

Hands-On Full-Stack
Development with Swift

Develop full-stack web and native mobile applications using
Swift and Vapor

Ankur Patel

BIRMINGHAM - MUMBAI

Hands-On Full-Stack Development with Swift
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Kunal Chaudhari
Acquisition Editor: Siddharth Mandal
Content Development Editor: Onkar Wani
Technical Editor: Akhil Nair
Copy Editor: Safis Editing
Project Coordinator: Devanshi Doshi
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Graphics: Jason Monteiro
Production Coordinator: Shantanu Zagade

First published: March 2018

Production reference: 1270318

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78862-524-1

www.packtpub.com

http://www.packtpub.com

To my parents, Girish and Jagruti Patel, and my sister, Reena, for their sacrifices and for
supporting me throughout my career.

To my wife, Nirali, for being my loving partner and standing beside me, without whose support
this book would not have been completed.

To my soon to be born child, whom my wife and I are excited to welcome into our life.

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author
Ankur Patel is a web and mobile application developer specializing in iOS, with a passion
for making innovative consumer applications. Ankur is a generalist who has worked with a
variety of programming languages, such as Objective-C, Ruby, JavaScript, Swift, Java, and
C. He has held multiple roles in firms both big and small, including IBM, Oracle, Goldman
Sachs, Bloomberg, Shutterstock, and MyTime. He is also the author of the book Learning
Swift - Building an iOS Game, which teaches readers how to build an iOS game and publish it
to the App Store.

I am grateful to Packt Publishing for offering me the opportunity to write this book. Thank
you Onkar, Siddharth, and the reviewers, for your support and guidance. I would also like
to thank my parents and my wife for being by my side through the nights and weekends.
Lastly, I am grateful to God for blessing my wife and I with a child, as thoughts of being a
father gave me hope and joy on my journey writing this book.

About the reviewers
Albert Wold lives in Tempe, Arizona, with his wife and two children. He has always had
an enthusiasm for programming and was initially attracted to it at the age of eight while
wanting to learn to build a game. He has spent the last few years focusing on iOS
development and is a big fan of the Swift programming language.

Vinod Madigeri is a curious software engineer with a particular interest in app design and
development. He has worked in several industries (telecommunication, game technologies,
and consumer electronics) as a developer, team leader, and mentor, writing software in C,
C++, C#, Objective-C, and Swift.

Vinod has been doing this professionally for 8 years and had been goofing with computers
for 12 years before that. Vinod was also a technical reviewer of Object–Oriented Programming
with Swift and Multiplayer Game Development with HTML5.

I’d like to thank my lovely wife, Shruti, for her constant support, encouragement, and
vanguard thoughts.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Getting Started with Server Swift 7
Modern app development 8
Swift's evolution 8

Open source 9
Server-side Swift 9

Benefits of server-side Swift 10
Getting started with Swift package manager 11

Building a Swift package 12
Publishing a Swift package 15
Consuming a Swift package 16
Installing the package's executable 19

How do the web servers work? 19
User requesting a web page 19
Mobile application requesting data 21
HTTP request and response 21

Building a web server in Swift 24
Server-side web frameworks 28

Vapor 29
Book roadmap 31
Summary 31

Chapter 2: Creating the Native App 33
Features of our Shopping List app 33
Creating an app 34
Blueprinting the Shopping List Item model 37

Exercise 39
Exercise answer 39

Controlling the flow of our application using View Controller 39
Wiring up the view 42

Table View Controller 47
Adding items to the list 51
Editing the list 55
Loading and auto-saving the Shopping List 60
Multiple lists 62

Refactoring to share code 62
Blueprinting the Shopping List Model 63
The Shopping List Table View Controller 66

Table of Contents

[ii]

Summary 74

Chapter 3: Getting Started with Vapor 75
What is Vapor? 76
Building servers using Vapor's engine 77

Building a basic HTTP server 78
Building a static file server 80
Building a WebSocket server 82

Building a Vapor application from scratch 85
Vapor toolbox 87

Installing the Vapor toolbox 87
Vapor toolbox commands 88
Creating a Vapor application using the toolbox 90

Vapor folder structure 93
Vapor config 94
Vapor droplet 96
Views 98
Controllers 99

Summary 100

Chapter 4: Configuring Providers, Fluent, and Databases 101
Shopping List API Vapor app 102
What are Providers? 104

Building your first Provider 104
Exercise time 109
Adding a Provider 110

Getting started with databases 112
What is MongoDB? 113
How to install and run MongoDB 113

What are ORM and Fluent? 114
Fluent in action 115

Creating an item 118
Updating an item 119
Getting all items 119
Finding an item 119
Finding items using filter 119
Deleting an item 120
Counting items 120

Relations in Fluent 120
One to one (parent-child relation) 121
One to many 122
Many to many 123

Connecting with MongoDB 125
Configuring Fluent config 125
Mongo config - mongo.json 126
Adding MongoProvider 127

Table of Contents

[iii]

Summary 132

Chapter 5: Building a REST API using Vapor 133
Routing in Vapor 134

HTTP methods 134
Routers 135
Nested routing 138
Dynamic routing 138
Wildcard routing 140
Routing parameters 140

Vapor Models 141
The Shopping List Model 142
Preparation protocol 144
JSONConvertible protocol 145
ResponseRepresentable protocol 146
Updateable protocol 146
Item Model 147

Controllers in Vapor 150
RESTful Controller 150
Shopping List controller 154

REST API in action 156
Creating the Shopping List 156
Getting the Shopping List 157
Updating the Shopping List 159
Deleting the Shopping List 160
Creating items 160

Exercise 162
Summary 163

Chapter 6: Consuming API in App 164
Xcode Workspace 165
Making network requests 172

Network configuration 173
Request helper 174

Fetching data from the server 176
Debugging the app and server side by side 181
Adding a Shopping List 185
Deleting a Shopping List 189

Exercise 191
Adding a Shopping List Item 191
Deleting an item 194
Checking and unchecking an item 195
Summary 197

Chapter 7: Creating Web Views and Middleware 198

Table of Contents

[iv]

View rendering in Vapor app 199
What is Leaf? 199

Adding Leaf Provider 203
Serving JSON and HTML formats 208

Creating a middleware 208
Creating a BaseResourceController 212

Adding JavaScript 218
Creating a new Shopping List 219
Deleting a Shopping List 220
Adding an Item 220
Deleting an Item 221
Checking and unchecking an Item 222

Summary 223

Chapter 8: Testing and CI 224
Testing the Vapor application 225

Setting up the test environment 225
Running tests 226

Testing RESTful routes 230
Fetching all Shopping Lists 231
Creating a Shopping List 232
Deleting the Shopping List 233
Updating the Shopping List 234

Exercise 235
Automated testing pipeline 236

Enabling Travis build check on Pull request 243
Summary 245

Chapter 9: Deploying the App 246
Where can we deploy a Vapor App? 246
Deploying to Heroku 247

Priming the app for deployment 250
Configuring and deploying Vapor to Heroku 250
Adding the MongoDB Heroku addon 254

Setting up Continuous Deployment 256
Exercise 258
Summary 258

Chapter 10: Adding Authentication 259
Creating a User model 260

Best practices for storing password 260
Getting started with the User model 262

User has many Shopping Lists 266
Adding Registration and Login 268
Showing user specific Shopping Lists 273

Table of Contents

[v]

Adding token-based authentication for app 274
Testing the token-based authentication 279

Adding authentication flow to iOS app 279
Bringing it all together in the Storyboard 283

Summary 298

Chapter 11: Building a tvOS App 299
Shopping List app on tvOS 299
Sharing code between iOS and tvOS 305

Making code work with both iOS and tvOS apps 307
Configuring the tvOS storyboard 309
Summary 330

Other Books You May Enjoy 332

Index 335

Preface
This book is about building cross-platform software solution using Swift. The book will take
the reader on a journey of building an app for iOS and extending the app to a different
platform, such as the web and tvOS. The app will start out simple, but get more and more
complex as it progresses. Toward the end, we will have a product that will work on iOS,
tvOS, and in the browser and have a server component, all written entirely in Swift.

Through this journey, we will learn how Swift has progressed from a language used just for
iOS to a language that can be used on the server side. We will also learn how to build
server-side packages using Swift and Vapor, which is one of the most popular Swift
packages for building web servers. Using Vapor, we will build a full-stack web application
that will act as an API server for our iOS and tvOS app, and will also be our web server,
which will render a web view of our app. Several technologies will be covered while
building the backend, including MongoDB, which is a non-relational database.

We will be using Swift 4 throughout the book and will cover new features introduced in
this version of Swift. We will use Xcode 9 as our IDE to build for these different platforms,
and readers will learn how to share code and development tools to make development fun
and productive. We will also use Vapor 2.0 to build our server in Swift, and learn how the
framework makes it easy to build rich backends for our application.

I hope that on this journey, you will learn how to write code in these different application
stacks. By the end of this book, you should feel comfortable building your next product
using Swift. From building a native app, to the backend, to a marketing page, or web app,
you will have the knowledge to get hands-on with Swift to build your next big idea.

Who this book is for
This book is intended for developers familiar with Swift and web development on the client
side who want to build both a full-stack web application and a native mobile application
using the Swift and Vapor framework. An understanding of how HTML and CSS work and
knowledge of JavaScript will be helpful when building server-rendered pages with Vapor.

Preface

[2]

What this book covers
Chapter 1, Getting Started with Server Swift, dives into the world of server-side Swift and
shows you how to build and use Swift packages, and how to build a simple HTTP server
using pure Swift.

Chapter 2, Creating the Native App, explains how to build a Shopping List app in pure Swift,
using Xcode and Storyboard. At the end of this chapter, you will have a fully-functioning
app that persists data offline on the iPhone in a secure way.

Chapter 3, Getting Started with Vapor, delves deep into Vapor features and packages and
shows how to get started with using Vapor to start building rich web applications.

Chapter 4, Configuring Providers, Fluent, and Databases, provides a solid background on
ORM for Swift and shows how to set up a database for a Vapor app using Fluent and
Providers.

Chapter 5, Building REST API Using Vapor, explores how to build a RESTful API using
Vapor for our Shopping List app and goes into detail about how to create RESTful routes
and controllers.

Chapter 6, Consuming API in App, contains details on how to refactor our iOS app to
consume the RESTful API we built in Chapter 5, Building REST API using Vapor, and how to
make network requests to our API when creating, reading, updating, and deleting data
from our iOS app.

Chapter 7, Creating Web Views and Middleware, shows how to create HTML views in our
Vapor app and demonstrates the use of Middleware to conditionally load HTML views for
a browser and a render view as JSON for an API request from the iOS app.

Chapter 8, Testing and CI, contains information on how to test a Vapor app and how to set
up a Continuous Integration pipeline to automatically run tests before code is merged using
Travis CI.

Chapter 9, Deploying the App, contains deployment options for a Vapor app and shows how
to deploy a Vapor app to Heroku and set up an automated deployment pipeline when code
is merged into the Git repo.

https://cdp.packtpub.com/full_stack_swift_4/wp-admin/post.php?post=424&action=edit#post_28

Preface

[3]

Chapter 10, Adding Authentication, demonstrates how to add authentication to a Vapor app
so that users can log in or register and own the Shopping List that they create. This chapter
also demonstrates how an iOS app is updated to support token-based authentication
implemented in the Vapor app.

Chapter 11, Building a tvOS App, wraps up the book by demonstrating how easy it is to
build for another platform with maximum code shareability between the iOS and tvOS apps
and how a small team of Swift developers can build a multiplatform full-stack application
using Swift.

To get the most out of this book
You should have basic knowledge of the following topics:

Swift1.
Xcode2.
Storyboard and Autolayout3.
HTML4.
JavaScript5.
CSS6.
Terminal/Command Line Tools7.

You should also use macOS as we will be using Xcode to build our native apps and our
server app.

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[4]

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Hands- ​On- ​Full- ​Stack- ​Development- ​with- ​Swift. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Go to our ShoppingListTableViewController.swift file and update one
line inside the didSelectAdd method. "

A block of code is set as follows:

html, body, #map {
 height: 100%;
 margin: 0;
 padding: 0
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

@IBAction func didSelectAdd(_ sender: UIBarButtonItem) {
 requestInput(title: "Shopping list name",
 message: "Enter name for the new shopping list:",
 handler: { listName in
 let listCount = self.lists.count
 ShoppingList(name: listName).save() { list in
 self.lists.append(list)
 self.tableView.insertRows(at: [IndexPath(row: listCount,
section: 0)], with: .top)
 }

https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Full-Stack-Development-with-Swift
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[5]

 })
}

Any command-line input or output is written as follows:

~ $ mongod --config /usr/local/etc/mongod.conf

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Build and run the Run Scheme on the My Mac platform"

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Preface

[6]

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

https://www.packtpub.com/

1
Getting Started with Server

Swift
Swift is yet another programming language, introduced in 2014 by Apple. According to
them, Swift is a general-purpose programming language, built using a modern approach to
safety, performance, and software design patterns. They created the language to help make
development on their platform more fun and productive as their flagship language
Objective-C is bit dated and has a very distinct syntax that makes it hard for anyone to
quickly get started.

A few years ago, Swift was open sourced and the Swift community has pushed the
language forward by trying to build server components using Swift. This has led to the
creation of the term server-side Swift. So what is server-side Swift? What are the benefits of
using it on the server? Can it be used to build different stacks of your application?

In this chapter, we will answer those questions while getting our feet wet in the world of
server-side Swift. We'll cover the following:

Learning about modern app development
Seeing how Swift has evolved
Looking at the benefits of server-side Swift
Learning about the Swift package manager and its CLI
Building a simple library and an executable Swift package
Learning how web servers work and building a simple web server in pure Swift
Discovering server-side web frameworks for Swift and Swift package catalog
Learning about Vapor, one of the most used server-side web frameworks for
Swift
Going over the idea for the apps we will be building in the book

Getting Started with Server Swift Chapter 1

[8]

Modern app development
Application development in today's world is not just about building for one platform.
Modern applications have an ecosystem of apps that run on multiple devices and
platforms. In order for these apps to run on the multiple platforms they also need a server-
side component to be able to seamlessly save and retrieve data so that a user can switch
between them and start using the app from where they left off on another platform. To
make these modern applications possible, developers write code on the different technology
stacks that have different programming languages and frameworks/libraries. This makes
the job of the developer especially difficult due to the context switching between
programming languages when building the application.

In the world of the web, developers have enjoyed working on the frontend web applications
using JavaScript but after the introduction of Node.js, web developers who were mainly
focused on the frontend could finally work on the backend in a language that feels familiar.
Web developers have embraced the idea of working across different technology stacks as
part of their app development because they can now write the frontend in JavaScript and
use the same language to build server-side components.

Similarly, Swift, which is popular in the world of iOS, tvOS, and macOS for building rich
client-facing applications, is now available on server-side thanks to Apple. Like JavaScript
developers, Swift developers can now finally build server-side components in a language
that is familiar to them while they continue to build frontend applications for different
platforms, such as mobile, watch, TV, or desktop. Currently Swift is gaining popularity on
the server-side, and it has never been a good time to be Swift developers. We can now
engage ourselves in true full stack app development by working on different platforms
using the same language and standard libraries that we are familiar with when building
iOS, tvOS, watchOS, and macOS applications.

Swift's evolution
Swift started out as a general-purpose programming language, intended to replace
Objective-C as the default language for building iOS, tvOS, watchOS, and macOS
applications. Swift is a compiled language that compiles down to Low Level Virtual
Machine (LLVM) bytecode and is Just-In-Time (JIT) compiled to native code of the
architecture on its first run making Swift a very fast language. Swift also uses Automatic
Reference Counting (ARC) to manage memory, making it simple to write applications
especially for iOS where memory management is critical.

Getting Started with Server Swift Chapter 1

[9]

With all of these features, Swift definitely stands out from the rest of the languages popular
during that time, which included Scala, Rust, Elixir, Kotlin, and C#. With growing
popularity, all it needed was more platforms to run on and that is what Apple did when
they open sourced it in late 2015.

Open source
In December 2015, Apple announced that it would open source Swift; this opened up the
possibility of writing applications in Swift on other platforms, especially Linux. Open
sourcing Swift meant that anyone could take the Swift code base and build a Swift compiler
and toolset on their host operating system (OS) where LLVM is supported. This is exactly
what Apple did soon after Swift was open sourced by creating Swift toolset that worked on
Ubuntu, a popular distribution of Linux. Apple kept its promise of truly open sourcing
Swift by also porting its libraries and frameworks, including Foundation, which is used
extensively in iOS and macOS platforms, and made them work on Ubuntu. Without these
frameworks, it would be hard to build cross-platform applications in Swift that work on
both Apple's OS and Linux with same feature parity since Foundation is the standard
library that contains access to essential data types, collections, and operating system
services to define the base layer of functionality for any application.

Server-side Swift
Since Swift is a language that is elegant and expressive while being performant, it was
about time that it would be ported to run on a server-side platform. Building command-line
tools with Swift become popular on the macOS platform soon after Apple made it easy to
use Swift for general purpose programming outside of iOS app development with the use
of the Hash Bang, #!, syntax specified on top of the Swift file just like in a scripting
language such as Perl, Ruby, or Python. This made it very easy for anyone to write and run
Swift code without having to compile it. The same technique works on Linux platform;
so, let's see how it works:

Creating a Swift file called hello.swift1.
Adding the following code to the file:2.

#!/usr/bin/swift
print(“Hello World from Swift!”)

Getting Started with Server Swift Chapter 1

[10]

Making the file an executable by changing the permission on the file using chmod:3.

$ chmod +x hello.swift

Running the Swift code by typing the filename in the Terminal:4.

$./hello.swift

You should see Hello World from Swift! printed on the command line. This shows you
how easy it is to create an executable in Swift without even having to compile it ahead of
time; you can quickly test Swift code from the command line.

Benefits of server-side Swift
There are several benefits of using Swift on the server side. Some of them include:

Being able to work on a feature as a whole: Being able to work on an entire
feature helps deliver the feature on time and as expected. Traditionally, teams are
divided into frontend and backend teams but if you have the same language used
for both front and backend then it will help developers contribute to the entire
stack. Developers working on building the app can create the API endpoints
needed to avoid the unnecessary back and forth between developers and prevent
an app developer from being blocked by the backend engineer and move the
feature development forward.
Working with familiar language and tools: Working with a familiar language
reduces the biggest hurdle to working across different stacks. You can build both
mobile and server-side components using the same language and tools. Swift
developers can use their favorite IDE, Xcode, to build their backend server and
do not have to learn new tools or install different IDEs.
Sharing code base: Code shareability is another big win for using Swift as you
can share models, validations, and business logic easily across platforms. Not
having to rewrite the same logic in different languages saves times and helps
avoid expensive bugs caused by inconsistencies introduced by different
developers who might have worked on rewriting the business logic on a different
stack.
Leveraging great APIs: Apple did a great job building easy-to-use APIs on their
platform and now being able to use those APIs server-side is a big benefit for
developers as they do not have to learn new standard libraries or reinvent them
on the Linux platform.

Getting Started with Server Swift Chapter 1

[11]

Getting started with Swift package manager
Mastering the command line is important, especially when trying to build and deploy Swift
on a production Linux machine or in the Cloud. Since Xcode will not be available on those
hosts, Apple has provided us with an easy-to-use command-line tool to help create, build,
and distribute our Swift code. This tool is called the Swift package manager and it is useful
for managing the distribution of Swift code while integrating with the Swift build system to
automate the process of downloading, compiling, and linking dependencies. The following
are some of the useful commands provided by the package manager to quickly get you
started:

swift package init: This will create a Swift package or module that is an easy
portable way to share code. It will create a package using the name of the folder
you are currently in. Passing a --type executable option will make an
executable package where the product of the build will be an executable program
such as a web server or a command-line program. Think of this as gems for Ruby
or node modules for Node.js.
swift build: This builds the Swift package you currently are in by compiling
Swift code in your Sources folder. If your package is an executable, then it will
generate a binary in the .build/debug folder. If you pass a release configuration
using the --configuration release option, then it will build a highly optimized
binary and place it in .build/release. The same output is generated for non-
executable binary but generate Swift modules instead to be imported by whoever
wants to use this module.
swift run: A quick way to run a Swift executable package from the command
line. This command builds the Swift code if it is not built already and runs the
binary. You can pass the -c release option to build and run the optimized version
of the binary.
swift test: To run tests written in the Test folder of your package.
swift package generate-xcodeproj: This command generates an Xcode
project file so that you can work on the package in Xcode instead of a plain text
editor.

Getting Started with Server Swift Chapter 1

[12]

These are some of the more important commands that will come in handy when trying to
build and test your web server in Swift and also when deploying and running your web
application in production. There are a lot more commands and you can learn about them by
running swift package in the Terminal:

Building a Swift package
Right now, we will go through an exercise to build a simple Swift package and learn about
the important files and folders. We will also publish this package and consume it in another
Swift package to show how we can publish packages and import them as dependencies. For
our exercise, we will create a simple cat command-line tool which will concatenate and
print the contents of the files specify relative to the current directory.

Getting Started with Server Swift Chapter 1

[13]

In order for us to do so we will first build a package called FileReader which will read
and return the contents of the file. To build this Swift package, we need to do the following:

Create a folder called FileReader (mkdir FileReader) and change directory1.
(cd) into that folder
Run Swift package init and it will generate files and folders for the package2.

Let's inspect the contents of the package. The following is the file and folder structure inside
of FileReader:

~/W/FileReader $ tree .
.
├── Package.swift
├── README.md
├── Sources
│ └── FileReader
│ └── FileReader.swift
├── Tests
 ├── FileReaderTests
 │ └── FileReaderTests.swift
 └── LinuxMain.swift
4 directories, 5 files

Package.swift: This file is where you describe meta-information about the
package, including dependencies of the package.
Sources: This is where you place your Swift code that will get built by the Swift
package manager when you run the swift build command. It can contain
multiple folders if you want to build multiple products or targets in your
package.
Tests: This is where you place your test files and that get run when swift test
is run from the command line.

Now that we know the basic file and folder structure, we can start writing our Swift code to
read files from disk inside of the FileReader.swift file. By default, it will contain
boilerplate code which we can remove and replace with this:

import Foundation
class FileReader {
 static func read(fileName: String) -> String? {
 let fileManager = FileManager.default
 let currentDirectoryURL = URL(fileURLWithPath:
 fileManager.currentDirectoryPath)
 let fileURL = currentDirectoryURL.appendingPathComponent(fileName)
 return try? String(contentsOf: fileURL, encoding: .utf8)

Getting Started with Server Swift Chapter 1

[14]

 }
}

In this file, we import Foundation, which is a standard library available in macOS and
Linux and it provides us with the standard library to read from a file path using the
FileManager. After that, we define the FileReader class and create one static function in
it, called read, that takes a filename and this function will return the contents of the file if
the file exists. The code inside the function does the following:

Gets a singleton FileManager object:1.

 let fileManager = FileManager.default

Creates a URL pointing to the current directory. The current directory is set to the2.
directory from which the OS Process using this library was called from:

 let currentDirectoryURL = URL(fileURLWithPath:
fileManager.currentDirectoryPath)

Appends the filename passed to this function to the current directory:3.

 let fileURL =
currentDirectoryURL.appendingPathComponent(fileName)

Tries to read contents of the file if it exists and return it:4.

 return try? String(contentsOf: fileURL, encoding: .utf8)

Now that we have the code, we can build it using Swift build. To test that our code is
working, we need to write a test for it and we can do so by taking the following steps:

Editing the FileReaderTests.swift file and replacing the body of1.
testExample function block with the following:

XCTAssertEqual(FileReader.read(fileName: "hello.txt"), "Hello
World")

Running the following command to create a hello.txt file in the root directory2.
of the package with the contents Hello World:

printf "Hello World" > hello.txt

Getting Started with Server Swift Chapter 1

[15]

Run the test for your package using the swift test command. You should see3.
the test pass and print as such:

~/W/FileReader $ swift test
Compile Swift Module 'FileReaderTests' (1 sources)
Linking ./.build/x86_64-apple-
macosx10.10/debug/FileReaderPackageTests.xctest/Contents/MacOS/File
ReaderPackageTests
Test Suite 'All tests' started at 2017-09-29 12:14:57.278
Test Suite 'FileReaderPackageTests.xctest' started at 2017-09-29
12:14:57.278
Test Suite 'FileReaderTests' started at 2017-09-29 12:14:57.278
Test Case '-[FileReaderTests.FileReaderTests testExample]' started.
Test Case '-[FileReaderTests.FileReaderTests testExample]' passed
(0.094 seconds).
Test Suite 'FileReaderTests' passed at 2017-09-29 12:14:57.372.
Executed 1 test, with 0 failures (0 unexpected) in 0.094 (0.094)
seconds
Test Suite 'FileReaderPackageTests.xctest' passed at 2017-09-29
12:14:57.372.
Executed 1 test, with 0 failures (0 unexpected) in 0.094 (0.094)
seconds
Test Suite 'All tests' passed at 2017-09-29 12:14:57.372.
Executed 1 test, with 0 failures (0 unexpected) in 0.094 (0.094)
seconds

Now that we have a working Swift package, we can publish it.

Publishing a Swift package
Publishing a Swift package is as simple as committing code, tagging it, and pushing it up to
a git repository. To publish the package, perform the following steps:

Create a public git repository on github.com.1.
Open the Terminal and change your directory to your package's path, cd2.
/path/to/your/swift/package. Then initialize the git repository by running
the git init command.
Add a remote origin to the local git repo by running this command:3.

git remote add origin git@github.com:<repoaccount>/<reponame>.git

Make sure to replace the repo account and repo name with the one you created in4.
Step 1.

http://github.com

Getting Started with Server Swift Chapter 1

[16]

Add all files to this repo using git add . and commit them using git commit5.
-m "Initial Commit".
Tag it with a version. Since it is our first package we will tag it 1.0.0,6.
git tag 1.0.0.
Publish it by pushing it up to the repo along with the tag:7.

 git push origin master --tags

It is that easy to make a Swift package and publish it. All you need is a git repository to
push your code to and tag your code appropriately so that whoever uses your package as a
dependency can point to a specific version.

Consuming a Swift package
Next, we will try to use this package to create an executable package called cat that
concatenates and prints the contents of the files passed in as arguments to the command.
This executable will work like the built-in-system cat command found in most Unix based
operating systems. To do so, we need to perform the following steps:

Open the Terminal and create a directory called cat (mkdir cat) and change the1.
directory into it (cd cat).
Initialize the package by running swift package init --type executable.2.
This will generate a main.swift, which is the entry point for the executable and
the code will start executing line by line starting from that file.
Add the URL to your GitHub repo that contains the FileReader package and3.
add the following line in your Package.swift under dependencies:

.package(url: "https://github.com/<repoaccount>/<reponame>", from:
"1.0.0"),

Add your FileReader package to the dependencies under the targets section in4.
Package.swift:

import PackageDescription

let package = Package(
 name: "cat",
 dependencies: [
 .package(url: "https://github.com/ankurp/FileReader", from:
"1.0.0"),
],
 targets: [

Getting Started with Server Swift Chapter 1

[17]

 .target(
 name: "cat",
 dependencies: ["FileReader"]),
]
)

Add the following code to main.swift:5.

import FileReader

for argument in CommandLine.arguments {
 guard argument != "arg1" else { continue }

 if let fileContents = FileReader.read(fileName: argument) {
 print(fileContents)
 }
}

Let's try to understand what we have done in the preceding code:

Import the FileReader package:1.

import FileReader

Iterate over the command-line arguments:2.

for argument in CommandLine.arguments {

We ignore the first argument using the guard clause in Swift because it is the3.
command name cat:

guard argument != "arg1" else { continue }

Print the contents of the file by printing it in the console:4.

if let fileContents = FileReader.read(fileName: argument) {
 print(fileContents)
}

Now that we have understood the code, let's build and run it to see whether it works. To
build and run, just type the following command in the Terminal:

$ swift run cat Package.swift Sources/cat/main.swift

Getting Started with Server Swift Chapter 1

[18]

You should see the contents of both the files, Package.swift and
Sources/cat/main.swift, printed in the console. Great job! We have a working
command line tool written in Swift using one of our published Swift packages:

Getting Started with Server Swift Chapter 1

[19]

Installing the package's executable
How do we install the command line tool we just created? Don't worry, it's simple too. All
you need to do is build it with the release configuration, so that it builds a highly optimized
binary and also add flags to statically link the Swift standard library. This means that the
executable can work even when Swift versions change on your operating system, or if you
plan on distributing it on another platform, such as Linux. The following is the command to
build the executable command with the release configuration:

$ swift build -c release -Xswiftc -static-stdlib

Once you have the binary built, you need to copy it to one of the directories where binaries
are stored in your user path. One such place is /usr/local/bin. To copy it, just run the
following command and call your binary file whatever you want. In my case, I chose to
rename my command to swiftycat:

$ cp -f .build/release/cat /usr/local/bin/swiftycat

Now, try it out in the Terminal by running the following command:

$ swiftycat Package.swift Sources/cat/main.swift

How do the web servers work?
Before we start building web applications or web servers using Swift, it's a good idea to
understand the basics of how they work. What is HTTP? What is a request and a response?
What does it look like? These are some of the questions that will be answered in this section.
To reinforce the concepts, we will try to go through the steps of what happens when a user
types a URL in the browser.

User requesting a web page
When a user goes to the browser and types a URL, what exactly is happening?

The browser tries to look up the IP address of the domain name in the URL by1.
getting it from the DNS Server. Think of DNS as a directory mapping the domain
name to the IP Address.

Getting Started with Server Swift Chapter 1

[20]

Once the browser has the IP Address, it sends a HTTP request to that IP Address2.
on port 80. If the URL is secure (HTTPS), then the request is sent to port 443. A
simple HTTP request that is sent in plain text format looks like this:
GET /hello.html HTTP/1.1.
The request also contains headers that are shared to pass additional information3.
about the request, such as authentication information, cookies, or the type of the
browser making the request.
The request is routed through all of the routers to the final destination, which is4.
an application or web server serving web pages.
The server looks at the request and figures out what type of request it is. In our5.
simple example, we made a GET request. The following types of request are
supported by the web/application server: GET, POST, PUT, PATCH, DELETE, and
HEAD.
The server also looks at the request and figures out what path is being requested.6.
In our example, we are requesting a web page at the /hello.html path.
In the request, we specify the protocol we are using, which is the HTTP/1.17.
protocol. Currently HTTP/2 is also available and certain browsers that support it
will make a request with it.
The request can also contain headers that contain extra information from the8.
browser for the server to figure out how to respond. After the header section, the
request is followed by two empty new lines that tell the server that it has received
the entire request message and now it is time for the server to respond.
The server then will either generate the hello.html page or serve it from disk.9.
The web servers that serve HTML pages from disk are called static web servers
while the web servers that dynamically generate content are called application
servers as they have some business logic to generate the HTML content
dynamically based on the type and the user requesting it.
The server replies back to the request with a response. The response format is10.
similar to the request where the first few lines are called the response headers
and they are key value pairs of metadata, followed by two new lines, and then
followed by the HTML response or plain text response from the server.
The server closes the connection, which tells the browser that it has received all of11.
the response and then it renders the HTML or plain text in the browser.

Getting Started with Server Swift Chapter 1

[21]

Mobile application requesting data
Similar to how the browser requests a web page from the web server, a mobile application
can request data in JSON or XML format from the application server via HTTP or HTTPS. It
uses the same protocol to send similar types of requests with headers followed by two new
line characters and gets a reply back in the same format with headers followed by two new
lines and data as plain text in JSON format.

JSON is a lightweight data format used to exchange data on the web by
mobile, desktop, and web applications. It stands for JavaScript Object
Notation and is easy to read and write as it is in plain text. It has become
the de facto format for exchanging data on the web and for mobile
applications, and has quickly replaced XML as a medium for exchanging
data.

HTTP request and response
To see all of this in action, let's make all of the requests that the browser does behind the
scenes using telnet, which is a command-line tool used to connect to a host, and send
messages to it on a port, which is exactly what the browser does. We will do the following
in the Terminal:

Connect to a host called httpbin.org, which is a free HTTP server sending back1.
fake data for testing and learning purpose. To make a HTTP request via telnet,
we need to connect on port 80 using the following command. If you do not have
the telnet command installed locally on your macOS, install it using the brew
package manager:

$ telnet httpbin.org 80

This should print out the following, saying it is trying to connect to an IP address,2.
which is the IP it got from the DNS server for this domain, httpbin.org:

Trying 54.243.145.223...
Connected to httpbin.org.
Escape character is '^]'.

http://httpbin.org

Getting Started with Server Swift Chapter 1

[22]

Enter the HTTP request followed by the header(s) to get our IP address as the3.
response from the server. We need to type the following in the Terminal in our
telnet session. Make sure to add two new lines at the end that will mark the
end of our request to the server:

GET /ip HTTP/1.1
Host: httpbin.org

After you enter the second new line, you will get back a response which is an4.
HTTP response from the application server. The format is similar to the request
where the headers are followed by the two new lines and then by the content, as
follows:

HTTP/1.1 200 OK
Connection: keep-alive
Server: meinheld/0.6.1
Date: Tue, 03 Oct 2017 21:26:23 GMT
Content-Type: application/json
Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true
X-Powered-By: Flask
X-Processed-Time: 0.000671863555908
Content-Length: 30
Via: 1.1 vegur

{
 "origin": "73.80.254.5"
}

Servers can pass back a header value of Connection: keep-alive, which keeps the
telnet client connected to the server even after it prints the response. Without this header
line, the telnet client would disconnect after printing to the console. Browsers also obey
this and reuse the live connection to send other HTTP requests via the same connection.

Getting Started with Server Swift Chapter 1

[23]

To verify this, we can send another GET request to /ip by passing the same request and
header value followed by two new lines:

This exercise was designed to show you how HTTP works behind the scenes. You should
now have a better understanding of how the browser or mobile applications make the
request to our server and how we can respond back so that the browser or applications can
accept and understand the web page or data passed back. It also touched on different parts
of the HTTP request and response, such as the request signature, which contains the
headers followed by two new lines and the response signature, which contains the headers
followed by the two new lines, and finally followed by the text (for HTML/XML or JSON)
or binary content (for images or videos).

Getting Started with Server Swift Chapter 1

[24]

I hope this gives you a better understanding of the request response cycle and how the
server can deliver a better network performance by keeping the connection alive via the
keep-alive header. The following diagram shows how a persistent connection with keep-
alive can help make the web application or transfer data quickly, as it does not need to
establish a connection every time:

Building a web server in Swift
Now that we have a little background on HTTP and formats for its request and response
payloads, let's try to build an HTTP server from scratch using Swift and some C libraries
that we can access via Swift. The point of this exercise is to learn how to build a very basic
HTTP web server so we have a better understanding of how all of these web servers are
built using sockets. Getting a full stack view is helpful in case you need to dive into low-
level code to debug an issue or fix a bug in a package or library you might be using to build
our web server. You might also be curious on how to code your own simple web servers,
it's actually fairly easy. To create a web server, let's try the following steps:

Import the C libraries in Swift:1.

import Darwin.C

Getting Started with Server Swift Chapter 1

[25]

Create a socket using the socket system call. Sockets are a way for other hosts2.
on the network to connect to this process:

let sock = socket(AF_INET, SOCK_STREAM, 0)

Create a socket address structure and initialize it with host and port3.
information. Then call the bind system call with the socket address structure
and bind the server to the localhost on the port specified:

bind(sock, sockaddrPtr, socklen_t(socklen))

Listen for incoming requests by calling listen and specifying the max number4.
of requests to be added to the queue to be served by our process:

listen(sock, 5)

Now, we can accept incoming connections by calling accept with the socket5.
file descriptor for our socket that clients connect to. It will remove requests from
the listen queue and return a new client socket connection:

let client = accept(sock, nil, nil)

We can read from the new client socket connection and send data to it using6.
HTTP Protocol:

 let html = "<!DOCTYPE html><html><body><h1>Hello from Swift Web
Server.</h1></body></html>"
 let httpResponse: String = """
 HTTP/1.1 200 OK
 server: simple-swift-server
 content-length: \(html.count)

 \(html)
 """
 httpResponse.withCString { bytes in
 send(client, bytes, Int(strlen(bytes)), 0)
 }

Getting Started with Server Swift Chapter 1

[26]

Close the connection using the close system call:7.

close(client)

That was a quick overview of how network-based programs work and how our web server
will work as well. Now, let's look at the code as a whole:

import Darwin.C
let zero = Int8(0)
let transportLayerType = SOCK_STREAM // TCP
let internetLayerProtocol = AF_INET // IPv4
let sock = socket(internetLayerProtocol, Int32(transportLayerType), 0)
let portNumber = UInt16(4000)
let socklen = UInt8(socklen_t(MemoryLayout<sockaddr_in>.size))
var serveraddr = sockaddr_in()
serveraddr.sin_family = sa_family_t(AF_INET)
serveraddr.sin_port = in_port_t((portNumber << 8) + (portNumber >> 8))
serveraddr.sin_addr = in_addr(s_addr: in_addr_t(0))
serveraddr.sin_zero = (zero, zero, zero, zero, zero, zero, zero, zero)
withUnsafePointer(to: &serveraddr) { sockaddrInPtr in
 let sockaddrPtr = UnsafeRawPointer(sockaddrInPtr).assumingMemoryBound(to:
sockaddr.self)
 bind(sock, sockaddrPtr, socklen_t(socklen))
}
listen(sock, 5)
print("Server listening on port \(portNumber)")
repeat {
 let client = accept(sock, nil, nil)
 let html = "<!DOCTYPE html><html><body style='text-
align:center;'><h1>Hello from Swift Web
Server.</h1></body></html>"
 let httpResponse: String = """
 HTTP/1.1 200 OK

Getting Started with Server Swift Chapter 1

[27]

 server: simple-swift-server
 content-length: \(html.count)

 \(html)
 """
 httpResponse.withCString { bytes in
 send(client, bytes, Int(strlen(bytes)), 0)
 close(client)
 }
} while sock > -1

To run our server, let's take look at the following steps:

Create a Swift file and call it simple-server.swift.1.
Copy the preceding code into the file.2.
Run the code using the Swift command and pass the file name as the first3.
argument, as follows:

$ swift simple-server.swift

The Swift compiler will try to compile the contents of simple-4.
server.swift and run it in one command. You should see the following printed
in the Terminal when the server has started:

Server listening on port 4000

Open the browser and go to http://localhost:4000. You will see the5.
response from our Swift simple HTTP server replying back with HTML content:

Getting Started with Server Swift Chapter 1

[28]

The example code works only on macOS but you can easily make it work in Linux by
using import Glibc instead of import Darwin.C and changing some of the datatypes
that are passed in creation of a socket. Swift supports some of the C directives, such as #if,
#elsif, #else, and #endif, to help include or skip code blocks before compiling on
certain platforms, such as Linux or macOS, where a certain feature or API usage may be
different. In our case, since we depend on C-based libraries, we'd need to import Glibc
when OS is Linux or import Darwin.C and also set different types for two variables we
use in our code, as follows:

#if os(Linux)

import Glibc
let zero = UInt8(0)
let transportLayerType = SOCK_STREAM.rawValue // TCP

#else

import Darwin.C
let zero = Int8(0)
let transportLayerType = SOCK_STREAM // TCP

#endif

Directives are a way to let the compiler know how to process the source
code before compiling. There are specific language constructs that let the
compiler preprocess the source code and this comes in handy when we
want to build a server-side Swift web applications where we need to
ignore certain code blocks in Linux that are specific to macOS and vice
versa so that the compiler does not fail to compile the code because certain
standard libraries are missing or do not exist on certain platforms.

Server-side web frameworks
Building a web server like we just did is tedious and not scalable. There are a lot of things
we need to implement, from routing to persisting data to rendering views. For such use
cases, it's best to use a framework that can provide us with all the bells and whistles needed
to quickly get started so we can focus on the application logic rather than spending time
configuring and reinventing what others have already built.

Getting Started with Server Swift Chapter 1

[29]

Developers and even giant corporations, such as IBM, are betting that server-side Swift is
the future by building frameworks in the form of Swift packages that make it very easy to
build a web application. A few months after Swift was open sourced, one startup created a
server-side framework called Perfect, which is very popular for building an entire server
backend in Swift. IBM has spent a lot of effort creating Kitura, which is their take on a
server-side swift framework that is lightweight and customizable, similar to express in
Node.js or Sinatra in Ruby. Vapor is also a very popular framework with a lot of features.

Vapor
Vapor (https:/​/​vapor. ​codes/ ​) is the Swiss Army knife of the web frameworks in Swift. It
is a framework to get developers building modern web apps, sites, APIs, and even real-time
web apps, using web sockets. It is currently the most used package in Swift (https:/ ​/
packagecatalog.​com/ ​browse? ​chart= ​mostessential ​page= ​1), more used than Kitura and
Perfect, which are the other two popular server-side frameworks for Swift. Vapor has a
strong and vibrant developer community where developers from different companies,
including Apple, are contributing to the framework to make Vapor fast, stable, and
extensible so that it is easy to use and build large-scale web apps with. Swift is the next big
platform for web and backend development, and Vapor is the framework that will help
Swift get there. Vapor is the future of web development on the server platform. Here are
some reasons to get excited about Vapor:

It has an amazing CLI tool that helps you create, build, run, and even deploy a
Vapor app.
It is very fast compared to other frameworks, such as Kitura or Perfect, based on
independent benchmark tests. It is especially fast when compared to other
languages, such as Ruby, PHP, or Node.js.
It is secure from the beginning and has trusted encryption and TLS from
OpenSSL and BCrypt hashing included by default to make security easy.
It is very extensible as it is very easy to add middleware and even create
extensions for both the framework and CLI tools to customize the developer
experience. Vapor is also modular, so you can use parts of Vapor, such as the
Vapor Engine, to build your HTTP Server. Vapor is more than just an HTTP
Server with Routing, and you can substitute a Kitura HTTP Server in place of
Vapor's default HTTP Server while using other parts of the framework, such
as its powerful Object-relational mapping engine, database migrations, and the
view rendering engine.

https://vapor.codes/
https://vapor.codes/
https://vapor.codes/
https://vapor.codes/
https://vapor.codes/
https://vapor.codes/
https://vapor.codes/
https://vapor.codes/
https://packagecatalog.com/browse?chart=mostessential&page=1
https://packagecatalog.com/browse?chart=mostessential&page=1
https://packagecatalog.com/browse?chart=mostessential&page=1
https://packagecatalog.com/browse?chart=mostessential&page=1
https://packagecatalog.com/browse?chart=mostessential&page=1
https://packagecatalog.com/browse?chart=mostessential&page=1
https://packagecatalog.com/browse?chart=mostessential&page=1
https://packagecatalog.com/browse?chart=mostessential&page=1
https://packagecatalog.com/browse?chart=mostessential&page=1
https://packagecatalog.com/browse?chart=mostessential&page=1
https://packagecatalog.com/browse?chart=mostessential&page=1
https://packagecatalog.com/browse?chart=mostessential&page=1
https://packagecatalog.com/browse?chart=mostessential&page=1
https://packagecatalog.com/browse?chart=mostessential&page=1
https://packagecatalog.com/browse?chart=mostessential&page=1
https://packagecatalog.com/browse?chart=mostessential&page=1

Getting Started with Server Swift Chapter 1

[30]

It is heavily configurable via the config files that are in JSON format. The
configurations allow for environment variable substitution, so you can easily
swap out database URLs or other configurations for different environments using
only environment variables.
It uses the model-view-controller architectural pattern, popularized by Rails,
making it easy to create and debug apps.
It is resourceful by default, and has great APIs to build RESTful web applications.
It is also resourceful in the sense that you can serve static assets such as CSS, JS,
and even render views in different formats, such as HTML or JSON, depending
on who is requesting a resource and with which format.
It is expressive where you write less code to do more, making Vapor apps more
concise and powerful.
Vapor Apps are easy to deploy thanks to its cloud service, which is similar to
Heroku, but you can also deploy the Vapor app to your cloud or data center if
you like:

Getting Started with Server Swift Chapter 1

[31]

Considering that Vapor is more than just a simple HTTP server with routing like other
server-side Swift frameworks and has all the bells and whistles of a full stack web
application framework, it's an obvious choice that allows us to focus on writing the business
logic for our application. We will be using Vapor to build our server-side component for the
iOS apps that we'll be creating throughout this book.

Book roadmap
The goal of the book is to try to help guide you into the world of full stack Swift
development by building a frontend in both a mobile and browser app. Throughout this
book, we will try to work on building a Shopping List App. The final product will consist of
the following components:

Native mobile app written in Swift for iOS
API backend written in Swift using Vapor
Frontend web app built using HTML rendered by Vapor, along with JavaScript
and CSS for client-side interaction and styling

We will begin by building out the native application, and then proceed to building the
backend for the app and integrate the app with the API. Then we will focus on rendering
web views and adding authentication for both the API and the web app. Toward the end of
the book, we will look at how to add real-time updates using web sockets in these apps and
also try to build a simple chat application using Swift and Vapor.

Summary
I hope by now you have a better understanding of the state of Swift and where it is heading.
Swift, which was once a language for mobile app development, can now be used on the
server to build server-side web applications. By now, you should have the following:

An understanding of how Swift has evolved and is being used for web
development
An idea of how you can use Swift for full stack app development and reuse the
tooling and knowledge of the language to build backends in Swift
Knowledge about the Swift package manager and how to use its CLI

Getting Started with Server Swift Chapter 1

[32]

Built and published a Swift package and know how to share code and import
dependencies into your Swift package
An understanding of how web servers are built and work under the hood using
sockets
Some knowledge of the server-side Swift frameworks that can help you build a
full stack web application
Familiarity with Vapor, which we will be using throughout the book
A mental model of what we are trying to build throughout the book to learn how
to build full stack native apps using Swift

In the next chapter, we will dive into building an actual native iOS app in Swift and flesh
out the features of the app.

2
Creating the Native App

In the previous chapter, we got a little preview of server-side Swift. Now, we will switch
gears, and start working with Swift on a platform that it was originally designed for:
Apple's iOS. Swift is currently a very popular language for app development, not only for
iOS, but also for tvOS and macOS platforms. In this chapter, we will focus on iOS and build
our first iOS app in pure Swift using Xcode. We will be following the model-view-controller
architectural pattern popular for building apps in iOS. In the chapter, we will cover the
following:

The features of our Shopping List app
Walk through how to create a new app project using Xcode
The structure of an app and its Models, Views, and View Controllers
Learn how to use the storyboard to create and link View Controllers
Wire up the Table View Controllers to show Shopping List Items in our Shopping
List and learn how to update the view when items are added, rearranged, and
deleted in our controller
Learn how to save and load data for our app

Features of our Shopping List app
The app we will be building is a simple Shopping List app. It is a general-purpose Shopping
List app that allows users to add items to their list and check items from the list. The
following is the full list of features for our app:

Users will be able to add Shopping List Items
They will be able to enter details about the items, such as the item name
The item can be checked to mark it as bought

Creating the Native App Chapter 2

[34]

Users will be able to view all of the items entered in the Shopping List, rearrange
them, and even delete them
Users will be able to have more than one Shopping List and move items between
Shopping Lists
The app will persist the data and load the Shopping Lists and their items
whenever the app starts
Users will be able to filter the Shopping List based on items that are not checked
and also be able to search for items in the list based on their names
Users can update the list from any device and it will get synced

Creating an app
To create an app, you will need to have Xcode installed. You can get it from Apple's App
Store. Once you open Xcode, you will be greeted with the Welcome to Xcode modal. This is
where you will see your most recent projects:

Creating the Native App Chapter 2

[35]

We will get started by selecting the Create a new Xcode project option from the dialog. If
you want to just explore Swift language, you can select Get started with a playground.

Playgrounds are a hybrid between a text editor for Swift code and a code
runner where you can see the result of your code as you type, making it
easy to learn the language or try out something quickly.

This will open another dialog where we will be prompted to select the template for our
project. There are several templates to choose from, but for our app, the Single View App is
a good template to begin with:

Creating the Native App Chapter 2

[36]

Give your app a name and make sure the language selected is Swift (we will not check core
data or other test options) and click Next:

It will prompt you to select a folder where this project will be created. Select a folder, click
Create, and Xcode will generate the project and open it.

The generated project will contain two Swift files, two storyboards, an Assets folder, and
Info.plist. Let's explore each of these files in detail:

AppDelegate.swift: This is the entry point of our app and where we have
some callback functions that get called when the app gets started, goes in the
background, or becomes active. This is a good file where we perform any actions
we want to do before the app becomes inactive or becomes active again, such
as loading and saving the state of the app.
ViewController.swift: This is the default and first View Controller that is
created by our app. View controllers are in charge of handling the state of the
view and reacting on actions by the user, such as a button tap or refreshing the
view when the network request is completed.

Creating the Native App Chapter 2

[37]

Main.storyboard: This is the main file that contains the visual representation of
the app. It shows and defines how the app progresses from one view to another.
You can get the full picture of all of the states in the app by viewing the
Storyboard in a simple iOS application.
LaunchScreen.storyboard: This is the storyboard file that contains the view
that is shown when the app starts up.
Assets.xcassets: This is a folder where you place all of your image assets,
including app icon images.
Info.plist: This is the config file in XML format that contains the configuration
for your app and also contains settings to request permission for certain
capabilities of the phone, such as user location:

Blueprinting the Shopping List Item model
Now that we understand the files and folders in our projects a little bit, let's start writing
some code. We will begin by writing code for our first model, the Shopping List Item. To do
so, perform the following steps:

Create a new group called Models under the ShoppingList folder in your1.
project.
Then right-click and click on New File... under the Models folder and select a2.
Swift file from the iOS template. Call this new file Item.swift and click Create.

Creating the Native App Chapter 2

[38]

Copy the following code into the Item.swift file:3.

import UIKit
class Item {
 var name: String
 var isChecked: Bool
 init(name: String, isChecked: Bool = false) {
 self.name = name
 self.isChecked = isChecked
 }
}

Let's go over the code in more detail:

We define a class called Item which will serve as a blueprint for our Shopping List Items:

class Item {

We then define two properties to store a name for the item and the state of the item on
whether it is checked or unchecked. These two properties are called name and
isChecked and their types are String and Bool, respectively:

var name: String
var isChecked: Bool

Lastly, we define a construction that takes in one require argument, which is name, and the
second optional argument, which is the property value for isChecked that defaults to
false:

init(name: String, isChecked: Bool = false) {
 self.name = name
 self.isChecked = isChecked
}

That is our model to store the data of our Shopping List Item. We will look at how we can
create an instance of our model in the controller and then show them in the table view.
Before we do, it's time for a short exercise. The solution of this exercise will be used later in
the app to generate fake items to show some data in the app when it launches, instead of
seeing an empty table view on launch.

Creating the Native App Chapter 2

[39]

Exercise
Create a class level method in our Item model that can generate and return fake Shopping
List Items. This method will take one argument, which will be the number of fake items to
create and return. You can give your items random names or append the item name with a
counter. You can also mark your items checked or unchecked if you like. The following is
the method that you need to fill out by adding your code inside the function block:

static func fake(_ count: Int) -> [Item] {
 // Your code goes here
}

Exercise answer
The following is the answer to generating fake items. Copy this code if you were not able to
create your own version of generating fake items as we will need this later in our app:

static func fake(_ count: Int) -> [Item] {
 var items = [Item]()
 for i in 0...count {
 let item = Item(name: "Item \(i)", isChecked: i % 2 == 0)
 items.append(item)
 }
 return items
}

Controlling the flow of our application using
View Controller
iOS apps have a controller file, which as the name implies, controls the flow of your
application. It's one file that's responsible for keeping track of data that will be used to
render the view. It also listens to triggers from the user and reacts to them by modifying the
data if needed, and re-rendering the view with the modified data. There are a few kinds of
View Controllers, but the one that is most commonly used is a Table View Controller.

Creating the Native App Chapter 2

[40]

Table View Controllers are specialized View Controllers that are used when you want to
show a list of data. It can also be used in creative ways to make more complex user
interfaces, such as an image reel or a carousel. For our app, we'll use the Table View
Controller to list our Shopping List Items one by one, and the View Controller will be
responsible for keeping the entire list in memory.

Before we dive into the code for our Table View Controller, we need to understand a few
concepts about the life cycle events of a View Controller. Let's look at the life cycle:

All View Controllers start out by having the viewDidLoad method invoked. This
method is only called if the View Controller has not loaded before. This is a good
place to load data for our application by generating fake Shopping List Items or
by reading a Shopping List from disk. We can also make a network request to get
the Shopping List Items.
After this, the viewWillAppear method is called on our View Controller. This
gets called every time the view is going to appear but is not 100% visible to the
user yet. This is another good place to refresh our data so that the user sees the
most up-to-date Shopping List as the user switches between View Controllers.
Then, viewDidAppear will get called when the view is visible to the user. This is
a good place to end any animation or stop a spinner in case data is being loaded
over the network and taking some time to load.
The same methods exist when the view is removed, first by getting a call to
the viewWillDisappear method. And finally, by getting a call to
viewDidDisappear. These are good methods to save data or they can be
ignored, if you prefer that the data for the Shopping List is saved on every
change.

Creating the Native App Chapter 2

[41]

Table View Controller, which is a subclass of View Controllers, inherit the following life
cycle methods. We can override these methods as needed to fetch and save data. Table
View Controllers also have a few more methods that we will examine by first creating a
new Table View Controller file in our project. Like we did for the model, we need to do the
following:

Create a new group called Controllers under the ShoppingList folder in your1.
project

Then create a New File... under the Controllers folder, select a Cocoa Touch2.
Class from the iOS template, and click Next:

Creating the Native App Chapter 2

[42]

Under Subclass of type select UITableViewController, name the3.
file ItemTableViewController, and make sure Language is set to Swift. Click
Next and then click Create in the next dialog:

Xcode should generate the file and it will have some code commented out. We will fill out
this class shortly. Now, we will switch files and jump to the Main.storyboard.

Wiring up the view
Storyboard is where you define the flow of your application. It's where the initial View
Controller is defined and also the place where you can set up other View Controllers and
connect them. Configuring our app's UI is done using Xcode, but all of these configurations
can be programmatically done by writing additional code.

Creating the Native App Chapter 2

[43]

To use our new TableViewController file in our application, we need to edit our main
storyboard. To do so, we need to perform the following steps:

Delete the ViewController.swift file in our project as we will not be using it.1.
You can do so by right-clicking on the file, selecting Delete, and then in the
modal selecting Move to Trash.
Open the Main.storyboard. We will click on View Controller Scene in the left2.
pane of our storyboard file and delete it:

Creating the Native App Chapter 2

[44]

Drag the Navigation Controller from the Object Library on the bottom right-3.
hand corner of Xcode. You can filter for it by typing Navigation Controller
in the filter field. Navigation Controller comes with a Table View Controller
when you drag it into the storyboard and it will be set as the Root View
Controller:

Click on the Root View Controller and then go to the Identify Inspector which is4.
on the top right corner of Xcode. In Class field, type
ItemTableViewController, our newly created controller:

Tell storyboard that the Navigation Controller is our Initial View Controller and5.
to start the app from there. We can do so by first selecting Navigation
Controller, then selecting the Attributes Inspector tab in the top-right corner and
checking the Is Initial View Controller checkbox. As a confirmation, we will not
see an arrow to the left of our Navigation Controller in the storyboard:

Creating the Native App Chapter 2

[45]

Run the app by clicking on the play button on the top-left corner of Xcode to6.
make sure we have wired everything correctly and the app runs:

Creating the Native App Chapter 2

[46]

The app will not do anything exciting, but in the next section we will write code in our
Table View Controller to start creating, editing, and deleting our Shopping List Items:

Creating the Native App Chapter 2

[47]

Table View Controller
To get our app to do something interesting, we will now need to write some code. We begin
with our ItemTableViewController. Opening the file, you will see there is some
template code already and some code that has been commented. We will fill out these code
blocks one by one to understand what each of these methods does. In our controller, we
need to do the following:

Define a controller instance property called item, which will be an array of1.
Item objects. This is the same Item class we created earlier in this chapter. We
will set items to default to the fake items that we will get from the fake method
defined on Item class that you created in the earlier exercise:

class ItemTableViewController: UITableViewController {
 var items: [Item] = Item.fake(10)

In our viewDidLoad method, which we touched upon earlier in the View2.
Controller life cycle, we will add the following code. In this code block, we
are first calling viewDidLoad, defined in our parent class using super. Then we
set the title that is shown in the navigation bar. Finally, starting in iOS 11, the
navigation bar can have a large title which we set to true:

super.viewDidLoad()

self.title = "Shopping List Items"

self.navigationController?.navigationBar.prefersLargeTitles = true

We need to tell the app how many sections to render. By default,3.
the numberOfSections method returns 0 but we need to change this by
removing the warning and change the return value to 1. Sections are a way to
split apart a tableView, but in our app we just need one to list all of the items:

override func numberOfSections(in tableView: UITableView) -> Int {
 return 1
}

Creating the Native App Chapter 2

[48]

The next method we need to update4.
is tableView(_:numberOfRowsInSection:). This method is called for each
section in your tableView and you are passed the section number to figure out
how many rows you want to display in each section. In our app, we will have one
row for each item, so we need to return the size of our items array:

override func tableView(_ tableView: UITableView,
numberOfRowsInSection section: Int) -> Int {
 return items.count
}

The next method we need to fill out is tableView(_:cellForRowAt:). This5.
method is called with an indexPath that contains the section and row in that
section. Using this, we need to return a cell view that is displayed in that section
and row. In iOS, there is a convention to reuse cells instead of creating new ones
for each row, as there can be a lot or an infinite number or rows that can be
generated and, hence, a cell is reused and the subviews in the cells are rendered
with the data for cell of that specific row. In our case, we will get the item for the
row it is being requested for, then get a reusable cell, and set the value on the
subviews of that reusable cell:

let cell = tableView.dequeueReusableCell(withIdentifier:
"ItemCell", for: indexPath)

let item = items[indexPath.row]
cell.textLabel?.text = item.name

if item.isChecked {
 cell.accessoryType = .checkmark
} else {
 cell.accessoryType = .none
}

return cell

Creating the Native App Chapter 2

[49]

In the previous code block, we get the cell from the table view using6.
tableView.dequeueReusableCell(withIdentifier: "ItemCell", for:

indexPath). We need to define ItemCell in our storyboard inside the Table
View for it to return the cell. We do this by going to our Main.storyboard and
selecting our Table View from the Root View Controller and selecting the Table
View Cell. Then, we go to the attributes Inspector on the right and add
ItemCell to the Identifier field, which will change the name of the cell to
ItemCell in the storyboard. Finally, change the Style to Basic from the Attribute
Inspector for this cell:

Creating the Native App Chapter 2

[50]

Let's run our app and see how it looks. Hit the play button or press on command +7.
R to run the app:

Much better. Now we can see the list of items on our Shopping List. Let's now add the
ability to add new items to our list.

Creating the Native App Chapter 2

[51]

Adding items to the list
To add items, we will need to add a new bar button to our navigation bar and set up a tap
handler on the button so that we can respond to it by showing an input dialog to the user to
enter the name of the item they want to add. To do so, we need to perform the following
steps:

Open up our Main.storyboard, search for Bar Button Item from the Object1.
library, and drag it to the right-hand side of the navigation bar:

Select the Bar Button Item and change the System Item to Add:2.

Creating the Native App Chapter 2

[52]

Click the Assistant Editor to open the source code for our Table View Controller3.
side-by-side with the storyboard:

Creating the Native App Chapter 2

[53]

Control click on the add button (+) and drag into into your source code file where4.
there is a blank line outside of any method and leave it:

You will then see a modal where you need to change the Connection to5.
Action and Type to UIBarButtonItem. In the Name field, give your method a
name. I called mine didSelectAdd:

Creating the Native App Chapter 2

[54]

This will add a method to your controller with the following signature:

 @IBAction func didSelectAdd(_ sender: UIBarButtonItem)

Inside of this method, we need to add the following code to create an alert dialog,6.
present it, ask the user for the input, handle the input by creating a new Item,
append the new item to our items array, and then refresh the table view to show
the new item:

let alert = UIAlertController(title: "New shopping list item",
 message: "Enter item to add to the shopping list:",
 preferredStyle: .alert)

alert.addTextField(configurationHandler: nil)

alert.addAction(UIAlertAction(title: "Cancel", style: .cancel,
handler: nil))

alert.addAction(UIAlertAction(title: "Add", style: .default,
handler: { (_) in
 if let itemName = alert.textFields?[0].text {
 let itemCount = self.items.count;
 let item = Item(name: itemName)
 self.items.append(item)
 self.tableView.insertRows(at: [IndexPath(row: itemCount,
section: 0)], with: .top)
 }
}))

self.present(alert, animated: true, completion: nil)

Creating the Native App Chapter 2

[55]

Let's run this to see how it looks:7.

Great! Now we are able to add an item to our app. Let's look at how to edit it.

Editing the list
Adding the ability to edit the list of items by either deleting them or rearranging them is
easy as well. All we need to do is implement few more methods to let our
ItemTableViewController know that we want to delete certain rows or rearrange them
and write code to update our model representing the list, which is our array of items.

Creating the Native App Chapter 2

[56]

First, let's implement deleting. To turn on deleting, we need to perform the following steps:

Implement the tableView(_:canEditRowAt:) method. In this method, we1.
need to return true and it will allow deleting of all rows and hence all Shopping
List Items. Setting this to true will allow users to swipe the cell to the left to
reveal the Delete button, or it can be swiped all the way to the left to trigger a
delete:

override func tableView(_ tableView: UITableView, canEditRowAt
indexPath: IndexPath) -> Bool {
 return true
}

Implement tableView(_:commit:forRowAt:). In this method, we need to2.
delete the row from the table and also remove the item from our array of items.
In the following code, we are checking whether the editingStyle is delete
and if it is, then we remove the item from the array and, also delete the row from
the tableView with a fade animation:

override func tableView(_ tableView: UITableView, commit
editingStyle: UITableViewCellEditingStyle, forRowAt indexPath:
IndexPath) {
 if editingStyle == .delete {
 items.remove(at: indexPath.row)
 tableView.deleteRows(at: [indexPath], with: .fade)
 }
}

Add an edit button to the navigation bar, which is another way to indicate to the3.
user that the cell is editable and can be deleted. To add the edit button, all we
need to do is add the following code to the viewDidLoad method:

self.navigationItem.rightBarButtonItems?.append(editButtonItem)

Creating the Native App Chapter 2

[57]

Let's try this out by running the app. You should see the edit button and also swiping to the
left will reveal a Delete option below the cell, swiping all the way to the left will delete the
row and the item. Cool!:

Now, let's add the ability to rearrange the list as part of our feature to edit the list. To do so
again, we need to implement two more methods:

Add the tableView(_:canMoveRowAt:) method and return true for all rows:1.

override func tableView(_ tableView: UITableView, canMoveRowAt
indexPath: IndexPath) -> Bool {
 return true
}

Creating the Native App Chapter 2

[58]

Implement the rearranging logic to update our model. It's as easy as removing an2.
item from our array and inserting it into a new index:

override func tableView(_ tableView: UITableView, moveRowAt
fromIndexPath: IndexPath, to: IndexPath) {
 let item = items.remove(at: fromIndexPath.row)
 items.insert(item, at: to.row)
}

Run the app again. Now, when we tap on the Edit button, you will now see three
horizontal bars next to each cell indicating that it can be rearranged. Moving one cell to
another will also update our model behind the scenes:

Creating the Native App Chapter 2

[59]

Only one thing is left now in terms of editing items our list, and that's checking and
unchecking the items. We can do so by listening for the selection of a cell as an indicator to
toggle an item between the checked and unchecked state. To achieve this, we need to do the
following:

Add the tableView(_:didSelectRowAt:) method to our1.
ItemTableViewController.swift file. This method is called every time user
selects a cell via a tap. The indexPath, which contains the section and row
information, is passed in the argument, which we can use to figure out which
item was selected.
Using the indexPath, we figure out that it's the following item:2.

let item = items[indexPath.row]

Toggle the isChecked state:3.

item.isChecked = !item.isChecked

Tell tableView to reload the cell whose model was just edited and it will cause4.
the cell to refresh:

tableView.reloadRows(at: [indexPath], with: .middle)

So the entire method block would look like this

override func tableView(_ tableView: UITableView, didSelectRowAt indexPath:
IndexPath) {
 let item = items[indexPath.row]
 item.isChecked = !item.isChecked
 tableView.reloadRows(at: [indexPath], with: .middle)
}

Try it out by running the app and it will toggle the check mark next to the right of the cell
and animate it.

Creating the Native App Chapter 2

[60]

Loading and auto-saving the Shopping List
Now that we have the app working the way we want, there is one thing missing: the app
doesn't save our Shopping List every time we make changes to our list. Also, we do not
want to show the fake items. So let's see how we can persist the Shopping List and save it
every time we make changes. For this we will need to:

Switch to Item.swift and first import the core Foundation framework as we1.
will be using UserDefaults , PropertyListEncoder, and
PropertyListDecoder class objects to save our items. Add the following line to
the top of the file:

import Foundation

Have the Item class implement the Codable protocol, which will allow our item2.
to be encoded and decoded to be stored in UserDefaults. UserDefaults is a
quick and easy way to save user settings or data that is application-specific:

class Item: Codable {

Add a new instance method called toggleCheck, which will return a new item3.
with the same name, but with its isChecked value toggled. We will use this new
item and update our item in the Table View Controller with this new item rather
than mutating the item itself:

func toggleCheck() -> Item {
 return Item(name: name, isChecked: !isChecked)
}

Use extensions in Swift to extend the Array class to add a save method and a4.
class level load method to save and load the items from UserDefaults:

extension Array where Element == Item {
 func save() {
 let data = try? PropertyListEncoder().encode(self)
 UserDefaults.standard.set(data, forKey: String(describing:
 Element.self))
 UserDefaults.standard.synchronize()
 }
 static func load() -> [Element] {
 if let data = UserDefaults.standard.value(forKey:
 String(describing: Element.self)) as? Data,
 let items = try?
PropertyListDecoder().decode([Element].self,
 from: data){

Creating the Native App Chapter 2

[61]

 return items
 }
 return []
 }
}

Switch to the ItemTableViewController file and update the items instance5.
variable that is defaulting to fake items, to actually load from UserDefaults. We
can do so by updating it to this:

var items: [Item] = [Item].load() {
 didSet {
 items.save()
 }
}

In the preceding code block, we are setting items array to default to items6.
loaded from the UserDefaults storage. This is done by calling [Item].load().
We also have a didSet block defined that gets called every time the items array
is modified. We need to save the items to UserDefaults again when that
happens by calling the save method on the items array.
Update the tableView(_:didSelectRowAt:) method again and replace it with7.
this and use the toggleCheck method that we just created instead to trigger the
didSet method to automatically save our items:

override func tableView(_ tableView: UITableView, didSelectRowAt
indexPath: IndexPath) {
 items[indexPath.row] = items[indexPath.row].toggleCheck()
 tableView.reloadRows(at: [indexPath], with: .middle)
}

Let's run the app now and you should not see any items at first but if you add few items,
check some items, close the app, and start it up again, you will see the items will load in the
state they were before closing the app.

Creating the Native App Chapter 2

[62]

Multiple lists
Now that we have items created for one list, let's see how we can add multiple Shopping
Lists to our app. It's quite similar to what we just did for Items, but before we get started,
let's refactor our code so that it becomes easier to add a new Shopping List View Controller.

Refactoring to share code
Perform the following steps:

Create a new empty Swift file in our Controllers folder and call it1.
BaseTableViewController.swift.
Inside of our BaseTableViewController.swift file, create a new class that2.
inherits from the UITableViewController and has a requestInput method:

import UIKit
class BaseTableViewController: UITableViewController {
 func requestInput(title: String, message: String, handler:
 @escaping (String) -> ()) {
 let alert = UIAlertController(title: title,
 message: message,
 preferredStyle: .alert)
 alert.addTextField(configurationHandler: nil)
 alert.addAction(UIAlertAction(title: "Cancel", style: .cancel,
 handler: nil))
 alert.addAction(UIAlertAction(title: "Add", style: .default,
 handler: { (_) in
 if let listName = alert.textFields?[0].text {
 handler(listName)
 }
 }))
 self.present(alert, animated: true, completion: nil)
 }
}

Creating the Native App Chapter 2

[63]

We've created a BaseTableViewController class so that we can subclass our3.
View Controllers from BaseTableViewController and share the
requestInput method, which will do all of the heavy lifting of creating an
UIAlertController and presenting to get user input. All we have to do now is
call this method in our ItemTableViewController and pass it a title, a
message, and a handler, which will return us the text that was entered as input by
the user in our handler.
Switch the files and in our ItemTableViewController and change the class4.
inheritance from UITableViewController to BaseTableViewController:

class ItemTableViewController: BaseTableViewController {

Update the didSelectAdd method to use the inherited requestInput method5.
by updating the body of the method to this:

@IBAction func didSelectAdd(_ sender: UIBarButtonItem) {
 requestInput(title: "New shopping list item",
 message: "Enter item to add to the shopping list:",
 handler: { (itemName) in
 let itemCount = self.items.count;
 let item = Item(name: itemName)
 self.items.append(item)
 self.tableView.insertRows(at: [IndexPath(row: itemCount,
section: 0)], with: .top)
 })
}

Now run the app and it should work as before, but we've refactored it to be able to share
the code to get input from the user and inherit any new View Controllers from
BaseTableViewController that require an easy way to get input from users using
UIAlertView.

Blueprinting the Shopping List Model
We need to create and refactor our model so that we can create a relationship between
the Shopping List and items:

Create a new Swift file and call it ShoppingList.swift file in our Models1.
folder

Creating the Native App Chapter 2

[64]

Copy the following code, which lets us create a Shopping List Model with an2.
array of items and also a callback handler that gets invoked when the items in the
list are modified:

import Foundation
class ShoppingList: Codable {
 var name: String
 var items: [Item] {
 didSet {
 onUpdate()
 }
 }
 var onUpdate: () -> () = {}

 init(name: String, items: [Item] = []) {
 self.name = name
 self.items = items
 }
 convenience init(name: String, items: [Item], onUpdate: @escaping
() -> ()) {
 self.init(name: name, items: items)
 self.onUpdate = onUpdate
 }
 func add(_ item: Item) {
 self.items.append(item)
 }
 func remove(at index: Int) {
 self.items.remove(at: index)
 }
 func swapItem(_ fromIndex: Int, _ toIndex: Int) {
 self.items.swapAt(fromIndex, toIndex)
 }
 func toggleCheckItem(atIndex index: Int) {
 items[index] = items[index].toggleCheck()
 }
 private enum CodingKeys: String, CodingKey {
 case name
 case items
 }
}

Creating the Native App Chapter 2

[65]

Go to our Item model and update the extension we have on Array and change3.
the Element type from Item to Shopping List:

extension Array where Element == ShoppingList {

Update the load method in this extension of the Array class to load the Shopping4.
List elements now and the onUpdate trigger save on the list with the following
code:

static func load() -> [Element] {
 if let data = UserDefaults.standard.value(forKey:
String(describing: Element.self)) as? Data,
 let elements = try?
PropertyListDecoder().decode([Element].self, from: data){
 for element in elements {
 element.onUpdate = elements.save
 }
 return elements
 }
 return []
}

We now have all of our Models set up correctly, but the code will break and not compile as
our ItemTableViewController is trying to load the items. It will not be able to as we
change the extension of the Array element type from Item to ShoppingList. We need to
update our ItemTableViewController now:

Switch to ItemTableViewController.swift and replace the instance variable1.
items with Shopping List and create a new computed items property:

var list: ShoppingList!
var items: [Item] {
 get {
 return list.items
 }
}

Creating the Native App Chapter 2

[66]

In our viewDidLoad method, we need to change the title from always being set2.
to title = "Shopping List Items" to be set to the name of our list title =
list.name

Inside didSelectAdd, we need to replace the self.items.append(item) line3.
with self.list.add(item: item)
Update the line where we remove the item from the item's items.remove(at:4.
indexPath.row) array and replace it with list.remove(at:
indexPath.row)

Where we swap items using items.swapAt(fromIndexPath.row, to.row),5.
we need to replace it with list.swapItem(fromIndexPath.row, to.row)
Where we toggle the item using items[indexPath.row] =6.
items[indexPath.row].toggleCheck(), we need to replace it
with list.toggleCheckItem(atIndex: indexPath.row)

At this point, the project will compile and you should not have any compiler errors.
However, we are not done yet, the app won't work and will crash since we don't have a list
that the ItemTableViewController requires to load.

The Shopping List Table View Controller
As you may have guessed, we need a new View Controller to get our app to work. This will
be called ShoppingListTableViewController and it will be very similar to
ItemTableViewController. This new Shopping List View Controller will be our Root
View Controller and it will list all of our Shopping Lists. On tapping one of those lists, it
will push a new Item View Controller into the navigation and list all of the items in that
shopping list. To get started:

Create a new Table View Controller file in the Controllers folder by right-1.
clicking on the folder and selecting New File....
Select Cocoa Touch Class and Subclass it from BaseTableViewController,2.
then call the ShoppingListTableViewController file.
Copy the following code into the new3.
ShoppingListTableViewController.swift file. This file has the same
methods defined as in ItemTableViewController, but it also has few extra
methods to pass the selected list to ItemTableViewController on selection of a
list:

import UIKit
class ShoppingListTableViewController: BaseTableViewController {

Creating the Native App Chapter 2

[67]

 var lists: [ShoppingList] = [ShoppingList].load() {
 didSet {
 lists.save()
 }
 }
 override func viewDidLoad() {
 super.viewDidLoad()
 title = "Shopping Lists"
 navigationController?.navigationBar.prefersLargeTitles = true
navigationItem.rightBarButtonItems?.append(editButtonItem)
 }
 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 }
 @IBAction func didSelectAdd(_ sender: UIBarButtonItem) {
 requestInput(title: "Shopping list name",
 message: "Enter name for the new shopping list:",
 handler: { (listName) in
 let listCount = self.lists.count;
 let list = ShoppingList(name: listName, items: [], onUpdate:
self.lists.save)
 self.lists.append(list)
 self.tableView.insertRows(at: [IndexPath(row: listCount,
section: 0)], with: .top)
 })
 }

 // MARK: - Table view data source

 override func numberOfSections(in tableView: UITableView) -> Int
{
 return 1
 }

 override func tableView(_ tableView: UITableView,
numberOfRowsInSection section: Int) -> Int {
 return lists.count
 }
 override func tableView(_ tableView: UITableView, cellForRowAt
indexPath: IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCell(withIdentifier:
"ListCell", for: indexPath)
 let list = lists[indexPath.row]
 cell.textLabel?.text = list.name

 return cell
 }
 override func tableView(_ tableView: UITableView, canEditRowAt

Creating the Native App Chapter 2

[68]

indexPath: IndexPath) -> Bool {
 return true
 }
 override func tableView(_ tableView: UITableView, commit
editingStyle: UITableViewCellEditingStyle, forRowAt indexPath:
IndexPath) {
 if editingStyle == .delete {
 lists.remove(at: indexPath.row)
 tableView.deleteRows(at: [indexPath], with: .fade)
 }
 }
 override func tableView(_ tableView: UITableView, moveRowAt
fromIndexPath: IndexPath, to: IndexPath) {
 lists.swapAt(fromIndexPath.row, to.row)
 }
 override func tableView(_ tableView: UITableView, canMoveRowAt
indexPath: IndexPath) -> Bool {
 return true
 }

 override func prepare(for segue: UIStoryboardSegue, sender: Any?)
{
 if let destinationViewController = segue.destination as?
ItemTableViewController {
 if let indexPath = self.tableView.indexPathForSelectedRow {
 let list = lists[indexPath.row]
 destinationViewController.list = list
 }
 }
 }
}

If we build our app, it should compile without any errors, but it will not work and that's
because we haven't updated our storyboard to start our application with the
ShoppingListTableViewController. This is fairly easy to do. All we need to do is take
the following steps:

Open Main.storyboard and drag a new Table View Controller into the board:1.

Creating the Native App Chapter 2

[69]

Select the new Table View Controller. Under Custom Class, change the Class to2.
ShoppingListTableViewController:

Creating the Native App Chapter 2

[70]

Press Control and drag it from the Navigation Controller to the Shopping List3.
Table View Controller and select the Relationship Segue as the Root View
Controller:

 ;

Inside the Shopping List Table View Controller, click on the Table View Cell,4.
change the Style under Attribute Inspector to Basic, Accessory to Disclosure
Indicator, and in the Identifier field, enter ListCell:

Creating the Native App Chapter 2

[71]

Press control again and now drag from the Table View Cell of the Shopping List5.
Controller to the Root View Controller, which is our Item View Controller, and
select Show from the Selection Segue:

Creating the Native App Chapter 2

[72]

Just like the Item View Controller, drag the Bar Button Item, add it to the right6.
side of the Shopping List Controller's navigation bar, and change the System
Item to Add:

Press control and drag the Add (+) Bar Button from the navigation bar of the7.
Shopping List Controller and drag it to the Shopping List Table View
Controller, on the left side of the Storyboard and under Sent Actions select
didSelectAdd:

Creating the Native App Chapter 2

[73]

Run the app and everything should work, now we have multiple Shopping Lists in our
application. We can dive into one of these Shopping Lists and add, delete, rearrange the
items in that Shopping List and even delete the entire Shopping List itself. Modifying any of
the Shopping Lists should save them in our app:

Creating the Native App Chapter 2

[74]

Summary
In this chapter, we learned the basics of how to create a new app project using Xcode and
Swift. We went over the structure of the generated project and how to structure out app
into Models, Views, and Controllers. We touched on how to use storyboard to create and
link actions triggered by those Views into our View Controller. You should now understand
how to wire up the Table View Controller and shop Shopping List Items in the Shopping
List app and update them, rearrange then, delete them, and properly save our Shopping
List on the app. Lastly, we went through how to add a new Shopping List View Controller,
so that we can create and manage multiple Shopping Lists and transition from the
Shopping List view to the items view of a specific Shopping List.

In the next chapter, we will go over Swift on server side by exploring Vapor and creating a
server-side Shopping List project. This server-side project will act as an API server for our
app and also serve as a web application serving a responsive web view of the Shopping List
that is accessible via the web browser.

3
Getting Started with Vapor

In the previous chapter, we went over how to make an iOS app using Xcode in pure Swift.
We also covered different concepts in iOS development such as Model View Controller
(MVC) pattern and how to build iOS apps using the models which contain the state of our
app. We also went over how to use the controller to control the flow of our app, to add,
delete, and rearrange items and shopping lists. We also covered how to configure the views
in storyboard to define the look and feel of the app, such as the navigation bar to table view
cells. We also used some of the elegant syntax provided by Swift to help us aggregate all of
the changes to our models and use a consistent method to save the state of the application,
so that it can be easily restored using extensions built in the Array class, codable
protocol, UserDefaults, and Swift's didSet callback methods.

In this chapter, we will put our server-side engineering hat on and explore Swift on the
server side, using Vapor framework. We will see how we can use Vapor to build an API
server for the iOS app we just built. We will also explore the modularity of the framework,
as Vapor is made up of multiple Swift packages built using the Swift package manager that
we went over in Chapter 1, Getting Started with Server Swift, it is a framework built purely
in Swift, with performance in mind. More specifically, in this chapter, we will cover the
following topics:

What is Vapor, and what Swift packages make up Vapor? What functionality do
these Swift packages provide?
How can these Swift packages be used to build a simple HTTP server or your
own web framework?
What is the Vapor toolbox, and how do you use it to start building Vapor apps?
How can you create and run a simple Vapor application server?
How is our Vapor app structured?

Getting Started with Vapor Chapter 3

[76]

What is Vapor?
Vapor is a Swift package that provides the APIs to build a web application. It consists of
several Swift packages, and, contrary to what most people might think, Vapor is not a
monolithic Swift package. It is rather small and modular, consisting of several Swift
packages that are stitched together to create a very rich web framework. The Swift packages
it depends on are created by the Vapor team and grouped together based on their
functionality. So, anyone who wants to build their own web framework in Swift can do so
by consuming these packages. Vapor is broken down into the following packages:

core: The core package contains core extensions, type-aliases, and functions that
facilitate common tasks
bits: This is a small package to help deal with bytes
debugging: This package aids Vapor users in better debugging around the
framework
random: This package is useful for generating random bytes and numbers
bcrypt: This package contains Swift implementation of the BCrypt password
hashing function
crypto: This package contains Swift implementation of cryptography functions
tls: This package is a wrapper for OpenSSL and TLS
sockets: This package provides a pure Swift (POSIX) TCP and UDP non-
blocking socket layer, with event-driven server and client
node: This package is a formatted data encapsulation, meant to facilitate the
transformation from one object to another
json: This package is a convenience wrapper for Foundation JSON
console: This package is the good wrapper around console I/O
engine: This package provides non-blocking networking for Swift (HTTP and
WebSockets)
routing: This package provides type-safe generic HTTP routing
multipart: This package contains modules that parse and serialize multi-
part/mixed and multi-part/form-data content types
sqlite: This package is a Swift wrapper for SQLite 3
fluent: This package is a Swift ORM (queries, models, and relations) for NoSQL
and SQL databases
vapor: This is a server-side Swift web framework that builds on top of all of the
preceding packages

Getting Started with Vapor Chapter 3

[77]

Here is a visualization of these packages and their relationships to each other:

Building servers using Vapor's engine
Before we start using Vapor, let's see how the Vapor package is built on top of its engine
package. This will give us a better understanding of what, exactly, Vapor provides, and
what is provided by the dependencies that it consumes, in case you need to build a
lightweight server or want to embrace building your own variation of a web framework.
We will do the following:

First, build a basic web server that returns Hello World1.
Then, modify our Hello World server to serve file content, making a static file2.
server similar to Apache or Nginx
Lastly, we will build a web socket server that will accept connections and echo3.
back the message sent via the web socket connection

Going through the exercise of building these different kinds of servers using Vapor's engine
will help us understand how Vapor works under the hood. It will also help us realize that
building a large scale web application requires a lot of features, such as routing, persisting
to the database, migrations, rendering HTML templates, and much more, which Vapor
provides via its other Swift packages. This makes Vapor very modular, and anyone who
wants to build something lightweight can pick and choose the modules they want, or they
can use the Vapor Swift package to get the entire bundle pre-configured, making it easy to
build large-scale web applications quickly.

Getting Started with Vapor Chapter 3

[78]

Building a basic HTTP server
To get started with building a basic HTTP server using Vapor's engine, we need to follow
these steps:

Create an empty folder, call it Server, and open the folder in the Terminal.1.
Then, within this folder in the Terminal, let's create an executable Swift package2.
by running the following command:

swift package init --type executable

In Package.swift, we need to specify the dependencies by adding them to the3.
dependencies section:

dependencies: [
 .package(url: "https://github.com/vapor/engine.git", from:
"2.2.1"),
 .package(url: "https://github.com/vapor/sockets.git", from:
"2.2.1"),
],

We also need to specify the following two modules in our target's dependencies:4.

.target(
 name: "Server",
 dependencies: ["Transport", "HTTP"]),

Then, we need to switch to our main.swift file under Sources/Server and5.
update it to the following code:

import Transport
import HTTP

class Hello: Responder {
 func respond(to request: Request) throws -> Response {
 return "Hello World".makeResponse()
 }
}

let PORT = Port(5000)
let server = try BasicServer(scheme: "http", hostname: "0.0.0.0",
port: PORT)

print("Started on port \(PORT)")
try server.start(Hello()) { error in
 print(error)

Getting Started with Vapor Chapter 3

[79]

}

In this code, we import Transport and HTTP modules as part of Engine. We then
create a class, Hello, which is a subclass of Responder and has a respond
method that returns a Response object. We then create a BasicServer and
specify the protocol, hostname, and port number to run on, and start it up by
calling start on our server, with an instance of the Hello responder class.

Now, we can start the server by running swift run in the Terminal. It will first6.
install all of the dependencies by downloading them from GitHub, and will then
build the modules and run our executable. You should see the following output:

Open the web browser and go to http://localhost:5000, and you should see7.
Hello World on the web page.

Getting Started with Vapor Chapter 3

[80]

Great! We now have a basic server that we built using Vapor's engine package. Vapor uses
the same BasicServer under the hood with the Vapor package, but this server is a lot
more robust and performant than the basic HTTP server we built in Chapter 1, Getting
Started with Server Swift, in pure Swift using sockets.

Building a static file server
If you need to create a very basic static file server, that is easy to do, as well. The static file
server we will create will serve the contents of the file specified in the URL path, relative to
where the server was started from the Terminal. This is very similar to starting a basic
HTTP file server in Python using the following command:

python -m SimpleHTTPServer 8080

To get started with building a basic file server, we will need to follow these steps in our
existing Basic Server package:

First, import Foundation into main.swift by adding it to the top of the file. We1.
will need this to use the NSData type provided by Foundation, to read the
contents of a file in raw data format:

import Foundation

Next, we need to figure out the directory from which the server was started so2.
that we can serve files relative to that folder:

let currentDirectoryURL = URL(fileURLWithPath:
FileManager.default.currentDirectoryPath)

Next, we will create an extension on the NSData class and add a computed3.
property called toBytes, which will return data as the Bytes type. Bytes is an
alias type of [UInt8], and we use this type as it is used to represent both textual
data and binary data, such as images, PDFs, and so on:

extension NSData {
 var toBytes: Bytes {
 get {
 return Bytes(UnsafeBufferPointer(start:
bytes.assumingMemoryBound(to: UInt8.self), count: length))
 }
 }
}

Getting Started with Vapor Chapter 3

[81]

Lastly, we will update the respond method in the Hello class to the following4.
code block, so that it returns the raw contents of the file instead of Hello World:

let fileURL =
currentDirectoryURL.appendingPathComponent(request.uri.path)
if let data = NSData(contentsOf: fileURL) {
 return Response(status: .ok, body: data.toBytes)
}
return Response(status: .notFound)

Now, compile and run the server from the Terminal using the swift run5.
command and open the browser to http://localhost:5000/Package.swift.

Great! We just created a static file server, and you should see the contents of the
Package.swift file in the browser. If you add an image or an HTML file in our Server
directory, then you can view it in the browser by specifying the relative path to that image
or HTML page in the URL.

The entire code for our static file server is shown as follows. For a better naming
convention, the Hello class has been renamed FileResponder:

import Transport
import HTTP
import Foundation

let currentDirectoryURL = URL(fileURLWithPath:
FileManager.default.currentDirectoryPath)

extension NSData {
 var toBytes: Bytes {
 get {
 return Bytes(UnsafeBufferPointer(start: bytes.assumingMemoryBound(to:
UInt8.self), count: length))
 }
 }
}

class FileResponder: Responder {
 func respond(to request: Request) throws -> Response {
 let fileURL =
currentDirectoryURL.appendingPathComponent(request.uri.path)
 if let data = NSData(contentsOf: fileURL) {
 return Response(status: .ok, body: data.toBytes)
 }
 return Response(status: .notFound)
 }

Getting Started with Vapor Chapter 3

[82]

}

let PORT = Port(5000)
let server = try BasicServer(scheme: "http", hostname: "0.0.0.0", port:
PORT)

print("Started on port \(PORT)")
try server.start(FileResponder()) { error in
 print(error)
}

Building a WebSocket server
We will end our exploration of the engine package by creating a WebSocket server that
echoes our message back. We will learn how to accept a WebSocket connection, how to
receive messages from a WebSocket connection, and how to reply back with a message. To
get started, we will create a new package and follow these steps:

Create a new folder, call it WebSocket, and open that folder in the Terminal.1.
Then, within this folder in the Terminal, let's create an executable Swift package2.
by running the following command:

swift package init --type executable

In Package.swift, specify the following dependencies by adding them to the3.
dependencies section:

dependencies: [
 .package(url: "https://github.com/vapor/engine.git", from:
"2.2.1"),
 .package(url: "https://github.com/vapor/sockets.git", from:
"2.2.1"),
],

Getting Started with Vapor Chapter 3

[83]

We also need to specify the following modules in our target's dependencies:4.

.target(
 name: "WebSocket",
 dependencies: ["Transport", "HTTP", "WebSockets"]),

We then need to switch to our main.swift file under Sources/Server and5.
update it to the following code:

import Transport
import HTTP
import WebSockets

class WebSocketResponder: Responder {
 func respond(to request: Request) throws -> Response {
 return try request.upgradeToWebSocket { ws in
 try ws.send("Hello from web socket!")
 ws.onText = { ws, text in
 try ws.send("Got message: \(text)")
 }
 }
 }
}

let PORT = Port(5000)
let server = try BasicServer(scheme: "http", hostname: "0.0.0.0",
port: PORT)

print("Started on port \(PORT)")
try server.start(WebSocketResponder()) { error in
 print(error)
}

Now we can start the server by running swift run in the Terminal. It will first6.
install all of the dependencies by downloading them from GitHub, and will then
build the modules and run our executable.

Getting Started with Vapor Chapter 3

[84]

Connect to the server via a web socket client. You might want to use the simple7.
WebSocket client Chrome extension. Connect to ws://localhost:5000, and
you should see a Hello from web socket! message; sending any message will
echo it back from our WebSocket server:

Great! You have just created a WebSocket server from scratch, using Vapor's engine
package. We hope this gives you a better understanding of the building blocks that Vapor
uses and gives you an alternative for building a very simple web or WebSocket server that
responds to requests, instead of using Vapor, which gives you a lot more out of the box.

Getting Started with Vapor Chapter 3

[85]

Building a Vapor application from scratch
Before we start creating Vapor applications using the Vapor toolbox, which is an awesome
tool provided by the Vapor team, let's see the minimal amount of code needed to create a
Vapor application from scratch using the Vapor package. To do so, we need to follow the
following steps:

Create a new Hello folder and open it in the Terminal.1.
Then, initialize the Swift package by running the init command, and make it an2.
executable type. This should generate the Sources folder and Test folder, and
also create a Package.swift file:

$ swift package init --type executable

Update the dependencies section in Package.swift to include Vapor as a3.
dependency, and also include Vapor in the target dependency for the Hello
target:

let package = Package(
 name: "Hello",
 dependencies: [
 .package(url: "https://github.com/vapor/vapor.git",
.upToNextMajor(from: "2.4.4")),
],
 targets: [
 .target(
 name: "Hello",
 dependencies: ["Vapor"]),
]
)

Now, we need to update the main.swift file under Sources/Hello folder with4.
the example code on the vapor.code website by first importing Vapor:

import Vapor

Next, we create a Droplet, which is a service container that gives you access to5.
many of Vapor's facilities. It is responsible for registering routes, starting the
server, appending middleware, and more:

let drop = try Droplet()

Getting Started with Vapor Chapter 3

[86]

Then, we define the GET route on /hello and respond to all requests with6.
"Hello.world.":

drop.get("hello") { req in
 return "Hello, world."
}

Finally, we start the app run, which will start our Vapor application on the7.
default port, 8080. Because the server can throw an error when starting up, we
need to catch the error using try:

try drop.run()

Now that we have all of our code in main.swift, we are ready to build our code8.
in the Terminal using the swift build command.
Then, run the application using the swift run command, and you will see the9.
server started on port 8080, as printed on the console:

$ swift run
Could not load config files from:
/Users/apatel/Downloads/Hello/Config/
Try using the configDir flag
ex: .build/debug/Run --configDir=/absolute/path/to/configs
The default hash should be replaced before using in production.
The default cipher should be replaced before using in production.
No command supplied, defaulting to serve...
Starting server on 0.0.0.0:8080

Open the browser and go to http://localhost:8080/hello, and you should10.
see Hello, world.

That's it; you have built a bare-bones Vapor app that prints Hello World. Because we are
using Vapor, we get a few more things out of the box for free; one is the 404 Not Found
page when you go to any URL other than /hello. It also prints warnings that the
configDir is missing because, by default, application specific configurations are in
the Config folder.

Getting Started with Vapor Chapter 3

[87]

Vapor toolbox
So far, we have learned how to build web servers and a lightweight Vapor application
using the swift package command. This is good for small-scale projects, but when we
embark on building a production-ready application, we need more powerful tools that can
generate, build, and run our server-side web application. Luckily, Vapor provides us with a
command-line tool that makes it easy to create a new server-side web application by
generating the files and folders needed for the Vapor application. This command-line tool
can also build our Vapor application by installing our dependencies and then compiling our
application, and can also run our application. This tool is also capable of deploying to the
server. In short, the command-line interface provides shortcuts and assistance for common
tasks with our Vapor application. This command-line tool is called the Vapor toolbox.

Installing the Vapor toolbox
To install the Vapor toolbox on macOS, all we need to do is follow these steps:

First, verify that you have the right version of Xcode, and whether it is1.
compatible with Vapor, by running the following command in the Terminal:

eval "$(curl -sL check.vapor.sh)"

You should see the following output if everything is compatible:2.

Getting Started with Vapor Chapter 3

[88]

Next, we need to install brew, if you do not have it installed already on your mac3.
OS. brew is a package manager similar to apt-get in Debian based Linux OS.
You can install it by following the instructions on the Homebrew
website, https:/ ​/​brew. ​sh, or by running the following command in the
Terminal:

$ /usr/bin/ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)"

Once we have brew installed, we need to run these two commands to add the4.
Vapor repository and update the list of packages available for installing brew
locally:

$ brew tap vapor/homebrew-tap
$ brew update

Finally, we can install Vapor using the brew install command:5.

$ brew install vapor

Once you are done, you can verify that you have the Vapor toolbox installed by running
the vapor version command in the Terminal, and it will print the version of the Vapor
toolbox that was just installed on your system.

Vapor toolbox commands
Vapor toolbox is a versatile tool. It provides commands for a lot of things that you might
want to do, from installing dependencies and building the application to deploying it in the
cloud. To see a list of helpful commands, we need to type vapor --help in the Terminal:

$ vapor --help
Usage: vapor command

Join our Slack if you have questions, need help,
or want to contribute: http://vapor.team

Commands:
 new Creates a new Vapor application from a template.
 Use --template=repo/template for github templates
 Use --template=full-url-here.git for non github templates
 Use --web to create a new web app
 Use --auth to create a new authenticated API app
 Use --api (default) to create a new API
 build Compiles the application.

https://brew.sh
https://brew.sh
https://brew.sh
https://brew.sh
https://brew.sh
https://brew.sh
https://brew.sh

Getting Started with Vapor Chapter 3

[89]

 run Runs the compiled application.
 fetch Fetches the application's dependencies.
 update Updates your dependencies.
 clean Cleans temporary files--usually fixes
 a plethora of bizarre build errors.
 test Runs the application's tests.
 xcode Generates an Xcode project for development.
 Additionally links commonly used libraries.
 version Displays Vapor CLI version
 cloud Commands for interacting with Vapor Cloud.
 heroku Commands to help deploy to Heroku.
 provider Commands to help manage providers.

Use `vapor command --help` for more information on a command.

The following are the most commonly used commands:

vapor new AppName: This is used to create a new Vapor application. It will
create a new folder called AppName and generate project files and folders in it.
Replace AppName with the name of the application you want to create. The new
command also gives options to specify the template to clone from bypassing the -
-template= option, followed by the repository URL
(http://example.com/git-repo.git) or GitHub path (vapor/api-
template), which will create a new project based on the clone of that repo. You
can also pass three options (api, web, auth) in the template option to create a
new project based on three official templates provided by Vapor. As the names
imply, these three templates are for making API based apps, web apps which
render HTML, and auth based apps that support session based and token-based
authentication, respectively.
vapor build: This will download the dependencies from the git repo and also
build them, and will build the Vapor application by compiling all of the code.
vapor run: This will run the Vapor application.
vapor fetch: This will fetch all of the application's dependencies from the git
repo.
vapor update: This will update your application specific dependencies.

Getting Started with Vapor Chapter 3

[90]

vapor clean: This will remove the .build folder, and also remove all of the
dependencies, along with any temporary files.
vapor test: This will run application-specific tests.
vapor xcode: This will generate an Xcode project for the Vapor application, and
will link all of the dependencies so that Xcode can build the application along
with its dependencies.
vapor cloud: This command will deploy the application to Vapor's own cloud
service. It will ask a series of question to set up the cloud deployment account
and to create the project and its dependencies, all from the command line.
vapor heroku: This will configure your git repo to be able to push to Heroku for
deployment and link the appropriate build pack, so that Heroku can build and
run the Vapor application.
vapor provider: This command manages the providers and makes it easy to
add providers to your application.

Creating a Vapor application using the toolbox
Now that we have the Vapor toolbox installed, we are ready to create our first Vapor
application using the toolbox. You will find out how easy it is to create an app using the
toolbox, as it scaffolds the files and folders needed to quickly get started. We will examine
the files and folders and the application structure of our Vapor application to get a better
understanding of how Vapor applications work. To get started, let's first create a Vapor
application using the toolbox by following these steps:

Create a new application using the vapor new command in the Terminal. By1.
default, the vapor new command uses the API template, but we will use the web
template to create a Greeter example app that greets the user by dynamically
generating a page based on the name passed in the URL:

$ vapor new Greeter --template=ankurp/web-template

Getting Started with Vapor Chapter 3

[91]

This will generate a Greeter folder and print the following in the console. Now,2.
go into the folder in the Terminal:

$ vapor new Greeter --template=ankurp/web-template
Cloning Template [Done]
Updating Package Name [Done]
Initializing git repository [Done]

 **
 ~~
 ~~~~~~
 ~~~~~~~~~~
 ~~~~~~~~~~~~~~
 ~~~~~~~~~~~~~~~~~~
 ~~~~~~~~~~~~~~~~~~~~~~
 ~~~~~~~~~~~~~~~~~~~~~~~~
 ~~~~~~~~~~~~~~~~~~~~~~~~~~
 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 ~~~~~~~~~~~~~~~~~~~~~++++~~~
 ~~~~~~~~~~~~~~~~~~~++++~~~
 ~~~~~~~~~~~~~~~++++~~~
 ****~~~~~~~~~~++++~~****
 *****~~~~~~~~~*****

 _ __ ___ ___ ___
 \ \ / / /\ | |_) / / \ | |_)
 \/ //--\ |_| __/ |_| \
 a web framework for Swift

 Project "Greeter" has been created.
 Type `cd Greeter` to enter the project directory.
 Use `vapor cloud deploy` to host your project for free!
 Enjoy!

Now, we need to build the project before running it, which we can do by running3.
the build command. This might take some time, as it will download the
dependencies and compile all of the code:

$ vapor build
No .build folder, fetch may take a while...
Fetching Dependencies [Done]
Building Project [Done]

Getting Started with Vapor Chapter 3

[92]

Finally, we can start our Vapor application by running it using the run4.
command. Do not worry about the warnings; they are there to let us know that
we need to update the crypto.json config to make our Vapor application more
secure, by specifying a custom cipher key:

$ vapor run
Running Greeter ...
The current hash key "0000000000000000" is not secure.
Update hash.key in Config/crypto.json before using in production.
Use `openssl rand -base64 <length>` to generate a random string.
The current cipher key
"AAA=" is not secure.
Update cipher.key in Config/crypto.json before using in production.
Use `openssl rand -base64 32` to generate a random string.
No command supplied, defaulting to serve...
Starting server on 0.0.0.0:8080

Now, open your browser and go to http://localhost:8080/, and you should5.
be greeted by Vapor with a message saying It Works; .

Cool! We have built and run our first Vapor app. It was easy, thanks to Vapor's toolbox, as
it handled the redundant task of making a folder and cloning a base repo to start from. You
may have noticed that Vapor has commands similar to those we ran when building Swift
packages from scratch using the Swift CLI. This is because the Vapor toolbox invokes the
underlying Swift commands for some commands, and is a light wrapper for those
commands.

This web template does more than just serve an It Works page. If you go to
http://localhost:8080/hello, you will be greeted with a standard Hello,
World! message, and if you add your name at the end of the URL
(http://localhost:8080/hello/John), then you will be greeted with Hello, John! in
your browser. Its's very interesting; so, let's dive into the project to see how it works.

Getting Started with Vapor Chapter 3

[93]

Vapor folder structure
The following is the list of files and folders generated by the Vapor toolbox. There are
several files and folders, but the Vapor team has done a good job organizing them. The
structure is similar to a Swift package, but there are some extra folders that help to organize
the code, to make it easier to build features and debug issues:

$ tree .
.
├── Config
│ ├── app.json
│ ├── crypto.json
│ ├── droplet.json
│ └── server.json
├── Package.pins
├── Package.resolved
├── Package.swift
├── Public
│ ├── images
│ │ └── it-works.png
│ └── styles
│ └── app.css
├── README.md
├── Resources
│ └── Views
│ ├── base.leaf
│ ├── hello.leaf
│ └── welcome.leaf
├── Sources
│ ├── App
│ │ ├── Config+Setup.swift
│ │ ├── Controllers
│ │ │ └── HelloController.swift
│ │ ├── Droplet+Setup.swift
│ │ ├── Models
│ │ └── Routes.swift
│ └── Run
│ └── main.swift
├── Tests
│ ├── AppTests
│ │ ├── PostControllerTests.swift
│ │ ├── RouteTests.swift
│ │ └── Utilities.swift
│ └── LinuxMain.swift
└── license

13 directories, 23 files

Getting Started with Vapor Chapter 3

[94]

Vapor config
Vapor has a sophisticated configuration system that consists of configurations stored in the
JSON file format. The configuration files are specified in the Config folder, and you can use
these config files to set the server hostname or port, or even to configure the database you
might be using. Vapor also supports environment specific configuration files, where you
can have the application run on a different port in production than in development
(locally), or specify different secrets, such as the database username and password for
production environment for that development. By default, the Vapor template we cloned
came with four config files:

app.json

crypto.json

droplet.json

server.json

app.json is a good place to specify any custom configurations you might want to use in
your application. Vapor will not be using any of the configurations specified in this file, and
is intended for specifying custom config values that are application specific. You can use
this config to store a default shopping list for your API server, for users who are new to the
app and do not have any shopping-list setup. Using the configuration, you can generate
fake items for the default shopping-list, and the information about the items is now
transferred into the config, which is easier to maintain and update than updating it in the
code. A sample app.json config that contains the config for generating a shopping list may
look like this:

{
 "shopping-list": {
 "name": "Groceries",
 "items": [{
 "name": "Apple"
 }, {
 "name": "Tomato"
 }]
 }
}

Getting Started with Vapor Chapter 3

[95]

The crypto.json config file contains the configuration for the type of hash function that is
used by Vapor, or can be used by our application to generate a fixed sized token. These
tokens cannot be mapped back to their original value, and are great for storing as
passwords, as they cannot be mapped back to the actual password the user types. There are
different kinds of hash functions, and to make them more secure, you want to specify a key
that is unique for your application and will randomize the generated hash value even more,
making your application secure. The crypto.json config also has a cipher config, which is
useful for converting a value into an obfuscated value that makes it hard to map back to the
original value without knowing the key and the method used to generated it. The
configurations for the cipher can also be modified in this file. A sample config looks like
this:

{
 "hash": {
 "method": "sha256",
 "encoding": "hex",
 "key": "0000000000000000"
 },
 "cipher": {
 "method": "aes256",
 "encoding": "base64",
 "key": "AAA="
 }
}

The configurations specific to the Vapor framework can be found in droplet.json. This
file contains configs for the following:

What kind of server to use. It defaults to using the server found in Vapor's
Engine.
What kind of request client to use. It defaults to using the client provided in
Vapor's Engine.
Where to log output. It defaults to printing in the console.
Where the config for the hash function is. It uses crypto.json by default.
Where the config for the cipher function is. It uses crypto.json by default.
What view engine to use. For our web template, it defaults to Leaf.
What middleware to use.
What custom commands can be used as part of the Vapor toolbox.

Getting Started with Vapor Chapter 3

[96]

Lastly, there is server.json, which contains configurations for the server, such as what
host to run on and where to start the server. You can also specify whether you want to use
SSL for a secure connection to your server via HTTPS, instead of HTTP protocol. A default
server.json config looks like this:

{
 "port": "$PORT:8080",
 "host": "0.0.0.0",
 "securityLayer": "none"
}

One thing to note is that you can fall back to the environment variable in this configuration
by specifying the environment variable, prefixed with a $ sign. For example, in
server.json, you will notice that the port is set to $PORT:8080.

This implies that the port in our config file will be set to the value of the environment
variable PORT, and if it does not exist, then it will default to 8080. This is really powerful, as
you can have environment specific variables to change the configuration on a production
environment, but have a default value for development to make it easier for someone to get
started with your Vapor application.

Trying to access the Vapor configuration in your application is easy, as well. All you need to
do is specify the path in your config file, and the type of value, and it will return that value.
In this line of code, we are extracting the config stored inside of app.json inside of the
Config folder. We are extracting the value called name, stored inside of the shopping-
list property, and want to get it as a string type. We fall back to using Groceries as the
default value if the name or shopping-list properties are not defined inside of
the app.json config file:

let shoppingListName = drop.config["app", "shopping-list", "name"]?.string
?? "Groceries"

Vapor droplet
A droplet is a service container that gives you access to many features provided by Vapor. It
makes it easy to do the following tasks:

Access configurations specified in the config files in the Config folder
Make network requests using Vapor's engine client

Getting Started with Vapor Chapter 3

[97]

Register routes for your application so that you can specify which URL path gets
served by what file in your application
Add middleware to your application
Use providers in your application, which are other Swift packages that follow
certain provider protocols, making it easy to add functionality to your application
Start the application

One droplet is created inside of a Vapor application, and a Config is passed to it when
constructing a new instance of the Droplet class. In our project, you will find a file
called Config+Setup.swift, which contains an extension of that Config class; and, as the
name implies, the Config class contains configurations that will be used by the Droplet
object to configure the application according to the configs specified. One such
configuration in this object is related to providers, which, as mentioned, are other Swift
packages that implement certain protocols needed by Vapor to extend the functionality of
the application. For example, in our project, we add a LeafProvider to be able to render
HTML views by calling addProviders inside of setupProviders in the Config class:

extension Config {
 public func setup() throws {
 Node.fuzzy = [JSON.self, Node.self]
 try setupProviders()
 }

 private func setupProviders() throws {
 try addProvider(LeafProvider.Provider.self)
 }
}

In our project, you will also find Droplet+Setup.swift, which is another class extension
for the Droplet class, to add a new setup method. This is where the routes are configured
by creating an instance of the Routes class, inside which the routes for our application are
created:

extension Droplet {
 public func setup() throws {
 let routes = Routes(view)
 try collection(routes)
 }
}

Getting Started with Vapor Chapter 3

[98]

Finally, in main.swift, which is the entry point of our application, config.setup() is
called before it is passed into the Droplet initializer. This setup adds the LeadProvider to
the config object before it is consumed by the Droplet. Then, setup is called on Droplet
to configure the routes for the application before it is told to run , which boots up our
server, and our Vapor application is ready to serve requests:

import App
let config = try Config()
try config.setup()
let drop = try Droplet(config)
try drop.setup()
try drop.run()

Views
In Vapor, Views return HTML content. They can return pure HTML pages, or you can use
renderers like Leaf to dynamically generate HTML that is returned as part of a request. All
of the views reside in the Resources/Views folder, and, in our project, you will find three
such files:

base.leaf

hello.leaf

welcome.leaf

We will go into more detail about Leaf and HTML rendering in later chapters, but, in short,
Leaf files are template files that are used by LeafProvider to generate HTML, and the
HTML is generated by calling the view method on droplet, as such:

drop.get { req in
 return try self.view.make("welcome")
}

drop.get("hello") { req in
 return try view.make("hello", [
 "name": "World"
], for: req)
}

Getting Started with Vapor Chapter 3

[99]

Resources such as Javascript, CSS, and image assets need to be placed in the Public folder.
Any content in this folder will be accessible by just pointing to the path of the public
resources. For example, going to http://localhost:8080/styles/app.css will load
the CSS file from the Public/styles folder.

Controllers
In Vapor, Controllers are similar to the Controllers in an iOS app, organizing the
functionality and controlling the flow of each request from the user. They are responsible
for getting the request and performing certain actions, such as getting data from the
database, massaging it (if needed), and then rendering in HTML view or plain text before
sending it back to the client. These controllers can be used to create RESTful resources.

Representational State Transfer (REST) is a popular architectural style
commonly used when building websites and APIs. It has five constraints:
the web service needs to provide uniform interfaces, be stateless, be
cacheable, be portable with the client-server model, and have a layered
architecture.

In our project, we have one controller, HelloController, which is a RESTful controller
that responds to two REST methods. We will cover REST in more detail in a later chapter,
but think of REST as a limited set of actions that you can perform on a resource, such as
getting all of the resources, getting one specific resource, updating one specific resource, or
deleting a resource. In our Hello controller, we implemented two such actions. One was
the index action, which returns a plain HTML page with Hello World, and another was the
show action, which returns a dynamic page with the name appended, following Hello,
based on the name passed in the URL route. The following is the code for these two actions,
and, as you can see, we are calling droplet.view, which is passed into the initializer of the
HelloController object and available as an instance variable:

/// GET /hello
func index(_ req: Request) throws -> ResponseRepresentable {
 return try view.make("hello", [
 "name": "World"
], for: req)
}

/// GET /hello/:string
func show(_ req: Request, _ string: String) throws -> ResponseRepresentable
{
 return try view.make("hello", [
 "name": string

Getting Started with Vapor Chapter 3

[100]

], for: req)
}

Controllers at the end of each action need to return an object that conforms to the type
ResponseRepresentable. This protocol makes the consumer of the API more flexible, as
they can return any object that conforms to the protocol of ResponseRepresentable.
Vapor extends String and a few other classes, like JSON, to extend the protocol so that you
can return them directly to the controller; drop.view.make itself returns an object of type
View, which conforms to ResponseRepresentable by implementing the makeResponse
method:

extension View: ResponseRepresentable {
 public func makeResponse() -> Response {
 return Response(status: .ok, headers: [
 "Content-Type": "text/html; charset=utf-8"
], body: .data(data))
 }
}

Summary
In this chapter, we covered a lot of topics related to Vapor, and we hope that by now you
have a better understanding of what Vapor is and how it is more than just a web server. We
also learned about some of the packages that Vapor depends on, such as the Vapor Engine,
and how we can build a lightweight server without having to use Vapor if our use case is
not to build a large scale web application. We also learned how easy it is to support web
sockets using the Engine. Then, we dove into building a Vapor application from scratch to
understand that a Vapor application is nothing but a Swift executable package. We then
learned about the Vapor toolbox, and how it makes it easy to bootstrap a Vapor project
using a command-line tool. Lastly, we examined a Vapor project in detail to understand
how it all works and how it is structured so that we have a better understanding of how to
write code for our application using Vapor's conventions.

In the next chapter, we will start building our Shopping List API application using Vapor,
with the help of the toolbox. We will cover providers in more detail and look into one of the
providers created by the Vapor team, called Fluent, which makes it easy to fetch and save
data in the database.

4
Configuring Providers, Fluent,

and Databases
In the previous chapter, we learned about Vapor and its packages, as well as how to build a
basic web server using those packages. We learned about the Vapor toolbox and how to use
the toolbox to Bootstrap a new Vapor application. We also learned about the general
structure of a Vapor application. In this chapter, we will look into Providers, which are
packages that can be imported into your Vapor application and provide it with additional
functionality. In particular, we will examine the Fluent provider and learn about what
Fluent is and its purpose in Vapor applications. We will also touch upon databases, and one
database, in particular, called MongoDB in this chapter. This chapter will lay the foundation
of our server-side API for the Shopping List app we built in Chapter 2, Creating the Native
App and will connect all of the concepts mentioned in the chapter with our
application. More specifically, in this chapter, we will learn the following:

How to Bootstrap an API based Vapor application?
What is a Vapor Provider, and how to use it in our application?
How to build a Provider of our own?
What is Fluent, and how to use the Fluent provider?
Databases and MongoDB, and how to get started with them
How to connect your application to MongoDB to fetch and save data in the
database?

Configuring Providers, Fluent, and Databases Chapter 4

[102]

Shopping List API Vapor app
We will start with a new Vapor application, which will act as an API server for our iOS
application. We will keep building on top of this application in the next few chapters to
learn about different aspects of Vapor; towards the end, we will have a fully functional
server that will serve as both an API and a web server, showing our Shopping List on the
iOS app and also on the web.

To get started, we will begin with an official API template provided by Vapor. We will
follow the following steps to Bootstrap our project and start coding it using Xcode:

Open the Terminal and create a new API based Vapor application using the1.
toolbox:

$ vapor new ShoppingListServer --template=ankurp/api-template

This will create the new application based on the API template. Go into this2.
folder in the Terminal and create an Xcode project file using the following
command:

$ vapor xcode -y

The preceding command will create an Xcode project file for the Vapor3.
application and open up the Xcode project. We can now write our code in the
Xcode IDE, instead of using a plain text editor to write code for our Vapor
application. To run our Vapor application, we need to switch the Scheme to Run,
and make sure that My Mac is selected before clicking the play button to start our
server:

Configuring Providers, Fluent, and Databases Chapter 4

[103]

Open the browser to http://localhost:8080/hello and you should see a4.
JSON object in the browser:

Configuring Providers, Fluent, and Databases Chapter 4

[104]

We now have a base API server project running and it returns a JSON response. We will use
this template to build our shopping list server, but before we modify the existing files in the
project, let's see how the sample code in the project works.

What are Providers?
Providers are Swift packages that extend the functionality of a Vapor application. This is
done by implementing the Provider protocol, which Vapor expects all Providers to have.
The protocol is simple and is shown in the following code snippet:

public protocol Provider {
 static var repositoryName: String { get }
 static var publicDir: String { get }
 static var viewsDir: String { get }

 init(config: Config) throws
 func boot(_ config: Config) throws
 func boot(_ droplet: Droplet) throws
 func beforeRun(_ droplet: Droplet) throws
}

If you have a class that implements this Provider protocol, then you can use that class as a
Provider in your Vapor application. Since you have config and droplet being passed into
your Provider, you have an entry point to extend the Vapor application by adding
additional routes and you also have a life cycle method that gets invoked before
droplet.run() is called, in case you need to perform an action before the server
starts. There are abundant Provider packages on GitHub; the convention is to suffix the
repo name with -provider and suffix the package name with Provider. For example, the
Leaf provider that was used in the template web project in the previous chapter is installed
using the URL https:/ ​/ ​github. ​com/ ​vapor/ ​leaf- ​provider and it has the package
name LeafProvider.

Building your first Provider
To understand how Providers work in practice, we will go through the exercise of building
a simple Provider of our own and adding it to our application. The Provider that we build
will be a HealthcheckProvider that provides a health check route for our application and
returns a success 200 status code with a JSON response, indicating that the server is running
and is healthy.

https://github.com/vapor/leaf-provider
https://github.com/vapor/leaf-provider
https://github.com/vapor/leaf-provider
https://github.com/vapor/leaf-provider
https://github.com/vapor/leaf-provider
https://github.com/vapor/leaf-provider
https://github.com/vapor/leaf-provider
https://github.com/vapor/leaf-provider
https://github.com/vapor/leaf-provider
https://github.com/vapor/leaf-provider
https://github.com/vapor/leaf-provider
https://github.com/vapor/leaf-provider
https://github.com/vapor/leaf-provider

Configuring Providers, Fluent, and Databases Chapter 4

[105]

To get started on building the Provider, we will create a new Swift package, publish it, and
then import it into our Shopping List Vapor application. So, let's start building out first
Provider by following these steps:

Create a folder, call it HealthcheckProvider, and open the folder in the1.
Terminal.
Once you are in the HealthcheckProvider folder, run the following command2.
in the Terminal to initialize a Swift package:

$ swift package init

Inside Package.swift, add Vapor to the dependencies section:3.

dependencies: [
 .package(url: "https://github.com/vapor/vapor.git",
.upToNextMajor(from: "2.4.4")),
],

Also, add "Vapor" as the dependency for the HealthcheckProvider target4.
under the targets section:

.target(
 name: "HealthcheckProvider",
 dependencies: ["Vapor"]),

Now, go to the Sources/HealthcheckProvider folder and rename the5.
HealthcheckProvider.swift file to Provider.swift.
Once the file is renamed, we can start adding code to our provider. To make a6.
Provider, we need to follow the Provider protocol defined by Vapor. This is easy
to do; we implement the Vapor.Provider protocol in our Provider class as
follows:

import Vapor
public final class Provider: Vapor.Provider {

Then, we need to add the repositoryName static variable in our class, as7.
required by the Provider protocol; this will be the name of our Provider. We will
also define a variable called healthcheckUrl that will hold the route for our
healthcheck endpoint:

public static let repositoryName: String = "healthcheck-provider"
public var healthCheckUrl: String?

Configuring Providers, Fluent, and Databases Chapter 4

[106]

Next, we will add an initializer for our class, which will take a Config object and8.
set the healthcheckUrl based on the health check URL defined in the
healthcheck.json files under the Config folder:

public init(config: Config) throws {
 if let healthCheckUrl = config["healthcheck", "url"]?.string {
 self.healthCheckUrl = healthCheckUrl
 }
}

Next, we need to define the boot method, as defined in the protocol. Since we do9.
not do anything in this method, we can leave the body of the method empty. This
method is called after the Provider has been initialized:

public func boot(_ config: Config) throws {}

There is another boot method that needs to be defined and this is called by the10.
droplet when it is initialized. The Droplet object is passed into this boot method
and it is a good place to define our healthcheck route:

public func boot(_ drop: Droplet) {
 guard let healthCheckUrl = self.healthCheckUrl else {
 return drop.console.warning("MISSING: healthcheck.json config
in Config folder. Healthcheck URL not addded.")
 }
 drop.get(healthCheckUrl) { req in
 return try Response(status: .ok, json: JSON(["status": "up"]))
 }
}

In this method, we check if healthcheckUrl was initialized, as it can be
undefined due to missing healthcheck.json file, which contains the URL for
the healthcheck endpoint. If we have a value for healthcheckUrl, then we
define a GET route in our application at that URL path which responds with a
JSON response.

The last protocol method we need to define is the beforeRun method, which is11.
called before the droplet starts running. Since we do not have anything to do, we
define an empty function:

public func beforeRun(_ drop: Droplet) {}

Configuring Providers, Fluent, and Databases Chapter 4

[107]

Now, let's compile our library. We should be able to build our Provider12.
without any error using the swift build command in the Terminal.

Great! We just built our first Provider. Before we publish this to the GitHub repository, let's
add a test to make sure out library works as it should. This is easy to do, as our package
comes with a Test folder, where we write our tests. To start writing a test for our Provider,
we need to follow the following steps:

Add Vapor and Testing modules to your HealthcheckProviderTests target1.
in the Package.swift file. We will be using Vapor and Testing modules in our
test:

.testTarget(
 name: "HealthcheckProviderTests",
 dependencies: ["HealthcheckProvider", "Vapor", "Testing"]),

Then, in your test Swift file in the Tests/HealthcheckProviderTests folder,2.
import Vapor and Testing modules by adding the import statements to the top
of the file:

@testable import Vapor
import Testing

Then, we override the setUp method in the test class so that we can have3.
the Testing module trigger a failure when Vapor's testing module detects a
failure in any of the assertions for the tests we write:

override func setUp() {
 Testing.onFail = XCTFail
}

Then, remove the sample testExample method in the file, as we will add our4.
own testHealthcheck method that will create a new Vapor app using our
health check Provider and verify that the health check returns a success status
response with a JSON object. In the following code, we first create a config object
and set a healthcheck.url value in that config. Then, we add our
healthcheck Provider to our config and create a new Vapor app by initializing
a droplet with this config. To test that everything is working correctly, we
make a request and test that the response is good and has the required JSON
property and value we are looking for:

func testHealthcheck() {
 var config = try! Config(arguments: ["vapor", "--env=test"])
 try! config.set("healthcheck.url", "healthcheck")

Configuring Providers, Fluent, and Databases Chapter 4

[108]

 try! config.addProvider(HealthcheckProvider.Provider.self)
 let drop = try! Droplet(config)
 background {
 try! drop.run()
 }

 try! drop
 .testResponse(to: .get, at: "healthcheck")
 .assertStatus(is: .ok)
 .assertJSON("status", equals: "up")
}

Finally, we need to update allTests to point to the testHealtcheck method5.
we added and remove the sample testExample:

static var allTests = [
 ("testHealthcheck", testHealthcheck),
]

Now, let's run the test using the swift test command in the Terminal. You6.
should see the following output and see the test pass:

$ swift test
Compile Swift Module 'HealthcheckProviderTests' (1 sources)
Linking ./.build/x86_64-apple-
macosx10.10/debug/HealthcheckProviderPackageTests.xctest/Contents/M
acOS/HealthcheckProviderPackageTests
Test Suite 'All tests' started at 2017-11-13 19:39:47.230
Test Suite 'HealthcheckProviderPackageTests.xctest' started at
2017-11-13 19:39:47.230
Test Suite 'ProviderTests' started at 2017-11-13 19:39:47.230
Test Case '-[HealthcheckProviderTests.ProviderTests
testHealthcheck]' started.
Could not load config files from:
/Users/apatel/Downloads/HealthcheckProvider/Config/
Try using the configDir flag
ex: .build/debug/Run --configDir=/absolute/path/to/configs
The default hash should be replaced before using in production.
The default cipher should be replaced before using in production.
No command supplied, defaulting to serve...
GET /healthcheck
Starting server on 0.0.0.0:8080
Test Case '-[HealthcheckProviderTests.ProviderTests
testHealthcheck]' passed (0.098 seconds).
Test Suite 'ProviderTests' passed at 2017-11-13 19:39:47.328.
 Executed 1 test, with 0 failures (0 unexpected) in 0.098 (0.098)
seconds

Configuring Providers, Fluent, and Databases Chapter 4

[109]

Test Suite 'HealthcheckProviderPackageTests.xctest' passed at
2017-11-13 19:39:47.328.
 Executed 1 test, with 0 failures (0 unexpected) in 0.098 (0.098)
seconds
Test Suite 'All tests' passed at 2017-11-13 19:39:47.328.
 Executed 1 test, with 0 failures (0 unexpected) in 0.098 (0.099)
seconds

You have done a great job making your first Provider and writing tests to verify that it
works. Now, you can publish this to GitHub, or any git repository if you want to, as we will
be using this Provider in our Shopping List Vapor application later. To publish, all you
need to do is complete the following steps:

Initialize the git repo using the git init command1.
Create a repo on GitHub and call it healthcheck-provider to follow the2.
naming convention of Vapor Providers and to make it easy to install Providers
from the command line using Vapor's toolbox
Add the URL to the remote repo using the following command; replace3.
username with your GitHub username:

git remote add origin git@github.com:username/healthcheck-
provider.git

Commit and tag the code using the following two commands:4.

$ git add ./
$ git commit -m "Initial Commit"
$ git tag 1.0.0

Finally, push and publish the package using the git push origin master --5.
tags ;command.

Exercise time
You have done a great job writing your first tests for your Swift package. Now it's time for a
small exercise. We just added a test to verify that our Provider does what it is supposed to
do when we have configured everything correctly. However, we have not tested the cases
where the healthcheck.json config file is missing, or where the config for the
healthcheck.url is not specified. For this exercise, write another test that verifies that the
server starts up when the healthcheck config is not specified and that it returns a 404 Not
Found when making a GET request to the /healthcheck route.

Configuring Providers, Fluent, and Databases Chapter 4

[110]

Adding a Provider
Let's switch over to the ShoppingListServer project now. Adding a Provider is simple
and is done in a few steps. For that, we need to first update our Package.swift, add our
Provider in our Config setup file and add any config files that are needed in the Config
folder. The following are the specific steps that you need to take to add a Provider to your
Vapor application:

Open up the Package.swift file and add the Provider package to the1.
dependencies section. Replace username with the github username that you
used to publish your Swift package:

.package(url: "https://github.com/username/healthcheck-
provider.git", .upToNextMajor(from: "1.0.0")),

Under App target, add HealthcheckProvider as a dependency, along with2.
other dependencies:

.target(name: "App", dependencies: ["Vapor", "FluentProvider",
"HealthcheckProvider"],

Open the Terminal and go to the root level of your project folder where you just3.
edited the Package.swift file and run the following command to pull the new
dependency we added and also to update our Xcode project file. Running this
command is required every time you make changes to our Package.swift file
to update the dependencies and our Xcode project so we can import the
dependency without any errors in our code.

$ vapor xcode -y3.

Now, open the Config+Setup.swift file under the Sources/App/Setup folder4.
and import the HealthcheckProvider module by adding it to the top:

import HealthcheckProvider

Now we need to tell the config object to add our Provider by adding this line5.
inside of the setupProviders method:

try addProvider(HealthcheckProvider.Provider.self)

Configuring Providers, Fluent, and Databases Chapter 4

[111]

Lastly, we need to add a new file called healthcheck.json under the Config6.
folder in your project. Add the following JSON, which will tell our Provider to
use the url specified in the JSON file as the URL for the healthcheck route:

{
 "url": "/healthcheck.html"
}

Now, we need to update our Xcode project by running the vapor xcode -y7.
command in the Terminal, inside of our project folder.
We can confirm that everything is working by building and running the project8.
in Xcode and going to http://localhost:8080/healthcheck.html; here, we
have extended our application to add a new healthcheck route using the
HealthcheckProvider we just created:

Great job if you were able to get this far. You not only have an understanding of a Provider,
but have also just created a Provider and published it on GitHub, and also consumed it in
your Vapor application. Now, we will move on to understanding one of the Providers that
will be very useful for our application and that is the FluentProvider that is already
included in our application.

Configuring Providers, Fluent, and Databases Chapter 4

[112]

Getting started with databases
Any large scale web application needs some kind of storage to maintain its state. Saving the
state as a raw text file or in binary file format, like we did in the Shopping List iOS app with
the help of UserDefaults, is not ideal and does not scale or perform well. To solve this
problem, databases were created, which are collections of tables that can save data in a
structured format, with the ability to retrieve and save data at very high speeds. Also,
databases decouple data from our application and data can be transferred or consumed by
another application, making the data portable. You can create relationships between tables
inside of a database, just like you would create relationships in between objects in object-
oriented programming languages. Such databases are known as relational databases. This
helps us organize data just like we would in object-oriented programming languages and
makes it easy for us to map the database tables to the relations we have in our application,
such as a Shopping List that has multiple items.

To manage these databases, you require an application called a database management
system, which handles retrieving, inserting, updating, and deleting data from the database
tables. They also handle the creation and deletion of tables and provide the functionality to
enforce data types for the columns. There are several database management systems; these
are the names of some of them:

MySQL
PostgreSQL
MongoDB
SQLite

Databases are collections of structured tables and have schemas which define the column
types and the constraints on those columns, such as a column being left empty or needing
to default to a certain value if left blank. Recently, there has been a rise in NoSQL based
databases, which are less rigid and allow the insertion of data that can be structured or
unstructured. This makes developing more flexible when the structure of our data may
change or when we are not aware of what information we need to store yet. MongoDB is
one of those NoSQL databases and it can be queried to fetch and store data on a large scale.

Configuring Providers, Fluent, and Databases Chapter 4

[113]

What is MongoDB?
MongoDB is a document-oriented database that stores documents in collections, just like
how a traditional database stores rows in a table. The stored documents are in a JSON-like
format, and a schema can be defined on a collection to restrict the documents to having
certain attributes or properties present or to be of a certain data type. It has its own query
language, which is different from SQL, but it is easy to understand and pick up. Because
MongoDB is a NoSQL database, it has few benefits. One such benefit is that it is easy to get
started, as it is schema-less by default; looking at the data returned from the query, it is easy
to understand, as it is structured as a JSON object with key-value pairs. MongoDB is also
scalable, with support for splitting the database using a technique called sharding, which is
hard to do with traditional SQL databases.

How to install and run MongoDB
In our Vapor application, we will use MongoDB to store our Shopping List and items data.
To get started with MongoDB, we first need to install it on our system, which is easy to do
by taking the following steps:

Install mongodb using the homebrew package installed on macOS, or, if you are1.
on Debian based Linux, install it using the apt-get package:

$ brew install mongodb
Updating Homebrew...
==> Downloading
https://homebrew.bintray.com/bottles/mongodb-3.4.10.sierra.bottl
###
100.0%
==> Pouring mongodb-3.4.10.sierra.bottle.tar.gz
==> Caveats
To have launchd start mongodb now and restart at login:
 brew services start mongodb
Or, if you don't want/need a background service you can just run:
 mongod --config /usr/local/etc/mongod.conf
==> Summary

 /usr/local/Cellar/mongodb/3.4.10: 19 files, 287.8MB

You have the option to always start mongodb and have it run in the background2.
using the following code:

$ brew services start mongodb

Configuring Providers, Fluent, and Databases Chapter 4

[114]

Alternatively, you have the option to not run it as a background service by using
this command, but you need to make sure to start it up every time you need to
connect to mongodb:

$ mongod --config /usr/local/etc/mongod.conf

To verify that mongodb is running correctly on your machine, you can run the3.
following command in the Terminal; it connects to the mongodb instance running
locally on your machine:

$ mongo
MongoDB shell version v3.4.10
connecting to: mongodb://127.0.0.1:27017
MongoDB server version: 3.4.10
Server has startup warnings:
2017-11-14T15:08:44.634-0500 I CONTROL [initandlisten]
2017-11-14T15:08:44.634-0500 I CONTROL [initandlisten] ** WARNING:
Access control is not enabled for the database.
2017-11-14T15:08:44.634-0500 I CONTROL [initandlisten] ** Read and
write access to data and configuration is unrestricted.
2017-11-14T15:08:44.634-0500 I CONTROL [initandlisten]
2017-11-14T15:08:44.634-0500 I CONTROL [initandlisten]
2017-11-14T15:08:44.634-0500 I CONTROL [initandlisten] ** WARNING:
soft rlimits too low. Number of files is 256, should be at least
1000

Great! We now have mongodb running locally. Now, we can go ahead and start using it in
our Vapor application, but before we do so, let's understand a few more buzzwords.

What are ORM and Fluent?
ORM stands for object-relational mapping and is a very important technique in
application development, especially for those applications that interact with databases.
Traditionally, to store or retrieve data from the database, you need to write SQL, which
stands for the structured query language. After executing an SQL query, you get back a
table full of data that needs to be mapped to objects of a certain class, to make it easy to
interact with the raw data that is returned from the database.

Configuring Providers, Fluent, and Databases Chapter 4

[115]

For example, if we have a table full of Shopping Lists, then it would be good if we got back
an array of objects of the type ShoppingList, instead of an array of dictionary objects
containing column names and column value key pairs. Using a mapping technique, we can
convert this raw data stored in the database into an object of a certain type, and vice versa.
This allows us to write more concise and elegant code, without having to worry about how
to convert a row of data into an object of a certain type. This mapping technique is called
ORM and Vapor's team has done a great job of creating an ORM for Swift called Fluent.

Fluent is Swift's ORM, which works with both SQL and NoSQL databases. It provides an
easy to use API for working with databases and supports simple operations like creating,
reading, updating, and deleting, and more advanced operations like joins. Fluent is also
decoupled from Vapor, so it can be used by other Swift applications, as it is its own Swift
package, just like Vapor's Engine. To use Fluent in our Vapor application, we need to use
FluentProvider, which is installed by default in our API template project.

Fluent in action
To understand how ORM and Fluent work, let's see how we can build models for our
Shopping List app by creating our first model called Item. Using FluentProvider, we will
be able to create, fetch, save, update, and delete an item object in any database we want, as
long as there is a database driver available for the database we plan on using. In this
exercise, we will learn to build a small Swift package, to learn how Fluent works and to
understand how to save and retrieve items from the SQLite database, which is easy to get
started with. To get started, follow these steps:

Create a new folder called FluentDemo and open the folder in the Terminal.1.
Initialize a Swift package using the swift package init --type2.
executable.
Once the package is initialized, add the Fluent package by adding it3.
to Package.swift:

.package(url: "https://github.com/vapor/fluent.git", from:
"2.4.2"),

Also, add Fluent to the dependencies section of the FluentDemo target.4.

Configuring Providers, Fluent, and Databases Chapter 4

[116]

Now, open main.swift inside of Sources/FluentDemo, and remove the5.
sample code, and add the following to the top of the file. This will import the
Fluent module:

import Fluent

Then, we will create a driver, which is the way Fluent communicates with the6.
database. Fluent comes with SQLiteDriver by default, which lets you work
with an SQLite database. We then create a database object by initializing it with
the driver:

let driver = try SQLiteDriver(path: "main.sqlite")
let database = Database(driver)

Now, we need to create our model class. We will start by creating the Item class7.
first, and it will implement the Entity protocol, which is defined in Fluent
modules. Fluent can only persist objects that implement this protocol, which lets
us map the values from the database into an item object and map an item object
into a database row object:

final class Item: Entity {

We will add three instance variables. The first two should be familiar, but the8.
third one is unique to Fluent and is required to store additional attributes that are
only present in the database, such as ID:

var name: String
var isChecked: Bool
let storage = Storage()

We create an initializer for our class, which takes in two parameters:9.

init(name: String, isChecked: Bool = false) {
 self.name = name
 self.isChecked = isChecked
}

Configuring Providers, Fluent, and Databases Chapter 4

[117]

We now implement the Entity protocol methods to let Fluent perform the10.
mapping:

 init(row: Row) throws {
 name = try row.get("name")
 isChecked = try row.get("isChecked")
 }

 func makeRow() throws -> Row {
 var row = Row()
 try row.set("name", name)
 try row.set("isChecked", isChecked)
 return row
 }
}

We also need to make our Item implement Preparation protocol, which is11.
defined in Fluent. Preparations let you perform certain actions in the database,
such as creating a database table (if it is not created already) or deleting the table
if we need to delete the class in the future. This is easy to do; we have our Item
implement the two protocol methods prepare and revert as follows:

extension Item: Preparation {
 static func prepare(_ database: Database) throws {
 try database.create(self) { items in
 items.id()
 items.string("name")
 items.bool("isChecked")
 }
 }

 static func revert(_ database: Database) throws {
 try database.delete(self)
 }
}

As you can see, we created the table in prepare and defined the column names12.
and types. We also specified deletion of the table on revert.

Configuring Providers, Fluent, and Databases Chapter 4

[118]

Now, we need to hook everything up so that the prepare is called every time the13.
code is run, to ensure the table is present. Don't worry the prepare is smart
enough to make sure that it does not create an item's table if it already exists. We
also need to tell Item what database to use to query. Both of these are done as
follows:

try database.prepare([Item.self])
Item.database = database

Creating an item
Now that we have all of the code written out, we can see how Fluent makes it easy to create
a new item in the database using its high-level API. We will test that everything works by
first creating an item and saving it to the database:

We need to add the following code towards the end of main.swift:1.

let item = Item(name: "Apple")
try item.save()

Now, let's run this code using the swift run command, and you will see the2.
database file called main.sqlite created inside of your FluentDemo folder. This
is the database file where the item's tables, along with its data, is stored.
We can check that it saved the data in the database by opening the sqlite file in3.
the Terminal using the sqlite3 command as such sqlite3 main.sqlite:

$ sqlite3 main.sqlite
SQLite version 3.19.3 2017-06-27 16:48:08Enter ".help" for usage
hints.
sqlite> .tables
fluent items
sqlite> select * from items;
1|Apple|0

The previous command lets us explore data stored in the main.sqlite database file. We
first run the .tables command to list all of the tables and then execute a SQL query to
print all of the rows in the items table. As you can see, the data stored in the database
contains an id in the first column, which is numeric. This id is used to find a specific item
quickly. In the second column, we have the name. The third column contains the boolean
value for isChecked that is represented as 0 for false and 1 for true.

Configuring Providers, Fluent, and Databases Chapter 4

[119]

Updating an item
To perform an update operation, it is as simple as modifying the object and calling the save
method on it again, to update that item in the database with its new values:

item.name = "Orange"
try item.save() // This will update the name to Orange in database

Getting all items
Fluent provides convenient methods on the Item class so that we can perform a query on
the Item collection or table as a whole. To fetch all of the records from the database from a
specific table, all we need to do is invoke all of its class, as seen here:

try print(Item.all())

The preceding code will fetch all of the rows from the item's table, convert the table into an
array of item type objects and print it in the console.

Finding an item
The quickest way to get a specific item from the database is to find it by ID. We can find an
item by passing the ID into the static find method on our item class. Try this out by adding
the following to the end of the main.swift file and running it. This code will print Apple
in the console:

try print(Item.find(item.id)!.name)

Finding items using filter
Fluent makes it easy to find multiple items using the filter method, which is similar to
performing a WHERE clause in SQL. To see how this works, add the following line to the
bottom of the main.swift file and it will print the names of all items that are unchecked:

let uncheckedItems = try Item.makeQuery().filter("isChecked", .equals,
false).all()
uncheckedItems.forEach { print($0.name) }

Configuring Providers, Fluent, and Databases Chapter 4

[120]

You can also chain the filter methods so that you can filter based on two or more columns:

let uncheckedItems = try Item.makeQuery().filter("isChecked", .equals,
false).filter("name", .equals, "Apple").all()
uncheckedItems.forEach { print($0.name) }

Deleting an item
To delete, it is as simple as finding an object and invoking the delete method on it:

let item = Item.find(1)
try item.delete()

Counting items
To get the count of items in the table, just invoke the count method on the Item class, as
follows:

let count = try Item.count()
print(count)

We hope this helps you to understand how powerful Fluent is and how it uses the ORM
technique to map objects into rows in the database to map data from the database into
objects used in our program or app. Using Fluent, we can write at a high level and do not
need to learn SQL or how to construct queries to perform basic Create, Read, Update, and
Delete (CRUD) actions.

Relations in Fluent
Relations are a way to connect two different models. In object-oriented programming,
relations help us architect a software solution by relating it to the real world. Similarly, we
need to create relations in the database to model the way we write code in object-oriented
programming languages. Luckily, most of the databases support relations and are often
referred to as relational databases.

Configuring Providers, Fluent, and Databases Chapter 4

[121]

For example, we already have two models, one called ShoppingList and one called
Item, that have a relation between each other in our iOS app. Each ShoppingList has
many items and each Item belongs to a ShoppingList. These relations are represented in
our code in the form of an array of Item objects, or as a reference variable pointing to the
ShoppingList. In databases, we cannot save data in such a format, as we have different
tables for different models. So, let's see how we can represent this in the database tables and
what types of relations we can create.

There are three kinds of relationships between models; they are as follows:

One to one
One to many
Many to many

Let's look into these relationships in detail.

One to one (parent-child relation)
A one to one relation is when a model relates to one, and only one, other models. An
example of such a relation would be that a Person model has one Government ID, and a
Government ID can belong to one, and only one, Person. In this relation, both models have
only one reference to each other, and no more. In Vapor, this type of relation is known as a
Parent/Child relation. The database table for such a relation would look like this:

Persons:

Column Name Column Type

id Identifier

name String

government_ids:

Column Name Column Type

id Identifier

number Int

person_id Identifier (Foreign Key)

Configuring Providers, Fluent, and Databases Chapter 4

[122]

The following is how we would express this relation in our two model classes:

extension GovernmentId {
 let personId: Identifier
 var person: Parent<GovernmentId, Person> {
 return parent(id: personId)
 }
}

extension Person {
 var governmentId: GovernmentId? {
 return (children() as Children<Person, GovernmentId>).first()
 }
}

Here, we are using the Parent and Children classes that are defined in the Fluent module.
These classes are wrappers to help Vapor query the database correctly and get related
model from the database correctly. There are also two helper methods, provided by the
Entity class and called parent and children, that perform those database queries to fetch the
related model.

One to many
A one to many relation is a type of relation where one model object has many objects of
another model type. This is easy to relate to, as our Shopping List app has this kind of
relation. In the app, we have one shopping list, which has many items; but an item belongs
in only one Shopping List. The table would look similar to a one to one relation, and, for our
Shopping List example, it would contain the following two tables:

shopping_lists:

Column Name Column Type

id Identifier

name String

Configuring Providers, Fluent, and Databases Chapter 4

[123]

items:

Column Name Column Type

id Identifier

name String

is_checked Boolean

shopping_list_id Identifier (Foreign Key)

This kind of relation can be represented in the code as follows:

extension Item {
 let shoppingListId: Identifier
 var shoppingList: Parent<Item, ShoppingList> {
 return parent(id: shoppingListId)
 }
}

extension ShoppingList {
 var items: Children<ShoppingList, Item> {
 return children()
 }
}

This type of relation is known as a Parent/Children relation in Vapor, and, looking at the
code, we can see why. Just like a Parent/Child relation, the item has one parent; but unlike
the previous example, a shopping list has many children, which are items of the Item type,
and we get them by simply calling the children method on the ShoppingList entity.

Another example of this relation is an employee/manager relationship, where an employee
has only one manager, but a manager has many employees to manage.

Many to many
Many to many is the last type of relation that can exist, where one model object can relate to
many other objects of another model type and vice versa. An example of this would be an
employee working on many projects and a project having many employees. This kind of
relation is known as the Sibling relation in Vapor.

Configuring Providers, Fluent, and Databases Chapter 4

[124]

A pivot table is needed; this is a table that stores the mapping of one model to many models
of other types, and vice versa. The database tables for this relation would look like this:

employees:

Column Name Column Type

id Identifier

name String

projects:

Column Name Column Type

id Identifier

name String

employee_project:

Column Name Column Type

employee_id Identifier (Foreign Key)

project_id Identifier (Foreign Key)

This relation is represented in code as follows:

extension Employee {
 var projects: Siblings<Employee, Project, Pivot<Employee, Project>> {
 return siblings()
 }
}
extension Project {
 var employees: Siblings<Project, Employee, Pivot<Project, Employee>> {
 return siblings()
 }
}

Here, we use the siblings method provided by Fluent as part of Entity. This method looks
at the pivot table, which is the employee_projects table, finds all of the models that map
to the projects for employees and employees for projects, constructs model objects, and
returns those.

Configuring Providers, Fluent, and Databases Chapter 4

[125]

This was a basic dive into the types of relations that we can have in Vapor using Fluent, and
how easy it makes it to create relationships between models, allowing us to fetch data from
the database. We will learn more about relations in the next chapter, as we make a concrete
implementation of the one to many relation for our Shopping List and Item model.

Connecting with MongoDB
Connecting with MongoDB is as simple as adding a MongoDB database provider to our
Vapor application and telling Fluent to use mongodb as the database driver. A database
driver allows an application to connect to the database and act as an adapter, which lets
Fluent use a standard API to connect with different types of databases. The Fluent module
also includes a memory and SQLite database driver and the API template defaults to using
the in-memory database driver. We need to update this to start using the mongodb driver,
so that we can connect with the mongodb server running locally on our machine.

The following is a table listing some of the popular databases that are supported, along with
the config value for the driver to be used by Fluent:

Type Fluent Config Value Package Class

Memory memory FluentProvider Fluent.MemoryDriver

SQlite sqlite FluentProvider Fluent.SQLiteDriver

MySQL mysql MySQLProvider MySQLDriver.Driver

PostgreSQL postgresql PostgreSQLProvider PostgreSQLDriver.Driver

MongoDB mongo MongoProvider MongoDriver

Configuring Fluent config
The Fluent config file is where we need to specify which driver to use, in order for our
Vapor application to start communicating with it. The config file is located in the Config
folder, named fluent.json. The config file has comments for configuration, which can be
modified. Let's look at some of them:

driver: By default, this is set to memory, but we will need to modify this to
mongo so that it can use the mongo driver to communicate without MongoDB
database.

Configuring Providers, Fluent, and Databases Chapter 4

[126]

keyNamingConvention: This config is used to translate properties that are in
camel case (that is, isChecked) into snake case (that is, is_checked), with the
use of an underscore as the separator for words.
migrationEntityName: This is the name of the table that will hold the list
of preparations that have been performed. As we noted in the FluentDemo
exercise, we had to pass a class that implements the Preparation protocol so
that it can prepare the database and also provides a method for reverting, in case
it needs to be removed. By default, the table that stores the list of preparations
performed is called fluent, which you can see by opening the main.sqlite file
in the FluentDemo and selecting the values in the fluent table by entering
the SELECT * FROM fluent; query.
log: This is set to false, but if you are curious as to what query is run, set it to true
to see the SQL that is run for each of the API calls we make.

There are other configs, as well, but these should help you figure out how Fluent does all of
its magic and how we can configure it inside of the fluent.json config file.

Mongo config - mongo.json
Just like in the HealthcheckProvider, there is a convention to have a unique config file
for each of the Providers. As such, we need to add a new mongo.json file inside of the
Config folder of our project, which will contain the url of the mongodb instance we want
to connect to. In our case, the JSON file will look like this:

{
 "url": "mongodb://<db-user>:<db-password>@<host>:<port>/<database>"
}

We will get rid of <db-user> and <db-password>, since we do not have those set for our
local instance, to quickly get started; however, for production databases, you will have
credentials to access the database for security. For host, we will replace it with localhost,
since we have mongodb running locally; for port, we will use 27017, which is the default
port mongodb uses if it is not modified in the /usr/local/etc/mongod.conf file. Finally,
for database, we will use shopping-list as the name for our database, which it will
create if it does not exist on the first run. So, our final mongo.json config would look like
this:

{
 "url": "mongodb://localhost:27017/shopping-list"
}

Configuring Providers, Fluent, and Databases Chapter 4

[127]

Adding MongoProvider
Now, we need to add MongoProvider to our project by adding it to the package's
dependencies and we also need to specify the module as a dependency in the Target
section of App:

// swift-tools-version:4.0
import PackageDescription
let package = Package(
 name: "ShoppingListServer",
 products: [
 .library(name: "App", targets: ["App"]),
 .executable(name: "Run", targets: ["Run"])
],
 dependencies: [
 .package(url: "https://github.com/vapor/vapor.git",
 .upToNextMajor(from: "2.4.4")),
 .package(url: "https://github.com/vapor/fluent-provider.git",
 .upToNextMajor(from: "1.2.0")),
 .package(url: "https://github.com/ankurp/healthcheck-provider.git",
.upToNextMajor(from: "1.0.0")),
 .package(url:
"https://github.com/vapor-community/mongo-provider.git",
 .upToNextMajor(from: "2.0.0")),
],
 targets: [
 .target(name: "App", dependencies: ["Vapor", "FluentProvider",
 "HealthcheckProvider", "MongoProvider"],
 exclude: [
 "Config",
 "Public",
 "Resources",
]),
 .target(name: "Run", dependencies: ["App"]),
 .testTarget(name: "AppTests", dependencies: ["App", "Testing"])
]
)

Configuring Providers, Fluent, and Databases Chapter 4

[128]

Now, let's run vapor xcode -y in the Terminal inside of our project which will regenerate
the Xcode project, and download the MongoProvider dependencies. Once that is done and
Xcode launches again, we will add MongoProvider to our config object, just like we did
for HealthcheckProvider earlier:

First, open the Config+Setup.swift file in Xcode and add import1.
MongoProvider to the top of the file to import the module.
Next, add the following line to the setupProvider method to add2.
MongoProvider to the list of our Providers in our Config object:

try addProvider(MongoProvider.Provider.self)

To start using mongodb we need to do one more thing and that is to specify it in3.
the fluent.json config file. Open this file and change driver to mongo as such:

"driver": "mongo",

Now, build and run, and make sure mongodb is running in the Terminal in4.
another window. You should have this running, but if it is closed or shut down,
then you can start it up using the following command in a new Terminal
window:

$ mongod --config /usr/local/etc/mongod.conf

Now, run the application, and if everything is configured correctly, the application will start
up, and you should see the following printed in the console inside of Xcode:

The current hash key "0000000000000000" is not secure.
Update hash.key in Config/crypto.json before using in production.
Use `openssl rand -base64 <length>` to generate a random string.
The current cipher key "AAA=" is
not secure.
Update cipher.key in Config/crypto.json before using in production.
Use `openssl rand -base64 32` to generate a random string.
Query logging is unsupported
Database prepared
No command supplied, defaulting to serve...
Starting server on 0.0.0.0:8080

Configuring Providers, Fluent, and Databases Chapter 4

[129]

Once we have the server started up, we can confirm that the database is created. Since we
are using Vapor's API template project, which comes with sample code for a model called
Post, we can confirm that it created the database in mongodb, ran the database
preparations, and noted the preparations that are performed in the fluent table. To verify in
mongodb, first open a new Terminal window and type mongo. This will connect to the
mongodb server instance running locally on your machine by default. If the host and port
are different, you can specify them as options to the mongodb command:

$ mongo
MongoDB shell version v3.4.10
connecting to: mongodb://127.0.0.1:27017
MongoDB server version: 3.4.10
Server has startup warnings:
2017-11-19T13:06:21.875-0500 I CONTROL [initandlisten]
2017-11-19T13:06:21.875-0500 I CONTROL [initandlisten] ** WARNING: Access
control is not enabled for the database.
2017-11-19T13:06:21.875-0500 I CONTROL [initandlisten] ** Read and write
access to data and configuration is unrestricted.
2017-11-19T13:06:21.875-0500 I CONTROL [initandlisten]
2017-11-19T13:06:21.875-0500 I CONTROL [initandlisten]
2017-11-19T13:06:21.875-0500 I CONTROL [initandlisten] ** WARNING: soft

Configuring Providers, Fluent, and Databases Chapter 4

[130]

rlimits too low. Number of files is 256, should be at least 1000

Once you see the prompt, type in show dbs, and it will print all of the databases that exist
in your local mongodb. We should expect to see shopping-list as one of the databases in
our local mongodb:

> show dbs
shopping-list 0.000GB

To query our shopping-list database, we need to switch to it, and we can do so using the
use command in the mongodb prompt:

> use shopping-list
switched to db shopping-list

To view all of the tables in mongodb, which are known as collections, we need to enter the
following command:

> show collections
fluent

Now, let's confirm that Fluent has run the database preparation for the Post model by
querying mongodb using the following command:

> db.fluent.find()
{ "_id" : ObjectId("5a11df6e46268e1b69ecbc89"), "name" : "Post",
"updated_at" : ISODate("2017-11-19T19:45:50.399Z"), "batch" :
NumberLong(1), "created_at" : ISODate("2017-11-19T19:45:50.399Z") }

To confirm that our Vapor application is truly serving data from our mongodb databases,
let's create one entry in our posts collection inside of mongodb. Then, we can confirm that
we get back this post in our JSON response from our Vapor application by going to
http://localhost:8080/posts. To create a new post, enter the following in the
mongodb prompt:

> db.posts.insertOne({
... content: "First Post"
... })
{
 "acknowledged" : true,
 "insertedId" : ObjectId("5a11e3310b800caf2edc91db")
}

Configuring Providers, Fluent, and Databases Chapter 4

[131]

Once inserted, you will get back an acknowledgment that is was successful with an ID for
the post that was inserted into the database. You can use this ID to find the same post in the
database again. We will now confirm that our Vapor application gives us back the Post that
we just inserted by going to http://localhost:8080/posts, which is a route that
returns all posts that are saved in the post-collection:

To see how this /posts route works, and how it is able to give us back the data fetched
from the Mongo database, let's open up the sample controller file that came with this
project, called PostController.swift. We will cover controllers and routes in more
detail in the next chapter, but when you make a request to /posts, the route invokes code
in the index method of this file, which contains the following code:

func index(_ req: Request) throws -> ResponseRepresentable {
 return try Post.all().makeJSON()
}

In this method, we do not make use of the request object that is passed in, since we want to
return all of the posts found in the database. We also cover the posts to JSON objects using
the makeJSON method, which is defined in the Post model class. This is how the controller
returns us all of the posts by invoking the Fluent provided all() method on our Post
model and converting it to JSON, before sending it back to the browser for us to see.

Configuring Providers, Fluent, and Databases Chapter 4

[132]

Summary
Well done! If you have made it this far. By now, you should have a good understanding of
how to persist data in Vapor applications. You should now know what Providers are and
how they work because you just made one. Also, you should know how to use a provider
and be familiar with the steps we need to take when adding any kind of Provider. You
should also know how Fluent works and how Vapor uses Fluent's awesome APIs to make it
easy to write code to create, read, update, and delete (CRUD) items from the database. You
should have an understanding of databases and MongoDB and how to get started with it,
and also how to log in to the database to query and modify data directly in the database.

In the next chapter, we will go over controllers in more detail. Towards the end of this
chapter, we did touch upon PostController to look at how the /posts route is able to
give us back data for all of the posts that are saved in the database. In the next chapter, we
will learn about a RESTful resource pattern that, used with controllers, makes it easy to
implement routes that follow an architectural pattern that is often used on the web,
especially for building APIs.

5
Building a REST API using

Vapor
In the previous chapter, we covered several topics related to Vapor applications, such as
how to extend the functionality of a Vapor application using Providers, and we dove into
the Fluent provider as it is the most-used Provider in any Vapor application. It is also
Vapor's and Swift's ORM to create, read, update, and delete data in the database using a
high-level API. In this chapter, we will cover another important topic in building web
applications that are related to routing, especially when building an API server.

Giving structure to our routes makes our applications easier to manage and easier for others
to consume. There are several popular patterns in the industry when it comes to creating
routes for your application, especially when building API routes to perform actions, such as
create, read, update, and delete, on a specific type of item. If we look at our Shopping List
iOS application, we have a Shopping List and an Item Model. We can perform CRUD
actions on those two Models. Such Models are classified as resources and we can follow a
REST architectural pattern that has a specified pattern for generating routes for resources
and HTTP methods that can be invoked on those routes. In this chapter, we will get hands-
on experience with creating RESTful routes for two of our Models and will cover the
following topics along the way:

What is routing? How does it work? How can we set up different kinds of routes?
What are controllers and how do they work in Vapor?
What is REST? What are resources?

Building a REST API using Vapor Chapter 5

[134]

Routing in Vapor
Routing is a very important feature of any web application. It is the interface through which
you can access the application and perform certain actions on it. HTTP is the protocol used
in routing. We went through the basics of HTTP in Chapter 1, Getting Started with Server
Swift, and as you might be aware, HTTP protocol requires a method, a path, a set of
headers, and an optional body to make a request to the server. The server then responds
back with a message that contains a status code, a set of Response headers, and a message
body.

HTTP methods
For most of the web, there are five commonly used HTTP methods, which are as follows:

GET

POST

PATCH

PUT

DELETE

OPTIONS

There are also other methods that are less used and can be passed in the request to a web
application. If it is able to handle it, the routing rules will determine who should be
handling the request.

Vapor's droplets give us easy-to-use APIs to construct routes for these commonly used
HTTP methods. All we need to do is call the droplet instance with its appropriate HTTP
method. When a request comes to Vapor on the matching path with the same HTTP
method, the handler Response for it will be called with the request object. Here you can see
how easy it is to set up a route to under /app to accept different HTTP methods, such as
GET, POST, PATCH, PUT, and DELETE:

drop.get("app") { req in
 return "GET /app"
}

drop.post("app") { req in
 return "POST /app"
}

drop.patch("app") { req in

Building a REST API using Vapor Chapter 5

[135]

 return "PATCH /app"
}

drop.put("app") { req in
 return "PUT /app"
}

drop.delete("app") { req in
 return "DELETE /app"
}

If you want to add a custom HTTP method route to your application, you can do so using
the add method on a droplet:

drop.add(.other(method: "CONNECT"), "app") { (_ req: Request) throws ->
ResponseRepresentable in
 return "CONNECT /app"
}

Routers
Routing can be simple or complex. When you are dealing with large web applications, you
need a structure and a certain set of rules that help organize all of these rules for routing,
otherwise, it becomes a nightmare to figure out who is handling which request. This is
where routers come into the picture.

Routers are used in web applications as a way to encapsulate the rules for handling an
incoming request from the user. There can be one or multiple handlers for the entire
application, or you can even make the handlers modular with the use of controllers, which
we will cover in the next section. To understand this concept of routing, let's get started by
creating some routing rules and see how it all works. To start with, we will create a new
Swift package and create a small Vapor application where we will experiment with
different routing rules:

Create a new folder called Router and open the folder in the Terminal1.
Create a Swift executable package using the following command:2.

$ swift package init --type executable

Building a REST API using Vapor Chapter 5

[136]

Add Vapor as the dependency in Package.swift in both the dependencies and3.
target sections:

import PackageDescription

let package = Package(
 name: "Router",
 dependencies: [
 .package(url: "https://github.com/vapor/vapor.git",
.upToNextMajor(from: "2.4.4")),
],
 targets: [
 .target(
 name: "Router",
 dependencies: ["Vapor"]),
]
)

Let's edit our main.swift inside of Sources/Router by replacing it with the4.
following code:

import Vapor

let drop = try Droplet()

drop.get("hello") { (_ req: Request) throws ->
ResponseRepresentable in return "Hello, world."
}

try drop.run()

Run the Vapor application by running swift run in the Terminal and go to5.
http://localhost:8080/hello

It's not that exciting as we have done this before. One difference in this example is that we
have explicitly typed out the parameters and return type for the closure. There are three
ways you can return a Response to a request:

Returning a Response object
Returning an object that conforms to the ResponseRepresentable
Throwing an error

Building a REST API using Vapor Chapter 5

[137]

In our example, we are returning a Hello, World string literal. Since it is not a Response
object and it does not throw any errors, that means it must implement the
ResponseRepresentable protocol in the form of an extension to the built-in Swift String
type. The following is the definition of this protocol:

public protocol ResponseRepresentable {
 func makeResponse() throws -> Response
}

As you can see and might have seen in previous exercises or sample code, we have defined
the makeResponse method in the Model classes. This is the method that lets Vapor convert
objects of any type into a Response object that can be used by Vapor to send back to the user
as an HTTP Response. If we look at the extension defined on the built-in String class in
Swift, we can see how the Response object, is generated as part of its makeResponse
method:

extension Swift.String: ResponseRepresentable {
 public func makeResponse() -> Response {
 return Response(
 status: .ok,
 headers: ["Content-Type": "text/plain; charset=utf-8"],
 body: self.makeBytes()
)
 }
}

Vapor has extended the String and Foundation data classes as a convention so that we can
return objects of both of those types and Vapor will convert them to Response objects that
are sent back to the user. As a result, there is a convention to make your Models implement
the ResponseRepresentable protocol so that you can return a Model directly in the
request handler and leave the logic to convert it to a Response object for the Model so that it
can be reused in other handlers. We can update our hello route example and change it to
return a Response object instead and it would behave the same although this seems a bit
more verbose and unnecessary:

drop.get("hello") { (_ req: Request) throws -> ResponseRepresentable in
 return Response(
 status: .ok,
 headers: ["Content-Type": "text/plain; charset=utf-8"],
 body: "Hello, world.".makeBytes()
)
}

Building a REST API using Vapor Chapter 5

[138]

Nested routing
You can create a route with nested paths, such as /welcome/hello, by simply adding a
route with the following nested path:

drop.get("welcome/hello/world") { req in
 return "GET request for /welcome/hello/world"
}

Additionally, you can split up the paths and pass them as additional parameters to the
method, as follows:

drop.get("welcome", "hello", "world") { req in
 return "GET request for /welcome/hello/world"
}

This has the benefit of extracting values from the path into parameters that get passed into
the req object.

Dynamic routing
So far, we looked at routes that were static and did not change, but modern applications can
have dynamic or user-generated content and need to handle URL paths that change. We can
handle those using parameters that we can specify in our routes. Let's see how we can
create these routes. To do so, we need to follow these steps:

In our main.swift file, add the following new handler, which will get called1.
with a request object that will contain a parameter:

drop.get("hello", String.parameter) { (_ req: Request) throws ->
ResponseRepresentable in
 let name = try req.parameters.next(String.self)
 return "Hello \(name)"
}

Build and run the application again using the swift run command and go to2.
http://localhost:8080/hello/John

Here you can see we can pass an additional path after /hello/ and it is passed as a
dynamic parameter in our request object. We get the parameter and convert it to a String
type object using the following line:

let name = try req.parameters.next(String.self)

Building a REST API using Vapor Chapter 5

[139]

This is one of the ways we can dynamically pass an ID or some argument via our request so
that we can generate a different Response for different requests. There is another way we
can specify the parameter and the route and expect it to be passed into our request object.
We can do so by adding another method to our example as follows:

In our main.swift file, add a route with a new path by adding the following1.
code:

drop.get("item",":id") { (_ req: Request) throws ->
ResponseRepresentable in
 let id = req.parameters["id"]?.int
 return "Requesting Item with id \(id!)"
}

Build and run using swift run and go to http://localhost:8080/item/1002.

Here you can see we get back a text Response saying Requesting Item with id 100. In our
GET route, we specified :id as the second argument, which tells Vapor to do its magic to
extract the text followed by the /item path and save it under the id subscript inside of
the req.parameters object. We get the parameter value by subscripting the parameters
object with the id key:

req.parameters["id"]

Parameters are returned as Node objects, which is another Vapor package to handle the
ability to convert a value to different types. Using computed property, a feature available in
Swift, the Node class object converts the wrapped value into the Int type and returns it. It
also supports converting to other types, such as String or Boolean. In our case, to convert to
int, we just needed to call .int on the returned optional Node object:

req.parameters["id"]?.int

As we learned before, there are three ways you can return out of a request handler; the third
way is by throwing an error. Vapor catches any thrown errors and shows a 400 Bad
Request, 404 Not Found or 500 Server Error page based on what type of error is raised. For
example, the following route will throw a 400 Bad Request error when the name parameter
cannot be converted to an Int type. This helps get rid of the forceful unwrapping of the
optional and also guarantees the ID is of the Int type by the time we use it:

drop.get("item", ":id") { (_ req: Request) throws -> ResponseRepresentable
in
 guard let id = req.parameters["id"]?.int else {
 throw Abort.badRequest
 }

Building a REST API using Vapor Chapter 5

[140]

 return "Requesting Item with id \(id)"
}

Wildcard routing
Let's say you want to catch all paths that end under hello. This is easy to do with the
wildcard character in your path. For example, the following route will get called any time
someone requests it:

/welcome

/welcome/to/vapor/

/welcome/to/vapor/and/swift

drop.get("welcome", "*") { req in
 return "Welcome"
}

Routing parameters
Vapor has made it easy to pass a custom parameter type in the route and it will convert the
text path name into the parameter we are requesting, as long as the class of the type we are
requesting has implemented the Parameterizable protocol. The protocol consists of one
property and one method:

public protocol Parameterizable {
 static var uniqueSlug: String { get }
 static func make(for parameter: String) throws -> Self
}

Let's say we want to get an Item object from the database using an id that is passed as a
parameter in the URL. We can get a specific item two ways. One is by extracting the id
from the parameter and converting it to the Identifier type, and then finding the Item in
the database where the identifier matches and returning it as the Response. Another is by
having our Model implement the Parameterizable protocol in the make method, return
an Item object by finding the Item in the database where the Identifier matches with
the ID passed in the make method as a parameter. The code for our Item Model will look
like this:

class Item: Parameterizable {
 static var uniqueSlug = "item"
 static func make(for parameter: String) throws -> Item {

Building a REST API using Vapor Chapter 5

[141]

 let id = Identifier(parameter)
 if let item = try Item.find(id) {
 return item
 } else {
 throw Abort.notFound
 }
 }
}

drop.get("items", Item.parameter) { req in
 let item = try req.parameters.next(Item.self)
 return item
}

In the preceding code, we extended our Item class to implement the
Parameterizable protocol and added the make method, which returns the item and lets
us extract the Item from the request object if the item ID is passed in the URL
as /items/123, using just this line:

let item = try req.parameters.next(Item.self)

This makes our controller's handler as small as possible and also moves the the
responsibility of converting an item ID into an Item object to the Item class. This makes the
code more reusable and also makes our route handler slim, making it easier to figure out
the intent of each route.

Vapor Models
Before we move on to the topic of controllers, we will go back to our ShoppingList Vapor
application and create two Vapor Models that will be saved in the database using Fluent.
These two Models are the ShoppingList Model and the Item Model. Vapor's Model is an
extension on top of Fluent's Entity protocol that conveniently implements certain methods
in the protocol so we do not have to write the implementation of these methods for every
Model we write. Let's see how we can create these two Models using Vapor's Model
protocol.

Building a REST API using Vapor Chapter 5

[142]

The Shopping List Model
To create a Shopping List Model, all we need to do is inherit our class from the Model
protocol, add a few methods that will be used to create an instance of that type using data
from the database, and save the state of an instance into the database. Let's perform the
following steps to create our first Shopping List Model in Vapor:

Delete the Post.swift Model file included as part of our template project inside1.
the Models folder. Also delete the PostController.swift inside
the Controllers folder.
Next open the Routes.swift file and remove all of the code inside of2.
the setupRoutes() method as we will not be using the PostController in our
app and any sample routes that are defined. Also open
the Config+Setup.swift file and remove the following line as we will no
longer be saving Post model in our database.

preparations.append(Post.self)

In that same Models folder, create a new empty file and call it3.
ShoppingList.swift. Check App inside of targets.
In that, we will first import the modules that we need:4.

import Vapor
import FluentProvider
import HTTP

Let's define our class and make it inherit from Model, which is provided to us by5.
the Vapor module. Model is a protocol extension that extends the Entity
protocol that we used in the chapter 4, Configuring Providers, Fluent, and
Databases, from the FluentProvider module. Model adds additional
functionality to Entity by implementing the Parameterizable protocol so that we
do not need to write the code again:

final class ShoppingList: Model {

Building a REST API using Vapor Chapter 5

[143]

Let's declare the instance variables for our ShoppingList class. Our Shopping6.
List will have a name and some items. We also need to add storage, which is used
to store additional attributes, such as id, that we may not have in our
ShoppingList class. Since a ShoppingList has a one-to-many relationship with
the Item Model, we will return an object of the Children type, which will invoke
the query to fetch items from the items table in the database:

let storage = Storage()
var name: String
var items: Children<ShoppingList, Item> {
 return children()
}

Specify the name of the column or property in the database row or document for7.
each of those instance variables. In our case, we need to specify the keys for ID
and name since those are the two columns or properties that will be stored in the
database for every Shopping List object we create. Since Shopping List has many
items, we will store them in a separate table using a separate Item Model:

struct Keys {
 static let id = "id"
 static let name = "name"
}

Define the initializers for our Model instance. These initializers will help us create8.
a new ShoppingList object given a name or a ShoppingList object from row
information passed to us from the database:

init(name: String) {
 self.name = name
}

init(row: Row) throws {
 name = try row.get(ShoppingList.Keys.name)
}

Building a REST API using Vapor Chapter 5

[144]

Add a method to do the opposite, which is to convert a ShoppingList object9.
into a database row by implementing a makeRow method and then close the class
block by adding a closing curly brace } at the end of the file:

func makeRow() throws -> Row {
 var row = Row()
 try row.set(ShoppingList.Keys.name, name)
 return row
}

Preparation protocol
Now we have a Shopping List Model that can create, read, update, and delete the Shopping
List from the database. But there are a few things missing. Our Model does not know which
table or collection to save or read from, and we have not specified the rules on how to create
the table or collection for the first time. We need to do so by implementing the preparations
protocol, which consists of two methods. One is called prepare, which runs once and is a
good place for us to create our table or collection and specify the columns and any
restriction on those columns. The other method is called revert, which is used to revert the
changes done in prepare, which will be to delete the database table. To add preparation, we
need to follow these steps:

Inside of the ShoppingList.swift file inside of the Models folder, add an1.
extension on the ShoppingList class to implement the Preparation protocol:

extension ShoppingList: Preparation {

Add the prepare method inside this extension. In here, we create a table or2.
collection by passing self inside of database.create. This will create a table
based on the class name. So in the case of ShoppingList, it will create a table or
collection called shopping_list since it uses lowercase characters for the name
and also uses snake case, where it appends an underscore (_) before any capital
letter but not before the first letter in the class name. Also inside of this, we
specify the builder to create an id column and a name column that is of the String
type:

static func prepare(_ database: Database) throws {
 try database.create(self) { builder in
 builder.id()
 builder.string(ShoppingList.Keys.name)
 }
}

Building a REST API using Vapor Chapter 5

[145]

Add the revert method, which will revert the creation of the table or collection.3.
Also add a closing curly brace } at the end of the file to close the extension block:

static func revert(_ database: Database) throws {
 try database.delete(self)
}

JSONConvertible protocol
Now we have the ShoppingList Model ready, but we still need to extend it to support
converting it to a JSON object and converting a JSON object into a ShoppingList Model,
which is similar to converting it to a row for the database. This will help us return the
instance of this class as a JSON representation, which is the universal format and is similar
to XML in exchanging data across applications. We will also be using this JSON Response in
our iOS app. To convert ShoppingList to JSON and vice versa, we need to extend the class
with two methods. One will be an initializer that will take in a JSON object and create a new
ShoppingList instance, and another will be a makeJSON method that will convert the
ShoppingList to a JSON object. To get started, we will need to follow these steps:

In the ShoppingList.swift file, add the following extension to implement the1.
JSONConvertible protocol:

extension ShoppingList: JSONConvertible {

Add a convenience initializer that will call the ShoppingList initializer with2.
the name argument after extracting the name from the JSON object:

convenience init(json: JSON) throws {
 self.init(name: try json.get(ShoppingList.Keys.name))
}

Add a makeJSON method that will return a JSON object that contains properties3.
of our ShoppingList Model. Also add a closing curly brace } at the end of the
file to close the extension block:

func makeJSON() throws -> JSON {
 var json = JSON()
 try json.set(ShoppingList.Keys.id, id)
 try json.set(ShoppingList.Keys.name, name)
 try json.set("items", items.all())
 return json
}

Building a REST API using Vapor Chapter 5

[146]

That is it, with just these two methods, our ShoppingList can convert JSON into a
ShoppingList and convert a ShoppingList object into the JSON format.

ResponseRepresentable protocol
The final thing we need to do is make our Model ResourceRepresentable. As mentioned
earlier in this chapter, the route handler needs to return a ResourceRepresentable object
in order for Vapor to generate a Response object that gets sent back to the client who made
the request. Luckily, the Vapor module has made it very easy for us to add this method
simply by adding an extension on our Model, as follows:

extension ShoppingList: ResponseRepresentable { }

This line of code extends our ShoppingList Model to inherit all methods implemented by
ResponseRepresentable. By default, the protocol requires the implementation of
the makeResponse method that Vapor implements for us in the Model.swift class of the
Vapor package. In that file, the ResponseRepresentable protocol has a concrete
implementation of makeResponse for any class that implements JSONRepresentable, and
since we have made our Model able to implement JSONConvertible, it gets this
makeResponse method for free. This is what the extension on ResponseRepresentable
protocol looks like, as implemented by Vapor:

extension ResponseRepresentable where Self: JSONRepresentable {
 public func makeResponse() throws -> Response {
 return try makeJSON().makeResponse()
 }
}

Updateable protocol
There is one more protocol that comes in handy when we want to update a Model in the
database table, and that is the Updateable protocol. This protocol simply needs the Model
class to define a static computed property that should return an array of UpdateableKeys.
UpdateableKey is nothing but a wrapper class that needs the name of the property that
can be updated and the type.

Building a REST API using Vapor Chapter 5

[147]

It will extract that value from the request object and pass it into the callback, where you can
use it to update the property of your existing object. Implementing this is very easy and
requires extending your Model class and adding the following computed property:

extension ShoppingList: Updateable {
 public static var updateableKeys: [UpdateableKey<ShoppingList>] {
 return [
 UpdateableKey(ShoppingList.Keys.name, String.self) { shoppingList,
name in
 shoppingList.name = name
 }
]
 }
}

In the preceding example, you can see we are returning an array of UpdateableKey objects.
One of the keys we update is the name property in the Shopping List object. We pass the
name of the name property along with the type for the name, which is String. It then calls
the closure function with the Shopping List object that needs to be updated and the new
property value, which we simply assign to the Shopping List object. This will come in
handy when we want to update our Shopping List object given a Request object in the route
handler, as we will learn later on in this chapter.

Item Model
Great, now we have a working ShoppingList Model, but it won't compile yet since it
depends on the Item Model as our ShoppingList has many items. To fix this, we need to
create an Item Model similar to the ShoppingList Model. To do so, we need to follow
these steps:

Just like ShoppingList.swift, create a new file called Item.swift inside of1.
the Models folder and make sure App target is checked otherwise you might get
a compile error.
Copy the following code for the Item.swift class:2.

import Vapor
import FluentProvider
import HTTP

final class Item: Model {
 let storage = Storage()
 var name: String
 var isChecked: Bool = false

Building a REST API using Vapor Chapter 5

[148]

 var shoppingListId: Identifier
 var list: Parent<Item, ShoppingList> {
 return parent(id: shoppingListId)
 }
 struct Keys {
 static let id = "id"
 static let name = "name"
 static let isChecked = "is_checked"
 static let shoppingListId = "shopping_list__id"
 }

 init(name: String, isChecked: Bool, shoppingListId: Identifier) {
 self.name = name
 self.isChecked = isChecked
 self.shoppingListId = shoppingListId
 }

 init(row: Row) throws {
 name = try row.get(Item.Keys.name)
 isChecked = try row.get(Item.Keys.isChecked)
 shoppingListId = try row.get(Item.Keys.shoppingListId)
 }

 func makeRow() throws -> Row {
 var row = Row()
 try row.set(Item.Keys.name, name)
 try row.set(Item.Keys.isChecked, isChecked)
 try row.set(Item.Keys.shoppingListId, shoppingListId)
 return row
 }
}

extension Item: Preparation {
 static func prepare(_ database: Database) throws {
 try database.create(self) { builder in
 builder.id()
 builder.string(Item.Keys.name)
 builder.bool(Item.Keys.isChecked)
 builder.parent(ShoppingList.self)
 }
 }

 static func revert(_ database: Database) throws {
 try database.delete(self)
 }
}

extension Item: JSONConvertible {

Building a REST API using Vapor Chapter 5

[149]

 convenience init(json: JSON) throws {
 self.init(
 name: try json.get(Item.Keys.name),
 isChecked: try json.get(Item.Keys.isChecked),
 shoppingListId: try json.get(Item.Keys.shoppingListId)
)
 }
 func makeJSON() throws -> JSON {
 var json = JSON()
 try json.set(Item.Keys.id, id)
 try json.set(Item.Keys.name, name)
 try json.set(Item.Keys.isChecked, isChecked)
 try json.set(Item.Keys.shoppingListId, shoppingListId)
 return json
 }
}

extension Item: Updateable {
 public static var updateableKeys: [UpdateableKey<Item>] {
 return [
 UpdateableKey(Item.Keys.name, String.self) { item, name in
 item.name = name
 },
 UpdateableKey(Item.Keys.isChecked, Bool.self) { item,
isChecked in
 item.isChecked = isChecked
 },
 UpdateableKey(Item.Keys.shoppingListId, Identifier.self) {
item, shoppingListId in
 item.shoppingListId = shoppingListId
 }
]
 }
}

extension Item: ResponseRepresentable { }

Now if you try to build the project in Xcode, it will compile without any errors or warnings.
We have our Models set up to work with Vapor, so all we need to do now is set up our
controllers so that they can handle requests to create, read, update, and delete Shopping
Lists and Items.

Building a REST API using Vapor Chapter 5

[150]

Controllers in Vapor
Controllers in Vapor, like in iOS applications, control the flow of the applications from a
user request to the Response. Web applications typically follow a Model View Controller
pattern where the request from the user goes to the router, and the router determines which
controller and the function inside that controller to trigger to generate a Response. This is
similar to user inputs, such as touch events in iOS apps, which trigger the ViewController
to perform actions such as transitioning to another view controller or rendering a new view
in the same View Controller.

At the beginning of this chapter, we explored different kinds of routes and how they are
handled by a closure function. Now we will learn how to pass a controller class to the route
so that the controller can handle one or multiple routes.

RESTful Controller
In most cases, we will be creating controllers that will be responsible for handling requests
to create, read, update, or delete a resource. These kind of CRUD operations performed on a
resource make the controller resourceful. Vapor has made it easy to create such controllers
by simply inheriting from their resources controller class, making it easy and
straightforward to implement. Let's implement these RESTful controllers for our
ShoppingList and Item Model so we can create, read, update, and delete them in the
database using the API request. To get started, we need to follow these steps:

Create a new file in the Controllers folder. Add a new empty file1.
called ItemController.swift and make sure App target is checked.
Import the modules we need:2.

import Vapor
import HTTP

Define the ItemController class that implements the3.
ResourceRepresentable protocol. This protocol requires the controller to
implement the makeResource method, which returns a resource object that
contains the mapping of the controller methods to the RESTful actions:

final class ItemController: ResourceRepresentable {

Building a REST API using Vapor Chapter 5

[151]

Add the index method, which in REST returns all of the items from our4.
database. Using the Fluent Model, the implementation is very simple. This
method is called when a GET request is made to /items:

func index(_ req: Request) throws -> ResponseRepresentable {
 return try Item.all().makeJSON()
}

Implement the create action, which is called store. This methods is called when5.
a POST request is made to the /items route. The POST request body also contains
a JSON representation of item. item is extracted from the request by
implementing an extension method on the Request class called item(), which
we will implement later in this file:

func store(_ req: Request) throws -> ResponseRepresentable {
 let item = try req.item()
 try item.save()
 return item
}

Implement the read action, which is called show. This method is called when a6.
GET request is made to the items routes along with the ID as such /items/123:

func show(_ req: Request, item: Item) throws ->
ResponseRepresentable {
 return item
}

Implement the delete method, which will delete a specific item when a DELETE7.
HTTP request is made to the items routes along with the item ID. For example, a
DELETE request to /items/123, where 123 is the ID of the item in the items
table in the database:

func delete(_ req: Request, item: Item) throws ->
ResponseRepresentable {
 try item.delete()
 return Response(status: .ok)
}

Building a REST API using Vapor Chapter 5

[152]

Implement the clear method, which clears all of the entries in the database8.
tables by deleting all of them. This method is invoked when you make a DELETE
HTTP request to the /items route without any ID, which tells our controller that
we want to delete all the items in the database:

func clear(_ req: Request) throws -> ResponseRepresentable {
 try Item.makeQuery().delete()
 return Response(status: .ok)
}

Implement two update methods. The first one will partially update the Model9.
with values passed in the request. If an attribute is not passed in the request, then
it will skip over it and keep the existing value. This request is called a PATCH
request, it is made to the specific item routes that also contains the ID:

func update(_ req: Request, item: Item) throws ->
ResponseRepresentable {
 try item.update(for: req)
 try item.save()
 return item
}

The other update method we need to implement will try to update all of the10.
attributes of the object even if the attributes are not passed and will replace
attributes that are not passed with null or nil values:

func replace(_ req: Request, item: Item) throws ->
ResponseRepresentable {
 let new = try req.item()
 item.name = new.name
 item.isChecked = new.isChecked
 try item.save()
 return item
}

Implement the makeResource method, which will make our controller11.
resourceful as it implements the ResourceRepresentable protocol. The
Resource object returned from makeResource will be used to route requests to
the appropriate method in our controller so that the CRUD operation can be
performed on our Item Model. Also add a closing curly brace } at the end of the
file to close the class block:

func makeResource() -> Resource<Item> {
 return Resource(
 index: index,

Building a REST API using Vapor Chapter 5

[153]

 store: store,
 show: show,
 update: update,
 replace: replace,
 destroy: delete,
 clear: clear
)
}

The project should not compile just yet. We need to implement the item() method in the
Request class so that we can call req.item() and generate an Item object from a user's
request:

extension Request {
 func item() throws -> Item {
 guard let json = json else { throw Abort.badRequest }
 return try Item(json: json)
 }
}

Our controller is set up correctly now, but we will not be able to route requests to this
controller until we specify it in our Routes.swift file. In this file, we need to add the
following line inside the setupRoutes() method towards the end of the method:

resource("items", ItemController())

This tells the Vapor application to route all requests beginning with /items to
ItemController. The following is the table summarizing the HTTP request and the
controller method it triggers for our ItemController:

HTTP Method Route Controller method

GET /items ItemController.index

POST /items ItemController.store

GET /items/:id ItemController.show

DELETE /items/:id ItemController.delete

DELETE /items ItemController.clear

PATCH /items/:id ItemController.update

PUT /items/:id ItemController.replace

Building a REST API using Vapor Chapter 5

[154]

Shopping List controller
We now have a working API route for the Items Model. To complete our API server, we
need to create a controller for ShoppingList, which will be resourceful, just like
ItemController. To create a controller for ShoppingList, we need to perform the
following steps:

Create a new Swift file in the Controllers folder and name it1.
ShoppingListController.swift

Add the following code to the empty file:2.

import Vapor
import HTTP

final class ShoppingListController: ResourceRepresentable {
 func index(_ req: Request) throws -> ResponseRepresentable {
 return try ShoppingList.all().makeJSON()
 }
 func store(_ req: Request) throws -> ResponseRepresentable {
 let shoppingList = try req.shoppingList()
 try shoppingList.save()
 return shoppingList
 }
 func show(_ req: Request, shoppingList: ShoppingList) throws ->
ResponseRepresentable {
 return shoppingList
 }
 func delete(_ req: Request, shoppingList: ShoppingList) throws ->
ResponseRepresentable {
 try shoppingList.delete()
 return Response(status: .ok)
 }
 func clear(_ req: Request) throws -> ResponseRepresentable {
 try ShoppingList.makeQuery().delete()
 return Response(status: .ok)
 }
 func update(_ req: Request, shoppingList: ShoppingList) throws ->
ResponseRepresentable {
 try shoppingList.update(for: req)
 try shoppingList.save()
 return shoppingList
 }
 func replace(_ req: Request, shoppingList: ShoppingList) throws
-> ResponseRepresentable {
 let new = try req.shoppingList()
 shoppingList.name = new.name

Building a REST API using Vapor Chapter 5

[155]

 try shoppingList.save()
 return shoppingList
 }
 func makeResource() -> Resource<ShoppingList> {
 return Resource(
 index: index,
 store: store,
 show: show,
 update: update,
 replace: replace,
 destroy: delete,
 clear: clear
)
 }
}

extension Request {
 func shoppingList() throws -> ShoppingList {
 guard let json = json else { throw Abort.badRequest }
 return try ShoppingList(json: json)
 }
}

Add the Shopping Lists route by adding the following line in the Routes.swift3.
inside of the setupRoutes() method towards the end:

resource("shopping_lists", ShoppingListController())

Update the setupPreparations() method inside of4.
the Config+Setup.swift file to the following:

private func setupPreparations() throws {
 preparations.append(ShoppingList.self)
 preparations.append(Item.self)
}

Good job! If you have made it this far, you now have a working API server that can create,
read, update, and delete items and Shopping Lists objects from the database. Let's start up
the server and test out our API.

Building a REST API using Vapor Chapter 5

[156]

REST API in action
Let's try out our API by making a simple HTTP request. We will start with creating API
requests and then confirm that the resources are created correctly by fetching the newly
created resource. We will also test, update, delete, and clear the database to make sure it
works as expected. Let's see it in action.

Creating the Shopping List
Creating a ShoppingList using the API is simple: make a POST HTTP request with the
JSON representation of our Shopping List object so that it can create a new instance of it and
save it in the database. The following is a screenshot of the POST HTTP request made to my
local API server using an app called Postman:

Building a REST API using Vapor Chapter 5

[157]

You should see the server respond back with a JSON object that contains the ID of the
newly created Shopping List. We specified the name of the Shopping List in our POST
request and we can see it created it correctly by looking at the name passed in the Response.
Also, since this is a new Shopping List, it does not have items so the items array is empty.

Getting the Shopping List
We can get the Shopping List that we just created by making a GET request to the items with
the ID of the item, and we should get back the JSON representation of the Shopping List.
The following is a screenshot of the GET request; you can see the same JSON object being
returned as part of the Response:

Building a REST API using Vapor Chapter 5

[158]

We can also make a GET request to /shopping_list to get all of the Shopping Lists.
Instead of getting one object in the Response, we will get back an array of objects:

Building a REST API using Vapor Chapter 5

[159]

Updating the Shopping List
To update the Shopping List, we need to make a PATCH request to the /shopping_lists
endpoint followed by the ID of the Shopping List in the URL. It will return the updated
Shopping List object represented in JSON format:

Building a REST API using Vapor Chapter 5

[160]

Deleting the Shopping List
To delete the Shopping List, we need to make the DELETE request to the /shopping_lists
endpoint followed by the ID of the shopping list in the URL that we want to delete. It will
just respond with an OK status without any Response if the Shopping List is deleted
correctly:

Creating items
We can create an item by making a POST request to /items, but before we do so, make sure
to create a Shopping List as we just deleted it using the DELETE request. Once you have the
Shopping List created, make sure to copy the ID as we will need it to make an item object.
When making an item, we need to specify the name, whether it is checked or not, and the
Shopping List ID it belongs to. The following is a sample request to create an item and the
Response we get back on successful creation:

Building a REST API using Vapor Chapter 5

[161]

Great! We just created an item and associated it with a Shopping List. One thing to note is
that even though we did not pass the is_checked property in the POST request, it
defaulted the isChecked property to false, as configured in our Item class.

Building a REST API using Vapor Chapter 5

[162]

Now if we make a GET request to the shopping_list endpoint with the shopping list ID
passed in the URL, you will see the details of the shopping list, such as its name and all its
items. You will also see the item we just created in the shopping_list show Response as
well:

Exercise
Try deleting the item you just created using the API endpoint. Verify it is deleted by going
to the show action of that item and also the show action of the shopping list to confirm that
the item has been deleted correctly.

Also, create a new item in a shopping list and update the is_checked status of that item to
true (if it is false already), using the PATCH HTTP request. Confirm it is updated by
invoking the show action on the Shopping List and confirm that the is_checked status of
that item is marked as true.

Building a REST API using Vapor Chapter 5

[163]

Summary
In this chapter, we learned about several topics ranging from routing to Vapor Models to
RESTful controllers. By now you should have a good understanding of how to create routes
in Vapor applications and how to handle the requests to those routes. You should also be
comfortable with the three different ways you can respond to a request, which are by
returning a Response object, an object that implements ResponseRepresentable protocol,
and by throwing different kinds of errors. You should also be comfortable creating Vapor
Models, which are like Fluent Entity but with extra functionality. You should also
understand REST in more detail and know the basic commands in REST. Finally, you
should be able to create a controller that is RESTful and responds to the REST actions.

In the next chapter, we will go back to the iOS app and learn how to consume the API we
just created. We can fetch and save data over the network rather than just persisting the
Shopping List data natively on the iOS app. We will also learn how easy it is to convert the
JSON data into objects in iOS.

6
Consuming API in App

In the previous chapter, we learned how to route requests, how to use controllers, and how
to make RESTful routes for our models that will persist data into the MongoDB database. In
this chapter, we will consume the API routes we just created in our Shopping List iOS app.
Most modern iOS applications need to communicate with a server to fetch data to show on
the app. They also update data on the server so that you can start where you left off in case
the app is closed or you try to view the app on a different device or platform, such as the
web. To make such seamless integration work, we need to ask the server for the data and
have all of the data persisted remotely.

In this chapter, we will switch back to working on our iOS app written in Swift. We will
focus on how we can refactor our project so that we can run both the Vapor server and the
iOS in one Xcode Workspace. Then, we will integrate the API into our app by refactoring
the existing iOS app so that it can fetch data from our API rather than reading and saving to
disk using UserDefaults. We will also use other RESTful endpoints provided by our
Vapor API server to create a Shopping List, delete a Shopping List, create an item in
the Shopping List, and delete an item. We will also update a Shopping List item by
checking it and unchecking it, and all of this will be saved remotely in the database thanks
to our Vapor server. By the end of this chapter, you will have a better understanding of the
following topics:

Viewing and starting both server and iOS apps using a single Xcode Workspace
window to edit and debug code
Making network requests from the iOS app
Converting JSON data into models and converting models into JSON data to
send to the API server
Adding and deleting Shopping Lists and items as well as checking and
unchecking items in the server

Consuming API in App Chapter 6

[165]

Xcode Workspace
One of the benefits of using Swift as a language to build both server-side components and
frontend native apps is the ability to use one integrated development environment (IDE) to
work on both server and frontend apps. Xcode, which is a powerful IDE for iOS
development, can also be used for building server-side applications using Swift and the
Swift Package manager. In Chapter 4, Configuring Providers, Fluent, and Databases, we
started working on our Vapor application, and we used Xcode to run and debug our
application instead of a plain text editor. We can use the same Xcode IDE to combine both
the iOS project and the Vapor project into one Workspace so that we can run both the iOS
app and the Vapor app using the same Xcode window, instead of having to toggle between
two separate Xcode windows.

We can do this using a feature in Xcode called Workspace. Workspace allows you to
combine multiple Xcode projects together into one Xcode window. The benefit of using
Xcode's Workspace is the ability to edit code for both our iOS and server app without
having to switch between windows. We can also build, run, and debug both of our iOS and
server apps, which are run on different platforms, using this same Xcode Workspace,
making development easy and fun. Let's see how we can combine the two projects into a
single Workspace. To do so, we need to follow these steps:

Create a new folder called ShoppingList where we will store both of our iOS1.
and Vapor projects.
Open the Xcode app and create a new Workspace by going to File | New |2.
Workspace...:

Consuming API in App Chapter 6

[166]

In the new Workspace prompt, go to the ShoppingList folder we just created,3.
give your Workspace a name, such as ShoppingList, and click Save:

Consuming API in App Chapter 6

[167]

In the ShoppingList folder where you have the Workspace file, create two new4.
folders, one called App and the other called Server, as follows:

Consuming API in App Chapter 6

[168]

Copy or move the files for your ShoppingList iOS project into the App folder5.
and the Vapor application into the Server folder. After all of the files have been
copied, the folder for App should look like the following image:

Consuming API in App Chapter 6

[169]

The Server folder should look like the following: 6.

Make sure to close all Xcode windows and projects. Open the Xcode Workspace7.
file called ShoppingList.xcworkspace. Drag the
ShoppingListServer.xcodeproj file from the Server folder into the
Workspace, as follows:

Consuming API in App Chapter 6

[170]

Once the ShoppingListServer project is added, we can now add the iOS8.
project by going into the App folder and dragging the
ShoppingList.xcodeproj folder as shown in the following figure. Make sure
to have it at the top level and not have it nested inside the ShoppingListServer
project:

We are almost done. We have both the projects in our Workspace. To make it9.
easier to find the Run configuration for just the iOS app and the Vapor app, we
need to get rid of some of the schemes by clicking on the Active schema and
selecting Manage Schemes...:

Consuming API in App Chapter 6

[171]

In the Manage Schemes... window, uncheck all schemes except for Run and10.
ShoppingList as the Run scheme will build and run the Vapor app and the
ShoppingList will run the iOS app:

Consuming API in App Chapter 6

[172]

Great! Now you should have both apps in a single Xcode Workspace so that we can edit
and run both the server and client apps via one window while having the ability to put
breakpoints on both the Vapor and iOS apps from the Xcode editor:

Making network requests
To get our app to communicate with the internet, we need to make a few changes. By
default, in the newer version of the iOS, HTTP network requests that are not secure as
HTTPs are blocked unless we explicitly tell them to allow it. Since we will be making
network requests to our Vapor app, which is running locally as HTTP and not HTTPs, we
need to set this in the Info.plist file of the iOS project. We will also add one more
configuration to store the base URL of our Vapor server in this Info.plist, so we can
reference it from one place.

Consuming API in App Chapter 6

[173]

Network configuration
To add the previously mentioned two configurations, we need to follow these steps:

Open the Info.plist file and click on the small + icon that appears when you1.
hover over the Information Property List toward the top of this file:

This will create a new entry in this property list file.2.
Type NSAppTransportSecurity and press Enter. This will change the text to
App Transport Security Settings:

Hover over the App Transport Security Settings and click on the + icon again3.
and select Allow Arbitrary Loads:

Consuming API in App Chapter 6

[174]

Then change the Boolean Value to YES. We are done with our first network
configuration:

Add the base URL to our Info.plist. To do so, we need to click on the + icon4.
again next to the Information Property List and enter BaseURL:

In the String Value field enter http://localhost:8080, which is the base URL5.
where we will have our Vapor server running on the default 8080 port:

We now have our app configured to communicate with the network. Next, we will look into
how we can create a small helper file to make these network requests.

Request helper
Making a network request is easy to do in Swift using the Foundation framework by Apple.
But having to type it out every time we need to make a network request can be verbose and
tedious. So, for that purpose, it is best to create a helper function that we can call to make
the network request. We will create a small helper function in our iOS project that will take
a URL path and make a request to the host specified in the base URL of our Info.plist
configuration file.

Consuming API in App Chapter 6

[175]

In this helper function, we can also pass the HTTP method we want to make and it will
default to a GET request if it is not passed. We can also pass data to our helper method,
which will be sent in the HTTP body of the request for the POST and PATCH requests.
Finally, this helper function will take a closure function that will invoke the callback in the
main thread so that we can take the response from the server and update the UI as
appropriate. To add this helper method, we need to follow these steps:

Create a new Group inside the ShoppingList folder in our iOS project and call it1.
Helpers:

Create a new Swift file inside the Helpers folder and call it Request.swift2.
Copy the following code into the Request.swift:3.

import Foundation

let baseUrl = Bundle.main.infoDictionary!["BaseURL"]!

func request(url: String, httpMethod: String = "GET", httpBody:
Data? = .none, completionHandler: @escaping (Data?, URLResponse?,
Error?) throws -> Void) {
 var request = URLRequest(url: URL(string: "\(baseUrl)\(url)")!)
 request.httpMethod = httpMethod
 if let data = httpBody {
 request.httpBody = data
 request.allHTTPHeaderFields = [
 "content-type": "application/json"
]
 }
 URLSession.shared.dataTask(with: request, completionHandler: {
data, response, error in
 DispatchQueue.main.async {
 do {
 try completionHandler(data, response, error)
 } catch {}
 }
 }).resume()
}

Consuming API in App Chapter 6

[176]

Build the iOS app project and it should compile without any errors. If you look in this file,
we get the base URL from our Info.plist using the following line and set it globally since
it won't be changing throughout the running state of the application:

let baseUrl = Bundle.main.infoDictionary!["BaseURL"]!

The helper function body is simple as well. It will add data into the httpBody of the request
if it is passed in the function and will also set the header to specify the content type to be
JSON format since we will be using JSON format for sending data over to our Vapor server.

One other thing to note is that UI updates can only happen on the main thread in iOS.
When we make a network request, it creates a new thread and the completion handler is
called on that thread when the network request is completed. So as a convenience, we
invoke the callback function passed in the handler inside the main thread as we will make
UI updates once the request to our Vapor API server is completed.

Fetching data from the server
Now that we have set our helper file to make network requests and configurations, we can
begin making the requests to our API server. We will make a network request to our API
server hitting the /shopping_lists route, which will return all of the Shopping Lists
along with all of its items represented in JSON format. Swift 4 makes converting JSON into
models a lot easier, thanks to the codable protocol that our models inherit from. Using a
JSONDecoder, we will convert the JSON returned by our API into our models and render
those on the iOS table view instead of the Shopping List that we persisted to disk using
UserDefaults in Chapter 2, Creating the Native App.

To get started with loading data from our API server, we need to make changes to our
ShoppingList model to implement a load method to make the network request to our API
server. We also need to modify the Item model slightly and get rid of the old code to load
and save data to disk using UserDefaults. Finally, we need to update our
ShoppingListTableViewController so that it calls the updated methods on
ShoppingList to load data from our Vapor server. To get started, we need to follow these
steps:

Open the Item.swift file inside the iOS project and add an additional attribute1.
on top called id so that it can store the id of the item that is stored in the
database. Make it an optional String type for now:

var id: String?

Consuming API in App Chapter 6

[177]

Specify the CodingKeys in the class so that the JSONDecoder, which we will use2.
later, is able to map the value from the JSON to our model's instance variables
correctly. We also need to type out which field value in the JSON gets mapped to
the isChecked variable of our model since it is using snake case instead of camel
case:

private enum CodingKeys: String, CodingKey {
 case id
 case name
 case isChecked = "is_checked"
}

Remove the Array extension that contains the save and static load function as3.
we will no longer be using that to load and save our data. Instead, we will be
saving the data to the database by making network calls via our Vapor API
server.

Now that we have updated our Item model, let's update our ShoppingList model. To do
so, we need to make the following changes:

Open the ShoppingList.swift file inside our iOS project and add an id1.
instance variable of an optional String type. This will be used to store the id of
our ShoppingList model that is fetched from the server:

var id: String?

Get rid of the didSet on our items instance variable as we will not be saving2.
them to disk:

var items: [Item]

Remove the onUpdate instance variable as we will not be triggering the3.
onUpdate now. Also, remove the convenience init method that took an
onUpdate parameter as we will no longer be using that.
Add a static load method that will make the network request to load the4.
ShoppingList. This will make the GET request to /shopping_lists and invoke
a callback function that is passed as a parameter to the load function. This
callback will be passed an array of the ShoppingList models that we have
converted from JSON format to the ShoppingList type:

static func load(onCompletion: @escaping ([ShoppingList]) -> Void)
{
 request(url: "/shopping_lists") { data, response, error in
 let shoppingLists = try

Consuming API in App Chapter 6

[178]

JSONDecoder().decode([ShoppingList].self, from: data!)
 onCompletion(shoppingLists)
 }
}

In this file, we will add case id to the enum CodingKeys so that it can map the5.
id field in the JSON to the id instance variable of our ShoppingList model.

Great! Now we have both models updated. The last thing to do is update our
ShoppingListController so that it can use these new methods to load Shopping Lists
from our server. To do so, we need to make the following changes:

Open the ShoppingListTableViewController.swift file and modify the1.
instance variable lists to be an empty array for now. We will load this
asynchronously in the background as we do not want to block the app from
loading because the network request can take some time or may fail:

var lists: [ShoppingList] = []

In our viewDidLoad, we need to add a refresh control so that we can refresh our2.
data. The convention in iOS is to have a pulldown to update the UI control,
which is very easy to add using a few lines of code. Add the following lines
inside the viewDidLoad method towards the end:

refreshControl = UIRefreshControl()
refreshControl?.addTarget(self, action: #selector(loadData), for:
.valueChanged)
loadData()

We need to define one new method, called loadData, which will get called when3.
our table view loads and when the user pulls down to refresh data from the
server again. In this snippet of code, we add a special @objc keyword before the
function so that it is accessible to the selector passed to the refreshControl:

@objc func loadData() {
 ShoppingList.load() { lists in
 self.lists = lists
 self.tableView.reloadData()
 self.refreshControl?.endRefreshing()
 }
}

Consuming API in App Chapter 6

[179]

The last line we need to update is the line where we create a new ShoppingList4.
inside of didSelectAdd. We need to update the initializer by not passing the
onUpdate parameter as we have removed that initializer and variable from our
ShoppingList class.

Great! We are done now with our changes. We can now start both our Vapor application
and our iOS app, and have our iOS load the Shopping List with all of the items from the
database. To see all of this work together, follow these steps:

Build and run the Run Scheme on the My Mac platform. This should build and1.
run without any errors. Make sure you have the MongoDB database running in
the background. If MongoDB is not running, you will get an error. To start
MongoDB, you can run the following command on your macOS:

~ $ mongod --config /usr/local/etc/mongod.conf

Consuming API in App Chapter 6

[180]

Once the Vapor application is started, switch the Scheme to ShoppingList and2.
select any iOS simulator you like, then build and run. The build should succeed
and you should see the simulator run the app with the ShoppingList being
fetched from the API server:

Awesome! Great job if you got this far. We just ran both our Vapor server and iOS app
inside the same Xcode window. Not only that, we can see that, app load and fetch the data
from our API server. We can verify this by looking at the logs from our Vapor server inside
of Xcode and looking for GET /shopping_lists.

Consuming API in App Chapter 6

[181]

Debugging the app and server side by side
One of the benefits of using Xcode and Swift for both frontend and backend development is
the ability to develop and debug both iOS and Vapor apps at the same time. To see this in
action we need to do the following:

Open ShoppingListController.swift in the server project and put a1.
breakpoint by clicking on the line number that is inside the index method, as
follows:

Consuming API in App Chapter 6

[182]

Go to the ShoppingList.swift model in our iOS project and click on the line2.
inside the completion handler of the request so we can inspect the response we
get back from the server, as follows:

Consuming API in App Chapter 6

[183]

Trigger a request to fetch the data again from the app by pulling down on the3.
table view:

Consuming API in App Chapter 6

[184]

Once you have triggered a refresh by pulling down on the table view, you would have seen
the Xcode pause execution at the line where we put the breakpoint in the index method of
the Shopping List controller. Here we can inspect the req and print objects in the console, if
needed, to help us debug an issue and figure out whether the issue is originating from the
server side or on the client side:

Consuming API in App Chapter 6

[185]

Now we can let the code resume by pressing the Continue program execution or, if we
wanted step over or step into a function. Once we let the code continue, we will pause the
code execution again in the same Xcode window but on the iOS side of the
ShoppingList.swift file. Here Xcode will pause the code just like we did for the server,
but on iOS, and we can inspect variables, step over, and let the code execution continue:

Adding a Shopping List
To add a Shopping List to our app is as simple making a POST request to
the /shopping_lists endpoint with the JSON representation of our Shopping List Model
that we want to create. We need to make this request to our Vapor API server and wait for a
success response that contains the newly created shopping list object in JSON format. We
will then convert it to a ShoppingList model and call the onCompletion handler function
that is passed so that the ShoppingListTableViewController can add this new
shopping list in its array of lists and tell the Table View to reload with this new Shopping
List that is saved on the server.

Consuming API in App Chapter 6

[186]

To implement the add functionality that persists the new Shopping List in the database via
our API, we need to follow these steps:

Open the ShoppingList.swift file in the iOS project and add a new computed1.
property called data. This property will return an optional data type and it will
return data in JSON format. We will use JSONSerializer to convert a
dictionary representation of our Shopping List object to a data type that is sent
over in the HTTP body request:

var data: Data? {
 get {
 let parameters = ["name": name] as [String : Any]
 do {
 return try JSONSerialization.data(withJSONObject: parameters,
options: [])
 } catch {
 return .none
 }
 }
}

Create a save method that will make the network request using the request2.
helper function. In this request function, we will specify the HTTP method to be
POST and also pass data to be sent in httpBody by passing the computed
property we just created. In this function, we will take an onCompletion
function that will be called when the request is completed and the list object is
created from the JSON payload:

func save(onCompletion: @escaping (ShoppingList) -> Void) {
 request(url: "/shopping_lists", httpMethod: "POST", httpBody:
data) { data, _, _ in
 let decoder = JSONDecoder()
 let list = try decoder.decode(ShoppingList.self, from: data!)
 onCompletion(list)
 }
}

Consuming API in App Chapter 6

[187]

Go to our ShoppingListTableViewController.swift file and update one3.
line inside the didSelectAdd method. We need to update the line where we
create a new Shopping List object after getting input from the user. We will
instead call the save method, which takes a closure function. This closure
function is called after the network request successfully saves the Shopping List
to the database via the API endpoint. We will update the Table View only when
this success closure function is called. The entire didSelectAdd function needs
to look like this:

@IBAction func didSelectAdd(_ sender: UIBarButtonItem) {
 requestInput(title: "Shopping list name",
 message: "Enter name for the new shopping list:",
 handler: { listName in
 let listCount = self.lists.count
 ShoppingList(name: listName).save() { list in
 self.lists.append(list)
 self.tableView.insertRows(at: [IndexPath(row: listCount,
section: 0)], with: .top)
 }
 })
}

Build and run just the iOS app scheme on the iPhone simulator. Before adding a new
Shopping List, add a breakpoint inside the store method of the
ShoppingListController.swift file on the line where we return the shoppingList
object so that we can inspect the newly created Shopping List model on the server side
before it is sent to our iOS app. After adding the breakpoint, add a new Shopping List by
tapping on the plus icon in the top-right corner, give it a new name, and tap Add:

Consuming API in App Chapter 6

[188]

You should see Xcode pause at our breakpoint inside the store method. Here you can
confirm that we created a new Shopping List object with the same name that you entered in
the app, which confirms that the save happened successfully and our app is sending the
correct data in the POST request to generate this Shopping List object on the server side.

Consuming API in App Chapter 6

[189]

You can now let this run by pressing the Continue button and you should see it show up in
the iOS app as well:

Deleting a Shopping List
To delete a Shopping List is similar to adding. We need to define a new delete method on
the Shopping List class. In that method, make a DELETE request to the
/shopping_lists/:id endpoint where :id is the ID of our Shopping List model. We
already have to delete implemented in our Table View Controller but we need to invoke
this new delete method from our Table View Controller, and, on a successful DELETE
request to our API server, we need to update the Table View by reloading it. To add the
delete functionality, we need to follow these steps:

Open the ShoppingList.swift file from our iOS project and add the following1.
delete method to the class. In this method, we make the request by specifying
the DELETE HTTP method and also pass the id of the Shopping List we want to
delete in the URL. On completion, we call the onCompletion closure function
passed as part of the delete method invocation:

func delete(onCompletion: @escaping () -> Void) {
 request(url: "/shopping_lists/\(id!)", httpMethod: "DELETE") {
data, _, _ in
 onCompletion()
 }
}

Consuming API in App Chapter 6

[190]

Go to the ShoppingListTableViewController.swift file. Inside of2.
the tableView(_:commit:forRowAt:) method, we will update the method
body to the following lines of code. Instead of removing right away, we will
make the network request. On success, we will remove it and update the
tableView:

override func tableView(_ tableView: UITableView, commit
editingStyle: UITableViewCellEditingStyle, forRowAt indexPath:
IndexPath) {
 if editingStyle == .delete {
 let list = lists[indexPath.row]
 list.delete() {
 self.lists.remove(at: indexPath.row)
 tableView.deleteRows(at: [indexPath], with: .fade)
 }
 }
}

Now build and run the iOS app. Now if you swipe to delete a Shopping List or tap on Edit
and Delete a Shopping List, it will make a network request to our API and delete it from the
database:

Consuming API in App Chapter 6

[191]

To confirm this, you can pull down on the table view to refresh the data from the
server. You will also see the DELETE request recorded in the console of the Vapor app in
Xcode:

Exercise
Great! So by now, you should know how to make network requests to fetch a Shopping List
with its items, create a new Shopping List, and delete a Shopping List. Now it's time for a
short exercise to implement the ability to add or delete an item in a Shopping List.
Currently, we can add and delete items from the Shopping List via our app, but it does not
make any network requests. Implement the add and delete functionality, similar to the
Shopping List, so that it persists the changes in the database via our API server.

Adding a Shopping List Item
If you have successfully implemented the create and delete functionality for an item in the
Shopping List, then good job! If not, we will walk through how you can do so. It is very
similar to how we implemented it on the Shopping List. To implement the functionality for
adding items to a Shopping List, we need to follow these steps:

Open the Item.swift file inside the iOS project and add a new instance variable1.
to store the shoppingListId. This variable will be passed to the API server
along with the name and the isChecked state of the item when creating it so that
it can associate this item with the shopping list it is being added to:

var shoppingListId: String?

Consuming API in App Chapter 6

[192]

Add the data commuted property, similar to the one we added in2.
the ShoppingList class, which will convert our object into JSON data that will
be passed to our API server. In this case, we will use JSONEncoder instead of
JSONSerializer. The reason why we did not convert ShoppingList to JSON
data using this method was that it would encode the items inside the Shopping
List. Also, items are specified as a property that needs to be encoded and decoded
as part of the CodingKeys:

private let encoder = JSONEncoder()
var data: Data? {
 get {
 return try! encoder.encode(self)
 }
}

Add a new coding key for the shoppingListId, as follows:3.

case shoppingListId = "shopping_list__id"

We are done making changes to Item.swift but we are not done yet. We need to update
the ShoppingList class again so that it can make the network request to our API server
upon adding an item. On completion of the network request, reload the table view to show
the newly added item. To do so, we need to make the following changes:

Open the ShoppingList.swift file from the iOS project and update the add1.
method so that it takes a onCompletion handler, which will get called when the
item is created on the server and a confirmation is received and after it is added
to the Shopping List's items array:

func add(_ item: Item, onCompletion: @escaping () -> Void) {

Inside this method, set the passed item's shoppingListId attribute to the id2.
attribute of the shopping list object:

item.shoppingListId = id

Make the network request and, when it completes, create an item object from the3.
JSON response using the JSONDecoder. Then add this item to the items array
and call the onCompletion callback. The entire add method would look like this
after the change:

func add(_ item: Item, onCompletion: @escaping () -> Void) {
 item.shoppingListId = id
 request(url: "/items/", httpMethod: "POST", httpBody: item.data)

Consuming API in App Chapter 6

[193]

{ data, response, error in
 let decoder = JSONDecoder()
 let item = try decoder.decode(Item.self, from: data!)
 self.items.append(item)
 onCompletion()
 }
}

Now that we have the add method created, the last thing to do is update our
ItemTableViewController so that it can call this updated method and update the Table
View after the item is successfully created on the server. To do so, we need to make a small
change in the ItemTableViewController.swift file and update the didSelectAdd
method. We need to pass a closure function in the self.list.add method and invoke
the tableView.insertRow method. So, the updated method would look like the
following:

@IBAction func didSelectAdd(_ sender: UIBarButtonItem) {
 requestInput(title: "New shopping list item",
 message: "Enter item to add to the shopping list:",
 handler: { itemName in
 let itemCount = self.items.count;
 self.list.add(Item(name: itemName)) {
 self.tableView.insertRows(at: [IndexPath(row: itemCount, section:
0)], with: .top)
 }
 })
}

Now go ahead and build and run the iOS app on the simulator. Add an item by first going
into a Shopping List and tapping on the plus icon on the top-right corner and giving it a
name. You should see the item show up and if you go back and reload the Shopping List
data by pulling down to refresh, you should see the item you just added in the Shopping
List you previously selected. We can also confirm that it successfully made the network
request by checking the logs for our Vapor application and looking for a POST request
being made to /items, as follows:

Starting server on 0.0.0.0:8080
GET /shopping_lists
POST /items/

Consuming API in App Chapter 6

[194]

Deleting an item
Deleting an Item is very similar to deleting a Shopping List where we need to make a
DELETE request to the /items endpoint instead, with the ID of the item passed in the URL.
Just like addition, we need to update the remove method inside the ShoppingList class so
that it can make a network request to delete and invoke an onCompletion handler that we
can use to update the tableView. For this, we need to make two changes. They are as
follows:

Inside of the ShoppingList.swift file of the iOS project, update the method1.
signature of the remove method to take an extra parameter called
the onCompletion closure function. Inside this function, make the network
request to delete the item from the server. On success, remove the item from the
Shopping List's items array and call the onCompletion handler. The updated
remove method looks like the following:

func remove(at index: Int, onCompletion: @escaping () -> Void) {
 let itemId = self.items[index].id!
 request(url: "/items/\(itemId)", httpMethod: "DELETE") { _, _, _
in
 self.items.remove(at: index)
 onCompletion()
 }
}

Inside the ItemTableViewController class, we need to update2.
the tableView(_:commit:forRowAt:) method where we need to pass a
closure function when calling list.remove. Inside of that closure, delete the
row from Table View. The entire function after the update would look like this:

override func tableView(_ tableView: UITableView, commit
editingStyle: UITableViewCellEditingStyle, forRowAt indexPath:
IndexPath) {
 if editingStyle == .delete {
 list.remove(at: indexPath.row) {
 tableView.deleteRows(at: [indexPath], with: .fade)
 }
 }
}

Consuming API in App Chapter 6

[195]

Now build and run. Go to any Shopping List that has any items and delete an item by
swiping to the left. This will make the network request to our API, which we can confirm by
looking at the server logs. We should see the item removed from our table view:

Starting server on 0.0.0.0:8080
GET /shopping_lists
POST /items/
GET /shopping_lists
GET /shopping_lists
DELETE /items/oid:5a3ed6c395d5b82d2c315840

Checking and unchecking an item
To check and uncheck an item is simple. For this, we would need to make a PATCH or
PUT HTTP request. If we were just sending a single attribute to update, we would make a
PATCH request. If we are passing all of the attributes then we would make a PUT request.
The difference is that in the PUT request, any attributes that are not passed are saved as
NULL in the database. In PATCH requests, only the attributes that are passed are updated,
and the ones that are not passed remain unchanged. In our case, since we already have a
computed property called data, which contains all of the attributes of an item object in
JSON format, we can make either a PUT or PATCH request. To make checking and
unchecking work, we would need to first invert the value of isChecked and then make a
PUT request to the server by passing the JSON representation of the item object in the body
of the request. Then we would need to parse the response and convert the JSON back to an
item and pass the item in the completion handler so that it can be updated in the table view
by the Table View Controller. To makes these changes, follow these steps:

Update the toggleCheck method inside the Item class to take an extra1.
parameter called the onCompletion handler:

func toggleCheck(onCompletion: @escaping (Item) -> Void) {

Inside of this method, invert the value of the isChecked attribute for the item:2.

self.isChecked = !self.isChecked

Consuming API in App Chapter 6

[196]

Make the network call to the item-specific endpoint that contains the item ID in3.
the URL. On completion, decode the JSON response into an item object and pass
that in the onCompletion handler that is passed. The updated toggleCheck
method will look like the following:

func toggleCheck(onCompletion: @escaping (Item) -> Void) {
 self.isChecked = !self.isChecked
 request(url: "/items/\(id!)", httpMethod: "PUT", httpBody: data)
{ data, _, _ in
 let decoder = JSONDecoder()
 let item = try decoder.decode(Item.self, from: data!)
 onCompletion(item)
 }
}

Update the toggleCheckItem method inside of the ShoppingList class to the4.
following, where it takes an onCompletion handler and passes that to the item
being toggled:

func toggleCheckItem(atIndex index: Int, onCompletion: @escaping
(Item) -> Void) {
 self.items[index].toggleCheck(onCompletion: onCompletion)
}

Update the tableView(_:didSelectRowAt:) method of5.
the ItemTableViewController class by passing a closure function along with
the list.toggleCheckItem method call. Inside of the closure, update the table
view for the row that the item is on:

override func tableView(_ tableView: UITableView, didSelectRowAt
indexPath: IndexPath) {
 list.toggleCheckItem(atIndex: indexPath.row) { _ in
 tableView.reloadRows(at: [indexPath], with: .middle)
 }
}

Great! Now we are feature complete. Let's build and run. You should now be able to go into
a Shopping List and tap on an item to see the item toggle from the checked to unchecked
state and vice versa. To confirm this is indeed working, we can look at the network request
being made to our server and see the PUT requests being recorded in the console for every
time a selection is made to an item:

Starting server on 0.0.0.0:8080
GET /shopping_lists
POST /items/

Consuming API in App Chapter 6

[197]

GET /shopping_lists
GET /shopping_lists
DELETE /items/oid:5a3ed6c395d5b82d2c315840
GET /shopping_lists
PUT /items/oid:5a31cc4dca04b6c89f3d8086
PUT /items/oid:5a31cc4dca04b6c89f3d8086

Summary
If you have made it this far, then great job! You have not only created an API server using
Swift but also built a network-based iOS application that uses the API you built to load and
save data. There are a few things we can improve in the app, such as having better error
handling, as we have not taken care of a situation where there is no network connection or
there is a bad network taking the network request a long time to return. Nevertheless, you
should have a good understanding of how to make a network request from your iOS
application and make different kinds of HTTP requests, such as GET, POST, PUT, and
DELETE. You should also have a better grasp on how to convert Swift class objects to JSON
data to send to our API server, and convert JSON data from the API response into Swift
class objects to be used in our iOS code. This has become a lot easier, starting with Swift 4,
due to the codable protocol and CodingKeys, which helped map out keys from the JSON
object to attributes in our class. We also covered the best practice of handling network
requests asynchronously by passing a closure function so that it can be called later on when
the network request has returned and make UI changes only in the main thread.

Now that our iOS app is complete, in the next chapter we will make a web version of our
ShoppingList and learn how to use LeafProvider to render HTML templates in the
browser. We will add some Javascript and CSS to spice up the web application and create,
update, and delete Shopping Lists from the browser.

7
Creating Web Views and

Middleware
In the preceding chapter, we jumped back to iOS and refactored our app so that we can use
our Vapor API server to load, create, update, and delete Shopping Lists and items. Now, in
this chapter, we will discuss how to make our Vapor application into a web application that
can also serve HTML pages. As we have seen before in Chapter 3, Getting Started with
Vapor, building web servers using Vapor is easy, and we can dynamically generate HTML
based on the request we receive. We used Vapor only to serve API requests, but, in this
chapter, we will extend our Vapor application so that it can server web content that can be
rendered on the browser. Just like native mobile applications, the web is another platform
where we can use server-side Swift and Vapor to be able to serve our Shopping List
application for users to consume.

In this chapter, we will do just that and create a web interface using HTML, CSS, and
JavaScript. Through this web application, we will be able to add and delete a shopping list
and also be able to add, edit, and delete items within a shopping list. The HTML templates
will all be rendered on server side using Vapor's Leaf view rendering engine. We will add
some CSS to spice up our page and sprinkle in JavaScript so that we can make the network
request to our existing API endpoints to perform the CRUD operations similar to the native
iOS app. By the end of this chapter, we will cover the following topics:

How to add view rendering to a Vapor app
What is Leaf and how to use it to generate HTML
How to create and use middleware in Vapor so that we can generate both HTML
and JSON responses for our routes

Creating Web Views and Middleware Chapter 7

[199]

How to make network requests from the browser
How to perform CRUD operations on our web app so that we have the same
feature parity as our native iOS app

So let's get started.

View rendering in Vapor app
In Chapter 3, Getting Started with Vapor, we created a web application using Vapor that
simply printed Hello World. We also got a little flavor of dynamic HTML generation using
Leaf where we passed a name in the URL route that got rendered in the HTML. In that
example application, we got everything out of box configured and working. In our current
ShoppingListServer Vapor application, we do not have a view renderer and instead
render data in the JSON format only. To add HTML rendering, we will need to add a
template rendering engine. Currently, there is one rendering engine that is officially
supported by Vapor team, and that is Leaf.

What is Leaf?
Leaf is a pure Swift templating engine that lets you generate text output, given a template
file and a bunch of variables. Leaf can be used by other server-side Swift frameworks and is
not specific to HTML rendering. It can be used to generate code or any textual configuration
file. In Vapor, it is used to render HTML, and to use Leaf in a Vapor application, we will
need to use the Leaf Provider, which, as we learned in previous chapters, implements
certain protocols methods needed by Vapor to make a Swift package compatible in order to
be consumed.

To understand how Leaf works, let's make a basic Vapor application that uses Leaf to
render some text dynamically. The following are the steps to get started with a basic Vapor
app with the Leaf rendering engine:

Create a new folder and call it LeafExperiment. Now, open the folder in the1.
Terminal, and create a Swift executable package using the following command:

swift package init --type executable

https://cdp.packtpub.com/full_stack_swift_4/wp-admin/post.php?post=30&action=edit#post_26

Creating Web Views and Middleware Chapter 7

[200]

Now, inside your Package.swift file, add Vapor and Leaf as dependencies and2.
specify them in the target section also:

dependencies: [
 .package(url: "https://github.com/vapor/vapor.git", from:
"2.4.0"),
 .package(url: "https://github.com/vapor/leaf.git", from:
"2.0.2"),
],
targets: [
 .target(
 name: "LeafExperiment",
 dependencies: ["Vapor", "Leaf"]),
]

Now, open up the main.swift file and copy the following code:3.

import Vapor
import Leaf

let stem = Stem(DataFile(workDir: "./"))
let drop = try Droplet()

drop.get("hello", ":name") { req in
 guard let name = req.parameters["name"]?.string else {
 throw Abort.badRequest
 }
 let leaf = try stem.spawnLeaf(at: "hello")
 let context = Context(["name": Node(name)])
 let rendered = try stem.render(leaf, with: context)
 let response = Response(status: .ok, body: rendered)
 response.headers["content-type"] = "text/html"
 return response
}

try drop.run()

Create a new file called hello.leaf and save it at the root level of this Swift4.
package and copy the following contents into the file. This is the file that will be
rendered to HTML by the Leaf engine:

<h1>Hello #(name)!</h1>

Creating Web Views and Middleware Chapter 7

[201]

Now, run the swift run command, which will download the dependencies,5.
build the executable, and run our simple Vapor app and go
to http://localhost:8080/hello/world in the browser:

Awesome! We just rendered HTML dynamically using text passed in the URL. To
understand how this works, let's go over the code line by line:

The first thing we do is import our dependencies, which are Vapor and Leaf:1.

import Vapor
import Leaf

Next, we will need to initialize an instance of Stem, which is Swift's rendering2.
engine. In the initializer, we will pass the project folder so that it can search for
template files from there. In our demo, we set the path to be the root level of the
package. We also create an instance of Droplet to create our Vapor app:

let stem = Stem(DataFile(workDir: "./"))
let drop = try Droplet()

Creating Web Views and Middleware Chapter 7

[202]

Next, we will create a hello route and expect a parameter to be passed after the3.
/hello/ route. We extract the parameter, and, if it is not found and is not of the
string type, we throw a Bad Request error to show the 400 Bad Request page.
This Bad Request page is rendered by Vapor by catching the
thrown Abort.badRequest:

drop.get("hello", ":name") { req in
 guard let name = req.parameters["name"]?.string else {
 throw Abort.badRequest
 }

Next, we will create a Leaf instance from the stem. The spawnLeaf takes the4.
name of the template file, which, in our case, is called hello, and it adds the
.leaf extension to it by default. We also have the hello.leaf file at the root
level of our page, so it will search for the hello.leaf file relative to that folder.
We then create a context object, which contains the variables that will be passed
to the stem.render method along with the Leaf and get back the rendered
template as raw bytes. These variables passed in the context object are the same
variables that we can reference inside our Leaf template as follows #(name):

 let leaf = try stem.spawnLeaf(at: "hello")
 let context = Context(["name": Node(name)])
 let rendered = try stem.render(leaf, with: context)

We finally create a response object and set the content type to HTML before5.
returning it in the closure function:

 let response = Response(status: .ok, body: rendered)
 response.headers["content-type"] = "text/html"
 return response
}

Lastly, we start up the Vapor app by calling drop.run():6.

try drop.run()

Creating Web Views and Middleware Chapter 7

[203]

I hope this simple Swift executable package demonstrates how Leaf works and how Vapor
uses it under the hood to generate HTML from Leaf template files. You might have also
noticed that in our web template example in Chapter 3, Getting Started with Vapor, it was
able to find the hello.leaf file from inside the Resources/Views folder because Vapor
sets the DataFile to that folder when creating a new stem instance:

let stem = Stem(DataFile(workDir: "./Resources/Views"))

Now, let's dive back into our ShoppingListServer application and add Leaf to it, and
take a look at how easy it is to start rendering HTML in our Vapor application.

Adding Leaf Provider
To add Leaf-rendering support to our Vapor application, we will need to use Leaf Provider.
It uses the same Leaf package under the hood, but implements Vapor's Provider protocol so
that it can be used without writing much code and specifying it as our view renderer in the
droplet.json config. To add Leaf Provider to our Vapor app, we will need to perform
the following steps:

Open up our ShoppingListServer Xcode project and add leaf-provider as1.
a dependency inside our Package.swift:

.package(url: "https://github.com/vapor/leaf-provider.git",

.upToNextMajor(from: "1.1.0")),

Next, specify it as a dependency for our App target:2.

.target(name: "App", dependencies: ["Vapor", "FluentProvider",
"HealthcheckProvider", "MongoProvider", "LeafProvider"],

Now, open up the Config+Setup.swift file and import the LeafProvider by3.
specifying it on the top of the file:

import LeafProvider

Now, we will need to add the LeafProvider to our app. We can do this by4.
adding the following line in our setupProviders method in the
Config+Setup.swift file:

try addProvider(LeafProvider.Provider.self)

Creating Web Views and Middleware Chapter 7

[204]

Lastly, open the droplet.json file inside the Config folder, and add the5.
following "view": "leaf" config property toward the end. This will tell the
Vapor app to start using LeafProvider for view rendering:

{
 "server": "engine",
 "client": "engine",
 "console": "terminal",
 "log": "console",
 "hash": "crypto",
 "cipher": "crypto",
 "middleware": ["error", "date", "file"],
 "commands": ["prepare"],
 "view": "leaf"
}

That is it. We have configured and installed all of the dependencies to start using Leaf, but
we are not done yet. To test it out, we will need to create some template files. We will first
start by creating a Resources/Views folder and then create a base.leaf, which contains
HTML. You can create these folders and files directly from Xcode or create them from the
command line and rerun vapor xcode -y so that the Views folder is visible in Xcode
along with the base.leaf file. We will also create two folders in the Public folder called
js and css and store our JavaScript and CSS files there, which are served as static files by
Vapor. To set this all up, we will need to follow these steps:

First, create a Resources folder at the root level of the project. Then, create a1.
Views folder inside it. In there, create an empty file and call it base.leaf, as
follows:

Creating Web Views and Middleware Chapter 7

[205]

Next, open up the base.leaf file and copy the following contents into the file:2.

<!DOCTYPE html>
<html>
<head>
 <title>#import("title")</title>
 <link rel="stylesheet" href="/css/app.css">
</head>
<body>
 <div class="row column container-padded">
 <h1>Shopping List App</h1>
 #import("content")
 </div>
 <script
src="https://code.jquery.com/jquery-3.2.1.min.js"></script>
 <script src="/js/app.js"></script>
</body>
</html>

Next, create two folders inside the Public folder, called js and css. Inside of the3.
Public/js folder, create an empty file called app.js and create an empty file
called app.css inside the Public/css folder, as follows:

Copy the following contents to the app.css file to make our web app look nice:4.

@import
'https://cdnjs.cloudflare.com/ajax/libs/foundation/6.4.3/css/founda
tion.min.css';
body { background: #efefef; }
.row.column.container-padded {
 display: flex;
 flex-wrap: wrap;
 justify-content: center;
}
.row.column.container-padded h1 {
 flex: 1 1 100%;
 text-align: center;
}

Creating Web Views and Middleware Chapter 7

[206]

.add-shopping-list {
 align-self: center;
 flex: 1 1 100%;
 text-align: center;
 margin: 30px;
}
.shopping-list-card {
 flex: 1 0 320px;
 margin: 10px;
 background-color: #fefefe;
 border-radius: 0;
 max-width: 320px;
}
.shopping-list-card .delete-list,
.shopping-list-card .delete-item {
 font-family: sans-serif;
 font-size: 1.4rem;
 padding: 10px;
 color: red;
 cursor: pointer;
}
.shopping-list-card .card-divider {
 border-bottom: 2px solid #cacaca;
 background: inherit;
 display: flex;
 justify-content: space-between;
}
.shopping-list-card .card-divider h3 {
 margin-bottom: 0;
}
.shopping-list-card ul {
 list-style-type: none;
 margin: 0;
}
.shopping-list-card ul li {
 background-color: #efefef;
 margin: 10px 0;
 padding: 10px;
 display: flex;
 align-items: center;
}
.shopping-list-card ul input[type="checkbox"] {
 margin: 0;
}

Creating Web Views and Middleware Chapter 7

[207]

.shopping-list-card ul label {
 position: relative;
 font-size: 1rem;
 flex: 1;
}

Now, open the Routes.swift file and add a get request handler inside the5.
setupRoutes method, which will render the base.leaf template on going to
root page:

get() { req in
 return try self.view.make("base")
}

Now, build and run the server in Xcode and then navigate to6.
http://localhost:8080.

If everything is set up correctly, then you should see Shopping List App in the browser:

Great job! Now, we have our Vapor application serving as an API server and also a web
server.

Creating Web Views and Middleware Chapter 7

[208]

Serving JSON and HTML formats
Currently, if you take a look at the routes of our application, we have a root route that
rendered base.leaf. We also have two resourceful routes, /shopping_lists
and /items, which serve JSON data. It would be great if we could respond with the HTML
response when users request /shopping_lists from the browser and serve JSON
representation of our Shopping Lists when they go to the same /shopping_lists
endpoint, but now the request is made from the iOS app. Luckily, we can do this thanks to a
powerful feature in Swift called Generics. To make this work, we would need to refactor
our resourceful controllers. We also need to use a middleware, which will help us respond
with the HTML and JSON responses based on who is making the request. For example, it
will respond with an HTML response when a request is made from a browser; otherwise, it
will respond with JSON. So, let's begin our refactoring by first creating a middleware.

Creating a middleware
You might be wondering what is a middleware? Middleware is very similar to a route
handler as it gets passed a request and needs to return a response object. You can layer
multiple middleware on a single or multiple routes and these middleware are invoked
before our controller code is executed. So, you can do some preprocessing on the request
before forwarding the same request forward to the controller. The response we get from the
controller can also be modified inside of a middleware function before sending it back to
the user. This is exactly what we want to do, and that is to let our middleware forward the
request to the ShoppingListController and the ItemController so that it can generate
a response first. Then, we take the response and generate HTML using our Leaf view
renderer or simply as JSON, depending on whether the request is coming from the browser
or not. To get started with creating our first Vapor middleware, we will need to follow these
steps:

First, create a new folder called Middlewares inside the App folder. In this1.
folder, create a new file called ResponseFormatterMiddleware.swift.
Inside this file, import FluentProvider, which will import the module so that2.
we can reference Model protocol in this file:

import FluentProvider

Creating Web Views and Middleware Chapter 7

[209]

Next, we will extend the response object so that it contains two computed3.
properties, one called resource and another called resources. Both of these
will store our Model object or array of models so that we can extract it from the
response object and generate a new response. This new response will either be a
HTML view or JSON view, depending on who is making the request:

extension Response {
 var resource: (Model & JSONConvertible)? {
 get {
 return storage["resource"] as? (Model & JSONConvertible)
 }
 set(resource) {
 storage["resource"] = resource
 }
 }
 var resources: [(Model & JSONRepresentable)]? {
 get {
 return storage["resources"] as? [(Model & JSONRepresentable)]
 }
 set(resources) {
 storage["resources"] = resources
 }
 }
}

Next, we define our middleware class, which implements the middleware4.
protocol. We also create a instance variable to store the view renderer, which gets
passed in the initializer of the middleware:

public class ResponseFormatterMiddleware: Middleware {
 let viewRenderer: ViewRenderer
 public init(config: Config) throws {
 self.viewRenderer = try config.resolveView()
 }

We then define the required middleware protocol method called respond, as5.
follows:

public func respond(to request: Request, chainingTo next:
Responder) throws -> Response {
 let response = try next.respond(to: request)
 if let resource = response.resource {
 if request.accept.prefers("html") {
 let resourceName = type(of: resource).name
 return try viewRenderer.make(resourceName, [
 "\(resourceName)": resource.makeJSON()

Creating Web Views and Middleware Chapter 7

[210]

]).makeResponse()
 } else {
 return try resource.makeJSON().makeResponse()
 }
 } else if let resources = response.resources {
 if request.accept.prefers("html") {
 let resourcesName = request.uri.lastPathComponent!
 return try viewRenderer.make(resourcesName, [
 "\(resourcesName)": resources.map({ try $0.makeJSON() })
]).makeResponse()
 } else {
 return try JSON(resources.map({ try $0.makeJSON().wrapped
})).makeResponse()
 }
 }
 return response
}

There is a lot of code here but we are basically calling the next route responder,
which calls the next middleware in the chain. If there is no more middleware, then
it will call the controller method associated with that route. In our case, the next
method will either call the corresponding method inside our ItemController if
the request is made to the /items route or the corresponding method inside of
our ShoppingListController if the request is made to the /shopping_lists
route. Then, it will extract the resource object and check whether the user request
has set the accepts HTML only response header. If it does, then it replies with
HTML response by rendering a Leaf template, otherwise, it will convert the
resources to JSON and return that as a response. It does the same thing for
multiple resources.

To start using this middleware in our Vapor app, we will need to specify it in our6.
Config+Setup.swift file by adding the following line inside of the setup
method:

addConfigurable(middleware: ResponseFormatterMiddleware.init, name:
"response-formatter")

The last thing to do is to tell Vapor to start using it by adding the name of our7.
middleware "response-formatter" to the droplet.json config's middleware
section, as follows:

{
 "server": "engine",
 "client": "engine",
 "console": "terminal",

Creating Web Views and Middleware Chapter 7

[211]

 "log": "console",
 "hash": "crypto",
 "cipher": "crypto",
 "middleware": [
 "error",
 "date",
 "file",
 "response-formatter"
],
 "commands": ["prepare"],
 "view": "leaf"
}

Now, we can build and run our application, and it should function the same. If we navigate
to http://localhost:8080/, it should give us back the same HTML page, but, this time,
it first calls our middleware and then the get handler we added inside
our Routes.swift file. You can confirm this by putting breakpoints in Xcode:

Creating Web Views and Middleware Chapter 7

[212]

The preceding and the following screenshots show how the request first funnels through
the middleware before actually running the home page handler by placing breakpoint
inside the middleware and the home page handler code:

Creating a BaseResourceController
If you look at the code for our ShoppingListController and our ItemController, you
will see a lot of similarities between the two. The only difference is the type of class that is
expected in the request. For example, in the show method of ItemController, it is
expecting Item to be passed as a second argument and in ShoppingListController it is
expecting an object of ShoppingList type. Using generics in Swift, we can create a
BaseResourceController so that we can share the code between the two controllers. The
following are the steps to do this refactoring:

Create an empty new file called BaseResourceController.swift inside1.
the Controllers folder.

Creating Web Views and Middleware Chapter 7

[213]

In there, import FluentProvider, as we will be referencing Model protocol in2.
this file:

import FluentProvider

Next, we will define a new protocol called Replaceable, which, just like3.
Updateable, needs to be implemented in our Vapor model classes. The purpose
of this protocol is to define this method so that it can copy all attributes of the
object passed to itself:

protocol Replaceable {
 func replaceAttributes(from: Self) -> Void
}

Next, we will need to define and implement the methods of our4.
BaseResourceController:

class BaseResourceController<T: Model & JSONConvertible &
Updateable & Replaceable>: ResourceRepresentable {
 func index(_ req: Request) throws -> ResponseRepresentable {
 let response = Response(status: .ok)
 let resources = try T.all()
 response.resources = resources
 return response
 }
 func store(_ req: Request) throws -> ResponseRepresentable {
 let response = Response(status: .ok)
 guard let json = req.json else { throw Abort.badRequest }
 let resource = try T(json: json)
 try resource.save()
 response.resource = resource
 return response
 }
 func show(_ req: Request, resource: T) throws ->
ResponseRepresentable {
 let response = Response(status: .ok)
 response.resource = resource
 return response
 }
 func delete(_ req: Request, resource: T) throws ->
ResponseRepresentable {
 try resource.delete()
 return Response(status: .ok)
 }
 func clear(_ req: Request) throws -> ResponseRepresentable {
 try T.makeQuery().delete()
 return Response(status: .ok)

Creating Web Views and Middleware Chapter 7

[214]

 }
 func update(_ req: Request, resource: T) throws ->
ResponseRepresentable {
 let response = Response(status: .ok)
 try resource.update(for: req)
 try resource.save()
 response.resource = resource
 return response
 }
 func replace(_ req: Request, resource: T) throws ->
ResponseRepresentable {
 let response = Response(status: .ok)
 guard let json = req.json else { throw Abort.badRequest }
 let new = try T(json: json)
 resource.replaceAttributes(from: new)
 try resource.save()
 response.resource = resource
 return response
 }
 func makeResource() -> Resource<T> {
 return Resource(
 index: index,
 store: store,
 show: show,
 update: update,
 replace: replace,
 destroy: delete,
 clear: clear
)
 }
}

Inside all of the RESTful methods in our BaseResourceController, the5.
resource or resources are set on the response object that is returned, and this is
the same resource or resources object that will be used by the middleware we
have just created to generate the HTML or JSON response.
Now is the best part, which is removing a lot of code. We need to update the6.
ShoppingListController.swift file to contain only the following line:

final class ShoppingListController:
BaseResourceController<ShoppingList> {}

Creating Web Views and Middleware Chapter 7

[215]

We also need to update the ItemController.swift file to the following by7.
removing all of the code and replacing it with the following line:

final class ItemController: BaseResourceController<Item> {}

Now, we will need to implement the Replaceable protocol in both of our8.
Models first by adding the following extension in our ShoppingList.swift file:

extension ShoppingList: Replaceable {
 func replaceAttributes(from list: ShoppingList) {
 self.name = list.name
 }
}

Then, add the following extension to our Item.swift file:9.

extension Item: Replaceable {
 func replaceAttributes(from item: Item) {
 self.name = item.name
 self.isChecked = item.isChecked
 self.shoppingListId = item.shoppingListId
 }
}

The last thing to do is to set up our Leaf templates files for both Shopping List and Item. To
set up these files, create four empty files inside the Resources/Views folder called
item.leaf, items.leaf, shopping_list.leaf, and shopping_lists.leaf.

Copy the following into shopping_lists.leaf to render all of the Shopping Lists into
HTML:

#extend("base")
#export("title") { Shopping List }
#export("content") {
 #loop(shopping_lists, "shopping_list") {
 #extend("shopping_list")
 }
 + Create New Shopping List
}

Creating Web Views and Middleware Chapter 7

[216]

Copy the following into shopping_list.leaf to render a single Shopping List into
HTML:

<div id="#(shopping_list.id)" class="shopping-list-card card">
 <div class="card-divider">
 <h3>#(shopping_list.name)</h3>
 <button class="delete-list">X</button>
 </div>
 <div class="card-section">

 #loop(shopping_list.items, "item") {
 #extend("item")
 }

 + Add an Item
 </div>
</div>

Copy the following into items.leaf to render all of the items into HTML:

 #loop(items, "item") {
 #extend("item")
 }

Copy the following into item.leaf to render an item into HTML:

 <input
 id="#(item.id)"
 type="checkbox"
 #if(item.is_checked) { checked=true }
 />
 <label for="#(item.id)">#(item.name)</label>
 <button class="delete-item">X</button>

Creating Web Views and Middleware Chapter 7

[217]

We are done! Now, build and run the server, and navigate to
http://localhost:8080/shopping_lists in the browser. You should see your
Shopping Lists on the web:

Creating Web Views and Middleware Chapter 7

[218]

However, if you make the request from the console using the curl command without
setting the accept HTTP header, then you will get the response back in JSON format:

Adding JavaScript
Our Vapor server now looks great and renders a beautiful web page, but, at the present, is
not very functional. It has an add link and a cross button to delete a Shopping List and an
item, but none of these work. The reason is because we have not written code to do
anything when a user clicks on the link or on the delete button. To add this functionality,
we will need to write some JavaScript. We have created an app.js file, but it is currently
empty. So let's see how we can add the same functionality as our native iOS app to add,
edit, and delete a Shopping List and its items. We will use jQuery, which is a popular
JavaScript library that we have included in our base.leaf template to help us achieve
dynamic behavior in our web app. In the following section, we will look at the code
snippets that we need to add to our app.js file to add a similar functionality as our iOS
app to our web app.

Creating Web Views and Middleware Chapter 7

[219]

Creating a new Shopping List
To add the functionality to create a Shopping List on the web app, we will use jQuery's
on method, which takes an event such as click and invokes a callback function that is
passed. In this callback, we will prompt the user for a name to give to their new Shopping
List and make a POST request to our /shopping_lists endpoint to create a new Shopping
List on the server. We will get back the HTML fragment of our new Shopping List and add
that to the HTML, otherwise show an error message as an alert dialog. The following is the
entire code to do all of that:

$('.add-shopping-list').on('click', function(event) {
 var $link = $(event.target);
 var name = window.prompt('What is the name of your new Shopping List?',
'');
 if (!name) return;
 $.ajax({
 url: '/shopping_lists',
 type: 'POST',
 headers: {
 accept: 'text/html',
 'content-type': 'application/json; charset=UTF-8'
 },
 processData: false,
 data: JSON.stringify({
 name: name
 }),
 success: function(response) {
 $(response).insertBefore($link);
 },
 error: function(result) {
 alert('Error Adding new Shopping List');
 }
 });
});

Creating Web Views and Middleware Chapter 7

[220]

Deleting a Shopping List
To delete a Shopping List, we will similarly set up a click event listener on the button with
the delete-list class name. Upon clicking, we will get the ID of the Shopping List, which
is set on the Shopping List card and make a DELETE request to our API. Upon success, we
will remove this card from the HTML, otherwise show an error message in the form of an
alert dialog. The following is the code to do this:

$('body').on('click', '.delete-list', function(event) {
 var $button = $(event.target);
 var $shoppingList = $button.parents('.shopping-list-card');
 $.ajax({
 url: '/shopping_lists/' + $shoppingList.attr('id'),
 type: 'DELETE',
 success: function() {
 $shoppingList.remove();
 },
 error: function(result) {
 alert('Error deleting shopping list');
 }
 });
});

Adding an Item
Adding an Item is similar to adding a Shopping List. We will first prompt the user for the
name of the item to add to their Shopping List and then make a POST request to the /items
endpoint. Upon success, we will get back the HTML fragment of the item that just got
created and add it to the Shopping List card. If there is an error, we will show it as an alert
dialog to the user. The following is the code to do just that:

$('body').on('click', '.add-item', function(event) {
 var $shoppingList = $(event.target).parents('.shopping-list-card');
 var itemName = window.prompt('What item do you want to add to your
shopping list?', '');
 if (!itemName) return;
 $.ajax({
 url: '/items',
 type: 'POST',
 headers: {
 accept: 'text/html',
 'content-type': 'application/json; charset=UTF-8'
 },
 processData: false,

Creating Web Views and Middleware Chapter 7

[221]

 data: JSON.stringify({
 name: itemName,
 shopping_list__id: $shoppingList.attr('id')
 }),
 success: function(response) {
 $shoppingList.find('ul').append(response);
 },
 error: function(result) {
 alert('Error Adding item');
 }
 });
});

Deleting an Item
Deleting an item is as simple as setting up a click listener on the button with the delete-
item class name. Upon clicking, we will make a DELETE request to our API, and on
success, we remove the item from the HTML, otherwise show an error message in the form
of an alert dialog. The code for this is as follows:

$('body').on('click', '.delete-item', function(event) {
 var $button = $(event.target);
 var $checkbox = $button.siblings('input');
 $.ajax({
 url: '/items/' + $checkbox.attr('id'),
 type: 'DELETE',
 success: function() {
 $checkbox.parent().remove();
 },
 error: function(result) {
 alert('Error deleting item');
 }
 });
});

Creating Web Views and Middleware Chapter 7

[222]

Checking and unchecking an Item
The last feature missing from the web app is the ability to check and uncheck an item such
that its state is saved on the server. This is easily achieved by setting up a change event
listener on the input checkbox, and upon check and unchecking, it will trigger the callback
function. We extract the checkbox from the event and get the checked state and make a
PATCH request to our API on the item's endpoint. Upon success, we will need to do
nothing, but if there is an error, we show the error message in the form of an alert dialog
and revert the checkbox state so that the user can try again. The following is the code for
adding this:

$('body').on('change', 'input[type=checkbox]', function(event) {
 var checkbox = event.target;
 $.ajax({
 url: '/items/' + checkbox.getAttribute('id'),
 type: 'PATCH',
 data: {
 is_checked: checkbox.checked
 },
 error: function(result) {
 alert('Error saving changes to item');
 checkbox.checked = !checkbox.checked;
 }
 });
});

Once all of the JavaScript code snippets have been added to app.js, you can reload the
page and try it out, and everything should work as expected.

One last thing is to have the root route redirect the user to /shopping_lists so that users
see their Shopping Lists instead of a blank page when navigating to
http://localhost:8080. To do so, we will need to replace the get() handler inside the
setupRoutes method in the Routes.swift file to the following:

 get() { _ in Response(redirect: "/shopping_lists") }

Creating Web Views and Middleware Chapter 7

[223]

Summary
In this chapter, you created a web page using Vapor. By now, you should have a good
understanding of how Leaf works and how you can use it in any of the server-side Swift
packages along with your Vapor app. You also learned the best practice of refactoring your
code so that you can share code between both of your controllers using the powerful feature
of generics available in Swift. You also created a Vapor middleware to dynamically
generate HTML or JSON output for your request so that you can use the same routes for
both your iOS app and the web app you just created.

Hopefully, this chapter gave you background on server-side rendering of HTML templates
and how you can add CSS and JavaScript. Using some CSS, you were able to make your
page look nice, and adding some JavaScript, you were able to make your web page link a
single page app without having to write a lot of code or having to set up a build pipeline for
your assets.

In the next chapter, you will learn the best practices for testing our Vapor application. You
will also learn the best practices for setting up a project for open source development and
how to create a Continuous Integration pipeline so that you can build and test your code
automatically every time you make any changes. This will help you detect any issue sooner
rather than later and prevent bad code from being merged into the repository.

8
Testing and CI

In the preceding chapter, we covered how to render HTML views with the help of Leaf,
Swift's templating engine. We also made a middleware and used it to show HTML response
for requests coming from the browser and JSON response for everything else, including our
mobile app. By now, you should have a good understanding of how Vapor can be used to
make both an API server and a web server.

In this chapter, we will focus on how to test our Vapor application server. We will also
discuss how to write tests that run on both macOS and Linux. Also, we will discuss how to
add Continuous Integration (CI) pipeline for our server app. This will trigger tests every
time we have an event, from a submission of a Pull Request to our code on GitHub, or a
merge to master branch of our repository. Using free services, such as Travis CI on open
source projects, we will set up a CI pipeline for our Vapor server on GitHub.

By the end of this chapter, you should have a good understanding on the following topics:

Testing Vapor app
Setting up a test environment for your Vapor app
Testing the RESTful endpoint
Configuring an automated test pipeline
Best practices for running tests on projects managed via GitHub

So, let's get started by first setting up tests for our Vapor application.

Testing and CI Chapter 8

[225]

Testing the Vapor application
Testing a Vapor application is same as testing a Swift package. In Chapter 1, Getting Started
with Server Swift, you got a primer on Swift packages, and you wrote your first test for that
package. Writing test is very similar, and our Vapor application comes with some dummy
tests. If we look at the Test/AppTests folder, we will see the following two files:

RouteTests.swift

Utilities.swift

RouteTests.swift contains two tests that test the routes of our Vapor application and
ensure that the output we are getting from our Vapor app is what we expect to get. For
Swift to run our test, we will need to start up the server, and, for that, we will need to define
some helper extension methods on the Droplet class, and those are defined in
the Utilities.swift file, where it creates a Droplet configured with the test environment,
as follows:

static func testable() throws -> Droplet {
 let config = try Config(arguments: ["vapor", "--env=test"])
 try config.setup()
 let drop = try Droplet(config)
 try drop.setup()
 return drop
}

Setting up the test environment
The preceding code defines a static method on the Droplet class so that we can create a
server instance without having to write all of this code to configure it and can set the
environment to test. We can set up a different database for test environment so that we can
use that instead of our local development database, as we would need to reset or clear it
every time after all tests finish running.

Testing and CI Chapter 8

[226]

To set up environment-specific config file for using a different database for test
environment, we will need to perform the following steps:

In Xcode, inside the Config folder, create a new folder called1.
development. Inside this folder, we can put any config files, and the
configuration values from these files will be used in development environment.
Now, move the mongo.json file inside the Config folder into the newly2.
created development folder.
Next, create a test folder inside the Config folder, and, as you can now see, it3.
will contain JSON config files that will be loaded only in a test environment.
Then, create a new file called mongo.json inside the Test folder, and copy the4.
following JSON config into it:

{
 "url": "mongodb://localhost:27017/shopping-list-test"
}

Thats it! We have just created an environment-specific database configuration, where Vapor
will use the shopping-list mongo database in development environment and
the shopping-list-test in test environment. This will help us create Shopping Lists and
items independent of development and clear them at the end of the test run.

Running tests
Vapor tests can be run directly from the command line or from Xcode. You can also run a
specific test directly from Xcode if you want to debug and fix a specific issue instead of
running an entire test suite, which could take a long time for large projects.

Testing and CI Chapter 8

[227]

Before we get started with running our tests inside Xcode, we will need to delete
the PostControllerTests.swift file inside Tests/AppTests. Running tests in Xcode is
a two-step process, and there are multiple ways to run the tests. The first way involves a
two-step process:

First, switch the scheme to ShoppingListServer-Package and select My Mac:1.

Then, press Command + U, which will run the entire test suite that consists of tests2.
in the RouteTests.swift.

Testing and CI Chapter 8

[228]

The test should compile and run, but will fail since the dummy tests work with the default
template project that we cloned. Since then, we have modified the code a lot so that the
defaults tests are no longer valid and needed. Let's make the test suite pass by removing old
tests and add tests that actually test our Vapor application by following these steps:

Delete all of the code inside the RouteTests.swift file.1.
Next, import the dependencies to test and import our application code to test it:2.

import XCTest
import Foundation
import Testing
import HTTP
@testable import Vapor
@testable import App

Next, let's define the test class and call it RouteTests and make it inherit from3.
the TestCase class that is defined in Utilities.swift file. TestCase is a
subclass of XCTestCase so that it can some setup that is Vapor specific:

class RouteTests: TestCase {
}

Inside this class, we will need to create a Vapor server instance in this class using4.
the testable static method that is defined in the Utilities.swift file:

let drop = try! Droplet.testable()

Next, we will add few tests as methods inside this class that will make request to5.
the Vapor server and assert that the response is as it is expected. Some basic tests
are as follows:

 func testHealthcheck() throws {
 try drop
 .testResponse(to: .get, at: "healthcheck.html")
 .assertStatus(is: .ok)
 .assertJSON("status", equals: "up")
 }
 func testRootRoute() throws {
 try drop
 .testResponse(to: .get, at: "/")
 .assertStatus(is: .seeOther)
 .assertHeader("Location", contains: "/shopping_lists")
 }

Testing and CI Chapter 8

[229]

Finally, to make the test work in Linux, we will need to add the following static6.
variable, which lists all of the tests:

static let allTests = [
 ("testHealthcheck", testHealthcheck),
 ("testRootRoute", testRootRoute),
]

Now, run the tests using the Command + U to run all of the tests.7.

The tests should all pass now, and everything should be checked green. Awesome!

Testing and CI Chapter 8

[230]

Another way to run all of the tests from a specific test file or to run a specific test inside a
test file is by clicking on the diamond icon at the top of the left sidebar to open the Test
Navigator. From here, you can press the Play button next to the entire file or a specific test:

Testing RESTful routes
So far, we have added tests for routes. Now, let's take a look at how we can test our
ShoppingListController. To test our controller, we would need to write test for each of
the RESTful actions and assert that the result at the end of the action is as expected. To
make our code modular, it would be good to create a separate test file for these tests. So, to
get started writing tests for our Shopping List Controller, follow these steps:

Create a new empty file called ShoppingListControllerTests.swift inside1.
the Tests/AppTests folder and make sure that you add it to the
AppTests target.
Inside this file, add the following lines of code; this will import the required2.
modules for testing, and we will define our test class:

import XCTest
import Foundation
import Testing
import HTTP
@testable import Vapor
@testable import App

class ShoppingListControllerTests: TestCase {
 let drop = try! Droplet.testable()

Testing and CI Chapter 8

[231]

 override func tearDown() {
 super.tearDown()
 try! ShoppingList.makeQuery().delete()
 }
}

That is it, and we are now ready to write our tests for Shopping List Controller. One thing
you might have noticed is the tearDown method that is different from the RouteTests
class. We have added this to ensure that the database is reset after every test run so that we
do not have any Shopping Lists in the database that could interfere with the test run. Now
let's go ahead and write our first test.

Fetching all Shopping Lists
The first method we will test is the index action in Shopping List Controller. This test will
make a GET request to /shopping_lists, which will invoke the index action. The index
action should return all of the Shopping Lists in the database, and, since we do not have any
entries when we run the test, we should get back an empty array as the response. To add
this test, perform the following steps:

First, create a new method called testShoppingListIndex:1.

func testShoppingListIndex() throws {
}

Next, add the following code inside this newly created method that will make a2.
GET request to /shopping_lists. It will then assert that the response body is
an empty array:

try drop
 .testResponse(to: .get, at: "/shopping_lists")
 .assertStatus(is: .ok)
 .assertBody(equals: "[]")

That is it, and, with this, we have just created our first controller-specific test. Run the test
using Command + U or clicking on Play inside the Test Navigator for this file.

Testing and CI Chapter 8

[232]

Creating a Shopping List
Now, we are ready to write tests. To test creation of the Shopping List, we will need to first
make a POST request to /shopping_lists and verify that we get back a JSON response.
Using the ID from the response, we will verify that the Shopping List has been created by
making a GET request to that specific Shopping List. We will also make a request to the
/shopping_lists endpoint to verify that we get back all of the Shopping Lists from the
database and confirm that the only element in the array is the one Shopping List that we
just created. Let's take a look at how we can write this test:

First, create a new method called testShoppingListCreate:1.

func testShoppingListCreate() throws {
}

Inside this method, we will make a POST request to the /shopping_lists2.
endpoint:

 let shoppingListName = "Shopping List Test Name"
 var reqBody = JSON()
 try reqBody.set("name", shoppingListName)

 let list = try drop
 .testResponse(to: .post,
 at: "/shopping_lists",
 headers: ["content-type": "application/json"],
 body: reqBody)
 try list
 .assertStatus(is: .ok)
 .assertJSON("name", equals: shoppingListName)
 .assertJSON("items", equals: JSON([]))

We will extract the id from the response and assign it to the listId variable. If3.
the response is not correctly formatted, then we will fail the test:

 guard let listJSON = list.json else {
 XCTFail("Response should contain JSON")
 return
 }
 guard let listId = listJSON["id"]?.string else {
 XCTFail("JSON should contain id")
 return
 }

Testing and CI Chapter 8

[233]

Next, we will make a request to the Shopping List-specific endpoint to confirm4.
that the Shopping List was created successfully and check whether the response
has the correct name, id, and items in the JSON:

 try drop
 .testResponse(to: .get, at: "/shopping_lists/\(listId)")
 .assertStatus(is: .ok)
 .assertJSON("id", equals: listId)
 .assertJSON("name", equals: shoppingListName)
 .assertJSON("items", equals: JSON([]))

Lastly, we will make a request to the Shopping Lists endpoint and confirm that5.
the response contains one element in the array and that the element has the same
id, name, and items property:

 let lists = try drop
 .testResponse(to: .get, at: "/shopping_lists")

 guard let listsJSON = lists.json?.array else {
 XCTFail("Response should contain array of shopping lists as
JSON")
 return
 }

 XCTAssertEqual(listsJSON.count, 1, "Shopping List should have 1
item in array")
 XCTAssertEqual(listsJSON[0]["id"]?.string, listId, "Shopping List
id is the same as the one created")
 XCTAssertEqual(listsJSON[0]["name"]?.string, shoppingListName,
"Shopping List name is the same as the one created")

Now you can build and run the tests, and all of the test should pass. Next, we will look at
how we can test deletion.

Deleting the Shopping List
Testing the delete endpoint is similar to testing the creation endpoint. We will first need to
create a Shopping List and then extract the id from the response and make a DELETE
request to the Shopping List endpoint. We can then verify that it deleted the Shopping List
by checking the /shopping_lists endpoint and confirming that there are no Shopping
Lists saved in the database:

 func testShoppingListDelete() throws {
 let shoppingListName = "Shopping List Test Name"

Testing and CI Chapter 8

[234]

 var reqBody = JSON()
 try reqBody.set("name", shoppingListName)
 let list = try drop
 .testResponse(to: .post,
 at: "/shopping_lists",
 headers: ["content-type": "application/json"],
 body: reqBody)
 try list
 .assertStatus(is: .ok)
 .assertJSON("name", equals: shoppingListName)
 guard let listJSON = list.json else {
 XCTFail("Response should contain JSON")
 return
 }
 guard let listId = listJSON["id"]?.string else {
 XCTFail("JSON should contain id")
 return
 }
 try drop
 .testResponse(to: .delete, at: "/shopping_lists/\(listId)")
 .assertStatus(is: .ok)
 let lists = try drop
 .testResponse(to: .get, at: "/shopping_lists")
 guard let listsJSON = lists.json?.array else {
 XCTFail("Response should contain array of shopping lists as JSON")
 return
 }
 XCTAssertEqual(listsJSON.count, 0, "Shopping List should have 0 item in
array")
 }

Updating the Shopping List
Testing the update endpoint of our Shopping List is similar to the previous two tests. We
will first need to create a new Shopping List and then make a PATCH request with updated
values for the Shopping List. The code for this would look like this:

 func testShoppingListUpdate() throws {
 var shoppingListName = "Shopping List Test Name"
 var reqBody = JSON()
 try reqBody.set("name", shoppingListName)
 let list = try drop
 .testResponse(to: .post,
 at: "/shopping_lists",
 headers: ["content-type": "application/json"],
 body: reqBody)

Testing and CI Chapter 8

[235]

 try list
 .assertStatus(is: .ok)
 .assertJSON("name", equals: shoppingListName)
 guard let listJSON = list.json else {
 XCTFail("Response should contain JSON")
 return
 }
 guard let listId = listJSON["id"]?.string else {
 XCTFail("JSON should contain id")
 return
 }
 shoppingListName = "Another Name"
 try reqBody.set("name", shoppingListName)
 try drop
 .testResponse(to: .put,
 at: "/shopping_lists/\(listId)",
 headers: ["content-type": "application/json"],
 body: reqBody)
 .assertStatus(is: .ok)
 let lists = try drop
 .testResponse(to: .get, at: "/shopping_lists")
 guard let listsJSON = lists.json?.array else {
 XCTFail("Response should contain array of shopping lists as JSON")
 return
 }

 XCTAssertEqual(listsJSON.count, 1, "Shopping List should have 1 item in
array")
 XCTAssertEqual(listsJSON[0]["id"]?.string, listId, "Shopping List id is
the same as the one created")
 XCTAssertEqual(listsJSON[0]["name"]?.string, shoppingListName,
"Shopping List name is the same as the one created")
 }

Exercise
Now that we have our test written for the Shopping List to test out the CRUD operations
inside our ShoppingListController, it's time for a short exercise. Similar to how we
tested Shopping List API endpoints, write tests to verify the ItemController and its API
endpoints. This includes testing Item creation and verifying that it is added to the Shopping
List by clicking on the show action of the Shopping List it was added to.

Testing and CI Chapter 8

[236]

Automated testing pipeline
Usually, when working on larger projects with multiple people, you would want to ensure
that the code quality does not degrade over time. There are several ways to do this; one way
is by reviewing code before merging it. You can also require tests to be added for a new
feature or require existing tests to be updated to ensure that you have enough code
coverage for the feature or a bug fix is being introduced. We can create a checklist for the
contributors to add test, but having a way to run the tests for every code change request
sent along with running tests every time any changes are merged into the repository is the
best way to detect issues early and fix them before they go to production. This practice of
running tests on your project on a regular basis is known as Continuous Integration and
ensures that there are no issues in production.

Having a CI pipeline helps developers find issues earlier by running the tests automatically
and can act as a gatekeeper before deploying code to production. It helps find issues where
code changes added in one place can break the app's functionality elsewhere that the
developer is not aware of by running in a clean environment that mimics production along
with all of the latest changes from other developers. Considering these benefits, we will take
a look at how to add such an automated pipeline to our Vapor project. To set up a CI
pipeline for our Vapor app, we will use Travis CI, which is a service provided for free for
open source projects that allows you to build, run, and test your app and give a status
update on whether it succeeded or failed so that you can fix the problem before merging the
code. Also, if the code was recently merged, it will alert you to the error so that you can fix
it right away instead of having the issue go unnoticed until someone discovers it.

Adding Travis CI to your project requires publishing your project on GitHub. Once the
project is published and has a .travis.yml config setup, you will need to give Travis CI
the permission to read from the repository and run the command every time a PR is created
and every time code is merged to the master branch. Once everything is set up in Travis CI,
you can stay assured that Travis will ensure that breaking code does not make it into
production. To get started with Travis CI, follow these steps:

Inside the project directory for your Vapor application, delete the circle.yml1.
file if it exists, since we will not be using Circle CI service.

Testing and CI Chapter 8

[237]

Now open the Tests/AppTests/ShoppingListControllerTests.swift file2.
and add the following static variable inside the
ShoppingListControllerTests class to make the tests run on Linux:

static let allTests = [
 ("testShoppingListIndex", testShoppingListIndex),
 ("testShoppingListCreate", testShoppingListCreate),
 ("testShoppingListDelete", testShoppingListDelete),
 ("testShoppingListUpdate", testShoppingListUpdate)
]

Next, update the Tests/LinuxMain.swift file by changing the line containing3.
PostControllerTests to ShoppingListControllerTests in the following
line. You may not see the LinuxMain.swift file in Xcode, so edit it using a plain
text editor:

testCase(ShoppingListControllerTests.allTests),

You should already have a .travis.yml file in your folder as we got it for free4.
when we cloned our project from the API Vapor template. Add the mongodb
services line toward the end of the config and remove the after_success
config. Also, update the osx_image to xcode9.2 and install mongodb using
brew on macOS. The final config file looks as follows; this config tells Travis to
run on both Mac and Linux platform and to run the build before running the
tests:

os:
 - linux
 - osx
language: generic
sudo: required
dist: trusty

osx_image: xcode9.2
before_install:
 - if [$TRAVIS_OS_NAME == "osx"]; then
 brew tap vapor/tap;
 brew update;
 brew install vapor;
 brew install mongodb;
 sudo mkdir -p /data/db;
 brew services start mongodb;
 else
 eval "$(curl -sL https://apt.vapor.sh)";
 sudo apt-get install vapor;

Testing and CI Chapter 8

[238]

 sudo chmod -R a+rx /usr/;
 fi

script:
 - swift build -c release
 - swift test

services:
 - mongodb

Now commit all code and push it up to a GitHub repository, if you have not done5.
so already, using the following command in the terminal; make sure that all of
your changes are merged into master before pushing:

$ git add .
$ git commit -m "Adding Test"
$ git push origin master

Now navigate to https:/ ​/ ​travis- ​ci.​org and sign in with your GitHub Account.6.
If you are logging in to Travis CI for the first time, you will need to provide
GitHub Permission to Travis to view your repositories:

https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.org

Testing and CI Chapter 8

[239]

Once you have signed in, go to Accounts from your Profile and search for your7.
repository, which contains the Vapor application code. Enable the switch for your
repository. Once it is enabled, click on the repository name that will take you to
the build page for this repo:

Testing and CI Chapter 8

[240]

From here, you can view previous builds and view logs for them and even trigger8.
new builds. Since we do not have any build, we will trigger them by hovering
over the More Options icon and clicking on Trigger build:

Testing and CI Chapter 8

[241]

Once the build is started, you should see it run on both Mac and Linux platforms:9.

Great! You have just set up a build and test pipeline for your project on GitHub. Now
everything you push to master or merge a pull request into master branch will
automatically trigger a new build in Travis.

Testing and CI Chapter 8

[242]

Travis will email you when the build has finished, and it will let you know whether it failed
or succeeded. Travis also lets you embed a badge containing the status of the last build to
let everyone know how the project is doing. We will do just that by adding it to our
README.md file. Let's take a look at how we can do so:

Create a README.md file inside your Vapor application at the root level if it does1.
not exist. You will need to edit this file in a plain text editor, as it may not be
available inside your Xcode project.
Inside this file, add the following text and replace <github-user> with your2.
GitHub username, and replace <github-repo> with the name of your repo:

Shopping List Server

[![Build Status](https://travis-ci.org/<github-user>/<github-
repo>.svg?branch=master)](https://travis-ci.org/<github-
user>/<github-repo>)

Save the file and commit the changes. Push it up to GitHub, and you should see3.
the Travis CI badge on your GitHub repo page:

Testing and CI Chapter 8

[243]

Enabling Travis build check on Pull request
We have Travis configured to run every time any changes are merged into master branch.
We can also use Travis to build and test Pull requests. We can even prevent Pull requests
that have failed tests from being merged using GitHub's status check feature. Using Travis
will help prevent bad code from being merged into master and ensure that failing builds do
not get merged into master. To enable this, we need to update few settings on GitHub.
Perform the following steps to enable Travis on every Pull request:

Go to the Settings page of your repo on GitHub and click on Branches.1.
Under the Protected branches section, click on Choose a branch... and select2.
master:

Testing and CI Chapter 8

[244]

Check Protect this branch. This should reveal more options, and now3.
check Require status checks to pass before merging. Then, check Require
branches to be up to date before merging, and finally check continuous-
integration/travis-ci:

Now, click on Save changes:4.

Testing and CI Chapter 8

[245]

That is it, and now if you or someone else creates a Pull Request, then it will prevent the
Pull Request from being merged until the Travis CI status check passes:

Summary
Great job if you made it this far in the book. You have not only written an app but also a
web and an API server in Swift. In this chapter, you expanded on the Shopping List app
idea and wrote tests for the server application. You configured a CI pipeline to run those
tests automatically. By now, you should have a good understanding of how to write tests
for your Vapor application. You also should have a good background in setting up a CI
Pipeline for your future projects using Travis or other CI services.
In the next chapter, you will learn how to deploy your Shopping List app to Vapor's cloud
service and also take a look at other cloud services.

9
Deploying the App

In the previous chapter, we learned how to write tests for our server-side Shopping List
application. We also learned how to create an automated pipeline to run tests for our code
so that we can maintain code quality and fix problems early on rather than discovering
them later in production. In this chapter, we will look at how we can deploy our app to the
cloud so that we can have it running 24/7 and access it via the internet from anywhere. We
will also set up an automated pipeline such that our code will deploy automatically when
the tests in Travis pass for our master branch. With this, our project not only has
Continuous Integration (CI) but also Continuous Deployment (CD) setup, making it a lot
easier for a team of developers to maintain a server-side Swift application along with a
client-side iOS app without needing a dedicated Dev Ops team to ensure that code is
deployed to production. In this chapter, we will specifically cover the following topics:

What cloud services can we deploy to?
How to deploy vapor app to one of such cloud services called Heroku?
How to set up a Continuous Deployment pipeline?

So, let's get started with deploying our app and see it live in Production so that we can
share it with others.

Where can we deploy a Vapor App?
Vapor applications can be deployed anywhere we can run Swift. Currently, Swift only runs
on macOS and Ubuntu distribution of Linux. There are multiple options when it comes to
where to deploy your Vapor App. You can deploy your Vapor app on a dedicated physical
machine or a virtual machine, but the hassle of setting it up and maintaining the server
machine yourself can be cumbersome.

Deploying the App Chapter 9

[247]

You can also deploy your Vapor app to a cloud service provider, such as AWS, Google
Cloud Platform, Heroku, or Vapor Cloud. These companies provide Platform as a Service
(PaaS), where you do not need to configure the OS to install the required dependencies and
instead, just specify the version of Swift and other services you need, such as MongoDB,
and it will provide you with those so that your Vapor app can run without a lot of
configuration. This also allows you to not have to worry about figuring out what hardware
you need upfront, as you can scale the hardware easily with such services by launching
replicas of your server, which is known as Horizontal scaling. The reason we can do this is
because we do not store the state in the Vapor app but in the database.

To deploy our Vapor app, we will look at one such service provided by Heroku, since it is
easy to get started with and support deployment of server-side Swift apps. Let's look at
how we can deploy our Shopping List Server app to Heroku.

Deploying to Heroku
Heroku is a Platform as a Service provider that lets you deploy apps of multiple platforms
on their servers. Basically, Heroku hosts server apps in such a way that you can scale them
horizontally by launching multiple replicas of your app or vertically, by scaling the
hardware spec such as increasing memory, CPU, or disk space. This allows you to start out
small and help you run your app elegantly without having to worry about all the
infrastructure that you need to configure, set up, and maintain a MongoDB server or load
balancer.

Deploying is easy as well. It is as simple as pushing code using git. The magic of how it
builds and runs the app is in the build packs, which are written by the Heroku team and
sometimes by the community; they let you build and run the app on the server without
having to write your own deployment scripts. This build pack needs to be added for our
Vapor app and Vapor toolbox has a handle script to automate all of this for us, making it a
lot more pleasant to deploy to Heroku.

To get started with Heroku deployment, we first need to install the Heroku CLI, which can
be installed by following these steps:

Open the Terminal app on your macOS and run the following brew command to1.
install the CLI:

brew install heroku/brew/heroku

Deploying the App Chapter 9

[248]

Once Heroku is installed, you can type heroku help in the Terminal and it will2.
print all the available commands for Heroku CLI:

Deploying the App Chapter 9

[249]

Before we can proceed, we need to create a free account on Heroku. To do so, go to https:/
/​signup.​heroku.​com and, once the account is created, you will be able to run one web
process for free every month:

Using your Heroku credentials, you will log in to your account using the Heroku CLI. To
log in, run the following command:

$ heroku login

You will be promoted to enter the email you signed up with and the password for your
Heroku account and, once successful, you will get a confirmation:

https://signup.heroku.com
https://signup.heroku.com
https://signup.heroku.com
https://signup.heroku.com
https://signup.heroku.com
https://signup.heroku.com
https://signup.heroku.com
https://signup.heroku.com

Deploying the App Chapter 9

[250]

Priming the app for deployment
Before we can deploy our app, we need to set up a production config for our database. For
our database, we will be using MongoDB as an add on service provided in Heroku for free.
Enabling this service will pass the location of the MongoDB service as an environment
variable to our app and we can use this to connect our app to the database. We will need to
tell our app the location of this MongoDB server. Specifying it is as easy as creating a new
folder called production under the Config folder and adding a mongo.json file inside of
the production folder. To create this config, follow these steps:

Open the Terminal and, inside the root level of your Vapor project, create a new1.
folder called production inside of Config:

$ mkdir Config/production/

Next, create an empty file called mongo.json inside of the production folder2.
and copy the following config:

{
 "url": "$MONGODB_URI"
}

That's it, and, if you noted, we specified the URL of our MongoDB to be the value that is set
in the environment variable called MONGODB_URI. This variable will be set when we enable
the free MongoDB service via the Heroku CLI later on.

Configuring and deploying Vapor to Heroku
The Vapor team has done a great job of integrating Heroku into the Vapor toolbox. We can
initialize a Procfile, add the Vapor build pack, and set up a git remote for Heroku to push
to, all using one command. A Procfile is basically a file where we can specify all the
processes we want to run; for our Vapor app, we will be creating one web process only that
will run our Vapor app. Heroku uses build packs, which are a list of scripts, to build and
run the app on the server. Vapor build pack is basically what we need to get our app to
deploy to Heroku. Finally, a new Heroku git remote needs to be configured, so that we can
push to that remote with our master branch to start the deployment. Basically, it will push
all the code that we have locally, in our master branch, to the Heroku server to be built and
run using the Vapor build pack.

Deploying the App Chapter 9

[251]

To initialize Heroku in our Vapor project, we need to run the following commands:

Ensure that you commit all of your changes made so far in git before proceeding1.
to the next step:

$ git add .
$ git commit -m "Saving change"

In the Terminal, go to the root level of your Vapor project and run the following2.
command:

$ vapor heroku init

You will be promoted with a question to enter a custom name for your app. Press3.
Y and then Enter if you want to give a custom name to your app. Ensure that the
name is in lowercase characters and only contains letters, hyphens, and numbers.
You will then be prompted for the app name; enter a name that is not already
taken in Heroku:

Do not use the example app name specified as follows, as it is in use
already:

Would you like to provide a custom Heroku app name?
y/n> y
Custom app name:
> vapor-shopping-list

Next, you will be asked whether you want to deploy to regions other than the US:4.

Would you like to deploy to a region other than the US?
y/n> n
https://vapor-shopping-list.herokuapp.com/ |
https://git.heroku.com/vapor-shopping-list.git

Deploying the App Chapter 9

[252]

Then, you will be asked if you want to use a custom Heroku buildpack other than5.
the one supported by Vapor. Press N and then Enter as as we are not doing
anything custom:

Would you like to provide a custom Heroku buildpack?
y/n> n
Setting buildpack...

Now, you will be asked whether you have a custom Executable name. For our6.
app, we do not. After you answer this question, a Procfile will be created, which
will contain the command to start the Vapor app on the Heroku server, and it will
add and commit the changes to the git repository:

Are you using a custom Executable name?
y/n> n
Setting procfile...
Committing procfile...

Finally, it will ask whether you want to deploy your app now. Press Y and then7.
Enter, and the deployment will start. It will take some time, but once done, it will
print the URL to your app in the end:

Would you like to push to Heroku now?
y/n> y
This may take a while...
Building on Heroku ... ~5-10 minutes [Done]
Spinning up dynos [Done]
Visit https://dashboard.heroku.com/apps/
App is live on Heroku, visit
https://vapor-shopping-list.herokuapp.com/ |
https://git.heroku.com/vapor-shopping-list.git

Deploying the App Chapter 9

[253]

Cool! We just configured our app to deploy to Heroku, and it deployed it as well:

Deploying the App Chapter 9

[254]

Adding the MongoDB Heroku addon
We are not done yet. If you go to the URL printed in the console where your app is hosted
on Heroku, you will note that it is broken and shows an Application error page, as follows:

The reason this is happening is because we have not created a MongoDB service and passed
the URL to the service to our app so that our Vapor app can connect to it. This can be easily
resolved by running the following command in the Terminal, which will create a free
MongoDB server instance for our app and restart our app:

$ heroku addons:create mongolab:sandbox

Deploying the App Chapter 9

[255]

Ensure that you verify your Heroku account by adding a Credit Card, if you have not done
so already. Even though it is a free service, a Credit Card is required on file for verification
to avoid abuse of Heroku's free service.

Once you have added the mongolab add-on, the app should restart. Now, if you visit your
Shopping List app again by visiting the URL provided by Heroku in the browser, you
should see your Vapor app render the Shopping List on the web, as illustrated:

Deploying the App Chapter 9

[256]

Setting up Continuous Deployment
We have configured an automated pipeline for testing our repository every time there is a
merge into the master branch. It would be great if we could automatically deploy our app
after the code is merged into master and when all the tests pass with the recently merged
changes. We can do just that with Heroku by configuring it in their web portal. To get
started with Continuous Deployment, follow these steps:

First, log in to the Heroku website and go to the Dashboard.1.
Select your app from the list and go to the project details page.2.
On this page, click on the Deploy tab.3.
In the Deployment method section, click on GitHub.4.
In the Connect to GitHub section, search for your Shopping List repository5.
under your account and press the Connect button next to the repository, as
demonstrated here:

Deploying the App Chapter 9

[257]

Once the GitHub repository is connected, go to the Automatic deploys section6.
and ensure that the master branch is selected. Also, check Wait for CI to pass
before deploy before pressing on the Enable Automatic Deploys button:

Good job if you made it this far. We have just set up a Continuous Deployment pipeline.
Next time you merge code into the master branch and when the tests pass in Travis CI for
the master branch, the code from your GitHub repository that you just connected will
automatically deploy to Heroku:

Deploying the App Chapter 9

[258]

Exercise
There are a lot of cloud service providers. A few big players include AWS, Google Cloud
Platform, and Microsoft Azure. Vapor has its own cloud service as well, which is easy to
deploy. Vapor Toolbox supports deploying to their own cloud service out of box by
specifying the deploy configuration in the cloud.yml file. As part of a short exercise, try to
deploy the shopping list app to Vapor's cloud similar to how we did it for Heroku.

Summary
In this chapter, we finally got to publish our work for others to see through the cloud so that
we can access it over the internet. By now, you have a good understanding of how to
publish a Vapor app to Heroku, a cloud service provider. Lastly, we set up a Continuous
Deployment pipeline to automatically deploy the latest code when it passes the CI check.

In the next chapter, we will learn how to add authentication to our Vapor app so that we
can have a Shopping List associated with a user and only that user can make changes to
their own Shopping List.

10
Adding Authentication

Good job if you have made it this far. You used Swift not only to build an iOS app, but also
a full stack web application, and you also set up tests and an automated deployment
pipeline for your app, so that you can develop and deploy code with ease. Now, in this
chapter, you will finish off your Shopping List app by adding the concept of users to your
app and associating Shopping Lists with a specific user.

Currently, our app does not support multiple user accounts. We show all of the Shopping
Lists to anyone who opens the app or goes to the web app. There is no concept of users
creating their own Shopping List and being able to get only their Shopping List. We will be
changing that in this chapter, and to do so, we will need to add a User model. We will also
need to create a way for users to register and authenticate themselves to log in. Then, every
time a user creates a Shopping List, it will be associated with the user who created it. This is
similar to how items are associated with a Shopping List. We will cover several topics in
this chapter, ranging from user creation to sessions to token creation for API requests for
our app. More specifically, in this chapter, we will discuss the following topics:

Creating a User model and merging associated Shopping Lists with a user
account
Configuring and generating registration/login routes
Password protecting certain routes
Keeping a user authenticated in the browser using Session
Generating web forms to register and to log in
Creating a Token model and associating with a user to make API requests from
an iOS app
Updating the index action to return Shopping Lists belonging to a user
Updating the iOS app to support authentication and token-based API requests

There are a lot of topics to cover, so let's get started by first creating a User model.

Adding Authentication Chapter 10

[260]

Creating a User model
To support the concept of registering for an app, we will need to first create a User model.
A user, similar to a Shopping List or an Item model in our Vapor app, will be a class that
contains certain properties, such as name, email, and password. When a user tries to
register for our app, they will provide us with their name, email, and password, and we
will take those and create a new user record if it does not already exist. In our app, we will
use email as the ID by which a user can log in along with their password. Some websites or
apps may even have a concept of username, which can be added as a property to the User
model; however, for our app, email will suffice to serve as a unique identifier by which we
can find a user account.

The user will need to provide a password when registering, and using that password, they
will be able to log in. We cannot simply store the password in its original text form in the
database, as there are a lot of security concerns since your database can be hacked into in
rare cases, and someone can steal the passwords easily. Luckily, there are industry standard
ways of storing password using hashing functions. Hashing makes it impossible for
someone to steal anyone's password even if our database was hacked.

Best practices for storing password
Hashing, which we touched upon in Chapter 3, Getting Started with Vapor, when creating
our Vapor app, is very useful for a lot of things, including password encryption. Certain
hashing algorithms such as BCrypt and SHA-256 can be thought of as functions that can
take in some text and generate unintelligible text that is long and hard to memorize. The
beauty of these hashing functions is that they will generate a new random string that cannot
be reversed to its original form. Even a slight change in one character can generate output
that is completely different, making it a lot harder to figure out the original text that was
hashed. Knowing this quality of the hashing function, we can generate a hash of the user's
password and store it in the database when the user registers.

Adding Authentication Chapter 10

[261]

Next time when they try to log in, we will find the user record in the database with the
email ID provided in the login form. We then hash the password provided in the login form
with the same hash function and check whether it matches with the password that is stored
in the database. If it does, we can mark the user as logged in and create a session for that
user, so that they can be logged in until they decide to log out.

A lot of the concepts mentioned, such as hashing functions, sessions, and authentication,
have been thought through by the Vapor team. They are provided in the Vapor package
itself and some in the AuthProvider package, which makes implementing authentication
relatively easy. To get started, let's import AuthProvider first into our Vapor project by
following these steps:

First, add AuthProvider to your Package.swift file:1.

.package(url: "https://github.com/vapor/auth-provider.git",

.upToNextMajor(from: "1.2.0")),

Specify AuthProvider as a dependency in the target section of the app:2.

.target(name: "App", dependencies: ["Vapor", "FluentProvider",
"HealthcheckProvider", "MongoProvider", "LeafProvider",
"AuthProvider"],

Next, regenerate the Xcode project file by running the following command in the3.
Terminal:

vapor xcode -y

Adding Authentication Chapter 10

[262]

Getting started with the User model
Great! Now that we have AuthProvider added to the project, we can build and run our app
to confirm we have imported it correctly. Now, let's go ahead and define our User model
next:

Create a new file called User.swift inside the Models folder in your Vapor app1.
and make sure that you check App under Targets:

Inside this file, delete all of the sample code and import the following2.
dependencies:

import FluentProvider
import HTTP
import Fluent
import AuthProvider

Adding Authentication Chapter 10

[263]

Next, define the class, and we will make it implement both the Model and3.
SessionPersistable protocols:

final class User: Model, SessionPersistable {

Next, we will define the following attributes in the class, similar to4.
the ShoppingList or Item model that we implemented in Chapter 5, Building a
REST API using Vapor:

let storage = Storage()
struct Keys {
 static let id = "id"
 static let name = "name"
 static let email = "email"
 static let password = "password"
}
var name: String
var email: String
var password: String

Next, define the initializers and makeRow method as part of the Model protocol:5.

init(name: String, email: String, password: String) {
 self.name = name
 self.email = email
 self.password = password
}
init(row: Row) throws {
 name = try row.get(Keys.name)
 email = try row.get(Keys.email)
 password = try row.get(Keys.password)
}
func makeRow() throws -> Row {
 var row = Row()
 try row.set(Keys.name, name)
 try row.set(Keys.email, email)
 try row.set(Keys.password, password)
 return row
}

Adding Authentication Chapter 10

[264]

Next, we will implement the hashPassword and passwordVerifier computed6.
properties in the User class as part of the PasswordAuthenticatable protocol.
As previously mentioned, we will not be storing the raw password in the
database, but, instead, a hash of the password and these two computed
properties help with that. Since we cannot set the property as it is read only, we
need to reference a private variable, as follows:

private var _userPasswordVerifier: PasswordVerifier? = nil
extension User: PasswordAuthenticatable {
 var hashedPassword: String? {
 return password
 }
 public static var passwordVerifier: PasswordVerifier? {
 get { return _userPasswordVerifier }
 set { _userPasswordVerifier = newValue }
 }
}

Next, we will define the prepare method for the database preparation to create7.
our User table where we will store the user record:

extension User: Preparation {
 static func prepare(_ database: Database) throws {
 try database.create(self) { builder in
 builder.id()
 builder.string(Keys.name)
 builder.string(Keys.email)
 builder.string(Keys.password)
 }
 }
 static func revert(_ database: Database) throws {
 try database.delete(self)
 }
}

Finally, we will make an extension on the Request class so that it can return, us8.
the User object, making the request AuthProvider helper defined by the
AuthProvider itself on the Request class via extension:

extension Request {
 func user() throws -> User {
 return try auth.assertAuthenticated()
 }
}

Adding Authentication Chapter 10

[265]

Now, let's switch files and open Config+Setup.swift and add our User model9.
in the list of preparation to run inside of the setupPreparation method:

preparations.append(User.self)

Next, we will configure the PasswordVerifier by switching to10.
the Droplet+Setup.swift file and add the following method. This will use the
hash method provided by Vapor and set it as the default password verified for
the User. As previously mentioned, we will not store the raw password in the
database so that when a user submits a login form with their email as a user ID
and password, Vapor will first hash the password using the password verifier
function and then check with the hashPassword for that user, which is the
password retrieved from the database:

private func setupPasswordVerifier() throws {
 guard let verifier = hash as? PasswordVerifier else {
 throw Abort(.internalServerError, reason: "\(type(of:
 hash)) must conform to PasswordVerifier.")
 }
 User.passwordVerifier = verifier
}

Now, call this method inside of the setup method in the same11.
Droplet+Setup.swift file:

public func setup() throws {
 try setupRoutes()
 try setupPasswordVerifier()
}

Also, add the AuthProvider as the dependency in this Droplet+Setup.swift12.
file by adding the following line to the top:

import AuthProvider

Lastly, we will change the hash function that Vapor uses by default to13.
use bcrypt so that it cannot be reversed to the original password. This can easily
be done by changing the hash config inside the Config/droplet.json file:

"hash": "bcrypt",

Adding Authentication Chapter 10

[266]

You will also need to make a config file called bcrypt.json inside the Config14.
folder, which will contain options that get passed to the bcrypt function. Inside
this new file, add the following config. The higher the cost, the harder it is to find
the password that matches the hash, but it is slower, which might have a
performance implication for high traffic website:

{
 "cost": 4
}

This is a nice place to pause and build and run our application to make sure that everything
is configured correctly. You should be able to run the application at this point without any
errors. Next, we will take a look at how we can associate Shopping Lists with a user, so that
a User can have multiple Shopping Lists and a Shopping List belongs to one user.

User has many Shopping Lists
A User has many Shopping Lists, to create a has-many relation between User and Shopping
List model, we will need to do a similar exercise like we did for Shopping List and Item
model. Each ShoppingList object would need to keep an ID to the user it belongs to so
that we can query for all Shopping Lists for that user. To add this, we will need to follow
these steps:

Open the ShoppingList.swift file in your Vapor app and add the following1.
new property as an instance variable inside the ShoppingList class to
store userId:

var userId: Identifier

Next, create a user-computed property, which will allow us to get the user to a2.
Shopping List:

var user: Parent<ShoppingList, User> {
 return parent(id: userId)
}

Now, add the userId column name that will be used by MongoDB to store the3.
user ID inside of the database collection:

static let userId = "user__id"

Adding Authentication Chapter 10

[267]

Now, we will need to update our initializer so that it can take the userId as a4.
parameter and assign it to its userId property. We will also need to update the
makeRow method so it can set the userId correctly in the row that will be
inserted into the database:

init(name: String, userId: Identifier) {
 self.name = name
 self.userId = userId
}
init(row: Row) throws {
 name = try row.get(ShoppingList.Keys.name)
 userId = try row.get(ShoppingList.Keys.userId)
}
func makeRow() throws -> Row {
 var row = Row()
 try row.set(ShoppingList.Keys.name, name)
 try row.set(ShoppingList.Keys.userId, userId)
 return row
}

Now, update the database preparation so that it generates a foreign key column,5.
which will store the user ID in the Shopping List record so that we can create the
belongs to the relationship between Shopping List and User model:

static func prepare(_ database: Database) throws {
 try database.create(self) { builder in
 builder.id()
 builder.string(ShoppingList.Keys.name)
 builder.parent(User.self)
 }
}

Now update the JSONConvertible extension by adding references to userId in6.
the initializer and makeJSON method:

extension ShoppingList: JSONConvertible {
 convenience init(json: JSON) throws {
 self.init(
 name: try json.get(ShoppingList.Keys.name),
 userId: try json.get(ShoppingList.Keys.userId)
)
 }
 func makeJSON() throws -> JSON {
 var json = JSON()
 try json.set(ShoppingList.Keys.id, id)
 try json.set(ShoppingList.Keys.name, name)

Adding Authentication Chapter 10

[268]

 try json.set(ShoppingList.Keys.userId, userId)
 try json.set("items", items.all())
 return json
 }
}

Lastly, add the userId reference to the Replaceable extension:7.

extension ShoppingList: Replaceable {
 func replaceAttributes(from list: ShoppingList) {
 self.name = list.name
 self.userId = list.userId
 }
}

This is a good point to take a break. You should be able to build and run your Vapor server
without any errors which will confirm that you have configured everything correctly so far
in the Shopping List model. Next, we will look at how we can add registration and login
pages to our Vapor app so that we authenticate a user before showing them the Shopping
Lists in the browser instead of showing all of the Shopping Lists that we currently do.

Adding Registration and Login
To add Registration and Login web pages is as simple as setting up a route in our
Routes.swift and creating a Leaf template file that will render the HTML forms. For our
Leaf template, we will need to create a signup form for the new user and a login form for
users that have registered already. To get started with adding these forms to our Vapor app,
we need to follow these steps:

First, open the Routes.swift file and remove everything inside1.
the setupRoutes method as we will be setting up two kinds of routes, one for
authenticated users and another for unauthenticated.
Next, import the AuthProvider and Sessions dependencies that we will need2.
later by adding the following two lines to the top of the file:

import AuthProvider
import Sessions

Adding Authentication Chapter 10

[269]

Next, inside the setupRoutes method, add the following two methods that we3.
will define soon:

func setupRoutes() throws {
 self.setupUnauthenticatedRoutes()
 self.setupAuthenticatedRoutes()
}

Now, let's define the setupUnauthenticatedRoutes method. This will be the4.
method where we will define a /register route, which will accept a POST
request only. This POST request will be sent by the Registration form in the
browser to our Vapor server and we will extract values from the form and create
a user record if it does not exists. The implementation looks like this:

func setupUnauthenticatedRoutes() {
 post("register") { req in
 guard let form = req.formURLEncoded,
 let name = form["name"]?.string,
 !name.isEmpty,
 let email = form["email"]?.string,
 !email.isEmpty,
 let password = form["password"]?.string,
 !password.isEmpty else {
 throw Abort(.badRequest)
 }

 guard try User.makeQuery().filter("email", email).first() ==
nil else {
 throw Abort(.badRequest, reason: "A user with that email
already exists.")
 }

 let encryptedPassword = try
self.hash.make(password.makeBytes()).makeString()
 let user = User(name: name, email: email, password:
encryptedPassword)

 try user.save()
 return "User Account Created Successfully"
 }
}

Adding Authentication Chapter 10

[270]

Next, we will define the authenticated routes that will protect the Shopping List5.
and items routes so that no one can view them unless the user is logged in.
Thanks to Vapor's AuthProvider and Sessions, a lot of the heavy lifting related
to authenticating and creating sessions after authentication has been taking care
of. All we need to do is initialize the Auth and Session middleware and add them
to our Vapor routes:

func setupAuthenticatedRoutes() {
 let passwordMiddleware =
PasswordAuthenticationMiddleware(User.self)
 let memory = MemorySessions()
 let persistMiddleware = PersistMiddleware(User.self)
 let sessionsMiddleware = SessionsMiddleware(memory)
 let redirect = RedirectMiddleware.login(path: "/")
 let shoppingListController = ShoppingListController()
 let itemController = ItemController()
 let loginRoutes = grouped([sessionsMiddleware,
persistMiddleware])
 loginRoutes.get() { req in
 if req.auth.isAuthenticated(User.self) {
 return Response(redirect: "/shopping_lists")
 }
 return try self.view.make("welcome")
 }
 loginRoutes.post("login") { req in
 guard let email = req.formURLEncoded?["email"]?.string,
 let password = req.formURLEncoded?["password"]?.string
 else {
 throw Abort(.badRequest)
 }
 let credentials = Password(username: email, password:
 password)
 let user = try User.authenticate(credentials)
 req.auth.authenticate(user)
 return Response(redirect: "/shopping_lists")
 }
 let authRoutes = grouped([redirect, sessionsMiddleware,
persistMiddleware, passwordMiddleware])
 authRoutes.resource("shopping_lists", shoppingListController)
 authRoutes.resource("items", itemController)
 authRoutes.get("logout") { req in
 try req.auth.unauthenticate()
 return Response(redirect: "/")
 }
}

Adding Authentication Chapter 10

[271]

Now, all we need to do is add our Leaf template, which will render the HTML6.
forms. For this, create a new file under Resources/Views called welcome.leaf
and paste the following HTML code:

<!DOCTYPE html>
<html>
<head>
 <title>Welcome to Shopping List App</title>
 <link rel="stylesheet" href="/css/app.css">
</head>
<body>
 <div class="row grid-x">
 <form class="medium-6 columns" action="/register"
 method="post">
 <h1 class="text-center">Sign Up</h1>
 <input type="hidden" name="type" value="registerUser" />
 <input type="email" name="email" placeholder="Email"
 id="linkInput">
 <input type="text" name="name" placeholder="Name"
 id="linkInput">
 <input type="password" name="password"
 placeholder="Password" id="linkInput">
 <input class="button" type="submit" value="Sign Up">
 </form>
 <div class="columns">OR</div>
 <form class="medium-6 columns" action="/login"
 method="post">
 <h1 class="text-center">Login</h1>
 <input type="hidden" name="type" value="loginUser" />
 <input type="email" name="email" placeholder="Email"
 id="linkInput">
 <input type="password" name="password"
 placeholder="Password" id="linkInput">
 <input class="button" type="submit" value="Login">
 </form>
 </div>
 <script
src="https://code.jquery.com/jquery-3.2.1.min.js"></script>
 <script src="/js/app.js"></script>
</body>
</html>

Adding Authentication Chapter 10

[272]

Now, add the following CSS to the app.css file under the Public/css folder so7.
that it styles the form correctly:

.grid-x {
 justify-content: center;
}

div.columns {
 align-self: center;
}

form.columns {
 padding: 20px;
 max-width: 300px;
}

form input[type=submit] {
 width: 100%;
}

Build and run the app now and go to http://localhost:8080/, and you8.
should see that the welcome.leaf template is rendered with both the Login and
Sign up forms:

Adding Authentication Chapter 10

[273]

Awesome! We now have Registration and Login forms created. Go ahead and try it out.
You should be able to create a new user by typing in your email, name, and password. Once
the account is created, you can go back and log in and try to log in with the email and
password you have just entered, and you will be redirected automatically to the Shopping
Lists routes listing all of the Shopping Lists.

There is still one issue, and that is, we are displaying all Shopping Lists instead of
displaying the Shopping List belonging to the user who is logged in. That can easily be
solved by updating our ShoppingListController.

Showing user specific Shopping Lists
To show a user-specific Shopping List, we need to scope our database query. Currently, the
database query fetches all resources of the type being requested. We need to search for
resources in the database that contain user ID that equals the user ID of the requesting user.
This can be done by overriding two methods in our ShoppingListController, which
inherits from BaseResourceController. The two methods we need to override are the
index and the store method.

In the index method, we need to query for all Shopping Lists which contains the user ID of
the user making the request, and in the store method, we need to set the userId property
to the user ID of the user making the request before saving the user record in the database.
To make this work the way we want, we need to follow these steps:

Open the ShoppingListController.swift file, and inside the class, override1.
the index method with this implementation. In this method, we added one line
to get the user from the request and then filter the database query by receiving
only Shopping Lists belonging to that user:

override func index(_ req: Request) throws -> ResponseRepresentable
{
 let response = Response(status: .ok)
 let user = try req.user()
 let resources = try
ShoppingList.makeQuery().filter(ShoppingList.Keys.userId,
user.id).all()
 response.resources = resources
 return response
}

Adding Authentication Chapter 10

[274]

Next, override the store method to set the userId property before saving it as2.
follow:

override func store(_ req: Request) throws -> ResponseRepresentable
{
 let response = Response(status: .ok)
 guard let json = req.json else { throw Abort.badRequest }
 let user = try req.user()
 let list = try ShoppingList(json: json)
 list.userId = user.id!
 try list.save()
 response.resource = list
 return response
}

Now, build and run and let's test it out.3.

After going to http://localhost:8080/ and logging in using the user you just created,
you should not see any Shopping Lists. This means that our query is working as expected.
Try creating a new Shopping List, and it should create it without any errors, and reloading
the page should show you your newly creating shopping list also. You can also test whether
other users do not see your Shopping List by signing out of the session by going to
http://localhost:8080/logout and creating a new user.

Adding token-based authentication for app
Great job if you have made it this far, as you have not only added authentication and
registration to your app but also created a web app that can be used by multiple users to
create Shopping Lists and items that only they can view and edit. The way users stay
authenticated on the web is due to sessions, and they do not need to enter their password
for every request they make. This is possible due to browsers storing the session token in
the cookie of the browser, which gets sent to the server every time a request is made. Using
the token in the cookie, it is able to decipher the user making the request by looking it up in
the in-memory sessions dictionary. So this works seamlessly in the browser, but, for mobile
apps making the request, there is no cookie or way to store the cookie.

Adding Authentication Chapter 10

[275]

For such apps, we need a different type of authentication system, which is called token-
based authentication where we will send a token similar to the token stored in the cookie.
This token will be sent in the header of the request, and our Vapor app will use this token to
look up the user making the request. The token will also be issued when the app tries to
authenticate the user using the username and password. Our server will then reply with a
token that the app will store in memory or in the disk on the app so that when it makes any
request it keeps passing this token to the server for every request. To map the token to the
user ID, we will need to store the token in the database with the user ID.

Implementing this would require us to create a Token model, associate the token with a
user model, add the Token model to the list of preparations, and set up routes and
middleware for token-based authentication for our mobile app. The following are the steps
for implementing it:

Create a new file called Token.swift inside of the Models folder similar to User1.
and check the App target when creating the file.
Erase the sample code in this new file and import the following2.
dependencies first. Crypto is a new dependency, which is needed to generate a
random unique token that will be saved to the database along with the user ID:

import Vapor
import FluentProvider
import Crypto

Next, we will define our Token class and add a static generate method, which3.
will generate a random token to be used for authentication for a specific user:

final class Token: Model {
 let storage = Storage()
 var token: String
 var userId: Identifier
 var user: Parent<Token, User> {
 return parent(id: userId)
 }
 struct Keys {
 static let id = "id"
 static let token = "token"
 static let userId = "user__id"
 }
 init(string: String, user: User) throws {
 token = string
 userId = try user.assertExists()
 }
 init(row: Row) throws {
 token = try row.get(Keys.token)

Adding Authentication Chapter 10

[276]

 userId = try row.get(Keys.userId)
 }
 func makeRow() throws -> Row {
 var row = Row()
 try row.set(Keys.token, token)
 try row.set(Keys.userId, userId)
 return row
 }
 static func generate(for user: User) throws -> Token {
 let random = try Crypto.Random.bytes(count: 16)
 return try Token(string: random.base64Encoded.makeString(),
 user: user)
 }
}

Next, we will define the database preparation methods on our Token class:4.

extension Token: Preparation {
 static func prepare(_ database: Database) throws {
 try database.create(self) { builder in
 builder.id()
 builder.string(Keys.token)
 builder.parent(User.self)
 }
 }
 static func revert(_ database: Database) throws {
 try database.delete(self)
 }
}

Finally, we will implement the JSONConvertible protocol and make our5.
Token ResponseRepresentable so that it can be returned directly from the
controller instead of having to wrap it with a Response object:

extension Token: JSONRepresentable {
 func makeJSON() throws -> JSON {
 var json = JSON()
 try json.set("token", token)
 return json
 }
}
extension Token: ResponseRepresentable { }

Adding Authentication Chapter 10

[277]

Now, go to the Config+Setup.swift file and add Token to the list of6.
preparations inside the setupPreparations method as such:

 private func setupPreparations() throws {
 preparations.append(ShoppingList.self)
 preparations.append(Item.self)
 preparations.append(User.self)
 preparations.append(Token.self)
 }

Now, we need to switch to the User.swift file and make the User class7.
implement the TokenAuthenticatable protocol extension so that it can
authenticate using the Token:

final class User: Model, SessionPersistable, TokenAuthenticatable {

As part of the TokenAuthenticatable protocol, we need to specify the type of8.
our Token model, which we need to do by adding the following line inside our
User class again:

public typealias TokenType = Token

Now, the last thing we need to do is initialize the9.
TokenAuthenticationMiddleware and specify the routes under which the
token should be used to authenticate. For this, we need to switch to
the Routes.swift file and add the following lines of code toward the end of
the setupAuthenticatedRoutes method:

let tokenMiddleware = TokenAuthenticationMiddleware(User.self)
let tokenAuthRoutes = grouped(tokenMiddleware)
tokenAuthRoutes.resource("api/shopping_lists",
shoppingListController)
tokenAuthRoutes.resource("api/items", itemController)
grouped(passwordMiddleware)
 .post("api/tokens") { req in
 let user = try req.user()
 let existingToken = try
Token.makeQuery().filter(Token.Keys.userId, user.id).first()
 let token = try Token.generate(for: user)
 try token.save()
 try existingToken?.delete()
 return token
}

Adding Authentication Chapter 10

[278]

Great! Now we can build and run the server without any issues. In the preceding code, we
informed the router to run the token authentication middleware only when requests are for
/api/shopping_lists or /api/items endpoints, both of which forward requests to the
same Shopping List and item controller. The reason for having a different route is because
the existing /shopping_lists and /items routes are being authenticated using
PasswordAuthenticationMiddleware and SessionsMiddleware, which require
either email/password to be passed or the session token to be passed in the cookie to
consider the user as authenticated.

We also defined a new /tokens route, which requires password-based authentication, and
once the user has passed the email and password in the POST request to /tokens, it will
generate a new token, associate it with the user, save it in the database, and reply with that
token. Now, any future request to /api/shopping_lists or /api/items will not require
email and password to be passed in order to authenticate the user. Only passing the token
in the header is sufficient, and the request will go through to our controllers and reply with
the resources we requested:

Adding Authentication Chapter 10

[279]

Testing the token-based authentication
We can test this out using curl commands in the Terminal. To test the token-based
authentication flow, follow these steps:

Open the Terminal and generate first a base64-encoded string of email and1.
password of the user we will need to authenticate as. You can do so using the
following command in the Terminal. Replace the email with the email of the user
you created previously from the browser and password with the user's password:

$ echo -n 'ankur@email.com:password' | openssl base64

Running the preceding command will generate a base64-encoded version of the2.
username and password, and now we will use this to get the token from our
Vapor server by making a POST request to /tokens and pass the username and
email in the header using the following command:

$ curl -XPOST 'http://localhost:8080/api/tokens' -H 'Authorization:
Basic YW5rdXJAZW1haWwuY29tOnBhc3N3b3Jk'

Our server will respond back with the token, which we can be now used to make3.
request to our /api/ endpoints. We can store this token in a secure manner
and can make request using this token without having to specify user email and
password:

$ curl "http://localhost:8080/api/shopping_lists" -H
'Authorization: Bearer 8vNF7BVjIJ6fLeX3fSbUVw=='

Adding authentication flow to iOS app
Currently, our iOS will be broken as we have added password and token-based
authentication to our Vapor server. We will need to update the iOS such that we ask the
user for their email and password on launching of the app and use that to generate a token.
Then, we save the token in the UserDefaults of the app and send this token to any request
our API make from our app.

Adding Authentication Chapter 10

[280]

Since UserDefaults can only be accessed by the app itself, it is safe enough for our
Shopping List app, but for a production-ready app, you might want to consider Keychain
API to securely store the token. So let's dive into the app and see how we can update it to
support token-based authentication and get it working again:

First, open the iOS ShoppingList project in Xcode and open the Request.swift1.
file. We will be updating the request method so that we can pass headers in the
HTTP request as well. We will do this by updating the function signature to the
following:

func request(url: String, httpMethod: String = "GET", httpBody:
Data? = .none, httpHeaders: [String: String] = [String: String](),
completionHandler: @escaping (Data?, URLResponse?, Error?) throws
-> Void) {

Then, inside of the request function, we update the function body so that we2.
can set the Authorization header to be set to the token if the token is available
inside of UserDefault. The entire request function would look like this:

var request = URLRequest(url: URL(string: "\(baseUrl)\(url)")!)
var headers = httpHeaders
if let data = UserDefaults.standard.value(forKey:
String(describing: Token.self)) as? Data,
 let token = try? PropertyListDecoder().decode(Token.self, from:
data) {
 headers["Authorization"] = "Bearer \(token.token)"
}
request.httpMethod = httpMethod
if let data = httpBody {
 request.httpBody = data
 headers["content-type"] = "application/json"
}
request.allHTTPHeaderFields = headers
URLSession.shared.dataTask(with: request, completionHandler: {
data, response, error in
 DispatchQueue.main.async {
 do {
 try completionHandler(data, response, error)
 } catch {}
 }
}).resume()

Adding Authentication Chapter 10

[281]

This will cause the build to break since we have not defined the Token class yet.3.
Let's do that by creating a new empty Swift file inside of the Models folder in our
iOS project. Copy the following code to define our Token class and make it
inherit from the Codable protocol so that it is able to convert the JSON response
from the server to a token object that we can use in our code:

class Token: Codable {
 var token: String
 init(_ token: String) {
 self.token = token
 }
}

Now, we should be able to build our project successfully without any errors.4.
Next, we will add a new view controller where the users will enter their
credentials and the view controller will make a request to our /tokens endpoint to
generate a token, and if it is successful, then it will take the user to the
ShoppingListTableViewController, where it will make the network request
with the token. To add this new view controller, add a new Cocoa class to the
Controllers directory and call it LoginViewController and inherit from
UIViewController as such:

Adding Authentication Chapter 10

[282]

Then, copy the following code into the view controller:5.

import UIKit
class LoginViewController: UIViewController {
@IBOutlet weak var emailField: UITextField!
 @IBOutlet weak var passwordField: UITextField!

 override func viewDidLoad() {
 super.viewDidLoad()
 if let data = UserDefaults.standard.value(forKey:
 String(describing: Token.self)) as? Data,
 let _ = try? PropertyListDecoder().decode(Token.self,
 from: data) {
 self.performSegue(withIdentifier: "showShoppingList",
 sender: self)
 }
 }
@IBAction func didSelectLoginButton(_ sender: UIButton) {
 let emailPassword = "\(emailField.text!):\
 (passwordField.text!)"
 let base64EncodedEmailPassword =
 Data(emailPassword.utf8).base64EncodedString()
 request(url: "/tokens",
 httpMethod: "POST",
 httpHeaders: ["Authorization": "Basic \
 (base64EncodedEmailPassword)"]) {
 data, _, _ in
 do {
 let decoder = JSONDecoder()
 let token = try decoder.decode(Token.self, from: data!)
 let encoder = try? PropertyListEncoder().encode(token)
 UserDefaults.standard.set(encoder, forKey:
 String(describing: Token.self))
 UserDefaults.standard.synchronize()
 self.passwordField.text = ""
 self.performSegue(withIdentifier: "showShoppingList",
 sender: self)
 } catch {
 let alertController = UIAlertController(title: "Error
 Logging In", message:
 "Email or password is wrong. Please check your
 credentials and try again.", preferredStyle: .alert)
 alertController.addAction(UIAlertAction(title:
 "Dismiss", style: .default))
 self.present(alertController, animated: true)
 }
 }

Adding Authentication Chapter 10

[283]

 }
}

Next, we need to update our BaseURL and prefix it with /api since we updated6.
the token-based routes to live under /api so that the token middleware can
authenticate instead. To do so, open the Info.plist file and change the
BaseURL to point to the following URL:

http://localhost:8080/api

Lastly, we will add the following method to the7.
ShoppingListTableViewController as we will add a Logout button on the
top-left corner of the navigation bar so that the user can log out of their session.
This is as simple as adding the following method to the
ShoppingListTableViewController class; this method removes the token
from UserDefaults and dismisses the Shopping List view and takes us back to
the Login view:

@IBAction func didSelectLogoutButton(_ sender: UIBarButtonItem) {
 UserDefaults.standard.removeObject(forKey: String(describing:
 Token.self))
 UserDefaults.standard.synchronize()
 self.dismiss(animated: true)
}

That is it in terms of updating our code. The app should build successfully, but it will not
work just yet. We still need to update our Main Storyboard so that we can show the
LoginViewController as the initial view controller and have it transition to the
ShoppingListViewController if the token is set in the UserDefaults. Let's take a look
at how we can do that.

Bringing it all together in the Storyboard
To get our app working again with our Vapor API using token-based authentication, we
need to add a new View Controller to our storyboard, which is the entry point of our app.
This view controller will be the LoginViewController, and it will show the
ShoppingListView controller if there is a token in the UserDefaults already. This
transition will take place using segues. If you are not familiar with segues, then they are a
way in Xcode to create a transition between two view controllers, and you can specify the
type of animation or transition you want between the two view controllers.

Adding Authentication Chapter 10

[284]

Segues can be invoked programmatically like we will do in LoginViewController or can
be invoked due to a touch event, such as a user selection of a Shopping List inside of the
table view causing the ShoppingListViewController to transition to the
ItemTableViewController. We will also configure the UI in the storyboard by adding
two text fields, which will store the user's email and password, and add a button to submit
the credentials to our API server to generate a token. So let's dive into the storyboard and
make the following changes:

Open the Main.storyboard file and drag a new Navigation Controller into the1.
Storyboard and delete the Table View Controller that the Navigation Controller
came with by default:

Adding Authentication Chapter 10

[285]

After deleting it, drag a simple View Controller into the Storyboard:2.

Make the new View Controller the root view controller of the Navigation3.
Controller by pressing the Control key and dragging from the Navigation
Controller to the View Controller and selecting the root view controller menu
item:

Adding Authentication Chapter 10

[286]

Now, set the Custom Class of the new View Controller to LoginViewController:4.

Now, drag a View into the LoginViewController object as we do not have a View5.
inside of our LoginViewController in our Storyboard.
Then, drag two Text Fields into the LoginViewController. One will be for email6.
and another for password. Add them, one below the other, toward the top of the
view and align them to the center as such.

Adding Authentication Chapter 10

[287]

Now, drag a button that will submit the login request when it is pressed:7.

Adding Authentication Chapter 10

[288]

Set the arrangement of the text fields and buttons using AutoLayout. If you are8.
not familiar with AutoLayout, then think of it as a way to arrange UI components
in the app such that they will adjust to different screen sizes of different iOS
devices. Here, we set the top, left, and right margins to be 16 pixels for the email
text field.

Adding Authentication Chapter 10

[289]

Next, set the same 16px margin for the password text field:9.

Adding Authentication Chapter 10

[290]

Finally, set the same margins for the button:10.

Select the first Text Field and set the Placeholder to be Email. Placeholder can be11.
found inside the Attributes Inspector inside the right panel.
Select the second Text Field and set the Placeholder to be Password. Also, check12.
the Secure Text Entry checkbox so that it does not reveal the password as a plain
text.
Rename the Button to Login.13.

Adding Authentication Chapter 10

[291]

Now, press Control and drag from the LoginViewController to the Email Field14.
and select emailField:

Similarly, press Control and drag from the LoginViewController to the15.
Password Field and select passwordField:

Now, drag from the Login button to the LoginViewController and select16.
the didSelectLoginButton: method:

Adding Authentication Chapter 10

[292]

Now that we have LoginViewController configured, we need to create a segue17.
between our LoginViewController and the Navigation Controller of the
Shopping List. This is easy to do by pressing Control and dragging from the
LoginViewController to the Navigation Controller of the Shopping List
Table View Controller as such. In the segue, select Present Modally:

Adding Authentication Chapter 10

[293]

Now, click on the segue, and inside the Attributes Inspector, set the Identifier18.
to showShoppingList:

Adding Authentication Chapter 10

[294]

Drag a Bar Button Item and place it on the top-left corner of the Shopping List19.
Table View Controller:

Rename the button to Logout, and press control and click and drag the button to20.
the Shopping List Table View Controller and select the didSelectLogoutButton:
method:

Adding Authentication Chapter 10

[295]

Set the Title of the Navigation Item in the LoginViewController to Login and21.
Prompt to Shopping List App:

Adding Authentication Chapter 10

[296]

Finally, drag the Storyboard Entry point to point to the Navigation Controller for22.
the LoginViewController, and build and run the app:

Adding Authentication Chapter 10

[297]

Great job! You can now build and run the app, and everything should work. Awesome! We
can now log in using our user account and only see Shopping Lists belonging to that user.
We can also edit, delete, and create new Shopping Lists and items that the user owns. We
just converted our single user app into multiuser simply by adding a user model in the
backend. Thanks to Vapor's AuthProvider, all we have to do was set up some routes to
handle the authentication for us:

Adding Authentication Chapter 10

[298]

Summary
In this chapter, we covered a lot of topics. We not only transformed our backend, but also
both our web and native iOS frontend views that communicate with the backend. By now,
you should have a good understanding of how to add User model to a Vapor application to
make the app multiuser. You should also have a good background on how to store user
information, including passwords, and how the authentication and persistence of session
works in the browser after authentication. Lastly, you should know how to add token-based
authentication to a Vapor app and how the token-based authentication works and the steps
involved in it. In iOS land, we also covered how to conditionally load a Login View and
store and make requests to the server using the token. There are still few things we did not
cover, which include adding a registration view in the iOS app to register if a user does not
have an account already, but you can implement it as an extra credit exercise.

In the next chapter, we will end the book by building on top of the same app but by making
a tvOS version of the app. We will see how easy it is to build a tvOS version of this app with
maximum code shareability. Developing an app nowadays is not just about building an app
for iOS or Android. It is about building an ecosystem of apps across different platforms,
and here we have an app that runs on iOS, on the browser, and, in the next chapter, we will
have it build on tvOS, all using Swift.

11
Building a tvOS App

You made it to the final chapter! By now, you should have a good understanding of both
native iOS development and full stack web development using Vapor. We have covered
several topics in the previous chapters regarding adding authentication and authorization
to both our backend and to our iOS app. In this chapter, we will end the book by extending
our app to work on the tvOS platform. As we learned before, building a product is more
than just building an app. It involves building several apps across different platforms.
Using Swift, now, we are able to build for different platforms, improving productivity and
code shareability. This productivity gain helps a small team of iOS developers build an
entire ecosystem of the application by themselves and compete with large companies.

In this chapter, we will finish off our app by building a tvOS version of it. Doing so, you
will learn how easy it is to build a tvOS app from an existing iOS app and how we can share
code across both of the apps, helping us build an app for another platform without much
effort. In this final chapter, we will cover the following topics:

How to create a tvOS target for our app
How to make the code base work with both the tvOS and iOS platforms
How to configure a tvOS storyboard such that it works with both the iOS and
tvOS platforms

So let's get started and take a look at how to build a tvOS version of our Shopping List app.

Shopping List app on tvOS
After the announcement of tvOS, Apple TV became another platform that Swift developers
could build apps for, just like iPhone or Mac. tvOS is the operating system that runs on
Apple TV, and it has a lot more similarities to iOS than macOS. tvOS uses the same
frameworks used in iOS, making it more of an extension of an app on the TV platform.

Building a tvOS App Chapter 11

[300]

For our Shopping List app, we will build a tvOS target, which will run on Apple TV. This
app, just like the iOS version, will prompt the user to log in if they are not already logged
in, and if they are, then it will take them to their shopping lists. The best part of making this
tvOS app is that we will be able to use almost all from the code of our iOS app. All we need
to do is configure the UI for the tvOS app in the tvOS storyboard. To see this in action, let's
start building the tvOS app using the following steps:

Open the ShoppingList workspace in Xcode, and select the ShoppingList iOS1.
Project. Inside the TARGETS section, click on the + icon to add a new target:

Building a tvOS App Chapter 11

[301]

In the new target modal, select tvOS as the platform and then select Single View2.
App and click on Next:

Building a tvOS App Chapter 11

[302]

Set Product Name to ShoppingListTV and click on Finish:3.

This will create a new ShoppingListTV target and also add a4.
new ShoppingListTV folder, which will contain boilerplate code for our tvOS
app:

Building a tvOS App Chapter 11

[303]

You should now see a new scheme to run the ShoppingListTV app. Select the5.
Apple TV 4K (at 1080p) simulator and run the app:

The app should start running on the Apple TV Simulator, and you should see an6.
empty screen similar to the following:

Building a tvOS App Chapter 11

[304]

Awesome! We have just created a basic Hello World version of a tvOS app. To understand
why we see this screen, we will need to open up Main.storyboard inside
the ShoppingListTV folder. You will see an empty View Controller, which is set as the
entry point of our app:

Building a tvOS App Chapter 11

[305]

Sharing code between iOS and tvOS
To share code between our iOS and tvOS app, we will need to let Xcode know the Swift files
that need to be shared across different targets. This is easy to do by simply checking the
targets a Swift file should be part of when compiling and building the product:

Building a tvOS App Chapter 11

[306]

Select one of the Swift files inside the ShoppingList app folder, and you should see
ShoppingList and ShoppingListTV under Target Membership inside File Inspector on
the right side of the screen. Check the ShoppingListTV target. Now, go through the
remaining Swift files inside the ShoppingList iOS app, except for AppDelegate.swift,
and check the ShoppingListTV target, as we will share all of this code with the tvOS app.
Once you are done, try building the app. You should encounter a bunch of errors, as our
code will not work with tvOS just out-of-the-box. We will need to tweak some lines of code,
as some APIs available in iOS are not available in tvOS. One such example is the usage
of prefersLargeTitles, which is a new property added to the navigation bar only
available in iOS 11:

Building a tvOS App Chapter 11

[307]

Making code work with both iOS and tvOS apps
To make this work in tvOS, we will need to use the same strategy we used for server-side
Swift to support macOS and Linux platforms. Using directives, we can specify the compiler
to omit some lines of code on the tvOS platform or include some code only for the tvOS
platform. Let's take a look at how we can fix our code by following the steps:

Open the ItemTableViewController.swift file, and go to the line causing the1.
error inside the viewDidLoad method. The error is thrown because
prefersLargeTitle is not available as a property on navigationBar. To omit
this line of code on the tvOS platform, we can wrap the code with the #if
TARGET_OS_IOS directive, as follows:

#if TARGET_OS_IOS
navigationController?.navigationBar.prefersLargeTitles = true
#endif

Next, open the ShoppingListTableViewController.swift file and wrap the2.
prefersLargeTitles and the UIRefreshControl inside this directive as it is
not available in tvOS. Make sure that you keep the line of code to add
editButtonItem outside the #if block:

#if TARGET_OS_IOS
navigationController?.navigationBar.prefersLargeTitles = true
refreshControl = UIRefreshControl()
refreshControl?.addTarget(self, action:
#selector(didPullDownForRefresh), for: .valueChanged)
#endif

To trigger a refresh of data on tvOS, we will add a refresh button to the3.
navigation bar in our tvOS storyboard. We will also need to add the following
method to our controller so that we can trigger this method when the refresh
button is pressed from the tvOS remote:

@IBAction func didSelectRefreshButton(_ sender: UIBarButtonItem) {
 loadData()
}

Building a tvOS App Chapter 11

[308]

Next, let's wrap the didPullDownForRefresh method with the iOS platform4.
directive so that it is excluded from being included in our tvOS build:

#if TARGET_OS_IOS
@objc func didPullDownForRefresh(_ sender: UIRefreshControl) {
 loadData()
}
#endif

Also, add the iOS platform directive to the endRefreshing method, calling on5.
refreshControl inside the ShoppingList.load closure function:

#if TARGET_OS_IOS
self.refreshControl?.endRefreshing()
#endif

The last thing we will need to do is copy the two configurations from our iOS6.
Info.plist file to the tvOS Info.plist file. Simple, right-click on the
Info.plist file in the ShoppingListTV folder, and navigate to Open As |
Source Code from the menu. Add these two configs toward the end of the file
inside the plist | dict tag. This will allow our tvOS app to make a network
request and also make a request to our localhost API endpoint:

Building a tvOS App Chapter 11

[309]

<key>NSAppTransportSecurity</key>
<dict>
 <key>NSAllowsArbitraryLoads</key>
 <true/>
</dict>
<key>BaseURL</key>
<string>http://localhost:8080/api</string>

That is it for code changes, and now we can build our app; it should compile without any
errors. It will still not work when we run it, as we have not configured the Storyboard yet.
In the next section, we will discuss how to configure the tvOS Storyboard.

Configuring the tvOS storyboard
To get our tvOS App to show the Login, Shopping List, and Item screen, we will need to
add these view controllers to our tvOS storyboard and link them using segues, as we did in
our iOS Storyboard. We will also need to link the IBAction, which are methods that the
view calls on the touch of certain UI controls, such as UIButton or selection of a table view
cell. We also need to link the IBOutlets, such as the email and password fields, so that we
can reference them in our controller and get the value that was entered by the user. So, let's
wire up our Storyboard and get our tvOS App working by following these steps:

First, inside the ShoppingListTV folder, delete the ViewController.swift1.
file, as we will not be using that. Just move the file to trash if prompted.

Building a tvOS App Chapter 11

[310]

Open the Main.storyboard of the tvOS app and select the View2.
Controller. Then open the Identity inspector and change the Custom Class to
LoginViewController:

Building a tvOS App Chapter 11

[311]

Next, drag the Navigation Controller, which will add a Navigation Controller3.
and a Root View Controller to the storyboard:

Building a tvOS App Chapter 11

[312]

Now, hold Control, click and drag from Navigation Controller to the Login View4.
Controller and set it as the root view controller:

Building a tvOS App Chapter 11

[313]

Select the Root View Controller, which is the Table View Controller, and change5.
the Custom Class to ShoppingListTableViewController:

Building a tvOS App Chapter 11

[314]

Also, click on the Navigation Item inside this Shopping List Table View6.
Controller scene and remove the Title and press Enter:

Building a tvOS App Chapter 11

[315]

Next, press Control, click and drag from the Login View Controller to the7.
Shopping List Table View Controller, and select Show under Manual Segue:

Building a tvOS App Chapter 11

[316]

Select the Segue that just got created and set the Identifier to8.
showShoppingList inside the Attributes inspector:

Building a tvOS App Chapter 11

[317]

Inside the Shopping List Table View Controller, select the Table View Cell, and9.
inside the Attributes inspector, set the Style to Basic, Identifier to ListCell,
and Accessory to Disclosure Indicator:

Building a tvOS App Chapter 11

[318]

Now, add a new Table View Controller by dragging it from the Object library.10.
Set the Custom Class to ItemTableViewController:11.

Similar to the Shopping List Cell, select Table View Cell from the Item Table12.
View Controller and set the Style to Basic, Identifier to ItemCell, and
Accessory to Checkmark.

Building a tvOS App Chapter 11

[319]

Now, press the Control key, click and drag from the List Cell to the Item Table13.
View Controller, and select Show under Selection Segue:

Now, return to the Login View Controller and select the Navigation Item inside14.
it and set the Title to Shopping List Login.

Building a tvOS App Chapter 11

[320]

Now, drag two text fields from the Object library and place them in the Login15.
View Controller scene and also drag a Button and place it below the two input
fields. Just like the iOS app center, align the two fields and the button and change
the text in the button to Login:

Building a tvOS App Chapter 11

[321]

Select the first field and set the Placeholder to Email and select the second text16.
field and set the Placeholder to Password, and check the Secure Text Entry
checkbox inside the Attributes inspector.

Now, press the Control key, click and drag from the Login View Controller to the17.
Email text field, and select emailField:

Building a tvOS App Chapter 11

[322]

Similarly,press the Control key, click and drag from the Login View Controller to18.
the Password text field and select passwordField:

Now, press the Control key, click and drag from the Login button to the Login19.
View Controller, and select the didSelectLoginButton: under Sent Events:

Building a tvOS App Chapter 11

[323]

For the last part, we will now drag three UI Bar buttons to the navigation bar of20.
the Shopping List Table View Controller. Drag one Bar Button Item from the
Object library to the top-left corner of the Navigation bar. Rename the text of the
button to Logout:

Building a tvOS App Chapter 11

[324]

Now, press Control, click and drag from the Logout Button to the Shopping List21.
Table View Controller, and select didSelectLogoutButton: as shown in the
following screenshot:

Next, drag a Bar Button Item to the top-right corner of the navigation bar. Select22.
it and change the System Item to Add from the Attributes Inspector:

Building a tvOS App Chapter 11

[325]

Now, press Control, click and drag from the Add button to the Shopping List23.
Table View Controller, and select didSelectAdd: as shown in the following
screenshot:

Now, drag one more Bar Button Item to the top-right corner of the navigation24.
bar. Select it and change the System Item to Refresh from the Attributes
Inspector.
Now, press Control, click and drag from the Refresh button to the Shopping List25.
Table View Controller, and select didSelectRefreshButton: as shown in the
following screenshot:

Building a tvOS App Chapter 11

[326]

The last thing to do is move the Storyboard Entry Point to the Navigation26.
Controller:

Building a tvOS App Chapter 11

[327]

Awesome! Now, build and run your app, and make sure that you have the server app
running. You should see the Shopping List App on Apple TV simulator now as a
standalone tvOS App. After the app launches, you should see the email and password fields
and a Login button:

Building a tvOS App Chapter 11

[328]

Once you log in, you should see your shopping lists in a similar table view format tothe iOS
app. You can delete a shopping list by selecting Edit, or reload by pressing the refresh
button. You can also add a new Shopping List by pressing the + button:

Building a tvOS App Chapter 11

[329]

Selecting a shopping list will show you the list of items inside of this list, and you can tap
on the item to check and uncheck them. To return to the menu page, you can click on the
Menu button:

Building a tvOS App Chapter 11

[330]

You should also be able to add a new shopping list by pressing the Add button, and it
should show the prompt as a modal with a text field to enter the name:

Summary
Congratulations on making it through to the end of the book. You have gone through a
developer journey of building a product across different platforms using one language by
yourself. I hope this demonstrates the power of how one person can build not only a single
app but come up with an architecture for a product and create multiple apps and services
that communicate with each other to create a product, all using one language, Swift.

Building a tvOS App Chapter 11

[331]

Swift, a language that was once announced as a new language in 2014, has quickly taken
over different platforms, including Linux, which opens up the opportunity for developers
to build not only CLI tools and services but servers using it. We have seen this in Chapter
3, Getting Started with Vapor, and dove into more detail in the later chapters. We have also
seen how Swift and Apple advances in Xcode, and development practices have made it
easy to build an app in pure Swift using the Model View Controller Pattern and Storyboard
in Chapter 3, Getting Started with Vapor. We discussed how to build a RESTful API and a
web server using Vapor, as well as how to integrate that API into the iOS app we build. We
also discussed how to extend this app support to multiple users, and the ability for users to
register and authenticate themselves both on the web using sessions and on the iOS app
using tokens. Lastly, we touched upon how to build a tvOS app that makes our Shopping
List product a multiple platform app, with maximum code shareability with our iOS app.

Besides these high-level topics, now, you should have a better understanding of how to
build a full stack web application that can render HTML and JSON responses. Topics such
as database providers, preparations, and relations were covered to help you understand the
depth of the work involved in creating a backend for a frontend application. Also, we
covered the best practices when it comes to web development, such as setting up an
automated pipeline to run our tests and automatically deploy our code to a cloud service
such as Heroku on a successful build and test run of our app.

We hope that you go on to new projects using Swift as your language, as you now have the
toolset necessary to build a full stack multi-platform product using Swift by yourself or
with a small team of people. It is sincerely hoped that this book demonstrated the power of
modern Swift development, as well as building consumer-facing applications and backend
services and servers using Swift and familiar tools such as Xcode to make development fun,
easy, and enjoyable.

The following are a few resources that you might find useful in your journey of ongoing
learning in the world of Swift:

Diving deep into Swift: https:/ ​/​www.​packtpub. ​com/ ​application- ​development/
diving-​deep- ​swift- ​integrated- ​course- ​0
Test-driven iOS development with Swift 4: https:/ ​/​www. ​packtpub. ​com/
application- ​development/ ​test- ​driven- ​ios- ​development- ​swift- ​4-​third-
edition

iOS 11 Programming with
Swift: https://www.packtpub.com/application-development/ios-11-programm
ing-swift-video

https://www.packtpub.com/application-development/diving-deep-swift-integrated-course-0
https://www.packtpub.com/application-development/diving-deep-swift-integrated-course-0
https://www.packtpub.com/application-development/diving-deep-swift-integrated-course-0
https://www.packtpub.com/application-development/diving-deep-swift-integrated-course-0
https://www.packtpub.com/application-development/diving-deep-swift-integrated-course-0
https://www.packtpub.com/application-development/diving-deep-swift-integrated-course-0
https://www.packtpub.com/application-development/diving-deep-swift-integrated-course-0
https://www.packtpub.com/application-development/diving-deep-swift-integrated-course-0
https://www.packtpub.com/application-development/diving-deep-swift-integrated-course-0
https://www.packtpub.com/application-development/diving-deep-swift-integrated-course-0
https://www.packtpub.com/application-development/diving-deep-swift-integrated-course-0
https://www.packtpub.com/application-development/diving-deep-swift-integrated-course-0
https://www.packtpub.com/application-development/diving-deep-swift-integrated-course-0
https://www.packtpub.com/application-development/diving-deep-swift-integrated-course-0
https://www.packtpub.com/application-development/diving-deep-swift-integrated-course-0
https://www.packtpub.com/application-development/diving-deep-swift-integrated-course-0
https://www.packtpub.com/application-development/diving-deep-swift-integrated-course-0
https://www.packtpub.com/application-development/diving-deep-swift-integrated-course-0
https://www.packtpub.com/application-development/diving-deep-swift-integrated-course-0
https://www.packtpub.com/application-development/diving-deep-swift-integrated-course-0
https://www.packtpub.com/application-development/diving-deep-swift-integrated-course-0
https://www.packtpub.com/application-development/diving-deep-swift-integrated-course-0
https://www.packtpub.com/application-development/diving-deep-swift-integrated-course-0
https://www.packtpub.com/application-development/diving-deep-swift-integrated-course-0
https://www.packtpub.com/application-development/test-driven-ios-development-swift-4-third-edition
https://www.packtpub.com/application-development/test-driven-ios-development-swift-4-third-edition
https://www.packtpub.com/application-development/test-driven-ios-development-swift-4-third-edition
https://www.packtpub.com/application-development/test-driven-ios-development-swift-4-third-edition
https://www.packtpub.com/application-development/test-driven-ios-development-swift-4-third-edition
https://www.packtpub.com/application-development/test-driven-ios-development-swift-4-third-edition
https://www.packtpub.com/application-development/test-driven-ios-development-swift-4-third-edition
https://www.packtpub.com/application-development/test-driven-ios-development-swift-4-third-edition
https://www.packtpub.com/application-development/test-driven-ios-development-swift-4-third-edition
https://www.packtpub.com/application-development/test-driven-ios-development-swift-4-third-edition
https://www.packtpub.com/application-development/test-driven-ios-development-swift-4-third-edition
https://www.packtpub.com/application-development/test-driven-ios-development-swift-4-third-edition
https://www.packtpub.com/application-development/test-driven-ios-development-swift-4-third-edition
https://www.packtpub.com/application-development/test-driven-ios-development-swift-4-third-edition
https://www.packtpub.com/application-development/test-driven-ios-development-swift-4-third-edition
https://www.packtpub.com/application-development/test-driven-ios-development-swift-4-third-edition
https://www.packtpub.com/application-development/test-driven-ios-development-swift-4-third-edition
https://www.packtpub.com/application-development/test-driven-ios-development-swift-4-third-edition
https://www.packtpub.com/application-development/test-driven-ios-development-swift-4-third-edition
https://www.packtpub.com/application-development/test-driven-ios-development-swift-4-third-edition
https://www.packtpub.com/application-development/test-driven-ios-development-swift-4-third-edition
https://www.packtpub.com/application-development/test-driven-ios-development-swift-4-third-edition
https://www.packtpub.com/application-development/test-driven-ios-development-swift-4-third-edition
https://www.packtpub.com/application-development/test-driven-ios-development-swift-4-third-edition
https://www.packtpub.com/application-development/test-driven-ios-development-swift-4-third-edition
https://www.packtpub.com/application-development/test-driven-ios-development-swift-4-third-edition
https://www.packtpub.com/application-development/test-driven-ios-development-swift-4-third-edition
https://www.packtpub.com/application-development/ios-11-programming-swift-video
https://www.packtpub.com/application-development/ios-11-programming-swift-video

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Mastering Swift 4 - Fourth Edition
Jon Hoffman

ISBN: 978-1-78847-780-2

Delve into the core components of Swift 4.0, including operators, collections,
control flows, and functions
Create and use classes, structures, and enumerations
Understand protocol-oriented design and see how it can help you write better
code
Develop a practical understanding of subscripts and extensions
Add concurrency to your applications using Grand Central Dispatch and
Operation Queues
Implement generics and closures to write very flexible and reusable code
Make use of Swift’s error handling and availability features to write safer code

https://www.packtpub.com/application-development/mastering-swift-4-fourth-edition

Other Books You May Enjoy

[333]

Reactive Programming with Swift 4
Navdeep Singh

ISBN: 978-1-78712-021-1

Understand the practical benefits of Rx on a mobile platform
Explore the building blocks of Rx, and Rx data flows with marble diagrams
Learn how to convert an existing code base into RxSwift code base
Learn how to debug and test your Rx Code
Work with Playgrounds to transform sequences by filtering them using map,
flatmap and other operators
Learn how to combine different operators to work with Events in a more
controlled manner.
Discover RxCocoa and convert your simple UI elements to Reactive components
Build a complete RxSwift app using MVVM as design pattern

https://www.packtpub.com/application-development/reactive-programming-swift-4

Other Books You May Enjoy

[334]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
app
 debugging 181, 184
authentication flow
 adding, to iOS application 279, 281, 283, 286,

287, 288, 290, 293, 295, 297
automated testing pipeline
 about 236, 239, 241, 242
 Travis build check, enabling on Pull request 243
Automatic Reference Counting (ARC) 8

B
BaseResourceController
 creating 212, 214, 217
basic HTTP server
 building 78, 79
BCrypt 260

C
children 122
code
 sharing, between iOS and tvOS app 305
 working, with iOS and tvOS app 307
Continuous Deployment (CD)
 about 246
 setting up 256, 257
Continuous Integration (CI) 236, 246
Controllers 99
controllers
 in Vapor 150
 RESTful Controller 150, 152, 153
 Shopping List controller 154, 155
Create, Read, Update, and Delete (CRUD) 120

D
data
 fetching, from server 176, 177, 178, 180
database management system 112
databases
 about 112
 MongoDB 113
Directives 28

E
Entity protocol 141

F
flow of application
 controlling, View Controller used 39, 42
Fluent
 about 115
 in action 115, 117
 item finding, filter used 119
 item, counting 120
 item, creating 118
 item, deleting 120
 item, finding 119
 item, obtaining 119
 item, updating 119
 many to many 123
 one to many 122
 one to one 121
 relations 120

G
Generics 208

[336]

H
Heroku
 app, priming for deployment 250
 deploying 247, 249
 MongoDB Heroku addon, adding 254, 255
 Vapor, configuring 250, 252
 Vapor, deploying 250, 252
Horizontal scaling 247
HTML formats 208
HTTP methods 134
HTTP request 21
HTTP response 21

I
item
 adding 220
 adding, to list 51, 52, 53, 55
 checking 222
 deleting 221
 unchecking 222

J
JavaScript
 adding 218
 item, adding 220
 item, checking 222
 item, deleting 221
 item, unchecking 222
 Shopping List, creating 219
 Shopping List, deleting 220
JSON
 serving 208
Just-In-Time (JIT) 8

K
Kitura 29

L
Leaf 199, 200, 202
Leaf Provider
 adding 203, 204, 205, 207
List Cell 319
list

 editing 55, 57, 59
Low Level Virtual Machine (LLVM) 8

M
macOS 28
middleware
 creating 208, 209, 211
mobile application
 data, requesting 21
Model View Controller (MVC) 75
modern app development 8
mongo 125
Mongo config 126
mongodb services 237
MongoDB
 about 113
 connecting 125
 executing 113
 Fluent config, configuring 125
 installing 113
MongoProvider
 adding 127, 129, 131
multiple lists
 about 62
 share code, refactoring 62
 Shopping List Model, blueprinting 63, 65
 Shopping List Table View Controller 66, 68, 71,

72

N
network configuration 173, 174
network requests
 creating 172, 174

O
object-relational mapping (ORM) 114
operating system (OS) 9

P
parent 122
Perfect 29
Procfile 250
Providers
 about 104

[337]

 adding 110
 building 104, 107, 108
 exercise time 109

R
relational databases 112
Representational State Transfer (REST) 99
REST API
 in action 156
 items, creating 160, 162
 Shopping List, creating 156
 Shopping List, deleting 160
 Shopping List, obtaining 157
 Shopping List, updating 159
RESTful routes
 Shopping List, creating 232, 233
 Shopping List, deleting 233
 Shopping List, fetching 231
 Shopping List, updating 234
 testing 230

S
segues 283
server side
 debugging 181, 184
server-side Swift
 benefits 10
server-side web frameworks 28
servers
 building, Vapor engine used 77
SHA-256 260
sharding 113
share code
 refactoring 62
Shopping List API
 Vapor application 102
Shopping List app
 auto-saving 60, 61
 features 33
 loading 60, 61
 on tvOS 299, 301, 302, 304
Shopping List item model
 blueprinting 37
 example 39

Shopping List Item
 adding 191, 192, 193
 checking 195, 196
 deleting 194
 unchecking 195, 196
Shopping List Model
 about 142
 blueprinting 63, 65
Shopping List Table View Controller 66, 68, 71, 72
Shopping List
 about 266, 267
 adding 185, 187, 188
 creating 219
 deleting 189, 191, 220
 example 191
static file server
 building 80
structured query language 114
Swift package manager
 about 11
 building 12, 14, 15
 consuming 16, 17
 package's executable, installing 19
 publishing 15
Swift's evolution
 about 8
 open source 9
 server-side Swift 9
Swift
 web server, building 24, 26, 28

T
Table View Controller 40, 47, 48, 50
token-based authentication
 about 275
 adding, for app 274, 276, 278
 testing 279
Travis build check
 enabling, on Pull request 245
Travis CI 236
tvOS storyboard
 configuring 309, 312, 314, 317, 318, 322, 324,

325, 329

U
User model
 about 262, 263, 264, 265
 creating 260
 password storing, best practices 260
user specific Shopping List
 displaying 273

V
Vapor application
 building, from scratch 85, 86
 deploying 246
 Leaf 199, 200, 202
 test environment, setting up 225
 testing 225
 tests, executing 226, 228, 230
 view rendering 199
Vapor engine
 basic HTTP server, building 78, 79
 static file server, building 80
 used, for building servers 77
 WebSocket server, building 82, 84
Vapor folder structure
 about 93
 config 94, 96
 Controllers 99
 droplet 96
 Views 98
Vapor Model
 about 141
 Item Model 147
 JSONConvertible protocol 145
 Preparation protocol 144
 ResponseRepresentable protocol 146
 Shopping List Model 142
 Updateable protocol 146
Vapor toolbox

 about 87
 commands 88, 89
 installing 87
 used, for creating Vapor application 90, 92
Vapor
 about 29, 76
 controllers in 150
 dynamic routing 138, 139
 HTTP methods 134
 nested routing 138
 parameters, routing 140
 routers 135, 137
 routing 134
 URL 29
 wildcard routing 140
View Controller
 about 310
 used, for controlling flow of application 39, 42
view
 wiring up 42, 44, 46
Views 98

W
web page
 login, adding 268, 270, 271, 272
 registration, adding 268, 270, 271, 272
 user requesting 19
web server
 building, in Swift 24, 26, 28
 working 19
WebSocket server
 building 82, 84

X
Xcode app
 creating 34, 36
Xcode Workspace 165, 167, 169, 170, 172

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Getting Started with Server Swift
	Modern app development
	Swift's evolution
	Open source
	Server-side Swift

	Benefits of server-side Swift
	Getting started with Swift package manager
	Building a Swift package
	Publishing a Swift package
	Consuming a Swift package
	Installing the package's executable

	How do the web servers work?
	User requesting a web page
	Mobile application requesting data
	HTTP request and response

	Building a web server in Swift
	Server-side web frameworks
	Vapor

	Book roadmap
	Summary

	Chapter 2: Creating the Native App
	Features of our Shopping List app
	Creating an app
	Blueprinting the Shopping List Item model
	Exercise
	Exercise answer

	Controlling the flow of our application using View Controller
	Wiring up the view
	Table View Controller

	Adding items to the list
	Editing the list
	Loading and auto-saving the Shopping List
	Multiple lists
	Refactoring to share code
	Blueprinting the Shopping List Model
	The Shopping List Table View Controller

	Summary

	Chapter 3: Getting Started with Vapor
	What is Vapor?
	Building servers using Vapor's engine
	Building a basic HTTP server
	Building a static file server
	Building a WebSocket server

	Building a Vapor application from scratch
	Vapor toolbox
	Installing the Vapor toolbox
	Vapor toolbox commands
	Creating a Vapor application using the toolbox

	Vapor folder structure
	Vapor config
	Vapor droplet
	Views
	Controllers

	Summary

	Configuring Providers, Fluent, and Chapter 4: Databases
	Shopping List API Vapor app
	What are Providers?
	Building your first Provider
	Exercise time
	Adding a Provider

	Getting started with databases
	What is MongoDB?
	How to install and run MongoDB

	What are ORM and Fluent?
	Fluent in action
	Creating an item
	Updating an item
	Getting all items
	Finding an item
	Finding items using filter
	Deleting an item
	Counting items

	Relations in Fluent
	One to one (parent-child relation)
	One to many
	Many to many

	Connecting with MongoDB
	Configuring Fluent config
	Mongo config - mongo.json
	Adding MongoProvider

	Summary

	Chapter 5: Building a REST API using Vapor
	Routing in Vapor
	HTTP methods
	Routers
	Nested routing
	Dynamic routing
	Wildcard routing
	Routing parameters

	Vapor Models
	The Shopping List Model
	Preparation protocol
	JSONConvertible protocol
	ResponseRepresentable protocol
	Updateable protocol
	Item Model

	Controllers in Vapor
	RESTful Controller
	Shopping List controller

	REST API in action
	Creating the Shopping List
	Getting the Shopping List
	Updating the Shopping List
	Deleting the Shopping List
	Creating items

	Exercise
	Summary

	Chapter 6: Consuming API in App
	Xcode Workspace
	Making network requests
	Network configuration
	Request helper

	Fetching data from the server
	Debugging the app and server side by side
	Adding a Shopping List
	Deleting a Shopping List
	Exercise

	Adding a Shopping List Item
	Deleting an item
	Checking and unchecking an item
	Summary

	Chapter 7: Creating Web Views and Middleware
	View rendering in Vapor app
	What is Leaf?

	Adding Leaf Provider
	Serving JSON and HTML formats
	Creating a middleware
	Creating a BaseResourceController

	Adding JavaScript
	Creating a new Shopping List
	Deleting a Shopping List
	Adding an Item
	Deleting an Item
	Checking and unchecking an Item

	Summary

	Chapter 8: Testing and CI
	Testing the Vapor application
	Setting up the test environment
	Running tests

	Testing RESTful routes
	Fetching all Shopping Lists
	Creating a Shopping List
	Deleting the Shopping List
	Updating the Shopping List

	Exercise
	Automated testing pipeline
	Enabling Travis build check on Pull request

	Summary

	Chapter 9: Deploying the App
	Where can we deploy a Vapor App?
	Deploying to Heroku
	Priming the app for deployment
	Configuring and deploying Vapor to Heroku
	Adding the MongoDB Heroku addon

	Setting up Continuous Deployment
	Exercise
	Summary

	Chapter 10: Adding Authentication
	Creating a User model
	Best practices for storing password
	Getting started with the User model

	User has many Shopping Lists
	Adding Registration and Login
	Showing user specific Shopping Lists
	Adding token-based authentication for app
	Testing the token-based authentication

	Adding authentication flow to iOS app
	Bringing it all together in the Storyboard

	Summary

	Chapter 11: Building a tvOS App
	Shopping List app on tvOS
	Sharing code between iOS and tvOS
	Making code work with both iOS and tvOS apps

	Configuring the tvOS storyboard
	Summary

	Other Books You May Enjoy
	Index

