r
format to use the repr () function to get representations of the attribute
values.

Collection _str__() and _repr__()

When there's a collection involved, we need to format each individual item in the
collection, as well as the overall container for those items. The following is a simple
collection with both the __str__ () and __repr__ () methods:

class Hand:

def _ _init_ (self, dealer_card: Card, *cards: Card) -> None:
self.dealer_card = dealer_card
self.cards = list (cards)

def _ str_ (self) -> str:
return ", ".join(map(str, self.cards))

def __repr__ (self) —-> str:
cards_text = ', '.join(map(repr, self.cards))
return f"{self.__class_ ._ name__ } ({self.dealer_card!r},

{cards_text})"

The __str__ () method has a typical recipe for applying str () to the items in the
collection, as follows:

1. Map str () to each item in the collection. This will create an iterator over
the resulting string values.
2. Use", ".join() to merge all the item strings into a single, long string.

[67]

Integrating Seamlessly - Basic Special Methods Chapter 3

The __repr__ () method is a similar recipe to apply repr () to the items in the
collection, as follows:

1. Map repr () to each item in the collection. This will create an iterator over
the resulting string values.

2. Use", ".join() to merge all the item strings.

3. Use f"{self._class__ ._name__ }({self.dealer_card!r},
{cards_text})" to combine the class name, the dealer card, and the long
string of item values. This format uses ! r formatting to ensure that the
dealer_card attribute uses the repr () conversion too.

It's essential for __str__ () touse str () and for _ _repr__ () touse repr () when
building representations of complex objects. This simple consistency guarantees that
results from very complex objects with multiple layers of nesting will have consistent
string values.

The _ format__ () method

The __format__ () method is used by f-strings, the str.format () method, as well
as the format () built-in function. All three of these interfaces are used to create
presentable string versions of a given object.

The following are the two ways in which arguments will be presented to
the _ format__ () method of a someobject object:

e someobject.__format__ (""): This happens when an application uses a
string such as £" { someobject}", a function such
as format (someobject), or a string formatting method such
as "{0}".format (someobject). In these cases, there was no : in the
format specification, so a default zero-length string is provided as the
argument value. This should produce a default format.

e someobject.__ format__ (spec): This happens when an application uses
a string such as £" { someobject :spec}", a function such
as format (someobject, spec), or something equivalent to
the "{0:spec}".format (someobject) string method.

Note that an f-string £"{item!r}" with !rora"{0!r}".format (item) format
method with ! r doesn't use the object's ___format__ () method. The portion after ! is
a conversion specification.

[68]

Integrating Seamlessly - Basic Special Methods Chapter 3

A conversion specification of ! r uses the repr () function, which is generally
implemented by an object's __repr__ () method. Similarly, a conversion
specification of !s uses the str () function, which is implemented by the __str__ ()
method. The ! a conversion specification uses the ascii () function. The ascii ()
function generally depends on the __repr__ () method to provide the underlying
representation.

With a specification of "", a sensible implementation is return str (self). This
provides an obvious consistency between the various string representations of an
object.

The format specification provided as the argument value to ___format__ () will be all
the text after " : " in the original format string. When we write £"{value:06.4£}",
06.4f is the format specification that applies to the item value in the string to be
formatted.

Section 2.4.3 of the Python Language Reference defines the formatted string (£-string)
mini-language. Each format specification has the following syntax:

[[fill]align] [sign] [#] [0] [width] [grouping_option] [.precision] [type]

We can parse these potentially complex standard specifications with a regular
expression (RE), as shown in the following code snippet:

re.compile (

r" (?P<fill_align>.?2[\<\>=\"]1)2"
r" (?P<sign>[-+])?2"
r" (?P<alt>#)?2"
r" (?P<padding>0) 2"
r" (?P<width>\d*)"
r"(
r"(
r"(

" (?P<grouping_option>,)?"
?P<precision>\.\d*)?"
?P<type>[bcdeEfFgGnosxX%])?")

This RE will break the specification into eight groups. The first group will have both
the £111 and alignment fields from the original specification. We can use these
groups to work out the formatting for the attributes of classes we've defined.

In some cases, this very general format specification mini-language might not apply
to the classes that we've defined. This leads to a need to define a format specification
mini-language and process it in the customized __format__ () method.

[69]

Integrating Seamlessly - Basic Special Methods Chapter 3

As an example, here's a trivial language that uses the $r character to show us the rank
and the %s character to show us the suit of an instance of the card class. The %%
character becomes % in the resulting string. All other characters are repeated literally.

We could extend our Ccard class with formatting, as shown in the following code
snippet:

def __ _format__ (self, format_spec: str) —-> str:
if format_spec == "":
return str(self)
rs = (
format_spec.replace("%r", self.rank)
.replace ("%s", self.suit)
.replace("%%", "%")
)

return rs

This definition checks for a format specification. If there's no specification, then the
str () function is used. If a specification was provided, a series of replacements is
done to fold rank, suit, and any % characters into the format specification, turning it
into the output string.

This allows us to format cards as follows:

print ("Dealer Has {0:%r of %s}".format (hand.dealer_card))

The format specification ("$r of %s")is passed toour __format__ () method as
the format parameter. Using this, we're able to provide a consistent interface for the
presentation of the objects of the classes that we've defined.

Alternatively, we can define things as follows:

default_format = "some specification"
def _ str_ (self) -> str:
return self._ format_ (self.default_format)
def __ _format__ (self, format_spec: str) —-> str:
if format_spec == "":
format_spec = self.default_format

process using format_spec.

This has the advantage of putting all string presentations into the __format__ ()
method instead of spreading them between ___format__ () and __str__ (). This
does have a disadvantage, because we don't always need to implement
__format__ (), but we almost always need to implement __str__ ().

[70]

Integrating Seamlessly - Basic Special Methods Chapter 3

Nested formatting specifications

The string. format () method can handle nested instances of { } to perform simple
keyword substitution into the format specification itself. This replacement is done to
create the final format string that's passed to our class's __format__ () method. This
kind of nested substitution simplifies some kinds of relatively complex numeric
formatting by parameterizing an otherwise generic specification.

The following is an example where we've made width easy to change in the format
parameter:
width = 6

for hand, count in statistics.items{():
print (f"{hand} {count:{width}d}")

We've defined a generic format, £"{hand} {count:{width}d}", which requires a
width parameter to make it into a final format specification. In the example, width is
6, which means that the final format will be £"{hand} {count:6d}". The expanded
format string, "6d" will be the specification provided to the __format__ () method
of the underlying object.

Collections and delegating format
specifications

When formatting a complex object that includes a collection, we have two formatting
issues: how to format the overall object and how to format the items in the collection.
When we look at Hand, for example, we see that we have a collection of individual
Cards objects. We'd like to have Hand delegate some formatting details to the
individual Card instances in the Hand collection.

The following isa __format__ () method that applies to Hand:
def __ _format__ (self, spec: str) -> str:
if spec == "":
return str(self)
return ", ".Jjoin(f"{c:{spec}}" for c in self.cards)

The spec parameter will be used for each individual card instance within the Hand
collection. £-string £" {c: {spec}} " uses the nested format specification technique to
push the spec string into the format. This creates a final format, which will be
applied to each Card instance.

[71]

Integrating Seamlessly - Basic Special Methods Chapter 3

Given this method, we can format a Hand object, player_hand, as follows:

>>> d = Deck()

>>> h = Hand(d.pop(), d.pop(), d.pop())

>>> print ("Player: {hand:%r%s}".format (hand=h))
Player: Ke¢, 9%

This string in the print () function used the format () method of the Hand object.
This passed the $r%s format specification to each Card instance of the Hand object to
provide the desired formatting for each card of the hand.

The _ _hash__ () method

The built-in hash () function invokes the __hash__ () method of a given object. This
hash is a calculation that reduces a (potentially complex) value to a small integer
value. Ideally, a hash reflects all the bits of the source value. Other hash calculations —
often used for cryptographic purposes — can produce very large values.

Python includes two hash libraries. The cryptographic-quality hash functions are in
hashlib. The z1ib module also has two high-speed hash functions: adler32 () and
crc32 (). For the most common cases, we don't use any of these library functions.
They're only needed to hash extremely large, complex objects.

The hash () function (and the associated __hash__ () method) is used to create a
small integer key that is used to work with collections, such as set, frozenset, and
dict. These collections use the hash value of an immutable object to rapidly locate
the object in the collection.

Immutability is important here; we'll mention it many times. Immutable objects don't
change their state. The number 3, for example, cannot meaningfully change state. It's
always 3. Similarly, more complex objects can have an immutable state. Python
strings are immutable. These can then be used as keys to mappings and sets.

The default __hash__ () implementation inherited from an object returns a value
based on the object's internal ID value. This value can be seen with the id () function,
as follows:

>>> x = object ()
>>> hash (x)
280696151

>>> id(x)
4491138416

[72]

Integrating Seamlessly - Basic Special Methods Chapter 3

>>> id(x) / 16
280696151.0

The id values shown in this example will vary from system to system.

From this, we can see that, on the author's system, the hash value is the object's
id//16. This detail might vary from platform to platform.

What's essential is the strong correlation between the internal ID and the default
__hash__ () method. This means that the default behavior is for each object to be
hashable as well as utterly distinct, even if the objects appear to have the same value.

We'll need to modify this if we want to coalesce different objects with the same value
into a single hashable object. We'll look at an example in the next section, where we
would like two instances of a single Card instance to be treated as if they were the
same object.

Deciding what to hash

Not every object should provide a hash value. Specifically, if we're creating a class of
stateful, mutable objects, the class should never return a hash value. There should not
be an implementation of the __hash__ () method.

Immutable objects, on the other hand, might sensibly return a hash value so that the
object can be used as the key in a dictionary, or as a member of a set. In this case, the
hash value needs to parallel the way the test for equality works. It's bad to have
objects that claim to be equal and have different hash values. The reverse—objects
with the same hash that are actually not equal — is acceptable and expected. Several
distinct objects may happen to have overlapping hash values.

There are three tiers of equality comparison:

¢ The same hash value: This means that two objects could be equal. The hash
value provides us with a quick check for likely equality. If the hash value is
different, the two objects cannot possibly be equal, nor can they be the
same object.

¢ Compare as equal: This means that the hash values must also have been
equal. This is the definition of the == operator. The objects may be the same
object.

e Same ID value: This means that they are the same object. They also
compare as equal and will also have the same hash value. This is the
definition of the is operator.

[73]

Integrating Seamlessly - Basic Special Methods Chapter 3

The Fundamental Law of Hash (FLH) has two parts:

¢ Objects that compare as equal have the same hash value.

¢ Objects with the same hash value may actually be distinct and not compare
as equal.

We can think of a hash comparison as being the first step in an equality test. This is a
very fast comparison to determine whether subsequent equality checks are
necessary.

The __eq_ () method, which we'll also look at in the section on comparison
operators, is intimately tied up with hashing. This provides a potentially slow field-
by-field comparison between objects.

Here's a contrived example of two distinct numeric values with the same hash value:

>>> vl = 123_456_789

>>> v2 = 2_305_843_009_337_150_740
>>> hash(vl)

123456789

>>> hash (v2)

123456789

>>> v2 == vl

False

Notice that a v1 integer, equal to 123, 456, 789, has a hash value equal to itself. This
is typical of integers up to the hash modulus. The v2 integer has the same hash, but a
different actual value.

This hash collision is expected. It's part of the known processing overhead when
creating sets or dictionaries. There will be unequal objects that are reduced to
coincidentally equal hash values.

There are three use cases for defining equality tests and hash values viathe __eq__ ()
and __hash__ () method functions:

¢ Immutable objects: These are stateless objects of types such as tuples,
namedtuples, and frozensets that cannot be updated. We have two choices:
e Define neither __hash__ () nor__eq__ (). This means
doing nothing and using the inherited definitions. In this
case, _ _hash__ () returns a trivial function of the ID value
for the object, and __eq__ () compares the ID values.

e Define both __hash__ () and __eq__ (). Note that we're
expected to define both for an immutable object.

[74]

Integrating Seamlessly - Basic Special Methods Chapter 3

e Mutable objects: These are stateful objects that can be modified internally.
We have one design choice:
e Define __eq_ () butset __hash__ to None. These cannot be
used as dict keys or items in sets.

The default behavior for immutable objects will be undesirable when an application
requires two distinct objects to compare as equal. For example we might want two
instances of Card (1, Clubs) to test as equal and compute the same hash; this will
not happen by default. For this to work, we'll need to override the __hash__ () and
__eq__ () methods.

Note that there's an additional possible combination: defining __hash__ () but using
a default definition for __eq__ (). This is simply a waste of code, as the default
__eq__ () method is the same as the is operator. Using the default __hash__ ()
method would have involved writing less code for the same behavior.

We'll look at each of these three situations in detail.

Inheriting definitions for immutable objects

Let's see how default definitions operate. The following is a simple class hierarchy
that uses the default definitions of _ _hash__ () and __eq__ ():

class Card:

insure = False
def _ _init_ (self, rank: str, suit: "Suit", hard: int, soft: int)
—> None:
self.rank = rank
self.suit = suit
self.hard = hard

self.soft = soft
def __repr__ (self) —-> str:
return f"{self.__class_ ._ _name__ } (suit={self.suit!r},
rank={self.rank!r})"
def _ str_ (self) -> str:
return f"{self.rank}{self.suit}"

class NumberCard (Card) :

def _ _init_ (self, rank: int, suit: "Suit") -> None:

[75]

Integrating Seamlessly - Basic Special Methods Chapter 3

super () .__init__ (str(rank), suit, rank, rank)

class AceCard(Card) :
insure = True
def _ _init__ (self, rank: int, suit: "Suit") -> None:

super().__init__ ("A", suit, 1, 11)

class FaceCard(Card) :

def _ _init__ (self, rank: int, suit: "Suit") -> None:
rank_str = {11: "Jg", 12: "Q", 13: "K"}[rank]
super () .__init__ (rank_str, suit, 10, 10)

This is a c1ass hierarchy for philosophically immutable objects. We haven't taken care
to implement the special methods that prevent the attributes from getting updated.
We'll look at attribute access in the next chapter. Here's the definition of the
enumerated class of suit values:

from enum import Enum
class Suit (str, Enum):

Club = "\N{BLACK CLUB SUIT}"
Diamond = "\N{BLACK DIAMOND SUIT}"
Heart = "\N{BLACK HEART SUIT}"
Spade = "\N{BLACK SPADE SUIT}"

Let's see what happens when we use this class hierarchy:

>>> ¢l
>>> c2

AceCard(1l, Suit.Club)
AceCard(1l, Suit.Club)

We defined two instances of what appear to be the same Card instance. We can check
the id () values as shown in the following code snippet:

>>> id(ecl), id(c2)
(4492886928, 4492887208)

They have different id () numbers; this means that they're distinct objects. This meets
our expectations.

We can check to see whether they're the same by using the is operator as shown in
the following code snippet:

>>> ¢l is c2
False

[76]

Integrating Seamlessly - Basic Special Methods Chapter 3

The is test is based on the id () numbers; it shows us that they are, indeed, separate
objects.

We can see that their hash values are different from each other:

>>> hash(cl), hash(c2)
(—-9223372036575077572, 279698247)

These hash values come directly from the id () values. This was our expectation for
the inherited methods. In this implementation, we can compute the hash from the
id () function, as shown in the following code snippet:

>>> id(cl) / 16
268911077.0
>>> id(c2) / 16
268911061.0

As the hash values are different, they must not compare as equal. While this fits the
definitions of hash and equality, it violates our expectations for instances of this class.

We created the two objects with the same attributes. The following is an equality
check:

>>> ¢l == c2
False

Even though the objects have the same attribute values, they don't compare as equal.
In some applications, this might not be good. For example, when accumulating
statistical counts of dealer cards, we don't want to have six counts for one card
because the simulation used a six-deck shoe.

We can see that these are proper immutable objects. The following example shows
that these objects can be put into a set:

>>> set ([cl, c2])
{AceCard(suit=<Suit.Club: '4'>, rank='A'), AceCard(suit=<Suit.Club:
'4'>, rank='A')}

This is the documented behavior from the Standard Library Reference documentation.
By default, we'll geta __hash__ () method based on the ID of the object so that each
instance appears unique. However, this isn't always what we want.

[77]

Integrating Seamlessly - Basic Special Methods Chapter 3

Overriding definitions for immutable objects

The following is a simple class hierarchy that provides us with definitions
of _hash__ ()and _eq_ ():
import sys

class Card2:
insure = False

def _ _init_ (self, rank: str, suit: "Suit", hard: int, soft: int)
—> None:
self.rank = rank
self.suit = suit
self.hard = hard

self.soft = soft
def __repr__ (self) -> str:
return f"{self._ class_ ._ name__ } (suit={self.suit!r},

rank={self.rank!r})"

def _ str_ (self) —-> str:
return f"{self.rank}{self.suit}"

def __eq__ (self, other: Any) -> bool:

return (
self.suit == cast (Card2, other).suit
and self.rank == cast (Card2, other).rank

def _ _hash__ (self) -> int:
return (hash(self.suit) + 4*hash(self.rank)) %
sys.hash_info.modulus

class AceCard2 (Card2) :
insure = True

def _ init_ (self, rank: int, suit: "Suit") -> None:
super () .__init__ ("A", suit, 1, 11)

This object is immutable in principle. There's no formal mechanism to the immutable
instances. We'll look at how to prevent attribute value changes in chapter 4, Attribute
Access, Properties, and Descriptors.

Also, note that the preceding code omits two of the subclasses that didn't change
significantly from the previous example, FaceCard and NumberCard.

[78]

Integrating Seamlessly - Basic Special Methods Chapter 3

The __eqg_ () method has a type hint, which suggests that it will compare an object
of any class and return a boo1 result. The implementation uses a cast () function to
provide a hint to mypy that the value of ot her will always be an instance of Card2 or
a runtime type error can be raised. The cast () function is part of mypy's type
hinting and has no runtime effect of any kind. The function compares two essential
values: suit and rank. It doesn't need to compare the hard and soft values; they're
derived from rank.

The rules for Blackjack make this definition a bit suspicious. Suit doesn't actually
matter in Blackjack. Should we merely compare rank? Should we define an additional
method that compares rank only? Or, should we rely on the application to compare
rank properly? There's no best answer to these questions; these are potential design
trade-offs.

The __hash__ () function computes a unique value pattern from the two essential
attributes. This computation is based on the hash values for the rank and the suit. The
rank will occupy the most significant bits of the value, and suit will be the least
significant bits. This tends to parallel the way that cards are ordered, with rank being
more important than suit. The hash values must be computed using

the sys.hash_info.modulus value as a modulus constraint.

Let's see how objects of these classes behave. We expect them to compare as equal
and behave properly with sets and dictionaries. Here are two objects:

>>> ¢l
>>> @2

AceCard2 (1, 'e')
AceCard2 (1, 'e')

We defined two instances of what appear to be the same card. We can check the ID
values to be sure that they're distinct objects:

>>> id(ecl), id(c2)

(4302577040, 4302577296)

>>> ¢l is c2
False

These have different id () numbers. When we test with the is operator, we see that
they're distinct objects. This fits our expectations so far.

Let's compare the hash values:

>>> hash(cl), hash(c2)
(1259258073890, 1259258073890)

The hash values are identical. This means that they could be equal.

[79]

Integrating Seamlessly - Basic Special Methods Chapter 3

The equality operator shows us that they properly compare as equal:

>>> ¢l == c2
True

Because the objects produce a hash value, we can put them into a set, as follows:

>>> set ([cl, c2])
{AceCard2 (suit=<Suit.Club: '4'>, rank='A')}

Since the two objects create the same hash value and test as equal, they appear to be
two references to the same object. Only one of them is kept in the set. This meets our
expectations for complex immutable objects. We had to override both special methods
to get consistent, meaningful results.

Overriding definitions for mutable objects

This example will continue using the Cards class. The idea of mutable cards is
strange, perhaps even wrong. However, we'd like to apply just one small tweak to the
previous examples.

The following is a class hierarchy that provides us with the definitions
of __hash__ () and __eq__ (), appropriate for mutable objects. The parent class is as
follows:

class Card3:

insure = False
def _ _init_ (self, rank: str, suit: "Suit", hard: int, soft: int)
—> None:

self.rank = rank
self.suit suit
self.hard hard
self.soft = soft

def __repr__ (self) -> str:
return f"{self._ class_ ._ name__ } (suit={self.suit!r},
rank={self.rank!r})"

def _ str_ (self) —-> str:
return f"{self.rank}{self.suit}"

def __eq__ (self, other: Any) -> bool:
return (
self.suit == cast (Card3, other).suit

[80]

Integrating Seamlessly - Basic Special Methods Chapter 3

and self.rank == cast (Card3, other).rank

)
A subclass of Card3 is shown in the following example:

class AceCard3 (Card3) :
insure = True

def _ _init_ (self, rank: int, suit: "Suit") -> None:
super () .__init__ ("A", suit, 1, 11)

Let's see how objects of these classes behave. We expect them to compare as equal but
not work at all with sets or dictionaries. We'll create two objects as follows:

>>> ¢l AceCard3 (1, 'e')
>>> c2 = AceCard3(1l, 'e')

We've defined two instances of what appear to be the same card.

We'll look at their ID values to ensure that they really are distinct:

>>> id(cl), id(c2)
(4302577040, 4302577296)

No surprise here. Now, we'll see if we can get hash values:

>>> hash(cl), hash(c2)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unhashable type: 'AceCard3'

The card3 objects can't be hashed. They won't provide a value for the hash ()
function. This is the expected behavior. However, we can perform equality
comparisons, as shown in the following code snippet:

>>> ¢l == c2
True

The equality test works properly, allowing us to compare cards. They just can't be
inserted into sets or used as keys in a dictionary.

The following is what happens when we try to put them into a set:

>>> set ([cl, c2])

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unhashable type: 'AceCard3'

[81]

Integrating Seamlessly - Basic Special Methods Chapter 3

We get a proper exception when trying to do so.

Clearly, this is not a proper definition for something that — in real life — is immutable,
such as a card. This style of definition is more appropriate for stateful objects, such as
Hand, where the content of the hand is always changing. We'll provide you with a
second example of stateful objects in the following section.

Making a frozen hand from a mutable hand

If we want to perform a statistical analysis of specific Hand instances, we might want
to create a dictionary that maps a Hand instance to a count. We can't use a mutable
Hand class as the key in a mapping. We can, however, parallel the design of set and
frozenset and create two classes: Hand and FrozenHand. This allows us to freeze a
Hand instance by creating FrozenHand; the frozen version is immutable and can be
used as a key in a dictionary.

The following is a simple Hand definition:

class Hand:

def _ _init_ (self, dealer_card: Card2, *cards: Card2) -> None:
self.dealer_card = dealer_card
self.cards = list (cards)

def _ str_ (self) -> str:

return ", ".join(map(str, self.cards))
def __repr__ (self) -> str:
cards_text = ", ".join(map (repr, self.cards))
return f"{self._ class_ ._ name__ } ({self.dealer_card!r},

{cards_text})"

def __ _format_ (self, spec: str) —> str:
if spec == "":
return str(self)
return ", ".Jjoin(f"{c:{spec}}" for c in self.cards)

def __eq__ (self, other: Any) -> bool:
if isinstance (other, int):
return self.total () == cast(int, other)
try:
return (
self.cards == cast (Hand, other) .cards
and self.dealer_card == cast (Hand, other).dealer_card

[82]

Integrating Seamlessly - Basic Special Methods Chapter 3

)
except AttributeError:
return NotImplemented

This is a mutable object; it does not compute a hash value, and can't be used in a set
or dictionary key. It does have a proper equality test that compares two hands. As
with previous examples, the parameter to the __eq__ () method has a type hint of
Any, and a do-nothing cast () function is used to tell the mypy program that the
argument values will always be instances of Hand. The following is a frozen version
of Hand:

import sys
class FrozenHand (Hand) :

def __init__ (self, *args, **kw) —-> None:

if len(args) == 1 and isinstance(args([0], Hand):
Clone a hand
other = cast (Hand, args[0])
self.dealer_card = other.dealer_card
self.cards = other.cards

else:
Build a fresh Hand from Card instances.
super () .__init__ (*args, **kw)

def _ _hash_ (self) -> int:
return sum(hash(c) for ¢ in self.cards) %
sys.hash_info.modulus

The frozen version has a constructor that will build one Hand class from another Hand
class. It definesa __hash__ () method that sums the card's hash value, which is
limited to the sys.hash_info.modulus value. For the most part, this kind of
modulus-based calculation works out well for computing the hashes of composite
objects. We can now use these classes for operations such as the following code
snippet:

from collections import defaultdict
stats = defaultdict (int)

d = Deck ()

h = Hand(d.pop (), d.pop(), d.pop())
h_f = FrozenHand (h)

stats[h_f] += 1

We've initialized a statistics dictionary, stats, as a defaultdict dictionary that can
collect integer counts. We could also use a collections.Counter object for this.

[83]

Integrating Seamlessly - Basic Special Methods Chapter 3

By freezing an instance of the Hand class, we can compute a hash and use it as a key
in a dictionary. This makes it easy to create a defaultdict for collecting counts of
each hand that actually gets dealt.

The _ bool () method

Python has a pleasant definition of falsity. The reference manual lists a large number
of values that will test as equivalent to False. This includes things such as False, 0,
"', (), [1,and {}. Objects not included in this list will test as equivalent to True.

Often, we'll want to check for an object being not empty with a simple statement, as
follows:

if some_object:
process (some_object)

Under the hood, this is the job of the boo1l () built-in function. This function depends
onthe __bool__ () method of a given object.

The default __bool__ () method returns as True. We can see this with the following
code:

>>> x = object ()
>>> bool (x)
True

For most classes, this is perfectly valid. Most objects are not expected to be False. For
collections, however, the default behavior is not appropriate. An empty collection
should be equivalent to False. A non-empty collection should return True. We
might want to add a method like this to our Deck objects.

If the implementation of a collection involves wrapping a list, we might have
something as shown in the following code snippet:

def _ _bool__ (self):
return bool (self._cards)

This delegates the Boolean function to the internal sel1f._cards collection.

If we're extending a list, we might have something as follows:

def _ bool__ (self):
return super () .__bool__ (self)

[84]

Integrating Seamlessly - Basic Special Methods Chapter 3

This delegates to the superclass definition of the __bool__ () function.

In both cases, we're specifically delegating the Boolean test. In the wrap case, we're
delegating to the collection. In the extend case, we're delegating to the superclass.
Either way, wrap or extend, an empty collection will be False. This will give us a
way to see whether the Deck object has been entirely dealt and is empty.

We can do this as shown in the following code snippet:

d = Deck ()
while d:
card = d.pop ()
process the card

This loop will deal all the cards without getting an IndexError exception when the
deck has been exhausted.

The _ bytes () method

There are relatively few occasions when you will need to transform an object into
bytes. Bytes representation is used for the serialization of objects for persistent storage
or transfer. We'll look at this in detail in chapter 10, Serializing and Saving - J[SON,
YAML, Pickle, CSV and XML through chapter 14, Configuration Files and Persistence.

In the most common situation, an application will create a string representation, and
the built-in encoding capabilities of the Python IO classes can be used to transform
the string into bytes. This works perfectly for almost all situations. The main
exception would be when we're defining a new kind of string. In which case, we'd
need to define the encoding of that string.

The bytes () function does a variety of things, depending on the arguments:

® bytes (integer): This returns an immutable bytes object with the given
number of 0x00 values.

® bytes (string): This will encode the given string into bytes. Additional
parameters for encoding and error handling will define the details of the
encoding process.

e bytes (something): This will invoke something._ bytes__ () to create
a bytes object. The encoding of error arguments will not be used here.

[85]

Integrating Seamlessly - Basic Special Methods Chapter 3

The base object class does not define __bytes__ (). This means our classes don't
providea __bytes__ () method by default.

There are some exceptional cases where we might have an object that will need to be
encoded directly into bytes before being written to a file. It's often simpler to work
with strings and allow the str type to produce bytes for us. When working with
bytes, it's important to note that there's no simple way to decode bytes from a file or
interface. The built-in bytes class will only decode strings, not our unique, new
objects. This means that we'll need to parse the strings that are decoded from the
bytes. Or, we might need to explicitly parse the bytes using the st ruct module and
create our unique objects from the parsed values.

We'll look at encoding and decoding the Card2 instance into bytes. As there are only
52 card values, each card could be packed into a single byte. However, we've elected
to use a character to represent suit and a character to represent rank. Further, we'll
need to properly reconstruct the subclass of Card2, so we have to encode several
things:

e The subclass of Card2 (AceCard2, NumberCard2, and FaceCard?2)
e The parameters to the subclass-defined __init__ () methods.

Note that some of our alternative __init__ () methods will transform a numeric
rank into a string, losing the original numeric value. For the purposes of reversible
byte encoding, we need to reconstruct this original numeric rank value.

The following is an implementation of __bytes__ (), which returns a ut£-8
encoding of the Card2 subclass name, rank, and suit:

def __bytes_ (self) —-> bytes:
class_code = self._class_ . name__ [0]
rank_number_str = {"A": "1", "g": "11", "Q": "12", "K": "13"}.get (
self.rank, self.rank

)
string = f"({' '.Jjoin([class_code, rank_number_str, self.suit])})"
return bytes(string, encoding="utf-8")

This works by creating a string representation of the Card2 object. The representation
uses the () objects to surround three space-separated values: code that represents the
class, a string that represents the rank, and the suit. This string is then encoded into
bytes.

[86]

Integrating Seamlessly - Basic Special Methods Chapter 3

The following snippet shows how bytes representation looks:

>>> ¢l = AceCard2(1l, Suit.Club)
>>> bytes (cl)
b'(A 1 \xe2\x99\xa3)"'

When we are given a pile of bytes, we can decode the string from the bytes and then
parse the string into a new Card2 object. The following is a method that can be used
to create a Card2 object from bytes:

def card_from_bytes (buffer: bytes) -> Card2:
string = buffer.decode ("utf8")

try:
if not (string[0] == " (" and string[-1] == ")"):
raise ValueError
code, rank_number, suit_value = string[l:-1].split ()

if int (rank_number) not in range(l, 14):
raise ValueError
class_ = {"A": AceCard2, "N": NumberCard2, "F":
FaceCard2} [code]
return class_ (int (rank_number), Suit (suit_value))
except (IndexError, KeyError, ValueError) as ex:
raise ValueError (f"{buffer!r} isn't a Card2 instance")

In the preceding code, we've decoded the bytes into a string. We checked the string
for required (). We've then parsed the string into three individual values using
string[1:-1].split ().From those values, we converted the rank to an integer of
the valid range, located the class, and built an original Card2 object.

We can reconstruct a Card2 object from a stream of bytes as follows:

>>> data = b' (N 5 \xe2\x99\xa5) '

>>> c2 = card_from_bytes (data)

>>> c2

NumberCard2 (suit=<Suit.Heart: '®'>, rank='5"')

It's important to note that an external bytes representation is often challenging to
design. In all cases, the bytes are the representation of the state of an object. Python
already has a number of representations that work well for a variety of class
definitions.

It's often better to use the pickle or json modules than to invent a low-level bytes
representation of an object. This will be the subject of chapter 10, Serializing and
Saving - JSON, YAML, Pickle, CSV, and XML.

[87]

Integrating Seamlessly - Basic Special Methods Chapter 3

The comparison operator methods

Python has six comparison operators. These operators have special method
implementations. According to the documentation, mapping works as follows:

e x<yisimplemented by x.__ 1t (y).
e x<=yisimplemented by x.__le_ (y).
e x==yisimplemented by x.__eq__ (y).
e x!=yisimplemented by x.__ne_ (y).
e x>y isimplemented by x.__gt__ (y).
e x>=yisimplemented by x.__ge__ (y).

We'll return to comparison operators again when looking at numbers in chapter 8,
Creating Numbers.

There's an additional rule regarding what operators are actually implemented that's
relevant here. These rules are based on the idea that the object's class on the left-hand
side of an operator defines the required special method. If it doesn't, Python can try
an alternative operation by changing the order and considering the object on the
right-hand side of the operator.

Here are the two basic rules

First, the operand on the left-hand side of the operator is checked for
an implementation: A<BmeansA._ lt_ (B).

Second, the operand on the right-hand side of the operator is
checked for a reversed implementation: A<B means B.__gt__ (A).
The rare exception to this occurs when the right-hand operand is a
subclass of the left-hand operand; then, the right-hand operand is
checked first to allow a subclass to override a superclass.

We can see how this works by defining a class with only one of the operators defined
and then using it for other operations.

The following is a partial class that we can use:

class BlackJackCard_p:

def _ _init_ (self, rank: int, suit: Suit) -> None:
self.rank = rank
self.suit = suit

def __1t__ (self, other: Any) -> bool:
print (f"Compare {self} < {other}")

[88]

Integrating Seamlessly - Basic Special Methods Chapter 3

return self.rank < cast(BlackJackCard_p, other).rank

def _ str_ (self) -> str:
return f"{self.rank}{self.suit}"

This follows the Blackjack comparison rules, where suits don't matter and cards are
only compared by their rank. We've omitted all but one of the comparison methods to
see how Python will fall back when an operator is missing. This class will allow us to
perform < comparisons. Interestingly, Python can also use this to perform >

comparisons by switching the argument order. In other words, £ <Y=Y>T This
is the mirror reflection rule; we'll see it again in chapter 8, Creating Numbers.

We see this when we try to evaluate different comparison operations. We'll create two
BlackJackCard_p instances and compare them in various ways, as shown in the
following code snippet:

>>> two = BlackJackCard p(2, Suit.Spade)
>>> three = BlackJackCard_p (3, Suit.Spade)
>>> two < three

Compare 2& < 34

True

>>> two > three

Compare 3& < 24

False

>>> two == three

False

This example shows that a comparison using the < operator is implemented by the
defined __1t__ () method, as expected. When using the > operator, then the
available __1t__ () method is also used, but with the operands reversed.

What happens when we try to use an operator such as <=? This shows the exception:

>>> two <= three

Traceback (most recent call last):

File "/Users/slott/miniconda3/envs/py37/1lib/python3.7/doctest.py",
line 1329, in __run

compileflags, 1), test.globs)

File "<doctest _ main__ .__ test__ .test_blackjackcard_partial[5]>",
line 1, in <module>
print ("{0} <= {1} :: {2!r}".format (two, three, two <= three)) #

doctest: +IGNORE_EXCEPTION_DETAIL
TypeError: '<=' not supported between instances of 'BlackJackCard p'
and 'BlackJackCard_p'

From this, we can see where two < three mapstotwo.__1lt__ (three).

[89]

Integrating Seamlessly - Basic Special Methods Chapter 3

However, for two > three, there'sno __gt__ () method defined; Python uses

three.__1t__ (two) as a fallback plan.

By default, the __eq__ () method is inherited from object. You will recall that the
default implementation compares the object IDs and all unique objects will compare
as not equal. The objects participate in == tests as follows:

>>> two_c = BlackJackCard_p (2, Suit.Club)
>>> two_c == BlackJackCard_p (2, Suit.Club)
False

We can see that the results aren't quite what we expect. We'll often need to override
the default implementationof __eq__ ().

There's no logical connection among the operators either. Mathematically, we can
derive all the necessary comparisons from just two. Python doesn't do this
automatically. Instead, Python handles the following four simple reflection pairs by
default:

r<y=y>=w

r<y=y=>z
T=Y=y==
rFYy=y#z

This means that we must, at a minimum, provide one from each of the four pairs. For
example, we could provide __eq_ (), _ne_ (),_1t__(),and __le_ ().

The @functools.total_ordering decorator can help overcome the default
limitation. This decorator deduces the rest of the comparisons from just __eq__ ()
and one of these: __1t__ (), _le_ (), _gt__(),or __ge__().This provides all
the necessary comparisons. We'll revisit this in chapter 8, Creating Numbers.

Designing comparisons

There are two considerations when defining comparison operators:

¢ The obvious question of how to compare two objects of the same class.
¢ The less obvious question of how to compare objects of different classes.

[90]

Integrating Seamlessly - Basic Special Methods Chapter 3

For a class with multiple attributes, we often have a profound ambiguity when
looking at the comparison operators. It might not be perfectly clear which of the
available attributes participate in the comparison.

Consider the humble playing card (again!). An expression, such as cardl == card2,
is clearly intended to compare both rank and suit, right? Is that always true? After
all, suit doesn't matter in games such as Blackjack.

If we want to decide whether a Hand object can be split, we must decide whether the
split operation is valid. In Blackjack, a hand can only be split if the two cards are of the
same rank. The implementation we chose for equality testing will then change how
we implement the rules for splitting a hand.

This leads to some alternatives. In one case, the use of rank is implicit; the other
requires it to be explicit. The following is the first code snippet for rank comparison:

if hand.cards[0] == hand.cards[1l]

The following is the second code snippet for rank comparison:

if hand.cards[0].rank == hand.cards[1l].rank

While one is shorter, brevity is not always best. If we define equality to only consider
rank, we may have trouble creating unit tests. If we use only rank, then assert
expectedCard == actualCard will tolerate a wide variety of cards when a unit
test should be focused on exactly correct cards.

An expression such as cardl <= 7 is clearly intended to compare rank. Should the
ordering operators have slightly different semantics than equality testing?

There are more trade-off questions that stem from a rank-only comparison. How
could we order cards by suit if this attribute is not used for ordering comparisons?

Furthermore, equality checks must parallel the hash calculation. If we've included
multiple attributes in the hash, we also need to include them in the equality
comparison. In this case, it appears that equality (and inequality) between cards must
be full card comparisons, because we're hashing the Card values to include rank and
suit.

The ordering comparisons between Card, however, could be rank only. Comparisons
against integers could similarly be rank only. For the special case of detecting a split,
hand.cards[0] .rank == hand.cards[1].rank could be used, because it states
the rule for a valid split explicitly.

[91]

Integrating Seamlessly - Basic Special Methods Chapter 3

Implementation of a comparison of objects of
the same class

We'll look at a simple same-class comparison by looking at a more complete
BlackJackCard class:

class BlackJackCard:

def _ _init_ (self, rank: int, suit: Suit, hard: int, soft: int) ->
None:
self.rank = rank
self.suit = suit
self.hard = hard
self.soft = soft

def __1t_ (self, other: Any) -> bool:
if not isinstance (other, BlackJackCard) :
return NotImplemented
return self.rank < other.rank

def __le_ (self, other: Any) -> bool:
try:
return self.rank <= cast (BlackJackCard, other).rank
except AttributeError:
return NotImplemented

def __gt__ (self, other: Any) -> bool:
if not isinstance (other, BlackJackCard) :
return NotImplemented
return self.rank > other.rank

def _ _ge__ (self, other: Any) —-> bool:
try:
return self.rank >= cast (BlackJackCard, other).rank
except AttributeError:
return NotImplemented

def __eq__ (self, other: Any) —-> bool:
if not isinstance (other, BlackJackCard) :
return NotImplemented
return (self.rank == other.rank
and self.suit == other.suit)

def _ _ne_ (self, other: Any) -> bool:
if not isinstance (other, BlackJackCard) :
return NotImplemented
return (self.rank != other.rank

[92]

Integrating Seamlessly - Basic Special Methods Chapter 3

or self.suit != other.suit)

def _ str_ (self) -> str:
return f"{self.rank}{self.suit}"

def __repr__ (self) —-> str:
return (f"{self.__class_ ._ _name__ }"
f" (rank={self.rank!r}, suit={self.suit!r},
f'"hard={self.hard!r}, soft={self.soft!r})")

This example class defines all six comparison operators.
The various comparison methods use two kinds of type checking: class and protocol:

e Class-based type checking uses isinstance () to check the class
membership of the object. When the check fails, the method returns the
special Not Implemented value; this allows the other operand to
implement the comparison. The isinstance () check also informs mypy
of a type constraint on the objects named in the expression.

e Protocol-based type checking follows duck typing principles. If the object
supports the proper protocol, it will have the necessary attributes. This is
shown in the implementation of the __1e_ () and __ge__ () methods.
A try: block is used to wrap the attempt and provide a useful
Not Implemented value if the protocol isn't available in the object. In this
case, the cast () function is used to inform mypy that only objects with the
expected class protocol will be used at runtime.

There's a tiny conceptual advantage to checking for support for a given protocol
instead of membership in a class: it avoids needlessly over-constraining operations.
It's entirely possible that someone might want to invent a variation on a card that
follows the protocol of BlackJackCard, but is not defined as a proper subclass of
BlackjackCard. Using isinstance () checks might prevent an otherwise valid
class from working correctly.

The protocol-focused try: block might allow a class that coincidentally happens to
have a rank attribute to work. The risk of this situation turning into a difficult-to-
solve problem is nil, as the class would likely fail everywhere else it was used in this
application. Also, who compares an instance of Card with a class from a financial
modeling application that happens to have a rank-ordering attribute?

In future examples, we'll focus on protocol-based comparison using a try: block.
This tends to offer more flexibility. In cases where flexibility is not desired, the
isinstance () check can be used.

[93]

Integrating Seamlessly - Basic Special Methods Chapter 3

In our examples, the comparison uses cast (BlackJackCard, other) to insist to
mypy that the other variable conforms to the BlackjackCard protocol. In many
cases, a complex class may have a number of protocols defined by various kinds of
mixins, and a cast () function will focus on the essential mixin, not the overall class.

Comparison methods explicitly return Not Implemented to inform Python that this
operator isn't implemented for this type of data. Python will try reversing the
argument order to see whether the other operand provides an implementation. If no
valid operator can be found, then a TypeError exception will be raised.

We omitted the three subclass definitions and the factory function, card21 (). They're
left as an exercise.

We also omitted intraclass comparisons; we'll save that for the next section. With this
class, we can compare cards successfully. The following is an example where we
create and compare three cards:

>>> two = card2l (2, "a")
>>> three = card21 (3, "a")
>>> two_c = card21l (2, "e")

Given those three BlackJackCard instances, we can perform a number of
comparisons, as shown in the following code snippet:

>>> f"{two} == {three} is {two == three}"
24 == 3& is False

>>> two.rank == two_c.rank

True

>>> f"{two} < {three} is {two < three}"
284 < 38 is True

The definitions seem to have worked as expected.

Implementation of a comparison of the objects
of mixed classes

We'll use the BlackJackCard class as an example to see what happens when we
attempt comparisons where the two operands are from different classes.

The following is a Card instance that we can compare against the int values:

>>> two = card21l (2, "a")
>>> two < 2

[94]

Integrating Seamlessly - Basic Special Methods Chapter 3

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unorderable types: Number2lCard() < int ()
>>> two > 2
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unorderable types: Number2lCard() > int ()

This is what we expected: the subclass of BlackJackCard, Number21Card, doesn't
provide the required special methods to implement a comparison against integers, so
there's a TypeError exception. However, consider the following two examples:

>>> two == 2
False
>>> 2 == two
False

Why do these provide responses? When confronted with a Not Implemented value,
Python will reverse the operands. In this case, the integer value, 2, defines
the int.__eq__ () method, which tolerates objects of an unexpected class.

Hard totals, soft totals, and polymorphism

Two classes are polymorphic when they share common attributes and methods. One
common example of this is objects of the int and float classes. Both have
__add__ () methods to implement the + operator. Another example of this is that
most collections offera __len__ () method to implement the 1en () function. The
results are produced in different ways, depending on the implementation details.

Let's define Hand so that it will perform a meaningful mixed-class comparison among
several subclasses of Hand. As with same-class comparisons, we have to determine
precisely what we're going to compare. We'll look at the following three cases:

¢ Equality comparisons between Hand instances should compare all cards in
the collection. Two hands are equal if all of the cards are equal.

¢ Ordering comparisons between two Hand instances should compare an
attribute of each Hand object. In the case of Blackjack, we'll want to compare
the hard total or soft total of the hand's points.

¢ Equality comparisons against an int value should compare the Hand
object's points against the int value. In order to have a total, we have to
sort out the subtlety of hard totals and soft totals in the game of Blackjack.

[95]

Integrating Seamlessly - Basic Special Methods Chapter 3

When there's an ace in a hand, then the following are two candidate totals:

e The soft total treats an ace as 11.

e The hard total treats an ace as 1. If the soft total is over 21, then only the
hard total is relevant to the game.

This means that the hand's total isn't a simple sum of the cards.

We have to determine whether there's an ace in the hand first. Given that
information, we can determine whether there's a valid (less than or equal to 21) soft
total. Otherwise, we'll fall back on the hard total.

One symptom of Pretty Poor Polymorphism is the reliance on isinstance () to
determine the subclass membership. Generally, this is a violation of the basic ideas of
encapsulation and class design. A good set of polymorphic subclass definitions
should be completely equivalent with the same method signatures. Ideally, the class
definitions are also opaque; we don't need to look inside the class definition. A poor
set of polymorphic classes uses extensive isinstance () class testing.

In Python, some uses of the isinstance () function are necessary. This will arise
when using a built-in class. It arises because we can't retroactively add method
functions to built-in classes, and it might not be worth the effort of subclassing them
to add a polymorphism helper method.

In some of the special methods, it's necessary to use the isinstance () function to
implement operations that work across multiple classes of objects where there's no
simple inheritance hierarchy. We'll show you an idiomatic use of isinstance () for
unrelated classes in the next section.

For our cards class hierarchy, we want a method (or an attribute) that identifies an
ace without having to use isinstance (). A well-designed method or attribute can
help to make a variety of classes properly polymorphic. The idea is to provide a
variant attribute value or method implementation that varies based on the class.

We have two general design choices for supporting polymorphism:

e Define a class-level attribute in all relevant classes with a distinct value.
e Define a method in all classes with distinct behavior.

In a situation where the hard total and soft total for the cards differ by 10, this is an
indication of at least one ace being present in the hand. We don't need to break
encapsulation by checking for class membership. The values of the attributes provide
all the information required.

[96]

Integrating Seamlessly - Basic Special Methods Chapter 3

When card.soft != card.hard, thisis sufficient information to work out the hard
total versus the soft total of the hand. Besides indicating the presence of AceCard, it
also provides the exact offset value between hard and soft totals.

The following is a version of the total method that makes use of the soft versus hard
delta value:

def total(self) —-> int:
delta_soft = max(c.soft - c.hard for ¢ in self.cards)
hard = sum(c.hard for ¢ in self.cards)
if hard + delta_soft <= 21:
return hard + delta_soft
return hard

We'll compute the largest difference between the hard and soft total of each
individual card in the hand as delta_soft. For most cards, the difference is zero. For
an ace, the difference will be nonzero.

Given the hard total and delta_soft, we can determine which total to return. If
hard+delta_soft isless than or equal to 21, the value is the soft total. If the soft
total is greater than 21, then revert to a hard total.

A mixed class comparison example

Given a definition of a total for a Hand object, we can meaningfully define
comparisons between Hand instances and comparisons between Hand and int. In
order to determine which kind of comparison we're doing, we're forced to use
isinstance().

The following is a partial definition of Hand with comparisons. Here's the first part:

class Hand:

def _ _init_ (self, dealer_card: Card2, *cards: Card2) -> None:
self.dealer_card = dealer_card
self.cards = list (cards)

def _ str_ (self) -> str:
return ", ".join(map(str, self.cards))

def __repr__ (self) —-> str:
cards_text = ", ".join (map(repr, self.cards))
return f"{self.__class_ ._ name__ } ({self.dealer_card!r},
{cards_text})"

[971]

Integrating Seamlessly - Basic Special Methods Chapter 3

Here's the second part, emphasizing the comparison methods:

def __eq__ (self, other: Any) -> bool:
if isinstance (other, int):

return self.total() = other
try:
return (
self.cards == cast (Hand, other) .cards
and self.dealer_card == cast (Hand, other).dealer_card

)
except AttributeError:
return NotImplemented

def __1t__ (self, other: Any) -> bool:
if isinstance (other, int):
return self.total() < cast(int, other)
try:
return self.total() < cast (Hand, other).total()
except AttributeError:
return NotImplemented

def __le__ (self, other: Any) -> bool:
if isinstance (other, int):
return self.total() <= cast (int, other)
try:
return self.total() <= cast (Hand, other) .total ()
except AttributeError:
return NotImplemented

def total(self) -> int:
delta_soft = max(c.soft - c.hard for c in self.cards)
hard = sum(c.hard for ¢ in self.cards)
if hard + delta_soft <= 21:
return hard + delta_soft
return hard

We've defined three of the comparisons, not all six. Python's default behavior can fill
in the missing operations. Because of the special rules for different types, we'll see
that the defaults aren't perfect.

In order to interact with Hands, we'll need a few Card objects:

>>> two = card21(2, 'a')

>>> three = card21(3, '&')

>>> two_c = card21(2, 'e')

>>> ace = card21 (1, 'e')

>>> cards = [ace, two, two_c, three]

[98]

Integrating Seamlessly - Basic Special Methods Chapter 3

We'll use this sequence of cards to see two different hand instances.

This first Hands object has an irrelevant dealer's Card object and the set of four Cards
created previously. One of the Card objects is an ace:

>>> h = Hand(card21 (10, 's#'), *cards)
>>> print (h)

As, 24, 26, 3a

>>> h.total()

18

The total of 18 points is a soft total, because the ace is being treated as having 11
points. The hard total for these cards is 8 points.

The following is a second Hand object, which has an additional card object:

>>> h2 = Hand(card21 (10, 's'), card2l1l(5,'a'), *cards)
>>> print (h2)

54, Ae, 28, 24, 3a

>>> h2.total()

13

This hand has a total of 13 points. This is a hard total. The soft total would be over 21,
and therefore irrelevant for play.

Comparisons between Hands work very nicely, as shown in the following code
snippet:

>>> h < h2
False
>>> h > h2
True

These comparisons mean that we can rank Hands based on the comparison
operators. We can also compare Hands with integers, as follows:

>>> h == 18
True
>>> h < 19
True
>>> h > 17
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unorderable types: Hand() > int()

[99]

Integrating Seamlessly - Basic Special Methods Chapter 3

The comparisons with integers work as long as Python isn't forced to try a fallback.
Theh > 17 example shows us what happens when there'sno __gt__ () method.
Python checks the reflected operands, and the integer, 17, doesn't have a proper
__1t_ () method for Hand either.

We can add the necessary __gt__ () and __ge__ () functions to make Hand work
properly with integers. The code for these two comparisons is left as an exercise for
the reader.

The __del () method

The _ del () method has a rather obscure use case.

The intent is to give an object a chance to do any cleanup or finalization just before
the object is removed from memory. This use case is handled much more cleanly by
context manager objects and the with statement. This is the subject of Chapter ¢,
Using Callables and Contexts. Creating a context is much more predictable than dealing
with __del__ () and the Python garbage collection algorithm.

If a Python object has a related operating system resource, the __del__ () method is
the last chance to cleanly disentangle the resource from the Python application. As
examples, a Python object that conceals an open file, a mounted device, or perhaps a
child subprocess might all benefit from having the resource released as part

of __del__ () processing.

The __del_ () method is not invoked at any easy-to-predict time. It's not always
invoked when the object is deleted by a del statement, nor is it always invoked when
an object is deleted because a namespace is being removed. The documentation on
the __del__ () method describes the circumstances as precarious and provides this
additional note on exception processing—exceptions that occur during their
execution are ignored, and a warning is printed to sys. stderr instead. See the

warning here: nttps://docs.python.org/3/reference/datamodel .html?highlight=
__del__#object.__del__.

For these reasons, a context manager is often preferable to implementing __del__ ().

[100]

https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__del__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__del__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__del__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__del__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__del__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__del__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__del__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__del__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__del__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__del__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__del__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__del__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__del__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__del__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__del__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__del__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__del__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__del__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__del__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__del__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__del__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__del__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__del__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__del__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__del__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__del__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__del__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__del__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__del__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__del__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__del__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__del__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__del__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__del__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__del__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__del__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__del__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__del__

Integrating Seamlessly - Basic Special Methods Chapter 3

The reference count and destruction

For CPython implementation, objects have a reference count. The count is
incremented when the object is assigned to a variable and decremented when the
variable is removed. When the reference count is zero, the object is no longer needed
and can be destroyed. For simple objects, __del__ () will be invoked and the object
will be removed.

For complex objects that have circular references among objects, the reference count
might never go to zero and __del__ () can't be invoked easily. The following is a
class that we can use to see what happens:

class Noisy:

def _ _del_ (self) —-> None:
print (f"Removing {id(self)}")

We can create (and see the removal of) these objects as follows:

>>> x = Noisy()
>>> del x
Removing 4313946640

We created and removed a Noisy object, and, almost immediately, we saw the
message from the __del__ () method. This indicates that the reference count went to
zero when the x variable was deleted. Once the variable is gone, there's no longer a
reference to the Noisy instance and it, too, can be cleaned up. The following is a
common situation that involves the shallow copies that are often created:

>>> 1ln = [Noisy(), Noisy()]
>>> 1n2= 1n[:]
>>> del 1n

There's no response to this del statement. The Noisy objects have not had their
reference counts go to zero yet; they're still being referenced somewhere, as shown in
the following code snippet:

>>> del 1n2
Removing 4313920336
Removing 4313920208

The 1n2 variable was a shallow copy of the 1n list. The Noisy objects were referenced
in two lists. The Noisy instances could not be destroyed until both lists were
removed, reducing the reference counts to zero.

[101]

Integrating Seamlessly - Basic Special Methods Chapter 3

There are numerous other ways to create shallow copies. The following are a few
ways to create shallow copies of objects:

a = b = Noisy()
c [Noisy ()] * 2

The point here is that we can often be confused by the number of references to an
object that exist because shallow copies are prevalent in Python.

Circular references and garbage collection

The following is a common situation that involves circularity. One class, Parent,
contains a collection of children. Each child instance contains a reference to the
Parent class. We'll use these two classes to examine circular references:

class Parent:

def _ _init_ (self, *children: 'Child') -> None:
for child in children:
child.parent = self
self.children = {c.id: ¢ for ¢ in children}

def _ _del_ (self) -> None:
print (
f"Removing {self.__class__.__name__} {id(self) :d}"

)

class Child:

def _ init__ (self, id: str) -> None:
self.id = id
self.parent: Parent = cast (Parent, None)

def _ _del_ (self) -> None:
print (
f"Removing {self.__class__.__name__} {id(self) :d}"

)

A Parent instance has a collection of children in a simple dict. Note that the
parameter value, *children, has a type hint of 'Cchild'. The Child class has not
been defined yet. In order to provide a type hint, mypy will resolve a string to a type
that's defined elsewhere in the module. In order to have a forward reference or a
circular reference, we have to use strings instead of a yet-to-be-defined type.

[102]

Integrating Seamlessly - Basic Special Methods Chapter 3

Each child instance has a reference to the Parent class that contains it. The reference
is created during initialization, when the children are inserted into the parent's
internal collection.

We've made both classes noisy so that we can see when the objects are removed. The
following is what happens:

>>> p = Parent (Child('a'), Child('b'))
>>> del p

The Parent instance and two initial Child instances cannot be removed. They both
contain references to each other. Prior to the del statement, there are three references
to the Parent object. The p variable has one reference. Each child object also has a
reference. When the del statement removed the p variable, this decremented the
reference count for the Parent instance. The count is not zero, so the object remains
in memory, unusable. We call this a memory leak.

We can create a childless Parent instance, as shown in the following code snippet:

>>> p_0 = Parent ()

>>> id(p_0)

4313921744

>>> del p_0

Removing Parent 4313921744

This object is deleted immediately, as expected.

Because of the mutual or circular references, a Parent instance and its list of Child
instances cannot be removed from the memory. If we import the garbage collector
interface, gc, we can collect and display these nonremovable objects.

We'll use the gc.collect () method to collect all the nonremovable objects that have
a__del__ () method, as shown in the following code snippet:

>>> import gc

>>> gc.collect ()

Removing Child 4536680176
Removing Child 4536680232
Removing Parent 4536679952
30

We can see that our Parent object is cleaned up by the manual use of the garbage
collector. The collect () function locates objects that are inaccessible, identifies any
circular references, and forces their deletion.

[103]

Integrating Seamlessly - Basic Special Methods Chapter 3

Note that we can't break the circularity by putting code in the __del__ () method.
The __del__ () method is called after the circularity has been broken and the
reference counts are already zero. When we have circular references, we can no
longer rely on simple Python reference counting to clear out the memory of unused
objects. We must either explicitly break the circularity or use a weakref reference,
which permits garbage collection.

Circular references and the weakref module

In cases where we need circular references but also want __del__ () to work nicely,
we can use weak references. One common use case for circular references is mutual
references: a parent with a collection of children where each child has a reference
back to the parent. If a P1ayer class has multiple hands, it might be helpful for a
Hand object to contain a weak reference to the owning Player class.

The default object references could be called strong references; however, direct
references is a better term. They're used by the reference-counting mechanism in
Python; they cannot be ignored.

Consider the following statement:

a = B()

The a variable has a direct reference to the object of the B class that was created. The
reference count to the instance of B is at least one, because the a variable has a
reference.

A weak reference involves a two-step process to find the associated object. A weak
reference will use x.parent (), invoking the weak reference as a callable object to
track down the actual parent object. This two-step process allows the reference
counting or garbage collection to remove the referenced object, leaving the weak
reference dangling.

The weakref module defines a number of collections that use weak references
instead of strong references. This allows us to create dictionaries that, for example,
permit the garbage collection of otherwise unused objects.

We can modify our Parent and Child classes to use weak references from Child to
Parent, permitting simpler destruction of unused objects.

[104]

Integrating Seamlessly - Basic Special Methods Chapter 3

The following is a modified class that uses weak references from Child to Parent:

from weakref import ref

class Parent2:

def _ _init_ (self, *children: 'Child2') -> None:
for child in children:
child.parent = ref (self)
self.children = {c.id: ¢ for ¢ in children}

def _ _del_ (self) —-> None:

print (
f"Removing {self.__class__.__name__} {id(self):d}"

class Child2:

def _ _init_ (self, id: str) —-> None:
self.id = id
self.parent: ref[Parent2] = cast(ref[Parent2], None)

def _ _del_ (self) —-> None:
print (
f"Removing {self.__class__.__name__} {id(self) :d}"

)

We've changed the child to parent reference to be a weakref object reference
instead of a simple, direct reference.

From within a child class, we must locate the parent object via a two-step
operation:

p = self.parent ()
if p is not None:
Process p, the Parent instance.
else:
The Parent instance was garbage collected.

We should explicitly check to be sure the referenced object was found. Objects with
weak references can be removed, leaving the weak reference dangling — it not longer
refers to an object in memory. There are several responses, which we'll look at below.

[105]

Integrating Seamlessly - Basic Special Methods Chapter 3

When we use this new Parent2 class, we see that del makes the reference counts go
to zero, and the object is immediately removed:

>>> p = Parent2 (Child (), Child())
>>> del p

Removing Parent2 4303253584
Removing Child 4303256464
Removing Child 4303043344

When a weakref reference is dangling (because the referent was destroyed), we have
several potential responses:

¢ Recreate the referent. You could, perhaps, reload it from a database.

¢ Use the warnings module to write the debugging information in low-
memory situations where the garbage collector removed objects
unexpectedly and try to continue in degraded mode.

e Ignore it.

Generally, weakref references are left dangling after objects have been removed for
very good reasons: variables have gone out of scope, a namespace is no longer in use,
or the application is shutting down. For these kinds of reasons, the third response is
quite common. The object trying to create the reference is probably about to be
removed as well.

The __del__() and close() methods

The most common use for __del () is to ensure that files are closed.

Generally, class definitions that open files will have something like what's shown in
the following code:

del__ = close

This will ensure that the __del_ () method is also the close () method. When the
object is no longer needed, the file will be closed, and any operating system resources
can be released.

Anything more complex than this is better done with a context manager. See chapter
6, Using Callables and Contexts, for more information on context managers.

[106]

Integrating Seamlessly - Basic Special Methods Chapter 3

The __new__ () method and immutable
objects

One use case for the __new__ () method is to initialize objects that are otherwise
immutable. The __new__ () method is where an uninitialized object is created prior
tothe __init__ () method setting the attribute values of the object.

The __new__ () method must be overridden to extend an immutable class where
the init_ () method isn't used.

The following is a class that does not work. We'll define a version of f1oat that
carries around information on units:

class Float_Fail (float):

def _ _init_ (self, wvalue: float, unit: str) -> None:
super () .__init__ (value)
self.unit = unit

We're trying (improperly) to initialize an immutable object. Since immutable objects
can't have their state changed, the __init__ () method isn't meaningful and isn't
used.

The following is what happens when we try to use this class definition:

>>> s2 = Float_Fail (6.5, "knots")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: float expected at most 1 arguments, got 2

From this, we can see that we can't override the __init__ () method for the built-in
immutable float class. We have similar problems with all other immutable classes.
We can't set the attribute values on the immutable object, self, because that would
break the definition of immutability. We can only set attribute values during the
object construction. The __new__ () method supports this kind of processing.

The __new__ () method is a class method: it will receive the class object as the first
argument value. This is true without using the @classmethod decorator. It doesn't
use a self variable, as its job is to create the object that will eventually be assigned to
the self variable.

[107]

Integrating Seamlessly - Basic Special Methods Chapter 3

For any class we define, the default implementation of __new__ () is inherited from
the parent class. Implicitly, the c1ass object is the parent of all classes. The

object._ new__ () method builds a simple, empty object of the required class. The
arguments and keywords to __new__ (), with the exception of the c1s argument, are
passed to __init__ () as part of the standard Python behavior.

The following are two cases when this default behavior isn't perfect:

e When we want to subclass an immutable class definition. We'll look at this
next.

e When we need to create a metaclass. That's the subject of the next section,
as it's fundamentally different from creating immutable objects.

Instead of overriding __init__ () when creating a subclass of a built-in immutable
type, we have to tweak the object at the time of creation by overriding __new__ ().
The following is an example class definition that shows us the proper way to extend
float:

class Float_Units(float):

def _ new__ (cls, value, unit):
obj = super().__new__ (cls, float (value))
obj.unit = unit

return obj

This implementation of __new__ () does two things. It creates a new Float_Units
object with a float value. It also injects an additional unit attribute into the instance
that is being created.

It's difficult to provide appropriate type hints for this use of __new__ (). The method
as defined in the typeshed used by mypy version 0.630 doesn't correspond precisely
to the underlying implementation. For this rare case, type hints don't seem helpful for
preventing problems.

The following code snippet gives us a floating-point value with attached unit
information:

>>> speed = Float_Units (6.8, "knots")
>>> speed*2

13.6

>>> speed.unit

'knots'

[108]

Integrating Seamlessly - Basic Special Methods Chapter 3

Note that an expression such as speed * 2 does not create a Float_Units object.
This class definition inherits all the operator special methods from float; the float
arithmetic special methods all create f1oat objects. Creating Float_Units objects
will be covered in chapter 8, Creating Numbers.

The _ new__ () method and metaclasses

The other use case for the _ new__ () method is to create a metaclass to control how a
class definition is built. This use of __new__ () to build a class object is related to
using __new__ () to build a new immutable object, shown previously. In both cases,
__new__ () gives us a chance to make minor modifications in situations where
__init__ () isn't relevant.

A metaclass is used to build a class. Once a class object has been built, the class
object is used to build instance objects. The metaclass of all class definitions is type.
The type () function creates the class objects in an application. Additionally, the
type () function can be used to reveal the class of an object.

The following is a silly example of building a new, nearly useless class directly with
type () as a constructor:

Useless = type ("Useless", (), {})

To create a new class, the type () function is given a string name for the class, a tuple
of superclasses, and a dictionary used to initialize any class variables. The return
value is a class value. Once we've created this class, we can create objects of this
Useless class. However, the objects won't do much because they have no methods or
attributes.

We can use this newly-minted Useless class to create objects, for what little it's
worth. The following is an example:

>>> Useless = type("Useless", (), {})
>>> u = Useless()

>>> u.attribute =1

>>> dir (u)

['"_class__ ', '__delattr_ ', '__diect__ ', '__dir_', '__doc_ ',

' eq ', '__format__ ', '__ge_ ', '__getattribute__', '__gt_ ',

' _hash__ ', '__init__ ', '__init_subclass__ ', '__le_ ', '__1lt_ ',
' _module__', '_ne__ ', '_new__', '_ _reduce_ ', '_ reduce_ex_ ',
' _repr__ ', '__setattr__ ', '__sizeof__', '__str_ ',
'__subclasshook__ ', '_ _weakref_ ', 'attribute']

[109]

Integrating Seamlessly - Basic Special Methods Chapter 3

This example created an instance of Useless, u. It's easy to add an attribute to the
objects of this class with an assignment to u.attribute.

This is almost equivalent to defining minimal classes, as follows:

from types import SimpleNamespace
Useless2 = SimpleNamespace

class Useless3: pass

The definition of Useless2 is the SimpleNamespace class from the t ypes module.
The definition of Useless3 uses Python syntax to create a class that's the default
implementation of object. These all have nearly identical behaviors.

This brings up the important question: why would we change the way classes are
defined in the first place?

The answer is that some of the default features of a class aren't perfectly applicable to
some edge cases. We'll talk about three situations where we might want to introduce
a metaclass:

¢ We can use a metaclass to add attributes or methods to a class. Note that
we're adding these to the class itself, not to any of the instances of the class.
The reason for using a metaclass is to simplify the creation of a large
number of similar classes. In many respects, adding a @classmethod
decorator to a method can be similar to creating a metaclass.

o Metaclasses are used to create Abstract Base Classes (ABC), which we'll
look at in chapter 4, Attribute Access, Properties, and Descriptions through
Chapter 7, Creating Containers and Collections. An ABC relies on a metaclass
__new__ () method to confirm that the concrete subclass is complete. We'll
introduce this in chapter 5, The ABCs of Consistent Design.

¢ Metaclasses can be used to simplify some aspects of object serialization.
We'll look at this in chapter 10, Serializing and Saving - JSON, YAML, Pickle,
CSV, and XML. When a large number of classes will all be using similar
serialization techniques, a metaclass can ensure that all of the application
classes have a common serialization aspect.

In general, there are a great many things that can be done in a metaclass that cannot
be understood by the mypy tool. It's not always helpful to struggle with the details of
defining metaclasses.

[110]

Integrating Seamlessly - Basic Special Methods Chapter 3

Metaclass example — class-level logger

When we have a large number of classes that all need a logger, it can be handy to
centralize the feature in a single definition. There are a number of ways of doing this,
one of which is to provide a metaclass definition that builds a class-level logger
shared by all instances of the class.

The recipe has the following three parts:

1. Create a metaclass. The __new__ () method of the metaclass will add
attributes to the constructed class definition.

2. Create an abstract superclass that is based on the metaclass. This abstract
class will simplify inheritance for the application classes.

3. Create the subclasses of the abstract superclass that benefit from the
metaclass.

The following is an example metaclass, which will inject a logger into a class
definition:

import logging
class LoggedMeta (type) :

def _ new_ (
cls: Type,
name: str,
bases: Tuple[Type, ...1,
namespace: Dict[str, Any]
) —> 'Logged':
result = cast ('Logged', super().__new__(cls, name, bases,
namespace))
result.logger = logging.getLogger (name)
return result

class Logged (metaclass=LoggedMeta) :
logger: logging.Logger

The LoggedMeta class extends the built-in default metaclass, t ype, with a new
version of the __new__ () method.

[111]

Integrating Seamlessly - Basic Special Methods Chapter 3

The _ new__ () metaclass method is executed after the class body elements have
been added to the namespace. The argument values are the metaclass, the new class
name to be built, a tuple of superclasses, and a namespace with all of the class items
used to initialize the new class. This example is typical: it uses super () to delegate
the real work of __new__ () to the superclass. The superclass of this metaclass is the
built-in t ype class.

The _ new__ () method in this example also adds an attribute, 1ogger, into the class
definition. This was not provided when the class was written, but will be available to
every class that uses this metaclass.

We must use the metaclass when defining a new abstract superclass, Logged. Note
that the superclass includes a reference to the 1ogger attribute, which will be injected
by the metaclass. This information is essential to make the injected attribute visible to

mypy.

We can then use this new abstract class as the superclass for any new classes that we
define, as follows:

class SomeApplicationClass (Logged) :
def _ _init_ (self, vl: int, v2: int) -> None:
self.logger.info ("vi=%r, v2=%r", vl, v2)
self.vl = vl
self.v2 = v2
self.v3 = vi1*v2
self.logger.info ("product=%r", self.v3)

The __init__ () method of the SomeApplication class relies on the

logger attribute available in the class definition. The 1ogger attribute was added by
the metaclass, with a name based on the class name. No additional initialization or
setup overhead is required to ensure that all the subclasses of Logged have loggers
available.

Summary

We've looked at a number of basic special methods, which are essential features of
any class that we design. These methods are already part of every class, but the
defaults that we inherit from the object may not match our processing requirements.

We'll almost always need to override __repr__ (), __str__(),and __format__ ().
The default implementations of these methods aren't very helpful at all.

[112]

Integrating Seamlessly - Basic Special Methods Chapter 3

We rarely need to override __bool__ () unless we're writing our own collection.
That's the subject of chapter 7, Creating Containers and Collections.

We often need to override comparison and __hash__ () methods. These definitions
are suitable for simple immutable objects, but are not at all appropriate for mutable
objects. We may not need to write all the comparison operators; we'll look at the
@functools.total_ordering decorator in chapter 9, Decorators and Mixins -
Cross-Cutting Aspects.

The other two basic special method names, __new__ () and __del__ (), are for more
specialized purposes. Using __new__ () to extend an immutable class is the most
common use case for this method function.

These basic special methods, along with __init__ (), will appear in almost every
class definition that we write. The rest of the special methods are for more specialized
purposes; they fall into six discrete categories:

o Attribute access: These special methods implement what we see as
object.attribute in an expression, object.attribute on the left-
hand side of an assignment, and object .attribute in a del statement.

e Callables: A special method implements what we see as a function applied
to arguments, much like the built-in 1en () function.

e Collections: These special methods implement the numerous features of
collections. This involves operations such as sequence [index],
mapping[key], and set | set.

e Numbers: These special methods provide the arithmetic operators and the
comparison operators. We can use these methods to expand the domain of
numbers that Python works with.

e Contexts: There are two special methods that we'll use to implement a
context manager that works with the with statement.

e Iterators: There are special methods that define an iterator. This isn't
essential, as generator functions handle this feature so elegantly. However,
we'll look at how we can design our own iterators.

In the next chapter, we will address attributes, properties, and descriptors.

[113]

Attribute Access, Properties,
and Descriptors

An object is a collection of features, including methods and attributes. The default
behavior of the object class involves setting, getting, and deleting named attributes.
We often need to modify this behavior to change the attributes available in an object.

This chapter will focus on the following five tiers of attribute access:

e We'll look at built-in attribute processing.

e We'll review the @property decorator. A property extends the concept of
an attribute to include the processing defined in method functions.

e We'll look at how to make use of the lower-level special methods that
control attribute access: _ _getattr_ (),_ _setattr__ (), and
__delattr__ (). These special methods allow us to build more
sophisticated attribute processing.

o We'll also take alook at the __getattribute__ () method, which
provides more granular control over attributes. This can allow us to write
very unusual attribute handling.

e We'll take a look at descriptors. These objects mediate access to an attribute.
Therefore, they involve somewhat more complex design decisions.
Descriptors are the foundational structure used to implement properties,
static methods, and class methods.

In this chapter, we'll see how the default processing works in detail. This will help us
to decide where and when to override the default behavior. In some cases, we want
our attributes to do more than simply be instance variables. In other cases, we might
want to prevent the addition of attributes. We may have attributes that have even
more complex behaviors.

Attribute Access, Properties, and Descriptors Chapter 4

Also, as we explore descriptors, we'll come to a much deeper understanding of how
Python's internals work. We don't often need to use descriptors explicitly. We often
use them implicitly, however, because they implement a number of Python features.

Since type hints are now available in Python, we'll take a look at how to annotate
attributes and properties so a tool like mypy can confirm that objects of appropriate
types are used.

Finally, we'll look at the new dataclasses module and how this can be used to
simplify class definition.

In this chapter, we will cover the following topics:

e Basic attribute processing

¢ Creating properties

¢ Using special methods for attribute access
e The getattribute_ () method

Creating descriptors

Using Type Hints for attributes and properties

Using the dataclasses module

Technical requirements

The code files for this chapter can be found at https://git.io/£j20u.

Basic attribute processing

By default, any class we create will permit the following four behaviors with respect
to attributes:

e To create a new attribute and set its value
¢ To set the value of an existing attribute

e To get the value of an attribute

¢ To delete an attribute

[115]

https://git.io/fj2Uu

Attribute Access, Properties, and Descriptors Chapter 4

We can experiment with this using something as simple as the following code. We
can create a simple, generic class and an object of that class:

>>> class Generic:
pass

>>> g = Generic()

The preceding code permits us to create, get, set, and delete attributes. We can easily
create and get an attribute. The following are some examples:

>>> g.attribute = "value"
>>> g.attribute
'value'
>>> g.unset
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'Generic' object has no attribute 'unset'
>>> del g.attribute
>>> g.attribute
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'Generic' object has no attribute 'attribute'

The example shows adding, changing, and removing attributes. We will get
exceptions if we try to get an otherwise unset attribute or delete an attribute that
doesn't exist yet.

A slightly better way to do this is to use an instance of the types.SimpleNamespace
class. The feature set is the same, but we don't need to create an extra class definition.
We create an object of the SimpleNamespace class instead, as follows:

>>> import types
>>> n = types.SimpleNamespace ()

In the following code, we can see that the same use cases work for
a SimpleNamespace class:

>>> n.attribute = "value"
>>> n.attribute
'value'
>>> del n.attribute
>>> n.attribute
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'namespace' object has no attribute 'attribute'

[116]

Attribute Access, Properties, and Descriptors Chapter 4

We can create attributes for this instance, n. Any attempt to use an undefined
attribute raises an exception.

An instance of the SimpleNamespace class has different behavior from what we saw
when we created an instance of the object class. An instance of the object class
doesn't permit the creation of new attributes; it lacks the internal __dict__ structure
that Python uses to store attributes and values.

Attributes and the __init_ () method

Most of the time, we create an initial collection of attributes using the __init__ ()
method of a class. Ideally, we provide names and default values for all the attributes
in__init__ ().

While it's not required to provide all attributesin the __init__ () method, it's the
place mypy checks to gather the expected list of attributes of an object. An optional
attribute can be used as part of an object's state, but there aren't easy ways to describe
the absence of an attribute as a valid state for an object.

An optional attribute also pushes the edge of the envelope in terms of class definition.
A class is defined by the unique collection of attributes. Attributes are best added (or
removed) by creating a subclass or superclass definition. Dynamic changes to the
attributes are confusing to tools such as mypy as well as to people.

Generally, optional attributes imply a concealed or informal subclass relationship.
Therefore, we bump up against Pretty Poor Polymorphism when we use optional
attributes. Multiple polymorphic subclasses are often a better implementation than
optional attributes.

Consider a Blackjack game in which only a single split is permitted. If a hand is split, it
cannot be re-split. There are several ways that we can model this constraint:

¢ We can create an instance of a subclass, SplitHand, from the
Hand.split () method. We won't show this in detail. This subclass of
Hand has an implementation for split () that raises an exception. Once a
Hand has been split to create two SplitHand instances, these cannot be re-
split.

e We can create a status attribute on an object named Hand, which can be
created from the Hand.split () method. Ideally, this is a Boolean value,
but we can implement it as an optional attribute as well.

[117]

Attribute Access, Properties, and Descriptors Chapter 4

The following is a version of Hand.split () that can detect splittable versus
unsplittable hands via an optional attribute, se1f.split_blocker:

def split(self, deck):

assert self.cards[0].rank == self.cards[1l].rank

try:
self.split_blocker
raise CannotResplit

except AttributeError:
hO = Hand(self.dealer_card, self.cards[0], deck.pop())
hi Hand (self.dealer_card, self.cards[1l], deck.pop())
hO.split_blocker = hl.split_blocker = True
return hO, hl

The split () method tests for the presence of a split_blocker attribute. If this
attribute exists, then this hand should not be re-split; the method raises a customized
CannotSplit exception. If the split_blocker attribute does not exist, then splitting
is allowed. Each of the resulting objects has the optional attribute, preventing further
splits.

An optional attribute has the advantage of leaving the __init__ () method relatively
uncluttered with status flags. It has the disadvantage of obscuring an aspect of object
state. Furthermore, the mypy program will be baffled by the reference to an attribute
not initialized in __init__ (). Optional attributes for managing object state must be
used carefully, if at all.

Creating properties

A property is a method function that appears (syntactically) to be a simple attribute.
We can get, set, and delete property values with syntax identical to the syntax for
attribute values. There's an important distinction, though. A property is actually a
method and can process, rather than simply preserve, a reference to another object.

Besides the level of sophistication, one other difference between properties and
attributes is that we can't attach new properties to an existing object easily, but we can
add dynamic attributes to an object very easily. A property is not identical to a simple
attribute in this one respect.

There are two ways to create properties. We can use the @property decorator, or we
can use the property () function. The differences are purely syntactic. We'll focus on
the decorator.

[118]

Attribute Access, Properties, and Descriptors Chapter 4

We'll now take a look at two basic design patterns for properties:

e Eager calculation: In this design pattern, when we set a value via a
property, other attributes are also computed.

e Lazy calculation: In this design pattern, calculations are deferred until
requested via a property.

In order to compare the preceding two approaches to properties, we'll split some
common features of the Hand object into an abstract superclass, as follows:

class Hand:

def __init__ (
self,
dealer_card: BlackJackCard,
*cards: BlackJackCard

) —> None:
self.dealer_card = dealer_card
self._cards = list (cards)

def _ str_ (self) -> str:
return ", ".join(map(str, self.card))

def __repr__ (self) —-> str:

return (
f"{self.__class_ _._ name__}"
f" ({self.dealer_card!r}, "
f"{', '.join (map (repr, self.card))})"

)

In the preceding code, we defined the object initialization method, which actually
does nothing. There are two string representation methods provided. This class is a
wrapper around an internal list of cards, kept in an instance variable, _cards. We've
used a leading _ on the instance variable as a reminder that this is an implementation
detail that may change.

The __init__ () is used to provide instance variable names and type hints for mypy.
An attempt to use None as a default in this kind of abstract class definition will violate
the type hints. The dealer_card attribute must be an instance of

BlackJackCard. To allow this variable to have an initial value of None, the type hint
would have to be Optional [BlackJackCard], and all references to this variable
would also require a guarding i f statement to be sure the value was not None.

[119]

Attribute Access, Properties, and Descriptors Chapter 4

The following is a subclass of Hand, where total is a lazy property that is computed
only when needed:

class Hand_Lazy (Hand) :

@property

def total(self) —-> int:
delta_soft = max(c.soft - c.hard for ¢ in self._cards)
hard_total = sum(c.hard for ¢ in self._cards)

if hard_total + delta_soft <= 21:
return hard_total + delta_soft
return hard_total

@property
def card(self) —-> List[BlackJackCard]:
return self._cards

@card.setter
def card(self, aCard: BlackJackCard) -> None:
self._cards.append(aCard)

@card.deleter
def card(self) -> None:
self._cards.pop(-1)

The Hand_Lazy class sets the dealer_card and the _cards instance variables. The
total property is based on a method that computes the total only when requested.
Additionally, we defined some other properties to update the collection of cards in
the hand. The card property can get, set, or delete cards in the hand. We'll take a look
at these properties in the setter and deleter properties section.

We can create a Hand_Lazy object. total appears to be a simple attribute:

>>> d = Deck()

>>> h = Hand_Lazy(d.pop(), d.pop(), d.pop())
>>> h.total

19

>>> h.card = d.pop()
>>> h.total
29

The total is computed lazily by rescanning the cards in the hand each time the total is
requested. For the simple BlackJackCard instances, this is a relatively inexpensive
computation. For other kinds of items, this can involve considerable overhead.

[120]

Attribute Access, Properties, and Descriptors

Chapter 4

Eagerly computed properties

The following is a subclass of Hand, where total is a simple attribute that's

computed eagerly as each card is added:

class Hand_Eager (Hand) :

def _ _init_ (
self,
dealer_card: BlackJackCard,
*cards: BlackJackCard
) —> None:
self.dealer_card = dealer_card
self.total = 0
self. delta_soft = 0
self. _hard_total 0
self._cards: List[BlackJackCard] = list ()
for ¢ in cards:

Mypy cannot discern the type of the setter.
https://github.com/python/mypy/issues/4167

self.card = ¢ # type: ignore

@property
def card(self) —-> List[BlackJackCard]:
return self._cards

@card.setter
def card(self, aCard: BlackJackCard) -> None:
self._cards.append(aCard)

self._delta_soft = max(aCard.soft - aCard.hard,

self._delta_soft)

self._hard_total = self._hard_total + aCard.hard

self._set_total ()

@card.deleter

def card(self) -> None:
removed = self._cards.pop(-1)
self._hard_total -= removed.hard

Issue: was this the only ace?

self. delta_soft = max(c.soft - c.hard for c¢ in self

self._set_total ()

def _set_total(self) —> None:
if self._hard_total + self._delta_soft <= 21:

self.total = self._hard_total + self._delta_soft

else:
self.total = self._hard_total

._cards)

[121]

Attribute Access, Properties, and Descriptors Chapter 4

The __init__ () method of the Hand_Eager class initializes the eagerly computed
total to zero. It also uses two other instance variables, _delta_soft, and
_hard_total, to track the state of ace cards in the hand. As each card is placed in the
hand, these totals are updated.

Each use of self.cardlooks like an attribute. It's actually a reference to the property
method decorated with @card.setter. This method's parameter, aCard, will be the
value on the right side of the = in an assignment statement.

In this case, each time a card is added via the card setter property, the total
attribute is updated.

The other card property decorated with @card.deleter eagerly updates the total
attribute whenever a card is removed. We'll take a look at deleter in detail in
the next section.

A client sees the same syntax between these two subclasses (Hand_Lazy () and
Hand_Eager ()) of Hand

d = Deck ()

hl = Hand_Lazy(d.pop(), d.pop(), d.pop())
print (hl.total)

h2 = Hand_Eager (d.pop (), d.pop(), d.pop())
print (h2.total)

In both cases, the client software simply uses the total attribute. The lazy
implementation defers computation of totals until required, but recomputes them
every time. The eager implementation computes totals immediately, and only
recomputes them on a change to the hand. The trade-off is an important software
engineering question, and the final choice depends on how the overall application
uses the total attribute.

The advantage of using properties is that the syntax doesn't change when the
implementation changes. We can make a similar claim for getter/setter method
functions. However, getter/setter method functions involve extra syntax that isn't
very helpful or informative. The following are two examples, one of which involves
the use of a set ter method, while the other uses the assignment operator:

obj.set_something(value)
obj.something = value

The presence of the assignment operator (=) makes the intent very plain. Many
programmers find it clearer to look for assignment statements than to look for
setter method functions.

[122]

Attribute Access, Properties, and Descriptors Chapter 4

The setter and deleter properties

In the previous examples, we defined the card property to deal additional cards into
an object of the Hand class.

Since setter (and deleter) properties are created from the getter property, we
must always define a getter property first using code that looks like the following

example:

@property
def card(self) -> List[BlackJackCard]:
return self._cards

@card.setter
def card(self, aCard: BlackJackCard) -> None:
self._cards.append(aCard)

@card.deleter
def card(self) -> None:
self._cards.pop(-1)

This allows us to add a card to the hand with a simple statement like the following:
h.card = d.pop /()

The preceding assignment statement has a disadvantage because it looks like it
replaces all the cards with a single card. On the other hand, it has an advantage in
that it uses simple assignment to update the state of a mutable object. We can use the
__iadd__ () special method to do this a little more cleanly. However, we shall wait
until chapter 8, Creating Numbers, to introduce the other special methods.

We will consider a version of split () that works like the following code:

def split(self, deck: Deck) -> "Hand":
"""Updates this hand and also returns the new hand."""
assert self._cards[0].rank == self._cards[1l].rank
cl = self._cards[-1]
del self.card
self.card = deck.pop()
h_new = self.__class__(self.dealer_card, cl, deck.pop())
return h_new

The preceding method updates the given Hand instance and returns a new Hand
object. Because this method is inside the Hand class definition, it must show the class
name as a string because the class has not been fully defined yet.

[123]

Attribute Access, Properties, and Descriptors Chapter 4

The del statement will remove the last card from the current hand. This will use the
@card.deleter property to do the work of deleting the card. For a lazy hand,
nothing more needs to be done. For an eager hand, the totals must be updated. The
assignment statement in front of the del statement was used to save the last card into
a local variable, c1.

The following is an example of a hand being split:

>>> d = Deck()
>>> ¢ = d.pop()
>>> h = Hand_Llazy(d.pop(), c, c) # Create a splittable hand

>>> h2 = h.split(d)
>>> print (h)

24, 104
>>> print (h2)
24, As

Once we have two cards, we can use split () to produce the second hand. A card
was removed from the initial hand to create the resulting hand.

This version of split () is certainly workable. However, it seems somewhat better to
have the split () method return two fresh new Hand objects. That way, the old, pre-
split Hand instance can be saved as a memento for auditing or statistical analysis.

Using special methods for attribute
access

We'll now look at the three canonical special methods for attribute access:

__getattr_ (), _setattr__(),and __delattr__ (). Additionally, we'll
acknowledge the _ dir__ () special method to reveal attribute names. We'll defer
__getattribute__ () to the next section.

The default behavior shown in this section is as follows:

e The setattr_ () method will create and set attributes.

e The _ getattr__ () method is a fallback used when an attribute is not
defined. When an attribute name is not part of the instance variables of an
object, then the __getattr__ () method is used. The default behavior of

this special method is to raise an AttributeError exception. We can
override this to return a meaningful result instead of raising an exception.

[124]

Attribute Access, Properties, and Descriptors Chapter 4

e The _ delattr__ () method deletes an attribute.
e The dir__ () method returns a list of attribute names. This is often
coupled with __getattr__() to provide a seamless interface to

attributes computed dynamically.

The __getattr__ () method function is only one step in a larger process; it is used
when the attribute name is unknown. If the name is a known attribute, this method is
not used.

We have a number of design choices for controlling attribute access. Some of these
design choices are as follows:

e We can replace the internal __dict__ with __slots__.This makes it
difficult to add new attributes. The named attributes remain mutable,
however.

e We can use the two special methods to add attributes to a class by
overriding __setattr__ () and __delattr__ ().Dynamic attributes
make it difficult for mypy to evaluate type hints.

e We can implement property-like behaviors in a class. Using
__getattr__ () and __setattr__ () methods, we can ensure that a
variety of property-like processing is centralized in these two methods.

e We can create lazy attributes where the values aren't (or can't be) computed
until they're needed. For example, we can create an attribute that doesn't
have a value until it's read from a file, database, or network. This is a
common use for ___getattr__ ().

e We can have eager attributes, where setting an attribute creates values in
other attributes immediately. This is done via overrides to
__setattr__ ().

We won't look at all of these alternatives. Instead, we'll focus on the most commonly
used techniques. We'll create objects with a limited number of attributes and look at
other ways to compute dynamic attribute values.

When we are not able to set an attribute or create a new attribute, then the object is
immutable. The following is what we'd like to see in interactive Python:

>>> ¢ = card21(1,'a"')
>>> c.rank = 12
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 30, in __setattr__
TypeError: Cannot set rank

[125]

Attribute Access, Properties, and Descriptors Chapter 4

>>> c.hack = 13
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<stdin>", line 31, in __setattr_
AttributeError: 'Ace2lCard' has no attribute 'hack'

The preceding code shows a Card object, where we are not allowed to change an
attribute or add an attribute to the object.

The simplest way to implement completely immutable behavior is to

extend typing.NamedTuple. We'll look at this in the sections that follow. It is the
preferred approach. Prior to that, we'll look at some more complex alternatives for
selective features of immutability.

Limiting attribute names with __slots_

We can use __slots__ to create a class where we cannot add new attributes, but can
modify an attribute's value. This example shows how to restrict the attribute names:

class BlackJackCard:

__slots__ = ("rank", "suit", "hard", "soft")
def _ _init_ (self, rank: str, suit: "Suit", hard: int, soft: int)
—> None:
self.rank = rank
self.suit = suit

self.hard = hard
self.soft = soft

We made one significant change to the previous definitions of this class: setting
the slots__ attribute to the names of the attributes allowed. This turns off the
internal __dict__ feature of the object and limits us to these attribute names only.

The defined attribute values are mutable even though new attributes cannot be
added.

The primary use case for this feature is to limit the memory occupied by the internal
__dict__ structure created by default. The __slots__ structure uses less memory,
and is often used when a very large number of instances will be created.

[126]

Attribute Access, Properties, and Descriptors Chapter 4

Dynamic attributes with __getattr__ ()

We can create objects where attributes are computed from a single, centralized
__getattr__ () method. When attribute values are computed by separate
properties, the presence of many methods can be a convenient way to encapsulate a
variety of algorithms. In some cases, however, it might be sensible to combine all of
the computations into a single method. In this case, the names of the attributes are
essentially invisible to mypy, since they aren't an obvious part of the Python source
text.

A single computation method is shown in the following example:

class RTD_Solver:

def _ _init_ (
self, *,
rate: float = None,
time: float None,
distance: float = None
) —> None:
if rate:
self.rate = rate
if time:
self.time = time
if distance:
self.distance = distance

def __getattr__ (self, name: str) -> float:

if name == "rate":

return self.distance / self.time
elif name == "time":

return self.distance / self.rate
elif name == "distance":

return self.rate * self.time
else:

raise AttributeError (f"Can't compute {name}")

An instance of the RTD_Solver class is built with two of three values. The idea is to
compute the missing third value from the other two. In this case, we've elected to
make the missing value an optional attribute, and compute the value of the attribute
when required. The attributes for this class are dynamic: two of the three possible
attributes will be in use.

[127]

Attribute Access, Properties, and Descriptors Chapter 4

The class is used as shown in the following snippet:

>>> rl = RTD_Solver (rate=6.25, distance=10.25)
>>> rl.time

1.64

>>> rl.rate

6.25

An instance of the RTD_Solver class was built with two of the three possible
attributes. In this example, it's rate and distance. A request for the t ime attribute
value leads to a computation of time from rate and distance.

A request for the rate attribute value, however, does not involve the __getattr__ ()
method. Because the instance has rate and distance attributes, these are provided
directly. To confirm that __getattr__ () is notused, inserta print () function in
the computation of rate, as shown in the following code snippet:

if name == "rate":
print ("Computing Rate")
return self.distance / self.time

When an instance of RTD_Solver is created with an attribute value set by the
__init__ () method, the _ getattr__ () method is not used to fetch the attribute.
The __getattr__ () method is only used for unknown attributes.

Creating immutable objects as a NamedTuple
subclass

The best approach in terms of creating immutable objects is to make our Card
property a subclass of typing.NamedTuple.

The following is an extension to the built-in typing.NamedTuple class:

class AceCard2 (NamedTuple) :
rank: str
suit: Suit
hard: int = 1
soft: int = 11

def _ str_ (self) —-> str:
return f"{self.rank}{self.suit}"

[128]

Attribute Access, Properties, and Descriptors Chapter 4

When we use the preceding code, we see the following kinds of interaction:

>>> ¢ = AceCard2 ("A", Suit.Spade)
>>> c.rank
IAI

>>> c.suit
<Suit.Spade: '&'>
>>> c.hard

1

We can create an instance, and it has the desired attribute values. We cannot,
however, add or change any attributes. All of the processing of attribute names is
handled by the NamedTuple class definition:

>>> c.not_allowed = 2
Traceback (most recent call last):
File "/Users/slott/miniconda3/envs/py37/1lib/python3.7/doctest.py",
line 1329, in __run
compileflags, 1), test.globs)
File "<doctest _ main__ ._ test__ .test_comparisons_2[3]>", line 1, in
<module>
c.not_allowed = 2
AttributeError: 'AceCard2' object has no attribute 'not_allowed'
>>> c.rank = 3
Traceback (most recent call last):
File "/Users/slott/miniconda3/envs/py37/1lib/python3.7/doctest.py",
line 1329, in __run
compileflags, 1), test.globs)
File "<doctest _ main__ ._ test__ .test_comparisons_2[4]>", line 1, in
<module>
c.rank = 3
AttributeError: can't set attribute

Eagerly computed attributes, dataclasses, and
__post_init__ ()
We can define an object where attributes are computed eagerly — as soon

as — possible after a value is set. An object such as this can optimize access by
performing a computation once and leaving the result to be used multiple times.

This can be done with property setters. However, a class with a lot of property setters,
each of which computes a number of attributes, can be rather complex-looking. In
some cases, all of the derived value computations can be centralized.

[129]

Attribute Access, Properties, and Descriptors Chapter 4

The dataclasses module provides us with a class with an array of built-in features.
One of these featuresisa__ post_init__ () method that we can use to derive values
eagerly.

We'd like something that looks like the following code:

>>> RateTimeDistance (rate=5.2, time=9.5)

RateTimeDistance (rate=5.2, time=9.5, distance=49.4)

>>> RateTimeDistance (distance=48.5, rate=6.1)

RateTimeDistance (rate=6.1, time=7.950819672131148, distance=48.5)

We can set two of the three required values in this RateTimeDistance object. The
additional attribute is computed immediately, as demonstrated in the following code
block:

from dataclasses import dataclass

@dataclass
class RateTimeDistance:

rate: Optional[float] = None
time: Optional[float] = None
distance: Optional[float] = None
def __post_init__(self) —-> None:
if self.rate is not None and self.time is not None:
self.distance = self.rate * self.time
elif self.rate is not None and self.distance is not None:
self.time = self.distance / self.rate
elif self.time is not None and self.distance is not None:
self.rate = self.distance / self.time

A class defined by the @dataclass decorator will accept a variety of initialization
values. After the values have been set, the __post_init__ () method is invoked.
This can be used to compute additional values.

The attributes here are mutable, and it's relatively simple to create an object with
inconsistent values for rate, time, and distance. We can do the following to create an
object with improper internal relationships among the attribute values:

>>> rl = RateTimeDistance (time=1, rate=0)
>>> rl.distance = -99

To prevent this, a @dataclass (frozen=True) decorator can be used. This variant
will behave quite a bit like a NamedTuple.

[130]

Attribute Access, Properties, and Descriptors Chapter 4

Incremental computation with __setattr__ ()

We can create classes which use __setattr__ () to detect changes in attribute
values. This can lead to incremental computation. The idea is to build derived values
after initial attribute values have been set.

Note the complexity of having two senses of attribute setting.

e The client's view: An attribute can be set and other derived values may be
computed. In this case, a sophisticated __setattr__ () is used.

¢ The internal view: Setting an attribute must not result in any additional
computation. If additional computation is done, this leads to an infinite
recursion of setting attributes and computing derived values from those
attributes. In this case, the fundamental __setattr__ () method of
the superclass must be used.

This distinction is important and easy to overlook. Here's a class that both sets
attributes and computes derived attributes in the __setattr__ () method:

class RTD_Dynamic:
def _ _init_ (self) -> None:
self.rate : float
self.time : float

self.distance : float

super () .__setattr__ ('rate', None)
super () .__setattr__ ('time', None)
super () .__setattr__ ('distance', None)

def __repr__ (self) —-> str:
clauses = []
if self.rate:
clauses.append (f"rate={self.rate}")
if self.time:
clauses.append (f"time={self.time}")
if self.distance:

clauses.append(f"distance={self.distance}")

return (
f"{self.__class_ ._ name__ }"
f"({', '.join(clauses)})"
)
def __setattr__ (self, name: str, value: float) —-> None:
if name == 'rate':
super () .__setattr__ ('rate', value)
elif name == 'time':

[131]

Attribute Access, Properties, and Descriptors Chapter 4

super () .__setattr__ ('time', wvalue)
elif name == 'distance':
super () .__setattr__ ('distance', value)

if self.rate and self.time:

super () .__setattr__ ('distance', self.rate * self.time)
elif self.rate and self.distance:

super () .__setattr_ ('time', self.distance / self.rate)
elif self.time and self.distance:

super () .__setattr_ ('rate', self.distance / self.time)

The __init__ () method usesthe __setattr__ () superclass to set default attribute
values without starting a recursive computation. The instance variables are named
with type hints, but no assignment is performed.

The RTD_Dynamic class provides a __setattr__ () method that will set an attribute.
If enough values are present, it will also compute derived values. The internal use of
super () .__setattr__ () specifically avoids any additional computations from
being done by using the object superclass attribute setting methods.

Here's an example of using this class:

>>> rtd = RTD_Dynamic ()

>>> rtd.time = 9.5

>>> rtd

RTD_Dynamic (time=9.5)

>>> rtd.rate = 6.25

>>> rtd

RTD_Dynamic (rate=6.25, time=9.5, distance=59.375)
>>> rtd.distance

59.375

Note that we can't set attribute values inside some methods of this
class using simple self.name = syntax.

Let's imagine we tried to write the following line of code inside the __setattr__ ()
method of this class definition:

self.distance = self.rate*self.time

[132]

Attribute Access, Properties, and Descriptors Chapter 4

If we were to write the preceding code snippet, we'd have infinite recursion in

the __setattr__ () method. In the self.distance=x line, this is implemented as
self. setattr_ ('distance', x).Ifalinesuchas self.distance=x occurs
within the body of __setattr__ (), itmeans __setattr__ () will have to be used
while trying to implement attribute settings. The __setattr__ () superclass doesn't

do any additional work and is free from recursive entanglements with itself.

It's also important to note that once all three values are set, changing an attribute
won't simply recompute the other two attributes. The rules for computation are based
on an explicit assumption that one attribute is missing and the other two are
available.

To properly recompute values, we need to make two changes: 1) set the desired
attribute to None, and 2) provide a value to force a recomputation.

We can't simply set a new value for rate and compute a new value for t ime while
leaving distance unchanged. To tweak this model, we need to both clear one
variable and set a new value for another variable:

None
6.125

>>> rtd.time
>>> rtd.rate
>>> rtd

RTD_Dynamic (rate=6.125, time=9.5, distance=58.1875)

Here, we cleared t ime and changed rate to get a new solution for t ime using the
previously established value for distance.

The __ getattribute__ () method

An even lower-level attribute processing is the __getattribute__ () method. The
default implementation of this method attempts to locate the value as an existing
attribute in the internal __dict__ (or __slots__). If the attribute is not found, this
method calls __getattr__ () as a fallback. If the value located is a descriptor (refer
to the following Creating descriptors section), then it processes the descriptor.
Otherwise, the value is simply returned.

By overriding this method, we can perform any of the following kinds of tasks:

e We can effectively prevent access to attributes. This method, by raising an
exception instead of returning a value, can make an attribute more secret
than if we were to merely use the leading underscore (_) to mark a name as
private to the implementation.

[133]

Attribute Access, Properties, and Descriptors Chapter 4

e We can invent new attributes similarly to how __getattr__ () caninvent
new attributes. In this case, however, we can bypass the default lookup
done by the default version of __getattribute__ ().

e We can make attributes perform unique and different tasks. This might
make the program very difficult to understand or maintain, and it could
also be a terrible idea.

e We can change the way descriptors behave. While technically possible,
changing a descriptor's behavior sounds like a terrible idea.

When we implement the __getattribute__ () method, it's important to note that
there cannot be any internal attribute references in the method's body. If we attempt
to get the value for self.name, it will lead to infinite recursion of the
__getattribute__ () method.

The __getattribute__ () method cannot use any simple
self.name attribute access; it will lead to infinite recursions.

In order to get attribute values within the __getattribute__ () method, we must
explicitly refer to the base method defined in a superclass, or the base class object,
as shown in the following snippet:

object.__getattribute__ (self, name)

We can use this kind of processing to inject debugging, audit, or security controls into
a class definition. We might, for example, write a line to a log when an attribute is
accessed in a particularly important class. A sensible security test might limit access
to people with defined access controls.

The following example will show a trivial use of __getattribute__ () to prevent
access to the single leading _ instance variables and methods in a class. We'll do this
by raising an AttributeError exception for any of those kinds of names.

Here's the class definition:
class SuperSecret:
def __init_ (self, hidden: Any, exposed: Any) -> None:
self. _hidden = hidden

self.exposed = exposed

def _ _getattribute_ (self, item: str):
if (len(item) >= 2 and item[0Q] == "_"

[134]

Attribute Access, Properties, and Descriptors Chapter 4

and item[1] != "_"):
raise AttributeError (item)
return super().__getattribute__ (item)

We've overridden __getattribute__ () toraise an attribute error on private names

only. This will leave Python's internal __ names visible, but any name with a single _

prefix will be concealed. The _hidden attribute will be nearly invisible. The following
is an example of an object of this class being used:

>>> x = SuperSecret ('onething', 'another')

>>> x.exposed

'another'

>>> x._hidden # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):

File "/Users/slott/miniconda3/envs/py37/1lib/python3.7/doctest.py",
line 1329, in __run

compileflags, 1), test.globs)

File "<doctest _ main__.__ test__ .test_secret[3]>", line 1, in
<module>

x._hidden #

File "/Users/slott/Documents/Writing/Python/Mastering OO Python
2e/mastering-oo-python-2e/Chapter_4/ch04_ex4.py", line 132, in
__getattribute___

raise AttributeError (item)
AttributeError: _hidden

The object, x, will respond to requests for the exposed attribute, but will raise an
exception for any reference to an attribute that begins with _.

This does not fully conceal all of the _ names, however. The dir () function will show
the existence of the _hidden attribute. To correct this problem, the __dir__ ()
special method must be overridden to also conceal the names beginning with one _.

As general advice, it's rarely necessary to change the implementation
of __getattribute__ (). The default implementation gives us access to flexible
features via property definitions or as changes to __getattr__ ().

Creating descriptors

A descriptor is a class that mediates attribute access. The descriptor class can be used
to get, set, or delete attribute values. Descriptor objects are built inside a class at class
definition time. Descriptors are the essence of how Python implements methods,
attributes, and properties.

[135]

Attribute Access, Properties, and Descriptors Chapter 4

The descriptor design pattern has two parts: an owner class and the attribute
descriptor itself. The owner class uses one or more descriptors for its attributes. A
descriptor class defines some combination of the __get__, __set_ , and
__delete__ methods. An instance of the descriptor class will be an attribute of the
owner class.

A descriptor is an instance of a class that is separate from the owning class. Therefore,
descriptors let us create reusable, generic kinds of attributes. The owning class can
have multiple instances of each descriptor class to manage attributes with similar
behaviors.

Unlike other attributes, descriptors are created at the class level. They're not created
within the __init__ () initialization. While descriptor instances can have values set
during initialization, the descriptor instances are generally built as part of the class,
outside any method functions. Each descriptor object will be an instance of a
descriptor class. The descriptor instance must be bound to an attribute name in the
owner class.

To be recognized as a descriptor, a class must implement any combination of the
following three methods:

® Descriptor._ get_ (self, instance, owner):In this method, the
instance parameter is the self variable of the object being accessed. The
owner parameter is the owning class object. If this descriptor is invoked in
a class context, the instance parameter will get a None value. This must
return the value of the descriptor.

® Descriptor._ set_ (self, instance, value):In this method, the
instance parameter is the self variable of the object being accessed. The
value parameter is the new value that the descriptor needs to be set to.

® Descriptor._ delete_ (self, instance):In this method, the
instance parameter is the self variable of the object being accessed. This
method of the descriptor must delete this attribute's value.

Sometimes, a descriptor class will alsoneed an __init__ () method function to
initialize the descriptor's internal state. There are two design patterns for descriptors
based on the methods defined, as follows:

¢ A non-data descriptor: This kind of descriptor defines only
the __get__ () method. The idea of a non-data descriptor is to provide an
indirect reference to another object via methods or attributes of its own. A
non-data descriptor can also take some action when referenced.

[136]

Attribute Access, Properties, and Descriptors Chapter 4

¢ A data descriptor: This descriptor defines both __get__ () and __set__ ()
to create a mutable object. It may also define __delete__ (). A reference to
an attribute with a value of a data descriptor is delegated to the
__get_ (),__set__(),or _delete__ () methods of the descriptor
object.

There are a wide variety of use cases for descriptors. Internally, Python uses
descriptors for several reasons:

e The methods of a class are implemented as descriptors. These are non-data
descriptors that apply the method function to the object and the various
parameter values.

e The property () function is implemented by creating a data descriptor for
the named attribute.

¢ A class method, or static method, is implemented as a descriptor. In both
cases, the method will apply to the class instead of an instance of the class.

When we look at object-relational mapping in chapter 12, Storing and Retrieving
Objects via SQLite, we'll see that many of the ORM class definitions make use of
descriptors to map Python class definitions to SQL tables and columns.

As we think about the purposes of a descriptor, we must also examine the three
common use cases for the data that a descriptor works with, as follows:

¢ The descriptor object has, or acquires, the data value. In this case, the
descriptor object's self variable is relevant, and the descriptor object is
stateful. With a data descriptor, the __get__ () method can return this
internal data. With a non-data descriptor, the descriptor may include other
methods or attributes to acquire or process data. Any descriptor state
applies to the class as a whole.

¢ The owner instance contains the data. In this case, the descriptor object
must use the instance parameter to reference a value in the owning
object. With a data descriptor, the __get__ () method fetches the data from
the instance. With a non-data descriptor, the descriptor's other methods
access the instance data.

¢ The owner class contains the relevant data. In this case, the descriptor
object must use the owner parameter. This is commonly used when the
descriptor implements a static method or class method that applies to the
class as a whole.

[137]

Attribute Access, Properties, and Descriptors Chapter 4

We'll take a look at the first case in detail. This means creating a data descriptor with
__get__ () and __set__ () methods. We'll also look at creating a non-data
descriptor withouta __get__ () method.

The second case (the data in the owning instance) is essentially what the @property
decorator does. There's a small possible advantage to writing a descriptor class
instead of creating a conventional property—a descriptor can be used to refactor the
calculations into the descriptor class. While this may fragment class design, it can
help when the calculations are truly of epic complexity. This is essentially

the Strategy design pattern, a separate class that embodies a particular algorithm.

The third case shows how the @staticmethod and @classmethod decorators are
implemented. We don't need to reinvent those wheels.

Using a non-data descriptor

Internally, Python uses non-data descriptors as part of the implementation for class
methods and static methods. This is possible because a descriptor provides access to
the owning class, as well as the instance.

We'll look at an example of a descriptor that updates the instance and also works with
the filesystem to provide an additional side-effect to use of the descriptor.

For this example, we'll add a descriptor to a class that will create a working directory
that is unique to each instance of a class. This can be used to cache state, or debugging
history, or even audit information in a complex application.

Here's an example of an abstract class that might use a StateManager internally:

class PersistentState:
"""Abstract superclass to use a StateManager object"""
_saved: Path

The PersistentState class definition includes a reference to an attribute, _saved,
which has a type hint of Path. This formalizes the relationships among the objects in
a way that can be detected by mypy.

Here's an example of a descriptor that provides access to a file for saving the object
state:

class StateManager:
"""May create a directory. Sets _saved in the instance."""

[138]

Attribute Access, Properties, and Descriptors Chapter 4

def _ init__ (self, base: Path) -> None:
self.base = base

def __get__ (self, instance: PersistentState, owner: Type) -> Path:
if not hasattr (instance, "_saved"):
class_path = self.base / owner._ name_

class_path.mkdir (exist_ok=True, parents=True)
instance._saved = class_path / str(id(instance))
return instance._saved

When this descriptor is created in a class, a base Path is provided. When this instance
is referenced, it will ensure that a working directory exists. It will also save a working
Path object, setting the _saved instance attribute.

The following is a class that uses this descriptor for access to a working directory:

class PersistentClass (PersistentState) :
state_path = StateManager (Path.cwd() / "data" / "state")

def _ _init_ (self, a: int, b: float) -> None:
self.a = a
self.b = Db
self.c: Optional[float] = None

self.state_path.write_text (repr (vars(self)))

def calculate(self, c: float) -> float:
self.c = ¢
self.state_path.write_text (repr (vars(self)))
return self.a * self.b + self.c

def _ str_ (self) —-> str:
return self.state_path.read_text ()

At the class level, a single instance of this descriptor is created. It's assigned to the
state_path attribute. There are three places where a reference to

self.state_path are made. Because the object is a descriptor, the __get__ ()
method is invoked implicitly each time the variable is referenced. This means that any
of those references will serve to create the necessary directory and working file path.

This implicit use of the __get__ () method of the stateManager class will guarantee
consistent processing at each reference. The idea is to centralize the OS-level work
into a single method that is part of a reusable descriptor class.

[139]

Attribute Access, Properties, and Descriptors Chapter 4

As an aid to debugging, the __str__ () method dumps the content of the file into
which the state has been written. When we interact with this class, we see output like
the following example:

>>> x = PersistentClass (1, 2)
>>> str(x)

"{'a': 1, 'b': 2, 'c': None, '_saved': ...)}"
>>> x.calculate(3)

5

>>> str(x)

"{'a': 1, 'b': 2, 'e¢': 3, '_saved': ...)}"

We created an instance of the PersistentClass class, providing initial values for
two attributes, a, and b. The third attribute, c, is left with a default value of None. The
use of str () displays the content of the saved state file.

The reference to self.saved_state invoked the descriptor's __get__ () method,
ensuring that the directory exists and could be written.

This example demonstrates the essential feature of a non-data descriptor. The implied
use of the __get__ () method can be handy for performing a few, limited kinds of
automated processing where implementation details need to be hidden. In the case of
static methods and class methods, this is very helpful.

Using a data descriptor

A data descriptor is used to build property-like processing using external class
definitions. The descriptor methods of __get__ (), __set__ (), and __delete__ ()
correspond to the way @property can be used to build getter, setter, and
deleter methods. The important distinction of the descriptor is a separate and
reusable class definition, allowing reuse of property definitions.

We'll design an overly simplistic unit conversion schema using descriptors that can
perform appropriate conversions in their __get__ () and __set__ () methods.

The following is a superclass of a descriptor of units that will do conversions to and
from a standard unit:

class Conversion:
"""Depends on a standard value."""
conversion: float
standard: str

def __get_ (self, instance: Any, owner: type) —-> float:

[140]

Attribute Access, Properties, and Descriptors Chapter 4

return getattr (instance, self.standard) * self.conversion

def set___(self, instance: Any, value: float) -> None:

setattr (instance, self.standard, value / self.conversion)

class Standard(Conversion) :
"""Defines a standard value."""
conversion = 1.0

The Conversion class does simple multiplications and divisions to convert standard
units to other non-standard units, and vice versa. This doesn't work for temperature
conversions, and a subclass is required to handle that case.

The Standard class is an extension to the Conversion class that sets a standard
value for a given measurement without any conversion factor being applied. This
exists mostly to provide a very visible name to the standard for any particular kind of
measurement.

With these two superclasses, we can define some conversions from a standard unit.
We'll look at the measurement of speed. Some concrete descriptor class definitions are
as follows:

class Speed(Conversion) :
standard = "standard_speed" # KPH

class KPH(Standard, Speed):
pass

class Knots (Speed) :
conversion = 0.5399568

class MPH (Speed) :
conversion = 0.62137119

The abstract speed class provides the standard source data for the various conversion
subclasses, KPH, Knots, and MPH. Any attributes based on subclasses of the Speed
class will consume standard values.

The KPH class is defined as a subclass of both Standard class and the Speed class.
From Standard, it gets a conversion factor of 1.0. From speed, it gets the attribute
name to be used to keep the standard value for speed measurements.

[141]

Attribute Access, Properties, and Descriptors Chapter 4

The other classes are subclasses of Speed, which performs conversions from a
standard value to the desired value.

The following Trip class uses these conversions for a given measurement:

class Trip:

kph = KPH()
knots = Knots ()
mph = MPH ()
def _ _init_ (
self,
distance: float,
kph: Optional[float] = None,
mph: Optional[float] = None,
knots: Optional[float] = None,
) —> None:
self.distance = distance # Nautical Miles
if kph:
self.kph = kph
elif mph:
self.mph = mph
elif knots:
self.knots = knots
else:
raise TypeError ("Impossible arguments")
self.time = self.distance / self.knots

def _ str_ (self) —-> str:
return (
f"distance: {self.distance} nm, "
f"rate: {self.kph} "
f"kph = {self.mph} "
f"mph {self.knots} knots, "
f"time = {self.time} hrs"

)

Each of the class-level attributes, kph, knots, and mph, are descriptors for a different
unit. When these attributes are referenced, the _ _get_ () and __set__ () methods
of the various descriptors will perform appropriate conversions to and from the
standard values.

[142]

Attribute Access, Properties, and Descriptors Chapter 4

The following is an example of an interaction with the Trip class:

>>> m2 = Trip(distance=13.2, knots=5.9)

>>> print (m2)

distance: 13.2 nm, rate: 10.92680006993152 kph = 6.789598762345432 mph
= 5.9 knots, time = 2.23728813559322 hrs

>>> print (£f"Speed: {m2.mph:.3f} mph")

Speed: 6.790 mph

>>> m2.standard_speed

10.92680006993152

We created an object of the Trip class by setting an attribute, distance, setting one
of the available descriptors, and then computing a derived value, t ime. In this
example, we set the knot s descriptor. This is a subclass of the Speed class, which is a
subclass of the Conversion class, and therefore, the value will be converted to a
standard value.

When we displayed the value as a large string, each of the descriptors' __get__ ()
methods were used. These methods fetched the internal kph attribute value from the
owning object, applied a conversion factor, and returned the resulting values.

The process of creating the descriptors allows for reuse of the essential unit
definitions. The calculations can be stated exactly once, and they are separate from
any particular application class definition. Compare this with a @property method
that is tightly bound to the class including it. The various conversion factors,
similarly, are stated once, and can be widely reused by a number of related
applications.

The core description, conversion, embodies a relatively simple computation. When
the computation is more complex, it can lead to a sweeping simplification of the
overall application. Descriptors are very popular when working with databases and
data serialization problems because the descriptor's code can involve complex
conversions to different representations.

Using type hints for attributes and
properties

When using mypy, we'll need to provide type hints for the attributes of a class. This is
generally handled through the __init__ () method. Most of the time, the parameter
type hints are all that's required.

[143]

Attribute Access, Properties, and Descriptors Chapter 4

In previous examples, we defined classes like this:

class RTD_Solver:

def _ _init_ (
self, *,
rate: Optional[float] = None,
time: Optional[float] = None,
distance: Optional[float] = None
) —> None:
if rate:
self.rate = rate
if time:
self.time = time
if distance:
self.distance = distance

The type hints on the parameters are used to discern the types for the instance
variables, self.rate, self.time, and self.distance.

When we assign default values in the __init__ () method, we have two common
design patterns.

e When we can compute a value eagerly, the type can be discerned by mypy
from the assignment statement.

e When a default None value is provided, the type will have to be stated
explicitly.

We may see assignment statements such as the following:

self.computed_value: Optional[float] = None

This assignment statement tells mypy that the variable will either be an instance
of float or the None object. This style of initialization makes the class attribute types
explicit.

For property definitions, the type hint is part of the property method definition. We'll
often see code like the following:

@property
def some_computed_value(self) —-> float:

This definition provides a clear statement for the type of
object.some_computed_value. This is used by mypy to be sure the types all match
among the references to this property name.

[144]

Attribute Access, Properties, and Descriptors Chapter 4

Using the dataclasses module

Starting with Python 3.7 the dataclasses module is available. This module offers a
superclass we can use to create classes with clearly-stated attribute definitions. The
core use case for a dataclass is a simple definition of the attributes of a class.

The attributes are used to automatically create common attribute access methods,
including __init_ (), _repr_ (),and __eq__ ().Here's an example:

from dataclasses import dataclass
from typing import Optional, cast

@dataclass

class RTD:
rate: Optional[float]
time: Optional[float]
distance: Optional[float]

def compute(self) -> "RTD":

if |
self.distance is None and self.rate is not None
and self.time is not None

) :
self.distance = self.rate * self.time

elif (
self.rate is None and self.distance is not None
and self.time is not None

) :
self.rate = self.distance / self.time

elif (

self.time is None and self.distance is not None
and self.rate is not None

)t
self.time = self.distance / self.rate
return self

Each instance of this class will have three attributes, rate, time, and distance. The
decorator will create an __init__ () method to set these attributes. It will also create
a__repr__ () method to display the details of the attribute value. An_eq__ ()
method is written to perform a simple equality check on all of the attribute values.

Careful checking for None and non-None values is helpful for mypy. This explicit
checking provides an assurance that the Optional [float] types will have non-None
values.

[145]

Attribute Access, Properties, and Descriptors Chapter 4

Note that the three names are written as part of the class definition. They're used to
buildan __init__ () method that's part of the resulting class. These will become
instance variables in the resulting objects.

The compute () method changes the internal state of the object. We've provided a
type hint that describes the return value as an instance of the class. Here's how we can
use an instance of this class:

>>> r = RTD(distance=13.5, rate=6.1, time=None)
>>> r.compute ()
RTD (rate=6.1, time=2.2131147540983607, distance=13.5)

In this code snippet, we created an instance, providing non-None values for
distance and rate. The compute () method computed a value for the time
attribute.

The default @dataclass decorator will not have comparison methods. It will create a
mutable class where attribute values can be changed.

We can request some additional, optional features. We can provide optional
parameters to the decorator to control optional features. We can create a class for
immutable objects with comparison operators with code such as the following:

@dataclass (frozen=True, order=True)
class Card:

rank: int

suit: str

@property
def points(self) -> int:
return self.rank

The frozen parameter in this example leads the decorator to make the class into an
immutable, frozen object. The order parameter to the @dataclass decorator creates
the methods for comparison in the class definition. This is very helpful for creating
simple, immutable objects. Because the two attributes include type hints, mypy can
confirm that the card dataclass is used properly.

Inheritance works with dataclasses. We can declare classes as in the following
example:

class Ace (Card) :

@property
def points(self) -> int:
return 1

[146]

Attribute Access, Properties, and Descriptors Chapter 4

class Face(Card) :

@property
def points(self) -> int:
return 10

These two classes inheritthe __init_ (), _repr_ (), _eq (), __hash__ (),
and comparison methods from the Card superclass. These two classes differ in the
implementation of the points () method.

The @dataclass decorator simplifies the class definition. The methods that tend to
have a direct relationship with the attributes are generated by the decorator.

Attribute Design Patterns

Programmers coming from other languages (particularly Java and C++) can try to
make all attributes private and write extensive getter and setter functions. This
kind of design pattern can be necessary for languages where type definitions are
statically compiled into the runtime. It is not necessary in Python. Python depends on
a different set of common patterns.

In Python, it's common to treat all attributes as public. This means the following;:

e All attributes should be well documented.

e Attributes should properly reflect the state of the object; they shouldn't be
temporary or transient values.

e In the rare case of an attribute that has a potentially confusing (or brittle)
value, a single leading underscore character (_) marks the name as not part
of the defined interface. It's not technically private, but it can't be relied on in
the next release of the framework or package.

It's important to think of private attributes as a nuisance. Encapsulation isn't broken
by the lack of complex privacy mechanisms in the language; proper encapsulation can
only be broken by bad design.

Additionally, we have to choose between an attribute or a property which has the
same syntax as an attribute, but can have more complex semantics.

[147]

Attribute Access, Properties, and Descriptors Chapter 4

Properties versus attributes

In most cases, attributes can be set outside a class with no adverse consequences. Our
example of the Hand class shows this. For many versions of the class, we can simply
append to hand. cards, and the lazy computation of total via a property will work
perfectly.

In cases where the changing of an attribute should lead to consequential changes in
other attributes, a more sophisticated class design is required:

¢ A method may clarify the state change. This will be necessary when
multiple parameter values are required and the changes must be
synchronized.

e A setter property may be clearer than a method function. This will be a
sensible option when a single value is required.

e We can also use Python's in-place operators, such as +=. We'll defer this
until chapter 8, Creating Numbers.

There's no strict rule. The distinction between a method function and a property is
entirely one of syntax and how well the syntax communicates the intent. For
computed values, a property allows lazy computation, while an attribute requires
eager computation. This devolves to a performance question. The benefits of lazy
versus eager computation are based on the expected use cases.

Finally, for some very complex cases, we might want to use the underlying Python
descriptors.

Designing with descriptors

Many uses of descriptors are already part of Python. We don't need to reinvent
properties, class methods, or static methods.

The most compelling cases for creating new descriptors relate to mapping between
Python objects and other software outside Python. Object-relational database
mapping, for example, requires a great deal of care to ensure that a Python class has
the right attributes in the right order to match a SQL table and columns. Also, when
mapping to something outside Python, a descriptor class can handle the encoding
and decoding of data, or fetching the data from external sources.

[148]

Attribute Access, Properties, and Descriptors Chapter 4

When building a web service client, we might consider using descriptors to make web
service requests. The __get__ () method, for example, might turn into an HTTP GET
request, and the __set__ () method might turn into an HTTP PUT request. In some
cases, a single request may populate the data of several descriptors. In this case, the
__get__ () method would check the instance cache and return that value before
making an HTTP request.

Many data descriptor operations are more simply handled by properties. This
provides us with a place to start to write properties first. If the property processing
becomes too expansive or complex, then we can switch to descriptors to refactor the
class.

Summary

In this chapter, we looked at several ways to work with an object's attributes. We can
use the built-in features of the object class to get and set attribute values simply and
effectively. We can use @property to create attribute-like methods.

If we want more sophistication, we can tweak the underlying special method
implementations for __getattr_ (), __setattr_ (), __delattr__ (),or
__getattribute__ (). These allow us very fine-grained control over attribute
behaviors. We walk a fine line when we touch these methods because we can make
fundamental (and confusing) changes to Python's behavior.

Internally, Python uses descriptors to implement features such as class methods,
static methods, and properties. Many of the really good use cases for descriptors are
already first-class features of the language.

The use of type hints helps confirm that objects are used properly. They're strongly
encouraged as a supplement to unit tests for assuring that parameters and values
align.

The new dataclasses module can help simplify class definition. In many cases, a
class created with the @dataclass decorator can be the essence of well-designed
software.

In the next chapter, we'll look closely at the ABCs (Abstract Base Classes) that we'll
exploit in chapter 6, Using Callables and Contexts, chapter 7, Creating Containers and
Collections, and chapter 8, Creating Numbers. These ABCs will help us to define
classes that integrate nicely with existing Python features. They will also allow us to
create class hierarchies that enforce consistent design and extension.

[149]

The ABCs of Consistent
Design

The Python standard library provides abstract base classes for a number of container
features. It provides a consistent framework for the built-in container classes, such as
list, dict, and set. Additionally, the standard library provides abstract base classes
for numbers. We can use these classes to extend the suite of numeric classes available
in Python.

In this chapter, we'll look in general at the abstract base classes in the
collections.abc module. From there, we can focus on a few use cases that will be
the subject of detailed examination in future chapters.

There are three common design strategies for reusing existing classes: wrap, extend,
and invent. We'll look at the general concepts behind the various containers and
collections that we might want to wrap or extend. Similarly, we'll look at the concepts
behind the numbers that we might want to implement.

Our goal is to ensure that our application classes integrate seamlessly with existing
Python features. If we create a collection, for example, it's appropriate to have that
collection create an iterator by implementing __iter__ (). A collection that
implements __iter_ () will work seamlessly with a for statement.

Technical requirements

The code files for this chapter can be found at https://git.io/£j20z.

https://git.io/fj2Uz
https://git.io/fj2Uz
https://git.io/fj2Uz
https://git.io/fj2Uz
https://git.io/fj2Uz
https://git.io/fj2Uz
https://git.io/fj2Uz
https://git.io/fj2Uz
https://git.io/fj2Uz

The ABCs of Consistent Design Chapter 5

Abstract base classes

The core of the abstract base class (ABC) definition is defined in a module named
abc. This contains the required decorators and metaclasses to create abstractions.
Other classes rely on these definitions. The collections.abc module uses the abc
module to create abstractions focused on collections. We'll also look at the numbers
module, because it contains ABCs for numeric types. There are ABCs for I/O in the io
module, too.

An abstract base class has the following features:

o Abstract means that these classes don't contain all the method definitions
required to work completely. For it to be a useful subclass, we will need to
provide some method definitions.

¢ Base means that other classes will use it as a superclass.

¢ An abstract class provides some definitions for methods. Most importantly,
the abstract base classes often provide the signatures for the missing
methods. A subclass must provide the right methods to create a concrete
class that fits the interface defined by the abstract class.

Bear in mind the following when using abstract base classes:

e When we use them to define our classes, they will be consistent with
Python's internal classes.

¢ We can use them to create some common, reusable abstractions that our
application extends.

e We can use them to support the proper inspection of a class to determine
what it does. This allows better collaboration among library classes and
new classes in our applications. It helps to start from the formal definitions
of classes that will have similar behavior to other containers or numbers.

If we don't use abstract base classes, we can easily create a class that fails to provide
all the features of the abstract base sequence class. This will lead to a class being
almost a sequence—we sometimes call it sequence-like. This can lead to odd
inconsistencies and kludgy workarounds for a class that doesn't quite provide all the
features of a Sequence class.

With an abstract base class, an application's class is guaranteed to have the advertised
features of the abstract base class. If it lacks a feature, the presence of an undefined
abstract method will make the class unusable for building object instances.

[151]

The ABCs of Consistent Design Chapter 5

We will use ABCs in several situations, as follows:

e We will use ABCs as superclasses when defining our own classes.
¢ We will use ABCs within a method to confirm that an operation is possible.

¢ We will use ABCs within a diagnostic message or exception to indicate
why an operation can't work.

For the first use case, we can write modules with code that looks like the following:

import collections.abc
class SomeApplicationClass(collections.abc.Sequence) :
pass

Our SomeApplicationClass is defined as a Sequence class. It must then
implement the specific methods required by sequence, or we will not be able to
create an instance.

For the second use case, we can write methods with code as follows:

def some_method(self, other: Iterator):
assert isinstance (other, collections.abc.Iterator)

Our some_method () requires the other argument to be a subclass of Iterator. If
the other argument can't pass this test, we get an exception.

Instead of the assert statement, a common alternative is an i f statement that raises
TypeError, which may be more meaningful than AssertError. We'll see this in the
following section.

For the third use case, we might have something like the following:

try:

some_obj.some_method (another)
except AttributeError:

warnings.warn (f"{another!r} not an Iterator, found
{another.__class__._ _bases__!ri")

raise

In this case, we wrote a diagnostic warning that shows the base classes for a given
object. This may help debug problems with application design.

[152]

The ABCs of Consistent Design Chapter 5

Base classes and polymorphism

In this section, we'll flirt with the idea of pretty poor polymorphism. Inspection of
argument value types is a Python programming practice that should be isolated to a
few special cases. Later, when we look at numbers and numeric coercion, we'll learn
about cases where the inspection of types is recommended.

Well-done polymorphism follows what is sometimes called the Liskov substitution
principle. Polymorphic classes can be used interchangeably. Each polymorphic class
has the same suite of properties. For more information, visit
http://en.wikipedia.org/wiki/Liskov_substitution_principle.

Overusing isinstance () to distinguish between the types of arguments can lead to
a needlessly complex (and slow) program. Unit testing is a far better way to find
programming errors than verbose type inspection in the code.

Method functions with lots of isinstance () methods can be a symptom of a poor
(or incomplete) design of polymorphic classes. Rather than having type-specific
processing outside of a class definition, it's often better to extend or wrap classes

to make them more properly polymorphic and encapsulate the type-specific
processing within the class definition.

One potential use of the isinstance () method is to raise diagnostic errors. A simple
approach is to use the assert statement, as follows:

assert isinstance (some_argument, collections.abc.Container),
f"{some_argument!r} not a Container"

This will raise an AssertionError exception to indicate that there's a problem. This
has the advantage that it is short and to the point. This example has two
disadvantages: assertions can be silenced, and it would probably be better to raise a
TypeError for this. The preceding use of the assert statement is not very helpful,
and should be avoided.

The following example is slightly better:

if not isinstance (some_argument, collections.abc.Container):
raise TypeError (f"{some_argument!r} not a Container")

The preceding code has the advantage that it raises the correct error. However, it has
the disadvantages of being long-winded and it creates a needless constraint on the
domain of objects. Objects that are not proper subclasses of the abstract Container
class may still offer the required methods, and should not be excluded.

[153]

http://en.wikipedia.org/wiki/Liskov_substitution_principle

The ABCs of Consistent Design Chapter 5

The Pythonic approach is summarized as follows:
"It’s better to ask for forgiveness than to ask for permission.”

This is generally taken to mean that we should minimize the upfront testing of
arguments (asking permission) to see if they're the correct type. Argument-type
inspections are rarely of any tangible benefit. Instead, we should handle the
exceptions appropriately (asking forgiveness).

Checking types in advance is often called look before you leap (LBYL) programming.
It's an overhead of relatively little value. The alternative is called easier to ask for
forgiveness than permission (EAFP) programming, and relies on t ry statements to
recover from problems.

What's best is to combine diagnostic information with the exception in the unlikely
event that an inappropriate type is used and somehow passed through unit testing
into operation.

The following is generally the best approach:

try:
found = value in some_argument
except TypeError:
if not isinstance (some_argument, collections.abc.Container):
warnings.warn (f"{some_argument!r} not a Container")
raise

The assignment statement to create the found variable assumes that some_argument
is a proper instance of a collections.abc.Container class and will respond to the
in operator.

In the unlikely event that someone changes the application and some_argument is of
a class that can't use the in operator, the application will write a diagnostic warning
message and crash with a TypeError exception.

Many classes work with the in operator. Trying to wrap this in LBYL i f statements
may exclude a perfectly workable class. Using the EAFP style allows any class to be
used that implements the in operator.

[154]

The ABCs of Consistent Design Chapter 5

Callable

Python's definition of a callable object includes the obvious function definitions
created with the de f statement.

The callable type hint is used to describe the _ call__ () method, a common
protocol in Python. We can see several examples of this in Python 3 Object-Oriented
Programming, by Dusty Phillips, from Packt Publishing.

When we look at any Python function, we see the following behavior:

>>> def hello(text: str):
print (f"hello {text}")

>>> type (hello)

<class 'function'>

>>> from collections.abc import Callable
>>> isinstance (hello, Callable)

True

When we create a function, it will fit the abstract base class Callable. Every function
reports itself as Callable. This simplifies the inspection of an argument value and
helps write meaningful debugging messages.

We'll take a look at callables in more detail in chapter 6, Using Callables and Contexts.

Containers and collections

The collections module defines a number of collections above and beyond the
built-in container classes. The container classes include namedtuple (), deque,
ChainMap, Counter, OrderedDict, and defaultdict. All of these are examples of
classes based on ABC definitions.

The following is a quick interaction to show how we can inspect collections to see the
methods that they support:

>>> jisinstance({}, collections.abc.Mapping)

True

>>> jisinstance(collections.defaultdict (int), collections.abc.Mapping)
True

We can inspect the simple dict class to see that it follows the Mapping protocol and
will support the required methods.

[155]

The ABCs of Consistent Design Chapter 5

We can inspect a defaultdict collection to confirm that it is also part of the
Mapping class hierarchy.

When creating a new kind of container, we have the following two general
approaches:

e Use the collections.abc classes to formally inherit behaviors that match
existing classes. This will also support mypy type hint checking and will
also provide some useful default behaviors.

¢ Rely on type hinting to confirm that the methods match the protocol
definitions in the typing module. This will only support mypy type hint
checking.

It's clearer (and more reliable) to use a proper ABC as the base class for one of our
application classes. The additional formality has the following two advantages:

e [t advertises what our intention was to people reading (and possibly using
or maintaining) our code. When we make a subclass of
collections.abc.Mapping, we're making a very strong claim about how
that class will behave.

e It creates some diagnostic support. If we somehow fail to implement all of
the required methods properly, an exception will be raised when trying to
create instances of the abstract base class. If we can't run the unit tests
because we can't create instances of an object, then this indicates a serious
problem that needs to be fixed.

The entire family tree of built-in containers is reflected in the abstract base classes.
Lower-level features include Container, Iterable, and Sized. These are a part of
higher-level constructs; they require a few specific methods, particularly
__contains__(),__iter_ (),and __len__ (), respectively.

Higher-level features include the following characteristics:

e Sequence and MutableSequence: These are the abstractions of the 1ist
and tuple concrete classes. Concrete sequence implementations also
include bytes and str.

e MutableMapping: This is the abstraction of dict. It extends Mapping, but
there's no built-in concrete implementation of this.

e Set and MutableSet: These are the abstractions of the frozenset and
set concrete classes.

[156]

The ABCs of Consistent Design Chapter 5

This allows us to build new classes or extend existing classes and maintain a clear and
formal integration with the rest of Python's built-in features.

We'll look at containers and collections in detail in Chapter 7, Creating Containers and
Collections.

Numbers

When creating new numbers (or extending existing numbers), we turn to the
numbers module. This module contains the abstract definitions of Python's built-in
numeric types. These types form a tall, narrow hierarchy, from the simplest to the
most elaborate. In this context, simplicity (and elaborateness) refers to the collection
of methods available.

There's an abstract base class named numbers . Number that defines all of the numeric
and number-like classes. We can see that this is true by looking at interactions like the
following one:

>>> import numbers

>>> isinstance (42, numbers.Number)

True

>>> 355/113

3.1415929203539825

>>> isinstance (355/113, numbers.Number)
True

Clearly, integer and float values are subclasses of the abstract numbers.Number
class. The subclasses of Number include numbers.Complex, numbers.Real,
numbers.Rational, and numbers.Integral. These definitions are roughly parallel
to the mathematical concepts used to define the various classes of numbers.

The decimal.Decimal class, however, doesn't fit this hierarchy very well. We can
check the relationships using the issubclass () method as follows:

>>> issubclass (decimal.Decimal, numbers.Number)
True

>>> issubclass (decimal.Decimal, numbers.Integral)
False

>>> issubclass (decimal.Decimal, numbers.Real)
False

>>> issubclass (decimal.Decimal, numbers.Complex)
False

>>> issubclass (decimal.Decimal, numbers.Rational)
False

[157]

The ABCs of Consistent Design Chapter 5

While the decimal .Decimal class seems closely aligned with numbers.Real, itis
not formally a subclass of this type.

For a concrete implementation of numbers.Rational, look at the fractions
module. We'll look at the various kinds of numbers in detail in chapter 8, Creating
Numbers.

Some additional abstractions

We'll look at some other interesting ABC classes that are less widely extended. It's not
that these abstractions are less widely used: it's more that the concrete
implementations rarely need extensions or revisions.

We'll look at the iterator, which is defined by collections.abc.Iterator. We'll
also look at the unrelated concept of a context manager. This isn't defined with the
same formality as other ABC classes. We'll look at this in detail in chapter 6, Using
Callables and Contexts.

In many cases, we'll create iterators using generator functions and the yield
statement. We'll use an explicit type hint of typing. Iterator for these functions.

The iterator abstraction

Iterator objects are created implicitly when we use an iterable container with a for
statement. We rarely expect to see the iterator object itself. For the most part, it will be
a concealed portion of the implementation of the for statement. The few times we do
care about the iterator object, we rarely want to extend or revise the class definition.

We can expose the implicit iterators that Python uses through the iter () function.
We can interact with an iterator in the following way:

>>> x = [1, 2, 3]
>>> iter (x)
<list_iterator object at 0x1006e3c50>

>>> x_iter = iter(x)
>>> next (x_iter)

1

>>> next (x_iter)

2

>>> next (x_iter)

3

[158]

The ABCs of Consistent Design Chapter 5

>>> next (x_iter)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
StopIteration
>>> isinstance(x_iter, collections.abc.Iterator)
True

In the preceding code, we created an iterator over a list object, assigning it to the
x_iter variable. The next () function will step through the values in that iterator.
This shows how iterator objects are stateful, and the next () function both returns a
value and updates the internal state.

The final isinstance () expression confirmed that this iterator object is an instance
of collections.abc.Iterator.

Most of the time, we'll work with iterators that have been created by the collection
classes themselves; however, when we branch out and build our own collection
classes or extend a collection class, we may also need to build a unique iterator. We'll
look at iterators in chapter 7, Creating Containers and Collections.

Contexts and context managers

A context manager is used with the with statement. We work with a context manager
when we write something like the following:

with function(arg) as context:
process (context)

In the preceding code, function (arg) creates the context manager. Once the
manager is available, the object can be used as needed. In the example, it's an
argument to a function. A context manager class may have methods to perform
actions within the scope of the context.

One very commonly used context manager is a file. Any time a file is opened, a
context should be used to guarantee that the file will also be properly closed.
Consequently, we should almost always use a file in the following way:

with open("some file") as the_file:
process (the_file)

At the end of the with statement, we're assured that the file will be closed properly.
This will release any operating system resources, avoiding resource leaks or
incomplete processing when exceptions are raised.

[159]

The ABCs of Consistent Design Chapter 5

The contextlib module provides several tools for building proper context
managers. Rather than providing an abstract base class, this library offers decorators,
which will transform simple functions into context managers, as well as a
contextlib.ContextDecorator base class, which can be extended to build a class
that is a context manager.

We'll look at context managers in detail in chapter 6, Using Callables and Contexts.

The abc and typing modules

The core method of creating ABCs is defined in the abc module. This module
includes the ABCMeta class, which provides several features.

First, the ABCMeta class ensures that abstract classes can't be instantiated. When a
method uses the @asbt ractmethod decorator, then a subclass that fails to provide
this definition cannot be instantiated. A subclass that provides all of the required
definitions for the abstract methods can be instantiated properly.

Second, it provides definitions for __instancecheck__ () and
__subclasscheck__ (). These special methods implement the isinstance () and
issubclass () built-in functions. They provide the checks to confirm that an object
(or a class) belongs to the proper ABC. This includes a cache of subclasses to speed up
the testing.

The abc module also includes a number of decorators for creating abstract method
functions that must be provided by a concrete implementation of the abstract base
class. The most important of these is the @abst ractmethod decorator.

If we wanted to create a new abstract base class, we would use something like the
following;:

from abc import ABCMeta, abstractmethod

class AbstractBettingStrategy (metaclass=ABCMeta) :
@abstractmethod
def bet (self, hand: Hand) -> int:
return 1

@abstractmethod
def record_win(self, hand: Hand) -> None:

pass

@abstractmethod

[160]

The ABCs of Consistent Design Chapter 5

def record_loss(self, hand: Hand) -> None:
pass

This class includes ABCMeta as its metaclass, making it clear this will be an abstract
base class.

This abstraction uses the abst ractmethod decorator to define three abstract
methods. Any concrete subclass must define these in order to be a complete
implementation of the abstract base class. For more complex situations, an abstract
base class can define the __subclasshook__ () method to make more complex tests
for the required concrete method definitions.

An example of an abstract subclass of the AbstractBettingStrategy classis as
follows:

class Simple_Broken (AbstractBettingStrategy) :
def bet (self, hand):
return 1

The preceding code defines an abstract class. An instance can't be built because the
class doesn't provide the necessary implementations for all three abstract methods.

The following is what happens when we try to build an instance of this class:

>>> simple= Simple_Broken/()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class Simple_Broken with
abstract methods record_loss, record_win

The error message indicates that the concrete class is incomplete. The following is a
better concrete class that passes the completeness test:

class Simple (AbstractBettingStrategy) :
def bet (self, hand):
return 1
def record_win(self, hand):
pass
def record_loss(self, hand):
pass

We can build an instance of this class and use it as part of our simulation. The
abstraction forces us to clutter up the implementation with two unused methods. The
bet () method should be the only required abstract method. The other two methods
should have already been provided with the default implementation of a single

pass statement by the abstract base class.

[161]

The ABCs of Consistent Design Chapter 5

Using the __subclasshook__ () method

We can define abstract base classes with complex rules for overrides to create
concrete subclasses. This is done by implementing the __subclasshook__ () method
of the abstract base class, as shown in the following code:

class AbstractBettingStrategy2 (ABC) :

@abstractmethod
def bet (self, hand: Hand) -> int:
return 1

@abstractmethod
def record_win(self, hand: Hand) -> None:
pass

@abstractmethod
def record_loss(self, hand: Hand) -> None:
pass

@classmethod

def __subclasshook__ (cls, subclass: type) —> bool:
"""Validate the class definition is complete."""
if cls is AbstractBettingStrategy2:

has_bet = any(hasattr (B, "bet") for B in subclass.__mro__)

has_record_win = any (hasattr (B, "record_win") for B in
subclass.__mro__)

has_record_loss = any (hasattr (B, "record_loss") for B in
subclass.__mro__)

if has_bet and has_record_win and has_record_loss:
return True
return False

This class is an abstract base class, built by extension from the ABC superclass. As with
the previous example, a number of @abst ractmethod definitions are provided. Any
subclass of this class would be like the previous examples of the
AbstractBettingStrategy class.

When trying to build an instance of the subclass, the __subclasshook__ () method
is invoked to determine whether the object can be built. In this case, there are three
individual checks: has_bet, has_record_win, and has_record_loss. If all three
checks pass, then the function returns True to permit the object to be built; otherwise,
the function returns False to prevent it building an instance of an incomplete
concrete class.

[162]

The ABCs of Consistent Design Chapter 5

Using __subclasshook__ () permits nuanced decision making with regard to the
validity of a subclass of an abstract class. It can also lead to confusion because the
obvious rule—that is, implement all @abst ractmethod methods—isn't in use.

Abstract classes using type hints

We can also do some management of the implementation of concrete methods with
type hints and the typing module. A concrete class will be checked by mypy to be
sure it matches the abstract class type hints. This is not as stringent as the checks
made by the ABCMeta class, since they don't happen at runtime, but only when mypy
is used. We can do this by using raise NotImplementedError in the body of an
abstract class. This will create a runtime error if the application actually creates an
instance of an abstract class.

The concrete subclasses define the methods normally. The presence of type hints
means mypy can confirm that the subclass provides a proper definition that matches
the superclass type hints. This comparison between type hints is perhaps the most
important part of creating concrete subclasses. Consider the following two class
definitions:

from typing import Tuple, Iterator

class LikeAbstract:
def aMethod(self, arg: int) -> int:
raise NotImplementedError

class LikeConcrete (LikeAbstract) :
def aMethod(self, argl: str, arg2: Tuple[int, int]) ->
Iterator[Any]:
pass

The LikeConcrete class implementation of the aMethod () method is clearly
different from the LikeAbstract superclass. When we run mypy, we'll see an error
message like the following:

Chapter_5/ch05_ex1l.py:96: error: Signature of "aMethod" incompatible
with supertype "LikeAbstract"

This will confirm that the LikeConcrete subclass is not a valid implementation of
the aMethod () method. This technique for creating abstract class definitions via type
hinting is a feature of mypy, and can be used in conjunction with the ABCMeta class to
create a robust library that supports both mypy and runtime checks.

[163]

The ABCs of Consistent Design Chapter 5

Summary, design considerations, and
trade-offs

In this chapter, we looked at the essential ingredients of abstract base classes. We saw
a few features of each kind of abstraction.

We also learned that one rule for good class design is to inherit as much as possible.
We saw two broad patterns here. We also saw the common exceptions to this rule.

Some application classes don't have behaviors that overlap with internal features of
Python. From our Blackjack examples, a Card isn't much like a number, a container,
an iterator, or a context: it's just a playing card. In this case, we can generally invent a
new class because there aren't any built-in features to inherit from.

When we look at Hand, however, we can see that a hand is clearly a container. As we
noted when looking at hand classes in chapters 2, The __init__() Method, and Chapter
3, Integrating Seamlessly - Basic Special Methods, the following are three fundamental
design strategies:

e Wrapping an existing container
¢ Extending an existing container
e Inventing a wholly new kind of container

Most of the time, we'll be wrapping or extending an existing container. This fits with
our rule of inheriting as much as possible.

When we extend an existing class, our application class will fit into the class hierarchy
neatly. An extension to the built-in 1ist is already an instance of
collections.abc.MutableSequence.

When we wrap an existing class, however, we have to carefully consider which parts
of the original interface we want to support and which parts we don't want to
support. In our examples in the previous chapters, we only wanted to expose the
pop () method from the list object we were wrapping.

Because a wrapper class is not a complete mutable sequence implementation, there
are many things it can't do. On the other hand, an extension class participates in a
number of use cases that just might turn out to be useful. For example, a hand that
extends 1ist will turn out to be iterable.

[164]

The ABCs of Consistent Design Chapter 5

If we find that extending a class doesn't meet our requirements, we can resort to
building an entirely new collection. The ABC definitions provide a great deal of
guidance on what methods are required in order to create a collection that can
integrate seamlessly with the rest of the Python universe. We'll look at a detailed
example of inventing a collection in chapter 7, Creating Containers and Collections.

In most cases, type hints will help us create abstraction classes that constrain aspects
of the concrete implementations. The abstract base class definitions are checked when
the application executes, introducing overheads that may be undesirable. The mypy
checks are made — along with unit tests checks — before an application is used,
reducing overheads, and improving confidence in the resulting application.

Looking forward

In the coming chapters, we'll make extensive use of the abstract base classes discussed
in this chapter. In chapter 6, Using Callables and Contexts, we'll look at the relatively
simple features of callables and contexts. In chapter 7, Creating Containers and
Collections, we'll look at the available containers and collections. We'll also look at
how to build a unique, new kind of container in this chapter. Lastly, in chapter s,
Creating Numbers, we'll look at the various numeric types and how we can create our
own kind of number.

[165]

Using Callables and Contexts

The callable concept in Python includes a variety of different ways to create functions
and objects that behave like functions. We can create callable objects that

use memoization to maintain a cache of answers, therefore performing very quickly.
In some cases, memoization is essential for creating an algorithm that finishes within
a reasonable amount of time.

The concept of context allows us to create elegant, reliable resource management. The
with statement defines a context and creates a context manager to control the
resources used in that context. Python files are generally context managers; when
used in a with statement, they are properly closed.

We'll look at several ways to create context managers using the tools in the
contextlib module. Some other useful abstract base classes are in a separate
submodule called collections.abc.

We'll show a number of variant designs for callable objects. This will show us why a
stateful callable object is sometimes more useful than a simple function. We'll also
look at how to use some of the existing Python context managers before we dive in
and write our own context manager.

The following concepts will be discussed in this chapter:

¢ Designing callables

Improving performance

Using functools for memoization

Complexities and the callable interface
¢ Managing contexts and the with statement

Defining the _enter_ () and _exit_ () methods

Context manager as a factory

Using Callables and Contexts Chapter 6

Technical requirements

The code files for this chapter can be found at https://git.io/£j2Uq.

Designing callables

There are two easy and commonly-used ways to create callable objects in Python,
which are as follows:

¢ By using the def statement to create a function.

¢ By creating an instance of a class that implements the _call () _ method.
This can be done by using collections.abc.Callable as its base class.

Beyond these two, we can also assign a lambda form to a variable. A lambda is a
small, anonymous function that consists of exactly one expression. We'd rather not
emphasize saving lambdas in a variable, as this leads to the confusing situation where
we have a function-like callable that's not defined with a def statement.

The following is a simple callable object, pow1, created from a class:

from typing import Callable
IntExp = Callable[[int, int], int]
class Powerl:

def _ call_ (self, x: int, n: int) -> int:
p=1
for i in range(n):
p *= x
return p

powl: IntExp = Powerl ()
There are three parts to creating a callable object, as follows:

e The type hint defines the parameters and return values from the resulting
callable object. In this example, Callable[[int, int], int] definesa
function with two integer parameters and an integer result. To save
repeating it, a new type name, IntExp, is assigned.

e We defined the class witha __call__ () method. The type signature here
matches the IntExp type definition.

¢ We created an instance of the class, pow1 (). This object is callable and

behaves like a function. We've also provided a type hint so that mypy can
confirm that the callable object will have the proper signature.

[167]

https://git.io/fj2Ug

Using Callables and Contexts Chapter 6

The algorithm for computing z" seems to be inefficient. We'll address that later.

Clearly, the body of the __call_ () method is so simple that a full class definition
isn't really necessary. In order to show the various optimizations, we'll start with this
simple callable object rather than mutate a function into a callable object.

We can now use the pow1 () function just as we'd use any other function. Here's how
to use the pow1 () function in a Python command line:

>>> powl (2, 0)
1

>>> powl (2, 1)
2

>>> powl (2, 2)
4

>>> powl (2, 10)
1024

We've evaluated the callable object with various kinds of argument values.

It's not required to make a callable object a subclass of abc.Callable when working
with mypy; however, using the abstract base class can help with debugging.

Consider this flawed definition:

class Power2 (collections.abc.Callable) :
def _ call_(self, x, n):
p=1
for i in range(n):
p *= x
return p

The preceding class definition has an error and doesn't meet the definition of the
callable abstraction.

The following is what happens when we try to create an instance of this class:

>>> pow2: IntExp = Power2()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class Power2 with abstract
methods _ _call___

It may not be obvious exactly what went wrong, but we have a fighting chance to
debug this. If we hadn't subclassed collections.abc.Callable, we'd have a
somewhat more mysterious problem to debug.

[168]

Using Callables and Contexts Chapter 6

Here's a version of a broken callable that relies on type hints to detect the problem.
This is nearly identical to the correct Power class shown previously. The code that
contains a tragic flaw is as follows:

class Power3:

def _ _call_(self, x: int, n: int) -> int:
p=1
for i in range(n):
p *= x

return p

When we run mypy, we will see complaints about this code. The expected type of the
callable object doesn't match the defined IntExp type:

Chapter_6/ch06_exl.py:68: error: Incompatible types in assignment
(expression has type "Power3", variable has type "Callable[[int, int],
intl")

If we ignore the mypy error and try to use this class, we'll see runtime problems. The
following is what happens when we try to use Power3 as a class that doesn't meet the
expectations of callables and isn't a subclass of abc.Callable either:

>>> pow3: IntExp = Power3()
>>> pow3 (2, 5)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'Power3' object is not callable

This error provides less guidance as to why the Power3 class definition is flawed. The
mypy hint provides some assistance in locating the problem.

Improving performance

We'll look at two performance tweaks for the Power1 class shown previously.

First, we need to switch to a better algorithm. Then, we will require a better algorithm
combined with memoization, which involves a cache; therefore, the function becomes
stateful. This is where callable objects shine.

The first modification is to use a divide-and-conquer design strategy. The previous
version chopped the computation of z" into 0 steps; the loop carried out n
individual multiplication operations. If we can find a way to split the problem into
two equal portions, the problem decomposes into 0108 %) steps.

[169]

Using Callables and Contexts Chapter 6

For example, powl (2,1024), the Power! callable, performs 1,024 individual
multiplication operations. We can optimize this down to 10 multiplications, a
significant speedup.

Rather than simply multiplying by a fixed value, we'll use the fast
exponentiation algorithm. It uses three essential rules for computing, as follows:

e Ifn=1, then «° = 1, and the result is simply 1.

o If nis odd, nmod 2 =1, and the result is z" = z"* x z. This involves a recursive
computation of " *. This does one multiplication. However, n - lis an even
number, which can be optimized.

e If nis even, nmod 2 = 0, and the result is " = z7 x 27 . This involves a
recursive computation of 22 . This chops the number of multiplications in
half.

The following is these recursive callable object:

class Powerd:

def _ _call_ (self, x: int, n: int) -> int:
if n == 0:
return 1
elif n $ 2 == 1:
return self.__call_ (x, n - 1) * x
else: # n % 2 ==

t = self.__call__(x, n // 2)
return t * t

powd: IntExp = Power4()
We applied the three rules to the input value:

e If nis zero, we'll return 1.

. . —1
o If nis odd, we'll make a recursive call and return " x z,

22
e If nis even, we'll make a recursive call and return (z2) .
The execution time is dramatically faster. We can use the t imeit module to see the
difference in performance. See chapter 1, Preliminaries, Tools, and Techniques for
information on using t imeit. When we compare running powl (2, 1024) and
pow4 (2,1024) 10,000 times, we'll see something like 183 seconds for the previous

version versus 8 seconds for this version.

[170]

Using Callables and Contexts Chapter 6

The following is how we can gather performance data using timeit:
import timeit

iterative = timeit.timeit ("powl (2,1024)","""
class Powerl () :

def _ _call__ (self, x: int, n: int) -> int:
p=1
for i in range(n):
p *= x

return p

powl= Powerl ()
"wn o number=100_000)
print ("Iterative", iterative)

We imported the timeit module. The timeit.timeit () function will evaluate a
given statement in the defined context. In this case, our statement is

the powl (2,1024) expression. The context for this statement is the definition of the
powl () callable object; this includes the import, class definition, and creation of the
powl instance.

Note that we provided number=100_000 to speed things up. If we had used the
default value for the number of iterations, it could have taken almost two minutes.

Using memoization or caching

The idea behind memoization is to cache previous results to avoid recomputing them.
We'll use considerably more memory, but we can also dramatically speed up
performance by avoiding computation.

An ordinary function doesn't have a place to cache previous results. A function is not
expected to be stateful. A callable object, however, can be stateful. It can include a
cache of previous results.

The following is a memoized version of our Power callable object:

class Power5:

def _ _init_ (self):

self.memo = {}
def _ call_ (self, x: int, n: int) -> int:
if (x, n) not in self.memo:
if n == 0:

[171]

Using Callables and Contexts Chapter 6

self.memo([x, n] 1

elif n & 2 == 1:

self.memo[x, n] = self._ call_ (x, n-1) * x
elif n & 2 == 0:

t = self.__call_ (x, n // 2)

self.memo([x, n] =t * t
else:

raise Exception("Logic Error")
return self.memo[x, n]

pow5: IntExp = Powerb()

We revised our algorithm to work with a self.memo cache. This is initialized to an
empty mapping. Inthe __call__ () method, the cache is checked for previously
computed answers.

If the parameter values have been requested previously, the cached result is returned
and no computation is performed. This is the big speedup that we spoke of earlier.

Otherwise, the parameter values are not present in the cache. In this missing value

case,the value of " must be computed and saved. The three rules to compute the
fast exponent are used to get and put values in the cache. This assures us that future
calculations will be able to exploit the cached values.

The importance of memoization can't be stressed enough. The reduction in
computation can be dramatic. It is commonly done by replacing a slow, expensive
function with a callable object.

Memoization doesn't work well with float values. The lack of exact
match equality means some kind of approximately-equal test needs
to be made against the cached values. When working with float
values, either rounding needs to be used, or some more
sophisticated cache search will be required.

Using functools for memoization

The Python library includes a memoization decorator in the functools module. We
can use this module instead of creating our own callable object.

We can use this as follows:

from functools import lru_cache

[172]

Using Callables and Contexts Chapter 6

@lru_cache ()

def pow6(x: int, n: int) -> int:
if n == 0:
return 1
elif n $ 2 == 1:
return powb6 (x, n-1) * x
else: # n %$ 2 == 0:

t = pow6(x, n // 2)
return t * t

This code defines a function, pow6 (), which is decorated with a Least Recently Used
(LRU) cache. Previous requests are stored in a memoization cache. The idea behind
an LRU cache is that the most recently made requests are kept and the oldest requests
are quietly purged. We can use @1ru_cache (256), for example, to limit the cache to
256 entries, thereby optimizing memory use.

Using timeit, we can see that 10,000 iterations of pow5 () run in about 1 second,
while the iterations for pow6 () run in about 8 seconds.

What this also shows is that a trivial use of t imeit can misstate the performance of
the memoization algorithms. If each request is recomputing a previously cached
answer, only the first iteration — with an empty cache — performs the computation.

Aiming for simplicity using a callable interface

The idea behind a callable object is that we have a class interface focused on a single
method. This is also true for simple function definitions.

Some objects have multiple relevant methods. A Blackjack Hand, for example, has to
add cards and produce a total. A Blackjack Player has to place bets, accept hands,
and make play decisions (for example, hit, stand, split, insure, and double down).
These are more complex interfaces that are not suitable to be callables.

The betting strategy, however, is a candidate for being a callable. While it will be
implemented as several methods to set the state and get a bet, this seems excessive.
For this simple case, the strategy can be a callable interface with a few public
attributes.

The following is the straight betting strategy, which is always the same:

class BettingStrategy:
def _ _init_ (self) —-> None:
self.win = 0
self.loss = 0

[173]

Using Callables and Contexts Chapter 6

def _ call_ (self) -> int:
return 1
bet = BettingStrategy ()

The idea of this interface is that a P1ayer object will inform the betting strategy of
win amounts and loss amounts. The P1layer object might have methods such as the
following to inform the betting strategy about the outcome:

def win(self, amount) -> None:
self.bet.win += 1
self.stake += amount

def loss(self, amount) -> None:
self.bet.loss += 1
self.stake -= amount

These methods inform a betting strategy object (the self.bet object) whether the
hand was a win or a loss. When it's time to place a bet, the P1ayer object will perform
something like the following operation to get the current betting level:

def initial_bet (self) —-> int:
return self.bet ()

This is a pleasantly short method implementation. After all, the betting strategy
doesn't do much other than encapsulate a few, relatively simple rules.

The compactness of the callable interface can be helpful. We don't have many method
names, and we don't have a complex set of syntaxes for a class to represent something
as simple as bet amount.

Complexities and the callable interface

Let's see how well this interface design holds up as our processing becomes more
complex. The following is the double-up on each loss strategy (also known as
the Martingale betting system):

class BettingMartingale (BettingStrategy):

def _ _init_ (self) -> None:
self. win = 0
self. loss = 0
self.stage = 1

@property

def win(self) —-> int:
return self. win

[174]

Using Callables and Contexts Chapter 6

@win.setter

def win(self, value: int) -> None:
self._win = value
self.stage = 1

@property
def loss(self) -> int:
return self._loss

@loss.setter

def loss(self, value: int) -> None:
self. _loss = value
self.stage *= 2

def _ call_ (self) -> int:
return self.stage

Each loss doubles the betting by multiplying the stage by two. This goes on until we
win and recoup our losses, reach the table limit, or go broke and can no longer place
any bets. Casinos limit this by imposing table limits.

Whenever we win, the betting is reset to the base bet. The stage variable is reset to
have a value of 1.

The goal is to easily access an attribute value. The client of this class will be able to
use bet .win += 1. This can depend on the property setter methods to make
additional state changes based on the wins and losses. We only really care about the
setter properties, but we must define the getter properties in order to clearly
create the setter properties. In addition to counting wins and losses, the setter
methods also set the stage instance variable.

We can see this class in action in the following code snippet:

>>> bet= BettingMartingale()
>>> bet ()

1

>>> bet.win += 1

>>> bet ()

>>> bet.loss += 1
>>> bet ()
2

The interface to this object is still quite simple. We can either count the wins and reset
the bet to the base, or we can count the losses, and the bets will double.

[175]

Using Callables and Contexts Chapter 6

The use of properties made the class definition long and hideous. Since we're really
only interested in the setter properties and not the get ter properties, we can use
_ _setattr__ () to streamline the class definition somewhat, as shown in the
following code:

class BettingMartingale2 (BettingStrategy) :

def _ _init_ (self) -> None:
self.win = 0
self.loss = 0
self.stage = 1

def _ setattr_ (self, name: str, value: int) -> None:
if name == "win":
self.stage = 1
elif name == "loss":
self.stage *= 2
super () .__setattr__ (name, value)

def _ call_ (self) -> int:
return self.stage

Weused __setattr__ () to monitor the changes to the win and loss attributes. In
addition to setting the instance variables using super () .__setattr__ (), we also
updated the internal state for the betting amount.

This is a nicer looking class definition, and it retains the same, simple interface as the
original callable object with two attributes.

Managing contexts and the with
statement

Contexts and context managers are used in several places in Python. We'll look at a
few examples to establish the basic terminology.

Python defines context using the with statement. The following program is a small
example that parses a log file to create a useful CSV summary of that log. Since there
are two open files, this will use the nested with contexts. The example uses a complex
regular expression, format_1_pat. We'll define this shortly.

[176]

Using Callables and Contexts Chapter 6

We might see something similar to the following in an application program:

from pathlib import Path
import gzip
import csv

source_path Path.cwd () /"data"/"compressed_data.gz"
target_path = Path.cwd()/"data"/"subset.csv"

with target_path.open('w', newline='"') as target:
wtr= csv.writer (target)
with gzip.open (source_path) as source:
line_iter = (b.decode() for b in source)
row_iter = Counter (format_1_pat.match(line) for line in
line_iter)
non_empty_rows: Iterator[Match] = filter (None, row_iter)
wtr.writerows (m.groups () for m in non_empty_rows)

Two contexts with two context managers are part of this example:

e The outermost context starts with the with target_path.open('w',
newline='"') as target: statement. The path.open () method opens a
file that is also a context manager and assigns it to the target variable for
further use.

e The inner context starts with the with gzip.open(source_path, "r")
as source: statement. This gzip.open () function opens the given path
and also behaves as a context manager.

When the with statements end, the contexts exit and the files are properly closed; this
means that all of the buffers are flushed and the operating system resources are
released. Even if there's an exception in the body of the with context, the context
manager's exit will be processed correctly and the file will be closed.

Always use a with statement around a path.open() and related file-
system operations

Since files involve operating system (OS) resources, it's important to
be sure that the entanglements between our applications and the OS
are released as soon as they're no longer needed. The with
statement ensures that resources are used properly.

[177]

Using Callables and Contexts Chapter 6

Just to complete the example, the following is the regular expression used to parse the
Apache HTTP server log files in the Common Log Format:

import re
format 1 pat— re.compile (

"([\d\.]+)\s+" # digits and .'s: host
r"(\S+ \S+" # non-space: logname
r"(\S+ \s+" # non-space: user
r"\ [)\I\s+" # Everything in []: time
r'"(. ? "\s+' # Everything in "": request
r"(\d+)\s+" # digits: status
r" (\S+) \s+" # non-space: bytes
r'"(.*?)"\s+"' # Everything in "": referrer
r'"(.*?)"\s*' # Everything in "": user agent

)

The preceding expression located the various log format fields used in the previous
example.

Using the decimal context

Another context that is used frequently is the decimal context. This context defines a
number of properties of the decimal.Decimal calculation, including the
quantization rules used to round or truncate values.

We might see application programming that looks similar to the following code
snippet:

import decimal
PENNY = decimal.Decimal ("0.00")

price = decimal.Decimal ('15.99")
rate = decimal.Decimal ('0.0075")
print (f"Tax={ (price * rate) .quantize (PENNY) }, Fully={price * rate}")

with decimal.localcontext () as ctx:
ctx.rounding = decimal.ROUND_DOWN
tax = (price*rate).quantize (PENNY)
print (f"Tax={tax}")

The preceding example shows both a default context as well as a local context. The
default context is shown first, and it uses the default rounding rule.

[178]

Using Callables and Contexts Chapter 6

The localized context begins with the with decimal.localcontext () as ctx:
statement. Within this context, the decimal rounding has been defined to round down
for this particular calculation.

The with statement is used to assure that the original context is restored after the
localized change. Outside this context, the default rounding applies. Inside this
context, a modified rounding rule applies.

Other contexts

There are a few other common contexts. Almost all of them are associated with basic
input/output operations. Most modules that open a file create a context along with
the file-like object.

Contexts are also associated with locking and database transactions. We may acquire
and release an external lock, such as a semaphore, or we may want a database
transaction to properly commit when it's successful or roll back when it fails. These
are all the things that have defined contexts in Python.

The PEP 343 document provides a number of other examples of how the with
statement and context managers might be used. There are also other places where we
might like to use a context manager.

We may need to create classes that are simply context managers, or we may need to
create classes that can have multiple purposes, one of which is to be a context
manager. We'll look at a number of design strategies for contexts.

We'll return to this again in chapter 9, Decorators and Mixins — Cross-Cutting Aspects,
where we can cover a few more ways to create classes that have context manager
features.

Defining the __enter__ () and __exit_ ()
methods

The defining feature of a context manager is that it has two special

methods: __enter_ () and __exit__ (). These are used by the with statement to
enter and exit the context. We'll use a simple context so that we can see how they
work.

[179]

Using Callables and Contexts Chapter 6

We'll often use context managers to make global state changes. This might be a
change to the database transaction status or a change to the locking status of a
resource, something that we want to do and then undo when the transaction is
complete.

For this example, we'll make a global change to the random number generator. We'll
create a context in which the random number generator uses a fixed and known seed,
providing a fixed sequence of values.

The following is the context manager class definition:

import random
from typing import Optional, Type
from types import TracebackType

class KnownSequence:

def _ _init_ (self, seed: int = 0) -> None:
self.seed = 0

def __enter__ (self) —-> 'KnownSequence':
self.was = random.getstate ()
random.seed (self.seed, version=1)
return self

def _ _exit_ (
self,
exc_type: Optional [Type[BaseException]],
exc_value: Optional [BaseException],
traceback: Optional [TracebackType]
) —> Optional[bool]:
random.setstate (self.was)
return False

We defined the required __enter_ () and __exit__ () methods for the context
manager. The __enter__ () method will save the previous state of the random
module and then reset the seed to a given value. The __exit__ () method will

restore the original state of the random number generator.

Note that __enter__ () returns self. This is common for mixin context managers
that have been added into other class definitions. We'll look at the concept of a mixin
in Chapter 9, Decorators And Mixins — Cross-Cutting Aspects. Note that the

__enter__ () method cannot have a type hint that refers to the KnownSequence
class, because the class definition isn't complete. Instead, a string, 'KnownSequence’,
is used; mypy will resolve this to the class when the type hint checking is done.

[180]

Using Callables and Contexts Chapter 6

The __exit__ () method's parameters will have the value of None under normal
circumstances. Unless we have specific exception-handling needs, we generally
ignore the argument values. We'll look at exception handling in the following code.
Here's an example of using the context to print five bunches of random numbers:

print (tuple (random.randint (-1,36) for i in range(5)))
with KnownSequence () :

print (tuple (random.randint (-1,36) for i in range(5)))
print (tuple (random.randint (-1,36) for i in range(5)))
with KnownSequence () :

print (tuple (random.randint (-1,36) for i in range(5)))
print (tuple (random.randint (-1,36) for i in range(5)))

The two groups of random numbers created within the context managed by an
instance of KnownSequence, produce a fixed sequence of values. Outside the two
contexts, the random seed is restored, and we get random values.

The output will look like the following (in most cases):

(12, 0, 8, 21, 6)
(23, 25, 1, 15, 31)
(6, 36, 1, 34, 8)

(23, 25, 1, 15, 31)
(9, 7, 13, 22, 29)

Some of this output is machine-dependent. While the exact values may vary, the
second and fourth lines will match because the seed was fixed by the context. The
other lines will not necessarily match, because they rely on the random module's own
randomization features.

Handling exceptions

Exceptions that arise in a context manager's block will be passed to the __exit__ ()
method of the context manager. The standard bits of an exception — the class,
arguments, and the traceback stack — will all be provided as argument values.

The __exit__ () method can do one of the following two things with the exception
information:

e Silence the exception by returning some True value.

¢ Allow the exception to rise normally by returning any other False value.
Returning nothing is the same as returning None, which is a False value;
this allows the exception to propagate.

[181]

Using Callables and Contexts Chapter 6

An exception might also be used to alter what the context manager does on exit. We
might, for example, have to carry out special processing for certain types of OS errors
that might arise.

Context manager as a factory

We can create a context manager class, which is a factory for an application object.
This gives us a pleasant separation of design considerations without cluttering up an
application class with context management features.

Let's say we want a deterministic Deck for dealing in Blackjack. This isn't as useful as
it might sound. For unit testing, we'll need a complete mock deck with specific
sequences of cards. This has the advantage that the context manager works with the
classes we already saw.

We'll extend the simple context manager shown earlier to create a Deck that can be
used within the with statement context.

The following is a class that is a factory for Deck and also tweaks the random module:

class Deterministic_Deck:

def __init__ (self, *args, **kw) —-> None:
self.args = args
self.kw = kw

def _ _enter_ (self) —-> Deck:
self.was = random.getstate ()
random.seed (0, version=1)
return Deck (*self.args, **self.kw)

def _ _exit_ (
self,
exc_type: Optional [Type[BaseException]],
exc_value: Optional [BaseException],
traceback: Optional [TracebackType]
) —> Optional[bool]:
random.setstate (self.was)
return False

The preceding context manager class preserves the argument values so that it can
create a Deck with the given arguments.

[182]

Using Callables and Contexts Chapter 6

The __enter__ () method preserves the old random number state and then sets the
random module in a mode that provides a fixed sequence of values. This is used to
build and shuffle the deck.

Note that the __enter__ () method returns a newly minted Deck object to be used in
the with statement context. This is assigned via the as clause in the with statement.
The type hint specifies Deck as the return type of this method. The following is a way
to use this factory context manager:

with Deterministic_Deck (size=6) as deck:
h = Hand(deck.pop(), deck.pop (), deck.pop())

The preceding example of code guarantees a specific sequence of cards that we can
use for demonstration and testing purposes.

Cleaning up in a context manager

In this section, we'll discuss a more complex context manager that attempts some
cleanup when there are problems.

This addresses the common issue where we want to save a backup copy of a file that
our application is rewriting. We want to be able to do something similar to the
following;:

with Updating (some_path) :
with some_path.open('w') as target_file:
process (target_file)

The intent is to have the original file renamed to some_file copy. If the context
works normally, that is, no exceptions are raised, then the backup copy can be deleted
or renamed to some_file old.

If the context doesn't work normally, that is, an exception is raised, we want to
rename the new file to some_file error and rename the old file to some_file,
putting the original file back the way it was before the exception.

We will need a context manager similar to the following:

from pathlib import Path
from typing import Optional

class Updating:

def __init__ (self, target: Path) -> None:

[183]

Using Callables and Contexts Chapter 6

self.target: Path = target

self.previous: Optional[Path] = None
def _ _enter_ (self) —-> None:
try:

self.previous = (
self.target.parent
/ (self.target.stem + " backup")
) .with_suffix(self.target.suffix)
self.target.rename (self.previous)
except FileNotFoundError:
self.previous = None

def _ _exit_ (
self,
exc_type: Optional[Type[BaseException]],
exc_value: Optional[BaseException],
traceback: Optional[TracebackType]
) —> Optional([bool]:
if exc_type 1s not None:
try:
self.failure = (
self.target.parent
/ (self.target.stem + " error")
) .with_suffix(self.target.suffix)
self.target.rename (self.failure)
except FileNotFoundError:
pass # Never even got created.
if self.previous:
self.previous.rename (self.target)
return False

This context manager's __enter__ () method will attempt to preserve any previous
copy of the named file if it already exists. If it didn't exist, there's nothing to preserve.
The file is preserved by simply renaming it to a name such as "file backup.ext".

The __exit__ () method will be given information about any exception that
occurred in the body of context. If there is no exception, nothing more needs to be
done. If there is an exception, then the __exit__ () method will try to preserve the
output (with a suffix of "error") for debugging purposes. It will also put any
previous copy of the file back in place by renaming the backup to the original name.

This is functionally equivalent to a t ry-except-finally block. However, it has the
advantage that it separates the relevant application processing from the context
management. The application processing is written in the with statement. The
context issues are set aside into a separate class.

[184]

Using Callables and Contexts Chapter 6

Summary

We looked at three of the special methods for class definition. The __call__ ()
method is used when creating a callable. The callable is used to create functions that
are stateful. Our primary example is a function that memoizes previous results.

The __enter_ () and __exit__ () methods are used to create a context manager.
The context is used to handle processing that is localized to the body of a with
statement. Most of our examples include input-output processing. Python also uses
localized contexts for the decimal state. Other examples include making patches for
unit testing purposes or acquiring and releasing locks.

Callable design considerations and trade-offs

When designing a callable object, we need to consider the following:

e The first consideration is the interface of the object. If there's a reason for
the object to have a function-like interface, then a callable object is a
sensible design approach. Using collections.abc.Callable assures
that the callable API is built correctly, and it informs anyone reading the
code what the intent of the class is.

¢ The secondary consideration is the statefulness of the function. Ordinary
functions in Python have no hysteresis — there's no saved state. A callable
object, however, can easily save a state. The memoization design pattern
makes good use of stateful callable objects.

The only disadvantage of a callable object is the amount of syntax that is required. An
ordinary function definition is shorter and therefore less error-prone and easier to
read.

It's easy to migrate a defined function to a callable object, as follows:

def x(args):
body

The preceding function can be converted into the following callable object:

class X:
def __call__(self, args):
body
x= X ()

[185]

Using Callables and Contexts Chapter 6

This is the minimal set of changes required to get the function to pass unit tests in the
new form. The existing body will work in the new context unmodified.

Once the change has been made, features can be added to the callable object's version
of the function.

Context manager design considerations and
trade-offs

A context is generally used for acquire/release, open/close, and lock/unlock types of
operation pairs. Most of the examples are file I/O related, and most of the file-like
objects in Python are already proper context managers.

A context manager is almost always required for anything that has steps that bracket
the essential processing. In particular, anything that requires a final c1ose () method
should be wrapped by a context manager.

Some Python libraries have open/close operations, but the objects aren't proper
contexts. The shelve module, for example, doesn't create a proper context.

We can (and should) use the context11lib.closing () context on a shelve file.
We'll show this in chapter 10, Serializing and Saving — J[SON, YAML, Pickle, CSV, and
XML.

For our own classes that require a close () method, we can use the closing ()
function. When confronted with a class that has any kind of acquire/release life cycle,
we want to acquire resourcesin __init__ () or a class-level open () method and
release them in close (). That way, our class can integrate well with this c1losing ()
function.

The following is an example of a class being wrapped that requires a close ()
function:

with contextlib.closing(MyClass()) as my_object:
process (my_object)

The contextllib.closing () function will invoke the close () method of the
object that is given as an argument. We can guarantee that my_object will have its
close () method evaluated.

[186]

Using Callables and Contexts Chapter 6

Looking forward

In the next two chapters, we'll look at the special methods used to create containers
and numbers. In chapter 7, Creating Containers and Collections, we'll look at the
containers and collections in the standard library. We'll also look at building a unique,
new kind of container. In chapter 8, Creating Numbers, we'll look at the various

numeric types and how we can create our own kind of number.

[187]

Creating Containers and
Collections

We can extend a number of the standard library abstract base classes (ABCs) to
create new kinds of collections. The ABCs also provide us with design guidelines to
extend the built-in containers. These allow us to fine-tune the features or define new
data structures that fit our problem domain more precisely.

We'll look at the basics of ABCs for container classes. There are a fairly large number
of abstractions that are used to assemble the built-in Python types, such as 1ist,
tuple, dict, set, and frozenset. We'll review the variety of special methods that
are involved in being a container and offering the various features of containers. We'll
split these into the core container methods, separate from the more specialized
sequence, map, and set methods. We'll address extending built-in containers in
order to add features. We'll also look at wrapping built-in containers and delegating
methods through the wrapper to the underlying container.

Finally, we'll look at building entirely new containers. This is a challenging territory,
because there's a huge variety of interesting and useful collection algorithms already
present in the Python Standard Library. In order to avoid deep computer science
research, we'll build a pretty lame collection. Before starting on a real application, a
careful study of Introduction to Algorithms by Cormen, Leiserson, Rivest, and Stein is
essential. We'll finish by summarizing some of the design considerations that go into
extending or creating new collections.

Creating Containers and Collections Chapter 7

In this chapter, we will cover the following topics:

e ABCs of collections

¢ Examples of special methods

¢ Using the standard library extensions
¢ Creating new kinds of collections

¢ Narrowing a collection's type

¢ Defining a new kind of sequence

¢ Creating a new kind of mapping

¢ Creating a new kind of set

Technical requirements

The code files for this chapter are available at https://git.io/£3202.

ABCs of collections

The collections.abc module provides a wealth of ABCs that decompose
collections into a number of discrete feature sets. A related set of features of a class is
called a protocol: the idea is that things such as getting, setting, and deleting items are
the protocol for list-like behavior. Similarly, the __iter__ () method is part of the
protocol for defining an iterable collection. A list often implements both protocols, but
some data structures may support fewer protocols. Support for a given protocol is
often exploited by mypy algorithms to determine whether an object is being used

properly.

We can successfully use the 1ist class without thinking too deeply about the various
features and how they relate to the set class or the dict class. Once we start looking
at the ABCs, however, we can see that there's a bit of subtlety to these classes. By
decomposing the aspects of each collection, we can see areas of overlap that manifest
themselves as an elegant polymorphism, even among different data structures.

At the bottom of the base classes are some definitions of the core protocols for
collections.

[189]

https://git.io/fj2U2
https://git.io/fj2U2
https://git.io/fj2U2
https://git.io/fj2U2
https://git.io/fj2U2
https://git.io/fj2U2
https://git.io/fj2U2
https://git.io/fj2U2
https://git.io/fj2U2

Creating Containers and Collections Chapter 7

These are the base classes that often define a single special method:

e The Container base class requires the concrete class to implement the

__contains__ () method. This special method implements the in
operator.
e The Iterable base class requires __iter__ (). This special method is

used by the for statement and the generator expressions as well as the
iter () function.

¢ The Sized base class requires __len__ (). This method is used by the
len () function. It's also prudent to implement _ bool__ (), butit's not
required by this ABC.

¢ The Hashable base class requires __hash__ (). This is used by the hash ()
function. If this is implemented, it means that the object is immutable.

Each of these abstract class definitions is used to build the higher-level, composite
definitions of structures we can use in our applications. These composite constructs
include the lower-level base classes of Sized, Iterable, and Container. Here are
some composite base classes that we might use in an application:

e The Sequence and MutableSequence classes build on the basics and
include methods such as index (), count (), reverse (), extend (), and
remove ().

¢ The Mapping and MutableMapping classes include methods such as
keys (), items (), values (), and get (), among others.

e The Sset and Mutableset classes include comparison and arithmetic
operators to perform set operations.

If we look more deeply into the built-in collections, we can see how the ABC
definitions serve to organize the special methods that we need to write or modify.

The collections module also contains three concrete implementations: UserDict,
UserList and UserString. UserDict is a version of the built-in dictionary, with the
details exposed. Similarly, UserList and UserString provide implementations that
can be extended through subclasses. These can be helpful to see how a collection is
built. In older versions of Python, these were used as superclasses and were extended
because the built-in types could not easily be extended. In Python 3, the built-in types
are trivially extended: these are rarely used except as example code.

Let's take a look at some examples of special methods in the next section.

[190]

Creating Containers and Collections Chapter 7

Examples of special methods

When looking at a blackjack Hand object, we have an interesting special case for
containment. We often want to know if there's an ace in the hand. If we define Hand
as an extension of 1ist, then we can't ask for a generic ace. We can only ask for
specific cards. We have to write something like the following example:

any (c.rank == 'A' for c¢ in hand.cards)

This examines each card serially. For a small collection where the checking is rare, the
design has few consequences. If, on the other hand, we simulated millions of hands,
this search would be repeated often enough that the cost would be troubling.

For other problem domains, where the collection may contain millions of items, we
certainly can't scan millions of items serially. A better scheme for a collection of
objects can be helpful. Ideally, we'd like something like this:

'A' in hand.cards

This means that we're modifying the meaning of contains for a Hand object that
extends 1ist. We're not looking for a Card instance; we're merely looking for the
rank property of a Card object. We can override the __contains__ () method to do
this:

def _ contains__ (self, rank: int) -> bool:
return any (c.rank==rank for rank in hand.cards)

This allows us to use a simpler in test for a given rank in a hand. The serial
examination of individual cards is still present, but it's encapsulated within the Hand
class, and we can introduce special-purpose indexes based on dictionaries to optimize
this. Similar design considerations can be applied to the __iter__ () and

__len__ (), special methods. Be cautious, however. Changing the semantics of len ()
or how a collection interacts with the for statement, might be disastrous.

The next section explains how to use the standard library extensions.

Using the standard library extensions

We'll look at some extensions to built-in classes that are already part of the standard
library. These are the collections that extend or modify the built-in collections. Most of
these are covered in one form or another in books such as Python 3 Object-Oriented
Programming - Third Edition by Dusty Phillips.

[191]

Creating Containers and Collections Chapter 7

We'll look at the following four collection from this library:

¢ deque (note the atypical class name) is a double-ended queue, a list-like
collection that can perform fast appends and pops on either end. A subset
of the features of this class will create single-ended stacks or queues.

¢ ChainMap is a view of multiple mappings. Instead of merging mappings
together, we can keep them separate and chain among them to locate which
mapping contains a requested key.

e defaultdict (note the atypical spelling) is a dict subclass that uses a
factory function to provide values for missing keys.

® Counterisa dict subclass that can be used for counting objects to create
frequency tables. However, it's actually a more sophisticated data structure
called a multiset or bag.

There are two collections in this library that have been replaced by more advanced
versions:

o The namedtuple () function creates a subclass of tuple with named
attributes. This has been replaced by the NamedTuple definition in the
typing module. We'll emphasize the new typing.NamedTuple class
because it permits type hints. The legacy function is no longer useful.

e An OrderedDict collection is a mapping in which the original key entry
order is maintained. This feature of maintaining key order is now a first-
class part of the built-in dict class, so this special collection isn't necessary
anymore.

We'll see examples of the preceding collection classes. There are two important
lessons to be learned from studying the library collections:

¢ What features are already present the standard library; this will save us
from reinvention

¢ How to extend the ABCs to add interesting and useful structures to the
language

[192]

Creating Containers and Collections Chapter 7

Also, it can be helpful to read the source for the libraries. The source will show us
numerous Python object-oriented programming techniques. Beyond these basics are
even more modules. They are as follows:

¢ The heapg module is a set of functions that impose a heap queue structure
on an existing 1ist object. The heap queue invariant is the set of those
items in the heap that are maintained, in order to allow rapid retrieval in
ascending order. If we use the heapg methods on a 1ist structure, we will
never have to explicitly sort the list. This can have significant performance
improvements.

e The array module is a kind of sequence that optimizes storage for certain
kinds of values. This provides list-like features over potentially large
collections of simple values.

We won't provide detailed examples of these advanced modules. In addition, of
course, there's the deeper computer science that supports these various data structure
definitions.

Let's take a look at the different classes in the next few sections.

The typing.NamedTuple class

The NamedTuple class expects a number of class-level attributes. These attributes will
typically have type hints, and provide a way to give names to the attributes of a
tuple.

Using a NamedTuple subclass can condense a class definition into a very short
definition of a simple immutable object. It saves us from having to write longer and
more complex class definitions for the common case where we want to name a fixed
set of attributes.

For something like a playing card, we might want to insert the following code in a
class definition:

from typing import NamedTuple

class BlackjackCard_T (NamedTuple) :
rank: str
suit: Suit
hard: int
soft: int

[193]

Creating Containers and Collections Chapter 7

We defined a new class and provided four named attributes: rank, suit, hard, and
soft. Since each of these objects is immutable, we don't need to worry about a badly
behaved application attempting to change the rank of a Black jackCard instance.

We can use a factory function to create instances of this class, as shown in the
following code:

def card_t(rank: int, suit: Suit) -> BlackjackCard_ T:
if rank ==
return BlackjackCard_ T ("A", suit, 1, 11)
elif 2 <= rank < 11:
return BlackjackCard_T (str(rank), suit, rank, rank)

elif rank == 11:

return BlackjackCard T ("J", suit, 10, 10)
elif rank == 12:

return BlackjackCard_ T ("Q", suit, 10, 10)
elif rank == 13:

return BlackjackCard T ("K", suit, 10, 10)
else:

raise ValueError (f"Invalid Rank {rank}")

The card_t () function will build an instance of BlackjackCard with the hard and
soft totals set properly for various card ranks. The intent here is to use card_t (7,
Suit.Hearts) to create an instance of the BlackjackCard class. The various points
will be set automatically by the card_t () function.

A subclass of NamedTuple will include a class-level attribute named _fields, which
names the fields. Additionally, a_field_types attribute provides details of the type
hints provided for the attributes. These permit sophisticated introspection

on NamedTuple subclasses.

We can, of course, include methods in a NamedTuple class definition. An example of
including methods is as follows:

class BlackjackCard_T (NamedTuple) :
rank: str
suit: Suit
hard: int
soft: int
def is_ace(self) —-> bool:
return False

class AceCard(BlackjackCard):
def is_ace(self) —-> bool:
return True

[194]

Creating Containers and Collections Chapter 7

A subclass can't add any new attributes. The subclass can, however, meaningfully
override method definitions. This technique can create usefully polymorphic
subclasses of a NamedTuple class.

The deque class

A 1ist object is designed to provide uniform performance for any element within the
container. Some operations have performance penalties. Most notably, any operation
extending from the front of a list, such as 1ist.insert (0, item), or removing
from the front of a list, such as 1ist .pop (0), will incur some overheads because the
list's size is changed, and the position of each element must then changed.

A deque — a double-ended queue - is designed to provide uniform performance for
the first and last elements of a list. The idea is that appending and popping will be
faster than the built-in 1ist object.

Class names are usually in title case. However, the deque class
doesn't follow the common pattern.

Our design for a deck of cards avoids the potential performance pitfall of a 1ist
object by always popping from the end, never from the beginning. Using the default
pop (), or an explicit pop (1), leverages the asymmetry of a list by using the low-
cost location for removing at item.

The deque.pop () method is very fast and works from either end of the list. While
this can be handy, we can check whether the performance of shuffling may suffer. A
shuffle will make random access to the container, something for which deque is not
designed.

In order to confirm the potential costs, we can use timeit to compare 1ist and
deque shuffling performance as follows:

>>> timeit.timeit ('random.shuffle(x)',"""
. import random
. x=list (range (6*52))""")

597.951664149994

>>>

>>> timeit.timeit ('random.shuffle(d)',"""
. from collections import deque

[195]

Creating Containers and Collections Chapter 7

import random
... d=deque (range (6*52))""")
609.9636979339994

We invoked timeit using random.shuffle (). The first example works ona 1ist
object; the second example works on a deque object.

These results indicate that shuffling a deque object is only a trifle slower than
shuffling a 1ist object — about 2 percent slower. This distinction is a hair not worth
splitting. We can confidently try a deque object in place of 1ist.

The change amounts to this:

from collections import dequeue
class Deck (dequeue) :

def _ _init_ (self, size=1):
super () .__init__ ()
for d in range(size):
cards = [card(r,s) for r in range(13) for s in Suits]
super () .extend(cards)

random.shuffle(self)

We replaced 1ist with deque in the definition of Deck. Otherwise, the class is
identical.

What is the actual performance difference? Let's create decks of 100,000 cards and
deal them:

>>> timeit.timeit ('x.pop()', "x=list (range(100000))",
number=100000)

0.032304395994287916

>>> timeit.timeit ('x.pop()', "from collections import deque;
x=deque (range (100000))", number=100000)
0.013504189992090687

We invoked timeit using x.pop (). The first example works on a 1ist; the second
example works on a deque object.

The dealing time is cut almost by half (42 percent, actually). We had big savings from
a tiny change in the data structure.

In general, it's important to pick the optimal data structure for the application. Trying
several variations can show us what's more efficient.

[196]

Creating Containers and Collections Chapter 7

The ChainMap use case

The use case for chaining maps together fits nicely with Python's concept of local
versus global definitions. When we use a variable in Python, first the local
namespaces and then the global namespaces are searched, in that order. In addition to
searching both namespaces for a variable, setting a variable is done in the local
namespace without disturbing the global namespace. This default behavior (without
the global or nonlocal statements) is also how ChainMap works.

When our applications start running, we often have properties that come from
command-line parameters, configuration files, OS environment variables, and
possibly a default file of settings installed with the software. These have a clear
precedence order where a value supplied on the command-line is most important,
and an installation-wide default setting is the least important. Because a ChainMap
object will search through the various mappings in order, it lets us merge many
sources of parameters into a single dictionary-like structure, so that we can easily
locate a setting.

We might have an application startup that combines several sources of configuration
options like this:

import argparse

import json

import os

import sys

from collections import ChainMap
from typing import Dict, Any

def get_options(argv: List[str] = sys.argv([l:]) -> ChainMap:
parser = argparse.ArgumentParser (
description="Process some integers.")
parser.add_argument (

"-c", "--configuration", type=open, nargs="?")
parser.add_argument (
"-p", "--playerclass", type=str, nargs="?",
default="Simple")
cmdline = parser.parse_args (argv)

if cmdline.configuration:
config_file = json.load(cmdline.configuration)
cmdline.configuration.close()

else:
config_file = {}

default_path = (

[197]

Creating Containers and Collections Chapter 7

Path.cwd() / "Chapter_7" / "ch0O7_defaults.json")
with default_path.open() as default_file:
defaults = json.load(default_file)

combined = ChainMap (
vars (cmdline), config_file, os.environ, defaults)
return combined

The preceding code shows us the configuration from several sources, such as the
following;:

e The command-line arguments. In this example, there is only one argument,
called playerclass, but a practical application will often have many,
many more.

¢ One of the arguments, configuration, is the name of a configuration file
with additional parameters. This is expected to be in the JSON format, and
the file's contents are read.

¢ Additionally, there's a defaults. json file with yet another place to look
for the configuration values.

From the preceding sources, we can build a single ChainMap object. This object
permits looking for a parameter in each of the listed locations in the specified order.
The ChainMap instance use case will search through each mapping from highest
precedence to lowest, looking for the given key and returning the value. This gives us
a tidy, easy-to-use source for runtime options and parameters.

We'll look at this again in chapter 14, Configuration Files and Persistence, and Chapter
18, Coping with the Command Line.

The OrderedDict collection

The OrderedDict collection is a Python dictionary with an added feature. The order
in which keys were inserted is retained.

One common use for OrderedDict is when processing HTML or XML files, where
the order of objects must be retained, but objects might have cross-references via the
ID and IDREF attributes. We can optimize the connections among objects by using the
ID as a dictionary key. We can retain the source document's ordering with the
OrderedDict structure.

[198]

Creating Containers and Collections Chapter 7

With release 3.7, the built-in dict class makes the same guarantee of preserving the
order in which dictionary keys were inserted. Here's an example:

>>> some_dict = {'zzz': 1, 'aaa': 2}

>>> some_dict['mmm'] = 3
>>> some_dict
{'zzz': 1, 'aaa': 2, 'mmm': 3}

In earlier releases of Python, the order of keys in a dictionary were not guaranteed to
match the order in which they were inserted. The ordering of keys used to be
arbitrary and difficult to predict. The Orderedbict class added the insertion order
guarantee in these older releases of Python. Since the order of the keys is now
guaranteed to be the order in which keys were inserted, the Orderedbict class is
redundant.

The defaultdict subclass

An ordinary dict type raises an exception when a key is not found. A defaultdict
collection class does this differently. Instead of raising an exception, it evaluates a

given function and inserts the value of that function into the dictionary as a default
value.

Class names are usually in upper TitleCase. However, the
defaultdict class doesn't follow this pattern.

A common use case for the defaultdict class is to create indices for objects. When
several objects have a common key, we can create a list of objects that share this key.

Here's a function that accumulates a list of distinct values based on a summary of the
two values:

from typing import Dict, List, Tuple, DefaultDict
def dice_examples(n: int=12, seed: Any=None) -> DefaultDict[int,
List]:
if seed:
random. seed (seed)
Roll = Tuple[int, int]

outcomes: DefaultDict[int, List[Roll]] = defaultdict (list)
for _ in range(n):
dl, d2 = random.randint (1, 6), random.randint (1, 6)

outcomes [d1+d2] .append((dl, d2))
return outcomes

[199]

Creating Containers and Collections Chapter 7

The type hint for Ro11 shows that we consider a roll of the dice to be a two-tuple
composed of integers. The out comes object has a hint that it will be a dictionary that
has integer keys and the associated value will be a list of Ro11 instances.

The dictionary is built using outcomes [d1+d2] .append ((dl, d2)).Given two
random numbers, d1 and d2, the sum is the key value. If this key value does not
already exist in the out comes mapping, the 1ist () function is used to build a
default value of an empty list. If the key already exists, the value is simply fetched,
and the append () method is used to accumulate the actual pair of numbers.

As another example, we can use the a defaultdict collection class to provide a
constant value. We can use this instead of the
container.get (key, "N/A") expression.

We can create a zero-argument lambda object. This works very nicely. Here's an
example:

>>> from collections import defaultdict
>>> messages = defaultdict (lambda: "N/A")
>>> messages|['errorl']= 'Full Error Text'
>>> messages|['other']

IN/AI

>>> messages|['errorl']

'Full Error Text'

In the first use of messages['errorl'], a value was assigned to the
'errorl' key. This new value will replace the default. The second use of
messages ['other'] will add the default value to the dictionary.

We can determine how many new keys were created by looking for all the keys that
have a value of "N/A™:

>>> [k for k in messages if messages[k] == "N/A"]
['other']

As you can see in the preceding output, we found the key that was assigned the
default value of "N/A". This is often a helpful summary of the data that is being
accumulated. It shows us all of the keys associated with the default value.

[200]

Creating Containers and Collections Chapter 7

The counter collection

One of the most common use cases for a defaultdict class is when accumulating
counts of key instances. A simple way to count keys looks like this:

frequency = defaultdict (int)
for k in some_iterator () :
frequencyl[k] += 1

This example counts the number of times each key value, k, appears in the sequence
of values from some_iterator ().

This use case is so common that there's a variation on the defaultdict theme that
performs the same operation shown in the preceding code-it's called Counter. A
Counter collection, however, is considerably more sophisticated than a simple
defaultdict class.

Here's an example that creates a frequency histogram from some source of data
showing values in descending order by frequency:

from collections import Counter

frequency = Counter (some_iterator())

for k, freq in frequency.most_common () :
print (k, freq)

This example shows us how we can easily gather statistical data by providing any
iterable item to Counter. It will gather frequency data on the values in that iterable
item. In this case, we provided an iterable function named some_iterator (). We
might have provided a sequence or some other collection.

We can then display the results in descending order of popularity. But wait! That's
not all.

The Counter collection is not merely a simplistic variation of the defaultdict
collection. The name is misleading. A Counter object is actually
a aaaaaaaaaaaaaaaarmultiset, sometimes called a bag.

It's a collection that is set-like, but allows repeat values in the bag. It is not a sequence
with items identified by an index or position; order doesn't matter. It is not a mapping
with keys and values. It is like a set in which items stand for themselves and order
doesn't matter. But, it is unlike a set because, in this case, elements can repeat.

[201]

Creating Containers and Collections Chapter 7

As elements can repeat, the Counter object represents multiple occurrences with an
integer count. Hence, it's used as a frequency table. However, it does more than this.
As a bag is like a set, we can compare the elements of two bags to create a union or an
intersection.

Let's create two bags:

>>> bagl Counter ("aardwolves")

>>> bag2 = Counter ("zymologies")

>>> bagl

Counter({'a': 2, 'o': 1, '1': 1, 'w':1, 'v': 1, 'e': 1,
'd': 1, 's': 1, 'r': 1})

>>> bag2

Counter({'oc': 2, 'm': 1, '1': 1, 'z': 1, 'y': 1, 'g': 1,
'i': 1, 'e': 1, 's': 1})

We built each bag by examining a sequence of letters. For characters that occur more
than once, there's a count that is more than one.

We can easily compute the union of the two bags:

>>> bagl+bag2

Counter({'o': 3, 's': 2, '1': 2, 'e': 2, 'a': 2, 'z': 1,
'y': 1, 'w':' 1, 'v': 1, 'r':'1, 'm': 1, 'i': 1, 'g': 1,
'‘d': 1})

This shows us the entire suite of letters between the two strings. There were three
instances of o. Not surprisingly, other letters were less popular.

We can just as easily compute the difference between the bags:

>>> bagl-bag2

Counter({'a': 2, 'w': 1, 'v': 1, 'd': 1, 'r': 1})

>>> bag2-bagl

Counter({'oc': 1, 'm': 1, 'z': 1, 'y': 1, 'g': 1, 'i': 1})

The first expression shows us characters in bagl that were not in bag2.

The second expression shows us characters in bag2 that were not in bagl. Note that
the letter o occurred twice in bag2 and once in bag1l. The difference only removed
one of the o characters from bag1.

In the next section, we'll see how to create new kinds of collections.

[202]

Creating Containers and Collections Chapter 7

Creating new kinds of collections

We'll look at some extensions we might make to Python's built-in container classes.
We won't show an example of extending each container.

We'll pick an example of extending a specific container and see how the process
works:

1. Define the requirements. This may include research on Wikipedia,
generally starting here: http://en.wikipedia.org/wiki/Data_structure.
Designs of data structures often involve complex edge cases around
missing items and duplicate items.

2. If necessary, look at the collections.abc module to see what methods
must be implemented to create the new functionality.

3. Create some test cases. This also requires careful study of the algorithms to
ensure that the edge cases are properly covered.

4. Write code based on the previous research steps.

We need to emphasize the importance of researching the fundamentals before trying
to invent a new kind of data structure. In addition to searching the web for overviews
and summaries, details will be necessary. See any of the following:

o Introduction to Algorithms by Cormen, Leiserson, Rivest, and Stein
e Data Structures and Algorithms by Aho, Ullman, and Hopcroft
o The Algorithm Design Manual by Steven Skiena

As we saw earlier, the ABCs define three broad kinds of collections: sequences,
mappings, and sets. We have three design strategies that we can use to create new
kinds of collections of our own:

¢ Extend: This is an existing sequence.
e Wrap: This is an existing sequence.
e Invent: This is a new sequence created from scratch.

In principle, we could give as many as nine examples — each basic flavor of collection
with each basic design strategy. We won't beat this subject to death like that. We'll dig
deep to create new kinds of sequences, learning how to extend and wrap

existing sequences.

[203]

http://en.wikipedia.org/wiki/Data_structure

Creating Containers and Collections Chapter 7

As there are so many extended mappings (such as ChainMap, OrderedDict,
defaultdict, and Counter), we'll only touch lightly on creating new kinds of
mappings. We'll also dig deep to create a new kind of ordered multiset or bag.

Let's narrow a collection's type in the next section.

Narrowing a collection’'s type

Python 3 allows us to provide extensive type hints for describing the contents of a
collection. This has two benefits:

e It helps us visualize the data structure.
e It supports running mypy to confirm that the code uses the data structures
properly.

The non-collection types (int, str, float, complex, and so on) all use the type name
as their type hint. The built-in collections all have parallel type definitions in the
typing module. It's common to see from typing import List, Tuple, Dict,
Set to import these type names into a module.

Each of the type hints accepts parameters to further narrow the definition:

e The List [T] hint claims the object will be a 1ist and all the items will be
of type T. For example [1, 1, 2, 3, 5, 8] can be described as
List[int].

o A set [T] hintis similar to the List [T] hint. It claims all items in the set
will be of type T. For example, {'a', 'r', 'd'} canbe described as
Set [str].

e TheDict [K, V] hint claims the object will be a dict, the keys will all
have a type K, and the values will all have a type v. For example, {'A': 4,
'B' 12} can be described as Dict [str, int].

[204]

Creating Containers and Collections Chapter 7

The Tuple hint is often more complex. There are two common cases for tuples:

e A hint such as Tuple[str, int, int, int] describes a four-tuple with
a string and three integer values, for example, ('crimson', 220, 20,
60). The size is specified explicitly.

e A hint such as Tuple[int, ...] describes a tuple of indefinite size. The
items will all be type int. The size is not specified. The . . . notation is a
token in the Python language, and is a first-class part of the syntax for this
type hint.

To describe objects where None values may be present in a collection, the Optional
type is used. We might have a type hint such as List [Optional[int]] to describe a
list that is a mixture of int and None objects, for example [1, 2, None, 42].

Because of the type coercion rules for numbers, we can often summarize numerical
algorithms using a f1oat type hint, such as the following;:

def mean (data: List[float]) —-> float:

This function will also work with a list of integer values. The mypy program
recognizes the type coercion rules and will recognize mean ([8, 9, 10]) asavalid
use of this function.

In the next section, we'll define a new kind of sequence.

Defining a new kind of sequence

A common requirement that we have when performing statistical analysis is to
compute basic means, modes, and standard deviations on a collection of data. Our
blackjack simulation will produce outcomes that must be analyzed statistically to see
if we have actually invented a better strategy.

When we simulate the playing strategy for a game, we will develop some outcome
data that will be a sequence of numbers that show the final result of playing the game
several times with a given strategy.

We could accumulate the outcomes into a built-in 1ist class. We can compute the

Ma

acx

meanvia N , where N is the number of elements in Z:

def mean (outcomes: List[float]) —-> float:
return sum(outcomes) / len (outcomes)

[205]

Creating Containers and Collections Chapter 7

2
N x z:az—-(EZa)
acx acx
Standard deviation can be computed via N :

def stdev(outcomes: List[float]) -> float:
n = float (len(outcomes))
return math.sqgrt (
n * sum(x**2 for x in outcomes) — sum(outcomes)**2

) / n

Both of these are relatively simple calculation functions. As things get more complex,
however, loose functions such as these become less helpful. One of the benefits of
object-oriented programming is to bind the functionality with the data.

Our first example will not involve rewriting any of the special methods of 1ist. We'll
simply subclass 1ist to add methods that will compute the statistics. This is a very
common kind of extension.

We'll revisit this in the second example so that we can revise and extend the special
methods. This will require some study of the ABC special methods to see what we
need to add or modify so that our new list subclass properly inherits all the features
of the built-in 1ist class.

Because we're looking at sequences, we also have to wrestle with the Python s1ice
notation. We'll look at what a slice is and how it works internally in the Working with
__getitem_ ,_ setitem_ ,_ delitem__, and slices section.

The second important design strategy is wrapping. We'll create a wrapper around a
list and see how we can delegate methods to the wrapped list. Wrapping has some
advantages when it comes to object persistence, which is the subject of chapter 10,
Serializing and Saving — [SON, YAML, Pickle, CSV, and XML.

We can also look at the kinds of things that need to be done to invent a new kind of
sequence from scratch.

A statistical list

It makes good sense to incorporate mean and standard deviation features directly
into a subclass of 1ist. We can extend 1ist like this:

class StatsList (list):

def __init__ (self, iterable: Optional[Iterable[float]]) -> None:

[206]

Creating Containers and Collections Chapter 7

super () .__init__ (cast (Iterable[Any], iterable))

@property
def mean(self) -> float:
return sum(self) / len(self)

@property
def stdev(self) -> float:
n = len(self)
return math.sqgrt (
n * sum(x ** 2 for x in self) - sum(self) ** 2
) / n

With this simple extension to the built-in 1ist class, we can accumulate data and
report statistics on the collection of data items.

Note the relative complexity involved in narrowing the type of the list class. The
built-in list structure's type, List, is effectively List [Any]. In order for the
arithmetic operations to work, the content really must be List [f1oat]. By stating
the __init_ () method will only accept an Iterable[float] value, mypy is
forced to confirm arguments to StatsList will meet this criteria. Let's imagine we
have a source of raw data:

def data_gen() -> int:
return random.randint (1, 6) + random.randint (1, 6)

This little data_gen () function is a stand-in for a variety of possible functions. It

might be a complex simulation. It might be a source of actual measurements. The

essential feature of this function—defined by the type hint—is to create an integer
value.

We can imagine that an overall simulation script can use the StatsList class, as
follows:

random. seed (42)

data = [data_gen() for _ in range(100)]
stats = StatsList (data)
print (f"mean = {stats.mean:f}")

print (f"stdev= {stats.stdev:.3f}")

This snippet uses a list comprehension to create a raw 1ist object with 100

samples. Because the data object is built from the data_gen () function, it's clear that
the data object has the type List [int]. From this, a Stat sList object is created. The
resulting stats object has mean and stdev properties, which are extensions to the
base list class.

[207]

Creating Containers and Collections Chapter 7

Choosing eager versus lazy calculation

Note that the calculations in the previous example are lazy; they are only done when
requested. This also means that they're performed each and every time they're
requested. This can be a considerable overhead, depending on the context in which
objects of these classes are used.

It's may be sensible to transform these statistical summaries into eager calculations, as
we know when elements are added and removed from a list. Although there's a hair
more programming to create eager versions of these functions, it has a net impact of
improving performance when there's a lot of data being accumulated.

The point of eager statistical calculations is to avoid the loops that compute sums. If
we compute the sums eagerly, as the list is being created, we avoid extra looping
through the data.

When we look at the special methods for a Sequence class, we can see all of the
places where data is added to, removed from, and modified in the sequence. We can
use this information to recompute the two sums that are involved. We start with the
collections.abc section of the Python Standard Library documentation, section

8.4.1, at
http://docs.python.org/3.4/library/collections.abc.htmlf#collections—abstra

ct-base-classes.

Here are the required methods for a MutableSequence class: __getitem_,
__setitem__,__delitem__,_ len__,insert, append, reverse, extend, pop,
remove, and __iadd__. The documentation also mentions the Inherited Sequence
methods. However, as they are for immutable sequences, we can certainly ignore
them.

Here are the details of what must be done to update the statistical results in each
method:

e _ getitem__:There's no change in the state.

e _ setitem__: This changes an item. We need to take the old item out of
each sum and fold the new item into each sum.

e _ delitem_ :This removes an item. We need to take the old item out of
each sum.

e _ len_ :There's no change in the state.

e insert: This adds a new item. We need to fold it into each sum.

e append: This also adds a new item. We need to fold it into each sum.

[208]

http://docs.python.org/3.4/library/collections.abc.html#collections-abstract-base-classes
http://docs.python.org/3.4/library/collections.abc.html#collections-abstract-base-classes

Creating Containers and Collections Chapter 7

e reverse: There's no change in the value of the mean or standard deviation.

¢ extend: This adds many new items. All of the items must be folded into
the sums.

e pop: This removes an item. We need to take the old item out of each sum.

e remove: This removes an item. We need to take the old item out of each
sum.

e _ iadd__: Thisis the += augmented assignment statement, the in-place
addition. It's effectively the same as the extend keyword.

We won't look at each method in detail, because there are really combinations of two
use cases:

e Fold in one new value
e Remove one old value

The replacement case is a combination of the remove and fold in operations.

Here are the elements of an eager StatsList2 class. We're going to see
the insert () and pop () method:

class StatsList2(list):
ll"llEager Stats.llll"

def __init__ (self, iterable: Optional[Iterable[float]]) -> None:
self.sum0 = 0 # len(self), sometimes called "N"
self.suml = 0.0 # sum(self)
self.sum2 = 0.0 # sum(x**2 for x in self)
super () .__init__ (cast (Iterable[Any], iterable))
for x in self:
self._new(x)

def _new(self, wvalue: float) -> None:
self.sum0 += 1
self.suml += value
self.sum2 += value * value

def _rmv(self, value: float) -> None:
self.sum0 —-= 1
self.suml —-= value
self.sum2 —-= value * value
def insert(self, index: int, value: float) -> None:
super () .insert (index, value)

self._new(value)

[209]

Creating Containers and Collections Chapter 7

def pop(self, index: int = 0) -> None:
value = super () .pop (index)
self._rmv (value)
return value

We provided three internal variables with comments to show the invariants that this
class will maintain. We'll call these the sum invariants because each of them contains a
particular kind of sum that is maintained as invariant (always true) after each kind of
state change. The essence of this eager calculation are the _rmv () and _new ()
methods, which update our three internal sums based on changes to the list, so that
the relationships really remain invariant.

When we remove an item, that is, after a successful pop () operation, we have to
adjust our sums. When we add an item (either initially, or via the insert () method),
we also have to adjust our sums. The other methods we need to implement will make
use of these two methods to ensure that the three sum invariants hold. For a given list
D =31 DI
of values, L, we ensure that L.. sum0 is always <L @€l , L.suml is always <L ,
2132

and L. sum2 is always =L . We can use the sums to compute the mean and standard
deviation.

Other methods, such as append (), extend (), and remove (), are similar in many
ways to these methods. We haven't shown them because they're similar.

We can see how this list works by playing with some data:

>>> sl2 = StatsList2([2, 4, 3, 4, 5, 5, 7, 9, 10])
>>> sl2.sum0, sl2.suml, sl2.sum2
(9, 49, 325)

>>> sl2[2]= 4

>>> sl2.sum0, sl2.suml, sl2.sum2
(9, 50, 332)

>>> del sl2[-1]

>>> sl2.sum0, sl2.suml, sl2.sum2
(8, 40, 232)

>>> sl2.insert(0, -1)

>>> s12.pop()

>>> sl2.sum0, sl2.suml, sl2.sum2
(8, 40, 232)

[210]

Creating Containers and Collections Chapter 7

We can create a list and the sums are computed initially. Each subsequent change
eagerly updates the various sums. We can change, remove, insert, and pop an item;
each change results in a new set of sums.

All that's left, is to add our mean and standard deviation calculations, which we can
do as follows:

@property
def mean(self) -> float:
return self.suml / self.sumO

@property
def stdev(self) -> float:
return math.sqgrt (
self.sum0*self.sum2 - self.suml*self.suml
)y / self.sum0

These make use of the sums that have already been computed. There's no additional
looping over the data to compute these two statistics.

Working with __getitem__(), __setitem__(),
__delitem__ (), and slices

The StatsList2 example didn't show us the implementation of __setitem__ () or
__delitem__ () because they involve slices. We'll need to look at the implementation
of a slice before we can implement these methods properly.

Sequences have two different kinds of indexes:

e a[i]. Thisis a simple integer index.

e afi:j]lorali:j:k]: These are slice expressions with
start:stop:step values. Slice expressions can be quite complex, with
seven different variations for different kinds of defaults.

This basic syntax works in three contexts:

e In an expression, relying on __getitem__ () to get a value

¢ On the left-hand side of assignment, relying on __setitem__ () toseta
value
e On a del statement, relyingon __delitem__ () to delete a value

[211]

Creating Containers and Collections Chapter 7

When we do something like seq[:-1], we write a s1ice expression. The underlying
__getitem__ () method will be given a s1ice object, instead of a simple integer.

The reference manual tells us a few things about slices. A s1ice object will have three
attributes: start, stop, and step. It will also have a method function called
indices (), which will properly compute any omitted attribute values for a slice.

We can explore the s1ice objects with a trivial class that extends 1ist:

class Explore(list):

def _ _getitem__ (self, index):
print (index, index.indices(len(self)))
return super().__getitem__ (index)

This class will dump the s1ice object and the value of the indices () function

result. Then, use the superclass implementation, so that the list behaves normally
otherwise.

Given this class, we can try different s1ice expressions to see what we get:

>>> x = Explore('abcdefg')

>>> x[:]

slice (None, None, None) (0, 7, 1)
['a', 'B', 'e', 'd', 'e', '£', 'g'l]
>>> x[:-1]

slice (None, -1, None) (0, 6, 1)
['a', 'B', 'e', 'd', 'e', '"f']
>>> x[1:]

slice(1l, None, None) (1, 7, 1)
['b', 'e', 'd', 'e', 'f', 'g']
>>> x[::2]

slice (None, None, 2) (0, 7, 2)
['a', 'e', 'e', 'g']

In the preceding s1ice expressions, we can see that a s1ice object has three
attributes, and the values for those attributes come directly from the Python syntax.
When we provide the proper length to the indices () function, it returns a three-
tuple value with start, stop, and step values.

[212]

Creating Containers and Collections Chapter 7

Implementing __getitem__(), __setitem__(),
and __ delitem__ ()

When we implement the __getitem_ (), __setitem__ () and

__delitem__ () methods, we must work with two kinds of argument values: int
and slice. This variant behavior requires two different type hints. The hints are
provided using the Goverload decorator.

When we overload the various sequence methods, we must handle the slice situation
appropriately within the body of the method. This requires using the isinstance ()
function to discern whether a s1ice object or a simple int has been provided as an
argument value.

Hereisa_ setitem__ () method that works with slices:
@overload
def _ setitem_ (self, index: int, value: float) —-> None:
@overload
def _ setitem_ (self, index: slice, value: Iterable[float]) -> None:
def _ _setitem__ (self, index, value) -> None:
if isinstance (index, slice):

start, stop, step = index.indices(len(self))

olds = [self[i] for i in range(start, stop, step)]

super () .__setitem__ (index, value)

for x in olds:
self._rmv (x)
for x in value:
self._new(x)
else:
old = self[index]
super () .__setitem__ (index, value)
self._rmv (old)

The preceding method has two processing paths:

e If the index is a s1ice object, we'll compute the start, stop, and step
values. Then, we'll locate all the old values that will be removed. We can
then invoke the superclass operation and fold in the new values that
replaced the old values.

e If the index is a simple int object, the old value is a single item, and the
new value is also a single item.

[213]

Creating Containers and Collections Chapter 7

Note that __setitem__ () expected multiple type hints, written using the
Qoverload descriptor. The __delitem__ () definition, on the other hand, relies
onUnion[int, slice], instead of two overloaded definitions.

Here's the __delitem__ () method, which works with either a slice or an integer:

def _ delitem_ (self, index: Union[int, slice]) -> None:
Index may be a single integer, or a slice
if isinstance (index, slice):

start, stop, step = index.indices(len(self))
olds = [self[i] for i in range(start, stop, step)]
super () .__delitem__ (index)

for x in olds:
self._rmv (x)
else:
old = self[index]
super () .__delitem__ (index)
self._rmv (old)

The preceding code, too, expands the slice to determine what values could be
removed. If the index is a simple integer, then just one value is removed.

When we introduce proper slice processing to our StatsList2 class, we can create
lists that do everything the base 1ist class does, and also (rapidly) return the mean
and standard deviation for the values that are currently in the list.

Note that these method functions will each create a temporary list
object, o1ds; this involves some overhead that can be removed. As
an exercise for the reader, it's helpful to rewrite the _rmv () function
to eliminate the use of the o1ds variable.

Wrapping a list and delegating

We'll look at how we might wrap one of Python's built-in container classes. Wrapping
an existing class means that some methods will have to be delegated to the
underlying container.

As there are a large number of methods in any of the built-in collections, wrapping a
collection may require a fair amount of code. When it comes to creating persistent
classes, wrapping has advantages over extending. That's the subject of chapter 10,
Serializing and Saving - JSON, YAML, Pickle, CSV, and XML. In some cases, we'll want
to expose the internal collection to save writing a large number of sequence methods
that delegate to an internal list.

[214]

Creating Containers and Collections Chapter 7

A common restriction that applies to statistics data classes is that they need to be
insert only. We'll be disabling a number of method functions. This is the kind of
dramatic change in the class features that suggests using a wrapper class instead of an
extension.

We can design a class that supports only append and __getitem__, for example. It
would wrap a 1ist class. The following code can be used to accumulate data from
simulations:

class StatsList3:

def _ _init_ (self) -> None:
self. list: List[float] = list ()
self.sum0 = 0 # len(self), sometimes called "N"
self.suml = 0. # sum(self)
self.sum2 = 0. # sum(x**2 for x in self)
def append(self, value: float) —-> None:

self._list.append(value)
self.sum0 += 1

self.suml += value
self.sum2 += value * value

def __getitem__ (self, index: int) -> float:

return self._list._ _getitem__ (index)
@property
def mean(self) -> float:

return self.suml / self.sum0

@property
def stdev(self) -> float:
return math.sqgrt (
self.sum0*self.sum2 - self.suml*self.suml
) / self.sum0

This class has an internal _1ist object that is the underlying list. We've provided an
explicit type hint to show the object is expected to be List [£loat]. The listis
initially empty. As we've only defined append () as a way to update the list, we can
maintain the various sums easily. We need to be careful to delegate the work to the
superclass to be sure that the list is actually updated before our subclass processes the
argument value.

We can directly delegate __getitem__ () to the internal list object without
examining the arguments or the results.

[215]

Creating Containers and Collections Chapter 7

We can use this class as follows:

>>> sl13 = StatsList3()
>>> for data in 2, 4, 4, 4, 5, 5, 7, 9:
sl3.append (data)

>>> sl3.mean
5.0

>>> sl3.stdev
2.0

We created an empty list and appended items to the list. As we maintain the sums as
items are appended, we can compute the mean and standard deviation extremely
quickly.

We did not provide a definition of __iter__ (). Instances of this class will, however,
be iterable in spite of this omission.

Because we've defined __getitem__ (), several things now work. Not only can we
get items, but it also turns out that there will be a default implementation that allows
us to iterate through the sequence of values.

Here's an example:

>>> s13[0]

2

>>> for x in sl3:
print (x)

OO b_LDN-

The preceding output shows us that a minimal wrapper around a collection is often
enough to satisfy many use cases.

[216]

Creating Containers and Collections Chapter 7

Note that we didn't, for example, make the list sizeable. If we attempt to get the size,
it will raise an exception, as shown in the following snippet:

>>> len(sl3)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: object of type 'StatsList3' has no len()

We might want toadd a __len__ () method that delegates the real work to the
internal _1ist object. We might also want to set __hash___ to None, which would be
prudent as this is a mutable object.

We might want to define __contains__ () and delegate this feature to the internal
_1list too. This will create a minimalist container that offers the low-level feature set
of a container.

Creating iterators with __iter__ ()

When our design involves wrapping an existing class, we'll need to be sure our class
is iterable. When we look at the documentation for collections.abc.Iterable,
we see that we only need to define __iter__ () to make an object iterable. The
__iter__ () method can either return a proper Iterator object, or it can be

a generator function.

Creating an Iterator object, while not terribly complex, is rarely necessary. It's
much simpler to create generator functions. For a wrapped collection, we should
always simply delegate the __iter__ () method to the underlying collection.

For our StatsList3 class, it would look like this:

def _ iter_ (self):
return iter(self._list)

This method function would delegate the iteration to the underlying list
object's Iterator.

[217]

Creating Containers and Collections Chapter 7

Creating a new kind of mapping

Python has a built-in mapping called dict, and numerous library mappings. In
addition to the collections module extensions to dict (defaultdict,
Counter, and ChainMap), there are several other library modules that contain
mapping-like structures.

The shelve module is an important example of another mapping. We'll look at this
in Chapter 11, Storing and Retrieving Objects via Shelve. The dbom module is similar to
shelve, in that it also maps a key to a value.

The mailbox module and email .message modules both have classes that
provide an interface that is similar to dict for the mailbox structure used to
manage local e-mails.

As far as design strategies go, we can extend or wrap one of the existing mappings to
add even more features.

We could upgrade Counter to add the mean and standard deviation to the data
stored as a frequency distribution. Indeed, we can also calculate the median and
mode very easily from this class.

Here's a Stat sCounter extension to Counter that adds some statistical functions:

import math
from collections import Counter

class StatsCounter (Counter) :

@property

def mean(self) -> float:
sum0 = sum(v for k, v in self.items())
suml = sum(k * v for k, v in self.items())

return suml / sumO

@property
def stdev(self) -> float:
sum0 = sum(v for k, v in self.items())
suml = sum(k * v for k, v in self.items())
sum2 = sum(k * k * v for k, v in self.items())
return math.sgrt (sum0 * sum2 - suml * suml) / sum0

[218]

Creating Containers and Collections Chapter 7

We extended the Counter class with two new methods to compute the mean and
standard deviation from the frequency distributions. The formulae are similar to the
examples shown earlier for the eager calculations on a 1ist object, even though
they're lazy calculations on a Counter object.

Weused sum0 = sum(v for k,v in self.items()) tocompute a sum of the
values, v, ignoring the k keys. We could use an underscore (_) instead of k to
emphasize that we're ignoring the keys. We could also use sum (v for v in
self.values ()) to emphasize that we're not using the keys. We prefer obvious
parallel structures for sum0 and sum1.

We can use this class to efficiently gather statistics and to perform quantitative
analysis on the raw data. We might run a number of simulations, using a Counter
object to gather the results.

Here's an interaction with a list of sample data that stands in for real results:

>>> sc = StatsCounter([2, 4, 4, 4, 5, 5, 7, 9])
>>> sc.mean

5.0

>>> sc.stdev

2.0

>>> sc.most_common (1)

[(4, 3)]

>>> list (sorted(sc.elements()))

[2, 4, 4, 4, 5, 5, 7, 9]

The results of most_common () are reported as a sequence of two-tuples with the

mode value (4) and the number of times the value occurred (3). We might want to get
the top three values to bracket the mode with the next two less-popular items. We get

several popular values with an evaluation such as sc.most_common (3).

The elements () method reconstructs a 1ist that's like the original data with the
items repeated properly.

From the sorted elements, we can extract the median, the middle-most item:

@property
def median(self) -> Any:
all = list(sorted(self.elements()))

return all[len(all) // 2]

[219]

Creating Containers and Collections Chapter 7

This method is not only lazy, it's rather extravagant with memory; it creates an entire
sequence of the available values merely to find the middle-most item.

While it is simple, this is often an expensive way to use Python.

A smarter approach would be to compute the effective length and mid-point via

sum (self.values ())//2.Once this is known, the keys can be visited in that order,
using the counts to compute the range of positions for a given key. Eventually, a key
will be found with a range that includes the midpoint.

The code would look something like the following:

@property

def median2 (self) -> Optional[float]:
mid = sum(self.values()) // 2
low = 0

for k, v in sorted(self.items()):
if low <= mid < low + v: return k
low += v

return None

We stepped through the keys and the number of times they occur to locate the key
that is midmost. Note that this uses the internal sorted () function, which is not
without its own cost.

Via timeit, we can learn that the extravagant version takes 9.5 seconds; the smarter
version takes 5.2 seconds.

Let's take a look at how to create a new kind of set in the next section.

Creating a new kind of set

Creating a whole new collection requires some preliminary work. We need to have
new algorithms or new internal data structures that offer significant improvements
over the built-in collections. It's important to do thorough Big-O complexity
calculations before designing a new collection. It's also important to use timeit after
an implementation to be sure that the new collection really is an improvement over
available built-in classes.

[220]

Creating Containers and Collections Chapter 7

We might, for example, want to create a binary search tree structure that will keep the
elements in a proper order. As we want this to be a mutable structure, we'll have to
perform the following kinds of design activities:

¢ Design the essential binary tree structure.

e Decide which structure is the basis: MutableSequence,
MutableMapping, Oor MutableSet.

¢ Look at the special methods for the collection in the collections.abc
section of the Python Standard Library documentation, section 8.4.1.

A binary search tree has nodes that contain a key value, and two branches: a less
than branch for all keys less than this node's key, and a greater than or equal to branch
for keys greater than, or equal to, this node's key.

We need to examine the fit between our collection and the Python ABCs:

¢ A binary tree doesn't fit well with some sequence features. Notably, we
don't often use an integer index with a binary tree. We most often refer to
elements in a search tree by their key. While we can impose an integer

O(n)

¢ A tree could be used for the keys of a mapping; this would keep the keys in
a sorted order at a relatively low cost.

index without too much difficulty, it will involve tree traversals.

e Itis a good alternative to a set or a Counter class because it can tolerate
multiple copies of a key, making it easily bag-like.

We'll look at creating a sorted multiset or a bag. This can contain multiple copies of an
object. It will rely on relatively simple comparison tests among objects.

This is a rather complex design. There are a great many details. To create a
background, it's important to read articles such as
http://en.wikipedia.org/wiki/Binary_search_tree. At the end of the previous
Wikipedia page are a number of external links that will provide further information.
It's essential to study the essential algorithms in books such as Introduction to
Algorithms by Cormen, Leiserson, Rivest, and Stein; Data Structures and Algorithms by
Aho, Ullman, and Hopcroft; or The Algorithm Design Manual by Steven Skiena.

[221]

http://en.wikipedia.org/wiki/Binary_search_tree

Creating Containers and Collections Chapter 7

Some design rationale

We're going to split the collection into two classes: TreeNode and Tree. This will
allow us to separate the design into the essential data collection, and a Pythonic
Facade design pattern required to match other collections.

The TreeNode class will contain the item as well as the more, less, and parent
references. This is the core collection of values. It handles insertion and removal. Also,
searching for a particular item in order to use __contains__ () or discard () will
be delegated to the TreeNode class.

The essential search algorithm's outline looks like this.

o If the target item is equal to the self item, then return self.

e If the target item is less than se1f. item, then recursively use
less.find(target item).

o If the target item is greater than self.item, then recursively use
more.find(target.item).

We'll use similar delegation to the TreeNode class for more of the real work of
maintaining the tree structure.

We'll use the Facade design pattern to wrap details of the TreeNode with a Pythonic
interface. This will define the visible, external definition the Tree itself. A Facade
design can also be called a wrapper; the idea is to add features required for a
particular interface. The Tree class provides the external interface required by a
MutableSet ABC and keeps these requirements distinct from the implementation
details in the TreeNode class.

The algorithms can be somewhat simpler if there's a root node that's empty and
always compares less than all other key values. This can be challenging in Python
because we don't know in advance what types of data the nodes might have; we can't
easily define a bottom value for the root node. Instead, we'll use a special case value
of None, and endure the overheads of if statements checking for the root node.

[222]

Creating Containers and Collections

Chapter 7

Defining the Tree class

We'll start with the wrapper or Facade class, Tree. This is the core of an extension to
the MutableSet class that provides the minimal method functions:

class Tree(collections.abc.MutableSet) :

def __init__ (self, source: Iterable[Comparable] = None)
self.root = TreeNode (None)
self.size = 0

if source:
for item in source:
self.root.add (item)
self.size += 1

def add(self, item: Comparable) -> None:

self.root.add (item)
self.size += 1

def discard(self, item: Comparable)

if self.root.more:

—> None:

try:
self.root.more.remove (item)
self.size —= 1

except KeyError:
pass

else:
pass
def __contains__(self, item: Any)

if self.root.more:

-> bool:

self.root.more.find(cast (Comparable,

return True
else:
return False

def __iter__ (self) -> Iterator[Comparable]:

if self.root.more:

for item in iter (self.root.more) :

yield item

Otherwise, the tree is empty.

def len_ (self) —> int:

return self.size

[223]

item))

—> None:

Creating Containers and Collections Chapter 7

The initialization design is similar to that of a Counter object; this class will accept an
iterable and load the elements into the structure. The source of data is provided with
a type hint of Iterable [Comparable]. This hint imposes a restriction on the kinds
of items which this collection can handle. If the collection is used with items that do
not support the proper comparable protocol methods, then mypy will report an error.

Here's the definition of the Comparable type hint:

class Comparable (metaclass=ABCMeta) :
@abstractmethod
def __1t__ (self, other: Any) —-> bool:
@abstractmethod
def __ge__ (self, other: Any) —-> bool:

The Comparable class definition is an abstraction which requires two methods:
1t () and __ge__ (). Thisis the minimum required for a class of objects to work
properly with the <, <=, >, and >= operators. This defines the comparable protocol
among objects that can be sorted or ranked.

The add () and discard () methods both update the tree, and also keep track of the
overall size. That saves counting nodes via a recursive traversal of the tree. These
methods also delegate their work to the TreeNode object at the root of the tree.

The __contains__ () special method performs a recursive find. The initial check to
be sure the tree contains a value in the root node is required by mypy. Without the i f
statement, the type hints suggest the more attribute could be None.

The __iter__ () special method is a generator function. It also delegates the real
work to recursive iterators within the TreeNode class.

We defined discard (); mutable sets require this to be silent when attempting to
discard the missing keys. The abstract superclass provides a default implementation
of remove (), which raises an exception if a key is not found. Both method functions
must be present; we defined discard () based on remove (), by silencing the
exception. In some cases, it might be easier to define remove () based on discard (),
by raising an exception if a problem is found.

Because this class extends the Mut ableSet abstraction, numerous features are
provided automatically. This saves us from copy-and-paste programming to create a
number of boilerplate features. In some cases, our data structure may have more
efficient implementations than the defaults, and we may want to override additional
methods inherited from the abstract superclass.

[224]

Creating Containers and Collections Chapter 7

Defining the TreeNode class

The overall Tree class relies on the TreeNode class to handle the implementation
details of adding, removing, and iterating through the various items in the bag. This
class is rather large, so we'll present it in four sections.

The first part shows the essential elements of initialization, representation, and how
the attributes are made visible:

class TreeNode:

def _ _init_ (
self,
item: Optional [Comparable],
less: Optional ["TreeNode"] = None,
more: Optional["TreeNode"] = None,
parent: Optional["TreeNode"] = None,
) —> None:
self.item = item

self.less less
self.more = more
if parent:

self.parent = parent

@property
def parent (self) -> Optional["TreeNode"]:
return self.parent_ref ()

@parent.setter
def parent (self, value: "TreeNode"):
self.parent_ref = weakref.ref (value)

def __repr__ (self) -> str:
return f"TreeNode ({self.item!r}, {self.less!r},

{self.more!r})"

Each individual node must have a reference to an item. Additional nodes with items
that compare as less than the given item, or more than the given item are optional.
Similarly, a parent node is also optional.

[225]

Creating Containers and Collections Chapter 7

The property definitions for the parent methods are used to ensure that the parent
attribute is actually a weakref attribute, but it appears like a strong reference. For
more information on weak references, see chapter 3, Integrating Seamlessly - Basic
Special Methods. We have mutual references between a TreeNode parent object and its
children objects; this circularity could make it difficult to remove TreeNode objects.
Using a weakref breaks the circularity, allowing reference counting to remove nodes
quickly when they are no longer referenced.

Note that the TreeNode type hints are references to the class from inside the class
definition. This circularity can be a syntax problem because the class hasn't been fully
defined. To make valid self-referential type hints, mypy allows the use of a string.
When mypy is run, the string resolves to the proper type object.

Here are the methods for finding and iterating through the nodes:

def find(self, item: Comparable) -> "TreeNode":
if self.item is None: # Root
if self.more:
return self.more.find(item)
elif self.item == item:
return self
elif self.item > item and self.less:
return self.less.find(item)
elif self.item < item and self.more:
return self.more.find(item)
raise KeyError

def __iter__ (self) —-> Iterator[Comparable]:
if self.less:
yield from self.less
if self.item:
yield self.item
if self.more:
yield from self.more

We saw the £ind () method, which performs a recursive search from a tree through
the appropriate subtree looking for the target item. There are a total of six cases:

e When this is the root node of the tree, we'll simply skip it.
e When this node has the target item, we'll return it.

e When the target item is less than this node's item and there is a branch on
the less side, we'll descend into that subtree to search.

[226]

Creating Containers and Collections Chapter 7

e When the target item is more than this node's item and there is a branch on
the more side, we'll descend into that subtree to search.

¢ There are two remaining cases: the target item is less than the current node,
but there's no less branch or the target item is more than the current node,
but there's no more branch. These two cases both mean the item cannot be
found in the tree, leading to a KeyError exception.

The __iter_ () method does what's called an inorder traversal of this node and its
subtrees. As is typical, this is a generator function that yields the values from iterators
over each collection of subtrees. Although we could create a separate iterator class
that's tied to our Tree class, there's little benefit when this generator function does
everything we need.

The result of the __iter_ () hasatype hint of Iterator [Comparable]. This
reflects the minimal constraint placed on the items contained in the tree.

Here's the next part of this class to add a new node to a tree:

def add(self, item: Comparable):
if self.item is None: # Root Special Case
if self.more:
self.more.add (item)
else:
self.more = TreeNode (item, parent=self)
elif self.item >= item:
if self.less:
self.less.add(item)
else:
self.less = TreeNode (item, parent=self)
elif self.item < item:
if self.more:
self.more.add (item)
else:
self.more = TreeNode (item, parent=self)

This is the recursive search for the proper place to add a new node. The structure
parallels the find () method.

Finally, we have the (more complex) processing to remove a node from the tree. This
requires some care to relink the tree around the missing node:

def remove (self, item: Comparable):
Recursive search for node
if self.item is None or item > self.item:
if self.more:
self.more.remove (item)

[227]

Creating Containers and Collections Chapter 7

else:
raise KeyError
elif item < self.item:
if self.less:
self.less.remove (item)

else:
raise KeyError
else: # self.item == item
if self.less and self.more: # Two children are present
successor = self.more._least ()
self.item = successor.item

if successor.item:
successor.remove (successor.item)
elif self.less: # One child on less
self._replace(self.less)
elif self.more: # One child on more
self._replace(self.more)
else: # Zero children
self._replace (None)

def _least(self) —-> "TreeNode":
if self.less is None:
return self
return self.less._least ()

def _replace(self, new: Optional["TreeNode"] = None) -> None:
if self.parent:
if self == self.parent.less:
self.parent.less = new
else:
self.parent.more = new
if new is not None:
new.parent = self.parent

The remove () method has two sections. The first part is the recursive search for the
target node.

Once the node is found, there are three cases to consider:

e When we delete a node with no children, we simply delete it and update
the parent to replace the link with None. The use of a weak reference from
the removed node back to the parent, means memory cleanup and reuse is
immediate.

[228]

Creating Containers and Collections Chapter 7

¢ When we delete a node with one child, we can push the single child up to
replace this node under the parent.

e When there are two children, we need to restructure the tree. We locate the
successor node (the least item in the more subtree). We can replace the to-
be-removed node with the content of this successor. Then, we can remove
the duplicative former successor node.

We rely on two private methods. The _least () method performs a recursive search
for the least-valued node in a given tree. The _replace () method examines a parent
to see whether it should touch the less or more attribute.

Demonstrating the binary tree bag

We built a complete new collection. The ABC definitions included a number of
methods automatically. These inherited methods might not be particularly efficient,
but they're defined, they work, and we didn't write the code for them.

>>> sl = Tree(["Item 1", "Another", "Middle"])
>>> list(sl)

['Another', 'Item 1', 'Middle']

>>> len(sl)

3

>>> s2 = Tree(["Another", "More", "Yet More"])

>>>

>>> union= sl | s2

>>> list (union)

['Another', 'Another', 'Item 1', 'Middle', 'More', 'Yet More']
>>> len (union)

6

>>> union.remove ('Another')
>>> list (union)
['Another', 'Item 1', 'Middle', 'More', 'Yet More']

This example shows us that the set union operator for set objects works properly,
even though we didn't provide code for it specifically. As this is a bag, items are
duplicated properly, too.

[229]

Creating Containers and Collections Chapter 7

Design considerations and tradeoffs

When working with containers and collections, we have a multistep design strategy:

1. Consider the built-in versions of sequence, mapping, and set.

2. Consider the library extensions in the collection module, as well as extras
such as heapg, bisect, and array.

3. Consider a composition of existing class definitions. In many cases, a list of
tuple objects or a dict of lists provides the needed features.

4. Consider extending one of the earlier mentioned classes to provide
additional methods or attributes.

5. Consider wrapping an existing structure as another way to provide
additional methods or attributes.

6. Finally, consider a novel data structure. Generally, there is a lot of careful

analysis available. Start with Wikipedia articles such as this
one: http://en.wikipedia.org/wiki/List_of_data_structures.

Once the design alternatives have been identified, there are two parts of the
evaluation left:

e How well the interface fits with the problem domain. This is a relatively
subjective determination.

e How well the data structure performs as measured with timeit. This is an
entirely objective result.

It's important to avoid the paralysis of analysis. We need to effectively find the proper
collection.

In most cases, it is best to profile a working application to see which data structure is
the performance bottleneck. In some cases, consideration of the complexity factors for
a data structure will reveal its suitability for a particular kind of problem before
starting the implementation.

Perhaps the most important consideration is this: for the highest
performance, avoid search.

Avoiding search is the reason sets and mappings require hashable objects. A hashable
object can be located in a set or mapping with almost no processing. Locating an item
by value (not by index) in a list can take a great deal of time.

[230]

http://en.wikipedia.org/wiki/List_of_data_structures

Creating Containers and Collections Chapter 7

Here's a comparison of a bad set-like use of a list and a proper use of a set:

>>> import timeit

>>> timeit.timeit ('l.remove(10); l.append(10)', 'l =

list (range (20)) ')

0.8182099789992208

>>> timeit.timeit ('l.remove(10); 1l.add(10)', 'l = set (range(20))"')
0.30278149300283985

We removed and added an item from a list, as well as a set.

Clearly, abusing a list to get it to perform set-like operations makes the collection take
2.7 times as long to run.

As a second example, we'll abuse a list to make it mapping-like. This is based on a
real-world example where the original code had two parallel lists to mimic the keys
and values of a mapping.

We'll compare a proper mapping with two parallel lists, as follows:

>>> timeit.timeit ('i = k.index(10); v[i]= 0', 'k=list (range(20));
v=1list (range (20))"')

0.6549435159977293

>>> timeit.timeit ('m[10] = 0',

'm=dict (zip (list (range (20)),list (range(20))))"')
0.0764331009995658

The first example uses two parallel lists. One list is used to look up a value, and then a
change is made to the parallel list. In the other case, we simply updated a mapping.

Clearly, performing an index and update on two parallel lists is a horrifying mistake.
It takes 8.6 times as long to locate something via 1ist.index () as it does to locate it
via a mapping and the hash value.

Summary

In this chapter, we looked at a number of built-in class definitions. The built-in
collections are the starting place for most design work. We'll often start with tuple,
list, dict, or set. We can leverage the extension to tuple, created by
namedtuple () for an application's immutable objects.

[231]

Creating Containers and Collections Chapter 7

Beyond these classes, we have other standard library classes in the collections
mode that we can use:

® deque
e ChainMap
e defaultdict

® Counter

We have three standard design strategies, too. We can wrap any of these existing
classes, or we can extend a class.

Finally, we can also invent an entirely new kind of collection. This requires defining a
number of method names and special methods.

In the next chapter, we'll closely look at the built-in numbers and how to create new
kinds of numbers. As with containers, Python offers a rich variety of built-in
numbers. When creating a new kind of number, we'll have to define numerous
special methods.

After looking at numbers, we can look at some more sophisticated design techniques.
We'll look at how we can create our own decorators and use those to simplify the
class definition. We'll also look at using mixin class definitions, which are similar to
the ABC definitions.

[232]

Creating Numbers

We can extend the ABC abstractions in the numbers module to create new kinds of
numbers. We might need to do this to create numeric types that fit our problem
domain more precisely than the built-in numeric types. The abstractions in the
numbers module need to be looked at first, because they define the existing built-in
classes. Before working with new kinds of numbers, it's essential to see how the
existing numbers work.

We'll digress to look at Python's operator-to-method mapping algorithm. The idea is
that a binary operator has two operands; either operand can define the class that
implements the operator. Python's rules for locating the relevant class are essential to
decide what special methods to implement.

The essential arithmetic operators, such as +, -, *, /, //, %, and **, form the backbone
of numeric operations. There are additional operators that include *, |, and &; these
are used for the bit-wise processing of integers. They're also used as operators among
sets. There are some more operators in this class, including << and >>. The
comparison operators were covered in Chapter 3, Integrating Seamlessly — Basic Special
Methods. These include <, >, <=, >=, ==, and ! =. We'll review and extend our study of
the comparison operators in this chapter.

There are a number of additional special methods for numbers. These include the
various conversions to other built-in types. Python also defines in-place combinations
of an assignment with an operator. These include +=, -=, *=, /=, / /=, %=, **=, &=, |=,
~=, >>=, and <<=. These are more appropriate for mutable objects than numbers.
We'll finish the chapter by summarizing some of the design considerations that go
into extending or creating new numbers.

Creating Numbers Chapter 8

In this chapter, we will cover the following topics:

¢ ABCs of numbers
The arithmetic operator's special method

Creating a numeric class

Computing a numeric hash

Implementing other special methods

Optimization with the in-place operators

Technical requirements

The code files for this chapter are available at https://git.io/fj2Ua.

ABCs of numbers

The numbers package provides a tower of numeric types that are all implementations
of numbers.Number. Additionally, the fractions and decimal modules provide
extension numeric types: fractions.Fraction and decimal.Decimal. These
definitions roughly parallel the mathematical thought on the various classes of
numbers. An article available at http://en.wikipedia.org/wiki/Number_theory
contains numerous links to in-depth explanations; for example, An Introduction to the
Theory of Numbers .

The essential question is how well computers can implement the underlying
mathematical abstractions. To be more specific, we want to be sure that anything that
is computable in the abstract world of mathematics can be computed (or
approximated) using a concrete computer. This is why the question of computability
is so important. The idea behind a Turing complete programming language is that it
can compute anything that is computable by an abstract Turing machine. A helpful
article can be found at http://en.wikipedia.org/wiki/Computability_theory;
additional links in this article include https://www.encyclopediaofmath.org/index.
php?title=p/t094460.

I recommend reading the Wikipedia articles on number theory and
computability theory, and other concepts that I discuss in the
chapter. The articles and the additional links present in the reference
sections of these sources will give you more background
information than can be covered here.

[234]

https://git.io/fj2Ua
https://git.io/fj2Ua
https://git.io/fj2Ua
https://git.io/fj2Ua
https://git.io/fj2Ua
https://git.io/fj2Ua
https://git.io/fj2Ua
https://git.io/fj2Ua
https://git.io/fj2Ua
http://en.wikipedia.org/wiki/Number_theory
https://books.google.com/books?id=rey9wfSaJ9EC
http://en.wikipedia.org/wiki/Computability_theory
https://www.encyclopediaofmath.org/index.php?title=p/t094460
https://www.encyclopediaofmath.org/index.php?title=p/t094460
https://www.encyclopediaofmath.org/index.php?title=p/t094460
https://www.encyclopediaofmath.org/index.php?title=p/t094460
https://www.encyclopediaofmath.org/index.php?title=p/t094460
https://www.encyclopediaofmath.org/index.php?title=p/t094460
https://www.encyclopediaofmath.org/index.php?title=p/t094460
https://www.encyclopediaofmath.org/index.php?title=p/t094460
https://www.encyclopediaofmath.org/index.php?title=p/t094460
https://www.encyclopediaofmath.org/index.php?title=p/t094460
https://www.encyclopediaofmath.org/index.php?title=p/t094460
https://www.encyclopediaofmath.org/index.php?title=p/t094460
https://www.encyclopediaofmath.org/index.php?title=p/t094460
https://www.encyclopediaofmath.org/index.php?title=p/t094460
https://www.encyclopediaofmath.org/index.php?title=p/t094460
https://www.encyclopediaofmath.org/index.php?title=p/t094460
https://www.encyclopediaofmath.org/index.php?title=p/t094460
https://www.encyclopediaofmath.org/index.php?title=p/t094460

Creating Numbers Chapter 8

Python defines the following abstractions and their associated implementation
classes. Further, these classes form an inheritance hierarchy, where each abstract class
inherits from the class above it. As we move down the list, the classes have more
features. As there are very few classes, as follows, it forms a tower rather than a tree:

® numbers.Complex implemented by complex
® numbers.Real implemented by float
® numbers.Rational implemented by fractions.Fraction

e numbers.Integral implemented by int

Additionally, we have decimal.Decimal, which is a bit like f1oat ; itisn't a proper
subclass of numbers.Real, but is somewhat like it. While it may be obvious, it's still
essential to repeat the fact that the £1oat value is merely an approximation; it is not

exact.

Don't be surprised by this sort of thing. The following example shows how a float
value is only an approximation for real numbers:

>>> (105+(1/29)-105) *29
0.9999999999998153

Ordinary algebra suggests that this value should be equal to one. Because of the
nature of the floating-point approximations, the actual result differs from the abstract
ideal. In addition to the numeric class definitions, there are also a number of
conversions among the various classes. It's not possible to convert from every type to
every other type, so we must work out a matrix that shows the conversions that work
and those conversions that can't work. The following list is a summary:

e complex: This can't be converted to any other type. A complex value can
be decomposed into the real and imag portions, both of which are float
values.

e float: This can be converted explicitly to any type, including
decimal.Decimal. Arithmetic operators won't implicitly coerce a float
value to Decimal.

e Fractions.Fraction: This can be converted to any of the other types,
except decimal.Decimal. To get to decimal requires a two-part
operation: first to float, and second to decimal.Decimal. This leads to
an approximation.

e int: This can be converted to any of the other types.

e Decimal: This can be converted to any other type. It is not implicitly
coerced to other types via arithmetic operations.

[235]

Creating Numbers Chapter 8

The up and down conversions come from the tower of numeric abstractions
mentioned earlier.

Let's see how to decide which type to use in the next section.

Deciding which types to use

Because of the conversions, we see the following four general domains of numerical
processing:

¢ Complex: Once we get involved in complex math, we'll be using complex,
and float, plus the cmath module. We probably aren't going to use
Fraction or Decimal at all. However, there's no reason to impose
restrictions on the numeric types; most numbers can be converted to
complex.

e Currency: For currency-related operations, we absolutely must use
Decimal. Generally, when doing currency calculations, there's no good
reason to mix the decimal values with non-decimal values. Sometimes,
we'll use the int values, but there's no good reason to work with float or
complex along with Decimal. Remember, floats are approximations, and
that's unacceptable when working with currency.

e Bit Kicking: For operations that involve bit and byte processing, we'll
generally use int, only int, and nothing but int.

¢ Conventional: This is a broad, vague everything else category. For most
conventional mathematical operations, int, float, and Fraction are all
interchangeable. Indeed, a well-written function can often be properly
polymorphic; it will work perfectly well with any numeric type. Python
types, particularly float and int, will participate in a variety of implicit
conversions. This makes the selection of a specific numeric type for these
kinds of problems somewhat moot.

These are generally obvious aspects of a given problem domain. It's often easy to
distinguish applications that might involve science or engineering and complex
numbers from applications that involve financial calculations, currency, and decimal
numbers. It's important to be as permissive as possible in the numeric types that are
used in an application. Needlessly narrowing the domain of types via the
isinstance () testis often a waste of time and code.

In the next section, we'll talk about method resolution and the reflected operator
concept.

[236]

Creating Numbers Chapter 8

Method resolution and the reflected operator
concept

The arithmetic operators (+, -, *, /, //, %, **, and so on) all map to special method
names. When we provide an expression such as 355+113, the generic + operator will
be mapped to a concrete __add__ () method of a specific numeric class. This example
will turn out to be evaluated as though we had written 355.__add__(113). The
simplest rule is that the left-most operand determines the class of the operator being
used.

But wait, there's more! When we have an expression with mixed types, Python may
end up with two available implementations of the special method, one in each class.
Consider 7-0. 14 as an expression. Using the left-side int class, this expression will
be attempted as 7.__sub__ (0.14). This involves an unpleasant complexity, since
the argument to an int operator is a float value 0.14 and converting float to int
could potentially lose precision. Converting up the tower of types (from int toward
complex) won't lose precision. Converting down the tower of types implies a
potential loss of precision.

Using the right-hand side f1oat version, however, this expression will be attempted
as 0.14.__rsub__ (7). In this case, the argument to a f1oat operator is an

int value 7; converting int up the tower to f1oat doesn't (generally) lose
precision. (A truly giant int value can lose precision; however, that's a technical
quibble, not a general principle.)

The __rsub__ () operation is called reflected subtraction. The X.___sub__ (Y)
operation is the expected subtraction, and the A.___rsub__ (B) operation is the
reflected subtraction; the implementation method in the latter comes from the right-
hand side operand's class. So far, we've seen the following two rules:

e Rule one: try the left-hand side operand's class first. If that works, good. If
the operand returns Not Implemented as a value, then use rule two.

¢ Rule two: try the right-hand side operand with the reflected operator. If
that works, good. If it returns Not Implemented, then it really is not
implemented, so an exception must be raised.

The notable exception is when the two operands happen to have a subclass
relationship.

[237]

Creating Numbers Chapter 8

The following additional rule applies before the first pair rules as a special case:

e If the right operand is a subclass of the left, and the subclass defines the
reflected special method name for the operator, then the subclass reflected
operator will be tried. This allows a subclass override to be used, even if the
subclass operand is on the right-hand side of the operator.

¢ Otherwise, use rule one and try the left side.

Imagine we wrote a subclass of f1oat, called MyFloat. In an expression such

as 2.0-MyFloat (1), the right operand is of a subclass of the left operand's class.
Because of this subclass relationship, MyFloat (1) .__rsub__(2.0) will be tried
first. The point of this rule is to give precedence to the subclass.

This means that a class that will do implicit coercion from other types must
implement the forward as well as the reflected operators. When we implement or
extend a numeric type, we must work out the conversions that our type is able to do.

In the next section, we'll take a look at the arithmetic operator's special methods.

The arithmetic operator's special
methods

There are a total of 13 binary operators and their associated special methods. We'll
focus on the obvious arithmetic operators first. The special method names match the
operators (and functions), as shown in the following table:

Method Operator
object.__add__ (self, other) +
object.__sub__(self, other) -
object.__mul__ (self, other) *
object.__truediv__ (self, other) /
object.__floordiv__(self, other) //
object.__mod__ (self, other) %
object.__divmod__ (self, other) divmod ()
object.__pow__ (self, other[, modulo])|pow() as well as **

[238]

Creating Numbers Chapter 8

And yes, interestingly, two functions are included with the various symbolic
operators. There are a number of unary operators and functions, which have special
method names as shown in the following table:

Method Operator
object.__neg__ (self) -
object.__pos__ (self) +
object.__abs__ (self) abs ()
object._ _complex_ (self) complex ()
object.__int__ (self) int ()
object.__float__ (self) float ()
object.__round__ (self[, n]) round ()
object.__trunc__(self[, n]) math.trunc ()
object.__ceil_ (self[, nl) math.ceil ()
object.__ _floor_ (self[, n]) math.floor ()

And yes, there are a lot of functions in this list, too. We can tinker with Python's
internal trace to see what's going on under the hood. We'll define a simplistic trace
function that will provide us with a little bit of visibility into what's going on:

def trace(frame, event, arg):
if frame.f_code.co_name.startswith("__"):
print (frame.f_code.co_name, frame.f_code.co_filename, event)

This function will dump special method names when the code associated with the
traced frame has a name that starts with "__". We can install this trace function in
Python using the following code:

import sys
sys.settrace (trace)

Once installed, everything passes through our trace () function. We're filtering the
trace events for special method names. We'll define a subclass of a built-in class so
that we can explore the method resolution rules:

class noisyfloat(float):

def _ _add__ (self, other):
print (self, "+", other)
return super().__add__ (other)
def _ radd__ (self, other):
print (self, "r+", other)
return super().__radd__ (other)

[239]

Creating Numbers Chapter 8

This class overrides just two of the operator's special method names. When we add
noisyfloat values, we'll see a printed summary of the operation. Plus, the trace will
tell us what's going on. The following is the interaction that shows Python's choice of
class to implement a given operation:

>>> x = noisyfloat (2)
>>> x+3
__add__ <stdin> call
2.0 + 3
5.0
>>> 24x
__radd__ <stdin> call
2.0 r+ 2
4.0
>>> x+2.3
__add__ <stdin> call
2.0 + 2.3
4.3
>>> 2.3+x

radd__ <stdin> call
r+ 2.3

N

.0
.3

From x+3, we see how noisyfloat+int provided the int object, 3, to the

__add__ () method. This value was passed to the superclass, f1oat, which handled
the coercion of 3 to a float and did the addition, too. 2+x shows how the right-hand
side noisyfloat version of the operation was used. Again, int was passed to the
superclass that handled the coercion to f1oat. From x+2.3, we come to know that
noisyfloat+float used the subclass that was on the left-hand side. On the other
hand, 2.3+x shows how float+noisyfloat used the subclass on the right-hand
side and the reflected __radd__ () operator.

Let's see how to create a numeric class.

Creating a numeric class

We'll try to design a new kind of number. This is no easy task when Python already
offers integers of indefinite precision, rational fractions, standard floats, and decimal
numbers for currency calculations. There aren't many features missing from this list.

[240]

Creating Numbers Chapter 8

We'll define a class of scaled numbers. These are numbers that include an integer
value coupled with a scaling factor. We can use these for currency calculations. For
many currencies of the world, we can use a scale of 100 and do all our calculations to
the nearest cent.

The advantage of scaled arithmetic is that it can be done very simply by using low-
level hardware instructions. We could rewrite this module to be a C-language module
and exploit hardware speed operations. The disadvantage of inventing new scaled
arithmetic is that the decimal package already does a very neat job of precise
decimal arithmetic.

We'll call this FixedPoint class because it will implement a kind of fixed decimal
point number. The scale factor will be a simple integer, usually a power of ten. In
principle, a scaling factor that's a power of two could be considerably faster, but
wouldn't be ideally suited for currency.

The reason a power of two scaling factor can be faster is that we can replace
value* (2**scale) with value << scale, and replace value/ (2**scale) with
value >> scale. The left and right shift operations are often hardware
instructions that are much faster than multiplication or division.

Ideally, the scaling factor is a power of ten, but we don't explicitly enforce this. It's a
relatively simple extension to track both scaling power and the scale factor that goes
with the power. We might store two as the power and as the factor. We've simplified
this class definition to just track the factor.

Let's see how to define FixedPoint initialization in the next section.

Defining FixedPoint initialization

We'll start with initialization, which includes conversions of various types to the
FixedPoint values as follows:

import numbers
import math
from typing import Union, Optional, Any

class FixedPoint (numbers.Rational) :
__slots__ = ("value", "scale", "default_format")

def _ _init_ (self, value: Union['FixedPoint', int, float], scale:
int = 100) —> None:
self.value: int

[241]

Creating Numbers Chapter 8

self.scale: int
if isinstance (value, FixedPoint):
self.value = value.value
self.scale value.scale
elif isinstance(value, int):
self.value value
self.scale = scale
elif isinstance (value, float):
self.value = int (scale * wvalue + .5) # Round half up
self.scale = scale
else:
raise TypeError (f"Can't build FixedPoint from {value!r} of
{type (value) }")
digits = int (math.logl0 (scale))
self.default_format = "{{0:.{digits}f}}".format (digits=digits)

def str_ (self) -> str:

return self._ format_ (self.default_format)

def __repr__ (self) —-> str:
return
f"{self.__class_ ._ _name__ :s} ({self.value:d},scale={self.scale:d})"
def __ _format__ (self, specification: str) -> str:
if specification == "":
specification = self.default_format

return specification.format (self.value / self.scale)

Our FixedPoint class is defined as a numbers.Rational subclass. We're going to
wrap two integer values, scale and value, and follow the general definitions for
fractions. This requires a large number of special method definitions. The
initialization is for an immutable object, so it overrides __new__ () instead of
__init__ (). It defines a limited number of slots to prevent the adding of any further
attributes. The initialization includes several kinds of conversions as follows:

e If we're given another FixedPoint object, we'll copy the internal attributes
to create a new FixedPoint object that's a kind of clone of the original. It
will have a unique ID, but we can be sure it has the same hash value and
compares as equal, making the clone largely indistinguishable.

e When given integral or rational values (concrete classes of int or float),
these are used to set the value and scale attributes.

e We can add cases to handle decimal.Decimal and
fractions.Fraction, as well as parsing input string values.

[242]

Creating Numbers Chapter 8

We've defined three special methods to produce string results: __str__ (),
_repr__(),and __format__ ().For the format operation, we've decided to
leverage the existing floating-point features of the format specification language.
Because this is a rational number, we need to provide numerator and denominator
methods.

Note that we could have also started with wrapping the existing
fractions.Fraction class. In order to show more of the programming required,
we opted to start from the abstract Rational class.

Let's see how to define FixedPoint binary arithmetic operators in the next section.

Defining FixedPoint binary arithmetic
operators

The sole reason for defining a new class of numbers is to overload the arithmetic

operators. Each FixedPoint object has two parts: value and scale. We can say
Av

A=
some value, 4, is a fraction of the value 4. divided by the scaling factor 4:: = 4.

Note that we've worked out the algebra in the following example using correct, but
inefficient, floating point expressions, we'll discuss the slightly more efficient, pure
integer operations.

| &

B, _ AyBs + ByA,
4=

B=%4 "3, A.B,

b

7

.\ D g A
The general form for addition (and subtraction) is this: "
which can create a result with a lot of useless precision.

Imagine adding 9.95 and 12.95. We'd have (in principle) 229000/10000. This can be
properly reduced to 2290/100. The problem is that it also reduces to 229/10, which is
no longer in cents. We'd like to avoid reducing fractions in a general way and instead
stick with cents or mills to the extent possible.

B,

4, y
A+B_Z+E:

We can identify two cases for

e The scale factors match: In this case, 4s = Bs and the sum is
_ A, B, _A+B,
APTL AT T A When adding a FixedPoint value and a plain old
integer value, this will also work. We can force the integer to have the

required scale factor.

[243]

Creating Numbers Chapter 8

e The scale factors don't match: When 4. # ., it can help to produce a result
scale Bs with the maximum scale factor of the two input values:
R,

R, =max(4,, B,) From this, we can compute two intermediate scale factors: 4.
R

and B_ One of those scale factors will be 1, and the other will be less than 1.
We can now add with a common value in the denominator. Algebraically,

A,Ry B,R; ARy + B,R;
i B _ A& B,
ogt AR, B.R, R
2] s . 7
it's 4 B This can be further optimized into two cases

since one of the factors is 1 and the other is a power of 10.

p_ A B _AB,

We can't really optimize multiplication. It's B4 "B, T 4B, The precision really
must increase when we multiply the FixedPoint values.

.= B _AB
Division is multiplication by an inverse: 484 "B T 4B, If A and B have the same
scale, these values will cancel so that we do have a handy optimization available.
However, this changes the scale from cents to wholes, which might not be

appropriate.

The following is what the forward operators, built around a similar boilerplate, look
like:

def _ _add__ (self, other: Union['FixedPoint', int]) -> 'FixedPoint':
if not isinstance (other, FixedPoint):
new_scale = self.scale
new_value = self.value + other * self.scale
else:
new_scale = max(self.scale, other.scale)
new_value = self.value * (new_scale // self.scale) +

other.value * (
new_scale // other.scale
)

return FixedPoint (int (new_value), scale=new_scale)

def _ _sub__ (self, other: Union['FixedPoint', int]) -> 'FixedPoint':
if not isinstance (other, FixedPoint):
new_scale = self.scale
new_value = self.value - other * self.scale
else:
new_scale = max(self.scale, other.scale)
new_value = self.value * (new_scale // self.scale) -

other.value * (
new_scale // other.scale
)

return FixedPoint (int (new_value), scale=new_scale)

[244]

Creating Numbers Chapter 8

def _ mul_ (self, other: Union['FixedPoint', int]) -> 'FixedPoint':
if not isinstance (other, FixedPoint):
new_scale = self.scale
new_value = self.value * other
else:
new_scale = self.scale * other.scale
new_value = self.value * other.value

return FixedPoint (int (new_value), scale=new_scale)

def _ truediv__ (self, other: Union['FixedPoint', int]) ->

'FixedPoint':
if not isinstance (other, FixedPoint):
new_value = int (self.value / other)
else:
new_value = int (self.value / (other.value / other.scale))

return FixedPoint (new_value, scale=self.scale)

def _ floordiv__ (self, other: Union['FixedPoint', int]) ->
'FixedPoint':
if not isinstance (other, FixedPoint):
new_value = int (self.value // other)
else:
new_value = int (self.value // (other.value / other.scale))

return FixedPoint (new_value, scale=self.scale)

def _ mod__ (self, other: Union['FixedPoint', int]) -> 'FixedPoint':
if not isinstance (other, FixedPoint):
new_value = (self.value / self.scale) % other
else:
new_value = self.value % (other.value / other.scale)

return FixedPoint (new_value, scale=self.scale)

def __pow__ (self, other: Union['FixedPoint', int]) -> 'FixedPoint':
if not isinstance (other, FixedPoint):
new_value = (self.value / self.scale) ** other
else:
new_value = (self.value / self.scale) ** (other.value /
other.scale)
return FixedPoint (int (new_value) * self.scale, scale=self.scale)

For the simple addition, subtraction, and multiplication cases, we've provided
versions that can be optimized to eliminate some of the relatively slow floating point
intermediate results.

[245]

Creating Numbers Chapter 8

Each of these operators returns an instance of the FixedPoint class. We can't use the
name inside the class definition itself. We've provided a string version of the name.
The mypy utility will resolve this string to the proper type name when it is used to
check the type hints.

In some cases, we've used Union['FixedPoint', int] to explicitly support integer
coercion. This type hint tells that mypy the method will accept either an instance of
the FixedPoint class or a simple int object.

For the two divisions, the __mod__ (), and __pow__ () methods, we haven't done any
optimization to try and eliminate noise being introduced via floating-point division.
Instead, we've provided a working Python implementation that can be used with a
suite of unit tests as a basis for optimization and refactoring.

It's important to note that the division operations can properly reduce the scale
factors. However, changing the scale may be undesirable. When doing currency
work, we might divide the currency rate (dollars) by a non-currency value (hours) to
get the dollars-per-hour result. The proper answer might have zero relevant decimal
places. This would be a scale of 1, but we might want to force the value to have a
cents-oriented scale of 100. This implementation ensures that the left-hand side
operand dictates the desired number of decimal places.

Now, let's see how to define FixedPoint unary arithmetic operators.

Defining FixedPoint unary arithmetic
operators
The following are the unary operator method functions:

def _ abs_ (self) —-> 'FixedPoint':
return FixedPoint (abs (self.value), self.scale)

def _ float_ (self) -> float:
return self.value / self.scale

def __int_ (self) —-> int:
return int (self.value / self.scale)

def _ trunc__ (self) —-> int:
return int (math.trunc (self.value / self.scale))

def _ ceil (self) -> int:
return int (math.ceil (self.value / self.scale))

[246]

Creating Numbers Chapter 8

def _ floor_ (self) —-> int:
return int (math.floor (self.value / self.scale))

def __round__ (self, ndigits: Optional[int] = 0) -> Any:
return FixedPoint (round(self.value / self.scale, ndigits=ndigits),
self.scale)

def __neg__(self) —-> 'FixedPoint':
return FixedPoint (-self.value, self.scale)

def __pos__(self) —-> 'FixedPoint':
return self

Forthe _ round_ (), __trunc_ (), __ceil_ (),and __floor__ () operators,
we've delegated the work to a Python library function. There are some potential
optimizations, but we've taken the lazy route of creating a float approximation and
used that to create the desired result. This suite of methods ensures that our
FixedPoint objects will work with a number of arithmetic functions. Yes, there are a
lot of operators in Python. This isn't the entire suite. We haven't provided
implementations for the comparison or bit-kicking operators. The comparisons are
generally similar to arithmetic operations, and are left as an exercise for the reader.
The bit-wise operators (&, |, *, and ~) don't have a clear meaning outside the
domains, like values or sets, so we shouldn't implement them.

In the next section, we'll see how to implement FixedPoint reflected operators.

Implementing FixedPoint reflected operators

Reflected operators are used in the following two cases:

¢ The right-hand operand is a subclass of the left-hand operand. In this case,
the reflected operator is tried first to ensure that the subclass overrides the
parent class.

¢ The left-hand operand's class doesn't implement the special method
required. In this case, the right-hand operand's reflected special method is
used.

[247]

Creating Numbers Chapter 8

The following table shows the mapping between reflected special methods and
operators:

Method Operator
object.__radd__(self, other) +
object.__rsub__ (self, other) -
object.__rmul__ (self, other) *
object.__rtruediv__ (self, other)
object.__rfloordiv__(self, other) //
object.__rmod__ (self, other) %
object.__rdivmod__ (self, other) divmod ()

object.__rpow__(self, other[, modulol)|pow () as well as **

These reflected operation special methods are also built around a common
boilerplate. Since these are reflected, the order of the operands in subtraction,
division, modulus, and power is important. For commutative operations, such as
addition and multiplication, the order doesn't matter. The following are the
implementations for the reflected operators:

def _ radd__ (self, other: Union['FixedPoint', int]) -> 'FixedPoint':
if not isinstance (other, FixedPoint):
new_scale = self.scale
new_value = other * self.scale + self.value
else:

new_scale max (self.scale, other.scale)
new_value = other.value * (new_scale // other.scale) +
self.value * (
new_scale // self.scale

)

return FixedPoint (int (new_value), scale=new_scale)

def _ rsub__ (self, other: Union['FixedPoint', int]) -> 'FixedPoint':
if not isinstance (other, FixedPoint):
new_scale = self.scale
new_value = other * self.scale - self.value
else:

new_scale max (self.scale, other.scale)
new_value = other.value * (new_scale // other.scale) -
self.value * (
new_scale // self.scale

)

return FixedPoint (int (new_value), scale=new_scale)

def _ rmul__ (self, other: Union['FixedPoint', int]) -> 'FixedPoint':

[248]

Creating Numbers Chapter 8

if not isinstance (other, FixedPoint):

new_scale = self.scale
new_value = other * self.value
else:
new_scale = self.scale * other.scale
new_value = other.value * self.value

return FixedPoint (int (new_value), scale=new_scale)

def _ rtruediv__ (self, other: Union['FixedPoint', int]) ->
'FixedPoint':
if not isinstance (other, FixedPoint):
new_value = self.scale * int (other / (self.value /
self.scale))
else:
new_value = int ((other.value / other.scale) / self.value)

return FixedPoint (new_value, scale=self.scale)

def _ rfloordiv__ (self, other: Union['FixedPoint', int]) ->
'FixedPoint':
if not isinstance (other, FixedPoint):
new_value = self.scale * int (other // (self.value /
self.scale))
else:
new_value = int ((other.value / other.scale) // self.value)

return FixedPoint (new_value, scale=self.scale)

def _ rmod__ (self, other: Union['FixedPoint', int]) -> 'FixedPoint':
if not isinstance (other, FixedPoint):
new_value = other % (self.value / self.scale)
else:
new_value = (other.value / other.scale) % (self.value /

self.scale)
return FixedPoint (new_value, scale=self.scale)

def __rpow__ (self, other: Union['FixedPoint', int]) -> 'FixedPoint':
if not isinstance (other, FixedPoint):
new_value = other ** (self.value / self.scale)
else:
new_value = (other.value / other.scale) ** self.value /

self.scale
return FixedPoint (int (new_value) * self.scale, scale=self.scale)

We've tried to use math that is identical to the forward operators. The idea is to
switch the operands in a simple way. This follows from the most common situation.
Having the text of the forward and reverse methods match each other simplifies code
inspections, and yes, there is some redundancy in the commutative operator
implementations.

[249]

Creating Numbers Chapter 8

As with the forward operators, we've kept the division, modulus, and power
operators simple to avoid optimizations. The versions shown here can introduce
noise from the conversion to a floating-point approximation and back to a
FixedPoint value. In the next section, we'll see how to implement FixedPoint

comparison operators.

Implementing FixedPoint comparison
operators

The following are the six comparison operators and the special methods that
implement them:

Method Operator
object.__1t_ (self, other) <
object.__le_ (self, other) <=
object.__eq_ (self, other) ==
object.__ne_ (self, other) I=
object._ _gt_ (self, other) >
object.__ge_ (self, other) >=

The is operator compares object IDs. We can't meaningfully override this since it's
independent of any specific class. The in comparison operator is implemented by
object.__contains__(self, value). Thisisn't meaningful for numeric values.

Note that equality testing is a subtle business. Since floats are approximations, we
have to be very careful to avoid direct equality testing with float values. We must
compare to see whether the values are within a small range, that is, epsilon. Equality
tests should never be written as a == b. The general approach to compare floating-
point approximations should be abs (a-b) <= eps, or, more generally, abs (a-b) /a
<= eps.

In our FixedPoint class, the scale indicates how close two values need to be for a
float value to be considered equal. For a scale of 100, the epsilon could be 0.01. We'll
actually be more conservative than that and use 0.005 as the basis for comparison
when the scale is 100.

Additionally, we have to decide whether FixedPoint (123, 100) should be equal
to FixedPoint (1230, 1000). While they're mathematically equal, one value is in
cents and one is in mills.

[250]

Creating Numbers Chapter 8

This can be taken as a claim about the different accuracies of the two numbers; the
presence of an additional significant digit may indicate that they're not supposed to
simply appear equal. If we follow this approach, then we need to be sure that the
hash values are different too.

For this example, we've decided that distinguishing among scale values is not
appropriate. We want FixedPoint (123, 100) to be equal to FixedPoint (1230,
1000) . This is the assumption behind the recommended __hash__ ()
implementation too. The following are the implementations for our FixedPoint class
comparisons:

def __eq__(self, other: Any) -> bool:
if isinstance (other, FixedPoint):
if self.scale == other.scale:
return self.value == other.value
else:
return self.value * other.scale // self.scale ==
other.value
else:
return abs (self.value / self.scale - float (other)) < .5 /
self.scale

def __ne__ (self, other: Any) -> bool:
return not (self == other)

def _ le_ (self, other: 'FixedPoint') -> bool:
return self.value / self.scale <= float (other)

def _ 1t (self, other: 'FixedPoint') -> bool:
return self.value / self.scale < float (other)

def __ge_ (self, other: 'FixedPoint') -> bool:
return self.value / self.scale >= float (other)

Each of the comparison functions tolerates a value that is not a FixedPoint value.
This is a requirement imposed by the superclass: the Any type hint must be used to be
compatible with that class. The only requirement is that the other value must have a
floating-point representation. We've defined a __float__ () method for the
FixedPoint objects, so the comparison operations will work perfectly well when
comparing the two FixedPoint values.

We don't need to write all six comparisons. The @functools.total_ordering
decorator can generate the missing methods from just two FixedPoint values. We'll
look at this in chapter 9, Decorators and Mixins — Cross-Cutting Aspects.

[251]

Creating Numbers Chapter 8

In the next section, we'll see how to compute a numeric hash.

Computing a numeric hash

We do need to define the __hash__ () method properly. See section 4.4.4 of the
Python Standard Library for information on computing hash values for numeric types.
That section defines a hash_fraction () function, which is the recommended
solution for what we're doing here. Our method looks like this:

def _ _hash__ (self) —-> int:

P = sys.hash_info.modulus
m, n = self.value, self.scale
Remove common factors of P. (Unnecessary if m and n already
coprime.)
while m $ P == n $ P == 0:
m, n=m// P, n// P
ifn %P ==0:
hash_ = sys.hash_info.inf
else:

Fermat's Little Theorem: pow(n, P-1, P) is 1, so
pow(n, P-2, P) gives the inverse of n modulo P.

hash_ = (abs(m) % P) * pow(n, P — 2, P) % P
if m < 0:

hash_ = -hash_
if hash_ == -1:

hash_ = -2

return hash_

This reduces a two-part rational fraction value to a single, standardized hash. This
code is copied with a few modifications from the reference manual. The core of the
calculation, which is bolded in the preceding code, multiplies the numerator by the
inverse of the denominator. In effect, it carries out the division of the numerator by
the denominator, mod P. We can optimize this to make it more specific to our
problem domain.

First, we could modify the __new__ () method for this class to assure that the scale is
non-zero, eliminating any need for sys.hash_info.inf. Second, we could explicitly
limit the range of the scale factor to be less than sys.hash_info.modulus (generally
2" —1 for 64-bit computers). We can eliminate the need to remove common factors of
P. That would boil the hash down to hash_ = (abs(m) $ P) * pow(n, P - 2,

P) % P,sign handling, and the special case that -1 is mapped to -2.

[252]

Creating Numbers Chapter 8

Finally, we might want to cache the result of any hash calculation. This requires an
additional slot that's only populated once, the first time a hash is requested. The
pow(n, P - 2, P) expression is relatively expensive to evaluate and we don't want
to compute it more often than necessary.

In the next section, we'll show how to implement a simple rounding schema for these
FixedPoint objects.

Designing more useful rounding

We truncated the presentation on rounding. We defined the required functions for
round () and trunc () without further explanation. These definitions are the
minimum requirements of the abstract superclass. However, these definitions are not
quite enough for our purposes.

To process currency, we'll often have code that looks like this:

>>> price = FixedPoint (1299, 100)
>>> tax_rate = FixedPoint (725, 1000)
>>> price * tax_rate

FixedPoint (941775, scale=100000)

Then, we need to round this value to a scale of 100 to get a value of 942. We need
methods that will round (as well as truncate) a number to a new scale factor. The
following is a method to round to a specific scale:

def round_to(self, new_scale: int) -> 'FixedPoint':
f = new_scale / self.scale
return FixedPoint (int (self.value * £ + .5), scale=new_scale)

The following code allows us to properly rescale the value:

>>> price = FixedPoint (1299, 100)
>>> tax_rate = FixedPoint (725, 1000)
>>> tax = price * tax_rate

>>> tax.round_to(100)

FixedPoint (942, scale=100)

This shows that we have a minimal set of functions to calculate currency.

In the next section, we'll see how to implement other special methods.

[253]

Creating Numbers Chapter 8

Implementing other special methods

In addition to the core arithmetic and comparison operators, we have a group of
additional operators that (generally) we only define for the numbers. Integral
values. As we're not defining integral values, we can avoid these special methods:

Method Operator
object._ _1lshift_ (self, other) <<
object.__rshift__ (self, other) >>
object.__and__ (self, other) &
object._ _xor__ (self, other)
object.__or__ (self, other)

Also, there are reflected versions of these operators:

Method Operator
object.__rlshift_ (self, other) <<
object.__rrshift__ (self, other) >>
object.__rand__ (self, other)
object.__rxor__ (self, other) ~
object.__ror__ (self, other) |

Additionally, there is a unary operator for a bit-wise inverse of the value:

Method Operator

object.__invert_ (self) ~

Interestingly, some of these operators are defined for the set collection, as well as
integral numbers. They don't apply to our rational value. The principles to define
these operators are the same as the other arithmetic operators.

Now, let's see how to optimize using the in-place operators.

[254]

Creating Numbers Chapter 8

Optimization with the in-place operators

Generally, numbers are immutable. However, the numeric operators are also used for
mutable objects. Lists and sets, for example, respond to a few of the defined
augmented assignment operators. As an optimization, a class can include an in-place
version of a selected operator. The methods in the following table implement the
augmented assignment statements for mutable objects. Note that these methods are
expected to end with return self to be compatible with ordinary assignment:

Method Operator
object.__iadd__ (self, other) +=
object.__isub__ (self, other) —-=
object.__imul__ (self, other) *=
object.__itruediv__ (self, other) /=
object.__ifloordiv__ (self, other) / /=
object.__imod__ (self, other) &=
object.__ipow__ (self, other[, modulo]) * k=
object.__ilshift__ (self, other) <<=
object.__irshift__ (self, other) >>=
object.__iand__ (self, other) &=
object.__ixor__ (self, other) N=
object.__ior__ (self, other) | =

As our FixedPoint objects are immutable, we should not define any of them.

Stepping outside this FixedPoint class example for a moment, we can see a more
typical use for in-place operators. We could easily define some in-place operators for
our Blackjack Hand objects. We might want to add this definition to Hand as follows:

def _ _iadd__ (self, aCard):

self._cards.append(aCard)
return self

This allows us to deal into hand with the following code:
player_hand += deck.pop ()

This seems to be an elegant way to indicate that hand is updated with another card.

[255]

Creating Numbers Chapter 8

Summary

We've looked at the built-in numeric types and the vast number of special methods
required to invent a new numeric type. Specialized numeric types that integrate
seamlessly with the rest of Python is one of the core strengths of the language. That
doesn't make the job easy. It merely makes it elegant and useful when done properly.

When working with numbers, we have a multistep design strategy:

1. Consider the built-in versions of complex, float, and int.

2. Consider the library extensions, such as decimal and fractions.
For financial calculations, decimal must be used; there is no alternative.

3. Consider extending one of the preceding classes with additional methods
or attributes.

4. Finally, consider a novel number. This is particularly challenging since
Python's variety of available numbers is already very rich.

Defining new numbers involves several considerations:

e Completeness and consistency: The new number must perform a complete
set of operations and behave consistently in all kinds of expressions. This is
really a question of properly implementing the formal mathematical
definitions of this new kind of computable number.

e Fit with the problem domain: Is this number truly suitable? Does it help
clarify the solution?

e Performance: As with other design questions, we must be sure that our
implementation is efficient enough to warrant writing all that code. Our
example in this chapter uses some inefficient floating-point operations that
could be optimized by doing a little more math and a little less coding.

The next chapter is about using decorators and mixins to simplify and normalize class
design. We can use decorators to define features that should be present in a number
of classes, which are not in a simple inheritance hierarchy. Similarly, we can use
mixin class definitions to create a complete application class from component class
definitions. One of the decorators that is helpful for defining comparison operators is
the @functools.total_ordering decorator.

[256]

Decorators and Mixins -
Cross-Cutting Aspects

A software design often has aspects that apply across several classes, functions, or
methods. We might have a concern, such as logging, auditing, or security, that must
be implemented consistently. One general method for reuse of functionality in object-
oriented programming is inheritance through a class hierarchy. However, inheritance
doesn't always work out well. For example, one aspect of a software design could be
orthogonal to the class hierarchy. These are sometimes called cross-cutting concerns.
They cut across the classes, making design more complex.

A decorator provides a way to define functionality that's not bound to the inheritance
hierarchy. We can use decorators to design an aspect of our application and then
apply the decorators across classes, methods, or functions.

Additionally, we can use multiple inheritances in a disciplined way to create cross-
cutting aspects. We'll consider a base class plus mixin class definitions to introduce
features. Often, we'll use the mixin classes to build cross-cutting aspects.

It's important to note that cross-cutting concerns are rarely specific to the application
at hand. They're often generic considerations. The common examples of logging,
auditing, and security could be considered as infrastructure separate from the
application's details.

Python comes with many decorators, and we can expand this standard set of
decorators. There are several different use cases. This chapter will start with a look at
class definitions and the meaning of a class. With that context, we'll look at simple
function decorators, function decorators with arguments, class decorators, and
method decorators.

Decorators and Mixins - Cross-Cutting Aspects Chapter 9

In this chapter, we will cover the following topics:

¢ Class and meaning

¢ Using built-in decorators

¢ Using standard library mixin classes
e Writing a simple function decorator

e Parameterizing a decorator

¢ Creating a method function decorator
¢ Creating a class decorator

¢ Adding methods to a class

¢ Using decorators for security

Technical requirements

The code files for this chapter are available at https://git.io/£320V.

Class and meaning

One essential feature of objects is that they can be classified: every object belongs to a
class. This leads to a straightforward relationship between an object and class when
using simple, single-inheritance design.

With multiple inheritance, the classification problem can become complex. When we
look at real-world objects, such as coffee cups, we can classify them as containers
without too much difficulty. That is, after all, their primary use case. The problem
they solve is that of holding coffee. However, in another context, we may be
interested in other use cases. Within a decorative collection of ceramic mugs, we
might be more interested in size, shape, and glaze than we are in the coffee-carrying
aspect of a cup.

Most objects have a straightforward is-a relationship with a class. In our coffee-
holding problem domain, the mug sitting on the desk is in the class of coffee cups as
well as the more general class of containers. Objects may also have several acts-as
relationships with other classes. A mug acts as a piece of ceramic art with size, shape,
and glaze properties. A mug acts as a paper weight with mass and friction properties.

[258]

https://git.io/fj2UV
https://git.io/fj2UV
https://git.io/fj2UV
https://git.io/fj2UV
https://git.io/fj2UV
https://git.io/fj2UV
https://git.io/fj2UV
https://git.io/fj2UV
https://git.io/fj2UV

Decorators and Mixins - Cross-Cutting Aspects Chapter 9

Generally, these other features can be seen as mixin classes, and they define the
additional interfaces or behaviors for an object. The mixin classes may have their own
hierarchies; for example, ceramic art is a specialization of the more general sculpture
and art classes.

When doing object-oriented design in Python, it's helpful to identify the is-a class and
the essential aspects defined by that class. Other classes provide acts-as aspects, which
mix in additional interfaces or behaviors for an object.

In the next section, we'll look at function definition and decoration because it's
simpler than class construction. After looking at how function decoration works, we'll
return to mixin classes and class decoration.

Type hints and attributes for decorators

We construct decorated functions in two stages. The first stage is the de f statement
with an original definition.

A def statement provides a name, parameters, defaults, a docstring, a code object,
and a number of other details. A function is a collection of 11 attributes, defined in
section 3.2 of the Python Standard Library, which is the standard type hierarchy.

The second stage involves the application of a decorator to the original definition.
When we apply a decorator, (¢d), to a function (F), the effect is as if we have created a
new function, F' = @d(F), The name, F, is the same, but the functionality can be
different, depending on the kinds of features that have been added, removed, or
modified. Generally, we can write the following code:

@decorate
def function() :
pass

The decorator is written immediately in front of the function definition. What
happens to implement this can be seen by the following:

def function() :
pass
function = decorate (function)

The decorator modifies the function definition to create a new function. The essential
technique here is that a decorator function accepts a function and returns a modified
version of that function. Because of this, a decorator has a rather complex type hint.

[259]

Decorators and Mixins - Cross-Cutting Aspects Chapter 9

This second style, function=decorate (function), also works with functions
created by assigning a lambda to a variable. It works with callable objects, also. The
@decorate notation only works with the de £ statement.

When there are multiple decorators, they are applied as nested function calls.
Consider the following example:

@decoratorl
@decorator?2
def function():

This is equivalent to function=decoratorl (decorator2 (function)). When
decorators have side effects, the order of applying the decorations will matter. In the
Flask framework, for example, the @app . route decoration should always be at the
top of the stack of decorators so that it is applied last and includes the results of other
decorators' behaviors.

The following is a typical set of type hints required to define a decorator:

from typing import Any, Callable, TypeVar, cast

FuncType = Callable[..., Any]
F = TypeVar ('F', bound=FuncType)

def my_decorator (func: F) —-> F:

We've defined a function type, FuncType, based on the Callable type hint. From
this, the type variable, F, is derived as a generic description of anything that adheres
to the FuncType protocol. This will include functions, lambdas, and callable objects.
The decorator function, my_decorator (), accepts a parameter, func, with the type
hint of F, and returns a function, using the type hint of . What's essential is that any
kind of object with the callable protocol can be described as having an upper
boundary of the very generic FuncType. We've omitted the details of
my_decorator () for now. This snippet is intended to show the general approach to
type hints.

The decorator for a class is simpler, because the signature is de f
class_decorator (class: Type) -> Type:Thereareafew ways to create
classes, and the upper limit is already defined as the type hint Type.

Now, let's examine the different attributes of a function.

[260]

Decorators and Mixins - Cross-Cutting Aspects Chapter 9

Attributes of a function

A decorator can change the attributes of a function. Here is the list of attributes of a
function:

__doc__ The docstring, or none

__name__ The original name of the function

__module___ The name of the module the function was defined in, or none
_ _qualname_ The function's fully-qualified name, __module_ ._ name_
__defaults__ |The default argument values, or none if there are no defaults
__kwdefaults__ |The default values for keyword-only parameters

__code__ The code object representing the compiled function body

_ dict__ A namespace for the function's attributes

The annotations of parameters, including 'return' for the

__annotations__ .
return annotation
The global namespace of the module that the function was
_globals__ defined in; this is used to resolve global variables and is read-
only
__closure__ Bindings for the function's free variables or none; it is read-only

Except for __globals__and _ closure__, a decorator can change any of these
attributes. As a practical matter, it's best to only copy the __name__and __doc__
from the original function to the decorated function. Most of the other attributes,
while changeable, are easier to manage with a simple technique of defining a new
function inside the decorator and returning the new function. We'll look into this in
the following several examples.

Now, let's see how to construct a decorated class.

Constructing a decorated class

A decorated class construction is a nested set of several two-stage processes. Making
class construction more complex is the way references are made to class methods. The
references involve a multistep lookup. An object's class will define a Method
Resolution Order (MRO). This defines how base classes are searched to locate an
attribute or method name. The MRO works its way up the inheritance hierarchy; this
is how a subclass name can override a name in a superclass.

[261]

Decorators and Mixins - Cross-Cutting Aspects Chapter 9

The outermost part of the nesting is processing the class statement as a whole. This
has two stages: building the class, and applying the decorator functions. Within the
class statement processing, the individual method definitions can also have
decorations, and each of those is a two-stage process.

The first stage in class construction is the execution of the class statement. This stage
involves the evaluation of the metaclass followed by the execution of the sequence of
assignment and def statements within a class. Each def statement within the class
expands to a nested two-stage function construction as described previously.
Decorators can be applied to each method function as part of the process of building
the class.

The second stage in class construction is to apply an overall class decorator to a class
definition. Generally, this can add features. It's somewhat more common to add
attributes rather than methods. While it is possible for decorators to add method
functions, it can be hopelessly confusing for software maintainers to locate the source
for a method injected by a decorator. These kinds of features need to be designed
with considerable care.

The features inherited from the superclasses cannot be modified through decorators
since they are resolved lazily by method resolution lookup. This leads to some
important design considerations. We generally want to introduce methods and
attributes through classes and mixin classes. We should limit ourselves to defining
new attributes via decorators.

Here's a list of some of the attributes that are built for a class. A number of additional
attributes are part of the metaclass; they are described in the following table:

__doc__ |The class's documentation string, or none if undefined

_ _name__ |The class name

_ module__|The module name that the class was defined in

__dict__ |The dictionary containing the class's namespace

A tuple (possibly empty or a singleton) containing the base classes, in
__bases__ |the order of their occurrence in the base class list; it is used to work out
the method resolution order

__class__ |The superclass of this class, often type

Some additional method functions that are part of a class include
__subclasshook__, _ reduce__,and __reduce_ex__, which are part of the
interface for pickle.

[262]

Decorators and Mixins - Cross-Cutting Aspects Chapter 9

Some class design principles

When defining a class, we have the following sources of attributes and methods:

¢ Any decorators applied to the class definition. These are applied to the
definition last.

e The body of the class statement.

¢ Any mixin classes. These definitions tend to override the base class
definitions in the method resolution order algorithm.

¢ The base class. If unspecified, the base class is object, which provides a
minimal set of definitions.

These are presented in order of their visibility. The final changes from a decorator
overwrite everything below it, making these changes most visible. The body of the
class statement overrides anything inherited from mixins or the base class. The base
class is the last place used to resolve names.

We need to be cognizant about how easy it is for software maintainers to see each of
these. The class statement is the most obvious place for someone to look for the
definition of an attribute or methods. The mixins and the base class are somewhat less
obvious than the class body. It's helpful to make sure that the base class name clarifies
its role and uses terminology that is clearly essential. For example, it helps to name
base classes after real-world objects.

The application of the decorator to the class can lead to obscure features. A strong
focus on one or a few features helps to clarify what the decorator does. While some
aspects of an application can be suitable for generic decorators, the lack of visibility
can make them difficult to test, debug, and maintain.

The mixin classes will generally define additional interfaces or behaviors of a class.
It's important to be clear about how the mixin classes are used to build the final class
definitions. While a docstring class is an important part of this, the overall
docstring module is also important to show how a proper class can be assembled
from the various parts.

When writing the class statement, the mixins are listed first, and the essential
superclass is listed last. This is the search order for name resolution. The last listed
class is the class that defines the essential is-a relationship. The last class on a list
defines what a thing IS. The previous class names can define what a thing DOES. The
mixins provide ways to override or extend this base behavior.

Aspect-oriented programming is discussed in the next section.

[263]

Decorators and Mixins - Cross-Cutting Aspects Chapter 9

Aspect-oriented programming

Parts of aspect-oriented programming (AOP) are implemented by decorators in
Python. Our purpose here is to leverage a few aspect-oriented concepts to help show
the purpose of decorators and mixins in Python. The idea of a cross-cutting concern
is central to AOP. While the Wikipedia page
(http://en.wikipedia.org/wiki/Cross-cutting_concern) is generally kept up-to-
date, older information is available here: https://web.archive.org/web/
20150919015041/http://www.aosd.net/wiki/index.php?title=Glossary. The
Spring framework provides some ideas; see also https://docs.spring.io/spring-
python/1.2.x/sphinx/html/aop.html. There are several common examples of cross-
cutting concerns, as follows:

* Logging: We often need to have logging features implemented consistently
in many classes. We want to be sure that the loggers are named consistently
and that logging events follow the class structure in a consistent manner.

¢ Auditability: A variation of the logging theme is to provide an audit trail
that shows each transformation of a mutable object. In many commerce-
oriented applications, the transactions are business records that represent
bills or payments. Each step in the processing of a business record needs to
be auditable to show that no errors have been introduced by processing.

e Security: Our applications will often have security aspects that pervade
each HTTP request and each piece of content downloaded by the website.
The idea is to confirm that each request involves an authenticated user who
is authorized to make the request. Cookies, secure sockets, and other
cryptographic techniques must be used consistently to assure that an entire
web application is secured.

Some languages and tools have deep, formal support for AOP. Python borrows a few
of the concepts. The Pythonic approach to AOP involves the following language
features:

¢ Decorators: Using a decorator, we can establish a consistent aspect
implementation at one of two simple join points in a function. We can
perform the aspect's processing before or after the existing function. We
can't easily locate join points inside the code of a function. It's easiest for
decorators to transform a function or method by wrapping it with
additional functionality.

[264]

http://en.wikipedia.org/wiki/Cross-cutting_concern
https://web.archive.org/web/20150919015041/http://www.aosd.net/wiki/index.php?title=Glossary
https://web.archive.org/web/20150919015041/http://www.aosd.net/wiki/index.php?title=Glossary
https://web.archive.org/web/20150919015041/http://www.aosd.net/wiki/index.php?title=Glossary
https://web.archive.org/web/20150919015041/http://www.aosd.net/wiki/index.php?title=Glossary
https://web.archive.org/web/20150919015041/http://www.aosd.net/wiki/index.php?title=Glossary
https://web.archive.org/web/20150919015041/http://www.aosd.net/wiki/index.php?title=Glossary
https://web.archive.org/web/20150919015041/http://www.aosd.net/wiki/index.php?title=Glossary
https://web.archive.org/web/20150919015041/http://www.aosd.net/wiki/index.php?title=Glossary
https://web.archive.org/web/20150919015041/http://www.aosd.net/wiki/index.php?title=Glossary
https://web.archive.org/web/20150919015041/http://www.aosd.net/wiki/index.php?title=Glossary
https://web.archive.org/web/20150919015041/http://www.aosd.net/wiki/index.php?title=Glossary
https://web.archive.org/web/20150919015041/http://www.aosd.net/wiki/index.php?title=Glossary
https://web.archive.org/web/20150919015041/http://www.aosd.net/wiki/index.php?title=Glossary
https://web.archive.org/web/20150919015041/http://www.aosd.net/wiki/index.php?title=Glossary
https://web.archive.org/web/20150919015041/http://www.aosd.net/wiki/index.php?title=Glossary
https://web.archive.org/web/20150919015041/http://www.aosd.net/wiki/index.php?title=Glossary
https://web.archive.org/web/20150919015041/http://www.aosd.net/wiki/index.php?title=Glossary
https://web.archive.org/web/20150919015041/http://www.aosd.net/wiki/index.php?title=Glossary
https://web.archive.org/web/20150919015041/http://www.aosd.net/wiki/index.php?title=Glossary
https://web.archive.org/web/20150919015041/http://www.aosd.net/wiki/index.php?title=Glossary
https://web.archive.org/web/20150919015041/http://www.aosd.net/wiki/index.php?title=Glossary
https://web.archive.org/web/20150919015041/http://www.aosd.net/wiki/index.php?title=Glossary
https://web.archive.org/web/20150919015041/http://www.aosd.net/wiki/index.php?title=Glossary
https://web.archive.org/web/20150919015041/http://www.aosd.net/wiki/index.php?title=Glossary
https://web.archive.org/web/20150919015041/http://www.aosd.net/wiki/index.php?title=Glossary
https://web.archive.org/web/20150919015041/http://www.aosd.net/wiki/index.php?title=Glossary
https://web.archive.org/web/20150919015041/http://www.aosd.net/wiki/index.php?title=Glossary
https://web.archive.org/web/20150919015041/http://www.aosd.net/wiki/index.php?title=Glossary
https://web.archive.org/web/20150919015041/http://www.aosd.net/wiki/index.php?title=Glossary
https://web.archive.org/web/20150919015041/http://www.aosd.net/wiki/index.php?title=Glossary
https://web.archive.org/web/20150919015041/http://www.aosd.net/wiki/index.php?title=Glossary
https://web.archive.org/web/20150919015041/http://www.aosd.net/wiki/index.php?title=Glossary
https://docs.spring.io/spring-python/1.2.x/sphinx/html/aop.html#coding-aop-with-pure-python
https://docs.spring.io/spring-python/1.2.x/sphinx/html/aop.html#coding-aop-with-pure-python
https://docs.spring.io/spring-python/1.2.x/sphinx/html/aop.html#coding-aop-with-pure-python
https://docs.spring.io/spring-python/1.2.x/sphinx/html/aop.html#coding-aop-with-pure-python
https://docs.spring.io/spring-python/1.2.x/sphinx/html/aop.html#coding-aop-with-pure-python
https://docs.spring.io/spring-python/1.2.x/sphinx/html/aop.html#coding-aop-with-pure-python
https://docs.spring.io/spring-python/1.2.x/sphinx/html/aop.html#coding-aop-with-pure-python
https://docs.spring.io/spring-python/1.2.x/sphinx/html/aop.html#coding-aop-with-pure-python
https://docs.spring.io/spring-python/1.2.x/sphinx/html/aop.html#coding-aop-with-pure-python
https://docs.spring.io/spring-python/1.2.x/sphinx/html/aop.html#coding-aop-with-pure-python
https://docs.spring.io/spring-python/1.2.x/sphinx/html/aop.html#coding-aop-with-pure-python
https://docs.spring.io/spring-python/1.2.x/sphinx/html/aop.html#coding-aop-with-pure-python
https://docs.spring.io/spring-python/1.2.x/sphinx/html/aop.html#coding-aop-with-pure-python
https://docs.spring.io/spring-python/1.2.x/sphinx/html/aop.html#coding-aop-with-pure-python
https://docs.spring.io/spring-python/1.2.x/sphinx/html/aop.html#coding-aop-with-pure-python
https://docs.spring.io/spring-python/1.2.x/sphinx/html/aop.html#coding-aop-with-pure-python
https://docs.spring.io/spring-python/1.2.x/sphinx/html/aop.html#coding-aop-with-pure-python
https://docs.spring.io/spring-python/1.2.x/sphinx/html/aop.html#coding-aop-with-pure-python
https://docs.spring.io/spring-python/1.2.x/sphinx/html/aop.html#coding-aop-with-pure-python
https://docs.spring.io/spring-python/1.2.x/sphinx/html/aop.html#coding-aop-with-pure-python
https://docs.spring.io/spring-python/1.2.x/sphinx/html/aop.html#coding-aop-with-pure-python
https://docs.spring.io/spring-python/1.2.x/sphinx/html/aop.html#coding-aop-with-pure-python
https://docs.spring.io/spring-python/1.2.x/sphinx/html/aop.html#coding-aop-with-pure-python
https://docs.spring.io/spring-python/1.2.x/sphinx/html/aop.html#coding-aop-with-pure-python
https://docs.spring.io/spring-python/1.2.x/sphinx/html/aop.html#coding-aop-with-pure-python
https://docs.spring.io/spring-python/1.2.x/sphinx/html/aop.html#coding-aop-with-pure-python

Decorators and Mixins - Cross-Cutting Aspects Chapter 9

e Mixins: Using a mixin, we can define a class that exists as part of several
class hierarchies. The mixin classes can be used with the base class to
provide a consistent implementation of cross-cutting aspects. Generally,
mixin classes are considered abstract, since they can't be meaningfully
instantiated.

The next section shows how to use built-in decorators

Using built-in decorators

Python has several built-in decorators that are part of the language. The @property,
@classmethod, and @staticmethod decorators are used to annotate methods of a
class. The @property decorator transforms a method function into a descriptor. The
@property decorator, when applied to a method function, changes the function into
an attribute of the object. The property decorator, when applied to a method, also
creates an additional pair of properties that can be used to create a setter and
deleter property. We looked at this in chapter 4, Attribute Access, Properties, and
Descriptors.

The @classmethod and @staticmethod decorators transform a method function
into a class-level function. The decorated method is now part of the class, not an
object. In the case of a static method, there's no explicit reference to the class. With a
class method, on the other hand, the class is the first argument of the method
function. The following is an example of a class that includes @staticmethod and
some @property definitions:

class Angle(float):

__slots__ = ("_degrees",)
@staticmethod
def from_radians(value: float) -> 'Angle':

return Angle (180 * value / math.pi)

def __init__ (self, degrees: float) -> None:
self._degrees = degrees

@property

def radians(self) —-> float:

return math.pi * self._degrees / 180

@property
def degrees(self) —-> float:
return self._degrees

[265]

Decorators and Mixins - Cross-Cutting Aspects Chapter 9

This class defines an Angle that can be represented in degrees or radians. The
constructor expects degrees. However, we've also defined a from_radians ()
method function that emits an instance of the class. This function does not set values
on an existing instance variable the way __init__ () does; it creates a new instance
of the class.

Additionally, we provide the degrees () and radians () method functions that have
been decorated so that they are properties. Under the hood, these decorators create a
descriptor so that accessing the attribute name degrees or radians will invoke the
named method function. We can use the static method to create an instance and
then use a property method to access a method function as follows:

>>> b = Angle.from_radians(.227)
>>> round (b.degrees, 1)
13.0

The static method is similar to a function because it's not tied to the self instance
variable. It has the advantage that it is syntactically bound to the class. Using
Angle.from_radians can be more helpful than using a function named
angle_from_radians. The use of these decorators ensures that implementation is
handled correctly and consistently.

Now, let's see how to use standard library decorators.

Using standard library decorators

The standard library has a number of decorators. Modules such as context1ib,
functools, unittest, atexit, importlib, and reprlib contain decorators that
are excellent examples of cross-cutting aspects of a software design.

One particular example, the functools library, offers the total_ordering

decorator that defines comparison operators. It leverages __eq__ () and either
_ 1t (),_le__(),_gt__(),or__ge__ () tocreate a complete suite of
comparisons.

First, we'll need this class to fully define a playing card as follows:

from enum import Enum
class Suit (Enum) :

Clubs = "&"
Diamonds = "é"
Hearts = "9¥"
Spades = "&"

[266]

Decorators and Mixins - Cross-Cutting Aspects Chapter 9

This class provides the enumerated values for the suits of the playing cards.

The following is a variation on the Card class that defines just two comparisons:

import functools

@functools.total_ordering
class CardTO:

__slots___ = ("rank", "suit")

def _ _init__ (self, rank: int, suit: Suit) -> None:
self.rank = rank
self.suit = suit

def eq___(self, other: Any) —> bool:

return self.rank == cast (CardTO, other) .rank

def __1t__ (self, other: Any) —-> bool:
return self.rank < cast (CardTO, other).rank

def _ _str_ (self) —-> str:
return f"{self.rank:d}{self.suit:s}"

Our class, CardTO, is wrapped by a class-level decorator,
@functools.total_ordering. This decorator creates the missing method functions
to be sure all comparisons work. From some combinations of operators, the
remainder can be derived. The general idea is to provide some form of equality (or
inequality) test, and an ordering test, and the remainder of the operations can be
derived logically from those two.

In the example, we provided < and =. Here's how the other comparisons can be
derived:

a <b:given
a=b:given
a<b=(a<b)V(a=0Db)
a>b=-(a<b)A—(a=Db)
a>b=-(a<b)
a#b=-(a=0)

We can use this class to create objects that can be compared using all of the
comparison operators, even though only two were defined as follows:

>>> cl
>>> c2

Card(3, '&')
Card(3, '®')

[267]

Decorators and Mixins - Cross-Cutting Aspects Chapter 9

>>> ¢l == c2
True

>>> cl < c2
False

>>> ¢l <= c2
True

>>> ¢l >= c2
True

This interaction shows that we are able to make comparisons that are not defined in
the original class. The decorator added the required method functions to the original
class definition.

Let's see how to use standard library mixin classes in the next section.

Using standard library mixin classes

The standard library makes use of mixin class definitions. There are several modules
that contain examples, including io, socketserver, urllib.request,
contextlib, and collections.abc. Next, we'll look at an example using mixing
features of the Enum class in the enum module.

When we define our own collection based on the collections.abc abstract base
classes, we're making use of mixins to ensure that cross-cutting aspects of the
containers are defined consistently. The top-level collections (Set, Sequence, and
Mapping) are all built from multiple mixins. It's very important to look at section 8.4
of the Python Standard Library to see how the mixins contribute features as the overall
structure is built up from pieces.

Looking at just one line, the summary of sequence, we see that it inherits from
Sized, Iterable, and Container. These mixin classes lead to methods of

__contains__ () iter_ (), __reversed_ (), index (), and count ().

S —_—

The final behavior of the 1ist class is a composition of aspects from each of the
mixins present in its definition. Fundamentally, it's a Container with numerous
protocols added to it.

Let's look at how to use the enum with mixin classes in the next section.

[268]

Decorators and Mixins - Cross-Cutting Aspects Chapter 9

Using the enum with mixin classes

The enum module provides the Enum class. One common use case for this class is to
define an enumerated domain of values; for example, we might use this to enumerate
the four suits for playing cards.

An enumerated type has the following two features:

¢ Member names: The member names are proper Python identifiers for the
enumerated values.

e Member values: The member values can be any Python object.

In several previous examples, we've used a simplistic definition for the enumerated
members. Here's a typical class definition:

from enum import Enum
class Suit (Enum) :

Clubs = "&"
Diamonds = "é"
Hearts = "¥"
Spades = "&"

This provides four members. We can use Suit .Clubs to reference a specific string.
We can also use 1ist (Suit) to create a list of the enumerated members.

The base Enum class imposes constraints on the member names or values that will be
part of the class. We can narrow the definition using mixin class definitions.
Specifically, the Enum class can work with a data type as well as additional feature
definitions.

We often want a richer definition of the underlying values for the members of the
enumeration. This example shows the mixing of str into Enum:

class SuitS(str, Enum):

Clubs = "&"
Diamonds = "é"
Hearts = "¥"
Spades = "&"

The base class is Enum. Features of the str class will be available to each member. The
order of the definitions is important: the mixins are listed first; the base class is listed
last.

[269]

Decorators and Mixins - Cross-Cutting Aspects Chapter 9

When str is mixed in, it provides all of the string methods to the member itself
without having to make an explicit reference to the internal value of each member.
For example, SuitS.Clubs.center (5) will emit the string value centered in a
string of length five.

We can also incorporate additional features in an Enum. In this example, we'll add a
class-level feature to enumerate the values:

class EnumDomain:
@classmethod
def domain(cls: Type) —-> List[str]:
return [m.value for m in cls]

class SuitD(str, EnumDomain, Enum) :

Clubs = ""
Diamonds = "¢"
Hearts = "¥"
Spades = "&"

The following two mixin protocols are added to this class:

¢ The str methods will apply to each member directly.

¢ The class also has a domain () method, which will emit only the values. We
can use SuitD.domain () to get the list of string values associated with the
members.

This mixin technique allows us to bundle features together to create complex class
definitions from separate aspects.

A mixin design is better than copy and paste among several related
classes.

It can be difficult to create classes that are generic enough to be used as mixins. One
approach is to look for duplicated copypasta code across multiple classes. The
presence of duplicated code is an indication of a possible mixin to refactor and
eliminate the duplication.

Let's see how to write a simple function decorator in the next section.

[270]

Decorators and Mixins - Cross-Cutting Aspects Chapter 9

Writing a simple function decorator

A decorator is a function (or a callable object) that accepts a function as an
argument and returns a new function. The result of decoration is a function that has
been wrapped. Generally, the additional features of the wrapping surround the
original functionality, either by transforming actual argument values or by
transforming the result value. These are the two readily available join points in a
function.

When we use a decorator, we want to be sure that the resulting decorated function
has the original function's name and docstring. These details can be handled for us
by a decorator to build our decorators. Using functools.wraps to write new
decorators simplifies the work we need to do because the bookkeeping is handled for
us.

Additionally, the type hints for decorators can be confusing because the parameter
and return are both essentially of the Callable type. To be properly generic, we'll
use an upper-bound type definition to define a type, F, which embraces any variation
on callable objects or functions.

To illustrate the two places where functionality can be inserted, we can create a debug
trace decorator that will log parameters and return values from a function. This puts
functionality both before and after the called function. The following is a defined
function, some_function, that we want to wrap. In effect, we want code that
behaves like the following:

logging.debug ("function (%r, %r)", args, kw)
result = some_function(*args, **kw)
logging.debug ("result = %r", result)

This snippet shows how we'll have new log-writing to wrap the original,
some_function (), function.

The following is a debug decorator that inserts logging before and after function
evaluation:

import logging, sys

import functools

from typing import Callable, TypeVar

FuncType = Callable[..., Any]
F = TypeVar ('F', bound=FuncType)

def debug(function: F) -> F:

[271]

Decorators and Mixins - Cross-Cutting Aspects Chapter 9

@functools.wraps (function)
def logged_function(*args, **kw):

logging.debug ("%$s (%r, %r)", function._ _name__, args, kw)
result = function(*args, **kw)
logging.debug("%s = %r", function.__name__ , result)

return result
return cast (F, logged_function)

We've used the @functools.wraps decorator to ensure that the original function
name and docstring are preserved as attributes of the result function. The
logged_function () definition is the resulting function returned by the debug ()
decorator. The internal, 1ogged_function () does some logging, then invokes the
decorated function, function, and does some more logging before returning the
result of the decorated function. In this example, no transformation of argument
values or results was performed.

When working with the logger, f-strings are not the best idea. It can help to provide
individual values so the logging filters can be used to redact or exclude entries from a
sensitive log.

Given this @debug decorator, we can use it to produce noisy, detailed debugging. For
example, we can do this to apply the decorator to a function, ackermann (), as
follows:

@debug
def ackermann(m: int, n: int) -> int:
if m ==
return n + 1
elif m > 0 and n == 0:
return ackermann(m - 1, 1)
elif m > 0 and n > 0:
return ackermann(m - 1, ackermann(m, n - 1))
else:
raise Exception(f"Design Error: {vars()}")

This definition wraps the ackermann () function with debugging information written
via the logging module to the root logger. We've made no material changes to the
function definition. The @debug decorator injects the logging details as a separate
aspect.

We configure the logger as follows:

logging.basicConfig(stream=sys.stderr, level=logging.DEBUG)

[272]

Decorators and Mixins - Cross-Cutting Aspects Chapter 9

We'll revisit logging in detail in chapter 16, The Logging and Warning Modules. We'll
see this kind of result when we evaluate ackermann (2, 4) as follows:

DEBUG:root :ackermann((2, 4),
DEBUG:root :ackermann ((2, 3),
DEBUG:root:ackermann((2, 2),

DEBUG:root:ackermann((0, 10), {})
DEBUG:root:ackermann = 11
DEBUG:root:ackermann = 11
DEBUG:root:ackermann = 11

In the next section, we will see how to create separate loggers.

Creating separate loggers

As a logging optimization, we might want to use a specific logger for each wrapped
function and not overuse the root logger for this kind of debugging output. We'll
return to the logger in chapter 16, The Logging and Warning Modules.

The following is a version of our decorator that creates a separate logger for each
individual function:

def debug2 (function: F) -> F:
log = logging.getLogger (function.__name_)

@functools.wraps (function)

def logged_function (*args, **kw):
log.debug("call (%r, %r)", args, kw)
result = function(*args, **kw)
log.debug ("result = %r", result)
return result

return cast (F, logged_function)

This version modifies the output to look like the following;:

DEBUG:ackermann:call ((2, 4),
DEBUG:ackermann:call ((2, 3),
DEBUG:ackermann:call ((2, 2), {})

DEBUG:ackermann:call((0, 10), {})

Decorators and Mixins - Cross-Cutting Aspects Chapter 9

DEBUG:ackermann:result = 11
DEBUG:ackermann:result 11
DEBUG:ackermann:result 11

The function name is now the logger name. This can be used to fine-tune the
debugging output. We can now enable logging for individual functions rather than
enabling debugging for all functions.

Note that we can't trivially change the decorator and expect the decorated function to
also change. After making a change to a decorator, we need to apply the revised
decorator to a function. This means that debugging and experimenting with
decorators can't be done trivially from the >>> interactive prompt.

Decorator development often involves creating and rerunning a script to define the
decorator and apply it to example functions. In some cases, this script will also
include tests or a demonstration to show that everything works as expected.

Now, let's see how to parameterize a decorator.

Parameterizing a decorator

Sometimes, we need to provide parameters to a decorator. The idea is that we are
going to customize the wrapping function. When we do this, decoration becomes a
two-step process.

Here's a snippet showing how we provide a parameterized decorator to a function
definition:

@decorator (arg)
def func():
pass

The implementation is as follows:

def func():
pass
func = decorator (arg) (func)

We've done the following three things:

e Defined a function, func

e Applied the abstract decorator to its arguments to create a concrete
decorator, decorator (arg)

[274]

Decorators and Mixins - Cross-Cutting Aspects Chapter 9

e Applied the concrete decorator to the defined function to create the
decorated version of the function, decorator (arg) (func)

It can help to think of func = decorate (arg) (func) as having the following
implementation:

concrete = decorate(arg)
func = concrete (func)

This means that a decorator with arguments is implemented as indirect construction
of the final function. Now, let's tweak our debugging decorator yet again. We'd like to
do the following;:

@debug ("log_name")
def some_function(args):
pass

This kind of code allows us to specify the name of the log that the debugging output
will go to. This means we won't use the root logger or create a distinct logger for each
function.

The outline of a parameterized decorator will be the following:

def decorator (config) —-> Callable[[F], F]:
def concrete_decorator (function: F) —-> F:
def wrapped (*args, **kw):
return function(*args, **kw)
return cast (F, wrapped)
return concrete_decorator

Let's peel back the layers of this onion before looking at the example. The decorator
definition (def decorator (config))shows the parameters we will provide to the
decorator when we use it. The body of this is the concrete decorator, which is
returned after the parameters are bound to it. The concrete decorator (de £
concrete_decorator (function) :) will then be applied to the target function. The
concrete decorator is like the simple function decorator shown in the previous section.
It builds the wrapped function (def wrapped (*args, **kw) :), which it returns.

The following is our named logger version of debug:

def debug_named(log_name: str) -> Callable[[F], F]:
log = logging.getLogger (log_name)

def concrete_decorator (function: F) -> F:

@functools.wraps (function)

[275]

Decorators and Mixins - Cross-Cutting Aspects Chapter 9

def wrapped(*args, **kw):

log.debug ("%s (%r, %r)", function.__name__, args, kw)
result = function(*args, **kw)
log.debug ("%s = %r", function.__name__, result)

return result
return cast (F, wrapped)
return concrete_decorator

This @debug_named decorator accepts an argument that is the name of the log to use.
It creates and returns a concrete decorator function with a logger of the given name
bound into it. When this concrete decorator is applied to a function, the concrete
decorator returns the wrapped version of the given function. When the function is
used in the following manner, the decorator adds noisy debug lines.

Here's an example of creating a logged named recursion with output from a given
function:

@debug_named ("recursion")
def ackermann3(m: int, n: int) -> int:
if m == 0:
return n + 1
elif m > 0 and n == 0:
return ackermann3(m - 1, 1)
elif m > 0 and n > 0:
return ackermann3(m - 1, ackermann3(m, n - 1))
else:
raise Exception (f"Design Error: {vars()}i")

The decorator wraps the given ackermann3 () function with logging output. Since
the decorator accepts a parameter, we can provide a logger name. We can reuse the
decorator to put any number of individual functions into a single logger, providing
more control over the debug output from an application.

Now, let's see how to create a method function decorator.

Creating a method function decorator

A decorator for a method of a class definition is identical to a decorator for a
standalone function. While it's used in a different context, it will be defined like any
other decorator. One small consequence of the different context is that we often, must
explicitly name the self variable in decorators intended for methods.

[276]

Decorators and Mixins - Cross-Cutting Aspects Chapter 9

One application for method decoration is to produce an audit trail for object state
changes. Business applications often create stateful records; commonly, these are
represented as rows in a relational database. We'll look at object representation in
Chapter 10, Serializing and Saving — J[SON, YAML, Pickle, CSV, and XML, Chapter 11,
Storing and Retrieving Objects via Shelve, and Chapter 12, Storing and Retrieving Objects
via SQLite.

When we have stateful records, the state changes often need to be
auditable. An audit can confirm that appropriate changes have been
made to the records. In order to do the audit, the before and after
version of each record must be available somewhere. Stateful
database records are a long-standing tradition but are not in any
way required. Immutable database records are a viable design
alternative.

When we design a stateful class, any setter method will cause a state change. If we do
this, we can fold in an @audit decorator that can track changes to the object so that
we have a proper trail of changes. We'll create an audit log via the 1ogging module.
We'll use the __repr__ () method function to produce a complete text representation
that can be used to examine changes.

The following is an audit decorator:

def audit (method: F) -> F:

@functools.wraps (method)
def wrapper (self, *args, **kw):

template = "%$s\n before %$s\n after %s"
audit_log = logging.getLogger ("audit")

before = repr(self) # preserve state as text
try:

result = method(self, *args, **kw)
except Exception as e:
after = repr(self)

audit_log.exception (template, method.__qualname__, before,

after)
raise
after = repr(self)
audit_log.info (template, method.__qualname
return result

before, after)

—

return cast (F, wrapper)

[277]

Decorators and Mixins - Cross-Cutting Aspects Chapter 9

This audit trail works by creating text mementos of the before setting and after setting
state of the object. After capturing the before state, the original method function is
applied. If there was an exception, an audit log entry includes the exception details.
Otherwise, an INFO entry is written with the qualified name of the method name, the
before memento, and the after memento of the object.

The following is a modification of the Hand class that shows how we'd use this
decorator:

class Hand:

def _ _init_ (self, *cards: CardDC) —-> None:
self._cards = list (cards)

Qaudit

def _ _iadd__ (self, card: CardDC) -> "Hand":
self._cards.append(card)
self._cards.sort (key=lambda c: c.rank)
return self

def __repr__ (self) —-> str:

cards = ", ".join(map(str, self._cards))
return f"{self._ _class__._ _name__} ({cards})"
This definition modifies the __iadd__ () method function so that adding a card

becomes an auditable event. This decorator will perform the audit operation, saving
text mementos of Hand before and after the operation.

This use of a method decorator makes a visible declaration that a particular method
will make a significant state change. We can easily use code reviews to be sure that all
of the appropriate method functions are marked for audit like this.

In the event that we want to audit object creation as well as state change, we can't use
this audit decoratoronthe __init__ () method function. That's because there's no
before image prior to the execution of __init__ (). There are two things we can do
as a remedy to this, as follows:

e Wecanadd a__new__ () method that ensures that an empty _cards
attribute is seeded into the class as an empty collection.

e We can tweak the audit () decorator to tolerate AttributeError that will
arise when __init__ () is being processed.

[278]

Decorators and Mixins - Cross-Cutting Aspects Chapter 9

The second option is considerably more flexible. We can do the following;:

try:
before = repr(self)
except AttributeError as e:
before = repr(e)

This would record a message such as AttributeError: 'Hand' object has no
attribute '_cards' for the before status during initialization.

In the next section, we'll see how to create a class decorator.

Creating a class decorator

Analogous to decorating a function, we can write a class decorator to add features to
a class definition. The essential rules are the same. The decorator is a function (or
callable object); it receives a class object as an argument and returns a class object as a
result.

We have a limited number of join points inside a class definition as a whole. For the
most part, a class decorator can fold additional attributes into a class definition. While
it's technically possible to create a new class that wraps an original class definition,
this doesn't seem to be very useful as a design pattern. It's also possible to create a
new class that is a subclass of the original decorated class definition. This may be
baffling to users of the decorator. It's also possible to delete features from a class
definition, but this seems perfectly awful.

One sophisticated class decorator was shown previously. The
functools.Total_Ordering decorator injects a number of new method functions
into the class definition. The technique used in this implementation is to create
lambda objects and assign them to attributes of the class.

In general, adding attributes often leads to problems with mypy type hint checking.
When we add attributes to a class in a decorator, they're essentially invisible to mypy.

As an example, consider the need to debug object creation. Often, we'd like to have a
unique logger for each class.

[279]

Decorators and Mixins - Cross-Cutting Aspects Chapter 9

We're often forced to do something like the following:

class UglyClassl:

def _ _init__ (self) -> None:
self.logger = logging.getLogger (self.__class__.__qualname__)
self.logger.info ("New thing")

def method(self, *args: Any) —-> int:
self.logger.info ("method %r", args)
return 42

This class has the disadvantage that it creates a 1Logger instance variable that's really
not part of the class's operation, but is a separate aspect of the class. We'd like to
avoid polluting the class with this additional aspect. Even though
logging.getLogger () is very efficient, the cost's non-zero. We'd like to avoid this
additional overhead every time we create an instance of UglyClass1.

Here's a slightly better version. The logger is promoted to be a class-level instance
variable and is separate from each individual object of the class:

class UglyClass2:
logger = logging.getLogger ("UglyClass2")

def _ _init_ (self) -> None:
self.logger.info ("New thing")

def method(self, *args: Any) -> int:
self.logger.info ("method %r", args)
return 42

This has the advantage that it implements 1logging.getLogger () just once.
However, it suffers from a profound Don't Repeat Yourself (DRY) problem. We can't
automatically set the class name within the class definition. The class hasn't been
created yet, so we're forced to repeat the name.

The DRY problem can be partially solved by a small decorator as follows:

def logged(class_: Type) —-> Type:
class_.logger = logging.getLogger (class_.__qualname_)
return class_

This decorator tweaks the class definition to add the 1ogger reference as a class-level
attribute. Now, each method can use self.logger to produce audit or debug
information. When we want to use this feature, we can use the @1ogged decorator on
the class as a whole.

[280]

Decorators and Mixins - Cross-Cutting Aspects Chapter 9

This presents a profound problem for mypy, more easily solved with a mixin than a
decorator.

Continuing to use the class decorator, the following is an example of a logged class,
SomeClass:

@logged
class SomeClass:

def _ _init__ (self) -> None:
self.logger.info ("New thing") # mypy error

def method(self, *args: Any) —-> int:
self.logger.info ("method %r", args) # mypy error
return 42

The decorator guarantees that the class has a 1ogger attribute that can be used by
any method. The 1ogger attribute is not a feature of each individual instance, but a
feature of the class as a whole. This attribute has the added benefit that it creates the
logger instances during module import, reducing the overhead of logging slightly.
Let's compare this with UglyClass1, where logging.getLogger () was evaluated
for each instance creation.

We've annotated two lines that will report mypy errors. The type hint checks whether
attributes injected by decorators are not robust enough to detect the additional
attribute. The decorator can't easily create attributes visible to mypy. It's better to use
the following kind of mixin:

class LoggedWithHook:

def _ _init_subclass__ (cls, name=None) :
cls.logger = logging.getLogger (name or cls.__qualname_)
This mixin class defines the __init_subclass__ () method to inject an additional

attribute into the class definition. This is recognized by mypy, making the logger
attribute visible and useful. If the name of the parameter is provided, it becomes the
name of the logger, otherwise the name of the subclass will be used. Here's an
example class making use of this mixin:

class SomeClass4 (LoggedWithHook) :

def _ _init_ (self) -> None:
self.logger.info ("New thing")

def method(self, *args: Any) -> int:
self.logger.info ("method %r", args)
return 42

[281]

Decorators and Mixins - Cross-Cutting Aspects Chapter 9

This class will have a logger built when the class is created. It will be shared by all
instances of the class. And the additional attribute will be visible to mypy. In most
ordinary application programming, class-level decorators are a rarity. Almost
anything needed can be done using the __init_subclass__ () method.

Some complex frameworks, such as the @dataclasses.dataclass decorator,
involve extending the class from the available scaffolding. The code required to
introduce names into the attributes used by mypy is unusual.

Let's see how to add methods to a class in the next section.

Adding methods to a class

A class decorator can create new methods using a two-step process. First, it must
create a method function and then insert it into the class definition. This is often better
done via a mixin class than a decorator. The obvious and expected use of a mixin is to
insert methods. Inserting methods with a decorator is less obvious and can

be astonishing to people reading the code and trying to find where the methods of a
class are defined.

In the example of the Total_Ordering decorator, the exact method functions
inserted were flexible and depended on what was already provided. This was a kind
of special case that doesn't tend to astonish people reading the code.

We'l look at a technique to create a snapshot of an object's state by creating a text
memento of the object. This can be implemented via a standardized memento ()
method. We'd like to include this standard method function in a variety of classes.
First, we'll look at a decorator implementation. After that, we'll look at a mixin
version of this design.

The following is the decorator version of adding this standardized memento ()
method:

def memento(class_: Type) —-> Type:

def memento_method(self) :
return f"{self.__class__._ _qualname__} (**{vars(self)!r})"

class_.memento = memento_method
return class_

[282]

Decorators and Mixins - Cross-Cutting Aspects Chapter 9

This decorator includes a method function definition that is inserted into the class.
The vars (self) expression exposes the instance variables usually kept the internal
__dict__ attribute of an instance. This produces a dictionary that can be included in
the output string value.

The following is how we use this @memento decorator to add the memento () method
to a class:

@memento
class StatefulClass:

def __init__ (self, wvalue: Any) -> None:
self.value = value

def __repr__ (self) —-> str:
return f"{self.value}"

The decorator incorporates a new method, memento (), into the decorated class.
Here's an example of using this class and extracting a memento that summarizes the
state of the object:

>>> st = StatefulClass(2.7)
>>> print (st.memento())
StatefulClass (**{'value': 2.7})

This implementation has the following disadvantages:

e We can't override the implementation of the memento () method function
to handle special cases. It's built into the class after the definition.

e We can't extend the decorator function easily. Doing this would involve
creating either a very complex memento () method, or perhaps some other
unwieldy design to incorporate some kind of plug-in feature.

An alternative is to use a mixin class. Variations on this class allow customization.
The following is the mixin class that adds a standard method:

class Memento:

def memento(self) —-> str:
return (
f"{self.__class__.__qualname__}"

f" (**{vars (self)!r})"

[283]

Decorators and Mixins - Cross-Cutting Aspects Chapter 9

The following is how we use this Mement o mixin class to define an application class:

class StatefulClass2 (Memento) :

def __init__ (self, wvalue):
self.value = value

def __repr__ (self):
return f"{self.value}"

The mixin provides a new method, memento () ; this is the expected, typical purpose
of a mixin. We can more easily extend the Mement o mixin class to add features. In
addition, we can override the memento () method function to handle special cases.

Now, let's see how to use decorators for security.

Using decorators for security

Software is filled with cross-cutting concerns, aspects that need to be implemented
consistently, even if they're in separate class hierarchies. It's often a mistake to try and
impose a class hierarchy around a cross-cutting concern. We've looked at a few
examples, such as logging and auditing.

We can't reasonably demand that every class that might need to write to the log also
be a subclass of some single Loggable superclass. It's much easier to design a
Loggable mixin or a @1loggable decorator. These don't interfere with the proper
inheritance hierarchy that we need to design to make polymorphism work correctly.

Some important cross-cutting concerns revolve around security. Within a web
application, there are two aspects to the security question as follows:

¢ Authentication: Do we know who's making the request?
e Authorization: Is the authenticated user permitted to make the request?

Some web frameworks allow us to decorate our request handlers with security
requirements. The Django framework, for example, has a number of decorators that
allow us to specify security requirements for a view function or a view class.

[284]

Decorators and Mixins - Cross-Cutting Aspects Chapter 9

Some of these decorators are as follows:

e user_passes_test: This is a low-level decorator that's very generalized
and is used to build the other two decorators. It requires a test function; the
logged-in User object associated with the request must pass the given
function. If the User instance is not able to pass the given test, they're
redirected to a login page so that the person can provide the credentials
required to make the request.

e login_required: This decorator is based on user_passes_test. It
confirms that the logged-in user is authenticated. This kind of decorator is
used on web requests that apply to all people accessing the site. Requests,
such as changing a password or logging out, shouldn't require any more
specific permissions.

® permission_required: This decorator works with Django's internally
defined database permission scheme. It confirms that the logged-in user (or
the user's group) is associated with the given permission. This kind of
decorator is used on web requests where specific administrative
permissions are required to make the request.

Other packages and frameworks also have ways to express this cross-cutting aspect of
web applications. In many cases, a web application may have even more stringent
security considerations. We might have a web application where user features are
selectively unlocked based on contract terms and conditions. Perhaps, additional fees
will unlock a feature. We might have to design a test like the following:

def user_has_feature (feature_name) :
def has_feature (user) :
return feature_name in (f.name for f in user.feature_set())
return user_passes_test (has_feature)

This decorator customizes a version of the Django user_passes_test () decorator
by binding in a specific feature test. The has_feature () function checks a
feature_set () value of each User object. This is not built-in in Django. The
feature_set () method would be an extension, added onto the Django User class
definition. The idea is for an application to extend the Django definitions to define
additional features.

The has_feature () function checks to see whether the named feature is associated
with the feature_set () results for the current User instance. We've used our
has_feature () function with Django's user_passes_test decorator to create a
new decorator that can be applied to the relevant view functions.

[285]

Decorators and Mixins - Cross-Cutting Aspects Chapter 9

We can then create a view function as follows:

@Quser_has_feature ('special_bonus')
def bonus_view (request) :
pass

This ensures that the security concerns will be applied consistently across a number
of view functions.

Summary

We've looked at using decorators to modify function and class definitions. We've also
looked at mixins that allow us to decompose a larger class into components that are
knitted together.

The idea of both of these techniques is to separate application-specific features from
generic features, such as security, audit, or logging. We're going to distinguish
between the inherent features of a class and aspects that aren't inherent but are
additional concerns. The inherent features are part of the explicit design. They're part
of the inheritance hierarchy; they define what an object is. The other aspects can be
mixins or decorations; they define how an object might also act.

In most cases, this division between is-a and acts-as is quite clear. Inherent features are
a part of the overall problem domain. When talking about simulating Blackjack play,
things such as cards, hands, betting, hitting, and standing are clearly part of the
problem domain. Similarly, the data collection and statistical analysis of outcomes is
part of the solution. Other things, such as logging, debugging, security checks, and
auditing are not part of the problem domain; these other aspects are associated with
the solution technology. In some cases, they are part of regulatory compliance or
another background context in which the software is used.

While most cases are quite clear, the dividing line between inherent and decorative
aspects can be fine. In some cases, it may devolve to an aesthetic judgment. Generally,
the decision becomes difficult when writing framework and infrastructure classes
because they aren't focused on a specific problem. A general strategy for creating
good designs is as follows:

¢ Aspects that are central to the problem will contribute directly to class
definitions. Many classes are based on nouns and verbs present in the
problem domain. These classes form simple hierarchies; polymorphism
among data objects works as expected when compared with real-world
objects.

[286]

Decorators and Mixins - Cross-Cutting Aspects Chapter 9

¢ Some aspects are peripheral to the problem and will lead to mixin class
definitions. These are things related to operational aspects of using the
software more than solving the essential problem.

A class that involves mixins can be said to be multidimensional. It has more than one
independent axis; aspects belong to orthogonal design considerations. When we
define separate mixins, we can have separate inheritance hierarchies for the mixins.
For our casino game simulations, there are two aspects: the rules of the game and a
betting strategy. These are orthogonal considerations. The final player simulation
classes must have mixin elements from both class hierarchies.

The type hints for decorators can become complex. In the most generic case, a
decorator can be summarized as a function with an argument that'sa Callable and
aresult that's a Callable. If we want to be specific about the arguments and results
of the callable, there will be complex-looking type hints, often involving type
variables to show how the Callable argument and the Callable result align. This
can become very complex if the decorator changes the signature of the decorated
function by modifying parameters or results.

As noted previously, object-oriented programming lets us follow a variety of design
strategies, as follows:

e Composition: We introduce functionality through wrapping one class with
another class. This may involve the composition of various aspects under a
fagade. It may involve using mixins classes to add features, or decorators to
add features.

¢ Extension: This is the ordinary case of inheritance. This is appropriate
where there is a clear is-a relationship among the class definitions. It works
out best when the superclass is a unsurprising generalization of the
subclass details. In this case, ordinary inheritance techniques work out
well.

The forthcoming chapters will change direction. We've seen almost all of Python's
special method names. The next five chapters are going to focus on object persistence
and serialization. We'll start out with serializing and saving objects in various
external notations, including JSON, YAML, Pickle, CSV, and XML.

Serialization and persistence introduce yet more object-oriented design
considerations for our classes. We'll also have a look at object relationships and how
they're represented. We'll also have a look at the cost complexity of serializing and
deserializing objects, and at the security issues related to the deserialization of objects
from untrustworthy sources.

[287]

Section 2: Object

Serialization and Persistence

A persistent object has been serialized to a storage medium. Perhaps it has been
transformed to JSON and written to the filesystem. Perhaps an object-relational
management (ORM) layer can store the object in a database.

The following chapters will be covered in this section:

® Chapter 10, Serializing and Saving — J[SON, YAML, Pickle, CSV, and XML

Chapter
Chapter
Chapter
Chapter

11, Storing and Retrieving Objects via Shelve
12, Storing and Retrieving Objects via SQLite
13, Transmitting and Sharing Objects

14, Configuration Files and Persistence

10

Serializing and Saving -
JSON, YAML, Pickle, CSV,
and XML

To make a Python object persistent, we must convert it into bytes and write the bytes
to a file. We'll call this transformation serialization; it is also called marshaling,
deflating, or encoding. We'll look at several ways to serialize a Python object to a
stream of bytes. It's important to note that we're focused on representing the state of
an object, separate from the full definition of the class and its methods and
superclasses.

A serialization scheme includes a physical data format. Each format offers some
advantages and disadvantages. There's no best format to represent the state of objects.
helps to distinguish the format from the logical data layout, which may be a simple
reordering or change in the use of whitespace; the layout changes don't change the
value of the object but change the sequence of bytes in an irrelevant way. For
example, the CSV physical format can have a variety of logical layouts and still
represent the same essential data. If we provide unique column titles, the order of the
columns doesn't matter.

Some serialized representations are biased toward representing a single Python
object, while others can save collections of individual objects. Even when the single
objectis a 1ist of items, it's still a single Python object. In order to update or replace
one of the items within the list, the entire list must be de-serialized and re-serialized.
When it becomes necessary to work with multiple objects flexibly, there are better
approaches described in chapters 11, Storing and Retrieving Objects via Shelve,
Chapter 12, Storing and Retrieving Objects via SQLite, and Chapter 13, Transmitting
and Sharing Objects.

Serializing and Saving - JSON, YAML, Pickle, CSV, and XML Chapter 10

For the most part, we're limited to objects that fit in working memory. We'll look at
the following serialization representations:

e JavaScript Object Notation (JSON): This is a widely used representation.
For more information, visit http://www.json.org. The json module
provides the classes and functions necessary to load and dump data in this
format. In the Python Standard Library, look at section 19, Internet Data
Handling, not section 12, Persistence. The json module is focused narrowly
on JSON serialization. The more general problem of serializing arbitrary
Python objects isn't handled well.

¢ YAML Ain't Markup Language (YAML): This is an extension to JSON and
can lead to some simplification of the serialized output. For more
information, check out http://yaml.org. This is not a standard part of the
Python library; we must add a module to handle this. The pyYaml package,
specifically, has numerous Python persistence features.

e pickle: The pickle module has its own unique representation for data. As
this is a first-class part of the Python library, we'll look closely at how to
serialize an object in this way. This has the disadvantage of being a poor
format for the interchange of data with non-Python programs. It's the basis
for the shelve module in Chapter 11, Storing and Retrieving Objects via
Shelve, as well as message queues in Chapter 13, Transmitting and Sharing
Objects.

¢ Comma Separated Values (CSV): This can be inconvenient for
representing complex Python objects. As it's so widely used, we'll need to
work out ways to serialize Python objects in the CSV notation. For
references, look at section 14, File Formats, of the Python Standard Library,
not section 12, Persistence, because it's simply a file format and little more.
CSV allows us to perform an incremental representation of the Python
object collections that cannot fit into memory.

e XML: In spite of some disadvantages, this is very widely used, so it's
important to be able to convert objects into an XML notation and recover
objects from an XML document. XML parsing is a huge subject. The
reference material is in section 20, Structured Markup Processing Tools, of
the Python Standard Library. There are many modules to parse XML, each
with different advantages and disadvantages. We'll focus on
ElementTree.

[290]

http://www.json.org
http://yaml.org

Serializing and Saving - JSON, YAML, Pickle, CSV, and XML Chapter 10

Beyond these simple serialization formats, we can also have hybrid problems. One
example of a hybrid problem is a spreadsheet encoded in XML. This means that we
have a row-and-column data representation problem wrapped in the XML parsing
problem. This leads to more complex software for disentangling the various kinds of
data that were flattened to CSV-like rows so that we can recover useful Python
objects.

In this chapter, we will cover the following topics:

¢ Understanding persistence class, state, and representation
e Filesystem and network considerations

¢ Defining classes to support persistence

e Dumping and loading with JSON

¢ Dumping and loading with YAML

e Dumping and loading with pickle

¢ Dumping and loading with CSV

¢ Dumping and loading with XML

Technical requirements

The code files for this chapter are available at https://git.io/£j20w.

Understanding persistence, class, state,
and representation

Primarily, our Python objects exist in volatile computer memory. The upper bound on
the life of an object is the duration of the Python process. This lifetime is further
constrained by objects only lasting as long there are references to them. If we want an
object with a longer duration, we need to make it persistent. If we want to extract the
state of an object from one process and provide this state information to another
process, the same serialization techniques for persistence can be used for the transfer
of object state.

[291]

https://git.io/fj2Uw
https://git.io/fj2Uw
https://git.io/fj2Uw
https://git.io/fj2Uw
https://git.io/fj2Uw
https://git.io/fj2Uw
https://git.io/fj2Uw
https://git.io/fj2Uw
https://git.io/fj2Uw

Serializing and Saving - JSON, YAML, Pickle, CSV, and XML Chapter 10

Most operating systems offer persistent storage in the form of a filesystem. This can
include disk drives, flash drives, or other forms of non-volatile storage. Persisting the
bytes from memory to the filesystem turns out to be surprisingly difficult.

The complexity arises because our in-memory Python objects have references to other
objects. An object refers to its class. The class refers to any base classes. The object
might be a container and refer to other objects. The in-memory version of an object is
a web of references and relationships. The references are generally based on the
locations in memory, which are not fixed: the relationships would be broken by
trying to simply dump and restore memory bytes.

The web of references surrounding an object contains other objects that are largely
static. Class definitions, for example, change very slowly compared to instance
variables within an object. Python gives us a formal distinction between the instance
variables of an object and other methods defined in the class. Consequently,
serialization techniques focus on persisting the dynamic state of an object based on its
instance variables.

We don't actually have to do anything extra to persist class definitions; we already
have a very simple method for handling classes. Class definitions exist primarily as
source code. The class definition in the volatile memory is rebuilt from the source (or
the byte-code version of the source) every time it's needed. If we need to exchange a
class definition, we exchange Python modules or packages.

Let's take a look at common Python terminology in the next section.

Common Python terminology

Python serialization terminology tends to focus on the words dump and load. Most of
the classes we're going to work with will define methods such as the following;:

e dump (object, file):This will dump the given object to a file.

e dumps (object): This will dump an object, returning a string
representation.

e load(file): This will load an object from a file, returning the constructed
object.

® loads (string): This will load an object from a string representation,
returning the constructed object.

[292]

Serializing and Saving - JSON, YAML, Pickle, CSV, and XML Chapter 10

There's no formal standard; the method names aren't guaranteed by any formal ABC
inheritance or mixin class definition. However, they're widely used. Generally, the
file used for the dump or load can be any file-like object.

To be useful, the file-like object must implement a short list of methods.

Generally, read () and readline () are required for the load. We can, therefore, use
the i0.StringIO objects as well as the urllib.request objects as sources for the
load. Similarly, dump places few requirements on the data source, mostly a write ()
method is used. We'll dig into these file object considerations next.

Filesystem and network considerations

As the OS filesystem (and network) works in bytes, we need to represent the values of
an object's instance variables as a serialized stream of bytes. Often, we'll use a two-
step transformation to get the bytes: firstly, we'll represent the state of an object as a
string; secondly, we'll rely on the Python str class to provide bytes in a standard
encoding. Python's built-in features for encoding a string into bytes neatly solves the
second part of the problem. This allows most serialization methods to focus on
creating strings.

When we look at our OS filesystems, we see two broad classes of devices: block-mode
devices and character-mode devices. Block-mode devices can also be called seekable
because the OS supports a seek operation that can access any byte in the file in an
arbitrary order. Character-mode devices are not seekable; they are interfaces where
bytes are transmitted serially. Seeking would involve some kind of time travel to
recover past bytes or see future bytes.

This distinction between the character and block mode can have an impact on how we
represent the state of a complex object or a collection of objects. The serializations
we'll look at in this chapter focus on the simplest common feature set: an ordered
stream of bytes. The stream of bytes can be written to either kind of device.

The formats we'll look at in chapter 11, Storing and Retrieving Objects via Shelve, and
Chapter 12, Storing and Retrieving objects via SQLite, however, will require block-
mode storage in order to encode more objects than could possibly fit into memory.
The shelve module and the sQLite database require seekable files on block-mode
devices.

[293]

Serializing and Saving - JSON, YAML, Pickle, CSV, and XML Chapter 10

To an extent, the OS unifies block- and character-mode devices into a single
filesystem metaphor. Some parts of the Python Standard Library implement the
common feature set between the block and character devices. When we use Python's
urllib.request, we can access the network resources as well as local files. When
we open a local file, the urllib.request.urlopen () function imposes the limited
character-mode interface on an otherwise seekable file on a block-mode device.
Because the distinction is invisible, it lets a single application work with network or
local resources.

Let's define classes to support persistence.

Defining classes to support persistence

In order to work with persistence, we need some objects that we want to save. We'll
look at a simple microblog and the posts on that blog. Here's a class definition for
Post:

from dataclasses import dataclass
import datetime

@dataclass
class Post:
date: datetime.datetime
title: str
rst_text: str
tags: List[str]

def as_dict (self) -> Dic<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>