
Beginning
Android Games

For Android 7.0
—
Third Edition
—
Mario Zechner
J. F. DiMarzio
Robert Green

Beginning Android
Games
Third Edition

Mario Zechner

J. F. DiMarzio

Robert Green

Beginning Android Games

Mario Zechner J. F. DiMarzio
Graz, Steiermark, Austria Celebration, Florida, USA

Robert Green
Portland, Oregon, USA

ISBN-13 (pbk): 978-1-4842-0473-3 ISBN-13 (electronic): 978-1-4842-0472-6
DOI 10.1007/978-1-4842-0472-6

Library of Congress Control Number: 2016961227

Copyright © 2016 by Mario Zechner, J. F. DiMarzio, and Robert Green

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Paul Trebilcox-Ruiz
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,

Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James Markham,
Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: April Rondean
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California
LLC and the sole member (owner) is Springer Science + Business Media Finance Inc. (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are available to
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/. Readers can also access source code at SpringerLink in the Supplementary
Material section for each chapter.

Printed on acid-free paper

orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

Dedicated to my idols, Mom and Dad, and my love, Stefanie.

—Mario Zechner

Dedicated to my children and everyone involved in helping make
this book happen. Go Sox.

—J.F. DiMarzio

Dedicated to my family and everyone who has helped us
along the way.

—Robert Green

v

Contents at a Glance

About the Authors ���xix

About the Technical Reviewer ��xxi

Acknowledgments ��xxiii

Introduction ���xxv

 ■Chapter 1: An Android in Every Home ��� 1

 ■Chapter 2: First Steps with Android Studio ��� 15

 ■Chapter 3: Game Development 101 ��� 33

 ■Chapter 4: Android for Game Developers �� 81

 ■Chapter 5: An Android Game Development Framework ������������������������������������ 159

 ■Chapter 6: Mr� Nom Invades Android ��� 199

 ■Chapter 7: OpenGL ES: A Gentle Introduction �� 237

 ■Chapter 8: 2D Game Programming Tricks ��� 309

 ■Chapter 9: Super Jumper: A 2D OpenGL ES Game ��� 379

 ■Chapter 10: OpenGL ES: Going 3D �� 435

 ■Chapter 11: 3D Programming Tricks ��� 471

 ■Chapter 12: Android Invaders: The Grand Finale ��� 521

 ■Chapter 13: Going Native with the NDK ��� 567

 ■Chapter 14: Marketing and Monetizing ��� 579

 ■Chapter 15: Publishing Your Game �� 587

Index ��� 595

vii

Contents

About the Authors ���xix

About the Technical Reviewer ��xxi

Acknowledgments ��xxiii

Introduction ���xxv

 ■Chapter 1: An Android in Every Home ��� 1

A Brief History of Android ��� 1

Fragmentation �� 3

The Role of Google ��� 3

The Android Open Source Project ��� 3

Google Play ��� 4

Google I/O ��� 4

Android’s Features and Architecture �� 4

The Kernel �� 5

The Runtime and Dalvik �� 6

System Libraries ��� 6

The Application Framework �� 7

The Software Development Kit ��� 7

The Developer Community ��� 8

Devices, Devices, Devices! ��� 9

Hardware �� 9

The Range of Devices ��� 10

■ Contents

viii

Compatibility Across All Devices �� 11

Mobile Gaming Is Different ��� 12

A Gaming Machine in Every Pocket �� 12

Always Connected �� 13

Casual and Hardcore �� 13

Big Market, Small Developers �� 14

Summary �� 14

 ■Chapter 2: First Steps with Android Studio ��� 15

Setting Up the Development Environment ��� 15

Setting Up the JDK�� 15

Installing Android Studio ��� 16

Setting Up the Android SDK �� 16

A Quick Tour of Android Studio ��� 18

Creating a New Project in Android Studio and Writing Your Code ���������������������������������� 20

Creating the Project �� 20

Exploring the Project �� 21

Writing the Application Code �� 23

Running the Application on a Device or Emulator �� 25

Connecting a Device ��� 25

Creating an Android Virtual Device ��� 25

Installing Advanced Emulator Features �� 27

Running an Application ��� 28

Debugging and Profiling an Application ��� 30

LogCat��� 31

Summary �� 32

 ■Chapter 3: Game Development 101 ��� 33

Genres: To Each One’s Taste ��� 33

Casual Games ��� 34

Puzzle Games ��� 35

■ Contents

ix

Action and Arcade Games ��� 37

Tower-Defense Games �� 40

Social Games �� 41

Beyond the Genres ��� 43

Game Design: The Pen Is Mightier Than the Code �� 44

Core Game Mechanics �� 44

A Story and an Art Style �� 47

Screens and Transitions ��� 48

Code: The Nitty-Gritty Details ��� 54

Application and Window Management ��� 54

Input ��� 55

File I/O �� 58

Audio��� 59

Graphics�� 62

The Game Framework �� 73

The Game and Screen Interfaces ��� 75

A Simple Example �� 77

Frame Rate–Independent Movement ��� 79

Summary �� 80

 ■Chapter 4: Android for Game Developers �� 81

Defining an Android Application: The Manifest File �� 81

The <manifest> Element �� 82

The <application> Element �� 83

The <activity> Element �� 84

The <uses-permission> Element ��� 85

The <uses-feature> Element ��� 87

Game Project Setup in Six Easy Steps �� 88

Google Play Filters �� 89

Defining the Icon of Your Game �� 90

■ Contents

x

Android API Basics ��� 91

Creating a Test Project �� 91

The Activity Life Cycle ��� 95

Input Device Handling ��� 102

File Handling ��� 118

Audio Programming �� 127

Playing Sound Effects ��� 127

Streaming Music �� 130

Basic Graphics Programming ��� 133

Best Practices �� 156

Summary �� 157

 ■Chapter 5: An Android Game Development Framework ������������������������������������ 159

Plan of Attack ��� 159

The AndroidFileIO Class �� 159

AndroidAudio, AndroidSound, and AndroidMusic: Crash, Bang, Boom! ������������������������ 161

AndroidInput and AccelerometerHandler ��� 166

AccelerometerHandler: Which Side Is Up? ��� 166

CompassHandler �� 167

The Pool Class: Because Reuse Is Good for You! �� 169

KeyboardHandler: Up, Up, Down, Down, Left, Right � � � �� 171

Touch Handlers ��� 174

AndroidInput: The Great Coordinator �� 181

AndroidGraphics and AndroidPixmap: Double Rainbow ��� 182

Handling Different Screen Sizes and Resolutions �� 183

AndroidPixmap: Pixels for the People ��� 186

AndroidGraphics: Serving Our Drawing Needs ��� 187

AndroidFastRenderView: Loop, Stretch, Loop, Stretch �� 191

AndroidGame: Tying Everything Together ��� 193

Summary �� 197

■ Contents

xi

 ■Chapter 6: Mr� Nom Invades Android ��� 199

Creating the Assets �� 199

Setting Up the Project �� 201

MrNomGame: The Main Activity �� 202

Assets: A Convenient Asset Store ��� 202

Settings: Keeping Track of User Choices and High Scores ��� 203

LoadingScreen: Fetching the Assets from Disk �� 205

The Main Menu Screen �� 207

The HelpScreen Classes ��� 210

The High-Scores Screen ��� 212

Rendering Numbers: An Excursion ��� 213

Implementing the Screen ��� 214

Abstracting the World of Mr� Nom: Model, View, Controller �� 217

The Stain Class ��� 219

The Snake and SnakePart Classes ��� 219

The World Class �� 223

The GameScreen Class �� 227

Summary �� 235

 ■Chapter 7: OpenGL ES: A Gentle Introduction �� 237

What Is OpenGL ES and Why Should I Care? �� 237

The Programming Model: An Analogy ��� 238

Projections �� 240

Normalized Device Space and the Viewport ��� 242

Matrices �� 242

The Rendering Pipeline ��� 243

Before We Begin ��� 244

GLSurfaceView: Making Things Easy Since 2008 ��� 245

GLGame: Implementing the Game Interface ��� 247

■ Contents

xii

Look Mom, I Got a Red Triangle! ��� 254

Defining the Viewport ��� 254

Defining the Projection Matrix �� 255

Specifying Triangles�� 258

Putting It Together �� 261

Specifying Per-Vertex Color �� 265

Texture Mapping: Wallpapering Made Easy �� 268

Texture Coordinates �� 268

Uploading Bitmaps ��� 270

Texture Filtering �� 271

Disposing of Textures ��� 272

A Helpful Snippet �� 273

Enabling Texturing �� 273

Putting It Together �� 273

A Texture Class ��� 276

Indexed Vertices: Because Re-use Is Good for You �� 278

Putting It Together �� 279

A Vertices Class �� 281

Alpha Blending: I Can See Through You �� 284

More Primitives: Points, Lines, Strips, and Fans��� 288

2D Transformations: Fun with the Model-View Matrix ��� 289

World and Model Space �� 289

Matrices Again �� 290

An Initial Example Using Translation ��� 291

More Transformations ��� 296

Optimizing for Performance ��� 301

Measuring Frame Rate ��� 302

What’s Making My OpenGL ES Rendering So Slow? �� 303

Removing Unnecessary State Changes �� 304

■ Contents

xiii

The Concept of Binding Vertices ��� 305

In Closing �� 308

Summary �� 308

 ■Chapter 8: 2D Game Programming Tricks ��� 309

Before We Begin ��� 309

In the Beginning � � � There Was the Vector ��� 309

Working with Vectors �� 310

A Little Trigonometry��� 312

Implementing a Vector Class �� 314

A Simple Usage Example �� 317

A Little Physics in 2D �� 322

Newton and Euler: Best Friends Forever �� 323

Force and Mass �� 324

Playing Around, Theoretically ��� 324

Playing Around, Practically ��� 325

Collision Detection and Object Representation in 2D ��� 330

Bounding Shapes �� 330

Constructing Bounding Shapes �� 331

Game Object Attributes ��� 333

Broad-Phase and Narrow-Phase Collision Detection ��� 334

An Elaborate Example ��� 341

A Camera in 2D��� 353

The Camera2D Class �� 356

An Example ��� 358

Texture Atlas: Because Sharing Is Caring ��� 359

An Example ��� 361

Texture Regions, Sprites, and Batches: Hiding OpenGL ES �� 364

The TextureRegion Class ��� 365

The SpriteBatcher Class ��� 366

■ Contents

xiv

Sprite Animation ��� 372

The Animation Class ��� 372

An Example ��� 374

Summary �� 377

 ■Chapter 9: Super Jumper: A 2D OpenGL ES Game ��� 379

Core Game Mechanics ��� 379

Developing a Backstory and Choosing an Art Style �� 380

Defining Screens and Transitions ��� 380

Defining the Game World �� 382

Creating the Assets �� 384

The UI Elements �� 384

Handling Text with Bitmap Fonts �� 385

The Game Elements �� 387

Texture Atlas to the Rescue �� 389

Music and Sound �� 390

Implementing Super Jumper �� 392

The Assets Class ��� 392

The Settings Class �� 395

The Main Activity �� 396

The Font Class �� 397

The GLScreen Class �� 399

The Main Menu Screen ��� 399

The Help Screens �� 402

The High-Scores Screen ��� 405

The Simulation Classes �� 407

The Game Screen ��� 422

The WorldRenderer Class ��� 429

Summary �� 433

■ Contents

xv

 ■Chapter 10: OpenGL ES: Going 3D �� 435

Before We Begin ��� 435

Vertices in 3D ��� 436

Vertices3: Storing 3D Positions ��� 436

An Example ��� 438

Perspective Projection: The Closer, the Bigger ��� 442

Z-buffer: Bringing Order to Chaos �� 444

Fixing the Previous Example��� 445

Blending: There’s Nothing Behind You �� 447

Z-buffer Precision and Z-fighting ��� 449

Defining 3D Meshes ��� 450

A Cube: Hello World in 3D ��� 451

An Example ��� 454

Matrices and Transformations, Again ��� 456

The Matrix Stack ��� 457

Hierarchical Systems with the Matrix Stack ��� 459

A Simple Camera System ��� 465

Summary �� 469

 ■Chapter 11: 3D Programming Tricks ��� 471

Before We Begin ��� 471

Vectors in 3D �� 471

Lighting in OpenGL ES �� 476

How Lighting Works �� 476

Light Sources �� 477

Materials ��� 478

How OpenGL ES Calculates Lighting: Vertex Normals �� 479

In Practice ��� 480

Some Notes on Lighting in OpenGL ES ��� 493

■ Contents

xvi

Mipmapping ��� 493

Simple Cameras ��� 498

The First-Person, or Euler, Camera ��� 498

An Euler Camera Example �� 501

A Look-At Camera ��� 507

Loading Models �� 509

The Wavefront OBJ Format ��� 509

Implementing an OBJ Loader ��� 510

Using the OBJ Loader ��� 515

Some Notes on Loading Models ��� 515

A Little Physics in 3D �� 515

Collision Detection and Object Representation in 3D ��� 516

Bounding Shapes in 3D �� 516

Bounding Sphere Overlap Testing ��� 517

GameObject3D and DynamicGameObject3D �� 519

Summary �� 520

 ■Chapter 12: Android Invaders: The Grand Finale ��� 521

Core Game Mechanics ��� 521

Developing a Backstory and Choosing an Art Style �� 523

Defining Screens and Transitions ��� 524

Defining the Game World �� 525

Creating the Assets �� 526

The UI Assets �� 526

The Game Assets �� 527

Sound and Music �� 529

Plan of Attack ��� 529

The Assets Class �� 530

The Settings Class �� 533

The Main Activity �� 534

The Main Menu Screen �� 535

■ Contents

xvii

The Settings Screen ��� 537

The Simulation Classes �� 540

The Shield Block Class ��� 541

The Shot Class �� 541

The Ship Class �� 542

The Invader Class ��� 543

The World Class �� 546

The GameScreen Class �� 552

The WorldRender Class �� 559

Optimizations ��� 564

Summary �� 565

 ■Chapter 13: Going Native with the NDK ��� 567

What Is the Android NDK? �� 567

The Java Native Interface ��� 568

Setting Up the NDK ��� 569

Setting Up an NDK Android Project �� 570

Creating Java Native Methods�� 570

Creating the C/C++ Header and Implementation ��� 571

Building the Shared Library �� 573

Putting It All Together ��� 575

Summary �� 577

 ■Chapter 14: Marketing and Monetizing ��� 579

Monetizing Your Game �� 579

Advertising ��� 580

Ad Providers ��� 580

Ad Aggregation Services �� 580

Game Advertising Tips �� 580

In-App Products �� 581

Virtual Currency �� 581

■ Contents

xviii

To Sell or Not to Sell ��� 582

Licensing �� 582

Getting Your Game Discovered ��� 583

Social Network Integration ��� 583

Discovery Services ��� 583

Blogs and Conventional Web Media ��� 584

Monetizable by Design ��� 584

Discoverable by Design �� 585

Summary �� 585

 ■Chapter 15: Publishing Your Game �� 587

A Word on Testing ��� 587

Becoming a Registered Developer ��� 588

Signing Your Game’s APK ��� 589

Putting Your Game on Google Play ��� 592

Publish! �� 594

More on the Developer Console ��� 594

Summary �� 594

Index ��� 595

xix

About the Authors

Mario Zechner has been programming games since age 12. Over the
years, he has created many prototypes and finished games on various
platforms. He’s the creator of libgdx, an Android game development
framework used by many top-grossing Android games. Before he joined
his current employer, Mario was the tech-lead at a mobile gaming startup
in San Francisco. Mario’s current day job involves working in the fields of
information extraction and retrieval, visualization, and machine learning.
You can meet Mario at conferences, where he gives talks and workshops
on game programming, read his blog at www.badlogicgames.com, or follow
him on Twitter @badlogicgames.

J. F. DiMarzio is a seasoned Android developer and author. He began developing games in Basic on the TRS-
80 Color Computer II in 1984. Since then, he has worked in the technology departments of companies such
as the U.S. Department of Defense and the Walt Disney Company. He has been developing on the Android
platform since the beta release of version .03, and he has published two professional applications and one
game on the Android Marketplace. DiMarzio is also an accomplished author. Over the last 15 years, he has
released 12 books, including Android: A Programmer’s Guide. His books have been translated into four
languages and published worldwide. DiMarzio’s writing style is very easy to read and understand, which
makes the information in the topics that he presents more retainable.

http://www.badlogicgames.com/

■ About the Authors

xx

Robert Green is the founder of the game studio Battery Powered Games
in Portland, Oregon. He has developed over a dozen Android games,
including Deadly Chambers, Antigen, Wixel, Light Racer, and Light
Racer 3D. Before diving full time into mobile video game development
and publishing, Robert worked for software companies in Minneapolis
and Chicago, including IBM Interactive. Robert’s current focus is cross-
platform game development and high-performance mobile gaming with
the BatteryTech SDK. Robert often updates his personal blog with game
programming tidbits at www.rbgrn.net. You can check out his professional
game development software at www.batterypoweredgames.com.

http://www.rbgrn.net/
http://www.batterypoweredgames.com/

xxi

About the Technical Reviewer

Paul Trebilcox-Ruiz is a software engineer at Sphero (they make
awesome robots that you can control from your phone) in Boulder,
Colorado, and a computer science graduate from California State
University, Fresno. His main interests lie in the Android platform, Android
TV, and wearable computing. He also actively participates in hackathons
in the Denver–Boulder area, writes an Android technical blog, and
presents to Meetups in the area.

xxiii

Acknowledgments

I’d like to thank the excellent team at Apress, who made this book possible. Specifically, I’d like to thank
Candace English, Adam Heath, Matthew Moodie, Damon Larson, James Compton, Christine Ricketts, Tom
Welsh, Bill McManus, and many more good souls who have worked on this book.

Thanks to Robert Green for being a great co-author and for living through the hell of early Android
versions with me.

Another big thanks to my splendid team of contributors, who carried on the libgdx effort while I was
busy writing this book. I’d especially like to thank my friend Nathan Sweet—the months we spent together
in San Francisco and Graz were some of the most memorable times in my life; Ruben Garat and Ariel
Coppes from Gemserk, who make sure we stay on target with libgdx; Justin Shapcott, who keeps cleaning
up my mess in the libgdx repository; Søren Nielsen, one of the most knowledgeable artists I’ve ever had the
pleasure to work with, who’s a helping hand in the libgdx IRC channel; and, finally, all the folks on the libgdx
IRC channel and the forums, whom I consider to be extended family.

Last but not least, thanks to Mom and Dad for being folks to look up to, and to my love, Stefanie, who
put up with all the long nights alone in bed, as well as my grumpiness. Lyrt!

—Mario Zechner

I’d like to thank Mark, Steve, Paul, and the team at Apress for making this book happen. I’d also like to thank
Stacey, Katrina, and the agents and team at Studio B for handling the hard part of the process for over 15
years. Finally, I’d like to thank Christian, Sophia, Giovanni, Jennifer, Katie, Sarah, Joseph, and the rest of my
family for being patient and understanding throughout.

—J.F. DiMarzio

I’d like to thank Mario for answering so many questions and helping me work through a few tricky bugs
over the years. Ryan Foss is an artist and programmer I worked with to build several games and is truly
an exceptional person. Scott Lembcke of Howling Moon Software helped me through some difficult
programming problems. Zach Wendt, organizer of the Minneapolis IGDA, always hung out late after
meetings and talked tech with me. Thanks to Dmitri Salcedo, who’s been sticking with me through a tough
year and helping us to achieve more than we ever have before. Finally, I thank all of the original licensees of
BatteryTech SDK, who believed in the product before anyone else. Thank you all for your support and help;
I couldn’t have made it without you.

—Robert Green

xxv

Introduction

Hi there, and welcome to the world of Android game development. You came here to learn about game
development on Android, and we hope to be the people who enable you to realize your ideas.

Together we’ll cover quite a range of materials and topics: Android basics, audio and graphics
programming, a little math and physics, OpenGL ES, an intro to the Android Native Development Kit (NDK),
and, finally, publishing, marketing, and making money from your game. Based on all this knowledge, we’ll
develop three different games, one of which is even 3D.

Game programming can be easy if you know what you’re doing. Therefore, we’ve tried to present the
material in a way that not only gives you helpful code snippets to reuse, but also actually shows you the big
picture of game development. Understanding the underlying principles is the key to tackling ever more
complex game ideas. You’ll not only be able to write games similar to the ones developed over the course of
this book, but you’ll also be equipped with enough knowledge to go to the Web or the bookstore and take on
new areas of game development on your own.

Who This Book Is For
This book is aimed first and foremost at complete beginners in game programming. You don’t need any
prior knowledge on the subject matter; we’ll walk you through all of the basics. However, we need to assume
a little knowledge on your end about Java. If you feel rusty on the matter, we’d suggest refreshing your
memory by reading Thinking in Java by Bruce Eckel (Prentice Hall, 2006), an excellent introductory text on
the programming language. Other than that, there are no other requirements. No prior exposure to Android
or Eclipse is necessary!

This book is also aimed at intermediate-level game programmers who want to get their hands dirty with
Android. While some of the material may be old news for you, there are still a lot of tips and hints contained
here that should make reading this book worthwhile. Android is a strange beast at times, and this book
should be considered your battle guide.

How This Book Is Structured
This book takes an iterative approach in that we’ll slowly but surely work our way from the absolute basics
to the esoteric heights of hardware-accelerated game programming goodness. Over the course of the book,
we’ll build up a reusable code base that you can use as the foundation for most types of games.

If you’re reading this book purely as a learning exercise, we suggest going through the chapters in
sequence, starting from Chapter 1. Each chapter builds off of the previous chapter, which makes for a good
learning experience.

If you’re reading this book with the intent to publish a new game at the end, we highly recommend you
skip to Chapter 14 and learn about designing your game to be marketable and make money, then come back
to the beginning and begin development.

http://dx.doi.org/10.1007/978-1-4842-0472-6_1
http://dx.doi.org/10.1007/978-1-4842-0472-6_14

■ IntroduCtIon

xxvi

Of course, more experienced readers can skip certain sections they feel confident with. Just make
sure to read through the code listings of sections you skim over so you will understand how the classes and
interfaces are used in subsequent, more advanced sections.

Downloading the Code
This book is fully self-contained; all the code necessary to run the examples and games is included.
However, copying the listings from the book to Eclipse is error prone, and games do not consist of code
alone, but also have assets that you can’t easily copy out of the book. We took great care to ensure that all the
listings in this book are error free, but the gremlins are always hard at work.

To make this a smooth ride, you can download the source code and related assets from the Apress
website. For more details, see the book’s product page at www.apress.com/9781484204733. The download
file will offer you the following:

•	 The complete source code and assets available from the project’s Subversion
repository. The code is licensed under the Apache License 2.0 and hence is free to
use in commercial and noncommercial projects. The assets are licensed under the
Creative Commons BY-SA 3.0. You can use and modify them for your commercial
projects, but you have to put your assets under the same license!

For each chapter that contains code, there’s an equivalent Android Studio project. The projects do not
depend on each other, as we’ll iteratively improve some of the framework classes over the course of the
book. Therefore, each project stands on its own. The code for both Chapters 5 and 6 is contained in the
ch06-mrnom project.

Contacting the Authors
Should you have any questions or comments—or even spot a mistake you think we should know about—you
can contact Mario Zechner by registering an account and posting at http://badlogicgames.com/forum/
viewforum.php?f=21, or Robert Green by visiting www.rbgrn.net/contact.

We prefer being contacted through the forums. That way other readers benefit as well, as they can look
up already answered questions or contribute to the discussion!

http://www.apress.com/9781484204733
http://dx.doi.org/10.1007/978-1-4842-0472-6_5
http://dx.doi.org/10.1007/978-1-4842-0472-6_6
http://badlogicgames.com/forum/viewforum.php?f=21
http://badlogicgames.com/forum/viewforum.php?f=21
http://www.rbgrn.net/contact

1© Mario Zechner, J. F. DiMarzio and Robert Green 2016
M. Zechner et al., Beginning Android Games, DOI 10.1007/978-1-4842-0472-6_1

CHAPTER 1

An Android in Every Home

As kids of the eighties and nineties, we naturally grew up with our trusty Nintendo Game Boys and Sega
Game Gears. We spent countless hours helping Mario rescue the princess, getting the highest score in Tetris,
and racing our friends in Super RC Pro-Am via Link Cable. We took these awesome pieces of hardware with
us everywhere we could. Our passion for games made us want to create our own worlds and share them
with our friends. We started programming on the PC, but soon realized that we couldn’t transfer our little
masterpieces to the available portable game consoles. As we continued being enthusiastic programmers,
over time our interest in actually playing video games faded. Besides, our Game Boys eventually broke . . .

Fast forward to today. Smartphones and tablets have become the new mobile gaming platforms of this
era, competing with classic, dedicated handheld systems such as the Nintendo 3DS and the PlayStation
Vita. This development renewed our interest, and we started investigating which mobile platforms would
be suitable for our development needs. Apple’s iOS seemed like a good candidate for our game-coding
skills. However, we quickly realized that the system was not open, that we’d be able to share our work with
others only if Apple allowed it, and that we’d need a Mac in order to develop for the iOS. And then we found
Android.

We both immediately fell in love with Android. Its development environment works on all the major
platforms—no strings attached. It has a vibrant developer community that is happy to help you with any
problem you encounter, as well as offers comprehensive documentation. You can share your games with
anyone without having to pay a fee to do so, and if you want to monetize your work, you can easily publish
your latest and greatest innovation to a global market with millions of users in a matter of minutes.

The only thing left was to figure out how to write games for Android, and how to transfer our PC game
development knowledge to this new system. In the following chapters, we want to share our experience with
you and get you started with Android game development. Of course, this is partly a selfish plan: we want to
have more games to play on the go!

Let’s start by getting to know our new friend, Android.

A Brief History of Android
Android was first seen publicly in 2005, when Google acquired a small startup called Android Inc. This
fueled speculation that Google was interested in entering the mobile device space. In 2008, the release of
version 1.0 of Android put an end to all speculation, and Android went on to become the new challenger
on the mobile market. Since then, Android has been battling it out with already-established platforms,
such as iOS (then called iPhone OS), BlackBerry OS, and Windows Phone 7. Android’s growth has been
phenomenal, as it has captured more and more market share every year. While the future of mobile
technology is always changing, one thing is certain: Android is here to stay.

Electronic supplementary material The online version of this chapter (doi:10.1007/978-1-4842-0472-6_1)
contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-0472-6_1

Chapter 1 ■ an android in every home

2

Because Android is open source, there is a low barrier of entry for handset manufacturers using the new
platform. They can produce devices for all price segments, modifying Android itself to accommodate the
processing power of a specific device. Android is therefore not limited to high-end devices, but can also be
deployed in low-cost devices, thus reaching a wider audience.

A crucial ingredient for Android’s success was the formation of the Open Handset Alliance (OHA) in late
2007. The OHA includes companies such as HTC, Qualcomm, Motorola, and NVIDIA, which all collaborate
to develop open standards for mobile devices. Although Android’s code is developed primarily by Google, all
the OHA members contribute to its source code in one form or another.

Android itself is a mobile operating system and platform based on the Linux kernel versions 2.6 and 3.x,
and it is freely available for commercial and noncommercial use. Many members of the OHA build custom
versions of Android with modified user interfaces (UIs) for their devices. The open-source nature of Android
also enables hobbyists to create and distribute their own versions. These are usually called mods, firmware,
or roms. The most prominent rom at the time of this writing is developed by Steve Kondik, also known as
Cyanogen, and many contributors. It aims to bring the newest and best improvements to all sorts of Android
devices and breathe fresh air into otherwise abandoned or old devices.

Since its release in 2008, Android has received many major version updates, most code-named
after desserts. Most versions of the Android platform have added new functionality—usually in the form
of application programming interfaces (APIs) or new development tools—that is relevant, in one way or
another, for game developers:

•	 Version 1.5 (Cupcake): Added support for including native libraries in Android
applications, which were previously restricted to being written in pure Java. Native
code can be very beneficial in situations where performance is of the utmost concern.

•	 Version 1.6 (Donut): Introduced support for different screen resolutions. We will
revisit this development a couple of times in this book because it has some impact
on how we approach writing games for Android.

•	 Version 2.0 (Éclair): Added support for multitouch screens.

•	 Version 2.2 (Froyo): Added just-in-time (JIT) compilation to the Dalvik virtual
machine (VM), the software that powers all the Java applications on Android. JIT
speeds up the execution of Android applications considerably—depending on the
scenario, up to a factor of five.

•	 Version 2.3 (Gingerbread): Added a new concurrent garbage collector to the Dalvik VM.

•	 Version 3.0 (Honeycomb): Created a tablet version of Android. Introduced in early
2011, Honeycomb contained more significant API changes than any other single
Android version released to date. By version 3.1, Honeycomb added extensive support
for splitting up and managing a large, high-resolution tablet screen. It added more
PC-like features, such as USB host support and support for USB peripherals, including
keyboards, mice, and joysticks. The only problem with this release was that it was only
targeted at tablets. The small-screen/smartphone version of Android was stuck with 2.3.

•	 Android 4.0 (Ice Cream Sandwich [ICS]): Merged Honeycomb (3.1) and Gingerbread
(2.3) into a common set of features that worked well on both tablets and phones.

•	 Android 4.1 (Jelly Bean): Improved the way the UI was composited, and rendering in
general. The effort is known as “Project Butter”; the first device to feature Jelly Bean
was Google’s own Nexus 7 tablet.

•	 Android 4.4 (KitKat): Included an updated iconset and more refined font. KitKat also
allowed apps to run fullscreen.

•	 Android 5 (Lollipop): Lollipop saw a major revamping of the notification panel, and
the ability to create guest user accounts.

Chapter 1 ■ an android in every home

3

•	 Android 6 (Marshmallow): Included a new security model that allowed the user to
approve or deny specific application security requests, whereas before the security
model was all or nothing.

•	 Android 7 (Nougat): The SDK changes included a move to OpenJDK and the ability
to run multiple applications on screen at the same time (previously this capability
was only built into the Samsung Note line of handsets).

Fragmentation
The great flexibility of Android comes at a price: companies that opt to develop their own UIs have to play
catch-up with the fast pace at which new versions of Android are released. This can lead to handsets no
more than a few months old becoming outdated as carriers and handset manufacturers refuse to create
updates that incorporate the improvements of new Android versions. A result of this process is the big
bogeyman called fragmentation.

Fragmentation has many faces. To the end user, it means being unable to install and use certain
applications and features due to being stuck with an old Android version. For developers, it means that some
care has to be taken when creating applications that are meant to work on all versions of Android. While
applications written for earlier versions of Android usually run fine on newer ones, the reverse is not true. Some
features added to newer Android versions are, of course, not available on older versions, such as multitouch
support. Developers are thus forced to create separate code paths for different versions of Android.

In 2011, many prominent Android device manufacturers agreed to support the latest Android OS for a
device lifetime of 18 months. This may not seem like a long time, but it’s a big step in helping to cut down
on fragmentation. It also means that new features of Android, such as the new APIs, become available on
more phones much faster. Five years later, this promise hasn’t been kept as well as many may have hoped. A
significant portion of the market is still running older Android versions, mostly Jelly Bean. If the developers
of a game want mass-market acceptance, the game will need to run on no fewer than five different versions
of Android spread across 600+ device types (and counting!).

But fear not. Although this sounds terrifying, it turns out that the measures that have to be taken to
accommodate multiple versions of Android are minimal. Most often, you can even forget about the issue
and pretend there’s only a single version of Android. As game developers, we’re less concerned with
differences in APIs and more concerned with hardware capabilities. This is a different form of fragmentation,
which is also a problem for platforms such as iOS, albeit not in as pronounced a way. Throughout this book,
we will cover the relevant fragmentation issues that might get in your way while you’re developing your next
game for Android.

The Role of Google
Although Android is officially the brainchild of the Open Handset Alliance, Google is the clear leader when it
comes to implementing Android itself and providing the necessary ecosystem for it to grow.

The Android Open Source Project
Google’s efforts are summarized in the Android Open Source Project. Most of the code is licensed under
Apache License 2, which is very open and nonrestrictive compared to other open-source licenses,
such as the GNU General Public License (GPL). Everyone is free to use this source code to build their
own systems. However, systems that are proclaimed Android compatible first have to pass the Android
Compatibility Program, a process that ensures baseline compatibility with third-party applications written
by developers. Compatible systems are allowed to participate in the Android ecosystem, which also
includes Google Play.

Chapter 1 ■ an android in every home

4

Google Play
Google Play (formerly known as Android Market) was opened to the public by Google in October 2008. It’s
an online store that enables users to purchase music, videos, books, and third-party applications, or apps, to
be consumed on their device. Google Play is primarily available on Android devices, but also has a Web front
end where users can search, rate, download, and install apps. It isn’t required, but the majority of Android
devices have the Google Play app installed by default.

Google Play allows third-party developers to publish their programs either for free or as paid
applications. Paid applications are available for purchase in many countries, and the integrated purchasing
system handles exchange rates using Google Checkout. Google Play also gives developers the option of
pricing an app manually on a per-country basis.

A user gets access to the store after setting up a Google account. Applications can be purchased via
credit card through Google Checkout or by using carrier billing. Buyers can decide to return an application
within 15 minutes of the time of purchase for a full refund. Previously, the refund window was 24 hours, but
it was shortened to curtail the exploitation of the system.

Developers need to register an Android developer account with Google for a one-time fee of $25 in
order to be able to publish applications in the store. After successful registration, a developer can start
publishing new applications in a matter of minutes.

Google Play has no approval process, instead relying on a permission system. Before installing an
application, the user is presented with a set of required permissions, which handle access to phone services,
networking, Secure Digital (SD) cards, and so on. Before Marshmallow, a user could opt to not install an
application because of permissions, but a user did not have the ability to simply not allow an application to
have a particular permission. However, since Android Marshmallow, users can now accept or deny specific
application permissions at run time.

In order to sell applications, a developer additionally has to register a Google Checkout merchant
account, which is free of charge. All financial transactions are handled through this account. Google also
has an in-app purchase system that is integrated with Google Play and Google Checkout. A separate API is
available with which developers can process in-app purchase transactions.

Google I/O
The annual Google I/O conference is an event that every Android developer looks forward to each year. At
Google I/O, the latest and greatest Google technologies and projects are revealed, among which Android
has gained a special place in recent years. Google I/O usually features multiple sessions on Android-related
topics; these sessions are also available as videos on YouTube’s Google Developers channel. At Google I/O
2011, Samsung and Google handed out Galaxy Tab 10.1 devices to all regular attendees. This really marked
the start of the big push by Google to gain market share on the tablet side.

Android’s Features and Architecture
Android is not just another Linux distribution for mobile devices. While developing for Android, you’re not
all that likely to meet the Linux kernel itself. The developer-facing side of Android is a platform that abstracts
away the underlying Linux kernel and is programmed via Java. From a high-level view, Android possesses
several nice features:

•	 An application framework that provides a rich set of APIs for creating various types
of applications. It also allows the reuse and replacement of components provided by
the platform and third-party applications.

•	 The Dalvik virtual machine, which is responsible for running applications on
Android.

Chapter 1 ■ an android in every home

5

•	 A set of graphics libraries for 2D and 3D programming.

•	 Media support for common audio, video, and image formats, such as Ogg Vorbis,
MP3, MPEG-4, H.264, and PNG. There’s even a specialized API for playing back
sound effects, which will come in handy in your game development adventures.

•	 APIs for accessing peripherals such as the camera, Global Positioning System
(GPS), compass, accelerometer, touchscreen, trackball, keyboard, controller, and
joystick. Note that not all Android devices have all of these peripherals—hardware
fragmentation in action.

Of course, there’s a lot more to Android than the few features just mentioned, but for your game
development needs these features are the most relevant.

Android’s architecture is composed of stacked groups of components, and each layer builds on the
components in the layer below it. Figure 1-1 gives an overview of Android’s major components.

Figure 1-1. Android architecture overview

The Kernel
Starting at the bottom of the stack, you can see that the Linux kernel provides the basic drivers for the
hardware components. Additionally, the kernel is responsible for such mundane things as memory and
process management, networking, and so on.

Chapter 1 ■ an android in every home

6

The Runtime and Dalvik
The Android runtime is built on top of the kernel, and it is responsible for spawning and running Android
applications. Each Android application is run in its own process with its own Dalvik VM.

Dalvik runs programs in the Dalvik Executable (DEX) bytecode format. Usually, you transform
common Java .class files into DEX format using a special tool called dx, which is provided by the
software development kit (SDK). The DEX format is designed to have a smaller memory footprint
compared to classic Java .class files. This is achieved through heavy compression, tables, and the
merging of multiple .class files.

The Dalvik VM interfaces with the core libraries, which provide the basic functionality that is exposed to
Java programs. The core libraries provide some, but not all, of the classes available in Java Standard Edition
(SE) through the use of a subset of the Apache Harmony Java implementation. This also means that there’s
no Swing or Abstract Window Toolkit (AWT) available, nor any classes that can be found in Java Micro
Edition (ME). However, with some care, you can still use many of the third-party libraries available for Java
SE on Dalvik.

Before Android 2.2 (Froyo), all bytecode was interpreted. Froyo introduced a tracing JIT compiler, which
compiles parts of the bytecode to machine code on the fly. This considerably increases the performance
of computationally intensive applications. The JIT compiler can use CPU features specifically tailored for
special computations, such as a dedicated Floating Point Unit (FPU). Nearly every new version of Android
improves upon the JIT compiler and enhances its performance, usually at the cost of memory consumption.
This is a scalable solution, though, as new devices contain more and more RAM as the standard fare.

Dalvik also has an integrated garbage collector (GC) that in earlier versions has had the tendency to drive
developers a little crazy at times. With some attention to detail, though, you can peacefully coexist with the
GC in your day-to-day game development. Since Android 2.3, Dalvik has employed an improved concurrent
GC, which relieves some of the pain. You’ll get to investigate GC issues in more detail later in the book.

Each application running in an instance of the Dalvik VM has a total of at least 16MB of heap memory
available. Newer devices, specifically tablets, have much higher heap limits to facilitate higher-resolution
graphics. Still, with games it is easy to use up all of that memory, so you have to keep it in mind as you juggle
your image and audio resources.

System Libraries
Besides the core libraries, which provide some Java SE functionality, there’s also a set of native C/C++
libraries (second layer in Figure 1-1) that build the basis for the application framework (third layer in
Figure 1-1). These system libraries are mostly responsible for the computationally heavy tasks that would
not be as well suited to the Dalvik VM, such as graphics rendering, audio playback, and database access. The
APIs are wrapped by Java classes in the application framework, which you’ll exploit when you start writing
your games. You’ll use the following libraries in one form or another:

Skia Graphics Library (Skia): This 2D graphics software is used for rendering the
UI of Android applications. You’ll use it to draw your first 2D game.

OpenGL for Embedded Systems (OpenGL ES): This is the industry standard for
hardware-accelerated graphics rendering. OpenGL ES 1.0 and 1.1 are exposed
to Java on all versions of Android. OpenGL ES 2.0, which brings shaders to
the table, is only supported from Android 2.2 (Froyo) onward. It should be
mentioned that the Java bindings for OpenGL ES 2.0 in Froyo are incomplete and
lack a few vital methods. Fortunately, these methods were added in version 2.3.
OpenGL ES 3.0 was introduced in KitKat. Finally, OpenGL ES 3.1 was introduced
in Marshmallow. For your purposes, stick with OpenGL ES 2.0 to maximize
compatibility and allow you to ease into the world of Android 3D programming.

Chapter 1 ■ an android in every home

7

OpenCore: This is a media playback and recording library for audio and video. It
supports a good mix of formats, such as Ogg Vorbis, MP3, H.264, MPEG-4, and so
on. You’ll mostly deal with the audio portion, which is not directly exposed to the
Java side but rather is wrapped in a couple of classes and services.

FreeType: This is a library used to load and render bitmap and vector fonts,
most notably the TrueType format. FreeType supports the Unicode standard,
including right-to-left glyph rendering for Arabic and similar special text. As with
OpenCore, FreeType is not directly exposed to the Java side, but is wrapped in a
couple of convenient classes.

These system libraries cover a lot of ground for game developers and perform most of the heavy lifting.
They are the reason why you can write your games in plain old Java.

 ■ Note although the capabilities of dalvik are usually more than sufficient for your purposes, at times
you might need more performance. this can be the case for very complex physics simulations or heavy 3d
calculations for which you would usually resort to writing native code. We’ll look into this in a later chapter of
the book. a couple of open source libraries for android already exist that can help you stay on the Java side of
things. See http://code.google.com/p/libgdx/ for an example.

The Application Framework
The application framework ties together the system libraries and the runtime, creating the user side
of Android. The framework manages applications and provides an elaborate structure within which
applications operate. Developers create applications for this framework via a set of Java APIs that cover areas
such as UI programming, background services, notifications, resource management, peripheral access, and
so on. All out-of-the-box core applications provided by Android, such as the mail client, are written with
these APIs.

Applications, whether they are UIs or background services, can communicate their capabilities to other
applications. This communication enables an application to reuse components of other applications. A
simple example is an application that needs to take a photo and then perform some operations on it. The
application queries the system for a component of another application that provides this service. The first
application can then reuse the component (for example, a built-in camera application or photo gallery).
This significantly lowers the burden on programmers and also enables you to customize myriad aspects of
Android’s behavior.

As a game developer, you will create UI applications within this framework. As such, you will be
interested in an application’s architecture and life cycle, as well as its interactions with the user. Background
services usually play a small role in game development, which is why they will not be discussed in detail.

The Software Development Kit
To develop applications for Android, you will use the Android software development kit (SDK). The SDK
is composed of a comprehensive set of tools, documentation, tutorials, and samples that will help you get
started in no time. Also included are the Java libraries needed to create applications for Android. These
contain the APIs of the application framework. All major desktop operating systems are supported as
development environments.

http://code.google.com/p/libgdx/

Chapter 1 ■ an android in every home

8

Prominent features of the SDK are as follows:

•	 The debugger, capable of debugging applications running on a device or in the
emulator.

•	 A memory and performance profile to help you find memory leaks and identify slow
code.

•	 The device emulator, accurate though a bit slow at times, is based on QEMU (an open
source virtual machine for simulating different hardware platforms). There are some
options available to accelerate the emulator, such as Intel Hardware Accelerated
Execution Manager (HAXM), which we will discuss in Chapter 2.

•	 Command-line utilities to communicate with devices.

•	 Build scripts and tools with which to package and deploy applications.

The SDK can be integrated with Android Studio, a popular and feature-rich integrated development
environment (IDE). Android Studio version 2 includes many new features, including the much anticipated
Instant Run feature that allows code changes to be pushed to your emulator much quicker.

 ■ Note Chapter 2 covers how to set up android Studio.

Along with any good SDK comes extensive documentation. Android’s SDK does not fall short in this
area, and it includes a lot of sample applications. You can also find a developer guide and a full API reference
for all of the modules of the application framework at http://developer.android.com/guide/index.html.

In addition to the Android SDK, game developers using OpenGL may want to install and use the various
profilers by Qualcomm, PowerVR, Intel, and NVIDIA. These profilers give significantly more data about the
demands of the game on a device than anything in the Android SDK. We’ll discuss these profilers in greater
detail in Chapter 2.

The Developer Community
Part of the success of Android is its developer community, which gathers in various places around the Web.
The most frequented site for developer exchange is the Android Developers group at http://groups.
google.com/group/android-developers. This is the number one place in which to ask questions or seek
help when you stumble across a seemingly unsolvable problem. The group is visited by all sorts of Android
developers, from system programmers to application developers to game programmers. Occasionally, the
Google engineers responsible for parts of Android also help out by offering valuable insights. Registration
is free, and we highly recommend that you join this group now! Apart from providing a place for you to ask
questions, it’s also a great place to search for previously answered questions and solutions to problems. So,
before asking a question, check whether it has been answered already.

Another source for information and help is Stack Overflow at http://www.stackoverflow.com. You can
search by keywords or browse the latest Android questions by tag.

Every developer community worth its salt has a mascot. Linux has Tux the penguin, GNU has its . . .
well, gnu, and Mozilla Firefox has its trendy Web 2.0 fox. Android is no different, and has selected a little
green robot as its mascot. Figure 1-2 shows you that little devil.

http://dx.doi.org/10.1007/978-1-4842-0472-6_2
http://dx.doi.org/10.1007/978-1-4842-0472-6_2
http://developer.android.com/guide/index.html
http://dx.doi.org/10.1007/978-1-4842-0472-6_2
http://groups.google.com/group/android-developers
http://groups.google.com/group/android-developers
http://www.stackoverflow.com/

Chapter 1 ■ an android in every home

9

The Android Robot has already starred in a few popular Android games. Its most notable appearance
was in Replica Island, a free open source platform created by former Google developer advocate Chris Pruett
as a 20 percent project. (The term 20 percent project stands for the one day a week that Google employees get
to spend on a project of their own choosing.)

Devices, Devices, Devices!
Android is not locked into a single hardware ecosystem. Many prominent handset manufacturers, such as
HTC, Motorola, Samsung, and LG, have jumped onto the Android bandwagon, and they offer a wide range
of devices running Android. In addition to handsets, there are a slew of available tablet devices, wearables,
auto, and television devices that build upon Android. Some key concepts are shared by all devices, though,
which will make your life as game developer a little easier.

Hardware
Google originally issued the following minimum hardware specifications. Virtually all available Android
devices fulfill, and often significantly surpass, these recommendations:

128MB RAM: This specification is a minimum. Current high-end devices already
include 1GB RAM, and if Moore’s law has its way the upward trend won’t end any
time soon.

256MB flash memory: This is the minimum amount of memory required for
storing the system image and applications. For a long time, the lack of sufficient
memory was the biggest gripe among Android users, as third-party applications
could only be installed to flash memory. This changed with the release of Froyo.

Mini or Micro SD card storage: Most devices come with a few gigabytes of SD card
storage, which can be replaced with higher-capacity SD cards by the user. Some
devices, such as the Samsung Galaxy Nexus, have eliminated extensible SD card
slots and have only integrated flash memory.

Figure 1-2. Android Robot

Chapter 1 ■ an android in every home

10

16-bit color Quarter Video Graphics Array (QVGA) thin-film transistor liquid
crystal display (TFT-LCD): Before Android version 1.6, only Half-size VGA
(HVGA) screens (480 × 320 pixels) were supported by the operating system. Since
version 1.6, lower- and higher-resolution screens have been supported. The
current high-end handsets have Wide VGA (WVGA) screens (800 × 480, 848 ×
480, or 852 × 480 pixels), and some low-end devices support QVGA screens (320
× 280 pixels). Tablet screens come in various sizes, typically about 1280 × 800
pixels, and Android TV brings support for HDTV’s 1920 × 1080 resolution! While
many developers like to think that every device has a touchscreen, that is not
the case. Android is pushing its way into set-top boxes and PC-like devices with
traditional monitors. Neither of these device types has the same touchscreen
input as a phone or tablet.

Of course, most Android devices come with a lot more hardware than is required for the minimum
specifications. Almost all handsets have GPS, an accelerometer, and a compass. Many also feature proximity
and light sensors. These peripherals offer game developers new ways to let the user interact with games;
we’ll make use of a few of them later in the book. A few devices even have a full QWERTY keyboard and a
trackball. The latter is most often found in HTC devices. Cameras are also available on almost all current
portable devices.

Dedicated graphics processing units (GPUs) are especially crucial for game development. The earliest
handset to run Android already had an OpenGL ES 1.0–compliant GPU. Newer portable devices have GPUs
comparable in performance to the older Xbox or PlayStation 2 and support OpenGL ES 2.0, OpenGL ES 3.0,
and OpenGL ES 3.1. If no graphics processor is available, the platform provides a fallback in the form of a
software renderer called PixelFlinger. Many low-budget handsets rely on the software renderer, which is fast
enough for most low-resolution screens.

Along with the graphics processor, any currently available Android device also has dedicated audio
hardware. Many hardware platforms include special circuitry to decode different media formats, such as
H.264. Connectivity is provided via hardware components for mobile telephony, Wi-Fi, and Bluetooth. All
the hardware modules in an Android device are usually integrated in a single system on chip (SoC), a system
design also found in embedded hardware.

The Range of Devices
In the beginning, there was the G1. Developers eagerly awaited more devices, and several phones, with
minute differences, soon followed, and these were considered “first generation.” Over the years, hardware
has become more and more powerful, and now there are phones, tablets, smart watches, and set-top boxes
ranging from devices with 2.5" QVGA screens running only a software renderer on a 500MHz ARM CPU all
the way up to machines with quad 2+GHz CPUs with very powerful GPUs that can support HDTV.

We’ve already discussed fragmentation issues, but developers will also need to cope with this vast
range of screen sizes, capabilities, and performance. The best way to do that is to understand the minimum
hardware and make it the lowest common denominator for game design and performance testing.

The Minimum Practical Target
As of mid-2016, less than 4 percent of all Android devices are running a version of Android older than Jelly
Bean. This is important because it means that the game you start now will only have to support a minimum
API level of 16 (4.1), and it will still reach 96 percent of all Android devices (by version) by the time it’s
completed. This isn’t to say that you can’t use the latest new features! You certainly can, and we’ll show you
how. You’ll simply need to design your game with some fallback mechanisms to bring compatibility down to
version 4.1. Current data is available via Google at http://developer.android.com/resources/dashboard/
platform-versions.html, and a chart collected in June 2016 is shown in Figure 1-3.

http://developer.android.com/resources/dashboard/platform-versions.html
http://developer.android.com/resources/dashboard/platform-versions.html

Chapter 1 ■ an android in every home

11

Compatibility Across All Devices
After all of this discussion about phones, tablets, chipsets, peripherals, and so forth, it should be obvious
that supporting the Android device market is not unlike supporting a PC market. Screen sizes range from
a tiny 320 × 240 pixels all the way up to 4K. On the lowest-end, first-gen device, you’ve got a paltry 500MHz
ARM5 CPU and a very limited GPU without much memory. On the other end, you’ve got a high-bandwidth,
multicore 2+GHz CPU with a massively parallelized GPU and tons of memory. First-gen handsets have an
uncertain multitouch system that can’t detect discrete touch points. New tablets can support ten discrete
touch points. Set-top boxes don’t support any touching at all! What’s a developer to do?

First of all, there is some sanity in all of this. Android itself has a compatibility program that dictates
minimum specifications and ranges of values for various parts of an Android-compatible device. If a
device fails to meet the standards, it is not allowed to bundle the Google Play app. Phew, that’s a relief! The
compatibility program is available at http://source.android.com/compatibility/overview.html.

The Android compatibility program is outlined in a document called the Compatibility Definition
Document (CDD), which is available on the compatibility program site. This document is updated for each
release of the Android platform, and hardware manufacturers must update and retest their devices to stay
compliant.

Figure 1-3. Android version distributions on June 6, 2016

http://source.android.com/compatibility/overview.html

Chapter 1 ■ an android in every home

12

A few of the items that the CDD dictates as relevant to game developers are as follows:

•	 Minimum audio latency (varies)

•	 Minimum screen size (currently 426 × 320)

•	 Minimum screen density (currently 120 dpi)

•	 Acceptable aspect ratios (currently 4:3 to 16:9)

•	 3D Graphics Acceleration (OpenGL ES 1.0 and OpenGL 2.0 are required)

•	 Input devices

Even if you can’t make sense of some of the items listed, fear not. You’ll get to take a look at many of
these topics in greater detail later in the book. The takeaway from this list is that there is a way to design a
game so that it will work on the vast majority of Android devices. By planning things such as the user interface
and the general views in the game so that they work on the different screen sizes and aspect ratios, and by
understanding that you want not only touch capability but also keyboard or additional input methods, you
can successfully develop a very compatible game. Different games call for different techniques in order to
achieve good user experiences on varying hardware, so unfortunately there is no silver bullet for solving these
issues. But, rest assured: with time and a little proper planning, you’ll be able to get good results.

Mobile Gaming Is Different
Gaming was a huge market segment long before the likes of iPhone and Android appeared on the scene.
However, with these new forms of hybrid devices, the landscape has started to change. Gaming is no longer
something just for nerdy kids. Serious business people have been seen playing the latest trendy game on
their mobile phones in public, newspapers pick up stories of successful small-scale game developers making
a fortune in mobile phone application markets, and established game publishers have a hard time keeping
up with the developments in the mobile space. Game developers must recognize this change and adjust
accordingly. Let’s see what this new ecosystem has to offer.

A Gaming Machine in Every Pocket
Mobile devices are everywhere. That’s probably the key statement to take away from this section. From this,
you can easily derive all the other facts about mobile gaming.

Since hardware prices are constantly dropping and new devices have ever-increasing computational
power, mobile devices are ideal for gaming. Mobile phones are a must-have nowadays, so market
penetration is huge. Many people are exchanging their old, classic mobile phones for newer-generation
smartphones and discovering the new options available to them in the form of an incredibly wide range of
applications.

Previously, if you wanted to play video games, you had to make the conscious decision to buy a video
game system or a gaming PC. Now, you get that functionality for free on mobile phones, tablets, and other
devices. There’s no additional cost involved (at least if you don’t count the data plan you’ll likely need), and
your new gaming device is available to you at any time. Just grab it from your pocket or purse and you are
ready to go—no need to carry a separate, dedicated system with you, because everything’s integrated in one
package.

Apart from the benefit of only having to carry a single device for your telephone, Internet, and gaming
needs, another factor makes gaming on mobile phones easily accessible to a much larger audience: you can
fire up a dedicated market application on your device, pick a game that looks interesting, download it, and
immediately start to play. There’s no need to go to a store or download something via your PC only to find
out, for example, that you don’t have the USB cable you need to transfer that game to your phone.

Chapter 1 ■ an android in every home

13

The increased processing power of current-generation devices also has an impact on what’s possible
for you as a game developer. Even the middle class of devices is capable of generating gaming experiences
similar to titles found on the older Xbox and PlayStation 2 systems. Given these capable hardware platforms,
you can also start to explore elaborate games with physics simulations, an area offering great potential for
innovation.

With new devices come new input methods, which have already been touched upon. A couple of
games already take advantage of the GPS and/or compass available in most Android devices. The use of the
accelerometer is already a mandatory feature of many games, and multitouch screens offer new ways for the
user to interact with the game world. A lot of ground has been covered already, but there are still new ways to
use all of this functionality in an innovative way.

Always Connected
Android devices are usually sold with data plans. This is driving an increasing amount of traffic on the Web.
A smartphone user is very likely to be connected to the Web at any given time (disregarding poor reception
caused by hardware design failures).

Permanent connectivity opens up a completely new world for mobile gaming. A user can challenge
an opponent on the other side of the planet to a quick game of chess, explore virtual worlds populated with
real people, or try fragging a best friend from another city in a gentlemen’s death match. Moreover, all of this
occurs on the go—on the bus, on the train, or in a most beloved corner of the local park.

Apart from multiplayer functionality, social networks have also started to influence mobile gaming.
Games provide functionality to automatically tweet your latest high score directly to your Twitter account,
or to inform a friend of the latest achievement you earned in that racing game you both love. Although
growing social networks exist in the classical gaming world (for example, Xbox Live or PlayStation Network),
the market penetration of services such as Facebook and Twitter is a lot higher, so the user is relieved of the
burden of managing multiple networks at once.

Casual and Hardcore
The overwhelming user adoption of mobile devices also means that people who have never even touched
an NES controller have suddenly discovered the world of gaming. Their idea of a good game often deviates
quite a bit from that of the hardcore gamer.

According to the use cases for mobile phones, typical users tend to lean toward the more casual sort of
game that they can fire up for a couple of minutes while on the bus or waiting in line at a fast food restaurant.
These games are the equivalent of those addictive little flash games on the PC that force many people in the
workplace to Alt+Tab frantically every time they sense the presence of someone behind them. Ask yourself
this: How much time each day would you be willing to spend playing games on your mobile phone? Can you
imagine playing a “quick” game of Civilization on such a device?

Sure, there are probably serious gamers who would offer up their firstborn child if they could play their
beloved Advanced Dungeons & Dragons variant on a mobile phone. But this group is a small minority, as
evidenced by the top-selling games in the iPhone App Store and Google Play. The top-selling games are
usually extremely casual in nature, but they have a neat trick up their sleeves: the average time it takes to
play a round is in the range of minutes, but the games keep you coming back by employing various evil
schemes. One game might provide an elaborate online achievement system that lets you virtually brag about
your skills. Another could actually be a hardcore game in disguise. Offer users an easy way to save their
progress, and you are selling an epic RPG as a cute puzzle game!

Chapter 1 ■ an android in every home

14

Big Market, Small Developers
The low entry barrier to the mobile games market is a main attractor for many hobbyists and independent
developers. In the case of Android, this barrier is especially low: just get yourself the SDK and program away.
You don’t even need a device—just use the emulator (although having at least one development device is
recommended). The open nature of Android also leads to a lot of activity on the Web. Information on all
aspects of programming for the system can be found online for free. There’s no need to sign a non-disclosure
agreement or wait for some authority to grant you access to their holy ecosystem.

Initially, many of the most successful games on the market were developed by one-person companies
and small teams. Major publishers did not set foot in this market for a long time, at least not successfully.
Gameloft serves as a prime example. Although big on the iPhone, Gameloft couldn’t get a foothold on
Android for a quite a while and decided instead to sell their games on their own website. Gameloft might not
have been happy with the absence of a Digital Rights Management scheme (which is available on Android
now). Ultimately, Gameloft started publishing on Google Play again, along with other big companies like
Zynga and Glu Mobile.

The Android environment also allows for a lot of experimentation and innovation, as bored people
surfing Google Play are searching for little gems, including new ideas and game-play mechanics.
Experimentation on classic gaming platforms, such as the PC or consoles, often meets with failure. However,
Google Play enables you to reach a large audience that is willing to try experimental new ideas, and to reach
them with a lot less effort.

This doesn’t mean, of course, that you don’t have to market your game. One way to do so is to inform
various blogs and dedicated sites on the Web about your latest game. Many Android users are enthusiasts
and regularly frequent such sites, checking in on the next big hit.

Another way to reach a large audience is to get featured in Google Play. Once featured, your application
will appear to users in a list that shows up when they start the Google Play application. Many developers
have reported a tremendous increase in downloads that is directly correlated to getting featured in Google
Play. How to get featured is a bit of a mystery, though. Having an awesome idea and executing it in the most
polished way possible is your best bet, whether you are a big publisher or a small, one-person shop.

Finally, social networks can boost the downloads and sales of your app considerably, just by simple
word of mouth. Viral games often make this process even easier for the player by integrating Facebook or
Twitter directly. Making a game go viral is one of those black arts that usually has more to do with being at
the right place at the right time than planning.

Summary
Android is an exciting beast. You have seen what it’s made of and gotten to know a little about its developer
ecosystem. From a development standpoint, it offers you a very interesting system in terms of software and
hardware, and the barrier of entry is extremely low given the freely available SDK. The devices themselves
are pretty powerful for handhelds, and they will enable you to present visually rich gaming worlds to
your users. The use of sensors, such as the accelerometer, lets you create innovative game ideas with new
user interactions. And after you have finished developing your games, you can deploy them to millions of
potential gamers in a matter of minutes. Sound exciting? Time to get your hands dirty with some code!

15© Mario Zechner, J. F. DiMarzio and Robert Green 2016
M. Zechner et al., Beginning Android Games, DOI 10.1007/978-1-4842-0472-6_2

CHAPTER 2

First Steps with Android Studio

The Android Studio and the Android SDK provide a set of tools that enable you to create applications
in a short amount of time. This chapter will guide you through the process of building a simple Android
application with the SDK tools. This involves the following steps:

 1. Setting up the development environment.

 2. Creating a new project in Android Studio and writing your code.

 3. Running the application on the emulator or on a device.

 4. Debugging and profiling the application.

We’ll conclude this chapter by looking into useful third-party tools. Let’s start with setting up the
development environment.

Setting Up the Development Environment
The Android SDK is flexible, and it integrates well with several development environments. Purists might
choose to go hard core with command-line tools. We want things to be a little bit more comfortable, though,
so we’ll go for the simpler, more visual route by using an IDE (integrated development environment).

Here’s the list of software you’ll need to download and install in the given order:

 1. The Java Development Kit (JDK), version 8

 2. Android Studio

 3. The Android Software Development Kit (Android SDK)

Let’s go through the steps required to set up everything properly.

 ■ Note As the Web is a moving target, we don’t provide specific download URLs here. Fire up your favorite
search engine and find the appropriate places to get the items listed.

Setting Up the JDK
Download the JDK version specific to your operating system. On most systems, the JDK comes in an installer
or package, so there shouldn’t be any hurdles. Once you have installed the JDK, you should add a new
environment variable called JDK_HOME that points to the root directory of the JDK installation. Additionally, you
should add the $JDK_HOME/bin (%JDK_HOME%\bin on Windows) directory to your PATH environment variable.

ChApteR 2 ■ FiRst steps With AndRoid stUdio

16

Installing Android Studio
At the time this book was written, Android Studio was on version 2.2. Simply find the download for the latest
version on the Android developer site and extract it to a folder of your choice. Once installed, you can create
a shortcut on your desktop to the Android Studio executable in the root directory of your Android Studio
installation.

Setting Up the Android SDK
The Android SDK is available for the three mainstream desktop operating systems. Choose the version for
your platform and download it. The SDK comes in the form of a ZIP or tar gzip file. Just uncompress it to
a convenient folder (for example, c:\android-sdk on Windows or /opt/android-sdk on Linux). The SDK
comes with several command-line utilities located in the tools/ folder. Create an environment variable
called ANDROID_HOME that points to the root directory of the SDK installation, then add $ANDROID_HOME/tools
(%ANDROID_HOME%\tools on Windows) to your PATH environment variable. This way you can easily invoke the
command-line tools from a shell later on if the need arises.

 ■ Note For Windows, you can also download a proper installer that will set up things for you.

After performing the preceding steps, you’ll have a bare-bones installation that consists of the basic
command-line tools needed to create, compile, and deploy Android projects, as well as the SDK Manager, a
tool for installing SDK components, and the AVD Manager, which is responsible for creating virtual devices
used by the emulator. These tools alone are not sufficient to start developing, so you’ll need to install
additional components. That’s where the SDK Manager comes in. The manager is a package manager, much
like the package management tools you find on Linux. The manager allows you to install the following types
of components:

Android platforms: For every official Android release, there’s a platform
component for the SDK that includes the runtime libraries, a system image used
by the emulator, and any version-specific tools.

SDK add-ons: Add-ons are usually external libraries and tools that are not
specific to a platform. Some examples are the Google APIs that allow you to
integrate Google Maps in your application.

USB driver for Windows: This driver is necessary for running and debugging your
application on a physical device on Windows. On Mac OS X and Linux, you don’t
need a special driver.

Samples: For each platform, there’s also a set of platform-specific samples. These
are great resources for seeing how to achieve specific goals with the Android
runtime library.

Documentation: This is a local copy of the documentation for the latest Android
framework API.

Being the greedy developers we are, we want to install all of these components to have the full set of
this functionality at our disposal. Thus, first we have to start the SDK Manager. On Windows, there’s an
executable called SDK manager.exe in the root directory of the SDK. Or, you can launch the SDK Manager
from within Android Studio by clicking on Tools >> Android >> SDK Manager. Then, you can click on Launch
Standalone SDK Manager.

ChApteR 2 ■ FiRst steps With AndRoid stUdio

17

Upon first startup, the SDK Manager will connect to the package server and fetch a list of available
packages. The manager will then present you with the dialog shown in Figure 2-1, which allows you to install
individual packages. Simply click the “New” link next to Select, and then click the Install button. You’ll be
presented with a dialog that asks you to acknowledge the installation. Check the “Accept All” check box, and
then click the Install button again. Next, make yourself a nice cup of tea or coffee. The manager will take a
while to install all the packages. The installer might ask you to provide login credentials for certain packages.
You can safely ignore those and just click Cancel.

Figure 2-1. First contact with the SDK Manager

You can use the SDK Manager at any time to update components or install new ones. Once the
installation process is finished, you can move on to the next step in setting up your development
environment.

ChApteR 2 ■ FiRst steps With AndRoid stUdio

18

A Quick Tour of Android Studio
IntelliJ, or IntelliJ IDEA, is a Java IDE developed by JetBrains. It has become the de facto IDE for Java
development because of its strong feature set. Android Studio is based on the open source community edition
of IntelliJ IDEA. This means that many of the features that make IntelliJ IDEA an extraordinary IDE for Java
development also make Android Studio an extraordinary IDE for Java development for Android.

IntelliJ has many features in general, and it also has a complete set of tools just for assisting with code
generation that have been carried over to Android Studio. The following sections highlight just a few of these
features.

Code Completion
Code Completion is one feature of IntelliJ that is used most often in Android development. Let’s say we
create a function as seen here:

String mystring;

public void setMyProperty(String mystring) {
 this.mystring = mystring;
 }

private void DoSomething(String someValue){
 setMyProperty();
}

This very simplistic function takes in a String variable someValue. Notice that the function calls
setMyProperty(). We can assume that setMyProperty(), is a setter that takes in a String value (as shown
in the previous code sample). Place your cursor inside the parentheses of setMyProperty() and press
Ctrl+Alt+Space. This will bring up the Android Studio autocomplete window, as seen in Figure 2-2.

Figure 2-2. The IntelliJ autocomplete window

ChApteR 2 ■ FiRst steps With AndRoid stUdio

19

The main thing to notice about this window is that it not only lists for you the available String values that
you could pass into setMyProperty(), but also sorts them by the ones that it feels you are most likely to use.
In this case, someValue—the value being passed into our function—is displayed first.

Breakpoints
Later in this book, I will walk through debugging your game. However, let’s take a quick moment to cover
breakpoints. Breakpoints are like bookmarks in your code that tell Android Studio where you want to pause
execution while you are debugging.

To place a breakpoint, click in the right-hand margin of your code editor next to the line where you want
code execution to pause. A set breakpoint is illustrated in Figure 2-3.

Figure 2-3. A set breakpoint

One of the great things about breakpoints in Android Studio is that you can set them with
conditions. If you right-click on your breakpoint, you will get a context menu that can be expanded, as
seen in Figure 2-4.

ChApteR 2 ■ FiRst steps With AndRoid stUdio

20

From this window you can set conditions on your breakpoints. For example, if you have an integer
value named myInteger that you set a breakpoint on, you can set a condition to only break if the value of
myInteger is greater than 100.

Any condition that can be evaluated as true or false can be used as a breakpoint condition.

Creating a New Project in Android Studio and Writing Your
Code
With our development set up, we can now create our first Android project in Android Studio. The built-in
wizard makes creating new Android projects very easy.

Creating the Project
There are two ways to create a new Android project. The first is to click on File >> New >> New Project from
the menu bar. This is the standard way to create a new project in Android Studio. From here, the Create New
Project wizard opens.

If this is the first time you have opened Android Studio, or if you have recently closed an active project,
just click on “Start a new Android Studio project” in the Welcome to Android Studio window, which also
opens the wizard.

Once you are in the Create New Project wizard dialog, you have to make a few decisions. Follow
these steps:

 1. Define the application name. This is the name shown in the launcher on
Android. We’ll use “Hello World.”

Figure 2-4. The breakpoint context menu

ChApteR 2 ■ FiRst steps With AndRoid stUdio

21

 2. Specify the package name. This is the name of the package under which all your
Java code will live. The wizard tries to guesstimate your package name based on
your project name, but feel free to modify it to your needs. We’ll use “helloworld.
com” in this example. Click Next to continue.

 3. Select Phone and Table as the form factors that you wish to run on.

 4. Specify the minimum required SDK. This is the lowest Android version your
application will support. We’ll choose Android 7.0 (Nougat, API level 24). (The
API level may be 25 by the time Nougat is fully released.)

 ■ Note in Chapter 1, you saw that each new release of Android adds new classes to the Android framework
Api. the build sdK specifies which version of this Api you want to use in your application. For example, if you
choose the Android 6.X build sdK, you get access to the latest and greatest Api features. this comes at a risk,
though: if your application is run on a device that uses a lower Api version (say, a device running Android version
4.3), then your application will crash if the user accesses Api features that are available only in version 7.
in this case, you’d need to detect the supported sdK version during runtime and only access the 7 features
when you’re sure that the Android version on the device supports this version. this may sound pretty nasty,
but as you’ll see in Chapter 5, given a good application architecture, you can easily enable and disable certain
version-specific features without running the risk of crashing.

 5. Click Next. You’ll be shown a dialog that lets you select a default activity for your
application. We’ll select Empty Activity and click Next.

 6. In the final dialog, you can modify some attributes of the blank activity the
wizard will create for you. We set the activity name to “HelloWorldActivity” and
the layout name to “activity_hello_world.” Clicking Finish will create your first
Android project.

 ■ Note setting the required minimum sdK version has some implications. the application can be run only
on devices with an Android version equal to or greater than the minimum sdK version you specify. When a
user browses Google play via the Google play application, only applications with the appropriate minimum sdK
version will be displayed.

Exploring the Project
In the Package Explorer, you should now see your Hello World project. If you expand it and all its children,
you’ll see something like Figure 2-5. (If you do not see the same layout as in Figure 2-5, switch to the Project
view from the dropdown box located above the layout.) This is the general structure of most Android
projects. Let’s explore it a little bit.

•	 src/ contains all your Java source files. Notice that the package has the same name
as the one you specified in the Create New Project wizard.

•	 build/generated/ contains Java source files generated by the Android build system.
You shouldn’t modify them, as they get regenerated automatically.

•	 libs/ holds any additional JAR files that we want our application to depend on.

http://dx.doi.org/10.1007/978-1-4842-0472-6_1
http://dx.doi.org/10.1007/978-1-4842-0472-6_5

ChApteR 2 ■ FiRst steps With AndRoid stUdio

22

•	 res/ holds resources your application needs, such as icons, strings for
internationalization, and UI layouts defined via XML. Like assets, the resources also
get packaged with your application.

•	 AndroidManifest.xml describes your application. It defines what activities and
services make up your application, what minimum and target Android version your
application runs on (hypothetically), and what permissions it needs (for example,
access to the SD card or networking).

Figure 2-5. Hello World project structure

ChApteR 2 ■ FiRst steps With AndRoid stUdio

23

We can easily add new source files, folders, and other resources in the Project view by right-clicking
the folder in which we want to put the new resources and selecting New plus the corresponding resource
type we want to create. For now, though, we’ll leave everything as is. Next, let’s look into modifying our basic
application setup and configuration so it is compatible with as many Android versions and devices as possible.

Writing the Application Code
We still haven’t written a single line of code, so let’s change that. The Create New Project wizard created
a template activity class for us called HelloWorldActivity, which will get displayed when we run the
application on the emulator or a device. Open the source of the class by double-clicking the file in the
Project view. We’ll replace that template code with the code in Listing 2-1.

Listing 2-1. HelloWorldActivity.java

package com.helloworld.helloworld;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;

public class HelloWorldActivity extends AppCompatActivity
 implements View.OnClickListener {
 Button button;
 int touchCount;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 button = new Button(this);
 button.setText("Touch me!");
 button.setOnClickListener(this);
 setContentView(button);
 }

 public void onClick(View v) {
 touchCount++;
 button.setText("Touched me " + touchCount + " time(s)");
 }
}

Let’s dissect Listing 2-1 so you can understand what it’s doing. We’ll leave the nitty-gritty details for later
chapters. All we want is to get a sense of what’s happening.

The source code file starts with the standard Java package declaration and several imports. Most
Android framework classes are located in the android package.

package com.helloworld.helloworld;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;

ChApteR 2 ■ FiRst steps With AndRoid stUdio

24

Next, we define our HelloWorldActivity and let it extend the base class AppCompatActivity, which is
provided by the Android framework API. An activity is a lot like a window in classical desktop UIs, with the
constraint that the activity always fills the complete screen (except for the notification bar at the top of the
Android UI and the “soft buttons” at the bottom of the screen—depending on the device). Additionally, we
let HelloWorldActivity implement the interface OnClickListener. If you have experience with other UI
toolkits, you’ll probably see what’s coming next. More on that in a second.

public class HelloWorldActivity extends AppCompatActivity
 implements View.OnClickListener {

We let our activity have two members: a Button and an int that counts how often the Button is touched.

Button button;
int touchCount;

Every activity can implement the method Activity.onCreate(), which gets called once by the Android
system when the activity is first started. This replaces a constructor you’d normally expect to use to create an
instance of a class.

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

Next, we create a button and set its initial text. Button is one of the many widgets that the Android
framework API provides. UI widgets are called views on Android. Note that Button is a member of our
HelloWorldActivity class. We’ll need a reference to it later on.

button = new Button(this);
button.setText("Touch me!");

The next line in onCreate() sets the OnClickListener of the button. OnClickListener is a callback
interface with a single method, OnClickListener.onClick(), which gets called when the button is clicked.
We want to be notified of clicks, so we let our HelloWorldActivity implement that interface and register it
as the OnClickListener of the button.

button.setOnClickListener(this);

The last line in the onCreate() method sets the button as the content view of our activity. Views can be
nested, and the content view of the activity is the root of this hierarchy. In our case, we simply set the button
as the view to be displayed by the activity. For simplicity’s sake, we won’t get into details of how the activity
will be laid out given this content view.

 setContentView(button);
}

The next step is simply the implementation of the OnClickListener.onClick() method, which the
interface requires of our activity. This method gets called each time the button is clicked. In this method, we
increase the touchCount counter and set the button’s text to a new String.

public void onClick(View v) {
 touchCount++;
 button.setText("Touched me" + touchCount + "times");
}

ChApteR 2 ■ FiRst steps With AndRoid stUdio

25

Thus, to summarize our Hello World application, we construct an activity with a button. Each time the
button is clicked, we set its text accordingly. This may not be the most exciting application on the planet, but
it will do for further demonstration purposes.

Note that we never had to compile anything manually. Android Studio will recompile the project every
time we add, modify, or delete a source file or resource. The result of this compilation process is an APK file
ready to be deployed to the emulator or an Android device. The APK file is located in the bin/ folder of the
project.

You’ll use this application in the following sections to learn how to run and debug Android applications
on emulator instances and on devices.

Running the Application on a Device or Emulator
Once we’ve written the first iteration of our application code, we want to run and test it to identify potential
problems or to just be amazed at its glory. There are two ways in which we can achieve this:

•	 We can run our application on a real device connected to the development PC via USB.

•	 We can fire up the emulator included in the SDK and test our application there.

In both cases, we have to do a little bit of setup work before we can finally see our application in action.

Connecting a Device
Before we can connect our device for testing purposes, we have to make sure that it is recognized by the
operating system. On Windows, this involves installing the appropriate driver, which is part of the SDK we
installed earlier. Just connect your device and follow the standard driver installation project for Windows,
pointing the process to the driver/ folder in your SDK installation’s root directory. For some devices, you
might have to get the driver from the manufacturer’s website. Many devices can use the Android ADB drivers
that come with the SDK; however, a process is often required to add the specific device’s hardware ID to the
INF file. A quick Google search for the device name and “Windows ADB” will often get you the information
you need in order to get connected with that specific device.

On Linux and Mac OS X, you usually don’t need to install any drivers as they come with the operating
system. Depending on your Linux flavor, you might have to fiddle with your USB device discovery a little bit,
usually in the form of creating a new rules file for udev. This varies from device to device. A quick Web search
should bring up a solution for your device.

Creating an Android Virtual Device
The SDK comes with an emulator that will run Android Virtual Devices (AVDs). An Android Virtual Device
consists of a system image of a specific Android version, a skin, and a set of attributes, which include the
screen resolution, SD-card size, and so on.

To create an AVD, you have to fire up the Android Virtual Device Manager. You can do so by clicking
Tools >> Android >> AVD Manager. Let’s walk through the steps of creating a custom AVD:

 1. Click the Create Virtual Device… button on the lower-left side of the AVD
Manager screen, which opens the Virtual Device Configuration dialog,
shown in Figure 2-6.

ChApteR 2 ■ FiRst steps With AndRoid stUdio

26

 2. Select the correct hardware profile. In this example, we’ll select a Phone >>
Nexus 5. Click Next to continue.

 3. The system image specifies the Android version that the AVD should use. For our
simple “Hello World” project, you can select x86Images >> Jelly Bean. Note: You
may have to download it before you can select it. Don’t worry though, the AVD
Manager has made this a painless process; just click on the “Download” link and
AVD Manager will take care of the rest.

 4. Click Finish to create your emulator.

 ■ Note Unless you have dozens of different devices with different Android versions and screen sizes, you
should use the emulator for additional testing of Android version/screen size combinations.

Figure 2-6. Virtual Device Configuration dialog

ChApteR 2 ■ FiRst steps With AndRoid stUdio

27

Installing Advanced Emulator Features
There are a few hardware virtualization implementations that now support the Android emulator, Intel being
one of them. If you have an Intel CPU, you should be able to install the Intel Hardware Accelerated Execution
Manager (HAXM), which, in conjunction with an x86 emulator image, will virtualize your CPU and run
significantly faster than a normal fully emulated image. In conjunction with this, enabling GPU acceleration
will (in theory) provide a reasonable performance-testing environment. Our experience with these tools
in their current state is that they are still a bit buggy, but things look promising, so make sure to watch for
official announcements from Google. In the meantime, let’s get set up:

 1. Open the Standalone SDK Manager. Find the Intel x86 Emulator Accelerator
(HAXM installer), select it, and install (see Figure 2-7).

Figure 2-7. Selecting HAXM installer

ChApteR 2 ■ FiRst steps With AndRoid stUdio

28

 2. Now, edit your emulator’s image by opening the AVD Manager and clicking on
the green pencil icon next to the emulator name. Set the graphics to Hardware
GLES20, as shown in Figure 2-8. Note that if you are running on an older
computer and your GPU is not up to the task of emulating the Android screen,
you may want to select Software GLES20.

Figure 2-8. Creating the x86 AVD with GPU emulation enabled

Running an Application
Now that you’ve set up your devices and AVDs, you can finally run the Hello World application. You can
easily do this in Android Studio by clicking the Run button on the toolbar. Android Studio will then perform
the following steps in the background:

 1. Compile the project, using Gradle, to an APK file if any files have changed since
the last compilation.

 2. Install and run the application by starting or reusing an already running
emulator instance with an appropriate Android version or by deploying and
running the application on a connected device (which must also run at least the
minimum Android version you specified as the Minimum Required SDK Level
when you created the project).

If you don’t have a device connected, the ADT plug-in will fire up one of the AVDs you saw listed in the
AVD Manager window. The output should look like Figure 2-9.

ChApteR 2 ■ FiRst steps With AndRoid stUdio

29

The emulator works almost exactly like a real device, and you can interact with it via your mouse just as
you would with your finger on a device. Here are a few differences between a real device and the emulator:

•	 The emulator supports only single-touch input by default. Simply use your mouse
cursor and pretend it is your finger. To emulate multi-touch, hold the CTRL button
on Windows at the same time as you click with the mouse (or the Command button
on a Mac).

•	 The emulator is missing some applications, such as the Google Play application.

•	 To change the orientation of the device on the screen, don’t tilt your monitor.
Instead, click the Rotate Left or Rotate Right buttons.

•	 The emulator can be slow. Do not assess the speed performance of your application
by running it on the emulator.

Figure 2-9. The Hello World application in action

ChApteR 2 ■ FiRst steps With AndRoid stUdio

30

•	 Emulator versions prior to 4.0.3 only support OpenGL ES 1.x. OpenGL ES 2.0 is
supported on emulator versions 4.0.3 and newer. We’ll talk about OpenGL ES in
Chapter 7. The emulator will work fine for our basic tests. Once we get further into
OpenGL, you’ll want to get a real device to test on because even with the latest
emulators that we’ve used, the OpenGL implementations (virtualized and software)
are still a little buggy. For now, just be cautious when testing OpenGL ES applications
on the emulator.

Play around with it a little and get comfortable.

 ■ Note starting a fresh emulator instance can take a considerable amount of time (up to ten minutes
depending on your hardware). You can leave the emulator running for your whole development session so you
don’t have to restart it repeatedly, or you can check the “snapshot” option when creating or editing the AVd,
which will allow you to save and restore a snapshot of the virtual machine (VM), allowing for quick launch.

Debugging and Profiling an Application
Sometimes your application will behave in unexpected ways or even crash. To figure out what exactly is
going wrong, you want to be able to debug your application.

Android Studio provides us with incredibly powerful debugging facilities for Android applications. We
can set breakpoints in our source code, inspect variables and the current stack trace, and so forth.

Usually, you set breakpoints before debugging so as to inspect the program state at certain points in the
program. To set a breakpoint, simply open the source file in Android Studio and click the gray area in front
of the line at which you want to set the breakpoint. For demonstration purposes, do that for line 23 in the
HelloWorldActivity class. This will make the debugger stop each time you click the button. The Editor tab
should show you a small circle in front of that line after you click it, as shown in Figure 2-10. You can remove
breakpoints by clicking them again in the Editor tab

Figure 2-10. Setting a breakpoint

Starting the debugging is much like running the application, as described in the previous section.
However, rather than clicking on the Run button, click on the Debug button.

Let’s take a look at what information is available to you when you are debugging an application.

•	 The Debugger at the bottom left shows all currently running applications and the
stack traces of all their threads if the applications are being run in debug mode and
are being suspended.

•	 The Console window prints out messages from the ADT plug-in that tell us what it is
doing.

http://dx.doi.org/10.1007/978-1-4842-0472-6_7

ChApteR 2 ■ FiRst steps With AndRoid stUdio

31

•	 The logcat view in the Android Monitor view will be one of your best friends on your
journey. This view shows you logging output from the emulator/device on which
your application is running. The logging output comes from system components,
other applications, and your own application. The logcat view will show you a stack
trace when your application crashes and will also allow you to output your own
logging messages at runtime. We’ll take a closer look at logcat in the next section.

•	 The Variables view is especially useful for debugging purposes. When the debugger
hits a breakpoint, you will be able to inspect and modify the variables in the current
scope of the program.

If you are curious, you’ve probably already clicked the button in the running application to see how the
debugger reacts. It will stop at line 23, as we instructed it to by setting a breakpoint there. You will also have
noticed that the Variables view now shows the variables in the current scope, which consist of the activity
itself (this) and the parameter of the method (v). You can drill down further into the variables by expanding
them.

The Debug view shows you the stack trace of the current stack down to the method you are in currently.
Note that you might have multiple threads running and can pause them at any time in the Debug view.

Finally, notice that the line where we set the breakpoint is highlighted, indicating the position in the
code where the program is currently paused.

You can instruct the debugger to execute the current statement (by pressing F8), step into any methods
that get called in the current method (by pressing F7), or continue the program execution normally (by
pressing F9). Alternatively, you can use the items on the Run menu to achieve the same things. In addition,
notice that there are more stepping options than the ones we’ve just mentioned. As with everything, we
suggest you experiment to see what works for you and what doesn’t.

 ■ Note Curiosity is a building block for successfully developing Android games. You have to get intimate with
your development environment to get the most out of it. A book of this scope can’t possibly explain all the nitty-
gritty details of Android studio, so we urge you to experiment.

LogCat
One of the most useful views is the logcat view, which we touched on briefly in the previous section.

Logcat is the Android event-logging system that allows system components and applications to output
logging information about various logging levels. Each log entry is composed of a timestamp, a logging level,
the process ID from which the log came, a tag defined by the logging application itself, and the actual logging
message.

The logcat view gathers and displays this information from a connected emulator or device. Figure 2-11
shows some sample output from the logcat view.

ChApteR 2 ■ FiRst steps With AndRoid stUdio

32

If several devices and emulators are currently connected, then the logcat view will output the logging
data of only one.

Summary
The Android development environment can be a bit intimidating at times. Luckily, you need only a subset
of the available options to get started, and this chapter should have given you enough information to get
started with some basic coding.

The big lesson to take away from this chapter is how the pieces fit together. The JDK and the Android
SDK provide the basis for all Android development. They offer the tools to compile, deploy, and run
applications on emulator instances and devices. To speed up development, we use Android Studio, which
does all the hard work we’d otherwise have to do on the command line with the JDK and SDK tools. Android
Studio provides specific functionality, such as source editing or logcat output and debugging.

The secret to mastering all of this is practice, as dull as that may sound. Throughout the book, we’ll
implement several projects that should make you more comfortable with the Android development
environment. At the end of the day, though, it is up to you to take it all one step further.

With all this information, you can move on to the reason you’re reading this book in the first place:
developing games.

Figure 2-11. The logcat view

33© Mario Zechner, J. F. DiMarzio and Robert Green 2016
M. Zechner et al., Beginning Android Games, DOI 10.1007/978-1-4842-0472-6_3

CHAPTER 3

Game Development 101

Game development is hard, not so much because it’s rocket science, but because there’s a huge amount of
information to digest before you can actually start writing the game of your dreams. On the programming
side, you have to worry about such mundane things as file input/output (I/O), user input handling, audio
and graphics programming, and networking code. And those are only the basics! On top of that, you will
want to build your actual game mechanics. The code for that needs structure as well, and it is not always
obvious how to create the architecture of your game. You’ll actually have to decide how to make your game
world move. Can you get away with not using a physics engine and instead roll your own simple simulation
code? What are the units and scale within which your game world is set? How does it translate to the screen?

There’s actually another problem many beginners overlook, which is that before you start hacking away
you’ll actually have to design your game first. Countless projects never see the light of day and get stuck
in the tech-demo phase because there was never any clear idea of how the game should actually behave.
And we’re not talking about the basic game mechanics of your average first-person shooter. That’s the easy
part: WASD keys for movement plus mouse, and you’re done. You should ask yourself questions like: Is
there a splash screen? What does it transition to? What’s on the main menu screen? What heads-up display
elements are available on the actual game screen? What happens if I press the pause button? What options
should be offered on the settings screen? How will my UI design work out on different screen sizes and
aspect ratios?

The fun part is that there’s no silver bullet; there’s no standard way to approach all of these questions.
We will not pretend to give you the be-all and end-all solution to developing games. Instead, we’ll try to
illustrate how we usually approach the design of a game. You may decide to adapt it completely or modify
it to better fit your needs. There are no rules—whatever works for you is OK. You should, however, always
strive for an easy solution, both in code and on paper.

Genres: To Each One’s Taste
At the start of your project, you usually decide on the genre to which your game will belong. Unless you come
up with something completely new and previously unseen, chances are high that your game idea will fit into
one of the broad genres currently popular. Most genres have established game-mechanics standards (for
example, control schemes, specific goals, and so forth). Deviating from these standards can make a game a
great hit, as gamers always long for something new. It can also be a great risk, though, so consider carefully
whether your new platformer/first-person shooter/real-time strategy game actually has an audience.

Let’s check out some examples of the more popular genres on Google Play.

Chapter 3 ■ Game Development 101

34

Casual Games
Probably the biggest segment of games on Google Play consists of so-called casual games. So, what exactly
is a casual game? That question has no concrete answer, but casual games do share a few common traits.
Usually, they feature great accessibility so even non-gamers can pick them up easily, which immensely
increases the pool of potential players. A game session is meant to take just a couple of minutes at most.
However, the addictive nature of a casual game’s simplicity often gets players hooked for hours. The actual
game mechanics range from extremely simplistic puzzle games to one-button platformers to something as
simple as tossing a paper ball into a basket. The possibilities are endless because of the blurry definition of
the casual genre.

Temple Run (see Figure 3-1) by Imangi Studios is the perfect casual game example. You guide a figure
through multiple tracks filled with obstacles. The entire input scheme is based on swiping. If you swipe left
or right, the character takes a turn in that direction (provided there’s an intersection ahead). If you swipe
upward, the character jumps, while swiping downward makes the character slide beneath obstacles. Along
the way you can pick up all kinds of rewards and power-ups. Easy-to-understand controls, a clear goal, and
nice 3D graphics made this game an instant hit, both on Apple’s App Store and on Google Play.

Figure 3-1. Temple Run by Imangi Studios

Gem Miner: Dig Deeper (see Figure 3-2) by the one-man army Psym Mobile is a completely different
animal. It is the sequel to the wildly successful Gem Miner by the same company. It only slightly iterates the
original. You play a miner who tries to find valuable ores, metals, and gems in randomly generated mines.
These treasures can be traded for better equipment to dig deeper and find even more valuable treasures.
It exploits the fact that many people love the concept of grinding: without much effort, you are constantly
rewarded with new gimmicks that keep you playing. Another interesting aspect of this game is that the mines
are randomly generated. This increases the replay value of the game immensely without adding additional
game mechanics. To spice things up a little, the game offers challenge levels with concrete aims and goals for
which you get medals upon completion. It is a very lightweight achievement system.

Chapter 3 ■ Game Development 101

35

One more interesting aspect of this game is the way it’s monetized. Despite the current trend toward
“freemium” games (the game itself is free, while additional content can be bought for often ridiculous
prices), it uses the “old-school” paid model. At around $2 a pop and over 100,000 downloads, that’s quite a
bit of money for a very simple game. These kind of sales numbers are rare on Android, especially with Psym
Mobile having done basically no advertising for the game at all. The success of the predecessor and its huge
player base pretty much guaranteed the success of the sequel.

A list of all of the possible subgenres of the casual game category would fill most of this book. Many
more innovative game concepts can be found in this genre, and it is worth checking out the category in the
market to get some inspiration.

Puzzle Games
Puzzle games need no introduction. We all know great games like Tetris and Bejeweled. They are a big part of
the Android gaming market, and they are highly popular with all segments of the demographic. In contrast
to PC-based puzzle games, which usually just involve getting three objects of a color or shape together, many
puzzle games on Android deviate from the classic match-three formula and use more elaborate, physics-
based puzzles.

Cut the Rope (see Figure 3-3) by ZeptoLab is a superb example of a physics puzzler. The goal of the game
is to feed candy to the little creature on each screen. The piece of candy has to be guided toward the creature
by cutting ropes it is attached to, putting it into bubbles so it can float upward, circumnavigating obstacles,
and so forth. Every game object is physically simulated to some degree. The game is powered by Box2D, a 2D
physics engine. Cut the Rope has become an instant success, both on the iOS App Store and Google Play, and
has even been ported to run in browsers!

Figure 3-2. Gem Miner: Dig Deeper by Psym Mobile

Chapter 3 ■ Game Development 101

36

Apparatus (see Figure 3-4) by Bithack (another one-man company) is heavily influenced by the old
Amiga and PC classic Incredible Machines. Like Cut the Rope, it is a physics puzzler, but it gives the player a
lot more control over the way she solves each puzzle. Various building blocks, like simple logs that can be
nailed together, ropes, motors, and so on, can be combined in creative ways to take a blue ball from one end
of the level to a target area.

Figure 3-3. Cut the Rope by ZeptoLab

Chapter 3 ■ Game Development 101

37

Besides the campaign mode with premade levels, there’s also a sandbox environment where you can let
your creativity reign. Even better, your custom contraptions can be easily shared with others. This aspect of
Apparatus guarantees that even if a player has finished the game, there is still tons of additional content to
be explored.

Of course, you can also find all kinds of Tetris clones, match-three games, and other standard formulas
on the market.

Action and Arcade Games
Action and arcade games usually unleash the full potential of the Android platform. Many of them feature
stunning 3D visuals, demonstrating what is possible on the current generation of hardware. This genre has
many subgenres, including racing games, shoot ’em ups, first- and third-person shooters, and platformers.
This segment of the Android Market has gained a lot of traction over the past few years as big game studios
have started to port their games to Android.

SHADOWGUN (see Figure 3-5) by MADFINGER Games is a visually stunning third-person shoot ’em
up that shows off the computing power of recent Android phones and tablets. As with many AAA games, it
is available on both Android and iOS. SHADOWGUN leverages Unity, a cross-platform game engine, and
is one of the poster children for Unity’s power on mobile devices. Gameplay-wise, it is a dual-analog stick
shooter that even allows for taking cover behind crates and other nice mechanics that usually aren’t found in
mobile action games.

Figure 3-4. Apparatus by Bithack

Chapter 3 ■ Game Development 101

38

While hard numbers are hard to get a hold of, the statistics on the Android market seem to indicate that
the number of downloads of SHADOWGUN is about on par with Gem Miner, previously discussed. This goes
to show that it does not necessarily take a huge AAA team to create a successful Android game.

Tank Hero: Laser Wars (see Figure 3-6) is a sequel to Tank Hero and was created by a very small indie
team called Clapfoot, Inc. You command a tank that you can equip with more and more crazy add-ons, like
ray guns, sonic cannons, and so forth. Levels are very small and confined flat battlegrounds with interactive
elements scattered around that you can use to your advantage to eliminate all opposing tanks on the
playfield. The tank is controlled by simply touching enemies or the playing field, in response to which it
will take the proper action (shoot or move, respectively). While it is not quite at the level of SHADWOGUN
visually, it nevertheless has a rather good-looking dynamic lighting system. The lesson to be learned here is
that even small teams can create a visually pleasing experience if they place constraints on the content, such
as limiting the size of the playing field.

Figure 3-5. SHADOWGUN by MADFINGER Games

Chapter 3 ■ Game Development 101

39

Figure 3-6. Tank Hero: Laser Wars by Clapfoot Inc.

Dragon, Fly! (see Figure 3-7) by Four Pixels is an adaption of the immensely successful game Tiny Wings
by Andreas Illiger, which was available only on iOS at the time of writing. You control a little dragon that goes
up and down an almost infinite number of slopes while collecting all kinds of gems. The little dragon can
take off and fly if it accelerates fast enough. This is done by touching the screen while going down a slope.
The mechanics are extremely simple, but the randomly generated worlds and the hunger for higher scores
make people come back for more.

Figure 3-7. Dragon, Fly! by Four Pixels

Chapter 3 ■ Game Development 101

40

Dragon, Fly! illustrates one phenomenon very well: often, specific mobile game genres turn up on iOS.
The original creators often do not port their games over to Android, even though there is a huge demand.
Other game developers can step in and provide the Android market with an alternative version. This can
also totally backfire should the “inspired” game be too much of a rip-off, as was seen with Zynga’s take on a
game called Tiny Tower (by NimbleBit). Extending an idea is usually well received, while blatantly ripping off
another game is usually met with acrimony.

Max Payne (see Figure 3-8) by Rockstar Games is a port of the old PC game, which was published in
2001. We include it here to illustrate a growing trend of AAA publishers’ taking their old intellectual property
and porting it over to the mobile environment. Max Payne tells the story of a policeman whose family was
murdered by a drug cartel. Max goes on a rampage to avenge his wife and kid. All of this is embedded in a
film noir–style narrative, illustrated via comic strips and short cut-scenes. The original game relied heavily
on the standard mouse/keyboard combination we are used to using when playing shooters on the PC.
Rockstar Games succeeded in creating touchscreen-based controls. While the controls are not as precise as
on the PC, they are still good enough to make the game enjoyable on touchscreens.

Figure 3-8. Max Payne by Rockstar Games

The action and arcade genre is still a bit underrepresented on the market. Players are longing for good
action titles, so maybe that can be your niche!

Tower-Defense Games
Given their immense success on the Android platform, we felt the need to discuss tower-defense games
as their own genre. Tower-defense games became popular as a variant of PC real-time strategy games
developed by the modding community. The concept was soon translated to stand-alone games. Tower-
defense games currently represent the best-selling genre on Android.

Chapter 3 ■ Game Development 101

41

In a typical tower-defense game, some mostly evil force is sending out critters in so-called waves to
attack your castle/base/crystals/you name it. Your task is to defend that special place on the game map by
placing defense turrets that shoot the incoming enemies. For each enemy you kill, you usually get some
amount of money or points that you can invest in new turrets or upgrades. The concept is extremely simple,
but getting the balance of this type of game right is quite difficult.

Defender (see Figure 3-9) by DroidHen is one of the most popular free games on Google Play, but it
uses a simple spin on tower defense that is well known to flash gamers. Instead of building multiple towers,
you have one player-controlled tower that can receive a number of upgrades, ranging from attack-power
increases to splitting arrows. Besides the primary weapon, there are different tech trees of spells that can
be cast to mow down the invading enemy forces. What’s nice about this game is that it is simple, easily
understandable, and polished. The graphics are all clean and themed nicely together, and DroidHen got
the balance just right, which tends to keep you playing much longer than you planned. This game is smart
in how it monetizes in that there are a number of free upgrades you can get, but for the impatient, you can
always purchase things a little early with real money and get instant gratification.

Figure 3-9. Defender by DroidHen

Defender has only one level, but it mixes up the baddies to deliver wave after wave of attack. It’s almost as if
you don’t notice that it has only one level because it’s very nice looking and leads you to pay far more attention
to the baddies, your weapons, and your spells. Overall, this should be good inspiration for the type of game a
small team of developers can create in a reasonable amount of time, one that casual players will enjoy.

Social Games
You didn’t think we were going to skip social games, did you? If anything, the word “social” is the biggest
buzz (and one of the biggest money makers) in our modern technology collective. What is social gaming? It
is games in which you share experiences with your friends and acquaintances, interacting with each other
usually in a viral feedback loop. It’s amazingly powerful, and if done right it can snowball into an avalanche
of success.

Chapter 3 ■ Game Development 101

42

Words with Friends (see Figure 3-10) by Zynga adds turn-based play to the already established genre
of tile-based word creation. What’s really innovative about Words with Friends is the integration of chat and
multiple, simultaneous game play. You can have many games going at once, which takes the waiting out of
waiting for a single game. One notable review (by John Mayer) said, “The ‘Words with Friends’ app is the
new Twitter.” That’s a good synopsis of how well Zynga has utilized the social space and integrated it into a
very accessible game.

Figure 3-10. Words with Friends by Zynga

Chapter 3 ■ Game Development 101

43

Draw Something (see Figure 3-11) by OMGPOP is a game where players guess what someone is drawing
stroke by stroke. Not only is it fun, but also other players submit their own drawings to friends, which makes
for the magic of crowd-sourced content. Draw Something looks at first like a basic fingerpainting app, but
just a few minutes into it, the essence of the game really pops out as you instantly want to submit your guess
right then and there, guess another, and then draw your own and bring your friends in on the fun.

Figure 3-11. Draw Something by OMGPOP

Beyond the Genres
Many new games, ideas, genres, and apps don’t appear to be games at first, but they really are. Therefore, when
entering Google Play, it’s difficult to really pinpoint specifically what is now innovative. We’ve seen games
where a tablet is used as the game host and then connected to a TV, which in turn is connected via Bluetooth
to multiple Android handsets, each used as a controller. Casual social games have been doing well for quite
a while, and many popular titles that started on the Apple platform have now been ported to Android. Has
everything possible already been done? No way! There will always be untapped markets and game ideas for
those who are willing to take a few risks with new game ideas. Hardware is becoming ever faster, and that opens
up entire new realms of possibilities that were previously unfeasible due to lack of CPU horsepower.

Chapter 3 ■ Game Development 101

44

So, now that you know what’s already available on Android, we suggest that you fire up the Google Play
application and check out some of the games just presented. Pay attention to their structure (for example,
which screens lead to which other screens, which buttons do what, how game elements interact with each
other, and so on). Getting a feeling for these things can actually be achieved by playing games with an
analytical mindset. Push away the entertainment factor for a moment and concentrate on deconstructing
the game. Once you’re done, come back and read on. We are going to design a very simple game on paper.

Game Design: The Pen Is Mightier Than the Code
As we said earlier, it is rather tempting to fire up the IDE and just hack together a nice tech demo. This is OK
if you want to prototype experimental game mechanics and see if they actually work. However, once you do
that, throw away the prototype. Pick up a pen and some paper, sit down in a comfortable chair, and think
through all high-level aspects of your game. Don’t concentrate on technical details yet—you’ll do that later
on. Right now, you want to concentrate on designing the user experience of your game. The best way to do
this is by sketching out the following things:

•	 The core game mechanics, including a level concept if applicable

•	 A rough backstory with the main characters

•	 A list of items, power-ups, or other things that modify the characters, mechanics, or
environment if applicable

•	 A rough sketch of the graphics style based on the backstory and characters

•	 Sketches of all the screens involved, diagrams of transitions between screens, and
transition triggers (for example, for the game-over state)

If you’ve peeked at the table of contents, you know that we are going to implement Snake on Android.
Snake is one of the most popular games ever to hit the mobile market. If you don’t know about Snake
already, look it up on the Web before reading on. We’ll wait here in the meantime. . .

Welcome back. So, now that you know what Snake is all about, let’s pretend we just came up with the
idea ourselves and start laying out the design for it. Let’s begin with the game mechanics.

Core Game Mechanics
Before we start, here’s a list of what we need:

•	 A pair of scissors

•	 Something to write with

•	 Plenty of paper

In this phase of our game design, everything’s a moving target. Instead of carefully crafting nice images
in Paint, Gimp, or Photoshop, we suggest you create basic building blocks out of paper and rearrange them
on a table until they fit. You can easily change things physically without having to cope with a silly mouse.
Once you are OK with your paper design, you can take photos or scan the design for future reference. Let’s
start by creating the basic blocks of our core game screen. Figure 3-12 shows you our version of what is
needed for the core game mechanics.

Chapter 3 ■ Game Development 101

45

The leftmost rectangle is our screen, roughly the size of a Nexus One screen. That’s where we’ll place
all the other elements. The next building blocks are two arrow buttons that we’ll use to control the snake.
Finally, there’s the snake’s head, a couple of tail parts, and a piece it can eat. We also wrote out some
numbers and cut them out. Those will be used to display the score. Figure 3-13 illustrates our vision of the
initial playing field.

Figure 3-12. Game design building blocks

Chapter 3 ■ Game Development 101

46

Let’s define the game mechanics:

•	 The snake advances in the direction in which its head is pointed, dragging along its tail.
Head and tail are composed of equally sized parts that do not differ much in their visuals.

•	 If the snake goes outside the screen’s boundaries, it reenters the screen from the
opposite side.

•	 If the right arrow or left arrow button is pressed, the snake takes a 90-degree
clockwise (right) or counterclockwise (left) turn.

•	 If the snake hits itself (for example, a part of its tail), the game is over.

•	 If the snake hits a piece with its head, the piece disappears, the score is increased
by 10 points, and a new piece appears on the playing field in a location that is not
occupied by the snake itself. The snake also grows by one tail part. That new tail part
is attached to the end of the snake.

This is quite a complex description for such a simple game. Note that we ordered the items somewhat in
ascending complexity. The behavior of the game when the snake eats a piece on the playing field is probably
the most complex one. More elaborate games cannot, of course, be described in such a concise manner.
Usually, you’d split these up into separate parts and design each part individually, connecting them in a final
merge step at the end of the process.

Figure 3-13. The initial playing field

Chapter 3 ■ Game Development 101

47

The last game-mechanics item has this implication: the game will end eventually, as all spaces on the
screen will be used up by the snake.

Now that our totally original game-mechanics idea looks good, let’s try to come up with a backstory for it.

A Story and an Art Style
While an epic story with zombies, spaceships, dwarves, and lots of explosions would be fun, we have to
realize that we are limited in resources. Our drawing skills, as exemplified in Figure 3-12, are somewhat
lacking. We couldn’t draw a zombie if our lives depended on it. So we did what any self-respecting indie
game developer would do: resorted to the doodle style and adjusted the settings accordingly.

Enter the world of Mr. Nom. Mr. Nom is a paper snake who’s always eager to eat drops of ink that fall
down from an unspecified source on his paper land. Mr. Nom is utterly selfish, and he has only a single, not-
so-noble goal: becoming the biggest ink-filled paper snake in the world!

This little backstory allows us to define a few more things:

•	 The art style is doodly. We will actually scan in our building blocks later and use
them in our game as graphical assets.

•	 As Mr. Nom is an individualist, we will modify his blocky nature a little and give him
a proper snake face. And a hat.

•	 The digestible piece will be transformed into a set of ink stains.

•	 We’ll trick out the audio aspect of the game by letting Mr. Nom grunt each time he
eats an ink stain.

•	 Instead of going for a boring title like “Doodle Snake,” let’s call the game “Mr. Nom,” a
much more intriguing title.

Figure 3-14 shows Mr. Nom in his full glory, along with some ink stains that will replace the original
block. We also sketched a doodly Mr. Nom logo that we can reuse throughout the game.

Figure 3-14. Mr. Nom, his hat, ink stains, and the logo

Chapter 3 ■ Game Development 101

48

Screens and Transitions
With the game mechanics, backstory, characters, and art style fixed, we can now design our screens and the
transitions between them. First, however, it’s important to understand exactly what makes up a screen:

•	 A screen is an atomic unit that fills the entire display, and it is responsible for exactly
one part of the game (for example, the main menu, the settings menu, or the game
screen where the action is happening).

•	 A screen can be composed of multiple components (for example, buttons, controls,
heads-up displays, or the rendering of the game world).

•	 A screen allows the user to interact with the screen’s elements. These interactions
can trigger screen transitions (for example, pressing a New Game button on the main
menu could exchange the currently active main menu screen with the game screen
or a level-selection screen).

With these definitions, we can put on our thinking caps and design all the screens of our Mr. Nom game.
The first thing our game will present to the player is the main menu screen. What makes a good main

menu screen?

•	 Displaying the name of our game is a good idea in principle, so we’ll put in the Mr.
Nom logo.

•	 To make things look more consistent, we also need a background. We’ll reuse the
playing field background for this.

•	 Players will usually want to play the game, so let’s throw in a Play button.

•	 This will be our first interactive component.

•	 Players want to keep track of their progress and awesomeness, so we’ll also add a
high-score button as shown in Figure 3-15, another interactive component.

•	 There might be people out there who don’t know Snake. Let’s give them some help in
the form of a Help button that will transition to a help screen.

•	 While our sound design will be lovely, some players might still prefer to play in
silence. Giving them a symbolic toggle button to enable and disable the sound will
do the trick.

How we actually lay out these components on our screen is a matter of taste. You could start studying a
subfield of computer science called human computer interfaces (HCI) to get the latest scientific opinion on
how to present your application to the user. For Mr. Nom, that might be overkill, though. We settled on the
simplistic design shown in Figure 3-15.

Chapter 3 ■ Game Development 101

49

Figure 3-15. The main menu screen

Note that all of these elements (the logo, the menu buttons, and so forth) are separate images.
We get an immediate advantage by starting with the main menu screen: we can directly derive more

screens from the interactive components. In Mr. Nom’s case, we will need a game screen, a high-scores
screen, and a help screen. We get away with not including a settings screen since the only setting (sound) is
already present on the main menu screen.

Let’s ignore the game screen for a moment and concentrate first on the high-scores screen. We decided
that high scores will be stored locally in Mr. Nom, so we’ll only keep track of a single player’s achievements.
We also decided that only the five highest scores will be recorded. The high-scores screen will therefore look
like Figure 3-16, showing the “HIGHSCORES” text at the top, followed by the five top scores and a single
button with an arrow on it to indicate that you can transition back to something. We’ll reuse the background
of the playing field again because we like it cheap.

Chapter 3 ■ Game Development 101

50

Figure 3-16. The high-scores screen

Next up is the help screen. It will inform the player of the backstory and the game mechanics. All of
that information is a bit too much to be presented on a single screen. Therefore, we’ll split up the help
screen into multiple screens. Each of these screens will present one essential piece of information to the
user: who Mr. Nom is and what he wants, how to control Mr. Nom to make him eat ink stains, and what Mr.
Nom doesn’t like (namely eating himself). That’s a total of three help screens, as shown in Figure 3-17. Note
that we added a button to each screen to indicate that there’s more information to be read. We’ll hook those
screens up in a bit.

Chapter 3 ■ Game Development 101

51

Finally, there’s our game screen, which we already saw in action. There are a few details we left out,
though. First, the game shouldn’t start immediately; we should give the player some time to get ready. The
screen will therefore start off with a request to touch the screen to start the munching. This does not warrant
a separate screen; we will directly implement that initial pause in the game screen.

Speaking of pauses, we’ll also add a button that allows the user to pause the game. Once it’s paused, we
also need to give the user a way to resume the game. We’ll just display a big Resume button in that case. In
the pause state, we’ll also display another button that will allow the user to return to the main menu screen.
An additional Quit button lets the user go back to the main menu.

In case Mr. Nom bites his own tail, we need to inform the player that the game is over. We could
implement a separate game-over screen, or we could stay within the game screen and just overlay a big
“Game Over” message. In this case, we’ll opt for the latter. To round things out, we’ll also display the score
the player achieved, along with a button to get back to the main menu.

Think of these different states of the game screen as subscreens. We have four subscreens: the initial
get-ready state, the normal game-playing state, the paused state, and the game-over state. Figure 3-18 shows
these subscreens.

Figure 3-17. The help screens

Chapter 3 ■ Game Development 101

52

Figure 3-18. The game screen and its four different states

Now it’s time to hook the screens together. Each screen has some interactive components that are made
for transitioning to another screen.

•	 From the main menu screen, we can get to the game screen, the high-scores screen,
and the help screen via their respective buttons.

•	 From the game screen, we can get back to the main menu screen either via the
button in the paused state or the button in the game-over state.

•	 From the high-scores screen, we can get back to the main menu screen.

•	 From the first help screen, we can go to the second help screen; from the second to
the third; and from the third to the fourth; from the fourth, we’ll return back to the
main menu screen.

That’s all of our transitions! Doesn’t look so bad, does it? Figure 3-19 visually summarizes all of the
transitions, with arrows from each interactive component to the target screen. We also put in all of the
elements that make up our screens.

Chapter 3 ■ Game Development 101

53

We have now finished our first full game design. What’s left is the implementation. How do we actually
make this design into an executable game?

 ■ Note the method we just used to create our game design is fine and dandy for smaller games. this book
is called Beginning Android Games, so it’s a fitting methodology. For larger projects, you will most likely work on
a team, with each team member specializing in one aspect. While you can still apply the methodology described
here in that context, you might need to tweak and tune it a little to accommodate the different environment. You
will also work more iteratively, constantly refining your design.

Figure 3-19. All design elements and transitions

Chapter 3 ■ Game Development 101

54

Code: The Nitty-Gritty Details
Here’s another chicken-and-egg situation: We only want to get to know the Android APIs that are relevant for
game programming. However, we still don’t know how to actually program a game. We have an idea of how
to design one, but transforming it into an executable is still voodoo magic to us. In the following subsections,
we want to give you an overview of what elements usually make up a game. We’ll look at some pseudocode
for interfaces that we’ll later implement with what Android offers. Interfaces are awesome for two reasons:
they allow us to concentrate on the semantics without needing to know the implementation details, and they
allow us to exchange the implementation later (for example, instead of using 2D CPU rendering, we could
exploit OpenGL ES to display Mr. Nom on the screen).

Every game needs a basic framework that abstracts away and eases the pain of communicating with the
underlying operating system. Usually this is split up into modules, as follows:

Application and window management: This is responsible for creating a window
and coping with things like closing the window or pausing/resuming the
application in Android.

Input: This is related to the window management module, and it keeps track
of user input (that is, touch events, keystrokes, periphery, and accelerometer
readings).

File I/O: This allows us to get the bytes of our assets into our program from disk.

Graphics: This is probably the most complex module besides the actual game.
It is responsible for loading graphics and drawing them on the screen.

Audio: This module is responsible for loading and playing everything
that will hit our ears.

Game framework: This ties all these modules together and provides an
easy-to-use base for writing our games.

Each of these modules is composed of one or more interfaces. Each interface will have at least one
concrete implementation that applies the semantics of the interface based on what the underlying platform
(in our case Android) provides.

 ■ Note Yes, we deliberately left out networking from the preceding list. We will not implement multiplayer
games in this book. that is a rather advanced topic, depending on the type of game. If you are interested in this
topic, you can find a range of tutorials on the Web using Google play Game Services. (www.gamedev.net is a
good place to start.)

In the following discussion, we will be as platform-agnostic as possible. The concepts are the same on
all platforms.

Application and Window Management
A game is just like any other computer program that has a UI. It is contained in some sort of window (if the
underlying operating system’s UI paradigm is window based, which is the case for all mainstream operating
systems). The window serves as a container, and we basically think of it as a canvas on which we draw our
game content.

http://www.gamedev.net/

Chapter 3 ■ Game Development 101

55

Most operating systems allow the user to interact with the window in a special way other than touching
the client area or pressing a key. On desktop systems, you can usually drag the window around, resize it,
or minimize it to some sort of taskbar. In Android, resizing is replaced with accommodating an orientation
change, and minimizing is similar to putting the application in the background via a press of the Home
button or as a reaction to an incoming call.

The application and window management module is also responsible for actually setting up the
window and making sure it is filled by a single UI component to which we can later render and that receives
input from the user in the form of touching or pressing keys. That UI component might be rendered via the
CPU, or it can be hardware accelerated, as is the case with OpenGL ES.

The application and window management module does not have a concrete set of interfaces. We’ll
merge it with the game framework later on. The things we have to remember are the application states and
window events that we have to manage:

Create: Called once when the window (and thus the application) is started up

Pause: Called when the application is paused by some mechanism

Resume: Called when the application is resumed and the window is again in the
foreground

 ■ Note Some android aficionados might roll their eyes at this point. Why use only a single window (activity
in android speak)? Why not use more than one UI widget for the game—say, for implementing complex UIs that
our game might need? the main reason is that we want complete control over the look and feel of our game. It
also allows us to focus on android game programming instead of on android UI programming, a topic for which
better books exist—for example, mark murphy’s excellent Beginning Android 3 (apress, 2011).

Input
The user will surely want to interact with our game in some way. That’s where the input module comes in.
On most operating systems, input events such as touching the screen or pressing a key are dispatched to the
currently focused window. The window will then further dispatch the event to the UI component that has
the focus. The dispatching process is usually transparent to us; our only concern is getting the events from
the focused UI component. The UI APIs of the operating system provide a mechanism by which to hook into
the event-dispatching system so that we can easily register and record the events. This hooking into and
recording of events is the main task of the input module.

What can we do with the recorded information? There are two modi operandi:

Polling: With polling, we only check the current state of the input devices. Any
states between the current check and the last check will be lost. This way of input
handling is suitable for checking things like whether a user touches a specific
button, for example. It is not suitable for tracking text input, as the order of key
events is lost.

Event-based handling: This gives us a full chronological history of the events that
have occurred since we last checked. It is a suitable mechanism for performing
text input or any other task that relies on the order of events. It’s also useful for
detecting when a finger first touched the screen or when the finger was lifted.

Chapter 3 ■ Game Development 101

56

What input devices do we want to handle? On Android, we have three main input methods:
touchscreen, keyboard/trackball, and accelerometer. The first two are suitable for both polling and event-
based handling. The accelerometer is usually just used for polling.

The touchscreen can generate three events:

Touch down: This happens when a finger is touched to the screen.

Touch drag: This occurs when a finger is dragged across the screen. Before a drag,
there’s always a down event.

Touch up: This happens when a finger is lifted from the screen.

Each touch event has additional information: the position relative to the UI component origin and a
pointer index used in multitouch environments to identify and track separate fingers.

The keyboard can generate two types of events:

Key down: This happens when a key is pressed down.

Key up: This happens when a key is lifted. This event is always preceded
by a key-down event.

Key events also carry additional information. Key-down events store the pressed key’s code. Key-up
events store the key’s code and an actual Unicode character. There’s a difference between a key’s code and
the Unicode character generated by a key-up event. In the latter case, the state of other keys is also taken into
account, such as the Shift key. This way, we can get uppercase and lowercase letters in a key-up event, for
example. With a key-down event, we only know that a certain key was pressed; we have no information on
which character that keypress would actually generate.

Developers seeking to use custom USB hardware, including joysticks, analog controllers, special
keyboards, touchpads, or other Android-supported peripherals, can do this by utilizing the android.
hardware.usb package APIs, which were introduced in API level 12 (Android 3.1) and were also backported
to Android 2.3.4 via the package com.android.future.usb. The USB APIs enable an Android device to
operate in either host mode, which allows for peripherals to be attached to and used by the Android device,
or accessory mode, which allows for the device to act as an accessory to another USB host. These APIs
aren’t quite beginner material, as the device access is very low level, offering data-streaming I/O to the USB
accessory, but it’s important to note that the functionality is indeed there. If your game design revolves
around a specific USB accessory, you will certainly want to develop a communication module for the
accessory and prototype using it.

Finally, there’s the accelerometer. It’s important to understand that while nearly all handsets and tablets
have accelerometers as standard hardware, many new devices, including set-top boxes, may not have an
accelerometer, so always plan on having multiple modes of input!

To use the accelerometer, we always poll the accelerometer’s state. The accelerometer reports the
acceleration exerted by the gravity of our planet on one of the three axes of the accelerometer. The axes are
called x, y, and z. Figure 3-20 depicts each axis’s orientation. The acceleration on each axis is expressed in
meters per second squared (m/s2). From physics class, we know that an object will accelerate at roughly 9.8
m/s2 when in free fall on planet Earth. Other planets have a different gravity, so the acceleration constant
is also different. For the sake of simplicity, we’ll only deal with planet Earth here. When an axis points away
from the center of the Earth, the maximum acceleration is applied to it. If an axis points toward the center
of the Earth, we get a negative maximum acceleration. If you hold your phone upright in portrait mode,
then the y axis will report an acceleration of 9.8 m/s2, for example. In Figure 3-20, the z axis would report an
acceleration of 9.8 m/s2, and the x and y axes would report an acceleration of zero.

Chapter 3 ■ Game Development 101

57

Now, let’s define an interface that gives us polling access to the touchscreen, the keyboard, and the
accelerometer and that also gives us event-based access to the touchscreen and keyboard (see Listing 3-1).

Listing 3-1. The input interface and the KeyEvent and TouchEvent classes

package com.badlogic.androidgames.framework;

import java.util.List;

public interface Input {
public class KeyEvent {
public static final int KEY_DOWN = 0;
public static final int KEY_UP = 1;

public int type; public int keyCode; public char keyChar;
}

public static class TouchEvent {
public static final int TOUCH_DOWN = 0; public static final int TOUCH_UP = 1; public
static final int TOUCH_DRAGGED = 2;

public int type; public int x, y; public int pointer;
}

public boolean isKeyPressed(int keyCode); public boolean isTouchDown(int pointer); public
int getTouchX(int pointer);
public int getTouchY(int pointer);

public float getAccelX(); public float getAccelY(); public float getAccelZ();
public List<KeyEvent> getKeyEvents();

public List<TouchEvent> getTouchEvents();
}

Figure 3-20. The accelerometer axes on an Android phone. The z axis points out of the phone

Chapter 3 ■ Game Development 101

58

Our definition is started off by two classes, KeyEvent and TouchEvent. The KeyEvent class defines
constants that encode a KeyEvent’s type; the TouchEvent class does the same. A KeyEvent instance records
its type, the key’s code, and its Unicode character in case the event’s type is KEY_UP.

The TouchEvent code is similar, and it holds the TouchEvent’s type, the position of the finger relative
to the UI component’s origin, and the pointer ID that was given to the finger by the touchscreen driver. The
pointer ID for a finger will stay the same for as long as that finger is on the screen. If two fingers are down
and finger 0 is lifted, then finger 1 keeps its ID for as long as it is touching the screen. A new finger will get
the first free ID, which would be 0 in this example. Pointer IDs are often assigned sequentially, but it is not
guaranteed to happen that way. For example, a Sony Xperia Play uses 15 IDs and assigns them to touches in
a round-robin manner. Do not ever make assumptions in your code about the ID of a new pointer—you can
only read the ID of a pointer by using the index and reference it until the pointer has been lifted.

Next are the polling methods of the input interface, which should be pretty self-explanatory. Input.
isKeyPressed() takes a keyCode and returns whether the corresponding key is currently pressed or not.
Input.isTouchDown(), Input.getTouchX(), and Input.getTouchY() return whether a given pointer
is down, as well as its current x and y coordinates. Note that the coordinates will be undefined if the
corresponding pointer is not actually touching the screen.

Input.getAccelX(), Input.getAccelY(), and Input.getAccelZ() return the respective acceleration
values of each accelerometer axis.

The last two methods are used for event-based handling. They return the KeyEvent and TouchEvent
instances that got recorded since the last time we called these methods. The events are ordered according to
when they occurred, with the newest event being at the end of the list. With this simple interface and these
helper classes, we have all our input needs covered. Let’s move on to handling files.

 ■ Note While mutable classes with public members are an abomination, we can get away with them in this
case for two reasons: Dalvik is still slow when calling methods (getters, in this case), and the mutability of
the event classes does not have an impact on the inner workings of an Input implementation. Just take note
that this is bad style in general, but that we will resort to this shortcut every once in a while for performance
reasons.

File I/O
Reading and writing files is quite essential for our game development endeavor. Given that we are in Java
land, we are mostly concerned with creating InputStream and OutputStream instances, the standard Java
mechanisms for reading and writing data from and to a specific file. In our case, we are mostly concerned
with reading files that we package with our game, such as level files, images, and audio files. Writing files is
something we’ll do a lot less often. Usually, we only write files if we want to maintain high scores or game
settings, or save a game state so that users can pick up from where they left off.

We want the easiest possible file-accessing mechanism. Listing 3-2 shows our proposal for a simple
interface.

Listing 3-2. The file I/O interface

package com.badlogic.androidgames.framework;

import java.io.IOException; import java.io.InputStream; import java.io.OutputStream;

Chapter 3 ■ Game Development 101

59

public interface FileIO {
InputStream readAsset(String fileName) throws IOException;

InputStream readFile(String fileName) throws IOException;

OutputStream writeFile(String fileName) throws IOException;
}

That’s rather lean and mean. We just specify a filename and get a stream in return. As we usually do in
Java, we will throw an IOException in case something goes wrong. Where we read and write files from and
to will depend on the implementation, of course. Assets will be read from our application’s APK file, and files
will be read from and written to the SD card (also known as external storage).

The returned InputStreams and OutputStreams are plain-old Java streams. Of course, we have to close
them once we are finished using them.

Audio
While audio programming is a rather complex topic, we can get away with a very simple abstraction. We will
not do any advanced audio processing; we’ll just play back sound effects and music that we load from files,
much like we’ll load bitmaps in the graphics module.

Before we dive into our module interfaces, though, let’s stop for a moment and get some idea of what
sound actually is and how it is represented digitally.

The Physics of Sound
Sound is usually modeled as a set of waves that travels in a medium such as air or water. The wave is
not an actual physical object, but is the movement of the molecules within the medium. Think of a little
pond into which you throw a stone. When the stone hits the pond’s surface, it will push away a lot of
water molecules within the pond, and those pushed-away molecules will transfer their energy to their
neighbors, which will start to move and push as well. Eventually, you will see circular waves emerge from
where the stone hit the pond.

Something similar happens when sound is created. Instead of a circular movement, you get spherical
movement, though. As you may know from the highly scientific experiments you may have carried out in
your childhood, water waves can interact with each other; they can cancel each other out or reinforce each
other. The same is true for sound waves. All sound waves in an environment combine to form the tones and
melodies you hear when you listen to music. The volume of a sound is dictated by how much energy the
moving and pushing molecules exert on their neighbors and eventually on your ear.

Recording and Playback
The principle of recording and playing back audio is actually pretty simple in theory. For recording, we
keep track of the point in time when certain amounts of pressure were exerted on an area in space by the
molecules that form the sound waves. Playing back these data is a mere matter of getting the air molecules
surrounding the speaker to swing and move like they did when we recorded them.

In practice, it is of course a little more complex. Audio is usually recorded in one of two ways: in analog
or digitally. In both cases, the sound waves are recorded with some sort of microphone, which usually
consists of a membrane that translates the pushing from the molecules to some sort of signal. How this
signal is processed and stored is what makes the difference between analog and digital recording. We are
working digitally, so let’s just have a look at that case.

Chapter 3 ■ Game Development 101

60

Recording audio digitally means that the state of the microphone membrane is measured and stored at
discrete time steps. Depending on the pushing by the surrounding molecules, the membrane can be pushed
inward or outward with regard to a neutral state. This process is called sampling, as we take membrane state
samples at discrete points in time. The number of samples we take per time unit is called the sampling rate.
Usually the time unit is given in seconds, and the unit is called hertz (Hz). The more samples per second, the
higher the quality of the audio. CDs play back at a sampling rate of 44,100Hz, or 44.1KHz. Lower sampling
rates are found, for example, when transferring voice over the telephone line (8KHz is common in this case).

The sampling rate is only one attribute responsible for a recording’s quality. The way in which we
store each membrane state sample also plays a role, and it is also subject to digitalization. Let’s recall what
the membrane state actually is: it’s the distance of the membrane from its neutral state. Because it makes
a difference whether the membrane is pushed inward or outward, we record the signed distance. Hence,
the membrane state at a specific time step is a single negative or positive number. We can store this signed
number in a variety of ways: as a signed 8-, 16-, or 32-bit integer, as a 32-bit float, or even as a 64-bit float.
Every data type has limited precision. An 8-bit signed integer can store 127 positive and 128 negative
distance values.

A 32-bit integer provides a lot more resolution. When stored as a float, the membrane state is usually
normalized to a range between −1 and 1. The maximum positive and minimum negative values represent
the farthest distance the membrane can have from its neutral state. The membrane state is also called the
amplitude. It represents the loudness of the sound that hits it. With a single microphone, we can only record
mono sound, which loses all spatial information. With two microphones, we can measure sound at different
locations in space, and thus get so-called stereo sound. You might achieve stereo sound, for example, by
placing one microphone to the left and another to the right of an object emitting sound. When the sound is
played back simultaneously through two speakers, we can reasonably reproduce the spatial component of
the audio. But this also means that we need to store twice the number of samples when storing stereo audio.

The playback is a simple matter in the end. Once we have our audio samples in digital form and with
a specific sampling rate and data type, we can throw those data at our audio processing unit, which will
transform the information into a signal for an attached speaker. The speaker interprets this signal and
translates it into the vibration of a membrane, which in turn will cause the surrounding air molecules to
move and produce sound waves. It’s exactly what is done for recording, only reversed!

Audio Quality and Compression
Wow, lots of theory. Why do we care? If you paid attention, you can now tell whether an audio file is of high
quality or not depending on the sampling rate and the data type used to store each sample. The higher the
sampling rate and the higher the data type’s precision, the better the quality of the audio. However, that also
means that we need more storage room for our audio signal.

Imagine that we record the same sound with a length of 60 seconds, but we record it twice: once at a
sampling rate of 8KHz at 8 bits per sample, and once at a sampling rate of 44KHz at 16-bit precision. How
much memory would we need to store each sound? In the first case, we need 1 byte per sample. Multiply
this by the sampling rate of 8,000Hz, and we need 8,000 bytes per second. For our full 60 seconds of audio
recording, that’s 480,000 bytes, or roughly half a megabyte (MB). Our higher-quality recording needs quite a
bit more memory: 2 bytes per sample, and 2 times 44,000 bytes per second. That’s 88,000 bytes per second.
Multiply this by 60 seconds, and we arrive at 5,280,000 bytes, or a little over 5MB. Your usual three-minute
pop song would take up over 15MB at that quality, and that’s only a mono recording. For a stereo recording,
you’d need twice that amount of memory. Quite a lot of bytes for a silly song!

Many smart people have come up with ways to reduce the number of bytes needed for an audio
recording. They’ve invented rather complex psychoacoustic compression algorithms that analyze an
uncompressed audio recording and output a smaller, compressed version. The compression is usually lossy,
meaning that some minor parts of the original audio are omitted. When you play back MP3s or OGGs, you
are actually listening to compressed lossy audio. So, using formats such as MP3 or OGG will help us reduce
the amount of space needed to store our audio on disk.

Chapter 3 ■ Game Development 101

61

What about playing back the audio from compressed files? While dedicated decoding hardware exists
for various compressed audio formats, common audio hardware can often only cope with uncompressed
samples. Before actually feeding the audio card with samples, we have to first read them in and decompress
them. We can do this once and store all of the uncompressed audio samples in memory, or only stream in
partitions from the audio file as needed.

In Practice
You have seen that even three-minute songs can take up a lot of memory. When we play back our game’s
music, we will therefore stream the audio samples in on the fly instead of preloading all audio samples to
memory. Usually, we only have a single music stream playing, so we only have to access the disk once.

For short sound effects, such as explosions or gunshots, the situation is a little different. We often
want to play a sound effect multiple times simultaneously. Streaming the audio samples from disk for each
instance of the sound effect is not a good idea. We are lucky, though, as short sounds do not take up a lot of
memory. We will therefore read all samples of a sound effect into memory, from which we can directly and
simultaneously play them back.

We have the following requirements:

We need a way to load audio files for streaming playback and for playback from memory.

We need a way to control the playback of streamed audio.

We need a way to control the playback of fully loaded audio.

This directly translates into the audio, music, and sound interfaces (shown in Listings 3-3 through 3-5,
respectively).

Listing 3-3. The audio interface

package com.badlogic.androidgames.framework;

public interface Audio {
Music newMusic(String filename);

Sound newSound(String filename);
}

The audio interface is our way to create new music and sound instances. A music instance represents a
streamed audio file. A sound instance represents a short sound effect that we keep entirely in memory. The
methods Audio.newMusic() and Audio.newSound() both take a filename as an argument. The filenames
refer to asset files in our application’s APK file.

Listing 3-4. The music interface

package com.badlogic.androidgames.framework;

public interface Music {
public void play(); public void stop(); public void pause();
void setLooping(boolean looping); void setVolume(float volume); public boolean isPlaying();
public boolean isStopped();

public boolean isLooping();

public void dispose();
}

Chapter 3 ■ Game Development 101

62

The music interface is a little bit more involved. It features methods to start playing the music stream, to
pause and stop it, and to set it to loop playback, which means it will automatically start from the beginning
when it reaches the end of the audio file. Additionally, we can set the volume as a float in the range of 0
(silent) to 1 (maximum volume). A couple of getter methods are also available that allow us to poll the
current state of the music instance.

Once we no longer need the music instance, we have to dispose of it. This will close any system
resources, such as the file from which the audio was streamed.

Listing 3-5. The sound interface

package com.badlogic.androidgames.framework;

public interface Sound {
void play(float volume);
...
void dispose();

}

The sound interface is simpler. All we need to do is call its play() method, which again takes a float
parameter to specify the volume. We can call the play() method anytime we want (for example, when Mr.
Nom eats an ink stain). Once we no longer need the sound instance, we have to dispose of it to free up the
memory that the samples use, as well as other system resources that are potentially associated.

 ■ Note While we covered a lot of ground in this chapter, there’s a lot more to learn about audio programming.
We simplified some things to keep this section short and sweet. You wouldn’t usually specify the audio volume
linearly, for example. In our context, it’s oK to overlook this little detail. Just be aware that there’s more to it!

Graphics
The last module at the core of our game framework is the graphics module. As you might have guessed, it
will be responsible for drawing images (also known as bitmaps) on our screen. This may sound easy, but if
you want high-performance graphics, you have to know at least the basics of graphics programming. Let’s
start with the basics of 2D graphics.

The first question we need to ask goes like this: How on Earth are the images output to my display? The
answer is rather involved, and we do not necessarily need to know all the details. We’ll just quickly review
what’s happening inside our computer and the display.

Of Rasters, Pixels, and Framebuffers
Today’s displays are raster based. A raster is a two-dimensional grid of so-called picture elements. You might
know them as pixels, and we’ll refer to them as such in the subsequent text. The raster grid has a limited
width and height, which we usually express as the number of pixels per row and per column. If you feel
brave, you can turn on your computer and try to make out individual pixels on your display. Note that we’re
not responsible for any damage this does to your eyes, though.

Chapter 3 ■ Game Development 101

63

A pixel has two attributes: a position within the grid and a color. A pixel’s position is given as two-
dimensional coordinates within a discrete coordinate system. Discrete means that a coordinate is always at
an integer position. Coordinates are defined within a Euclidean coordinate system imposed on the grid. The
origin of the coordinate system is the top-left corner of the grid. The positive x axis points to the right and the
y axis points downward. The last item is what confuses people the most. We’ll come back to it in a minute;
there’s a simple reason why this is the case.

Ignoring the silly y axis, we can see that, due to the discrete nature of our coordinates, the origin is
coincident with the top-left pixel in the grid, which is located at (0,0). The pixel to the right of the origin pixel
is located at (1,0), the pixel beneath the origin pixel is at (0,1), and so on (see the left side of Figure 3-21). The
display’s raster grid is finite, so there’s a limited number of meaningful coordinates. Negative coordinates are
outside the screen. Coordinates greater than or equal to the width or height of the raster are also outside the
screen. Note that the biggest x coordinate is the raster’s width minus 1, and the biggest y coordinate is the
raster’s height minus 1. That’s due to the origin being coincident with the top-left pixel. Off-by-one errors are
a common source of frustration in graphics programming.

Figure 3-21. Display raster grid and VRAM, oversimplified

The display receives a constant stream of information from the graphics processor. It encodes the color
of each pixel in the display’s raster, as specified by the program or operating system in control of drawing to
the screen. The display will refresh its state a few dozen times per second. The exact rate is called the refresh
rate. It is expressed in hertz. Liquid-crystal display (LCD) monitors usually have a refresh rate of 60Hz per
second; cathode ray tube (CRT) monitors and plasma monitors often have higher refresh rates.

The graphics processor has access to a special memory area known as video random access memory,
or VRAM. Within VRAM there’s a reserved area for storing each pixel to be displayed on the screen. This area
is usually called the framebuffer. A complete screen image is therefore called a frame. For each pixel in the
display’s raster grid, there’s a corresponding memory address in the framebuffer that holds the pixel’s color.
When we want to change what’s displayed on the screen, we simply change the color values of the pixels in
that memory area in VRAM.

Now, it’s time to explain why the y axis in the display’s coordinate system is pointing downward.
Memory, be it VRAM or normal RAM, is linear and one dimensional. Think of it as a one-dimensional array.
So how do we map the two-dimensional pixel coordinates to one-dimensional memory addresses? Figure 3-21
shows a rather small display raster grid of three-by-two pixels, as well as its representation in VRAM. (We
assume VRAM only consists of the framebuffer memory.) From this, we can easily derive the following
formula to calculate the memory address of a pixel at (x,y):

int address = x + y * rasterWidth;

We can also go the other way around, from an address to the x and y coordinates of a pixel:

int x = address % rasterWidth;
int y = address / rasterWidth;

Chapter 3 ■ Game Development 101

64

So, the y axis is pointing downward because of the memory layout of the pixel colors in VRAM. This is
actually a sort of legacy inherited from the early days of computer graphics. Monitors would update the color
of each pixel on the screen, starting at the top-left corner, moving to the right, and tracing back to the left on
the next line, until they reached the bottom of the screen. It was convenient to have the VRAM contents laid
out in a manner that eased the transfer of the color information to the monitor.

 ■ Note If we had full access to the framebuffer, we could use the preceding equation to write a full-fledged
graphics library to draw pixels, lines, rectangles, images loaded to memory, and so on. modern operating
systems do not grant us direct access to the framebuffer for various reasons. Instead, we usually draw to a
memory area that is then copied to the actual framebuffer by the operating system. the general concepts hold
true in this case as well, though! If you are interested in how to do these low-level things efficiently, search the
Web for a guy called Bresenham and his line-and-circle-drawing algorithms.

Vsync and Double-Buffering
Now, if you remember the paragraph about refresh rates, you might have noticed that those rates seem
rather low and that we might be able to write to the framebuffer faster than the display will refresh. That can
happen. Even worse, we don’t know when the display is grabbing its latest frame copy from VRAM, which
could be a problem if we’re in the middle of drawing something. In this case, the display will then show parts
of the old framebuffer content and parts of the new state, which is an undesirable situation. You can see this
effect in many PC games where it expresses itself as tearing (in which the screen simultaneously shows parts
of the last frame and parts of the new frame).

The first part of the solution to this problem is called double-buffering. Instead of having a single
framebuffer, the graphics processing unit (GPU) actually manages two of them: a front buffer and a back
buffer. The front buffer, from which the pixel colors will be fetched, is available to the display, and the back
buffer is available to draw our next frame while the display happily feeds off the front buffer. When we finish
drawing our current frame, we tell the GPU to switch the two buffers with each other, which usually means
just swapping the address of the front and back buffer. In graphics programming literature, and in API
documentation, you may find the terms page flip and buffer swap, which refer to this process.

Double-buffering alone does not solve the problem entirely, though: the swap can still happen while
the screen is in the middle of refreshing its content. That’s where vertical synchronization (also known as
vsync) comes into play. When we call the buffer swap method, the GPU will block until the display signals
that it has finished its current refresh. When that happens, the GPU can safely swap the buffer addresses and
all will be well.

Luckily, we barely need to care about these pesky details nowadays. VRAM and the details of double-
buffering and vsyncing are securely hidden from us so that we cannot wreak havoc with them. Instead, we
are provided with a set of APIs that usually limit us to manipulating the contents of our application window.
Some of these APIs, such as OpenGL ES, expose hardware acceleration, which basically does nothing
more than manipulate VRAM with specialized circuits on the graphics chip. See, it’s not magic! The reason
you should be aware of the inner workings, at least at a high level, is that it allows you to understand the
performance characteristics of your application. When vsync is enabled, you can never go above the refresh
rate of your screen, which might be puzzling if all you’re doing is drawing a single pixel.

When we render with non-hardware-accelerated APIs, we don’t directly deal with the display itself.
Instead, we draw to one of the UI components in our window. In our case, we deal with a single UI component
that is stretched over the whole window. Our coordinate system will therefore not stretch over the entire
screen, but only our UI component. The UI component effectively becomes our display, with its own virtual
framebuffer. The operating system will then manage compositing the contents of all the visible windows and
ensuring that their contents are correctly transferred to the regions that they cover in the real framebuffer.

Chapter 3 ■ Game Development 101

65

What Is Color?
You will notice that we have conveniently ignored colors so far. We made up a type called color in
Figure 3-21 and pretended all was well. Let’s see what color really is. Physically, color is the reaction of
your retina and visual cortex to electromagnetic waves. Such a wave is characterized by its wavelength and
its intensity. We can see waves with wavelengths between roughly 400 and 700 nanometers (nm). That
sub-band of the electromagnetic spectrum is also known as the visible light spectrum. A rainbow shows
all the colors of this visible light spectrum, going from violet to indigo to blue to green to yellow, followed
by orange and ending at red.

All a monitor does is emit specific electromagnetic waves for each pixel, which we experience as the
color of each pixel. Different types of displays use different methods to achieve this goal. A simplified version
of this process goes like this: every pixel on the screen is made up of three different fluorescent particles that
will emit light with one of the colors red, green, or blue.

When the display refreshes, each pixel’s fluorescent particles will emit light by some means (for example,
in the case of CRT displays, the pixel’s particles get hit by a bunch of electrons). For each particle, the display
can control how much light it emits. For example, if a pixel is entirely red, only the red particle will be hit
with electrons at full intensity. If we want colors other than the three base colors, we can achieve that by
mixing the base colors. Mixing is done by varying the intensity with which each particle emits its color. The
electromagnetic waves will overlay each other on the way to our retina. Our brain interprets this mix as a
specific color. A color can thus be specified by a mix of intensities of the base colors red, green, and blue.

Color Models
What we just discussed is called a color model, specifically the RGB color model. RGB stands for red, green,
and blue, of course. There are many more color models we could use, such as YUV and CMYK. In most
graphics programming APIs, the RGB color model is pretty much the standard, though, so we’ll only discuss
that here.

The RGB color model is called an additive color model, due to the fact that the final color is derived
via mixing the additive primary colors red, green, and blue. You’ve probably experimented with mixing
primary colors in school. Figure 3-22 shows you some examples for RGB color mixing to refresh your
memory a little bit.

Figure 3-22. Having fun with mixing the primary colors red, green, and blue

Chapter 3 ■ Game Development 101

66

We can, of course, generate a lot more colors than the ones shown in Figure 3-22 by varying the
intensity of the red, green, and blue components. Each component can have an intensity value between
0 and some maximum value (say, 1). If we interpret each color component as a value on one of the three
axes of a three-dimensional Euclidian space, we can plot a so-called color cube, as depicted in Figure 3-23.
There are a lot more colors available to us if we vary the intensity of each component. A color is given
as a triplet (red, green, blue) where each component is in the range between 0.0 and 1.0 (0.0 means no
intensity for that color, and 1.0 means full intensity). The color black is at the origin (0,0,0), and the color
white is at (1,1,1).

Figure 3-23. The mighty RGB color cube

Encoding Colors Digitally
How can we encode an RGB color triplet in computer memory? First, we have to define what data type we
want to use for the color components. We could use floating-point numbers and specify the valid range as
being between 0.0 and 1.0. This would give us quite some resolution for each component and would make
a lot of different colors available to us. Sadly, this approach uses up a lot of space (3 times either 4 or 8 bytes
per pixel, depending on whether we use 32-bit or 64-bit floats).

We can do better—at the expense of losing a few colors—which is totally OK, since displays usually
have a limited range of colors that they can emit. Instead of using a float for each component, we can use an
unsigned integer. Now, if we use a 32-bit integer for each component, we haven’t gained anything. Instead,
we use an unsigned byte for each component. The intensity for each component then ranges from 0 to 255.
For 1 pixel, we thus need 3 bytes, or 24 bits. That’s 2 to the power of 24 (16,777,216) different colors. That’s
enough for our needs.

Can we get that down even more? Yes, we can. We can pack each component into a single 16-bit word,
so each pixel needs just 2 bytes of storage. Red uses 5 bits, green uses 6 bits, and blue uses the rest of 5
bits. The reason green gets 6 bits is that our eyes can see more shades of green than of red or blue. All bits
together make 2 to the power of 16 (65,536) different colors that we can encode. Figure 3-24 shows how a
color is encoded with the three encodings described previously.

Chapter 3 ■ Game Development 101

67

In the case of the float, we could use three 32-bit Java floats. In the 24-bit encoding case, we have a
little problem: there’s no 24-bit integer type in Java, so we could either store each component in a single
byte or use a 32-bit integer, leaving the upper 8 bits unused. In the case of the 16-bit encoding, we can again
either use two separate bytes or store the components in a single short value. Note that Java does not have
unsigned types. Due to the power of two’s complement, we can safely use signed integer types to store
unsigned values.

For both 16- and 24-bit integer encodings, we also need to specify the order in which we store the three
components in the short or integer value. Two methods are usually used: RGB and BGR. Figure 3-23 uses
RGB encoding. The blue component is in the lowest 5 or 8 bits, the green component uses up the next 6 or 8
bits, and the red component uses the upper 5 or 8 bits. BGR encoding just reverses this order. The green bits
stay where they are, and the red and blue bits swap places. We’ll use the RGB order throughout this book, as
Android’s graphics APIs work with that order as well. Let’s summarize the color encodings discussed so far:

•	 A 32-bit float RGB encoding has 12 bytes for each pixel, and intensities that vary
between 0.0 and 1.0.

•	 A 24-bit integer RGB encoding has 3 or 4 bytes for each pixel, and intensities that
vary between 0 and 255. The order of the components can be RGB or BGR. This is
also known as RGB888 or BGR888 in some circles, where 8 specifies the number of
bits per component.

•	 A 16-bit integer RGB encoding has 2 bytes for each pixel; red and blue have
intensities between 0 and 31, and green has intensities between 0 and 63. The order
of the components can be RGB or BGR. This is also known as RGB565 or BGR565 in
some circles, where 5 and 6 specify the number of bits of the respective component.

The type of encoding we use is also called the color depth. Images we create and store on disk or in
memory have a defined color depth, and so do the framebuffers of the actual graphics hardware and the
display itself. Today’s displays usually have a default color depth of 24 bits, and they can be configured to
use less in some cases. The framebuffer of the graphics hardware is also rather flexible, and it can use many
different color depths. Our own images can, of course, also have any color depth we like.

 ■ Note there are a lot more ways to encode per-pixel color information. apart from rGB colors, we could
also have grayscale pixels, which only have a single component. as those are not used a lot, we’ll ignore them
at this point.

Image Formats and Compression
At some point in our game development process, our artist will provide us with images that were created
with graphics software like Gimp, Paint.NET, or Photoshop. These images can be stored in a variety of
formats on disk. Why is there a need for these formats in the first place? Can’t we just store the raster as a
blob of bytes on disk?

Figure 3-24. Color encodings of a nice shade of pink (which will be gray in the print copy of this book, sorry)

Chapter 3 ■ Game Development 101

68

Well, we could, but let’s check how much memory that would take up. Say that we want the best quality,
so we choose to encode our pixels in RGB888 at 24 bits per pixel. The image would be 1,024 × 1,024 pixels in
size. That’s 3MB for a single puny image alone! Using RGB565, we can get that down to roughly 2MB.

As in the case of audio, there’s been a lot of research on how to reduce the memory needed to store an
image. As usual, compression algorithms are employed and are specifically tailored for the needs of storing
images and keeping as much of the original color information as possible. The two most popular formats are
JPEG and PNG. JPEG is a lossy format. This means that some of the original information is thrown away in
the process of compression. PNG is a lossless format, and it will reproduce an image that’s 100 percent true
to the original. Lossy formats usually exhibit better compression characteristics and take up less space on
disk. We can therefore choose what format to use depending on the disk memory constraints.

Similar to sound effects, we have to decompress an image fully when we load it into memory. So, even if
your image is 20KB compressed on disk, you still need the full width times height times color depth storage
space in RAM.

Once loaded and decompressed, the image will be available in the form of an array of pixel colors in
exactly the same way the framebuffer is laid out in VRAM. The only differences are that the pixels are located
in normal RAM and that the color depth might differ from the framebuffer’s color depth. A loaded image also
has a coordinate system like the framebuffer, with the origin in its top-left corner, the x axis pointing to the
right, and the y axis pointing downward.

Once an image is loaded, we can draw it in RAM to the framebuffer simply by transferring the pixel
colors from the image to appropriate locations in the framebuffer. We don’t do this by hand; instead, we use
an API that provides this functionality.

Alpha Compositing and Blending
Before we can start designing our graphics module interfaces, we have to tackle one more thing: image
compositing. For the sake of this discussion, assume that we have a framebuffer to which we can render, as
well as a bunch of images loaded into RAM that we’ll throw at the framebuffer. Figure 3-25 shows a simple
background image, as well as Bob, a zombie-slaying ladies’ man.

Figure 3-25. A simple background and Bob, master of the universe

To draw Bob’s world, we’d first draw the background image to the framebuffer, followed by drawing Bob
over the background image in the framebuffer. This process is called compositing, as we compose different
images into a final image. The order in which we draw images is relevant, as any new drawing operation will
overwrite the current contents in the framebuffer. So, what would be the final output of our compositing?
Figure 3-26 shows it to you.

Chapter 3 ■ Game Development 101

69

Ouch, that’s not what we wanted. In Figure 3-26, notice that Bob is surrounded by white pixels. When
we draw Bob on top of the background in the framebuffer, those white pixels also get drawn, effectively
overwriting the background. How can we draw Bob’s image so that only Bob’s pixels are drawn and the
white background pixels are ignored?

Figure 3-26. Compositing the background and Bob into the framebuffer (not what we wanted)

Enter alpha blending. Well, in Bob’s case it’s technically called alpha masking, but that’s just a subset
of alpha blending. Graphics software usually lets us not only specify the RGB values of a pixel, but also
indicate its translucency. Think of it as yet another component of a pixel’s color. We can encode it just like we
encoded the red, green, and blue components.

We hinted earlier that we could store a 24-bit RGB triplet in a 32-bit integer. There are 8 unused bits
in that 32-bit integer that we can grab and in which we can store our alpha value. We can then specify the
translucency of a pixel from 0 to 255, where 0 is fully transparent and 255 is opaque. This encoding is known
as ARGB8888 or BGRA8888, depending on the order of the components. There are also RGBA8888 and
ABGR8888 formats, of course.

In the case of 16-bit encoding, we have a slight problem: all of the bits of our 16-bit short are taken
up by the color components. Let’s instead imitate the ARGB8888 format and define an ARGB4444 format
analogously. That leaves 12 bits for our RGB values in total—4 bits per color component.

We can easily imagine how a rendering method for pixels that are fully translucent or opaque would
work. In the first case, we’d just ignore pixels with an alpha component of zero. In the second case, we’d
simply overwrite the destination pixel. When a pixel has neither a fully translucent nor fully opaque alpha
component, however, things get a tiny bit more complicated.

When talking about blending in a formal way, we have to define a few things:

•	 Blending has two inputs and one output, each represented as an RGB triplet (C) plus
an alpha value (a).

•	 The two inputs are called source and destination. The source is the pixel from the
image we want to draw over the destination image (that is, the framebuffer). The
destination is the pixel we are going to overdraw (partially) with our source pixel.

•	 The output is again a color expressed as an RGB triplet and an alpha value. Usually,
we just ignore the alpha value, though. For simplicity’s sake, we’ll do that in this chapter.

•	 To simplify our math a little bit, we’ll represent RGB and alpha values as floats in the
range of 0.0 to 1.0.

Chapter 3 ■ Game Development 101

70

Equipped with those definitions, we can create so-called blending equations. The simplest equation
looks like this:

red = src.red * src.alpha + dst.red * (1 – src.alpha)
green = src.green * src.alpha + dst.green * (1 – src.alpha)
blue = src.blue * src.alpha + dst.blue * (1 – src.alpha)

src and dst are the pixels of the source and destination we want to blend with each other. We blend the
two colors component-wise. Note the absence of the destination alpha value in these blending equations.
Let’s try an example and see what it does:

src = (1, 0.5, 0.5), src.alpha = 0.5, dst = (0, 1, 0)
red = 1 * 0.5 + 0 * (1 – 0.5) = 0.5
blue = 0.5 * 0.5 + 1 * (1 – 0.5) = 0.75 red = 0.5 * 0.5 + 0 * (1 – 0.5) = 0.25

Figure 3-27 illustrates the preceding equation. Our source color is a shade of pink, and the destination
color is a shade of green. Both colors contribute equally to the final output color, resulting in a somewhat
dirty shade of green or olive.

Figure 3-27. Blending two pixels

Two fine gentlemen named Porter and Duff came up with a slew of blending equations. We will stick
with the preceding equation, though, as it covers most of our use cases. Try experimenting with it on paper
or in the graphics software of your choice to get a feeling for what blending will do to your composition.

 ■ Note Blending is a wide field. If you want to exploit it to its fullest potential, we suggest that you search
the Web for porter and Duff’s original work on the subject. For the games we will write, though, the preceding
equation is sufficient.

Notice that there are a lot of multiplications involved in the preceding equations (six, to be precise).
Multiplications are costly, and we should try to avoid them where possible. In the case of blending, we can
get rid of three of those multiplications by pre-multiplying the RGB values of the source pixel color with
the source alpha value. Most graphics software supports pre-multiplication of an image’s RGB values with
the respective alphas. If that is not supported, you can do it at load time in memory. However, when we
use a graphics API to draw our image with blending, we have to make sure that we use the correct blending
equation. Our image will still contain the alpha values, so the preceding equation would output incorrect
results. The source alpha must not be multiplied with the source color. Luckily, all Android graphics APIs
allow us to specify fully how we want to blend our images.

In Bob’s case, we just set all the white pixels’ alpha values to zero in our preferred graphics software
program, load the image in ARGB8888 or ARGB4444 format, maybe pre-multiply the alpha, and use a
drawing method that does the actual alpha blending with the correct blending equation. The result would
look like Figure 3-28.

Chapter 3 ■ Game Development 101

71

 ■ Note the JpeG format does not support the storage of alpha values per pixel. Use the pnG format in that case.

In Practice
With all of this information, we can finally start to design the interfaces for our graphics module. Let’s define
the functionality of those interfaces. Note that when we refer to the framebuffer, we actually mean the
virtual framebuffer of the UI component to which we draw. We just pretend that we directly draw to the real
framebuffer. We’ll need to be able to perform the following operations:

•	 Load images from disk and store them in memory for drawing them later on.

•	 Clear the framebuffer with a color so that we can erase what’s still there from the last frame.

•	 Set a pixel in the framebuffer at a specific location to a specific color.

•	 Draw lines and rectangles to the framebuffer.

•	 Draw previously loaded images to the framebuffer. We’d like to be able to draw either
the complete image or portions of it. We also need to be able to draw images both
with and without blending.

•	 Get the dimensions of the framebuffer.

We propose two simple interfaces: graphics and pixmap. Let’s start with the graphics interface, shown
in Listing 3-6.

Listing 3-6. The graphics interface

package com.badlogic.androidgames.framework;

public interface Graphics {
public static enum PixmapFormat {
ARGB8888, ARGB4444, RGB565
}

Figure 3-28. Bob blended is on the left, and Bob in Paint.NET is on the right. The checkerboard illustrates that
the alpha of the white background pixels is zero, so the background checkerboard shines through

Chapter 3 ■ Game Development 101

72

public Pixmap newPixmap(String fileName, PixmapFormat format);

public void clear(int color);

public void drawPixel(int x, int y, int color);

public void drawLine(int x, int y, int x2, int y2, int color);

public void drawRect(int x, int y, int width, int height, int color);

public void drawPixmap(Pixmap pixmap, int x, int y, int srcX, int srcY,
int srcWidth, int srcHeight);

public void drawPixmap(Pixmap pixmap, int x, int y);

public int getWidth();

public int getHeight();
}

We start with a public static enum called PixmapFormat. It encodes the different pixel formats we will
support. Next, we have the different methods of our graphics interface:

•	 The Graphics.newPixmap() method will load an image given in either JPEG or PNG
format. We specify a desired format for the resulting pixmap, which is a hint for the
loading mechanism. The resulting pixmap might have a different format. We do this
so that we can somewhat control the memory footprint of our loaded images (for
example, by loading RGB888 or ARGB8888 images as RGB565 or ARGB4444 images).
The filename specifies an asset in our application’s APK file.

•	 The Graphics.clear() method clears the complete framebuffer with the given
color. All colors in our little framework will be specified as 32-bit ARGB8888 values
(pixmaps might, of course, have a different format).

•	 The Graphics.drawPixel() method will set the pixel at (x,y) in the framebuffer to the
given color. Coordinates outside the screen will be ignored. This is called clipping.

•	 The Graphics.drawLine() method is analogous to the Graphics.drawPixel()
method. We specify the start point and end point of the line, along with a color. Any
portion of the line that is outside the framebuffer’s raster will be ignored.

•	 The Graphics.drawRect() method draws a rectangle to the framebuffer.

•	 The (x,y) specifies the position of the rectangle’s top-left corner in the framebuffer.
The argument’s width and height specify the number of pixels in x and y, and the
rectangle will fill starting from (x,y). We fill downward in y. The color argument is the
color that is used to fill the rectangle.

•	 The Graphics.drawPixmap() method draws rectangular portions of a pixmap to
the framebuffer. The (x,y) coordinates specify the top-left corner’s position of the
pixmap’s target location in the framebuffer. The arguments srcX and srcY specify the
corresponding top-left corner of the rectangular region that is used from the pixmap,
given in the pixmap’s own coordinate system. Finally, srcWidth and srcHeight
specify the size of the portion that we take from the pixmap.

•	 Finally, the Graphics.getWidth() and Graphics.getHeight() methods return the
width and height of the framebuffer in pixels.

Chapter 3 ■ Game Development 101

73

All of the drawing methods except Graphics.clear() will automatically perform blending for each
pixel they touch, as outlined in the previous section. We could disable blending on a case-by-case basis to
speed up the drawing somewhat, but that would complicate our implementation. Usually, we can get away
with having blending enabled all the time for simple games like Mr. Nom.

The pixmap interface is given in Listing 3-7.

Listing 3-7. The pixmap interface

package com.badlogic.androidgames.framework;

import com.badlogic.androidgames.framework.Graphics.PixmapFormat;

public interface Pixmap {
public int getWidth();

public int getHeight();

public PixmapFormat getFormat();

public void dispose();
}

We keep it very simple and immutable, as the compositing is done in the framebuffer:

•	 The Pixmap.getWidth() and Pixmap.getHeight() methods return the width and the
height of the pixmap in pixels.

•	 The Pixmap.getFormat() method returns the PixelFormat that the pixmap is stored
with in RAM.

•	 Finally, there’s the Pixmap.dispose() method. Pixmap instances use up memory
and potentially other system resources. If we no longer need them, we should
dispose of them with this method.

With this simple graphics module, we can implement Mr. Nom easily later on. Let’s finish this chapter
with a discussion of the game framework itself.

The Game Framework
After all the groundwork we’ve done, we can finally talk about how to implement the game itself. For that,
let’s identify what tasks have to be performed by our game:

•	 The game is split up into different screens. Each screen performs the same tasks:
evaluating user input, applying the input to the state of the screen, and rendering the
scene. Some screens might not need any user input and simply transition to another
screen after some time has passed (for example, a splash screen).

•	 The screens need to be managed somehow (that is, we need to keep track of the
current screen and have a way to transition to a new screen, which boils down to
destroying the old screen and setting the new screen as the current screen).

•	 The game needs to grant the screens access to the different modules (for graphics,
audio, input, and so forth) so that they can load resources, fetch user input, play
sounds, render to the framebuffer, and so on.

Chapter 3 ■ Game Development 101

74

•	 As our game will be in real time (that means things will be moving and updating
constantly), we have to make the current screen update its state and render itself as
often as possible. We’d normally do that inside a loop called the main loop. The loop
will terminate when the user quits the game. A single iteration of this loop is called
a frame. The number of frames per second (FPS) that we can compute is called the
frame rate.

•	 Speaking of time, we also need to keep track of the time span that has passed since
our last frame. This is used for frame-independent movement, which we’ll discuss in
a minute.

•	 The game needs to keep track of the window state (that is, whether it was paused or
resumed) and inform the current screen of these events.

•	 The game framework will deal with setting up the window and creating the UI
component we render to and receive input from.

Let’s boil this down to some pseudocode, ignoring the window management events like pause and
resume for a moment:

createWindowAndUIComponent(); Input input = new Input();
Graphics graphics = new Graphics(); Audio audio = new Audio();

Screen currentScreen = new MainMenu(); float lastFrameTime = currentTime();

while(!userQuit()) {
float deltaTime = currentTime() – lastFrameTime;
lastFrameTime = currentTime();

currentScreen.updateState(input, deltaTime);
currentScreen.present(graphics, audio, deltaTime);
}

cleanupResources();

We start off by creating our game’s window and the UI component to which we render and from which
we receive input. Next, we instantiate all the modules necessary to do the low-level work. We instantiate our
starting screen and make it the current screen, and we record the current time. Then we enter the main loop,
which will terminate if the user indicates that he or she wants to quit the game.

Within the game loop, we calculate the so-called delta time. This is the time that has passed since the
beginning of the last frame. We then record the time of the beginning of the current frame. The delta time
and the current time are usually given in seconds. For the screen, the delta time indicates how much time
has passed since it was last updated—information that is needed if we want to do frame-independent
movement (which we’ll come back to in a minute).

Finally, we simply update the current screen’s state and present it to the user. The update depends
on the delta time as well as on the input state; hence, we provide these to the screen. The presentation
consists of rendering the screen’s state to the framebuffer, as well as playing back any audio the screen’s state
demands (for example, due to a shot that was fired in the last update). The presentation method might also
need to know how much time has passed since it was last invoked.

When the main loop is terminated, we can clean up and release all resources and close the window.
And that is how virtually every game works at a high level: process the user input, update the state,

present the state to the user, and repeat ad infinitum (or until the user is fed up with our game).

Chapter 3 ■ Game Development 101

75

UI applications on modern operating systems do not usually work in real time. They work with an
event-based paradigm where the operating system informs the application of input events, as well as when
to render itself. This is achieved by callbacks that the application registers with the operating system on
startup. These are then responsible for processing received event notifications. All of this happens in the so-
called UI thread—the main thread of a UI application.

It is generally a good idea to return from the callbacks as fast as possible, so we would not want to
implement our main loop in one of these.

Instead, we host our game’s main loop in a separate thread that we’ll spawn when our game is firing up.
This means that we have to take some precautions with when we want to receive UI thread events, such as
input events or window events. But these are details that we’ll handle later on when we implement our game
framework for Android. Just remember that we need to synchronize the UI thread and the game’s main loop
thread at certain points.

The Game and Screen Interfaces
With all of that said, let’s try to design a game interface. Here’s what an implementation of this interface has
to do:

•	 Set up the window and UI component and hook into callbacks so that we can receive
window and input events.

•	 Start the main loop thread.

•	 Keep track of the current screen and tell it to update and present itself in every main
loop iteration (a.k.a. frame).

•	 Transfer any window events (for example, pause and resume events) from the UI
thread to the main loop thread and pass them on to the current screen so that it can
change its state accordingly.

•	 Grant access to all the modules we developed earlier: input, file I/O, graphics, and
audio.

As game developers, we want to be agnostic about what thread our main loop is running on and
whether we need to synchronize with a UI thread or not. We’d just like to implement the different game
screens with a little help from the low-level modules and some notifications of window events. We will
therefore create a very simple game interface that hides all of this complexity from us, as well as an abstract
Screen class that we’ll use to implement all of our screens. Listing 3-8 shows the game interface.

Listing 3-8. The game interface

package com.badlogic.androidgames.framework;

public interface Game {
public Input getInput(); public FileIO getFileIO(); public Graphics getGraphics(); public
Audio getAudio();
public void setScreen(Screen screen);

public Screen getCurrentScreen();

public Screen getStartScreen();
}

Chapter 3 ■ Game Development 101

76

As expected, a couple of getter methods are available that return the instances of our low-level modules,
which the Game implementation will instantiate and track.

The Game.setScreen() method allows us to set the current screen of the game. This method will be
implemented once, along with all the internal thread creation, window management, and main loop logic
that will constantly ask the current screen to present and update itself.

The Game.getCurrentScreen() method returns the currently active Screen instance. We’ll use an
abstract class called AndroidGame later on to implement the game interface, which will implement all
methods except the Game.getStartScreen() method. This method will be an abstract method. If we create
the AndroidGame instance for our actual game, we’ll extend it and override the Game.getStartScreen()
method, returning an instance to the first screen of our game.

To give you an impression of how easy it will be to set up our game, here’s an example (assuming we
have already implemented the AndroidGame class):

public class MyAwesomeGame extends AndroidGame {
public Screen getStartScreen () {
return new MySuperAwesomeStartScreen(this);
}
}

That is pretty awesome, isn’t it? All we have to do is implement the screen that we want to use
to start our game, and the AndroidGame class will do the rest for us. From that point onward, our
MySuperAwesomeStartScreen will be asked to update and render itself by the AndroidGame instance in the
main loop thread. Note that we pass the MyAwesomeGame instance itself to the constructor of our Screen
implementation.

 ■ Note If you’re wondering what actually instantiates our MyAwesomeGame class, we’ll give you a hint:
AndroidGame will be derived from Activity, which will be automatically instantiated by the android operating
system when a user starts our game.

The last piece in the puzzle is the abstract class Screen. We make it an abstract class instead of an
interface so that we can implement some bookkeeping. This way, we have to write less boilerplate code in
the actual implementations of the abstract Screen class. Listing 3-9 shows the abstract Screen class.

Listing 3-9. The Screen class

package com.badlogic.androidgames.framework;

public abstract class Screen {
protected final Game game;

public Screen(Game game) {
this.game = game;
}

public abstract void update(float deltaTime);

public abstract void present(float deltaTime);

public abstract void pause();

Chapter 3 ■ Game Development 101

77

public abstract void resume();

public abstract void dispose();
}

It turns out that the bookkeeping isn’t so bad after all. The constructor receives the Game instance and
stores it in a final member that’s accessible to all subclasses. Via this mechanism, we can achieve two things:

•	 We can get access to the low-level modules of the game interface to play back audio,
draw on the screen, get user input, and read and write files.

•	 We can set a new current screen by invoking Game.setScreen() when appropriate
(for example, when a button is pressed that triggers a transition to a new screen).

The first point is pretty much obvious: our Screen implementation needs access to these modules so
that it can actually do something meaningful, like rendering huge numbers of unicorns with rabies.

The second point allows us to implement our screen transitions easily within the Screen instances
themselves. Each screen can decide when to transition to which other screen based on its state (for example,
when a menu button is pressed).

The methods Screen.update() and Screen.present() should be self-explanatory by now: they will
update the screen state and present it accordingly. The Game instance will call them once in every iteration of
the main loop.

The Screen.pause() and Screen.resume() methods will be called when the game is paused or
resumed. This is again done by the Game instance and is applied to the currently active screen.

The Screen.dispose() method will be called by the Game instance if Game.setScreen() is called. The
Game instance will dispose of the current screen via this method and thereby give the screen an opportunity
to release all its system resources (for example, graphical assets stored in pixmaps) to make room for the new
screen’s resources in memory. The call to the Screen.dispose() method is also the last opportunity for a
screen to make sure that any information that needs persistence is saved.

A Simple Example
Continuing with our MySuperAwesomeGame example, here is a very simple implementation of the
MySuperAwesomeStartScreen class:

public class MySuperAwesomeStartScreen extends Screen { Pixmap awesomePic;
int x;

public MySuperAwesomeStartScreen(Game game) {
super(game);
awesomePic = game.getGraphics().newPixmap("data/pic.png", PixmapFormat.RGB565);
MySuperAwesomeGame.getStartScreen(awesomePic);
}

@Override
public void update(float deltaTime) {
x += 1;
if (x > 100)
x = 0;
}

Chapter 3 ■ Game Development 101

78

@Override
public void present(float deltaTime) { game.getGraphics().clear(0); game.getGraphics().
drawPixmap(awesomePic, x, 0, 0, 0,
awesomePic.getWidth(), awesomePic.getHeight());
}

@Override
public void pause() {
// nothing to do here
}

@Override
public void resume() {
// nothing to do here
}

@Override
public void dispose() {
awesomePic.dispose();
}
}

Let’s see what this class, in combination with the MySuperAwesomeGame class, will do:

 1. When the MySuperAwesomeGame class is created, it will set up the window, the UI
component to which we render and from which we receive events, the callbacks
to receive window and input events, and the main loop thread. Finally, it will call
its own MySuperAwesomeGame.getStartScreen() method, which will return an
instance of the MySuperAwesomeStartScreen() class.

 2. In the MySuperAwesomeStartScreen constructor, we load a bitmap from disk and
store it in a member variable. This completes our screen setup, and the control is
handed back to the MySuperAwesomeGame class.

 3. The main loop thread will now constantly call the MySuperAwesomeStartScreen.
update() and MySuperAwesomeStartScreen.present() methods of the instance
we just created.

 4. In the MySuperAwesomeStartScreen.update() method, we increase a member
called x by one each frame. This member holds the x coordinate of the image we
want to render. When the x coordinate value is greater than 100, we reset it to 0.

 5. In the MySuperAwesomeStartScreen.present() method, we clear the
framebuffer with the color black (0x00000000 = 0) and render our pixmap at
position (x,0).

 6. The main loop thread will repeat steps 3 to 5 until the user quits the game by
pressing the back button on their device. The Game instance will call then call
the MySuperAwesomeStartScreen.dispose() method, which will dispose of the
pixmap.

Chapter 3 ■ Game Development 101

79

And that’s our first (not so) exciting game! All a user will see is that an image is moving from left to right
on the screen. It’s not exactly a pleasant user experience, but we’ll work on that later. Note that, on Android,
the game can be paused and resumed at any point in time. Our MyAwesomeGame implementation will then
call the MySuperAwesomeStartScreen.pause() and MySuperAwesomeStartScreen.resume() methods. The
main loop thread will be paused for as long as the application itself is paused.

There’s one last problem we have to talk about: frame rate–independent movement.

Frame Rate–Independent Movement
Let’s assume that the user’s device can run our game from the previous section at 60FPS. Our pixmap will
advance 100 pixels in 100 frames as we increment the MySuperAwesomeStartScreen.x member by 1 pixel
each frame. At a frame rate of 60FPS, it will take roughly 1.66 seconds to reach position (100,0).

Now, let’s assume that a second user plays our game on a different device. That device is capable of
running our game at 30FPS. Each second, our Pixmap advances by 30 pixels, so it takes 3.33 seconds to reach
position (100,0).

This is bad. It may not have an impact on the user experience that our simple game generates, but
replace the pixmap with Super Mario and think about what it would mean to move him in a frame-
dependent manner. Say we hold down the right D-pad button so that Mario runs to the right. In each frame,
we advance him by 1 pixel, as we do in the case of our pixmap. On a device that can run the game at 60FPS,
Mario would run twice as fast as he would on a device that runs the game at 30FPS! This would totally
change the user experience, depending on the performance of the device. We need to fix this.

The solution to this problem is called frame rate–independent movement. Instead of moving our
pixmap (or Mario) by a fixed amount each frame, we specify the movement speed in units per second. Say
we want our pixmap to advance 50 pixels per second. In addition to the 50-pixels-per-second value, we
also need information on how much time has passed since we last moved the pixmap. This is where this
strange delta time comes into play. It tells us exactly how much time has passed since the last update. So, our
MySuperAwesomeStartScreen.update() method should look like this:

@Override
public void update(float deltaTime) {
x += 50 * deltaTime;
if(x > 100)
x = 0;
}

If our game runs at a constant 60FPS, the delta time passed to the method will always be 1 / 60 ~ 0.016
second. In each frame, we therefore advance by 50 × 0.016 ~ 0.83 pixels. At 60FPS, we advance 60 × 0.83 ~
50 pixels! Let’s test this with 30FPS: 50 × 1 / 30 ~ 1.66. Multiplied by 30FPS, we again move 50 pixels total
each second. So, no matter how fast the device on which our game is running can execute our game, our
animation and movement will always be consistent with actual wall-clock time.

If we actually tried this with our preceding code, our pixmap wouldn’t move at all at 60FPS. This is
because of a bug in our code. We’ll give you some time to spot it. It’s rather subtle, but is a common pitfall in
game development. The x member that we use to increase each frame is actually an integer. Adding 0.83 to
an integer will have no effect. To fix this, we simply have to store x as a float instead of as an integer. This also
means that we have to add a cast to int when we call Graphics.drawPixmap().

 ■ Note While floating-point calculations are usually slower on android than integer operations are, the
impact is mostly negligible, so we can get away with using more costly floating-point arithmetic.

Chapter 3 ■ Game Development 101

80

And that is all there is to our game framework. We can directly translate the screens of our Mr. Nom
design to our classes and to the interface of the framework. Of course, some implementation details still
require attention, but we’ll leave that for a later chapter. For now, you can be mighty proud of yourself. You
kept on reading this chapter to the end, and now you are ready to become a game developer for Android
(and other platforms)!

Summary
Some 60+ highly condensed and informative pages later, you should have a good idea of what is involved
in creating a game. We checked out some of the most popular genres on Google Play and drew some
conclusions. We designed a complete game from the ground up using only scissors, a pen, and some paper.
Finally, we explored the theoretical basis of game development, and we even created a set of interfaces and
abstract classes based on those theoretical concepts that we’ll use throughout this book to implement our
game designs.

If you feel like you want to go beyond the basics covered here, then by all means consult the Web for
more information. You are holding all the keywords in your hand. Understanding the principles is the key
to developing stable and well-performing games. With that said, let’s implement our game framework for
Android!

81© Mario Zechner, J. F. DiMarzio and Robert Green 2016
M. Zechner et al., Beginning Android Games, DOI 10.1007/978-1-4842-0472-6_4

CHAPTER 4

Android for Game Developers

Android’s application framework is vast and can be confusing at times. For every possible task you can think
of, there’s an API you can use. Of course, you have to learn the APIs first. Luckily, we game developers only
need an extremely limited set of these APIs. All we want is a window with a single UI component that we
can draw to, and from which we can receive input, as well as the ability to play back audio. This covers all of
our needs for implementing the game framework that we designed in Chapter 3, and in a rather platform-
agnostic way.

In this chapter, you’ll learn the bare-minimum number of Android APIs that you need to make Mr. Nom
a reality. You’ll be surprised at how little you actually need to know about these APIs to achieve that goal.
Let’s recall what ingredients we need:

•	 Window management

•	 Input

•	 File I/O

•	 Audio

•	 Graphics

For each of these modules, there’s an equivalent in the application framework APIs. We’ll pick and
choose the APIs needed to handle these modules, discuss their internals, and finally implement the
respective interfaces of the game framework that we designed in Chapter 3.

If you happen to be coming from an iOS/Xcode background, we have a little section at the end of this
chapter that will provide some translation and guidance. Before we can dive into window management
on Android, however, we have to revisit something we discussed only briefly in Chapter 2: defining our
application via the manifest file.

Defining an Android Application: The Manifest File
An Android application can consist of a multitude of different components:

Activities: These are user-facing components that present a UI with which to
interact.

Services: These are processes that work in the background and don’t have a
visible UI. For example, a service might be responsible for polling a mail server
for new e-mails.

Content providers: These components make parts of your application data
available to other applications.

http://dx.doi.org/10.1007/978-1-4842-0472-6_3
http://dx.doi.org/10.1007/978-1-4842-0472-6_3
http://dx.doi.org/10.1007/978-1-4842-0472-6_2

Chapter 4 ■ android for Game developers

82

Intents: These are messages created by the system or the applications themselves.
They are then passed on to any interested party. Intents might notify us of system
events, such as the SD card being removed or the USB cable being connected.
Intents are also used by the system for starting components of our application,
such as activities. We can also fire our own intents to ask other applications
to perform an action, such as opening a photo gallery to display an image or
starting the Camera application to take a photo.

Broadcast receivers: These react to specific intents, and they might execute an
action, such as starting a specific activity or sending out another intent to the
system.

An Android application has no single point of entry as we are used to having on a desktop operating
system (for example, in the form of Java’s main() method). Instead, components of an Android application
are started up or asked to perform a certain action by specific intents.

What components make up our application and to which intents these components react are defined in
the application’s manifest file. The Android system uses this manifest file to get to know what makes up our
application, such as the default activity to display when the application is started from the app launcher.

 ■ Note We are only concerned about activities in this book, so we’ll only discuss the relevant portions of
the manifest file for this type of component. if you want to make yourself dizzy, you can learn more about the
manifest file on the android developers website (http://developer.android.com).

The manifest file serves many more purposes than just defining an application’s components. The
following list summarizes the relevant parts of a manifest file in the context of game development:

•	 Hardware profiles our application requires (that is, multitouch, specific screen
resolutions, or support for OpenGL ES 2.0)

•	 Permissions for using specific components, such as for writing to the SD card or
accessing the networking stack

In the following subsections, we will create a template manifest file that we can reuse, in a slightly
modified manner, in all of the projects we’ll develop throughout this book. For this, we’ll go through all the
relevant XML tags that we need to define our application.

The <manifest> Element
The <manifest> tag is the root element of an AndroidManifest.xml file. Here’s a basic example:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.helloworld"
 android:installLocation="preferExternal">
...
</manifest>

We are assuming that you have worked with XML before, so you should be familiar with the first line.
The <manifest> tag specifies a namespace called android, which is used throughout the rest of the manifest
file. The package attribute defines the root package name of our application. Later on, we’ll reference
specific classes of our application relative to this package name.

http://developer.android.com/

Chapter 4 ■ android for Game developers

83

The installLocation attribute is only available to us if we set the build target of our Android project to
Android 2.2 or newer. It specifies where our application should be installed. The string preferExternal tells
the system that we’d like our application to be installed to the SD card. This will only work on Android 2.2 or
newer, and this string is ignored by all earlier Android applications. On Android 2.2 or newer, the application
will always get installed to external storage where possible.

All attributes of the XML elements in a manifest file are generally prefixed with the android namespace,
as shown previously. For brevity, we will not specify the namespace in the following sections when talking
about a specific attribute.

Inside the <manifest> element, we then define the application’s components, permissions, hardware
profiles, and supported Android versions.

The <application> Element
As in the case of the <manifest> element, let’s discuss the <application> element in the form of an
example:

<application android:icon="@mipmap/ic_launcher" android:label="@string/app_name">
...
</application>

Now, doesn’t this look a bit strange? What’s up with the @mipmap/ic_launcher and @string/app_name
strings? When developing a standard Android application, we usually write a lot of XML files, where each
defines a specific portion of our application. A full definition of these portions requires that we are also able
to reference resources that are not defined in the XML file, such as images or internationalized strings. These
resources are located in subfolders of the res/ folder, as discussed in Chapter 2 when we dissected the Hello
World project in Android Studio.

To reference resources, we use the preceding notation. The @ specifies that we want to reference a
resource defined elsewhere. The following string identifies the type of the resource we want to reference,
which can map to one of the folders or files in the res/ directory. The final part specifies the name of the
resource. In the preceding case, this is an image called ic_launcher and a string called app_name. In the
case of the image, it’s the actual filename we specify, as found in the res/mipmap-xxx/folders. Note that the
image name does not have a suffix like .png or .jpg. Android will infer the suffix automatically based on what’s
in the res/mipmap-xxx/ folder. The app_name string is defined in the res/values/strings.xml file, a file where
all the strings used by the application will be stored. The name of the string was defined in the strings.xml file.

 ■ Note resource handling on android is an extremely flexible but complex thing. for this book, we decided
to skip most of resource handling for two reasons: it’s utter overkill for game development, and we want to have
full control over our resources. android has a habit of modifying resources placed in the res/ folder, especially
images (called drawables). that’s something we, as game developers, do not want. the only use we’d suggest
for the android resource system in game development is internationalizing strings. We won’t get into that in
this book; instead, we’ll create a more game development–friendly assets/ folder, which leaves our resources
untouched and allows us to specify our own folder hierarchy.

The meaning of the attributes of the <application> element should become a bit clearer now. The icon
attribute specifies the image from the res/mipmap-xxx/ folder to be used as an icon for the application. This
icon is also the default icon for all the activities that we define within the <application> element.

http://dx.doi.org/10.1007/978-1-4842-0472-6_2

Chapter 4 ■ android for Game developers

84

The label attribute specifies the string being displayed for our application in the application launcher.
In the preceding example, this references a string in the res/values/string.xml file, which is what we
specified when we created the Android project in Android Studio. We could also set this to a raw string, such
as My Super Awesome Game. The label is also the default label for all of the activities that we define in the
<application> element. The label will be shown in the title bar of our application.

We have only discussed a very small subset of the attributes that you can specify for the <application>
element. However, these are sufficient for our game development needs. If you want to know more, you can
find the full documentation on the Android Developers site.

The <activity> Element
Now, it’s getting interesting. Here’s a hypothetical example for our Mr. Nom game:

<activity android:name=".MrNomActivity"
 android:label="Mr. Nom"
 android:screenOrientation="portrait">
 android:configChanges="keyboard|keyboardHidden|orientation">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
</activity>

Let’s have a look at the attributes of the <activity> tag first:

•	 name: This specifies the name of the activity’s class relative to the package attribute we
specified in the <manifest> element. You can also specify a fully qualified class name here.

•	 label: We already specified the same attribute in the <application> element.
This label is displayed in the title bar of the activity (if it has one). The label will
also be used as the text displayed in the application launcher if the activity we
define is an entry point to our application. If we don’t specify it, the label from the
<application> element will be used instead. Note that we used a raw string here
instead of a reference to a string in the string.xml file.

•	 screenOrientation: This attribute specifies the orientation that the activity will use.
Here, we specified portrait for our Mr. Nom game, which will only work in portrait
mode. Alternatively, we could specify landscape if we wanted to run it in landscape
mode. Both configurations will force the orientation of the activity to stay the same
over the activity’s life cycle, no matter how the device is actually oriented. If we leave
out this attribute, then the activity will use the current orientation of the device,
usually based on accelerometer data. This also means that whenever the device
orientation changes, the activity will be destroyed and restarted—something that’s
undesirable in the case of a game. We usually fix the orientation of a game’s activity
to either landscape mode or portrait mode.

•	 configChanges: Reorienting the device or sliding out the keyboard is considered a
configuration change. In the case of such a change, Android will destroy and restart
our application to accommodate the change. That’s not desirable in the case of a
game. The configChanges attribute of the <activity> element comes to the rescue.
It allows us to specify which configuration changes we want to handle ourselves
without destroying and re-creating our activity. Multiple configuration changes can
be specified by using the | character to concatenate them. In the preceding case, we
handle the changes keyboard, keyboardHidden, and orientation ourselves.

Chapter 4 ■ android for Game developers

85

As with the <application> element, there are, of course, more attributes that you can specify for an
<activity> element. For game development, we get away with the four attributes just discussed.

Now, you might have noticed that the <activity> element isn’t empty, but rather houses another
element, which itself contains two more elements. What are these for?

As we pointed out earlier, there’s no notion of a single main entry point to your application on
Android. Instead, we can have multiple entry points in the form of activities and services that are started in
response to specific intents being sent out by the system or a third-party application. Somehow, we need
to communicate to Android which activities and services of our application will react (and in what ways) to
specific intents. That’s where the <intent-filter> element comes into play.

In the preceding example, we specify two types of intent filters: an <action> and a <category>. The
<action> element tells Android that our activity is a main entry point to our application. The <category>
element specifies that we want that activity to be added to the application launcher. Both elements together
allow Android to infer that, when the icon in the application launcher for the application is pressed, it should
start that specific activity.

For both the <action> and <category> elements, the only thing that gets specified is the name attribute,
which identifies the intent to which the activity will react. The intent android.intent.action.MAIN is a
special intent that the Android system uses to start the main activity of an application. The intent android.
intent.category.LAUNCHER is used to tell Android whether a specific activity of an application should have
an entry in the application launcher.

Usually, we’ll only have one activity that specifies these two intent filters. However, a standard Android
application will almost always have multiple activities, and these need to be defined in the manifest.xml file
as well. Here’s an example definition of this type of a subactivity:

<activity android:name=".MySubActivity"
 android:label="Sub Activity Title"
 android:screenOrientation="portrait"
 android:configChanges="keyboard|keyboardHidden|orientation"/>

Here, no intent filters are specified—only the four attributes of the activity we discussed earlier.
When we define an activity like this, it is only available to our own application. We start this type of activity
programmatically with a special kind of intent; say, when a button is pressed in one activity to cause a new
activity to open. We’ll see in a later section how we can start an activity programmatically.

To summarize, we have one activity for which we specify two intent filters so that it becomes the main
entry point of our application. For all other activities, we leave out the intent filter specification so that they
are internal to our application. We’ll start these programmatically.

 ■ Note as indicated earlier, we’ll only ever have a single activity in our mr. nom game. this activity will
have exactly the same intent filter specification as shown previously. the reason we discussed how to specify
multiple activities is that we are going to create a special sample application in a minute that will have multiple
activities. don’t worry—it’s going to be easy.

The <uses-permission> Element
We are leaving the <application> element now and coming back to elements that we normally define as
children of the <manifest> element. One of these elements is the <uses-permission> element.

Android has an elaborate security model. Each application is run in its own process and virtual
machine (VM), with its own Linux user and group, and it cannot influence other applications. Android also
restricts the use of system resources, such as networking facilities, the SD card, and the audio-recording
hardware. If our application wants to use any of these system resources, we have to ask for permission. This
is done with the <uses-permission> element.

Chapter 4 ■ android for Game developers

86

A permission always has the following form, where string specifies the name of the permission we
want to be granted:

<uses-permission android:name="string"/>

Here are a few permission names that might come in handy:

	 android.permission.RECORD_AUDIO: This grants us access to the audio-recording
hardware.

	 android.permission.INTERNET: This grants us access to all the networking APIs so
we can, for example, fetch an image from the Internet or upload high scores.

	 android.permission.WRITE_EXTERNAL_STORAGE: This allows us to read and write
files on the external storage, usually the SD card of the device.

	 android.permission.WAKE_LOCK: This allows us to acquire a wake lock. With this
wake lock, we can keep the device from going to sleep even if the screen hasn’t been
touched for some time. This could happen, for example, in a game that is controlled
only by the accelerometer.

	 android.permission.ACCESS_COARSE_LOCATION: This is a very useful permission as
it allows you to get non-GPS-level access to things like the country in which the user
is located, which can be useful for language defaults and analytics.

	 android.permission.NFC: This allows applications to perform I/O operations over
near-field communication (NFC), which is useful for a variety of game features
involving the quick exchange of small amounts of information.

To get access to the networking APIs, we’d thus specify the following element as a child of the
<manifest> element:

<uses-permission android:name="android.permission.INTERNET"/>

For any additional permissions, we simply add more <uses-permission> elements. You can specify
many more permissions beyond those listed here; we again refer you to the official Android documentation.
We’ll only need the set just discussed.

Forgetting to add some permissions, like to access the SD card, is a common source of error. It manifests
itself as a message in the device log, so it might survive undetected as a result of all the clutter in the log.
For other permissions, if you attempt to use them without checking whether the user has granted such
persmission, the app will crash. In a subsequent section, we’ll describe the log in more detail. Think about
the permissions your game will need and specify them when you initially create the project.

Another thing to note is that because we will be working with Nougat—which utilizes run-time
permissions—the user will be asked to accept or deny acces to each permission when they run your game.
Many users will not pay attention to these and will happily install whatever they can get a hold of. Some
users are more conscious about their decisions and will review the permissions in detail. If you request
suspicious permissions, like the ability to send out SMS messages or to get a user’s location, you may receive
some nasty feedback from users in the Comments section for your application when it’s on Google Play.
If you must use one of those problematic permissions, your application description also should tell the
user why you’re using it. The best thing to do is to avoid those permissions in the first place or to provide
functionality that legitimately uses them.

Chapter 4 ■ android for Game developers

87

The <uses-feature> Element
If you are an Android user yourself and possess an older device with an old Android version like 1.5, you will
have noticed that some awesome applications won’t show up in the Google Play application on your device.
One reason for this can be the use of the <uses-feature> element in the manifest file of the application.

The Google Play application will filter all available applications by your hardware profile. With the
<uses-feature> element, an application can specify which hardware features it needs; for example,
multitouch or support for OpenGL ES 2.0. Any device that does not have the specified features will trigger
that filter so that the end user isn’t shown the application in the first place.

A <uses-feature> element has the following attributes:

<uses-feature android:name="string" android:required=["true" | "false"]
android:glEsVersion="integer" />

The name attribute specifies the feature itself. The required attribute tells the filter whether we really
need the feature under all circumstances or if it’s just nice to have. The last attribute is optional and is only
used when a specific OpenGL ES version is required.

For game developers, the following features are most relevant:

•	 android.hardware.touchscreen.multitouch: This requests that the device have a
multitouch screen capable of basic multitouch interactions, such as pinch zooming
and the like. These types of screens have problems with the independent tracking of
multiple fingers, so you have to evaluate if these capabilities are sufficient for your game.

•	 android.hardware.touchscreen.multitouch.distinct: This is the big brother
of the previous feature. This requests full multitouch capabilities suitable for
implementing things like onscreen virtual dual sticks for controls.

We’ll look into multitouch in a later section of this chapter. For now, just remember that, when our
game requires a multitouch screen, we can weed out all devices that don’t support that feature by specifying
a <uses-feature> element with one of the preceding feature names, like so:

<uses-feature android:name="android.hardware.touchscreen.multitouch"
android:required="true"/>

Another useful thing for game developers to do is to specify which OpenGL ES version is needed. In this
book, we’ll be concerned with OpenGL ES 1 (we will explain the reason why in Chapter 7). Here’s how we
can do this:

<uses-feature android:glEsVersion="0x00010000"android:required="true"/>

This will make our game only show up on devices that support OpenGL ES 1 and are thus assumed to
have a fairly powerful graphics processor.

Let’s say you want to have optional support of USB peripherals for your game so that the device can be a
USB host and have controllers or other peripherals connected to it. The correct way of handling this is to add
the following:

<uses-feature android:name="android.hardware.usb.host" android:required="false"/>

Setting android:required to false says to Google Play, “We may use this feature, but it’s not necessary
in order to download and run the game.” Setting the usage of the optional hardware feature is a good way to
future-proof your game for various pieces of hardware that you haven’t yet encountered. It allows manufacturers
to limit the apps offered to only ones that have declared support for their specific hardware, and, if you declare
optional support for it, yours will be included in the apps that can be downloaded for that device.

http://dx.doi.org/10.1007/978-1-4842-0472-6_7

Chapter 4 ■ android for Game developers

88

Now, every specific requirement you have in terms of hardware potentially decreases the number of
devices on which your game can be installed, which will directly affect your sales. Think twice before you
specify any of the preceding options.

Game Project Setup in Six Easy Steps
Let’s now combine all of the preceding information and develop a simple step-by-step method to create a
new Android game project in Android Studio. Here’s what we want from our project:

•	 It should be able to use the latest SDK version’s features while maintaining
compatibility with the lowest SDK version that some devices still run. That means
that we want to support Android 4.3 and above.

•	 It should be installed to the SD card when possible so that we don’t fill up the
internal storage of the device.

•	 It should have a single main activity that will handle all configuration changes itself
so that it doesn’t get destroyed when the hardware keyboard is revealed or when the
orientation of the device is changed.

•	 The activity should be fixed to either portrait or landscape mode.

•	 It should allow us to access the SD card.

•	 It should allow us to get a hold of a wake lock.

These are some easy goals to achieve with the information you just acquired. Here are the steps:

 1. Create a new Android project in Android Studio by opening the Create New
Project wizard, as described in Chapter 2.

 2. Once the project is created, open the AndroidManifest.xml file.

 3. To make Android install the game on the SD card when available, add
the installLocation attribute to the <manifest> element and set it to
preferExternal.

 4. To fix the orientation of the activity, add the screenOrientation attribute to
the <activity> element and specify the orientation you want (portrait or
landscape).

 5. To tell Android that we want to handle the keyboard, keyboardHidden, and
orientation configuration changes, set the configChanges attribute of the
<activity> element to keyboard|keyboardHidden|orientation.

 6. Add two <uses-permission> elements to the <manifest> element and specify
the name attributes android.permission.WRITE_EXTERNALSTORAGE and android.
permission.WAKE_LOCK.

There you have it! Six easy steps that will generate a fully defined application that will be installed to the
SD card, will have a fixed orientation, will not explode on a configuration change, will allow you to access
the SD card and wake locks, and will work on all Android versions starting from 4.3 up to the latest version.
Here’s the final AndroidManifest.xml content after executing the preceding steps:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.badlogic.awesomegame"

http://dx.doi.org/10.1007/978-1-4842-0472-6_2

Chapter 4 ■ android for Game developers

89

 android:installLocation="preferExternal">
 <application android:icon="@mipmap/ic_launcher"xs
 android:label="Awesomnium"
 >
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
 <activity android:name=".GameActivity"
 android:label="Awesomnium"
 android:screenOrientation="portrait"
 android:configChanges="keyboard|keyboardHidden|orientation">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

As you can see, we got rid of the @string/app_name in the label attributes of the <application> and
<activity> elements. This is not really necessary, but having the application definition in one place is
preferred. From now on, it’s all about the code! Or is it?

Google Play Filters
There are so many different Android devices, with so many different capabilities, that it’s necessary for the
hardware manufacturers to allow only compatible applications to be downloaded and run on their devices;
otherwise, the user would have the bad experience of trying to run an application that’s just not compatible
with their device. To deal with this, Google Play filters out incompatible applications from the list of available
applications for a specific device. For example, if you have a device without a camera, and you search for a
game that requires a camera, it simply won’t show up. For better or worse, it will appear to you, the user, as if
the app just doesn’t exist.

Many of the previous manifest elements we’ve discussed are used as filters, including <uses-feature>
and <uses-permission>. The following are three more elements that are specific to filtering that you should
keep in mind:

•	 <supports-screens>: This allows you to declare the screen sizes and densities your
game can run on. Ideally, your game will work on all screens, and we’ll show you
how to make sure that it will. However, in the manifest file, you will want to declare
support explicitly for every screen size you can.

•	 <uses-configuration>: This lets you declare explicit support for an input
configuration type on a device, such as a hard keyboard, QWERTY-specific keyboard,
touchscreen, or maybe trackball navigation input. Ideally, you’ll support all of these,
but if your game requires very specific input, you will want to investigate and use this
tag for filtering on Google Play.

•	 <uses-library>: This allows for the declaration that a third-party library on which
your game is dependent must be present on the device. For example, you might
require a text-to-speech library that is quite large, but very common, for your game.
Declaring the library with this tag ensures that only devices with that library installed
can see and download your game. A common use of this is to allow GPS/map-based
games to work only on devices with the Google Maps library installed.

Chapter 4 ■ android for Game developers

90

As Android moves forward, more filter tags are likely to become available, so make sure to check the
official Google Play filters page at http://developer.android.com/guide/google/play/filters.html to
get up-to-date information before you deploy.

Defining the Icon of Your Game
When you deploy your game to a device and open the application launcher, you will see that its entry has
a nice, but not really unique, Android icon. The same icon would be shown for your game on Google Play.
How can you change it to a custom icon?

Have a closer look at the <application> element. There, we defined an attribute called icon. It
references an image in the res/mipmap-xxx directory called icon. So, it should be obvious what to do:
replace the icon image in the mipmap folder with your own icon image.

After following through with the six easy steps to create an Android project, you’ll see something similar
to Figure 4-1 in the res/ folder.

Figure 4-1. What happened to my res/ folder?

We saw in Chapter 1 that devices come in different sizes, but we didn’t talk about how Android handles
those different sizes. It turns out that Android has an elaborate mechanism that allows you to define your
graphical assets for a set of screen densities. Screen density is a combination of physical screen size and the
number of pixels of the screen. We’ll look into that topic in more detail in Chapter 5. For now, it suffices to
know that Android defines five densities: mdpi for standard-density screens, hdpi for high-density screens,
and xhdpi for extra-high-density screens; followed by extra-extra high density and extra-extra-extra high
density (as 480dpi and 640dpi respectively). For standard screens, we usually use smaller images, and for
higher-density screens we use high-resolution assets.

So, in the case of our icon, we need to provide five versions: one for each density. But how big should
each of those versions be? Luckily, we already have default icons in the res/mipmap folders that we can use to
re-engineer the sizes of our own icons. The icon in res/mipmap-mdpi has a resolution of 48×48 pixels; the icon
in res/mipmap-hdpi has a resolution of 72×72 pixels; the icon in res/mipmap-xhdpi has a resolution of 96×96
pixels; the icon in the res/mipmap-xxhdpi folder has a resolution of 144×144; and finally the icon in the res/
mipmap-xxxhdpi folder has a resolution of 192×192. All we need to do is create versions of our custom icon with
the same resolutions and replace the ic_launcher.png file in each of the folders with our own ic_launcher.
png file. We can leave the manifest file unaltered as long as we call our icon image file ic_launcher.png. Note
that file references in the manifest file are case sensitive. Always use all lowercase letters in resource files.

Finally, we are ready to get some Android coding done.?

http://developer.android.com/guide/google/play/filters.html
http://dx.doi.org/10.1007/978-1-4842-0472-6_1
http://dx.doi.org/10.1007/978-1-4842-0472-6_5

Chapter 4 ■ android for Game developers

91

Android API Basics
In the rest of the chapter, we’ll concentrate on playing around with those Android APIs that are relevant to
our game development needs. For this, we’ll do something rather convenient: we’ll set up a test project that
will contain all of our little test examples for the different APIs we are going to use. Let’s get started.

Creating a Test Project
From the previous section, we already know how to set up all our projects. So, the first thing we do is to
execute the eight steps outlined earlier. Create an application named Ch04 Android Basics, using the
package name androidgames.badlogic.com with a single main activity called MainActivity. We are going
to use some older and some newer APIs, so we set the minimum SDK version to 18 (Android 4.3). You can fill
in any values you like for the other settings, such as the title of the application. From here on out, all we’ll do
is create new activity implementations, each demonstrating parts of the Android APIs.

However, remember that we only have one main activity. So, what does our main activity look like?
We want a convenient way to add new activities, and we want the ability to start a specific activity easily.
With one main activity, it should be clear that that activity will somehow provide us with a means to start
a specific test activity. As discussed earlier, the main activity will be specified as the main entry point in
the manifest file. Each additional activity that we add will be specified without the <intent-filter> child
element. We’ll start these programmatically from the main activity.

The AndroidBasicsStarter Activity
The Android API provides us with a special class called ListActivity, which derives from the Activity
class that we used in the Hello World project. The ListActivity class is a special type of activity whose
single purpose is to display a list of things (for example, strings). We use it to display the names of our test
activities. When we touch one of the list items, we’ll start the corresponding activity programmatically.
Listing 4-1 shows the code for our AndroidBasicsStarter main activity.

Listing 4-1. AndroidBasicsStarter.java, our main activity responsible for listing and starting all our tests

package com.badlogic.androidgames.ch04androidbasics;

import android.app.ListActivity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.ArrayAdapter;
import android.widget.ListView;

public class MainActivity extends ListActivity {
 String tests[] = { "LifeCycleTest", "SingleTouchTest", "MultiTouchTest",
 "KeyTest", "AccelerometerTest", "AssetsTest",
 "ExternalStorageTest", "SoundPoolTest", "MediaPlayerTest",
 "FullScreenTest", "RenderViewTest", "ShapeTest", "BitmapTest",
 "FontTest", "SurfaceViewTest" };

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setListAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1, tests));
 }

Chapter 4 ■ android for Game developers

92

 @Override
 protected void onListItemClick(ListView list, View view, int position,
 long id) {
 super.onListItemClick(list, view, position, id);
 String testName = tests[position];
 try {
 Class clazz = Class.forName("com.badlogic.androidgames.ch04androidbasics." +

testName);
 Intent intent = new Intent(this, clazz);
 startActivity(intent);
 } catch (ClassNotFoundException e) {
 e.printStackTrace();
 }
 }
}

The package name we chose is com.badlogic.androidgames.ch04androidbasics. The imports
should also be pretty self-explanatory; these are simply all the classes we are going to use in our code. Our
MainActivity class derives from the ListActivity class–still nothing special. The field tests is a string
array that holds the names of all of the test activities that our starter application should display. Note that the
names in that array are the exact Java class names of the activity classes we are going to implement later on.

The next piece of code should be familiar; it’s the onCreate() method that we implement for each of
our activities, and that will be called when the activity is created.

With that out of the way, the next thing we do is call a method called setListAdapter(). This method
is provided to us by the ListActivity class we derived it from. It lets us specify the list items we want the
ListActivity class to display for us. These need to be passed to the method in the form of a class instance
that implements the ListAdapter interface. We use the convenient ArrayAdapter class to do this. The
constructor of this class takes three arguments: the first is our context, the second we’ll explain in the next
paragraph, and the third is the array of items that the ListActivity should display. We happily specify the
tests array we defined earlier for the third argument, and that’s all we need to do.

So, what’s this second argument to the ArrayAdapter constructor? To explain this, we’d have to go
through all the Android UI API stuff, which we are not going to use in this book. So, instead of wasting pages
on something we are not going to need, we’ll give you the quick-and-dirty explanation: each item in the list
is displayed via a View. The argument defines the layout of each View, along with the type of each View. The
value android.R.layout.simple_list_item_1 is a predefined constant provided by the UI API for getting
up and running quickly. It stands for a standard list item View that will display text. Just as a quick refresher, a
View is a UI widget on Android, such as a button, a text field, or a slider. We introduced views in the form of a
Button instance while dissecting the HelloWorldActivity in Chapter 2.

If we start our activity with just this onCreate() method, we’ll see something that looks like the screen
shown in Figure 4-2.

http://dx.doi.org/10.1007/978-1-4842-0472-6_2

Chapter 4 ■ android for Game developers

93

Now, let’s make something happen when a list item is touched. We want to start the respective activity
that is represented by the list item we touch.

Starting Activities Programmatically
The ListActivity class has a protected method called onListItemClick() that will be called when an item
is tapped. All we need to do is override that method in our AndroidBasicsStarter class. And that’s exactly
what we did in Listing 4-1.

The arguments to this method are the ListView that the ListActivity uses to display the items, the
View that got touched and that’s contained in that ListView, the position of the touched item in the list, and
an ID, which doesn’t interest us all that much. All we really care about is the position argument.

The onListItemClicked() method starts off by being a good citizen and calls the base class method
first. This is always a good thing to do if we override methods of an activity. Next, we fetch the class name
from the tests array based on the position argument. That’s the first piece of the puzzle.

Figure 4-2. Our test starter activity, which looks fancy but doesn’t do a lot yet

Chapter 4 ■ android for Game developers

94

Earlier, we discussed that we can start activities that we defined in the manifest file programmatically
via an intent. The Intent class has a nice and simple constructor with which to do this, which takes two
arguments: a Context instance and a Class instance. The latter represents the Java class of the activity we
want to start.

Context is an interface that provides us with global information about our application. It is extended by
the Activity class, so we simply pass this reference to the Intent constructor.

To get the Class instance representing the activity we want to start, we use a little reflection, which will
probably be familiar to you if you’ve worked with Java. Reflection allows us to programmatically inspect,
instantiate, and call classes at runtime. The static method Class.forName() takes a string containing the
fully qualified name of the class for which we want to create a Class instance. All of the test activities we’ll
implement later will be contained in the com.badlogic.androidgames.ch04androidbasics package.
Concatenating the package name with the class name we fetched from the tests array will give us the fully
qualified name of the Activity class we want to start. We pass that name to Class.forName() and get a nice
Class instance that we can pass to the Intent constructor.

Once the Intent instance is constructed, we can start it with a call to the startActivity() method.
This method is also defined in the Context interface. Because our activity implements that interface, we just
call its implementation of that method. And that’s it!

So, how will our application behave? First, the starter activity will be displayed. Each time we touch
an item on the list, the corresponding activity will be started. The starter activity will be paused and will go
into the background. The new activity will be created by the intent we send out and will replace the starter
activity on the screen. When we press the back button on the Android device, the activity is destroyed and
the starter activity is resumed, taking back the screen.

Creating the Test Activities
When we create a new test activity, we have to perform the following steps:

 1. Create the corresponding Java class in the com.badlogic.androidgames.
ch04androidbasics package and implement its logic.

 2. Add an entry for the activity in the manifest file using whatever attributes it
needs (that is, android:configChanges or android:screenOrientation). Note
that we won’t specify an <intent-filter> element, as we’ll start the activity
programmatically.

 3. Add the activity’s class name to the tests array of the AndroidBasicsStarter
class.

As long as we stick to this procedure, everything else will be taken care of by the logic we implemented
in the AndroidBasicsStarter class. The new activity will automatically show up in the list, and it can be
started by a simple touch.

One thing you might wonder is whether the test activity that gets started on a touch is running in its own
process and VM. It is not. An application composed of activities has something called an activity stack. Every
time we start a new activity, it gets pushed onto that stack. When we close the new activity, the last activity
that got pushed onto the stack will get popped and resumed, becoming the new active activity on the screen.

This has some other implications. First, all of the activities of the application (those on the stack that are
paused and the one that is active) share the same VM. They also share the same memory heap. That can be
a blessing and a curse. If you have static fields in your activities, they will get memory on the heap as soon
as they are started. Being static fields, they will survive the destruction of the activity and the subsequent
garbage collection of the activity instance. This can lead to some bad memory leaks if you carelessly use
static fields. Think twice before using a static field.

Chapter 4 ■ android for Game developers

95

As stated a couple of times already, we’ll only ever have a single activity in our actual games. The
preceding activity starter is an exception to this rule to make our lives a little easier. But don’t worry; we’ll
have plenty of opportunities to get into trouble even with a single activity:.

 ■ Note this is as deep as we’ll get into android Ui programming. from here on out, we’ll always use a single
View in an activity to output things and to receive input. if you want to learn about things like layouts, view
groups, and all the bells and whistles that the android Ui library offers, we suggest you check out Grant allen’s
book, Beginning Android 4 (apress, 2011), or the excellent developer guide on the android developers site.

The Activity Life Cycle
The first thing we have to figure out when programming for Android is how an activity behaves. On Android,
this is called the activity life cycle. It describes the states and the transitions between those states through
which an activity can live. Let’s start by discussing the theory behind this.

In Theory
An activity can be in one of three states:

Running: In this state, it is the top-level activity that takes up the screen and
directly interacts with the user.

Paused: This happens when the activity is still visible on the screen but is
partially obscured by either a transparent activity or a dialog, or if the device
screen is locked. A paused activity can be killed by the Android system at any
point in time (for example, due to low memory). Note that the activity instance
itself is still alive and kicking in the VM heap and waiting to be brought back to a
running state.

Stopped: This happens when the activity is completely obscured by another
activity and thus is no longer visible on the screen. Our AndroidBasicsStarter
activity will be in this state if we start one of the test activities, for example. It
also happens when a user presses the home button to go to the home screen
temporarily. The system can again decide to kill the activity completely and
remove it from memory if memory gets low.

In both the paused and stopped states, the Android system can decide to kill the activity at any point
in time. It can do so either politely, by first informing the activity by calling its finished() method, or
impolitely, by silently killing the activity’s process.

The activity can be brought back to a running state from a paused or stopped state. Note again that
when an activity is resumed from a paused or stopped state, it is still the same Java instance in memory, so
all the state and member variables are the same as they were before the activity was paused or stopped.

An activity has some protected methods that we can override to get information about state changes:

•	 Activity.onCreate(): This is called when our activity is started up for the first time.
Here, we set up all the UI components and hook into the input system. This method
will get called only once in the life cycle of our activity.

•	 Activity.onRestart(): This is called when the activity is resumed from a stopped
state. It is preceded by a call to onStop().

Chapter 4 ■ android for Game developers

96

•	 Activity.onStart(): This is called after onCreate() or when the activity is resumed
from a stopped state. In the latter case, it is preceded by a call to onRestart().

•	 Activity.onResume(): This is called after onStart() or when the activity is resumed
from a paused state (for example, when the screen is unlocked).

•	 Activity.onPause(): This is called when the activity enters the paused state. It
might be the last notification we receive, as the Android system might decide to kill
our application silently. We should save all states we want to persist in this method!

•	 Activity.onStop(): This is called when the activity enters the stopped state. It
is preceded by a call to onPause(). This means that an activity is stopped before
it is paused. As with onPause(), it might be the last notification we get before the
Android system silently kills the activity. We could also save the persistent state here.
However, the system might decide not to call this method and just kill the activity.
As onPause() will always be called before onStop() and before the activity is silently
killed, we’d rather save all our stuff in the onPause() method.

•	 Activity.onDestroy(): This is called at the end of the activity life cycle when the
activity is irrevocably destroyed. It’s the last time we can persist any information
we’d like to recover the next time our activity is created anew. Note that this method
actually might never be called if the activity was destroyed silently after a call to
onPause() or onStop() by the system.

Figure 4-3 illustrates the activity life cycle and the method call order.

Chapter 4 ■ android for Game developers

97

Figure 4-3. The mighty, confusing activity life cycle

Chapter 4 ■ android for Game developers

98

Here are the three big lessons we should take away from this:

 1. Before our activity enters the running state, the onResume() method is always
called, whether or not we resume from a stopped state or from a paused state. We
can thus safely ignore the onRestart() and onStart() methods. We don’t care
whether we resumed from a stopped state or a paused state. For our games, we
only need to know that we are now actually running, and the onResume() method
signals that to us.

 2. The activity can be destroyed silently after onPause(). We should never assume
that onStop() or onDestroy() get called. We also know that onPause() will always
be called before onStop(). We can therefore safely ignore the onStop() and
onDestroy() methods and just override onPause(). In this method, we have to
make sure that all the states we want to persist, like high scores and level progress,
get written to external storage, such as an SD card. After onPause(), all bets are off,
and we won’t know whether our activity will ever get the chance to run again.

 3. We know that onDestroy() might never be called if the system decides to kill
the activity after onPause() or onStop(). However, sometimes we’d like to
know whether the activity is actually going to be killed. So how do we do that
if onDestroy() is not going to get called? The Activity class has a method
called Activity.isFinishing() that we can call at any time to check whether
our activity is going to get killed. We are at least guaranteed that the onPause()
method is called before the activity is killed. All we need to do is call this
isFinishing() method inside the onPause() method to decide whether the
activity is going to die after the onPause() call.

This makes life a lot easier. We only override the onCreate(), onResume(), and onPause() methods.

•	 In onCreate(), we set up our window and the UI component to which we render and
from which we receive input.

•	 In onResume(), we (re)start our main loop thread (discussed in Chapter 3).

•	 In onPause(), we simply pause our main loop thread, and if Activity.
isFinishing() returns true, we also save to disk any state we want to persist.

Many people struggle with the activity life cycle, but if we follow these simple rules, our game will be
capable of handling pausing, resuming, and cleaning up.

In Practice
Let’s write our first test example that demonstrates the activity life cycle. We’ll want to have some sort of
output that displays which state changes have happened so far. We’ll do this in two ways:

 1. The sole UI component that the activity will display is a TextView. As its name
suggests, it displays text, and we’ve already used it implicitly for displaying each
entry in our starter activity. Each time we enter a new state, we will append
a string to the TextView, which will display all the state changes that have
happened so far.

 2. We won’t be able to display the destruction event of our activity in the TextView
because it will vanish from the screen too fast, so we will also output all state
changes to logcat. We do this with the Log class, which provides a couple of static
methods with which to append messages to logcat.

http://dx.doi.org/10.1007/978-1-4842-0472-6_3

Chapter 4 ■ android for Game developers

99

Remember what we need to do to add a test activity to our test application? First, we define it in the
manifest file in the form of an <activity> element, which is a child of the <application> element:

<activity android:label="Life Cycle Test"
 android:name=".LifeCycleTest"
 android:configChanges="keyboard|keyboardHidden|orientation" />

Next, we add a new Java class called LifeCycleTest to our com.badlogic.androidgames.
ch04androidbasics package. Finally, we add the class name to the tests member of the
AndroidBasicsStarter class we defined earlier. (Of course, we already have that in there from when we
wrote the class for demonstration purposes.)

We’ll have to repeat all of these steps for any test activity that we create in the following sections.
For brevity, we won’t mention these steps again. Also note that we didn’t specify an orientation for the
LifeCycleTest activity. In this example, we can be in either landscape mode or portrait mode, depending
on the device orientation. We did this so that you could see the effect of an orientation change on the life
cycle (none, due to how we set the configChanges attribute). Listing 4-2 shows the code of the entire activity.

Listing 4-2. LifeCycleTest.java, demonstrating the activity life cycle

package com.badlogic.androidgames.ch04androidbasics.ch04androidbasics;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.util.Log;
import android.widget.TextView;

public class LifeCycleTest extends AppCompatActivity {
 StringBuilder builder = new StringBuilder();
 TextView textView;

 private void log(String text) {
 Log.d("LifeCycleTest", text);
 builder.append(text);
 builder.append('\n');
 textView.setText(builder.toString());
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 textView = new TextView(this);
 textView.setText(builder.toString());
 setContentView(textView);
 log("created");
 }

 @Override
 protected void onResume() {
 super.onResume();
 log("resumed");
 }

Chapter 4 ■ android for Game developers

100

 @Override
 protected void onPause() {
 super.onPause();
 log("paused");

 if (isFinishing()) {
 log("finishing");
 }
 }
}

Let’s go through this code really quickly. The class derives from AppCompatActivity. This activity
was first provided in SDK 22 for compatibility with version 21 and older. We define two members: a
StringBuilder, which will hold all the messages we have produced so far, and the TextView, which we use
to display those messages directly in the activity.

Next, we define a little private helper method that will log text to logcat, append it to our StringBuilder,
and update the TextView text. For the logcat output, we use the static Log.d() method, which takes a tag as
the first argument and the actual message as the second argument.

In the onCreate() method, we call the superclass method first. We create the TextView and set it as the
content view of our activity. It will fill the complete space of the activity. Finally, we log the message created
to logcat and update the TextView text with our previously defined helper method log().

Next, we override the onResume() method of the activity. As with any activity methods that we override,
we first call the superclass method. All we do is call log() again, with resumed as the argument.

The overridden onPause() method looks much like the onResume() method. We log the message
as “paused” first. We also want to know whether the activity is going to be destroyed after the onPause()
method call, so we check the Activity.isFinishing() method. If it returns true, we log the finishing event
as well. Of course, we won’t be able to see the updated TextView text because the activity will be destroyed
before the change is displayed on the screen. Thus, we also output everything to logcat, as discussed earlier.

Run the application and play around with this test activity a little. Here’s a sequence of actions you
could execute:

 1. Start up the test activity from the starter activity.

 2. Lock the screen.

 3. Unlock the screen.

 4. Press the home button (which will take you back to the home screen).

 5. Select your application from the list of running applications.

 6. Press the back button (which will take you back to the starter activity).

If your system didn’t decide to kill the activity silently at any point when it was paused, you will see the
output in Figure 4-4 (of course, only if you haven’t pressed the back button yet).

Chapter 4 ■ android for Game developers

101

On startup, onCreate() is called, followed by onResume(). When we lock the screen, onPause() is
called. When we unlock the screen, onResume() is called. When we press the home button, onPause() is
called. Going back to the activity will call onResume() again. The same messages are, of course, shown in
logcat, which you can observe in Android Studio in the logcat view. Figure 4-5 shows what we wrote to logcat
while executing the preceding sequence of actions (plus pressing the back button).

Figure 4-4. Running the LifeCycleTest activity

Chapter 4 ■ android for Game developers

102

Pressing the back button again invokes the onPause() method. As it also destroys the activity, the if
statement in onPause() also gets triggered, informing us that this is the last we’ll see of this activity.

That is the activity life cycle, demystified and simplified for our game programming needs. We now
can easily handle any pause and resume events, and we are guaranteed to be notified when the activity is
destroyed.

Input Device Handling
As discussed in previous chapters, we can get information from many different input devices on Android. In
this section, we’ll discuss four of the most relevant input devices on Android and how to work with them: the
touchscreen, the keyboard, the accelerometer, and the compass.

Getting (Multi-)Touch Events
The touchscreen is probably the most important way to get input from the user. Until Android version 2.0,
the API only supported the processing of single-finger touch events. Multitouch was introduced in Android
2.0 (SDK version 5). The multitouch event reporting was tagged onto the single-touch API, with some mixed
results in usability. We’ll first investigate handling single-touch events, which are available on all Android
versions.

Processing Single-Touch Events

When we processed taps on a button in Chapter 2, we saw that listener interfaces are the way Android
reports events to us. Touch events are no different. Touch events are passed to an OnTouchListener interface
implementation that we register with a View. The OnTouchListener interface has only a single method:

boolean onTouch (View v, MotionEvent event)

The first argument is the View to which the touch events get dispatched. The second argument is what
we’ll dissect to get the touch event.

An OnTouchListener can be registered with any View implementation via the View.
setOnTouchListener() method. The OnTouchListener will be called before the MotionEvent is dispatched
to the View itself. We can signal to the View in our implementation of the onTouch() method that we have
already processed the event by returning true from the method. If we return false, the View itself will
process the event.

Figure 4-5. The logcat output of LifeCycleTest

http://dx.doi.org/10.1007/978-1-4842-0472-6_2

Chapter 4 ■ android for Game developers

103

The MotionEvent instance has three methods that are relevant to us:

•	 MotionEvent.getX() and MotionEvent.getY(): These methods report the x and y
coordinates of the touch event relative to the View. The coordinate system is defined
with the origin in the top left of the view, with the x axis pointing to the right and the
y axis pointing downward. The coordinates are given in pixels. Note that the methods
return floats, and thus the coordinates have subpixel accuracy.

•	 MotionEvent.getAction(): This method returns the type of the touch event. It is an
integer that takes on one of the values MotionEvent.ACTION_DOWN, MotionEvent.
ACTION_MOVE, MotionEvent.ACTION_CANCEL, or MotionEvent.ACTION_UP.

Sounds simple, and it really is. The MotionEvent.ACTION_DOWN event happens when the finger touches
the screen. When the finger moves, events with type MotionEvent.ACTION_MOVE are fired. Note that you
will always get MotionEvent.ACTION_MOVE events, as you can’t hold your finger still enough to avoid them.
The touch sensor will recognize the slightest change. When the finger is lifted up again, the MotionEvent.
ACTION_UP event is reported. MotionEvent.ACTION_CANCEL events can happen if a user touches an element
and drags their finger off the element, thus not completing the action. However, we’ll still process it and
pretend it is a MotionEvent.ACTION_UP event when we start implementing our first game.

Let’s write a simple test activity to see how this works in code. The activity should display the current
position of the finger on the screen as well as the event type. Listing 4-3 shows what we came up with.

Listing 4-3. SingleTouchTest.java: Testing single-touch handling

package com.badlogic.androidgames.ch04androidbasics.ch04androidbasics;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.util.Log;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener;
import android.widget.TextView;

public class SingleTouchTest extends Activity implements OnTouchListener {
 StringBuilder builder = new StringBuilder();
 TextView textView;

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 textView = new TextView(this);
 textView.setText("Touch and drag (one finger only)!");
 textView.setOnTouchListener(this);
 setContentView(textView);
 }

 public boolean onTouch(View v, MotionEvent event) {
 builder.setLength(0);
 switch (event.getAction()) {
 case MotionEvent.ACTION_DOWN:
 builder.append("down, ");
 break;
 case MotionEvent.ACTION_MOVE:

Chapter 4 ■ android for Game developers

104

 builder.append("move, ");
 break;
 case MotionEvent.ACTION_CANCEL:
 builder.append("cancel, ");
 break;
 case MotionEvent.ACTION_UP:
 builder.append("up, ");
 break;
 }
 builder.append(event.getX());
 builder.append(", ");
 builder.append(event.getY());
 String text = builder.toString();
 Log.d("TouchTest", text);
 textView.setText(text);
 return true;
 }
}

We let our activity implement the OnTouchListener interface. We also have two members: one for the
TextView and a StringBuilder we’ll use to construct our event strings.

The onCreate() method is pretty self-explanatory. The only novelty is the call to TextView.
setOnTouchListener(), where we register our activity with the TextView so that it can receive MotionEvents.

What’s left is the onTouch() method implementation itself. We ignore the view argument, as we know
that it must be the TextView. All we are interested in is getting the touch event type, appending a string
identifying it to our StringBuilder, appending the touch coordinates, and updating the TextView text.
That’s it. We also log the event to logcat so that we can see the order in which the events happen, as the
TextView will only show the last event that we processed (we clear the StringBuilder every time onTouch()
is called).

One subtle detail in the onTouch() method is the return statement, where we return true. Usually, we’d
stick to the listener concept and return false in order to not interfere with the event-dispatching process.
If we do this in our example, however, we won’t get any events other than the MotionEvent.ACTION_DOWN
event. So, we tell the TextView that we just consumed the event. This behavior might differ between different
View implementations. Luckily, we’ll only need three other views in the rest of this book, and those will
happily let us consume any event we want.

If we fire up that application on the emulator or a connected device, we can see how the TextView will
always display the last event type and position reported to the onTouch() method. Additionally, you can see
the same messages in logcat.

We did not fix the orientation of the activity in the manifest file. If you rotate your device so that the
activity is in landscape mode, the coordinate system changes, of course. Figure 4-6 shows the activity in
portrait mode (left) and landscape mode (right). In both cases, we tried to touch the middle of the View.
Note how the x and y coordinates seem to get swapped. The figure also shows the x and y axes in both cases
(the yellow lines), along with the point on the screen that we roughly touched (the green circle). In both
cases, the origin is in the upper-left corner of the TextView, with the x axis pointing to the right and the y axis
pointing downward.

Chapter 4 ■ android for Game developers

105

Depending on the orientation, our maximum x and y values change, of course. Since the touch
coordinates are given relative to the view, and since the view doesn’t fill the complete screen, our maximum
y value will be smaller than the resolution height. We’ll see later how we can enable full-screen mode so that
the title bar and notification bar don’t get in our way.

Sadly, there are a few issues with touch events on older Android versions and first-generation devices:

Touch-event flood: The driver will report as many touch events as possible when
a finger is down on the touchscreen—on some devices, hundreds per second.
We can fix this issue by putting a Thread.sleep(16) call into our onTouch()
method, which will put to sleep for 16ms the UI thread on which those events are
dispatched. With this, we’ll get 60 events per second at most, which is more than
enough to have a responsive game.

Touching the screen eats the CPU: Even if we sleep in our onTouch() method, the
system has to process the events in the kernel as reported by the driver. On old
devices, such as the Hero or G1, this can use up to 50 percent of the CPU, which
leaves a lot less processing power for our main loop thread. As a consequence,
our perfectly fine frame rate will drop considerably, sometimes to the point
where the game becomes unplayable. On second-generation devices, the
problem is a lot less pronounced and can usually be ignored. Sadly, there’s no
solution for this on older devices.

Processing Multitouch Events

Warning: Major pain ahead! The multitouch API has been tagged onto the MotionEvent class, which
originally handled only single touches. This makes for some major confusion when trying to decode
multitouch events. Let’s try to make some sense of it.

Figure 4-6. Touching the screen in portrait and landscape modes

Chapter 4 ■ android for Game developers

106

Handling multitouch events is very similar to handling single-touch events. We still implement the
same OnTouchListener interface we implemented for single-touch events. We also get a MotionEvent
instance from which to read the data. We also process the event types we processed before, like
MotionEvent.ACTION_UP, plus a couple of new ones that aren’t too big of a deal.

Pointer IDs and Indices

The differences between handling multitouch events and handling single-touch events start when we
want to access the coordinates of a touch event. MotionEvent.getX() and MotionEvent.getY() return the
coordinates of a single finger on the screen. When we process multitouch events, we use overloaded variants
of these methods that take a pointer index. This might look as follows:

event.getX(pointerIndex);
event.getY(pointerIndex);

Now, one would expect that pointerIndex directly corresponds to one of the fingers touching the
screen (for example, the first finger that touched has pointerIndex 0, the next finger that touched has
pointerIndex 1, and so forth). Unfortunately, this is not the case.

The pointerIndex is an index into the internal arrays of the MotionEvent that holds the coordinates of
the event for a specific finger that is touching the screen. The real identifier of a finger on the screen is called
the pointer identifier. A pointer identifier is an arbitrary number that uniquely identifies one instance of a
pointer touching the screen. There’s a separate method called MotionEvent.getPointerIdentifier(int
pointerIndex) that returns the pointer identifier based on a pointer index. A pointer identifier will stay the
same for a single finger as long as it touches the screen. This is not necessarily true for the pointer index. It’s
important to understand the distinction between the two and understand that you can’t rely on the first touch
to be index 0, ID 0, because on some devices, notably the first version of the Xperia Play, the pointer ID would
always increment to 15 and then start over at 0, rather than reuse the lowest available number for an ID.

Let’s start by examining how we can get to the pointer index of an event. We’ll ignore the event type
for now.

int pointerIndex = (event.getAction() & MotionEvent.ACTION_POINTER_INDEX_MASK) >>
MotionEvent.ACTION_POINTER_INDEX_SHIFT;

You probably have the same thoughts that we had when we first implemented this. Before we lose all
faith in humanity, let’s try to decipher what’s happening here. We fetch the event type from the MotionEvent
via MotionEvent.getAction(). Good, we’ve done that before. Next, we perform a bitwise AND operation
using the integer we get from the MotionEvent.getAction() method and a constant called MotionEvent.
ACTION_POINTER_INDEX_MASK. Now the fun begins.

That constant has a value of 0xff00, so we essentially make all bits 0, other than bits 8 to 15, which
hold the pointer index of the event. The lower 8 bits of the integer returned by event.getAction() hold the
value of the event type, such as MotionEvent.ACTION_DOWN and its siblings. We essentially throw away the
event type by this bitwise operation. The shift should make a bit more sense now. We shift by MotionEvent.
ACTION_POINTER_INDEX_SHIFT, which has a value of 8, so we basically move bits 8 through 15 to bits 0
through 7, arriving at the actual pointer index of the event. With this, we can then get the coordinates of the
event, as well as the pointer identifier.

Notice that our magic constants are called XXX_POINTER_INDEX_XXX instead of XXX_POINTER_INDEX_XXX
(which would make more sense, as we actually want to extract the pointer index, not the pointer identifier).
Well, the Android engineers must have been confused as well. In SDK version 8, they deprecated those
constants and introduced new constants called XXX_POINTER_INDEX_XXX, which have the exact same values
as the deprecated ones. In order for legacy applications that are written against SDK version 5 to continue
working on newer Android versions, the old constants are still made available.

Chapter 4 ■ android for Game developers

107

So, we now know how to get that mysterious pointer index that we can use to query for the coordinates
and the pointer identifier of the event.

The Action Mask and More Event Types

Next, we have to get the pure event type minus the additional pointer index that is encoded in the integer
returned by MotionEvent.getAction(). We just need to mask out the pointer index:

int action = event.getAction() & MotionEvent.ACTION_MASK;

OK, that was easy. Sadly, you’ll only understand it if you know what that pointer index is, and that it is
actually encoded in the action.

What’s left is to decode the event type as we did before. We already said that there are a few new event
types, so let’s go through them:

•	 MotionEvent.ACTION_POINTER_DOWN: This event happens for any additional finger
that touches the screen after the first finger touches. The first finger still produces a
MotionEvent.ACTION_DOWN event.

•	 MotionEvent.ACTION_POINTER_UP: This is analogous to the previous action. This gets
fired when a finger is lifted up from the screen and more than one finger is touching
the screen. The last finger on the screen to be lifted will produce a MotionEvent.
ACTION_UP event. This finger doesn’t necessarily have to be the first finger that
touched the screen.

Luckily, we can just pretend that these two new event types are the same as the old MotionEvent.
ACTION_UP and MotionEvent.ACTION_DOWN events.

The last difference is the fact that a single MotionEvent can have data for multiple events. Yes, you read
that right. For this to happen, the merged events have to have the same type. In reality, this will only happen for
the MotionEvent.ACTION_MOVE event, so we only have to deal with this fact when processing said event type. To
check how many events are contained in a single MotionEvent, we use the MotionEvent.getPointerCount()
method, which tells us the number of fingers that have coordinates in the MotionEvent. We then can fetch the
pointer identifier and coordinates for the pointer indices 0 to MotionEvent.getPointerCount() – 1 via the
MotionEvent.getX(), MotionEvent.getY(), and MotionEvent.getPointerId() methods.

In Practice

Let’s write an example for this fine API. We want to keep track of ten fingers at most. The Android device
will usually assign sequential pointer indices as we add more fingers to the screen, but it’s not always
guaranteed, so we rely on the pointer index for our arrays and will simply display which ID is assigned to the
touch point. We keep track of each pointer’s coordinates and touch state (touching or not), then output this
information to the screen via a TextView. Let’s call our test activity MultiTouchTest. Listing 4-4 shows the
complete code.

Listing 4-4. MultiTouchTest.java: Testing the multitouch API

package com.badlogic.androidgames.ch04androidbasics;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener;
import android.widget.TextView;

Chapter 4 ■ android for Game developers

108

public class MultiTouchTest extends AppCompatActivity implements OnTouchListener {
 StringBuilder builder = new StringBuilder();
 TextView textView;
 float[] x = new float[10];
 float[] y = new float[10];
 boolean[] touched = new boolean[10];
 int[] id = new int[10];

 private void updateTextView() {
 builder.setLength(0);
 for (int i = 0; i < 10; i++) {
 builder.append(touched[i]);
 builder.append(", ");
 builder.append(id[i]);
 builder.append(", ");
 builder.append(x[i]);
 builder.append(", ");
 builder.append(y[i]);
 builder.append("\n");
 }
 textView.setText(builder.toString());
 }

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 textView = new TextView(this);
 textView.setText("Touch and drag (multiple fingers supported)!");
 textView.setOnTouchListener(this);
 setContentView(textView);
 for (int i = 0; i < 10; i++) {
 id[i] = -1;
 }
 updateTextView();
 }

 public boolean onTouch(View v, MotionEvent event) {
 int action = event.getAction() & MotionEvent.ACTION_MASK;
 int pointerIndex = (event.getAction() & MotionEvent.ACTION_POINTER_INDEX_MASK) >>

MotionEvent.ACTION_POINTER_INDEX_SHIFT;
 int pointerCount = event.getPointerCount();
 for (int i = 0; i < 10; i++) {
 if (i >= pointerCount) {
 touched[i] = false;
 id[i] = -1;
 continue;
 }
 if (event.getAction() != MotionEvent.ACTION_MOVE && i != pointerIndex) {
 // if it's an up/down/cancel/out event, mask the id to see if we should

process it for this touch point
 continue;
 }

Chapter 4 ■ android for Game developers

109

 int pointerId = event.getPointerId(i);
 switch (action) {
 case MotionEvent.ACTION_DOWN:
 case MotionEvent.ACTION_POINTER_DOWN:
 touched[i] = true;
 id[i] = pointerId;
 x[i] = (int) event.getX(i);
 y[i] = (int) event.getY(i);
 break;

 case MotionEvent.ACTION_UP:
 case MotionEvent.ACTION_POINTER_UP:
 case MotionEvent.ACTION_OUTSIDE:
 case MotionEvent.ACTION_CANCEL:
 touched[i] = false;
 id[i] = -1;
 x[i] = (int) event.getX(i);
 y[i] = (int) event.getY(i);
 break;

 case MotionEvent.ACTION_MOVE:
 touched[i] = true;
 id[i] = pointerId;
 x[i] = (int) event.getX(i);
 y[i] = (int) event.getY(i);
 break;
 }
 }

 updateTextView();
 return true;
 }
}

We implement the OnTouchListener interface as before. To keep track of the coordinates and touch
state of the ten fingers, we add three new member arrays that will hold that information for us. The arrays
x and y hold the coordinates for each pointer ID, and the array touched stores whether the finger with that
pointer ID is down.

Next, we created a little helper method that will output the current state of the fingers to the TextView.
The method simply iterates through all the ten finger states and concatenates them via a StringBuilder.
The final text is sent to the TextView.

The onCreate() method sets up our activity and registers it as an OnTouchListener with the TextView.
We already know that part by heart.

Now, for the scary part: the onTouch() method.
We start off by getting the event type by masking the integer returned by event.getAction(). Next, we

extract the pointer index and fetch the corresponding pointer identifier from the MotionEvent, as discussed
earlier.

The heart of the onTouch() method is that big nasty switch statement, which we already used in a
reduced form to process single-touch events. We group all the events into three categories on a high level:

Chapter 4 ■ android for Game developers

110

•	 A touch-down event happened (MotionEvent.ACTION_DOWN or MotionEvent.ACTION_
PONTER_DOWN): We set the touch state for the pointer identifier to true, and we also
save the current coordinates of that pointer.

•	 A touch-up event happened (MotionEvent.ACTION_UP, MotionEvent.ACTION_
POINTER_UP, or MotionEvent.CANCEL): We set the touch state to false for that pointer
identifier and save its last known coordinates.

•	 One or more fingers were dragged across the screen (MotionEvent.ACTION_MOVE):
We check how many events are contained in the MotionEvent and then update the
coordinates for pointer indices 0 to MotionEvent.getPointerCount()-1. For each
event, we fetch the corresponding pointer ID and update the coordinates.

Once the event is processed, we update the TextView via a call to the updateView() method we defined
earlier. Finally, we return true, indicating that we processed the touch event.

Figure 4-7 shows the output of the activity produced by touching five fingers on a Samsung Galaxy
Nexus and dragging them around a little.

Figure 4-7. Fun with multitouch

Chapter 4 ■ android for Game developers

111

We can observe a few things when we run this example:

•	 There’s no multitouch on the emulator. The API is there if we create an emulator
running Android version 2.0 or higher, but we only have a single mouse. To emulate
multi-touch, hold down the CTRL key in Windows, or the COMMAND key on a Mac.

•	 Touch two fingers down, lift the first one, and touch it down again. The second finger
will keep its pointer ID after the first finger is lifted. When the first finger is touched
down for the second time, it gets a new pointer ID, which is usually 0 but can be
any integer. Any new finger that touches the screen will get a new pointer ID that
could be anything that’s not currently used by another active touch. That’s a rule to
remember.

•	 If you try this on a low-budget smartphone, you might notice some strange behavior
when you cross two fingers on one axis. This is due to the fact that the screens
of those devices do not fully support the tracking of individual fingers. It’s a big
problem, but we can work around it somewhat by designing our UIs with some care.
We’ll have another look at the issue in a later chapter. The phrase to keep in mind is:
don’t cross the streams!

And that’s how multitouch processing works on Android. It is a pain, but once you untangle all the
terminology and come to peace with the bit twiddling, you will feel much more comfortable with the
implementation and will be handling all those touch points like a pro.

 ■ Note We’re sorry if this made your head explode. this section was rather heavy duty. sadly, the official
documentation for the api is extremely lacking, and most people “learn” the api by simply hacking away at it.
We suggest you play around with the preceding code example until you fully grasp what’s going on within it.

Processing Key Events
After the insanity of the last section, you deserve something dead simple. Welcome to processing key events.

To catch key events, we implement another listener interface, called OnKeyListener. It has a single
method, called onKey(), with the following signature:

public boolean onKey(View view, int keyCode, KeyEvent event)

The View specifies the view that receives the key event, the keyCode argument is one of the constants
defined in the KeyEvent class, and the final argument is the key event itself, which has some additional
information.

What is a key code? Each key on the (onscreen) keyboard and each of the system keys has a unique
number assigned to it. These key codes are defined in the KeyEvent class as static public final integers.
One such key code is KeyCode.KEYCODE_A, which is the code for the A key. This has nothing to do with the
character that is generated in a text field when a key is pressed. It really just identifies the key itself.

The KeyEvent class is similar to the MotionEvent class. It has two methods that are relevant for us:

•	 KeyEvent.getAction(): This returns KeyEvent.ACTION_DOWN, KeyEvent.ACTION_UP,
and KeyEvent.ACTION_MULTIPLE. For our purposes, we can ignore the last key event
type. The other two will be sent when a key is either pressed or released.

Chapter 4 ■ android for Game developers

112

•	 KeyEvent.getUnicodeChar(): This returns the Unicode character the key would
produce in a text field. Say we hold down the Shift key and press the A key. This
would be reported as an event with a key code of KeyEvent.KEYCODE_A, but with a
Unicode character A. We can use this method if we want to do text input ourselves.

To receive keyboard events, a View must have the focus. This can be forced with the following method calls:

View.setFocusableInTouchMode(true);
View.requestFocus();

The first method will guarantee that the View can be focused. The second method requests that the
specific View gets the focus.

Let’s implement a simple test activity to see how this works in combination. We want to get key events
and display the last one we received in a TextView. The information we’ll display is the key event type, along
with the key code and the Unicode character, if one would be produced. Note that some keys do not produce
a Unicode character on their own, but only in combination with other characters. Listing 4-5 demonstrates
how we can achieve all of this in a small number of code lines.

Listing 4-5. KeyTest.Java: Testing the key event API

package com.badlogic.androidgames.ch04androidbasics.ch04androidbasics;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.util.Log;
import android.view.KeyEvent;
import android.view.View;
import android.view.View.OnKeyListener;
import android.widget.TextView;

public class KeyTest extends AppCompatActivity implements OnKeyListener {
 StringBuilder builder = new StringBuilder();
 TextView textView;

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 textView = new TextView(this);
 textView.setText("Press keys (if you have some)!");
 textView.setOnKeyListener(this);
 textView.setFocusableInTouchMode(true);
 textView.requestFocus();
 setContentView(textView);
 }

 public boolean onKey(View view, int keyCode, KeyEvent event) {
 builder.setLength(0);
 switch (event.getAction()) {
 case KeyEvent.ACTION_DOWN:
 builder.append("down, ");
 break;
 case KeyEvent.ACTION_UP:
 builder.append("up, ");
 break;

Chapter 4 ■ android for Game developers

113

 }
 builder.append(event.getKeyCode());
 builder.append(", ");
 builder.append((char) event.getUnicodeChar());
 String text = builder.toString();
 Log.d("KeyTest", text);
 textView.setText(text);

 return event.getKeyCode() != KeyEvent.KEYCODE_BACK;
 }
}

We start off by declaring that the activity implements the OnKeyListener interface. Next, we define two
members with which we are already familiar: a StringBuilder to construct the text to be displayed and a
TextView to display the text.

In the onCreate() method, we make sure the TextView has the focus so it can receive key events. We
also register the activity as the OnKeyListener via the TextView.setOnKeyListener() method.

The onKey() method is also pretty straightforward. We process the two event types in the switch
statement, appending a proper string to the StringBuilder. Next, we append the key code as well as the
Unicode character from the KeyEvent itself and output the contents of the StringBuffer instance to logcat
as well as to the TextView.

The last if statement is interesting: if the Back key is pressed, we return false from the onKey()
method, making the TextView process the event. Otherwise, we return true. Why differentiate here?

If we were to return true in the case of the Back key, we’d mess with the activity life cycle a little.
The activity would not be closed, as we decided to consume the Back key ourselves. Of course, there are
scenarios in which we’d actually want to catch the Back key so that our activity does not get closed. However,
it is strongly advised that you not do this unless absolutely necessary.

Figure 4-8 illustrates the output of the activity while holding down the Shift and A keys on the keyboard
of a Droid.

Chapter 4 ■ android for Game developers

114

There are a couple of things to note here:

•	 When you look at the logcat output, notice that we can easily process simultaneous
key events. Holding down multiple keys is not a problem.

•	 Pressing a D-pad and rolling a trackball are both reported as key events.

•	 As with touch events, key events can eat up considerable CPU resources on old
Android versions and first-generation devices. However, they will not produce a
flood of events.

That was pretty relaxing compared to the previous section, wasn’t it?

 ■ Note the key-processing api is a bit more complex than what we have shown here. however, for our
game programming projects, the information contained here is more than sufficient. if you need something a bit
more complex, refer to the official documentation on the android developers site.

Figure 4-8. Pressing the Shift and A keys simultaneously

Chapter 4 ■ android for Game developers

115

Reading the Accelerometer State
A very interesting input option for games is the accelerometer. All Android devices are required to contain a
three-axis accelerometer. We talked about accelerometers a little bit in Chapter 3. Generally, we’ll only poll
the state of the accelerometer.

So, how do we get that accelerometer information? You guessed correctly if you said by registering a
listener. The interface we need to implement is called SensorEventListener, which has two methods:

public void onSensorChanged(SensorEvent event);
public void onAccuracyChanged(Sensor sensor, int accuracy);

The first method is called when a new accelerometer event arrives. The second method is called when
the accuracy of the accelerometer changes. We can safely ignore the second method for our purposes.

So, where do we register our SensorEventListener? For this, we have to do a little bit of work. First, we
need to check whether there actually is an accelerometer installed in the device. Now, we just told you that
all Android devices must contain an accelerometer. This is still true, but it might change in the future. We
therefore want to be 100 percent sure that that input method is available to us.

The first thing we need to do is get an instance of the SensorManager. That guy will tell us whether an
accelerometer is installed, and it is also where we register our listener. To get the SensorManager, we use a
method of the Context interface:

SensorManager manager = (SensorManager)context.getSystemService(Context.SENSOR_SERVICE);

The SensorManager is a system service that is provided by the Android system. Android is composed of
multiple system services, each serving different pieces of system information to anyone who asks nicely.

Once we have the SensorManager, we can check whether the accelerometer is available:

boolean hasAccel = manager.getSensorList(Sensor.TYPE_ACCELEROMETER).size() > 0;

With this bit of code, we poll the SensorManager for all the installed sensors that have the type
accelerometer. While this implies that a device can have multiple accelerometers, in reality this will only
ever return one accelerometer sensor.

If an accelerometer is installed, we can fetch it from the SensorManager and register the
SensorEventListener with it as follows:

Sensor sensor = manager.getSensorList(Sensor.TYPE_ACCELEROMETER).get(0);
boolean success = manager.registerListener(listener, sensor, SensorManager.SENSOR_DELAY_GAME);

The argument SensorManager.SENSOR_DELAY_GAME specifies how often the listener should be updated
with the latest state of the accelerometer. This is a special constant that is specifically designed for games,
so we happily use that. Notice that the SensorManager.registerListener() method returns a Boolean,
indicating whether the registration process worked or not. That means we have to check the Boolean
afterward to make sure we’ll actually get any events from the sensor.

Once we have registered the listener, we’ll receive SensorEvents in the SensorEventListener.
onSensorChanged() method. The method name implies that it is only called when the sensor state has
changed. This is a little bit confusing, since the accelerometer state is changed constantly. When we register
the listener, we actually specify the desired frequency with which we want to receive our sensor-state updates.

So, how do we process the SensorEvent? That’s rather easy. The SensorEvent has a public float array
member called SensorEvent.values that holds the current acceleration values of each of the three axes of
the accelerometer. SensorEvent.values[0] holds the value of the x axis, SensorEvent.values[1] holds the
value of the y axis, and SensorEvent.values[2] holds the value of the z axis. We discussed what is meant by
these values in Chapter 3, so if you have forgotten that, go and check out the “Input” section again.

http://dx.doi.org/10.1007/978-1-4842-0472-6_3
http://dx.doi.org/10.1007/978-1-4842-0472-6_3

Chapter 4 ■ android for Game developers

116

With this information, we can write a simple test activity. All we want to do is output the accelerometer
values for each accelerometer axis in a TextView. Listing 4-6 shows how to do this.

Listing 4-6. AccelerometerTest.java: Testing the accelerometer API

package com.badlogic.androidgames.ch04androidbasics;

import android.support.v7.app.AppCompatActivity;
import android.content.Context;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
import android.os.Bundle;
import android.widget.TextView;

public class AccelerometerTest extends AppCompatActivity implements SensorEventListener {
 TextView textView;
 StringBuilder builder = new StringBuilder();

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 textView = new TextView(this);
 setContentView(textView);

 SensorManager manager = (SensorManager) getSystemService(Context.SENSOR_SERVICE);
 if (manager.getSensorList(Sensor.TYPE_ACCELEROMETER).size() == 0) {
 textView.setText("No accelerometer installed");
 } else {
 Sensor accelerometer = manager.getSensorList(
 Sensor.TYPE_ACCELEROMETER).get(0);
 if (!manager.registerListener(this, accelerometer,
 SensorManager.SENSOR_DELAY_GAME)) {
 textView.setText("Couldn't register sensor listener");
 }
 }
 }

 public void onSensorChanged(SensorEvent event) {
 builder.setLength(0);
 builder.append("x: ");
 builder.append(event.values[0]);
 builder.append(", y: ");
 builder.append(event.values[1]);
 builder.append(", z: ");
 builder.append(event.values[2]);
 textView.setText(builder.toString());
 }

Chapter 4 ■ android for Game developers

117

 public void onAccuracyChanged(Sensor sensor, int accuracy) {
 // nothing to do here
 }
}

We start by checking whether an accelerometer sensor is available. If it is, we fetch it from the
SensorManager and try to register our activity, which implements the SensorEventListener interface. If any
of this fails, we set the TextView to display a proper error message.

The onSensorChanged() method simply reads the axes’ values from the SensorEvent that are passed to
it and updates the TextView text accordingly.

The onAccuracyChanged() method is there so that we fully implement the SensorEventListener
interface. It serves no real other purpose.

Figure 4-9 shows what values the axes take on in portrait and landscape modes when the device is held
perpendicular to the ground.

Figure 4-9. Accelerometer axes’ values in portrait mode (left) and landscape mode (right) when the device is
held perpendicular to the ground

One thing that’s a “gotcha” for Android accelerometer handling is the fact that the accelerometer values
are relative to the default orientation of the device. This means that if your game is run only in landscape, a
device where the default orientation is portrait will have values 90 degrees different from those of a device
where the default orientation is landscape! This is the case on tablets, for example. So how does one cope
with this? Use this handy-dandy code snippet and you should be good to go:

int screenRotation;
public void onResume() {
super.onResume();
 WindowManager windowMgr = (WindowManager)activity.getSystemService(Activity.WINDOW_SERVICE);

Chapter 4 ■ android for Game developers

118

 screenRotation = windowMgr.getDefaultDisplay().getRotation();
}

static final int ACCELEROMETER_AXIS_SWAP[][] = {
 {1, -1, 0, 1}, // ROTATION_0
 {-1, -1, 1, 0}, // ROTATION_90
 {-1, 1, 0, 1}, // ROTATION_180
 {1, 1, 1, 0}}; // ROTATION_270
public void onSensorChanged(SensorEvent event) {
 final int[] as = ACCELEROMETER_AXIS_SWAP[screenRotation];
 float screenX = (float)as[0] * event.values[as[2]];
 float screenY = (float)as[1] * event.values[as[3]];
 float screenZ = event.values[2];
 // use screenX, screenY, and screenZ as your accelerometer values now!
}

Here are a few closing comments on accelerometers:

•	 As you can see in the screenshot on the right in Figure 4-9, the accelerometer values
might sometimes go over their specified range. This results from small inaccuracies
in the sensor, so you have to adjust for that if you need those values to be as exact as
possible.

•	 The accelerometer axes always get reported in the same order, no matter the
orientation of your activity.

•	 It is the responsibility of the application developer to rotate the accelerometer values
based on the natural orientation of the device.

 ■ Note as the name implies, the SensorManager class grants you access to other sensors as well. this
includes the compass and light sensors. if you want to be creative, you could come up with a game idea that
uses these sensors. processing their events is done in a similar way to how we processed the data of the
accelerometer. the documentation at the android developers site will give you more information.

File Handling
Android offers us a couple of ways to read and write files. In this section, we’ll check out assets; see how to
access the external storage, mostly implemented as an SD card; and look at shared preferences, which act
like a persistent hash map. Let’s start with assets.

Reading Assets
In Chapter 2, we had a brief look at all the folders of an Android project. We identified the assets/ and res/
folders as the ones where we can put files that should get distributed with our application (you must create
the assets/ folder, as Android Studio does not create it for you). When we discussed the manifest file, we
stated that we’re not going to use the res/ folder, as it implies restrictions on how we structure our file set.
The assets/ directory is the place to put all our files, in whatever folder hierarchy we want.

http://dx.doi.org/10.1007/978-1-4842-0472-6_2

Chapter 4 ■ android for Game developers

119

The files in the assets/ folder are exposed via a class called AssetManager. We can obtain a reference to
that manager for our application as follows:

AssetManager assetManager = context.getAssets();

We already saw the context interface; it is implemented by the Activity class. In real life, we’d fetch the
AssetManager from our activity.

Once we have the AssetManager, we can start opening files like crazy:

InputStream inputStream = assetManager.open("dir/dir2/filename.txt");

Keep in mind that the preceding example could throw an IOException and thus should be wrapped in a
try/catch block. However, this method will return a plain old Java InputStream, which we can use to read in
any sort of file. The only argument to the AssetManager.open() method is the filename relative to the asset
directory. In the preceding example, we have two directories in the assets/ folder, where the second one
(dir2/) is a child of the first one (dir/). In our Android Studio project, the file would be located in assets/
dir/dir2/. Make sure that you are in the Project view, not the Android view, when you add these directories
or you will not see them. The safest way to add an assets folder in Android Studio is to right click on the
project in the Project view and click on New >> Folder >> Assets Folder.

Let’s write a simple test activity that examines this functionality. We want to load a text file named
myawesometext.txt from a subdirectory of the assets/ directory called texts. The content of the text file
will be displayed in a TextView. Listing 4-7 shows the source for this awe-inspiring activity.

Listing 4-7. AssetsTest.java: Demonstrating how to read asset files

package com.badlogic.androidgames.ch04androidbasics;

import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.InputStream;

import android.support.v7.app.AppCompatActivity;
import android.content.res.AssetManager;
import android.os.Bundle;
import android.widget.TextView;

public class AssetsTest extends AppCompatActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 TextView textView = new TextView(this);
 setContentView(textView);

 AssetManager assetManager = this.getAssets();
 InputStream inputStream = null;
 try {
 inputStream = assetManager.open("texts/myawesometext.txt");
 String text = loadTextFile(inputStream);
 textView.setText(text);

Chapter 4 ■ android for Game developers

120

 } catch (IOException e) {
 textView.setText("Couldn't load file");
 } finally {
 if (inputStream != null)
 try {
 inputStream.close();
 } catch (IOException e) {
 textView.setText("Couldn't close file");
 }
 }
 }

 public String loadTextFile(InputStream inputStream) throws IOException {
 ByteArrayOutputStream byteStream = new ByteArrayOutputStream();
 byte[] bytes = new byte[4096];
 int len = 0;
 while ((len = inputStream.read(bytes)) > 0)
 byteStream.write(bytes, 0, len);
 return new String(byteStream.toByteArray(), "UTF8");
 }
}

We see no big surprises here, other than finding that loading simple text from an InputStream
is rather verbose in Java. We wrote a little method called loadTextFile() that will squeeze all the
bytes out of the InputStream and return the bytes in the form of a string. We assume that the text file
is encoded as UTF-8. The rest is just catching and handling various exceptions. Figure 4-10 shows the
output of this little activity.

Chapter 4 ■ android for Game developers

121

You should take away the following from this section:

•	 Loading a text file from an InputStream in Java is a mess! We’ll leave that for you as
an exercise to perform on your own.

•	 We can only read assets, not write them.

•	 We could easily modify the loadTextFile() method to load binary data instead. We
would just need to return the byte array instead of the string.

Accessing the External Storage
While assets are superb for shipping all of our images and sounds with our application, there are times
when we need to be able to persist some information and reload it later on. A common example would be
high scores.

Figure 4-10. The text output of AssetsTest

Chapter 4 ■ android for Game developers

122

Android offers many different ways of doing this, such as using the local shared preferences of an
application, using a small SQLite database, and so on. All of these options have one thing in common: they
don’t handle large binary files all that gracefully. Why would we need that, anyway? While we could tell
Android to install our application on the external storage device, and thus not waste memory in internal
storage, this would only work on Android version 2.2 and above. For earlier versions, all our application
data would get installed in internal storage. In theory, we could only include the code of our application in
the APK file and would have to download all the asset files from a server to the SD card the first time our
application were started. Many of the high-profile games on Android do this.

There are also other scenarios where we’d want to have access to the SD card (which is pretty much
synonymous with the term external storage on all currently available devices). We could allow our users to
create their own levels with an in-game editor. We’d need to store these levels somewhere, and the SD card is
perfect for just that purpose.

So, now that we’ve convinced you not to use the fancy mechanisms Android offers to store application
preferences, let’s have a look at how to read and write files on the SD card.

The first thing we have to do is request permission to access the external storage. This is done in the
manifest file with the <uses-permission> element discussed earlier in this chapter, as follows:

<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

Next, we have to check whether there is actually an external storage device available on the Android
device of the user. For example, if you create an Android Virtual Device (AVD), you have the option of not
having it simulate an SD card, so you couldn’t write to it in your application. Another reason for failing to
get access to the SD card could be that the external storage device is currently in use by something else
(for example, the user may be exploring it via USB on a desktop PC). So, here’s how we get the state of the
external storage:

String state = Environment.getExternalStorageState();

Hmm, we get a string. The Environment class defines a couple of constants. One of these is called
Environment.MEDIA_MOUNTED. It is also a string. If the string returned by the preceding method equals this
constant, we have full read/write access to the external storage. Note that you really have to use the equals()
method to compare the two strings; reference equality won’t work in every case.

Once we have determined that we can actually access the external storage, we need to get its root
directory name. If we then want to access a specific file, we need to specify it relative to this directory. To get
that root directory, we use another Environment static method:

File externalDir = Environment.getExternalStorageDirectory();

From here on, we can use the standard Java I/O classes to read and write files.
Let’s write a quick example that writes a file to the SD card, reads the file back in, displays its content in

a TextView, and then deletes the file from the SD card again. Listing 4-8 shows the source code for this.

Listing 4-8. The ExternalStorageTest activity

package com.badlogic.androidgames.ch04androidbasics;

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;

Chapter 4 ■ android for Game developers

123

import android.Manifest;
import android.content.pm.PackageManager;
import android.os.Bundle;
import android.os.Environment;
import android.support.v4.app.ActivityCompat;
import android.support.v4.content.ContextCompat;
import android.support.v7.app.AppCompatActivity;
import android.widget.TextView;
import android.widget.Toast;

public class ExternalStorageTest extends AppCompatActivity {
final private int REQUEST_READ_EXTERNAL_STORAGE = 123;
final private int REQUEST_WRITE_EXTERNAL_STORAGE = 123;
TextView textView ;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 textView = new TextView(this);
 setContentView(textView);

 if (ContextCompat.checkSelfPermission(this, Manifest.permission.READ_EXTERNAL_
STORAGE) != PackageManager.PERMISSION_GRANTED &&

 ContextCompat.checkSelfPermission(this, Manifest.permission.WRITE_EXTERNAL_
STORAGE) != PackageManager.PERMISSION_GRANTED) {

 ActivityCompat.requestPermissions(this,
 new String[]{Manifest.permission.READ_EXTERNAL_STORAGE},
 REQUEST_READ_EXTERNAL_STORAGE);

 ActivityCompat.requestPermissions(this,
 new String[]{Manifest.permission.WRITE_EXTERNAL_STORAGE},
 REQUEST_WRITE_EXTERNAL_STORAGE);

 } else {
 ReadExternalStorage();
 }

}

@Override
 public void onRequestPermissionsResult(int requestCode, String[] permissions, int[]
grantResults) {
 super.onRequestPermissionsResult(requestCode, permissions, grantResults);

 switch (requestCode) {
 case REQUEST_READ_EXTERNAL_STORAGE :
 for (int i = 0; i < permissions.length; i++) {
 String permission = permissions[i];
 int grantResult = grantResults[i];

Chapter 4 ■ android for Game developers

124

 if (permission.equals(Manifest.permission.READ_EXTERNAL_STORAGE)
|| permission.equals(Manifest.permission.WRITE_EXTERNAL_STORAGE)) {

 if (grantResult == PackageManager.PERMISSION_GRANTED) {
 ReadExternalStorage();
 } else {
 Toast.makeText(ExternalStorageTest.this, "Permission Denied",

 Toast.LENGTH_SHORT).show();
 }
 }
 }

 break;
 default:
 super.onRequestPermissionsResult(requestCode, permissions, grantResults);
 }
 }
public void ReadExternalStorage() {

 String state = Environment.getExternalStorageState();
 if (!state.equals(Environment.MEDIA_MOUNTED)) {
 textView.setText("No external storage mounted");
 } else {
 File externalDir = Environment.getExternalStorageDirectory();
 File textFile = new File(externalDir.getAbsolutePath()
 + File.separator + "text.txt");
 try {
 writeTextFile(textFile, "This is a test. Roger");
 String text = readTextFile(textFile);
 textView.setText(text);
 if (!textFile.delete()) {
 textView.setText("Couldn't remove temporary file");
 }
 } catch (IOException e) {
 textView.setText("Something went wrong! " + e.getMessage());
 }
 }
 }

 private void writeTextFile(File file, String text) throws IOException {
 BufferedWriter writer = new BufferedWriter(new FileWriter(file));
 writer.write(text);
 writer.close();
 }

 private String readTextFile(File file) throws IOException {
 BufferedReader reader = new BufferedReader(new FileReader(file));
 StringBuilder text = new StringBuilder();
 String line;
 while ((line = reader.readLine()) != null) {
 text.append(line);
 text.append("\n");

Chapter 4 ■ android for Game developers

125

 }
 reader.close();
 return text.toString();
 }
}

First, we check if the user has granted us permission to access the external storage. If this is the first
time that our app has checked, Android presents the user with a dialog asking if they want to grant or deny
permission. Then, we check whether the SD card is actually mounted. If not, we bail out early. Next, we get
the external storage directory and construct a new File instance that points to the file we are going to create
in the next statement. The writeTextFile() method uses standard Java I/O classes to do its magic. If the
file doesn’t exist yet, this method will create it; otherwise, it will overwrite an already existing file. After we
successfully dump our test text to the file on the external storage device, we read it in again and set it as the
text of the TextView. As a final step, we delete the file from external storage again. All of this is done with
standard safety measures in place that will report if something goes wrong by outputting an error message to
the TextView. Figure 4-11 shows the output of the activity.

Figure 4-11. Roger!

Chapter 4 ■ android for Game developers

126

Here are the lessons to take away from this section:

•	 Don’t mess with any files that don’t belong to you. Your users will be angry if you
delete the photos of their last holiday.

•	 Always check whether the external storage device is mounted.

•	 Do not mess with any of the files on the external storage device!

Because it is very easy to delete all the files on the external storage device, you might think twice before
you install the next app from Google Play that requests permissions to the SD card. The app has full control
over your files once it’s installed.

Shared Preferences
Android provides a simple API for storing key-value pairs for your application, called SharedPreferences.
The SharedPreferences API is not unlike the standard Java Properties API. An activity can have a default
SharedPreferences instance or it can use as many different SharedPreferences instances as is required.
Here are the typical ways to get an instance of SharedPreferences from an activity:

SharedPreferences prefs = PreferenceManager.getDefaultSharedPreferences(this);

or

SharedPreferences prefs = getPreferences(Context.MODE_PRIVATE);

The first method gives a common SharedPreferences instance that will be shared for that context
(activity, in our case). The second method does the same thing, but it lets you choose the privacy of the
shared preferences. The options are Context.MODE_PRIVATE, which is the default, Context.MODE_WORLD_
READABLE, and Context.MODE_WORLD_WRITEABLE. Using anything other than Context.MODE_PRIVATE is more
advanced, and it isn’t necessary for something like saving game settings.

To use the shared preferences, you first need to get the editor. This is done via the following:

Editor editor = prefs.edit()

Now, we can insert some values:

editor.putString("key1", "banana");
editor.putInt("key2", 5);

And, finally, when we want to save, we just add the following:

editor.commit();

Ready to read it back? It’s exactly as one would expect:

String value1 = prefs.getString("key1", null);
int value2 = prefs.getInt("key2", 0);

In our example, value1 would be "banana" and value2 would be 5. The second parameter to the “get”
calls of SharedPreferences are default values. These will be used if the key isn’t found in the preferences. For
example, if "key1" was never set, then value1 will be null after the getString call. SharedPreferences are so
simple that we don’t really need any test code to demonstrate. Just remember always to commit those edits!

Chapter 4 ■ android for Game developers

127

Audio Programming
Android offers a couple of easy-to-use APIs for playing back sound effects and music files—just perfect for
our game programming needs. Let’s have a look at those APIs.

Setting the Volume Controls
If you have an Android device, you will have noticed that when you press the volume up and down buttons,
you control different volume settings depending on the application you are currently using. In a call, you
control the volume of the incoming voice stream. In a YouTube application, you control the volume of the
video’s audio. On the home screen, you control the volume of the system sounds, such as the ringer or an
arriving instant message.

Android has different audio streams for different purposes. When we play back audio in our game, we
use classes that output sound effects and music to a specific stream called the music stream. Before we think
about playing back sound effects or music, we first have to make sure that the volume buttons will control
the correct audio stream. For this, we use another method of the context interface:

context.setVolumeControlStream(AudioManager.STREAM_MUSIC);

As always, the Context implementation of our choice will be our activity. After this call, the volume
buttons will control the music stream, to which we’ll later output our sound effects and music. We need to call
this method only once in our activity life cycle. The Activity.onCreate() method is the best place to do this.

Writing an example that only contains a single line of code is a bit of overkill. Thus, we’ll refrain from
doing that at this point. Just remember to use this method in all the activities that output sound.

Playing Sound Effects
In Chapter 3, we discussed the difference between streaming music and playing back sound effects. The
latter are stored in memory and usually last no longer than a few seconds. Android provides us with a class
called SoundPool that makes playing back sound effects really easy.

We can simply instantiate new SoundPool instances as follows:

SoundPool soundPool = new SoundPool();

To load a sound effect from an audio file into heap memory, we can use the SoundPool.load()
method. We store all our files in the assets/ directory, so we need to use the overloaded SoundPool.load()
method, which takes an AssetFileDescriptor. How do we get that AssetFileDescriptor? Easy—via the
AssetManager that we worked with before. Here’s how we’d load an OGG file called explosion.ogg from the
assets/ directory via the SoundPool:

AssetFileDescriptor descriptor = assetManager.openFd("explosion.ogg");
int explosionId = soundPool.load(descriptor, 1);

Getting the AssetFileDescriptor is straightforward via the AssetManager.openFd() method. Loading
the sound effect via the SoundPool is just as easy. The first argument of the SoundPool.load() method is our
AssetFileDescriptor, and the second argument specifies the priority of the sound effect. This is currently
not used, and should be set to 1 for future compatibility.

The SoundPool.load() method returns an integer, which serves as a handle to the loaded sound
effect. When we want to play the sound effect, we specify this handle so that the SoundPool knows which
effect to play.

http://dx.doi.org/10.1007/978-1-4842-0472-6_3

Chapter 4 ■ android for Game developers

128

Playing the sound effect is again very easy:

soundPool.play(explosionId, 1.0f, 1.0f, 0, 0, 1);

The first argument is the handle we received from the SoundPool.load() method. The next two
parameters specify the volume to be used for the left and right channels. These values should be in the range
between 0 (silent) and 1 (ears explode).

Next come two arguments that we’ll rarely use. The first one is the priority, which is currently unused
and should be set to 0. The other argument specifies how often the sound effect should be looped. Looping
sound effects is not recommended, so you should generally use 0 here. The final argument is the playback
rate. Setting it to something higher than 1 will allow the sound effect to be played back faster than it was
recorded, while setting it to something lower than 1 will result in a slower playback.

When we no longer need a sound effect and want to free up some memory, we can use the SoundPool.
unload() method:

soundPool.unload(explosionId);

We simply pass in the handle we received from the SoundPool.load() method for that sound effect, and
it will be unloaded from memory.

Generally, we’ll have a single SoundPool instance in our game, which we’ll use to load, play, and unload
sound effects as needed. When we are done with all of our audio output and no longer need the SoundPool,
we should always call the SoundPool.release() method, which will release all resources normally used up
by the SoundPool. After the release, you can no longer use the SoundPool, of course. Also, all sound effects
loaded by that SoundPool will be gone.

Let’s write a simple test activity that will play back an explosion sound effect each time we tap the
screen. We already know everything we need to know to implement this, so Listing 4-9 shouldn’t hold any
big surprises.

Listing 4-9. SoundPoolTest.java; Playing Back Sound Effects

package com.badlogic.androidgames.ch04androidbasics;

import java.io.IOException;

import android.support.v7.app.AppCompatActivity;
import android.content.res.AssetFileDescriptor;
import android.content.res.AssetManager;
import android.media.AudioManager;
import android.media.SoundPool;
import android.os.Bundle;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener;
import android.widget.TextView;

public class SoundPoolTest extends AppCompatActivity implements OnTouchListener {
 SoundPool soundPool;
 int explosionId = -1;

Chapter 4 ■ android for Game developers

129

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 TextView textView = new TextView(this);
 textView.setOnTouchListener(this);
 setContentView(textView);

 setVolumeControlStream(AudioManager.STREAM_MUSIC);
 soundPool = new SoundPool(20, AudioManager.STREAM_MUSIC, 0);

 try {
 AssetManager assetManager = this.getAssets();
 AssetFileDescriptor descriptor = assetManager
 .openFd("explosion.ogg");
 explosionId = soundPool.load(descriptor, 1);
 } catch (IOException e) {
 textView.setText("Couldn't load sound effect from asset, "
 + e.getMessage());
 }
 }

 public boolean onTouch(View v, MotionEvent event) {
 if (event.getAction() == MotionEvent.ACTION_UP) {
 if (explosionId != -1) {
 soundPool.play(explosionId, 1, 1, 0, 0, 1);
 }
 }
 return true;
 }
}

We start off by deriving our class from AppCompatActivity and letting it implement the
OnTouchListener interface so that we can later process taps on the screen. Our class has two members: the
SoundPool and the handle to the sound effect we are going to load and play back. We set that to –1 initially,
indicating that the sound effect has not yet been loaded.

In the onCreate() method, we do what we’ve done a couple of times before: create a TextView, register
the activity as an OnTouchListener, and set the TextView as the content view.

The next line sets the volume controls to control the music stream, as discussed before. We then create
the SoundPool and configure it so it can play 20 concurrent effects at once. That should suffice for the
majority of games.

Finally, we get an AssetFileDescriptor for the explosion.ogg file we put in the assets/ directory
from the AssetManager. To load the sound, we simply pass that descriptor to the SoundPool.load() method
and store the returned handle. The SoundPool.load() method throws an exception if something goes wrong
while loading, in which case we catch that and display an error message.

In the onTouch() method, we simply check whether a finger went up, which indicates that the screen
was tapped. If that’s the case and the explosion sound effect was loaded successfully (indicated by the
handle not being –1), we simply play back that sound effect.

When you execute this little activity, simply touch the screen to make the world explode. If you touch
the screen in rapid succession, you’ll notice that the sound effect is played multiple times in an overlapping
manner. It would be pretty hard to exceed the 20 playbacks maximum that we configured into the
SoundPool. However, if that happened, one of the currently playing sounds would just be stopped to make
room for the newly requested playback.

Chapter 4 ■ android for Game developers

130

Notice that we didn’t unload the sound or release the SoundPool in the preceding example. This is
for brevity. Usually you’d release the SoundPool in the onPause() method when the activity is going to be
destroyed. Just remember to always release or unload anything you no longer need.

While the SoundPool class is very easy to use, just remember that the SoundPool.load() method
executes the actual loading asynchronously. This means that you have to wait briefly before you call the
SoundPool.play() method with that sound effect, as the loading might not be finished yet. Usually it’s not a
big deal, since you will most likely load other assets as well before the sound effect is played for the first time.

 ■ Note as with any api we discuss, there’s more functionality in SoundPool. We briefly told you that you can
loop sound effects. for this, you get an id from the SoundPool.play() method that you can use to pause or
stop a looped sound effect. Check out the SoundPool documentation on the android developers site if you need
that functionality.

Streaming Music
Small sound effects fit into the limited heap memory an Android application gets from the operating system.
Larger audio files containing longer music pieces don’t fit. For this reason, we need to stream the music to
the audio hardware, which means that we only read in a small chunk at a time, enough to decode it to raw
PCM data and throw that at the audio chip.

That sounds intimidating. Luckily, there’s the MediaPlayer class, which handles all that business for us.
All we need to do is point it at the audio file and tell it to play it back.

Instantiating the MediaPlayer class is this simple:

MediaPlayer mediaPlayer = new MediaPlayer();

Next, we need to tell the MediaPlayer which file to play back. That’s again done via an
AssetFileDescriptor:

AssetFileDescriptor descriptor = assetManager.openFd("music.ogg");
mediaPlayer.setDataSource(descriptor.getFileDescriptor(), descriptor.getStartOffset(),
descriptor.getLength());

There’s a little bit more going on here than in the SoundPool case. The MediaPlayer.setDataSource()
method does not directly take an AssetFileDescriptor. Instead, it wants a FileDescriptor, which we get
via the AssetFileDescriptor.getFileDescriptor() method. Additionally, we have to specify the offset and
the length of the audio file. Why the offset? Assets are all stored in a single file in reality. For the MediaPlayer
to get to the start of the file, we have to provide it with the offset of the file within the containing asset file.

Before we can start playing back the music file, we have to call one more method, which prepares the
MediaPlayer for playback:

mediaPlayer.prepare();

This will actually open the file and check whether it can be read and played back by the MediaPlayer
instance. From here on, we are free to play the audio file, pause it, stop it, set it to be looped, and change the
volume.

To start the playback, we simply call the following method:

mediaPlayer.start();

Chapter 4 ■ android for Game developers

131

Note that this method can only be called after the MediaPlayer.prepare() method has been called
successfully (you’ll notice if it throws a runtime exception).

We can pause the playback after having started it with a call to the pause() method:

mediaPlayer.pause();

Calling this method is again only valid if we have successfully prepared the MediaPlayer and started
playback already. To resume a paused MediaPlayer, we can call the MediaPlayer.start() method again
without any preparation.

To stop the playback, we call the following method:

mediaPlayer.stop();

Note that when we want to start a stopped MediaPlayer, we first have to call the MediaPlayer.
prepare() method again.

We can set the MediaPlayer to loop the playback with the following method:

mediaPlayer.setLooping(true);

To adjust the volume of the music playback, we can use this method:

mediaPlayer.setVolume(1, 1);

This will set the volume of the left and right channels.
Finally, we need a way to check whether the playback has finished. We can do this in two ways. For one,

we can register an OnCompletionListener with the MediaPlayer that will be called when the playback has
finished:

mediaPlayer.setOnCompletionListener(listener);

If we want to poll for the state of the MediaPlayer, we can use the following method instead:

boolean isPlaying = mediaPlayer.isPlaying();

Note that if the MediaPlayer is set to loop, neither of the preceding methods will indicate that the
MediaPlayer has stopped.

Finally, if we are done with that MediaPlayer instance, we can make sure that all the resources it takes
up are released by calling the following method:

mediaPlayer.release();

It’s considered good practice to always do this before throwing away the instance.
In case we didn’t set the MediaPlayer for looping and the playback has finished, we can restart the

MediaPlayer by calling the MediaPlayer.prepare() and MediaPlayer.start() methods again.
Most of these methods work asynchronously, so even if you called MediaPlayer.stop(), the

MediaPlayer.isPlaying() method might return for a short period after that. It’s usually nothing we worry
about. In most games, we set the MediaPlayer to be looped and then stop it when the need arises (for
example, when we switch to a different screen where we want other music to be played).

Let’s write a small test activity where we play back a sound file from the assets/ directory in looping
mode. This sound effect will be paused and resumed according to the activity life cycle—when our activity
gets paused, so should the music, and when the activity is resumed, the music playback should pick up from
where it left off. Listing 4-10 shows how that’s done.

Chapter 4 ■ android for Game developers

132

Listing 4-10. MediaPlayerTest.java: Playing back audio streams

package com.badlogic.androidgames.ch04androidbasics;

import java.io.IOException;

import android.support.v7.app.AppCompatActivity;
import android.content.res.AssetFileDescriptor;
import android.content.res.AssetManager;
import android.media.AudioManager;
import android.media.MediaPlayer;
import android.os.Bundle;
import android.widget.TextView;

public class MediaPlayerTest extends AppCompatActivity {
 MediaPlayer mediaPlayer;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 TextView textView = new TextView(this);
 setContentView(textView);

 setVolumeControlStream(AudioManager.STREAM_MUSIC);
 mediaPlayer = new MediaPlayer();
 try {
 AssetManager assetManager = getAssets();
 AssetFileDescriptor descriptor = assetManager.openFd("music.ogg");
 mediaPlayer.setDataSource(descriptor.getFileDescriptor(),
 descriptor.getStartOffset(), descriptor.getLength());
 mediaPlayer.prepare();
 mediaPlayer.setLooping(true);
 } catch (IOException e) {
 textView.setText("Couldn't load music file, " + e.getMessage());
 mediaPlayer = null;
 }
 }

 @Override
 protected void onResume() {
 super.onResume();
 if (mediaPlayer != null) {
 mediaPlayer.start();
 }
 }

 protected void onPause() {
 super.onPause();
 if (mediaPlayer != null) {
 mediaPlayer.pause();
 if (isFinishing()) {
 mediaPlayer.stop();

Chapter 4 ■ android for Game developers

133

 mediaPlayer.release();
 }
 }
 }
}

We keep a reference to the MediaPlayer in the form of a member of our activity. In the onCreate()
method, we simply create a TextView for outputting any error messages, as always.

Before we start playing around with the MediaPlayer, we make sure that the volume controls
actually control the music stream. Having that set up, we instantiate the MediaPlayer. We fetch the
AssetFileDescriptor from the AssetManager for a file called music.ogg located in the assets/ directory
and set it as the data source of the MediaPlayer. All that’s left to do is to prepare the MediaPlayer instance
and set it to loop the stream. In case anything goes wrong, we set the MediaPlayer member to null so we can
later determine whether loading was successful. Additionally, we output some error text to the TextView.

In the onResume() method, we simply start the MediaPlayer (if creating it was successful). The
onResume() method is the perfect place to do this because it is called after onCreate() and after onPause().
In the first case, it will start the playback for the first time; in the second case, it will simply resume the
paused MediaPlayer.

The onResume() method pauses the MediaPlayer. If the activity is going to be killed, we stop the
MediaPlayer and then release all of its resources.

If you play around with this, make sure you also test out how it reacts to pausing and resuming the
activity by either locking the screen or temporarily switching to the home screen. When resumed, the
MediaPlayer will pick up from where it left off when it was paused.

Here are a couple of things to remember:

•	 The methods MediaPlayer.start(), MediaPlayer.pause(), and MediaPlayer.
resume() can only be called in certain states, as just discussed. Never try to call them
when you haven’t yet prepared the MediaPlayer. Call MediaPlayer.start() only
after preparing the MediaPlayer or when you want to resume it after you’ve explicitly
paused it via a call to MediaPlayer.pause().

•	 MediaPlayer instances are pretty heavyweight. Having many of them instanced will
take up a considerable amount of resources. We should always try to have only one
for music playback. Sound effects are better handled with the SoundPool class.

•	 Remember to set the volume controls to handle the music stream, or else your
players won’t be able to adjust the volume of your game.

We are almost done with this chapter, but one big topic still lies ahead of us: 2D graphics.

Basic Graphics Programming
Android offers us two big APIs for drawing to the screen. One is mainly used for simple 2D graphics
programming, while the other is used for hardware-accelerated 3D graphics programming. This section
and the next chapter will focus on 2D graphics programming with the Canvas API, which is a nice wrapper
around the Skia library and is suitable for modestly complex 2D graphics. Starting in Chapter 7, we’ll look
into rendering 2D and 3D graphics with OpenGL. Before we get to that, we first need to talk about two
things: going full-screen and wake locks.

http://dx.doi.org/10.1007/978-1-4842-0472-6_7

Chapter 4 ■ android for Game developers

134

Going Full-Screen
Before we dive head first into drawing our first shapes with the Android APIs, let’s fix something else. Up
until this point, all of our activities have shown their title bars. The notification bar was visible as well. We’d
like to immerse our players a little bit more by getting rid of those. We can do that with two simple calls:

requestWindowFeature(Window.FEATURE_NO_TITLE);
getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN, WindowManager.LayoutParams.
FLAG_FULLSCREEN);

The first call gets rid of the activity’s title bar. To make the activity go full-screen and thus eliminate the
notification bar as well, we call the second method. Note that we have to call these methods before we set
the content view of our activity.

Listing 4-11 shows a very simple test activity that demonstrates how to go full-screen.

Listing 4-11. FullScreenTest.java: Making our activity go full-screen

package com.badlogic.androidgames.ch04androidbasics;

import android.os.Bundle;
import android.view.Window;
import android.view.WindowManager;

public class FullScreenTest extends SingleTouchTest {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 requestWindowFeature(Window.FEATURE_NO_TITLE);
 getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
 WindowManager.LayoutParams.FLAG_FULLSCREEN);
 super.onCreate(savedInstanceState);
 }
}

What’s happening here? We simply derive from the TouchTest class we created earlier and override the
onCreate() method. In the onCreate() method, we enable full-screen mode and then call the onCreate()
method of the superclass (in this case, the TouchTest activity), which will set up all the rest of the activity.
Note again that we have to call these two methods before we set the content view. Hence, the superclass
onCreate() method is called after we execute these two methods.

We also fixed the orientation of the activity to portrait mode in the manifest file. You didn’t forget to add
<activity> elements in the manifest file for each test we wrote, right? From now on, we’ll always fix it to
either portrait mode or landscape mode, since we don’t want a changing coordinate system all the time:.

By deriving from TouchTest, we have a fully working example that we can now use to explore the
coordinate system in which we are going to draw. The activity will show you the coordinates where you
touch the screen, as in the old TouchTest example. The difference this time is that we are full-screen, which
means that the maximum coordinates of our touch events are equal to the screen resolution (minus one in
each dimension, as we start at [0,0]). For a Nexus 6, the coordinate system would span the coordinates (0,0)
to (1080,1780) in portrait mode (for a total of 1080×1780 usable pixels).

While it may seem that the screen is redrawn continuously, it actually is not. Remember from our
TouchTest class that we update the TextView every time a touch event is processed. This, in turn, makes the
TextView redraw itself. If we don’t touch the screen, the TextView will not redraw itself. For a game, we need
to be able to redraw the screen as often as possible, preferably within our main loop thread. We’ll start off
easy, and begin with continuous rendering in the UI thread.

Chapter 4 ■ android for Game developers

135

Continuous Rendering in the UI Thread
All we’ve done up until now is set the text of a TextView when needed. The actual rendering has been
performed by the TextView itself. Let’s create our own custom view whose sole purpose is to let us draw stuff
to the screen. We also want it to redraw itself as often as possible, and we want a simple way to perform our
own drawing in that mysterious redraw method.

Although this may sound complicated, in reality Android makes it really easy for us to create such a
thing. All we have to do is create a class that derives from the View class and override a method called View.
onDraw(). This method is called by the Android system every time it needs our view to redraw itself. Here’s
what that could look like:

class RenderView extends View {
 public RenderView(Context context) {
 super(context);
 }

 @Override
 protected void onDraw(Canvas canvas) {
 // to be implemented
 }
}

Not exactly rocket science, is it? We get an instance of a class called Canvas passed to the onDraw()
method. This will be our workhorse in the following sections. It lets us draw shapes and bitmaps to either
another bitmap or a view (or a Surface, which we’ll talk about in a bit).

We can use this RenderView as we’d use a TextView. We just set it as the content view of our activity and
hook up any input listeners we need. However, it’s not all that useful yet, for two reasons: it doesn’t actually
draw anything, and even if it were able to draw something, it would only do so when the activity needed to
be redrawn (that is, when it was created or resumed, or when a dialog that overlapped it became invisible).
How can we make it redraw itself?

Easy, like this:

protected void onDraw(Canvas canvas) {
 // all drawing goes here
 invalidate();
}

The call to the View.invalidate() method. at the end of onDraw() will tell the Android system to
redraw the RenderView as soon as it finds time to do that again. All of this still happens on the UI thread,
which is a bit of a lazy horse. However, we actually have continuous rendering with the onDraw() method,
albeit relatively slow continuous rendering. We’ll fix that later; for now, it suffices for our needs.

So, let’s get back to the mysterious Canvas class. It is a pretty powerful class that wraps a custom low-
level graphics library called Skia, which is specifically tailored to perform 2D rendering on the CPU. The
Canvas class provides us with many drawing methods for various shapes, bitmaps, and even text.

Where do the draw methods draw to? That depends. A Canvas class can render to a Bitmap instance;
Bitmap is another class provided by the Android’s 2D API, which we’ll look into later in this chapter. In
this case, it is drawing to the area on the screen that the view is taking up. Of course, this is an insane
oversimplification. Under the hood, it will not draw directly to the screen, but rather to some sort of bitmap
that the system will later use in combination with the bitmaps of all other views of the activity to composite
the final output image. That image will then be handed over to the GPU, which will display it on the screen
through another set of mysterious paths.

Chapter 4 ■ android for Game developers

136

We don’t really need to care about the details. From our perspective, our View seems to stretch over the
whole screen, so it may as well be drawing to the framebuffer of the system. For the rest of this discussion,
we’ll pretend that we directly draw to the framebuffer, with the system doing all the nifty things like vertical
retrace and double-buffering for us.

The onDraw() method will be called as often as the system permits. For us, it is very similar to the body
of our theoretical game’s main loop. If we were to implement a game with this method, we’d place all our
game logic into this method. We won’t do that for various reasons, performance being one of them.

So, let’s do something interesting. Every time you get access to a new drawing API, write a little test that
checks if the screen is really redrawn frequently. It’s sort of a poor man’s light show. All you need to do in
each call to the redraw method is to fill the screen with a new random color. That way you only need to find
the method of that API that allows you to fill the screen without needing to know a lot about the nitty-gritty
details. Let’s write such a test with our own custom RenderView implementation.

The method of the Canvas class to fill its rendering target with a specific color is called Canvas.
drawRGB():

Canvas.drawRGB(int r, int g, int b);

The r, g, and b arguments each stand for one component of the color that we will use to fill the screen.
Each of them has to be in the range 0 to 255, so we actually specify a color in the RGB888 format here. If
you don’t remember the details regarding colors, take a look at the “Encoding Colors Digitally” section of
Chapter 3 again, as we’ll be using that info throughout the rest of this chapter.

Listing 4-12 shows the code for our little light show.

 ■ Caution running this code will rapidly fill the screen with a random color. if you have epilepsy or are
otherwise light-sensitive in any way, don’t run it.

Listing 4-12. The RenderViewTest activity.

package com.badlogic.androidgames.ch04androidbasics;

import java.util.Random;

import android.support.v7.app.AppCompatActivity;
import android.content.Context;
import android.graphics.Canvas;
import android.os.Bundle;
import android.view.View;
import android.view.Window;
import android.view.WindowManager;

public class RenderViewTest extends AppCompatActivity {
 class RenderView extends View {
 Random rand = new Random();

 public RenderView(Context context) {
 super(context);
 }

http://dx.doi.org/10.1007/978-1-4842-0472-6_3

Chapter 4 ■ android for Game developers

137

 protected void onDraw(Canvas canvas) {
 canvas.drawRGB(rand.nextInt(256), rand.nextInt(256),
 rand.nextInt(256));
 invalidate();
 }
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 requestWindowFeature(Window.FEATURE_NO_TITLE);
 getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
 WindowManager.LayoutParams.FLAG_FULLSCREEN);
 setContentView(new RenderView(this));
 }
}

For our first graphics demo, this is pretty concise. We define the RenderView class as an inner class of
the RenderViewTest activity. The RenderView class derives from the View class, as discussed earlier, and has
a mandatory constructor as well as the overridden onDraw() method. It also has an instance of the Random
class as a member; we’ll use that to generate our random colors.

The onDraw() method is dead simple. We first tell the Canvas class to fill the whole view with a random
color. For each color component, we simply specify a random number between 0 and 255 (Random.
nextInt() is exclusive). After that, we tell the system that we want the onDraw() method to be called again as
soon as possible.

The onCreate() method of the activity enables full-screen mode and sets an instance of our RenderView
class as the content view. To keep the example short, we’re leaving out the wake lock for now.

Taking a screenshot of this example is a little bit pointless. All it does is fill the screen with a random
color as fast as the system allows on the UI thread. It’s nothing to write home about. Let’s do something more
interesting instead: draw some shapes..

 ■ Note the preceding method of continuous rendering works, but we strongly recommend not using it! We
should do as little work on the Ui thread as possible. in a minute, we’ll use a separate thread to show how to do
it properly, and later on we can also implement our game logic in that thread.

Getting the Screen Resolution (and Coordinate Systems)
In Chapter 2, we talked a lot about the framebuffer and its properties. Remember that a framebuffer holds
the colors of the pixels that get displayed on the screen. The number of pixels available to us is defined by the
screen resolution, which is given by its width and height in pixels.

Now, with our custom View implementation, we don’t actually render directly to the framebuffer.
However, since our View spans the complete screen, we can pretend it does. In order to know where we can
render our game elements, we need to know how many pixels there are on the x axis and y axis, or the width
and height of the screen.

The Canvas class has two methods that provide us with that information:

int width = canvas.getWidth();
int height = canvas.getHeight();

http://dx.doi.org/10.1007/978-1-4842-0472-6_2

Chapter 4 ■ android for Game developers

138

This returns the width and height in pixels of the target to which the Canvas class renders. Note that,
depending on the orientation of our activity, the width might be smaller or larger than the height. An HTC
Thunderbolt, for example, has a resolution of 480×800 pixels in portrait mode, so the Canvas.getWidth()
method would return 480 and the Canvas.getHeight() method would return 800. In landscape mode, the
two values are simply swapped: Canvas.getWidth() would return 800 and Canvas.getHeight() would
return 480.

The second piece of information we need to know is the organization of the coordinate system to which
we render. First of all, only integer pixel coordinates make sense (there is a concept called subpixels, but we
will ignore it). We also already know that the origin of that coordinate system at (0,0) is always at the top-left
corner of the display, in both portrait mode and landscape mode. The positive x axis is always pointing to the
right, and the y axis is always pointing downward. Figure 4-12 shows a hypothetical screen with a resolution
of 48×32 pixels, in landscape mode.

Figure 4-12. The coordinate system of a screen that is 48×32 pixels

Note how the origin of the coordinate system in Figure 4-12 coincides with the top-left pixel of the
screen. The bottom-left pixel of the screen is thus not at (48,32) as we’d expect, but at (47,31). In general,
(width – 1, height – 1) is always the position of the bottom-right pixel of the screen.

Figure 4-12 shows a hypothetical screen coordinate system in landscape mode. By now you should be
able to imagine how the coordinate system would look in portrait mode.

All of the drawing methods of the Canvas class operate within this type of coordinate system. Usually,
we can address many more pixels than we can in our 48×32-pixel example (e.g., 800×480). That said, let’s
finally draw some pixels, lines, circles, and rectangles.

 ■ Note You may have noticed that different devices can have different screen resolutions. We’ll look into that
problem in the next chapter. for now, let’s just concentrate on finally getting something on the screen ourselves.

Drawing Simple Shapes
We are deep into Chapter 4, and we are finally on our way to drawing our first pixel. We’ll quickly go over
some of the drawing methods provided to us by the Canvas class.

http://dx.doi.org/10.1007/978-1-4842-0472-6_4

Chapter 4 ■ android for Game developers

139

Drawing Pixels

The first thing we want to tackle is how to draw a single pixel. That’s done with the following method:

Canvas.drawPoint(float x, float y, Paint paint);

Two things to notice immediately are that the coordinates of the pixel are specified with floats and that
the Canvas class doesn’t let us specify the color directly, but instead wants an instance of the Paint class
from us.

Don’t get confused by the fact that we specify coordinates as floats. The Canvas class has some very
advanced functionality that allows us to render to noninteger coordinates, and that’s where this is coming
from. We won’t need that functionality just yet, though; we’ll come back to it in the next chapter.

The Paint class holds style and color information to be used for drawing shapes, text, and bitmaps. For
drawing shapes, we are interested in only two things: the color the paint holds and the style. Since a pixel
doesn’t really have a style, let’s concentrate on the color first. Here’s how we instantiate the Paint class and
set the color:

Paint paint = new Paint();
paint.setARGB(alpha, red, green, blue);

Instantiating the Paint class is pretty painless. The Paint.setARGB() method should also be easy to
decipher. The arguments each represent one of the color components of the color, in the range from 0 to 255.
We therefore specify an ARGB8888 color here.

Alternatively, we can use the following method to set the color of a Paint instance:

Paint.setColor(0xff00ff00);

We pass a 32-bit integer to this method. It again encodes an ARGB8888 color; in this case, it’s the color
green, with the alpha set to full opacity. The Color class defines some static constants that encode some
standard colors, such as Color.RED, Color.YELLOW, and so on. You can use these if you don’t want to specify
a hexadecimal value yourself.

Drawing Lines

To draw a line, we can use the following Canvas class method:

Canvas.drawLine(float startX, float startY, float stopX, float stopY, Paint paint);

The first two arguments specify the coordinates of the starting point of the line, the next two arguments
specify the coordinates of the endpoint of the line, and the last argument specifies a Paint instance. The line
that gets drawn will be one pixel thick. If we want the line to be thicker, we can specify its thickness in pixels
by setting the stroke width of the Paint instance:

Paint.setStrokeWidth(float widthInPixels);

Drawing Rectangles

We can also draw rectangles with the following Canvas class method:

Canvas.drawRect(float left, float top, float right, float bottom, Paint paint);

Chapter 4 ■ android for Game developers

140

The first two arguments specify the coordinates of the top-left corner of the rectangle, the next two
arguments specify the coordinates of the bottom-left corner of the rectangle, and the Paint instance
specifies the color and style of the rectangle. So, what style can we have, and how do we set it?

To set the style of a Paint instance, we call the following method:

Paint.setStyle(Style style);

Style is an enumeration that has the values Style.FILL, Style.STROKE, and Style.FILL_AND_STROKE.
If we specify Style.FILL, the rectangle will be filled with the color of the paint. If we specify Style.STROKE,
only the outline of the rectangle will be drawn, again with the color and stroke width of the paint. If Style.
FILL_AND_STROKE is set, the rectangle will be filled, and the outline will be drawn with the given color and
stroke width.

Drawing Circles

More fun can be had by drawing circles, either filled or stroked (or both):

Canvas.drawCircle(float centerX, float centerY, float radius, Paint paint);

The first two arguments specify the coordinates of the center of the circle, the next argument specifies
the radius in pixels, and the last argument is again a Paint instance. As with the Canvas.drawRectangle()
method, the color and style of the paint will be used to draw the circle.

Blending

One last thing of importance is that all of these drawing methods will perform alpha blending. Just specify
the alpha of the color as something other than 255 (0xff) and your pixels, lines, rectangles, and circles will be
translucent.

Putting It All Together

Let’s write a quick test activity that demonstrates the preceding methods. This time, we want you to analyze
the code in Listing 4-13 first. Figure out where on a 480×800 screen in portrait mode the different shapes
will be drawn. When doing graphics programming, it is of utmost importance to imagine how the drawing
commands you issue will behave. It takes some practice, but it really pays off.

Listing 4-13. ShapeTest.java: Drawing shapes like crazy

package com.badlogic.androidgames.ch04androidbasics;

import android.support.v7.app.AppCompatActivity;
import android.content.Context;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.graphics.Paint.Style;
import android.os.Bundle;
import android.view.View;
import android.view.Window;
import android.view.WindowManager;

Chapter 4 ■ android for Game developers

141

public class ShapeTest extends AppCompatActivity {
 class RenderView extends View {
 Paint paint;

 public RenderView(Context context) {
 super(context);
 paint = new Paint();
 }

 protected void onDraw(Canvas canvas) {
 canvas.drawRGB(255, 255, 255);
 paint.setColor(Color.RED);
 canvas.drawLine(0, 0, canvas.getWidth()-1, canvas.getHeight()-1, paint);

 paint.setStyle(Style.STROKE);
 paint.setColor(0xff00ff00);
 canvas.drawCircle(canvas.getWidth() / 2, canvas.getHeight() / 2, 40, paint);

 paint.setStyle(Style.FILL);
 paint.setColor(0x770000ff);
 canvas.drawRect(100, 100, 200, 200, paint);
 invalidate();
 }
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 requestWindowFeature(Window.FEATURE_NO_TITLE);
 getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
 WindowManager.LayoutParams.FLAG_FULLSCREEN);
 setContentView(new RenderView(this));
 }
}

Did you create that mental image already? Then let’s quickly analyze the RenderView.onDraw()
method. The rest is the same as in the previous example.

We start off by filling the screen with the color white. Next, we draw a line from the origin to the bottom-
right pixel of the screen. We use a paint that has its color set to red, so the line will be red.

Next, we modify the paint slightly and set its style to Style.STROKE, its color to green, and its alpha to
255. The circle is drawn in the center of the screen with a radius of 40 pixels using the paint we just modified.
Only the outline of the circle will be drawn, due to the paint’s style.

Finally, we modify the paint again. We set its style to Style.FILL and the color to full blue. Notice that
we set the alpha to 0x77 this time, which equals 119 in decimal form. This means that the shape we draw
with the next call will be roughly 50 percent translucent.

Figure 4-13 shows the output of the test activity on 480×800 and 320×480 screens in portrait mode (the
black border was added afterward).

Chapter 4 ■ android for Game developers

142

Oh my, what happened here? That’s what we get for rendering with absolute coordinates and sizes
on different screen resolutions. The only thing that is constant in both images is the red line, which simply
draws from the top-left corner to the bottom-right corner. This is done in a screen resolution–independent
manner.

The rectangle is positioned at (100,100). Depending on the screen resolution, the distance to the screen
center will differ. The size of the rectangle is 100×100 pixels. On the bigger screen, it takes up far less relative
space than it does on the smaller screen.

The circle’s position is again screen resolution–independent, but its radius is not. Therefore, it again
takes up more relative space on the smaller screen than on the bigger one.

We already see that handling different screen resolutions might be a bit of a problem. It gets even worse
when we factor in different physical screen sizes. However, we’ll try to solve that issue in the next chapter.
Just keep in mind that screen resolution and physical size matter.

 ■ Note the Canvas and Paint classes offer a lot more than what we just talked about. in fact, all of the
standard android views draw themselves with this api, so you can image that there’s more behind it. as always,
check out the android developers site for more information.

Using Bitmaps
While making a game with basic shapes such as lines or circles is a possibility, it’s not exactly sexy. We want
an awesome artist to create sprites and backgrounds and all that jazz for us, which we can then load from
PNG or JPEG files. Doing this on Android is extremely easy.

Figure 4-13. The ShapeTest output on a 480×800 screen (left) and a 320×480 screen (right)

Chapter 4 ■ android for Game developers

143

Loading and Examining Bitmaps

The Bitmap class will become our best friend. We load a bitmap from a file by using the BitmapFactory
singleton. As we store our images in the form of assets, let’s see how we can load an image from the assets/
directory:

InputStream inputStream = assetManager.open("bob.png");
Bitmap bitmap = BitmapFactory.decodeStream(inputStream);

The Bitmap class itself has a couple of methods that are of interest to us. First, we want to get to know a
Bitmap instance’s width and height in pixels:

int width = bitmap.getWidth();
int height = bitmap.getHeight();

The next thing we might want to know is the color format of the Bitmap instance:

Bitmap.Config config = bitmap.getConfig();

Bitmap.Config is an enumeration with the following values:

•	 Config.ALPHA_8

•	 Config.ARGB_4444

•	 Config.ARGB_8888

•	 Config.RGB_565

From Chapter 3, you should know what these values mean. If not, we strongly suggest that you read the
“Encoding Colors Digitally” section of Chapter 3 again.

Interestingly, there’s no RGB888 color format. PNG only supports ARGB8888, RGB888, and palletized
colors. What color format would be used to load an RGB888 PNG? BitmapConfig.RGB_565 is the answer.
This happens automatically for any RGB888 PNG we load via the BitmapFactory. The reason for this is that
the actual framebuffer of most Android devices works with that color format. It would be a waste of memory
to load an image with a higher bit depth per pixel, as the pixels would need to be converted to RGB565
anyway for final rendering.

So, why is there the Config.ARGB_8888 configuration then? Because image composition can be done
on the CPU prior to drawing the final image to the framebuffer. In the case of the alpha component, we also
have a lot more bit depth than we have with Config.ARGB_4444, which might be necessary for some high-
quality image processing.

An ARGB8888 PNG image would be loaded to a Bitmap instance with a Config.ARGB_8888
configuration. The other two color formats are barely used. We can, however, tell the BitmapFactory to try to
load an image with a specific color format, even if its original format is different.

InputStream inputStream = assetManager.open("bob.png");
BitmapFactory.Options options = new BitmapFactory.Options();
options.inPreferredConfig = Bitmap.Config.ARGB_4444;
Bitmap bitmap = BitmapFactory.decodeStream(inputStream, null, options);

We use the overloaded BitmapFactory.decodeStream() method to pass a hint in the form of an
instance of the BitmapFactory.Options class to the image decoder. We can specify the desired color format
of the Bitmap instance via the BitmapFactory.Options.inPreferredConfig member, as shown previously.
In this hypothetical example, the bob.png file would be an ARGB8888 PNG, and we want the BitmapFactory
to load it and convert it to an ARGB4444 bitmap. The BitmapFactory can ignore the hint, though.

http://dx.doi.org/10.1007/978-1-4842-0472-6_3
http://dx.doi.org/10.1007/978-1-4842-0472-6_3

Chapter 4 ■ android for Game developers

144

This will free all the memory used by that Bitmap instance. Of course, you can no longer use the bitmap
for rendering after a call to this method.

You can also create an empty Bitmap instance with the following static method:

Bitmap bitmap = Bitmap.createBitmap(int width, int height, Bitmap.Config config);

This might come in handy if you want to do custom image compositing yourself on the fly. The Canvas
class also works on bitmaps:

Canvas canvas = new Canvas(bitmap);

You can then modify your bitmaps in the same way you modify the contents of a view.

Disposing of Bitmaps

The BitmapFactory can help us reduce our memory footprint when we load images. Bitmaps take up a lot
of memory, as discussed in Chapter 3. Reducing the bits per pixel by using a smaller color format helps, but
ultimately we will run out of memory if we keep on loading bitmap after bitmap. We should therefore always
dispose of any Bitmap instance that we no longer need via the following method:

Bitmap.recycle();

Drawing Bitmaps

Once we have loaded our bitmaps, we can draw them via the Canvas class. The easiest method to do this is
as follows:

Canvas.drawBitmap(Bitmap bitmap, float topLeftX, float topLeftY, Paint paint);

The first argument should be obvious. The arguments topLeftX and topLeftY specify the coordinates
on the screen where the top-left corner of the bitmap will be placed. The last argument can be null. We
could specify some very advanced drawing parameters with the Paint class, but we don’t really need
those.

There’s another method that will come in handy, as well:Canvas.drawBitmap(Bitmap bitmap,
Rect src, Rect dst, Paint paint);

This method is super awesome. It allows us to specify a portion of the Bitmap to draw via the second
parameter. The Rect class holds the top-left and bottom-right corner coordinates of a rectangle. When we
specify a portion of the Bitmap via the src, we do it in the Bitmap’s coordinate system. If we specify null, the
complete Bitmap will be used.

The third parameter defines where to draw the portion of the Bitmap, again in the form of a Rect
instance. This time, the corner coordinates are given in the coordinate system of the target of the Canvas
class, though (either a View or another Bitmap). The big surprise is that the two rectangles do not have to be
the same size. If we specify the destination rectangle to be smaller in size than the source rectangle, then the
Canvas class will automatically scale it for us. The same is true if we specify a larger destination rectangle, of
course. We’ll usually set the last parameter to null again. Note, however, that this scaling operation is very
expensive. We should only use it when absolutely necessary.

http://dx.doi.org/10.1007/978-1-4842-0472-6_3

Chapter 4 ■ android for Game developers

145

So, you might wonder, if we have Bitmap instances with different color formats, do we need to convert
them to some kind of standard format before we can draw them via a Canvas class? The answer is no. The
Canvas class will do this for us automatically. Of course, it will be a bit faster if we use color formats that are
equal to the native framebuffer format. Usually, we just ignore this:.

Blending is also enabled by default, so if our images contain an alpha component per pixel, it is actually
interpreted.

Putting It All Together

With all of this information, we can finally load and render some Bobs. Listing 4-14 shows the source of the
BitmapTest activity that we wrote for demonstration purposes.

Listing 4-14. The BitmapTest activity

package com.badlogic.androidgames.ch04androidbasics;

import java.io.IOException;
import java.io.InputStream;

import android.support.v7.app.AppCompatActivity;
import android.content.Context;
import android.content.res.AssetManager;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.graphics.Canvas;
import android.graphics.Rect;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.view.Window;
import android.view.WindowManager;

public class BitmapTest extends AppCompatActivity {
 class RenderView extends View {
 Bitmap bob565;
 Bitmap bob4444;
 Rect dst = new Rect();

 public RenderView(Context context) {
 super(context);

 try {
 AssetManager assetManager = context.getAssets();
 InputStream inputStream = assetManager.open("bobrgb888.png");
 bob565 = BitmapFactory.decodeStream(inputStream);
 inputStream.close().;
 Log.d("BitmapText",
 "bobrgb888.png format: " + bob565.getConfig());

Chapter 4 ■ android for Game developers

146

 inputStream = assetManager.open("bobargb8888.png");
 BitmapFactory.Options options = new BitmapFactory.Options();
 options.inPreferredConfig = Bitmap.Config.ARGB_4444;
 bob4444 = BitmapFactory
 .decodeStream(inputStream, null, options);
 inputStream.close();
 Log.d("BitmapText",
 "bobargb8888.png format: " + bob4444.getConfig());

 } catch (IOException e) {
 // silently ignored, bad coder monkey, baaad!
 } finally {
 // we should really close our input streams here.
 }
 }

 protected void onDraw(Canvas canvas) {
 canvas.drawRGB(0, 0, 0);
 dst.set(50, 50, 350, 350);
 canvas.drawBitmap(bob565, null, dst, null);
 canvas.drawBitmap(bob4444, 100, 100, null);
 invalidate();
 }
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 requestWindowFeature(Window.FEATURE_NO_TITLE);
 getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
 WindowManager.LayoutParams.FLAG_FULLSCREEN);
 setContentView(new RenderView(this));
 }
}

The onCreate() method of our activity is old hat, so let’s move on to our custom view. It has two Bitmap
members, one storing an image of Bob (introduced in Chapter 3) in RGB565 format, and another storing an
image of Bob in ARGB4444 format. We also have a Rect member, where we store the destination rectangle
for rendering.

In the constructor of the RenderView class, we first load Bob into the bob565 member of the view. Note
that the image is loaded from an RGB888 PNG file, and that the BitmapFactory will automatically convert
this to an RGB565 image. To prove this, we also output the Bitmap.Config of the Bitmap to logcat. The
RGB888 version of Bob has an opaque white background, so no blending needs to be performed.

Next, we load Bob from an ARGB8888 PNG file stored in the assets/ directory. To save some memory,
we also tell the BitmapFactory to convert this image of Bob to an ARGB4444 bitmap. The factory may not
obey this request (for unknown reasons). To see whether it was nice to us, we output the Bitmap.Config file
of this Bitmap to logcat as well.

The onDraw() method is puny. All we do is fill the screen with black, draw bob565 scaled to 250×250
pixels (from his original size of 160×183 pixels), and draw bob4444 on top of bob565, unscaled but blended
(which is done automagically by the Canvas class). Figure 4-14 shows the two Bobs in all their glory..

http://dx.doi.org/10.1007/978-1-4842-0472-6_3

Chapter 4 ■ android for Game developers

147

Logcat reports that bob565 indeed has the color format Config.RGB_565, and that bob4444 was
converted to Config.ARGB_4444. The BitmapFactory did not fail us!

Here are some things you should take away from this section:

•	 Use the minimum color format that you can get away with so as to conserve memory.
This might, however, come at the price of less visual quality and slightly reduced
rendering speed.

•	 Unless absolutely necessary, refrain from drawing bitmaps scaled. If you know their
scaled size, prescale them offline or during loading time.

•	 Always make sure you call the Bitmap.recycle() method if you no longer need a
bitmap. Otherwise, you’ll get some memory leaks or run low on memory.

Using logcat all this time for text output is a bit tedious. Let’s see how we can render text via the
Canvas class.

Figure 4-14. Two Bobs on top of each other (at 480×800-pixel resolution)

Chapter 4 ■ android for Game developers

148

 ■ Note as with other classes, there’s more to Bitmap than what we could describe in this brief section. We
covered the bare minimum we need in order to write mr. nom. if you want more information, check out the
documentation on the android developers site.

Rendering Text
While the text we’ll output in the Mr. Nom game will be drawn by hand, it doesn’t hurt to know how to draw
text via TrueType fonts. Let’s start by loading a custom TrueType font file from the assets/ directory.

Loading Fonts

The Android API provides us with a class called Typeface that encapsulates a TrueType font. It provides a
simple static method to load such a font file from the assets/ directory:

Typeface font = Typeface.createFromAsset(context.getAssets(), "font.ttf");

Interestingly enough, this method does not throw any kind of exception if the font file can’t be loaded.
Instead, a RuntimeException is thrown. Why no explicit exception is thrown for this method is a bit of a
mystery.

Drawing Text with a Font

Once we have our font, we set it as the Typeface of a Paint instance:

paint.setTypeFace(font);

Via the Paint instance, we also specify the size at which we want to render the font:

paint.setTextSize(30);

Finally, we can draw text with this font via the following Canvas method:

canvas.drawText("This is a test!", 100, 100, paint);

The first parameter is the text to draw. The next two parameters are the coordinates where the text
should be drawn. The last argument is familiar: It’s the Paint instance that specifies the color, font, and size
of the text to be drawn. By setting the color of the paint, you also set the color of the text to be drawn.

Text Alignment and Boundaries

Now, you might wonder how the coordinates of the preceding method relate to the rectangle that the text
string fills. Do they specify the top-left corner of the rectangle in which the text is contained? The answer
is a bit more complicated. The Paint instance has an attribute called the align setting. It can be set via this
method of the Paint class:

Paint.setTextAlign(Paint.Align align);

Chapter 4 ■ android for Game developers

149

The Paint.Align enumeration has three values: Paint.Align.LEFT, Paint.Align.CENTER, and Paint.
Align.RIGHT. Depending on which alignment is set, the coordinates passed to the Canvas.drawText()
method are interpreted as either the top-left corner of the rectangle, the top-center pixel of the rectangle, or
the top-right corner of the rectangle. The standard alignment is Paint.Align.LEFT.

Sometimes it’s also useful to know the bounds of a specific string in pixels. For this, the Paint class
offers the following method:

Paint.getTextBounds(String text, int start, int end, Rect bounds);

The first argument is the string for which we want to get the bounds. The second and third arguments
specify the start character and the end character within the string that should be measured. The end
argument is exclusive. The final argument, bounds, is a Rect instance we allocate ourselves and pass into
the method. The method will write the width and height of the bounding rectangle into the Rect.right and
Rect.bottom fields. For convenience, we can call Rect.width() and Rect.height() to get the same values:.

Note that all of these methods work on a single line of text only. If we want to render multiple lines, we
have to do the layout ourselves.

Putting It All Together

Enough talk. Let’s do some more coding. Listing 4-15 shows text rendering in action.

Listing 4-15. The FontTest activity

package com.badlogic.androidgames.ch04androidbasics;

import android.support.v7.app.AppCompatActivity;
import android.content.Context;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.graphics.Rect;
import android.graphics.Typeface;
import android.os.Bundle;
import android.view.View;
import android.view.Window;
import android.view.WindowManager;

public class FontTest extends AppCompatActivity {
 class RenderView extends View {
 Paint paint;
 Typeface font;
 Rect bounds = new Rect();

 public RenderView(Context context) {
 super(context);
 paint = new Paint();
 font = Typeface.createFromAsset(context.getAssets(), "font.ttf");
 }

Chapter 4 ■ android for Game developers

150

 protected void onDraw(Canvas canvas) {
 canvas.drawRGB(0, 0, 0);
 paint.setColor(Color.YELLOW);
 paint.setTypeface(font);
 paint.setTextSize(28);
 paint.setTextAlign(Paint.Align.CENTER);
 canvas.drawText("This is a test!", canvas.getWidth() / 2, 100,
 paint);

 String text = "This is another test o_O";
 paint.setColor(Color.WHITE);
 paint.setTextSize(18);
 paint.setTextAlign(Paint.Align.LEFT);
 paint.getTextBounds(text, 0, text.length(), bounds);
 canvas.drawText(text, canvas.getWidth() - bounds.width(), 140,
 paint);
 invalidate().;
 }
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 requestWindowFeature(Window.FEATURE_NO_TITLE);
 getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
 WindowManager.LayoutParams.FLAG_FULLSCREEN);
 setContentView(new RenderView(this));
 }
}

We won’t discuss the onCreate() method of the activity, since we’ve seen it before.
Our RenderView implementation has three members: Paint, Typeface, and Rect, where we’ll store the

bounds of a text string later on.
In the constructor, we create a new Paint instance and load a font from the file font.ttf in the assets/

directory.
In the onDraw() method, we clear the screen with black, set the Paint class to the color yellow, set the

font and its size, and specify the text alignment to be used when interpreting the coordinates in the call to
Canvas.drawText(). The actual drawing call renders the string This is a test!, centered horizontally at
coordinate 100 on the y axis.

For the second text-rendering call, we do something else. We want the text to be right-aligned with
the right edge of the screen. We could do this by using Paint.Align.RIGHT and an x coordinate of Canvas.
getWidth() – 1. Instead, we do it the hard way by using the bounds of the string to practice very basic text
layout a little. We also change the color and the size of the font for rendering. Figure 4-15 shows the output of
this activity.

Chapter 4 ■ android for Game developers

151

Another mystery of the Typeface class is that it does not explicitly allow us to release all its resources.
We have to rely on the garbage collector to do the dirty work for us.

 ■ Note We only scratched the surface of text rendering here. if you want to know more . . . well, by now you
know where to look.

Continuous Rendering with SurfaceView
This is the section where we become real men and women. It involves threading, and all the pain that is
associated with it. We’ll get through it alive. We promise!

Motivation

When we first tried to do continuous rendering earlier in this chapter, we did it the wrong way. Hogging
the UI thread is unacceptable; we need a solution that does all the dirty work in a separate thread. Enter
SurfaceView.

Figure 4-15. Fun with text (480×800-pixel resolution).

Chapter 4 ■ android for Game developers

152

As the name gives away, the SurfaceView class is a view that handles a Surface, another class of the
Android API. What is a Surface? It’s an abstraction of a raw buffer that is used by the screen compositor for
rendering that specific view. The screen compositor is the mastermind behind all rendering on Android, and
it is ultimately responsible for pushing all pixels to the GPU. The Surface can be hardware accelerated in
some cases. We don’t care much about that fact, though. All we need to know is that it is a more direct way to
render things to the screen.

Our goal is to perform our rendering in a separate thread so that we do not hog the UI thread, which
is busy with other things. The SurfaceView class provides. us with a way to render to it from a thread other
than the UI thread.

SurfaceHolder and Locking

In order to render to a SurfaceView from a different thread than the UI thread, we need to acquire an
instance of the SurfaceHolder class, like this:

SurfaceHolder holder = surfaceView.getHolder();

The SurfaceHolder is a wrapper around the Surface and does some bookkeeping for us. It provides us
with two methods:

Canvas SurfaceHolder.lockCanvas();
SurfaceHolder.unlockAndPost(Canvas canvas);

The first method locks the Surface for rendering and returns a nice Canvas instance we can use. The
second method unlocks the Surface again and makes sure that what we’ve drawn via the Canvas instance
gets displayed on the screen. We will use these two methods in our rendering thread to acquire the Canvas
instance, render with it, and finally make the image we just rendered visible on the screen. The Canvas
instance we have to pass to the SurfaceHolder.unlockAndPost() method must be the one we received from
the SurfaceHolder.lockCanvas() method.

The Surface class is not immediately created when the SurfaceView is instantiated. Instead, it is
created asynchronously. The Surface class will be destroyed each time the activity is paused, and it will be
re-created when the activity is resumed.

Surface Creation and Validity

We cannot acquire the Canvas instance from the SurfaceHolder class as long as the Surface instance is not
yet valid. However, we can check whether the Surface instance has been created or not via the following
statement:

boolean isCreated = surfaceHolder.getSurface().isValid();

If this method returns true, we can safely lock the surface and draw to it via the Canvas instance
we receive. We have to make absolutely sure that we unlock the Surface class again after a call to
SurfaceHolder.lockCanvas(), or else our activity might lock up the phone!

Putting It All Together

So how do we integrate all of this with a separate rendering thread as well as with the activity life cycle?
The best way to figure this out is to look at some actual code. Listing 4-16 shows a complete example that
performs the rendering in a separate thread on a SurfaceView class.

Chapter 4 ■ android for Game developers

153

Listing 4-16. The SurfaceViewTest activity

package com.badlogic.androidgames.ch04androidbasics;

import android.support.v7.app.AppCompatActivity;
import android.content.Context;
import android.graphics.Canvas;
import android.os.Bundle;
import android.view.SurfaceHolder;
import android.view.SurfaceView;
import android.view.Window;
import android.view.WindowManager;

public class SurfaceViewTest extends AppCompatActivity {
 FastRenderView renderView;

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 requestWindowFeature(Window.FEATURE_NO_TITLE);
 getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
 WindowManager.LayoutParams.FLAG_FULLSCREEN);
 renderView = new FastRenderView(this);
 setContentView(renderView);
 }

 protected void onResume() {
 super.onResume();
 renderView.resume();
 }

 protected void onPause() {
 super.onPause();
 renderView.pause();
 }

 class FastRenderView extends SurfaceView implements Runnable {
 Thread renderThread = null;
 SurfaceHolder holder;
 volatile boolean running = false;

 public FastRenderView(Context context) {
 super(context);
 holder = getHolder();
 }

 public void resume() {
 running = true;
 renderThread = new Thread(this);
 renderThread.start();
 }

Chapter 4 ■ android for Game developers

154

 public void run() {
 while(running) {
 if(!holder.getSurface().isValid())
 continue;

 Canvas canvas = holder.lockCanvas();
 canvas.drawRGB(255, 0, 0);
 holder.unlockCanvasAndPost(canvas);
 }
 }

 public void pause() {
 running = false;
 while(true) {
 try {
 renderThread.join();
 return;
 } catch (InterruptedException e) {
 // retry
 }
 }
 }
 }
}

This doesn’t look all that intimidating, does it? Our activity holds a FastRenderView instance as a
member. This is a custom SurfaceView subclass that will handle all the thread business and surface locking
for us. To the activity, it looks like a plain old View.

In the onCreate() method, we enable full-screen mode, create the FastRenderView instance, and set it
as the content view of the activity.

We also override the onResume() method this time. In this method, we will start our rendering thread
indirectly by calling the FastRenderView.resume() method, which does all the magic internally. This means
that the thread will get started when the activity is initially created (because onCreate() is always followed
by a call to onResume()). It will also get restarted when the activity is resumed from a paused state.

This, of course, implies that we have to stop the thread somewhere; otherwise, we’d create a new thread
every time onResume() was called. That’s where onPause() comes in. It calls the FastRenderView.pause()
method, which will completely stop the thread. The method will not return before the thread is completely
stopped.

So, let’s look at the core class of this example: FastRenderView. It’s similar to the RenderView classes
we implemented in the last couple of examples in that it derives from another View class. In this case, we
directly derive it from the SurfaceView class. It also implements the Runnable interface so that we can pass it
to the rendering thread in order for it to run the render-thread logic.

The FastRenderView class has three members. The renderThread member is simply a reference to
the Thread instance that will be responsible for executing our render-thread logic. The holder member is a
reference to the SurfaceHolder instance that we get from the SurfaceView superclass from which we derive.
Finally, the running member is a simple Boolean flag we will use to signal the rendering thread that it should
stop execution. The volatile modifier has a special meaning that we’ll get to in a minute.

All we do in the constructor is call the superclass constructor and store the reference to the
SurfaceHolder in the holder member.

Chapter 4 ■ android for Game developers

155

Next comes the FastRenderView.resume() method. It is responsible for starting up the rendering
thread. Notice that we create a new Thread instance each time this method is called. This is in line with
what we discussed when we talked about the activity’s onResume() and onPause() methods. We also set the
running flag to true. You’ll see how that’s used in the rendering thread in a bit. The final piece to take away
is that we set the FastRenderView instance itself as the Runnable interface of the thread. This will execute the
next method of the FastRenderView in that new thread.

The FastRenderView.run() method is the workhorse of our custom View class. Its body is executed
in the rendering thread. As you can see, it’s merely composed of a loop that will stop executing as soon as
the running flag is set to false. When that happens, the thread will also be stopped and will die. Inside the
while loop, we first check to ensure that the Surface is valid. If it is, we lock it, render to it, and unlock it
again, as discussed earlier. In this example, we simply fill the Surface with the color red.

The FastRenderView.pause() method looks a little strange. First, we set the running flag to false. If
you look up in the code a little, you will see that the while loop in the FastRenderView.run() method will
eventually terminate because of this, and hence will stop the rendering thread. In the next couple of lines, we
simply wait for the thread to die completely by invoking Thread.join(). This method will wait for the thread
to die, but might throw an InterruptedException before the thread actually dies. Since we have to make
absolutely sure that the thread is dead before we return from that method, we perform the join in an endless
loop until it is successful.

Let’s come back to the volatile modifier of the running flag. Why do we need it? The reason is delicate:
the compiler might decide to reorder the statements in the FastRenderView.pause() method if it recognizes
that there are no dependencies between the first line in that method and the while block. It is allowed to do
this if it thinks it will make the code execute faster. However, we depend on the order of execution that we
specified in that method. Imagine if the running flag were set after we tried to join the thread. We’d go into
an endless loop, as the thread would never terminate.

The volatile modifier prevents this from happening. Any statements where this member is referenced
will be executed in order. This saves us from a nasty Heisenberg—a bug that comes and goes without the
ability to be reproduced consistently.

There’s one more thing that you might think will cause this code to explode. What if the Surface is
destroyed between the calls to SurfaceHolder.getSurface().isValid() and SurfaceHolder.lock()? Well,
we are lucky—this can never happen. To understand why, we have to take a step back and see how the life
cycle of the Surface works.

We know that the Surface is created asynchronously. It is likely that our rendering thread will execute
before the Surface is valid. We safeguard against this by not locking the Surface unless it is valid. That
covers the surface-creation case.

The reason the rendering thread code does not explode from the Surface being destroyed between
the validity check and the locking has to do with the point in time at which the Surface gets destroyed. The
Surface is always destroyed after we return from the activity’s onPause() method. Since we wait for the
thread to die in that method via the call to FastRenderView.pause(), the rendering thread will no longer be
alive when the Surface is actually destroyed. Sexy, isn’t it? But it’s also confusing.

We now perform our continuous rendering the correct way. We no longer hog the UI thread, but instead
use a separate rendering thread. We made it respect the activity life cycle as well so that it does not run in
the background, eating the battery while the activity is paused. The whole world is a happy place again. Of
course, we’ll need to synchronize the processing of input events in the UI thread with our rendering thread.
This will turn out to be really easy, which you’ll see in the next chapter when we implement our game
framework based on all the information you have digested in this chapter.

Chapter 4 ■ android for Game developers

156

Hardware-Accelerated Rendering with Canvas
Android 3.0 (Honeycomb) added a remarkable feature in the form of the ability to enable GPU hardware
acceleration for standard 2D canvas draw calls. The value of this feature varies by application and device,
as some devices will actually perform better doing 2D draws on the CPU and others will benefit from the
GPU. Under the hood, the hardware acceleration analyzes the draw calls and converts them into OpenGL.
For example, if we specify that a line should be drawn from 0,0 to 100,100, then the hardware acceleration
will put together a special line-draw call using OpenGL and draw this to a hardware buffer that later gets
composited to the screen.

Enabling this hardware acceleration is as simple as adding the following into your AndroidManifest.
xml file under the <application /> tag:

android:hardwareAccelerated="true"

Make sure to test your game with the acceleration turned on and off on a variety of devices to determine
if it’s right for you. In the future, it may be fine to have it always on, but as with anything, we recommend that
you take the approach of testing and determining this for yourself. Of course, there are more configuration
options that let you set the hardware acceleration for a specific application, activity, window, or view, but
since we’re doing games, we only plan on having one of each, so setting it globally via the application would
make the most sense.

The developer of this feature of Android, Romain Guy, has a very detailed blog article about the dos
and don’ts of hardware acceleration and some general guidelines to getting decent performance using it.
The blog entry’s URL is http://android-developers.blogspot.com/2011/03/android-30-hardware-
acceleration.html

Best Practices
Android (or rather Dalvik) has some strange performance characteristics at times. In this section, we’ll
present to you some of the most important best practices that you should follow to make your games as
smooth as silk.

•	 The garbage collector is your biggest enemy. Once it obtains CPU time for doing its
dirty work, it will stop the world for up to 600ms. That’s half a second during which
your game will not update or render. The user will complain. Avoid object creation as
much as possible, especially in your inner loops.

•	 Objects can get created in some not-so-obvious places that you’ll want to avoid.
Don’t use iterators, as they create new objects. Don’t use any of the standard Set
or Map collection classes, as they create new objects on each insertion; instead, use
the SparseArray class provided by the Android API. Use StringBuffers instead of
concatenating strings with the + operator. This will create a new StringBuffer each
time. And for the love of all that’s good in this world, don’t use boxed primitives!

•	 Method calls have a larger associated cost in Dalvik than in other VMs. Use static
methods if you can, as those perform best. Static methods are generally regarded
as evil, much like static variables, as they promote bad design, so try to keep your
design as clean as possible. Perhaps you should avoid getters and setters as well.
Direct field access is about three times faster than method invocations without the
JIT compiler, and about seven times faster with the JIT compiler. Nevertheless, think
of your design before removing all your getters and setters.

http://android-developers.blogspot.com/2011/03/android-30-hardware-acceleration.html
http://android-developers.blogspot.com/2011/03/android-30-hardware-acceleration.html

Chapter 4 ■ android for Game developers

157

•	 Floating-point operations are implemented in software on older devices and Dalvik
versions without a JIT compiler (anything before Android version 2.2). Old-school
game developers would immediately fall back to fixed-point math. Don’t do that
either, since integer divisions are slow as well. Most of the time, you can get away
with floats, and newer devices sport Floating Point Units (FPUs), which speed things
up quite a bit once the JIT compiler kicks in.

•	 Try to cram frequently accessed values into local variables inside a method.
Accessing local variables is faster than accessing members or calling getters.

Of course, you need to be careful about many other things. We’ll sprinkle the rest of the book with some
performance hints when the context calls for it. If you follow the preceding recommendations, you should be
on the safe side. Just don’t let the garbage collector win!

Summary
This chapter covered everything you need to know in order to write a decent little 2D game for Android.
We looked at how easy it is to set up a new game project with some defaults. We discussed the mysterious
activity life cycle and how to live with it. We battled with touch (and, more importantly, multitouch) events,
processed key events, and checked the orientation of our device via the accelerometer. We explored how to
read and write files. Outputting audio on Android turns out to be child’s play, and apart from the threading
issues with the SurfaceView, drawing stuff to the screen isn’t that hard either. Mr. Nom can now become a
reality—a terrible, hungry reality!

159© Mario Zechner, J. F. DiMarzio and Robert Green 2016
M. Zechner et al., Beginning Android Games, DOI 10.1007/978-1-4842-0472-6_5

CHAPTER 5

An Android Game Development
Framework

As you may have noticed, we’ve been through four chapters without writing a single line of game code. The
reason we’ve put you through all of this boring theory and asked you to implement test programs is simple: if you
want to write games, you have to know exactly what’s going on. You can’t just copy and paste code together from
all over the Web and hope that it will form the next first-person shooter hit. By now, you should have a firm grasp
on how to design a simple game from the ground up, how to structure a nice API for 2D game development, and
which Android APIs will provide the functionality you need in order to implement your ideas.

To make Mr. Nom a reality, we have to do two things: implement the game framework interfaces and classes
we designed in Chapter 3 and, based on that, code up Mr. Nom’s game mechanics. Let’s start with the game
framework by merging what we designed in Chapter 3 with what we discussed in Chapter 4. Ninety percent of the
code should be familiar to you already, since we covered most of it in the test programs in the previous chapter.

Plan of Attack
In Chapter 3, we laid out a minimal design for a game framework that abstracted away all the platform
specifics so that we could concentrate on what we are here for: game development. Now, we’ll implement all
these interfaces and abstract classes in a bottom-up fashion, from easiest to hardest.

If you have downloaded the code for this chapter, the interfaces from Chapter 3 are located in the
package named com.badlogic.androidgames.framework. We’ll put the implementation from this chapter,
com.badlogic.androidgames.framework.impl, in the package and indicate that it holds the actual
implementation of the framework for Android. We’ll prefix all our interface implementations with Android
so that we can distinguish them from the interfaces. Let’s start off with the easiest part, file I/O.

If you did not download the code for this chapter, simply create a new project and add to it the two
packages just named. In the first package, add the interface code from Chapter 3. In the second package,
you’ll place all of the code from this chapter. The code for this chapter and the next will be merged into a
single Android Studio project. For now, you can just create a new Android project following the steps in
Chapter 4. At this point, it doesn’t matter what you name your default activity.

The AndroidFileIO Class
The original file I/O interface was lean and mean. It contained four methods: one to get an InputStream
for an asset, another to get an InputStream for a file in the external storage, a third that returned an
OutputStream for a file on the external storage device, and a final one that got the shared preferences for the
game. In Chapter 4, you learned how to open assets and files on the external storage using Android APIs.
Listing 5-1 presents the implementation of the file I/O interface based on knowledge from Chapter 4.

http://dx.doi.org/10.1007/978-1-4842-0472-6_3
http://dx.doi.org/10.1007/978-1-4842-0472-6_3
http://dx.doi.org/10.1007/978-1-4842-0472-6_4
http://dx.doi.org/10.1007/978-1-4842-0472-6_3
http://dx.doi.org/10.1007/978-1-4842-0472-6_3
http://dx.doi.org/10.1007/978-1-4842-0472-6_3
http://dx.doi.org/10.1007/978-1-4842-0472-6_4
http://dx.doi.org/10.1007/978-1-4842-0472-6_4
http://dx.doi.org/10.1007/978-1-4842-0472-6_4

Chapter 5 ■ an android Game development Framework

160

Listing 5-1. AndroidFileIO.java: Implementing the FileIO interface

package com.badlogic.androidgames.framework.impl;

import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;

import android.content.Context;
import android.content.SharedPreferences;
import android.content.res.AssetManager;
import android.os.Environment;
import android.preference.PreferenceManager;

import com.badlogic.androidgames.framework.FileIO;

public class AndroidFileIO implements FileIO {
 Context context;
 AssetManager assets;
 String externalStoragePath;

 public AndroidFileIO(Context context) {
 this.context = context;
 this.assets = context.getAssets();
 this.externalStoragePath = content.getExternalFilesDir(null)
 .getAbsolutePath() + File.separator;
 }

 public InputStream readAsset(String fileName) throws IOException {
 return assets.open(fileName);
 }

 public InputStream readFile(String fileName) throws IOException {
 return new FileInputStream(externalStoragePath + fileName);
 }

 public OutputStream writeFile(String fileName) throws IOException {
 return new FileOutputStream(externalStoragePath + fileName);
 }

 public SharedPreferences getPreferences() {
 return PreferenceManager.getDefaultSharedPreferences(context);
 }
}

Everything is straightforward. We implement the file I/O interface, store the Context instance, which
is the gateway to almost everything in Android, store an AssetManager, which we pull from the Context
instance, store the external storage’s path specific to our application, and implement the four methods based
on this path. Finally, we pass through any IOExceptions that get thrown so we’ll know if anything is irregular
on the calling side.

Chapter 5 ■ an android Game development Framework

161

Our game interface implementation will hold an instance of this class and return it via Game.
getFileIO(). This also means that our game implementation will need to pass through the Context instance
in order for the AndroidFileIO instance to work.

Note that we do not check if the external storage is available. If it’s not available, or if we forget to add
the proper permission to the manifest file, we’ll get an exception, so checking for errors is implicit. Now, we
can move on to the next piece of our framework, which is audio.

AndroidAudio, AndroidSound, and AndroidMusic: Crash,
Bang, Boom!
In Chapter 3, we designed three interfaces for all our audio needs: audio, sound, and music. Audio is responsible
for creating sound and music instances from asset files. Sound lets us play back sound effects that are stored
in RAM, and the music interface streams bigger music files from the disk to the audio card. In Chapter 4,
you learned which Android APIs are needed to implement this. We will start with the implementation of
AndroidAudio, as shown in Listing 5-2, interspersed with explanatory text where appropriate.

Listing 5-2. AndroidAudio.java: Implementing the audio interface

package com.badlogic.androidgames.framework.impl;

import java.io.IOException;

import android.app.Activity;
import android.content.res.AssetFileDescriptor;
import android.content.res.AssetManager;
import android.media.AudioManager;
import android.media.SoundPool;

import com.badlogic.androidgames.framework.Audio;
import com.badlogic.androidgames.framework.Music;
import com.badlogic.androidgames.framework.Sound;

public class AndroidAudio implements Audio {
 AssetManager assets;
 SoundPool soundPool;

The AndroidAudio implementation has an AssetManager and a SoundPool instance. The AssetManager
is necessary for loading sound effects from asset files into the SoundPool on a call to AndroidAudio.
newSound(). The AndroidAudio instance also manages the SoundPool.

public AndroidAudio(Activity activity) {
 activity.setVolumeControlStream(AudioManager.STREAM_MUSIC);
 this.assets = activity.getAssets();
 this.soundPool = new SoundPool();
}
public Music newMusic(String filename) {
 try {
 AssetFileDescriptor assetDescriptor = assets.openFd(filename);
 return new AndroidMusic(assetDescriptor);
 } catch (IOException e) {

http://dx.doi.org/10.1007/978-1-4842-0472-6_3
http://dx.doi.org/10.1007/978-1-4842-0472-6_4

Chapter 5 ■ an android Game development Framework

162

 throw new RuntimeException("Couldn't load music '" + filename + "'");
 }
 }

The newMusic() method creates a new AndroidMusic instance. The constructor of that class takes
an AssetFileDescriptor, which it uses to create an internal MediaPlayer (more on that later). The
AssetManager.openFd() method throws an IOException if something goes wrong. We catch it and rethrow
it as a RuntimeException. Why not hand the IOException to the caller? First, it would clutter the calling
code considerably, so we would rather throw a RuntimeException that does not have to be caught explicitly.
Second, we load the music from an asset file. It will only fail if we actually forget to add the music file to the
assets/ directory or if our music file contains false bytes. False bytes constitute unrecoverable errors since
we need that Music instance in order for our game to function properly. To avoid such an occurrence, we
throw RuntimeExceptions instead of checked exceptions in a few more places in the framework of our game.

 public Sound newSound(String filename) {
 try {
 AssetFileDescriptor assetDescriptor = assets.openFd(filename);
 int soundId = soundPool.load(assetDescriptor, 0);
 return new AndroidSound(soundPool, soundId);
 } catch (IOException e) {
 throw new RuntimeException("Couldn't load sound '" + filename + "'");
 }
 }
}

Finally, the newSound() method loads a sound effect from an asset into the SoundPool and returns an
AndroidSound instance. The constructor of that instance takes a SoundPool and the ID of the desired sound
effect; the ID was assigned to it by the SoundPool. Again, we catch any IOExceptions and rethrow them as
unchecked RuntimeExceptions.

 ■ Note we do not release the SoundPool in any of the methods. the reason for this is that there will
always be a single Game instance holding a single Audio instance that holds a single SoundPool instance. the
SoundPool instance will, thus, be alive as long as the activity (and with it our game) is alive. it will be destroyed
automatically as soon as the activity ends.

Next, we will discuss the AndroidSound class, which implements the sound interface. Listing 5-3
presents its implementation.

Listing 5-3. Implementing she Sound interface using AndroidSound.java

package com.badlogic.androidgames.framework.impl;

import android.media.SoundPool;

import com.badlogic.androidgames.framework.Sound;

public class AndroidSound implements Sound {
 int soundId;
 SoundPool soundPool;

Chapter 5 ■ an android Game development Framework

163

 public AndroidSound(SoundPool soundPool, int soundId) {
 this.soundId = soundId;
 this.soundPool = soundPool;
 }

 public void play(float volume) {
 soundPool.play(soundId, volume, volume, 0, 0, 1);
 }

 public void dispose() {
 soundPool.unload(soundId);
 }
}

There are no surprises here. Via the play() and dispose() methods, we simply store the SoundPool and
the ID of the loaded sound effect for later playback and disposal. It doesn’t get any easier than this, thanks to
the Android API.

Finally, we have to implement the AndroidMusic class returned by AndroidAudio.newMusic(). Listing 5-4
shows that class’s code, which looks a little more complex than before. This is because of the state machine
that the MediaPlayer uses, which will continuously throw exceptions if we call methods in certain states.
Note that the listing is broken up again, with commentary inserted where appropriate.

Listing 5-4. AndroidMusic.java: Implementing the music interface

package com.badlogic.androidgames.framework.impl;

import java.io.IOException;

import android.content.res.AssetFileDescriptor;
import android.media.MediaPlayer;
import android.media.MediaPlayer.OnCompletionListener;

import com.badlogic.androidgames.framework.Music;

public class AndroidMusic implements Music, OnCompletionListener {
 MediaPlayer mediaPlayer;
 boolean isPrepared = false;

The AndroidMusic class stores a MediaPlayer instance along with a Boolean called isPrepared.
Remember, we can only call MediaPlayer.start()/stop()/pause() when the MediaPlayer is prepared.
This member helps us keep track of the MediaPlayer’s state.

The AndroidMusic class implements the music interface as well as the interface for
OnCompletionListener. In Chapter 4, we briefly defined this interface as a means of informing
ourselves about when a MediaPlayer instance has stopped playing back a music file. If this happens, the
MediaPlayer needs to be prepared again before we can invoke any of the other methods. The method
OnCompletionListener.onCompletion() might be called in a separate thread, and since we set the
isPrepared member in this method, we have to make sure that it is safe from concurrent modifications.

public AndroidMusic(AssetFileDescriptor assetDescriptor) {
 mediaPlayer = new MediaPlayer();
 try {
 mediaPlayer.setDataSource(assetDescriptor.getFileDescriptor(),

http://dx.doi.org/10.1007/978-1-4842-0472-6_4

Chapter 5 ■ an android Game development Framework

164

 assetDescriptor.getStartOffset(),
 assetDescriptor.getLength());
 mediaPlayer.prepare();
 isPrepared = true;
 mediaPlayer.setOnCompletionListener(this);
 } catch (Exception e) {
 throw new RuntimeException("Couldn't load music");
 }
}

In the constructor, we create and prepare the MediaPlayer instance from the AssetFileDescriptor
that is passed in, and we set the isPrepared flag as well as register the AndroidMusic instance as
an OnCompletionListener with the MediaPlayer. If anything goes wrong, we throw an unchecked
RuntimeException once again.

public void dispose() {
 if (mediaPlayer.isPlaying())
 mediaPlayer.stop();
 mediaPlayer.release();
}

The dispose() method checks if the MediaPlayer is still playing and, if so, stops it. Otherwise, the call to
MediaPlayer.release() will throw a RuntimeException.

public boolean isLooping() {
 return mediaPlayer.isLooping();
}

public boolean isPlaying() {
 return mediaPlayer.isPlaying();
}

public boolean isStopped() {
 return !isPrepared;
}

The methods isLooping(), isPlaying(), and isStopped() are straightforward. The first two use
methods provided by the MediaPlayer; the last one uses the isPrepared flag, which indicates if the
MediaPlayer is stopped. This is something MediaPlayer.isPlaying() does not necessarily tell us since it
returns false if the MediaPlayer is paused but not stopped.

public void pause() {
 if (mediaPlayer.isPlaying())
 mediaPlayer.pause();
}

The pause() method simply checks whether the MediaPlayer instance is playing and calls its pause()
method if it is.

public void play() {
 if (mediaPlayer.isPlaying())
 return;

Chapter 5 ■ an android Game development Framework

165

 try {
 synchronized (this) {
 if (!isPrepared)
 mediaPlayer.prepare();
 mediaPlayer.start();
 }
 } catch (IllegalStateException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
}

The play() method is a little more involved. If we are already playing, we simply return from the
function. Next, we have a mighty try/catch block within which we check to see if the MediaPlayer is
already prepared based on our flag; we prepare it if needed. If all goes well, we call the MediaPlayer.
start() method, which will start the playback. This is conducted in a synchronized block, since we are
using the isPrepared flag, which might get set on a separate thread because we are implementing the
OnCompletionListener interface. If something goes wrong, we throw an unchecked RuntimeException.

public void setLooping(boolean isLooping) {
 mediaPlayer.setLooping(isLooping);
}

public void setVolume(float volume) {
 mediaPlayer.setVolume(volume, volume);
}

The setLooping() and setVolume() methods can be called in any state of the MediaPlayer and are
delegated to the respective MediaPlayer methods.

public void stop() {
 mediaPlayer.stop();
 synchronized (this) {
 isPrepared = false;
 }
}

The stop() method stops the MediaPlayer and sets the isPrepared flag in a synchronized block.

 public void onCompletion(MediaPlayer player) {
 synchronized (this) {
 isPrepared = false;
 }
 }
}

Finally, there’s the OnCompletionListener.onCompletion() method, which is implemented by the
AndroidMusic class. All it does is set the isPrepared flag in a synchronized block so that the other methods
don’t start throwing exceptions out of the blue. Next, we’ll move on to our input-related classes.

Chapter 5 ■ an android Game development Framework

166

AndroidInput and AccelerometerHandler
Using a couple of convenient methods, the input interface we designed in Chapter 3 grants us access to the
accelerometer, the touchscreen, and the keyboard in both polling and event modes. The idea of putting all
the code for an implementation of that interface into a single file is a bit nasty, so we outsource all the input
event handling to handler classes. The Input implementation will use those handlers to pretend that it is
actually performing all the work.

AccelerometerHandler: Which Side Is Up?
Let’s start with the easiest of all handlers, the AccelerometerHandler. Listing 5-5 shows its code.

Listing 5-5. AccelerometerHandler.java: Performing all the accelerometer handling

package com.badlogic.androidgames.framework.impl;

import android.content.Context;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;

public class AccelerometerHandler implements SensorEventListener {
 float accelX;
 float accelY;
 float accelZ;

 public AccelerometerHandler(Context context) {
 SensorManager manager = (SensorManager) context
 .getSystemService(Context.SENSOR_SERVICE);
 if (manager.getSensorList(Sensor.TYPE_ACCELEROMETER).size() != 0) {
 Sensor accelerometer = manager.getSensorList(
 Sensor.TYPE_ACCELEROMETER).get(0);
 manager.registerListener(this, accelerometer,
 SensorManager.SENSOR_DELAY_GAME);
 }
 }

 public void onAccuracyChanged(Sensor sensor, int accuracy) {
 // nothing to do here
 }

 public void onSensorChanged(SensorEvent event) {
 accelX = event.values[0];
 accelY = event.values[1];
 accelZ = event.values[2];
 }

 public float getAccelX() {
 return accelX;
 }

http://dx.doi.org/10.1007/978-1-4842-0472-6_3

Chapter 5 ■ an android Game development Framework

167

 public float getAccelY() {
 return accelY;
 }

 public float getAccelZ() {
 return accelZ;
 }
}

Unsurprisingly, the class implements the interface for SensorEventListener that we used in Chapter 4.
The class stores three members by holding the acceleration on each of the accelerometer’s three axes.

The constructor takes a Context, from which it gets a SensorManager instance to set up the event
listening. The rest of the code is equivalent to what we did in Chapter 4. Note that if no accelerometer is
installed, the handler will happily return zero acceleration on all axes throughout its life. Therefore, we don’t
need any extra error-checking or exception-throwing code.

The next two methods, onAccuracyChanged() and onSensorChanged(), should be familiar. In the
first method, we don’t do anything, so there’s nothing much to report. In the second one, we fetch the
accelerometer values from the provided SensorEvent and store them in the handler’s members. The final
three methods simply return the current acceleration for each axis.

Note that we do not need to perform any synchronization here, even though the onSensorChanged()
method might be called in a different thread. The Java memory model guarantees that writes and reads
to and from primitive types such as Boolean, int, or byte are atomic. In this case, it’s OK to rely on this
fact since we aren’t doing anything more complex than assigning a new value. We’d need to have proper
synchronization if this were not the case (for example, if we did something with the member variables in the
onSensorChanged() method).

CompassHandler
Just for fun, we’re going to provide an example that is similar to the AccelerometerHandler, but this time
we’ll give you the compass values along with the pitch and roll of the phone, as shown in Listing 5-6. We call
the compass value yaw, since that’s a standard orientation term that nicely defines the value we’re seeing.

Android handles all sensors through the same interfaces, so this example shows you how to cope with
that. The only difference between Listing 5-6 and the previous accelerometer example is the change of
the sensor type to TYPE_ORIENTATION and the renaming of the fields from accel to yaw, pitch, and roll.
Otherwise, it works in the same way, and you can easily swap this code into the game as the control handler!

Listing 5-6. CompassHandler.java: Performing all the compass handling

package com.badlogic.androidgames.framework.impl;

import android.content.Context;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;

public class CompassHandler implements SensorEventListener {
 float yaw;
 float pitch;
 float roll;
 Sensor mAccelerometer;

http://dx.doi.org/10.1007/978-1-4842-0472-6_4
http://dx.doi.org/10.1007/978-1-4842-0472-6_4

Chapter 5 ■ an android Game development Framework

168

 Sensor mMagnetometer;
 float[] mLastAccelerometer = new float[3];
 float[] mLastMagnetometer = new float[3];
 boolean mLastAccelerometerSet = false;
 boolean mLastMagnetometerSet = false;
 float[] mR = new float[9];
 float[] mOrientation = new float[3];

 public CompassHandler(Context context) {
 SensorManager manager = (SensorManager) context
 .getSystemService(Context.SENSOR_SERVICE);
 mAccelerometer = mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
 mMagnetometer = mSensorManager.getDefaultSensor(Sensor.TYPE_MAGNETIC_

FIELD); }
 }

 @Override
 public void onAccuracyChanged(Sensor sensor, int accuracy) {
 // nothing to do here
 }

 @Override
 public void onSensorChanged(SensorEvent event) {
 if (event.sensor == mAccelerometer) {
 System.arraycopy(event.values, 0, mLastAccelerometer,
 0, event.values.length);
 mLastAccelerometerSet = true;
 } else if (event.sensor == mMagnetometer) {
 System.arraycopy(event.values, 0,
 mLastMagnetometer, 0, event.values.length);
 mLastMagnetometerSet = true;
 }
 if (mLastAccelerometerSet && mLastMagnetometerSet) {
 SensorManager.getRotationMatrix(mR, null,
 mLastAccelerometer, mLastMagnetometer);
 SensorManager.getOrientation(mR, mOrientation);
 yaw = mOrientation[0];
 pitch = mOrientation[1];
 roll = mOrientation[2];
 }
 }

 public float getYaw() {
 return yaw;
 }

 public float getPitch() {
 return pitch;
 }

 public float getRoll() {

Chapter 5 ■ an android Game development Framework

169

 return roll;
 }
}

We won’t use the compass in any of the games in this book, but if you are going to reuse the framework
we develop, this class might come in handy.

The Pool Class: Because Reuse Is Good for You!
What’s the worst thing that can happen to us as Android developers? World-stopping garbage collection!
If you look at the input interface definition in Chapter 3, you’ll find the getTouchEvents() and
getKeyEvents() methods. These methods return TouchEvent and KeyEvent lists. In our keyboard and
touch event handlers, we constantly create instances of these two classes and store them in lists that are
internal to the handlers. The Android input system fires many of these events when a key is pressed or a
finger touches the screen, so we constantly create new instances that are collected by the garbage collector
in short intervals. In order to avoid this, we must implement a concept known as instance pooling. Instead of
repeatedly creating new instances of a class, we simply reuse previously created instances. The Pool class is
a convenient way to implement that behavior. Let’s have a look at its code in Listing 5-7, which is broken up
again and contains appropriate commentary.

Listing 5-7. Pool.java: Playing well with the garbage collector

package com.badlogic.androidgames.framework;

import java.util.ArrayList;
import java.util.List;

public class Pool<T> {

Here are the generics: the first thing to recognize is that this is a generically typed class, much like
collection classes such as ArrayList or HashMap. Generics allow us to store any type of object in our Pool
without having to cast continuously. So, what does the Pool class do?

public interface PoolObjectFactory<T> {
 public T createObject();
}

An interface called PoolObjectFactory is the first thing defined and is, once again, generic. It
has a single method, createObject(), that will return a new object with the generic type of the
Pool/PoolObjectFactory instance.

private final List<T> freeObjects;
private final PoolObjectFactory<T> factory;
private final int maxSize;

The Pool class has three members. These include an ArrayList to store pooled objects, a
PoolObjectFactory that is used to generate new instances of the type held by the class, and a member that
stores the maximum number of objects the pool can hold. The last bit is needed so our pool does not grow
indefinitely; otherwise, we might run into an out-of-memory exception.

http://dx.doi.org/10.1007/978-1-4842-0472-6_3

Chapter 5 ■ an android Game development Framework

170

public Pool(PoolObjectFactory<T> factory, int maxSize) {
 this.factory = factory;
 this.maxSize = maxSize;
 this.freeObjects = new ArrayList<T>(maxSize);
}

The constructor of the Pool class takes a PoolObjectFactory and the maximum number of objects it
should store. We store both parameters in the respective members and instantiate a new ArrayList with the
capacity set to the maximum number of objects.

public T newObject() {
 T object = null;

 if (freeObjects.isEmpty())
 object = factory.createObject();
 else
 object = freeObjects.remove(freeObjects.size() - 1);

 return object;
}

The newObject() method is responsible for either handing us a brand-new instance of the type held
by the Pool class via the PoolObjectFactory.newObject() method or returning a pooled instance in case
there’s one in the freeObjectsArrayList. If we use this method, we get recycled objects as long as the pool
has some stored in the freeObjects list. Otherwise, the method creates a new one via the factory.

 public void free(T object) {
 if (freeObjects.size() < maxSize)
 freeObjects.add(object);
 }
}

The free() method lets us reinsert objects that we no longer use. It simply inserts the object into the
freeObjects list if it is not yet filled to capacity. If the list is full, the object is not added, and it is likely to be
consumed by the garbage collector the next time it executes.

So, how can we use this class? We’ll look at some pseudocode usage of the Pool class in conjunction
with touch events.

PoolObjectFactory<TouchEvent> factory = new PoolObjectFactory<TouchEvent>() {
 @Override
 public TouchEvent createObject() {
 return new TouchEvent();
 }
};
Pool<TouchEvent> touchEventPool = new Pool<TouchEvent>(factory, 50);
TouchEvent touchEvent = touchEventPool.newObject();
... do something here ...
touchEventPool.free(touchEvent);

First, we define a PoolObjectFactory that creates TouchEvent instances. Next, we instantiate the Pool
class by telling it to use our factory and that it should maximally store 50 TouchEvents. When we want a
new TouchEvent from the pool, we call the pool’s newObject() method. Initially, the pool is empty, so it will

Chapter 5 ■ an android Game development Framework

171

ask the factory to create a brand-new TouchEvent instance. When we no longer need the TouchEvent, we
reinsert it into the pool by calling the free() method. The next time we call the newObject() method, we get
the same TouchEvent instance and recycle it to avoid problems with the garbage collector. This class is useful
in a couple of places. Please note that you must be careful to fully reinitialize reused objects when they’re
fetched from the pool.

KeyboardHandler: Up, Up, Down, Down, Left, Right . . .
The KeyboardHandler class must fulfill a couple of tasks. First, it must connect with the view from which
keyboard events are to be received. Next, it must store the current state of each key for polling. It must also
keep a list of KeyEvent instances, which we designed in Chapter 3, for event-based input handling. Finally,
it must properly synchronize everything since it will receive events on the UI thread while being polled from
our main game loop, which is executed on a different thread. This is a lot of work! As a refresher, we’ll show
you the KeyEvent class that we defined in Chapter 3 as part of the input interface.

public static class KeyEvent {
 public static final int KEY_DOWN = 0;
 public static final int KEY_UP = 1;

 public int type;
 public int keyCode;
 public char keyChar;
}

This class simply defines two constants that encode the key event type along with three members while
holding the type, key code, and Unicode character of the event. With this, we can implement our handler.

Listing 5-8 shows the implementation of the handler with the Android APIs discussed earlier and our
new Pool class. The listing is broken up by commentary.

Listing 5-8. KeyboardHandler.java: Handling keys since 2010

package com.badlogic.androidgames.framework.impl;

import java.util.ArrayList;
import java.util.List;

import android.view.View;
import android.view.View.OnKeyListener;

import com.badlogic.androidgames.framework.Input.KeyEvent;
import com.badlogic.androidgames.framework.impl.Pool.PoolObjectFactory;

public class KeyboardHandler implements OnKeyListener {
 boolean[] pressedKeys = new boolean[128];
 Pool<KeyEvent> keyEventPool;
 List<KeyEvent> keyEventsBuffer = new ArrayList<KeyEvent>();
 List<KeyEvent> keyEvents = new ArrayList<KeyEvent>();

The KeyboardHandler class implements the OnKeyListener interface so that it can receive key events
from a view. The members are next.

http://dx.doi.org/10.1007/978-1-4842-0472-6_3
http://dx.doi.org/10.1007/978-1-4842-0472-6_3

Chapter 5 ■ an android Game development Framework

172

The first member is an array holding 128 Booleans. We store the current state (pressed or not) of each
key in this array. It is indexed by the key’s key code. Luckily for us, the android.view.KeyEvent.KEYCODE_XXX
constants (which encode the key codes) are all between 0 and 127, so we can store them in a garbage
collector–friendly form. Note that by an unlucky accident, our KeyEvent class shares its name with the
Android KeyEvent class, by which instances get passed to our OnKeyEventListener.onKeyEvent() method.
This slight confusion is only limited to this handler code. As there’s no better name for a key event than
“KeyEvent,” we chose to live with this short-lived confusion.

The next member is a Pool class that holds the instances of our KeyEvent class. We don’t want to make
the garbage collector angry, so we recycle all the KeyEvent objects we create.

The third member stores the KeyEvent instances that have not yet been consumed by our game. Each
time we get a new key event on the UI thread, we add it to this list.

The last member stores the key events that we return by calling the KeyboardHandler.getKeyEvents().
In the following sections, we’ll see why we have to double-buffer the key events.

public KeyboardHandler(View view) {
 PoolObjectFactory<KeyEvent> factory = new PoolObjectFactory<KeyEvent>() {
 public KeyEvent createObject() {
 return new KeyEvent();
 }
 };
 keyEventPool = new Pool<KeyEvent>(factory, 100);
 view.setOnKeyListener(this);
 view.setFocusableInTouchMode(true);
 view.requestFocus();
}

The constructor has a single parameter consisting of the view from which we want to receive key events.
We create the Pool instance with a proper PoolObjectFactory, register the handler as an OnKeyListener
with the view, and, finally, make sure that the view will receive key events by making it the focused view.

public boolean onKey(View v, int keyCode, android.view.KeyEvent event) {
 if (event.getAction() == android.view.KeyEvent.ACTION_MULTIPLE)
 return false;

 synchronized (this) {
 KeyEvent keyEvent = keyEventPool.newObject();
 keyEvent.keyCode = keyCode;
 keyEvent.keyChar = (char) event.getUnicodeChar();
 if (event.getAction() == android.view.KeyEvent.ACTION_DOWN) {
 keyEvent.type = KeyEvent.KEY_DOWN;
 if(keyCode > 0 && keyCode < 127)
 pressedKeys[keyCode] = true;
 }
 if (event.getAction() == android.view.KeyEvent.ACTION_UP) {
 keyEvent.type = KeyEvent.KEY_UP;
 if(keyCode > 0 && keyCode < 127)
 pressedKeys[keyCode] = false;
 }
 keyEventsBuffer.add(keyEvent);
 }
 return false;
}

Chapter 5 ■ an android Game development Framework

173

Next, we will discuss our implementation of the OnKeyListener.onKey() interface method, which
is called each time the view receives a new key event. We start by ignoring any (Android) key events that
encode a KeyEvent.ACTION_MULTIPLE event. These are not relevant in our context. This is followed by a
synchronized block. Remember, the events are received on the UI thread and read on the main loop thread,
so we have to make sure that none of our members are accessed in parallel.

Within the synchronized block, we first fetch a KeyEvent instance (of our KeyEvent implementation)
from the Pool class. This will either get us a recycled instance or a brand-new one, depending on the state of
the pool. Next, we set the KeyEvent’s keyCode and keyChar members based on the contents of the Android
KeyEvent that was passed to the method. Then, we decode the Android KeyEvent type and set the type of
our KeyEvent, as well as the element in the pressedKey array, accordingly. Finally, we add our KeyEvent to
the previously defined keyEventBuffer list.

public boolean isKeyPressed(int keyCode) {
 if (keyCode < 0 || keyCode > 127)
 return false;
 return pressedKeys[keyCode];
}

The next method of our handler is the isKeyPressed() method, which implements the semantics
of Input.isKeyPressed(). First, we pass in an integer that specifies the key code (one of the Android
KeyEvent.KEYCODE_XXX constants) and returns whether that key is pressed or not. We do this by looking up
the state of the key in the pressedKey array after some range checking. Remember, we set the elements of
this array in the previous method, which gets called on the UI thread. Since we are working with primitive
types again, there’s no need for synchronization.

 public List<KeyEvent> getKeyEvents() {
 synchronized (this) {
 int len = keyEvents.size();
 for (int i = 0; i < len; i++) {
 keyEventPool.free(keyEvents.get(i));
 }
 keyEvents.clear();
 keyEvents.addAll(keyEventsBuffer);
 keyEventsBuffer.clear();
 return keyEvents;
 }
 }
}

The last method of our handler is called getKeyEvents(), and it implements the semantics of the
Input.getKeyEvents() method. Once again, we start with a synchronized block, remembering that this
method will be called from a different thread.

Next, we loop through the keyEvents array and insert all of its KeyEvents into our Pool class.
Remember, we fetch instances from the pool in the onKey() method on the UI thread. Here, we reinsert
them into the pool. But isn’t the keyEvents list empty? Yes, but only the first time we invoke that method. To
understand why, you have to grasp the rest of the method.

After our mysterious Pool insertion loop, we clear the keyEvents list and fill it with the events in our
keyEventsBuffer list. Finally, we clear the keyEventsBuffer list and return the newly filled keyEvents list to
the caller. What is happening here?

We’ll use a simple example to illustrate this. First, we’ll examine what happens to the keyEvents and
the keyEventsBuffer lists, as well as to our Pool class, each time a new event arrives on the UI thread or the
game fetches the events in the main game thread:

Chapter 5 ■ an android Game development Framework

174

UI thread: onKey() ->
 keyEvents = { }, keyEventsBuffer = {KeyEvent1}, pool = { }
Game thread: getKeyEvents() ->
 keyEvents = {KeyEvent1}, keyEventsBuffer = { }, pool { }
UI thread: onKey() ->
 keyEvents = {KeyEvent1}, keyEventsBuffer = {KeyEvent2}, pool { }
Game thread: getKeyEvents() ->
 keyEvents = {KeyEvent2}, keyEventsBuffer = { }, pool = {KeyEvent1}
UI thread: onKey() ->
 keyEvents = {KeyEvent2}, keyEventsBuffer = {KeyEvent1}, pool = { }

 1. We get a new event in the UI thread. There’s nothing in the pool yet, so a new
KeyEvent instance (KeyEvent1) is created and inserted into the keyEventsBuffer
list.

 2. We call getKeyEvents() on the main thread. getKeyEvents() takes KeyEvent1
from the keyEventsBuffer list and puts it into the keyEvents list that it returns to
the caller.

 3. We get another event on the UI thread. We still have nothing in the pool, so a new
KeyEvent instance (KeyEvent2) is created and inserted into the keyEventsBuffer
list.

 4. The main thread calls getKeyEvents() again. Now, something interesting
happens. Upon entry into the method, the keyEvents list still holds KeyEvent1.
The insertion loop will place that event into our pool. It then clears the
keyEvents list and inserts any KeyEvent into the keyEventsBuffer; in this case,
KeyEvent2. We just recycled a key event.

 5. Another key event arrives on the UI thread. This time, we have a free KeyEvent1
in our pool, which we happily reuse. Incredibly, there’s no garbage collection!

This mechanism comes with one caveat, which is that we have to call KeyboardHandler.
getKeyEvents() frequently or the keyEvents list will fill up quickly and no objects will be returned to the
pool. Problems can be avoided as long as we remember this.

Touch Handlers
In order to use our two handler classes interchangeably, we need to define a common interface. Listing 5-9
presents the TouchHandler interface.

Listing 5-9. TouchHandler.java

package com.badlogic.androidgames.framework.impl;

import java.util.List;

import android.view.View.OnTouchListener;

import com.badlogic.androidgames.framework.Input.TouchEvent;

public interface TouchHandler extends OnTouchListener {
 public boolean isTouchDown(int pointer);

Chapter 5 ■ an android Game development Framework

175

 public int getTouchX(int pointer);

 public int getTouchY(int pointer);

 public List<TouchEvent> getTouchEvents();
}

All touch handlers must implement the OnTouchListener interface, which is used to register the
handler with a view. The methods of the interface correspond to the respective methods of the input
interface defined in Chapter 3. The first three are for polling the state of a specific pointer ID, and the last is
for getting touch events with which to perform event-based input handling. Note that the polling methods
take pointer IDs that can be any number and are given by the touch event.

The SingleTouchHandler Class
In the case of our single-touch handler, we ignore any IDs other than zero. To recap, we’ll recall the
TouchEvent class defined in Chapter 3 as part of the input interface.

public static class TouchEvent {
 public static final int TOUCH_DOWN = 0;
 public static final int TOUCH_UP = 1;
 public static final int TOUCH_DRAGGED = 2;

 public int type;
 public int x, y;
 public int pointer;
}

Like the KeyEvent class, the TouchEvent class defines a couple of constants that echo the touch event’s
type, along with the x and y coordinates in the coordinate system of the view and the pointer ID. Listing 5-10
shows the implementation of the TouchHandler interface for Android 1.5 and 1.6, broken up by commentary.

Listing 5-10. SingleTouchHandler.java: Good with single touch, not so good with multitouch

package com.badlogic.androidgames.framework.impl;

import java.util.ArrayList;
import java.util.List;

import android.view.MotionEvent;
import android.view.View;

import com.badlogic.androidgames.framework.Input.TouchEvent;
import com.badlogic.androidgames.framework.impl.Pool.PoolObjectFactory;

public class SingleTouchHandler implements TouchHandler {
 boolean isTouched;
 int touchX;
 int touchY;
 Pool<TouchEvent> touchEventPool;
 List<TouchEvent> touchEvents = new ArrayList<TouchEvent>();

http://dx.doi.org/10.1007/978-1-4842-0472-6_3
http://dx.doi.org/10.1007/978-1-4842-0472-6_3

Chapter 5 ■ an android Game development Framework

176

 List<TouchEvent> touchEventsBuffer = new ArrayList<TouchEvent>();
 float scaleX;
 float scaleY;

We start by letting the class implement the TouchHandler interface, which also means that we must
implement the OnTouchListener interface. Next, we have three members that store the current state of
the touchscreen for one finger, followed by a Pool class and two lists that hold the touch events. This is the
same as in the KeyboardHandler. We also have two members, scaleX and scaleY. We’ll address these in the
following sections and use them to cope with different screen resolutions.

 ■ Note of course, we could make this more elegant by deriving the KeyboardHandler and
SingleTouchHandler from a base class that handles all matters regarding pooling and synchronization.
however, it would have complicated the explanation even more, so instead we’ll write a few more lines of code.

public SingleTouchHandler(View view, float scaleX, float scaleY) {
 PoolObjectFactory<TouchEvent> factory = new PoolObjectFactory<TouchEvent>() {
 @Override
 public TouchEvent createObject() {
 return new TouchEvent();
 }
 };
 touchEventPool = new Pool<TouchEvent>(factory, 100);
 view.setOnTouchListener(this);

 this.scaleX = scaleX;
 this.scaleY = scaleY;
}

In the constructor, we register the handler as an OnTouchListener and set up the Pool class that we
use to recycle TouchEvent instances. We also store the scaleX and scaleY parameters that are passed to the
constructor (ignore them for now).

public boolean onTouch(View v, MotionEvent event) {
 synchronized(this) {
 TouchEvent touchEvent = touchEventPool.newObject();
 switch (event.getAction()) {
 case MotionEvent.ACTION_DOWN:
 touchEvent.type = TouchEvent.TOUCH_DOWN;
 isTouched = true;
 break;
 case MotionEvent.ACTION_MOVE:
 touchEvent.type = TouchEvent.TOUCH_DRAGGED;
 isTouched = true;
 break;
 case MotionEvent.ACTION_CANCEL:
 case MotionEvent.ACTION_UP:
 touchEvent.type = TouchEvent.TOUCH_UP;
 isTouched = false;
 break;
 }

Chapter 5 ■ an android Game development Framework

177

 touchEvent.x = touchX = (int)(event.getX() * scaleX);
 touchEvent.y = touchY = (int)(event.getY() * scaleY);
 touchEventsBuffer.add(touchEvent);

 return true;
 }
}

The onTouch() method achieves the same outcome as our KeyboardHandler’s onKey() method; the
only difference is that now we handle touch events instead of key events. All the synchronization, pooling,
and MotionEvent handling are already known to us. The only interesting thing is that we multiply the
reported x and y coordinates of a touch event by scaleX and scaleY. This is important to remember as we’ll
return to it in the following sections.

public boolean isTouchDown(int pointer) {
 synchronized(this) {
 if(pointer == 0)
 return isTouched;
 else
 return false;
 }
}

public int getTouchX(int pointer) {
 synchronized(this) {
 return touchX;
 }
}

public int getTouchY(int pointer) {
 synchronized(this) {
 return touchY;
 }
}

The methods isTouchDown(), getTouchX(), and getTouchY() allow us to poll the state of the
touchscreen based on the members that we set in the onTouch() method. The only noticeable thing about
them is that they only return useful data for a pointer ID with a value of zero, since this class only supports
single-touch screens.

 public List<TouchEvent> getTouchEvents() {
 synchronized(this) {
 int len = touchEvents.size();
 for(int i = 0; i < len; i++)
 touchEventPool.free(touchEvents.get(i));
 touchEvents.clear();
 touchEvents.addAll(touchEventsBuffer);
 touchEventsBuffer.clear();
 return touchEvents;
 }
 }
}

Chapter 5 ■ an android Game development Framework

178

The final method, SingleTouchHandler.getTouchEvents(), should be familiar to you, and is similar to
the KeyboardHandler.getKeyEvents() method. Remember that we call this method frequently so that the
touchEvents list doesn’t fill up.

The MultiTouchHandler
For multitouch handling, we use a class called MultiTouchHandler, as shown in Listing 5-11.

Listing 5-11. MultiTouchHandler.java (more of the same)

package com.badlogic.androidgames.framework.impl;

import java.util.ArrayList;
import java.util.List;

import android.view.MotionEvent;
import android.view.View;

import com.badlogic.androidgames.framework.Input.TouchEvent;
import com.badlogic.androidgames.framework.impl.Pool.PoolObjectFactory;

public class MultiTouchHandler implements TouchHandler {
 private static final int MAX_TOUCHPOINTS = 10;

 boolean[] isTouched = new boolean[MAX_TOUCHPOINTS];
 int[] touchX = new int[MAX_TOUCHPOINTS];
 int[] touchY = new int[MAX_TOUCHPOINTS];
 int[] id = new int[MAX_TOUCHPOINTS];
 Pool<TouchEvent> touchEventPool;
 List<TouchEvent> touchEvents = new ArrayList<TouchEvent>();
 List<TouchEvent> touchEventsBuffer = new ArrayList<TouchEvent>();
 float scaleX;
 float scaleY;

 public MultiTouchHandler(View view, float scaleX, float scaleY) {
 PoolObjectFactory<TouchEvent> factory = new PoolObjectFactory<TouchEvent>() {
 public TouchEvent createObject() {
 return new TouchEvent();
 }
 };
 touchEventPool = new Pool<TouchEvent>(factory, 100);
 view.setOnTouchListener(this);

 this.scaleX = scaleX;
 this.scaleY = scaleY;
 }

 public boolean onTouch(View v, MotionEvent event) {
 synchronized (this) {
 int action = event.getAction() & MotionEvent.ACTION_MASK;
 int pointerIndex = (event.getAction() & MotionEvent.ACTION_POINTER_ID_MASK) >>
MotionEvent.ACTION_POINTER_ID_SHIFT;

Chapter 5 ■ an android Game development Framework

179

 int pointerCount = event.getPointerCount();
 TouchEvent touchEvent;
 for (int i = 0; i < MAX_TOUCHPOINTS; i++) {
 if (i >= pointerCount) {
 isTouched[i] = false;
 id[i] = -1;
 continue;
 }
 int pointerId = event.getPointerId(i);
 if (event.getAction() != MotionEvent.ACTION_MOVE && i != pointerIndex) {
 // if it's an up/down/cancel/out event, mask the id to see if we should

process it for this touch
 // point
 continue;
 }
 switch (action) {
 case MotionEvent.ACTION_DOWN:
 case MotionEvent.ACTION_POINTER_DOWN:
 touchEvent = touchEventPool.newObject();
 touchEvent.type = TouchEvent.TOUCH_DOWN;
 touchEvent.pointer = pointerId;
 touchEvent.x = touchX[i] = (int) (event.getX(i) * scaleX);
 touchEvent.y = touchY[i] = (int) (event.getY(i) * scaleY);
 isTouched[i] = true;
 id[i] = pointerId;
 touchEventsBuffer.add(touchEvent);
 break;

 case MotionEvent.ACTION_UP:
 case MotionEvent.ACTION_POINTER_UP:
 case MotionEvent.ACTION_CANCEL:
 touchEvent = touchEventPool.newObject();
 touchEvent.type = TouchEvent.TOUCH_UP;
 touchEvent.pointer = pointerId;
 touchEvent.x = touchX[i] = (int) (event.getX(i) * scaleX);
 touchEvent.y = touchY[i] = (int) (event.getY(i) * scaleY);
 isTouched[i] = false;
 id[i] = -1;
 touchEventsBuffer.add(touchEvent);
 break;

 case MotionEvent.ACTION_MOVE:
 touchEvent = touchEventPool.newObject();
 touchEvent.type = TouchEvent.TOUCH_DRAGGED;
 touchEvent.pointer = pointerId;
 touchEvent.x = touchX[i] = (int) (event.getX(i) * scaleX);
 touchEvent.y = touchY[i] = (int) (event.getY(i) * scaleY);
 isTouched[i] = true;
 id[i] = pointerId;
 touchEventsBuffer.add(touchEvent);
 break;
 }

Chapter 5 ■ an android Game development Framework

180

 }
 return true;
 }
 }

 public boolean isTouchDown(int pointer) {
 synchronized (this) {
 int index = getIndex(pointer);
 if (index < 0 || index >= MAX_TOUCHPOINTS)
 return false;
 else
 return isTouched[index];
 }
 }

 public int getTouchX(int pointer) {
 synchronized (this) {
 int index = getIndex(pointer);
 if (index < 0 || index >= MAX_TOUCHPOINTS)
 return 0;
 else
 return touchX[index];
 }
 }

 public int getTouchY(int pointer) {
 synchronized (this) {
 int index = getIndex(pointer);
 if (index < 0 || index >= MAX_TOUCHPOINTS)
 return 0;
 else
 return touchY[index];
 }
 }

 public List<TouchEvent> getTouchEvents() {
 synchronized (this) {
 int len = touchEvents.size();
 for (int i = 0; i < len; i++)
 touchEventPool.free(touchEvents.get(i));
 touchEvents.clear();
 touchEvents.addAll(touchEventsBuffer);
 touchEventsBuffer.clear();
 return touchEvents;
 }
 }

 // returns the index for a given pointerId or -1 if no index.
 private int getIndex(int pointerId) {
 for (int i = 0; i < MAX_TOUCHPOINTS; i++) {
 if (id[i] == pointerId) {
 return i;

Chapter 5 ■ an android Game development Framework

181

 }
 }
 return -1;
 }
}

The onTouch() method looks as intimidating as our test example in Chapter 4. However, all we need to
do is marry that test code with our event pooling and synchronization, which we’ve already talked about in
detail. The only real difference from the SingleTouchHandler.onTouch() method is that we handle multiple
pointers and set the TouchEvent.pointer member accordingly (instead of using a value of zero).

The polling methods—isTouchDown(), getTouchX(), and getTouchY()—should look familiar as well. We
perform some error checking and then fetch the corresponding pointer state for the corresponding pointer
index from one of the member arrays that we fill in the onTouch() method.

The final public method, getTouchEvents(), is exactly the same as the corresponding method in
SingleTouchHandler.getTouchEvents(). Now that we are equipped with all of these handlers, we can
implement the input interface.

The last method in the class is a helper method that we use to find the index to a pointer ID.

AndroidInput: The Great Coordinator
The Input implementation of our game framework ties together all the handlers we have developed. Any
method calls are delegated to the corresponding handler. The only interesting part of this implementation is
choosing which TouchHandler implementation to use based on the Android version the device is running.
Listing 5-12 shows an implementation called AndroidInput, with commentary.

Listing 5-12. AndroidInput.java: Handling the handlers with style

package com.badlogic.androidgames.framework.impl;

import java.util.List;

import android.content.Context;
import android.os.Build.VERSION;
import android.view.View;

import com.badlogic.androidgames.framework.Input;

public class AndroidInput implements Input {
 AccelerometerHandler accelHandler;
 KeyboardHandler keyHandler;
 TouchHandler touchHandler;

We start by letting the class implement the input interface defined in Chapter 3, AndroidInput. This
leads us to three members: AccelerometerHandler, KeyboardHandler, and TouchHandler.

public AndroidInput(Context context, View view, float scaleX, float scaleY) {
 accelHandler = new AccelerometerHandler(context);
 keyHandler = new KeyboardHandler(view);
 touchHandler = new MultiTouchHandler(view, scaleX, scaleY);
}

http://dx.doi.org/10.1007/978-1-4842-0472-6_4
http://dx.doi.org/10.1007/978-1-4842-0472-6_3

Chapter 5 ■ an android Game development Framework

182

These members are initialized in the constructor, which takes Context, View, and scaleX and scaleY
parameters, the latter two of which we can ignore again. The AccelerometerHandler is instantiated via the
Context parameter, as the KeyboardHandler needs the View that is passed in.

public boolean isKeyPressed(int keyCode) {

 return keyHandler.isKeyPressed(keyCode);
 }

 public boolean isTouchDown(int pointer) {
 return touchHandler.isTouchDown(pointer);
 }

 public int getTouchX(int pointer) {
 return touchHandler.getTouchX(pointer);
 }

 public int getTouchY(int pointer) {
 return touchHandler.getTouchY(pointer);
 }

 public float getAccelX() {
 return accelHandler.getAccelX();
 }

 public float getAccelY() {
 return accelHandler.getAccelY();
 }

 public float getAccelZ() {
 return accelHandler.getAccelZ();
 }

 public List<TouchEvent> getTouchEvents() {
 return touchHandler.getTouchEvents();
 }

 public List<KeyEvent> getKeyEvents() {
 return keyHandler.getKeyEvents();
 }
}

The rest of this class is self-explanatory. Each method call is delegated to the appropriate handler, which
does the actual work. With this, we have finished the input API of our game framework. Next, we’ll discuss
graphics.

AndroidGraphics and AndroidPixmap: Double Rainbow
It’s time to get back to our most beloved topic: graphics programming. In Chapter 3, we defined two interfaces:
graphics and pixmap. Now, we’re going to implement them based on what you learned in Chapter 4. However,
there’s one thing we have yet to consider: how to handle different screen sizes and resolutions.

http://dx.doi.org/10.1007/978-1-4842-0472-6_3
http://dx.doi.org/10.1007/978-1-4842-0472-6_4

Chapter 5 ■ an android Game development Framework

183

Handling Different Screen Sizes and Resolutions
Android has supported different screen resolutions since version 1.6. It can handle resolutions ranging
from 426×320 pixels to 2560×1440. In Chapter 4, we discussed the effect of different screen resolutions and
physical screen sizes. For instance, drawing with absolute coordinates and sizes given in pixels will produce
unexpected results. Figure 5-1 shows what happens when we render a 100×100-pixel rectangle with the
upper-left corner at (219,379) on 480×800 and 320×480 screens.

This difference is problematic for two reasons. First, we can’t draw our game and assume a fixed
resolution. The second reason is more subtle: in Figure 5-1, we assumed that both screens have the same
density (that is, each pixel has the same physical size on both devices), but this is rarely the case in reality.

Density
Density is usually specified in pixels per inch or pixels per centimeter (sometimes you’ll hear about dots
per inch, which is not technically correct). The Nexus 6 and Galaxy s7 Edge have a 2560×1440-pixel screen
with a physical size of 13.19×7.42 centimeters. That’s 194 pixels per centimeter on both axes. We can easily
calculate the pixels per centimeter using the following equation:

pixels per centimeter (on x-axis) = width in pixels / width in centimeters
or
pixels per centimeter (on y-axis) = height in pixels / height in centimeters

Usually, we only need to calculate this on a single axis since the physical pixels are square (they’re
actually three pixels—one each for red, blue, and green—but we’ll ignore that here).

Figure 5-1. A 100×100-pixel rectangle drawn at (219,379) on a 480×800 screen (left) and a 320×480 screen (right)

http://dx.doi.org/10.1007/978-1-4842-0472-6_4

Chapter 5 ■ an android Game development Framework

184

How big would a 100×100-pixel rectangle be in centimeters? On the Nexus 6, we would have a
.51×.51-centimeter rectangle. This is something we need to account for if, for example, we are trying to
provide buttons that are big enough for the average thumb on all screen sizes. This example implies that
this is a major issue that could present huge problems; however, it usually doesn’t. We need to make sure
that our buttons are a decent size on high-density screens since they will automatically be big enough on
medium-density screens.

Aspect Ratio
Aspect ratio is another problem to consider. The aspect ratio of a screen is the ratio between the width and
height, in either pixels or centimeters. We can calculate aspect ratio using the following equation:

pixel aspect ratio = width in pixels / height in pixels
or
physical aspect ratio = width in centimeters / height in centimeters

Here, width and height usually mean the width and height in landscape mode. The Nexus 6 has a pixel
and physical aspect ratio of ~1.78.

 ■ Note this book uses the metric system. we know this might be an inconvenience if you are familiar with
inches and pounds. however, as we will be considering some physics problems in the following chapters, it’s
best to get used to it now since physics problems are usually defined in the metric system. remember that 1
inch is roughly 2.54 centimeters.

Coping with Different Aspect Ratios
Replica Island, a popular open source Android game, serves as a very useful example of the aspect ratio
problem. The game was originally designed to fit on a 480×320-pixel screen, including all the “sprites,” such
as the robot and the doctor, the tiles of the “world,” and the UI elements (the buttons at the bottom left
and the status info at the top of the screen). When the game is rendered on a Hero, each pixel in the sprite
bitmaps maps to exactly one pixel on the screen. On a Nexus One, everything is scaled up while rendering,
so one pixel of a sprite actually takes up 1.5 pixels on the screen. In other words, a 32×32-pixel sprite will be
48×48 pixels on the screen. This scaling factor is easily calculated using the following equations:

scaling factor (on x-axis) = screen width in pixels / target width in pixels
scaling factor (on y-axis) = screen height in pixels / target height in pixels

The target width and height are equal to the screen resolution for which the graphical assets were
designed; in Replica Island, the dimensions are 480×320 pixels. For the Nexus One, there is a scaling factor of
1.66 on the x axis and a scaling factor of 1.5 on the y axis. Why are the scaling factors on the two axes different?

This is due to the fact that the two screen resolutions have different aspect ratios. If we simply stretch a
480×320-pixel image to an 800×480-pixel image, the original image is stretched on the x axis. For most games,
this will be insignificant, so we can simply draw our graphical assets for a specific target resolution and stretch
them to the actual screen resolution while rendering (remember the Bitmap.drawBitmap() method).

However, for some games, you might want to use a more complicated method. Figure 5-2 shows Replica
Island scaled up from 480×320 to 800×480 pixels and overlaid with a faint image of how it actually looks.

Chapter 5 ■ an android Game development Framework

185

Replica Island performs normal stretching on the y axis using the scaling factor we just calculated (1.5),
but instead of using the x-axis scaling factor (1.66), which would squish the image, it uses the y-axis scaling
factor. This trick allows all objects on the screen to keep their aspect ratio. A 32×32-pixel sprite becomes
48×48 pixels instead of 53×48 pixels. However, this also means that our coordinate system is no longer
bounded between (0,0) and (479,319); instead, it ranges from (0,0) to (533,319).

Note, however, that using this fancy method might be inappropriate for some games. For example, if the
world size depends on the screen aspect ratio, players with wider screens could have an unfair advantage.
This would be the case for a game like StarCraft 2. Finally, if you want the entire game to fit onto a single
screen, like in Mr. Nom, it is better to use the simpler stretching method; if we use the second version, there
will be blank space left over on wider screens.

A Simpler Solution
One advantage of Replica Island is that it does all this stretching and scaling via OpenGL ES, which is
hardware accelerated. So far, we’ve only discussed how to draw to a Bitmap and a View via the Canvas
class, which, on older Android versions, involves slow number-crunching on the CPU and doesn’t involve
hardware acceleration on the GPU.

With this in mind, we perform a simple trick by creating a framebuffer in the form of a Bitmap instance
with our target resolution. This way, we don’t have to worry about the actual screen resolution when we
design our graphical assets or render them via code. Instead, we pretend that the screen resolution is the
same on all devices, and all our draw calls target this “virtual” framebuffer Bitmap via a Canvas instance.
When we’re done rendering a frame, we simply draw this framebuffer Bitmap to our SurfaceView via a call to
the Canvas.drawBitmap() method, which allows us to draw a stretched Bitmap.

If we want to use the same technique as Replica Island, we need to adjust the size of our framebuffer on
the bigger axis (that is, on the x axis in landscape mode and on the y axis in portrait mode). We also have to
make sure to fill the extra pixels to avoid blank space.

Figure 5-2. Replica Island stretched from 480×320 to 800×480 pixels, overlaid with a faint image of how it is
rendered on an 800×480-pixel display without stretching

Chapter 5 ■ an android Game development Framework

186

The Implementation
Let’s summarize everything in a work plan:

•	 We design all our graphic assets for a fixed target resolution, the Android mdpi
(320×480 in the case of Mr. Nom).

•	 We create a Bitmap that is the same size as our target resolution and direct all our
drawing calls to it, effectively working in a fixed-coordinate system.

•	 When we are done drawing a frame, we draw our framebuffer Bitmap, which is
stretched to the SurfaceView. On devices with a lower screen resolution, the image is
scaled down; on devices with a higher resolution, it is scaled up.

•	 When we do our scaling trick, we make sure that all the UI elements with which
the user interacts are big enough for all screen densities. We can do this in the
graphic asset–design phase using the sizes of actual devices in combination with the
previously mentioned formulas.

Now that we know how to handle different screen resolutions and densities, we can explain the
scaleX and scaleY variables we encountered when we implemented the SingleTouchHandler and
MultiTouchHandler in the previous sections.

All of our game code will work with our fixed target resolution (320×480 pixels). If we receive touch
events on a device that has a higher or lower resolution, the x and y coordinates of those events will be
defined in the View’s coordinate system, but not in our target resolution coordinate system. Therefore, it
is necessary to transform the coordinates from their original system to our system, which is based on the
scaling factors. To do this, we use the following equations:

transformed touch x = real touch x * (target pixels on x axis / real pixels on x axis)
transformed touch y = real touch y * (target pixels on y axis / real pixels on y axis)

Let’s calculate a simple example for a target resolution of 320×480 pixels and a device with a resolution
of 480×800 pixels. If we touch the middle of the screen, we receive an event with the coordinates (240,400).
Using the two preceding formulas, we arrive at the following equations, which are exactly in the middle of
our target coordinate system:

transformed touch x = 240 * (320 / 480) = 160
transformed touch y = 400 * (480 / 800) = 240

Let’s do another one, assuming a real resolution of 240×320, again touching the middle of the screen, at
(120,160):

transformed touch x = 120 * (320 / 240) = 160
transformed touch y = 160 * (480 / 320) = 240

This works in both directions. If we multiply the real touch event coordinates by the target factor
divided by the real factor, we don’t have to worry about transforming our actual game code. All the touch
coordinates will be expressed in our fixed-target coordinate system.

With that issue out of our way, we can implement the last few classes of our game framework.

AndroidPixmap: Pixels for the People
According to the design of our pixmap interface from Chapter 3, there’s not much to implement. Listing 5-13
presents the code.

http://dx.doi.org/10.1007/978-1-4842-0472-6_3

Chapter 5 ■ an android Game development Framework

187

Listing 5-13. AndroidPixmap.java: Pixmap implementation wrapping a Bitmap instance

package com.badlogic.androidgames.framework.impl;

import android.graphics.Bitmap;

import com.badlogic.androidgames.framework.Graphics.PixmapFormat;
import com.badlogic.androidgames.framework.Pixmap;

public class AndroidPixmap implements Pixmap {
 Bitmap bitmap;
 PixmapFormat format;

 public AndroidPixmap(Bitmap bitmap, PixmapFormat format) {
 this.bitmap = bitmap;
 this.format = format;
 }

 public int getWidth() {
 return bitmap.getWidth();
 }

 public int getHeight() {
 return bitmap.getHeight();
 }

 public PixmapFormat getFormat() {
 return format;
 }

 public void dispose() {
 bitmap.recycle();
 }
}

All we need to do is store the Bitmap instance that we wrap, along with its format, which is stored as
a PixmapFormat enumeration value, as defined in Chapter 3. Additionally, we implement the required
methods of the pixmap interface so that we can query the width and height of the pixmap, as well as its
format, and ensure that the pixels can be dumped from RAM. Note that the Bitmap member is package
private, so we can access it in AndroidGraphics, which we’ll implement now.

AndroidGraphics: Serving Our Drawing Needs
The graphics interface we designed in Chapter 3 is also lean and mean. It will draw pixels, lines, rectangles,
and pixmaps to the framebuffer. As discussed, we’ll use a Bitmap as our framebuffer and direct all drawing
calls to it via a Canvas class. It is also responsible for creating Pixmap instances from asset files. Therefore,
we’ll also need another AssetManager. Listing 5-14 shows the code for our implementation of the interface,
AndroidGraphics, with commentary.

http://dx.doi.org/10.1007/978-1-4842-0472-6_3
http://dx.doi.org/10.1007/978-1-4842-0472-6_3

Chapter 5 ■ an android Game development Framework

188

Listing 5-14. AndroidGraphics.java: Implementing the graphics interface

package com.badlogic.androidgames.framework.impl;

import java.io.IOException;
import java.io.InputStream;

import android.content.res.AssetManager;
import android.graphics.Bitmap;
import android.graphics.Bitmap.Config;
import android.graphics.BitmapFactory;
import android.graphics.BitmapFactory.Options;
import android.graphics.Canvas;
import android.graphics.Paint;
import android.graphics.Paint.Style;
import android.graphics.Rect;

import com.badlogic.androidgames.framework.Graphics;
import com.badlogic.androidgames.framework.Pixmap;

public class AndroidGraphics implements Graphics {
 AssetManager assets;
 Bitmap frameBuffer;
 Canvas canvas;
 Paint paint;
 Rect srcRect = new Rect();
 Rect dstRect = new Rect();

The class implements the graphics interface. It contains an AssetManager member that we use to load
Bitmap instances, a Bitmap member that represents our artificial framebuffer, a Canvas member that we use
to draw to the artificial framebuffer, a Paint member we need for drawing, and two Rect members that we
need for implementing the AndroidGraphics.drawPixmap() methods. These last three members are there
so we don’t have to create new instances of these classes on every draw call. That would create a number of
problems for the garbage collector.

public AndroidGraphics(AssetManager assets, Bitmap frameBuffer) {
 this.assets = assets;
 this.frameBuffer = frameBuffer;
 this.canvas = new Canvas(frameBuffer);
 this.paint = new Paint();
}

In the constructor, we get an AssetManager and a Bitmap that represent our artificial framebuffer from
the outside. We store these in the respective members and create the Canvas instance that will draw the
artificial framebuffer, as well as the Paint member, which we will use for some of the drawing methods.

public Pixmap newPixmap(String fileName, PixmapFormat format) {
 Config config = null;
 if (format == PixmapFormat.RGB565)
 config = Config.RGB_565;
 else if (format == PixmapFormat.ARGB4444)
 config = Config.ARGB_4444;
 else

Chapter 5 ■ an android Game development Framework

189

 config = Config.ARGB_8888;

 Options options = new Options();
 options.inPreferredConfig = config;

 InputStream in = null;
 Bitmap bitmap = null;
 try {
 in = assets.open(fileName);
 bitmap = BitmapFactory.decodeStream(in);
 if (bitmap == null)
 throw new RuntimeException("Couldn't load bitmap from asset '"
 + fileName + "'");
 } catch (IOException e) {
 throw new RuntimeException("Couldn't load bitmap from asset '"
 + fileName + "'");
 } finally {
 if (in != null) {
 try {
 in.close();
 } catch (IOException e) {
 }
 }
 }

 if (bitmap.getConfig() == Config.RGB_565)
 format = PixmapFormat.RGB565;
 else if (bitmap.getConfig() == Config.ARGB_4444)
 format = PixmapFormat.ARGB4444;
 else
 format = PixmapFormat.ARGB8888;

 return new AndroidPixmap(bitmap, format);
}

The newPixmap() method tries to load a Bitmap instance from an asset file using the specified
PixmapFormat. We start by translating the PixmapFormat into one of the constants of the Android Config class
used in Chapter 4. Next, we create a new Options instance and set our preferred color format. Then, we try to
load the Bitmap from the asset via the BitmapFactory, and we throw a RuntimeException if something goes
wrong. Otherwise, we check what format the BitmapFactory used to load the Bitmap and translate it into a
PixmapFormat enumeration value. Remember that the BitmapFactory might decide to ignore our desired
color format, so we have to check to determine what it used to decode the image. Finally, we construct a new
AndroidBitmap instance based on the Bitmap we loaded, as well as its PixmapFormat, and return it to the caller.

public void clear(int color) {
 canvas.drawRGB((color & 0xff0000) >> 16, (color & 0xff00) >> 8,
 (color & 0xff));
}

The clear() method extracts the red, green, and blue components of the specified 32-bit ARGB color
parameter and calls the Canvas.drawRGB() method, which clears our artificial framebuffer with that color.
This method ignores any alpha value of the specified color, so we don’t have to extract it.

http://dx.doi.org/10.1007/978-1-4842-0472-6_4

Chapter 5 ■ an android Game development Framework

190

public void drawPixel(int x, int y, int color) {
 paint.setColor(color);
 canvas.drawPoint(x, y, paint);
}

The drawPixel() method draws a pixel of our artificial framebuffer via the Canvas.drawPoint()
method. First, we set the color of our Paint member variable and pass it to the drawing method in addition
to the x and y coordinates of the pixel.

public void drawLine(int x, int y, int x2, int y2, int color) {
 paint.setColor(color);
 canvas.drawLine(x, y, x2, y2, paint);
}

The drawLine() method draws the given line of the artificial framebuffer, using the Paint member to
specify the color when calling the Canvas.drawLine() method.

public void drawRect(int x, int y, int width, int height, int color) {
 paint.setColor(color);
 paint.setStyle(Style.FILL);
 canvas.drawRect(x, y, x + width - 1, y + width - 1, paint);
}

The drawRect() method sets the Paint member’s color and style attributes so that we can draw a filled,
colored rectangle. In the actual Canvas.drawRect() call, we have to transform the x, y, width, and height
parameters of the coordinates in the top-left and bottom-right corners of the rectangle. For the top-left
corner, we simply use the x and y parameters. For the bottom-right corner, we add the width and height to x
and y and subtract 1. For example, if we render a rectangle with an x and y of (10,10) and a width and height
of 2 and 2 and we don’t subtract 1, the resulting rectangle on the screen will be 3×3 pixels in size.

public void drawPixmap(Pixmap pixmap, int x, int y, int srcX, int srcY,
 int srcWidth, int srcHeight) {
 srcRect.left = srcX;
 srcRect.top = srcY;
 srcRect.right = srcX + srcWidth - 1;
 srcRect.bottom = srcY + srcHeight - 1;

 dstRect.left = x;
 dstRect.top = y;
 dstRect.right = x + srcWidth - 1;
 dstRect.bottom = y + srcHeight - 1;

 canvas.drawBitmap(((AndroidPixmap) pixmap).bitmap, srcRect, dstRect, null);
}

The drawPixmap() method, which allows us to draw a portion of a pixmap, sets up the source and
destination of the Rect members that are used in the actual drawing call. As with drawing a rectangle, we
have to translate the x and y coordinates together with the width and height to the top-left and bottom-right
corners. Again, we have to subtract 1, or else we will overshoot by 1 pixel. Next, we perform the actual drawing
via the Canvas.drawBitmap() method, which will automatically do the blending if the pixmap we draw has

Chapter 5 ■ an android Game development Framework

191

a PixmapFormat.ARGB4444 or a PixmapFormat.ARGB8888 color depth. Note that we have to cast the Pixmap
parameter to an AndroidPixmap in order to fetch the Bitmap member for drawing with the Canvas instance.
That’s a bit complicated, but we can be sure that the Pixmap instance that is passed in will be an AndroidPixmap.

public void drawPixmap(Pixmap pixmap, int x, int y) {
 canvas.drawBitmap(((AndroidPixmap)pixmap).bitmap, x, y, null);
}

The second drawPixmap() method draws the complete pixmap to the artificial framebuffer at the given
coordinates. Again, we must do some casting to get to the Bitmap member of the AndroidPixmap.

 public int getWidth() {
 return frameBuffer.getWidth();
 }

 public int getHeight() {
 return frameBuffer.getHeight();
 }
}

Finally, we have the methods getWidth() and getHeight(), which simply return the size of the artificial
framebuffer stored by the AndroidGraphics class to which it renders internally.

AndroidFastRenderView is the last class we need in order to implement.

AndroidFastRenderView: Loop, Stretch, Loop, Stretch
The name of this class should give away what lies ahead. In Chapter 4, we discussed using a SurfaceView to
perform continuous rendering in a separate thread that could also house our game’s main loop. We developed
a very simple class called FastRenderView, which was derived from the SurfaceView class; we made sure we
played nice with the activity life cycle; and we set up a thread in order to constantly render the SurfaceView via
a Canvas instance. Here, we’ll reuse this FastRenderView class and augment it to do a few more things:

•	 It keeps a reference to a Game instance from which it can get the active screen. We
constantly call the Screen.update() and Screen.present() methods from within
the FastRenderView thread.

•	 It keeps track of the delta time between frames that is passed to the active screen.

•	 It takes the artificial framebuffer to which the AndroidGraphics instance draws and
draws it to the SurfaceView, which is scaled if necessary.

Listing 5-15 shows the implementation of the AndroidFastRenderView class, with commentary where
appropriate.

Listing 5-15. AndroidFastRenderView.java: Threaded SurfaceView executing our game code

package com.badlogic.androidgames.framework.impl;

import android.graphics.Bitmap;
import android.graphics.Canvas;
import android.graphics.Rect;
import android.view.SurfaceHolder;
import android.view.SurfaceView;

http://dx.doi.org/10.1007/978-1-4842-0472-6_4

Chapter 5 ■ an android Game development Framework

192

public class AndroidFastRenderView extends SurfaceView implements Runnable {
 AndroidGame game;
 Bitmap framebuffer;
 Thread renderThread = null;
 SurfaceHolder holder;
 volatile boolean running = false;

This should look familiar. We just need to add two more members—an AndroidGame instance and
a Bitmap instance that represent our artificial framebuffer. The other members are the same as in our
FastRenderView from Chapter 3.

public AndroidFastRenderView(AndroidGame game, Bitmap framebuffer) {
 super(game);
 this.game = game;
 this.framebuffer = framebuffer;
 this.holder = getHolder();
}

In the constructor, we simply call the base class’s constructor with the AndroidGame parameter (which
is an activity; this will be discussed in the following sections) and store the parameters in the respective
members. Once again, we get a SurfaceHolder, as in previous sections.

public void resume() {
 running = true;
 renderThread = new Thread(this);
 renderThread.start();
}

The resume() method is an exact copy of the FastRenderView.resume() method, so we won’t discuss it
again. In short, the method makes sure that our thread interacts nicely with the activity life cycle.

 public void run() {
 Rect dstRect = new Rect();
 long startTime = System.nanoTime();
 while(running) {
 if(!holder.getSurface().isValid())
 continue;

 float deltaTime = (System.nanoTime()-startTime) / 1000000000.0f;
 startTime = System.nanoTime();

 game.getCurrentScreen().update(deltaTime);
 game.getCurrentScreen().present(deltaTime);

 Canvas canvas = holder.lockCanvas();
 canvas.getClipBounds(dstRect);
 canvas.drawBitmap(framebuffer, null, dstRect, null);
 holder.unlockCanvasAndPost(canvas);
 }
 }

http://dx.doi.org/10.1007/978-1-4842-0472-6_3

Chapter 5 ■ an android Game development Framework

193

The run() method has a few more features. The first addition is its ability to track delta time between
each frame. For this, we use System.nanoTime(), which returns the current time in nanoseconds as a long.

 ■ Note a nanosecond is one-billionth of a second.

In each loop iteration, we start by taking the difference between the last loop iteration’s start time and
the current time. To make it easier to work with that delta, we convert it into seconds. Next, we save the
current timestamp, which we’ll use in the next loop iteration, to calculate the next delta time. With the delta
time at hand, we call the current Screen instance’s update() and present() methods, which will update the
game logic and render things to the artificial framebuffer. Finally, we get a hold of the Canvas instance for the
SurfaceView and draw the artificial framebuffer. The scaling is performed automatically if the destination
rectangle we pass to the Canvas.drawBitmap() method is smaller or bigger than the framebuffer.

Note that we’ve used a shortcut here to get a destination rectangle that stretches over the whole
SurfaceView via the Canvas.getClipBounds() method. It will set the top and left members of dstRect to 0 and
0, respectively, and the bottom and right members to the actual screen dimensions (480×800 in portrait mode
on a Nexus One). The rest of the method is exactly the same as what we had in our FastRenderView test in the
last chapter. The method simply makes sure that the thread stops when the activity is paused or destroyed.

 public void pause() {
 running = false;
 while(true) {
 try {
 renderThread.join();
 return;
 } catch (InterruptedException e) {
 // retry
 }
 }
 }
}

The last method of this class, pause(), is also the same as in the FastRenderView.pause() method—it
simply terminates the rendering/main loop thread and waits for it to die completely before returning.

We are nearly done with our framework. The last piece of the puzzle is the implementation of the Game
interface.

AndroidGame: Tying Everything Together
Our game development framework is nearly complete. All we need to do is tie the loose ends together by
implementing the game interface we designed in Chapter 3. To do this, we will use the classes we created in
the previous sections of this chapter. The following is a list of responsibilities:

•	 Perform window management. In our context, this means setting up an activity and
an AndroidFastRenderView and handling the activity life cycle in a clean way.

•	 Use and manage a WakeLock so that the screen does not dim.

•	 Instantiate and hand out references to Graphics, Audio, FileIO, and Input to
interested parties.

http://dx.doi.org/10.1007/978-1-4842-0472-6_3

Chapter 5 ■ an android Game development Framework

194

•	 Manage screens and integrate them with the activity life cycle.

•	 Our general goal is to have a single class called AndroidGame from which we can
derive. We want to implement the Game.getStartScreen() method later on to start
our game in the following way. (We will introduce the MainMenu later.)

public class MrNom extends AndroidGame {
 public Screen getStartScreen() {
 return new MainMenu(this);
 }
}

We hope you can see why it is beneficial to design a workable framework before diving headfirst into
programming the actual game. We can reuse this framework for all future games that are not too graphically
intensive. Now, let’s discuss Listing 5-16, which shows the AndroidGame class, split up by commentary.

Listing 5-16. AndroidGame.java: Tying everything together

package com.badlogic.androidgames.framework.impl;

import android.app.Activity;
import android.content.res.Configuration;
import android.graphics.Bitmap;
import android.graphics.Bitmap.Config;
import android.os.Bundle;
import android.view.Window;
import android.view.WindowManager;

import com.badlogic.androidgames.framework.Audio;
import com.badlogic.androidgames.framework.FileIO;
import com.badlogic.androidgames.framework.Game;
import com.badlogic.androidgames.framework.Graphics;
import com.badlogic.androidgames.framework.Input;
import com.badlogic.androidgames.framework.Screen;

public abstract class AndroidGame extends Activity implements Game {
 AndroidFastRenderView renderView;
 Graphics graphics;
 Audio audio;
 Input input;
 FileIO fileIO;
 Screen screen;

The class definition starts by letting AndroidGame extend the Activity class and implement the
game interface. Next, we define a couple of members that should already be familiar. The first member is
AndroidFastRenderView, to which we’ll draw, and which will manage our main loop thread for us. Of course,
we set the Graphics, Audio, Input, and FileIO members to instances of AndroidGraphics, AndroidAudio,
AndroidInput, and AndroidFileIO. The next member holds the currently active screen. Finally, there’s a
member that holds a WakeLock that we use to keep the screen from dimming.

 @Override
 public void onCreate(Bundle savedInstanceState) {

Chapter 5 ■ an android Game development Framework

195

 super.onCreate(savedInstanceState);

 requestWindowFeature(Window.FEATURE_NO_TITLE);
 getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
 WindowManager.LayoutParams.FLAG_FULLSCREEN);
getWindow().addFlags(WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON);
 boolean isLandscape = getResources().getConfiguration().orientation ==
Configuration.ORIENTATION_LANDSCAPE;
 int frameBufferWidth = isLandscape ? 480 : 320;
 int frameBufferHeight = isLandscape ? 320 : 480;
 Bitmap frameBuffer = Bitmap.createBitmap(frameBufferWidth,
 frameBufferHeight, Config.RGB_565);

 float scaleX = (float) frameBufferWidth
 / getWindowManager().getDefaultDisplay().getWidth();
 float scaleY = (float) frameBufferHeight
 / getWindowManager().getDefaultDisplay().getHeight();

 renderView = new AndroidFastRenderView(this, frameBuffer);
 graphics = new AndroidGraphics(getAssets(), frameBuffer);
 fileIO = new AndroidFileIO(this);
 audio = new AndroidAudio(this);
 input = new AndroidInput(this, renderView, scaleX, scaleY);
 screen = getStartScreen();
 setContentView(renderView);

 }

The onCreate() method, which is the familiar startup method of the Activity class, starts by calling
the base class’s onCreate() method, as required. Next, we make the activity full-screen, as we did in a couple
of other tests in Chapter 4. In the next few lines, we set up our artificial framebuffer. Depending on the
orientation of the activity, we want to use a 320×480 framebuffer (portrait mode) or a 480×320 framebuffer
(landscape mode). To determine the activity’s screen orientation, we fetch the Orientation member from a
class called Configuration, which we obtain via a call to getResources().getConfiguration(). Based on
the value of that member, we then set the framebuffer size and instantiate a Bitmap, which we’ll hand to the
AndroidFastRenderView and AndroidGraphics instances in the following chapters.

 ■ Note the Bitmap instance has an rGB565 color format. this way, we don’t waste memory, and our
drawing is completed a little faster.

For our first game, mr. nom, we will use a target resolution of 320×480 pixels. the AndroidGame class has
these values hard-coded. if you want to use a different target resolution, modify AndroidGame accordingly!

We also calculate the scaleX and scaleY values that the SingleTouchHandler and the
MultiTouchHandler classes will use to transform the touch event coordinates in our fixed-coordinate system.

Next, we instantiate AndroidFastRenderView, AndroidGraphics, AndroidAudio, AndroidInput, and
AndroidFileIO with the necessary constructor arguments. Finally, we call the getStartScreen() method,
which our game will implement, and set the AndroidFastRenderView as the content view of the activity. Of
course, all the previously instantiated helper classes will do some more work in the background. For example,
the AndroidInput class tells the selected touch handler to communicate with the AndroidFastRenderView.

http://dx.doi.org/10.1007/978-1-4842-0472-6_4

Chapter 5 ■ an android Game development Framework

196

@Override
public void onResume() {
 super.onResume();
 screen.resume();
 renderView.resume();
}

Next is the onResume() method of the Activity class, which we override. As usual, the first thing we do
is call the superclass method. Next, we make sure the current screen is informed that the game, and thereby
the activity, has been resumed. Finally, we tell the AndroidFastRenderView to resume the rendering thread,
which will also kick off our game’s main loop, where we tell the current screen to update and present itself in
each iteration.

@Override
public void onPause() {
 super.onPause();
 renderView.pause();
 screen.pause();

 if (isFinishing())
 {
 screen.dispose();
 }
}

First, the onPause() method calls the superclass method again. Next, it makes sure that the rendering
thread is terminated. If we don’t terminate the thread before calling the current screen’s onPause() method,
we may run into concurrency issues since the UI thread and the main loop thread will both access the screen
at the same time. Once we are sure the main loop thread is no longer alive, we tell the current screen that it
should pause itself. In case the activity is going to be destroyed, we also inform the screen so that it can do
any necessary cleanup work.

public Input getInput() {
 return input;
}

public FileIO getFileIO() {
 return fileIO;
}

public Graphics getGraphics() {
 return graphics;
}

public Audio getAudio() {
 return audio;
}

The getInput(), getFileIO(), getGraphics(), and getAudio() methods need no explanation.
We simply return the respective instances to the caller. Later, the caller will always be one of the Screen
implementations of our game.

Chapter 5 ■ an android Game development Framework

197

public void setScreen(Screen screen) {
 if (screen == null)
 throw new IllegalArgumentException("Screen must not be null");

 this.screen.pause();
 this.screen.dispose();
 screen.resume();
 screen.update(0);
 this.screen = screen;
}

At first, the setScreen() method we inherit from the game interface looks simple. We start with some
traditional null-checking, since we can’t allow a null screen. Next, we tell the current screen to pause and
dispose of itself so that it can make room for the new screen. The new screen is asked to resume itself and
update itself once with a delta time of zero. Finally, we set the Screen member to the new screen.

Let’s think about who will call this method and when. When we designed Mr. Nom, we identified all the
transitions between various Screen instances. We’ll usually call the AndroidGame.setScreen() method in
the update() method of one of these Screen instances.

For example, let’s assume we have a main menu screen where we check to see if the Play button
is pressed in the update() method. If that is the case, we transition to the next screen by calling the
AndroidGame.setScreen() method from within the MainMenu.update() method with a brand-new instance
of that next screen. The main menu screen regains control after the call to AndroidGame.setScreen() and
should immediately return to the caller, as it is no longer the active screen. In this case, the caller is the
AndroidFastRenderView in the main loop thread. If you check the portion of the main loop responsible for
updating and rendering the active screen, you’ll see that the update() method will be called on the MainMenu
class, but the present() method will be called on the new current screen. This would be problematic, as we
defined the screen interface in such a way that guarantees that the resume() and update() methods will be
called at least once before the screen is asked to present itself. That’s why we call these two methods in the
AndroidGame.setScreen() method on the new screen. The AndroidGame class takes care of everything.

 public Screen getCurrentScreen() {
 return screen;
 }
}

The last method is the getCurrentScreen() method, which simply returns the currently active screen.
Finally, remember that AndroidGame derives from Game, which has another method called

getStartScreen(). This is the method we have to implement to get things going for our game!
Now, we’ve created an easy-to-use Android game development framework. All we need to do is implement

our game’s screens. We can also reuse the framework for any future games, as long as they do not need immense
graphics power. If that is necessary, we have to use OpenGL ES. However, to do this, we only need to replace the
graphics part of our framework. All the other classes for audio, input, and file I/O can be reused.

Summary
In this chapter, we implemented a full-fledged 2D Android game development framework from scratch that
can be reused for all future games (as long as they are graphically modest). Great care was taken to achieve
a good, extensible design. We could take the code and replace the rendering portions with OpenGL ES, thus
making Mr. Nom 3D.

With all this boilerplate code in place, let’s concentrate on what we are here for: writing games!

199© Mario Zechner, J. F. DiMarzio and Robert Green 2016
M. Zechner et al., Beginning Android Games, DOI 10.1007/978-1-4842-0472-6_6

CHAPTER 6

Mr. Nom Invades Android

In Chapter 3, we churned out a full design for Mr. Nom consisting of the game mechanics, a simple
background story, handcrafted graphical assets, and definitions for all the screens based on some paper
cutouts. In Chapter 5, we developed a full-fledged game development framework that allows us to transfer
our design screens easily to code. But enough talking; let’s start writing our first game!

Creating the Assets
We have two types of assets in Mr. Nom: audio assets and graphical assets. We recorded the audio assets
via a nice, open source application called Audacity and a bad netbook microphone. We created a sound
effect to be played when a button is pressed or a menu item is chosen, one for when Mr. Nom eats an ink
stain, and one for when he eats himself. We saved them as OGGs to the assets/ folder under the names
click.ogg, eat.ogg, and bitten.ogg, respectively. You can either be creative and create those files yourself
using Audacity and a microphone, or fetch them from the SVN repository at http://code.google.com/p/
beginnginandroidgames2/. See the front matter where we describe how to get the source code if you are
unfamiliar with SVN.

Earlier, we mentioned that we’d want to reuse those paper cutouts from the design phase as our real
game graphics. To do this, we first have to make them fit with our target resolution.

We chose a fixed target resolution of 320×480 (portrait mode, Android mdpi resolution), for which we’ll
design all our graphic assets. This might seem small, but it made it very quick and easy for us to develop the
game and graphics, and, after all, the point here is that you get to see the entire Android game development
process.

For your production game, consider all of the resolutions and use higher-resolution graphics so that
your game looks good even on tablet-sized screens, perhaps targeting 1440×2560 as a baseline. We scanned
in all the paper cutouts and resized them a bit. We saved most of the assets in separate files and merged
some of them into a single file. All images are saved in a PNG format. The background is the only image that
is RGB888; all others are ARGB8888. Figure 6-1 shows you what we ended up with.

http://dx.doi.org/10.1007/978-1-4842-0472-6_3
http://dx.doi.org/10.1007/978-1-4842-0472-6_5
http://code.google.com/p/beginnginandroidgames2/
http://code.google.com/p/beginnginandroidgames2/

Chapter 6 ■ Mr. NoM INvades aNdroId

200

Let’s break down those images a little:

background.png: This is our background image, which will be the first thing we’ll
draw to the framebuffer. It is the same size as our target resolution for obvious
reasons.

Figure 6-1. All the graphic assets of Mr. Nom with their respective filenames and sizes in pixels

Chapter 6 ■ Mr. NoM INvades aNdroId

201

buttons.png: This contains all the buttons we’ll need in our game. We put them
into a single file, as we can easily draw them via the Graphics.drawPixmap()
method, which allows for drawing portions of an image. We’ll use that technique
more often when we start drawing with OpenGL ES, so we better get used to it
now. Merging several images into a single image is often called atlasing, and the
image itself is called an image atlas (or texture atlas, or sprite sheet). Each button
has a size of 64×64 pixels, which will come in handy when we have to decide
whether a touch event has pressed a button on the screen.

help1.png, help2.png, and help3.png: These are the images we’ll display on the
three help screens of Mr. Nom. They are all the same size, which makes placing
them on the screen easier.

logo.png: This is the logo we’ll display on the main menu screen.

mainmenu.png: This contains the three options that we’ll present to the player on
the main menu. Selecting one of these will trigger a transition to the respective
screen. Each option has a height of roughly 42 pixels, something we can use to
easily detect which option was touched.

ready.png, pause.png, and gameover.png: We’ll draw these when the game is
about to be started, when it is paused, and when it is over.

numbers.png: This holds all the digits we’ll need in order to render our high
scores later on. What to remember about this image is that each digit has the
same width and height, 20×32 pixels, except for the dot at the end, which is 10×32
pixels. We can use this to render any number that is thrown at us.

tail.png: This is the tail of Mr. Nom, or rather one part of his tail. It’s 32×32
pixels in size.

headdown.png, headleft.png, headright.png, and headup.png: These images
are for the head of Mr. Nom; there’s one for each direction in which he can move.
Because of his hat, we have to make these images a little bigger than the tail
image. Each head image is 42×42 pixels in size.

stain1.png, stain2.png, and stain3.png: These are the three types of stains
that we can render. Having three types will make the game screen a little more
diverse. They are 32×32 pixels in size, just like the tail image.

Great, now let’s start implementing the screens!

Setting Up the Project
As mentioned in Chapter 5, we will merge the code for Mr. Nom with our framework code. All the classes
related to Mr. Nom will be placed in the package com.badlogic.androidgames.mrnom. Additionally, we have
to modify the manifest file, as outlined in Chapter 4. Our default activity will be called MrNomGame. Just follow
the eight steps outlined in the section “Android Game Project Setup in Six Easy Steps” in Chapter 4 to set the
<activity> attributes properly (that is, so that the game is fixed in portrait mode and configuration changes
are handled by the application) and to give our application the proper permissions (writing to external
storage, using a wake lock, and so forth).

All the assets from the previous sections are located in the assets/ folder of the project. Additionally,
we have to put ic_launcher.png files into the res/mipmap-mdpi, res/mipmap-hdpi, res/mipmap-xdpi, res/
mipmap-xxdpi, and res/mipmap-xxxdpi folders. We just take the headright.png of Mr. Nom, rename it
ic_launcher.png, and put a properly resized version of it in each of the folders.

http://dx.doi.org/10.1007/978-1-4842-0472-6_5
http://dx.doi.org/10.1007/978-1-4842-0472-6_4
http://dx.doi.org/10.1007/978-1-4842-0472-6_4

Chapter 6 ■ Mr. NoM INvades aNdroId

202

All that’s left is to put our game code into the com.badlogic.androidgames.mrnom package of the
Android Studio project!

MrNomGame: The Main Activity
Our application needs a main entry point, known as the default activity on Android. We will call this default
activity MrNomGame and let it derive from AndroidGame, the class we implemented in Chapter 5 to run our game.
It will be responsible for creating and running our first screen later on. Listing 6-1 shows our MrNomGame class.

Listing 6-1. MrNomGame.java: Our main activity/game hybrid

package com.badlogic.androidgames.mrnom;

import com.badlogic.androidgames.framework.Screen;
import com.badlogic.androidgames.framework.impl.AndroidGame;

public class MrNomGame extends AndroidGame {
 public Screen getStartScreen() {
 return new LoadingScreen(this);
 }
}

All we need to do is derive from AndroidGame and implement the getStartScreen() method, which will
return an instance of the LoadingScreen class (which we’ll implement in a minute). Remember, this will get
us started with all the things we need for our game, from setting up the different modules for audio, graphics,
input, and file I/O to starting the main loop thread. Pretty easy, huh?

Assets: A Convenient Asset Store
The loading screen will load all the assets of our game. But where do we store them? To store them, we’ll do
something that is not seen very often in Java land: we’ll create a class that has a ton of public static members
that hold all the pixmaps and sounds that we’ve loaded from the assets. Listing 6-2 shows that class.

Listing 6-2. Assets.java: Holding all of our pixmaps and sounds for easy access

package com.badlogic.androidgames.mrnom;

import com.badlogic.androidgames.framework.Pixmap;
import com.badlogic.androidgames.framework.Sound;

public class Assets {
 public static Pixmap background;
 public static Pixmap logo;
 public static Pixmap mainMenu;
 public static Pixmap buttons;
 public static Pixmap help1;
 public static Pixmap help2;
 public static Pixmap help3;
 public static Pixmap numbers;
 public static Pixmap ready;
 public static Pixmap pause;

http://dx.doi.org/10.1007/978-1-4842-0472-6_5

Chapter 6 ■ Mr. NoM INvades aNdroId

203

 public static Pixmap gameOver;
 public static Pixmap headUp;
 public static Pixmap headLeft;
 public static Pixmap headDown;
 public static Pixmap headRight;
 public static Pixmap tail;
 public static Pixmap stain1;
 public static Pixmap stain2;
 public static Pixmap stain3;

 public static Sound click;
 public static Sound eat;
 public static Sound bitten;
}

We have a static member for every image and sound we load from the assets. If we want to use one of
these assets, we can do something like this:

game.getGraphics().drawPixmap(Assets.background, 0, 0);

or something like this:

Assets.click.play(1);

Now, that’s convenient. However, note that nothing is keeping us from overwriting those static
members, as they are not final. But as long as we don’t overwrite them, we are safe. These public, non-final
members actually make this “design pattern” an anti-pattern. For our game, it’s OK to be a little lazy, though.
A cleaner solution would hide the assets behind setters and getters in a so-called singleton class. We’ll stick
to our poor-man’s asset manager.

Settings: Keeping Track of User Choices and High Scores
There are two other things that we need to load in the loading screen: the user settings and the high scores.
If you look back at the main menu and high-scores screens in Chapter 3, you’ll see that we allow the user to
toggle the sounds and that we store the top five high scores. We’ll save these settings to the external storage
so that we can reload them the next time the game starts. For this, we’ll implement another simple class,
called Settings, as shown in Listing 6-3. The listing is split up, with comments interspersed.

Listing 6-3. Settings.java: Stores our settings and loads/saves them

package com.badlogic.androidgames.mrnom;

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;

import com.badlogic.androidgames.framework.FileIO;

public class Settings {

http://dx.doi.org/10.1007/978-1-4842-0472-6_3

Chapter 6 ■ Mr. NoM INvades aNdroId

204

 public static boolean soundEnabled = true;
 public static int[] highscores = new int[] { 100, 80, 50, 30, 10 };

Whether sound effects are played back is determined by a public static Boolean called soundEnabled. The
high scores are stored in a five-element integer array, sorted from highest to lowest. We define sensible defaults
for both settings. We can access these two members the same way we accessed the members of the Assets class.

public static void load(FileIO files) {
 BufferedReader in = null;
 try {
 in = new BufferedReader(new InputStreamReader(
 files.readFile(".mrnom")));
 soundEnabled = Boolean.parseBoolean(in.readLine());
 for (int i = 0; i < 5; i++) {
 highscores[i] = Integer.parseInt(in.readLine());
 }
 } catch (IOException e) {
 // :(It's ok we have defaults
 } catch (NumberFormatException e) {
 // :/ It's ok, defaults save our day
 } finally {
 try {
 if (in != null)
 in.close();
 } catch (IOException e) {
 }
 }
}

The static load() method tries to load the settings from a file called .mrnom from the external storage. It
needs a FileIO instance for that, which we pass to the method. It assumes that the sound setting and each
high-score entry is stored on a separate line and simply reads them in. If anything goes wrong (for example,
if the external storage is not available or there is no settings file yet), we simply fall back to our defaults and
ignore the failure.

public static void save(FileIO files) {
 BufferedWriter out = null;
 try {
 out = new BufferedWriter(new OutputStreamWriter(
 files.writeFile(".mrnom")));
 out.write(Boolean.toString(soundEnabled));
 for (int i = 0; i < 5; i++) {
 out.write(Integer.toString(highscores[i]));
 }

 } catch (IOException e) {
 } finally {
 try {
 if (out != null)
 out.close();
 } catch (IOException e) {

Chapter 6 ■ Mr. NoM INvades aNdroId

205

 }
 }
 }

Next up is a method called save(). It takes the current settings and serializes them to the .mrnom file on the
external storage (that is, /sdcard/.mrnom). The sound setting and each high-score entry is stored as a separate
line in that file, as expected by the load() method. If something goes wrong, we just ignore the failure and use
the default values defined earlier. In a AAA title, you might want to inform the user about this loading error.

 public static void addScore(int score) {
 for (int i = 0; i < 5; i++) {
 if (highscores[i] < score) {
 for (int j = 4; j > i; j--)
 highscores[j] = highscores[j - 1];
 highscores[i] = score;
 break;
 }
 }
 }
}

The final method, addScore(), is a convenience method. We will use it to add a new score to the high
scores, automatically re-sorting them depending on the value we want to insert.

LoadingScreen: Fetching the Assets from Disk
With those classes at hand, we can now easily implement the loading screen. Listing 6-4 shows the code.

Listing 6-4. LoadingScreen.java: Loads all assets and the settings

package com.badlogic.androidgames.mrnom;

import com.badlogic.androidgames.framework.Game;
import com.badlogic.androidgames.framework.Graphics;
import com.badlogic.androidgames.framework.Screen;
import com.badlogic.androidgames.framework.Graphics.PixmapFormat;

public class LoadingScreen extends Screen {
 public LoadingScreen(Game game) {
 super(game);
 }

We let the LoadingScreen class derive from the Screen class we defined in Chapter 3. This requires that
we implement a constructor that takes a Game instance, which we hand to the superclass constructor. Note
that this constructor will be called in the MrNomGame.getStartScreen() method we defined earlier.

public void update(float deltaTime) {
 Graphics g = game.getGraphics();
 Assets.background = g.newPixmap("background.png", PixmapFormat.RGB565);
 Assets.logo = g.newPixmap("logo.png", PixmapFormat.ARGB4444);
 Assets.mainMenu = g.newPixmap("mainmenu.png", PixmapFormat.ARGB4444);

http://dx.doi.org/10.1007/978-1-4842-0472-6_3

Chapter 6 ■ Mr. NoM INvades aNdroId

206

 Assets.buttons = g.newPixmap("buttons.png", PixmapFormat.ARGB4444);
 Assets.help1 = g.newPixmap("help1.png", PixmapFormat.ARGB4444);
 Assets.help2 = g.newPixmap("help2.png", PixmapFormat.ARGB4444);
 Assets.help3 = g.newPixmap("help3.png", PixmapFormat.ARGB4444);
 Assets.numbers = g.newPixmap("numbers.png", PixmapFormat.ARGB4444);
 Assets.ready = g.newPixmap("ready.png", PixmapFormat.ARGB4444);
 Assets.pause = g.newPixmap("pausemenu.png", PixmapFormat.ARGB4444);
 Assets.gameOver = g.newPixmap("gameover.png", PixmapFormat.ARGB4444);
 Assets.headUp = g.newPixmap("headup.png", PixmapFormat.ARGB4444);
 Assets.headLeft = g.newPixmap("headleft.png", PixmapFormat.ARGB4444);
 Assets.headDown = g.newPixmap("headdown.png", PixmapFormat.ARGB4444);
 Assets.headRight = g.newPixmap("headright.png", PixmapFormat.ARGB4444);
 Assets.tail = g.newPixmap("tail.png", PixmapFormat.ARGB4444);
 Assets.stain1 = g.newPixmap("stain1.png", PixmapFormat.ARGB4444);
 Assets.stain2 = g.newPixmap("stain2.png", PixmapFormat.ARGB4444);
 Assets.stain3 = g.newPixmap("stain3.png", PixmapFormat.ARGB4444);
 Assets.click = game.getAudio().newSound("click.ogg");
 Assets.eat = game.getAudio().newSound("eat.ogg");
 Assets.bitten = game.getAudio().newSound("bitten.ogg");
 Settings.load(game.getFileIO());
 game.setScreen(new MainMenuScreen(game));
}

Next up is our implementation of the update() method, where we load the assets and settings. For the
image assets, we simply create new pixmaps via the Graphics.newPixmap() method. Note that we specify
which color format the pixmaps should have. The background has an RGB565 format, and all other images
have an ARGB4444 format (if the BitmapFactory respects our hint). We do this to conserve memory and
increase our rendering speed a little later on. Our original images are stored in RGB888 and ARGB8888 formats
as PNGs. We also load in the three sound effects and store them in the respective members of the Assets class.
Next, we load the settings from the external storage via the Settings.load() method. Finally, we initiate a
screen transition to a Screen called MainMenuScreen, which will take over execution from that point on.

 public void present(float deltaTime) {

 }

 public void pause() {

 }

 public void resume() {

 }

 public void dispose() {

 }
}

The other methods are just stubs and do not perform any actions. Since the update() method will
immediately trigger a screen transition after all assets are loaded, there’s nothing more to do on this screen.

Chapter 6 ■ Mr. NoM INvades aNdroId

207

The Main Menu Screen
The main menu screen is pretty dumb. It just renders the logo, the main menu options, and the sound
setting in the form of a toggle button. All it does is react to touches on either the main menu options or the
sound setting toggle button. To implement this behavior, we need to know two things: where on the screen
we render the images, and what the touch areas are that will either trigger a screen transition or toggle the
sound setting. Figure 6-2 shows where we’ll render the different images on the screen. From that we can
directly derive the touch areas.

The x coordinates of the logo and main menu option images are calculated so that they are centered on
the x axis.

Next, let’s implement the Screen. Listing 6-5 shows the code.

Listing 6-5. MainMenuScreen.java: The main menu screen

package com.badlogic.androidgames.mrnom;

import java.util.List;

import com.badlogic.androidgames.framework.Game;
import com.badlogic.androidgames.framework.Graphics;

Figure 6-2. The main menu screen. The coordinates specify where we’ll render the different images, and the
outlines show the touch areas.

Chapter 6 ■ Mr. NoM INvades aNdroId

208

import com.badlogic.androidgames.framework.Input.TouchEvent;
import com.badlogic.androidgames.framework.Screen;

public class MainMenuScreen extends Screen {
 public MainMenuScreen(Game game) {
 super(game);
 }

We let the class derive from Screen again and implement an adequate constructor for it.

public void update(float deltaTime) {
 Graphics g = game.getGraphics();
 List<TouchEvent> touchEvents = game.getInput().getTouchEvents();
 game.getInput().getKeyEvents();

 int len = touchEvents.size();
 for(int i = 0; i < len; i++) {
 TouchEvent event = touchEvents.get(i);
 if(event.type == TouchEvent.TOUCH_UP) {
 if(inBounds(event, 0, g.getHeight() - 64, 64, 64)) {
 Settings.soundEnabled = !Settings.soundEnabled;
 if(Settings.soundEnabled)
 Assets.click.play(1);
 }
 if(inBounds(event, 64, 220, 192, 42)) {
 game.setScreen(new GameScreen(game));
 if(Settings.soundEnabled)
 Assets.click.play(1);
 return;
 }
 if(inBounds(event, 64, 220 + 42, 192, 42)) {
 game.setScreen(new HighscoreScreen(game));
 if(Settings.soundEnabled)
 Assets.click.play(1);
 return;
 }
 if(inBounds(event, 64, 220 + 84, 192, 42)) {
 game.setScreen(new HelpScreen(game));
 if(Settings.soundEnabled)
 Assets.click.play(1);
 return;
 }
 }
 }
}

Next, we have the update() method, in which we’ll do all our touch-event checking. We first fetch the
TouchEvent and KeyEvent instances from the Input instance the Game instance provides us. Note that we do
not use the KeyEvent instances, but we fetch them anyway in order to clear the internal buffer (yes, that’s a
tad bit nasty, but let’s make it a habit). We then loop over all the TouchEvent instances until we find one with
the type TouchEvent.TOUCH_UP. (We could alternatively look for TouchEvent.TOUCH_DOWN events, but in most
UIs the up event is used to indicate that a UI component was pressed.)

Chapter 6 ■ Mr. NoM INvades aNdroId

209

Once we have a fitting event, we check whether it pressed either the sound toggle button or one of the
menu entries. To make that code a little cleaner, we wrote a method called inBounds(), which takes a touch
event, x and y coordinates, and a width and height. The method checks whether the touch event is inside the
rectangle defined by those parameters, and it returns either true or false.

If the sound toggle button is pressed, we simply invert the Settings.soundEnabled Boolean value. In
case any of the main menu entries are pressed, we transition to the appropriate screen by instancing it and
setting it via Game.setScreen(). We can immediately return in that case, as the MainMenuScreen doesn’t
have anything to do anymore. We also play the click sounds if either the toggle button or a main menu entry
is pressed and sound is enabled.

Remember that all the touch events will be reported relative to our target resolution of 320×480 pixels,
thanks to the scaling magic we performed in the touch event handlers discussed in Chapter 5.

private boolean inBounds(TouchEvent event, int x, int y, int width, int height) {
 if(event.x > x && event.x < x + width - 1 &&
 event.y > y && event.y < y + height - 1)
 return true;
 else
 return false;
}

The inBounds() method works as previously discussed: put in a touch event and a rectangle, and it tells
you whether the touch event’s coordinates are inside that rectangle.

public void present(float deltaTime) {
 Graphics g = game.getGraphics();

 g.drawPixmap(Assets.background, 0, 0);
 g.drawPixmap(Assets.logo, 32, 20);
 g.drawPixmap(Assets.mainMenu, 64, 220);
 if(Settings.soundEnabled)
 g.drawPixmap(Assets.buttons, 0, 416, 0, 0, 64, 64);
 else
 g.drawPixmap(Assets.buttons, 0, 416, 64, 0, 64, 64);
}

The present() method is probably the one you’ve been waiting for most, but it isn’t all that exciting.
Our little game framework makes it really simple to render our main menu screen. All we do is render the
background at (0,0), which will basically erase our framebuffer, so no call to Graphics.clear() is needed.
Next, we draw the logo and main menu entries at the coordinates shown in Figure 6-2. We end that method
by drawing the sound toggle button based on the current setting. As you can see, we use the same pixmap,
but only draw the appropriate portion of it (the sound toggle button; see Figure 6-1). Now, that was easy.

public void pause() {
 Settings.save(game.getFileIO());
}

The final piece we need to discuss is the pause() method. Since we can change one of the settings on
that screen, we have to make sure that it gets persisted to the external storage. With our Settings class, that’s
pretty easy too!

public void resume() {

}

http://dx.doi.org/10.1007/978-1-4842-0472-6_5

Chapter 6 ■ Mr. NoM INvades aNdroId

210

 public void dispose() {

 }
}

The resume() and dispose() methods don’t have anything to do in this screen.

The HelpScreen Classes
Next, let’s implement the HelpScreen, HighscoreScreen, and GameScreen classes we used previously in the
update() method.

We defined three help screens in Chapter 3, each more or less explaining one aspect of the game
play. We now directly translate those to Screen implementations called HelpScreen, HelpScreen2, and
HelpScreen3. They all have a single button that will initiate a screen transition. The HelpScreen3 screen
will transition back to the main menu screen. Figure 6-3 shows the three help screens with the drawing
coordinates and touch areas.

Now, that seems simple enough to implement. Let’s start with the HelpScreen class, shown in
Listing 6-6.

Listing 6-6. HelpScreen.java: The first help screen

package com.badlogic.androidgames.mrnom;

import java.util.List;

import com.badlogic.androidgames.framework.Game;
import com.badlogic.androidgames.framework.Graphics;

Figure 6-3. The three help screens, drawing coordinates, and touch areas

http://dx.doi.org/10.1007/978-1-4842-0472-6_3

Chapter 6 ■ Mr. NoM INvades aNdroId

211

import com.badlogic.androidgames.framework.Input.TouchEvent;
import com.badlogic.androidgames.framework.Screen;

public class HelpScreen extends Screen {
 public HelpScreen(Game game) {
 super(game);
 }

 @Override
 public void update(float deltaTime) {
 List<TouchEvent> touchEvents = game.getInput().getTouchEvents();
 game.getInput().getKeyEvents();

 int len = touchEvents.size();
 for(int i = 0; i < len; i++) {
 TouchEvent event = touchEvents.get(i);
 if(event.type == TouchEvent.TOUCH_UP) {
 if(event.x > 256 && event.y > 416) {
 game.setScreen(new HelpScreen2(game));
 if(Settings.soundEnabled)
 Assets.click.play(1);
 return;
 }
 }
 }
 }

 @Override
 public void present(float deltaTime) {
 Graphics g = game.getGraphics();
 g.drawPixmap(Assets.background, 0, 0);
 g.drawPixmap(Assets.help1, 64, 100);
 g.drawPixmap(Assets.buttons, 256, 416, 0, 64, 64, 64);
 }

 @Override
 public void pause() {

 }

 @Override
 public void resume() {

 }

 @Override
 public void dispose() {

 }
}

Chapter 6 ■ Mr. NoM INvades aNdroId

212

Again, very simple. We derive from Screen and implement a proper constructor. Next, we have our
familiar update() method, which simply checks if the button at the bottom was pressed. If that’s the case, we
play the click sound and transition to HelpScreen2.

The present() method just renders the background again, followed by the help image and the button.
The HelpScreen2 and HelpScreen3 classes look the same; the only difference is the help image they

draw and the screen to which they transition. We can agree that we don’t have to look at their code. On to the
high-scores screen!

The High-Scores Screen
The high-scores screen simply draws the top five high scores we store in the Settings class, plus a fancy
header telling the player that he or she is on the high-scores screen, and a button at the bottom left that will
transition back to the main menu when pressed. The interesting part is how we render the high scores. Let’s
first have a look at where we render the images, which is shown in Figure 6-4.

That looks as easy as the other screens we have implemented. But how can we draw the dynamic
scores?

Figure 6-4. The high-scores screen, without high scores

Chapter 6 ■ Mr. NoM INvades aNdroId

213

Rendering Numbers: An Excursion
We have an asset image called numbers.png that contains all digits from 0 to 9 plus a dot. Each digit is 20×32
pixels, and the dot is 10×32 pixels. The digits are arranged from left to right in ascending order. The high-
scores screen should display five lines, each line showing one of the five high scores. One such line would
start with the high score’s position (for example, “1.” or “5.”), followed by a space, and then by the actual
score. How can we do that?

We have two things at our disposal: the numbers.png image and the Graphics.drawPixmap() method,
which allows us to draw portions of an image to the screen. Say we want the first line of the default high
scores (with the string “1. 100”) to be rendered at (20,100), so that the top-left corner of the digit 1 coincides
with those coordinates. We call Graphics.drawPixmap() like this:

game.getGraphics().drawPixmap(Assets.numbers, 20, 100, 20, 0, 20, 32);

We know that the digit 1 has a width of 20 pixels. The next character of our string would have to be
rendered at (20+20,100). In the case of the string “1. 100,” this character is the dot, which has a width of 10
pixels in the numbers.png image:

game.getGraphics().drawPixmap(Assets.numbers, 40, 100, 200, 0, 10, 32);

The next character in the string needs to be rendered at (20+20+10,100). That character is a space,
which we don’t need to draw. All we need to do is advance on the x axis by 20 pixels again, as we
assume that’s the width of the space character. The next character, 1, would therefore be rendered at
(20+20+10+20,100). See a pattern here?

Given the coordinates of the upper-left corner of our first character in the string, we can loop through
each character of the string, draw it, and increment the x coordinate for the next character to be drawn by
either 20 or 10 pixels, depending on the character we just drew.

We also need to figure out which portion of the numbers.png image we should draw, given the current
character. For that, we need the x and y coordinates of the upper-left corner of that portion, as well as its
width and height. The y coordinate will always be 0, which should be obvious when looking at Figure 6-1.
The height is also a constant—32 in our case. The width is either 20 pixels (if the character of the string is a
digit) or 10 pixels (if it is a dot). The only thing that we need to calculate is the x coordinate of the portion in
the numbers.png image. We can do that by using the following neat little trick.

The characters in a string can be interpreted as Unicode characters or as 16-bit integers. This means
that we can actually do calculations with those character codes. By a lucky coincidence, the characters 0 to
9 have ascending integer representations. We can use this to calculate the x coordinate of the portion of the
number.png image for a digit like this:

char character = string.charAt(index);
int x = (character – '0') * 20;

That will give us 0 for the character 0, 3 × 20 = 60 for the character 3, and so on. That’s exactly the x
coordinate of the portion of each digit. Of course, this won’t work for the dot character, so we need to treat
that specially. Let’s summarize this in a method that can render one of our high-score lines, given the string
of the line and the x and y coordinates where the rendering should start:

public void drawText(Graphics g, String line, int x, int y) {
 int len = line.length();
 for (int i = 0; i < len; i++) {
 char character = line.charAt(i);

 if (character == ' ') {

Chapter 6 ■ Mr. NoM INvades aNdroId

214

 x += 20;
 continue;
 }

 int srcX;
 int srcWidth;
 if (character == '.') {
 srcX = 200;
 srcWidth = 10;
 } else {
 srcX = (character - '0') * 20;
 srcWidth = 20;
 }

 g.drawPixmap(Assets.numbers, x, y, srcX, 0, srcWidth, 32);
 x += srcWidth;
 }
}

We iterate over each character of the string. If the current character is a space, we just advance the x
coordinate by 20 pixels. Otherwise, we calculate the x coordinate and width of the current character’s region
in the numbers.png image. The character is either a digit or a dot. We then render the current character
and advance the rendering x coordinate by the width of the character we’ve just drawn. This method will of
course blow up if our string contains anything other than spaces, digits, and dots. Can you think of a way to
make it work with any string?

Implementing the Screen
Equipped with this new knowledge, we can now easily implement the HighscoreScreen class, as shown in
Listing 6-7.

Listing 6-7. HighscoreScreen.java: Showing us our best achievements so far

package com.badlogic.androidgames.mrnom;

import java.util.List;

import com.badlogic.androidgames.framework.Game;
import com.badlogic.androidgames.framework.Graphics;
import com.badlogic.androidgames.framework.Screen;
import com.badlogic.androidgames.framework.Input.TouchEvent;

public class HighscoreScreen extends Screen {
 String lines[] = new String[5];

 public HighscoreScreen(Game game) {
 super(game);

 for (int i = 0; i < 5; i++) {
 lines[i] = "" + (i + 1) + ". " + Settings.highscores[i];
 }
 }

Chapter 6 ■ Mr. NoM INvades aNdroId

215

As we want to stay friends with the garbage collector, we store the strings of the five high-score lines in a
string array member. We construct the strings based on the Settings.highscores array in the constructor.

@Override
 public void update(float deltaTime) {
 List<TouchEvent> touchEvents = game.getInput().getTouchEvents();
 game.getInput().getKeyEvents();

 int len = touchEvents.size();
 for (int i = 0; i < len; i++) {
 TouchEvent event = touchEvents.get(i);
 if (event.type == TouchEvent.TOUCH_UP) {
 if (event.x < 64 && event.y > 416) {
 if(Settings.soundEnabled)
 Assets.click.play(1);
 game.setScreen(new MainMenuScreen(game));
 return;
 }
 }
 }
 }

Next, we define the update() method, which is unsurprisingly boring. All we do is check for whether a
touch-up event pressed the button in the bottom-left corner. If that’s the case, we play the click sound and
transition back to the main menu screen.

@Override
public void present(float deltaTime) {
 Graphics g = game.getGraphics();

 g.drawPixmap(Assets.background, 0, 0);
 g.drawPixmap(Assets.mainMenu, 64, 20, 0, 42, 196, 42);

 int y = 100;
 for (int i = 0; i < 5; i++) {
 drawText(g, lines[i], 20, y);
 y += 50;
 }

 g.drawPixmap(Assets.buttons, 0, 416, 64, 64, 64, 64);
}

The present() method is pretty simple with the help of the mighty drawText() method we previously
defined. We render the background image first, as usual, followed by the “HIGHSCORES” portion of the
Assets.mainmenu image. We could have stored this in a separate file, but we reuse it to free up more memory.

Next, we loop through the five strings for each high-score line we created in the constructor. We draw
each line with the drawText() method. The first line starts at (20,100), the next line is rendered at (20,150),
and so on. We just increase the y coordinate for text rendering by 50 pixels for each line so that we have a
nice vertical spacing between the lines. We finish the method off by drawing our button.

 public void drawText(Graphics g, String line, int x, int y) {
 int len = line.length();

Chapter 6 ■ Mr. NoM INvades aNdroId

216

 for (int i = 0; i < len; i++) {
 char character = line.charAt(i);

 if (character == ' ') {
 x += 20;
 continue;
 }

 int srcX = 0;
 int srcWidth = 0;
 if (character == '.') {
 srcX = 200;
 srcWidth = 10;
 } else {
 srcX = (character - '0') * 20;
 srcWidth = 20;
 }

 g.drawPixmap(Assets.numbers, x, y, srcX, 0, srcWidth, 32);
 x += srcWidth;
 }
 }

 @Override
 public void pause() {

 }

 @Override
 public void resume() {

 }

 @Override
 public void dispose() {

 }
}

The remaining methods should be self-explanatory. Let’s get to the last missing piece of our Mr. Nom
game: the game screen.

Chapter 6 ■ Mr. NoM INvades aNdroId

217

Abstracting the World of Mr. Nom: Model, View, Controller
So far, we’ve only implemented boring UI stuff and some housekeeping code for our assets and settings.
We’ll now abstract the world of Mr. Nom and all the objects in it. We’ll also free Mr. Nom from the screen
resolution and let him live in his own little world with his own little coordinate system.

If you are a long-time coder, you’ve probably heard about design patterns. They are, more or less,
strategies to design your code, given a scenario. Some of them are academic, and some have uses in the
real world. For game development, we can borrow some ideas from the Model-View-Controller (MVC)
design pattern. It’s often used by the database and web community to separate the data model from the
presentation layer and the data-manipulation layer. We won’t strictly follow this design pattern, but rather
will adapt it in a simpler form.

So, what does this mean for Mr. Nom? First of all, we need an abstract representation of our world that
is independent of any bitmaps, sounds, framebuffers, or input events. Instead, we’ll model Mr. Nom’s world
with a few simple classes in an object-oriented manner. We’ll have a class for the stains in the world, and
a class for Mr. Nom himself. Mr. Nom is composed of a head and tail parts, which we’ll also represent by
separate classes. To tie everything together, we’ll have an all-knowing class representing the complete world
of Mr. Nom, including the stains and Mr. Nom himself. All of this represents the model part of MVC.

The view in MVC will be the code that is responsible for rendering the world of Mr. Nom. We’ll have a
class or a method that takes the class for the world, reads its current state, and renders it to the screen. How it is
rendered does not concern the model classes, which is the most important lesson to take away from MVC. The
model classes are independent of everything, but the view classes and methods depend on the model classes.

Finally, we have the controller in MVC. It tells the model classes to change their state based on things
like user input or the time ticking away. The model classes provide methods to the controller (for example,
with instructions like “turn Mr. Nom to the left”), which the controller can then use to modify the state of the
model. We don’t have any code in the model classes that directly accesses things like the touchscreen or the
accelerometer. This way, we can keep the model classes clear of any external dependencies.

This may sound complicated, and you may be wondering why we do things this way. However, there
are a lot of benefits to this approach. We can implement all of our game logic without having to know about
graphics, audio, or input devices. We can modify the rendering of the game world without having to change
the model classes themselves. We could even go so far as to exchange a 2D world renderer with a 3D world
renderer. We can easily add support for new input devices by using a controller. All it does is translate input
events to method calls of the model classes. Want to turn Mr. Nom via the accelerometer? No problem—read
the accelerometer values in the controller and translate them to a “turn Mr. Nom left” or a “turn Mr. Nom
right” method call on the model of Mr. Nom. Want to add support for the Zeemote? No problem, just do
the same as in the case of the accelerometer! The best thing about using controllers is that we don’t have to
touch a single line of Mr. Nom’s code to make all of this happen.

Let’s start by defining Mr. Nom’s world. To do this, we’ll break away from the strict MVC pattern a
little and use our graphic assets to illustrate the basic ideas. This will also help us to implement the view
component later on (rendering Mr. Nom’s abstract world in pixels).

Figure 6-5 shows the game screen upon which the world of Mr. Nom is superimposed, in the form of a grid.

Chapter 6 ■ Mr. NoM INvades aNdroId

218

Notice that Mr. Nom’s world is confined to a grid of 10×13 cells. We address cells in a coordinate system,
with the origin in the upper-left corner at (0,0) and spanning to the bottom-right corner at (9,12). Any part of
Mr. Nom must be in one of these cells and, thus, have integer x and y coordinates within this world. The same
is true for the stains in this world. Each part of Mr. Nom fits into exactly one cell of 1×1 units. Note that the
type of units doesn’t matter—this is our own fantasy world free from the shackles of the SI system or pixels!

Mr. Nom can’t travel outside this small world. If he passes an edge, he’ll just come out the other end,
and all his parts will follow. (We have the same problem here on Earth by the way—go in any direction for
long enough and you’ll come back to your starting point.) Mr. Nom can also only advance cell by cell. All his
parts will always be at integer coordinates. He’ll never, for example, occupy two and a half cells.

 ■ Note as stated earlier, what we use here is not a strict MvC pattern. If you are interested in the real
definition of an MvC pattern, we suggest you read Design Patterns: Elements of Reusable Object-Oriented
Software by erich Gamm, richard helm, ralph Johnson, and John M. vlissides (a.k.a. the Gang of Four)
(addison-Wesley, 1994). In their book, the MvC pattern is known as the observer pattern.

Figure 6-5. Mr. Nom’s world superimposed onto our game screen

http://www.amazon.com/Erich-Gamma/e/B000AQ3QWI/ref=ntt_athr_dp_pel_1
http://www.amazon.com/Richard-Helm/e/B000AQ1ZP8/ref=ntt_athr_dp_pel_2
http://www.amazon.com/Ralph-Johnson/e/B000AQ6RMY/ref=ntt_athr_dp_pel_3
http://www.amazon.com/s/ref=ntt_athr_dp_sr_4?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=John M. Vlissides

Chapter 6 ■ Mr. NoM INvades aNdroId

219

The Stain Class
The simplest object in Mr. Nom’s world is a stain. It just sits in a cell of the world, waiting to be eaten. When
we designed Mr. Nom, we created three different visual representations of a stain. The type of a stain does
not make a difference in Mr. Nom’s world, but we’ll include it in our Stain class anyway. Listing 6-8 shows
the Stain class.

Listing 6-8. Stain.java

package com.badlogic.androidgames.mrnom;

public class Stain {
 public static final int TYPE_1 = 0;
 public static final int TYPE_2 = 1;
 public static final int TYPE_3 = 2;
 public int x, y;
 public int type;

 public Stain(int x, int y, int type) {
 this.x = x;
 this.y = y;
 this.type = type;
 }
}

The Stain class defines three public static constants that encode the type of a stain. Each Stain instance
has three members: x and y coordinates in Mr. Nom’s world and a type, which is one of the constants that
were defined previously. To make our code simple, we don’t include getters and setters, as is common
practice. We finish the class off with a nice constructor that allows us to instantiate a Stain instance easily.

One thing to notice is the lack of any connection to graphics, sound, or other classes. The Stain class
stands on its own, proudly encoding the attributes of a stain in Mr. Nom’s world.

The Snake and SnakePart Classes
Mr. Nom is like a moving chain, composed of interconnected parts that will move along when we pick one part
and drag it somewhere. Each part occupies a single cell in Mr. Nom’s world, much like a stain. In our model, we
do not distinguish between the head and tail parts, so we can have a single class that represents both types of
parts of Mr. Nom. Listing 6-9 shows the SnakePart class, which is used to define both parts of Mr. Nom.

Listing 6-9. SnakePart.java

package com.badlogic.androidgames.mrnom;

public class SnakePart {
 public int x, y;

 public SnakePart(int x, int y) {
 this.x = x;
 this.y = y;
 }
}

Chapter 6 ■ Mr. NoM INvades aNdroId

220

This is essentially the same as the Stain class—we just removed the type member. The first really
interesting class of our model of Mr. Nom’s world is the Snake class. Let’s think about what it has to be able to do:

•	 It must store the head and tail parts.

•	 It must know which way Mr. Nom is currently heading.

•	 It must be able to grow a new tail part when Mr. Nom eats a stain.

•	 It must be able to move by one cell in the current direction.

The first and second items are easy. We just need a list of SnakePart instances—the first part in that list
being the head and the other parts making up the tail. Mr. Nom can move up, down, left, and right. We can
encode that with some constants and store his current direction in a member of the Snake class.

The third item isn’t all that complicated either. We just add another SnakePart to the list of parts we
already have. The question is, at what position should we add that part? It may sound surprising, but we give
it the same position as the last part in the list. The reason for this becomes clearer when we look at how we
can implement the last item on the preceding list: moving Mr. Nom.

Figure 6-6 shows Mr. Nom in his initial configuration. He is composed of three parts: the head, at (5,6),
and two tail parts, at (5,7) and (5,8).

Figure 6-6. Mr. Nom in his initial configuration

Chapter 6 ■ Mr. NoM INvades aNdroId

221

The parts in the list are ordered, beginning with the head and ending at the last tail part. When Mr. Nom
advances by one cell, all the parts behind his head have to follow. However, Mr. Nom’s parts might not be
laid out in a straight line, as in Figure 6-6, so simply shifting all the parts in the direction Mr. Nom advances is
not enough. We have to do something a little more sophisticated.

We need to start at the last part in the list, as counterintuitive as that may sound. We move it to the
position of the part before it, and we repeat this for all other parts in the list, except for the head, as there’s no
part before it. In the case of the head, we check which direction Mr. Nom is currently heading and modify the
head’s position accordingly. Figure 6-7 illustrates this with a bit more complicated configuration of Mr. Nom.

This movement strategy works well with our eating strategy. When we add a new part to Mr. Nom, it will
stay at the same position as the part before it the next time Mr. Nom moves. Also, note that this will allow us
to implement wrapping Mr. Nom easily to the other side of the world if he passes one of the edges. We just
set the head’s position accordingly, and the rest is done automatically.

With all this information, we can now implement the Snake class representing Mr. Nom. Listing 6-10
shows the code.

Listing 6-10. Snake.java: Mr. Nom in code

package com.badlogic.androidgames.mrnom;

import java.util.ArrayList;
import java.util.List;

public class Snake {
 public static final int UP = 0;
 public static final int LEFT = 1;
 public static final int DOWN = 2;
 public static final int RIGHT = 3;

 public List<SnakePart> parts = new ArrayList<SnakePart>();
 public int direction;

Figure 6-7. Mr. Nom advancing and taking his tail with him

Chapter 6 ■ Mr. NoM INvades aNdroId

222

We start off by defining a couple of constants that encode the direction of Mr. Nom. Remember that Mr.
Nom can only turn left and right, so the way we define the constants’ values is critical. It will later allow us to
rotate the direction easily by plus and minus 90 degrees, just by incrementing and decrementing the current
direction of the constant by one.

Next, we define a list called parts that holds all the parts of Mr. Nom. The first item in that list is the
head, and the other items are the tail parts. The second member of the Snake class holds the direction in
which Mr. Nom is currently heading.

public Snake() {
 direction = UP;
 parts.add(new SnakePart(5, 6));
 parts.add(new SnakePart(5, 7));
 parts.add(new SnakePart(5, 8));
}

In the constructor, we set up Mr. Nom to be composed of his head and two additional tail parts,
positioned more or less in the middle of the world, as shown previously in Figure 6-6. We also set the
direction to Snake.UP so that Mr. Nom will advance upward by one cell the next time he’s asked to advance.

public void turnLeft() {
 direction += 1;
 if(direction > RIGHT)
 direction = UP;
}

public void turnRight() {
 direction -= 1;
 if(direction < UP)
 direction = RIGHT;
}

The methods turnLeft() and turnRight() just modify the direction member of the Snake class. For a
turn left, we increment it by one, and for a turn right, we decrement it by one. We also have to make sure that
we wrap Mr. Nom around if the direction value gets outside the range of the constants we defined earlier.

public void eat() {
 SnakePart end = parts.get(parts.size()-1);
 parts.add(new SnakePart(end.x, end.y));
}

Next up is the eat() method. All it does is add a new SnakePart to the end of the list. This new part will
have the same position as the current end part. The next time Mr. Nom advances, those two overlapping
parts will move apart, as discussed earlier.

public void advance() {
 SnakePart head = parts.get(0);

 int len = parts.size() - 1;
 for(int i = len; i > 0; i--) {
 SnakePart before = parts.get(i-1);
 SnakePart part = parts.get(i);
 part.x = before.x;

Chapter 6 ■ Mr. NoM INvades aNdroId

223

 part.y = before.y;
 }

 if(direction == UP)
 head.y -= 1;
 if(direction == LEFT)
 head.x -= 1;
 if(direction == DOWN)
 head.y += 1;
 if(direction == RIGHT)
 head.x += 1;

 if(head.x < 0)
 head.x = 9;
 if(head.x > 9)
 head.x = 0;
 if(head.y < 0)
 head.y = 12;
 if(head.y > 12)
 head.y = 0;
}

The next method, advance(), implements the logic illustrated in Figure 6-7. First, we move each part to
the position of the part before it, starting with the last part. We exclude the head from this mechanism. Then,
we move the head according to Mr. Nom’s current direction. Finally, we perform some checks to make sure
Mr. Nom doesn’t go outside his world. If that’s the case, we just wrap him around so that he comes out at the
other side of the world.

 public boolean checkBitten() {
 int len = parts.size();
 SnakePart head = parts.get(0);
 for(int i = 1; i < len; i++) {
 SnakePart part = parts.get(i);
 if(part.x == head.x && part.y == head.y)
 return true;
 }
 return false;
 }
}

The final method, checkBitten(), is a little helper method that checks if Mr. Nom has bitten his tail. All
it does is check that no tail part is at the same position as the head. If that’s the case, Mr. Nom will die and the
game will end.

The World Class
The last of our model classes is called World. The World class has several tasks to fulfill:

•	 Keeping track of Mr. Nom (in the form of a Snake instance) as well as the Stain
instance that dropped on the world. There will only ever be a single stain in our
world at one time.

Chapter 6 ■ Mr. NoM INvades aNdroId

224

•	 Providing a method that will update Mr. Nom in a time-based manner (for example,
he should advance by one cell every 0.5 seconds). This method will also check
whether Mr. Nom has eaten a stain or has bitten himself.

•	 Keeping track of the score; this is basically just the number of stains eaten so far
times 10.

•	 Increasing the speed of Mr. Nom after every ten stains he’s eaten. That will make the
game a little more challenging.

•	 Keeping track of whether Mr. Nom is still alive. We’ll use this to determine whether
the game is over later on.

•	 Creating a new stain after Mr. Nom eats the current one (a subtle but important and
surprisingly complex task).

There are only two items on this task list that we haven’t discussed yet: updating the world in a time-
based manner and placing a new stain.

Time-Based Movement of Mr. Nom
In Chapter 3, we talked about time-based movement. This basically means that we define velocities of all of
our game objects, measure the time that has passed since the last update (a.k.a. the delta time), and advance
the objects by multiplying their velocity by the delta time. In the example given in Chapter 3, we used
floating-point values to achieve this. Mr. Nom’s parts have integer positions, though, so we need to figure out
how to advance the objects in this scenario.

Let’s first define the velocity of Mr. Nom. The world of Mr. Nom has time, and we measure it in seconds.
Initially, Mr. Nom should advance by one cell every 0.5 seconds. All we need to do is keep track of how
much time has passed since we last advanced Mr. Nom. If that accumulated time goes over our 0.5-second
threshold, we call the Snake.advance() method and reset our time accumulator. Where do we get those
delta times from? Remember the Screen.update() method? It gets the frame delta time. We just pass that
on to the update() method of our World class, which will do the accumulation. To make the game more
challenging, we will decrease that threshold by 0.05 seconds each time Mr. Nom eats another ten stains. We
have to make sure, of course, that we don’t reach a threshold of 0, or else Mr. Nom would travel at infinite
speed—something Einstein wouldn’t take kindly to.

Placing Stains
The second issue we have to solve is how to place a new stain when Mr. Nom has eaten the current one.
It should appear in a random cell of the world. So, we could just instantiate a new Stain with a random
position, right? Sadly, it’s not that easy.

Imagine Mr. Nom taking up a considerable number of cells. There is a reasonable probability that the
stain would be placed in a cell that was already occupied by Mr. Nom, and that probability would increase
the bigger Mr. Nom got. Thus, we have to find a cell that is currently not occupied by Mr. Nom. Easy again,
right? Just iterate over all cells and use the first one that is not occupied by Mr. Nom.

Again, that’s a little suboptimal. If we started our search at the same position, the stain wouldn’t be
placed randomly. Instead, we’ll start at a random position in the world, scan all cells until we reach the end
of the world, and then scan all cells above the start position, if we haven’t found a free cell yet.

How do we check whether a cell is free? The naïve solution would be to go over all cells, take each cell’s
x and y coordinates, and check all the parts of Mr. Nom against those coordinates. We have 10 × 13 = 130
cells, and Mr. Nom can take up 55 cells. That would be 130 × 55 = 7,150 checks! Granted, most devices could
handle that, but we can do better.

http://dx.doi.org/10.1007/978-1-4842-0472-6_3
http://dx.doi.org/10.1007/978-1-4842-0472-6_3

Chapter 6 ■ Mr. NoM INvades aNdroId

225

We’ll create a two-dimensional array of Booleans, where each array element represents a cell in the
world. When we have to place a new stain, we first go through all parts of Mr. Nom and set those elements
that are occupied by a part in the array to true. We then simply choose a random position from which we
start scanning until we find a free cell in which we can place the new stain. With Mr. Nom being composed of
55 parts, it would take 130 + 55 = 185 checks. That’s a lot better!

Determining When the Game Is Over
There’s one last thing we have to think about: What if all of the cells are taken up by Mr. Nom? In that case,
the game would be over, as Mr. Nom would officially become the whole world. Given that we add 10 to the
score each time Mr. Nom eats a stain, the maximally achievable score is ((10 × 13) – 3) × 10 = 1,270 points
(remember, Mr. Nom starts off with three parts already).

Implementing the World Class
Phew, we have a lot of stuff to implement, so let’s get going. Listing 6-11 shows the code of the World class.

Listing 6-11. World.java

package com.badlogic.androidgames.mrnom;

import java.util.Random;

public class World {
 static final int WORLD_WIDTH = 10;
 static final int WORLD_HEIGHT = 13;
 static final int SCORE_INCREMENT = 10;
 static final float TICK_INITIAL = 0.5f;
 static final float TICK_DECREMENT = 0.05f;

 public Snake snake;
 public Stain stain;
 public boolean gameOver = false;;
 public int score = 0;

 boolean fields[][] = new boolean[WORLD_WIDTH][WORLD_HEIGHT];
 Random random = new Random();
 float tickTime = 0;
 float tick = TICK_INITIAL;

As always, we start off by defining a few constants—in this case, the world’s width and height in cells,
the value that we use to increment the score each time Mr. Nom eats a stain, the initial time interval used to
advance Mr. Nom (called a tick), and the value we decrement the tick by each time Mr. Nom has eaten ten
stains in order to speed up things a little.

Next, we have some public members that hold a Snake instance, a Stain instance, a Boolean that stores
whether the game is over, and the current score.

We define another four package private members: the 2D array we’ll use to place a new stain; an
instance of the Random class, through which we’ll produce random numbers to place the stain and generate
its type; the time accumulator variable, tickTime, to which we’ll add the frame delta time; and the current
duration of a tick, which defines how often we advance Mr. Nom.

Chapter 6 ■ Mr. NoM INvades aNdroId

226

public World() {
 snake = new Snake();
 placeStain();
}

In the constructor, we create an instance of the Snake class, which will have the initial configuration
shown in Figure 6-6. We also place the first random stain via the placeStain() method.

private void placeStain() {
 for (int x = 0; x < WORLD_WIDTH; x++) {
 for (int y = 0; y < WORLD_HEIGHT; y++) {
 fields[x][y] = false;
 }
 }

 int len = snake.parts.size();
 for (int i = 0; i < len; i++) {
 SnakePart part = snake.parts.get(i);
 fields[part.x][part.y] = true;
 }

 int stainX = random.nextInt(WORLD_WIDTH);
 int stainY = random.nextInt(WORLD_HEIGHT);
 while (true) {
 if (fields[stainX][stainY] == false)
 break;
 stainX += 1;
 if (stainX >= WORLD_WIDTH) {
 stainX = 0;
 stainY += 1;
 if (stainY >= WORLD_HEIGHT) {
 stainY = 0;
 }
 }
 }
 stain = new Stain(stainX, stainY, random.nextInt(3));
}

The placeStain() method implements the placement strategy discussed previously. We start off by
clearing the cell array. Next, we set all the cells occupied by parts of the snake to true. Finally, we scan the
array for a free cell starting at a random position. Once we have found a free cell, we create a Stain instance
with a random type. Note that if all cells are occupied by Mr. Nom, then the loop will never terminate. We’ll
make sure that will never happen in the next method.

public void update(float deltaTime) {
 if (gameOver)
 return;

 tickTime += deltaTime;

 while (tickTime > tick) {
 tickTime -= tick;

Chapter 6 ■ Mr. NoM INvades aNdroId

227

 snake.advance();
 if (snake.checkBitten()) {
 gameOver = true;
 return;
 }

 SnakePart head = snake.parts.get(0);
 if (head.x == stain.x && head.y == stain.y) {
 score += SCORE_INCREMENT;
 snake.eat();
 if (snake.parts.size() == WORLD_WIDTH * WORLD_HEIGHT) {
 gameOver = true;
 return;
 } else {
 placeStain();
 }

 if (score % 100 == 0 && tick - TICK_DECREMENT > 0) {
 tick -= TICK_DECREMENT;
 }
 }
 }
}
}

The update() method is responsible for updating the world and all the objects in it based on the
delta time we pass to it. This method will call each frame in the game screen so that the world is updated
constantly. We start off by checking whether the game is over. If that’s the case, then we don’t need to update
anything. Next, we add the delta time to our accumulator. The while loop will use up as many ticks that have
been accumulated (for example, when tickTime is 1.2 and one tick should take 0.5 seconds, we can update
the world twice, leaving 0.2 seconds in the accumulator). This is called a fixed-time-step simulation.

In each iteration, we first subtract the tick interval from the accumulator. Next, we tell Mr. Nom to
advance. We check if he has bitten himself and set the game-over flag if that’s the case. Finally, we check
whether Mr. Nom’s head is in the same cell as the stain. If that’s the case, we increment the score and tell
Mr. Nom to grow. Next, we check if Mr. Nom is composed of as many parts as there are cells in the world.
If that’s the case, the game is over and we return from the function. Otherwise, we place a new stain with
the placeStain() method. The last thing we do is check whether Mr. Nom has just eaten ten more stains. If
that’s the case, and our threshold is above zero, we decrease it by 0.05 seconds. The tick will be shorter and
thus will make Mr. Nom move faster.

This completes our set of model classes. The last thing we need to implement is the game screen!

The GameScreen Class
There’s only one more screen to implement. Let’s see what that screen does:

•	 As defined in Mr. Nom’s design in Chapter 3, the game screen can be in one of four
states: waiting for the user to confirm that he or she is ready, running the game, waiting
in a paused state, or waiting for the user to click a button in the game-over state.

•	 In the ready state, we simply ask the user to touch the screen to start the game.

http://dx.doi.org/10.1007/978-1-4842-0472-6_3

Chapter 6 ■ Mr. NoM INvades aNdroId

228

•	 In the running state, we update the world, render it, and also tell Mr. Nom to
turn left and right when the player presses one of the buttons at the bottom of
the screen.

•	 In the paused state, we simply show two options: one to resume the game and
one to quit it.

•	 In the game-over state, we tell the user that the game is over and provide a
button to touch so that he or she can get back to the main menu.

•	 For each state, we have different update() and present() methods to implement, as
each state does different things and shows a different UI.

•	 Once the game is over, we have to make sure that we store the score if it is a high
score.

That’s quite a bit of responsibility, which translates into more code than usual. Therefore, we’ll split
up the source listing of this class. Before we dive into the code, let’s lay out how we arrange the different UI
elements in each state. Figure 6-8 shows the four different states.

Note that we also render the score at the bottom of the screen, along with a line that separates Mr.
Nom’s world from the buttons at the bottom. The score is rendered with the same routine that we used in the
HighscoreScreen. Additionally, we center it horizontally, based on the score’s string width.

The last missing bit of information is how to render Mr. Nom’s world based on its model. That’s actually
pretty easy. Take a look at Figure 6-1 and Figure 6-5 again. Each cell is exactly 32×32 pixels in size. The stain
images are also 32×32 pixels in size, and so are the tail parts of Mr. Nom. The head images of Mr. Nom for all
directions are 42×42 pixels, so they don’t fit entirely into a single cell. That’s not a problem, though. All we need
to do to render Mr. Nom’s world is take each stain and snake part and multiply its world coordinates by 32 to
arrive at the object’s center in pixels on the screen—for example, a stain at (3,2) in world coordinates would
have its center at 96×64 on the screen. Based on these centers, all that’s left to do is to take the appropriate asset
and render it centered around those coordinates. Let’s get coding. Listing 6-12 shows the GameScreen class.

Figure 6-8. The game screen in its four states: ready, running, paused, and game over

Chapter 6 ■ Mr. NoM INvades aNdroId

229

Listing 6-12. GameScreen.java

package com.badlogic.androidgames.mrnom;

import java.util.List;

import android.graphics.Color;

import com.badlogic.androidgames.framework.Game;
import com.badlogic.androidgames.framework.Graphics;
import com.badlogic.androidgames.framework.Input.TouchEvent;
import com.badlogic.androidgames.framework.Pixmap;
import com.badlogic.androidgames.framework.Screen;

public class GameScreen extends Screen {
 enum GameState {
 Ready,
 Running,
 Paused,
 GameOver
 }

 GameState state = GameState.Ready;
 World world;
 int oldScore = 0;
 String score = "0";

We start off by defining an enumeration called GameState that encodes our four states (ready, running,
paused, and game over). Next, we define one member that holds the current state of the screen, another
member that holds the World instance, and two more members that hold the currently displayed score in
the forms of an integer and a string. The reason we have the last two members is that we don’t want to create
new strings constantly from the World.score member each time we draw the score. Instead, we’ll cache the
string and only create a new one when the score changes. That way, we play nice with the garbage collector.

public GameScreen(Game game) {
 super(game);
 world = new World();
}

The constructor calls the superclass constructor and creates a new World instance. The game screen will
be in the ready state after the constructor returns to the caller.

@Override
public void update(float deltaTime) {
 List<TouchEvent> touchEvents = game.getInput().getTouchEvents();
 game.getInput().getKeyEvents();

 if(state == GameState.Ready)
 updateReady(touchEvents);

Chapter 6 ■ Mr. NoM INvades aNdroId

230

 if(state == GameState.Running)
 updateRunning(touchEvents, deltaTime);
 if(state == GameState.Paused)
 updatePaused(touchEvents);
 if(state == GameState.GameOver)
 updateGameOver(touchEvents);
}

Next comes the screen’s update() method. All it does is fetch the TouchEvents and KeyEvents from the
input module and then delegate the update to one of the four update methods that we implement based on
the current state.

private void updateReady(List<TouchEvent> touchEvents) {
 if(touchEvents.size() > 0)
 state = GameState.Running;
}

The next method is called updateReady(). It will be called when the screen is in the ready state. All it
does is check if the screen was touched. If that’s the case, it changes the state to running.

private void updateRunning(List<TouchEvent> touchEvents, float deltaTime) {
 int len = touchEvents.size();
 for(int i = 0; i < len; i++) {
 TouchEvent event = touchEvents.get(i);
 if(event.type == TouchEvent.TOUCH_UP) {
 if(event.x < 64 && event.y < 64) {
 if(Settings.soundEnabled)
 Assets.click.play(1);
 state = GameState.Paused;
 return;
 }
 }
 if(event.type == TouchEvent.TOUCH_DOWN) {
 if(event.x < 64 && event.y > 416) {
 world.snake.turnLeft();
 }
 if(event.x > 256 && event.y > 416) {
 world.snake.turnRight();
 }
 }
 }

 world.update(deltaTime);
 if(world.gameOver) {
 if(Settings.soundEnabled)
 Assets.bitten.play(1);
 state = GameState.GameOver;
 }
 if(oldScore != world.score) {
 oldScore = world.score;
 score = "" + oldScore;
 if(Settings.soundEnabled)

Chapter 6 ■ Mr. NoM INvades aNdroId

231

 Assets.eat.play(1);
 }
}

The updateRunning() method first checks whether the Pause button in the top-left corner of the screen
was pressed. If that’s the case, it sets the state to paused. It then checks whether one of the controller buttons
at the bottom of the screen was pressed. Note that we don’t check for touch-up events here, but rather for
touch-down events. If either of the buttons was pressed, we tell the Snake instance of the world to turn left or
right. That’s right—the updateRunning() method contains the controller code of our MVC schema! After all
the touch events have been checked, we tell the world to update itself with the given delta time. If the world
signals that the game is over, we change the state accordingly and also play the bitten.ogg sound. Next, we
check if the old score we have cached is different from the score that the world stores. If it is, then we know
two things: Mr. Nom has eaten a stain, and the score string must be changed. In that case, we play the eat.
ogg sound. And that’s all there is to the running-state update.

private void updatePaused(List<TouchEvent> touchEvents) {
 int len = touchEvents.size();
 for(int i = 0; i < len; i++) {
 TouchEvent event = touchEvents.get(i);
 if(event.type == TouchEvent.TOUCH_UP) {
 if(event.x > 80 && event.x <= 240) {
 if(event.y > 100 && event.y <= 148) {
 if(Settings.soundEnabled)
 Assets.click.play(1);
 state = GameState.Running;
 return;
 }
 if(event.y > 148 && event.y < 196) {
 if(Settings.soundEnabled)
 Assets.click.play(1);
 game.setScreen(new MainMenuScreen(game));
 return;
 }
 }
 }
 }
}

The updatePaused() method just checks whether one of the menu options was touched and changes
the state accordingly.

private void updateGameOver(List<TouchEvent> touchEvents) {
 int len = touchEvents.size();
 for(int i = 0; i < len; i++) {
 TouchEvent event = touchEvents.get(i);
 if(event.type == TouchEvent.TOUCH_UP) {
 if(event.x >= 128 && event.x <= 192 &&
 event.y >= 200 && event.y <= 264) {
 if(Settings.soundEnabled)
 Assets.click.play(1);
 game.setScreen(new MainMenuScreen(game));

Chapter 6 ■ Mr. NoM INvades aNdroId

232

 return;
 }
 }
 }
}

The updateGameOver() method also checks if the button in the middle of the screen was pressed. If it
has been pressed, then we initiate a screen transition back to the main menu screen.

@Override
public void present(float deltaTime) {
 Graphics g = game.getGraphics();

 g.drawPixmap(Assets.background, 0, 0);
 drawWorld(world);
 if(state == GameState.Ready)
 drawReadyUI();
 if(state == GameState.Running)
 drawRunningUI();
 if(state == GameState.Paused)
 drawPausedUI();
 if(state == GameState.GameOver)
 drawGameOverUI();

 drawText(g, score, g.getWidth() / 2 - score.length()*20 / 2, g.getHeight() - 42);
}

Next up are the rendering methods. The present() method first draws the background image, as that is
needed in all states. Next, it calls the respective drawing method for the state we are in. Finally, it renders Mr.
Nom’s world and draws the score at the bottom-center of the screen.

private void drawWorld(World world) {
 Graphics g = game.getGraphics();
 Snake snake = world.snake;
 SnakePart head = snake.parts.get(0);
 Stain stain = world.stain;

 Pixmap stainPixmap = null;
 if(stain.type == Stain.TYPE_1)
 stainPixmap = Assets.stain1;
 if(stain.type == Stain.TYPE_2)
 stainPixmap = Assets.stain2;
 if(stain.type == Stain.TYPE_3)
 stainPixmap = Assets.stain3;
 int x = stain.x * 32;
 int y = stain.y * 32;
 g.drawPixmap(stainPixmap, x, y);

 int len = snake.parts.size();
 for(int i = 1; i < len; i++) {
 SnakePart part = snake.parts.get(i);
 x = part.x * 32;

Chapter 6 ■ Mr. NoM INvades aNdroId

233

 y = part.y * 32;
 g.drawPixmap(Assets.tail, x, y);
 }

 Pixmap headPixmap = null;
 if(snake.direction == Snake.UP)
 headPixmap = Assets.headUp;
 if(snake.direction == Snake.LEFT)
 headPixmap = Assets.headLeft;
 if(snake.direction == Snake.DOWN)
 headPixmap = Assets.headDown;
 if(snake.direction == Snake.RIGHT)
 headPixmap = Assets.headRight;
 x = head.x * 32 + 16;
 y = head.y * 32 + 16;
 g.drawPixmap(headPixmap, x - headPixmap.getWidth() / 2, y - headPixmap.getHeight() / 2);
}

The drawWorld() method draws the world, as we just discussed. It starts off by choosing the pixmap to use
for rendering the stain, and then it draws it and centers it horizontally at its screen position. Next, we render all
the tail parts of Mr. Nom, which is pretty simple. Finally, we choose which pixmap of the head to use, based on
Mr. Nom’s direction, and draw that pixmap at the position of the head in the screen coordinates. As with the
other objects, we also center the image around that position. And that’s the code of the view in MVC.

private void drawReadyUI() {
 Graphics g = game.getGraphics();

 g.drawPixmap(Assets.ready, 47, 100);
 g.drawLine(0, 416, 480, 416, Color.BLACK);
}

private void drawRunningUI() {
 Graphics g = game.getGraphics();

 g.drawPixmap(Assets.buttons, 0, 0, 64, 128, 64, 64);
 g.drawLine(0, 416, 480, 416, Color.BLACK);
 g.drawPixmap(Assets.buttons, 0, 416, 64, 64, 64, 64);
 g.drawPixmap(Assets.buttons, 256, 416, 0, 64, 64, 64);
}

private void drawPausedUI() {
 Graphics g = game.getGraphics();

 g.drawPixmap(Assets.pause, 80, 100);
 g.drawLine(0, 416, 480, 416, Color.BLACK);
}

private void drawGameOverUI() {
 Graphics g = game.getGraphics();

 g.drawPixmap(Assets.gameOver, 62, 100);
 g.drawPixmap(Assets.buttons, 128, 200, 0, 128, 64, 64);

Chapter 6 ■ Mr. NoM INvades aNdroId

234

 g.drawLine(0, 416, 480, 416, Color.BLACK);
}

public void drawText(Graphics g, String line, int x, int y) {
 int len = line.length();
 for (int i = 0; i < len; i++) {
 char character = line.charAt(i);

 if (character == ' ') {
 x += 20;
 continue;
 }

 int srcX = 0;
 int srcWidth = 0;
 if (character == '.') {
 srcX = 200;
 srcWidth = 10;
 } else {
 srcX = (character - '0') * 20;
 srcWidth = 20;
 }

 g.drawPixmap(Assets.numbers, x, y, srcX, 0, srcWidth, 32);
 x += srcWidth;
 }
}

The methods drawReadUI(), drawRunningUI(), drawPausedUI(), and drawGameOverUI() are nothing
new. They perform the same old UI rendering as always based on the coordinates shown in Figure 6-8. The
drawText() method is the same as the one in HighscoreScreen, so we won’t discuss that one either.

 @Override
 public void pause() {
 if(state == GameState.Running)
 state = GameState.Paused;

 if(world.gameOver) {
 Settings.addScore(world.score);
 Settings.save(game.getFileIO());
 }
 }

Chapter 6 ■ Mr. NoM INvades aNdroId

235

 @Override
 public void resume() {

 }

 @Override
 public void dispose() {

 }
}

Finally, there’s one last vital method, pause(), which gets called when the activity is paused or the game
screen is replaced by another screen. That’s the perfect place to save our settings. First, we set the state of the
game to paused. If the paused() method gets called because of the activity being paused, this will guarantee
that the user will be asked to resume the game when he or she returns to it. That’s good behavior, as it would
be stressful to pick up immediately from where one left the game. Next, we check whether the game screen
is in a game-over state. If that’s the case, we add the score the player achieved to the high scores (or not,
depending on its value) and save all the settings to the external storage.

And that’s it. We’ve written a full-fledged game for Android from scratch! You can be proud of yourself,
as you’ve conquered all the necessary topics to create almost any game you like. From here on in, it’s mostly
just cosmetics.

Summary
In this chapter, we implemented a complete game on top of our framework with all the bells and whistles
(minus music). You learned why it makes sense to separate the model from the view and the controller, and
you learned that you don’t need to define your game world in terms of pixels. We could take this code and
replace the rendering portions with OpenGL ES, making Mr. Nom go 3D. We could also spice up the current
renderer by adding animations to Mr. Nom, adding in some color, adding new game mechanics, and so on.
We have just scratched the surface of the possibilities, however.

Before continuing with the book, we suggest taking the game code and playing around with it. Add
some new game modes, power-ups, and enemies—anything you can think of.

Once you come back, in the next chapter, you’ll beef up your knowledge of graphics programming to
make your games look a bit fancier, and you’ll also take your first steps into the third dimension!

237© Mario Zechner, J. F. DiMarzio and Robert Green 2016
M. Zechner et al., Beginning Android Games, DOI 10.1007/978-1-4842-0472-6_7

CHAPTER 7

OpenGL ES: A Gentle Introduction

Mr. Nom was a great success. Because o its solid initial design and game framework, implementing Mr. Nom
was a breeze for us. Best of all, the game runs smoothly even on low-end devices. Of course, Mr. Nom is not a
very complex or graphically intense game, so using the Canvas API for rendering proved to be a good idea.

However, when you want to do something more complex, you will hit a wall: Canvas just can’t keep
up with the visual complexity of such a game. And if you want to go fancy-pants 3D, Canvas won’t help you
either. So . . . what can you do?

This is where OpenGL ES comes to the rescue. In this chapter, we’ll first look briefly at what OpenGL ES
actually is and does. We’ll then focus on using OpenGL ES for 2D graphics without having to dive into the more
mathematically complex realms of using the API for 3D graphics (we’ll get to that in a later chapter). We’ll take
baby steps at first, as OpenGL ES can get quite complicated. Are you ready to get introduced to OpenGL ES?

What Is OpenGL ES and Why Should I Care?
OpenGL ES is an industry standard for (3D) graphics programming. It is especially targeted at mobile and
embedded devices. It is maintained by the Khronos Group, which is an industry consortium whose members
include, among others, ATI, NVIDIA, and Intel; together, these companies define and extend the standard.

Speaking of standards, there are currently six incremental versions of OpenGL ES: 1.0, 1.1, 2.0, 3.0, 3.1,
and 3.2. Even though Android Nougat was just released and supports all of these versions, we are concerned
with Open ES 1.0 in this book because it gives us the most compatibility without worrying about support. Many
development houses, especially those that focus on games for multiple platforms, are still writing for OpenGL
ES 1.0. This is because of its simplicity, flexibility, and standard implementation. All Android devices support
OpenGL ES 1.0, and most also support version 2.0 (and any device after JellyBean supports OpenGL ES 3.0.
OpenGL ES 2.0, however, breaks compatibility with the 1.x versions. You can use either 1.x or 2.0, but not both
at the same time. The reason for this is that the 1.x versions use a programming model called fixed-function
pipeline, while versions 2.0 and up let you programmatically define parts of the rendering pipeline via shaders.

 ■ Note The emulator supports all versions of OpenGL ES. However, the emulation is not perfect. Also, while
OpenGL ES is a standard, different manufacturers interpret it differently, and performance across devices varies
greatly, so make sure to test on a variety of devices to ensure compatibility. We’ll devise a couple of helpful
classes that will work on any device.

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

238

OpenGL ES is an API that comes in the form of a set of C header files provided by the Khronos Group,
along with a very detailed specification of how the API defined in those headers should behave. This
includes things such as how pixels and lines have to be rendered. Hardware manufacturers then take this
specification and implement it for their GPUs on top of the GPU drivers. You can find all the specifications
and more at http://www.khronos.org/opengles.

The quality of these implementations varies slightly: some companies strictly adhere to the standard
(PowerVR), while others seem to have difficulty sticking to it. This can sometimes result in GPU-dependent bugs
in the implementation that have nothing to do with Android itself, but rather with the hardware drivers provided
by the manufacturers. We’ll point out any device-specific issues for you along your journey into OpenGL ES land.

 ■ Note OpenGL ES is more or less a sibling of the more feature-rich desktop OpenGL standard. It deviates from
the latter in that some of the functionality is reduced or completely removed. nevertheless, it is possible to write an
application that can run with both specifications, which is great if you want to port your game to your desktop as well.

So, what does OpenGL ES actually do? The short answer is that it’s a lean and mean triangle-rendering
machine. The long answer is a little bit more involved.

The Programming Model: An Analogy
Generally speaking, OpenGL ES is a 3D graphics programming API. As such, it has a pretty nice and easy-to-
understand programming model that we can illustrate with a simple analogy.

Think of OpenGL ES as working like a camera. To take a picture, you have to go to the scene you want to
photograph. Your scene is composed of objects—say, a table with more objects on it. They all have a position
and orientation relative to your camera as well as different materials and textures. Glass is translucent and
reflective; a table is probably made out of wood; a magazine has the latest photo of a politician on it; and so
on. Some of the objects might even move around (for example, a fruit fly). Your camera also has properties,
such as focal length, field of view, image resolution, size of the photo that will be taken, and a unique position
and orientation within the world (relative to some origin). Even if both the objects and the camera are moving,
when you press the shutter release, you catch a still image of the scene (for now, we’ll neglect the shutter speed,
which might cause a blurry image). For that infinitely small moment, everything stands still and is well defined,
and the picture reflects exactly all those configurations of position, orientation, texture, materials, and lighting.
Figure 7-1 shows an abstract scene with a camera, light, and three objects with different materials.

http://www.khronos.org/opengles

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

239

Each object has a position and orientation relative to the scene’s origin. The camera, indicated by the eye,
also has a position in relation to the scene’s origin. The pyramid in Figure 7-1 is the so-called view volume or
view frustum, which shows how much of the scene the camera captures and how the camera is oriented. The
little white ball with the rays is the light source in the scene, which also has a position relative to the origin.

We can directly map this scene to OpenGL ES, but to do so we need to define the following:

•	 Objects (a.k.a. models): These are generally composed of four sets of attributes:
geometry, color, texture, and material. The geometry is specified as a set of triangles.
Each triangle is composed of three points in 3D space, so we have x, y, and z
coordinates defined relative to the coordinate system origin, as shown in Figure 7-1.
Note that the z axis points toward us. The color is usually specified as an RGB triple,
which we are used to already. Textures and materials are a little bit more involved.
We’ll get to those later on.

•	 Lights: OpenGL ES offers a couple different light types with various attributes. They
are just mathematical objects with positions and/or directions in 3D space, plus
attributes such as color.

Figure 7-1. An abstract scene

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

240

•	 Camera: This is also a mathematical object that has a position and orientation in
3D space. Additionally, it has parameters that govern how much of the image we
see, similar to a real camera. All these things together define a view volume or view
frustum (indicated by the pyramid with the top cut off in Figure 7-1). Anything inside
this pyramid can be seen by the camera; anything outside will not make it into the
final picture.

•	 Viewport: This defines the size and resolution of the final image. Think of it as the
type of film you put into your analog camera or the image resolution you get for
pictures taken with your digital camera.

Given all this, OpenGL ES can construct a 2D bitmap of our scene from the camera’s point of view.
Notice that we define everything in 3D space. So, how can OpenGL ES map that to two dimensions?

Projections
This 2D mapping is done via something called projections. We already mentioned that OpenGL ES is mainly
concerned with triangles. A single triangle has three points defined in 3D space. To render such a triangle
to the framebuffer, OpenGL ES needs to know the coordinates of these 3D points within the pixel-based
coordinate system of the framebuffer. Once it knows those three corner-point coordinates, it can simply
draw the pixels in the framebuffer that are inside the triangle. We could even write our own little OpenGL ES
implementation by projecting 3D points to 2D and simply drawing lines between them via the Canvas.

There are two kinds of projections that are commonly used in 3D graphics:

•	 Parallel (or orthographic) projection: If you’ve ever played with a CAD application,
you might already know about this. A parallel projection doesn’t care how far an
object is away from the camera; the object will always have the same size in the final
image. This type of projection is typically used for rendering 2D graphics in OpenGL
ES.

•	 Perspective projection: Your eyes use this type of projection every day. Objects farther
away from you appear smaller on your retina. Perspective projection is typically used
when we do 3D graphics with OpenGL ES.

In both cases, you need something called a projection plane, which is nearly exactly the same as your
retina—it’s where the light is actually registered to form the final image. While a mathematical plane is
infinite in terms of area, our retina is limited. Our OpenGL ES “retina” is equal to the rectangle at the top
of the view frustum seen in Figure 7-1. This part of the view frustum is where OpenGL ES will project the
points. This area is called the near clipping plane, and it has its own little 2D coordinate system. Figure
7-2 shows that near clipping plane again, from the camera’s point of view, with the coordinate system
superimposed.

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

241

Note that the coordinate system is by no means fixed. We can manipulate it so that we can work in any
projected coordinate system we like; for example, we could instruct OpenGL ES to let the origin be in the
bottom-left corner, and let the visible area of the “retina” be 480 units on the x axis, and 320 units on the y axis.
Sounds familiar? Yes, OpenGL ES allows you to specify any coordinate system you want for the projected points.

Once we specify our view frustum, OpenGL ES then takes each point of a triangle and shoots a ray from it
through the projection plane. The difference between a parallel projection and a perspective projection is how the
directions of those rays are constructed. Figure 7-3 shows the difference between the two, viewed from above.

Figure 7-2. The near clipping plane (also known as the projection plane) and its coordinate system

Figure 7-3. A perspective projection (left) and a parallel projection (right)

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

242

A perspective projection shoots the rays from the triangle points through the camera (or eye, in this
case). Objects further away will thus appear smaller on the projection plane. When we use a parallel
projection, the rays are shot perpendicular to the projection plane. In this scenario, an object will maintain
its size on the projection plane no matter how far away it is.

Our projection plane is called a near clipping plane in OpenGL ES lingo, as pointed out earlier. All of
the sides of the view frustum have similar names. The one farthest away from the camera is called the far
clipping plane. The others are called the left, right, top, and bottom clipping planes. Anything outside or
behind those planes will not be rendered. Objects that are partially within the view frustum will be clipped
from these planes, meaning that the parts outside the view frustum get cut away. That’s where the name
clipping plane comes from.

You might be wondering why the view frustum of the parallel projection case in Figure 7-3 is
rectangular. It turns out that the projection is actually governed by how we define our clipping planes. In the
case of a perspective projection, the left, right, top, and bottom clipping planes are not perpendicular to the
near and far planes (see Figure 7-3, which shows only the left and right clipping planes). In the case of the
parallel projection, these planes are perpendicular, which tells OpenGL ES to render everything at the same
size no matter how far away it is from the camera.

Normalized Device Space and the Viewport
Once OpenGL ES has figured out the projected points of a triangle on the near clipping plane, it can finally
translate them to pixel coordinates in the framebuffer. For this, it must first transform the points to so-
called normalized device space. This equals the coordinate system depicted in Figure 7-2. Based on these
normalized device space coordinates, OpenGL ES calculates the final framebuffer pixel coordinates via the
following simple formulas:

pixelX = (norX + 1) / (viewportWidth + 1) + norX
pixelY = (norY + 1) / (viewportHeight +1) + norY

where norX and norY are the normalized device coordinates of a 3D point, and viewportWidth and
viewportHeight are the size of the viewport in pixels on the x and y axes. We don’t have to worry about the
normalized device coordinates all that much, as OpenGL will do the transformation for us automatically.
What we do care about, though, are the viewport and the view frustum. Later, you will see how to specify a
view frustum, and thus a projection.

Matrices
OpenGL ES expresses projections in the form of matrices. We don’t need to know the internals of matrices.
We only need to know what they do to the points we define in our scene. Here’s the executive summary of
matrices:

•	 A matrix encodes transformations to be applied to a point. A transformation can be
a projection, a translation (in which the point is moved around), a rotation around
another point and axis, or a scale, among other things.

•	 By multiplying such a matrix with a point, we apply the transformation to the point.
For example, multiplying a point with a matrix that encodes a translation by 10
units on the x axis will move the point 10 units on the x axis and thereby modify its
coordinates.

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

243

•	 We can concatenate transformations stored in separate matrices into a single matrix
by multiplying the matrices. When we multiply this single concatenated matrix with
a point, all the transformations stored in that matrix will be applied to that point. The
order in which the transformations are applied is dependent on the order in which
we multiplied the matrices.

•	 There’s a special matrix called an identity matrix. If we multiply a matrix or a point with
it, nothing will happen. Think of multiplying a point or matrix by an identity matrix as
multiplying a number by 1. It simply has no effect. The relevance of the identity matrix
will become clear once you learn how OpenGL ES handles matrices (see the section
“Matrix Modes and Active Matrices”)—a classic chicken and egg problem.

 ■ Note When we talk about points in this context, we actually mean 3d vectors.

OpenGL ES has three different matrices that it applies to the points of our models:

•	 Model-view matrix: We can use this matrix to move, rotate, or scale the points of our
triangles (this is the model part of the model-view matrix). This matrix is also used to
specify the position and orientation of our camera (this is the view part).

•	 Projection matrix: The name says it all—this matrix encodes a projection, and thus
the view frustum of our camera.

•	 Texture matrix: This matrix allows us to manipulate texture coordinates (which we’ll
discuss later). However, we’ll avoid using this matrix in this book since this part of
OpenGL ES is broken on a couple of devices thanks to buggy drivers.

The Rendering Pipeline
OpenGL ES keeps track of these three matrices. Each time we set one of the matrices, OpenGL ES will
remember it until we change the matrix again. In OpenGL ES speak, this is called a state. OpenGL keeps track
of more than just the matrix states, though; it also keeps track of whether we want to alpha-blend triangles,
whether we want lighting to be taken into account, which texture should be applied to our geometry, and so
on. In fact, OpenGL ES is one huge state machine; we set its current state, feed it the geometries of our objects,
and tell it to render an image for us. Let’s see how a triangle passes through this mighty triangle-rendering
machine. Figure 7-4 shows a very high-level, simplified view of the OpenGL ES pipeline.

Figure 7-4. The way of the triangle

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

244

The way of a triangle through this pipeline looks as follows:

 1. Our brave triangle is first transformed by the model-view matrix. This means that
all its points are multiplied with this matrix. This multiplication will effectively
move the triangle’s points around in the world.

 2. The resulting output is then multiplied by the projection matrix, effectively
transforming the 3D points onto the 2D projection plane.

 3. In between these two steps (or parallel to them), the currently set lights and
materials are also applied to our triangle, giving it its color.

 4. Once all that is done, the projected triangle is clipped to our “retina” and
transformed to framebuffer coordinates by applying the viewport transformation.

 5. As a final step, OpenGL fills in the pixels of the triangle based on the colors from
the lighting stage, textures to be applied to the triangle, and the blending state in
which each pixel of the triangle might or might not be combined with the pixel in
the framebuffer.

All you need to learn is how to throw geometry and textures at OpenGL ES and how to set the states
used by each of the preceding steps. Before you can do that, you need to see how Android grants you access
to OpenGL ES.

 ■ Note While the high-level description of the OpenGL ES pipeline is mostly correct, it is heavily simplified
and leaves out some details that will become important in a later chapter. Another thing to note is that when
OpenGL ES performs projections, it doesn’t actually project onto a 2d coordinate system; instead, it projects into
something called a homogenous coordinate system, which is actually four dimensional. This is a very involved
mathematical topic, so for the sake of simplicity, we’ll just stick to the simplified premise that OpenGL ES
projects to 2d coordinates.

Before We Begin
Throughout the rest of this chapter, we’ll provide many brief examples, as we did in Chapter 4 when we
discussed Android API basics. We’ll use the same starter class that we did in Chapter 4, which shows you
a list of starter activities you can start. The only things that will change are the names of the activities you
instantiate via reflection and the package in which they are located. All the examples in the rest of this
chapter will be in the package com.badlogic.androidgames.glbasics. The rest of the code will stay the
same. Your new starter activity will be called GLBasicsStarter. You will also copy over all the source code
from Chapter 5, namely the com.badlogic.androidgames.framework package and all its subpackages. In
this chapter, you will write some new framework and helper classes, which will go in the com.badlogic.
androidgames.framework package and subpackages.

We also have a manifest file again. As each of the following examples will be an activity, we also have
to make sure each of them has an entry in the manifest. All the examples will use a fixed orientation (either
portrait or landscape, depending on the example). It’s pretty much the exact same setup as the one we used
in Chapter 4.

With that out of our way, let the fun begin!

http://dx.doi.org/10.1007/978-1-4842-0472-6_4
http://dx.doi.org/10.1007/978-1-4842-0472-6_4
http://dx.doi.org/10.1007/978-1-4842-0472-6_5
http://dx.doi.org/10.1007/978-1-4842-0472-6_4

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

245

GLSurfaceView: Making Things Easy Since 2008
The first thing we need is some type of View that will allow us to draw via OpenGL ES. Luckily, there’s such a
View in the Android API. It’s called GLSurfaceView, and it’s a descendent of the SurfaceView class, which we
already used for drawing the world of Mr. Nom.

We also need a separate main loop thread again so that we don’t bog down the UI thread. Surprise:
GLSurfaceView already sets up such a thread for us! All we need to do is implement a listener interface called
GLSurfaceView.Renderer and register it with the GLSurfaceView. The interface has three methods:

interface Renderer {
 public void onSurfaceCreated(GL10 gl, EGLConfig config);

 public void onSurfaceChanged(GL10 gl, int width, int height);

 public void onDrawFrame(GL10 gl);
}

The onSurfaceCreated() method is called each time the GLSurfaceView surface is created. This
happens the first time we fire up the activity and each time we come back to the activity from a paused
state. The method takes two parameters: a GL10 instance and an EGLConfig. The GL10 instance allows us
to issue commands to OpenGL ES. The EGLConfig instance just tells us about the attributes of the surface,
such as the color, depth, and so on. We usually ignore it. We will set up our geometries and textures in the
onSurfaceCreated() method.

The onSurfaceChanged() method is called each time the surface is resized. We get the new width and height
of the surface in pixels as parameters, along with a GL10 instance if we want to issue OpenGL ES commands.

The onDrawFrame() method is where the fun happens. It is similar in spirit to our Screen.render()
method, which gets called as often as possible by the rendering thread that the GLSurfaceView sets up for us.
In this method, we perform all our rendering.

Besides registering a Renderer listener, we also have to call GLSurfaceView.onPause()/onResume() in
our activity’s onPause()/onResume() methods. The reason for this is simple. The GLSurfaceView will start up
the rendering thread in its onResume() method and tear it down in its onPause()method. This means that
our listener will not be called while our activity is paused, since the rendering thread that calls our listener
will also be paused.

 ■ Note Actually, EGL is responsible for context and surface creation and destruction. EGL is another Khronos Group
standard; it defines how an operating system’s uI works together with OpenGL ES and how the operating system
grants OpenGL ES access to the underlying graphics hardware. This includes surface creation as well as context
management. Since GLSurfaceView handles all the EGL stuff for us, we can safely ignore it in almost all cases.

Following tradition, let’s write a small example that will clear the screen with a random color each
frame. Listing 7-1 shows the code. The listing is split up, with comments intermingled.

Listing 7-1. GLSurfaceViewTest.java: Screen-clearing madness

package com.badlogic.androidgames.glbasics;

import java.util.Random;

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

246

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.app.Activity;
import android.opengl.GLSurfaceView;
import android.opengl.GLSurfaceView.Renderer;
import android.os.Bundle;
import android.util.Log;
import android.view.Window;
import android.view.WindowManager;

public class GLSurfaceViewTest extends Activity {
 GLSurfaceView glView;

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 requestWindowFeature(Window.FEATURE_NO_TITLE);
 getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
 WindowManager.LayoutParams.FLAG_FULLSCREEN);
 glView = new GLSurfaceView(this);
 glView.setRenderer(new SimpleRenderer());
 setContentView(glView);
 }

We keep a reference to a GLSurfaceView instance as a member of the class. In the onCreate() method,
we make our application go full-screen, create the GLSurfaceView, set our Renderer implementation, and
make the GLSurfaceView the content view of our activity.

@Override
public void onResume() {
 super.onResume();
 glView.onResume();
}

 @Override
 public void onPause() {
 super.onPause();
 glView.onPause();
 }

In the onResume() and onPause() methods, we call the supermethods as well as the respective
GLSurfaceView methods. These will start up and tear down the rendering thread of the GLSurfaceView,
which in turn will trigger the callback methods of our Renderer implementation at appropriate times.

 static class SimpleRenderer implements Renderer {
 Random rand = new Random();

 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 Log.d("GLSurfaceViewTest", "surface created");
 }

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

247

 public void onSurfaceChanged(GL10 gl, int width, int height) {
 Log.d("GLSurfaceViewTest", "surface changed: " + width + "x"
 + height);
 }

 public void onDrawFrame(GL10 gl) {
 gl.glClearColor(rand.nextFloat(), rand.nextFloat(),
 rand.nextFloat(), 1);
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
 }
 }
}

The final piece of the code is our Renderer implementation. It just logs some information in the
onSurfaceCreated() and onSurfaceChanged() methods. The really interesting part is the onDrawFrame()
method.

As stated earlier, the GL10 instance gives us access to the OpenGL ES API. The 10 in GL10 indicates that it
offers us all the functions defined in the OpenGL ES 1.0 standard. For now, we can be happy with that. All the
methods of that class map to a corresponding C function, as defined in the standard. Each method begins
with the prefix gl, an old tradition of OpenGL ES.

The first OpenGL ES method we call is glClearColor(). You probably already know what that will do. It
sets the color to be used when we issue a command to clear the screen. Colors in OpenGL ES are almost always
RGBA, where each component has a range between 0 and 1. There are ways to define a color in, say, RGB565,
but for now, let’s stick to the floating-point representation. We could set the color used for clearing only once
and OpenGL ES would remember it. The color we set with glClearColor() is one of OpenGL ES’s states.

The next call actually clears the screen with the clear color we just specified. The method glClear()
takes a single argument that specifies which buffer to clear. Besides the framebuffer, OpenGL has a few more
buffers it works with. You’ll get to know them in Chapter 10, but for now, all we care about is the framebuffer
that holds our pixels, which OpenGL ES calls the color buffer. To tell OpenGL ES that we want to clear that
exact buffer, we specify the constant GL10.GL_COLOR_BUFFER_BIT.

OpenGL ES has a lot of constants, which are all defined as static public members of the GL10 interface.
Like the methods, each constant has the prefix GL_.

So, that was our first OpenGL ES application. We’ll spare you the impressive screenshot, since you
probably know what it looks like.

 ■ Note Thou shalt never call OpenGL ES from another thread! First and last commandment! The reason is
that OpenGL ES is designed to be used in single-threaded environments only, and it is not thread-safe. It can
be made to work somewhat on multiple threads, but many drivers have problems with this, and there’s no real
benefit to doing so.

GLGame: Implementing the Game Interface
In the previous chapter, we implemented the AndroidGame class, which ties together all the submodules
for audio, file I/O, graphics, and user input handling. We want to reuse most of this for our upcoming 2D
OpenGL ES game, so let’s implement a new class called GLGame that implements the game interface we
defined earlier, a GLSurfaceView, and a Renderer.

http://dx.doi.org/10.1007/978-1-4842-0472-6_10

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

248

The first thing you will notice is that you can’t possibly implement the graphics interface with your
current knowledge of OpenGL ES. Here’s a surprise: you won’t implement it. OpenGL does not lend
itself well to the programming model of your graphics interface; instead, we’ll implement a new class,
GLGraphics, which will keep track of the GL10 instance we get from the GLSurfaceView. Listing 7-2 shows
the code.

Listing 7-2. GLGraphics.java: Keeping track of the GLSurfaceView and the GLES20 instances

package com.badlogic.androidgames.framework.impl;

import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView;

public class GLGraphics {
 GLSurfaceView glView;
 GL10 gl;

 GLGraphics(GLSurfaceView glView) {
 this.glView = glView;
 }

 public GL10 getGL() {
 return gl;
 }

 void setGL(GL10 gl) {
 this.gl = gl;
 }

 public int getWidth() {
 return glView.getWidth();
 }

 public int getHeight() {
 return glView.getHeight();
 }
}

This class has just a few getters and setters. Note that we will use this class in the rendering thread set up by
the GLSurfaceView. As such, it might be problematic to call methods of a View that lives mostly on the UI thread.
In this case, it’s OK, as we only query for the GLSurfaceView’s width and height, and so we get away with it.

The GLGame class is a bit more involved. It borrows most of its code from the AndroidGame class. The
synchronization between the rendering and UI threads is a little bit more complex. Let’s have a look at it in
Listing 7-3.

Listing 7-3. GLGame.java: The mighty OpenGL ES game implementation

package com.badlogic.androidgames.framework.impl;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

249

import android.app.Activity;
import android.content.Context;
import android.opengl.GLSurfaceView;
import android.opengl.GLSurfaceView.Renderer;
import android.os.Bundle;
import android.view.Window;
import android.view.WindowManager;

import com.badlogic.androidgames.framework.Audio;
import com.badlogic.androidgames.framework.FileIO;
import com.badlogic.androidgames.framework.Game;
import com.badlogic.androidgames.framework.Graphics;
import com.badlogic.androidgames.framework.Input;
import com.badlogic.androidgames.framework.Screen;

public abstract class GLGame extends Activity implements Game, Renderer {
 enum GLGameState {
 Initialized,
 Running,
 Paused,
 Finished,
 Idle
 }

 GLSurfaceView glView;
 GLGraphics glGraphics;
 Audio audio;
 Input input;
 FileIO fileIO;
 Screen screen;
 GLGameState state = GLGameState.Initialized;
 Object stateChanged = new Object();
 long startTime = System.nanoTime();

The class extends the Activity class and implements the game and GLSurfaceView.Renderer
interfaces. It has an enum called GLGameState that keeps track of the state that the GLGame instance is in.
You’ll see how those are used in a bit.

The members of the class consist of a GLSurfaceView instance and a GLGraphics instance. The class
also has Audio, Input, FileIO, and Screen instances, which we need for writing our game, just as we did for
the AndroidGame class. The state member keeps track of the state via one of the GLGameState enums. The
stateChanged member is an object we’ll use to synchronize the UI and rendering threads.

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 requestWindowFeature(Window.FEATURE_NO_TITLE);
 getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
 WindowManager.LayoutParams.FLAG_FULLSCREEN);

 getWindow().addFlags(WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON);
 glView = new GLSurfaceView(this);
 glView.setRenderer(this);

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

250

 setContentView(glView);
 glGraphics = new GLGraphics(glView);
 fileIO = new AndroidFileIO(this);
 audio = new AndroidAudio(this);
 input = new AndroidInput(this, glView, 1, 1);
}

In the onCreate() method, we perform the usual setup routine. We make the activity go full-screen and
instantiate the GLSurfaceView, setting it as the content View. We also instantiate all the other classes that
implement framework interfaces, such as the AndroidFileIO and AndroidInput classes. Note that we reuse
the classes we used in the AndroidGame class, except for AndroidGraphics. Another important point is that
we no longer let the AndroidInput class scale the touch coordinates to a target resolution, as in AndroidGame.
The scale values are both 1, so we will get the real touch coordinates.

@Override
public void onResume() {
 super.onResume();
 glView.onResume();
}

In the onResume() method, we let the GLSurfaceView start the rendering thread with a call to its
onResume() method.

@Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 glGraphics.setGL(gl);

 synchronized(stateChanged) {
 if(state == GLGameState.Initialized)
 screen = getStartScreen();
 state = GLGameState.Running;
 screen.resume();
 startTime = System.nanoTime();
 }
 }

The onSurfaceCreate() method will be called next, which is, of course, invoked on the rendering thread.
Here, you can see how the state enums are used. If the application is started for the first time, state will be
GLGameState.Initialized. In this case, we call the getStartScreen() method to return the starting screen
of the game. If the game is not in an initialized state but has already been running, we know that we have just
resumed from a paused state. In any case, we set state to GLGameState.Running and call the current screen’s
resume() method. We also keep track of the current time so we can calculate the delta time later on.

The synchronization is necessary, since the members we manipulate within the synchronized block
could be manipulated in the onPause() method on the UI thread. That’s something we have to prevent, so
we use an object as a lock. We could have also used the GLGame instance itself, or a proper lock.

 @Override
public void onSurfaceChanged(GL10 gl, int width, int height) {
 }

The onSurfaceChanged() method is basically just a stub. There’s nothing for us to do here.

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

251

public void onDrawFrame(GL10 gl) {
 GLGameState state = null;

 synchronized(stateChanged) {
 state = this.state;
 }

 if(state == GLGameState.Running) {
 float deltaTime = (System.nanoTime()-startTime) / 1000000000.0f;
 startTime = System.nanoTime();

 screen.update(deltaTime);
 screen.present(deltaTime);
 }

 if(state == GLGameState.Paused) {
 screen.pause();
 synchronized(stateChanged) {
 this.state = GLGameState.Idle;
 stateChanged.notifyAll();
 }
 }

 if(state == GLGameState.Finished) {
 screen.pause();
 screen.dispose();
 synchronized(stateChanged) {
 this.state = GLGameState.Idle;
 stateChanged.notifyAll();
 }
 }
}

The onDrawFrame() method is where the bulk of the work is performed. It is called by the rendering
thread as often as possible. Here, we check what state our game is in and react accordingly. As state can be
set via the onPause() method on the UI thread, we have to synchronize the access to it.

If the game is running, we calculate the delta time and tell the current screen to update and present itself.
If the game is paused, we tell the current screen to pause itself as well. We then change the state to

GLGameState.Idle, indicating that we have received the pause request from the UI thread. Since we wait for
this to happen in the onPause() method in the UI thread, we notify the UI thread that it can now truly pause
the application. This notification is necessary, as we have to make sure that the rendering thread is paused/
shut down properly in case our activity is paused or closed on the UI thread.

If the activity is being closed (and not paused), we react to GLGameState.Finished. In this case, we tell
the current screen to pause and dispose of itself, and then send another notification to the UI thread, which
waits for the rendering thread to shut things down properly.

 @Override
public void onPause() {
 synchronized(stateChanged) {
 if(isFinishing())
 state = GLGameState.Finished;
 else

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

252

 state = GLGameState.Paused;
 while(true) {
 try {
 stateChanged.wait();
 break;
 } catch(InterruptedException e) {
 }
 }
 }
 glView.onPause();
 super.onPause();
}

The onPause() method is our usual activity notification method that’s called on the UI thread when the
activity is paused. Depending on whether the application is closed or paused, we set state accordingly and
wait for the rendering thread to process the new state. This is achieved with the standard Java wait/notify
mechanism.

Finally, we tell the GLSurfaceView and Activity to pause themselves, effectively shutting down the
rendering thread.

public GLGraphics getGLGraphics() {
 return glGraphics;
}

The getGLGraphics() method is a new method that is only accessible via the GLGame class. It
returns the instance of GLGraphics we store so that we can get access to the GL10 interface in our Screen
implementations later on.

 public Input getInput() {
 return input;
 }

 public FileIO getFileIO() {
 return fileIO;
 }

 public Graphics getGraphics() {
 throw new IllegalStateException("We are using OpenGL!");
 }

 public Audio getAudio() {
 return audio;
 }

 public void setScreen(Screen newScreen) {
 if (screen == null)
 throw new IllegalArgumentException("Screen must not be null");

 this.screen.pause();
 this.screen.dispose();
 newScreen.resume();
 newScreen.update(0);

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

253

 this.screen = newScreen;
 }

 public Screen getCurrentScreen() {
 return screen;
 }
}

The rest of the class works as before. In case we accidentally try to access the standard Graphics
instance, we throw an exception, as it is not supported by GLGame. Instead, we’ll work with the GLGraphics
method we get via the GLGame.getGLGraphics() method.

Why did we go through all the pain of synchronizing with the rendering thread? Well, it will make our
Screen implementations live entirely on the rendering thread. All the methods of Screen will be executed
there, which is necessary if we want to access OpenGL ES functionality. Remember, we can only access
OpenGL ES on the rendering thread.

Let’s round this out with an example. Listing 7-4 shows how our first example in this chapter looks when
using GLGame and Screen.

Listing 7-4.

package com.badlogic.androidgames.glbasics;

import java.util.Random;

import javax.microedition.khronos.opengles.GL10;

import com.badlogic.androidgames.framework.Game;
import com.badlogic.androidgames.framework.Screen;
import com.badlogic.androidgames.framework.impl.GLGame;
import com.badlogic.androidgames.framework.impl.GLGraphics;

public class GLGameTest extends GLGame {
 public Screen getStartScreen() {
 return new TestScreen(this);
 }

 class TestScreen extends Screen {
 GLGraphics glGraphics;
 Random rand = new Random();

 public TestScreen(Game game) {
 super(game);
 glGraphics = ((GLGame) game).getGLGraphics();
 }

 @Override
 public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glClearColor(rand.nextFloat(), rand.nextFloat(),
 rand.nextFloat(), 1);
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
 }

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

254

 @Override
 public void update(float deltaTime) {
 }

 @Override
 public void pause() {
 }

 @Override
 public void resume() {
 }

 @Override
 public void dispose() {
 }
 }
}

This is the same program as our last example, except that we now derive from GLGame instead of
Activity, and we provide a Screen implementation instead of a GLSurfaceView.Renderer implementation.

In the following examples, we’ll only look at the relevant parts of each example’s Screen
implementation. The overall structure of our examples will stay the same. Of course, we have to add the
example GLGame implementations to our starter activity, as well as to the manifest file.

With that out of our way, let’s render our first triangle.

Look Mom, I Got a Red Triangle!
You already learned that OpenGL ES needs a couple of things set before we can tell it to draw some
geometry. The two things about which we are most concerned are the projection matrix (and with it
our view frustum) and the viewport, which governs the size of our output image and the position of our
rendering output in the framebuffer.

Defining the Viewport
OpenGL ES uses the viewport as a way to translate the coordinates of points projected to the near clipping
plane to framebuffer pixel coordinates. We can tell OpenGL ES to use only a portion of our framebuffer—or
all of it—with the following method:

GL10.glViewport(int x, int y, int width, int height)

The x and y coordinates specify the top-left corner of the viewport in the framebuffer, and width and height
specify the viewport’s size in pixels. Note that OpenGL ES assumes the framebuffer coordinate system to have its
origin in the lower left of the screen. Usually we set x and y to 0 and width and height to our screen resolution,
as we are using full-screen mode. We could instruct OpenGL ES to use only a portion of the framebuffer with this
method. It would then take the rendering output and automatically stretch it to that portion.

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

255

 ■ Note While this method looks like it sets up a 2d coordinate system for us to render to, it actually does
not. It only defines the portion of the framebuffer OpenGL ES uses to output the final image. Our coordinate
system is defined via the projection and model-view matrices.

Defining the Projection Matrix
The next thing we need to define is the projection matrix. As we are only concerned with 2D graphics in this
chapter, we want to use a parallel projection. How do we do that?

Matrix Modes and Active Matrices
We already discussed that OpenGL ES keeps track of three matrices: the projection matrix, the model-view
matrix, and the texture matrix (which we’ll continue to ignore). OpenGL ES offers several specific methods
to modify these matrices. Before we can use these methods, however, we have to tell OpenGL ES which
matrix we want to manipulate. We do so with the following method:

GL10.glMatrixMode(int mode)

The mode parameter can be GL10.GL_PROJECTION, GL10.GL_MODELVIEW, or GL10.GL_TEXTURE. It should
be clear which of these constants will make which matrix active. Any subsequent calls to the matrix
manipulation methods will target the matrix we set with this method until we change the active matrix again
via another call to this method. This matrix mode is one of OpenGL ES’s states (which will get lost when we
lose the context if our application is paused and resumed). To manipulate the projection matrix with any
subsequent calls, we can call the method like this:

gl.glMatrixMode(GL10.GL_PROJECTION);

Orthographic Projection with glOrthof
OpenGL ES offers the following method for setting the active matrix to an orthographic (parallel) projection
matrix:

GL10.glOrthof(int left, int right, int bottom, int top, int near, int far)

Hey, that looks like it has something to do with our view frustum’s clipping planes . . . and indeed it
does! So, what values do we specify here?

OpenGL ES has a standard coordinate system, as depicted in Figure 7-5. The positive x axis points to the
right, the positive y axis points upward, and the positive z axis points toward us. With glOrthof(), we define
the view frustum of our parallel projection in this coordinate system. If you look back at Figure 7-3, you can
see that the view frustum of a parallel projection is a box. We can interpret the parameters for glOrthof() as
specifying two of these corners of our view frustum box. Figure 7-5 illustrates this.

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

256

The front side of our view frustum will be directly mapped to our viewport. In the case of a full-screen
viewport from, say, (0,0) to (480,320) (for example, landscape mode on a Hero), the bottom-left corner of the
front side would map to the bottom-left corner of our screen, and the top-right corner of the front side would
map to the top-left corner of our screen. OpenGL will perform the stretching automatically for us.

Since we want to do 2D graphics, we will specify the corner points—left, bottom, near, and right, top,
far (see Figure 7-5)—in a way that allows us to work in a sort of pixel coordinate system, as we did with the
Canvas API and Mr. Nom. Here’s how we could set up such a coordinate system:

gl.glOrthof(0, 480, 0, 320, 1, -1);

Figure 7-6 shows the view frustum.

Figure 7-5. An orthographic view frustum

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

257

Our view frustum is pretty thin, but that’s OK because we’ll only be working in 2D. The visible part of our
coordinate system goes from (0,0,1) to (480,320,–1). Any points we specify within this box will be visible on the
screen as well. The points will be projected onto the front side of this box, which is our beloved near clipping
plane. The projection will then get stretched out onto the viewport, whatever dimensions it has. Suppose we
have a Nexus One with a resolution of 800×480 pixels in landscape mode. When we specify our view frustum,
we can work in a 480×320 coordinate system and OpenGL will stretch it to the 800×480 framebuffer (if we
specified that the viewport covers the complete framebuffer). Best of all, there’s nothing keeping us from
using crazier view frustums. We could also use one with the corners (–1,–1,100) and (2,2,–100). Everything we
specify that falls inside this box will be visible and get stretched automatically—pretty nifty!

Note that we also set the near and far clipping planes. Since we are going to neglect the z coordinate
completely in this chapter, you might be tempted to use 0 for both near and far; however, that’s a bad idea
for various reasons. To play it safe, we grant the view frustum a little buffer in the z axis. All our geometries’
points will be defined in the x-y plane with z set to 0—2D all the way.

Figure 7-6. Our parallel projection view frustum for 2D rendering with OpenGL ES

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

258

 ■ Note You might have noticed that the y axis is pointing upward now, and the origin is in the lower-left
corner of our screen. While the Canvas, uI framework, and many other 2d-rendering ApIs use the y-down,
origin-top-left convention, it is actually more convenient to use this “new” coordinate system for game
programming. For example, if Super Mario is jumping, wouldn’t you expect his y coordinate to increase instead
of decrease while he’s on his way up? Want to work in the other coordinate system? Fine, just swap the
bottom and top parameters of glOrthof(). Also, while the illustration of the view frustum is mostly correct
from a geometric point of view, the near and far clipping planes are actually interpreted a little differently by
glOrthof(). Since that is a little involved, we’ll just pretend the preceding illustrations are correct.

A Helpful Snippet
Here’s a small snippet that will be used in all of our examples in this chapter. It clears the screen with black,
sets the viewport to span the whole framebuffer, and sets up the projection matrix (and thereby the view
frustum) so that we can work in a comfortable coordinate system with the origin in the lower-left corner of
the screen and the y axis pointing upward.

gl.glClearColor(0,0,0,1);
gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight());
gl.glMatrixMode(GL10.GL_PROJECTION);
gl.glLoadIdentity();
gl.glOrthof(0, 320, 0, 480, 1, -1);

Wait, what does glLoadIdentity() do in there? Well, most of the methods OpenGL ES offers us to
manipulate the active matrix don’t actually set the matrix; instead, they construct a temporary matrix
from whatever parameters they take and multiply it with the current matrix. The glOrthof() method is
no exception. For example, if we called glOrthof() each frame, we’d multiply the projection matrix to
death with itself. Instead of doing that, we make sure that we have a clean identity matrix in place before
we multiply the projection matrix. Remember, multiplying a matrix by the identity matrix will output the
matrix itself again, and that’s what glLoadIdentity() is for. Think of it as first loading the value 1 and then
multiplying it with whatever we have—in our case, the projection matrix produced by glOrthof().

Note that our coordinate system now goes from (0,0,1) to (320,480,–1)—that’s for portrait-mode rendering.

Specifying Triangles
First, we have to figure out how we can tell OpenGL ES about the triangles we want it to render. First, let’s
define what makes up a triangle:

•	 A triangle is comprised of three points.

•	 Each point is called a vertex.

•	 A vertex has a position in 3D space.

•	 A position in 3D space is given as three floats specifying the x, y, and z coordinates.

•	 A vertex can have additional attributes, such as a color or texture coordinates (which
we’ll talk about later). These can be represented as floats as well.

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

259

OpenGL ES expects to send our triangle definitions in the form of arrays;. However, given that OpenGL
ES is actually a C API, we can’t just use standard Java arrays. Instead, we have to use Java NIO buffers, which
are just memory blocks of consecutive bytes. Java NIO, or non-blocking I/O, buffers are a low-level way of
working with buffer data.

A Small NIO Buffer Digression
To be totally exact, we need to use direct NIO buffers. This means that the memory is not allocated in the
virtual machine’s heap memory, but rather in native heap memory. To construct such a direct NIO buffer, we
can use the following code snippet:

ByteBuffer buffer = ByteBuffer.allocateDirect(NUMBER_OF_BYTES);
buffer.order(ByteOrder.nativeOrder());

This will allocate a ByteBuffer that can hold NUMBER_OF_BYTES bytes in total, and it will make sure that
the byte order is equal to the byte order used by the underlying CPU. An NIO buffer has three attributes:

•	 Capacity: The number of elements the buffer can hold in total.

•	 Position: The current position to which the next element would be written or read
from.

•	 Limit: The index of the last element that has been defined, plus one.

The capacity of a buffer is its actual size. In the case of a ByteBuffer, it is given in bytes. The position
and limit attributes can be thought of as defining a segment within the buffer starting at position and ending
at limit (exclusive).

Since we want to specify our vertices as floats, it would be nice not to have to cope with bytes. Luckily, we
can convert the ByteBuffer instance to a FloatBuffer instance, which allows us to do just that: work with floats.

FloatBuffer floatBuffer = buffer.asFloatBuffer();

Capacity, position, and limit are given in floats in the case of a FloatBuffer. The usage pattern for these
buffers will be pretty limited—it goes like this:

float[] vertices = { ... definitions of vertex positions etc ... };
floatBuffer.clear();
floatBuffer.put(vertices);
floatBuffer.flip();

We first define our data in a standard Java float array. Before we put that float array into the buffer, we
tell the buffer to clear itself via the clear() method. This doesn’t actually erase any data, but it sets the
position to 0 and the limit to the capacity. Next, we use the FloatBuffer.put(float[] array) method to
copy the content of the complete array to the buffer, beginning at the buffer’s current position. After the
copying, the position of the buffer will be increased by the length of the array. Next, the call to the put()
method appends the additional data to the data of the last array we copied to the buffer. The final call to
FloatBuffer.flip() just swaps the position and limit.

For this example, let’s assume that our vertices array is five floats in size and that our FloatBuffer has
enough capacity to store those five floats. After the call to FloatBuffer.put(), the position of the buffer will
be 5 (indices 0 to 4 are taken up by the five floats from our array). The limit will still be equal to the capacity
of the buffer. After the call to FloatBuffer.flip(), the buffer position will be set to 0 and the limit will be
set to 5. Any party interested in reading the data from the buffer will then know that it should read the floats

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

260

from index 0 to 4 (remember that the limit is exclusive), and that’s exactly what OpenGL ES needs to know as
well. Note, however, that it will happily ignore the limit. Usually, we have to tell it the number of elements to
read in addition to passing the buffer to it. There’s no error checking done, so watch out.

Sometimes, it’s useful to set the position of the buffer manually after we’ve filled it. This can be done via
a call to the following method:

FloatBuffer.position(int position)

This will come in handy later on when we temporarily set the position of a filled buffer to something
other than 0 in order for OpenGL ES to start reading at a specific position

Sending Vertices to OpenGL ES
So, how do we define the positions of the three vertices of our first triangle? Easy! Assuming our coordinate
system is (0,0,1) to (320,480,–1), as we defined it in the preceding code snippet, we can do the following:

ByteBuffer byteBuffer = ByteBuffer.allocateDirect(3 * 2 * 4);
byteBuffer.order(ByteOrder.nativeOrder());
FloatBuffer vertices = byteBuffer.asFloatBuffer();
vertices.put(new float[] { 0.0f, 0.0f,
 319.0f, 0.0f,
 160.0f, 479.0f });
vertices.flip();

The first three lines should be familiar already. The only interesting part is how many bytes we allocate. We
have three vertices, each composed of a position given as x and y coordinates. Each coordinate is a float, and
thus takes up 4 bytes. That’s 3 vertices times 2 coordinates times 4 bytes, for a total of 24 bytes for our triangle.

 ■ Note We can specify vertices with x and y coordinates only, and OpenGL ES will automatically set the z
coordinate to 0 for us.

Next, we put a float array holding our vertex positions into the buffer. Our triangle starts at the bottom-
left corner (0,0), goes to the right edge of the view frustum/screen (319,0), and then goes to the middle of
the top edge of the view frustum/screen. Being the good NIO buffer users we are, we also call the flip()
method on our buffer. Thus, the position will be 0 and the limit will be 6 (remember, FloatBuffer limits and
positions are given in floats, not bytes).

Once we have our NIO buffer ready, we can tell OpenGL ES to draw it with its current state (that is,
viewport and projection matrix). This can be done with the following snippet:

gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
gl.glVertexPointer(2, GL10.GL_FLOAT, 0, vertices);
gl.glDrawArrays(GL10.GL_TRIANGLES, 0, 3);

The call to glEnableClientState() is a bit of a relic. It tells OpenGL ES that the vertices we are going to
draw have a position. This is a bit silly, for two reasons:

•	 The constant is called GL10.GL_VERTEX_ARRAY, which is a bit confusing. It would
make more sense if it were called GL10.GL_POSITION_ARRAY.

•	 There’s no way to draw anything that has no position, so the call to this method is a
little bit superfluous. We do it anyway, however, to make OpenGL ES happy.

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

261

In the call to glVertexPointer(), we tell OpenGL ES where it can find the vertex positions and give it
some additional information. The first parameter tells OpenGL ES that each vertex position is composed of
two coordinates, x and y. If we would have specified x, y, and z, we would have passed 3 to the method. The
second parameter tells OpenGL ES the data type we used to store each coordinate. In this case, it’s GL10.GL_
FLOAT, indicating that we used floats encoded as four bytes each. The third parameter, stride, tells OpenGL
how far apart our vertex positions are from each other in bytes. In the preceding case, stride is 0, as the
positions are tightly packed [vertex 1 (x,y), vertex 2 (x,y), and so on]. The final parameter is our FloatBuffer,
for which there are two things to remember:

•	 The FloatBuffer represents a memory block in the native heap, and thus has a
starting address.

•	 The position of the FloatBuffer is an offset from that starting address.

OpenGL ES will take the buffer’s starting address and add the buffer’s position to arrive at the float in
the buffer from which it will start reading the vertices when we tell it to draw the contents of the buffer. The
vertex pointer (which again should be called the position pointer) is a state of OpenGL ES. As long as we
don’t change it (and the context isn’t lost), OpenGL ES will remember it and use it for all subsequent calls
that need vertex positions.

Finally, there’s the call to glDrawArrays(). It will draw our triangle. The first parameter specifies what
type of primitive we are going to draw. In this case, we say that we want to render a list of triangles, which
is specified via GL10.GL_TRIANGLES. The next parameter is an offset relative to the first vertex to which the
vertex pointer points. The offset is measured in vertices, not bytes or floats. If we would have specified more
than one triangle, we could use this offset to render only a subset of our triangle list. The final argument
tells OpenGL ES how many vertices it should use for rendering. In our case, that’s three vertices. Note that
we always have to specify a multiple of 3 if we draw GL10.GL_TRIANGLES. Each triangle is composed of three
vertices, so that makes sense. For other primitive types, the rules are a little different.

Once we issue the glVertexPointer() command, OpenGL ES will transfer the vertex positions to the
GPU and store them there for all subsequent rendering commands. Each time we tell OpenGL ES to render
vertices, it takes their positions from the data we last specified via glVertexPointer().

Each of our vertices might have more attributes than just a position. One other attribute might be a
vertex’s color. We usually refer to these attributes as vertex attributes.

You might be wondering how OpenGL ES knows what color our triangle should have, as we have only
specified positions. It turns out that OpenGL ES has sensible defaults for any vertex attribute that we don’t
specify. Most of these defaults can be set directly. For example, if we want to set a default color for all vertices
that we draw, we can use the following method:

GL10.glColor4f(float r, float g, float b, float a)

This method will set a default color to be used for all vertices for which one wasn’t specified. The color
is given as RGBA values in the range of 0.0 to 1.0, as was the case for the clear color earlier. The default color
that OpenGL ES starts with is (1,1,1,1)—that is, fully opaque white.

That’s all the code we need in order to render a triangle with a custom parallel projection—a mere 16
lines of code for clearing the screen, setting the viewport and projection matrix, creating an NIO buffer in
which we store our vertex positions, and drawing the triangle! Now, compare that to the six pages it took us
to explain this to you. We could have, of course, left out the details and used coarser language. The problem
is that OpenGL ES is a pretty complex beast at times, and to avoid getting an empty screen it’s best to learn
what it’s all about rather than just copying and pasting code.

Putting It Together
To round this section out, let’s put all this together via a nice GLGame and Screen implementation. Listing 7-5
shows the complete example.

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

262

Listing 7-5. FirstTriangleTest.java

package com.badlogic.androidgames.glbasics;

import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.FloatBuffer;

import javax.microedition.khronos.opengles.GL10;

import com.badlogic.androidgames.framework.Game;
import com.badlogic.androidgames.framework.Screen;
import com.badlogic.androidgames.framework.impl.GLGame;
import com.badlogic.androidgames.framework.impl.GLGraphics;

public class FirstTriangleTest extends GLGame {
 public Screen getStartScreen() {
 return new FirstTriangleScreen(this);
 }

The FirstTriangleTest class derives from GLGame, and thus has to implement the Game.
getStartScreen() method. In that method, we create a new FirstTriangleScreen, which will then be
called frequently by the GLGame to update and present itself. Note that when this method is called, we
are already in the main loop—or rather, the GLSurfaceView rendering thread—so we can use OpenGL
ES methods in the constructor of the FirstTriangleScreen class. Let’s have a closer look at that Screen
implementation.

class FirstTriangleScreen extends Screen {
 GLGraphics glGraphics;
 FloatBuffer vertices;

 public FirstTriangleScreen(Game game) {
 super(game);
 glGraphics = ((GLGame)game).getGLGraphics();

 ByteBuffer byteBuffer = ByteBuffer.allocateDirect(3 * 2 * 4);
 byteBuffer.order(ByteOrder.nativeOrder());
 vertices = byteBuffer.asFloatBuffer();
 vertices.put(new float[] { 0.0f, 0.0f,
 319.0f, 0.0f,
 160.0f, 479.0f});
 vertices.flip();
 }

The FirstTriangleScreen class holds two members: a GLGraphics instance and our trusty
FloatBuffer, which stores the 2D positions of the three vertices of our triangle. In the constructor, we fetch
the GLGraphics instance from the GLGame and create and fill the FloatBuffer according to our previous code
snippet. Since the Screen constructor gets a Game instance, we have to cast it to a GLGame instance so that we
can use the GLGame.getGLGraphics() method.

 @Override
 public void present(float deltaTime) {

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

263

 GL10 gl = glGraphics.getGL();
 gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight());
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 gl.glOrthof(0, 320, 0, 480, 1, -1);

 gl.glColor4f(1, 0, 0, 1);
 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glVertexPointer(2, GL10.GL_FLOAT, 0, vertices);
 gl.glDrawArrays(GL10.GL_TRIANGLES, 0, 3);
 }

The present() method reflects what we just discussed: we set the viewport, set the default vertex color
(red in this case), clear the screen, set the matrix so that we can work in our custom coordinate system,
specify that our vertices will have positions, tell OpenGL ES where it can find those vertex positions, create
and link the shaders into a program, and, finally, render our awesome little red triangle.

 @Override
 public void update(float deltaTime) {
 game.getInput().getTouchEvents();
 game.getInput().getKeyEvents();
 }

 @Override
 public void pause() {
 }

 @Override
 public void resume() {
 }

 @Override
 public void dispose() {
 }
 }
}

The rest of the class is just boilerplate code. In the update() method, we make sure that our event
buffers don’t get filled up. The rest of the code does nothing.

 ■ Note From here on out, we’ll only focus on the Screen classes themselves, as the enclosing GLGame
derivatives, such as FirstTriangleTest, will always be the same. We’ll also reduce the code size a little by
leaving out any empty or boilerplate methods of the Screen class. The following examples will all just differ in
terms of members, constructors, and present methods.

Figure 7-7 shows the output of Listing 7-5.

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

264

Here’s what we did wrong in this example in terms of OpenGL ES best practices:

•	 We set the same states to the same values over and over again without any need. State
changes in OpenGL ES are expensive—some a little bit more, others a little bit less. We
should always try to reduce the number of state changes we make in a single frame.

•	 The viewport and projection matrix will never change once we set them. We could
move that code to the resume() method, which is only called each time the OpenGL
ES surface gets (re)created; this also handles OpenGL ES context loss.

•	 We could also move setting the color used for clearing and setting the default vertex
color to the resume() method. These two colors won’t change either.

•	 We could move the glEnableClientState() and glVertexPointer() methods to the
resume() method as well.

•	 The only things that we need to call each frame are glClear() and glDrawArrays().
Both use the current OpenGL ES states, which will stay the same as long as we
don’t change them and as long as we don’t lose the context due to the activity being
paused and resumed.

If we had put these optimizations into practice, we would have only had a handful of OpenGL ES
calls in our main loop. For the sake of clarity, we’ll refrain from using these kinds of minimal state change
optimizations for now. When we start writing our first OpenGL ES game, though, we’ll have to follow those
practices as best as we can to guarantee good performance.

Let’s add some more attributes to our triangle’s vertices, starting with color.

 ■ Note Very, very alert readers might have noticed that the triangle in Figure 7-7 is actually missing a pixel
in the bottom-right corner. This may look like a typical off-by-one error, but it’s actually due to the way OpenGL
ES rasterizes (draws the pixels of) the triangle. There’s a specific triangle rasterization rule that is responsible
for that artifact. Worry not—we are mostly concerned with rendering 2d rectangles (composed of two
triangles), in which case this effect will vanish.

Figure 7-7. Our first attractive triangle

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

265

Specifying Per-Vertex Color
In the previous example, we set a global default color for all vertices we drew via glColor4f(). Sometimes
we want to have more granular control (for example, we want to set a color per vertex). OpenGL ES offers us
this functionality, and it’s really easy to use. All we have to do is add RGBA float components to each vertex
and tell OpenGL ES where it can find the color for each vertex, similar to how we told it where it could find
the position for each vertex. Let’s start by adding the colors to each vertex.

int VERTEX_SIZE = (2 + 4) * 4;
ByteBuffer byteBuffer = ByteBuffer.allocateDirect(3 * VERTEX_SIZE);
byteBuffer.order(ByteOrder.nativeOrder());
FloatBuffer vertices = byteBuffer.asFloatBuffer();
vertices.put(new float[] { 0.0f, 0.0f, 1, 0, 0, 1,
 319.0f, 0.0f, 0, 1, 0, 1,
 160.0f, 479.0f, 0, 0, 1, 1});
vertices.flip();

We first have to allocate a ByteBuffer for our three vertices. How big should that ByteBuffer be? We
have two coordinates and four (RGBA) color components per vertex, so that’s six floats in total. Each float
value takes up four bytes, so a single vertex uses 24 bytes. We store this information in VERTEX_SIZE. When
we call ByteBuffer.allocateDirect(), we just multiply VERTEX_SIZE by the number of vertices we want to
store in the ByteBuffer. The rest is fairly self-explanatory. We get a FloatBuffer view to our ByteBuffer and
put() the vertices into the ByteBuffer. Each row of the float array holds the x and y coordinates and the
R, G, B, and A components of a vertex, in that order.

If we want to render this, we have to tell OpenGL ES that our vertices not only have a position, but also
have a color attribute. We start off, as before, by calling glEnableClientState():

gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
gl.glEnableClientState(GL10.GL_COLOR_ARRAY);

Now that OpenGL ES knows that it can expect position and color information for each vertex, we have
to tell it where it can find that information:

vertices.position(0);
gl.glVertexPointer(2, GL10.GL_FLOAT, VERTEX_SIZE, vertices);
vertices.position(2);
gl.glColorPointer(4, GL10.GL_FLOAT, VERTEX_SIZE, vertices);

We start by setting the position of our FloatBuffer, which holds our vertices, to 0. The position thus points
to the x coordinate of our first vertex in the buffer. Next, we call glVertexPointer(). The only difference from
the previous example is that we now also specify the vertex size (remember, it’s given in bytes). OpenGL ES
will then start reading in vertex positions from the position in the buffer from which we told it to start. For the
second vertex position, it will add VERTEX_SIZE bytes to the first position’s address, and so on.

Next, we set the position of the buffer to the R component of the first vertex and call glColorPointer(),
which tells OpenGL ES where it can find the colors of our vertices. The first argument is the number of
components per color. This is always four, as OpenGL ES demands an R, G, B, and A component per vertex
from us. The second parameter specifies the type of each component. As with the vertex coordinates, we use
GL10.GL_FLOAT again to indicate that each color component is a float in the range between 0 and 1. The third
parameter is the stride between vertex colors. It’s of course the same as the stride between vertex positions.
The final parameter is our vertices buffer again.

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

266

Since we called vertices.position(2) before the glColorPointer() call, OpenGL ES knows that the
first vertex color can be found starting from the third float in the buffer. If we hadn’t set the position of the
buffer to 2, OpenGL ES would have started reading in the colors from position 0. That would have been bad,
as that’s where the x coordinate of our first vertex is. Figure 7-8 shows from where OpenGL ES will read our
vertex attributes, and how it jumps from one vertex to the next for each attribute.

To draw our triangle, we again call glDrawElements(), which tells OpenGL ES to draw a triangle using
the first three vertices of our FloatBuffer:

gl.glDrawElements(GL10.GL_TRIANGLES, 0, 3);

Since we enabled the GL10.GL_VERTEX_ARRAY and GL10.GL_COLOR_ARRAY, OpenGL ES knows that it
should use the attributes specified by glVertexPointer() and glColorPointer(). It will ignore the default
color, as we have provided our own per-vertex colors.

 ■ Note The way we just specified our vertices’ positions and colors is called interleaving. This means
that we pack the attributes of a vertex in one continuous memory block. There’s another way we could have
achieved this: non-interleaved vertex arrays. We could have used two FloatBuffers, one for the positions and
one for the colors. However, interleaving performs much better due to memory locality, so we won’t discuss
non-interleaved vertex arrays here.

Putting it all together into a new GLGame and Screen implementation should be a breeze. Listing 7-6
shows an excerpt from the file ColoredTriangleTest.java. We left out the boilerplate code.

Listing 7-6. Excerpt from ColoredTriangleTest.java: Interleaving position and color attributes

class ColoredTriangleScreen extends Screen {
 final int VERTEX_SIZE = (2 + 4) * 4;
 GLGraphics glGraphics;
 FloatBuffer vertices;

Figure 7-8. Our FloatBuffer holding the vertices, start addresses for OpenGL ES from which to read position/
color, and stride used to jump to the next position/color

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

267

 public ColoredTriangleScreen(Game game) {
 super(game);
 glGraphics = ((GLGame) game).getGLGraphics();

 ByteBuffer byteBuffer = ByteBuffer.allocateDirect(3 * VERTEX_SIZE);
 byteBuffer.order(ByteOrder.nativeOrder());
 vertices = byteBuffer.asFloatBuffer();
 vertices.put(new float[] { 0.0f, 0.0f, 1, 0, 0, 1,
 319.0f, 0.0f, 0, 1, 0, 1,
 160.0f, 479.0f, 0, 0, 1, 1});
 vertices.flip();
 }

 @Override
 public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight());
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 gl.glOrthof(0, 320, 0, 480, 1, -1);

 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glEnableClientState(GL10.GL_COLOR_ARRAY);

 vertices.position(0);
 gl.glVertexPointer(2, GL10.GL_FLOAT, VERTEX_SIZE, vertices);
 vertices.position(2);
 gl.glColorPointer(4, GL10.GL_FLOAT, VERTEX_SIZE, vertices);

 gl.glDrawArrays(GL10.GL_TRIANGLES, 0, 3);
 }

Cool—that still looks pretty straightforward. Compared to the previous example, we simply added the
four color components to each vertex in our FloatBuffer and enabled the GL10.GL_COLOR_ARRAY. The best
thing about it is that any additional vertex attributes we add in the following examples will work the same
way. We just tell OpenGL ES not to use the default value for that specific attribute; instead, we tell it to look
up the attributes in our FloatBuffer, starting at a specific position and moving from vertex to vertex by
VERTEX_SIZE bytes.

Now, we could also turn off the GL10.GL_COLOR_ARRAY so that OpenGL ES uses the default vertex color
again, which we can specify via glColor4f() as we did previously. For this we can call

gl.glDisableClientState(GL10.GL_COLOR_ARRAY);

OpenGL ES will just turn off the feature that reads the colors from our FloatBuffer. If we already set
a color pointer via glColorPointer(), OpenGL ES will remember the pointer even though we just told
OpenGL ES to not use it.

To round out this example, let’s have a look at the output of the preceding program. Figure 7-9 shows a
screenshot.

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

268

Whoa, this is pretty neat! We didn’t make any assumptions about how OpenGL ES would use the three
colors we specified (red for the bottom-left vertex, green for the bottom-right vertex, and blue for the top
vertex). It turns out that it will interpolate the colors between the vertices for us. With this, we can easily
create nice gradients; however, colors alone will not make us happy for very long. We want to draw images
with OpenGL ES. And that’s where texture mapping comes into play.

Texture Mapping: Wallpapering Made Easy
When we wrote Mr. Nom, we loaded some bitmaps and directly drew them to the framebuffer—no rotation
involved, just a little bit of scaling, which is pretty easy to achieve. In OpenGL ES, we are mostly concerned
with triangles, which can have any orientation or scale we want them to have. So, how can we render
bitmaps with OpenGL ES?

Easy—just load the bitmap to OpenGL ES (and for that matter, to the GPU, which has its own dedicated
RAM), add a new attribute to each of our triangle’s vertices, and tell OpenGL ES to render our triangle and
apply the bitmap (also known as texture in OpenGL ES speak) to the triangle. Let’s first look at what these
new vertex attributes actually specify.

Texture Coordinates
To map a bitmap to a triangle, we need to add texture coordinates to each vertex of the triangle. What is a
texture coordinate? It specifies a point within the texture (our uploaded bitmap) to be mapped to one of the
triangle’s vertices. Texture coordinates are usually 2D.

While we call our positional coordinates x, y, and z, texture coordinates are usually called u and v or s
and t, depending on the circle of graphics programmers of which you’re a member. OpenGL ES calls them s
and t, so that’s what we’ll stick to. If you read resources on the Web that use the u/v nomenclature, don’t get
confused: it’s the same as s and t. What does the coordinate system look like? Figure 7-10 shows Bob in the
texture coordinate system after we upload him to OpenGL ES.

Figure 7-9. Per-vertex colored triangle

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

269

There are a couple of interesting things going on here. First of all, s equals the x coordinate in a standard
coordinate system, and t is equal to the y coordinate. The s axis points to the right, and the t axis points
downward. The origin of the coordinate system coincides with the top-left corner of Bob’s image. The
bottom-right corner of the image maps to (1,1).

So, what happened to pixel coordinates? It turns out that OpenGL ES doesn’t like them a lot. Instead,
any image we upload, no matter its width and height in pixels, will be embedded into this coordinate system.
The top-left corner of the image will always be at (0,0), and the bottom-right corner will always be at (1,1)—
even if, say, the width is twice as large as the height. We call these normalized coordinates, and they actually
make our lives easier at times. Now, how can we map Bob to our triangle? Easy, we just give each vertex of
the triangle a texture coordinate pair in Bob’s coordinate system. Figure 7-11 shows a few configurations.

We can map our triangle’s vertices to the texture coordinate system however we want. Note that the
orientation of the triangle in the positional coordinate system does not have to be the same as it is in the
texture coordinate system. The coordinate systems are completely decoupled. So, let’s see how we can add
these texture coordinates to our vertices:

int VERTEX_SIZE = (2 + 2) * 4;
ByteBuffer byteBuffer = ByteBuffer.allocateDirect(3 * VERTEX_SIZE);
byteBuffer.order(ByteOrder.nativeOrder());
vertices = byteBuffer.asFloatBuffer();
vertices.put(new float[] { 0.0f, 0.0f, 0.0f, 1.0f,

Figure 7-10. Bob, uploaded to OpenGL ES, shown in the texture coordinate system

Figure 7-11. Three different triangles mapped to Bob; the labels v1, v2, and v3 each specify a vertex of the
triangle.

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

270

 319.0f, 0.0f, 1.0f, 1.0f,
 160.0f, 479.0f, 0.5f, 0.0f});
vertices.flip();

That was easy. All we have to do is make sure that we have enough room in our buffer and then append
the texture coordinates to each vertex. The preceding code corresponds to the rightmost mapping in
Figure 7-10. Note that our vertex positions are still given in the usual coordinate system we defined via our
projection. If we wanted to, we could also add the color attributes to each vertex, as in the previous example.
OpenGL ES would then, on the fly, mix the interpolated vertex colors with the colors from the pixels of the
texture to which the triangle maps. Of course, we’d need to adjust the size of our buffer as well as the VERTEX_
SIZE constant accordingly; for example, (2 + 4 + 2) × 4. To tell OpenGL ES that our vertices have texture
coordinates, we again use glEnableClientState() together with the glTexCoordPointer() method, which
behaves exactly the same as glVertexPointer() and glColorPointer() (can you see a pattern here?):

gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);

vertices.position(0);
gl.glVertexPointer(2, GL10.GL_FLOAT, VERTEX_SIZE, vertices);
vertices.position(2);
gl.glTexCoordPointer(2, GL10.GL_FLOAT, VERTEX_SIZE, vertices);

Nice—that looks very familiar. So, the remaining question is, how can we upload the texture to OpenGL ES
and tell it to map it to our triangle? Naturally, that’s a little bit more involved. But fear not—it’s still pretty easy.

Uploading Bitmaps
First, we have to load our bitmap. We already know how to do that on Android:

Bitmap bitmap = BitmapFactory.decodeStream(game.getFileIO().readAsset("bobrgb888.png"));

Here, we load Bob in an RGB888 configuration. The next thing we need to do is tell OpenGL ES that we
want to create a new texture. OpenGL ES has the notion of objects for a couple of things, such as textures. To
create a texture object, we can call the following method:

GL10.glGenTextures(int numTextures, int[] ids, int offset)

The first parameter specifies how many texture objects we want to create. Usually, we only want to
create one. The next parameter is an int array to which OpenGL ES will write the IDs of the generated
texture objects. The final parameter just tells OpenGL ES where it should start writing the IDs to in the array.

You’ve already learned that OpenGL ES is a C API. Naturally, it can’t return a Java object for a new
texture; instead, it gives us an ID, or handle, to that texture. Each time we want OpenGL ES to do something
with that specific texture, we specify its ID. So, here’s a more complete code snippet showing how to generate
a single new texture object and get its ID:

int textureIds[] = new int[1];
gl.glGenTextures(1, textureIds, 0);
int textureId = textureIds[0];

The texture object is still empty, which means it doesn’t have any image data yet. Let’s upload our bitmap.
For this, we first have to bind the texture. To bind something in OpenGL ES means that we want OpenGL ES

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

271

to use that specific object for all subsequent calls until we change the binding again. Here, we want to bind
a texture object, for which the method glBindTexture() is available. Once we have bound a texture, we can
manipulate its attributes, such as image data. Here’s how we can upload Bob to our new texture object:

gl.glBindTexture(GL10.GL_TEXTURE_2D, textureId);
GLUtils.texImage2D(GL10.GL_TEXTURE_2D, 0, bitmap, 0);

First, we bind the texture object with glBindTexture(). The first parameter specifies the type of texture
we want to bind. Our image of Bob is 2D, so we use GL10.GL_TEXTURE_2D. There are other texture types, but we
don’t have a need for them in this book. We’ll always specify GL10.GL_TEXTURE_2D for the methods that need
to know the texture type with which we want to work. The second parameter of that method is our texture ID.
Once the method returns, all subsequent methods that work with a 2D texture will work with our texture object.

The next method call invokes a method of the GLUtils class, which is provided by the Android
framework. Usually, the task of uploading a texture image is pretty involved; this little helper class eases our
pain quite a bit. All we need to do is specify the texture type (GL10.GL_TEXTURE_2D), the mipmapping level
(we’ll look at that in Chapter 11; it defaults to 0), the bitmap we want to upload, and another argument,
which has to be set to 0 in all cases. After this call, our texture object has image data attached to it.

 ■ Note The texture object and its image data are actually held in video rAM, not in our usual rAM. The
texture object (and the image data) will get lost when the OpenGL ES context is destroyed (for example, when
our activity is paused and resumed). This means that we have to re-create the texture object and reupload our
image data every time the OpenGL ES context is (re-)created. If we don’t do this, all we’ll see is a white triangle.

Texture Filtering
There’s one last thing we need to define before we can use the texture object. It has to do with the fact that
our triangle might take up more or less pixels on the screen than there are pixels in the mapped region of
the texture. For example, the image of Bob in Figure 7-10 has a size of 128×128 pixels. Our triangle maps to
half that image, so it uses (128×128) / 2 pixels from the texture (which are also called texels). When we draw
the triangle to the screen with the coordinates we defined in the preceding snippet, it will take up (320×480)
/ 2 pixels. That’s a lot more pixels being used on the screen than are fetched from the texture map. It can, of
course, also be the other way around: we use fewer pixels on the screen than are found in the mapped region
of the texture. The first case is called magnification, and the second is called minification. For each case, we
need to tell OpenGL ES how it should upscale or downscale the texture. The up- and downscaling are also
referred to as minification and magnification filters in OpenGL ES lingo. These filters are attributes of our
texture object, much like the image data itself. To set them, we first have to make sure that the texture object
is bound via a call to glBindTexture(). If that’s the case, we can set them like this:

gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MIN_FILTER, GL10.GL_NEAREST);
gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MAG_FILTER, GL10.GL_NEAREST);

In each case, we use the method GL10.glTexParameterf(), which sets an attribute of the texture. In the
first call, we specify the minification filter; in the second, we call the magnification filter. The first parameter
to that method is the texture type, which defaults to GL10.GL_TEXTURE_2D. The second argument tells the
method which attributes we want to set—in our case, the GL10.GL_TEXTURE_MIN_FILTER and the GL10.GL_
TEXTURE_MAG_FILTER. The last parameter specifies the type of filter that should be used. We have two options
here: GL10.GL_NEAREST and GL10.GL_LINEAR.

http://dx.doi.org/10.1007/978-1-4842-0472-6_11

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

272

The first filter type will always choose the nearest texel in the texture map to be mapped to a pixel. The
second filter type will sample the four nearest texels for a pixel of the triangle and average them to arrive at
the final color. We use the first type of filter if we want to have a pixelated look and use the second if we want
a smooth look. Figure 7-12 shows the difference between the two types of filters.

Our texture object is now fully defined: we created an ID, set the image data, and specified the filters
to be used in case our rendering is not pixel perfect. It is a common practice to unbind the texture once
we are done defining it. We should also recycle the bitmap we loaded, as we no longer need it. (Why waste
memory?) That can be achieved with the following snippet:

gl.glBindTexture(GL10.GL_TEXTURE_2D, 0);
bitmap.recycle();

Here, 0 is a special ID that tells OpenGL ES that it should unbind the currently bound object. If we want
to use the texture for drawing our triangles, we need to bind it again, of course.

Disposing of Textures
It is also useful to know how to delete a texture object from video RAM if we no longer need it (like we use
Bitmap.recycle() to release the memory of a bitmap). This can be achieved with the following snippet:

gl.glBindTexture(GL10.GL_TEXTURE_2D, 0);
int textureIds = { textureid };
gl.glDeleteTextures(1, textureIds, 0);

Note that we first have to make sure that the texture object is not currently bound before we can delete
it. The rest is similar to how we used glGenTextures() to create a texture object.

Figure 7-12. GL10.GL_NEAREST vs. GL10.GL_LINEAR. The first filter type makes for a pixelated look; the
second one smoothes things out a little.

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

273

A Helpful Snippet
For your reference, here’s the complete snippet to create a texture object, load image data, and set the filters
on Android:

Bitmap bitmap = BitmapFactory.decodeStream(game.getFileIO().readAsset("bobrgb888.png"));
int textureIds[] = new int[1];
gl.glGenTextures(1, textureIds, 0);
int textureId = textureIds[0];
gl.glBindTexture(GL10.GL_TEXTURE_2D, textureId);
GLUtils.texImage2D(GL10.GL_TEXTURE_2D, 0, bitmap, 0);
gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MIN_FILTER, GL10.GL_NEAREST);
gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MAG_FILTER, GL10.GL_NEAREST);
gl.glBindTexture(GL10.GL_TEXTURE_2D, 0);
bitmap.recycle();

Not so bad, after all. The most important part of all this is to recycle the bitmap once we’re done;
otherwise, we’d waste memory. Our image data is safely stored in video RAM in the texture object (until the
context is lost and we need to reload it again).

Enabling Texturing
There’s one more thing to complete before we can draw our triangle with the texture. We need to bind the
texture, and we need to tell OpenGL ES that it should actually apply the texture to all triangles we render.
Whether texture mapping is performed or not is another state of OpenGL ES, which we can enable and
disable with the following methods:

GL10.glEnable(GL10.GL_TEXTURE_2D);
GL10.glDisable(GL10.GL_TEXTURE_2D);

These look vaguely familiar. When we enabled/disabled vertex attributes in the previous sections, we
used glEnableClientState()/glDisableClientState(). As we noted earlier, these are relics from the infancy
of OpenGL itself. There’s a reason why those are not merged with glEnable()/glDisable(), but we won’t go
into that here. Just remember to use glEnableClientState()/glDisableClientState() to enable and disable
vertex attributes, and use glEnable()/glDisable() for any other states of OpenGL, such as texturing.

Putting It Together
With that out of our way, we can now write a small example that puts all of this together. Listing 7-7
shows an excerpt of the TexturedTriangleTest.java source file, listing only the relevant parts of the
TexturedTriangleScreen class contained in it.

Listing 7-7. Excerpt from TexturedTriangleTest.java: Texturing a triangle

class TexturedTriangleScreen extends Screen {
 final int VERTEX_SIZE = (2 + 2) * 4;
 GLGraphics glGraphics;
 FloatBuffer vertices;
 int textureId;

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

274

 public TexturedTriangleScreen(Game game) {
 super(game);
 glGraphics = ((GLGame) game).getGLGraphics();

 ByteBuffer byteBuffer = ByteBuffer.allocateDirect(3 * VERTEX_SIZE);
 byteBuffer.order(ByteOrder.nativeOrder());
 vertices = byteBuffer.asFloatBuffer();
 vertices.put(new float[] { 0.0f, 0.0f, 0.0f, 1.0f,
 319.0f, 0.0f, 1.0f, 1.0f,
 160.0f, 479.0f, 0.5f, 0.0f});
 vertices.flip();
 textureId = loadTexture("bobrgb888.png");
 }

 public int loadTexture(String fileName) {
 try {
 Bitmap bitmap = BitmapFactory.decodeStream(game.getFileIO().

readAsset(fileName));
 GL10 gl = glGraphics.getGL();
 int textureIds[] = new int[1];
 gl.glGenTextures(1, textureIds, 0);
 int textureId = textureIds[0];
 gl.glBindTexture(GL10.GL_TEXTURE_2D, textureId);
 GLUtils.texImage2D(GL10.GL_TEXTURE_2D, 0, bitmap, 0);
 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MIN_FILTER, GL10.GL_

NEAREST);
 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MAG_FILTER, GL10.GL_

NEAREST);
 gl.glBindTexture(GL10.GL_TEXTURE_2D, 0);
 bitmap.recycle();
 return textureId;
 } catch(IOException e) {
 Log.d("TexturedTriangleTest", "couldn't load asset 'bobrgb888.png'!");
 throw new RuntimeException("couldn't load asset '" + fileName + "'");
 }
 }

 @Override
 public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight());
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 gl.glOrthof(0, 320, 0, 480, 1, -1);

 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glBindTexture(GL10.GL_TEXTURE_2D, textureId);

 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

275

 vertices.position(0);
 gl.glVertexPointer(2, GL10.GL_FLOAT, VERTEX_SIZE, vertices);
 vertices.position(2);
 gl.glTexCoordPointer(2, GL10.GL_FLOAT, VERTEX_SIZE, vertices);

 gl.glDrawArrays(GL10.GL_TRIANGLES, 0, 3);
 }

We took the freedom of putting the texture loading into a method called loadTexture(), which simply
takes the filename of a bitmap to be loaded. The method returns the texture object ID generated by OpenGL
ES, which we’ll use in the present() method to bind the texture.

The definition of our triangle shouldn’t be a big surprise; we just added texture coordinates to each
vertex.

The present() method does what it always does: it clears the screen and sets the projection matrix.
Next, we enable texture mapping via a call to glEnable() and bind our texture object. The rest is just what
we did before: enable the vertex attributes we want to use; tell OpenGL ES where it can find them and what
strides to use; and, finally, draw the triangle with a call to glDrawArrays(). Figure 7-13 shows the output of
the preceding code.

There’s one last thing we haven’t mentioned yet, and it’s of great importance: All bitmaps we load must
have a width and height of a power of two. Stick to it or else things will explode.

So what does this actually mean? The image of Bob that we used in our example has a size of 128×128
pixels. The value 128 is 2 to the power of 7 (2×2×2×2×2×2×2). Other valid image sizes would be 2×8, 32×16,
128×256, and so on. There’s also a limit to how big our images can be. Sadly, it varies depending on the
hardware on which our application is running. The OpenGL ES 1.x standard doesn’t specify a minimally
supported texture size; however, from experience, it seems that 512×512-pixel textures work on all current
Android devices (and most likely will work on all future devices as well). We'd even go so far to say that
1024×1024 is OK as well.

Another issue that we have pretty much ignored so far is the color depth of our textures. Luckily, the
method GLUtils.texImage2D(), which we used to upload our image data to the GPU, handles this for us fairly
well. OpenGL ES can cope with color depths like RGBA8888, RGB565, and so on. We should always strive to use

Figure 7-13. Texture-mapping Bob onto our triangle

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

276

the lowest possible color depth to decrease bandwidth. For this, we can employ the BitmapFactory.Options
class, as in previous chapters, to load an RGB888 Bitmap to an RGB565 Bitmap in memory, for example. Once
we have loaded our Bitmap instance with the color depth we want it to have, GLUtils.texImage2D() takes over
and makes sure that OpenGL ES gets the image data in the correct format. Of course, you should always check
whether the reduction in color depth has a negative impact on the visual fidelity of your game.

A Texture Class
To reduce the code needed for subsequent examples, we wrote a little helper class called Texture. It will load
a bitmap from an asset and create a texture object from it. It also has a few convenience methods to bind the
texture and dispose of it. Listing 7-8 shows the code.

Listing 7-8. Texture.java: A little OpenGL ES texture class

package com.badlogic.androidgames.framework.gl;

import java.io.IOException;
import java.io.InputStream;

import javax.microedition.khronos.opengles.GL10;

import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.opengl.GLUtils;

import com.badlogic.androidgames.framework.FileIO;
import com.badlogic.androidgames.framework.impl.GLGame;
import com.badlogic.androidgames.framework.impl.GLGraphics;

public class Texture {
 GLGraphics glGraphics;
 FileIO fileIO;
 String fileName;
 int textureId;
 int minFilter;
 int magFilter;
 int width;
 int height;

 public Texture(GLGame glGame, String fileName) {
 this.glGraphics = glGame.getGLGraphics();
 this.fileIO = glGame.getFileIO();
 this.fileName = fileName;
 load();
 }

 private void load() {
 GL10 gl = glGraphics.getGL();
 int[] textureIds = new int[1];
 gl.glGenTextures(1, textureIds, 0);
 textureId = textureIds[0];

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

277

 InputStream in = null;
 try {
 in = fileIO.readAsset(fileName);
 Bitmap bitmap = BitmapFactory.decodeStream(in);
 width = bitmap.getWidth();
 height = bitmap.getHeight();
 gl.glBindTexture(GL10.GL_TEXTURE_2D, textureId);
 GLUtils.texImage2D(GL10.GL_TEXTURE_2D, 0, bitmap, 0);
 setFilters(GL10.GL_NEAREST, GL10.GL_NEAREST);
 gl.glBindTexture(GL10.GL_TEXTURE_2D, 0);
 } catch(IOException e) {
 throw new RuntimeException("Couldn't load texture '" + fileName +"'", e);
 } finally {
 if(in != null)
 try { in.close(); } catch (IOException e) { }
 }
 }

 public void reload() {
 load();
 bind();
 setFilters(minFilter, magFilter);
 glGraphics.getGL().glBindTexture(GL10.GL_TEXTURE_2D, 0);
 }

 public void setFilters(int minFilter, int magFilter) {
 this.minFilter = minFilter;
 this.magFilter = magFilter;
 GL10 gl = glGraphics.getGL();
 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MIN_FILTER, minFilter);
 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MAG_FILTER, magFilter);
 }

 public void bind() {
 GL10 gl = glGraphics.getGL();
 gl.glBindTexture(GL10.GL_TEXTURE_2D, textureId);
 }

 public void dispose() {
 GL10 gl = glGraphics.getGL();
 gl.glBindTexture(GL10.GL_TEXTURE_2D, textureId);
 int[] textureIds = { textureId };
 gl.glDeleteTextures(1, textureIds, 0);
 }
}

The only interesting thing about this class is the reload() method, which we can use when the OpenGL
ES context is lost. Also note that the setFilters() method will only work if the texture is actually bound.
Otherwise, it will set the filters of the currently bound texture.

We could also write a little helper method for our vertices buffer. But before we can do this, we have to
discuss one more thing: indexed vertices.

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

278

Indexed Vertices: Because Re-use Is Good for You
Earlier in this chapter, we placed the math for calculating vertices in the GLGraphics class. Up until this
point, we have always defined lists of triangles, where each triangle has its own set of vertices. We have
actually only ever drawn a single triangle, but adding more would not have been a big deal.

There are cases, however, where two or more triangles can share some vertices. Let’s think about how
we’d render a rectangle with our current knowledge. We’d simply define two triangles that would have two
vertices with the same positions, colors, and texture coordinates. We can do better. Figure 7-14 shows both
the old way and the new way of rendering a rectangle.

Instead of duplicating vertex v1 and v2 with vertex v4 and v6, we define these vertices only once. We still
render two triangles in this case, but we tell OpenGL ES explicitly which vertices to use for each triangle (that
is, use v1, v2, and v3 for the first triangle and v3, v4, and v1 for the second one) via indices in our vertices
array. The first vertex in our array has index 0, the second vertex has index 1, and so on. For the preceding
rectangle, we’d have a list of indices like this:

short[] indices = { 0, 1, 2,
 2, 3, 0 };

Incidentally, OpenGL ES wants us to specify the indices as shorts (which is not entirely correct; we
could also use bytes). However, as with the vertex data, we can’t just pass a short array to OpenGL ES. It
wants a direct ShortBuffer. We already know how to handle this:

ByteBuffer byteBuffer = ByteBuffer.allocate(indices.length * 2);
byteBuffer.order(ByteOrder.nativeOrder());
ShortBuffer shortBuffer = byteBuffer.asShortBuffer();
shortBuffer.put(indices);
shortBuffer.flip();

A short needs two bytes of memory, so we allocate indices.length × 2 bytes for our ShortBuffer. We
set the order to native again and get a ShortBuffer view so that we can handle the underlying ByteBuffer
more easily. All that’s left is to put our indices into the ShortBuffer and flip it so the limit and position are
set correctly.

If we wanted to draw Bob as a rectangle with two indexed triangles, we could define our vertices like this:

ByteBuffer byteBuffer = ByteBuffer.allocateDirect(4 * VERTEX_SIZE);
byteBuffer.order(ByteOrder.nativeOrder());
vertices = byteBuffer.asFloatBuffer();

Figure 7-14. Rendering a rectangle as two triangles with six vertices (left), and rendering it with four vertices
(right)

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

279

vertices.put(new float[] { 100.0f, 100.0f, 0.0f, 1.0f,
 228.0f, 100.0f, 1.0f, 1.0f,
 228.0f, 229.0f, 1.0f, 0.0f,
 100.0f, 228.0f, 0.0f, 0.0f });
vertices.flip();

The order of the vertices is exactly the same as in the right part of Figure 7-14. We tell OpenGL ES that
we have positions and texture coordinates for our vertices and where it can find these vertex attributes
via the usual calls to glEnableClientState() and glVertexPointer()/glTexCoordPointer(). The only
difference is the method we call to draw the two triangles:

gl.glDrawElements(GL10.GL_TRIANGLES, 6, GL10.GL_UNSIGNED_SHORT, indices);

This method is actually very similar to glDrawArrays(). The first parameter specifies the type of
primitive we want to render—in this case, a list of triangles. The next parameter specifies how many vertices
we want to use, which equals six in our case. The third parameter specifies what type the indices have—we
specify unsigned short. Note that Java has no unsigned types; however, given the one-complement encoding
of signed numbers, it’s OK to use a ShortBuffer that actually holds signed shorts. The last parameter is our
ShortBuffer holding the six indices.

So, what will OpenGL ES do? It knows that we want to render triangles, and it knows that we want to
render two triangles, as we specified six vertices; but instead of fetching the six vertices sequentially from the
vertices array, OpenGL ES goes sequentially through the index buffer and uses the vertices it has indexed.

Putting It Together
When we put it all together, we arrive at the code in Listing 7-9.

Listing 7-9. Excerpt from IndexedTest.java: Drawing two indexed triangles

class IndexedScreen extends Screen {
 final int VERTEX_SIZE = (2 + 2) * 4;
 GLGraphics glGraphics;
 FloatBuffer vertices;
 ShortBuffer indices;
 Texture texture;

 public IndexedScreen(Game game) {
 super(game);
 glGraphics = ((GLGame) game).getGLGraphics();

 ByteBuffer byteBuffer = ByteBuffer.allocateDirect(4 * VERTEX_SIZE);
 byteBuffer.order(ByteOrder.nativeOrder());
 vertices = byteBuffer.asFloatBuffer();
 vertices.put(new float[] { 100.0f, 100.0f, 0.0f, 1.0f,
 228.0f, 100.0f, 1.0f, 1.0f,
 228.0f, 228.0f, 1.0f, 0.0f,
 100.0f, 228.0f, 0.0f, 0.0f });
 vertices.flip();

 byteBuffer = ByteBuffer.allocateDirect(6 * 2);
 byteBuffer.order(ByteOrder.nativeOrder());

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

280

 indices = byteBuffer.asShortBuffer();
 indices.put(new short[] { 0, 1, 2,
 2, 3, 0 });
 indices.flip();

 texture = new Texture((GLGame)game, "bobrgb888.png");
 }

 @Override
 public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight());
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 gl.glOrthof(0, 320, 0, 480, 1, -1);

 gl.glEnable(GL10.GL_TEXTURE_2D);
 texture.bind();

 gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);
 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);

 vertices.position(0);
 gl.glVertexPointer(2, GL10.GL_FLOAT, VERTEX_SIZE, vertices);
 vertices.position(2);
 gl.glTexCoordPointer(2, GL10.GL_FLOAT, VERTEX_SIZE, vertices);

 gl.glDrawElements(GL10.GL_TRIANGLES, 6, GL10.GL_UNSIGNED_SHORT, indices);
 }

Note the use of our awesome Texture class, which brings down the code size considerably. Figure 7-15
shows the output, and Bob in all his glory.

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

281

Now, this is pretty close to how we worked with Canvas. We have a lot more flexibility as well, since we
are not limited to axis-aligned rectangles anymore.

This example has covered all we need to know about vertices for now. We saw that every vertex must
have at least a position, and can have additional attributes, such as a color, given as four RGBA float values,
and texture coordinates. We also saw that we can reuse vertices via indexing in case we want to avoid
duplication. This gives us a little performance boost, since OpenGL ES does not have to multiply more
vertices by the projection and model-view matrices than is absolutely necessary (which, again, is not entirely
correct, but let’s stick to this interpretation).

A Vertices Class
Let’s make our code easier to write by creating a Vertices class that can hold a maximum number of vertices
and, optionally, indices to be used for rendering. It should also take care of both enabling all the states
needed for rendering and cleaning up the states after rendering has finished so that other code can rely on a
clean set of OpenGL ES states. Listing 7-10 shows our easy-to-use Vertices class.

Figure 7-15. Bob, indexed

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

282

Listing 7-10. Vertices.java: Encapsulating (indexed) vertices

package com.badlogic.androidgames.framework.gl;

import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.FloatBuffer;
import java.nio.ShortBuffer;

import javax.microedition.khronos.opengles.GL10;

import com.badlogic.androidgames.framework.impl.GLGraphics;

public class Vertices {
 final GLGraphics glGraphics;
 final boolean hasColor;
 final boolean hasTexCoords;
 final int vertexSize;
 final FloatBuffer vertices;
 final ShortBuffer indices;

The Vertices class has a reference to the GLGraphics instance, so we can get hold of the GL10 instance
when we need it. We also store whether the vertices have colors and texture coordinates. This gives us great
flexibility, as we can choose the minimal set of attributes needed for rendering. Additionally, we store a
FloatBuffer that holds our vertices and a ShortBuffer that holds the optional indices.

 public Vertices(GLGraphics glGraphics, int maxVertices, int maxIndices, boolean
hasColor, boolean hasTexCoords) {
 this.glGraphics = glGraphics;
 this.hasColor = hasColor;
 this.hasTexCoords = hasTexCoords;
 this.vertexSize = (2 + (hasColor?4:0) + (hasTexCoords?2:0)) * 4;

 ByteBuffer buffer = ByteBuffer.allocateDirect(maxVertices * vertexSize);
 buffer.order(ByteOrder.nativeOrder());
 vertices = buffer.asFloatBuffer();

 if(maxIndices > 0) {
 buffer = ByteBuffer.allocateDirect(maxIndices * Short.SIZE / 8);
 buffer.order(ByteOrder.nativeOrder());
 indices = buffer.asShortBuffer();
 } else {
 indices = null;
 }
}

In the constructor, we specify how many vertices and indices our Vertices instance can hold
maximally, as well as whether the vertices have colors or texture coordinates. Inside the constructor, we then
set the members accordingly and instantiate the buffers. Note that the ShortBuffer will be set to null if
maxIndices is 0. Our rendering will be performed nonindexed in that case.

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

283

public void setVertices(float[] vertices, int offset, int length) {
 this.vertices.clear();
 this.vertices.put(vertices, offset, length);
 this.vertices.flip();
}

public void setIndices(short[] indices, int offset, int length) {
 this.indices.clear();
 this.indices.put(indices, offset, length);
 this.indices.flip();
}

Next up are the setVertices() and setIndices() methods. The latter will throw a
NullPointerException if the Vertices instance does not store indices. All we do is clear the buffers and
copy the contents of the arrays.

 public void draw(int primitiveType, int offset, int numVertices) {
 GL10 gl = glGraphics.getGL();

 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 vertices.position(0);
 gl.glVertexPointer(2, GL10.GL_FLOAT, vertexSize, vertices);

 if(hasColor) {
 gl.glEnableClientState(GL10.GL_COLOR_ARRAY);
 vertices.position(2);
 gl.glColorPointer(4, GL10.GL_FLOAT, vertexSize, vertices);
 }

 if(hasTexCoords) {
 gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);
 vertices.position(hasColor?6:2);
 gl.glTexCoordPointer(2, GL10.GL_FLOAT, vertexSize, vertices);
 }

 if(indices!=null) {
 indices.position(offset);
 gl.glDrawElements(primitiveType, numVertices, GL10.GL_UNSIGNED_SHORT, indices);
 } else {
 gl.glDrawArrays(primitiveType, offset, numVertices);
 }

 if(hasTexCoords)
 gl.glDisableClientState(GL10.GL_TEXTURE_COORD_ARRAY);

 if(hasColor)
 gl.glDisableClientState(GL10.GL_COLOR_ARRAY);
 }
}

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

284

The final method of the Vertices class is draw(). It takes the type of the primitive (for example, GL10.GL_
TRIANGLES), the offset into the vertices buffer (or the indices buffer if we use indices), and the number of vertices
to use for rendering. Depending on whether the vertices have colors and texture coordinates, we enable the
relevant OpenGL ES states and tell OpenGL ES where to find the data. We do the same for the vertex positions, of
course, which are always needed. Depending on whether indices are used, we either call glDrawElements() or
glDrawArrays(), with the parameters passed to the method. Note that the offset parameter can also be used in
cases of indexed rendering: we simply set the position of the indices buffer accordingly so that OpenGL ES starts
reading the indices from that offset instead of reading the first index of the indices buffer. The last thing we do in
the draw() method is clean up the OpenGL ES state a little. We call glDisableClientState() with either GL10.
GL_COLOR_ARRAY or GL10.GL_TEXTURE_COORD_ARRAY in case our vertices have these attributes. We need to do
this, as another instance of Vertices might not use those attributes. If we rendered that other Vertices instance
without clearing these, OpenGL ES would still look for colors and/or texture coordinates.

We could replace all the tedious code in the constructor of our preceding example with the following
snippet:

Vertices vertices = new Vertices(glGraphics, 4, 6, false, true);
vertices.setVertices(new float[] { 100.0f, 100.0f, 0.0f, 1.0f,
 228.0f, 100.0f, 1.0f, 1.0f,
 228.0f, 228.0f, 1.0f, 0.0f,
 100.0f, 228.0f, 0.0f, 0.0f }, 0, 16);
vertices.setIndices(new short[] { 0, 1, 2, 2, 3, 0 }, 0, 6);

Likewise, we could replace all the calls for setting up our vertex attribute arrays and rendering with a
single call to the following:

vertices.draw(GL10.GL_TRIANGLES, 0, 6);

Together with our Texture class, we now have a pretty nice basis for all of our 2D OpenGL ES rendering.
In order to reproduce all of our Canvas API rendering abilities completely, however, we are still missing
blending. Let’s have a look at that.

Alpha Blending: I Can See Through You
Alpha blending in OpenGL ES is pretty easy to enable. We only need two method calls:

gl.glEnable(GL10.GL_BLEND);
gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA);

The first method call should be familiar: it just tells OpenGL ES that it should apply alpha blending
to all triangles we render from this point on. The second method is a little bit more involved. It specifies
how the source color and destination color should be combined. Recall from Chapter 3 that the way a
source color and a destination color are combined is governed by a simple blending equation. The method
glBlendFunc() just tells OpenGL ES which kind of equation to use. The preceding parameters specify that
we want the source color to be mixed with the destination color exactly as specified in the blending equation
in Chapter 3. This is equal to how the Canvas API blended Bitmaps for us.

Blending in OpenGL ES is pretty powerful and complex, and there’s a lot more to it. For our purposes,
we can ignore all those details, though, and just use the preceding blending function whenever we want to
blend our triangles with the framebuffer—the same way we blended Bitmaps with the Canvas instance.

The second question, where do the source and destination colors come from, is easy to explain: it’s the
color of the pixel in the framebuffer we are going to overwrite with the triangle we draw. The source color is
actually a combination of two colors.

http://dx.doi.org/10.1007/978-1-4842-0472-6_3
http://dx.doi.org/10.1007/978-1-4842-0472-6_3

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

285

The vertex color: This is the color we either specify via glColor4f() for all vertices
or specify on a per-vertex basis by adding a color attribute to each vertex.

The texel color: As mentioned before, a texel is a pixel from a texture. When our
triangle is rendered with a texture mapped to it, OpenGL ES will mix the texel
colors with the vertex colors for each pixel of a triangle.

So, if our triangle is not texture mapped, the source color for blending is equal to the vertex color. If the
triangle is texture mapped, the source color for each of the triangle’s pixels is a mixture of the vertex color
and the texel color. We could specify how the vertex and texel colors are combined by using the glTexEnv()
method. The default is to modulate the vertex color by the texel color, which basically means that the
two colors are multiplied with each other component-wise (vertex r × texel r, and so on). For all our use
cases in this book, this is exactly what we want, so we won’t go into glTexEnv(). There are also some very
specialized cases where you might want to change how the vertex and texel colors are combined. As with
glBlendFunc(), we’ll ignore the details and just use the default.

When we load a texture image that doesn’t have an alpha channel, OpenGL ES will automatically
assume an alpha value of 1 for each pixel. If we load an image in RGBA8888 format, OpenGL ES will happily
use the supplied alpha values for blending.

For vertex colors, we always have to specify an alpha component, either by using glColor4f(), where
the last argument is the alpha value, or by specifying the four components per vertex, where again the last
component is the alpha value. We then pass that value to the shader.

Let’s put this into practice with a brief example. We want to draw Bob twice: once by using the image
bobrgb888.png, which does not have an alpha channel per pixel, and a second time by using the image
bobargb8888.png, which has alpha information. Note that the PNG image actually stores the pixels in
ARGB8888 format instead of RGBA8888. Luckily, the GLUtils.texImage2D() method we use to upload the
image data for a texture will do the conversion for us automatically. Listing 7-11 shows the code of our little
experiment using the Texture and Vertices classes.

Listing 7-11. Excerpt from BlendingTest.java: Blending in action

class BlendingScreen extends Screen {
 GLGraphics glGraphics;
 Vertices vertices;
 Texture textureRgb;
 Texture textureRgba;

 public BlendingScreen(Game game) {
 super(game);
 glGraphics = ((GLGame)game).getGLGraphics();

 textureRgb = new Texture((GLGame)game, "bobrgb888.png");
 textureRgba = new Texture((GLGame)game, "bobargb8888.png");

 vertices = new Vertices(glGraphics, 8, 12, true, true);
 float[] rects = new float[] {
 100, 100, 1, 1, 1, 0.5f, 0, 1,
 228, 100, 1, 1, 1, 0.5f, 1, 1,
 228, 228, 1, 1, 1, 0.5f, 1, 0,
 100, 228, 1, 1, 1, 0.5f, 0, 0,

 100, 300, 1, 1, 1, 1, 0, 1,
 228, 300, 1, 1, 1, 1, 1, 1,
 228, 428, 1, 1, 1, 1, 1, 0,

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

286

 100, 428, 1, 1, 1, 1, 0, 0
 };
 vertices.setVertices(rects, 0, rects.length);
 vertices.setIndices(new short[] {0, 1, 2, 2, 3, 0,
 4, 5, 6, 6, 7, 4 }, 0, 12);
 }

Our little BlendingScreen implementation holds a single Vertices instance where we’ll store the two
rectangles, as well as two Texture instances—one holding the RGBA8888 image of Bob and the other one
storing the RGB888 version of Bob. In the constructor, we load these textures from the files bobrgb888.png
and bobargb8888.png and rely on the Texture class and GLUtils.texImag2D() to convert the ARGB8888
PNG to RGBA8888, as needed by OpenGL ES. Next up, we define our vertices and indices. The first rectangle,
consisting of four vertices, maps to the RGB888 texture of Bob. The second rectangle maps to the RGBA8888
version of Bob and is rendered 200 units above the RGB888 Bob rectangle. Note that the vertices of the first
rectangle all have the color (1,1,1,0.5f), while the vertices of the second rectangle all have the color (1,1,1,1).

@Override
public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight());
 gl.glClearColor(1,0,0,1);
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 gl.glOrthof(0, 320, 0, 480, 1, -1);

 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA);

 gl.glEnable(GL10.GL_TEXTURE_2D);
 textureRgb.bind();
 vertices.draw(GL10.GL_TRIANGLES, 0, 6);

 textureRgba.bind();
 vertices.draw(GL10.GL_TRIANGLES, 6, 6);
}

In our present() method, we clear the screen with red and set the projection matrix, as we are used to
doing. Next, we enable alpha blending and set the correct blend equation. Finally, we enable texture mapping
and render the two rectangles. The first rectangle is rendered with the RGB888 texture bound, and the second
is rendered with the RGBA8888 texture bound. We store both rectangles in the same Vertices instance and
thus use offsets with the vertices.draw() methods. Figure 7-16 shows the output of this little gem.

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

287

In the case of RGB888 Bob, the blending is performed via the alpha values in the per-vertex colors. Since
we set those to 0.5f, Bob is 50 percent translucent.

In the case of RGBA8888 Bob, the per-vertex colors all have an alpha value of 1. However, since the
background pixels of that texture have alpha values of 0, and since the vertex and texel colors are modulated,
the background of this version of Bob disappears. If we’d have set the per-vertex colors’ alpha values to 0.5f
as well, then Bob himself would also have been 50 percent as translucent, just as his clone is in the bottom of
the screen. Figure 7-17 shows what that would have looked like.

Figure 7-16. Bob, vertex color blended (bottom) and texture blended (top)

Figure 7-17. An alternative version of RGBA8888 Bob using per-vertex alpha of 0.5f (top of the screen)

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

288

That’s basically all we need to know about blending with OpenGL ES in 2D.
However, there is one more very important thing we’d like to point out: Blending is expensive! Seriously,

don’t overuse it. Current mobile GPUs are not all that good at blending massive amounts of pixels. You
should only use blending if it is absolutely necessary.

More Primitives: Points, Lines, Strips, and Fans
When we told you that OpenGL ES was a big, nasty, triangle-rendering machine, we were not being 100
percent honest. In fact, OpenGL ES can also render points and lines. Best of all, these are also defined via
vertices, and thus all of the preceding information also applies to them (texturing, per-vertex colors, and so
forth). All we need to do to render these primitives is use something other than GL10.GL_TRIANGLES when
we call glDrawArrays()/glDrawElements(). We can also perform indexed rendering with these primitives,
although that’s a bit redundant (in the case of points, at least). Figure 7-18 shows a list of all the primitive
types OpenGL ES offers.

Let’s go through all of these primitives really quickly:

Point: With a point, each vertex is its own primitive.

Line: A line is made up of two vertices. As with triangles, we can just have 2 × n
vertices to define n lines.

Line strip: All the vertices are interpreted as belonging to one long line.

Line loop: This is similar to a line strip, with the difference being that OpenGL ES
will automatically draw an additional line from the last vertex to the first vertex.

Triangle: This we already know. Each triangle is made up of three vertices.

Figure 7-18. All the primitives OpenGL ES can render

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

289

Triangle strip: Instead of specifying three vertices, we just specify number of
triangles + 1 vertices. OpenGL ES will then construct the first triangle from
vertices (v1,v2,v3), the next triangle from vertices (v2,v3,v4), and so on.

Triangle fan: This has one base vertex (v1) that is shared by all triangles. The first
triangle will be (v1,v2,v3), the next triangle (v1,v3,v4), and so on.

Triangle strips and fans are a little bit less flexible than pure triangle lists, but they can give a little
performance boost, as fewer vertices have to be multiplied by the projection and model-view matrices. We’ll
stick to triangle lists in all our code, though, as they are easier to use and can be made to achieve similar
performance by using indices.

Points and lines are a little bit strange in OpenGL ES. When we use a pixel-perfect orthographic
projection, we still don’t get pixel-perfect rendering in all cases. The positions of the point and line vertices
have to be offset by 0.375f due to something called the diamond exit rule. Keep that in mind if you want to
render pixel-perfect points and lines. We already saw that something similar applies to triangles. However,
given that we usually draw rectangles in 2D, we don’t run into that problem.

Given that all you have to do to render primitives other than GL10.GL_TRIANGLES is use one of the
other constants seen in Figure 7-17, we’ll spare you an example program. We’ll stick to triangle lists for the
most part, especially when doing 2D graphics programming.

Let’s now dive into one more thing OpenGL ES offers us: the almighty model-view matrix!

2D Transformations: Fun with the Model-View Matrix
All we’ve done so far is define static geometries in the form of triangle lists. There was nothing moving,
rotating, or scaling. Also, even when the vertex data itself stayed the same (for example, where the width
and height stayed the same for the rectangle composed of two triangles along with texture coordinates and
color), we still had to duplicate the vertices if we wanted to draw the same rectangle at different places. Look
back at Listing 7-11 and ignore the color attributes of the vertices for now. The two rectangles only differ
in their y coordinates by 200 units. If we had a way to move those vertices without actually changing their
values, we could get away with defining the rectangle of Bob only once and simply drawing him at different
locations—and that’s exactly how we can use the model-view matrix.

World and Model Space
To understand how world and model work, we literally have to think outside of our little orthographic view
frustum box. Our view frustum is in a special coordinate system called the world space. This is the space
where all our vertices are going to end up eventually.

Up until now, we have specified all vertex positions in absolute coordinates relative to the origin of this
world space (compare with Figure 7-5). What we really want is to make the definition of the positions of our
vertices independent from this world space coordinate system. We can achieve this by giving each of our
models (for example, Bob’s rectangle, a spaceship, and so forth) its own coordinate system. This is what we
usually call model space—the coordinate system within which we define the positions of our model’s vertices.
Figure 7-19 illustrates this concept in 2D, and the same rules apply to 3D as well (just add a z axis).

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

290

In Figure 7-19, we have a single model defined via a Vertices instance—for example, like this:

Vertices vertices = new Vertices(glGraphics, 4, 12, false, false);
vertices.setVertices(new float[] { -50, -50,
 50, -50,
 50, 50,
 -50, 50 }, 0, 8);
vertices.setIndices(new short[] {0, 1, 2, 2, 3, 0}, 0, 6);

For our discussion, we just leave out any vertex colors or texture coordinates. Now, when we render this
model without any further modifications, it will be placed around the origin in the world space in our final
image. If we want to render it at a different position—say, its center being at (200,300) in world space—we
could redefine the vertex positions like this:

vertices.setVertices(new float[] { -50 + 200, -50 + 300,
 50 + 200, -50 + 300,
 50 + 200, 50 + 300,
 -50 + 200, 50 + 300 }, 0, 8);

On the next call to vertices.draw(), the model would be rendered with its center at (200,300), but this
is a tad bit tedious, isn’t it?

Matrices Again
Remember when we briefly talked about matrices? We discussed how matrices can encode transformations,
such as translations (moving stuff around), rotations, and scaling. The projection matrix we use to project
our vertices onto the projection plane encodes a special type of transformation: a projection.

Figure 7-19. Defining our model in model space, reusing it, and rendering it at different locations in the world
space

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

291

Matrices are the key to solving our previous problem more elegantly. Instead of manually moving
our vertex positions around by redefining them, we simply set a matrix that encodes a translation. Since
the projection matrix of OpenGL ES is already occupied by the orthogonal graphics projection matrix we
specified via glOrthof(), we use a different OpenGL ES matrix: the model-view matrix. Here’s how we could
render our model with its origin moved to a specific location in eye/world space:

gl.glMatrixMode(GL10.GL_MODELVIEW);
gl.glLoadIdentity();
gl.glTranslatef(200, 300, 0);
vertices.draw(GL10.GL_TRIANGLES, 0, 6);

We first have to tell OpenGL ES which matrix we want to manipulate. In our case, that’s the model-view
matrix, which is specified by the constant GL10.GL_MODELVIEW. Next, we make sure that the model-view
matrix is set to an identity matrix. Basically, we just overwrite anything that was in there already—we sort of
clear the matrix. The next call is where the magic happens.

The method glTranslatef() takes three arguments: the translation on the x, y, and z axes. Since we
want the origin of our model to be placed at (200,300) in eye/world space, we specify a translation by 200
units on the x axis and a translation by 300 units on the y axis. As we are working in 2D, we simply ignore the
z axis and set the translation component to 0. We didn’t specify a z coordinate for our vertices, so these will
default to 0. Adding 0 to 0 equals 0, so our vertices will stay in the x-y plane.

From this point on, the model-view matrix of OpenGL ES encodes a translation by (200,300,0), which
will be applied to all vertices that pass through the OpenGL ES pipeline. If you refer back to Figure 7-4, you’ll
see that OpenGL ES will multiply each vertex with the model-view matrix first and then apply the projection
matrix. Until now, the model-view matrix was set to an identity matrix (the default of OpenGL ES); therefore,
it did not have an effect on our vertices. Our little glTranslatef() call changes this, and it will move all
vertices first before they are projected.

This is, of course, done on the fly; the values in our Vertices instance do not change at all. We would
have noticed any permanent change to our Vertices instance because, by that logic, the projection matrix
would have changed it already.

An Initial Example Using Translation
What can we use translation for? Say we want to render 100 Bobs at different positions in our world.
Additionally, we want them to move around on the screen and change direction each time they hit an edge
of the screen (or rather, a plane of our parallel projection view frustum, which coincides with the extents
of our screen). We could do this by having one large Vertices instance that holds the vertices of the 100
rectangles—one for each Bob—and recalculate the vertex positions of each frame. The easier method is
to have one small Vertices instance that holds only a single rectangle (the model of Bob) and reuse it by
translating it with the model-view matrix on the fly. Let’s define our Bob model:

Vertices bobModel = new Vertices(glGraphics, 4, 12, false, true);
bobModel.setVertices(new float[] { -16, -16, 0, 1,
 16, -16, 1, 1,
 16, 16, 1, 0,
 -16, 16, 0, 0, }, 0, 8);
bobModel.setIndices(new short[] {0, 1, 2, 2, 3, 0}, 0, 6);

So, each Bob is 32×32 units in size. We also texture map him—we’ll use bobrgb888.png to see the
extents of each Bob.

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

292

Bob Becomes a Class
Let’s define a simple Bob class. It will be responsible for holding a Bob instance’s position and advancing his
position in his current direction based on the delta time, just like we advanced Mr. Nom (with the difference
being that we don’t move in a grid anymore). The update() method will also make sure that Bob doesn’t
escape our view volume bounds. Listing 7-12 shows the Bob class.

Listing 7-12. Bob.java

package com.badlogic.androidgames.glbasics;

import java.util.Random;

class Bob {
 static final Random rand = new Random();
 public float x, y;
 float dirX, dirY;

 public Bob() {
 x = rand.nextFloat() * 320;
 y = rand.nextFloat() * 480;
 dirX = 50;
 dirY = 50;
 }

 public void update(float deltaTime) {
 x = x + dirX * deltaTime;
 y = y + dirY * deltaTime;

 if (x < 0) {
 dirX = -dirX;
 x = 0;
 }

 if (x > 320) {
 dirX = -dirX;
 x = 320;
 }

 if (y < 0) {
 dirY = -dirY;
 y = 0;
 }

 if (y > 480) {
 dirY = -dirY;
 y = 480;
 }
 }
}

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

293

Each Bob instance will place itself at a random location in the world when we construct him. All the Bob
instances will initially move in the same direction: 50 units to the right and 50 units upward per second (as
we multiply by the delta time). In the update() method, we simply advance the Bob instance in its current
direction in a time-based manner and then check if it left the view frustum bounds. If that’s the case, we
invert its direction and make sure it’s still in the view frustum.

Now, let’s assume we are instantiating 100 Bob instances, like this:

Bob[] bobs = new Bob[100];
for(int i = 0; i < 100; i++) {
 bobs[i] = new Bob();
}

To render each of these Bob instances, we’d do something like this (assuming we’ve already cleared the
screen, set the projection matrix, and bound the texture):

gl.glMatrixMode(GL10.GL_MODELVIEW);
for(int i = 0; i < 100; i++) {
 bob.update(deltaTime);
 gl.glLoadIdentity();
 gl.glTranslatef(bobs[i].x, bobs[i].y, 0);
 bobModel.render(GL10.GL_TRIANGLES, 0, 6);
}

That is pretty sweet, isn’t it? For each Bob instance, we call its update() method, which will advance its
position and make sure it stays within the bounds of our little world. Next, we load an identity matrix into
the model-view matrix of OpenGL ES so we have a clean slate. We then use the current Bob instance’s x and y
coordinates in a call to glTranslatef(). When we render the Bob model in the next call, all the vertices will
be offset by the current Bob instance’s position—exactly what we wanted.

Putting It Together
Let’s make this a full-blown example. Listing 7-13 shows the code, with comments interspersed.

Listing 7-13. BobTest.java: 100 moving Bobs!

package com.badlogic.androidgames.glbasics;

import javax.microedition.khronos.opengles.GL10;

import com.badlogic.androidgames.framework.Game;
import com.badlogic.androidgames.framework.Screen;
import com.badlogic.androidgames.framework.gl.FPSCounter;
import com.badlogic.androidgames.framework.gl.Texture;
import com.badlogic.androidgames.framework.gl.Vertices;
import com.badlogic.androidgames.framework.impl.GLGame;
import com.badlogic.androidgames.framework.impl.GLGraphics;

public class BobTest extends GLGame {
 public Screen getStartScreen() {
 return new BobScreen(this);
 }

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

294

 class BobScreen extends Screen {
 static final int NUM_BOBS = 100;
 GLGraphics glGraphics;
 Texture bobTexture;
 Vertices bobModel;
 Bob[] bobs;

Our BobScreen class holds a Texture instance (loaded from bobrbg888.png), a Vertices instance
holding the model of Bob (a simple textured rectangle), and an array of Bob instances. We also define a little
constant named NUM_BOBS so that we can modify the number of Bobs we want to have on the screen.

public BobScreen(Game game) {
 super(game);
 glGraphics = ((GLGame)game).getGLGraphics();

 bobTexture = new Texture((GLGame)game, "bobrgb888.png");

 bobModel = new Vertices(glGraphics, 4, 12, false, true);
 bobModel.setVertices(new float[] { -16, -16, 0, 1,
 16, -16, 1, 1,
 16, 16, 1, 0,
 -16, 16, 0, 0, }, 0, 16);
 bobModel.setIndices(new short[] {0, 1, 2, 2, 3, 0}, 0, 6);

 bobs = new Bob[100];
 for(int i = 0; i < 100; i++) {
 bobs[i] = new Bob();
 }
}

The constructor just loads the texture, creates the model, and instantiates NUM_BOBS Bob instances.

@Override
public void update(float deltaTime) {
 game.getInput().getTouchEvents();
 game.getInput().getKeyEvents();

 for(int i = 0; i < NUM_BOBS; i++) {
 bobs[i].update(deltaTime);
 }
}

The update() method is where we let our Bob instances update themselves. We also make sure our
input event buffers are emptied.

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

295

@Override
public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glClearColor(1,0,0,1);
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 gl.glOrthof(0, 320, 0, 480, 1, -1);

 gl.glEnable(GL10.GL_TEXTURE_2D);
 bobTexture.bind();

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 for(int i = 0; i < NUM_BOBS; i++) {
 gl.glLoadIdentity();
 gl.glTranslatef(bobs[i].x, bobs[i].y, 0);
 bobModel.draw(GL10.GL_TRIANGLES, 0, 6);
 }
}

In the present() method, we clear the screen, set the projection matrix, enable texturing, and bind
the texture of Bob. The last couple of lines are responsible for actually rendering each Bob instance. Since
OpenGL ES remembers its states, we have to set the active matrix only once; in this case, we are going to
modify the model-view matrix in the rest of the code. We then loop through all the Bob instances, set the
model-view matrix to a translation matrix based on the position of the current Bob instance, and render the
model, which will be translated by the model view-matrix automatically.

 @Override
 public void pause() {
 }

 @Override
 public void resume() {
 }

 @Override
 public void dispose() {
 }
 }
}

That’s it. Best of all, we employed the MVC pattern we used in Mr. Nom again. It really lends itself well
to game programming. The logical side of Bob is completely decoupled from his appearance, which is nice,
as we can easily replace his appearance with something more complex. Figure 7-20 shows the output of our
little program after running it for a few seconds.

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

296

That’s not the end of all of our fun with transformations yet. If you remember what we said a couple of
pages ago, you’ll know what’s coming: rotations and scaling.

More Transformations
Besides the glTranslatef() method, OpenGL ES also offers us two methods for transformations:
glRotatef() and glScalef().

Rotation
Here’s the signature of glRotatef():

GL10.glRotatef(float angle, float axisX, float axisY, float axisZ);

The first parameter is the angle in degrees by which we want to rotate our vertices. What do the rest of
the parameters mean?

Figure 7-20. That’s a lot of Bobs!

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

297

When we rotate something, we rotate it around an axis. What is an axis? Well, we already know three
axes: the x axis, the y axis, and the z axis. We can express these three axes as vectors. The positive x axis would
be described as (1,0,0), the positive y axis would be (0,1,0), and the positive z axis would be (0,0,1). As you
can see, a vector actually encodes a direction—in our case, in 3D space. Bob’s direction is also a vector, but
in 2D space. Vectors can also encode positions, like Bob’s position in 2D space.

To define the axis around which we want to rotate the model of Bob, we need to go back to 3D space.
Figure 7-21 shows the model of Bob (with a texture applied for orientation), as defined in the previous code
in 3D space.

Since we haven’t defined z coordinates for Bob’s vertices, he is embedded in the x-y plane of our 3D
space (which is actually the model space, remember?). If we want to rotate Bob, we can do so around any axis
we can think of: the x, y, or z axis, or even a totally crazy axis like (0.75,0.75,0.75). However, for our 2D graphics
programming needs, it makes sense to rotate Bob in the x-y plane; hence, we’ll use the positive z axis as our
rotation axis, which can be defined as (0,0,1). The rotation will be counterclockwise around the z axis. A call to
glRotatef() like the following would cause the vertices of Bob’s model to be rotated as shown in Figure 7-22:

gl.glRotatef(45, 0, 0, 1);

Figure 7-21. Bob in 3D

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

298

Scaling
We can also scale Bob’s model with glScalef(), like this:

glScalef(2, 0.5f, 1);

Given Bob’s original model pose, this would result in the new orientation depicted in Figure 7-23.

Figure 7-23. Bob, scaled by a factor of 2 on the x axis and a factor of 0.5 on the y axis . . . ouch!

Figure 7-22. Bob, rotated around the z axis by 45 degrees

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

299

Combining Transformations
Now, we also discussed that we can combine the effect of multiple matrices by multiplying them together
to form a new matrix. All the methods—glTranslatef(), glScalef(), glRotatef(), and glOrthof()—do
just that. They multiply the current active matrix by the temporary matrix they create internally based on the
parameters we pass to them. So, let’s combine the rotation and scaling of Bob:

gl.glRotatef(45, 0, 0, 1);
gl.glScalef(2, 0.5f, 1);

This would make Bob’s model look like Figure 7-24 (remember, we are still in model space).

What would happen if we applied the transformations the other way around?

gl.glScalef(2, 0.5, 0);
gl.glRotatef(45, 0, 0, 1)

Figure 7-25 gives you the answer.

Figure 7-24. Bob, first scaled and then rotated (and still not looking happy)

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

300

Wow, this is not the Bob we used to know. What happened here? If you look at the code snippets, you’d
actually expect Figure 7-24 to look like Figure 7-25, and Figure 7-25 to look like Figure 7-24. In the first
snippet, we apply the rotation first and then scale Bob, right?

Wrong. The way OpenGL ES multiplies matrices with each other dictates the order in which the
transformations the matrices encode are applied to a model. The last matrix by which we multiply the
currently active matrix will be the first that gets applied to the vertices. So, if we want to scale, rotate, and
translate Bob in that exact order, we have to call the methods like this:

glTranslatef(bobs[i].x, bobs[i].y, 0);
glRotatef(45, 0, 0, 1);
glScalef(2, 0.5f, 1);

If we changed the loop in our BobScreen.present() method to the following code, the output would
look like Figure 7-26:

gl.glMatrixMode(GL10.GL_MODELVIEW);
for(int i = 0; i <NUM_BOBS; i++) {
 gl.glLoadIdentity();
 gl.glTranslatef(bobs[i].x, bobs[i].y, 0);
 gl.glRotatef(45, 0, 0, 1);
 gl.glScalef(2, 0.5f, 0);
 bobModel.draw(GL10.GL_TRIANGLES, 0, 6);
}

Figure 7-25. Bob, first rotated and then scaled

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

301

It’s easy to mix up the order of these matrix operations when you first start out with OpenGL on the
desktop. To remember how to do it correctly, use the mnemonic device called the LASFIA principle: last
specified, first applied. (Yeah, this mnemonic isn’t all that great, huh?)

The easiest way to get comfortable with model-view transformations is to use them heavily. We suggest
you take the BobTest.java source file, modify the inner loop for some time, and observe the effects. Note
that you can specify as many transformations as you want for rendering each model. Add more rotations,
translations, and scaling. Go crazy.

With this last example, we basically know everything we need to know about OpenGL ES to write 2D
games . . . or do we?

Optimizing for Performance
When we run this example on a well spec’d device like a Galaxy S7 or a Nexus 6P, everything will run as
smooth as silk. If we run it on a Hero, everything will start to stutter and look pretty unpleasant. But hey,
didn’t we say that OpenGL ES was the silver bullet for fast graphics rendering? Well, it is, but only if we do
things the way OpenGL ES wants us to do them.

Figure 7-26. A hundred Bobs scaled, rotated, and translated (in that order) to their positions in world space

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

302

Measuring Frame Rate
BobTest provides a perfect example with which to start some optimizations. Before we can do that, though,
we need a way to assess performance. Manual visual inspection (“doh, it looks like it stutters a little”) is not
precise enough. A better way to measure how fast our program performs is to count the number of frames we
render per second. In Chapter 3, we talked about something called the vertical synchronization, or vsync, for
short. This is enabled on all Android devices that are on the market so far, and it limits the maximum frames
per second (FPS) we can achieve to 60. We know our code is good enough when we run at that frame rate.

 ■ Note While 60 FpS would be nice to have, in reality it is pretty hard to achieve such performance on many
Android devices. High-resolution tablets have a lot of pixels to fill, even if we’re just clearing the screen. We’ll be
happy if our game renders the world at more than 30 FpS in general. More frames don’t hurt, though.

Let’s write a little helper class that counts the FPS and outputs that value periodically. Listing 7-14
shows the code of a class called FPSCounter.

Listing 7-14. FPSCounter.java: Counting frames and logging them to logcat each second

package com.badlogic.androidgames.framework.gl;

import android.util.Log;

public class FPSCounter {
 long startTime = System.nanoTime();
 int frames = 0;

 public void logFrame() {
 frames++;
 if(System.nanoTime() - startTime >= 1000000000) {
 Log.d("FPSCounter", "fps: " + frames);
 frames = 0;
 startTime = System.nanoTime();
 }
 }
}

We can put an instance of this class in our BobScreen class and call the logFrame() method once in the
BobScreen.present() method. We just did this, and here is the sample output:

12-10 03:28:05.923: DEBUG/FPSCounter(930): fps: 43
12-10 03:28:06.933: DEBUG/FPSCounter(930): fps: 43
12-10 03:28:07.943: DEBUG/FPSCounter(930): fps: 44
12-10 03:28:08.963: DEBUG/FPSCounter(930): fps: 44
12-10 03:28:09.973: DEBUG/FPSCounter(930): fps: 44
12-10 03:28:11.003: DEBUG/FPSCounter(930): fps: 43
12-10 03:28:12.013: DEBUG/FPSCounter(930): fps: 44

http://dx.doi.org/10.1007/978-1-4842-0472-6_3

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

303

What’s Making My OpenGL ES Rendering So Slow?
That the Hero is slower than the second-generation devices is no big surprise. However, the PowerVR chip
in the Droid is slightly faster than the Adreno chip in the Nexus One, so the preceding results are a little bit
strange at first sight. Upon further inspection, we can probably attribute the difference not to the GPU power
but to the fact that we call many OpenGL ES methods each frame, which are costly Java Native Interface
methods. This means that they actually call into C code, which costs more than calling a Java method on
Dalvik. The Nexus One has a JIT compiler and can optimize a little bit there. So, let’s just assume that the
difference stems from the JIT compiler (which is probably not entirely correct).

Now, let’s examine what’s bad for OpenGL ES:

•	 Changing states a lot per frame (that is, blending, enabling/disabling texture
mapping, and so on)

•	 Changing matrices a lot per frame

•	 Binding textures a lot per frame

•	 Changing the vertex, color, and texture coordinate pointers a lot per frame

It really all boils down to changing state. Why is this costly? A GPU works like an assembly line in a
factory. While the front of the line processes new incoming pieces, the end of the line finishes off pieces
already processed by previous stages of the line. Let’s try it with a little car factory analogy.

The production line has a few states, such as the tools that are available to factory workers, the type of
bolts that are used to assemble parts of the cars, the color with which the cars get painted, and so on. Yes,
real car factories have multiple assembly lines, but let’s just pretend there’s only one. Now, each stage of the
line will be busy as long as we don’t change any of the states. As soon as we change a single state, however,
the line will stall until all the cars currently being assembled are finished off. Only then can we actually
change the state and assemble cars with the new paint, bolts, or whatever.

The key insight is that a call to glDrawElements() or glDrawArrays() is not immediately executed;
instead, the command is put into a buffer that is processed asynchronously by the GPU. This means that
the calls to the drawing methods will not block. It’s therefore a bad idea to measure the time a call to
glDrawElements() takes, as the actual work might be performed in the future. That’s why we measure FPS
instead. When the framebuffer is swapped (yes, we use double-buffering with OpenGL ES as well), OpenGL
ES will make sure that all pending operations are executed.

So, translating the car factory analogy to OpenGL ES means the following: While new triangles enter the
command buffer via a call to glDrawElements() or glDrawArrays(), the GPU pipeline might first finish off the
rendering of currently processing triangles from earlier calls to the render methods (for example, a triangle
can be currently processed in the rasterization state of the pipeline). This has the following implications:

•	 Changing the currently bound texture is expensive. Any triangles in the command
buffer that have not been processed yet and that use the texture must be rendered
first. The pipeline will stall.

•	 Changing the vertex, color, and texture coordinate pointers is expensive. Any
triangles in the command buffer that haven’t been rendered yet and use the old
pointers must be rendered first. The pipeline will stall.

•	 Changing blending state is expensive. Any triangles in the command buffer that
need/don’t need blending and haven’t been rendered yet must be rendered first. The
pipeline will stall.

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

304

•	 Changing the model-view or projection matrix is expensive. Any triangles in the
command buffer that haven’t been processed yet and to which the old matrices
should be applied must be rendered first. The pipeline will stall.

The quintessence of all this is reduce your state changes—all of them.

Removing Unnecessary State Changes
Let’s look at the present() method of BobTest and see what we can change. Here’s the snippet in which we
add the FPSCounter and also use glRotatef() and glScalef():

@Override
public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight());
 gl.glClearColor(1,0,0,1);
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 gl.glOrthof(0, 320, 0, 480, 1, -1);

 gl.glEnable(GL10.GL_TEXTURE_2D);
 bobTexture.bind();

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 for(int i = 0; i < NUM_BOBS; i++) {
 gl.glLoadIdentity();
 gl.glTranslatef(bobs[i].x, bobs[i].y, 0);
 gl.glRotatef(45, 0, 0, 1);
 gl.glScalef(2, 0.5f, 1);
 bobModel.draw(GL10.GL_TRIANGLES, 0, 6);
 }
 fpsCounter.logFrame();
}

The first thing we could do is move the calls to glViewport() and glClearColor(), as well as the
method calls that set the projection matrix to the BobScreen.resume() method. The clear color will never
change; the viewport and the projection matrix won’t change either. Why not put the code to set up all
persistent OpenGL states like the viewport or projection matrix in the constructor of BobScreen? Well,
we need to battle context loss. All OpenGL ES state modifications we perform will get lost, and when our
screen’s resume() method is called, we know that the context has been re-created and thus is missing all
the states that we might have set before. We can also put glEnable() and the texture-binding call into the
resume() method. After all, we want texturing to be enabled all the time, and we also only want to use that
single texture containing Bob’s image. For good measure, we also call texture.reload() in the resume()
method so that our texture image data is also reloaded in the case of a context loss. Here are our modified
present() and resume() methods:

@Override
public void resume() {
 GL10 gl = glGraphics.getGL();
 gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight());

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

305

 gl.glClearColor(1, 0, 0, 1);
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 gl.glOrthof(0, 320, 0, 480, 1, -1);

 bobTexture.reload();
 gl.glEnable(GL10.GL_TEXTURE_2D);
 bobTexture.bind();
}

@Override
public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 for(int i = 0; i < NUM_BOBS; i++) {
 gl.glLoadIdentity();
 gl.glTranslatef(bobs[i].x, bobs[i].y, 0);
 gl.glRotatef(45, 0, 0, 1);
 gl.glScalef(2, 0.5f, 0);
 bobModel.draw(GL10.GL_TRIANGLES, 0, 6);
 }

 fpsCounter.logFrame();
}

The Concept of Binding Vertices
So, is there anything we can improve? Let’s look at our current present() method one more time [with
removed glRotatef() and glScalef()]:

public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 for(int i = 0; i < NUM_BOBS; i++) {
 gl.glLoadIdentity();
 gl.glTranslatef(bobs[i].x, bobs[i].y, 0);
 bobModel.draw(GL10.GL_TRIANGLES, 0, 6);
 }

 fpsCounter.logFrame();
}

That looks pretty much optimal, doesn’t it? In fact, it is not optimal. First, we can also move the gl.
glMatrixMode() call to the resume() method, but that won’t have a huge impact on performance, as we’ve
already seen. The second thing that can be optimized is a little more subtle.

We use the Vertices class to store and render the model of our Bobs. Remember the Vertices.draw()
method? Here it is one more time:

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

306

public void draw(int primitiveType, int offset, int numVertices) {
 GL10 gl = glGraphics.getGL();

 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 vertices.position(0);
 gl.glVertexPointer(2, GL10.GL_FLOAT, vertexSize, vertices);

 if(hasColor) {
 gl.glEnableClientState(GL10.GL_COLOR_ARRAY);
 vertices.position(2);
 gl.glColorPointer(4, GL10.GL_FLOAT, vertexSize, vertices);
 }

 if(hasTexCoords) {
 gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);
 vertices.position(hasColor?6:2);
 gl.glTexCoordPointer(2, GL10.GL_FLOAT, vertexSize, vertices);
 }

 if(indices!=null) {
 indices.position(offset);
 gl.glDrawElements(primitiveType, numVertices, GL10.GL_UNSIGNED_SHORT, indices);
 } else {
 gl.glDrawArrays(primitiveType, offset, numVertices);
 }

 if(hasTexCoords)
 gl.glDisableClientState(GL10.GL_TEXTURE_COORD_ARRAY);

 if(hasColor)
 gl.glDisableClientState(GL10.GL_COLOR_ARRAY);
}

Now, look at the preceding loop again. Notice something? For each Bob, we enable the same vertex
attributes over and over again via glEnableClientState(). We actually only need to set this once, as each
Bob uses the same model that always uses the same vertex attributes. The next big problem comes from
the calls to glXXXPointer() for each Bob. Since those pointers are also OpenGL ES states, we only need to
set them once as well, as they will never change once they’re set. So, how can we fix this? Let’s rewrite the
Vertices.draw() method a little:

public void bind() {
 GL10 gl = glGraphics.getGL();

 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 vertices.position(0);
 gl.glVertexPointer(2, GL10.GL_FLOAT, vertexSize, vertices);

 if(hasColor) {
 gl.glEnableClientState(GL10.GL_COLOR_ARRAY);
 vertices.position(2);
 gl.glColorPointer(4, GL10.GL_FLOAT, vertexSize, vertices);
 }

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

307

 if(hasTexCoords) {
 gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);
 vertices.position(hasColor?6:2);
 gl.glTexCoordPointer(2, GL10.GL_FLOAT, vertexSize, vertices);
 }
}

public void draw(int primitiveType, int offset, int numVertices) {
 GL10 gl = glGraphics.getGL();

 if(indices!=null) {
 indices.position(offset);
 gl.glDrawElements(primitiveType, numVertices, GL10.GL_UNSIGNED_SHORT, indices);
 } else {
 gl.glDrawArrays(primitiveType, offset, numVertices);
 }
}

public void unbind() {
 GL10 gl = glGraphics.getGL();
 if(hasTexCoords)
 gl.glDisableClientState(GL10.GL_TEXTURE_COORD_ARRAY);

 if(hasColor)
 gl.glDisableClientState(GL10.GL_COLOR_ARRAY);
}

Can you see what we’ve done here? We can treat our vertices and all those pointers just like we treat
a texture. We “bind” the vertex pointers via a single call to Vertices.bind(). From this point on, every
Vertices.draw() call will work with those “bound” vertices, just like the draw call will also use the currently
bound texture. Once we are done rendering stuff with that Vertices instance, we call Vertices.unbind()
to disable any vertex attributes that other Vertices instances might not need. Keeping our OpenGL ES state
clean is a good thing. Here’s how our present() method looks now (we moved the glMatrixMode(GL10.
GL_MODELVIEW) call to resume() as well):

@Override
public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);

 bobModel.bind();
 for(int i = 0; i < NUM_BOBS; i++) {
 gl.glLoadIdentity();
 gl.glTranslatef(bobs[i].x, bobs[i].y, 0);
 bobModel.draw(GL10.GL_TRIANGLES, 0, 6);
 }
 bobModel.unbind();

 fpsCounter.logFrame();
}

CHApTEr 7 ■ OpEnGL ES: A GEnTLE InTrOduCTIOn

308

This effectively calls the glXXXPointer() and glEnableClientState() methods only once per frame.
We thus save nearly 100 × 6 calls to OpenGL ES. That should have a huge impact on performance, right?

Of course, our new bindable Vertices class has a few restrictions now:

•	 We can only set the vertex and index data when the Vertices instance is not bound,
as the upload of that information is performed in Vertices.bind().

•	 We can’t bind two Vertices instances at once. This means that we can only render
with a single Vertices instance at any point in time. That’s usually not a big problem,
though, and given the impressive increase in performance, we will live with it.

In Closing
There’s more optimization we can apply that is suited for 2D graphics programming with flat geometry, such
as with rectangles. We’ll look into that in the next chapter. If you want to look into optimization further, the
keyword to search for is batching, which means reducing the number of glDrawElements()/glDrawArrays()
calls. An equivalent for 3D graphics exists as well, called instancing, but that’s not possible with OpenGL ES 1.x.

We want to mention two more things before we close this chapter. First of all, when you run either
BobTest or OptimizedBobTest (which contains the super-optimized code we just developed), notice that
the Bobs wobble around the screen somewhat. This is due to the fact that their positions are passed to
glTranslatef() as floats. The problem with pixel-perfect rendering is that OpenGL ES is really sensitive
to vertex positions with fractional parts in their coordinates. We can’t really work around this problem; the
effect will be less pronounced or even nonexistent in a real game, as we’ll see when we implement our next
game. We can hide the effect to some extent by using a busier background, among other things.

The second thing we want to point out is how we interpret the FPS measurements. As you can see from
the preceding output, the FPS fluctuates a little. This can be attributed to background processes that run
alongside our application. We will never have all of the system resources for just our game, so we have to
learn to live with this issue. When you are optimizing your program, don’t fake the environment by killing all
background processes. Run the application on a phone that is in a normal state, as you’d use it yourself. This
will reflect the same experience that a user will have.

Our nice achievement concludes this chapter. As a word of warning, only start optimizing your
rendering code after you have it working, and only then after you actually have a performance problem.
Premature optimization is often a cause for having to rewrite your entire rendering code, as it may become
unmaintainable.

Summary
OpenGL ES is a huge beast. We managed to boil all that down to a size that makes it easily usable for our game
programming needs. We discussed what OpenGL ES is (a lean, mean triangle-rendering machine) and how it
works. We then explored how to make use of OpenGL ES functionality by specifying vertices, creating textures,
and using states (such as blending) for some nice effects. We also looked a little bit into projections and how
they are connected to matrices. While we didn’t discuss what a matrix does internally, we explored how to
use matrices to rotate, scale, and translate reusable models from model space to world space. When we use
OpenGL ES for 3D programming later, you’ll notice that you’ve already learned 90 percent of what you need
to know. All we’ll do is change the projection and add a z coordinate to our vertices (well, there are a few more
things, but on a high level that’s actually it). Before that, however, we’ll write a nice 2D game with OpenGL ES.
In the next chapter, you’ll get to know some of the 2D programming techniques we might need for that.

309© Mario Zechner, J. F. DiMarzio and Robert Green 2016
M. Zechner et al., Beginning Android Games, DOI 10.1007/978-1-4842-0472-6_8

CHAPTER 8

2D Game Programming Tricks

Chapter 7 demonstrated that OpenGL ES offers quite a lot of features to exploit for 2D graphics
programming, such as easy rotation and scaling and the automatic stretching of your view frustum to the
viewport. It also offers performance benefits over using the Canvas API.

Now, it’s time to look at some of the more advanced topics of 2D game programming. You used some of
these concepts intuitively when you wrote Mr. Nom, including time-based state updates and image atlases.
A lot of what’s to come is also very intuitive, and chances are high that you’d have come up with the same
solution sooner or later. However, it doesn’t hurt to learn about these things explicitly.

There are a handful of crucial concepts for 2D game programming. Some of them will be graphics
related, and others will deal with how you represent and simulate your game world. All of these have one
thing in common: they rely on a little linear algebra and trigonometry. Fear not, the level of math needed to
write games like Super Mario Brothers is not exactly mind blowing. Let’s begin by reviewing some concepts
of 2D linear algebra and trigonometry.

Before We Begin
As with the previous “theoretical” chapters, we are going to create a couple of examples to get a feel for
what’s happening. For this chapter, we can reuse what we developed in Chapter 7, mainly the GLGame,
GLGraphics, Texture, and Vertices classes, along with the rest of the framework classes.

Set up a new project in the exact same way you set up the project in Chapter 7. Copy over the com.
badlogic.androidgames.framework package to your new project and then create a new package called com.
badlogic.androidgames.gamedev2d.

Add a starter class called GameDev2DStarter. Reuse the code of GLBasicsStarter and simply replace the
class names of the tests. Modify the manifest file so that this new starter class will be launched. For each of the
tests we are going to develop, you have to add an entry to the manifest in the form of <activity> elements.

Each of the tests is again an instance of the game interface, and the actual test logic is implemented in
the form of a Screen instance contained in the Game implementation of the test, as in the previous chapter.
Only the relevant portions of the Screen instance will be presented so as to conserve some pages. The naming
conventions are again XXXTest and XXXScreen for the GLGame and Screen implementations of each test.

With that out of our way, it’s time to talk about vectors.

In the Beginning . . . There Was the Vector
In Chapter 7, you learned that vectors shouldn’t be mixed up with positions. This is not entirely true, as we can
(and will) represent a position in some spaces via a vector. A vector can actually have many interpretations:

•	 Position: We already used this in the previous chapters to encode the coordinates of
our entities relative to the origin of the coordinate system.

http://dx.doi.org/10.1007/978-1-4842-0472-6_7
http://dx.doi.org/10.1007/978-1-4842-0472-6_7
http://dx.doi.org/10.1007/978-1-4842-0472-6_7
http://dx.doi.org/10.1007/978-1-4842-0472-6_7

Chapter 8 ■ 2D Game proGramminG triCks

310

•	 Velocity and acceleration: These are physical quantities you’ll hear about in the next
section. While you are likely used to thinking about velocity and acceleration as being
a single value, they should actually be represented as 2D or 3D vectors. They encode
not only the speed of an entity (for example, a car driving at 100 km/h), but also the
direction in which the entity is traveling. Note that this kind of vector interpretation
does not state that the vector is given relative to the origin. This makes sense, since the
velocity and direction of a car are independent of its position. Think of a car traveling
northwest on a straight highway at 100 km/h. As long as its speed and direction don’t
change, the velocity vector won’t change either, while its position does.

•	 Direction and distance: Direction is similar to velocity but generally lacks a physical
quantity. You can use such a vector interpretation to encode states, such as this entity
is pointing southeast. Distance just tells us how far away, and in what direction, a
position is from another position.

Figure 8-1 shows these interpretations in action.
Figure 8-1 is, of course, not exhaustive. Vectors can have a lot more interpretations. For our game

development needs, however, these four basic interpretations will suffice.

One thing that’s left out from Figure 8-1 is the units the vector components have. We have to make sure
that these are sensible (for example, Bob’s velocity could be in meters per second, so that he travels 2 m to
the left and 3 m up in 1 s). The same is true for positions and distances, which could also be expressed in
meters. The direction of Bob is a special case, though—it is unitless. This will come in handy if we want to
specify the general direction of an object while keeping the direction’s physical features separate. We can do
this for the velocity of Bob, storing the direction of his velocity as a direction vector and his speed as a single
value. Single values are also known as scalars. The direction vector must be of length 1, as will be discussed
later in this chapter.

Working with Vectors
The power of vectors stems from the fact that we can easily manipulate and combine them. Before we
can do that, though, we need to define how you represent vectors. Here’s an ad hoc, semi-mathematical
representation of a vector:

v = (x,y)

Now, this isn’t a big surprise; we’ve done this a gazillion times already. Every vector has an x and a y
component in our 2D space. (Yes, we’ll be staying in two dimensions in this chapter.) We can also add two vectors:

c = a + b = (a.x, a.y) + (b.x, b.y) = (a.x + b.x, a.y + b.y)

Figure 8-1. Bob, with position, velocity, direction, and distance expressed as vectors

Chapter 8 ■ 2D Game proGramminG triCks

311

All we need to do is add the components together to arrive at the final vector. Try it out with the vectors
given in Figure 8-1. Say you take Bob’s position, p = (3,2), and add his velocity, v = (–2,3). You arrive at a new
position, p' = (3 + –2, 2 + 3) = (1,5). Don’t get confused by the apostrophe behind the p here; it’s just there
to denote that you have a new vector p. Of course, this little operation only makes sense when the units of
the position and the velocity fit together. In this case, we assume the position is given in meters (m) and the
velocity is given in meters per second (m/s), which fits perfectly.

Of course, we can also subtract vectors:

c = a – b = (a.x, a.y) – (b.x, b.y) = (a.x – b.x, a.y – b.y)

Again, all we do is combine the components of the two vectors. Note, however, that the order in which we
subtract one vector from the other is important. Take the rightmost image in Figure 8-1, for example. We have
a green Bob at pg = (1,4) and a red Bob at pr = (6,1), where pg and pr stand for position green and position red,
respectively. When we take the distance vector from green Bob to red Bob, we calculate the following:

d = pg – pr = (1, 4) – (6, 1) = (–5, 3)

Now, this is strange. This vector is actually pointing from red Bob to green Bob! To get the direction
vector from green Bob to red Bob, we have to reverse the order of subtraction:

d = pr – pg = (6, 1) – (1, 4) = (5,–3)

If we want to find the distance vector from position a to position b, we use the following general formula:

d = b – a

In other words, always subtract the start position from the end position. That’s a little confusing at first,
but if you think about it, it makes absolute sense. Try it out on some graph paper!

We can also multiply a vector by a scalar (remember, a scalar is just a single value):

a' = a * scalar = (a.x * scalar, a.y * scalar)

We multiply each of the components of the vector by the scalar. This allows us to scale the length of a
vector. Take the direction vector in Figure 8-1 as an example. It’s specified as d = (0,–1). If we multiply it by
the scalar s = 2, we effectively double its length: d × s = (0,–1 × 2) = (0,–2). We can, of course, make it smaller
by using a scalar less than 1—for example, d multiplied by s = 0.5 creates a new vector, d' = (0,–0.5).

Speaking of length, we can also calculate the length of a vector (in the units it’s given in):

|a| = sqrt(a.x * a.x + a.y * a.y)

Figure 8-2. Pythagoras would love vectors too

Chapter 8 ■ 2D Game proGramminG triCks

312

The |a| notation simply explains that this represents the length of the vector. If you didn’t sleep through
your linear algebra class at school, you might recognize the formula for the vector length. It’s simply the
Pythagorean theorem applied to our fancy 2D vector. The x and y components of the vector form two sides of
a right triangle, and the third side is the length of the vector. Figure 8-2 illustrates this.

The vector length is always positive or zero, given the properties of the square root. If we apply this to
the distance vector between the red Bob and the green Bob, we can figure out how far apart they are from
each other (if their positions are given in meters):

|pr – pg| = sqrt(5*5 + –3*–3) = sqrt(25 + 9) = sqrt(34) ~= 5.83m

Note that if we calculated |pg – pr|, we’d arrive at the same value, as the length is independent of the
direction of the vector. This new knowledge also has another implication: when we multiply a vector by a
scalar, its length changes accordingly. Given a vector d = (0,–1), with an original length of 1 unit, you can
multiply it by 2.5 and arrive at a new vector, with a length of 2.5 units.

Direction vectors usually don’t have any units associated with them. We can give them a unit by
multiplying them with a scalar—for example, we can multiply direction vector d = (0,1) by speed constant s
= 100 m/s to get a velocity vector of v = (0 × 100,1 × 100) = (0,100). It’s always a good idea to let your direction
vectors have a length of 1. Vectors with a length of 1 are called unit vectors. We can make any vector a unit
vector by dividing each of its components by its length:

d' = (d.x / |d|, d.y / |d|)

Remember that |d| just means the length of the vector d. Try it out. Say you want a direction vector that
points exactly northeast: d = (1,1). It might seem that this vector is already a unit length, as both components
are 1, right? Wrong:

|d| = sqrt(1 * 1 + 1 * 1) = sqrt(2) ~= 1.44

You can easily fix this by making the vector a unit vector:

d' = (d.x / |d|, d.y / |d|) = (1 / |d|, 1 / |d|) ~= (1 / 1.44, 1 / 1.44) = (0.69, 0.69)

This is also called normalizing a vector, which just means that we ensure it has a length of 1. With this
little trick, we can, for example, create a unit-length direction vector out of a distance vector. Of course, we
have to watch out for zero-length vectors, as we’d have to divide by zero in that case!

A Little Trigonometry
It’s time to turn to trigonometry for a minute. There are two essential functions in trigonometry: cosine and
sine. Each takes a single argument: an angle. You are probably used to specifying angles in degrees (for
example, 45° or 360°). In most math libraries, however, trigonometry functions expect the angle in radians.
We can easily do conversions between degrees and radians using the following equations:

degreesToRadians(angleInDegrees) = angleInDegrees / 180 * pi
radiansToDegrees(angle) = angleInRadians / pi * 180

Here, pi is the beloved superconstant with an approximate value of 3.14159265. pi radians equal 180°, so
that’s how the preceding functions came to be.

So, what do cosine and sine actually calculate, given an angle? They calculate the x and y components of
a unit-length vector relative to the origin. Figure 8-3 illustrates this.

Chapter 8 ■ 2D Game proGramminG triCks

313

Given an angle, we can therefore create a unit-length direction vector like this:

v = (cos(angle), sin(angle))

We can go the other way around, as well, and calculate the angle of a vector with respect to the x axis:

angle = atan2(v.y, v.x)

The atan2 function is actually an artificial construct. It uses the arcus tangent function (which is the
inverse of the tangent function, another fundamental function in trigonometry) to construct an angle in the
range of –180° to 180° (or –pi to pi, if the angle is returned in radians). The internals are somewhat involved,
and do not matter all that much in this discussion. The arguments are the y and x components of a vector.
Note that the vector does not have to be a unit vector for the atan2 function to work. Also, note that the y
component is usually given first, and then the x component—but this depends on the selected math library.
This is a common source of errors.

Try a few examples. Given a vector v = (cos(97°), sin(97°)), the result of atan2(sin(97°),cos(97°)) is 97°.
Great, that was easy. Using a vector v = (1,–1), you get atan2(–1,1) = –45°. So, if your vector’s y component
is negative, you’ll get a negative angle in the range 0° to –180°. You can fix this by adding 360° (or 2 pi) if the
output of atan2 is negative. In the preceding example, you would then get 315°.

The final operation we want to be able to apply to our vectors is rotating them by some angle. The
derivations of the equations that follow are again rather involved. Luckily, we can just use these equations as
is, without knowing about orthogonal base vectors. (Hint: That’s the key phrase to search for on the Web if
you want to know what’s going on under the hood.) Here’s the magical pseudocode:

v.x' = cos(angle) * v.x – sin(angle) * v.y
v.y' = sin(angle) * v.x + cos(angle) * v.y

Whoa, that was less complicated than expected. This will rotate any vector counterclockwise around the
origin, no matter what interpretation you have of the vector.

Together with vector addition, subtraction, and multiplication by a scalar, you can actually implement
all the OpenGL matrix operations yourself. This is one part of the solution for further increasing the
performance of your BobTest from Chapter 7. This will be discussed in an upcoming section. For now, let us
concentrate on what was discussed and transfer it to code.

Figure 8-3. Cosine and sine produce a unit vector, with its endpoint lying on the unit circle

http://dx.doi.org/10.1007/978-1-4842-0472-6_7

Chapter 8 ■ 2D Game proGramminG triCks

314

Implementing a Vector Class
Now we can create an easy-to-use vector class for 2D vectors. We call it Vector2. It should have two
members for holding the x and y components of the vector. Additionally, it should have a couple of nice
methods that allow you to do the following:

•	 Add and subtract vectors

•	 Multiply the vector components by a scalar

•	 Measure the length of a vector

•	 Normalize a vector

•	 Calculate the angle between a vector and the x axis

•	 Rotate the vector

Java lacks operator overloading, so we have to come up with a mechanism that makes working with the
Vector2 class less cumbersome. Ideally, we should have something like the following:

Vector2 v = new Vector2();
v.add(10,5).mul(10).rotate(54);

We can easily achieve this by letting each of the Vector2 methods return a reference to the vector itself.
Of course, we also want to overload methods like Vector2.add() so that we can pass in either two floats or
an instance of another Vector2. Listing 8-1 shows the Vector2 class in its full glory, with comments added
where appropriate.

Listing 8-1. Vector2.java: Implementing some nice 2D vector functionality

package com.badlogic.androidgames.framework.math;

public class Vector2 {
 public static float TO_RADIANS = (1 / 180.0f) * (float) Math.PI;
 public static float TO_DEGREES = (1 / (float) Math.PI) * 180;
 public float x, y;

 public Vector2() {
 }

 public Vector2(float x, float y) {
 this.x = x;
 this.y = y;
 }

 public Vector2(Vector2 other) {
 this.x = other.x;
 this.y = other.y;
 }

Put that class in the package com.badlogic.androidgames.framework.math, where we’ll also house any
other math-related classes.

Chapter 8 ■ 2D Game proGramminG triCks

315

We start off by defining two static constants, TO_RADIANS and TO_DEGREES. To convert an angle given in
radians, we simply multiply it by TO_DEGREES; to convert an angle given in degrees to radians, we multiply
it by TO_RADIANS. We can double-check this by looking at the two previously defined equations that govern
degree-to-radian conversion. With this little trick, we can shave off some division and speed things up.

Next, we define the members x and y, which store the components of the vector, and a couple of
constructors—nothing too complex:

public Vector2 cpy() {
 return new Vector2(x, y);
}

The cpy() method will create a duplicate instance of the current vector and return it. This might come
in handy if we want to manipulate a copy of a vector, preserving the value of the original vector.

public Vector2 set(float x, float y) {
 this.x = x;
 this.y = y;
 return this;
}

public Vector2 set(Vector2 other) {
 this.x = other.x;
 this.y = other.y;
 return this;
}

The set() methods allow us to set the x and y components of a vector based on either two float arguments or
another vector. The methods return a reference to this vector, so we can chain operations, as discussed previously.

public Vector2 add(float x, float y) {
 this.x += x;
 this.y += y;
 return this;
}

public Vector2 add(Vector2 other) {
 this.x += other.x;
 this.y += other.y;
 return this;
}

public Vector2 sub(float x, float y) {
 this.x -= x;
 this.y -= y;
 return this;
}

public Vector2 sub(Vector2 other) {
 this.x -= other.x;
 this.y -= other.y;
 return this;
}

Chapter 8 ■ 2D Game proGramminG triCks

316

The add() and sub() methods come in two flavors: in one case, they work with two float arguments,
while in the other case, they take another Vector2 instance. All four methods return a reference to this vector
so that we can chain operations.

public Vector2 mul(float scalar) {
 this.x *= scalar;
 this.y *= scalar;
 return this;
}

The mul() method simply multiplies the x and y components of the vector by the given scalar value, and
it returns a reference to the vector itself for chaining.

public float len() {
 return (float)Math.sqrt(x * x + y * y);
}

The len() method calculates the length of the vector exactly, as defined previously. Note that we use
the FloatMath class instead of the usual Math class that Java SE provides. This is a special Android API class
that works with floats instead of doubles, and it is a little bit faster than the Math equivalent, at least on older
Android versions.

public Vector2 nor() {
 float len = len();
 if (len != 0) {
 this.x /= len;
 this.y /= len;
 }
 return this;
}

The nor() method normalizes the vector to unit length. We use the len() method internally to first
calculate the length. If it is zero, we can bail out early and avoid a division by zero. Otherwise, we divide each
component of the vector by its length to arrive at a unit-length vector. For chaining, we return the reference
to this vector again.

public float angle() {
 float angle = (float) Math.atan2(y, x) * TO_DEGREES;
 if (angle < 0)
 angle += 360;
 return angle;
}

The angle() method calculates the angle between the vector and the x axis using the atan2() method,
as discussed previously. We have to use the Math.atan2() method, as the FloatMath class doesn’t have this
method. The returned angle is given in radians, so we convert it to degrees by multiplying it by TO_DEGREES.
If the angle is less than zero, we add 360° to it so that we can return a value in the range 0 to 360°.

public Vector2 rotate(float angle) {
 float rad = angle * TO_RADIANS;
 float cos = (float)Math.cos(rad);
 float sin = (float)Math.sin(rad);

Chapter 8 ■ 2D Game proGramminG triCks

317

 float newX = this.x * cos - this.y * sin;
 float newY = this.x * sin + this.y * cos;

 this.x = newX;
 this.y = newY;

 return this;
}

The rotate() method simply rotates the vector around the origin by the given angle. Since the
FloatMath.cos() and FloatMath.sin() methods expect the angle to be given in radians, we first convert
them from degrees to radians. Next, we use the previously defined equations to calculate the new x and y
components of the vector, then we return the vector itself, again for chaining.

 public float dist(Vector2 other) {
 float distX = this.x - other.x;
 float distY = this.y - other.y;
 return (float)Math.sqrt(distX * distX + distY * distY);
 }

 public float dist(float x, float y) {
 float distX = this.x - x;
 float distY = this.y - y;
 return (float)Math.sqrt(distX * distX + distY * distY);
 }
}

Finally, we have two methods that calculate the distance between this vector and another vector.
And that’s our shiny Vector2 class, which we can use to represent positions, velocities, distances, and

directions in the code that follows. To get a feeling for your new class, we’ll use it in a simple example.

A Simple Usage Example
Here’s a proposal for a simple test:

•	 We create a sort of cannon represented by a triangle that has a fixed position in our
world. The center of the triangle will be at (2.4,0.5).

•	 Each time we touch the screen, we want to rotate the triangle to face the touch point.

•	 Our view frustum will show the region of the world between (0,0) and (4.8,3.2). We
do not operate in pixel coordinates, but instead define our own coordinate system,
where one unit equals one meter. Also, we’ll be working in landscape mode.

There are a couple of things we need to think about. We already know how to define a triangle in model
space—we can use a FirstTriangleTest from Chapter 7 for this. Our cannon should point to the right at an
angle of 0 degrees in its default orientation. Figure 8-4 shows the cannon triangle in model space.

http://dx.doi.org/10.1007/978-1-4842-0472-6_7

Chapter 8 ■ 2D Game proGramminG triCks

318

When we render that triangle, we simply use glTranslatef() to move it to its place in the world at
(2.4,0.5).

We also want to rotate the cannon so that its tip points in the direction of the point on the screen that
we last touched. For this, we need to figure out the location of the last touch event in the world. The GLGame.
getInput().getTouchX() and getTouchY() methods will return the touch point in screen coordinates, with
the origin in the top-left corner. The Input instance will not scale the events to a fixed coordinate system, as
it did in Mr. Nom. Intead, we need to convert these touch coordinates to world coordinates. We already did
this in the touch handlers in Mr. Nom and the Canvas-based game framework; the only difference this time
is that the coordinate system extents are a little smaller, and our world’s y axis is pointing upward. Here’s the
pseudocode showing how we can achieve the conversion in a general case, which is nearly the same as in
the touch handlers of Chapter 5:

worldX = (touchX / Graphics.getWidth()) * viewFrustmWidth
worldY = (1 - touchY / Graphics.getHeight()) * viewFrustumHeight

We normalize the touch coordinates to the range (0,1) by dividing them by the screen resolution. In the
case of the y coordinate, we subtract the normalized y coordinate of the touch event from 1 to flip the y axis.
All that’s left is scaling the x and y coordinates by the view frustum’s width and height—in our case, that’s
4.8 and 3.2. From worldX and worldY, we can then construct a Vector2 that stores the position of the touch
point in your world’s coordinates.

The last thing we need to do is calculate the angle by which to rotate the canon. Take a look at Figure 8-5,
which shows our cannon and a touch point in world coordinates.

Figure 8-4. The cannon triangle in model space

http://dx.doi.org/10.1007/978-1-4842-0472-6_5

Chapter 8 ■ 2D Game proGramminG triCks

319

All we need to do is create a distance vector from the cannon’s center at (2.4,0.5) to the touch point (and
remember, we have to subtract the cannon’s center from the touch point, not the other way around). Once
we have that distance vector, we can calculate the angle with the Vector2.angle() method. This angle can
then be used to rotate your model via glRotatef().

Let’s code that. Listing 8-2 shows Cannon, a new class that CannonTest will call. It is very much like the
Bob class from Chapter 7.

Listing 8-2. Excerpt from CannonTest.java: Touching the screen will rotate the cannon

class CannonScreen extends Screen {
 float FRUSTUM_WIDTH = 4.8f;
 float FRUSTUM_HEIGHT = 3.2f;
 GLGraphics glGraphics;
 Vertices vertices;
 Vector2 cannonPos = new Vector2(2.4f, 0.5f);
 float cannonAngle = 0;
 Vector2 touchPos = new Vector2();

We start off with two constants that define the frustum’s width and height, as discussed earlier. Next,
we include a GLGraphics instance and a Vertices instance. We store the cannon’s position in a Vector2
instance and its angle in a float. Finally, we have another Vector2, which we can use to calculate the angle
between a vector from the origin to the touch point and the x axis.

Figure 8-5. Our cannon in its default state, pointing to the right (angle = 0°), a touch point, and the angle by
which we need to rotate the cannon. The rectangle is the area of the world that our view frustum will show on
the screen: (0,0) to (4.8,3.2).

http://dx.doi.org/10.1007/978-1-4842-0472-6_7

Chapter 8 ■ 2D Game proGramminG triCks

320

Why do we store the Vector2 instances as class members? We can instantiate them every time we need
them, but that would make the garbage collector angry. In general, we try to instantiate all the Vector2
instances once and then reuse them as often as possible.

public CannonScreen(Game game) {
 super(game);
 glGraphics = ((GLGame) game).getGLGraphics();
 vertices = new Vertices(glGraphics, 3, 0, false, false);
 vertices.setVertices(new float[] { -0.5f, -0.5f,
 0.5f, 0.0f,
 -0.5f, 0.5f }, 0, 6);
}

In the constructor, we fetch the GLGraphics instance and create the triangle according to Figure 8-4.

@Override
public void update(float deltaTime) {
 List<TouchEvent> touchEvents = game.getInput().getTouchEvents();
 game.getInput().getKeyEvents();

 int len = touchEvents.size();
 for (int i = 0; i < len; i++) {
 TouchEvent event = touchEvents.get(i);

 touchPos.x = (event.x / (float) glGraphics.getWidth())
 * FRUSTUM_WIDTH;
 touchPos.y = (1 - event.y / (float) glGraphics.getHeight())
 * FRUSTUM_HEIGHT;
 cannonAngle = touchPos.sub(cannonPos).angle();
 }
}

Next up is the update() method. We simply loop over all touch events and calculate the angle for the
cannon. This can be done in a couple of steps. First, we transform the screen coordinates of the touch event
to the world coordinate system, as discussed earlier. We store the world coordinates of the touch event in the
touchPoint member. We then subtract the position of the cannon from the touch point vector, which will
result in the vector depicted in Figure 8-5. We then calculate the angle between this vector and the x axis.
And that’s all there is to it!

@Override
public void present(float deltaTime) {

 GL10 gl = glGraphics.getGL();
 gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight());
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);

Chapter 8 ■ 2D Game proGramminG triCks

321

 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 gl.glOrthof(0, FRUSTUM_WIDTH, 0, FRUSTUM_HEIGHT, 1, -1);
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();

 gl.glTranslatef(cannonPos.x, cannonPos.y, 0);
 gl.glRotatef(cannonAngle, 0, 0, 1);
 vertices.bind();
 vertices.draw(GL10.GL_TRIANGLES, 0, 3);
 vertices.unbind();
}

The present() method does the same boring things as it did before. We set the viewport, clear the
screen, set up the orthographic projection matrix using our frustum’s width and height, and tell OpenGL ES
that all subsequent matrix operations will work on the model-view matrix. We load an identity matrix to the
model-view matrix to “clear” it. Next, we multiply the (identity) model-view matrix by a translation matrix,
which will move the vertices of the triangle from model space to world space. We call glRotatef() with
the angle we calculated in the update() method so that the triangle gets rotated in model space before it is
translated. Remember, transformations are applied in reverse order—the last specified transformation is
applied first. Finally, we bind the vertices of the triangle, render it, and unbind it.

 @Override
 public void pause() {

 }

 @Override
 public void resume() {

 }

 @Override
 public void dispose() {

 }
 }
}

Now we have a triangle that will follow your every touch. Figure 8-6 shows the output after touching the
upper-right corner of the screen.

Chapter 8 ■ 2D Game proGramminG triCks

322

Note that it doesn’t really matter whether we render a triangle at the cannon position or render a
rectangle texture mapped to an image of a cannon—OpenGL ES doesn’t really care. We also have all the
matrix operations in the present() method. The truth of the matter is that it is easier to keep track of OpenGL
ES states this way, and we can use multiple view frustums in one present() call (for example, one view
frustum setting up a world in meters, for rendering our world, and another view frustum setting up a world in
pixels, for rendering UI elements). The impact on performance is not all that big, as described in Chapter 7, so
it’s acceptable to do it this way most of the time. Just remember that you can optimize this if the need arises.

Vectors will be your best friends from now on. You can use them to specify virtually everything in your
world. You will also be able to do some very basic physics with vectors. What’s a cannon good for if it can’t
shoot, right?

A Little Physics in 2D
In this section, we’ll discuss a very simple and limited version of physics. Games are all about being good
fakes. They cheat wherever possible in order to avoid potentially heavy calculations. The behavior of objects
in a game does not need to be 100 percent physically accurate; it just needs to be good enough to look
believable. Sometimes you won’t even want physically accurate behavior (that is, you might want one set of
objects to fall downward, and another, crazier, set of objects to fall upward).

Figure 8-6. Our triangle cannon reacting to a touch event in the upper-right corner

http://dx.doi.org/10.1007/978-1-4842-0472-6_7

Chapter 8 ■ 2D Game proGramminG triCks

323

Even the original Super Mario Brothers used at least some basic principles of Newtonian physics. These
principles are really simple and easy to implement. Only the absolute minimum required for implementing
a simple physics model for our game objects will be discussed.

Newton and Euler: Best Friends Forever
Our main concern is with the motion physics of so-called point masses. Motion physics describes the
change in position, velocity, and acceleration of an object over time. Point mass means that all objects are
approximated with an infinitesimally small point that has an associated mass. We do not have to deal with
things like torque—the rotational velocity of an object around its center of mass—because that is a complex
problem domain about which more than one complete book has been written. We will just look at these
three properties of an object:

•	 Position: Represented as a vector in some space—in our case, a 2D space. Usually the
position is given in meters.

•	 Velocity: The object’s change in position per second. Velocity is given as a 2D velocity
vector, which is a combination of the unit-length direction vector in which the
object is heading and the speed at which the object will move, given in meters per
second (m/s). Note that the speed just governs the length of the velocity vector; if you
normalize the velocity vector by the speed, you get a nice unit-length direction vector.

•	 Acceleration: The object’s change in velocity per second. We can represent this either
as a scalar that only affects the speed of the velocity (the length of the velocity vector) or
as a 2D vector so that we can have different acceleration in the x and y axes. Here, we’ll
choose the latter, as it allows us to use things such as ballistics more easily. Acceleration
is usually given in meters per second per second (m/s2). No, that’s not a typo—you
change the velocity by some amount given in meters per second, each second.

When we know the properties of an object for a given point in time, we can integrate them to simulate
the object’s path through the world over time. This may sound scary, but we already did this with Mr. Nom
and our BobTest class. In those cases, we didn’t use acceleration; we simply set the velocity to a fixed vector.
Here’s how we can integrate the acceleration, velocity, and position of an object in general:

Vector2 position = new Vector2();
Vector2 velocity = new Vector2();
Vector2 acceleration = new Vector2(0, -10);
while(simulationRuns) {
 float deltaTime = getDeltaTime();
 velocity.add(acceleration.x * deltaTime, acceleration.y * deltaTime);
 position.add(velocity.x * deltaTime, velocity.y * deltaTime);
}

This is called numerical Euler integration, and it is the most intuitive of the integration methods used
in games. We start off with a position at (0,0), a velocity given as (0,0), and an acceleration of (0,–10), which
means that the velocity will increase by 1 m/s on the y axis. There will be no movement on the x axis. Before
we enter the integration loop, our object is standing still. Within the loop, we first update the velocity,
based on the acceleration multiplied by the delta time, and then update the position, based on the velocity
multiplied by the delta time. That’s all there is to the big, scary word integration.

Chapter 8 ■ 2D Game proGramminG triCks

324

 ■ Note as usual, that’s not even half of the story. euler integration is an “unstable” integration method and
should be avoided when possible. Usually, one would employ a variant of the so-called verlet integration, which
is just a bit more complex. For our purposes, however, the easier euler integration is sufficient.

Force and Mass
You might wonder where the acceleration comes from. That’s a good question with many answers. The
acceleration of a car comes from its engine. The engine applies a force to the car that causes it to accelerate.
But that’s not all. A car will also accelerate toward the center of the Earth because of gravity. The only thing
that keeps it from falling through to the center of the Earth is the ground, which it can’t pass through. The
ground cancels out this gravitational force. The general idea is this:

force = mass × acceleration

You can rearrange this to the following equation:

acceleration = force / mass

Force is given in the SI unit Newton. (Guess who came up with this.) If you specify acceleration as a
vector, then you also have to specify force as a vector. A force can thus have a direction. For example, the
gravitational force pulls downward in the direction (0,–1). The acceleration is also dependent on the mass of
an object. The greater the mass of an object, the more force you need to apply in order to make it accelerate
as fast as an object of less weight. This is a direct consequence of the preceding equations.

For simple games we can, however, ignore the mass and force and just work with the velocity and
acceleration directly. The pseudocode in the preceding section sets the acceleration to (0,–10) m/s2 (again,
not a typo), which is roughly the acceleration of an object when it is falling toward the Earth, no matter its
mass (ignoring things like air resistance). It’s true . . . ask Galileo!

Playing Around, Theoretically
We’ll use the preceding example to play with an object falling toward Earth. Let’s assume that we let the
loop iterate ten times and that getDeltaTime() will always return 0.1 s. We’ll get the following positions and
velocities for each iteration:

time=0.1, position=(0.0,-0.1), velocity=(0.0,-1.0)
time=0.2, position=(0.0,-0.3), velocity=(0.0,-2.0)
time=0.3, position=(0.0,-0.6), velocity=(0.0,-3.0)
time=0.4, position=(0.0,-1.0), velocity=(0.0,-4.0)
time=0.5, position=(0.0,-1.5), velocity=(0.0,-5.0)
time=0.6, position=(0.0,-2.1), velocity=(0.0,-6.0)
time=0.7, position=(0.0,-2.8), velocity=(0.0,-7.0)
time=0.8, position=(0.0,-3.6), velocity=(0.0,-8.0)
time=0.9, position=(0.0,-4.5), velocity=(0.0,-9.0)
time=1.0, position=(0.0,-5.5), velocity=(0.0,-10.0)

After 1 s, our object will fall 5.5 m and have a velocity of (0,–10) m/s, moving straight down to the core of
the Earth (until it hits the ground, of course).

Our object will increase its downward speed without end, as we haven’t factored in air resistance. (As
mentioned before, you can easily cheat your own system.) We can simply enforce a maximum velocity by
checking the current velocity length, which equals the speed of the object.

Chapter 8 ■ 2D Game proGramminG triCks

325

All-knowing Wikipedia indicates that a human in free fall can have a maximum, or terminal, velocity of
roughly 125 mph. Converting that to meters per second (125 × 1.6 × 1000 / 3600), we get 55.5 m/s. To make
our simulation more realistic, we can modify the loop as follows:

while(simulationRuns) {
 float deltaTime = getDeltaTime();
 if(velocity.len() < 55.5)
 velocity.add(acceleration.x * deltaTime, acceleration.y * deltaTime);
 position.add(velocity.x * deltaTime, velocity.y * deltaTime);
}

As long as the speed of the object (the length of the velocity vector) is smaller than 55.5 m/s, we can
increase the velocity by the acceleration. When we’ve reached the terminal velocity, we simply stop increasing
it by the acceleration. This simple capping of velocities is a trick that is used heavily in many games.

We can add wind to the equation by adding another acceleration in the x direction, say (–1,0) m/s2. For
this, we add the gravitational acceleration to the wind acceleration before we add it to the velocity:

Vector2 gravity = new Vector2(0,-10);
Vector2 wind = new Vector2(-1,0);
while(simulationRuns) {
 float deltaTime = getDeltaTime();
 acceleration.set(gravity).add(wind);
 if(velocity.len() < 55.5)
 velocity.add(acceleration.x * deltaTime, acceleration.y * deltaTime);
 position.add(velocity.x * deltaTime, velocity.y * deltaTime);
}

We can also ignore acceleration altogether and let our objects have a fixed velocity. We did exactly this
in the BobTest. We changed the velocity of each Bob only if he hit an edge, and we did so instantly.

Playing Around, Practically
The possibilities, even with this simple model, are endless. In this section, we’ll extend our little CannonTest
from earlier in the chapter so that we can actually shoot a cannonball. Here’s what we want to do:

•	 As long as we drag our finger over the screen, the canon will follow it. That’s how we
can specify the angle at which you’ll shoot the ball.

•	 As soon as we receive a touch-up event, we can fire a cannonball in the direction the
cannon is pointing. The initial velocity of the cannonball will be a combination of
the cannon’s direction and the speed the cannonball has from the start. The speed is
equal to the distance between the cannon and the touch point. The further away we
touch, the faster the cannonball will fly.

•	 The cannonball will fly as long as there’s no new touch-up event.

•	 We can double the size of the view frustum from (0,0) to (9.6, 6.4) so that we can see
more of our world. Additionally, we can place the cannon at (0,0). Note that all units
of the world are now given in meters.

•	 We can render the cannonball as a red rectangle of the size 0.2×0.2 m, or 20×20
cm—close enough to a real cannonball. The pirates among you may choose a more
realistic size, of course.

Chapter 8 ■ 2D Game proGramminG triCks

326

Initially, the position of the cannonball will be (0,0)—the same as the cannon’s position. The velocity
will also be (0,0). Since we apply gravity in each update, the cannonball will simply fall straight down.

Once a touch-up event is received, we set the ball’s position back to (0,0) and its initial velocity to (Math.
cos(cannonAngle),Math.sin(cannonAngle)). This will ensure that the cannonball flies in the direction the
cannon is pointing. Also, we set the speed simply by multiplying the velocity by the distance between the touch
point and the cannon. The closer the touch point to the cannon, the more slowly the cannonball will fly.

Sounds easy enough, so now we can try implementing it. Copy over the code from the CannonTest.
java file to a new file called CannonGravityTest.java. Rename the classes contained in that file to
CannonGravityTest and CannonGravityScreen. Listing 8-3 shows the CannonGravityScreen class, with
some comments added for clarity.

Listing 8-3. Excerpt from CannonGravityTest

class CannonGravityScreen extends Screen {
 float FRUSTUM_WIDTH = 2f;
 float FRUSTUM_HEIGHT = 2.5f;
 GLGraphics glGraphics = null;
 Vector2 cannonPos = new Vector2();
 float cannonAngle = 0;
 Vertices cannonVertices;
 Vertices ballVertices;
 Vector2 touchPos = new Vector2();
 Vector2 ballPos = new Vector2(0,0);
 Vector2 ballVelocity = new Vector2(0,0);
 Vector2 gravity = new Vector2(0,-10);

Not a lot has changed. We simply doubled the size of the view frustum and reflected that by setting
FRUSTUM_WIDTH and FRUSTUM_HEIGHT to 9.6 and 6.2, respectively. This means that we can see a rectangle of
9.2×6.2 m of the world. Since we also want to draw the cannonball, we add another set of vertices, which
will hold the four vertices and six indices of the rectangle of the cannonball. The new members ballPos and
ballVelocity store the position and velocity of the cannonball, and the member gravity is the gravitational
acceleration, which will stay at a constant (0,–10) m/s2 over the lifetime of our program.

public CannonGravityScreen(Game game) {
 super(game);
 glGraphics = ((GLGame) game).getGLGraphics();
 cannonVertices = new Vertices(glGraphics, 3, 0, false, false);
 cannonVertices.setVertices(new float[] { -0.5f, -0.5f,
 0.5f, 0.0f,
 -0.5f, 0.5f }, 0, 6);
 ballVertices = new Vertices(glGraphics, 4, 6, false, false);
 ballVertices.setVertices(new float[] { -0.1f, -0.1f,
 0.1f, -0.1f,
 0.1f, 0.1f,
 -0.1f, 0.1f }, 0, 8);
 ballVertices.setIndices(new short[] {0, 1, 2, 2, 3, 0}, 0, 6);
 }

In the constructor, we simply create the additional vertices for the rectangle of the cannonball. We
define it in model space with the vertices (–0.1,–0.1), (0.1,–0.1), (0.1,0.1), and (–0.1,0.1). We use indexed
drawing, and thus specify six vertices in this case.

Chapter 8 ■ 2D Game proGramminG triCks

327

@Override
public void update(float deltaTime) {
 List<TouchEvent> touchEvents = game.getInput().getTouchEvents();
 game.getInput().getKeyEvents();
 int len = touchEvents.size();
 for (int i = 0; i < len; i++) {
 TouchEvent event = touchEvents.get(i);

 touchPos.x = (event.x / (float) glGraphics.getWidth())
 * FRUSTUM_WIDTH;
 touchPos.y = (2.5f - event.y / (float) glGraphics.getHeight())
 * FRUSTUM_HEIGHT;
 cannonAngle = touchPos.sub(cannonPos).angle();

 if(event.type == TouchEvent.TOUCH_UP) {
 float radians = cannonAngle * Vector2.TO_RADIANS;
 float ballSpeed = touchPos.len();
 ballPos.set(cannonPos);
 ballVelocity.x = (float)Math.cos(radians) * ballSpeed;
 ballVelocity.y = (float)Math.sin(radians) * ballSpeed;
 }
 }

 ballVelocity.add(gravity.x * deltaTime, gravity.y * deltaTime);
 ballPos.add(ballVelocity.x * deltaTime, ballVelocity.y * deltaTime);
}

The update() method has changed only slightly. The calculation of the touch point in world
coordinates and the angle of the cannon are still the same. The first addition is the if statement inside the
event-processing loop. In case we get a touch-up event, we prepare the cannonball to be shot. We transform
the cannon’s aiming angle to radians, as we’ll use Math.cos() and Math.sin() later on. Next, we calculate
the distance between the cannon and the touch point. This will be the speed of the cannonball. We set the
ball’s position to the cannon’s position. Finally, we calculate the initial velocity of the cannonball. We use
sine and cosine, as discussed in the previous section, to construct a direction vector from the cannon’s
angle. We multiply this direction vector by the cannonball’s speed to arrive at the final cannonball velocity.
This is interesting, as the cannonball will have this velocity from the start. In the real world, the cannonball
would, of course, accelerate from 0 m/s to whatever it could reach given air resistance, gravity, and the force
applied to it by the cannon. We can cheat here, though, as that acceleration would happen in a very tiny
time window (a couple hundred milliseconds). The last thing we do in the update() method is update the
velocity of the cannonball and, based on that, adjust its position.

@Override
public void present(float deltaTime) {

 GL10 gl = glGraphics.getGL();
 gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight());
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 gl.glOrthof(0, FRUSTUM_WIDTH, 0, FRUSTUM_HEIGHT, 1, -1);
 gl.glMatrixMode(GL10.GL_MODELVIEW);

Chapter 8 ■ 2D Game proGramminG triCks

328

 gl.glLoadIdentity();
 gl.glTranslatef(cannonPos.x, cannonPos.y, 0);
 gl.glRotatef(cannonAngle, 0, 0, 1);
 gl.glColor4f(1,1,1,1);
 cannonVertices.bind();
 cannonVertices.draw(GL10.GL_TRIANGLES, 0, 3);
 cannonVertices.unbind();

 gl.glLoadIdentity();
 gl.glTranslatef(ballPos.x, ballPos.y, 0);
 gl.glColor4f(1,0,0,1);
 ballVertices.bind();
 ballVertices.draw(GL10.GL_TRIANGLES, 0, 6);
 ballVertices.unbind();
}

In the present() method, we simply add the rendering of the cannonball rectangle. We do this after
rendering the cannon’s triangle, which means that we have to “clean” the model-view matrix before we
can render the rectangle. We do this with glLoadIdentity() and then use glTranslatef() to convert the
cannonball’s rectangle from model space to world space at the ball’s current position.

 @Override
 public void pause() {

 }

 @Override
 public void resume() {

 }

 @Override
 public void dispose() {

 }
}

If you run the example and touch the screen a couple of times, you’ll get a pretty good feel for how the
cannonball will fly. Figure 8-7 shows the output (which is not all that impressive, since it is a still image).

Chapter 8 ■ 2D Game proGramminG triCks

329

That’s enough physics for your purposes. With this simple model, we can simulate much more than
cannonballs. Super Mario, for example, could be simulated in much the same way. If you have ever played
Super Mario Brothers, you likely noticed that Mario takes a bit of time before he reaches his maximum
velocity when running. This can be implemented with a very fast acceleration and velocity capping, as in
the pseudocode of the last section. Jumping can be implemented in much the same way as shooting the
cannonball. Mario’s current velocity would be adjusted by an initial jump velocity on the y axis (remember
that you can add velocities like any other vectors). You would always apply a negative y acceleration
(gravity), which makes him come back to the ground or fall into a pit after jumping. The velocity in the x
direction is not influenced by what’s happening on the y axis. You can still press left and right to change
the velocity of the x axis. The beauty of this simple model is that it allows you to implement very complex
behavior with very little code. You can use this type of physics when you write your next game.

Simply shooting a cannonball is not a lot of fun. You want to be able to hit objects with the cannonball.
For this, you need something called collision detection, which we’ll investigate in the next section.

Figure 8-7. A triangle cannon that shoots red rectangles. Impressive!

Chapter 8 ■ 2D Game proGramminG triCks

330

Collision Detection and Object Representation in 2D
Once you have moving objects in your world, you want them to interact. One such mode of interaction is
simple collision detection. Two objects are said to be colliding when they overlap in some way. We already
did a little collision detection in Mr. Nom when you checked whether Mr. Nom bit himself or ate an ink stain.

Collision detection is accompanied by collision response: Once we determine that two objects have
collided, we need to respond to that collision by adjusting the position and/or movement of our objects
in a sensible manner. For example, when Super Mario jumps on a Goomba, the Goomba goes to Goomba
heaven and Mario performs another little jump. A more elaborate example is the collision and response of
two or more billiard balls. We won’t need to get into this kind of collision response now, as it is overkill for
our purposes. Our collision responses will usually consist of changing the state of an object (for example,
letting an object explode or die, collecting a coin, setting the score, and so forth). This type of response is
game dependent, so it won’t be discussed in this section.

So, how do we figure out whether two objects have collided? First, we need to think about when to
check for collisions. If our objects follow a simple physics model, as discussed in the previous section, we
could check for collisions after we move all our objects for the current frame and time step.

Bounding Shapes
Once we have the final positions of our objects, we can perform collision testing, which boils down to testing
for overlap. But what is it that overlaps? Each of our objects needs to have some mathematically defined
form or shape that provides bounds for it. The correct term in this case is bounding shape. Figure 8-8 shows a
few choices for bounding shapes.

The properties of the three types of bounding shapes in Figure 8-8 are as follows:

•	 Triangle mesh: This bounds the object as tightly as possible by approximating its
silhouette with a few triangles. It requires the most storage space, and it’s hard to
construct and expensive to test against. It gives the most precise results, however. We
won’t necessarily use the same triangles for rendering, but rather will simply store
them for collision detection. The mesh can be stored as a list of vertices, with each
subsequent set of three vertices forming a triangle. To conserve memory, we could
also use indexed vertex lists.

•	 Axis-aligned bounding box: This bounds the object via a rectangle that is axis aligned,
which means that the bottom and top edges are always aligned with the x axis, and
the left and right edges are always aligned with the y axis. This is also fast to test
against, but less precise than a triangle mesh. A bounding box is usually stored in the
form of the position of its lower-left corner, plus its width and height. (In the case of
2D, this is also referred to as a bounding rectangle.)

Figure 8-8. Various bounding shapes around Bob

Chapter 8 ■ 2D Game proGramminG triCks

331

•	 Bounding circle: This bounds the object with the smallest circle that can contain the
object. It’s very fast to test against, but it is the least precise bounding shape. The
circle is usually stored in the form of its center position and its radius.

Every object in our game gets a bounding shape that encloses it, in addition to its position, scale, and
orientation. Of course, we need to adjust the bounding shape’s position, scale, and orientation according to
the object’s position, scale, and orientation when we move the object; say, in a physics integration step.

Adjusting for position changes is easy: we simply move the bounding shape accordingly. In the case of
the triangle mesh, move each vertex; in the case of the bounding rectangle, move the lower-left corner; and
in the case of the bounding circle, move the center.

Scaling a bound shape is a little harder. We need to define the point around which we scale. This is
usually the object’s position, which is often given as the center of the object. If we use this convention, then
scaling is easy. For the triangle mesh, we scale the coordinates of each vertex; for the bounding rectangle,
we scale its width, height, and lower-left corner position; and for the bounding circle, we scale its radius (the
circle center is equal to the object’s center).

Rotating a bounding shape is dependent on the definition of a point around which to rotate. Using the
convention just mentioned (where the object center is the rotation point), rotation also becomes easy. In the
case of the triangle mesh, we simply rotate all vertices around the object’s center. In the case of the bounding
circle, we do not have to do anything, as the radius will stay the same no matter how we rotate our object.
The bounding rectangle is a little more involved. We need to construct all four corner points, rotate them,
and then find the axis-aligned bounding rectangle that encloses those four points. Figure 8-9 shows the three
bounding shapes after rotation.

While rotating a triangle mesh or a bounding circle is rather easy, the results for the axis-aligned
bounding box are not all that satisfying. Notice that the bounding box of the original object fits tighter
than its rotated version. There is a bounding box variant, called oriented bounding shape, that works better
for rotation, but its disadvantage is that it’s harder to calculate. The bounding shapes covered so far are
more than enough for our needs (and for most games out there). If you want to know more about oriented
bounding shapes and really dive deep into collision detection, we recommend the book Real-Time Collision
Detection by Christer Ericson.

Another question is: How do we create our bounding shapes for Bob in the first place?

Constructing Bounding Shapes
In the example shown in Figure 8-8, we simply constructed the bounding shapes by hand, based on Bob’s image.
But what if Bob’s image is given in pixels, and your world operates in, say, meters? The solution to this problem
involves normalization and model space. Imagine the two triangles we use for Bob in model space when we
render him with OpenGL ES. The rectangle is centered at the origin in model space and has the same aspect
ratio (width/height) as Bob’s texture image (that is, 32×32 pixels in the texture map, as compared to 2×2 m in
model space). Now, we can apply Bob’s texture and figure out the locations of the points of the bounding shape
in model space. Figure 8-10 shows how we can construct the bounding shapes around Bob in model space.

Figure 8-9. Rotated bounding shapes, with the center of the object as the rotation point

Chapter 8 ■ 2D Game proGramminG triCks

332

This process may seem a little cumbersome, but the steps involved are not all that hard. The first thing
we have to remember is how texture mapping works. We specify the texture coordinates for each vertex of
Bob’s rectangle (which is composed of two triangles) in texture space. The upper-left corner of the texture
image in texture space is at (0,0), and the lower-left corner is at (1,1), no matter the actual width and height
of the image in pixels. To convert from the pixel space of our image to texture space, we can use this simple
transformation:

u = x / imageWidth
v = y / imageHeight

where u and v are the texture coordinates of the pixel given by x and y in image space. The imageWidth and
imageHeight are set to the image’s dimensions in pixels (32×32 in Bob’s case). Figure 8-11 shows how the
center of Bob’s image maps to texture space.

The texture is applied to a rectangle that you define in model space. In the example in Figure 8-10, the
upper-left corner is at (–1,1) and the lower-right corner is at (1,–1). We can use meters as the units in our
world, so the rectangle has a width and height of 2 m. Additionally, we know that the upper-left corner has
the texture coordinates (0,0) and the lower-right corner has the texture coordinates (1,1), so we can map the
complete texture to Bob. This won’t always be the case, as you’ll see later in the texture atlas section.

Now we need a generic way to map from texture space to model space. We can make our life a little
easier by constraining our mapping to only axis-aligned rectangles in texture space and model space.
Assume that an axis-aligned rectangular region in texture space is mapped to an axis-aligned rectangle in
model space. For the transformation, we need to know the width and height of the rectangle in model space
and the width and height of the rectangle in texture space. In our Bob example, we have a 2×2 rectangle
in model space and a 1×1 rectangle in texture space (since we map the complete texture to the rectangle).
We also need to know the coordinates of the upper-left corner of each rectangle in its respective space. For
the model space rectangle, that’s (–1,1); for the texture space rectangle, it’s (0,0) (again, since we map the
complete texture, not just a portion). With this information, and the u and v coordinates of the pixel we want
to map to model space, we can do the transformation with these two equations:

Figure 8-10. Bounding shapes around Bob in model space

Figure 8-11. Mapping a pixel from image space to texture space

Chapter 8 ■ 2D Game proGramminG triCks

333

mx = (u – minU) / (tWidth) × mWidth + minX
my = (1 – ((v – minV) / (tHeight))× mHeight – minY

The variables u and v are the coordinates calculated in the previous transformation from pixel space to
texture space. The variables minU and minV are the coordinates of the top-left corner of the region you map
from texture space. The variables tWidth and tHeight are the width and height of your texture space region.
The variables mWidth and mHeight are the width and height of your model space rectangle. The variables
minX and minY are—you guessed it—the coordinates of the top-left corner of the rectangle in model space.
Finally, mx and my are the transformed coordinates in model space.

These equations take the u and v coordinates, map them to the range 0 to 1, and then scale and position
them in model space. Figure 8-12 shows a texel in texture space and how it is mapped to a rectangle in
model space. On the sides, you see tWidth and tHeight and mWidth and mHeight. The top-left corner of each
rectangle corresponds to (minU, minV) in texture space and (minX, minY) in model space.

Substituting the first two equations, we can go directly from pixel space to model space:

mx = ((x / imageWidth) – minU) / (tWidth) * mWidth + minX
my = (1 – (((y / imageHeight) – minV) / (tHeight)) * mHeight – minY

We can use these two equations to calculate the bounding shapes of our objects based on the image
we map to their rectangles via texture mapping. In the case of the triangle mesh, this can get a little tedious;
the bounding rectangle and bounding circle cases are a lot easier. Usually, you won’t need to take this hard
route, but rather can create your textures so that the bounding rectangles at least have the same aspect
ratio as the rectangle you render for the object via OpenGL ES. This way, you can construct the bounding
rectangle from the object’s image dimension directly. The same is true for the bounding circle.

You should now know how to construct a nicely fitted bounding shape for your 2D objects. Define those
bounding shape sizes manually when you create your graphical assets, and then define the units and sizes of
your objects in the game world. You can then use these sizes in your code to collide objects.

Game Object Attributes
Bob just got fatter. In addition to the mesh we use for rendering (the rectangle mapping to Bob’s image texture),
we now have a second data structure holding his bounds in some form. It is crucial to realize that, while we
model the bounds after the mapped version of Bob in model space, the actual bounds are independent of the
texture region to which you map Bob’s rectangle. Of course, we try to have a close match to the outline of Bob’s
image in the texture when we create the bounding shape. It does not matter, however, whether the texture
image is 32×32 pixels or 128×128 pixels. An object in our world thus has three attribute groups:

•	 Its position, orientation, scale, velocity, and acceleration: With these we can apply our
physics model from the previous section. Of course, some objects might be static,
and thus will only have position, orientation, and scale. Often, we can even leave out
orientation and scale. The position of the object usually coincides with the origin in
model space, as previously shown in Figure 8-10. This makes some calculations easier.

Figure 8-12. Mapping from texture space to model space

Chapter 8 ■ 2D Game proGramminG triCks

334

•	 Its bounding shape (usually constructed in model space around the object’s center):
This coincides with its position and is aligned with its orientation and scale, as
shown in Figure 8-10. This gives our object a boundary and defines its size in the
world. We can make this shape as complex as we want. We could, for example, make
it a composite of several bounding shapes.

•	 Its graphical representation: As shown in Figure 8-12, we still use two triangles to
form a rectangle for Bob and then texture-map his image onto the rectangle. The
rectangle is defined in model space, but does not necessarily equal the bounding
shape, as shown in Figure 8-10. The graphical rectangle of Bob that we send to
OpenGL ES is slightly larger than Bob’s bounding rectangle.

This separation of attributes allows us to apply our Model-View-Controller (MVC) pattern, as follows:

•	 On the model side, we have Bob’s physical attributes, composed of his position,
scale, rotation, velocity, acceleration, and bounding shape. Bob’s position, scale, and
orientation govern where his bounding shape is located in world space.

•	 The view simply takes Bob’s graphical representation (that is, the two texture-
mapped triangles defined in model space) and renders it at its world space position
according to Bob’s position, rotation, and scale. Here, we can use the OpenGL ES
matrix operations as we did previously.

•	 The controller is responsible for updating Bob’s physical attributes according to user
input (for example, a left button press could move him to the left) and according to
physical forces, such as gravitational acceleration (like we applied to the cannonball
in the previous section).

Of course, there’s some correspondence between Bob’s bounding shape and his graphical
representation in the texture, as we base the bounding shape on that graphical representation. Our MVC
pattern is thus not entirely clean, but we can live with that.

Broad-Phase and Narrow-Phase Collision Detection
We still don’t know how to check for collisions between our objects and their bounding shapes, however.
There are two phases in collision detection:

Broad phase: In this phase, we try to figure out which objects might potentially
collide. Imagine having 100 objects that could collide with each other. We’d
need to perform 100 × 100 / 2 overlap tests if we chose, naïvely, to test each
object against the other objects. This naïve overlap testing approach is of O(n2)
asymptotic complexity, meaning it would take n2 steps to complete (it actually
could be finished in half that many steps, but the asymptotic complexity leaves
out any constants). In a good, non-brute-force broad phase, we can try to figure
out which pairs of objects are actually in danger of colliding. Other pairs (for
example, two objects that are too far apart for a collision to happen) will not
be checked. We can reduce the computational load this way, as narrow-phase
testing is usually pretty expensive.

Narrow phase: Once we know which pairs of objects can potentially collide, we test
whether they really collide or not by doing an overlap test on their bounding shapes.

We’ll discuss the narrow phase first and leave the broad phase for later, as the broad phase depends on
some characteristics of our game, while the narrow phase can be implemented independently.

Chapter 8 ■ 2D Game proGramminG triCks

335

Narrow Phase
Once we are done with the broad phase, we have to check whether the bounding shapes of the potentially
colliding objects overlap. As discussed earlier, we have a few options for bounding shapes. Triangle meshes
are the most computationally expensive and cumbersome to create, but in most 2D games you don’t need
them and can get away with using only bounding rectangles and bounding circles, so that’s what we’ll
concentrate on here.

Circle Collision

Bounding circles are the cheapest way to check whether two objects collide, so let’s define a simple Circle
class. Listing 8-4 shows the code.

Listing 8-4. Circle.java: A simple Circle class

package com.badlogic.androidgames.framework.math;

public class Circle {
 public final Vector2 center = new Vector2();
 public float radius;

 public Circle(float x, float y, float radius) {
 this.center.set(x,y);
 this.radius = radius;
 }
}

We store the center as a Vector2 and the radius as a simple float. How can we check whether two circles
overlap? Take a look at Figure 8-13.

It’s very simple and computationally efficient. All we need to do is figure out the distance between the
two centers. If the distance is greater than the sum of the two radii, then we know the two circles do not
overlap. In code, this will appear as follows:

Figure 8-13. Two circles overlapping (left), and two circles not overlapping (right)

Chapter 8 ■ 2D Game proGramminG triCks

336

public boolean overlapCircles(Circle c1, Circle c2) {
 float distance = c1.center.dist(c2.center);
 return distance <= c1.radius + c2.radius;
}

First, we measure the distance between the two centers, and then check to see if the distance is smaller
than or equal to the sum of the radii.

We have to take a square root in the Vector2.dist() method. This is unfortunate, as taking the square
root is a costly operation. Can we make this faster? Yes, we can—all we need to do is reformulate our condition:

sqrt(dist.x × dist.x + dist.y × dist.y) <= radius1 + radius2

We can get rid of the square root by exponentiating both sides of the inequality, as follows:

dist.x × dist.x + dist.y × dist.y <= (radius1 + radius2) × (radius1 + radius2)

We trade the square root for another addition and multiplication on the right side. This is a lot better. Now
we can create a Vector2.distSquared() function that will return the squared distance between two vectors:

public float distSquared(Vector2 other) {
 float distX = this.x - other.x;
 float distY = this.y - other.y;
 return distX * distX + distY * distY;
}
public float distSquared(float x, float y) {
 float distX = this.x - x;
 float distY = this.y - y;
 return distX * distX + distY * distY;
}

We should also add a second distSquared() method that takes two floats (x and y) instead of a vector.
The overlapCircles() method then becomes the following:

public boolean overlapCircles(Circle c1, Circle c2) {
 float distance = c1.center.distSquared(c2.center);
 float radiusSum = c1.radius + c2.radius;
 return distance <= radiusSum * radiusSum;
}

Rectangle Collision

For rectangle collision, we first need a class that can represent a rectangle. As previously mentioned, we want
a rectangle to be defined by its lower-left corner position, plus its width and height. Listing 8-5 does just that.

Listing 8-5. Rectangle.java, a Rectangle Class

package com.badlogic.androidgames.framework.math;

public class Rectangle {
 public final Vector2 lowerLeft;
 public float width, height;

 public Rectangle(float x, float y, float width, float height) {
 this.lowerLeft = new Vector2(x,y);
 this.width = width;

Chapter 8 ■ 2D Game proGramminG triCks

337

 this.height = height;
 }
}

We store the lower-left corner’s position in a Vector2 instance and the width and height in two floats.
How can we check whether two rectangles overlap? Figure 8-14 should give you a hint.

The first two cases, partial overlap (left) and nonoverlap (center), are easy. The case on the right is a
surprise. A rectangle can, of course, be completely contained in another rectangle. This can happen in the
case of circles, as well. However, our circle overlap test will return the correct result if one circle is contained
in the other circle.

Checking for overlap in the rectangle case looks complex at first. However, we can create a very simple
test if we use a little logic. Here’s the simplest method to check for overlap between two rectangles:

public Boolean overlapRectangles(Rectangle r1, Rectangle r2) {
 if(r1.lowerLeft.x < r2.lowerLeft.x + r2.width &&
 r1.lowerLeft.x + r1.width > r2.lowerLeft.x &&
 r1.lowerLeft.y < r2.lowerLeft.y + r2.height &&
 r1.lowerLeft.y + r1.height > r2.lowerLeft.y)
 return true;
 else
 return false;
}

This looks a little confusing at first sight, so let’s go over each condition. The first condition states that the
left edge of the first rectangle must be to the left of the right edge of the second rectangle. The next condition
states that the right edge of the first rectangle must be to the right of the left edge of the second rectangle. The
other two conditions state the same for the top and bottom edges of the rectangles. If all these conditions are
met, then the two rectangles overlap. Double-check this with Figure 8-14. It also covers the containment case.

Circle/Rectangle Collision

Can we check for overlap between a circle and a rectangle? Yes, we can. However, this is a little more
involved. Take a look at Figure 8-15.

Figure 8-14. Lots of overlapping and nonoverlapping rectangles

Chapter 8 ■ 2D Game proGramminG triCks

338

The overall strategy to test for overlap between a circle and a rectangle goes like this:

•	 Find the x coordinate on or in the rectangle that is closest to the circle’s center. This
coordinate can be a point either on the left or right edge of the rectangle, unless the
circle center is contained in the rectangle, in which case the closest x coordinate is
the circle center’s x coordinate.

•	 Find the y coordinate on or in the rectangle that is closest to the circle’s center. This
coordinate can be a point either on the top or bottom edge of the rectangle, unless
the circle center is contained in the rectangle, in which case the closest y coordinate
is the circle center’s y coordinate.

•	 If the point composed of the closest x and y coordinates is within the circle, the circle
and rectangle overlap.

While not depicted in Figure 8-15, this method also works for circles that completely contain the
rectangle. Here’s the code:

public boolean overlapCircleRectangle(Circle c, Rectangle r) {
 float closestX = c.center.x;
 float closestY = c.center.y;

 if(c.center.x < r.lowerLeft.x) {
 closestX = r.lowerLeft.x;
 }
 else if(c.center.x > r.lowerLeft.x + r.width) {
 closestX = r.lowerLeft.x + r.width;
 }

 if(c.center.y < r.lowerLeft.y) {
 closestY = r.lowerLeft.y;
 }
 else if(c.center.y > r.lowerLeft.y + r.height) {
 closestY = r.lowerLeft.y + r.height;
 }

 return c.center.distSquared(closestX, closestY) < c.radius * c.radius;
}

The description looked a lot scarier than the implementation. We determine the closest point on the
rectangle to the circle and then simply check whether the point lies inside the circle. If that’s the case, there
is an overlap between the circle and the rectangle.

Figure 8-15. Overlap-testing a circle and a rectangle by finding the point on/in the rectangle that is closest to
the circle

Chapter 8 ■ 2D Game proGramminG triCks

339

Note that we add an overloaded distSquared() method to Vector2 that takes two float arguments
instead of another Vector2. We do the same for the dist() function.

Putting It All Together

Checking whether a point lies inside a circle or rectangle can also be useful. We can code up two more
methods and put them in a class called OverlapTester, together with the other three methods we just
defined. Listing 8-6 shows the code.

Listing 8-6. OverlapTester.java: Testing overlap between circles, rectangles, and points

package com.badlogic.androidgames.framework.math;

public class OverlapTester {
 public static boolean overlapCircles(Circle c1, Circle c2) {
 float distance = c1.center.distSquared(c2.center);
 float radiusSum = c1.radius + c2.radius;
 return distance <= radiusSum * radiusSum;
 }

 public static boolean overlapRectangles(Rectangle r1, Rectangle r2) {
 if(r1.lowerLeft.x < r2.lowerLeft.x + r2.width &&
 r1.lowerLeft.x + r1.width > r2.lowerLeft.x &&
 r1.lowerLeft.y < r2.lowerLeft.y + r2.height &&
 r1.lowerLeft.y + r1.height > r2.lowerLeft.y)
 return true;
 else
 return false;
 }

 public static boolean overlapCircleRectangle(Circle c, Rectangle r) {
 float closestX = c.center.x;
 float closestY = c.center.y;

 if(c.center.x < r.lowerLeft.x) {
 closestX = r.lowerLeft.x;
 }
 else if(c.center.x > r.lowerLeft.x + r.width) {
 closestX = r.lowerLeft.x + r.width;
 }

 if(c.center.y < r.lowerLeft.y) {
 closestY = r.lowerLeft.y;
 }
 else if(c.center.y > r.lowerLeft.y + r.height) {
 closestY = r.lowerLeft.y + r.height;
 }

 return c.center.distSquared(closestX, closestY) < c.radius * c.radius;
 }

Chapter 8 ■ 2D Game proGramminG triCks

340

 public static boolean pointInCircle(Circle c, Vector2 p) {
 return c.center.distSquared(p) < c.radius * c.radius;
 }

 public static boolean pointInCircle(Circle c, float x, float y) {
 return c.center.distSquared(x, y) < c.radius * c.radius;
 }

 public static boolean pointInRectangle(Rectangle r, Vector2 p) {
 return r.lowerLeft.x <= p.x && r.lowerLeft.x + r.width >= p.x &&
 r.lowerLeft.y <= p.y && r.lowerLeft.y + r.height >= p.y;
 }

 public static boolean pointInRectangle(Rectangle r, float x, float y) {
 return r.lowerLeft.x <= x && r.lowerLeft.x + r.width >= x &&
 r.lowerLeft.y <= y && r.lowerLeft.y + r.height >= y;
 }
}

Sweet! Now we have a fully functional 2D math library we can use for all our little physics models and
for collision detection. We are ready to look at the broad phase in a little more detail.

Broad Phase
So, how can we achieve the magic that the broad phase promises? Consider Figure 8-16, which shows a
typical Super Mario Brothers scene.

Figure 8-16. Super Mario and his enemies. Boxes around objects are their bounding rectangles; the big boxes
make up a grid imposed on the world.

Chapter 8 ■ 2D Game proGramminG triCks

341

Can you guess what you can do to eliminate some collision checks? The grid in Figure 8-16 represents
the cells with which we can partition our world. Each cell has the exact same size, and the whole world
is covered in cells. Mario is currently in two of those cells, and the other objects with which Mario could
potentially collide are in different cells. Thus, you don’t need to check for any collisions, as Mario is not in
the same cells as any of the other objects in the scene. All we need to do is the following:

•	 Update all objects in the world based on our physics and controller step.

•	 Update the position of the bounding shape of each object according to the object’s
position. We can, of course, also include the orientation and scale.

•	 Figure out in which cell or cells each object is contained, based on the bounding
shape, and add these to the list of objects contained in those cells.

•	 Check for collisions, but only between object pairs that can collide (for example,
Goombas don’t collide with other Goombas) and are in the same cell.

This is called a spatial hash grid broad phase, and it is very easy to implement. The first thing you have to
define is the size of each cell. This is highly dependent on the scale and units you use for your game’s world.

An Elaborate Example
We’ll develop a spatial hash grid broad phase based on the previous cannonball example (located in the
“Playing Around, Practically” section). We will completely rework it to incorporate everything covered in this
section so far. In addition to the cannon and the cannonball, we also want to have targets. We make our life
easy and just use 0.5×0.5-m squares as targets. These squares don’t move; they’re static. Our cannon is also
static. The only thing that moves is the cannonball itself. We can generally categorize objects in our game
world as static objects or dynamic objects. Let’s devise a class that represents such objects.

GameObject, DynamicGameObject, and Cannon
Let’s start with the static case, or base case, in Listing 8-7.

Listing 8-7. GameObject.java: A static game object with a position and bounds

package com.badlogic.androidgames.framework;

import com.badlogic.androidgames.framework.math.Rectangle;
import com.badlogic.androidgames.framework.math.Vector2;

public class GameObject {
 public final Vector2 position;
 public final Rectangle bounds;

 public GameObject(float x, float y, float width, float height) {
 this.position = new Vector2(x,y);
 this.bounds = new Rectangle(x-width/2, y-height/2, width, height);
 }
}

Every object in our game has a position that coincides with its center. Additionally, we let each object
have a single bounding shape—a rectangle, in this case. In the constructor, we set the position and bounding
rectangle (which is centered around the center of the object) according to the parameters.

Chapter 8 ■ 2D Game proGramminG triCks

342

For dynamic objects (that is, objects that move), we also need to keep track of velocity and acceleration
(if the objects are actually accelerated by themselves—for example, via an engine or thruster). Listing 8-8
shows the code for the DynamicGameObject class.

Listing 8-8. DynamicGameObject.java: Extending the GameObject with a velocity and acceleration vector

package com.badlogic.androidgames.framework;

import com.badlogic.androidgames.framework.math.Vector2;

public class DynamicGameObject extends GameObject {
 public final Vector2 velocity;
 public final Vector2 accel;

 public DynamicGameObject(float x, float y, float width, float height) {
 super(x, y, width, height);
 velocity = new Vector2();
 accel = new Vector2();
 }
}

We extend the GameObject class to inherit the position and bounds members. Additionally, we create
vectors for velocity and acceleration. A new dynamic game object will have zero velocity and acceleration
after it has been initialized.

In our cannonball example, we have the cannon, the cannonball, and the targets. The cannonball is a
DynamicGameObject, as it moves according to our simple physics model. The targets are static and can be
implemented using the standard GameObject. The cannon can also be implemented via the GameObject
class. We will derive a Cannon class from the GameObject class and add a field storing the cannon’s current
angle. Listing 8-9 shows the code.

Listing 8-9. Cannon.java: Extending the GameObject with an angle

package com.badlogic.androidgames.gamedev2d;

public class Cannon extends GameObject {
 public float angle;

 public Cannon(float x, float y, float width, float height) {
 super(x, y, width, height);
 angle = 0;
 }
}

This nicely encapsulates all the data needed to represent an object in our cannon world. Every time
we need a special kind of object, like the cannon, you can simply derive one from GameObject, if it is a static
object, or from DynamicGameObject, if it has a velocity and acceleration.

 ■ Note the overuse of inheritance can lead to severe headaches and very ugly code architecture. Do not use
it just for the sake of using it. the simple class hierarchy just used is ok, but you shouldn’t let it go a lot deeper
(for example, by extending Cannon). there are alternative representations of game objects that do away with
all inheritance by composition. For your purposes, simple inheritance is more than enough, though. if you are
interested in other representations, search for “composites” or “mixins” on the Web.

Chapter 8 ■ 2D Game proGramminG triCks

343

The Spatial Hash Grid
Our cannon will be bounded by a rectangle of 1×1 m, the cannonball will have a bounding rectangle of
0.2×0.2 m, and the targets will each have a bounding rectangle of 0.5×0.5 m. The bounding rectangles are
centered on each object’s position to make our life a little easier.

When our cannon example starts up, we can simply place a number of targets at random positions.
Here’s how we can set up the objects in our world:

Cannon cannon = new Cannon(0, 0, 1, 1);
DynamicGameObject ball = new DynamicGameObject(0, 0, 0.2f, 0.2f);
GameObject[] targets = new GameObject[NUM_TARGETS];
for(int i = 0; i < NUM_TARGETS; i++) {
 targets[i] = new GameObject((float)Math.random() * WORLD_WIDTH,
 (float)Math.random() * WORLD_HEIGHT,
 0.5f, 0.5f);
}

The constants WORLD_WIDTH and WORLD_HEIGHT define the size of our game world. Everything should
happen inside the rectangle bounded by (0,0) and (WORLD_WIDTH,WORLD_HEIGHT). Figure 8-17 shows a little
mock-up of the game world so far.

Figure 8-17. A mock-up of the game world

Chapter 8 ■ 2D Game proGramminG triCks

344

Our world will look like this later on, but for now we can overlay a spatial hash grid. How big should the
cells of the hash grid be? There’s no silver bullet, but a good heuristic is to have them five times bigger than the
biggest object in the scene. In our example, the biggest object is the cannon, but we don’t collide anything with
the cannon, so we can base the grid size on the next biggest objects in our scene, the targets. These are 0.5×0.5
m in size. A grid cell should thus have a size of 2.5×2.5 m. Figure 8-18 shows the grid overlaid onto our world.

We have a fixed number of cells—in the case of the cannon world, 12. We give each cell a unique number,
starting at the bottom-left cell, which gets the ID 0. Note that the top cells actually extend outside the world.
This is not a problem; we simply need to make sure all our objects stay inside the boundaries of the world.

What we want to do is figure out to which cell(s) an object belongs. Ideally, we want to calculate the IDs of the
cells in which the object is contained. This allows you to use the following simple data structure to store your cells:

List<GameObject>[] cells;

That’s right; we represent each cell as a list of GameObjects. The spatial hash grid itself is just composed
of an array of lists of GameObjects.

Now we can figure out the IDs of the cells in which an object is contained. Figure 8-18 shows a couple
of targets that span two cells. In fact, a small object can span up to four cells, and an object bigger than a grid
cell can span more than four cells. We can make sure this never happens by choosing the grid cell size to be
a multiple of the size of the biggest object in our game. This leaves us with the possibility of one object being
contained in, at most, four cells.

To calculate the cell IDs for an object, we simply take the four corner points of the bounding rectangle
and check which cell each corner point is in. Determining the cell that a point is in is easy—we just need to
divide its coordinates by the cell width. Say you have a point at (.5,.8) and a cell size of 2.5×2.5 m: the point
would be in the cell with ID 5, as in Figure 8-18.

We can divide each of the point’s coordinates by the cell size to get 2D integer coordinates, as follows:

cellX = floor(point.x / cellSize) = floor(.5 / 2.5) = 1
cellY = floor(point.y / cellSize) = floor(.8 / 2.5) = 1

And from these cell coordinates, we can easily get the cell ID:

cellId = cellX + cellY × cellsPerRow = 1 + 1 × 4 = 5

Figure 8-18. Our cannon world overlaid with a spatial hash grid consisting of 12 cells

Chapter 8 ■ 2D Game proGramminG triCks

345

The constant cellsPerRow is simply the number of cells we need to cover our world with cells on the x axis:

cellsPerRow = ceil(worldWidth / cellSize) = ceil(9.6 / 2.5) = 4

We can calculate the number of cells needed per column like this:

cellsPerColumn = ceil(worldHeight / cellSize) = ceil(6.4 / 2.5) = 3

Based on this, we can implement the spatial hash grid rather easily. We set it up by giving it the world’s size
and the desired cell size. We assume that all the action is happening in the positive quadrant of the world. This
means that all the x and y coordinates of the points in the world will be positive. This is a constraint we can accept.

From the parameters, the spatial hash grid can figure out how many cells it needs (cellsPerRow ×
cellsPerColumn). We can also add a simple method to insert an object into the grid that will use the object’s
boundaries to determine the cells in which it is contained. The object will then be added to each cell’s list of
the objects that it contains. If one of the corner points of the bounding shape of the object is outside the grid,
we can just ignore that corner point.

In each frame, we reinsert every object into the spatial hash grid after we update its position. However,
there are objects in our cannon world that don’t move, so inserting them anew for each frame is very
wasteful. We make a distinction between dynamic objects and static objects by storing two lists per cell. One
list will be updated each frame and will hold only moving objects, and the other list will be static and will be
modified only when a new static object is inserted.

Finally, we need a method that returns a list of objects in the cells of the object we’d like to have collide
with other objects. All this method does is check which cells the object in question is in, retrieve the list of
dynamic and static objects in those cells, and return the list to the caller. Of course, we have to make sure
that we don’t return any duplicates, which can happen if an object is in multiple cells.

Listing 8-10 shows the code (well, most of it). The SpatialHashGrid.getCellIds() method will be
discussed in a minute, as it is a little involved.

Listing 8-10. Excerpt from SpatialHashGrid.java: A spatial hash grid implementation

package com.badlogic.androidgames.framework;

import java.util.ArrayList;
import java.util.List;

import com.badlogic.androidgames.framework.GameObject;

public class SpatialHashGrid {
 List<GameObject>[] dynamicCells;
 List<GameObject>[] staticCells;
 int cellsPerRow;
 int cellsPerCol;
 float cellSize;
 int[] cellIds = new int[4];
 List<GameObject> foundObjects;

As discussed, we store two cell lists, one for dynamic objects and one for static objects. We also store the
cells per row and column, so that we can later decide whether a point we check is inside or outside the world.
The cell size also needs to be stored. The cellIds array is a working array that we can use to store the four cell
IDs a GameObject is contained in temporarily. If it is contained in only one cell, then only the first element of
the array will be set to the cell ID of the cell that contains the object entirely. If the object is contained in two
cells, then the first two elements of that array will hold the cell ID, and so on. To indicate the number of cell
IDs, we set all “empty” elements of the array to –1. The foundObjects list is also a working list, which we can

Chapter 8 ■ 2D Game proGramminG triCks

346

return upon a call to getPotentialColliders(). Why do we keep those two members instead of instantiating
a new array and list each time one is needed? Remember the garbage collector monster.

 @SuppressWarnings("unchecked")
 public SpatialHashGrid(float worldWidth, float worldHeight, float cellSize) {
 this.cellSize = cellSize;
 this.cellsPerRow = (int)Math.ceil(worldWidth / cellSize);
 this.cellsPerCol = (int)Math.ceil(worldHeight / cellSize);
 int numCells = cellsPerRow * cellsPerCol;
 dynamicCells = new List[numCells];
 staticCells = new List[numCells];
 for(int i = 0; i < numCells; i++) {
 dynamicCells[i] = new ArrayList<GameObject>(10);
 staticCells[i] = new ArrayList<GameObject>(10);
 }
 foundObjects = new ArrayList<GameObject>(10);
 }

The constructor of that class takes the world’s size and the desired cell size. From those arguments,
we calculate how many cells are needed and instantiate the cell arrays and the lists holding the objects
contained in each cell. Initialize the foundObjects list. All the ArrayList instances we create will have an
initial capacity of ten GameObject instances. We do this to avoid memory allocations. The assumption is that
it is unlikely that one single cell will contain more than ten GameObject instances. As long as that is true, the
array lists don’t need to be resized.

public void insertStaticObject(GameObject obj) {
 int[] cellIds = getCellIds(obj);
 int i = 0;
 int cellId = -1;
 while(i <= 3 && (cellId = cellIds[i++]) != -1) {
 staticCells[cellId].add(obj);
 }
}

public void insertDynamicObject(GameObject obj) {
 int[] cellIds = getCellIds(obj);
 int i = 0;
 int cellId = -1;
 while(i <= 3 && (cellId = cellIds[i++]) != -1) {
 dynamicCells[cellId].add(obj);
 }
}

Next up are the methods insertStaticObject() and insertDynamicObject(). They calculate the IDs
of the cells in which the object is contained via a call to getCellIds() and then insert the object into the
appropriate list accordingly. The getCellIds() method will actually fill the cellIds member array.

public void removeObject(GameObject obj) {
 int[] cellIds = getCellIds(obj);
 int i = 0;
 int cellId = -1;
 while(i <= 3 && (cellId = cellIds[i++]) != -1) {
 dynamicCells[cellId].remove(obj);

Chapter 8 ■ 2D Game proGramminG triCks

347

 staticCells[cellId].remove(obj);
 }
}

We also have a removeObject() method, which we can use to figure out which cells the object is in and then
delete it from the dynamic or static lists accordingly. This will be needed when a game object dies, for example.

 public void clearDynamicCells(GameObject obj) {
 int len = dynamicCells.length;
 for(int i = 0; i < len; i++) {
 dynamicCells[i].clear();
 }
 }

The clearDynamicCells() method will be used to clear all dynamic cell lists. We need to call this each
frame before we reinsert the dynamic objects, as discussed earlier.

public List<GameObject> getPotentialColliders(GameObject obj) {
 foundObjects.clear();
 int[] cellIds = getCellIds(obj);
 int i = 0;
 int cellId = -1;
 while(i <= 3 && (cellId = cellIds[i++]) != -1) {
 int len = dynamicCells [cellId].size();
 for(int j = 0; j < len; j++) {
 GameObject collider = dynamicCells[cellId].get(j);
 if(!foundObjects.contains(collider))
 foundObjects.add(collider);
 }

 len = staticCells[cellId].size();
 for(int j = 0; j < len; j++) {
 GameObject collider = staticCells[cellId].get(j);
 if(!foundObjects.contains(collider))
 foundObjects.add(collider);
 }
 }
 return foundObjects;
}

Finally, the getPotentialColliders() method takes an object and returns a list of neighboring objects
that are contained in the same cells as that object. We use the working list foundObjects to store the list of
found objects. Again, we do not want to instantiate a new list each time this method is called. All we need to
do is figure out which cells the object passed to the method is in. We then simply add all the dynamic and
static objects found in those cells to the foundObjects list and make sure that there are no duplicates. Using
foundObjects.contains() to check for duplicates is, of course, suboptimal, but given that the number of
found objects will never be large, it is acceptable to use it in this case. If we run into performance problems,
then this is our number one candidate for optimization. Sadly, this isn’t trivial. We can use a Set, of course,
but that allocates new objects internally each time we add an object to it. For now, we just leave it as it is,
knowing that we can come back to it if anything goes wrong performance-wise.

The method left out is SpatialHashGrid.getCellIds(). Listing 8-11 shows its code. Don’t be afraid, it
only looks menacing.

Chapter 8 ■ 2D Game proGramminG triCks

348

Listing 8-11. The Rest of SpatialHashGrid.java: Implementing getCellIds()

 public int[] getCellIds(GameObject obj) {
 int x1 = (int)Math.floor(obj.bounds.lowerLeft.x / cellSize);
 int y1 = (int)Math.floor(obj.bounds.lowerLeft.y / cellSize);
 int x2 = (int)Math.floor((obj.bounds.lowerLeft.x + obj.bounds.width) / cellSize);
 int y2 = (int)Math.floor((obj.bounds.lowerLeft.y + obj.bounds.height) / cellSize);
 if(x1 == x2 && y1 == y2) {
 if(x1 >= 0 && x1 < cellsPerRow && y1 >= 0 && y1 < cellsPerCol)
 cellIds[0] = x1 + y1 * cellsPerRow;
 else
 cellIds[0] = -1;
 cellIds[1] = -1;
 cellIds[2] = -1;
 cellIds[3] = -1;
 }
 else if(x1 == x2) {
 int i = 0;
 if(x1 >= 0 && x1 < cellsPerRow) {
 if(y1 >= 0 && y1 < cellsPerCol)
 cellIds[i++] = x1 + y1 * cellsPerRow;
 if(y2 >= 0 && y2 < cellsPerCol)
 cellIds[i++] = x1 + y2 * cellsPerRow;
 }
 while(i <= 3) cellIds[i++] = -1;
 }
 else if(y1 == y2) {
 int i = 0;
 if(y1 >= 0 && y1 < cellsPerCol) {
 if(x1 >= 0 && x1 < cellsPerRow)
 cellIds[i++] = x1 + y1 * cellsPerRow;
 if(x2 >= 0 && x2 < cellsPerRow)
 cellIds[i++] = x2 + y1 * cellsPerRow;
 }
 while(i <= 3) cellIds[i++] = -1;
 }
 else {
 int i = 0;
 int y1CellsPerRow = y1 * cellsPerRow;
 int y2CellsPerRow = y2 * cellsPerRow;
 if(x1 >= 0 && x1 < cellsPerRow && y1 >= 0 && y1 < cellsPerCol)
 cellIds[i++] = x1 + y1CellsPerRow;
 if(x2 >= 0 && x2 < cellsPerRow && y1 >= 0 && y1 < cellsPerCol)
 cellIds[i++] = x2 + y1CellsPerRow;
 if(x2 >= 0 && x2 < cellsPerRow && y2 >= 0 && y2 < cellsPerCol)
 cellIds[i++] = x2 + y2CellsPerRow;
 if(x1 >= 0 && x1 < cellsPerRow && y2 >= 0 && y2 < cellsPerCol)
 cellIds[i++] = x1 + y2CellsPerRow;
 while(i <= 3) cellIds[i++] = -1;
 }
 return cellIds;
 }
}

Chapter 8 ■ 2D Game proGramminG triCks

349

The first four lines of this method calculate the cell coordinates of the bottom-left and top-right corners
of the object’s bounding rectangle. This calculation was discussed earlier. To understand the rest of this
method, think about how an object can overlap grid cells. There are four possibilities:

•	 The object is contained in a single cell. The bottom-left and top-right corners of the
bounding rectangle thus have the same cell coordinates.

•	 The object overlaps two cells horizontally. The bottom-left corner is in one cell, and
the top-right corner is in the cell to the right.

•	 The object overlaps two cells vertically. The bottom-left corner is in one cell, and the
top-right corner is in the cell above.

•	 The object overlaps four cells. The bottom-left corner is in one cell, the bottom-right
corner is in the cell to the right, the top-right corner is in the cell above that, and the
top-left corner is in the cell above the first cell.

All this method does is make a special case for each of these possibilities. The first if statement
checks for the single-cell case, the second if statement checks for the horizontal double-cell case, the
third if statement checks for the vertical double-cell case, and the else block handles the case of an
object overlapping four grid cells. In each of the four blocks, we make sure that we only set the cell ID if the
corresponding cell coordinates are within the world. And that’s all there is to this method.

Now, the method looks like it should take a lot of computational power. And indeed it does, but less
than its size would suggest. The most common case will be the first one, and processing that is pretty cheap.
Can you see opportunities to optimize this method further?

Putting It All Together
Let’s put together all the knowledge we gathered in this section to form a nice little example. We can extend
the cannon example of the last section, as discussed a few pages back. We use a Cannon object for the
cannon, a DynamicGameObject for the cannonball, and a number of GameObjects for the targets. Each target
will have a size of 0.5×0.5 m and be placed randomly in the world.

We want to be able to shoot these targets. For this, we need collision detection. We could just loop
over all targets and check them against the cannonball, but that would be boring. We use our fancy new
SpatialHashGrid class to speed up the process of finding potential collision targets for the current ball
position. We don’t insert the ball or the cannon into the grid, though, as that wouldn’t really help you.

Since this example is already pretty big, it’s split into multiple listings. Call the test CollisionTest and
the corresponding screen CollisionScreen. As always, we only look at the screen code. Let’s start with the
members and the constructor in Listing 8-12.

Listing 8-12. Excerpt from CollisionTest.java: Members and constructor

class CollisionScreen extends Screen {
 final int NUM_TARGETS = 20;
 final float WORLD_WIDTH = 9.6f;
 final float WORLD_HEIGHT = 4.8f;
 GLGraphics glGraphics;
 Cannon cannon;
 DynamicGameObject ball;
 List<GameObject> targets;
 SpatialHashGrid grid;

 Vertices cannonVertices;
 Vertices ballVertices;

Chapter 8 ■ 2D Game proGramminG triCks

350

 Vertices targetVertices;

 Vector2 touchPos = new Vector2();
 Vector2 gravity = new Vector2(0,-10);

 public CollisionScreen(Game game) {
 super(game);
 glGraphics = ((GLGame)game).getGLGraphics();

 cannon = new Cannon(0, 0, 1, 1);
 ball = new DynamicGameObject(0, 0, 0.2f, 0.2f);
 targets = new ArrayList<GameObject>(NUM_TARGETS);
 grid = new SpatialHashGrid(WORLD_WIDTH, WORLD_HEIGHT, 2.5f);
 for(int i = 0; i < NUM_TARGETS; i++) {
 GameObject target = new GameObject((float)Math.random() * WORLD_WIDTH,
 (float)Math.random() * WORLD_HEIGHT,
 0.5f, 0.5f);
 grid.insertStaticObject(target);
 targets.add(target);
 }

 cannonVertices = new Vertices(glGraphics, 3, 0, false, false);
 cannonVertices.setVertices(new float[] { -0.5f, -0.5f,
 0.5f, 0.0f,
 -0.5f, 0.5f }, 0, 6);

 ballVertices = new Vertices(glGraphics, 4, 6, false, false);
 ballVertices.setVertices(new float[] { -0.1f, -0.1f,
 0.1f, -0.1f,
 0.1f, 0.1f,
 -0.1f, 0.1f }, 0, 8);
 ballVertices.setIndices(new short[] {0, 1, 2, 2, 3, 0}, 0, 6);

 targetVertices = new Vertices(glGraphics, 4, 6, false, false);
 targetVertices.setVertices(new float[] { -0.25f, -0.25f,
 0.25f, -0.25f,
 0.25f, 0.25f,
 -0.25f, 0.25f }, 0, 8);
 targetVertices.setIndices(new short[] {0, 1, 2, 2, 3, 0}, 0, 6);
 }

We can bring over a lot from the CannonGravityScreen. We start off with a couple of constant
definitions that govern the number of targets and our world’s size. Next, we have the GLGraphics instance,
as well as the objects for the cannon, the ball, and the targets, which we store in a list. We also have a
SpatialHashGrid, of course. For rendering our world, we need a few meshes: one for the cannon, one for the
ball, and one to render each target. Remember that we only needed a single rectangle in BobTest to render
the 100 Bobs to the screen. We reuse that principle here. The last two members are the same as those in the
CannonGravityTest. We use them to shoot the ball and apply gravity when the user touches the screen.

The constructor does all the things discussed previously: instantiate our world objects and meshes. The
only interesting thing is that we also add the targets as static objects to the spatial hash grid.

Now, check out the next method of the CollisionTest class in Listing 8-13.

Chapter 8 ■ 2D Game proGramminG triCks

351

Listing 8-13. Excerpt from CollisionTest.java: The update() method

@Override
public void update(float deltaTime) {
 List<TouchEvent> touchEvents = game.getInput().getTouchEvents();
 game.getInput().getKeyEvents();

 int len = touchEvents.size();
 for (int i = 0; i < len; i++) {
 TouchEvent event = touchEvents.get(i);

 touchPos.x = (event.x / (float) glGraphics.getWidth()) * WORLD_WIDTH;
 touchPos.y = (1 - event.y / (float) glGraphics.getHeight()) * WORLD_HEIGHT;

 cannon.angle = touchPos.sub(cannon.position).angle();

 if(event.type == TouchEvent.TOUCH_UP) {
 float radians = cannon.angle * Vector2.TO_RADIANS;
 float ballSpeed = touchPos.len() * 2;
 ball.position.set(cannon.position);
 ball.velocity.x = (float)Math.cos(radians) * ballSpeed;
 ball.velocity.y = (float)Math.sin(radians) * ballSpeed;
 ball.bounds.lowerLeft.set(ball.position.x - 0.1f, ball.position.y - 0.1f);
 }
 }

 ball.velocity.add(gravity.x * deltaTime, gravity.y * deltaTime);
 ball.position.add(ball.velocity.x * deltaTime, ball.velocity.y * deltaTime);
 ball.bounds.lowerLeft.add(ball.velocity.x * deltaTime, ball.velocity.y * deltaTime);

 List<GameObject> colliders = grid.getPotentialColliders(ball);
 len = colliders.size();
 for(int i = 0; i < len; i++) {
 GameObject collider = colliders.get(i);
 if(OverlapTester.overlapRectangles(ball.bounds, collider.bounds)) {
 grid.removeObject(collider);
 targets.remove(collider);
 }
 }
}

As always, first we fetch the touch and key events, and we only iterate over the touch events. The
handling of touch events is nearly the same as in the CannonGravityTest. The only difference is that we
use the Cannon object instead of the vectors we had in the old example, and we reset the ball’s bounding
rectangle when the cannon is ready to shoot after a touch-up event.

The next change is in how we update the ball. Instead of straight vectors, we use the members of
the DynamicGameObject class that we instantiated for the ball. We neglect the DynamicGameObject.
acceleration member and instead add gravity to the ball’s velocity. We multiply the ball’s speed by 2 so
that the cannonball flies a little faster. The interesting thing is that we update not only the ball’s position,
but also the position of the lower-left corner of the bounding rectangle. This is crucial, as otherwise our ball
will move but its bounding rectangle won’t. Is there a reason why we don’t simply use the ball’s bounding
rectangle to store the ball’s position? We might want to have multiple bounding shapes attached to an object.

Chapter 8 ■ 2D Game proGramminG triCks

352

Which bounding shape would then hold the actual position of the object? Separating these two things is
thus beneficial, and it introduces only a slight computational overhead. We could, of course, optimize this
by multiplying the velocity by the delta time only once. The overhead would then boil down to two further
additions—a small price to pay for the flexibility we gain.

The final portion of this method is our collision-detection code. We find the targets in the spatial hash
grid that are in the same cells as our cannonball. We use the SpatialHashGrid.getPotentialColliders()
method for this. Since the cells in which the ball is contained are evaluated in that method directly, we
do not need to insert the ball into the grid. Next, we loop through all the potential colliders and check to
see if there really is an overlap between the ball’s bounding rectangle and a potential collider’s bounding
rectangle. If there is, we simply remove the target from the target list. Remember, we only add targets as
static objects to the grid.

And those are our complete game mechanics. The last piece of the puzzle is the actual rendering, which
shouldn’t really surprise you. See the code in Listing 8-14.

Listing 8-14. Excerpt from CollisionTest.java: The present() method

@Override
public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight());
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 gl.glOrthof(0, WORLD_WIDTH, 0, WORLD_HEIGHT, 1, -1);
 gl.glMatrixMode(GL10.GL_MODELVIEW);

 gl.glColor4f(0, 1, 0, 1);
 targetVertices.bind();
 int len = targets.size();
 for(int i = 0; i < len; i++) {
 GameObject target = targets.get(i);
 gl.glLoadIdentity();
 gl.glTranslatef(target.position.x, target.position.y, 0);
 targetVertices.draw(GL10.GL_TRIANGLES, 0, 6);
 }
 targetVertices.unbind();

 gl.glLoadIdentity();
 gl.glTranslatef(ball.position.x, ball.position.y, 0);
 gl.glColor4f(1,0,0,1);
 ballVertices.bind();
 ballVertices.draw(GL10.GL_TRIANGLES, 0, 6);
 ballVertices.unbind();

 gl.glLoadIdentity();
 gl.glTranslatef(cannon.position.x, cannon.position.y, 0);
 gl.glRotatef(cannon.angle, 0, 0, 1);
 gl.glColor4f(1,1,1,1);
 cannonVertices.bind();
 cannonVertices.draw(GL10.GL_TRIANGLES, 0, 3);
 cannonVertices.unbind();
}

Chapter 8 ■ 2D Game proGramminG triCks

353

Nothing new here. As always, we set the projection matrix and viewport and clear the screen first. Next,
we render all targets, reusing the rectangular model stored in targetVertices. This is essentially the same
thing we did in BobTest, but this time we render targets instead. Next, we render the ball and the cannon, as
we did in the CollisionGravityTest.

The only thing to note here is that we change the drawing order so that the ball will always be above the
targets and the cannon will always be above the ball. We also color the targets green with a call to glColor4f().

The output of this little test is exactly the same as in Figure 8-17, so we can spare ourselves the
repetition. When we fire the cannonball, it will plow through the field of targets. Any target that gets hit by
the ball will be removed from the world.

This example could actually be a nice game if you polish it up a little and add some motivating game
mechanics. Can you think of additions? Play around with the example a little to get a feeling for the new
tools we have developed over the course of the last couple of pages.

There are a few more things to discuss in this chapter: cameras, texture atlases, and sprites. These use
graphics-related tricks that are independent of our model of the game world. Time to get going!

A Camera in 2D
Up until now, we haven’t had the concept of a camera in our code; we’ve only had the definition of our view
frustum via glOrthof(), like this:

gl.glMatrixMode(GL10.GL_PROJECTION);
gl.glLoadIdentity();
gl.glOrthof(0, FRUSTUM_WIDTH, 0, FRUSTUM_HEIGHT, 1, -1);

From Chapter 7, we know that the first two parameters define the x coordinates of the left and right
edges of our frustum in the world, the next two parameters define the y coordinates of the bottom and top
edges of the frustum, and the last two parameters define the near and far clipping planes. Figure 8-19 shows
that frustum again.

Figure 8-19. The view frustum for your 2D world, again

http://dx.doi.org/10.1007/978-1-4842-0472-6_7

Chapter 8 ■ 2D Game proGramminG triCks

354

So, we only see the region (0,0,1) to (FRUSTUM_WIDTH, FRUSTUM_HEIGHT,–1) of our world. Wouldn’t it be
nice if we could move the frustum, say, to the left? Of course, that would be nice, and it is also dead simple:

gl.glOrthof(x, x + FRUSTUM_WIDTH, 0, FRUSTUM_HEIGHT, 1, -1);

In this case, x is just some offset that you define. We can, of course, also move on the x and y axes:

gl.glOrthof(x, x + FRUSTUM_WIDTH, y, y +FRUSTUM_HEIGHT, 1, -1);

Figure 8-20 shows what that means.

We simply specify the bottom-left corner of our view frustum in the world space. This is already
sufficient to implement a freely movable 2D camera. But we can do better. What about not specifying the
bottom-left corner of the view frustum with x and y, but instead specifying the center of the view frustum?
This way we can easily center our view frustum on an object at a specific location—say, the cannonball from
the preceding example:

gl.glOrthof(x – FRUSTUM_WIDTH / 2, x + FRUSTUM_WIDTH / 2, y – FRUSTUM_HEIGHT / 2, y
+FRUSTUM_HEIGHT / 2, 1, -1);

Figure 8-21 shows what this looks like.

Figure 8-20. Moving the frustum around

Chapter 8 ■ 2D Game proGramminG triCks

355

That’s still not all we can do with glOrthof(). What about zooming? Think about this. We know that,
via glViewportf(), you can tell OpenGL ES on which portion of the screen we wish to render the contents
of our view frustum. OpenGL ES will automatically stretch and scale the output to align with the viewport.
Now, if we make the width and height of your view frustum smaller, we will simply show a smaller region
of your world on the screen—that’s zooming in. If we make the frustum bigger, we can show more of your
world—that’s zooming out. We can therefore introduce a zoom factor and multiply it by our frustum’s width
and height to zoom in and out. A factor of 1 will show us the world, as in Figure 8-21, using the normal
frustum width and height. A factor less than 1 will zoom in on the center of our view frustum, while a factor
greater than 1 will zoom out, showing us more of our world (for example, setting the zoom factor to 2 will
show twice as much of our world). Here’s how we can use glOrthof() to do that:

gl.glOrthof(x – FRUSTUM_WIDTH / 2 * zoom, x + FRUSTUM_WIDTH / 2 * zoom, y – FRUSTUM_HEIGHT /
2 * zoom, y +FRUSTUM_HEIGHT / 2 * zoom, 1, -1);

Dead simple! We can now create a camera class that has a position at which it is looking (the center of
the view frustum), a standard frustum width and height, and a zoom factor that makes the frustum smaller
or bigger, thereby showing either less of our world (zooming in) or more of our world (zooming out).
Figure 8-22 shows a view frustum with a zoom factor of 0.5 (the inner gray box), and a view frustum with a
zoom factor of 1 (the outer, transparent box).

Figure 8-21. Specifying the view frustum in terms of its center

Chapter 8 ■ 2D Game proGramminG triCks

356

To make our life complete, we should add one more thing. Imagine that we touch the screen and want
to figure out which point in our 2D world we touched. We already did this a couple of times in our iteratively
improving cannon examples. With a view frustum configuration that does not factor in the camera’s position and
zoom, as seen in Figure 8-19, we had the following equations (see the update() method of our cannon examples):

worldX = (touchX / Graphics.getWidth()) × FRUSTUM_WIDTH;
worldY = (1 – touchY / Graphics.getHeight()) × FRUSTUM_HEIGHT;

First, we normalize the touch x and y coordinates to the range 0 to 1 by dividing by the screen’s width
and height, and then we scale them so that they are expressed in terms of our world space by multiplying
them by the frustum’s width and height. All we need to do is factor in the position of the view frustum, as
well as the zoom factor. Here’s how we do that:

worldX = (touchX / Graphics.getWidth()) × FRUSTUM_WIDTH + x – FRUSTUM_WIDTH / 2;
worldY = (1 – touchY / Graphics.getHeight()) × FRUSTUM_HEIGHT + y – FRUSTUM_HEIGHT / 2;

Here, x and y are our camera’s position in world space.

The Camera2D Class
Let’s put all this together into a single class. We want it to store the camera’s position, the standard frustum
width and height, and the zoom factor. We also want a convenient method that sets the viewport (always use
the whole screen) and projection matrix correctly. Additionally, we want a method that can translate touch
coordinates to world coordinates. Listing 8-15 shows our new Camera2D class, with some comments.

Figure 8-22. Zooming, by manipulating the frustum size

Chapter 8 ■ 2D Game proGramminG triCks

357

Listing 8-15. Camera2D.java: Our shiny new camera class for 2D rendering

package com.badlogic.androidgames.framework.gl;

import javax.microedition.khronos.opengles.GL10;

import com.badlogic.androidgames.framework.impl.GLGraphics;
import com.badlogic.androidgames.framework.math.Vector2;

public class Camera2D {
 public final Vector2 position;
 public float zoom;
 public final float frustumWidth;
 public final float frustumHeight;
 final GLGraphics glGraphics;

As discussed, we store the camera’s position, frustum width and height, and zoom factor as members.
The position and zoom factor are public, so we can easily manipulate them. We also need a reference to
GLGraphics so that we can get the up-to-date width and height of the screen in pixels for transforming touch
coordinates to world coordinates.

public Camera2D(GLGraphics glGraphics, float frustumWidth, float frustumHeight) {
 this.glGraphics = glGraphics;
 this.frustumWidth = frustumWidth;
 this.frustumHeight = frustumHeight;
 this.position = new Vector2(frustumWidth / 2, frustumHeight / 2);
 this.zoom = 1.0f;
}

In the constructor, we take a GLGraphics instance and the frustum’s width and height at zoom factor 1 as
parameters. We store them and initialize the position of the camera to look at the center of the box bounded
by (0,0,1) and (frustumWidth, frustumHeight,–1), as shown in Figure 8-19. The initial zoom factor is set to 1.

public void setViewportAndMatrices() {
 GL10 gl = glGraphics.getGL();
 gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight());
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 gl.glOrthof(position.x - frustumWidth * zoom / 2,
 position.x + frustumWidth * zoom / 2,
 position.y - frustumHeight * zoom / 2,
 position.y + frustumHeight * zoom / 2,
 1, -1);
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
}

The setViewportAndMatrices() method sets the viewport to span the whole screen and sets the
projection matrix in accordance with your camera’s parameters, as discussed previously. At the end of the
method, we tell OpenGL ES that all further matrix operations are targeting the model-view matrix and then
load an identity matrix. We call this method each frame so that we can start from a clean slate—no more
direct OpenGL ES calls to set up our viewport and projection matrix.

Chapter 8 ■ 2D Game proGramminG triCks

358

 public void touchToWorld(Vector2 touch) {
 touch.x = (touch.x / (float) glGraphics.getWidth()) * frustumWidth * zoom;
 touch.y = (1 - touch.y / (float) glGraphics.getHeight()) * frustumHeight * zoom;
 touch.add(position).sub(frustumWidth * zoom / 2, frustumHeight * zoom / 2);
 }
}

The touchToWorld() method takes a Vector2 instance containing touch coordinates and transforms
the vector to world space. This is the same as was just discussed; the only difference is that we can use our
fancy Vector2 class.

An Example
We’ll now use the Camera2D class in your cannon example. Copy the CollisionTest file and rename it
Camera2DTest. Rename the GLGame class inside the file Camera2DTest, and rename the CollisionScreen to
classCamera2DScreen. There are a few little changes we have to make to use our new Camera2D class.

The first thing we do is add a new member to the Camera2DScreen class:

Camera2D camera;

We initialize this member in the constructor, as follows:

camera = new Camera2D(glGraphics, WORLD_WIDTH, WORLD_HEIGHT);

We pass in our GLGraphics instance and the world’s width and height, which we previously used as the
frustum’s width and height in our call to glOrthof(). All we need to do now is replace our direct OpenGL ES
calls in the present() method, which looked like this:

gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight());
gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
gl.glMatrixMode(GL10.GL_PROJECTION);
gl.glLoadIdentity();
gl.glOrthof(0, WORLD_WIDTH, 0, WORLD_HEIGHT, 1, -1);
gl.glMatrixMode(GL10.GL_MODELVIEW);

We replace them with this:

gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
camera.setViewportAndMatrices();

We still have to clear the framebuffer, of course, but all the other direct OpenGL ES calls are nicely hidden
inside the Camera2D.setViewportAndMatrices() method. If you run that code, you’ll see that nothing has
changed. Everything works like before—all we did was make things a little nicer and more flexible.

We can also simplify the update() method of the test. Since we added the Camera2D.touchToWorld()
method to the Camera2D class, we might as well use it. We can replace this snippet from the update() method:

touchPos.x = (event.x / (float) glGraphics.getWidth()) * WORLD_WIDTH;
touchPos.y = (1 - event.y / (float) glGraphics.getHeight()) * WORLD_HEIGHT;

Chapter 8 ■ 2D Game proGramminG triCks

359

with this:

camera.touchToWorld(touchPos.set(event.x, event.y));

Neat—now everything is nicely encapsulated. But it would be very boring if we didn’t use the features of
your Camera2D class to their full extent. Here’s the plan: we want to have the camera look at the world in the
“normal” way as long as the cannonball does not fly. That’s easy; we’re already doing that. We can determine
whether the cannonball flies or not by checking whether the y coordinate of its position is less than or equal
to zero. Since we always apply gravity to the cannonball, it will fall even if we don’t shoot it, so that’s a cheap
way to check matters.

Our new addition will come into effect when the cannonball is flying (when the y coordinate is greater
than zero). We want the camera to follow the cannonball. We can achieve this by simply setting the camera’s
position to the cannonball’s position. That will always keep the cannonball in the center of the screen. We
also want to try out our zooming functionality. Therefore, we can increase the zoom factor depending on
the y coordinate of the cannonball: the further away from zero, the higher the zoom factor. If the cannonball
has a higher y coordinate, this will make the camera zoom out. Here’s what we need to add at the end of the
update() method in our test’s screen:

if(ball.position.y > 0) {
 camera.position.set(ball.position);
 camera.zoom = 1 + ball.position.y / WORLD_HEIGHT;
} else {
 camera.position.set(WORLD_WIDTH / 2, WORLD_HEIGHT / 2);
 camera.zoom = 1;
}

As long as the y coordinate of our ball is greater than zero, the camera will follow it and zoom out. Just
add a value to the standard zoom factor of 1. That value is just the relation between the ball’s y position and
the world’s height. If the ball’s y coordinate is at WORLD_HEIGHT, the zoom factor will be 2, so we’ll see more
of our world. The way this is done can be really arbitrary; we can come up with any formula that we want
here—there’s nothing magical about it. In case the ball’s position is less than or equal to zero, we show the
world normally, as we did in the previous examples.

Texture Atlas: Because Sharing Is Caring
Up until this point, we have used only a single texture in our programs. What if we want to render not only
Bob, but other superheroes, enemies, explosions, or coins as well? We could have multiple textures, each
holding the image of one object type. But OpenGL ES wouldn’t like that too much, since we’d need to switch
textures for every object type we render (that is, bind Bob’s texture, render Bobs, bind the coin texture,
render coins, and so on). We can do it more effectively by putting multiple images into a single texture. And
that’s a texture atlas: a single texture containing multiple images. We only need to bind that texture once, and
we can then render any entity types for which there is an image in the atlas. That saves some state-change
overhead and increases performance. Figure 8-23 shows such a texture atlas.

Chapter 8 ■ 2D Game proGramminG triCks

360

There are three objects in Figure 8-23: a cannon, a cannonball, and Bob. The grid is not part of the
texture; it’s only there to illustrate how we usually create texture atlases manually.

The texture atlas is 64×64 pixels in size, and each grid cell is 32×32 pixels. The cannon takes up two cells,
the cannonball a little less than one-quarter of a cell, and Bob a single cell. Now, if you look back at how you
defined the bounds (and graphical rectangles) of the cannon, cannonball, and targets, you will notice that the
relation of their sizes to each other is very similar to what you have in the texture atlas grid. The target is 0.5×0.5
m in your world and the cannon is 0.2×0.2 m. In our texture atlas, Bob takes up 32×32 pixels and the cannonball
a little less than 16×16 pixels. The relationship between the texture atlas and the object sizes in our world
should be clear: 32 pixels in the atlas equals 0.5 m in our world. Now, the cannon was 1×1 m in our original
example, but we can, of course, change this. According to our texture atlas, in which the cannon takes up 64×32
pixels, we should let our cannon have a size of 1×0.5 m in our world. Wow, that is exceptionally easy, isn’t it?

So, why choose 32 pixels to match 1 meter in our world? Remember that textures must have power-of-
two widths and heights. Using a power-of-two pixel unit like 32 to map to 0.5 m in your world is a convenient
way for the artist to cope with the restriction on texture sizes. It also makes it easier to get the size relations of
different objects in our world right in the pixel art.

Note that there’s nothing keeping us from using more pixels per world unit. We could choose 64 pixels
or 50 pixels to match 0.5 m in your world. So, what’s a good pixel-to-meters size, then? That again depends
on the screen resolution at which the game will run. Let’s do some calculations.

Our cannon world is bounded by (0,0) in the bottom-left corner and (9.6,4.8) in the top-left corner. This
is mapped to our screen. Let’s figure out how many pixels per world unit we have on the screen of a low-end
device with 480×320 pixels in landscape mode:

pixelsPerUnitX = screenWidth / worldWidth = 480 / 9.6 = 50 pixels / meter
pixelsPerUnitY = screenHeight / worldHeight = 320 / 6.4 = 50 pixels / meter

Our cannon, which will now take up 1×0.5 m in the world, will thus use 50×25 pixels on the screen. We
use a 64×32-pixel region from our texture, so we actually downscale the texture image a little when rendering
the cannon. That’s totally fine—OpenGL ES will do this automatically for us. Depending on the minification
filter we set for the texture, the result will either be crisp and pixelated (GL_NEAREST) or a little smoothed out
(GL_LINEAR). If you wanted a pixel-perfect rendering on the 480x320-pixels device, we need to scale our texture
images a little. We could use a grid size of 25×25 pixels instead of 32×32. However, if we just resized the atlas
image (or rather redrew everything by hand), we’d have a 50×50-pixel image—a no-go with OpenGL ES. We’d
have to add padding to the left and bottom to obtain a 64×64 image (since OpenGL ES requires power-of-two
widths and heights). Thus, OpenGL ES is fine to use for scaling our texture image down on the low-end device.

Figure 8-23. A texture atlas

Chapter 8 ■ 2D Game proGramminG triCks

361

How’s the situation on higher-resolution devices like the HTC Desire HD (800×480 in landscape mode)?
Let’s perform the calculations for this screen configuration via the following equations:

pixelsPerUnitX = screenWidth / worldWidth = 800 / 9.6 = 83 pixels / meter
pixelsPerUnitY = screenHeight / worldHeight = 480 / 6.4 = 75 pixels / meter

We have different pixels per unit on the x and y axes because the aspect ratio of our view frustum (9.6 /
6.4 = 1.5) is different from the screen’s aspect ratio (800 / 480 = 1.66). This was discussed in Chapter 4, which
outlined a couple of solutions. Back then, we targeted a fixed pixel size and aspect ratio; now we can adopt
that scheme and target a fixed frustum width and height. In the case of the HTC Desire HD, the cannon,
the cannonball, and Bob would get scaled up and stretched because of the higher resolution and different
aspect ratio. We accept this fact, since we want all players to see the same region of our world. Otherwise,
players with higher aspect ratios would have the advantage of being able to see more of the world.

So, how do we use such a texture atlas? We just remap our rectangles. Instead of using all of the texture,
we just use portions of it. To figure out the texture coordinates of the corners of the images contained in the
texture atlas, we can reuse the equations from one of the previous examples. Here’s a quick refresher:

u = x / imageWidth
v = y / imageHeight

Here, u and v are the texture coordinates and x and y are the pixel coordinates. Bob’s top-left corner
in pixel coordinates is at (32,32). If we plug that into the preceding equation, we get (0.5,0.5) as texture
coordinates. We can do the same for any other corners we need, and based on this set the correct texture
coordinates for the vertices of your rectangles.

An Example
We add this texture atlas to our previous example to make it look more beautiful. Bob will be your target.

Copy the Camera2DTest and modify it a little. Place the copy in a file called TextureAtlasTest.java and
rename the two classes contained in it accordingly (TextureAtlasTest and TextureAtlasScreen).

The first thing we do is add a new member to the TextureAtlasScreen:

Texture texture;

Instead of creating a Texture in the constructor, we create it in the resume() method. Remember that
textures will get lost when our application comes back from a paused state, so we have to re-create them in
the resume() method:

@Override
public void resume() {
 texture = new Texture(((GLGame)game), "atlas.png");
}

Put the image from Figure 8-23 in the assets/ folder of the project and name it atlas.png. (Of course, it
doesn’t contain the gridlines shown in the figure.)

Next, we need to change the definitions of the vertices. We have one Vertices instance for each entity
type (cannon, cannonball, and Bob); each instance holds a single rectangle of four vertices and six indices,
making up three triangles. All we need to do is add texture coordinates to each of the vertices in accordance
with the texture atlas. We also change the cannon from being represented as a triangle to being represented
as a 1×0.5 m rectangle. Here’s what we use to replace the old vertex-creation code in the constructor:

cannonVertices = new Vertices(glGraphics, 4, 6, false, true);
cannonVertices.setVertices(new float[] { -0.5f, -0.25f, 0.0f, 0.5f,
 0.5f, -0.25f, 1.0f, 0.5f,
 0.5f, 0.25f, 1.0f, 0.0f,

http://dx.doi.org/10.1007/978-1-4842-0472-6_4

Chapter 8 ■ 2D Game proGramminG triCks

362

 -0.5f, 0.25f, 0.0f, 0.0f },
 0, 16);
cannonVertices.setIndices(new short[] {0, 1, 2, 2, 3, 0}, 0, 6);

ballVertices = new Vertices(glGraphics, 4, 6, false, true);
ballVertices.setVertices(new float[] { -0.1f, -0.1f, 0.0f, 0.75f,
 0.1f, -0.1f, 0.25f, 0.75f,
 0.1f, 0.1f, 0.25f, 0.5f,
 -0.1f, 0.1f, 0.0f, 0.5f },
 0, 16);
ballVertices.setIndices(new short[] {0, 1, 2, 2, 3, 0}, 0, 6);

targetVertices = new Vertices(glGraphics, 4, 6, false, true);
targetVertices.setVertices(new float[] { -0.25f, -0.25f, 0.5f, 1.0f,
 0.25f, -0.25f, 1.0f, 1.0f,
 0.25f, 0.25f, 1.0f, 0.5f,
 -0.25f, 0.25f, 0.5f, 0.5f },
 0, 16);
targetVertices.setIndices(new short[] {0, 1, 2, 2, 3, 0}, 0, 6);

Each of our meshes is now made up of four vertices, each having a 2D position and texture coordinates.
We add six indices to the mesh, specifying the two triangles we want to render. The cannon is a little smaller
on the y axis. It now has a size of 1×0.5 m instead of 1×1 m. This is also reflected in the construction of the
Cannon object earlier in the constructor:

cannon = new Cannon(0, 0, 1, 0.5f);

Since we don’t do any collision detection with the cannon itself, it doesn’t really matter what size we set
in that constructor; we just do it for consistency.

The last thing we need to change is our render method. Here it is in its full glory:

@Override
public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
 camera.setViewportAndMatrices();

 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA);
 gl.glEnable(GL10.GL_TEXTURE_2D);
 texture.bind();

 targetVertices.bind();
 int len = targets.size();
 for(int i = 0; i < len; i++) {
 GameObject target = targets.get(i);
 gl.glLoadIdentity();
 gl.glTranslatef(target.position.x, target.position.y, 0);
 targetVertices.draw(GL10.GL_TRIANGLES, 0, 6);
 }
 targetVertices.unbind();

Chapter 8 ■ 2D Game proGramminG triCks

363

 gl.glLoadIdentity();
 gl.glTranslatef(ball.position.x, ball.position.y, 0);
 ballVertices.bind();
 ballVertices.draw(GL10.GL_TRIANGLES, 0, 6);
 ballVertices.unbind();

 gl.glLoadIdentity();
 gl.glTranslatef(cannon.position.x, cannon.position.y, 0);
 gl.glRotatef(cannon.angle, 0, 0, 1);
 cannonVertices.bind();
 cannonVertices.draw(GL10.GL_TRIANGLES, 0, 6);
 cannonVertices.unbind();
}

Here, we enable blending, set a proper blending function, enable texturing, and bind our atlas texture.
We also slightly adapt the cannonVertices.draw() call, which now renders two triangles instead of one.
That’s all there is to it. Figure 8-24 shows the results of our face-lifting operation.

There are a few more things you need to know about texture atlases:

•	 When you use GL_LINEAR as the minification and/or magnification filter, there might
be artifacts when two images within the atlas are touching each other. This is due to
the texture mapper actually fetching the four nearest texels from a texture for a pixel
on the screen. When it does that for the border of an image, it also fetches texels from
the neighboring image in the atlas. You can eliminate this problem by introducing
an empty border of 2 pixels between your images. Even better, you can duplicate the
border pixel of each image. The first solution is easier—just make sure your texture
size stays a power of two.

•	 There’s no need to lay out all the images in the atlas in a fixed grid. You could put
arbitrarily sized images in the atlas as tightly as possible. All you need to know is
where an image starts and ends in the atlas so that you can calculate proper texture
coordinates for it. Packing arbitrarily sized images is a nontrivial problem, however.
There are a couple of tools on the Web that can help you with creating a texture atlas;
just do a search and you’ll be hit with a plethora of options.

Figure 8-24. Beautifying the cannon example with a texture atlas

Chapter 8 ■ 2D Game proGramminG triCks

364

•	 Often you cannot group all the images of your game into a single texture atlas.
Remember that there’s a maximum texture size that varies from device to device. You
can safely assume that all devices support a texture size of 512×512 pixels (or even
1024×1024). So, you can just have multiple texture atlases. You should try to group
into one atlas objects that will be seen on the screen together, though—say, all the
objects of level 1 in one atlas, all the objects of level 2 in another, all the UI elements in
another, and so on. Think about the logical grouping before finalizing your art assets.

•	 Remember how we drew numbers dynamically in Mr. Nom? We used a texture
atlas for that. In fact, we can perform all dynamic text rendering via a texture atlas.
Just put all the characters you need for your game into an atlas and render them on
demand by mapping a rectangle to the appropriate characters in the atlas. There are
tools you can find on the Web that will generate a bitmap font for you. For purposes
of the upcoming chapters, we stick to the approach used in Mr. Nom: static text will
be prerendered as a whole, and only dynamic text (for example, numbers in high
scores) will be rendered via an atlas.

You might have noticed that the Bobs disappear before they are graphically hit by the cannonball. This
is because our bounding shapes are a little too big. We have some white space around both Bob and the
cannonball. What’s the solution? Just make the bounding shapes a little smaller. You should get a feel for this,
so manipulate the source until the collision feels right. You will often find such fine-tuning “opportunities”
while developing a game. Fine-tuning is probably one of the most crucial parts of game development, aside
from good level design. Getting things to feel right can be hard, but it is highly satisfactory once you have
achieved the level of perfection found in Super Mario Brothers. Sadly, this is nothing that can be taught, as it is
dependent on the look and feel of your game. Consider it the magic sauce that sets good and bad games apart.

 ■ Note to handle the disappearance issue just mentioned, make the bounding rectangles a little smaller
than their graphical representations to allow for some overlap before a collision is triggered.

Texture Regions, Sprites, and Batches: Hiding OpenGL ES
Our code so far, for the cannon example, is made up of a lot of boilerplate, some of which can be reduced.
One such area is the definition of the Vertices instances. It’s tedious to have seven lines of code just to
define a single textured rectangle. Another area we could improve is the manual calculation of texture
coordinates for images in a texture atlas. Finally, there’s a lot of highly repetitive code involved when we want
to render our 2D rectangles. There is also a better way of rendering many objects than to have one draw call
per object. We can solve all these issues by incorporating a few new concepts:

•	 Texture regions: We worked with texture regions in the last example. A texture region
is a rectangular area within a single texture (for example, the area that contains
the cannon in our atlas). We want a nice class that can encapsulate all the nasty
calculations for translating pixel coordinates to texture coordinates.

•	 Sprites: A sprite is a lot like a game object. It has a position (and possibly orientation
and scale), as well as a graphical extent. You render a sprite via a rectangle, just as
you render Bob or the cannon. In fact, the graphical representations of Bob and the
other objects can and should be considered sprites. A sprite also maps to a region
in a texture. That’s where texture regions come in. While it is tempting to combine
sprites and game objects in the game directly, you should keep them separated,
following the Model-View-Controller pattern. This clean separation between
graphics and model code makes for a better design.

Chapter 8 ■ 2D Game proGramminG triCks

365

•	 Sprite batchers: A sprite batcher is responsible for rendering multiple sprites in one
go. To do this, the sprite batcher needs to know each sprite’s position, size, and
texture region. The sprite batcher will be our magic ingredient to get rid of multiple
draw calls and matrix operations per object.

These concepts are highly interconnected and will be discussed next.

The TextureRegion Class
Since we’ve worked with texture regions already, it should be straightforward to figure out what we need.
We know how to convert from pixel coordinates to texture coordinates. We want to have a class where we
can specify pixel coordinates of an image in a texture atlas, which then stores the corresponding texture
coordinates of the atlas region for further processing (for example, when we want to render a sprite).
Without further ado, Listing 8-16 shows our TextureRegion class.

Listing 8-16. TextureRegion.java: Converting pixel coordinates to texture coordinates

package com.badlogic.androidgames.framework.gl;

public class TextureRegion {
 public final float u1, v1;
 public final float u2, v2;
 public final Texture texture;

 public TextureRegion(Texture texture, float x, float y, float width, float height) {
 this.u1 = x / texture.width;
 this.v1 = y / texture.height;
 this.u2 = this.u1 + width / texture.width;
 this.v2 = this.v1 + height / texture.height;
 this.texture = texture;
 }
}

The TextureRegion stores the texture coordinates of the top-left corner (u1,v1) and bottom-right corner
(u2,v2) of the region. The constructor takes a Texture and the top-left corner, as well as the width and height
of the region, in pixel coordinates. To construct a texture region for the cannon, we could do this:

TextureRegion cannonRegion = new TextureRegion(texture, 0, 0, 64, 32);

Similarly, we could construct a region for Bob:

TextureRegion bobRegion = new TextureRegion(texture, 32, 32, 32, 32);

And so on and so forth. We can use this in the example code that we’ve already created, and use the
TextureRegion.u1, v1, u2, and v2 members for specifying the texture coordinates of the vertices of our
rectangles. But we won’t need to do that, since we want to get rid of these tedious definitions altogether.
That’s what we can use the sprite batcher for.

Chapter 8 ■ 2D Game proGramminG triCks

366

The SpriteBatcher Class
As already discussed, a sprite can be easily defined by its position, size, and texture region (and, optionally,
its rotation and scale). It is simply a graphical rectangle in our world space. To make things easier, we stick
to the convention of having the position be the center of the sprite and having the rectangle be constructed
around that center. Now we can have a Sprite class and use it like this:

Sprite bobSprite = new Sprite(20, 20, 0.5f, 0.5f, bobRegion);

That would construct a new sprite, with its center at (20,20) in the world, extending 0.25 m to each side,
and using the bobRegion TextureRegion. But we could do this instead:

spriteBatcher.drawSprite(bob.x, bob.y, BOB_WIDTH, BOB_HEIGHT, bobRegion);

Now, that looks a lot better. We don’t need to construct yet another object to represent the graphical side
of your object. Instead, we draw an instance of Bob on demand. We could also have an overloaded method:

spriteBatcher.drawSprite(cannon.x, cannon.y, CANNON_WIDTH, CANNON_HEIGHT, cannon.angle,
cannonRegion);

That would draw the cannon, rotated by its angle. So, how can we implement the sprite batcher? Where
are the Vertices instances? Let’s think about how the batcher could work.

What is batching anyway? In the graphics community, batching is defined as collapsing multiple draw
calls into a single draw call. This makes the GPU happy, as discussed in Chapter 7. A sprite batcher offers one
way to make this happen. Here’s how:

•	 The batcher has a buffer that is empty initially (or becomes empty after we signal it to
be cleared). That buffer will hold vertices. It will be a simple float array, in our case.

•	 Each time we call the SpriteBatcher.drawSprite() method, we add four vertices to
the buffer based on the position, size, orientation, and texture region that were specified
as arguments. This also means that we have to rotate and translate the vertex positions
manually, without the help of OpenGL ES. Fear not, though, as the code of your Vector2
class will come in handy here. This is the key to eliminating all the draw calls.

•	 Once we have specified all the sprites we want to render, we tell the sprite batcher to
submit the vertices for all the rectangles of the sprites to the GPU in one go and then
call the actual OpenGL ES drawing method to render all the rectangles. For this, we
can transfer the contents of the float array to a Vertices instance and use it to render
the rectangles.

 ■ Note You can only batch sprites that use the same texture. however, it’s not a huge problem, since you’ll
use texture atlases, anyway.

The usual usage pattern of a sprite batcher looks like this:

batcher.beginBatch(texture);
// call batcher.drawSprite() as often as needed,
// referencing regions in the texture
batcher.endBatch();

http://dx.doi.org/10.1007/978-1-4842-0472-6_7

Chapter 8 ■ 2D Game proGramminG triCks

367

The call to SpriteBatcher.beginBatch() tells the batcher two things: it should clear its buffer, and it
should use the texture we pass in. We will bind the texture within this method for convenience.

Next, we render as many sprites that reference regions within this texture as we need. This will fill the
buffer, adding four vertices per sprite.

The call to SpriteBatcher.endBatch() signals to the sprite batcher that we are done rendering the
batch of sprites and that it should now upload the vertices to the GPU for actual rendering. We are going to
use indexed rendering with a Vertices instance, so we also need to specify the indices, in addition to the
vertices, in the float array buffer. However, since we are always rendering rectangles, we can generate the
indices once beforehand in the constructor of the SpriteBatcher. For this, we need to know how many
sprites the batcher can draw per batch. By putting a hard limit on the number of sprites that can be rendered
per batch, we don’t need to grow any arrays for other buffers; we can just allocate these arrays and buffers
one time in the constructor.

The general mechanics are rather simple. The SpriteBatcher.drawSprite() method may seem like
a mystery, but it’s not a big problem (if we leave out rotation and scaling for a moment). All we need to do
is calculate the vertex positions and texture coordinates, as defined by the parameters. We have done this
manually already in previous examples—for instance, when we defined the rectangles for the cannon, the
cannonball, and Bob. We can do more or less the same thing in the SpriteBatcher.drawSprite() method,
only automatically, based on the parameters of the method. So let’s check out SpriteBatcher. Listing 8-17
shows the code.

Listing 8-17. Excerpt from SpriteBatcher.java, Without Rotation and Scaling

package com.badlogic.androidgames.framework.gl;

import com.badlogic.androidgames.framework.impl.GLGraphics;
import com.badlogic.androidgames.framework.math.Vector2;

public class SpriteBatcher {
 final float[] verticesBuffer;
 int bufferIndex;
 Vertices vertices;
 int numSprites;

We look at the members first. The member verticesBuffer is the temporary float array in which we
store the vertices of the sprites of the current batch. The member bufferIndex indicates where in the float
array we should start to write the next vertices. The member vertices is the Vertices instance used to
render the batch. It also stores the indices that we’ll define in a minute. The member numSprites holds the
number drawn so far in the current batch.

public SpriteBatcher(GLGraphics glGraphics, int maxSprites) {
 this.verticesBuffer = new float[maxSprites*4*4];

 this.vertices = new Vertices(glGraphics, maxSprites*4, maxSprites*6, false, true);

 this.bufferIndex = 0;
 this.numSprites = 0;

 short[] indices = new short[maxSprites*6];
 int len = indices.length;
 short j = 0;
 for (int i = 0; i < len; i += 6, j += 4) {
 indices[i + 0] = (short)(j + 0);

Chapter 8 ■ 2D Game proGramminG triCks

368

 indices[i + 1] = (short)(j + 1);
 indices[i + 2] = (short)(j + 2);
 indices[i + 3] = (short)(j + 2);
 indices[i + 4] = (short)(j + 3);
 indices[i + 5] = (short)(j + 0);
 }
 vertices.setIndices(indices, 0, indices.length);
}

Moving to the constructor, we have two arguments: the GLGraphics instance we need for creating the
Vertices instance and the maximum number of sprites the batcher should be able to render in one batch.
The first thing we do in the constructor is create the float array. We have four vertices per sprite, and each
vertex takes up four floats (two for the x and y coordinates and another two for the texture coordinates). We
can have maxSprites sprites maximally, so that’s 4 × 4 × maxSprites floats that we need for the buffer.

Next, we create the vertices. We need it to store maxSprites × 4 vertices and maxSprites × 6 indices.
We then initialize the bufferIndex and numSprites members to zero. We need to do this only once, as the
indices will never change. The first sprite in a batch will always have the indices 0, 1, 2, 2, 3, 0; the next sprite
will have 4, 5, 6, 6, 7, 4; and so on. We can precompute these and store them in the Vertices instance. This
way, we only need to set them once, instead of once for each sprite.

public void beginBatch(Texture texture) {
 texture.bind();
 numSprites = 0;
 bufferIndex = 0;
}

Next up is the beginBatch() method. It binds the texture and resets the numSprites and bufferIndex
members so that the first sprite’s vertices will get inserted at the front of the verticesBuffer float array.

public void endBatch() {
 vertices.setVertices(verticesBuffer, 0, bufferIndex);
 vertices.bind();
 vertices.draw(GL10.GL_TRIANGLES, 0, numSprites * 6);
 vertices.unbind();
}

The next method is endBatch(); we’ll call it to finalize and draw the current batch. It first transfers
the vertices defined for this batch from the float array to the Vertices instance. All that’s left is binding the
Vertices instance, drawing numSprites × 2 triangles, and unbinding the Vertices instance again. Since
we use indexed rendering, we specify the number of indices to use—which is six indices per sprite, times
numSprites. That’s all there is to rendering.

 public void drawSprite(float x, float y, float width, float height, TextureRegion
region) {

 float halfWidth = width / 2;
 float halfHeight = height / 2;
 float x1 = x - halfWidth;
 float y1 = y - halfHeight;
 float x2 = x + halfWidth;
 float y2 = y + halfHeight;

Chapter 8 ■ 2D Game proGramminG triCks

369

 verticesBuffer[bufferIndex++] = x1;
 verticesBuffer[bufferIndex++] = y1;
 verticesBuffer[bufferIndex++] = region.u1;
 verticesBuffer[bufferIndex++] = region.v2;

 verticesBuffer[bufferIndex++] = x2;
 verticesBuffer[bufferIndex++] = y1;
 verticesBuffer[bufferIndex++] = region.u2;
 verticesBuffer[bufferIndex++] = region.v2;

 verticesBuffer[bufferIndex++] = x2;
 verticesBuffer[bufferIndex++] = y2;
 verticesBuffer[bufferIndex++] = region.u2;
 verticesBuffer[bufferIndex++] = region.v1;

 verticesBuffer[bufferIndex++] = x1;
 verticesBuffer[bufferIndex++] = y2;
 verticesBuffer[bufferIndex++] = region.u1;
 verticesBuffer[bufferIndex++] = region.v1;

 numSprites++;
}

The next method, drawSprite(), is the workhorse of the SpriteBatcher class. It takes the x and y
coordinates of the center of the sprite, its width and height, and the texture region to which it maps. The
method’s responsibility is to add four vertices to the float array starting at the current bufferIndex. These
four vertices form a texture-mapped rectangle. We calculate the position of the bottom-left corner (x1,y1)
and the top-right corner (x2,y2) and use these four variables to construct the vertices together with the
texture coordinates from the TextureRegion. The vertices are added in counterclockwise order, starting at
the bottom-left vertex. Once they are added to the float array, we increment the numSprites counter and
wait for another sprite to be added or for the batch to be finalized.

And that is all there is to do. We just eliminated a lot of drawing methods simply by buffering pre-
transformed vertices in a float array and rendering them in one go. That will increase our 2D sprite-
rendering performance considerably as compared to the method we were using before. Fewer OpenGL ES
state changes and fewer drawing calls make the GPU happy.

There’s one more thing we need to implement: a SpriteBatcher.drawSprite() method that can draw
a rotated sprite. All we need to do is construct the four corner vertices without adding the position, rotate
them around the origin, add the position of the sprite so that the vertices are placed in the world space, and
then proceed as in the previous drawing method. We could use Vector2.rotate() for this, but that would
introduce additional function-call overhead. We therefore reproduce the code in Vector2.rotate() and
optimize where possible. The final method of the SpriteBatcher class looks like Listing 8-18.

Listing 8-18. The rest of SpriteBatcher.java: A method to draw rotated sprites

 public void drawSprite(float x, float y, float width, float height, float angle,
TextureRegion region) {

 float halfWidth = width / 2;
 float halfHeight = height / 2;

 float rad = angle * Vector2.TO_RADIANS;
 float cos = (float)Math.cos(rad);
 float sin = (float)Math.sin(rad);

Chapter 8 ■ 2D Game proGramminG triCks

370

 float x1 = -halfWidth * cos - (-halfHeight) * sin;
 float y1 = -halfWidth * sin + (-halfHeight) * cos;
 float x2 = halfWidth * cos - (-halfHeight) * sin;
 float y2 = halfWidth * sin + (-halfHeight) * cos;
 float x3 = halfWidth * cos - halfHeight * sin;
 float y3 = halfWidth * sin + halfHeight * cos;
 float x4 = -halfWidth * cos - halfHeight * sin;
 float y4 = -halfWidth * sin + halfHeight * cos;

 x1 += x;
 y1 += y;
 x2 += x;
 y2 += y;
 x3 += x;
 y3 += y;
 x4 += x;
 y4 += y;

 verticesBuffer[bufferIndex++] = x1;
 verticesBuffer[bufferIndex++] = y1;
 verticesBuffer[bufferIndex++] = region.u1;
 verticesBuffer[bufferIndex++] = region.v2;

 verticesBuffer[bufferIndex++] = x2;
 verticesBuffer[bufferIndex++] = y2;
 verticesBuffer[bufferIndex++] = region.u2;
 verticesBuffer[bufferIndex++] = region.v2;

 verticesBuffer[bufferIndex++] = x3;
 verticesBuffer[bufferIndex++] = y3;
 verticesBuffer[bufferIndex++] = region.u2;
 verticesBuffer[bufferIndex++] = region.v1;

 verticesBuffer[bufferIndex++] = x4;
 verticesBuffer[bufferIndex++] = y4;
 verticesBuffer[bufferIndex++] = region.u1;
 verticesBuffer[bufferIndex++] = region.v1;

 numSprites++;
 }
}

We do the same thing as in the simpler drawing method, except that we construct all four corner points
instead of just the two opposite ones. This is needed for the rotation. The rest is the same as before.

What about scaling? We do not explicitly need another method, since scaling a sprite only requires
scaling its width and height. We can do that outside of the two drawing methods, so there’s no need to have
another bunch of methods for the scaled drawing of sprites.

And that’s the big secret behind lightning-fast sprite rendering with OpenGL ES.

Chapter 8 ■ 2D Game proGramminG triCks

371

Using the SpriteBatcher Class
Now we can incorporate the TextureRegion and SpriteBatcher classes in our cannon example. Copy
the TextureAtlas example and rename it SpriteBatcherTest. The classes contained in it can be called
SpriteBatcherTest and SpriteBatcherScreen.

We get rid of the Vertices members in the Screen class. We don’t need them anymore, since the
SpriteBatcher will do all the dirty work for us. Instead, we add the following members:

TextureRegion cannonRegion;
TextureRegion ballRegion;
TextureRegion bobRegion;
SpriteBatcher batcher;

We now have a TextureRegion for each of the three objects in our atlas, as well as a SpriteBatcher.
Next, modify the constructor of the screen. Get rid of all the Vertices instantiation and initialization

code and replace it with a single line of code:

batcher = new SpriteBatcher(glGraphics, 100);

That will set our batcher member to a fresh SpriteBatcher instance that can render 100 sprites in one
batch.

The TextureRegions get initialized in the resume() method, as they depend on the Texture:

@Override
public void resume() {
 texture = new Texture(((GLGame)game), "atlas.png");
 cannonRegion = new TextureRegion(texture, 0, 0, 64, 32);
 ballRegion = new TextureRegion(texture, 0, 32, 16, 16);
 bobRegion = new TextureRegion(texture, 32, 32, 32, 32);
}

No surprises here. The last thing we need to change is the present() method. You’ll be surprised how
clean it’s looking now. Here it is:

@Override
public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
 camera.setViewportAndMatrices();

 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA);
 gl.glEnable(GL10.GL_TEXTURE_2D);

 batcher.beginBatch(texture);

 int len = targets.size();
 for(int i = 0; i < len; i++) {
 GameObject target = targets.get(i);
 batcher.drawSprite(target.position.x, target.position.y, 0.5f, 0.5f, bobRegion);
 }

Chapter 8 ■ 2D Game proGramminG triCks

372

 batcher.drawSprite(ball.position.x, ball.position.y, 0.2f, 0.2f, ballRegion);
 batcher.drawSprite(cannon.position.x, cannon.position.y, 1, 0.5f, cannon.angle,
cannonRegion);
 batcher.endBatch();
}

That is super sweet. The only OpenGL ES calls we issue now are for clearing the screen, enabling
blending and texturing, and setting the blend function. The rest is pure SpriteBatcher and Camera2D
goodness. Since all our objects share the same texture atlas, we can render them in a single batch. We call
batcher.beginBatch() with the atlas texture, render all the Bob targets using the simple drawing method,
render the ball (again with the simple drawing method), and finally render the cannon using the drawing
method that can rotate a sprite. We end the method by calling batcher.endBatch(), which will actually
transfer the geometry of your sprites to the GPU and render everything.

Sprite Animation
If you’ve ever played a 2D video game, you know that we are still missing a vital component: sprite
animation. The animation consists of keyframes, which produce the illusion of movement. Figure 8-25 shows
a nice animated sprite by Ari Feldmann (part of his royalty-free SpriteLib).

The image is 256×64 pixels in size, and each keyframe is 64×64 pixels. To produce animation, we just draw
a sprite using the first keyframe for an amount of time—say, 0.25 s—and then switch to the next keyframe,
and so on. When we reach the last frame, we have a few options: we can stay at the last keyframe, start at the
beginning again (and perform what is called a looping animation), or play back the animation in reverse.

We can easily do this with our TextureRegion and SpriteBatcher classes. Usually, we’d not only have
a single animation, like the one in Figure 8-25, but many more in a single atlas. Besides the walk animation,
we could have a jump animation, an attack animation, and so on. For each animation, we need to know the
frame duration, which tells us how long to keep using a single keyframe of the animation before switching to
the next frame.

The Animation Class
Let us define the requirements for an Animation class, which stores the data for a single animation, such as
the walk animation in Figure 8-25:

•	 An Animation holds a number of TextureRegions, which store the location of each
keyframe in the texture atlas. The order of the TextureRegions is the same as that
used for playing back the animation.

Figure 8-25. A walking caveman, by Ari Feldmann (grid not in original)

Chapter 8 ■ 2D Game proGramminG triCks

373

•	 The Animation also stores the frame duration, which has to pass before we switch to
the next frame.

•	 The Animation should provide us with a method to which we pass the time we’ve
been in the state that the Animation represents (for example, walking left), and
that will return the appropriate TextureRegion. The method should take into
consideration whether we want the Animation to loop or to stay at the last frame
when the end is reached.

This last bullet point is important because it allows us to store a single Animation instance to be used
by multiple objects in our world. An object just keeps track of its current state; that is, whether it is walking,
shooting, or jumping, and how long it has been in that state. When we render this object, we use the state
to select the animation we want to play back and the state time to get the correct TextureRegion from the
Animation. Listing 8-19 shows the code of our new Animation class.

Listing 8-19. Animation.java: A simple animation class

package com.badlogic.androidgames.framework.gl;

public class Animation {
 public static final int ANIMATION_LOOPING = 0;
 public static final int ANIMATION_NONLOOPING = 1;

 final TextureRegion[] keyFrames;
 final float frameDuration;

 public Animation(float frameDuration, TextureRegion ... keyFrames) {
 this.frameDuration = frameDuration;
 this.keyFrames = keyFrames;
 }

 public TextureRegion getKeyFrame(float stateTime, int mode) {
 int frameNumber = (int)(stateTime / frameDuration);

 if(mode == ANIMATION_NONLOOPING) {
 frameNumber = Math.min(keyFrames.length-1, frameNumber);
 } else {
 frameNumber = frameNumber % keyFrames.length;
 }
 return keyFrames[frameNumber];
 }
}

First, we define two constants to be used with the getKeyFrame() method. The first one says the
animation should be looping, and the second one says that it should stop at the last frame.

Next, we define two members: an array holding the TextureRegions and a float storing the frame
duration.

We pass the frame duration and the TextureRegions that hold the keyframes to the constructor, which
simply stores them. We can make a defensive copy of the keyFrames array, but that would allocate a new
object, which would make the garbage collector a little mad.

The interesting piece is the getKeyFrame() method. We pass in the time that the object has been in
the state that the animation represents, as well as the mode, either Animation.ANIMATION_LOOPING or
Animation.NON_LOOPING. We calculate how many frames have already been played for the given state based

Chapter 8 ■ 2D Game proGramminG triCks

374

on the stateTime. If the animation shouldn’t be looping, we simply clamp the frameNumber to the last
element in the TextureRegion array. Otherwise, we take the modulus, which will automatically create the
looping effect we desire (for example, 4 % 3 = 1). All that’s left is returning the proper TextureRegion.

An Example
This section shows how to create an example called AnimationTest with a corresponding screen called
AnimationScreen. As always, only the screen itself will be discussed.

We want to render a number of cavemen, all walking to the left. Our world will be the same size as
our view frustum, which has the size 4.8×3.2 m. (This is arbitrary; we could use any size.) A caveman is a
DynamicGameObject with a size of 1×1 m. We will derive from DynamicGameObject and create a new class called
Caveman, which will store an additional member that keeps track of how long the caveman has been walking.
Each caveman will move 0.5 m/s, either to the left or to the right. Add an update() method to the Caveman
class to update the caveman’s position based on the delta time and his velocity. If a caveman reaches the left
or right edge of the world, we set him to the other side of the world. We use the image in Figure 8-25 and create
TextureRegion instances and an Animation instance accordingly. For rendering, we use a Camera2D instance
and a SpriteBatcher because they are fancy. Listing 8-20 shows the code of the Caveman class.

Listing 8-20. Excerpt from AnimationTest.java: Showing the inner Caveman class

static final float WORLD_WIDTH = 4.8f;
static final float WORLD_HEIGHT = 3.2f;

static class Caveman extends DynamicGameObject {
 public float walkingTime = 0;

 public Caveman(float x, float y, float width, float height) {
 super(x, y, width, height);
 this.position.set((float)Math.random() * WORLD_WIDTH,
 (float)Math.random() * WORLD_HEIGHT);
 this.velocity.set(Math.random() > 0.5f?-0.5f:0.5f, 0);
 this.walkingTime = (float)Math.random() * 10;
 }

 public void update(float deltaTime) {
 position.add(velocity.x * deltaTime, velocity.y * deltaTime);
 if(position.x < 0) position.x = WORLD_WIDTH;
 if(position.x > WORLD_WIDTH) position.x = 0;
 walkingTime += deltaTime;
 }
}

The two constants, WORLD_WIDTH and WORLD_HEIGHT, are part of the enclosing AnimationTest class and
are used by the inner classes. Our world is 4.8×3.2 m in size.

Next up is the inner Caveman class, which extends DynamicGameObject, since we will move cavemen based
on velocity. We define an additional member that keeps track of how long the caveman has been walking.
In the constructor, we place the caveman at a random position and let him walk to the left or the right. We
initialize the walkingTime member to a number between 0 and 10; this way our cavemen won’t walk in sync.

The update() method advances the caveman based on his velocity and the delta time. If he leaves the
world, we reset him to either the left or right edge. We add the delta time to the walkingTime to keep track of
how long he’s been walking.

Chapter 8 ■ 2D Game proGramminG triCks

375

Listing 8-21 shows the AnimationScreen class.

Listing 8-21. Excerpt from AnimationTest.java: The AnimationScreen class

class AnimationScreen extends Screen {
 static final int NUM_CAVEMEN = 10;
 GLGraphics glGraphics;
 Caveman[] cavemen;
 SpriteBatcher batcher;
 Camera2D camera;
 Texture texture;
 Animation walkAnim;

Our screen class has the usual suspects as members. We have a GLGraphics instance, a Caveman array, a
SpriteBatcher, a Camera2D, the Texture containing the walking keyframes, and an Animation instance.

public AnimationScreen(Game game) {
 super(game);
 glGraphics = ((GLGame)game).getGLGraphics();
 cavemen = new Caveman[NUM_CAVEMEN];
 for(int i = 0; i < NUM_CAVEMEN; i++) {
 cavemen[i] = new Caveman((float)Math.random(), (float)Math.random(), 1, 1);
 }
 batcher = new SpriteBatcher(glGraphics, NUM_CAVEMEN);
 camera = new Camera2D(glGraphics, WORLD_WIDTH, WORLD_HEIGHT);
}

In the constructor, you create the Caveman instances as well as the SpriteBatcher and Camera2D.

@Override
public void resume() {
 texture = new Texture(((GLGame)game), "walkanim.png");
 walkAnim = new Animation(0.2f,
 new TextureRegion(texture, 0, 0, 64, 64),
 new TextureRegion(texture, 64, 0, 64, 64),
 new TextureRegion(texture, 128, 0, 64, 64),
 new TextureRegion(texture, 192, 0, 64, 64));
}

In the resume() method, we load the texture atlas containing the animation keyframes from the
asset file walkanim.png, which is the same as was seen in Figure 8-25. Afterward, we create the Animation
instance, setting the frame duration to 0.2 s and passing in a TextureRegion for each of the keyframes in the
texture atlas.

@Override
public void update(float deltaTime) {
 int len = cavemen.length;
 for(int i = 0; i < len; i++) {
 cavemen[i].update(deltaTime);
 }
}

Chapter 8 ■ 2D Game proGramminG triCks

376

The update() method just loops over all Caveman instances and calls their Caveman.update() method
with the current delta time. This will make the cavemen move and will update their walking times.

 @Override
 public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
 camera.setViewportAndMatrices();

 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA);
 gl.glEnable(GL10.GL_TEXTURE_2D);

 batcher.beginBatch(texture);
 int len = cavemen.length;
 for(int i = 0; i < len; i++) {
 Caveman caveman = cavemen[i];
 TextureRegion keyFrame = walkAnim.getKeyFrame(caveman.walkingTime,

Animation.ANIMATION_LOOPING);
 batcher.drawSprite(caveman.position.x, caveman.position.y, caveman.velocity.x <

0?1:-1, 1, keyFrame);
 }
 batcher.endBatch();
 }

 @Override
 public void pause() {
 }

 @Override
 public void dispose() {
 }
}

Finally, we have the present() method. For each caveman, we first fetch the correct keyframe from the
Animation instance based on the caveman’s walking time. We specify that the animation should be looping.
Then, we draw the caveman with the correct texture region at his position.

But what do we do with the width parameter here? Remember that our animation texture only contains
keyframes for the “walk left” animation. We want to flip the texture horizontally in case the caveman
is walking to the right, which we can do by specifying a negative width. If you don’t trust us, go back to
the SpriteBatcher code and check whether this works. We essentially flip the rectangle of the sprite by
specifying a negative width. We could do the same vertically, as well, by specifying a negative height.

Figure 8-26 shows our walking cavemen.

Chapter 8 ■ 2D Game proGramminG triCks

377

And that is all you need to know to produce a nice 2D game with OpenGL ES. Note how we still separate
the game logic and the presentation from each other. A caveman does not need to know that he is being
rendered. He therefore doesn’t keep any rendering-related members, such as an Animation instance or a
Texture. All we need to do is keep track of the state of the caveman and how long he’s been in that state.
Together with his position and size, we can then easily render him by using our little helper classes.

Summary
You should now be well equipped to create almost any 2D game you want. We’ve learned about vectors
and how to work with them, resulting in a nice, reusable Vector2 class. We also looked into basic physics
for creating things like ballistic cannonballs. Collision detection is also a vital part of most games, and you
should now know how to do it correctly and efficiently via a SpatialHashGrid. We explored a way to keep
our game logic and objects separated from the rendering by creating GameObject and DynamicGameObject
classes that keep track of the state and shape of objects. We covered how easy it is to implement the
concept of a 2D camera via OpenGL ES, all based on a single method called glOrthof(). We learned about
texture atlases, why we need them, and how we can use them. This was expanded by introducing texture
regions, sprites, and how we can render them efficiently via a SpriteBatcher. Finally, we looked into sprite
animations, which turn out to be extremely simple to implement.

It is worth noting that all of the topics covered in this chapter, including broad- and narrow-phase
collision detection, physics simulation, movement integration, and differently shaped bounds, are
implemented robustly in many open source libraries, such as Box2D, Chipmunk Physics, Bullet Physics, and
more. All of these libraries were originally developed in C or C++, but there are Android wrappers or Java
implementations for a few that make them options to check out as you plan your game.

In the next chapter, we’ll create a new game with our new tools. You’ll be surprised how easy it is.

Figure 8-26. Cavemen walking

379© Mario Zechner, J. F. DiMarzio and Robert Green 2016
M. Zechner et al., Beginning Android Games, DOI 10.1007/978-1-4842-0472-6_9

CHAPTER 9

Super Jumper: A 2D OpenGL ES
Game

It’s time to put together all you’ve learned about OpenGL ES to create a game. As discussed in Chapter 3,
there are several very popular genres from which to choose when developing a game in the mobile space.
For our next game, we decided to stick to the casual genre. We’ll implement a jump-’em-up game similar to
Abduction or Doodle Jump. As with Mr. Nom, we’ll start by defining our game mechanics.

Core Game Mechanics
If you aren’t familiar with Abduction, we suggest that you install it on your Android device and give it a try
(a free download on Google Play) or at least watch a video of the game on the Web. Using Abduction as an
example, we can condense the core game mechanics of our game, which will be called Super Jumper, into
the following:

•	 The protagonist is constantly jumping upward, moving from platform to platform.
The game world spans multiple screens vertically.

•	 Horizontal movement can be controlled by tilting the phone to the left or the right.

•	 When the protagonist leaves one of the horizontal screen boundaries, he reenters the
screen on the opposite side.

•	 Platforms can be static or moving horizontally.

•	 Some platforms will be pulverized randomly when the protagonist hits them.

•	 Along the way up, the protagonist can collect items to score points.

•	 Besides coins, there are also springs on some platforms that will make the
protagonist jump higher.

•	 Evil forces populate the game world, moving horizontally. When our protagonist hits
one of them, he dies and the game is over.

•	 When our protagonist falls below the bottom edge of the screen, the game is over.

•	 At the top of the level is some sort of goal. When the protagonist hits that goal, a new
level begins.

http://dx.doi.org/10.1007/978-1-4842-0472-6_3

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

380

While the list is longer than the one we created for Mr. Nom, it doesn’t seem a lot more complex.
Figure 9-1 shows an initial mock-up of the core principles. This time we went straight to Paint.NET for
creating the mock-up. Let’s come up with a backstory.

Developing a Backstory and Choosing an Art Style
We are going to be totally creative here and develop the following unique story for our game.

Bob, our protagonist, suffers from chronic jumperitis. He is doomed to jump every time he touches
the ground. Even worse, his beloved princess, who shall remain nameless, was kidnapped by an evil army
of flying killer squirrels and placed in a castle in the sky. Bob’s condition proves beneficial after all, and he
begins the hunt for his loved one, battling the evil squirrel forces.

This classic video game story lends itself well to the 8-bit graphics style, which can be found in games
such as the original Super Mario Brothers on the NES. The mock-up in Figure 9-1 shows the final game
graphics for all the elements of our game. Bob, coins, flying squirrels, and pulverized platforms are, of
course, animated. We’ll also use music and sound effects that fit our visual style.

Defining Screens and Transitions
We are now able to define our screens and transitions. Following the same formula we used in Mr. Nom,
we’ll include the following elements:

•	 A main screen with a logo; PLAY, HIGHSCORES, and HELP menu items; and a
button to disable and enable sound.

Figure 9-1. Our initial game mechanics mock-up, showing the protagonist, platforms, a spring, a coin, an evil
force, and a goal at the top of the level

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

381

•	 A game screen that asks the player to get ready and handles running, paused, game-
over, and next-level states gracefully. The only new addition to what we used in Mr.
Nom will be the next-level state of the screen, which will be triggered once Bob hits
the castle. In that case, a new level will be generated, and Bob will start at the bottom
of the world again, keeping his score.

•	 A high-scores screen that shows the top five scores the player has achieved so far.

•	 Help screens that present the game mechanics and goals to the player. We’ll be
sneaky and leave out a description of how to control the player. Kids these days
should be able to handle the complexity we faced back in the ’80s and early ’90s,
when games didn’t provide any instructions.

That is more or less the same setup as in Mr. Nom. Figure 9-2 shows all screens and transitions. Note
that we don’t have any buttons on the game screen or its subscreens, except for the pause button. Users will
intuitively touch the screen when asked if they are ready.

Figure 9-2. All the screens and transitions of Super Jumper

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

382

With our screens and transitions defined, we can now think about our world’s size and units, as well as
how those sizes and units relate to the graphical assets.

Defining the Game World
The classic chicken-and-egg problem haunts us again. As you learned in Chapter 8, we have a
correspondence between world units (for example, meters) and pixels. Our objects are defined physically in
world space. Bounding shapes and positions are given in meters; velocities are given in meters per second.
The graphical representations of our objects are defined in pixels, though, so we have to have some sort of
mapping. We overcome this problem by first defining a target resolution for our graphical assets. As with Mr.
Nom, we will use a target resolution of 320×480 pixels (aspect ratio of 1.5). We’re using this target because it’s
the lowest practical resolution; if you’re targeting tablets specifically, you may want to use a resolution such
as 800×1280, or perhaps something in between, such as 480×800 (a typical Android handset). Regardless of
your target resolution, the principals remain the same.

The next thing we have to do is establish a correspondence between pixels and meters in our world. The
mock-up in Figure 9-1 gives us a sense of how much screen space the different objects use, as well as their
proportions relative to each other. We recommend choosing a mapping of 32 pixels to 1 meter for 2D games.
So, let’s overlay our mock-up, which is 320×380 pixels in size, with a grid where each cell is 32×32 pixels. In
our world space, this would map to 1×1-meter cells. Figure 9-3 shows our mock-up and the grid.

We cheated a bit in Figure 9-3. We arranged the graphics in such a way that they line up nicely with the
grid cells. In the real game, we’ll place the objects at noninteger positions.

Figure 9-3. The mock-up overlaid with a grid. Each cell is 32×32 pixels and corresponds to a 1×1-meter area
in the game world.

http://dx.doi.org/10.1007/978-1-4842-0472-6_8

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

383

So, what can we make of Figure 9-3? First of all, we can directly estimate the width and height of each
object in our world in meters. Here are the values we’ll use for the bounding rectangles of our objects:

•	 Bob is 0.8×0.8 meters; he does not entirely span a complete cell.

•	 A platform is 2×0.5 meters, taking up two cells horizontally and half a cell vertically.

•	 A coin is 0.8×0.5 meters. It nearly spans a cell vertically and takes up roughly half a
cell horizontally.

•	 A spring is 0.5×0.5 meters, talking up half a cell in each direction. The spring is
actually a little bit taller than it is wide. We make its bounding shape square so that
the collision testing is a bit more forgiving.

•	 A squirrel is 1×0.8 meters.

•	 A castle is 1.8×1.8 meters.

With these sizes, we also have the sizes of the bounding rectangles of our objects for collision detection.
We can adjust them if they turn out to be a little too big or small, depending on how the game plays out with
these values.

Another thing we can derive from Figure 9-3 is the size of our view frustum. It will show us 10×15 meters
of our world.

The only things left to define are the velocities and accelerations we have in the game. These are highly
dependent on how we want our game to feel. Usually, you’d have to do some experimentation to get these
values right. Here’s what we came up with after a few iterations of tuning:

•	 The gravity acceleration vector is (0,–13) m/s2, slightly more than what we have here
on Earth and what we used in our cannon example in Chapter 8.

•	 Bob’s initial jump velocity vector is (0,11) m/s. Note that the jump velocity affects
the movement only on the y axis. The horizontal movement will be defined by the
current accelerometer readings.

•	 Bob’s jump velocity vector will be 1.5 times his normal jump velocity when he hits
a spring. That’s equivalent to (0,16.5) m/s. Again, this value is derived purely from
experimentation.

•	 Bob’s horizontal movement speed is 20 m/s. Note that that’s a directionless
speed, not a vector. We’ll explain in a minute how that works together with the
accelerometer.

•	 The squirrels will patrol from the left to the right and back continuously. They’ll have
a constant movement speed of 3 m/s. Expressed as a vector, that’s either (–3,0) m/s if
the squirrel moves to the left or (3,0) m/s if the squirrel moves to the right.

So, how will Bob’s horizontal movement work? The movement speed we previously defined is actually
Bob’s maximum horizontal speed. Depending on how much the player tilts his or her phone, Bob’s
horizontal movement speed will be between 0 (no tilt) and 20 m/s (fully tilted to one side).

We’ll use the value of the accelerometer’s x axis because our game will run in portrait mode. When
the phone is not tilted, the axis will report an acceleration of 0 m/s2. When fully tilted to the left so that
the phone is in landscape orientation, the axis will report an acceleration of roughly –10 m/s2. When fully
tilted to the right, the axis will report an acceleration of roughly 10 m/s2. All we need to do is normalize
the accelerometer reading by dividing it by the maximum absolute value (10) and then multiplying Bob’s
maximum horizontal speed by that. Bob will thus travel 20 m/s to the left or right when the phone is fully
tilted to one side and less if the phone is tilted less. Bob can move around the screen twice per second when
the phone is fully tilted.

http://dx.doi.org/10.1007/978-1-4842-0472-6_8

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

384

We’ll update this horizontal movement velocity each frame based on the current accelerometer value
on the x axis and combine it with Bob’s vertical velocity, which is derived from the gravity acceleration and
his current vertical velocity, as we did for the cannonball in the Chapter 8 examples.

One essential aspect of the world is the portion we see of it. Since Bob will die when he leaves the
screen on the bottom edge, our camera also plays a role in the game mechanics. While we’ll use a camera for
rendering and move it upward when Bob jumps, we won’t use it in our world simulation classes. Instead, we
record Bob’s highest y coordinate so far. If he’s below that value minus half the view frustum height, we know
he has left the screen. Thus, we don’t have a completely clean separation between the model (our world
simulation classes) and the view, since we need to know the view frustum’s height to determine whether Bob
is dead. We can live with this.

Let’s have a look at the assets we need.

Creating the Assets
Our new game has two types of graphical assets: UI elements and actual game, or world, elements. Let’s start
with the UI elements.

The UI Elements
The first thing to notice is that the user interface (UI) elements (buttons, logos, and so forth) do not depend
on our pixel-to-world unit mapping. As in Mr. Nom, we design them to fit a target resolution—in our case,
320×480 pixels. Looking at Figure 9-2, we can determine which UI elements we have.

The first UI elements we create are the buttons we need for the different screens. Figure 9-4 shows all
the buttons of our game.

We prefer to create all graphical assets in a grid with cells having sizes of 32×32 or 64×64 pixels. The
buttons in Figure 9-4 are laid out in a grid with each cell having 64×64 pixels. The buttons in the top row are
used on the main menu screen to signal whether sound is enabled or not. The arrow at the bottom left is
used in a couple of screens to navigate to the next screen. The button in the bottom right is used on the game
screen when the game is running to allow the user to pause the game.

You might wonder why there’s no arrow pointing to the right. Remember from Chapter 8 that, with our
fancy sprite batcher, we can easily flip things we draw by specifying negative width and/or height values.
We’ll use that trick for a couple of graphical assets to save some memory.

Figure 9-4. Various buttons, each 64×64 pixels in size

http://dx.doi.org/10.1007/978-1-4842-0472-6_8
http://dx.doi.org/10.1007/978-1-4842-0472-6_8

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

385

Next up are the elements we need on the main menu screen: a logo, the menu entries, and the
background image. Figure 9-5 shows all of these elements.

The background image is used not only on the main menu screen, but also on all screens. It is the
same size as our target resolution, 320×480 pixels. The main menu entries make up 300×110 pixels. The
main menu’s black background is used because white on white wouldn’t look good. In the actual image, the
main menu’s background is made up of transparent pixels, of course. The logo is 274×142 pixels with some
transparent pixels at the corners.

Next up are the help-screen images. Instead of compositing each of them with a couple of elements, we
lazily made them all full-screen images of size 320×480. That will reduce the size of our drawing code a little
while not adding a lot to our program’s size. You can see all of the help screens in Figure 9-2. The only thing
we’ll composite these images with is the arrow button.

For the high-scores screen, we’ll reuse the portion of the main menu image that says HIGHSCORES.
The actual scores are rendered with a special technique we’ll look into later in this chapter. The rest of that
screen is again composed of the background image and a button.

The game screen has a few more textual UI elements, namely the READY? label, the menu entries for
the paused state (RESUME and QUIT), and the GAME OVER label. Figure 9-6 shows them in all their glory.

Handling Text with Bitmap Fonts
So, how do we render the other textual elements on the game screen? We use the same technique we used
in Mr. Nom to render the scores. Instead of just having numbers, we also have characters now. We use an
image atlas, where each subimage represents one character (for example, 0 or a). This image atlas is called a
bitmap font. Figure 9-7 shows the bitmap font we’ll use.

Figure 9-5. The background image, the main menu entries, and the logo

Figure 9-6. The READY?, RESUME, QUIT, and GAME OVER labels

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

386

The black background and the grid in Figure 9-7 are not, of course, part of the actual image. Using
bitmap fonts is a very old technique for rendering text on the screen in a game. Bitmap fonts usually contain
images for a range of ASCII characters. One such character image is referred to as a glyph. ASCII is one of the
predecessors of Unicode. There are 128 characters in the ASCII character set, as shown in Figure 9-8.

Out of these 128 characters, 95 are printable (characters 32 to 126). Our bitmap font contains only
printable characters. The first row in the bitmap font contains the characters 32 to 47, the next row contains
the characters 48 to 63, and so on. ASCII is only useful if you want to store and display text that uses the

Figure 9-7. A bitmap font

Figure 9-8. ASCII characters and their decimal, hexadecimal, and octal values

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

387

standard Latin alphabet. There’s an extended ASCII format that uses the values 128 to 255 to encode other
common characters of Western languages, such as ö and é. More expressive character sets (for example, for
Chinese or Arabic) are represented via Unicode and can’t be encoded via ASCII. For our game, the standard
ASCII character set suffices.

So, how do we render text with a bitmap font? That turns out to be really easy. First, we create 96 texture
regions, each mapping to a glyph in the bitmap font. We can store those texture regions in an array as follows:

TextureRegion[] glyphs = new TextureRegion[96];

Java strings are encoded in 16-bit Unicode. Luckily for us, the ASCII characters we have in our bitmap
font have the same values in ASCII and Unicode. To fetch the region for a character in a Java string, we just
need to do this:

int index = string.charAt(i) – 32;

This gives us a direct index into the texture-region array. We just subtract the value for the space
character (32) from the current character in the string. If the index is less than 0 or greater than 95, we have a
Unicode character that is not in our bitmap font. Usually, we just ignore such a character.

To render multiple characters in a line, we need to know how much space there should be between
characters. The bitmap font in Figure 9-7 is a fixed-width font, meaning that each glyph has the same width. Our
bitmap font glyphs have a size of 16×20 pixels each. When we advance our rendering position from character to
character in a string, we just need to add 20 pixels. The number of pixels by which we move the drawing position
from character to character is called the advance. For our bitmap font, it is fixed; however, it is generally variable
depending on the character we draw. A more complex form of advance is calculated by considering both the
current character we are about to draw and the next character. This technique is called kerning, if you want to
look it up on the Web. We’ll use only fixed-width bitmap fonts, as they make our lives considerably easier.

So, how did we generate that ASCII bitmap font? We used one of the many tools available on the Web
for generating bitmap fonts. The one we used is called Codehead’s Bitmap Font Generator (CBFG), and it is
freely available at www.codehead.co.uk/cbfg/. You can select a font file on your hard drive and specify the
height of the font, and the generator will produce an image from it for the ASCII character set. The tool has
many options that are beyond the scope of our discussion here. We recommend that you download CBFG
and play around with it a little.

We’ll draw all the remaining strings in our game with this technique. Later, you’ll see a concrete
implementation of a bitmap font class. For now, let’s get back to creating our assets.

With the bitmap font, we now have assets for all our graphical UI elements. We will render them via a
sprite batcher using a camera that sets up a view frustum that directly maps to our target resolution. This
way, we can specify all the coordinates in pixel coordinates.

The Game Elements
The actual game objects are dependent on our pixel-to-world unit mappings, as discussed earlier. To make
the creation of the game elements as easy as possible, we used a little trick: we started each drawing with a
grid of 32×32 pixels per cell. All the objects are centered in one or more such cells so that they correspond
easily with the physical sizes they have in our world. Let’s start with Bob, depicted in Figure 9-9.

Figure 9-9. Bob and his five animation frames

http://www.codehead.co.uk/cbfg/

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

388

Figure 9-9 shows two frames for jumping, two frames for falling, and one frame for being dead. Each
image is 160×32 pixels in size, and each animation frame is 32×32 pixels in size. The background pixels are
transparent.

Bob can be in one of three states: jumping, falling, or dead. We have animation frames for each of these
states. Granted, the difference between the two jumping frames and the two falling frames is minor—only
his forelock is wiggling. We’ll create an Animation instance for each of the three animations of Bob, and we’ll
use them for rendering according to his current state. We also don’t have duplicate frames for Bob heading
left. As with the arrow button (shown earlier, in Figure 9-4), we’ll just specify a negative width with the
SpriteBatcher.drawSprite() call to flip Bob’s image horizontally.

Figure 9-10 depicts the evil flying squirrel. We have two animation frames again, so the squirrel appears
to be flapping its evil wings.

The image in Figure 9-10 is 64×32 pixels, and each frame is 32×32 pixels.
The coin animation shown in Figure 9-11 is special. Our keyframe sequence will not be 1, 2, 3, 1, but 1,

2, 3, 2, 1. Otherwise, the coin would go from its collapsed state in frame 3 to its fully extended state in frame
1. We can conserve a little space by reusing the second frame.

The image in Figure 9-11 is 96×32 pixels, and each frame is 32×32 pixels.
Not a lot has to be said about the spring image in Figure 9-12. The spring just sits there happily in the

center of the image. The image is 32×32 pixels.

The castle in Figure 9-13 is also not animated. It is bigger than the other objects (64×64 pixels).

Figure 9-10. An evil flying squirrel and its two animation frames

Figure 9-11. The coin and its animation frames

Figure 9-12. The spring

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

389

The platform in Figure 9-14 (64x64 pixels) has four animation frames. According to our game
mechanics, some platforms will be pulverized when Bob hits them. We’ll play back the full animation of the
platform once in that case. For static platforms, we’ll just use the first frame.

Texture Atlas to the Rescue
Now that we’ve identified all the graphical assets in our game, we need to discuss their textures. We already
talked about how textures need to have power-of-two widths and heights. Our background image and all
the help screens have a size of 320×480 pixels. We’ll store those in 512×512-pixel images so that we can load
them as textures. That’s already six textures.

Do we create separate textures for all the other images as well? No. We create a single texture atlas.
It turns out that everything else fits nicely in a single 512×512 pixel atlas, which we can load as a single
texture—something that will make the GPU really happy, since we only need to bind one texture for all game
elements, except the background and help screen images. Figure 9-15 shows the atlas.

The image in Figure 9-15 is 512×512 pixels in size. The grids and red outlines are not part of the image,
and the background pixels are transparent. This is also true for the black background pixels of the UI labels
and the bitmap font. The grid cells are 32×32 pixels in size. The cool thing about using a texture atlas like this
is that if you want to support higher-resolution screens, you don’t need to change anything but the size of
this texture atlas. You can scale it up to 1024×1024 pixels with higher-fidelity graphics and, even though your
target was 320×480, OpenGL ES gives you the better graphics with no game changes!

We placed all the images in the atlas at corners with coordinates that are multiples of 32. This makes
creating texture regions easier.

Figure 9-13. The castle

Figure 9-14. The platform and its animation frames

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

390

Music and Sound
We also need sound effects and music. Since our game is an 8-bit retro-style game, it’s fitting to use chip
tunes, sound effects and music generated by a synthesizer. The most famous chip tunes were generated
by Nintendo’s NES, SNES, and Game Boy. For the sound effects, we used a tool called as3sfxr (Tom Vian’s
Flash version of sfxr, created by Tomas Pettersson). It can be found at www.superflashbros.net/as3sfxr.
Figure 9-16 shows its user interface.

Figure 9-15. The mighty texture atlas

http://www.superflashbros.net/as3sfxr

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

391

We created sound effects for jumping, hitting a spring, hitting a coin, and hitting a squirrel. We also
created a sound effect for clicking UI elements. All we did was mash the buttons on the left in as3sfxr for
each category until we found a fitting sound effect.

Music for games is usually a little bit harder to come by. There are a few sites on the Web that feature
8-bit chip tunes that are fitting for a game like Super Jumper. We’ll use a single song called “New Song,” by
Geir Tjelta. The song can be found at the Free Music Archive (www.freemusicarchive.org). It’s licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 United States license (https://
creativecommons.org/licenses/by-nc-sa/3.0/us/). This means we can use it in noncommercial projects,
such as our open source Super Jumper game, as long as we give attribution to Geir and don’t modify the
original piece. When you scout the Web for music to be used in your games, always make sure that you
adhere to the license. People put a lot of work into their songs. If the license doesn’t fit your project (that is, if
your game is a commercial one), then you can’t use it.

Figure 9-16. as3sfxr, a Flash port of sfxr

http://www.freemusicarchive.org/
http://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/us/
https://creativecommons.org/licenses/by-nc-sa/3.0/us/

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

392

Implementing Super Jumper
Implementing Super Jumper will be pretty easy. We can reuse our complete framework from Chapter 8 and
follow the architecture of Mr. Nom on a high level. This means we’ll have a class for each screen, and each
of these classes will implement the logic and presentation expected from that screen. Besides that, we’ll also
have our standard project setup with a proper manifest file, all our assets in the assets/ folder, an icon for
our application, and so on. Let’s start with our main Assets class. Just set up the project as you did before,
copy over all the framework classes, and you are ready to code this marvelous game.

The Assets Class
In Mr. Nom, we already had an Assets class that consisted only of a metric ton of pixmap and sound
references held in static member variables. We’ll do the same in Super Jumper. This time, we’ll add a little
loading logic, though. Listing 9-1 shows the code, with comments mixed in.

Listing 9-1. Assets.java, which holds all our assets except for the help-screen textures

package com.badlogic.androidgames.jumper;

import com.badlogic.androidgames.framework.Music;
import com.badlogic.androidgames.framework.Sound;
import com.badlogic.androidgames.framework.gl.Animation;
import com.badlogic.androidgames.framework.gl.Font;
import com.badlogic.androidgames.framework.gl.Texture;
import com.badlogic.androidgames.framework.gl.TextureRegion;
import com.badlogic.androidgames.framework.impl.GLGame;

public class Assets {
 public static Texture background;
 public static TextureRegion backgroundRegion;

 public static Texture items;
 public static TextureRegion mainMenu;
 public static TextureRegion pauseMenu;
 public static TextureRegion ready;
 public static TextureRegion gameOver;
 public static TextureRegion highScoresRegion;
 public static TextureRegion logo;
 public static TextureRegion soundOn;
 public static TextureRegion soundOff;
 public static TextureRegion arrow;
 public static TextureRegion pause;
 public static TextureRegion spring;
 public static TextureRegion castle;
 public static Animation coinAnim;
 public static Animation bobJump;
 public static Animation bobFall;
 public static TextureRegion bobHit;
 public static Animation squirrelFly;
 public static TextureRegion platform;
 public static Animation brakingPlatform;

http://dx.doi.org/10.1007/978-1-4842-0472-6_8

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

393

 public static Font font;

 public static Music music;

 public static Sound jumpSound;
 public static Sound highJumpSound;
 public static Sound hitSound;
 public static Sound coinSound;
 public static Sound clickSound;

The class holds references to all the Texture, TextureRegion, Animation, Music, and Sound instances
we need throughout our game. The only thing we don’t load here are the images for the help screens.

 public static void load(GLGame game) {
 background = new Texture(game, "background.png");
 backgroundRegion = new TextureRegion(background, 0, 0, 320, 480);

 items = new Texture(game, "items.png");
 mainMenu = new TextureRegion(items, 0, 224, 300, 110);
 pauseMenu = new TextureRegion(items, 224, 128, 192, 96);
 ready = new TextureRegion(items, 320, 224, 192, 32);
 gameOver = new TextureRegion(items, 352, 256, 160, 96);
 highScoresRegion = new TextureRegion(Assets.items, 0, 257, 300, 110 / 3);
 logo = new TextureRegion(items, 0, 352, 274, 142);
 soundOff = new TextureRegion(items, 0, 0, 64, 64);
 soundOn = new TextureRegion(items, 64, 0, 64, 64);
 arrow = new TextureRegion(items, 0, 64, 64, 64);
 pause = new TextureRegion(items, 64, 64, 64, 64);

 spring = new TextureRegion(items, 128, 0, 32, 32);
 castle = new TextureRegion(items, 128, 64, 64, 64);
 coinAnim = new Animation(0.2f,
 new TextureRegion(items, 128, 32, 32, 32),
 new TextureRegion(items, 160, 32, 32, 32),
 new TextureRegion(items, 192, 32, 32, 32),
 new TextureRegion(items, 160, 32, 32, 32));
 bobJump = new Animation(0.2f,
 new TextureRegion(items, 0, 128, 32, 32),
 new TextureRegion(items, 32, 128, 32, 32));
 bobFall = new Animation(0.2f,
 new TextureRegion(items, 64, 128, 32, 32),
 new TextureRegion(items, 96, 128, 32, 32));
 bobHit = new TextureRegion(items, 128, 128, 32, 32);
 squirrelFly = new Animation(0.2f,
 new TextureRegion(items, 0, 160, 32, 32),
 new TextureRegion(items, 32, 160, 32, 32));
 platform = new TextureRegion(items, 64, 160, 64, 16);
 brakingPlatform = new Animation(0.2f,
 new TextureRegion(items, 64, 160, 64, 16),
 new TextureRegion(items, 64, 176, 64, 16),
 new TextureRegion(items, 64, 192, 64, 16),
 new TextureRegion(items, 64, 208, 64, 16));

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

394

 font = new Font(items, 224, 0, 16, 16, 20);

 music = game.getAudio().newMusic("music.mp3");
 music.setLooping(true);
 music.setVolume(0.5f);
 if(Settings.soundEnabled)
 music.play();
 jumpSound = game.getAudio().newSound("jump.ogg");
 highJumpSound = game.getAudio().newSound("highjump.ogg");
 hitSound = game.getAudio().newSound("hit.ogg");
 coinSound = game.getAudio().newSound("coin.ogg");
 clickSound = game.getAudio().newSound("click.ogg");
 }

The load() method, which will be called once at the start of our game, is responsible for populating all
the static members of the class. It loads the background image and creates a corresponding TextureRegion
for it. Next, it loads the texture atlas and creates all the necessary texture regions and animations. Compare
the code to what’s shown in Figure 9-15 and the other figures in the previous section. The only noteworthy
thing about the code for loading graphical assets is the creation of the coin Animation instance. As
discussed, we reuse the second frame at the end of the animation frame sequence. All the animations use a
frame time of 0.2 seconds.

We also create an instance of the Font class, which we have not yet discussed. It will implement the
logic to render text with the bitmap font embedded in the atlas. The constructor takes the Texture, which
contains the bitmap font glyphs, the pixel coordinates of the top-left corner of the area that contains the
glyphs, the number of glyphs per row, and the size of each glyph in pixels.

We also load all the Music and Sound instances in that method. As you can see, we work with our old
friend the Settings class again. We can reuse it from the Mr. Nom project pretty much as is, with one slight
modification, as you’ll see in a minute. Note that we set the Music instance to be looping and its volume
to 0.5, so it is a little quieter than the sound effects. The music will start playing only if the user hasn’t
previously disabled the sound, which is stored in the Settings class, as in Mr. Nom.

 public static void reload() {
 background.reload();
 items.reload();
 if(Settings.soundEnabled)
 music.play();
 }

Next, we have a mysterious method called reload(). Remember that the OpenGL ES context will get
lost when our application is paused. We have to reload the textures when the application is resumed, and
that’s exactly what this method does. We also resume the music playback in case sound is enabled.

 public static void playSound(Sound sound) {
 if(Settings.soundEnabled)
 sound.play(1);
 }
}

The final method of this class, playSound(), is a helper method we’ll use in the rest of the code to play
back audio. Instead of having to check whether sound is enabled everywhere, we encapsulate that check in
this method.

Let’s have a look at the modified Settings class.

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

395

The Settings Class
Not a lot has changed in the Settings class. Listing 9-2 shows the code of our slightly modified Settings class.

Listing 9-2. Settings.java, our slightly modified settings class, borrowed from Mr. Nom

package com.badlogic.androidgames.jumper;

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;

import com.badlogic.androidgames.framework.FileIO;

public class Settings {
 public static boolean soundEnabled = true;
 public final static int[] highscores = new int[] { 100, 80, 50, 30, 10 };
 public final static String file = ".superjumper";

 public static void load(FileIO files) {
 BufferedReader in = null;
 try {
 in = new BufferedReader(new InputStreamReader(files.readFile(file)));
 soundEnabled = Boolean.parseBoolean(in.readLine());
 for(int i = 0; i < 5; i++) {
 highscores[i] = Integer.parseInt(in.readLine());
 }
 } catch (IOException e) {
 // :(It's ok we have defaults
 } catch (NumberFormatException e) {
 // :/ It's ok, defaults save our day
 } finally {
 try {
 if (in != null)
 in.close();
 } catch (IOException e) {
 }
 }
 }

 public static void save(FileIO files) {
 BufferedWriter out = null;
 try {
 out = new BufferedWriter(new OutputStreamWriter(
 files.writeFile(file)));
 out.write(Boolean.toString(soundEnabled));
 out.write("\n");
 for(int i = 0; i < 5; i++) {
 out.write(Integer.toString(highscores[i]));
 out.write("\n");
 }

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

396

 } catch (IOException e) {
 } finally {
 try {
 if (out != null)
 out.close();
 } catch (IOException e) {
 }
 }
 }

 public static void addScore(int score) {
 for(int i=0; i < 5; i++) {
 if(highscores[i] < score) {
 for(int j= 4; j > i; j--)
 highscores[j] = highscores[j-1];
 highscores[i] = score;
 break;
 }
 }
 }
}

The only difference from the Mr. Nom version of this class is the file from and to which we read and
write the settings. Instead of .mrnom, we now use the file .superjumper.

The Main Activity
We need an Activity class as the main entry point of our game. We’ll call it SuperJumper. Listing 9-3 shows
its code.

Listing 9-3. SuperJumper.java, the main entry point class

package com.badlogic.androidgames.jumper;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import com.badlogic.androidgames.framework.Screen;
import com.badlogic.androidgames.framework.impl.GLGame;

public class SuperJumper extends GLGame {
 boolean firstTimeCreate = true;

 public Screen getStartScreen() {
 return new MainMenuScreen(this);
 }

 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 super.onSurfaceCreated(gl,config);

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

397

 if(firstTimeCreate) {
 Settings.load(getFileIO());
 Assets.load(this);
 firstTimeCreate = false;
 } else {
 Assets.reload();
 }
 }

 @Override
 public void onPause() {
 super.onPause();
 if(Settings.soundEnabled)
 Assets.music.pause();
 }
}

We derive from GLGame and implement the getStartScreen() method, which returns a
MainMenuScreen instance. The other two methods are a little less obvious.

We override onSurfaceCreate(), which is called each time the OpenGL ES context is re-created
(compare with the code of GLGame in Chapter 7). If the method is called for the first time, we use the Assets.
load() method to load all assets and also load the settings from the settings file on the SD card, if available.
Otherwise, all we need to do is reload the textures and start playback of the music via the Assets.reload()
method. We also override the onPause() method to pause the music if it is playing. We do both of these
things so that we don’t have to repeat them in the resume() and pause() methods of our screens.

Before we dive into the screen implementations, let’s have a look at our new Font class.

The Font Class
We are going to use bitmap fonts to render arbitrary (ASCII) text. We already discussed how this works on a
high level, so let’s look at the code in Listing 9-4.

Listing 9-4. Font.java: A bitmap font–rendering class

package com.badlogic.androidgames.framework.gl;

public class Font {
 public final Texture texture;
 public final int glyphWidth;
 public final int glyphHeight;
 public final TextureRegion[] glyphs = new TextureRegion[96];

The class stores the texture containing the font’s glyph, the width and height of a single glyph, and an
array of TextureRegion instances—one for each glyph. The first element in the array holds the region for the
space glyph, the next one holds the region for the exclamation mark glyph, and so on. In other words, the
first element corresponds to the ASCII character with the code 32, and the last element corresponds to the
ASCII character with the code 126.

public Font(Texture texture,
 int offsetX, int offsetY,
 int glyphsPerRow, int glyphWidth, int glyphHeight) {
 this.texture = texture;

http://dx.doi.org/10.1007/978-1-4842-0472-6_7

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

398

 this.glyphWidth = glyphWidth;
 this.glyphHeight = glyphHeight;
 int x = offsetX;
 int y = offsetY;
 for(int i = 0; i < 96; i++) {
 glyphs[i] = new TextureRegion(texture, x, y, glyphWidth, glyphHeight);
 x += glyphWidth;
 if(x == offsetX + glyphsPerRow * glyphWidth) {
 x = offsetX;
 y += glyphHeight;
 }
 }
}

In the constructor, we store the configuration of the bitmap font and generate the glyph regions. The
offsetX and offsetY parameters specify the top-left corner of the bitmap font area in the texture. In our
texture atlas, that’s the pixel at (224,0). The parameter glyphsPerRow tells us how many glyphs there are per
row, and the parameters glyphWidth and glyphHeight specify the size of a single glyph. Since we use a fixed-
width bitmap font, that size is the same for all glyphs. The glyphWidth is also the value by which we will
advance when rendering multiple glyphs.

 public void drawText(SpriteBatcher batcher, String text, float x, float y) {
 int len = text.length();
 for(int i = 0; i < len; i++) {
 int c = text.charAt(i) - ' ';
 if(c < 0 || c > glyphs.length - 1)
 continue;

 TextureRegion glyph = glyphs[c];
 batcher.drawSprite(x, y, glyphWidth, glyphHeight, glyph);
 x += glyphWidth;
 }
 }
}

The drawText() method takes a SpriteBatcher instance, a line of text, and the x and y positions at
which to start drawing the text. The x and y coordinates specify the center of the first glyph. All we do is get
the index for each character in the string, check whether we have a glyph for it, and, if so, render it via the
SpriteBatcher. We then increment the x coordinate by the glyphWidth so that we can start rendering the
next character in the string.

You might wonder why we don’t need to bind the texture containing the glyphs. We assume that this is
done before a call to drawText(). The reason is that the text rendering might be part of a batch, in which case
the texture must already be bound. Why unnecessarily bind it again in the drawText() method? Remember,
OpenGL ES loves nothing more than minimal state changes.

Of course, we can only handle fixed-width fonts with this class. If we want to support more general
fonts, we also need to have information about the advance of each character. One solution would be to
use kerning, as described in the earlier “Handling Text with Bitmap Fonts” section. We are happy with our
simple solution though.

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

399

The GLScreen Class
In the examples in the previous two chapters, we always got the reference to GLGraphics by casting. Let’s fix
this with a little helper class called GLScreen, which will do the dirty work for us and store the reference to
GLGraphics in a member. Listing 9-5 shows the code.

Listing 9-5. GLScreen.java: A little helper class

package com.badlogic.androidgames.framework.impl;

import com.badlogic.androidgames.framework.Game;
import com.badlogic.androidgames.framework.Screen;

public abstract class GLScreen extends Screen {
 protected final GLGraphics glGraphics;
 protected final GLGame glGame;

 public GLScreen(Game game) {
 super(game);
 glGame = (GLGame)game;
 glGraphics = glGame.getGLGraphics();
 }
}

We store the GLGraphics and GLGame instances in the GLScreen class. Of course, this will crash if the
Game instance passed as a parameter to the constructor is not a GLGame, but we’ll make sure it is. All the
screens of Super Jumper will derive from this class.

The Main Menu Screen
The main menu screen is the screen that is returned by SuperJumper.getStartScreen(), so it’s the first
screen the player will see. It renders the background and UI elements and simply waits there for the player
to touch any of the UI elements. Based on the element that was touched, the game either changes the
configuration (sound enabled/disabled) or transitions to a new screen. Listing 9-6 shows the code.

Listing 9-6. MainMenuScreen.java: The main menu screen

package com.badlogic.androidgames.jumper;

import java.util.List;
import javax.microedition.khronos.opengles.GL10;
import com.badlogic.androidgames.framework.Game;
import com.badlogic.androidgames.framework.Input.TouchEvent;
import com.badlogic.androidgames.framework.gl.Camera2D;
import com.badlogic.androidgames.framework.gl.SpriteBatcher;
import com.badlogic.androidgames.framework.impl.GLScreen;
import com.badlogic.androidgames.framework.math.OverlapTester;
import com.badlogic.androidgames.framework.math.Rectangle;
import com.badlogic.androidgames.framework.math.Vector2;

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

400

public class MainMenuScreen extends GLScreen {
 Camera2D guiCam;
 SpriteBatcher batcher;
 Rectangle soundBounds;
 Rectangle playBounds;
 Rectangle highscoresBounds;
 Rectangle helpBounds;
 Vector2 touchPoint;

The class derives from GLScreen, so we can access the GLGraphics instance more easily.
There are a couple of members in this class. The first one is a Camera2D instance called guiCam. We also

need a SpriteBatcher to render our background and UI elements. We’ll use rectangles to determine if the
user touched a UI element. Since we use a Camera2D, we also need a Vector2 instance to transform the touch
coordinates to world coordinates.

public MainMenuScreen(Game game) {
 super(game);
 guiCam = new Camera2D(glGraphics, 320, 480);
 batcher = new SpriteBatcher(glGraphics, 100);
 soundBounds = new Rectangle(0, 0, 64, 64);
 playBounds = new Rectangle(160 - 150, 200 + 18, 300, 36);
 highscoresBounds = new Rectangle(160 - 150, 200 - 18, 300, 36);
 helpBounds = new Rectangle(160 - 150, 200 - 18 - 36, 300, 36);
 touchPoint = new Vector2();
}

In the constructor, we simply set up all the members. And there’s a surprise. The Camera2D instance will
allow us to work in our target resolution of 320×480 pixels. All we need to do is set the view frustum width
and height to the proper values. The rest is done by OpenGL ES on the fly. Note, however, that the origin is
still in the bottom-left corner and the y axis is pointing upward. We’ll use such a GUI camera in all screens
that have UI elements so that we can lay them out in pixels instead of world coordinates. Of course, we cheat
a little on screens that are not 320×480 pixels wide, but we already did that in Mr. Nom, so we don’t need to
feel bad about it. The rectangles we set up for each UI element are thus given in pixel coordinates.

@Override
public void update(float deltaTime) {
 List<TouchEvent> touchEvents = game.getInput().getTouchEvents();
 game.getInput().getKeyEvents();

 int len = touchEvents.size();
 for(int i = 0; i < len; i++) {
 TouchEvent event = touchEvents.get(i);
 if(event.type == TouchEvent.TOUCH_UP) {
 touchPoint.set(event.x, event.y);
 guiCam.touchToWorld(touchPoint);

 if(OverlapTester.pointInRectangle(playBounds, touchPoint)) {
 Assets.playSound(Assets.clickSound);
 game.setScreen(new GameScreen(game));
 return;
 }

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

401

 if(OverlapTester.pointInRectangle(highscoresBounds, touchPoint)) {
 Assets.playSound(Assets.clickSound);
 game.setScreen(new HighscoreScreen(game));
 return;
 }
 if(OverlapTester.pointInRectangle(helpBounds, touchPoint)) {
 Assets.playSound(Assets.clickSound);
 game.setScreen(new HelpScreen(game));
 return;
 }
 if(OverlapTester.pointInRectangle(soundBounds, touchPoint)) {
 Assets.playSound(Assets.clickSound);
 Settings.soundEnabled = !Settings.soundEnabled;
 if(Settings.soundEnabled)
 Assets.music.play();
 else
 Assets.music.pause();
 }
 }
 }
}

Next is the update() method. We loop through the TouchEvents returned by our Input instance
and check for touch events. If we have such an event, we first translate the touch coordinates to
world coordinates. Since the camera is set up in such a way that we work in our target resolution, this
transformation boils down simply to flipping the y coordinate on a 320×480-pixel screen. On larger or
smaller screens, we just transform the touch coordinates to the target resolution. Once we have our world
touch point, we can check it against the rectangles of the UI elements. If PLAY, HIGHSCORES, or HELP were
touched, we transition to the respective screen. If the sound button was pressed, we change the setting and
either resume or pause the music. Also note that we play the click sound if a UI element is pressed via the
Assets.playSound() method.

@Override
 public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
 guiCam.setViewportAndMatrices();

 gl.glEnable(GL10.GL_TEXTURE_2D);

 batcher.beginBatch(Assets.background);
 batcher.drawSprite(160, 240, 320, 480, Assets.backgroundRegion);
 batcher.endBatch();

 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA);

 batcher.beginBatch(Assets.items);

 batcher.drawSprite(160, 480 - 10 - 71, 274, 142, Assets.logo);
 batcher.drawSprite(160, 200, 300, 110, Assets.mainMenu);

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

402

 batcher.drawSprite(32, 32, 64, 64, Settings.soundEnabled?Assets.soundOn:Assets.soundOff);

 batcher.endBatch();

 gl.glDisable(GL10.GL_BLEND);
}

The present() method shouldn’t really need any explanation at this point, we’ve done all this before.
We clear the screen, set up the projection matrices via the camera, and render the background and UI
elements. Since the UI elements have transparent backgrounds, we enable blending temporarily to render
them. The background does not need blending, so we don’t use it in order to conserve some GPU cycles.
Again, note that the UI elements are rendered in a coordinate system with the origin in the lower left of the
screen and the y axis pointing upward.

 @Override
 public void pause() {
 Settings.save(game.getFileIO());
 }

 @Override
 public void resume() {
 }

 @Override
 public void dispose() {
 }
}

The last method that actually does something is the pause() method. Here, we make sure that the
settings are saved to the SD card since the user can change the sound settings on this screen.

The Help Screens
We have a total of five help screens, all of which work the same way: load the help-screen image, render it
along with the arrow button, and wait for a touch of the arrow button to move to the next screen. The screens
differ only in the image that each loads and the screen to which each transitions. For this reason, we’ll
look at the code of the first help screen only, as shown in Listing 9-7, which transitions to the second help
screen. The image files for the help screens are named help1.png, help2.png, and so on, up to help5.png.
The respective screen classes are called HelpScreen, Help2Screen, and so on. The last screen, Help5Screen,
transitions to the MainMenuScreen again.

Listing 9-7. HelpScreen.java: The first help screen

package com.badlogic.androidgames.jumper;

import java.util.List;

import javax.microedition.khronos.opengles.GL10;

import com.badlogic.androidgames.framework.Game;
import com.badlogic.androidgames.framework.Input.TouchEvent;

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

403

import com.badlogic.androidgames.framework.gl.Camera2D;
import com.badlogic.androidgames.framework.gl.SpriteBatcher;
import com.badlogic.androidgames.framework.gl.Texture;
import com.badlogic.androidgames.framework.gl.TextureRegion;
import com.badlogic.androidgames.framework.impl.GLScreen;
import com.badlogic.androidgames.framework.math.OverlapTester;
import com.badlogic.androidgames.framework.math.Rectangle;
import com.badlogic.androidgames.framework.math.Vector2;

public class HelpScreen extends GLScreen {
 Camera2D guiCam;
 SpriteBatcher batcher;
 Rectangle nextBounds;
 Vector2 touchPoint;
 Texture helpImage;
 TextureRegion helpRegion;

We have a couple of members again holding a camera, a SpriteBatcher, the rectangle for the arrow
button, a vector for the touch point, and a Texture and a TextureRegion for the help image.

public HelpScreen(Game game) {
 super(game);

 guiCam = new Camera2D(glGraphics, 320, 480);
 nextBounds = new Rectangle(320 - 64, 0, 64, 64);
 touchPoint = new Vector2();
 batcher = new SpriteBatcher(glGraphics, 1);
}

In the constructor, we set up all members in pretty much the same way as we did in the
MainMenuScreen.

@Override
public void resume() {
 helpImage = new Texture(glGame, "help1.png");
 helpRegion = new TextureRegion(helpImage, 0, 0, 320, 480);
}

@Override
public void pause() {
 helpImage.dispose();
}

In the resume() method, we load the actual help-screen texture and create a corresponding
TextureRegion for rendering with the SpriteBatcher. We do the loading in this method, as the OpenGL
ES context might be lost. The textures for the background and the UI elements are handled by the Assets
and SuperJumper classes, as discussed before. We don’t need to deal with them in any of our screens.
Additionally, we dispose of the help-image texture in the pause() method again to clean up memory.

@Override
public void update(float deltaTime) {
 List<TouchEvent> touchEvents = game.getInput().getTouchEvents();

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

404

 game.getInput().getKeyEvents();
 int len = touchEvents.size();
 for(int i = 0; i < len; i++) {
 TouchEvent event = touchEvents.get(i);
 touchPoint.set(event.x, event.y);
 guiCam.touchToWorld(touchPoint);

 if(event.type == TouchEvent.TOUCH_UP) {
 if(OverlapTester.pointInRectangle(nextBounds, touchPoint)) {
 Assets.playSound(Assets.clickSound);
 game.setScreen(new HelpScreen2(game));
 return;
 }
 }
 }
}

Next up is the update() method, which simply checks whether the arrow button was pressed. If it was
pressed, we transition to the next help screen. We also play the click sound.

 @Override
 public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
 guiCam.setViewportAndMatrices();

 gl.glEnable(GL10.GL_TEXTURE_2D);

 batcher.beginBatch(helpImage);
 batcher.drawSprite(160, 240, 320, 480, helpRegion);
 batcher.endBatch();

 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA);

 batcher.beginBatch(Assets.items);
 batcher.drawSprite(320 - 32, 32, -64, 64, Assets.arrow);
 batcher.endBatch();

 gl.glDisable(GL10.GL_BLEND);

 }

 @Override
 public void dispose() {
 }
}

In the present() method, we clear the screen, set up the matrices, and render the help image in one
batch, and then render the arrow button. Of course, we don’t need to render the background image here, as
the help image already contains that.

The other help screens are analogous, as previously outlined.

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

405

The High-Scores Screen
Next on our list is the high-scores screen. Here, we’ll use part of the main menu UI labels (the HIGHSCORES
portion) and render the high scores stored in Settings via the Font instance we store in the Assets class. Of
course, we have an arrow button so that the player can get back to the main menu. Listing 9-8 shows
the code.

Listing 9-8. HighscoresScreen.java: The high-scores screen

package com.badlogic.androidgames.jumper;

import java.util.List;
import javax.microedition.khronos.opengles.GL10;

import com.badlogic.androidgames.framework.Game;
import com.badlogic.androidgames.framework.Input.TouchEvent;
import com.badlogic.androidgames.framework.gl.Camera2D;
import com.badlogic.androidgames.framework.gl.SpriteBatcher;
import com.badlogic.androidgames.framework.impl.GLScreen;
import com.badlogic.androidgames.framework.math.OverlapTester;
import com.badlogic.androidgames.framework.math.Rectangle;
import com.badlogic.androidgames.framework.math.Vector2;

public class HighscoreScreen extends GLScreen {
 Camera2D guiCam;
 SpriteBatcher batcher;
 Rectangle backBounds;
 Vector2 touchPoint;
 String[] highScores;
 float xOffset = 0;

As always, we have a couple of members for the camera, the SpriteBatcher, bounds for the arrow
button, and so on. In the highScores array, we store the formatted strings for each high score we present to
the player. The xOffset member is a value we compute to offset the rendering of each line so that the lines
are centered horizontally.

 public HighscoreScreen(Game game) {
 super(game);

 guiCam = new Camera2D(glGraphics, 320, 480);
 backBounds = new Rectangle(0, 0, 64, 64);
 touchPoint = new Vector2();
 batcher = new SpriteBatcher(glGraphics, 100);
 highScores = new String[5];
 for(int i = 0; i < 5; i++) {
 highScores[i] = (i + 1) + ". " + Settings.highscores[i];
 xOffset = Math.max(highScores[i].length() * Assets.font.glyphWidth, xOffset);
 }
 xOffset = 160 - xOffset / 2;
 }

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

406

In the constructor, we set up all members as usual and compute that xOffset value. We do so by
evaluating the size of the longest string out of the five strings we create for the five high scores. Since our
bitmap font is fixed-width, we can easily calculate the number of pixels needed for a single line of text by
multiplying the number of characters by the glyph width. This will, of course, not account for nonprintable
characters or characters outside of the ASCII character set. Since we know that we won’t be using those, we
can get away with this simple calculation. The last line in the constructor then subtracts half of the longest
line width from 160 (the horizontal center of our target screen of 320×480 pixels) and adjusts it further by
subtracting half of the glyph width. This is needed since the Font.drawText() method uses the glyph centers
instead of one of the corner points.

 @Override
 public void update(float deltaTime) {
 List<TouchEvent> touchEvents = game.getInput().getTouchEvents();
 game.getInput().getKeyEvents();
 int len = touchEvents.size();
 for(int i = 0; i < len; i++) {
 TouchEvent event = touchEvents.get(i);
 touchPoint.set(event.x, event.y);
 guiCam.touchToWorld(touchPoint);

 if(event.type == TouchEvent.TOUCH_UP) {
 if(OverlapTester.pointInRectangle(backBounds, touchPoint)) {
 game.setScreen(new MainMenuScreen(game));
 return;
 }
 }
 }
 }

The update() method just checks whether the arrow button was pressed. If it was, it plays the click
sound and transitions back to the main menu screen.

 @Override
 public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
 guiCam.setViewportAndMatrices();

 gl.glEnable(GL10.GL_TEXTURE_2D);

 batcher.beginBatch(Assets.background);
 batcher.drawSprite(160, 240, 320, 480, Assets.backgroundRegion);
 batcher.endBatch();

 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA);

 batcher.beginBatch(Assets.items);
 batcher.drawSprite(160, 360, 300, 33, Assets.highScoresRegion);

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

407

 float y = 240;
 for(int i = 4; i >= 0; i--) {
 Assets.font.drawText(batcher, highScores[i], xOffset, y);
 y += Assets.font.glyphHeight;
 }

 batcher.drawSprite(32, 32, 64, 64, Assets.arrow);
 batcher.endBatch();

 gl.glDisable(GL10.GL_BLEND);

 }

 @Override
 public void resume() {
 }

 @Override
 public void pause() {
 }

 @Override
 public void dispose() {
 }
}

The present() method is again very straightforward. We clear the screen, set the matrices, render the
background, render the “HIGHSCORES” portion of the main menu labels, and then render the five high-
score lines using the xOffset we calculated in the constructor. Now we can see why the Font does not do any
texture binding: we can batch the five calls to Font.drawText(). Of course, we have to make sure that the
SpriteBatcher instance can batch as many sprites (or glyphs, in this case) as are needed for rendering our text.
We made sure it could when creating it in the constructor with a maximum batch size of 100 sprites (glyphs).

Now it’s time to look at the classes of our simulation.

The Simulation Classes
Before we can dive into the game screen, we need to create our simulation classes. We’ll follow the same
pattern as in Mr. Nom, with a class for each game object and an all-knowing superclass called World that ties
together the loose ends and makes our game world tick. We’ll need classes for the following:

•	 Bob

•	 Squirrels

•	 Springs

•	 Coins

•	 Platforms

Bob, squirrels, and platforms can move, so we’ll base their classes on the DynamicGameObject class we
created in Chapter 8. Springs and coins are static, so those will derive from the GameObject class. The tasks of
each of our simulation classes are as follows:

•	 Store the position, velocity, and bounding shape of the object.

http://dx.doi.org/10.1007/978-1-4842-0472-6_8

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

408

•	 Store the state and length of time that the object has been in that state (state time), if
needed.

•	 Provide an update() method that will advance the object, if needed, according to its
behavior.

•	 Provide methods to change an object’s state (for example, tell Bob he’s dead or has
hit a spring).

The World class will then keep track of multiple instances of these objects, update them each frame,
check collisions between objects and Bob, and carry out the collision responses (that is, let Bob die, collect a
coin, and so forth). We will go through each class next, from simplest to most complex.

The Spring Class
Let’s start with the Spring class, presented in Listing 9-9.

Listing 9-9. Spring.java: The Spring class

package com.badlogic.androidgames.jumper;

import com.badlogic.androidgames.framework.GameObject;

public class Spring extends GameObject {
 public static float SPRING_WIDTH = 0.3f;
 public static float SPRING_HEIGHT = 0.3f;

 public Spring(float x, float y) {
 super(x, y, SPRING_WIDTH, SPRING_HEIGHT);
 }
}

The Spring class derives from the GameObject class that we created in Chapter 8. We only need a
position and a bounding shape since a spring does not move.

Next, we define two constants that are publicly accessible: the spring width and the spring height, in
meters. We estimated those values previously, and we just reuse them here.

The final piece is the constructor, which takes the x and y coordinates of the spring’s center. With this,
we call the constructor of the superclass GameObject, which takes the position as well as the width and
height of the object from which to construct a bounding shape (a rectangle centered around the given
position). With this information, our Spring class is fully defined, having a position and bounding shape
against which to collide.

The Coin Class
Next up is the class for coins, shown in Listing 9-10.

Listing 9-10. Coin.java: The Coin class

package com.badlogic.androidgames.jumper;

import com.badlogic.androidgames.framework.GameObject;

http://dx.doi.org/10.1007/978-1-4842-0472-6_8

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

409

public class Coin extends GameObject {
 public static final float COIN_WIDTH = 0.5f;
 public static final float COIN_HEIGHT = 0.8f;
 public static final int COIN_SCORE = 10;

 float stateTime;
 public Coin(float x, float y) {
 super(x, y, COIN_WIDTH, COIN_HEIGHT);
 stateTime = 0;
 }

 public void update(float deltaTime) {
 stateTime += deltaTime;
 }
}

The Coin class is pretty much the same as the Spring class, with only one difference: we keep track of
the duration the coin has been alive already. This information is needed when we want to render the coin
later on using an Animation. We did the same thing for our cavemen in the final example of Chapter 8. It is a
technique we’ll use for all our simulation classes. Given a state and a state time, we can select an Animation,
as well as the keyframe of that Animation, to use for rendering. The coin only has a single state, so we only
need to keep track of the state time. For that we have the update() method, which will increase the state
time by the delta time passed to it.

The constants defined at the top of the class specify a coin’s width and height, as previously defined, as
well as the number of points Bob earns if he hits a coin.

The Castle Class
Next up, we have a class for the castle at the top of our world. Listing 9-11 shows the code.

Listing 9-11. Castle.java: The Castle class

package com.badlogic.androidgames.jumper;

import com.badlogic.androidgames.framework.GameObject;

public class Castle extends GameObject {
 public static float CASTLE_WIDTH = 1.7f;
 public static float CASTLE_HEIGHT = 1.7f;

 public Castle(float x, float y) {
 super(x, y, CASTLE_WIDTH, CASTLE_HEIGHT);
 }

}

Not too complex. All we need to store is the position and bounds of the castle. The size of a castle is
defined by the constants CASTLE_WIDTH and CASTLE_HEIGHT, using the values we discussed earlier.

http://dx.doi.org/10.1007/978-1-4842-0472-6_8

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

410

The Squirrel Class
Next is the Squirrel class, shown in Listing 9-12.

Listing 9-12. Squirrel.java: The Squirrel class

package com.badlogic.androidgames.jumper;

import com.badlogic.androidgames.framework.DynamicGameObject;

public class Squirrel extends DynamicGameObject {
 public static final float SQUIRREL_WIDTH = 1;
 public static final float SQUIRREL_HEIGHT = 0.6f;
 public static final float SQUIRREL_VELOCITY = 3f;

 float stateTime = 0;

 public Squirrel(float x, float y) {
 super(x, y, SQUIRREL_WIDTH, SQUIRREL_HEIGHT);
 velocity.set(SQUIRREL_VELOCITY, 0);
 }

 public void update(float deltaTime) {
 position.add(velocity.x * deltaTime, velocity.y * deltaTime);
 bounds.lowerLeft.set(position).sub(SQUIRREL_WIDTH / 2, SQUIRREL_HEIGHT / 2);

 if(position.x < SQUIRREL_WIDTH / 2) {
 position.x = SQUIRREL_WIDTH / 2;
 velocity.x = SQUIRREL_VELOCITY;
 }
 if(position.x > World.WORLD_WIDTH - SQUIRREL_WIDTH / 2) {
 position.x = World.WORLD_WIDTH - SQUIRREL_WIDTH / 2;
 velocity.x = -SQUIRREL_VELOCITY;
 }
 stateTime += deltaTime;
 }
}

Squirrels are moving objects, so we let the class derive from DynamicGameObject, which gives us a
velocity vector and an acceleration vector as well. The first thing we do is define a squirrel’s size, as well as its
velocity. Since a squirrel is animated, we also keep track of its state time. A squirrel has a single state, like a
coin: moving horizontally. Whether it moves to the left or right can be decided based on the velocity vector’s
x component, so we don’t need to store a separate state member for that.

In the constructor, we call the superclass’s constructor with the initial position and size of the squirrel. We
also set the velocity vector to (SQUIRREL_VELOCITY,0). All squirrels will thus move to the right in the beginning.

The update() method updates the position and bounding shape of the squirrel based on the velocity
and delta time. It’s our standard Euler integration step, which we talked about and used a lot in Chapter 8.
We also check whether the squirrel hit the left or right edge of the world. If that’s the case, we simply invert
its velocity vector so that it starts moving in the opposite direction. Our world’s width is fixed at a value of 10
meters, as discussed earlier. The last thing we do is update the state time based on the delta time so that we
can decide which of the two animation frames we need to use for rendering that squirrel later on.

http://dx.doi.org/10.1007/978-1-4842-0472-6_8

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

411

The Platform Class
The Platform class is shown in Listing 9-13.

Listing 9-13. Platform.java: The Platform class

package com.badlogic.androidgames.jumper;

import com.badlogic.androidgames.framework.DynamicGameObject;

public class Platform extends DynamicGameObject {
 public static final float PLATFORM_WIDTH = 2;
 public static final float PLATFORM_HEIGHT = 0.5f;
 public static final int PLATFORM_TYPE_STATIC = 0;
 public static final int PLATFORM_TYPE_MOVING = 1;
 public static final int PLATFORM_STATE_NORMAL = 0;
 public static final int PLATFORM_STATE_PULVERIZING = 1;
 public static final float PLATFORM_PULVERIZE_TIME = 0.2f * 4;
 public static final float PLATFORM_VELOCITY = 2;

Platforms are a little bit more complex, of course. Let’s go over the constants defined in the class. The
first two constants define the width and height of a platform, as discussed earlier. A platform has a type;
it can be either a static platform or a moving platform. We denote this via the constants PLATFORM_TYPE_
STATIC and PLATFORM_TYPE_MOVING. A platform can also be in one of two states: it can be in a normal state—
that is, either sitting there statically or moving—or it can be pulverized. The state is encoded via one of the
constants PLATFORM_STATE_NORMAL or PLATFORM_STATE_PULVERIZING. Pulverization is, of course, a process
limited in time. We therefore define the time it takes for a platform to be completely pulverized, which is 0.8
seconds. This value is simply derived from the number of frames in the Animation of the platform and the
duration of each frame—one of the little quirks we have to accept while trying to follow the MVC pattern.
Finally, we define the speed of moving platforms to be 2 m/s, as discussed earlier. A moving platform
will behave exactly like a squirrel in that it just travels in one direction until it hits the world’s horizontal
boundaries, in which case it just inverts its direction.

 int type;
 int state;
 float stateTime;

 public Platform(int type, float x, float y) {
 super(x, y, PLATFORM_WIDTH, PLATFORM_HEIGHT);
 this.type = type;
 this.state = PLATFORM_STATE_NORMAL;
 this.stateTime = 0;
 if(type == PLATFORM_TYPE_MOVING) {
 velocity.x = PLATFORM_VELOCITY;
 }
 }

To store the type, the state, and the state time of the Platform instance, we need three members. These
get initialized in the constructor based on the type of the Platform, which is a parameter of the constructor,
along with the platform center’s position.

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

412

public void update(float deltaTime) {
 if(type == PLATFORM_TYPE_MOVING) {
 position.add(velocity.x * deltaTime, 0);
 bounds.lowerLeft.set(position).sub(PLATFORM_WIDTH / 2, PLATFORM_HEIGHT / 2);

 if(position.x < PLATFORM_WIDTH / 2) {
 velocity.x = -velocity.x;
 position.x = PLATFORM_WIDTH / 2;
 }
 if(position.x > World.WORLD_WIDTH - PLATFORM_WIDTH / 2) {
 velocity.x = -velocity.x;
 position.x = World.WORLD_WIDTH - PLATFORM_WIDTH / 2;
 }
 }

 stateTime += deltaTime;
}

The update() method will move the platform and check for the out-of-world condition, acting
accordingly by inverting the velocity vector. This is exactly the same thing we did in the Squirrel.update()
method. We also update the state time at the end of the method.

 public void pulverize() {
 state = PLATFORM_STATE_PULVERIZING;
 stateTime = 0;
 velocity.x = 0;
 }
}

The final method of this class is called pulverize(). It switches the state from PLATFORM_STATE_NORMAL
to PLATFORM_STATE_PULVERIZING and resets the state time and velocity. This means that moving platforms
will stop moving. The method will be called if the World class detects a collision between Bob and the
Platform, and it decides to pulverize the Platform based on a random number. We’ll talk about that in a bit.
First, we need to talk about Bob.

The Bob Class
The Bob class is shown in Listing 9-14.

Listing 9-14. Bob.java

package com.badlogic.androidgames.jumper;

import com.badlogic.androidgames.framework.DynamicGameObject;

public class Bob extends DynamicGameObject{
 public static final int BOB_STATE_JUMP = 0;
 public static final int BOB_STATE_FALL = 1;
 public static final int BOB_STATE_HIT = 2;
 public static final float BOB_JUMP_VELOCITY = 11;
 public static final float BOB_MOVE_VELOCITY = 20;

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

413

 public static final float BOB_WIDTH = 0.8f;
 public static final float BOB_HEIGHT = 0.8f;

We start with a couple of constants again. Bob can be in one of three states: jumping upward, falling
downward, or being hit. He also has a vertical jump velocity, which is only applied on the y axis, and a
horizontal move velocity, which is only applied on the x axis. The final two constants define Bob’s width and
height in the world. Of course, we also have to store Bob’s state and state time.

int state;
float stateTime;

public Bob(float x, float y) {
 super(x, y, BOB_WIDTH, BOB_HEIGHT);
 state = BOB_STATE_FALL;
 stateTime = 0;
}

The constructor just calls the superclass’s constructor so that Bob’s center position and bounding shape
are initialized correctly, and then initializes the state and stateTime member variables.

public void update(float deltaTime) {
 velocity.add(World.gravity.x * deltaTime, World.gravity.y * deltaTime);
 position.add(velocity.x * deltaTime, velocity.y * deltaTime);
 bounds.lowerLeft.set(position).sub(bounds.width / 2, bounds.height / 2);

 if(velocity.y > 0 && state != BOB_STATE_HIT) {
 if(state != BOB_STATE_JUMP) {
 state = BOB_STATE_JUMP;
 stateTime = 0;
 }
 }

 if(velocity.y < 0 && state != BOB_STATE_HIT) {
 if(state != BOB_STATE_FALL) {
 state = BOB_STATE_FALL;
 stateTime = 0;
 }
 }

 if(position.x < 0)
 position.x = World.WORLD_WIDTH;
 if(position.x > World.WORLD_WIDTH)
 position.x = 0;

 stateTime += deltaTime;
 }

The update() method starts off by updating Bob’s position and bounding shape based on gravity and
his current velocity. Note that the velocity is a composite of the gravity and Bob’s own movement due to
jumping and moving horizontally. The next two big conditional blocks set Bob’s state to either BOB_STATE_
JUMPING or BOB_STATE_FALLING and then reinitialize his state time depending on the y component of his
velocity. If it is greater than zero, Bob is jumping; if it is smaller than zero, Bob is falling. We only do this if

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

414

Bob hasn’t been hit and if he isn’t already in the correct state. Otherwise, we’d always reset the state time to
zero, which wouldn’t play nicely with Bob’s animation later on. We also wrap Bob from one edge of the world
to the other if he leaves the world to the left or right. Finally, we update the stateTime member again.

Where does Bob get his velocity from apart from gravity? That’s where the other methods come in.

 public void hitSquirrel() {
 velocity.set(0,0);
 state = BOB_STATE_HIT;
 stateTime = 0;
 }

 public void hitPlatform() {
 velocity.y = BOB_JUMP_VELOCITY;
 state = BOB_STATE_JUMP;
 stateTime = 0;
 }

 public void hitSpring() {
 velocity.y = BOB_JUMP_VELOCITY * 1.5f;
 state = BOB_STATE_JUMP;
 stateTime = 0;
 }
}

The method hitSquirrel() is called by the World class if Bob hits a squirrel. If that’s the case, Bob stops
moving by himself and enters the BOB_STATE_HIT state. Only gravity will apply to Bob from this point on; the
player can’t control him anymore, and he doesn’t interact with platforms any longer. That’s similar to the
behavior Super Mario exhibits when he gets hit by an enemy. He just falls down.

The hitPlatform() method is also called by the World class. It will be invoked when Bob hits a platform
while falling downward. If that’s the case, then we set his y velocity to BOB_JUMP_VELOCITY, and we also set
his state and state time accordingly. From this point on, Bob will move upward until gravity wins again,
making Bob fall down.

The last method, hitSpring(), is invoked by the World class if Bob hits a spring. It does the same thing as
the hitPlatform() method, with one exception; that is, the initial upward velocity is set to 1.5 times BOB_JUMP_
VELOCITY. This means that Bob will jump a little higher when hitting a spring than when hitting a platform.

The World Class
The last class we have to discuss is the World class. It’s a little longer, so we’ll split it up. Listing 9-15 shows
the first part of the code.

Listing 9-15. Excerpt from World.java: Constants, members, and initialization

package com.badlogic.androidgames.jumper;

import java.util.ArrayList;
import java.util.List;
import java.util.Random;

import com.badlogic.androidgames.framework.math.OverlapTester;
import com.badlogic.androidgames.framework.math.Vector2;

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

415

public class World {
 public interface WorldListener {
 void jump();
 void highJump();
 void hit();
 void coin();
 }

The first thing we define is an interface called WorldListener. What does it do? We need it to solve a little
MVC problem: when do we play sound effects? We could just add invocations of Assets.playSound() to the
respective simulation classes, but that’s not very clean. Instead, we’ll let a user of the World class register a
WorldListener, which will be called when Bob jumps from a platform, jumps from a spring, gets hit by a squirrel,
or collects a coin. We will later register a listener that plays back the proper sound effects for each of those events,
keeping the simulation classes clean from any direct dependencies on rendering and audio playback.

public static final float WORLD_WIDTH = 10;
public static final float WORLD_HEIGHT = 15 * 20;
public static final int WORLD_STATE_RUNNING = 0;
public static final int WORLD_STATE_NEXT_LEVEL = 1;
public static final int WORLD_STATE_GAME_OVER = 2;
public static final Vector2 gravity = new Vector2(0, -12);

Next, we define a couple of constants. WORLD_WIDTH and WORLD_HEIGHT specify the extents of our world
horizontally and vertically. Remember that our view frustum will show a region of 10×15 meters of our world.
Given the constants defined here, our world will span 20 view frustums or screens vertically. Again, that’s a
value we came up with by tuning. We’ll get back to it when we discuss how we generate a level. The world can
also be in one of three states: running, waiting for the next level to start, or the game-over state—when Bob
falls too far (outside of the view frustum). We also define our gravity acceleration vector as a constant here.

public final Bob bob;
public final List<Platform> platforms;
public final List<Spring> springs;
public final List<Squirrel> squirrels;
public final List<Coin> coins;
public Castle castle;
public final WorldListener listener;
public final Random rand;

public float heightSoFar;
public int score;
public int state;

Next up are all the members of the World class. It keeps track of Bob; all the platforms, springs, squirrels,
and coins; and the castle. Additionally, it has a reference to a WorldListener and an instance of Random,
which we’ll use to generate random numbers for various purposes. The last three members keep track of the
highest height Bob has reached so far, as well as the world’s state and the score achieved.

public World(WorldListener listener) {
 this.bob = new Bob(5, 1);
 this.platforms = new ArrayList<Platform>();
 this.springs = new ArrayList<Spring>();
 this.squirrels = new ArrayList<Squirrel>();

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

416

 this.coins = new ArrayList<Coin>();
 this.listener = listener;
 rand = new Random();
 generateLevel();

 this.heightSoFar = 0;
 this.score = 0;
 this.state = WORLD_STATE_RUNNING;
}

The constructor initializes all members and also stores the WorldListener passed as a parameter. Bob
is placed in the middle of the world horizontally and a little bit above the ground at (5,1). The rest is pretty
much self-explanatory, with one exception: the generateLevel() method.

Generating the World

You might have wondered already how we actually create and place the objects in our world. We use a
method called procedural generation. We came up with a simple algorithm that will generate a random level
for us. Listing 9-16 shows the code.

Listing 9-16. Excerpt from World.java: The generateLevel() method

private void generateLevel() {
 float y = Platform.PLATFORM_HEIGHT / 2;
 float maxJumpHeight = Bob.BOB_JUMP_VELOCITY * Bob.BOB_JUMP_VELOCITY
 / (2 * -gravity.y);
 while (y < WORLD_HEIGHT - WORLD_WIDTH / 2) {
 int type = rand.nextFloat() > 0.8f ? Platform.PLATFORM_TYPE_MOVING
 : Platform.PLATFORM_TYPE_STATIC;
 float x = rand.nextFloat()
 * (WORLD_WIDTH - Platform.PLATFORM_WIDTH)
 + Platform.PLATFORM_WIDTH / 2;

 Platform platform = new Platform(type, x, y);
 platforms.add(platform);

 if (rand.nextFloat() > 0.9f
 && type != Platform.PLATFORM_TYPE_MOVING) {
 Spring spring = new Spring(platform.position.x,
 platform.position.y + Platform.PLATFORM_HEIGHT / 2
 + Spring.SPRING_HEIGHT / 2);
 springs.add(spring);
 }

 if (y > WORLD_HEIGHT / 3 && rand.nextFloat() > 0.8f) {
 Squirrel squirrel = new Squirrel(platform.position.x
 + rand.nextFloat(), platform.position.y
 + Squirrel.SQUIRREL_HEIGHT + rand.nextFloat() * 2);
 squirrels.add(squirrel);
 }

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

417

 if (rand.nextFloat() > 0.6f) {
 Coin coin = new Coin(platform.position.x + rand.nextFloat(),
 platform.position.y + Coin.COIN_HEIGHT
 + rand.nextFloat() * 3);
 coins.add(coin);
 }

 y += (maxJumpHeight - 0.5f);
 y -= rand.nextFloat() * (maxJumpHeight / 3);
 }

 castle = new Castle(WORLD_WIDTH / 2, y);
}

Let’s outline the general idea of the algorithm in plain words:

 1. Start at the bottom of the world at y = 0.

 2. As long as we haven’t reached the top of the world yet, do the following:

 a. Create a platform, either moving or stationary, at the current y position with a
random x position.

 b. Fetch a random number between 0 and 1 and, if it is greater than 0.9 and if the
platform is not moving, create a spring on top of the platform.

 c. If we are above the first third of the level, fetch a random number and, if it is
above 0.8, create a squirrel offset randomly from the platform’s position.

 d. Fetch a random number and, if it is greater than 0.6, create a coin offset
randomly from the platform’s position.

 e. Increase y by the maximum normal jump height of Bob, decrease it a tiny bit
randomly—but only so far that it doesn’t fall below the last y value—and go to
the beginning of step 2.

 3. Place the castle at the last y position, centered horizontally.

The big secret of this procedure is how we increase the y position for the next platform in step 2e. We
have to make sure that each subsequent platform is reachable by Bob by jumping from the current platform.
Bob can only jump as high as gravity allows, given his initial jump velocity of 11 m/s vertically. How can we
calculate how high Bob will jump? We can do this with the following formula:

height = velocity × velocity / (2 × gravity) = 11 × 11 / (2 × 13) ~= 4.6m

This means that we should have a distance of 4.6 meters vertically between each platform so that Bob
can still reach it. To make sure that all platforms are reachable, we use a value that’s a little bit less than the
maximum jump height. This guarantees that Bob will always be able to jump from one platform to the next.
The horizontal placement of platforms is again random. Given Bob’s horizontal movement speed of 20 m/s,
we can be more than sure that he will be able to reach a platform not only vertically but also horizontally.

The other objects are created based on chance. The method Random.nextFloat() returns a random
number between 0 and 1 on each invocation, where each number has the same probability of occurring.
Squirrels are only generated when the random number we fetch from Random is greater than 0.8. This means
that we’ll generate a squirrel with a probability of 20 percent (1 – 0.8). The same is true for all other randomly
created objects. By tuning these values, we can have more or fewer objects in our world.

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

418

Updating the World

Once we have generated our world, we can update all objects in it and check for collisions. Listing 9-17
shows the update methods of the World class, with comments.

Listing 9-17. Excerpt from World.java: The update methods

public void update(float deltaTime, float accelX) {
 updateBob(deltaTime, accelX);
 updatePlatforms(deltaTime);
 updateSquirrels(deltaTime);
 updateCoins(deltaTime);
 if (bob.state != Bob.BOB_STATE_HIT)
 checkCollisions();
 checkGameOver();
}

The method update() is the one called by our game screen later on. It receives the delta time and
acceleration on the x axis of the accelerometer as an argument. It is responsible for calling the other update
methods, as well as performing the collision checks and game-over check. We have an update method for
each object type in our world.

private void updateBob(float deltaTime, float accelX) {
 if (bob.state != Bob.BOB_STATE_HIT && bob.position.y <= 0.5f)
 bob.hitPlatform();
 if (bob.state != Bob.BOB_STATE_HIT)
 bob.velocity.x = -accelX / 10 * Bob.BOB_MOVE_VELOCITY;
 bob.update(deltaTime);
 heightSoFar = Math.max(bob.position.y, heightSoFar);
}

The updateBob() method is responsible for updating Bob’s state. The first thing it does is check whether
Bob is hitting the bottom of the world, in which case Bob is instructed to jump. This means that, at the start
of each level, Bob is allowed to jump off the ground of our world. As soon as the ground is out of sight, this
won’t work anymore, of course. Next, we update Bob’s horizontal velocity, which is based on the value of
the x axis of the accelerometer we get as an argument. As discussed, we normalize this value from a range of
–10 to 10 to a range of –1 to 1 (full left tilt to full right tilt) and then multiply it by Bob’s standard movement
velocity. Next, we tell Bob to update himself by calling the Bob.update() method. The last thing we do is
keep track of the highest y position Bob has reached so far. We need this to determine whether Bob has fallen
too far later on.

private void updatePlatforms(float deltaTime) {
 int len = platforms.size();
 for (int i = 0; i < len; i++) {
 Platform platform = platforms.get(i);
 platform.update(deltaTime);
 if (platform.state == Platform.PLATFORM_STATE_PULVERIZING
 && platform.stateTime > Platform.PLATFORM_PULVERIZE_TIME) {
 platforms.remove(platform);
 len = platforms.size();
 }
 }
}

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

419

Next, we update all the platforms in updatePlatforms(). We loop through the list of platforms and call
each platform’s update() method with the current delta time. If the platform is in the process of pulverization,
we check for how long that has been going on. If the platform is in the PLATFORM_STATE_PULVERIZING state for
more than PLATFORM_PULVERIZE_TIME, we simply remove the platform from our list of platforms.

private void updateSquirrels(float deltaTime) {
 int len = squirrels.size();
 for (int i = 0; i < len; i++) {
 Squirrel squirrel = squirrels.get(i);
 squirrel.update(deltaTime);
 }
}

private void updateCoins(float deltaTime) {
 int len = coins.size();
 for (int i = 0; i < len; i++) {
 Coin coin = coins.get(i);
 coin.update(deltaTime);
 }
}

In the updateSquirrels() method, we update each Squirrel instance via its update() method, passing
in the current delta time. We do the same for each Coin instance in the updateCoins() method.

Collision Detection and Response

Looking back at our original World.update() method, we can see that the next thing we do is check for
collisions between Bob and all the other objects with which he can collide in the world. We do this only
if Bob is in a state not equal to BOB_STATE_HIT, because in that state he just continues to fall down due to
gravity. Let’s have a look at those collision-checking methods in Listing 9-18.

Listing 9-18. Excerpt from World.java: The collision-checking methods

private void checkCollisions() {
 checkPlatformCollisions();
 checkSquirrelCollisions();
 checkItemCollisions();
 checkCastleCollisions();
}

The checkCollisions() method is more or less another master method, which simply invokes all the
other collision-checking methods. Bob can collide with a couple of things in the world: platforms, squirrels,
coins, springs, and the castle. For each of these object types, we have a separate collision-checking method.
Remember that we invoke this method and the slave methods after we have updated the positions and
bounding shapes of all objects in our world. Think of it as a snapshot of the state of our world at a given point
in time. All we do is observe this still image and see whether anything overlaps. We can then take action and
make sure that the objects that collide react to those overlaps or collisions in the next frame by manipulating
their states, positions, velocities, and so on.

private void checkPlatformCollisions() {
 if (bob.velocity.y > 0)
 return;

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

420

 int len = platforms.size();
 for (int i = 0; i < len; i++) {
 Platform platform = platforms.get(i);
 if (bob.position.y > platform.position.y) {
 if (OverlapTester
 .overlapRectangles(bob.bounds, platform.bounds)) {
 bob.hitPlatform();
 listener.jump();
 if (rand.nextFloat() > 0.5f) {
 platform.pulverize();
 }
 break;
 }
 }
 }
}

In the checkPlatformCollisions() method, we test for overlap between Bob and any of the platforms
in our world. We break out of that method early in case Bob is currently on his way up. That enables Bob
to pass through platforms from below. For Super Jumper, that’s good behavior; in a game like Super Mario
Brothers, we’d probably want Bob to fall down if he hits a block from below.

Next, we loop through all platforms and check whether Bob is above the current platform. If he is, we
test whether his bounding rectangle overlaps the bounding rectangle of the platform. If it does, we tell Bob
that he hit a platform via a call to Bob.hitPlatform(). Looking back at that method, we see that it will trigger
a jump and set Bob’s states accordingly. Next, we call the WorldListener.jump() method to inform the
listener that Bob has just started to jump again. We’ll use this later on to play back a corresponding sound
effect in the listener. The last thing we do is fetch a random number and, if it is above 0.5, tell the platform
to pulverize itself. It will be alive for another PLATFORM_PULVERIZE_TIME seconds (0.8) and will then be
removed in the updatePlatforms() method shown earlier. When we render that platform, we’ll use its state
time to determine which of the platform animation keyframes to play back.

private void checkSquirrelCollisions() {
 int len = squirrels.size();
 for (int i = 0; i < len; i++) {
 Squirrel squirrel = squirrels.get(i);
 if (OverlapTester.overlapRectangles(squirrel.bounds, bob.bounds)) {
 bob.hitSquirrel();
 listener.hit();
 }
 }
}

The method checkSquirrelCollisions() tests Bob’s bounding rectangle against the bounding
rectangle of each squirrel. If Bob hits a squirrel, we tell him to enter the BOB_STATE_HIT state, which will
make him fall down without the player being able to control him any further. We also tell the WorldListener
about it so that Bob can play back a sound effect, for example.

private void checkItemCollisions() {
 int len = coins.size();
 for (int i = 0; i < len; i++) {
 Coin coin = coins.get(i);
 if (OverlapTester.overlapRectangles(bob.bounds, coin.bounds)) {

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

421

 coins.remove(coin);
 len = coins.size();
 listener.coin();
 score += Coin.COIN_SCORE;
 }

 }

 if (bob.velocity.y > 0)
 return;

 len = springs.size();
 for (int i = 0; i < len; i++) {
 Spring spring = springs.get(i);
 if (bob.position.y > spring.position.y) {
 if (OverlapTester.overlapRectangles(bob.bounds, spring.bounds)) {
 bob.hitSpring();
 listener.highJump();
 }
 }
 }
}

The checkItemCollisions() method checks Bob against all coins in the world and against all springs.
If Bob hits a coin, we remove the coin from our world, tell the listener that a coin was collected, and increase
the current score by COIN_SCORE. If Bob is falling downward, we also check Bob against all springs in the
world. If he hits one, we tell him about it so that he’ll perform a higher jump than usual. We also inform the
listener of this event.

private void checkCastleCollisions() {
 if (OverlapTester.overlapRectangles(castle.bounds, bob.bounds)) {
 state = WORLD_STATE_NEXT_LEVEL;
 }
}

The final method checks Bob against the castle. If Bob hits it, we set the world’s state to WORLD_STATE_
NEXT_LEVEL, signaling any outside entity (such as our game screen) that we should transition to the next
level, which will again be a randomly generated instance of World.

Game Over, Buddy!

The last method in the World class, which is invoked in the last line of the World.update() method, is shown
in Listing 9-19.

Listing 9-19. The Rest of World.java: The game over–checking method

 private void checkGameOver() {
 if (heightSoFar - 7.5f > bob.position.y) {
 state = WORLD_STATE_GAME_OVER;
 }
 }
}

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

422

Remember how we defined the game-over state: Bob must leave the bottom of the view frustum. The
view frustum is, of course, governed by a Camera2D instance, which has a position. The y coordinate of that
position is always equal to the biggest y coordinate Bob has had so far, so the camera will somewhat follow
Bob on his way upward. Since we want to keep the rendering and simulation code separate, though, we don’t
have a reference to the camera in our world. We thus keep track of Bob’s highest y coordinate in updateBob()
and store that value in heightSoFar. We know that our view frustum will have a height of 15 meters. Thus,
we also know that if Bob’s y coordinate is below heightSoFar – 7.5, then he has left the view frustum on the
bottom edge. That’s when Bob is declared to be dead. Of course, this is a tiny bit hackish, as it is based on the
assumption that the view frustum’s height will always be 15 meters and that the camera will always be at the
highest y coordinate Bob has been able to reach so far. If we had allowed zooming or used a different camera-
following method, this would no longer hold true. Instead of overcomplicating things, we’ll just leave it as is.
You will often face such decisions in game development, as it is hard at times to keep everything clean from a
software engineering point of view (as evidenced by our overuse of public or package private members).

You may be wondering why we don’t use the SpatialHashGrid class we developed in Chapter 8. We’ll
show you the reason in a minute. Let’s get our game done by implementing the GameScreen class first.

The Game Screen
We are nearing the completion of Super Jumper. The last thing we need to implement is the game screen,
which will present the actual game world to the player and allow the player to interact with it. The game screen
consists of five subscreens, as shown in Figure 9-2 earlier in the chapter. We have the ready screen, the normal
running screen, the next-level screen, the game-over screen, and the pause screen. The game screen in Mr.
Nom was similar to this; it only lacked a next-level screen, as there was only one level. We will use the same
approach as in Mr. Nom: we’ll have separate update and present methods for all subscreens that update and
render the game world, as well as the UI elements that are part of the subscreens. Since the game screen code is
a little longer, we’ll split it up into multiple listings here. Listing 9-20 shows the first part of the game screen.

Listing 9-20. Excerpt from GameScreen.java: Members and constructor

package com.badlogic.androidgames.jumper;

import java.util.List;
import javax.microedition.khronos.opengles.GL10;

import com.badlogic.androidgames.framework.Game;
import com.badlogic.androidgames.framework.Input.TouchEvent;
import com.badlogic.androidgames.framework.gl.Camera2D;
import com.badlogic.androidgames.framework.gl.SpriteBatcher;
import com.badlogic.androidgames.framework.impl.GLScreen;
import com.badlogic.androidgames.framework.math.OverlapTester;
import com.badlogic.androidgames.framework.math.Rectangle;
import com.badlogic.androidgames.framework.math.Vector2;
import com.badlogic.androidgames.jumper.World.WorldListener;

public class GameScreen extends GLScreen {
 static final int GAME_READY = 0;
 static final int GAME_RUNNING = 1;
 static final int GAME_PAUSED = 2;
 static final int GAME_LEVEL_END = 3;
 static final int GAME_OVER = 4;

http://dx.doi.org/10.1007/978-1-4842-0472-6_8

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

423

 int state;
 Camera2D guiCam;
 Vector2 touchPoint;
 SpriteBatcher batcher;
 World world;
 WorldListener worldListener;
 WorldRenderer renderer;
 Rectangle pauseBounds;
 Rectangle resumeBounds;
 Rectangle quitBounds;
 int lastScore;
 String scoreString;

The class starts off with constants defining the five states of the screen. Next, we have the members. We
have a camera for rendering the UI elements, as well as a vector so that we can transform touch coordinates
to world coordinates (as in the other screens, to a view frustum of 320×480 units, our target resolution).
Next, we have a SpriteBatcher, a World instance, and a WorldListener. The WorldRenderer class is
something we’ll look into in a minute. It basically just takes a World instance and renders it. Note that it
also takes a reference to the SpriteBatcher as a parameter of its constructor. This means that we'll use the
same SpriteBatcher to render the UI elements of the screen and to render the game world. The rest of the
members are Rectangles for different UI elements (such as the RESUME and QUIT menu entries on the
paused subscreen) and two members for keeping track of the current score. We want to avoid creating a new
string every frame when rendering the score so that we make the garbage collector happy.

 public GameScreen(Game game) {
 super(game);
 state = GAME_READY;
 guiCam = new Camera2D(glGraphics, 320, 480);
 touchPoint = new Vector2();
 batcher = new SpriteBatcher(glGraphics, 1000);
 worldListener = new WorldListener() {
 public void jump() {
 Assets.playSound(Assets.jumpSound);
 }

 public void highJump() {
 Assets.playSound(Assets.highJumpSound);
 }

 public void hit() {
 Assets.playSound(Assets.hitSound);
 }

 public void coin() {
 Assets.playSound(Assets.coinSound);
 }
 };
 world = new World(worldListener);
 renderer = new WorldRenderer(glGraphics, batcher, world);
 pauseBounds = new Rectangle(320- 64, 480- 64, 64, 64);
 resumeBounds = new Rectangle(160 - 96, 240, 192, 36);

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

424

 quitBounds = new Rectangle(160 - 96, 240 - 36, 192, 36);
 lastScore = 0;
 scoreString = "score: 0";
 }

In the constructor, we initialize all the member variables. The only interesting thing here is the
WorldListener we implement as an anonymous inner class. It’s registered with the World instance and will
play back sound effects according to the event that gets reported to it.

Updating the GameScreen
Next, we have the update methods, which will make sure any user input is processed correctly and will also
update the World instance if necessary. Listing 9-21 shows the code.

Listing 9-21. Excerpt from GameScreen.java: The update methods

@Override
public void update(float deltaTime) {
 if(deltaTime > 0.1f)
 deltaTime = 0.1f;

 switch(state) {
 case GAME_READY:
 updateReady();
 break;
 case GAME_RUNNING:
 updateRunning(deltaTime);
 break;
 case GAME_PAUSED:
 updatePaused();
 break;
 case GAME_LEVEL_END:
 updateLevelEnd();
 break;
 case GAME_OVER:
 updateGameOver();
 break;
 }
}

We have the GLScreen.update() method as the master method again, which calls one of the other
update methods depending on the current state of the screen. Note that we limit the delta time to 0.1
seconds. Why do we do that? In Chapter 7, we talked about a bug in the direct byte buffers in Android
version 1.5 that generates garbage. We will have that problem in Super Jumper as well on Android 1.5
devices. Every now and then, our game will be interrupted for a few hundred milliseconds by the garbage
collector. This would be reflected in a delta time of a few hundred milliseconds, which would make Bob sort
of teleport from one place to another instead of smoothly moving there. That’s annoying for the player, and it
also has an effect on our collision detection. Bob could tunnel through a platform without ever overlapping
with it, due to his moving a large distance in a single frame. By limiting the delta time to a sensible maximum
value of 0.1 seconds, we can compensate for those effects.

http://dx.doi.org/10.1007/978-1-4842-0472-6_7

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

425

private void updateReady() {
 if(game.getInput().getTouchEvents().size() > 0) {
 state = GAME_RUNNING;
 }
}

The updateReady() method is invoked in the paused subscreen. All it does is wait for a touch event, in
which case it will change the state of the game screen to the GAME_RUNNING state.

private void updateRunning(float deltaTime) {
 List<TouchEvent> touchEvents = game.getInput().getTouchEvents();
 int len = touchEvents.size();
 for(int i = 0; i < len; i++) {
 TouchEvent event = touchEvents.get(i);
 if(event.type != TouchEvent.TOUCH_UP)
 continue;

 touchPoint.set(event.x, event.y);
 guiCam.touchToWorld(touchPoint);

 if(OverlapTester.pointInRectangle(pauseBounds, touchPoint)) {
 Assets.playSound(Assets.clickSound);
 state = GAME_PAUSED;
 return;
 }
 }

 world.update(deltaTime, game.getInput().getAccelX());
 if(world.score != lastScore) {
 lastScore = world.score;
 scoreString = "" + lastScore;
 }
 if(world.state == World.WORLD_STATE_NEXT_LEVEL) {
 state = GAME_LEVEL_END;
 }
 if(world.state == World.WORLD_STATE_GAME_OVER) {
 state = GAME_OVER;
 if(lastScore >= Settings.highscores[4])
 scoreString = "new highscore: " + lastScore;
 else
 scoreString = "score: " + lastScore;
 Settings.addScore(lastScore);
 Settings.save(game.getFileIO());
 }
}

In the updateRunning() method, we first check whether the user touched the pause button in the upper-
right corner. If that’s the case, then the game is put into the GAME_PAUSED state. Otherwise, we update the
World instance with the current delta time and the x-axis value of the accelerometer, which are responsible for
moving Bob horizontally. After the world is updated, we check whether our score string needs updating. We
also check whether Bob has reached the castle; if he has, we enter the GAME_NEXT_LEVEL state, which shows

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

426

the message in the top-left screen in Figure 9-2 and waits for a touch event to generate the next level. In case
the game is over, we set the score string to either score: #score or new highscore: #score, depending on
whether the score achieved is a new high score. We then add the score to the Settings class and tell it to save
all the settings to the SD card. Additionally, we set the game screen to the GAME_OVER state.

private void updatePaused() {
 List<TouchEvent> touchEvents = game.getInput().getTouchEvents();
 int len = touchEvents.size();
 for(int i = 0; i < len; i++) {
 TouchEvent event = touchEvents.get(i);
 if(event.type != TouchEvent.TOUCH_UP)
 continue;

 touchPoint.set(event.x, event.y);
 guiCam.touchToWorld(touchPoint);

 if(OverlapTester.pointInRectangle(resumeBounds, touchPoint)) {
 Assets.playSound(Assets.clickSound);
 state = GAME_RUNNING;
 return;
 }

 if(OverlapTester.pointInRectangle(quitBounds, touchPoint)) {
 Assets.playSound(Assets.clickSound);
 game.setScreen(new MainMenuScreen(game));
 return;

 }
 }
}

In the updatePaused() method, we check whether the user has touched the RESUME element or the
QUIT UI element and react accordingly.

private void updateLevelEnd() {
 List<TouchEvent> touchEvents = game.getInput().getTouchEvents();
 int len = touchEvents.size();
 for(int i = 0; i < len; i++) {
 TouchEvent event = touchEvents.get(i);
 if(event.type != TouchEvent.TOUCH_UP)
 continue;
 world = new World(worldListener);
 renderer = new WorldRenderer(glGraphics, batcher, world);
 world.score = lastScore;
 state = GAME_READY;
 }
}

In the updateLevelEnd() method, we check for a touch event; if there has been one, we create new
World and WorldRenderer instances. We also tell the World to use the score achieved so far and to set the
game screen to the GAME_READY state, which will again wait for a touch event.

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

427

private void updateGameOver() {
 List<TouchEvent> touchEvents = game.getInput().getTouchEvents();
 int len = touchEvents.size();
 for(int i = 0; i < len; i++) {
 TouchEvent event = touchEvents.get(i);
 if(event.type != TouchEvent.TOUCH_UP)
 continue;
 game.setScreen(new MainMenuScreen(game));
 }
}

In the updateGameOver() method, we again just check for a touch event, in which case we simply
transition back to the main menu, as indicated in Figure 9-2.

Rendering the GameScreen
After all those updates, the game screen will be asked to render itself via a call to GameScreen.present().
Let’s have a look at that method in Listing 9-22.

Listing 9-22. Excerpt from GameScreen.java: The rendering methods

@Override
public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
 gl.glEnable(GL10.GL_TEXTURE_2D);

 renderer.render();

 guiCam.setViewportAndMatrices();
 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA);
 batcher.beginBatch(Assets.items);
 switch(state) {
 case GAME_READY:
 presentReady();
 break;
 case GAME_RUNNING:
 presentRunning();
 break;
 case GAME_PAUSED:
 presentPaused();
 break;
 case GAME_LEVEL_END:
 presentLevelEnd();
 break;
 case GAME_OVER:
 presentGameOver();
 break;
 }
 batcher.endBatch();
 gl.glDisable(GL10.GL_BLEND);
}

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

428

The rendering of the game screen is done in two steps. We first render the actual game world via the
WorldRenderer class, and then we render all the UI elements on top of the game world depending on the
current state of the game screen. The render() method does just that. As with our update methods, we again
have a separate rendering method for all the subscreens.

private void presentReady() {
 batcher.drawSprite(160, 240, 192, 32, Assets.ready);
}

The presentRunning() method just displays the pause button in the top-right corner and the score
string in the top-left corner.

private void presentRunning() {
 batcher.drawSprite(320 - 32, 480 - 32, 64, 64, Assets.pause);
 Assets.font.drawText(batcher, scoreString, 16, 480-20);
}

In the presentRunning() method, we simply render the pause button and the current score string.

private void presentPaused() {
 batcher.drawSprite(160, 240, 192, 96, Assets.pauseMenu);
 Assets.font.drawText(batcher, scoreString, 16, 480-20);
}

The presentPaused() method displays the pause menu UI elements and the score again.

private void presentLevelEnd() {
 String topText = "the princess is ...";
 String bottomText = "in another castle!";
 float topWidth = Assets.font.glyphWidth * topText.length();
 float bottomWidth = Assets.font.glyphWidth * bottomText.length();
 Assets.font.drawText(batcher, topText, 160 - topWidth / 2, 480 - 40);
 Assets.font.drawText(batcher, bottomText, 160 - bottomWidth / 2, 40);
}

The presentLevelEnd() method renders the string THE PRINCESS IS … at the top of the screen and
the string IN ANOTHER CASTLE! at the bottom of the screen, as shown in Figure 9-2. We perform some
calculations to center those strings horizontally.

private void presentGameOver() {
 batcher.drawSprite(160, 240, 160, 96, Assets.gameOver);
 float scoreWidth = Assets.font.glyphWidth * scoreString.length();
 Assets.font.drawText(batcher, scoreString, 160 - scoreWidth / 2, 480-20);
}

The presentGameOver() method displays the game-over UI element as well the score string. Remember
that the score screen is set in the updateRunning() method to either score: #score or new highscore:
#value.

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

429

Finishing Touches
That’s basically our GameScreen class. The rest of its code is given in Listing 9-23.

Listing 9-23. The Rest of GameScreen.java: The pause(), resume(), and dispose() methods

 @Override
 public void pause() {
 if(state == GAME_RUNNING)
 state = GAME_PAUSED;
 }

 @Override
 public void resume() {
 }

 @Override
 public void dispose() {
 }
}

We just make sure our game screen is paused when the user decides to pause the application.
The last thing we have to implement is the WorldRenderer class.

The WorldRenderer Class
This class should be no surprise. It simply uses the SpriteBatcher we pass to it in the constructor and
renders the world accordingly. Listing 9-24 shows the beginning of the code.

Listing 9-24. Excerpt from WorldRenderer.java: Constants, members, and constructor

package com.badlogic.androidgames.jumper;

import javax.microedition.khronos.opengles.GL10;

import com.badlogic.androidgames.framework.gl.Animation;
import com.badlogic.androidgames.framework.gl.Camera2D;
import com.badlogic.androidgames.framework.gl.SpriteBatcher;
import com.badlogic.androidgames.framework.gl.TextureRegion;
import com.badlogic.androidgames.framework.impl.GLGraphics;

public class WorldRenderer {
 static final float FRUSTUM_WIDTH = 10;
 static final float FRUSTUM_HEIGHT = 15;
 GLGraphics glGraphics;
 World world;
 Camera2D cam;
 SpriteBatcher batcher;

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

430

 public WorldRenderer(GLGraphics glGraphics, SpriteBatcher batcher, World world) {
 this.glGraphics = glGraphics;
 this.world = world;
 this.cam = new Camera2D(glGraphics, FRUSTUM_WIDTH, FRUSTUM_HEIGHT);
 this.batcher = batcher;
 }

As always, we start off by defining some constants. In this case, we define the view frustum’s width and
height as 10 and 15 meters, respectively. We also have a couple of members—namely, a GLGraphics instance
and the SpriteBatcher reference we get from the game screen.

The constructor takes a GLGraphics instance, a SpriteBatcher, and the World the WorldRenderer should
draw as parameters. We set up all members accordingly. Listing 9-25 shows the actual rendering code.

Listing 9-25. The rest of WorldRenderer.java: The actual rendering code

public void render() {
 if(world.bob.position.y > cam.position.y)
 cam.position.y = world.bob.position.y;
 cam.setViewportAndMatrices();
 renderBackground();
 renderObjects();
}

The render() method splits up rendering into two batches: one for the background image and another
one for all the objects in the world. It also updates the camera position based on Bob’s current y coordinate.
If he’s above the camera’s y coordinate, the camera position is adjusted accordingly. Note that we use a
camera that works in world units here. We only set up the matrices once for both the background and the
objects.

public void renderBackground() {
 batcher.beginBatch(Assets.background);
 batcher.drawSprite(0, 0,
 FRUSTUM_WIDTH, FRUSTUM_HEIGHT,
 Assets.backgroundRegion);
 batcher.endBatch();
}

The renderBackground() method simply renders the background so that it follows the camera. It does
not scroll but instead is always rendered so that it fills the complete screen. We also don’t use any blending
for rendering the background, so that we can squeeze out a little bit more performance.

public void renderObjects() {
 GL10 gl = glGraphics.getGL();
 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA);

 batcher.beginBatch(Assets.items);
 renderBob();
 renderPlatforms();
 renderItems();
 renderSquirrels();
 renderCastle();

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

431

 batcher.endBatch();
 gl.glDisable(GL10.GL_BLEND);
 }

The renderObjects() method is responsible for rendering the second batch. This time we use blending,
as all our objects have transparent background pixels. All the objects are rendered in a single batch. Looking
back at the constructor of GameScreen, we see that the SpriteBatcher we use can cope with 1,000 sprites in a
single batch—more than enough for our world. For each object type, we have a separate rendering method.

 private void renderBob() {
 TextureRegion keyFrame;
 switch(world.bob.state) {
 case Bob.BOB_STATE_FALL:
 keyFrame = Assets.bobFall.getKeyFrame(world.bob.stateTime, Animation.ANIMATION_

LOOPING);
 break;
 case Bob.BOB_STATE_JUMP:
 keyFrame = Assets.bobJump.getKeyFrame(world.bob.stateTime, Animation.ANIMATION_

LOOPING);
 break;
 case Bob.BOB_STATE_HIT:
 default:
 keyFrame = Assets.bobHit;
 }

 float side = world.bob.velocity.x < 0? -1: 1;
 batcher.drawSprite(world.bob.position.x, world.bob.position.y, side * 1, 1,

keyFrame);
 }

The method renderBob()is responsible for rendering Bob. Based on Bob’s state and state time, we
select a keyframe out of the total of five keyframes we have for Bob (see Figure 9-9 earlier in this chapter).
Based on Bob’s velocity’s x component, we also determine which way Bob is facing. Based on that, we
multiply by either 1 or –1 to flip the texture region accordingly. Remember, we only have keyframes for a Bob
looking to the right. Note also that we don’t use BOB_WIDTH or BOB_HEIGHT to specify the size of the rectangle
we draw for Bob. Those sizes are the sizes of the bounding shapes, which are not necessarily the sizes of
the rectangles we render. Instead, we use our 1×1-meter-to-32×32-pixel mapping. That’s something we’ll
do for all sprite rendering; we’ll either use a 1×1 rectangle (Bob, coins, squirrels, springs), a 2×0.5 rectangle
(platforms), or a 2×2 rectangle (castle).

 private void renderPlatforms() {
 int len = world.platforms.size();
 for(int i = 0; i < len; i++) {
 Platform platform = world.platforms.get(i);
 TextureRegion keyFrame = Assets.platform;
 if(platform.state == Platform.PLATFORM_STATE_PULVERIZING) {
 keyFrame = Assets.brakingPlatform.getKeyFrame(platform.stateTime,

Animation.ANIMATION_NONLOOPING);
 }

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

432

 batcher.drawSprite(platform.position.x, platform.position.y,
 2, 0.5f, keyFrame);
 }
 }

The method renderPlatforms()loops through all the platforms in the world and selects a
TextureRegion based on the platform’s state. A platform can be either pulverized or not pulverized. In the
latter case, we simply use the first keyframe; in the former case, we fetch a keyframe from the pulverization
animation based on the platform’s state time.

 private void renderItems() {
 int len = world.springs.size();
 for(int i = 0; i < len; i++) {
 Spring spring = world.springs.get(i);
 batcher.drawSprite(spring.position.x, spring.position.y, 1, 1, Assets.spring);
 }

 len = world.coins.size();
 for(int i = 0; i < len; i++) {
 Coin coin = world.coins.get(i);
 TextureRegion keyFrame = Assets.coinAnim.getKeyFrame(coin.stateTime,

Animation.ANIMATION_LOOPING);
 batcher.drawSprite(coin.position.x, coin.position.y, 1, 1, keyFrame);
 }
 }

The method renderItems()renders springs and coins. For springs, we just use the one TextureRegion
we defined in Assets, and for coins we again select a keyframe from the animation based on a coin’s state
time.

 private void renderSquirrels() {
 int len = world.squirrels.size();
 for(int i = 0; i < len; i++) {
 Squirrel squirrel = world.squirrels.get(i);
 TextureRegion keyFrame = Assets.squirrelFly.getKeyFrame(squirrel.stateTime,

Animation.ANIMATION_LOOPING);
 float side = squirrel.velocity.x < 0?-1:1;
 batcher.drawSprite(squirrel.position.x, squirrel.position.y, side * 1, 1,

keyFrame);
 }
 }

The method renderSquirrels()renders squirrels. We again fetch a keyframe based on the squirrel’s state
time, figure out which direction it faces, and manipulate the width accordingly when rendering it with the
SpriteBatcher. This is necessary since we only have a left-facing version of the squirrel in the texture atlas.

 private void renderCastle() {
 Castle castle = world.castle;
 batcher.drawSprite(castle.position.x, castle.position.y, 2, 2, Assets.castle);
 }
}

Chapter 9 ■ Super Jumper: a 2D OpenGL eS Game

433

The last method, renderCastle(), simply draws the castle with the TextureRegion we defined in the
Assets class.

That was pretty simple, wasn’t it? We only have two batches to render: one for the background and one
for the objects. Taking a step back, we see that we render a third batch for all the UI elements of the game
screen as well. That’s three texture changes and three times uploading new vertices to the GPU. We could
theoretically merge the UI and object batches, but that would be cumbersome and would introduce some
hacks into our code.

We are finally done. Our second game, Super Jumper, is now ready to be played. According to our
optimization guidelines from Chapter 7, we should have lightning-fast rendering. Let’s see whether that’s true.

Summary
We’ve created our second game with the power of OpenGL ES. As a result of our nice framework, it was
actually a breeze to implement. The use of a texture atlas and the SpriteBatcher made for some very good
performance. We also discussed how to render fixed-width ASCII bitmap fonts. Good initial design of
our game mechanics and a clear definition of the relationship between world units and pixel units make
developing a game a lot easier. Imagine the nightmare we’d have if we tried to do everything in pixels. All
our calculations would be riddled with divisions—something the CPUs of less-powerful Android devices
don’t like all that much. We also took great care to separate our logic from the presentation. All in all, Super
Jumper is a success.

Now it’s time to turn the knobs to 11. Let’s get our feet wet with some 3D graphics programming.

http://dx.doi.org/10.1007/978-1-4842-0472-6_7

435© Mario Zechner, J. F. DiMarzio and Robert Green 2016
M. Zechner et al., Beginning Android Games, DOI 10.1007/978-1-4842-0472-6_10

CHAPTER 10

OpenGL ES: Going 3D

Super Jumper worked out rather well with the 2D OpenGL ES rendering engine. Now, it’s time to go full 3D.
We actually already worked in a 3D space when we defined our view frustum and the vertices of our sprites.
In the latter case, the z coordinate of each vertex was simply set to 0 by default. The difference from 2D
rendering really isn’t all that big:

•	 Vertices have not only x and y coordinates, but also a z coordinate.

•	 Instead of an orthographic projection, a perspective projection is used. Objects
farther away from the camera appear smaller.

•	 Transformations, such as rotations, translations, and scales, have more degrees of
freedom in 3D. Instead of just moving the vertices in the x-y plane, we can now move
them around freely on all three axes.

•	 We can define a camera with an arbitrary position and orientation in 3D space.

•	 The order in which we render the triangles of our objects is now important. Objects
farther away from the camera must be overlapped by objects that are closer to the
camera.

The best thing is that we have already laid the groundwork for all of this in our framework. To go 3D, we
just need to adjust a couple of classes slightly.

Before We Begin
As in previous chapters, we’ll write a couple of examples in this chapter. We’ll follow the same route as
before by having a starter activity showing a list of examples. We’ll reuse the entire framework created over
the previous three chapters, including the GLGame, GLScreen, Texture, and Vertices classes.

The starter activity of this chapter is called GL3DBasicsStarter. We can reuse the code of the
GLBasicsStarter activity from Chapter 7 and just change the package name for the example classes that we
are going to run to com.badlogic.androidgames.gl3d. We also have to add each of the tests to the manifest
in the form of <activity> elements again. All our tests will be run in fixed landscape orientation, which we
will specify per <activity> element.

Each of the tests is an instance of the GLGame abstract class, and the actual test logic is implemented in
the form of a GLScreen instance contained in the GLGame implementation of the test, as seen in Chapter 9. We
will present only the relevant portions of the GLScreen instance so as to conserve some pages. The naming
conventions are again XXXTest and XXXScreen for the GLGame and GLScreen implementation of each test.

http://dx.doi.org/10.1007/978-1-4842-0472-6_7
http://dx.doi.org/10.1007/978-1-4842-0472-6_9

Chapter 10 ■ OpenGL eS: GOinG 3D

436

Vertices in 3D
In Chapter 7, you learned that a vertex has a few attributes:

•	 Position

•	 Color (optional)

•	 Texture coordinates (optional)

We created a helper class called Vertices, which handles all the dirty details for us. We limited the
vertex positions to have only x and y coordinates. All we need to do in order to go 3D is modify the Vertices
class so that it supports 3D vertex positions.

Vertices3: Storing 3D Positions
Let’s write a new class called Vertices3 to handle 3D vertices based on our original Vertices class. Listing
10-1 shows the code.

Listing 10-1. Vertices3.java, now with more coordinates

package com.badlogic.androidgames.framework.gl;

import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.IntBuffer;
import java.nio.ShortBuffer;

import javax.microedition.khronos.opengles.GL10;

import com.badlogic.androidgames.framework.impl.GLGraphics;

public class Vertices3 {
 final GLGraphics glGraphics;
 final boolean hasColor;
 final boolean hasTexCoords;
 final int vertexSize;
 final IntBuffer vertices;
 final int[] tmpBuffer;
 final ShortBuffer indices;

 public Vertices3(GLGraphics glGraphics, int maxVertices, int maxIndices,
 boolean hasColor, boolean hasTexCoords) {
 this.glGraphics = glGraphics;
 this.hasColor = hasColor;
 this.hasTexCoords = hasTexCoords;
 this.vertexSize = (3 + (hasColor ? 4 : 0) + (hasTexCoords ? 2 : 0)) * 4;
 this.tmpBuffer = new int[maxVertices * vertexSize / 4];

 ByteBuffer buffer = ByteBuffer.allocateDirect(maxVertices * vertexSize);
 buffer.order(ByteOrder.nativeOrder());
 vertices = buffer.asIntBuffer();

http://dx.doi.org/10.1007/978-1-4842-0472-6_7

Chapter 10 ■ OpenGL eS: GOinG 3D

437

 if (maxIndices > 0) {
 buffer = ByteBuffer.allocateDirect(maxIndices * Short.SIZE / 8);
 buffer.order(ByteOrder.nativeOrder());
 indices = buffer.asShortBuffer();
 } else {
 indices = null;
 }
 }

 public void setVertices(float[] vertices, int offset, int length) {
 this.vertices.clear();
 int len = offset + length;
 for (int i = offset, j = 0; i < len; i++, j++)
 tmpBuffer[j] = Float.floatToRawIntBits(vertices[i]);
 this.vertices.put(tmpBuffer, 0, length);
 this.vertices.flip();
 }

 public void setIndices(short[] indices, int offset, int length) {
 this.indices.clear();
 this.indices.put(indices, offset, length);
 this.indices.flip();
 }

 public void bind() {
 GL10 gl = glGraphics.getGL();

 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 vertices.position(0);
 gl.glVertexPointer(3, GL10.GL_FLOAT, vertexSize, vertices);

 if (hasColor) {
 gl.glEnableClientState(GL10.GL_COLOR_ARRAY);
 vertices.position(3);
 gl.glColorPointer(4, GL10.GL_FLOAT, vertexSize, vertices);
 }

 if (hasTexCoords) {
 gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);
 vertices.position(hasColor ? 7 : 3);
 gl.glTexCoordPointer(2, GL10.GL_FLOAT, vertexSize, vertices);
 }
 }

 public void draw(int primitiveType, int offset, int numVertices) {
 GL10 gl = glGraphics.getGL();

 if (indices != null) {
 indices.position(offset);
 gl.glDrawElements(primitiveType, numVertices,
 GL10.GL_UNSIGNED_SHORT, indices);

Chapter 10 ■ OpenGL eS: GOinG 3D

438

 } else {
 gl.glDrawArrays(primitiveType, offset, numVertices);
 }
 }

 public void unbind() {
 GL10 gl = glGraphics.getGL();
 if (hasTexCoords)
 gl.glDisableClientState(GL10.GL_TEXTURE_COORD_ARRAY);

 if (hasColor)
 gl.glDisableClientState(GL10.GL_COLOR_ARRAY);
 }
 public int getNumIndices() {
 return indices.limit();
 }

 public int getNumVertices() {
 return vertices.limit() / (vertexSize / 4);
 }
}

Everything stays the same as compared to Vertices, except for a few small things:

•	 In the constructor, we calculate vertexSize differently since the vertex position now
takes three floats instead of two.

•	 In the bind() method, we tell OpenGL ES that our vertices have three rather than
two coordinates in the call to glVertexPointer() (first argument).

•	 We have to adjust the offsets that we set in the calls to vertices.position() for the
optional color and texture coordinate components.

That’s all we need to do. Using the Vertices3 class, we now have to specify the x, y, and z coordinates
for each vertex when we call the Vertices3.setVertices() method. Everything else stays the same in terms
of usage. We can have per-vertex colors, texture coordinates, indices, and so on.

An Example
Let’s write a simple example called Vertices3Test. We want to draw two triangles, one with z being –3
for each vertex and one with z being –5 for each vertex. We’ll also use per-vertex color. Since we haven’t
discussed how to use a perspective projection, we’ll just use an orthographic projection with appropriate
near and far clipping planes so that the triangles are in the view frustum (that is, near is 10 and far is –10).
Figure 10-1 shows the scene.

Chapter 10 ■ OpenGL eS: GOinG 3D

439

The red triangle is in front of the green triangle. It is possible to say “in front” because the camera is
located at the origin looking down the negative z axis by default in OpenGL ES (which actually doesn’t have
the notion of a camera). The green triangle is also shifted a little to the right so that we can see a portion of it
when viewed from the front. It should be overlapped by the red triangle for the most part. Listing 10-2 shows
the code for rendering this scene.

Listing 10-2. Vertices3Test.java: Drawing two triangles

package com.badlogic.androidgames.gl3d;

import javax.microedition.khronos.opengles.GL10;

import com.badlogic.androidgames.framework.Game;
import com.badlogic.androidgames.framework.Screen;
import com.badlogic.androidgames.framework.gl.Vertices3;
import com.badlogic.androidgames.framework.impl.GLGame;
import com.badlogic.androidgames.framework.impl.GLScreen;

public class Vertices3Test extends GLGame {

 public Screen getStartScreen() {
 return new Vertices3Screen(this);
 }

Figure 10-1. A red triangle (front) and a green triangle (back) in 3D space

Chapter 10 ■ OpenGL eS: GOinG 3D

440

 class Vertices3Screen extends GLScreen {
 Vertices3 vertices;

 public Vertices3Screen(Game game) {
 super(game);

 vertices = new Vertices3(glGraphics, 6, 0, true, false);
 vertices.setVertices(new float[] { -0.5f, -0.5f, -3, 1, 0, 0, 1,
 0.5f, -0.5f, -3, 1, 0, 0, 1,
 0.0f, 0.5f, -3, 1, 0, 0, 1,

 0.0f, -0.5f, -5, 0, 1, 0, 1,
 1.0f, -0.5f, -5, 0, 1, 0, 1,
 0.5f, 0.5f, -5, 0, 1, 0, 1}, 0, 7 * 6);
 }

 @Override
 public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
 gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight());
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 gl.glOrthof(-1, 1, -1, 1, 10, -10);
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 vertices.bind();
 vertices.draw(GL10.GL_TRIANGLES, 0, 6);
 vertices.unbind();
 }

 @Override
 public void update(float deltaTime) {
 }

 @Override
 public void pause() {
 }

 @Override
 public void resume() {
 }

 @Override
 public void dispose() {
 }
 }
}

As you can see, this is the complete source file. The following examples will show only the relevant
portions of this file, since the rest stays mostly the same, apart from the class names.

Chapter 10 ■ OpenGL eS: GOinG 3D

441

We have a Vertices3 member in Vertices3Screen, which we initialize in the constructor. We have six
vertices in total, a color per vertex, and no texture coordinates. Since neither triangle shares vertices with
the other, we don’t use indexed geometry. This information is passed to the Vertices3 constructor. Next, we
set the actual vertices with a call to Vertices3.setVertices(). The first three lines specify the red triangle
in the front, and the other three lines specify the green triangle in the back, slightly offset to the right by 0.5
units. The third float on each line is the z coordinate of the respective vertex.

In the present() method, we must first clear the screen and set the viewport, as always. Next, we load
an orthographic projection matrix, setting up a view frustum big enough to show our entire scene. Finally,
we just render the two triangles contained within the Vertices3 instance. Figure 10-2 shows the output of
this program.

Now, that is strange. According to our theory, the red triangle (in the middle) should be in front of the
green triangle. The camera is located at the origin looking down the negative z axis, and from Figure 10-1 we
can see that the red triangle is closer to the origin than the green triangle. What’s happening here?

OpenGL ES will render the triangles in the order in which we specify them in the Vertices3 instance.
Since we specified the red triangle first, it will get drawn first. We could change the order of the triangles to fix
this. But what if our camera wasn’t looking down the negative z axis, but instead was looking from behind?
We’d again have to sort the triangles before rendering according to their distance from the camera. That
can’t be the solution. And it isn’t. We’ll fix this in a minute. Let’s first get rid of this orthographic projection
and use a perspective one instead.

A note on coordinate systems: You may notice that, in our examples, we start by looking down the z
axis, where if z increases toward us, x increases to the right and y increases up. This is what OpenGL uses
as the standard coordinate system. An easy way to remember this system is by the right-hand rule. Begin
by pressing the tips of your pinky and ring fingers of your right hand against your right palm. Your thumb
represents the x axis, your index finger pointed straight out represents the y axis, and your middle finger
pointed toward you represents the z axis. See Figure 10-3 for an example. Just remember this rule and it will
eventually come quite naturally to you.

Figure 10-2. The two triangles—but something’s wrong

Chapter 10 ■ OpenGL eS: GOinG 3D

442

Perspective Projection: The Closer, the Bigger
Until now, we have always used an orthographic projection, meaning that no matter how far an object is
from the near clipping plane, it will always have the same size on the screen. Our eyes show us a different
picture of the world. The farther away an object is, the smaller it appears to us. This is called perspective
projection, which we discussed briefly in Chapter 7.

The difference between an orthographic projection and a perspective projection can be explained by
the shape of the view frustum. In an orthographic projection, there is a box. In a perspective projection,
there is a pyramid with a cut-off top as the near clipping plane, the pyramid’s base as the far clipping plane,
and its sides as the left, right, top, and bottom clipping planes. Figure 10-4 shows a perspective view frustum
through which we can view our scene.

Figure 10-4. A perspective view frustum containing the scene (left); the frustum viewed from above (right)

Figure 10-3. The right-hand rule

http://dx.doi.org/10.1007/978-1-4842-0472-6_7

Chapter 10 ■ OpenGL eS: GOinG 3D

443

The perspective view frustum is defined by four parameters:

 1. The distance from the camera to the near clipping plane

 2. The distance from the camera to the far clipping plane

 3. The aspect ratio of the viewport, which is embedded in the near clipping plane
and is given by viewport width divided by viewport height

 4. The field of view, which specifies how wide the view frustum is and therefore
how much of the scene it shows

While we’ve talked about a “camera,” there’s no such concept involved here yet. Just pretend that there
is a camera sitting fixed at the origin looking down the negative z axis, as shown in Figure 10-4.

The near and far clipping plane distances are familiar to us from Chapter 7. We just need to set them up
so that the complete scene is contained in the view frustum. The field of view is also easily understandable
when looking at the right-hand image in Figure 10-4.

The aspect ratio of the viewport is a little less intuitive. Why is it needed? It ensures that our world
doesn’t get stretched if the screen to which we render has an aspect ratio that’s not equal to 1.

Previously, we used glOrthof() to specify the orthographic view frustum in the form of a projection matrix.
For the perspective view frustum, we could use a method called glFrustumf(). However, there’s an easier way.

Traditionally, OpenGL ES comes with a utility library called GLU. It contains a couple of helper functions
for things like setting up projection matrices and implementing camera systems. That library is also available
on Android in the form of a class called GLU. It features a few static methods we can invoke without needing a
GLU instance. The method in which we are interested is called gluPerspective():

GLU.gluPerspective(GL10 gl, float fieldOfView, float aspectRatio, float near, float far);

This method will multiply the currently active matrix (that is, the projection matrix or the model-view
matrix) by a perspective projection matrix, similar to glOrthof(). The first parameter is an instance of GL10,
usually the one used for all other OpenGL ES–related business; the second parameter is the field of view,
given in angles; the third parameter is the aspect ratio of the viewport; and the last two parameters specify
the distance of the near and far clipping planes from the camera position. Since we don’t have a camera yet,
those values are given relative to the origin of the world, forcing us to look down the negative z axis, as shown
in Figure 10-4. That’s totally fine for our purposes at the moment; we will make sure that all the objects we
render stay within this fixed and immovable view frustum. As long as we only use gluPerspective(), we
can’t change the position or orientation of our virtual camera. We will always only see a portion of the world
when looking down the negative z axis.

Let’s modify Listing 10-2 so that it uses perspective projection. First, just copy over all code
from Vertices3Test to a new class called PerspectiveTest, and also rename Vertices3Screen to
PerspectiveScreen. The only thing we need to change is the present() method. Listing 10-3 shows the code.

Listing 10-3. Excerpt from PerspectiveTest.java: Perspective projection

@Override
public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
 gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight());
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 GLU.gluPerspective(gl, 67,
 glGraphics.getWidth() / (float)glGraphics.getHeight(),
 0.1f, 10f);

http://dx.doi.org/10.1007/978-1-4842-0472-6_7

Chapter 10 ■ OpenGL eS: GOinG 3D

444

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 vertices.bind();
 vertices.draw(GL10.GL_TRIANGLES, 0, 6);
 vertices.unbind();
}

The only difference from the present() method in the previous example is that we are now using GLU.
gluPerspective() instead of glOrtho(). We use a field of view of 67 degrees, which is close to the average
human field of view. By increasing or decreasing this value, you can see more or less to the left and right. The
next thing we specify is the aspect ratio, which is the screen’s width divided by its height. Note that this will be
a floating-point number, so we have to cast one of the values to a float before dividing. The final arguments are
the near and far clipping plane distances. Given that the virtual camera is located at the origin looking down
the negative z axis, anything with a z value less than –0.1 and greater than –10 will be between the near and far
clipping planes, and thus be potentially visible. Figure 10-5 shows the output of this example.

Now we are actually doing proper 3D graphics. As you can see, there is still a problem with the
rendering order of our triangles. That can be fixed by using the almighty z-buffer.

Z-buffer: Bringing Order to Chaos
What is a z-buffer? In Chapter 3, we discussed the framebuffer. It stores the color for each pixel on the
screen. When OpenGL ES renders a triangle to the framebuffer, it just changes the color of the pixels that
make up that triangle.

The z-buffer is very similar to the framebuffer in that it also has a storage location for each pixel on the
screen. Instead of storing colors, it stores depth values. The depth value of a pixel is roughly the normalized
distance of the corresponding point in 3D to the near clipping plane of the view frustum.

OpenGL ES will write a depth value for each pixel of a triangle to the z-buffer by default (if a z-buffer
was created alongside the framebuffer). We simply have to tell OpenGL ES to use this information to decide
whether a pixel being drawn is closer to the near clipping plane than the pixel that’s currently there. For this,
we just need to call glEnable() with an appropriate parameter:

GL10.glEnable(GL10.GL_DEPTH_TEST);

Figure 10-5. Perspective (mostly correct)

http://dx.doi.org/10.1007/978-1-4842-0472-6_3

Chapter 10 ■ OpenGL eS: GOinG 3D

445

OpenGL ES then compares the incoming pixel depth with the pixel depth that’s already in the z-buffer.
If the incoming pixel depth is smaller, its corresponding pixel is closer to the near clipping plane and thus in
front of the pixel that’s already in the frame- and z-buffer.

Figure 10-5 illustrates the process. The z-buffer starts off with all values set to infinity (or a very high
number). When you render the first triangle, compare each of its pixels’ depth values to the value of the
pixel in the z-buffer. If the depth value of a pixel is smaller than the value in the z-buffer, the pixel passes the
so-called depth test, or z-test. The pixel’s color will be written to the framebuffer, and its depth will overwrite
the corresponding value in the z-buffer. If it fails the test, neither the pixel’s color nor its depth value will be
written to the buffers. This is shown in Figure 10-6, where the second triangle is rendered. Some of the pixels
have smaller depth values and thus get rendered; other pixels don’t pass the test.

As with the framebuffer, we also have to clear the z-buffer for each frame; otherwise, the depth values
from the previous frame would still be in there. To do this, we can call glClear(), as per the following:

gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);

This will clear the framebuffer (or colorbuffer) and the z-buffer (or depthbuffer) all in one go.

Fixing the Previous Example
Let’s fix the previous example’s problems by using the z-buffer. Simply copy all the code over to a new class called
ZBufferTest and modify the present() method of the new ZBufferScreen class, as shown in Listing 10-4.

Listing 10-4. Excerpt from ZBufferTest.java: Using the z-buffer

@Override
public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
 gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight());

Figure 10-6. Image in the framebuffer (left); z-buffer contents after rendering each of the two triangles (right)

Chapter 10 ■ OpenGL eS: GOinG 3D

446

 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 GLU.gluPerspective(gl, 67,
 glGraphics.getWidth() / (float)glGraphics.getHeight(),
 0.1f, 10f);
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();

 gl.glEnable(GL10.GL_DEPTH_TEST);

 vertices.bind();
 vertices.draw(GL10.GL_TRIANGLES, 0, 6);
 vertices.unbind();

 gl.glDisable(GL10.GL_DEPTH_TEST);
}

We first changed the arguments to the call to glClear(). Now both buffers are cleared instead of just the
framebuffer.

We also enable depth testing before we render the two triangles. After we are done with rendering all of
the 3D geometry, we disable depth testing again. Why? Imagine that we want to render 2D UI elements on
top of our 3D scene, such as the current score or buttons. Since we’d use the SpriteBatcher for this, which
only works in 2D, we wouldn’t have any meaningful z coordinates for the vertices of the 2D elements. We
wouldn’t need depth testing either, since we would explicitly specify the order in which we want the vertices
to be drawn to the screen.

The output of this example, shown in Figure 10-7, looks as expected now.

Finally, the green triangle in the middle is rendered correctly behind the red triangle, thanks to our new
best friend, the z-buffer. As with most friends, however, there are times when your friendship suffers a little
from minor issues. Let’s examine some caveats when using the z-buffer.

Figure 10-7. The z-buffer in action, making the rendering order-independent

Chapter 10 ■ OpenGL eS: GOinG 3D

447

Blending: There’s Nothing Behind You
Assume that we want to enable blending for the red triangle at z = –3 in our scene. Say we set each vertex
color’s alpha component to 0.5f, so that anything behind the triangle shines through. In this case, the green
triangle at z = –5 should shine through. Let’s think about what OpenGL ES will do and what else will happen:

•	 OpenGL ES will render the first triangle to the z-buffer and colorbuffer.

•	 Next, OpenGL ES will render the green triangle because it comes after the red
triangle in our Vertices3 instance.

•	 The portion of the green triangle behind the red triangle will not get shown on the
screen because the pixels will be rejected by the depth test.

•	 Nothing will shine through the red triangle in the front since nothing was there to
shine through when it was rendered.

When using blending in combination with the z-buffer, you have to make sure that all transparent
objects are sorted by increasing distance from the camera position and are rendered from back to front.
All opaque objects must be rendered before any transparent objects. The opaque objects don’t have to be
sorted, though.

Let’s write a simple example that demonstrates this. We keep our current scene composed of two triangles
and set the alpha component of the vertex colors of the first triangle (z = –3) to 0.5f. According to our rule,
we have to render the opaque objects first—in this case the green triangle (z = –5)—and then render all the
transparent objects, from farthest to closest. In our scene, there’s only one transparent object: the red triangle.

We copy over all the code from Listing 10-4 to a new class called ZBlendingTest and rename the
contained ZBufferScreen to ZBlendingScreen. We now simply need to change the vertex colors of the
first triangle and enable the blending and rendering of the two triangles in proper order in the present()
method. Listing 10-5 shows the two relevant methods.

Listing 10-5. Excerpt from ZBlendingTest.java: Blending with the x-buffer enabled

public ZBlendingScreen(Game game) {
 super(game);

 vertices = new Vertices3(glGraphics, 6, 0, true, false);
 vertices.setVertices(new float[] { -0.5f, -0.5f, -3, 1, 0, 0, 0.5f,
 0.5f, -0.5f, -3, 1, 0, 0, 0.5f,
 0.0f, 0.5f, -3, 1, 0, 0, 0.5f,
 0.0f, -0.5f, -5, 0, 1, 0, 1,
 1.0f, -0.5f, -5, 0, 1, 0, 1,
 0.5f, 0.5f, -5, 0, 1, 0, 1}, 0, 7 * 6);
}

@Override
public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
 gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight());
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 GLU.gluPerspective(gl, 67,
 glGraphics.getWidth() / (float)glGraphics.getHeight(),
 0.1f, 10f);

Chapter 10 ■ OpenGL eS: GOinG 3D

448

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();

 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA);

 vertices.bind();
 vertices.draw(GL10.GL_TRIANGLES, 3, 3);
 vertices.draw(GL10.GL_TRIANGLES, 0, 3);
 vertices.unbind();

 gl.glDisable(GL10.GL_BLEND);
 gl.glDisable(GL10.GL_DEPTH_TEST);
}

In the constructor of the ZBlendingScreen class, we change the alpha components of the vertex colors of
only the first triangle to 0.5. This will make the first triangle transparent. In the present() method, we do the
usual things, like clearing the buffers and setting up the matrices. We also enable blending and set a proper
blending function. The interesting bit is how we render the two triangles now. We first render the green triangle,
which is the second triangle in the Vertices3 instance, as it is opaque. All opaque objects must be rendered
before any transparent objects are rendered. Next, we render the transparent triangle, which is the first triangle
in the Vertices3 instance. For both drawing calls, we simply use proper offsets and vertex counts as the second
and third arguments to the vertices.draw() method. Figure 10-8 shows the output of this program.

Let’s reverse the order in which we draw the two triangles as follows:

vertices.draw(GL10.GL_TRIANGLES, 0, 3);
vertices.draw(GL10.GL_TRIANGLES, 3, 3);

So, we first draw the triangle starting from vertex 0 and then draw the second triangle starting from
vertex 3. This will render the red triangle in the front first and the green triangle in the back second.
Figure 10-9 shows the outcome.

Figure 10-8. Blending with the z-buffer enabled

Chapter 10 ■ OpenGL eS: GOinG 3D

449

The objects only consist of triangles so far, which is, of course, a bit simplistic. We’ll revisit blending in
conjunction with the z-buffer again when we render more complex shapes. For now, let’s summarize how to
handle blending in 3D:

 1. Render all opaque objects.

 2. Sort all transparent objects in increasing distance from the camera (farthest to
closest).

 3. Render all transparent objects in the sorted order, farthest to closest.

The sorting can be based on the object center’s distance from the camera in most cases. You’ll run
into problems if one of your objects is large and can span multiple objects. Without advanced tricks, it is
not possible to work around this issue. There are a couple of bulletproof solutions that work great with the
desktop variant of OpenGL, but they can’t be implemented on most Android devices due to their limited
GPU functionality. Luckily, this is very rare, and you can almost always stick to simple center-based sorting.

Z-buffer Precision and Z-fighting
It’s always tempting to abuse the near and far clipping planes to show as much of our awesome scene as
possible. We’ve put a lot of effort into adding a ton of objects to our world, after all, and that effort should
be visible. The only problem with this is that the z-buffer has a limited precision. On most Android devices,
each depth value stored in the z-buffer has no more than 16 bits; that’s 65,535 different depth values at most.
Thus, instead of setting the near clipping plane distance to 0.00001 and the far clipping plane distance to
1000000, we should stick to more reasonable values. Otherwise, we’ll soon find out what nice artifacts an
improperly configured view frustum can produce in combination with the z-buffer.

What is the problem? Imagine that we set our near and far clipping planes as just mentioned. A pixel’s
depth value is more or less its distance from the near clipping plane—the closer it is, the smaller its depth
value. With a 16-bit depthbuffer, we’d quantize the near-to-far-clipping-plane depth value internally into
65,535 segments; each segment takes up 1,000,000 / 65,535 = 15 units in our world. If we choose our units
to be meters, and we have objects of usual sizes like 1×2×1 meters, all within the same segment, the z-buffer
wouldn’t help us a lot because all the pixels would get the same depth value.

Figure 10-9. Blending done wrong; the triangle in the back should shine through.

Chapter 10 ■ OpenGL eS: GOinG 3D

450

 ■ Note Depth values in the z-buffer are actually not linear, but the general idea is still true.

Another related problem when using the z-buffer is so-called z-fighting. Figure 10-10 illustrates the
problem.

The two rectangles in Figure 10-10 are coplanar; that is, they are embedded in the same plane. Since
they overlap, they also share some pixels, which should have the same depth values. However, due to limited
floating-point precision, the GPU might not arrive at the same depth values for pixels that overlap. Which
pixel passes the depth test is then a sort of lottery. This can usually be resolved by pushing one of the two
coplanar objects away from the other object by a small amount. The value of this offset is dependent on a
few factors, so it’s usually best to experiment. To summarize:

•	 Do not use values that are too small or too large for your near and far clipping plane
distances.

•	 Avoid coplanar objects by offsetting them a little.

Defining 3D Meshes
So far, we’ve only used a couple of triangles as placeholders for objects in our worlds. What about more
complex objects?

We already talked about how the GPU is just a big, mean, triangle-rendering machine. All our 3D
objects, therefore, have to be composed of triangles as well. In the previous chapters, we used two triangles
to represent a flat rectangle. The principles we used there, like vertex positioning, colors, texturing, and
vertex indexing, are exactly the same in 3D. Our triangles are just not limited to lying in the x-y plane
anymore; we can freely specify each vertex’s position in 3D space.

Figure 10-10. Z-fighting in action

Chapter 10 ■ OpenGL eS: GOinG 3D

451

How do you go about creating such soups of triangles that make up a 3D object? We can do that
programmatically, as we’ve done for the rectangles of our sprites. We could also use software that lets us
sculpt 3D objects in a WYSIWYG fashion. There are various paradigms used in those applications, ranging
from manipulating separate triangles to just specifying a few parameters that output a triangle mesh (a fancy
name for a list of triangles).

Prominent software packages such as Blender, 3ds Max, ZBrush, and Wings 3D provide users with tons
of functionality for creating 3D objects. Some of them are free (such as Blender and Wings 3D) and some are
commercial (for example, 3ds Max and ZBrush). It’s not within the scope of this book to teach you how to
use one of these programs. However, all these programs can save the 3D models to different file formats. The
Web is also full of free-to-use 3D models. In the next chapter, we’ll write a loader for one of the simplest and
most common file formats in use.

In this chapter, we’ll do everything programmatically. Let’s create one of the simplest 3D objects
possible: a cube.

A Cube: Hello World in 3D
In the previous three chapters, we’ve made heavy use of the concept of model space. It’s the space in which
to define models; it’s completely unrelated to the world space. We use the convention of constructing all
objects around the model space’s origin so that an object’s center coincides with that origin. Such a model
can then be reused for rendering multiple objects at different locations and with different orientations in
world space, just as in the massive BobTest example in Chapter 7.

The first thing we need to figure out for our cube is its corner points. Figure 10-11 shows a cube with a side
length of 1 unit (for example, 1 meter). We also exploded the cube a little so that we can see that the separate sides
are made up of two triangles each. In reality, the sides would all meet at the edges and corner points, of course.

A cube has six sides, and each side is made up of two triangles. The two triangles of each side share two
vertices. For the front side of the cube, the vertices at (–0.5,0.5,0.5) and (0.5,–0.5,0.5) are shared. We only

Figure 10-11. A cube and its corner points

http://dx.doi.org/10.1007/978-1-4842-0472-6_7

Chapter 10 ■ OpenGL eS: GOinG 3D

452

need four vertices per side; for a complete cube, that’s 6 × 4 = 24 vertices in total. However, we do need to
specify 36 indices, not just 24. That’s because there are 6 × 2 triangles, each using 3 out of our 24 vertices. We
can create a mesh for this cube using vertex indexing, as follows:

float[] vertices = { -0.5f, -0.5f, 0.5f,
 0.5f, -0.5f, 0.5f,
 0.5f, 0.5f, 0.5f,
 -0.5f, 0.5f, 0.5f,

 0.5f, -0.5f, 0.5f,
 0.5f, -0.5f, -0.5f,
 0.5f, 0.5f, -0.5f,
 0.5f, 0.5f, 0.5f,

 0.5f, -0.5f, -0.5f,
 -0.5f, -0.5f, -0.5f,
 -0.5f, 0.5f, -0.5f,
 0.5f, 0.5f, -0.5f,

 -0.5f, -0.5f, -0.5f,
 -0.5f, -0.5f, 0.5f,
 -0.5f, 0.5f, 0.5f,
 -0.5f, 0.5f, -0.5f,

 -0.5f, 0.5f, 0.5f,
 0.5f, 0.5f, 0.5f,
 0.5f, 0.5f, -0.5f,
 -0.5f, 0.5f, -0.5f,

 -0.5f, -0.5f, 0.5f,
 0.5f, -0.5f, 0.5f,
 0.5f, -0.5f, -0.5f,
 -0.5f, -0.5f, -0.5f
};

short[] indices = { 0, 1, 3, 1, 2, 3,
 4, 5, 7, 5, 6, 7,
 8, 9, 11, 9, 10, 11,
 12, 13, 15, 13, 14, 15,
 16, 17, 19, 17, 18, 19,
 20, 21, 23, 21, 22, 23,
};

Vertices3 cube = new Vertices3(glGraphics, 24, 36, false, false);
cube.setVertices(vertices, 0, vertices.length);
cube.setIndices(indices, 0, indices.length);

We are only specifying vertex positions in this code. We start with the front side and its bottom-left
vertex at (–0.5,–0.5,0.5). We then specify the next three vertices of that side, going counterclockwise. The next
side is the right side of the cube, followed by the back side, the left side, the top side, and the bottom side—
all following the same pattern. Compare the vertex definitions with Figure 10-11.

Chapter 10 ■ OpenGL eS: GOinG 3D

453

Next, we define the indices. There are a total of 36 indices—each line in the preceding code defines two
triangles made up of three vertices each. The indices (0, 1, 3, 1, 2, 3) define the front side of the cube, the next
three indices define the left side, and so on. Compare these indices with the vertices given in the preceding
code, as well as with Figure 10-11 again.

Once we define all vertices and indices, we store them in a Vertices3 instance for rendering, which we
do in the last couple of lines of the preceding snippet.

What about texture coordinates? Easy—we just add them to the vertex definitions. Let’s say there is a
128×128 texture containing the image of one side of a crate. We want each side of the cube to be textured
with this image. Figure 10-12 shows how we can do this.

Adding texture coordinates to the front side of the cube would then look like the following in code:

float[] vertices = { -0.5f, -0.5f, 0.5f, 0, 1,
 0.5f, -0.5f, 0.5f, 1, 1,
 0.5f, 0.5f, 0.5f, 1, 0,
 -0.5f, 0.5f, 0.5f, 0, 0,
 // rest is analogous

Of course, we also need to tell the Vertices3 instance that it contains texture coordinates:

Vertices3 cube = new Vertices3(glGraphics, 24, 36, false, true);

All that’s left is to load the texture itself, enable texture mapping with glEnable(), and bind the texture
with Texture.bind(). Let’s write an example.

Figure 10-12. Texture coordinates for each of the vertices of the front, left, and top sides (which are the same
for the other sides as well)

Chapter 10 ■ OpenGL eS: GOinG 3D

454

An Example
We want to create a cube mesh, as shown in the preceding snippets, with the crate texture applied. Since
we model the cube in model space around the origin, we have to use glTranslatef() to move it into world
space, much like we did with Bob’s model in the BobTest example. We also want our cube to spin around the
y axis, which we can achieve by using glRotatef(), again like in the BobTest example. Listing 10-6 shows
the complete code of the CubeScreen class contained in a CubeTest class.

Listing 10-6. Excerpt from CubeTest.java: Rendering a texture cube

class CubeScreen extends GLScreen {
 Vertices3 cube;
 Texture texture;
 float angle = 0;

 public CubeScreen(Game game) {
 super(game);
 cube = createCube();
 texture = new Texture(glGame, "crate.png");
 }

 private Vertices3 createCube() {
 float[] vertices = { -0.5f, -0.5f, 0.5f, 0, 1,
 0.5f, -0.5f, 0.5f, 1, 1,
 0.5f, 0.5f, 0.5f, 1, 0,
 -0.5f, 0.5f, 0.5f, 0, 0,

 0.5f, -0.5f, 0.5f, 0, 1,
 0.5f, -0.5f, -0.5f, 1, 1,
 0.5f, 0.5f, -0.5f, 1, 0,
 0.5f, 0.5f, 0.5f, 0, 0,

 0.5f, -0.5f, -0.5f, 0, 1,
 -0.5f, -0.5f, -0.5f, 1, 1,
 -0.5f, 0.5f, -0.5f, 1, 0,
 0.5f, 0.5f, -0.5f, 0, 0,

 -0.5f, -0.5f, -0.5f, 0, 1,
 -0.5f, -0.5f, 0.5f, 1, 1,
 -0.5f, 0.5f, 0.5f, 1, 0,
 -0.5f, 0.5f, -0.5f, 0, 0,

 -0.5f, 0.5f, 0.5f, 0, 1,
 0.5f, 0.5f, 0.5f, 1, 1,
 0.5f, 0.5f, -0.5f, 1, 0,
 -0.5f, 0.5f, -0.5f, 0, 0,

 -0.5f, -0.5f, 0.5f, 0, 1,
 0.5f, -0.5f, 0.5f, 1, 1,
 0.5f, -0.5f, -0.5f, 1, 0,
 -0.5f, -0.5f, -0.5f, 0, 0
 };

Chapter 10 ■ OpenGL eS: GOinG 3D

455

 short[] indices = { 0, 1, 3, 1, 2, 3,
 4, 5, 7, 5, 6, 7,
 8, 9, 11, 9, 10, 11,
 12, 13, 15, 13, 14, 15,
 16, 17, 19, 17, 18, 19,
 20, 21, 23, 21, 22, 23,
 };

 Vertices3 cube = new Vertices3(glGraphics, 24, 36, false, true);
 cube.setVertices(vertices, 0, vertices.length);
 cube.setIndices(indices, 0, indices.length);
 return cube;
 }

 @Override
 public void resume() {
 texture.reload();
 }

 @Override
 public void update(float deltaTime) {
 angle += 45 * deltaTime;
 }

 @Override
 public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight());
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 GLU.gluPerspective(gl, 67,
 glGraphics.getWidth() / (float) glGraphics.getHeight(),
 0.1f, 10.0f);
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();

 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glEnable(GL10.GL_TEXTURE_2D);
 texture.bind();
 cube.bind();
 gl.glTranslatef(0,0,-3);
 gl.glRotatef(angle, 0, 1, 0);
 cube.draw(GL10.GL_TRIANGLES, 0, 36);
 cube.unbind();
 gl.glDisable(GL10.GL_TEXTURE_2D);
 gl.glDisable(GL10.GL_DEPTH_TEST);
 }

 @Override
 public void pause() {
 }

Chapter 10 ■ OpenGL eS: GOinG 3D

456

 @Override
 public void dispose() {
 }
}

We have a field in which to store the cube’s mesh, a Texture instance, and a float in which to store the
current rotation angle. In the constructor, we create the cube mesh and load the texture from an asset file
called crate.png, a 128×128-pixel image of one side of a crate.

The cube creation code is located in the createCube() method. It just sets up the vertices and indices
and creates a Vertices3 instance from them. Each vertex has a 3D position and texture coordinates.

The resume() method just tells the texture to reload it. Remember, textures must be reloaded after an
OpenGL ES context loss.

The update() method just increases the rotation angle by which we’ll rotate the cube around the y axis.
The present() method first sets the viewport and then clears the framebuffer and depthbuffer. Next,

we set up a perspective projection and load an identity matrix to the model-view matrix of OpenGL ES. We
enable depth testing and texturing, and then we bind the texture as well as the cube mesh. We then use
glTranslatef() to move the cube to the position (0,0,–3) in world space. With glRotatef(), we rotate the
cube in model space around the y axis. Remember that the order in which these transformations get applied
to the mesh is reversed. The cube will first be rotated (in model space), and then the rotated version will
be positioned in world space. Finally, we draw the cube, unbind the mesh, and disable depth testing and
texturing. We don’t need to disable those states; we simply disable them in case we are going to render 2D
elements on top of the 3D scene. Figure 10-13 shows the output of the first real 3D program.

Matrices and Transformations, Again
In Chapter 7, you learned a bit about matrices. Let’s summarize some of their properties as a quick refresher:

•	 A matrix translates points (or vertices, in our case) to a new position. This is achieved
by multiplying the matrix by the point’s position.

•	 A matrix can translate points on each axis by some amount.

Figure 10-13. A spinning texture cube in 3D

http://dx.doi.org/10.1007/978-1-4842-0472-6_7

Chapter 10 ■ OpenGL eS: GOinG 3D

457

•	 A matrix can scale points, meaning that it multiplies each coordinate of a point by
some constant.

•	 A matrix can rotate a point around an axis.

•	 Multiplying an identity matrix by a point has no effect on that point.

•	 Multiplying one matrix by another matrix results in a new matrix. Multiplying a point
by this new matrix will apply both transformations encoded in the original matrices
to that point.

•	 Multiplying a matrix by an identity matrix has no effect on the matrix.

OpenGL ES provides us with three types of matrices:

•	 Projection matrix: This is used to set up the view frustum’s shape and size, which
govern the type of projection and how much of the world is shown.

•	 Model-view matrix: This is used to transform the models in model space and to place
a model in world space.

•	 Texture matrix: This is used to manipulate texture coordinates on the fly, much like
we manipulate vertex position with the model-view matrix. This functionality is
broken on some devices. We won’t use it in this book.

Now that we are working in 3D, we have more options at our disposal. We can, for example, rotate a model
not only around the z axis, as we did with Bob, but also around any arbitrary axis. The only thing that really
changes, though, is the additional z axis we can now use to place our objects. We were actually already working
in 3D when we rendered Bob back in Chapter 7; we just ignored the z axis. But there’s more that we can do.

The Matrix Stack
Up until now, we have used matrices like this with OpenGL ES:

gl.glMatrixMode(GL10.GL_PROJECTION);
gl.glLoadIdentity();
gl.glOrthof(-1, 1, -1, 1, -10, 10);

The first statement sets the currently active matrix. All subsequent matrix operations will be executed
on that matrix. In this case, we set the active matrix to an identity matrix and then multiply it by an
orthographic projection matrix. We did something similar with the model-view matrix:

gl.glMatrixMode(GL10.GL_MODELVIEW);
gl.glLoadIdentity();
gl.glTranslatef(0, 0, -10);
gl.glRotate(45, 0, 1, 0);

This snippet manipulates the model-view matrix. It first loads an identity matrix to clear whatever was
in the model-view matrix before that call. Next, it multiplies the matrix by both a translation matrix and a
rotation matrix. This order of multiplication is important, as it defines in what order these transformations
get applied to the vertices of the meshes. The last transformation specified will be the first to be applied to
the vertices. In the preceding case, we first rotate each vertex by 45 degrees around the y axis. Then, we move
each vertex by –10 units along the z axis.

In both cases, all the transformations are encoded in a single matrix, in either the OpenGL ES projection
matrix or the model-view matrix. But it turns out that for each matrix type, there’s actually a stack of matrices
at our disposal.

http://dx.doi.org/10.1007/978-1-4842-0472-6_7

Chapter 10 ■ OpenGL eS: GOinG 3D

458

For now, we’re only using a single slot in this stack: the top of the stack (TOS). The TOS of a matrix
stack is the slot actually used by OpenGL ES to transform the vertices, be it with the projection matrix or the
model-view matrix. Any matrix below the TOS on the stack just sits there idly, waiting to become the new
TOS. So, how can we manipulate this stack?

OpenGL ES has two methods we can use to push and pop the current TOS:

GL10.glPushMatrix();
GL10.glPopMatrix();

Like glTranslatef() and consorts, these methods always work on the currently active matrix stack that
we set via glMatrixMode().

The glPushMatrix() method takes the current TOS, makes a copy of it, and pushes it on the stack.
The glPopMatrix() method takes the current TOS and pops it from the stack so that the element below it
becomes the new TOS.

Let’s work through a little example:

gl.glMatrixMode(GL10.GL_MODELVIEW);
gl.glLoadIdentity();
gl.glTranslate(0,0,-10);

Up until this point, there has only been a single matrix on the model-view matrix stack. Let’s “save” this
matrix:

gl.glPushMatrix();

Now, we’ve made a copy of the current TOS and pushed down the old TOS. We have two matrices on
the stack now, each encoding a translation on the z axis by –10 units.

gl.glRotatef(45, 0, 1, 0);
gl.glScalef(1, 2, 1);

Since matrix operations always work on the TOS, we now have a scaling operation, a rotation, and a
translation encoded in the top matrix. The matrix we pushed still only contains a translation. When we now
render a mesh given in model space, like our cube, it will first be scaled on the y axis, then rotated around
the y axis, and then translated by –10 units on the z axis. Now, let’s pop the TOS:

gl.glPopMatrix();

This will remove the TOS and make the matrix below it the new TOS. In our example, that’s the original
translation matrix. After this call, there’s only one matrix on the stack again—the one initialized in the
beginning of the example. If we render an object now, it will only be translated by –10 units on the z axis.
The matrix containing the scaling, rotation, and translation is gone because we popped it from the stack.
Figure 10-14 shows what happens to the matrix stack when we execute the preceding code.

Chapter 10 ■ OpenGL eS: GOinG 3D

459

So, what’s this good for? The first thing we can use it for is to remember transformations that should be
applied to all the objects in our world. Say we want all objects in our world to be offset by 10 units on each
axis; we could do the following:

gl.glMatrixMode(GL10.GL_MODELVIEW);
gl.glLoadIdentity();
gl.glTranslatef(10, 10, 10);
for(MyObject obj: myObjects) {
 gl.glPushMatrix();
 gl.glTranslatef(obj.x, obj.y, obj.z);
 gl.glRotatef(obj.angle, 0, 1, 0);
 // render model of object given in model space, e.g., the cube
 gl.glPopMatrix();
}

We will use this pattern later in the chapter when we discuss how to create a camera system in 3D. The
camera position and orientation are usually encoded as a matrix. We will load this camera matrix, which will
transform all objects in such a way that we see them from the camera’s point of view. There’s something even
better we can use the matrix stack for, though.

Hierarchical Systems with the Matrix Stack
What’s a hierarchical system? Our solar system is an example of one. In the center is the sun. Around the sun
are the planets orbiting it at certain distances. Around some planets are one or more moons that orbit the
planet itself. The sun, the planets, and the moons all rotate around their own centers (sort of). We can build
such a system with the matrix stack.

The sun has a position in our world and rotates around itself. All planets move with the sun, so if the sun
changes position, the planets must change position as well. We can use glTranslatef() to position the sun
and glRotatef() to let the sun rotate around itself.

Each planet has a position relative to the sun and rotates around itself as well as around the sun.
Rotating a planet around itself can be done via glRotatef(), and rotating it around the sun can be done
by using glTranslatef() and glRotatef(). Letting the planet move with the sun can be done by using an
additional glTranslatef().

Each moon has a position relative to the planet it orbits, and rotates around itself as well as around its
planet. Rotating a moon around itself can be done via glRotatef(), and rotating it around its planet can
be done by using glTranslatef() and glRotatef(). Letting the moon move with its planet can be done by
using glTranslatef(). Since the planet moves with the sun, the moon must also move with the sun, which
can again be done via a call to glTranslatef().

Figure 10-14. Manipulating the matrix stack

Chapter 10 ■ OpenGL eS: GOinG 3D

460

We have so-called parent-child relationships here. The sun is a parent of each planet, and each planet
is a parent of each of its moons. Each planet is a child of the sun, and each moon is a child of its planet. This
means that the position of a child is always given relative to its parent, not relative to the world’s origin.

The sun has no parent, so its position is indeed given relative to the world’s origin. A planet is a child
of the sun, so its position is given relative to the sun. A moon is a child of a planet, so its position is given
relative to its planet. We can think of each parent’s center as being the origin of the coordinate system in
which we specify that parent’s children.

The self-rotation of each of the objects in the system is independent of its parent. The same would be
true if we wanted to scale an object. These things are given relative to their center. This is essentially the
same as the model space.

A Simple Crate Solar System
Let’s create a little example, a very simple crate solar system. There is one crate in the center of the system
located at (0,0,5) in the world’s coordinate system. Around this “sun” crate, we want to have a “planet” crate
orbiting that sun at a distance of 3 units. The planet crate should also be smaller than the sun crate, so we’ll
scale it down to 0.2 units. Around the planet crate, we want to have a “moon” crate. The distance between
the planet crate and the moon crate should be 1 unit, and the moon crate will also be scaled down, say to 0.1
units. The planet crate and the moon crate rotate around their respective parent in the x-z plane, and all the
objects rotate around their own y axis. Figure 10-15 shows the basic setup of our scene.

The HierarchicalObject Class
Let’s define a simple class that can encode a generic solar system object with the following properties:

•	 A position relative to its parent’s center

•	 A rotation angle around the parent

Figure 10-15. The crate system

Chapter 10 ■ OpenGL eS: GOinG 3D

461

•	 A rotation angle around its own y axis

•	 A scale

•	 A list of children

•	 A reference to a Vertices3 instance to be rendered

Our HierarchicalObject instance should update its rotation angles and its children, and render itself
and all its children. This is a recursive process since each child will render its own children. We will use
glPushMatrix() and glPopMatrix() to save a parent’s transformations so that children will move along with
the parent. Listing 10-7 shows the code.

Listing 10-7. HierarchicalObject.java, representing an object in the crate system

package com.badlogic.androidgames.gl3d;

import java.util.ArrayList;
import java.util.List;

import javax.microedition.khronos.opengles.GL10;

import com.badlogic.androidgames.framework.gl.Vertices3;

public class HierarchicalObject {
 public float x, y, z;
 public float scale = 1;
 public float rotationY, rotationParent;
 public boolean hasParent;
 public final List<HierarchicalObject> children = new ArrayList<HierarchicalObject>();
 public final Vertices3 mesh;

The first three members encode the position of the object relative to its parent (or relative to the world’s
origin, if the object has no parent). The next member stores the scale of the object. The rotationY member
stores the rotation of the object around itself, and the rotationParent member stores the rotation angle
around the parent’s center. The hasParent member indicates whether this object has a parent or not. If it
doesn’t, then we don’t have to apply the rotation around the parent. This is true for the “sun” in our system.
Finally, we have a list of children, followed by a reference to a Vertices3 instance, which holds the mesh of
the cube we use to render each object.

public HierarchicalObject(Vertices3 mesh, boolean hasParent) {
 this.mesh = mesh;
 this.hasParent = hasParent;
}

The constructor just takes a Vertices3 instance and a Boolean indicating whether this object has a
parent or not.

public void update(float deltaTime) {
 rotationY += 45 * deltaTime;
 rotationParent += 20 * deltaTime;
 int len = children.size();
 for (int i = 0; i < len; i++) {

Chapter 10 ■ OpenGL eS: GOinG 3D

462

 children.get(i).update(deltaTime);
 }
}

In the update() method, we first update the rotationY and rotationParent members. Each object will
rotate by 45 degrees per second around itself and by 20 degrees per second around its parent. We also call
the update() method recursively for each child of the object.

 public void render(GL10 gl) {
 gl.glPushMatrix();
 if (hasParent)
 gl.glRotatef(rotationParent, 0, 1, 0);
 gl.glTranslatef(x, y, z);
 gl.glPushMatrix();
 gl.glRotatef(rotationY, 0, 1, 0);
 gl.glScalef(scale, scale, scale);
 mesh.draw(GL10.GL_TRIANGLES, 0, 36);
 gl.glPopMatrix();

 int len = children.size();
 for (int i = 0; i < len; i++) {
 children.get(i).render(gl);
 }
 gl.glPopMatrix();
 }
}

The render() method is where it gets interesting. The first thing we do is push the current TOS of the
model-view matrix, which will be set active outside of the object. Since this method is recursive, we will save
the parent’s transformations by this.

Next, we apply the transformations that rotate the object around the parent and place it relative to the
parent’s center. Remember that transformations are executed in reverse order, so we actually first place the
object relative to the parent and then rotate it around the parent. The rotation is executed only if the object
actually has a parent. The sun crate doesn’t have a parent, so we don’t rotate it. These are transformations
that are relative to the parent of the object and that will also apply to the children of the object. Moving the
planet crate around the sun crate also moves the “attached” moon crate.

The next thing we do is push the TOS again. Up until this point, it has contained the parent’s
transformation and the object’s transformation relative to the parent. We need to save this matrix since it’s
also going to be applied to the object’s children. The self-rotation of the object and its scaling do not apply to
the children, and that’s why we perform this operation on a copy of the TOS (which we created by pushing
the TOS). After applying the self-rotation and the scaling transformation, we can render this object with the
crate mesh to which it stores a reference. Let’s think about what will happen to the vertices given in model
space due to the TOS matrix. Remember the order in which transformations are applied: last to first.

The crate will be scaled to the appropriate size first. The next transformation that gets applied is the
self-rotation. These two transformations are applied to the vertices in model space. Next, the vertices will be
translated to the position relative to the object’s parent. If this object has no parent, we’ll effectively translate
the vertices to the world space. If it has a parent, we’ll translate the vertices to the parent’s space, with the
parent being at the origin. We will also rotate the object around the parent, if it has one, in parent space. If
you unroll the recursion, you will see that we also apply the transformations of this object’s parent, and so
on. Through this mechanism, a moon crate will first be placed into a parent’s coordinate system, and then
into the sun crate’s coordinate system, which is equivalent to world space.

Chapter 10 ■ OpenGL eS: GOinG 3D

463

After we are done rendering the current object, we pop the TOS so that the new TOS only contains the
transformation and rotation of the object relative to its parent. We don’t want the children to also have the
“local” transformations of the object applied to them (that is, rotation around the object’s y axis and object
scale). All that’s left is recursing into the children.

 ■ Note We should actually encode the position of the HierarchicalObject instance in the form of a vector so that
we can work with it more easily. however, we have yet to write a Vector3 class. We will do that in the next chapter.

Putting It All Together
Let’s use this HierarchicalObject class in a proper program. For this, simply copy over the code from the
CubeTest class in Listing 10-6, which also contains the createCube() method that we’ll reuse. Rename the
class HierarchyTest and also rename the CubeScreen to HierarchyScreen. All we need to do is create our
object hierarchy and call the HierarchicalObject.update() and HierarchicalObject.render() methods
in the appropriate places. Listing 10-8 shows the portions of HierarchyTest that are relevant.

Listing 10-8. Excerpt from HierarchyTest.java: Implementing a simple hierarchical system

class HierarchyScreen extends GLScreen {
 Vertices3 cube;
 Texture texture;
 HierarchicalObject sun;

We only added a single new member to the class, called sun. It represents the root of the object
hierarchy. Since all other objects are stored as children inside this sun object, we don’t need to store them
explicitly.

 public HierarchyScreen(Game game) {
 super(game);
 cube = createCube();
 texture = new Texture(glGame, "crate.png");

 sun = new HierarchicalObject(cube, false);
 sun.z = -5;

 HierarchicalObject planet = new HierarchicalObject(cube, true);
 planet.x = 3;
 planet.scale = 0.2f;
 sun.children.add(planet);

 HierarchicalObject moon = new HierarchicalObject(cube, true);
 moon.x = 1;
 moon.scale = 0.1f;
 planet.children.add(moon);
 }

In the constructor, we set up the hierarchical system. First, we load the texture and create the cube mesh
to be used by all the objects. Next, we create the sun crate. It does not have a parent, and it is located at (0,0,–5)
relative to the world’s origin (where the virtual camera sits). Next, we create the planet crate orbiting the sun.

Chapter 10 ■ OpenGL eS: GOinG 3D

464

It’s located at (0,0,3) relative to the sun, and it has a scale of 0.2. Since the planet crate has a side length of 1 in
model space, this scaling factor will make it render with a side length of 0.2 units. The crucial step here is that
we add the planet crate to the sun crate as a child. For the moon crate, we do something similar. It is located
at (0,0,1) relative to the planet crate, and it has a scale of 0.1 units. We also add it as a child to the planet crate.
Refer to Figure 10-15, which uses the same unit system, to get a picture of the setup.

@Override
public void update(float deltaTime) {
 sun.update(deltaTime);
}

In the update() method, we simply tell the sun crate to update itself. It will recursively call the same
methods of all its children, which in turn call the same methods of all their children, and so on. This will
update the rotation angles of all objects in the hierarchy.

 @Override
 public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight());
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 GLU.gluPerspective(gl, 67, glGraphics.getWidth()
 / (float) glGraphics.getHeight(), 0.1f, 10.0f);
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glTranslatef(0, -2, 0);

 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glEnable(GL10.GL_TEXTURE_2D);
 texture.bind();
 cube.bind();

 sun.render(gl);

 cube.unbind();
 gl.glDisable(GL10.GL_TEXTURE_2D);
 gl.glDisable(GL10.GL_DEPTH_TEST);
 }
// rest as in CubeScreen

Finally, we have the render() method. We start off with the usual setting of the viewport and clearing of
the framebuffer and depthbuffer. We also set up a perspective projection matrix and load an identity matrix
to the model-view matrix of OpenGL ES. The call to glTranslatef() afterward is interesting: it will push
our solar system down by 2 units on the y axis. This way, we sort of look down on the system. This could be
thought of as actually moving the camera up by 2 units on the y axis. This interpretation is actually the key to
a proper camera system, which we’ll investigate in the next section, “A Simple Camera System.”

Once we have all the basics set up, we enable depth testing and texturing, bind the texture and the cube
mesh, and tell the sun to render itself. Since all the objects in the hierarchy use the same texture and mesh,
we only need to bind these once. This call will render the sun and all of its children recursively, as outlined
in the previous section. Finally, we disable depth testing and texturing, just for fun. Figure 10-16 shows the
output of our program.

Chapter 10 ■ OpenGL eS: GOinG 3D

465

Great, everything works as expected. The sun is rotating only around itself. The planet is orbiting the
sun at a distance of 3 units. It is also rotating around itself and is 20 percent as big as the sun. The moon
orbits the planet, but also moves along with it around the sun due to the use of the matrix stack. It also has
local transformations in the form of self-rotation and scaling.

The HierarchicalObject class is generic enough that you can play around with it. Add more planets
and moons, and maybe even moons of moons. Go crazy with the matrix stack until you get the hang of it. It’s
again something you can learn only through a lot of practice. You need to be able to visualize in your brain
what’s actually going on when combining all the transformations.

 ■ Note Don’t go too crazy with the matrix stack. it has a maximum depth, usually between 16 and 32
entries, depending on the GpU/driver. Four hierarchy levels are the most we’ve ever had to use in an application.

A Simple Camera System
In the previous example, we saw a hint of how we could implement a camera system in 3D. We used
glTranslatef() to push down the complete world by 2 units on the y axis. Since the camera is fixed to be
at the origin, looking down the negative z axis, this approach gives the impression that the camera itself was
moved up by 2 units. All the objects are still defined with their y coordinates set to 0.

Instead of actually moving the camera, we need to move the world around. Say we want our camera to
be at position (10,4,2). All we need to do is use glTranslatef() as follows:

gl.glTranslatef(-10,-4,-2);

If we wanted our camera to be rotated around its y axis by 45 degrees, we could do the following:

gl.glRotatef(-45,0,1,0);

Figure 10-16. Our crate solar system in action

Chapter 10 ■ OpenGL eS: GOinG 3D

466

We can also combine these two steps, just as we do for “normal” objects:

gl.glTranslatef(-10,-4,-2);
gl.glRotatef(-45,0,1,0);

The secret is to invert the arguments to the transformation methods. Let’s think about it using the
preceding example. We know that our “real” camera is doomed to sit at the origin of the world, looking down
the z axis. By applying inverse camera transformations, we bring the world into the camera’s fixed view.
Using a virtual camera rotated around the y axis by 45 degrees is the same as fixing the camera and rotating
the world around the camera by –45 degrees. The same is true for translation. Our virtual camera could be
placed at (10,4,2). However, since our real camera is fixed at the origin of the world, we just need to translate
all objects by the inverse of that position vector, which is (–10,–4,–2).

When we replace the following three lines of the previous example’s present() method,

gl.glMatrixMode(GL10.GL_MODELVIEW);
gl.glLoadIdentity();
gl.glTranslatef(0, -2, 0);

with these four lines

gl.glMatrixMode(GL10.GL_MODELVIEW);
gl.glLoadIdentity();
gl.glTranslatef(0, -3, 0);
gl.glRotatef(45, 1, 0, 0);

we get the output shown in Figure 10-17.

Conceptually, our camera is now located at (0,3,0), and it looks down at our scene at a –45 degree angle
(which is the same as rotating the camera by –45 degrees around the x axis). Figure 10-18 shows the setup of
our scene with the camera.

Figure 10-17. Looking down at our world from (0,3,0)

Chapter 10 ■ OpenGL eS: GOinG 3D

467

We could actually specify a very simple camera with four attributes:

•	 Its position in world space.

•	 Its rotation around its x axis (pitch). This is equivalent to tilting your head up and
down.

•	 Its rotation around its y axis (yaw). This is equivalent to turning your head left and right.

•	 Its rotation around its z axis (roll). This is equivalent to tilting your head to the left
and right.

Given these attributes, we can use OpenGL ES methods to create a camera matrix. This is called a Euler
rotation camera. Many first-person shooter games use this kind of camera to simulate the tilting of a head.
Usually, you’d leave out the roll and only apply the yaw and pitch. The order in which the rotations are
applied is important. For a first-person shooter, you’d first apply the pitch rotation and then the yaw rotation:

gl.glTranslatef(-cam.x,- cam.y,-cam.z);
gl.glRotatef(cam.yaw, 0, 1, 0);
gl.glRotatef(cam.pitch, 1, 0, 0);

Many games still use this very simplistic camera model. If the roll rotation had been included, you might
observe an effect called gimbal lock. This effect will cancel out one of the rotations given a certain configuration.

 ■ Note explaining gimbal lock with text or even images is very difficult. Since we’ll only use yaw and pitch,
we won’t have this problem. to get an idea of what gimbal lock actually is, look it up on your favorite video site
on the Web. this problem can’t be solved with euler rotations. the actual solution is mathematically complex,
and we won’t go into that in this book.

Figure 10-18. How the camera is positioned and oriented in the scene

Chapter 10 ■ OpenGL eS: GOinG 3D

468

A second approach to a very simple camera system is the use of the GLU.glLookAt() method:

GLU.gluLookAt(GL10 gl,
 float eyeX, float eyeY, float eyeZ,
 float centerX, float centerY, float centerZ,
 float upX, float upY, float upZ);

Like the GLU.gluPerspective() method, GLU.glLookAt() will multiply the currently active matrix by a
transformation matrix. In this case, it’s a camera matrix that will transform the world:

•	 gl is just the GL10 instance used throughout the rendering.

•	 eyeX, eyeY, and eyeZ specify the camera’s position in the world.

•	 centerX, centerY, and centerZ specify a point in the world that the camera looks at.

•	 upX, upY, and upZ specify the up vector. Think of it as an arrow coming out at the top
of your skull, pointing upward. Tilt your head to the left or right and the arrow will
point in the same direction as the top of your head.

The up vector is usually set to (0,1,0), even if that’s not entirely correct. The gluLookAt() method can
renormalize this up vector in most cases. Figure 10-19 shows our scene with the camera at (3,3,0), looking at
(0,0,–5), as well as its “real” up vector.

We can replace the code in the HierarchyScreen.present() method we changed before with the
following code snippet:

gl.glMatrixMode(GL10.GL_MODELVIEW);
gl.glLoadIdentity();
GLU.gluLookAt(gl, 3, 3, 0, 0, 0, -5, 0, 1, 0);

Figure 10-19. Our camera at position (3,3,0), looking at (0,0,–3)

Chapter 10 ■ OpenGL eS: GOinG 3D

469

This time, we also commented out the call to sun.update(), so the hierarchy will look like the one
shown in Figure 10-19. Figure 10-20 shows the result of using the camera.

This kind of camera is great when you want to follow a character or want better control over how you
view the scene, which can be done by specifying the camera’s position and look-at point. For now, that’s all
you need to know about cameras. In the next chapter, we’ll write two simple classe—one for a first-person
shooter–type camera and one for a look-at camera that can follow an object.

Summary
You should now know the basics of 3D graphics programming with OpenGL ES. You learned how to set up
a perspective view frustum, how to specify 3D vertex positions, and what the z-buffer is. You also saw how
the z-buffer can be both friend and foe, depending on whether it is used correctly. You created your first 3D
object, a texture cube, which turned out to be really easy. Finally, you learned a little bit more about matrices
and transformations and how to create a hierarchical and very simple camera system. You’ll be happy to
know that this was not even the tip of the iceberg. In the next chapter, we’ll revisit a couple of topics from
Chapter 8 in the context of 3D graphics programming. We’ll also introduce a few new tricks that will come
in handy when you write our final game. We highly recommend playing around with the examples in this
chapter. Create new shapes and go crazy with transformations and the camera systems.

Figure 10-20. The camera in action

http://dx.doi.org/10.1007/978-1-4842-0472-6_8

471© Mario Zechner, J. F. DiMarzio and Robert Green 2016
M. Zechner et al., Beginning Android Games, DOI 10.1007/978-1-4842-0472-6_11

CHAPTER 11

3D Programming Tricks

3D programming is an incredibly wide and complex field. This chapter explores some topics that are the
absolute minimum requirement in order to write a simple 3D game:

•	 We’ll revisit our friend the vector and attach one more coordinate.

•	 Lighting is a vital part of any 3D game. We’ll look at how to perform simple lighting
with OpenGL ES.

•	 Defining objects programmatically is cumbersome. We’ll look at a simple 3D
file format so that we can load and render 3D models created with 3D modeling
software.

•	 In Chapter 8, we discussed object representation and collision detection. We’ll look
at how to do the same in 3D.

•	 We’ll also briefly revisit some of the physics concepts that we explored in Chapter
8—this time in a 3D context.

Let’s start with 3D vectors.

Before We Begin
As always, we’ll create a couple of simple example programs in this chapter. To do that, we just create a new
project and copy over all of the source code of the framework we’ve developed so far.

As in previous chapters, we’ll have a single test starter activity that presents us with the tests in the
form of a list. We’ll call it GLAdvancedStarter and make it our default activity. Simply copy over the
GL3DBasicsStarter and replace the class names of the tests. We also need to add each of the test activities to
the manifest with a proper <activity> element.

Each of the tests will extend GLGame as usual; the actual code will be implemented as a GLScreen
instance that we’ll hook up with the GLGame instance. As in Chapter 10, to conserve space we’ll present only
the relevant portions of the GLScreen implementations. All of the tests and the starter activity reside within
the package com.badlogic.androidgames.gladvanced. Some of the classes will be part of our framework
and will go into the respective framework packages.

Vectors in 3D
In Chapter 8, we discussed vectors and their interpretation in 2D. As you might have guessed, all of the
things we discussed there still hold in 3D space. All we need to do is to add one more coordinate to our
vector, namely the z coordinate.

http://dx.doi.org/10.1007/978-1-4842-0472-6_8
http://dx.doi.org/10.1007/978-1-4842-0472-6_8
http://dx.doi.org/10.1007/978-1-4842-0472-6_10
http://dx.doi.org/10.1007/978-1-4842-0472-6_8

Chapter 11 ■ 3D programming triCks

472

The operations we looked at with vectors in 2D can be easily transferred to 3D space. We specify vectors
in 3D with a statement like the following:

v = (x,y,z)

Addition in 3D is carried out as follows:

c = a + b = (a.x, a.y, b.z) + (b.x, b.y, b.z) = (a.x + b.x, a.y + b.y, a.z + b.z)

Subtraction works exactly the same way:

c = a – b = (a.x, a.y, b.z) – (b.x, b.y, b.z) = (a.x – b.x, a.y – b.y, a.z – b.z)

Multiplying a vector by a scalar works like this:

a' = a * scalar = (a.x * scalar, a.y * scalar, a.z * scalar)

Measuring the length of a vector in 3D is also quite simple; we just add the z coordinate to the
Pythagorean equation:

|a| = sqrt(a.x * a.x + a.y * a.y + a.z * a.z)

Based on this, we can also normalize our vectors to unit length again:

a' = (a.x / |a|, a.y / |a|, a.z / |a|)

All of the interpretations of vectors we talked about in Chapter 8 hold in 3D as well:

•	 Positions are just denoted by a normal vector’s x, y, and z coordinates.

•	 Velocities and accelerations can also be represented as 3D vectors. Each component
then represents a certain quantity of the attribute on one axis, such as meters per second
(m/s) in the case of velocity or meters per second per second (m/s2) for acceleration.

•	 We can represent directions (or axes) as simple 3D unit vectors. We did that in
Chapter 8 when we used the rotation facilities of OpenGL ES.

•	 We can measure distances by subtracting the starting vector from the end vector and
measuring the resulting vector’s length.

One more operation that can be rather useful is the rotation of a 3D vector around a 3D axis. We used
this principle earlier via the OpenGL ES glRotatef() method. However, we can’t use it to rotate one of
the vectors that we’ll use to store the positions or directions of our game objects, because it only works
on vertices that we submit to the GPU. Luckily, there’s a Matrix class in the Android API that allows us to
emulate what OpenGL ES does on the GPU. Let’s write a Vector3 class that implements all of these features.
Listing 11-1 shows the code, which we’ll again explain along the way.

Listing 11-1. Vector3.java, a vector in 3D

package com.badlogic.androidgames.framework.math;

import android.opengl.Matrix;
import android.util.FloatMath;

public class Vector3 {
 private static final float[] matrix = new float[16];
 private static final float[] inVec = new float[4];
 private static final float[] outVec = new float[4];
 public float x, y, z;

The class starts with a couple of private static final float arrays. We’ll need them later on when we
implement the new rotate() method of our Vector3 class. Just remember that the matrix member has 16
elements and the inVec and outVec members each have 4 elements. We create those three arrays so that we

http://dx.doi.org/10.1007/978-1-4842-0472-6_8
http://dx.doi.org/10.1007/978-1-4842-0472-6_8

Chapter 11 ■ 3D programming triCks

473

don’t have to create them later on, all the time. This will keep the garbage collector happy. Just remember
that by doing so, the Vector3 class is not thread safe!

The x, y, and z members defined next should be self-explanatory. They store the actual components of
the vector:

public Vector3() {
}

public Vector3(float x, float y, float z) {
 this.x = x;
 this.y = y;
 this.z = z;
}

public Vector3(Vector3 other) {
 this.x = other.x;
 this.y = other.y;
 this.z = other.z;
}

public Vector3 cpy() {
return new Vector3(x, y, z);
}

public Vector3 set(float x, float y, float z) {
 this.x = x;
 this.y = y;
 this.z = z;
 return this;
}

public Vector3 set(Vector3 other) {
 this.x = other.x;
 this.y = other.y;
 this.z = other.z;
 return this;
}

Like Vector2, our Vector3 class has a couple of constructors and setters, as well as a cpy() method so
that we can easily clone vectors or set them from components calculated in our program.

public Vector3 add(float x, float y, float z) {
 this.x += x;
 this.y += y;
 this.z += z;
 return this;
}

public Vector3 add(Vector3 other) {
 this.x += other.x;
 this.y += other.y;
 this.z += other.z;
 return this;
}

Chapter 11 ■ 3D programming triCks

474

public Vector3 sub(float x, float y, float z) {
 this.x -= x;
 this.y -= y;
 this.z -= z;
 return this;
}

public Vector3 sub(Vector3 other) {
 this.x -= other.x;
 this.y -= other.y;
 this.z -= other.z;
 return this;
}

public Vector3 mul(float scalar) {
 this.x *= scalar;
 this.y *= scalar;
 this.z *= scalar;
 return this;
}

The various add(), sub(), and mul() methods are just an extension of what we had in our Vector2 class
with an additional z coordinate. They implement what we discussed a few pages ago. Straightforward, right?

public float len() {
 return (float)Math.sqrt(x * x + y * y + z * z);
}

public Vector3 nor() {
 float len = len();
 if (len != 0) {
 this.x /= len;
 this.y /= len;
 this.z /= len;
 }
 return this;
}

The len() and nor() methods are also essentially the same as in the Vector2 class. All we do is
incorporate the new z coordinate into the calculations.

public Vector3 rotate(float angle, float axisX, float axisY, float axisZ) {
 inVec[0] = x;
 inVec[1] = y;
 inVec[2] = z;
 inVec[3] = 1;
 Matrix.setIdentityM(matrix, 0);
 Matrix.rotateM(matrix, 0, angle, axisX, axisY, axisZ);
 Matrix.multiplyMV(outVec, 0, matrix, 0, inVec, 0);
 x = outVec[0];
 y = outVec[1];
 z = outVec[2];
 return this;
}

Chapter 11 ■ 3D programming triCks

475

And here’s our new rotate() method. As indicated earlier, it makes use of Android’s Matrix class. The
Matrix class essentially consists of a couple of static methods, like Matrix.setIdentityM() and Matrix.
rotateM(). These operate on float arrays, similar to the ones we defined earlier. A matrix is stored as 16 float
values, and a vector is expected to have four elements. We won’t go into detail about the inner workings of
the class; all we need is a way to emulate the matrix capabilities of OpenGL ES on the Java side, and that’s
exactly what this class offers to us. All of the methods work on a matrix and operate in exactly the same way
as glRotatef(), glTranslatef(), and glIdentityf() in OpenGL ES.

The rotate() method starts off by setting the vector’s components to the inVec array we defined earlier.
Next, we call Matrix.setIdentityM() on the matrix member of our class. This will “clear” the matrix. With
OpenGL ES, we used glIdentityf() to do the same thing with matrices residing on the GPU. Next, we call
Matrix.rotateM(). It takes as parameters the float array holding the matrix, an offset into that array, the angle
we want to rotate by in degrees, and the (unit length) axis we want to rotate around. This method is equivalent
to glRotatef(). It will multiply the given matrix by a rotation matrix. Finally, we call Matrix.multiplyMV(),
which will multiply our vector stored in inVec by the matrix. This applies all of the transformations stored in
the matrix to the vector. The result will be output in outVec. The rest of the method just grabs the resulting
new components from the outVec array and stores them in the Vector3 class’s members.

 ■ Note You can use the Matrix class to do a lot more than just rotate vectors. it operates in exactly the
same way as opengL es in its effects on the passed-in matrix.

 public float dist(Vector3 other) {
 float distX = this.x - other.x;
 float distY = this.y - other.y;
 float distZ = this.z - other.z;
 return (float)Math.sqrt(distX * distX + distY * distY + distZ * distZ);
 }

 public float dist(float x, float y, float z) {
 float distX = this.x - x;
 float distY = this.y - y;
 float distZ = this.z - z;
 return (float)Math.sqrt(distX * distX + distY * distY + distZ * distZ);
 }

 public float distSquared(Vector3 other) {
 float distX = this.x - other.x;
 float distY = this.y - other.y;
 float distZ = this.z - other.z;
 return distX * distX + distY * distY + distZ * distZ;
 }

 public float distSquared(float x, float y, float z) {
 float distX = this.x - x;
 float distY = this.y - y;
 float distZ = this.z - z;
 return distX * distX + distY * distY + distZ * distZ;
 }
}

Chapter 11 ■ 3D programming triCks

476

Finally, we have the usual dist() and distSquared() methods to calculate the distance between two
vectors in 3D.

Note that we left out the angle() method we saw in Vector2. While it is possible to measure the angle
between two vectors in 3D, that does not give us an angle in the range 0 to 360. Usually, we get away with
just evaluating the angle between two vectors in the x/y, z/y, and x/z planes by using only two components
of each vector and applying the Vector2.angle() method. We won’t need this functionality until our last
game, so we’ll return to the topic at that point.

An explicit example of using this class isn’t necessary. We can just invoke it the same way we did with
the Vector2 class in Chapter 8. On to the next topic: lighting in OpenGL ES.

Lighting in OpenGL ES
Lighting in OpenGL ES is a useful feature that can give our 3D games a nice touch. To use this functionality,
we have to have an idea of the OpenGL ES lighting model.

How Lighting Works
Let’s think about how lighting works for a moment. The first thing we need is a light source to emit light.
We also need an object that can be lit. Finally, we need a sensor, like our eyes or a camera, that will catch
the photons that are sent out by the light source and are reflected back by the object. Lighting changes the
perceived color of an object depending on the following:

•	 The light source’s type

•	 The light source’s color and intensity

•	 The light source’s position and direction relative to the lit object

•	 The object’s material and texture

The intensity with which light is reflected by an object can depend on various factors. We are mostly
concerned with the angle at which a light ray hits a surface. The more perpendicular a light ray is to a surface
it hits, the greater the intensity of the light reflected by the surface. Figure 11-1 illustrates this point.

Figure 11-1. The more perpendicular a light ray is to a surface, the greater the intensity of the reflected light.

http://dx.doi.org/10.1007/978-1-4842-0472-6_8

Chapter 11 ■ 3D programming triCks

477

Once a light ray hits a surface, it is reflected in two different ways. Most of the light is reflected diffusely,
which means that the reflected light rays are scattered randomly by irregularities of the object’s surface.
Some reflections are specular, which means that the light rays bounce back as if they had hit a perfect mirror.
Figure 11-2 shows the difference between diffuse and specular reflection.

Specular reflection will manifest itself as highlights on objects. Whether an object will cast specular
reflections depends on its material. Objects with rough or uneven surfaces, like skin or fabric, are unlikely to
have specular highlights. Objects that have a smooth surface, like glass or a marble, do exhibit these lighting
artifacts. Of course, glass or marble surfaces aren’t really smooth in an absolute sense, either. Relative to
materials like wood or human skin, though, they are very smooth.

When light hits a surface, its reflection also changes color depending on the chemical constitution of the
object it hits. The objects we see as red, for example, are those that reflect only the red portions of light. The object
“swallows” all other wavelengths. A black object is one that swallows almost all of the light that is shone on it.

OpenGL ES allows us to simulate this real-world behavior by specifying light sources and materials of
objects.

Light Sources
We are surrounded by all kinds of light sources. The sun constantly throws photons at us. Our monitors emit
light, surrounding us with that nice blue glow at night. Light bulbs and headlights keep us from bumping or
driving into things in the dark. OpenGL ES enables us to create four types of light sources:

•	 Ambient light: Ambient light is not a light source per se but rather is the result
of photons coming from other light sources and bouncing around in our world.
The combination of all of these stray photons makes for a certain default level of
illumination that is directionless and illuminates all objects equally.

•	 Point lights: These have a position in space and emit light in all directions. A light
bulb is a point light, for example.

•	 Directional lights: These are expressed as directions in OpenGL ES and are assumed
to be infinitely far away. The sun can be idealized as a directional light source. We
can assume that the light rays coming from the sun all hit the Earth at the same angle
because of the distance between the earth and the sun.

•	 Spotlights: These are similar to point lights in that they have an explicit position in
space. Additionally, they have a direction in which they shine and create a light cone
that is limited to some radius. A street lamp is a spotlight.

Figure 11-2. Diffuse and specular reflection

Chapter 11 ■ 3D programming triCks

478

We’ll only look into ambient, point, and directional lights. Spotlights are often hard to get right with
limited GPUs like those found on Android devices because of the way OpenGL ES calculates the lighting.
You’ll see why that is in a minute.

Besides a light source’s position and direction, OpenGL ES lets us also specify the color or intensity of a
light. This is expressed as an RGBA color. However, OpenGL ES requires us to specify four different colors per
light source instead of just one:

•	 Ambient: This is the intensity/color that contributes to the overall shading of an
object. An object will be uniformly lit with this color, no matter its position or
orientation relative to the light source.

•	 Diffuse: This is the intensity/color with which an object will be lit when calculating
the diffuse reflection. Sides of an object that do not face the light source won’t be lit,
just as in real life.

•	 Specular: This intensity/color is similar to the diffuse color. However, it will only
affect spots on the object that have a certain orientation toward the viewer and the
light source.

•	 Emissive: This is totally confusing and has very little use in real-world applications,
so we won’t go into it.

Usually, we’ll only set the diffuse and specular intensities of a light source and leave the other two at their
defaults. We’ll also use the same RGBA color for both the diffuse and specular intensities most of the time.

Materials
Every object in our world has a material covering. The material not only defines how the light that is hitting
the object will be reflected but also modifies the color of the reflected light. OpenGL ES lets us specify the
same four RGBA colors for a material as we can for a light source:

•	 Ambient: This is the color that’s combined with the ambient color of any light source
in the scene.

•	 Diffuse: This is the color that’s combined with the diffuse color of any light source.

•	 Specular: This is the color that’s combined with the specular color of any light source
for specular highlight points on an object’s surface.

•	 Emissive: We again ignore this as it has little use in our context.

Figure 11-3 illustrates the first three types of material/light source properties: ambient, diffuse, and
specular.

Figure 11-3. Different material/light types. Left: ambient only. Center: Diffuse only. Right: Ambient and
diffuse with specular highlight

Chapter 11 ■ 3D programming triCks

479

In Figure 11-3, we can see the contributions of the different material and light properties. Ambient light
illuminates the object uniformly. Diffuse light will be reflected depending on the angle at which the light
rays hit the object; areas that directly face the light source will be brighter, and areas that can’t be reached by
light rays are dark. The rightmost image shows the combination of ambient, diffuse, and specular light. The
specular light manifests itself as a white highlight on the sphere.

How OpenGL ES Calculates Lighting: Vertex Normals
You know that the intensity of the reflected light bouncing back from an object depends on the angle at
which the light rays hit the surface of the object. OpenGL ES uses this fact to calculate lighting. It does so by
using vertex normals, which we have to define in our code, just as we define texture coordinates and vertex
colors. Figure 11-4 shows a sphere with its vertex normals.

Normals are simply unit-length vectors that point in the direction a surface is facing. In our case, a
surface is a triangle. Instead of specifying a surface normal, though, we have to specify a vertex normal. The
difference between a surface normal and a vertex normal is that the vertex normal might not have to point in
the same direction as the surface normal. We can clearly see this in Figure 11-4, where each vertex normal is
actually the average of the normals of the triangles to which that vertex belongs. This averaging makes for a
smooth shading of the object.

When we render an object with vertex normals and lighting enabled, OpenGL ES will determine the
angle between each vertex and light source. With this angle, it can calculate the vertex’s color based on the
ambient, diffuse, and specular properties of the material of the object and the light source. The end result
is a color for each vertex of an object that is then interpolated over each triangle in combination with the
calculated colors of the other vertices. This interpolated color will then be combined with any texture maps
we apply to the object.

This sounds scary, but it really isn’t that bad. All we need to do is enable lighting and specify the light
sources, the material for the object we want to render, and the vertex normals, in addition to the other vertex
attributes we usually specify, like position and texture coordinates. Let’s have a look at how to implement all
of this with OpenGL ES.

Figure 11-4. A sphere and its vertex normals

Chapter 11 ■ 3D programming triCks

480

In Practice
We’ll now go through all of the necessary steps to get lighting to work with OpenGL ES. Along the way, we’ll
create a few little helper classes that make working with light sources a bit easier. We’ll put those in the com.
badlogic.androidgames.framework.gl package.

Enabling and Disabling Lighting
As with all OpenGL ES states, we first have to enable the functionality in question. We do that with this:

gl.glEnable(GL10.GL_LIGHTING);

Once enabled, lighting will be applied to all the objects that we render. Of course, we’ll have to specify
the light sources, materials, and vertex normals to achieve meaningful results. After we render all the objects
that should be illuminated, we can disable lighting again:

gl.glDisable(GL10.GL_LIGHTING);

Specifying Light Sources
As previously discussed, OpenGL ES offers us four types of light sources: ambient lights, point lights,
directional lights, and spotlights. We’ll take a look at how to define the first three. In order for spotlights to be
effective and to look good, we’d need to have a very high triangle count for each of our objects’ models. This
is prohibitive on most current mobile devices.

OpenGL ES limits us to having a maximum of eight light sources in a scene, plus a global ambient light. Each
of the eight light sources has an identifier, from GL10.GL_LIGHT0 up to GL10.GL_LIGHT7. If we want to manipulate
the properties of one of these light sources, we do so by specifying the respective ID of that light source.

Light sources have to be enabled with this syntax:

gl.glEnable(GL10.GL_LIGHT0);

In this case, OpenGL ES will then take the properties of the light source with ID 0 and apply it to all
rendered objects accordingly. If we want to disable a light source, we can do it with a statement like this:

gl.glDisable(GL10.GL_LIGHT0);

Ambient light is a special case, as it does not have an identifier. There is only one ambient light ever in
an OpenGL ES scene. Let’s have a look at that.

Ambient Light

Ambient light is a special type of light, as explained already. It has no position or direction, only a color by which
all objects in the scene will be uniformly lit. OpenGL ES lets us specify the global ambient light as follows:

float[] ambientColor = { 0.2f, 0.2f, 0.2f, 1.0f };
gl.glLightModelfv(GL10.GL_LIGHT_MODEL_AMBIENT, color, 0);

The ambientColor array holds the RGBA values of the ambient light’s color encoded as floats in the
range 0 to 1. The glLightModelfv() method takes as parameters a constant specifying that we want to set the
ambient light’s color; the float array holding the color; and an offset into the float array from which the method
should start reading the RGBA values. Let’s put this into a lovely little class. Listing 11-2 shows the code.

Chapter 11 ■ 3D programming triCks

481

Listing 11-2. AmbientLight.java, a simple abstraction of OpenGL ES global ambient light

package com.badlogic.androidgames.framework.gl;

import javax.microedition.khronos.opengles.GL10;

public class AmbientLight {
 float[] color = {0.2f, 0.2f, 0.2f, 1};

 public void setColor(float r, float g, float b, float a) {
 color[0] = r;
 color[1] = g;
 color[2] = b;
 color[3] = a;
 }

 public void enable(GL10 gl) {
 gl.glLightModelfv(GL10.GL_LIGHT_MODEL_AMBIENT, color, 0);
 }
}

All we do is store the ambient light’s color in a float array and then provide two methods: one to set the
color and the other to make OpenGL ES use the ambient light color that we define. By default, we use a gray
ambient light color.

Point Lights

Point lights have a position as well as an ambient, diffuse, and specular color/intensity (we leave out the
emissive color/intensity). To specify the different colors, we can do the following:

gl.glLightfv(GL10.GL_LIGHT3, GL10.GL_AMBIENT, ambientColor, 0);
gl.glLightfv(GL10.GL_LIGHT3, GL10.GL_DIFFUSE, diffuseColor, 0);
gl.glLightfv(GL10.GL_LIGHT3, GL10.GL_SPECULAR, specularColor, 0);

The first parameter is the light identifier; in this case we use the fourth light. The next parameter
specifies the light's attribute that we want to modify. The third parameter is again a float array that holds the
RGBA values, and the final parameter is an offset into that array. Specifying the position is easy:

float[] position = {x, y, z, 1};
gl.glLightfv(GL10.GL_LIGHT3, GL10.GL_POSITION, position, 0);

We again specify the attribute we want to modify (in this case the position), along with a four-element
array that stores the x, y, and z coordinates of the light in our world. Note that the fourth element of the array
must be set to 1 for a positional light source! Let’s put this into a helper class. Listing 11-3 shows the code.

Listing 11-3. PointLight.java, a simple abstraction of OpenGL ES point lights

package com.badlogic.androidgames.framework.gl;

import javax.microedition.khronos.opengles.GL10;

public class PointLight {

Chapter 11 ■ 3D programming triCks

482

 float[] ambient = { 0.2f, 0.2f, 0.2f, 1.0f };
 float[] diffuse = { 1.0f, 1.0f, 1.0f, 1.0f };
 float[] specular = { 0.0f, 0.0f, 0.0f, 1.0f };
 float[] position = { 0, 0, 0, 1 };
 int lastLightId = 0;

 public void setAmbient(float r, float g, float b, float a) {
 ambient[0] = r;
 ambient[1] = g;
 ambient[2] = b;
 ambient[3] = a;
 }

 public void setDiffuse(float r, float g, float b, float a) {
 diffuse[0] = r;
 diffuse[1] = g;
 diffuse[2] = b;
 diffuse[3] = a;
 }

 public void setSpecular(float r, float g, float b, float a) {
 specular[0] = r;
 specular[1] = g;
 specular[2] = b;
 specular[3] = a;
 }

 public void setPosition(float x, float y, float z) {
 position[0] = x;
 position[1] = y;
 position[2] = z;
 }

 public void enable(GL10 gl, int lightId) {
 gl.glEnable(lightId);
 gl.glLightfv(lightId, GL10.GL_AMBIENT, ambient, 0);
 gl.glLightfv(lightId, GL10.GL_DIFFUSE, diffuse, 0);
 gl.glLightfv(lightId, GL10.GL_SPECULAR, specular, 0);
 gl.glLightfv(lightId, GL10.GL_POSITION, position, 0);
 lastLightId = lightId;
 }

 public void disable(GL10 gl) {
 gl.glDisable(lastLightId);
 }
}

Our helper class stores the ambient, diffuse, and specular color components of the light as well as the
position (with the fourth element set to 1). In addition, we store the last light identifier used for this light so
that we can offer a disable() method that will turn off the light if necessary. For each light attribute, we have
a nice setter method. We also have an enable()method, which takes a GL10 instance and a light identifier
(like GL10.GL_LIGHT6). It enables the light, sets its attributes, and stores the light identifier used. The
disable() method just disables the light using the lastLightId member set in enable().

Chapter 11 ■ 3D programming triCks

483

We use sensible defaults for the ambient, diffuse, and specular colors in the initializers of the member
arrays. The light will be white, and it will not produce any specular highlights because the specular color is black.

Directional Lights

A directional light is nearly identical to a point light. The only difference is that it has a direction instead of
a position. The way the direction is expressed is somewhat confusing. Instead of using a direction vector,
OpenGL ES expects us to define a point in the world. The direction is then calculated by taking the direction
vector from that point to the origin of the world. The following snippet would produce a directional light that
comes from the right side of the world:

float[] dirPos = {1, 0, 0, 0};
gl.glLightfv(GL10.GL_LIGHT0, GL10.GL_POSITION, dirPos, 0);

We can translate that to a direction vector:

dir = -dirPos = {-1, 0, 0, 0}

The rest of the attributes, like the ambient or diffuse color, are identical to those of a point light. Listing
11-4 shows the code of a little helper class for diffuse lights.

Listing 11-4. DirectionalLight.java, a simple abstraction of OpenGL ES directional lights

package com.badlogic.androidgames.framework.gl;

import javax.microedition.khronos.opengles.GL10;

public class DirectionalLight {
 float[] ambient = { 0.2f, 0.2f, 0.2f, 1.0f };
 float[] diffuse = { 1.0f, 1.0f, 1.0f, 1.0f };
 float[] specular = { 0.0f, 0.0f, 0.0f, 1.0f };
 float[] direction = { 0, 0, -1, 0 };
 int lastLightId = 0;

 public void setAmbient(float r, float g, float b, float a) {
 ambient[0] = r;
 ambient[1] = g;
 ambient[2] = b;
 ambient[3] = a;
 }

 public void setDiffuse(float r, float g, float b, float a) {
 diffuse[0] = r;
 diffuse[1] = g;
 diffuse[2] = b;
 diffuse[3] = a;
 }

 public void setSpecular(float r, float g, float b, float a) {
 specular[0] = r;
 specular[1] = g;
 specular[2] = b;

Chapter 11 ■ 3D programming triCks

484

 specular[3] = a;
 }

 public void setDirection(float x, float y, float z) {
 direction[0] = -x;
 direction[1] = -y;
 direction[2] = -z;
 }

 public void enable(GL10 gl, int lightId) {
 gl.glEnable(lightId);
 gl.glLightfv(lightId, GL10.GL_AMBIENT, ambient, 0);
 gl.glLightfv(lightId, GL10.GL_DIFFUSE, diffuse, 0);
 gl.glLightfv(lightId, GL10.GL_SPECULAR, specular, 0);
 gl.glLightfv(lightId, GL10.GL_POSITION, direction, 0);
 lastLightId = lightId;
 }

 public void disable(GL10 gl) {
 gl.glDisable(lastLightId);
 }
}

Our helper class is nearly identical to the PointLight class. The only difference is that the direction
array has its fourth element set to 1. We also have a setDirection() method instead of a setPosition()
method. The setDirection() method allows us to specify a direction, like (–1,0,0) so that the light comes
from the right side. Inside the method, we just negate all of the vector components so that we transform the
direction to the format that OpenGL ES expects from us.

Specifying Materials
A material is defined by a couple of attributes. As with anything in OpenGL ES, a material is a state and
will be active until we change it again or the OpenGL ES context is lost. To set the currently active material
attributes, we can do the following:

gl.glMaterialfv(GL10.GL_FRONT_AND_BACK, GL10.GL_AMBIENT, ambientColor, 0);
gl.glMaterialfv(GL10.GL_FRONT_AND_BACK, GL10.GL_DIFFUSE, diffuseColor, 0);
gl.glMaterialfv(GL10.GL_FRONT_AND_BACK, GL10.GL_SPECULAR, specularColor, 0);

As usual, we have an ambient, a diffuse, and a specular RGBA color to specify. We again do this via four-
element float arrays, just as we did with the light source attributes. Putting this together into a little helper
class is again very easy. Listing 11-5 shows the code.

Listing 11-5. Material.java, a simple abstraction of OpenGL ES materials

package com.badlogic.androidgames.framework.gl;

import javax.microedition.khronos.opengles.GL10;

public class Material {
 float[] ambient = { 0.2f, 0.2f, 0.2f, 1.0f };

Chapter 11 ■ 3D programming triCks

485

 float[] diffuse = { 1.0f, 1.0f, 1.0f, 1.0f };
 float[] specular = { 0.0f, 0.0f, 0.0f, 1.0f };

 public void setAmbient(float r, float g, float b, float a) {
 ambient[0] = r;
 ambient[1] = g;
 ambient[2] = b;
 ambient[3] = a;
 }

 public void setDiffuse(float r, float g, float b, float a) {
 diffuse[0] = r;
 diffuse[1] = g;
 diffuse[2] = b;
 diffuse[3] = a;
 }

 public void setSpecular(float r, float g, float b, float a) {
 specular[0] = r;
 specular[1] = g;
 specular[2] = b;
 specular[3] = a;
 }

 public void enable(GL10 gl) {
 gl.glMaterialfv(GL10.GL_FRONT_AND_BACK, GL10.GL_AMBIENT, ambient, 0);
 gl.glMaterialfv(GL10.GL_FRONT_AND_BACK, GL10.GL_DIFFUSE, diffuse, 0);
 gl.glMaterialfv(GL10.GL_FRONT_AND_BACK, GL10.GL_SPECULAR, specular, 0);
 }
}

There are no big surprises here, either. We just store the three components of the material and provide
setters and an enable() method, which sets the material.

OpenGL ES has one more trick up its sleeve when it comes to materials. Usually we wouldn’t use
glMaterialfv(), but would instead choose something called color material. This means that instead of the
ambient and diffuse colors specified via glMaterialfv(), OpenGL ES would take the vertex color of our
models as the ambient and diffuse material color. To enable this nice feature, we just have to call it:

gl.glEnable(GL10.GL_COLOR_MATERIAL);

We usually use this instead of a full-blown material class, as shown earlier, because ambient and diffuse
colors are often the same. Since we also don’t use specular highlights in most of our demos and games, we
can get away with just enabling color materials and not using any glMaterialfv() calls at all. The choice of
using the Material class or color materials is totally up to you.

Specifying Normals
For lighting to work in OpenGL ES, we have to specify vertex normals for each vertex of a model. A vertex
normal must be a unit-length vector that points in the (average) facing direction of the surface(s) to which a
vertex belongs. Figure 11-5 illustrates vertex normals for our cube.

Chapter 11 ■ 3D programming triCks

486

A vertex normal is just another vertex attribute, like position or color. In order to upload vertex normals,
we have to modify our Vertices3 class one more time. To tell OpenGL ES where it can find the normals
for each vertex, we use the glNormalPointer() method, just like we used the glVertexPointer() or
glColorPointer() methods previously. Listing 11-6 shows our final revised Vertices3 class.

Listing 11-6. Vertices3.java: The final version, with support for normals

package com.badlogic.androidgames.framework.gl;

import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.IntBuffer;
import java.nio.ShortBuffer;

import javax.microedition.khronos.opengles.GL10;

import com.badlogic.androidgames.framework.impl.GLGraphics;

public class Vertices3 {
 final GLGraphics glGraphics;
 final boolean hasColor;
 final boolean hasTexCoords;
 final boolean hasNormals;
 final int vertexSize;
 final IntBuffer vertices;
 final int[] tmpBuffer;
 final ShortBuffer indices;

Figure 11-5. Vertex normals for each vertex of our cube

Chapter 11 ■ 3D programming triCks

487

Among the members, the only new addition is the hasNormals Boolean, which keeps track of whether
the vertices have normals or not.

public Vertices3(GLGraphics glGraphics, int maxVertices, int maxIndices,
 boolean hasColor, boolean hasTexCoords, boolean hasNormals) {
 this.glGraphics = glGraphics;
 this.hasColor = hasColor;
 this.hasTexCoords = hasTexCoords;
 this.hasNormals = hasNormals;
 this.vertexSize = (3 + (hasColor ? 4 : 0) + (hasTexCoords ? 2 : 0) + (hasNormals ?

3 : 0)) * 4;
 this.tmpBuffer = new int[maxVertices * vertexSize / 4];

 ByteBuffer buffer = ByteBuffer.allocateDirect(maxVertices * vertexSize);
 buffer.order(ByteOrder.nativeOrder());
 vertices = buffer.asIntBuffer();

 if (maxIndices > 0) {
 buffer = ByteBuffer.allocateDirect(maxIndices * Short.SIZE / 8);
 buffer.order(ByteOrder.nativeOrder());
 indices = buffer.asShortBuffer();
 } else {
 indices = null;
 }
}

In the constructor, we now also take a hasNormals parameter. We have to modify the calculation of the
vertexSize member as well, adding three floats per vertex if normals are available.

public void setVertices(float[] vertices, int offset, int length) {
 this.vertices.clear();
 int len = offset + length;
 for (int i = offset, j = 0; i < len; i++, j++)
 tmpBuffer[j] = Float.floatToRawIntBits(vertices[i]);
 this.vertices.put(tmpBuffer, 0, length);
 this.vertices.flip();
}

public void setIndices(short[] indices, int offset, int length) {
 this.indices.clear();
 this.indices.put(indices, offset, length);
 this.indices.flip();
}

As you can see, the methods setVertices() and setIndices() stay the same.

public void bind() {
 GL10 gl = glGraphics.getGL();

 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 vertices.position(0);
 gl.glVertexPointer(3, GL10.GL_FLOAT, vertexSize, vertices);

Chapter 11 ■ 3D programming triCks

488

 if (hasColor) {
 gl.glEnableClientState(GL10.GL_COLOR_ARRAY);
 vertices.position(3);
 gl.glColorPointer(4, GL10.GL_FLOAT, vertexSize, vertices);
 }

 if (hasTexCoords) {
 gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);
 vertices.position(hasColor ? 7 : 3);
 gl.glTexCoordPointer(2, GL10.GL_FLOAT, vertexSize, vertices);
 }

 if (hasNormals) {
 gl.glEnableClientState(GL10.GL_NORMAL_ARRAY);
 int offset = 3;
 if (hasColor)
 offset += 4;
 if (hasTexCoords)
 offset += 2;
 vertices.position(offset);
 gl.glNormalPointer(GL10.GL_FLOAT, vertexSize, vertices);
 }
}

In the bind() method, we do the usual ByteBuffer tricks, this time also incorporating normals via the
glNormalPointer() method. To calculate the offset for the normal pointer, we have to take into account
whether colors and texture coordinates are given.

public void draw(int primitiveType, int offset, int numVertices) {
 GL10 gl = glGraphics.getGL();

 if (indices != null) {
 indices.position(offset);
 gl.glDrawElements(primitiveType, numVertices,
 GL10.GL_UNSIGNED_SHORT, indices);
 } else {
 gl.glDrawArrays(primitiveType, offset, numVertices);
 }
}

You can see that the draw() method is again unmodified; all of the magic happens in the bind()
method.

 public void unbind() {
 GL10 gl = glGraphics.getGL();
 if (hasTexCoords)
 gl.glDisableClientState(GL10.GL_TEXTURE_COORD_ARRAY);

 if (hasColor)
 gl.glDisableClientState(GL10.GL_COLOR_ARRAY);

Chapter 11 ■ 3D programming triCks

489

 if (hasNormals)
 gl.glDisableClientState(GL10.GL_NORMAL_ARRAY);
 }
}

Finally, we also modify the unbind() method slightly. We disable the normal pointer if normals were
used so as to clean up the OpenGL ES state properly.

Using this modified Vertices3 version is as easy as before. Here’s a small example:

float[] vertices = { -0.5f, -0.5f, 0, 0, 0, 1,
 0.5f, -0.5f, 0, 0, 0, 1,
 0.0f, 0.5f, 0, 0, 0, 1 };
Vertices3 vertices = new Vertices3(glGraphics, 3, 0, false, false, true);
vertices.setVertices(vertices);

We create a float array to hold three vertices, each having a position (the first three floats on each line)
and a normal (the last three floats on each line). In this case, we have a triangle in the x-y plane with its
normals pointing in the direction of the positive z axis. All that’s left to do is create the Vertices3 instance
and set the vertices. Easy, right? Binding, drawing, and unbinding work in exactly the same way as with the
old version. We can, of course, also add vertex colors and texture coordinates, as we did previously.

Putting It All Together
Let’s put all this lighting knowledge together into an example. We want to draw a scene with a global
ambient light, a point light, and a directional light that all illuminate a cube centered at the origin. For good
measure, we’ll also throw in a call to gluLookAt() to position our camera in the world. Figure 11-6 shows the
setup of our world.

Figure 11-6. Our first lit scene

Chapter 11 ■ 3D programming triCks

490

As with all of our examples, we create a class and call it LightTest, which extends GLGame as usual. It
returns a new LightScreen instance from its getStartScreen() method. The LightScreen class extends
GLScreen, and this is shown in Listing 11-7.

Listing 11-7. Excerpt from LightTest.java: Lighting with OpenGL ES

class LightScreen extends GLScreen {
 float angle;
 Vertices3 cube;
 Texture texture;
 AmbientLight ambientLight;
 PointLight pointLight;
 DirectionalLight directionalLight;
 Material material;

We start off with a couple of members. The angle member stores the current rotation of the cube
around the y axis. The Vertices3 member stores the vertices of the cube model, which we are going to
define in a bit. In addition, we store AmbientLight, PointLight, DirectionalLight, and Material instances.

public LightScreen(Game game) {
 super(game);

 cube = createCube();
 texture = new Texture(glGame, "crate.png“);
 ambientLight = new AmbientLight();
 ambientLight.setColor(0, 0.2f, 0, 1);
 pointLight = new PointLight();
 pointLight.setDiffuse(1, 0, 0, 1);
 pointLight.setPosition(3, 3, 0);
 directionalLight = new DirectionalLight();
 directionalLight.setDiffuse(0, 0, 1, 1);
 directionalLight.setDirection(1, 0, 0);
 material = new Material();
}

Next is the constructor. Here we create the cube model’s vertices and load the crate texture, just as we
did in Chapter 10. We also instantiate all of the lights and the material and set their attributes. The ambient
light color is a light green, and the point light is red and sits at (3,3,0) in our world. The directional light has a
blue diffuse color and comes from the left. For the material, we use the default values (a little ambient, white
for diffuse, and black for specular).

@Override
public void resume() {
 texture.reload();
}

In the resume() method, we make sure that our texture is (re)loaded in case of a context loss.

private Vertices3 createCube() {
 float[] vertices = { -0.5f, -0.5f, 0.5f, 0, 1, 0, 0, 1,
 0.5f, -0.5f, 0.5f, 1, 1, 0, 0, 1,
 0.5f, 0.5f, 0.5f, 1, 0, 0, 0, 1,
 -0.5f, 0.5f, 0.5f, 0, 0, 0, 0, 1,

http://dx.doi.org/10.1007/978-1-4842-0472-6_10

Chapter 11 ■ 3D programming triCks

491

 0.5f, -0.5f, 0.5f, 0, 1, 1, 0, 0,
 0.5f, -0.5f, -0.5f, 1, 1, 1, 0, 0,
 0.5f, 0.5f, -0.5f, 1, 0, 1, 0, 0,
 0.5f, 0.5f, 0.5f, 0, 0, 1, 0, 0,

 0.5f, -0.5f, -0.5f, 0, 1, 0, 0, -1,
 -0.5f, -0.5f, -0.5f, 1, 1, 0, 0, -1,
 -0.5f, 0.5f, -0.5f, 1, 0, 0, 0, -1,
 0.5f, 0.5f, -0.5f, 0, 0, 0, 0, -1,

 -0.5f, -0.5f, -0.5f, 0, 1, -1, 0, 0,
 -0.5f, -0.5f, 0.5f, 1, 1, -1, 0, 0,
 -0.5f, 0.5f, 0.5f, 1, 0, -1, 0, 0,
 -0.5f, 0.5f, -0.5f, 0, 0, -1, 0, 0,

 -0.5f, 0.5f, 0.5f, 0, 1, 0, 1, 0,
 0.5f, 0.5f, 0.5f, 1, 1, 0, 1, 0,
 0.5f, 0.5f, -0.5f, 1, 0, 0, 1, 0,
 -0.5f, 0.5f, -0.5f, 0, 0, 0, 1, 0,

 -0.5f, -0.5f, -0.5f, 0, 1, 0, -1, 0,
 0.5f, -0.5f, -0.5f, 1, 1, 0, -1, 0,
 0.5f, -0.5f, 0.5f, 1, 0, 0, -1, 0,
 -0.5f, -0.5f, 0.5f, 0, 0, 0, -1, 0 };
 short[] indices = { 0, 1, 2, 2, 3, 0,
 4, 5, 6, 6, 7, 4,
 8, 9, 10, 10, 11, 8,
 12, 13, 14, 14, 15, 12,
 16, 17, 18, 18, 19, 16,
 20, 21, 22, 22, 23, 20,
 24, 25, 26, 26, 27, 24 };
 Vertices3 cube = new Vertices3(glGraphics, vertices.length / 8, indices.length, false,

true, true);
 cube.setVertices(vertices, 0, vertices.length);
 cube.setIndices(indices, 0, indices.length);
 return cube;
}

The createCube() method is mostly the same as the one we used in previous examples. This time,
however, we add normals to each vertex, as shown in Figure 11-4. Apart from that, nothing has really changed.

@Override
public void update(float deltaTime) {
 angle += deltaTime * 20;
}

In the update() method, we simply increase the rotation angle of the cube.

@Override
public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glClearColor(0.2f, 0.2f, 0.2f, 1.0f);

Chapter 11 ■ 3D programming triCks

492

 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight());

 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 GLU.gluPerspective(gl, 67, glGraphics.getWidth()
 / (float) glGraphics.getHeight(), 0.1f, 10f);
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 GLU.gluLookAt(gl, 0, 1, 3, 0, 0, 0, 0, 1, 0);

 gl.glEnable(GL10.GL_LIGHTING);

 ambientLight.enable(gl);
 pointLight.enable(gl, GL10.GL_LIGHT0);
 directionalLight.enable(gl, GL10.GL_LIGHT1);
 material.enable(gl);

 gl.glEnable(GL10.GL_TEXTURE_2D);
 texture.bind();

 gl.glRotatef(angle, 0, 1, 0);
 cube.bind();
 cube.draw(GL10.GL_TRIANGLES, 0, 6 * 2 * 3);
 cube.unbind();

 pointLight.disable(gl);
 directionalLight.disable(gl);

 gl.glDisable(GL10.GL_TEXTURE_2D);
 gl.glDisable(GL10.GL_DEPTH_TEST);
}

Here, it gets interesting. The first couple of lines are our boilerplate code for clearing the colorbuffer and
depthbuffer, enabling depth testing, and setting the viewport.

Next, we set the projection matrix to a perspective projection matrix via gluPerspective() and also use
gluLookAt() for the model-view matrix so that we have a camera setup as shown in Figure 11-6.

Next, we enable lighting itself. At this point, we haven’t defined any lights, so we do that in the next
couple of lines by calling the enable()methods of the lights as well as of the material.

As usual, we also enable texturing and bind our crate texture. Finally, we call glRotatef() to rotate our
cube and then render its vertices with well-placed calls to the Vertices3 instance.

To round off the method, we disable the point and directional lights (remember, the ambient light is a
global state) as well as texturing and depth testing. And that’s all there is to lighting in OpenGL ES!

 @Override
 public void pause() {
 }

 @Override
 public void dispose() {
 }
}

Chapter 11 ■ 3D programming triCks

493

The rest of the class is just empty; we don’t have to do anything special in case of a pause.
Figure 11-7 shows the output of our example.

Some Notes on Lighting in OpenGL ES
While lighting can add some nice eye candy to your games, it has its limits and pitfalls. Here are a few things
you should take to heart:

•	 Lighting is expensive, especially on low-end devices. Use it with care. The more light
sources you enable, the more computational power is required to render the scene.

•	 When specifying the position/direction of point/directional lights, you must do so
after you have loaded the camera matrices and before you multiply the model-view
matrix by any matrices to move and rotate objects around! This is crucial. If you
don’t follow this method, you will have some inexplicable lighting artifacts.

•	 When you use glScalef() to change the size of a model, its normals will also
be scaled. This is bad because OpenGL ES expects unit-length normals. To work
around this issue, you can use the command glEnable(GL10.GL_NORMALIZE)
or, in some circumstances, glEnable(GL10.GL_RESCALE_NORMAL). We’d suggest
sticking to the former, as the latter has some restrictions and caveats. The problem
is that normalizing or rescaling normals is computationally heavy. For optimum
performance, it’s best not to scale your lit objects.

Mipmapping
If you’ve played around with our previous examples and let the cube move farther away from the camera,
you might have noticed that the texture starts to looks grainy and full of little artifacts the smaller the cube
gets. This effect is called aliasing, a prominent effect in all types of signal processing. Figure 11-8 shows the
effect on the right side and the result of applying a technique called mipmapping on the left side.

Figure 11-7. Our scene from Figure 11-6, rendered with OpenGL ES

Chapter 11 ■ 3D programming triCks

494

We won’t go into the details of why aliasing happens; all you need to know is how to make objects look
better. That’s where mipmapping comes in.

The key to fixing aliasing problems is to use lower-resolution images for the parts of an object that are
smaller on screen or farther away from the view point. This is usually called a mipmap pyramid or chain.
Given an image in its default resolution, say 256×256 pixels, we create smaller versions of it, dividing the sides
by two for each level of the mipmap pyramid. Figure 11-9 shows the crate texture with various mipmap levels.

To make a texture mipmapped in OpenGL ES, we have to do two things:

•	 Set the minification filter to one of the GL_XXX_MIPMAP_XXX constants, usually GL_
LINEAR_MIPMAP_NEAREST.

Figure 11-8. Aliasing artifacts on the right; the results of mipmapping on the left

Figure 11-9. A mipmap chain

Chapter 11 ■ 3D programming triCks

495

•	 Create the images for each mipmap chain level by resizing the original image and
then upload them to OpenGL ES. The mipmap chain is attached to a single texture,
not multiple textures.

To resize the base image for the mipmap chain, we can simply use the Bitmap and Canvas classes that
the Android API provides. Let’s modify the Texture class a little. Listing 11-8 shows the code.

Listing 11-8. Texture.java: Our final version of the texture class

package com.badlogic.androidgames.framework.gl;

import java.io.IOException;
import java.io.InputStream;

import javax.microedition.khronos.opengles.GL10;

import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.graphics.Canvas;
import android.graphics.Rect;
import android.opengl.GLUtils;

import com.badlogic.androidgames.framework.FileIO;
import com.badlogic.androidgames.framework.impl.GLGame;
import com.badlogic.androidgames.framework.impl.GLGraphics;

public class Texture {
 GLGraphics glGraphics;
 FileIO fileIO;
 String fileName;
 int textureId;
 int minFilter;
 int magFilter;
 public int width;
 public int height;
 boolean mipmapped;

We add only one new member, called mipmapped, which stores whether the texture has a mipmap chain
or not.

 public Texture(GLGame glGame, String fileName) {
 this(glGame, fileName, false);
 }

 public Texture(GLGame glGame, String fileName, boolean mipmapped) {
 this.glGraphics = glGame.getGLGraphics();
 this.fileIO = glGame.getFileIO();
 this.fileName = fileName;
 this.mipmapped = mipmapped;
 load();
 }

Chapter 11 ■ 3D programming triCks

496

For compatibility, we leave the old constructor in, which calls the new constructor. The new constructor
takes a third argument that lets us specify whether we want the texture to be mipmapped.

private void load() {
 GL10 gl = glGraphics.getGL();
 int[] textureIds = new int[1];
 gl.glGenTextures(1, textureIds, 0);
 textureId = textureIds[0];

 InputStream in = null;
 try {
 in = fileIO.readAsset(fileName);
 Bitmap bitmap = BitmapFactory.decodeStream(in);
 if (mipmapped) {
 createMipmaps(gl, bitmap);
 } else {
 gl.glBindTexture(GL10.GL_TEXTURE_2D, textureId);
 GLUtils.texImage2D(GL10.GL_TEXTURE_2D, 0, bitmap, 0);
 setFilters(GL10.GL_NEAREST, GL10.GL_NEAREST);
 gl.glBindTexture(GL10.GL_TEXTURE_2D, 0);
 width = bitmap.getWidth();
 height = bitmap.getHeight();
 bitmap.recycle();
 }
 } catch (IOException e) {
 throw new RuntimeException("Couldn't load texture '" + fileName
 + "'", e);
 } finally {
 if (in != null)
 try {
 in.close();
 } catch (IOException e) {
 }
 }
}

The load() method stays essentially the same as well. The only addition is the call to createMipmaps()
in case the texture should be mipmapped. Non-mipmapped Texture instances are created as before.

private void createMipmaps(GL10 gl, Bitmap bitmap) {
 gl.glBindTexture(GL10.GL_TEXTURE_2D, textureId);
 width = bitmap.getWidth();
 height = bitmap.getHeight();
 setFilters(GL10.GL_LINEAR_MIPMAP_NEAREST, GL10.GL_LINEAR);

 int level = 0;
 int newWidth = width;
 int newHeight = height;
 while (true) {
 GLUtils.texImage2D(GL10.GL_TEXTURE_2D, level, bitmap, 0);
 newWidth = newWidth / 2;
 newHeight = newHeight / 2;

Chapter 11 ■ 3D programming triCks

497

 if (newWidth <= 0)
 break;
 Bitmap newBitmap = Bitmap.createBitmap(newWidth, newHeight,
 bitmap.getConfig());
 Canvas canvas = new Canvas(newBitmap);
 canvas.drawBitmap(bitmap,
 new Rect(0, 0, bitmap.getWidth(), bitmap.getHeight()),
 new Rect(0, 0, newWidth, newHeight), null);
 bitmap.recycle();
 bitmap = newBitmap;
 level++;
 }

 gl.glBindTexture(GL10.GL_TEXTURE_2D, 0);
 bitmap.recycle();
}

The createMipmaps() method is fairly straightforward. We start off by binding the texture so that we
can manipulate its attributes. The first thing we do is keep track of the bitmap’s width and height and set
the filters. Note that we use GL_LINEAR_MIPMAP_NEAREST for the minification filter. If we don’t use that filter,
mipmapping will not work and OpenGL ES will fall back to normal filtering, only using the base image.

The while loop is straightforward. We upload the current bitmap as the image for the current level. We
start at level 0, the base level with the original image. Once the image for the current level is uploaded, we
create a smaller version of it, dividing its width and height by 2. If the new width is less than or equal to 0, we
can break out of the infinite loop, since we have uploaded an image for each mipmap level (the last image
has a size of 1×1 pixels). We use the Canvas class to resize the image and to store the result in newBitmap.
We then recycle the old bitmap so that we clean up any of the memory it used and set the newBitmap as the
current bitmap. We repeat this process until the image is smaller than 1×1 pixels.

Finally, we unbind the texture and recycle the last bitmap that got created in the loop.

 public void reload() {
 load();
 bind();
 setFilters(minFilter, magFilter);
 glGraphics.getGL().glBindTexture(GL10.GL_TEXTURE_2D, 0);
 }

 public void setFilters(int minFilter, int magFilter) {
 this.minFilter = minFilter;
 this.magFilter = magFilter;
 GL10 gl = glGraphics.getGL();
 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MIN_FILTER,
 minFilter);
 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MAG_FILTER,
 magFilter);
 }

 public void bind() {
 GL10 gl = glGraphics.getGL();
 gl.glBindTexture(GL10.GL_TEXTURE_2D, textureId);
 }

Chapter 11 ■ 3D programming triCks

498

 public void dispose() {
 GL10 gl = glGraphics.getGL();
 gl.glBindTexture(GL10.GL_TEXTURE_2D, textureId);
 int[] textureIds = { textureId };
 gl.glDeleteTextures(1, textureIds, 0);
 }
}

The rest of the class is the same as in the previous version. The only difference in usage is how we call
the constructor. Since this is perfectly simple, we won’t write an example just for mipmapping. We’ll use
mipmapping on all of the textures that we use for 3D objects. In 2D, mipmapping is less useful. A few final
notes on mipmapping:

•	 Mipmapping can increase performance quite a bit if the objects you draw using a
mipmapped texture are small. The reason for this is that the GPU has to fetch fewer
texels from smaller images in the mipmap pyramid. It’s therefore wise to always use
mipmapped textures on objects that might get small.

•	 A mipmapped texture takes up 33 percent more memory compared to an equivalent
non-mipmapped version. This trade-off is usually fine.

•	 Mipmapping only works with square textures in OpenGL ES 1.x. This is crucial
to remember. If your objects stay white even though they are textured with a nice
image, you can be pretty sure that you forgot about this limitation.

 ■ Note once again, because this is really important, remember that mipmapping will only work with square
textures! a 512×256 pixel image will not work.

Simple Cameras
In the previous chapter, we talked about two ways to create a camera. The first one, the Euler camera, is similar
to what is used in first-person shooters. The second one, the look-at camera, is used for cinematic camera work
or for following an object. Let’s create two helper classes to create cameras that we can use in our games.

The First-Person, or Euler, Camera
The first-person, or Euler, camera is defined by the following attributes:

•	 The field of view in degrees

•	 The viewport aspect ratio

•	 The near and far clipping planes

•	 A position in 3D space

•	 An angle around the y axis (yaw)

•	 An angle around the x axis (pitch). This is limited to the range –90 to +90 degrees.
Think how far you can tilt your own head and try to go beyond those angles! We are
not responsible for any injuries.

Chapter 11 ■ 3D programming triCks

499

The first three attributes are used to define the perspective projection matrix. We did this already with
calls to gluPerspective() in all of our 3D examples.

The other three attributes define the position and orientation of the camera in our world. We will
construct a matrix from this as outlined in Chapter 10.

We also want to be able to move the camera in the direction that it is heading. For this, we need a unit-
length direction vector, and we can add this to the position vector of the camera. We can create this type of a
vector with the help of the Matrix class that the Android API offers us. Let’s think about this for a moment.

In its default configuration, our camera will look down the negative z axis, giving it a direction vector of
(0,0,–1). When we specify a yaw or pitch angle, this direction vector will be rotated accordingly. To figure out
the direction vector, we just need to multiply it by a matrix that will rotate the default direction vector, just as
OpenGL ES will rotate the vertices of our models.

Let’s have a look at how all this works in code. Listing 11-9 shows the EulerCamera class.

Listing 11-9. EulerCamera.java: A simple first-person camera based on Euler angles around the x and y axes

package com.badlogic.androidgames.framework.gl;

import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLU;
import android.opengl.Matrix;

import com.badlogic.androidgames.framework.math.Vector3;

public class EulerCamera {
 final Vector3 position = new Vector3();
 float yaw;
 float pitch;
 float fieldOfView;
 float aspectRatio;
 float near;
 float far;

The first three members hold the position and rotation angles of the camera. The other four members
hold the parameters used for calculating the perspective projection matrix. By default, our camera is located
at the origin of the world, looking down the negative z axis.

public EulerCamera(float fieldOfView, float aspectRatio, float near, float far){
 this.fieldOfView = fieldOfView;
 this.aspectRatio = aspectRatio;
 this.near = near;
 this.far = far;
}

The constructor takes four parameters that define the perspective projection. We leave the camera
position and rotation angles as they are.

public Vector3 getPosition() {
 return position;
}
public float getYaw() {
 return yaw;
}

http://dx.doi.org/10.1007/978-1-4842-0472-6_10

Chapter 11 ■ 3D programming triCks

500

public float getPitch() {
 return pitch;
}

The getter methods just return the camera orientation and position.

public void setAngles(float yaw, float pitch) {
 if (pitch < -90)
 pitch = -90;
 if (pitch > 90)
 pitch = 90;
 this.yaw = yaw;
 this.pitch = pitch;
}

public void rotate(float yawInc, float pitchInc) {
 this.yaw += yawInc;
 this.pitch += pitchInc;
 if (pitch < -90)
 pitch = -90;
 if (pitch > 90)
 pitch = 90;
}

The setAngles() method allows us to specify the yaw and pitch of the camera directly. Note that we
limit the pitch to be in the range of –90 to 90. We can’t rotate our own head further than that, so our camera
shouldn’t be able to do that either.

The rotate() method is nearly identical to the setAngles() method. Instead of setting the angles, it
increases them by the parameters. This will be useful when we implement a little touchscreen-based control
scheme in the next example.

public void setMatrices(GL10 gl) {
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 GLU.gluPerspective(gl, fieldOfView, aspectRatio, near, far);
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glRotatef(-pitch, 1, 0, 0);
 gl.glRotatef(-yaw, 0, 1, 0);
 gl.glTranslatef(-position.x, -position.y, -position.z);
}

The setMatrices() method just sets the projection and model-view matrices as discussed earlier.
The projection matrix is set via gluPerspective() based on the parameters given to the camera in the
constructor. The model-view matrix performs the world-moving trick we talked about in Chapter 10 by
applying a rotation around the x and y axes as well as a translation. All involved factors are negated to
achieve the effect where the camera remains at the origin of the world, looking down the negative z axis. We
therefore rotate and translate the objects around the camera, not the other way around.

http://dx.doi.org/10.1007/978-1-4842-0472-6_10

Chapter 11 ■ 3D programming triCks

501

 final float[] matrix = new float[16];
 final float[] inVec = { 0, 0, -1, 1 };
 final float[] outVec = new float[4];
 final Vector3 direction = new Vector3();

 public Vector3 getDirection() {
 Matrix.setIdentityM(matrix, 0);
 Matrix.rotateM(matrix, 0, yaw, 0, 1, 0);
 Matrix.rotateM(matrix, 0, pitch, 1, 0, 0);
 Matrix.multiplyMV(outVec, 0, matrix, 0, inVec, 0);
 direction.set(outVec[0], outVec[1], outVec[2]);
 return direction;
 }
}

Finally, we have the mysterious getDirection() method. It is accompanied by a couple of final
members that we use for the calculations inside the method. We do this so that we don’t allocate new float
arrays and Vector3 instances each time the method is called. Consider those members to be temporary
working variables.

Inside the method, we first set up a transformation matrix that contains the rotation around the x
and y axes. We don’t need to include the translation, since we only want a direction vector, not a position
vector. The direction of the camera is independent of its location in the world. The Matrix methods we
invoke should be self-explanatory. The only strange thing is that we actually apply them in reverse order,
without negating the arguments. We do the opposite in the setMatrices() method. That’s because we are
now actually transforming a point in the same way that we’d transform our virtual camera, which does not
have to be located at the origin or be oriented so that it looks down the negative z axis. The vector we rotate
is (0,0,–1), stored in inVec. That’s the default direction of our camera if no rotation is applied. All that the
matrix multiplications do is rotate this direction vector by the camera’s pitch and roll so that it points in the
direction that the camera is heading. The last thing we do is set a Vector3 instance based on the result of the
matrix-vector multiplication and return that to the caller. We can use this unit-length direction vector later
on to move the camera in the direction it is heading.

Equipped with this little helper class, we can write a tiny example program that allows us to move
through a world of crates.

An Euler Camera Example
We now want to use the EulerCamera class in a little program. We want to be able to rotate the camera
up and down and left and right, based on swiping the touchscreen with a finger. We also want it to move
forward when a button is pressed. Our world should be populated by a few dozen crates. Figure 11-10 shows
the initial setup of our scene.

Chapter 11 ■ 3D programming triCks

502

The camera will be located at (0,1,3). We also have a white point light at (3,3,–3). The crates are
positioned in a grid from –4 to 4 on the x axis and from 0 to –8 on the z axis, with a 2-unit distance between
the centers.

How will we rotate the camera via swipes? We want the camera to rotate around the y axis when we
swipe horizontally. That is equivalent to turning your head left and right. We also want the camera to rotate
around the x axis when we swipe vertically. That’s equivalent to tilting your head up and down. We also want
to be able to combine these two swipe motions. The most straightforward way to achieve this is to check
whether a finger is on the screen and, if so, to measure the difference on each axis to the last known position
of that finger on the screen. We can then derive a change in rotation on both axes by using the difference in x
for the y-axis rotation and the difference in y for the x-axis rotation.

We also want to be able to move the camera forward by pressing an onscreen button. That’s simple;
we just need to call EulerCamera.getDirection()and multiply its result by the speed at which we want the
camera to move and the delta time so that we once again perform time-based movement. The only thing
that we need to do is draw the button (we decided to draw a 64×64 button in the bottom-left corner of the
screen) and check whether it is currently touched by a finger.

To simplify our implementation, we’ll only allow the user to either swipe-rotate or move. We could use
the multitouch facilities for this, but that would complicate our implementation quite a bit.

With this plan of attack in place, let’s look at EulerCameraScreen, a GLScreen implementation contained in
a GLGame implementation called EulerCameraTest (just the usual test structure). Listing 11-10 shows the code.

Listing 11-10. Excerpt from EulerCameraTest.java: The EulerCameraScreen

class EulerCameraScreen extends GLScreen {
 Texture crateTexture;
 Vertices3 cube;
 PointLight light;
 EulerCamera camera;

Figure 11-10. A simple scene with 25 crates, a point light, and an Euler camera in its initial position and
orientation

Chapter 11 ■ 3D programming triCks

503

 Texture buttonTexture;
 SpriteBatcher batcher;
 Camera2D guiCamera;
 TextureRegion buttonRegion;
 Vector2 touchPos;
 float lastX = -1;
 float lastY = -1;

We start off with some members. The first two store the texture for the crate and the vertices of the
texture cube. We’ll generate the vertices with the createCube() method from the previous example. The next
member is a PointLight instance, which we are already familiar with, followed by an instance of our new
EulerCamera class.

Next up are a couple of members we need to render the button. We use a separate 64×64 image called
button.png for that button. To render it, we also need a SpriteBatcher instance as well as a Camera2D
instance and a TextureRegion instance. This means that we are going to combine 3D and 2D rendering in
this example! The last three members are used to keep track of the current touchPos in the UI coordinate
system (which is fixed to 480×320), as well as store the last known touch positions. We’ll use the value –1 for
lastX and lastY to indicate that no valid last touch position is known yet.

public EulerCameraScreen(Game game) {
 super(game);

 crateTexture = new Texture(glGame, "crate.png", true);
 cube = createCube();
 light = new PointLight();
 light.setPosition(3, 3, -3);
 camera = new EulerCamera(67, glGraphics.getWidth() / (float)glGraphics.getHeight(), 1,

100);
 camera.getPosition().set(0, 1, 3);

 buttonTexture = new Texture(glGame, "button.png");
 batcher = new SpriteBatcher(glGraphics, 1);
 guiCamera = new Camera2D(glGraphics, 480, 320);
 buttonRegion = new TextureRegion(buttonTexture, 0, 0, 64, 64);
 touchPos = new Vector2();
}

In the constructor, we load the crate texture and create the cube vertices as we did in the previous
example. We also create a PointLight and set its position to (3,3,–3). The EulerCamera instance is created
with the standard parameters: a 67-degree field of view, the aspect ratio of the current screen resolution, a
near clipping plane distance of 1, and a far clipping plane distance of 100. Finally, we set the camera position
to (0,1,3), as shown in Figure 11-10.

In the rest of the constructor, we just load the button texture and create the SpriteBatcher instance,
Camera2D instance, and TextureRegion instance needed for rendering the button. Finally, we create a
Vector2 instance so that we can transform real touch coordinates to the coordinate system of the Camera2D
instance that we use for UI rendering, just as we did in Super Jumper in Chapter 9.

private Vertices3 createCube() {
 // same as in previous example
}

http://dx.doi.org/10.1007/978-1-4842-0472-6_9

Chapter 11 ■ 3D programming triCks

504

@Override
public void resume() {
 crateTexture.reload();
}

The createCube() and resume() methods are exactly the same as in the previous example, so all the
code isn’t repeated here.

@Override
public void update(float deltaTime) {
 game.getInput().getTouchEvents();
 float x = game.getInput().getTouchX(0);
 float y = game.getInput().getTouchY(0);
 guiCamera.touchToWorld(touchPos.set(x, y));

 if(game.getInput().isTouchDown(0)) {
 if(touchPos.x < 64 && touchPos.y < 64) {
 Vector3 direction = camera.getDirection();
 camera.getPosition().add(direction.mul(deltaTime));
 } else {
 if(lastX == -1) {
 lastX = x;
 lastY = y;
 } else {
 camera.rotate((x - lastX) / 10, (y - lastY) / 10);
 lastX = x;
 lastY = y;
 }
 }
 } else {
 lastX = -1;
 lastY = -1;
 }
}

The update() method is where all the swipe rotation and movement happens based on touch events.
The first thing we do is empty the touch event buffer via a call to Input.getTouchEvents(). Next, we fetch
the current touch coordinates for the first finger on the screen. Note that if no finger is currently touching
the screen, the methods we invoke will return the last known position of the finger with index 0. We also
transform the real touch coordinates to the coordinate system of our 2D UI so that we can easily check
whether the button in the bottom-left corner is pressed.

Equipped with all of these values, we then check whether a finger is actually touching the screen. If so,
we first check whether it is touching the button, which spans the coordinates (0,0) to (64,64) in the 2D UI
system. If that is the case, we fetch the current direction of the camera and add it to its position, multiplied
by the current delta time. Since the direction vector is a unit-length vector, this means that the camera will
move one unit per second.

If the button is not touched, we interpret the touch as a swipe gesture. For this to work, we need to have
a valid last known touch coordinate. The first time the user puts his or her finger down, the lastX and lastY
members will have a value of –1, indicating that we can’t create a difference between the last and current
touch coordinates because we only have a single data point. Therefore, we just store the current touch
coordinates and return from the update() method. If we recorded touch coordinates the last time update()
was invoked, we simply take the difference on the x and y axes between the current and the last touch

Chapter 11 ■ 3D programming triCks

505

coordinates. We directly translate these into increments of the rotation angles. To slow down the rotation a
little, we divide the differences by 10. The only thing left is to call the EulerCamera.rotate() method, which
will adjust the rotation angles accordingly.

Finally, if no finger is currently touching the screen, we set the lastX and lastY members to –1 to
indicate that we have to await the first touch event before we can do any swipe-gesture processing.

@Override
public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
 gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight());

 camera.setMatrices(gl);

 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glEnable(GL10.GL_LIGHTING);

 crateTexture.bind();
 cube.bind();
 light.enable(gl, GL10.GL_LIGHT0);

 for(int z = 0; z >= -8; z-=2) {
 for(int x = -4; x <=4; x+=2) {
 gl.glPushMatrix();
 gl.glTranslatef(x, 0, z);
 cube.draw(GL10.GL_TRIANGLES, 0, 6 * 2 * 3);
 gl.glPopMatrix();
 }
 }

 cube.unbind();

 gl.glDisable(GL10.GL_LIGHTING);
 gl.glDisable(GL10.GL_DEPTH_TEST);

 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA);

 guiCamera.setViewportAndMatrices();
 batcher.beginBatch(buttonTexture);
 batcher.drawSprite(32, 32, 64, 64, buttonRegion);
 batcher.endBatch();

 gl.glDisable(GL10.GL_BLEND);
 gl.glDisable(GL10.GL_TEXTURE_2D);
}

The present() method is surprisingly simple, thanks to the work we put into all of those little helper
classes. We start off with the usual things like clearing the screen and setting the viewport. Next, we tell the
EulerCamera instance to set the projection matrix and model-view matrix. From this point on, we can render
anything that should be 3D onscreen. Before we do that, we enable depth testing, texturing, and lighting.

Chapter 11 ■ 3D programming triCks

506

Next, we bind the crate texture and the cube vertices and also enable the point light. Note that we bind the
texture and cube vertices only once, since we are going to reuse them for all of the crates that we render.
This is the same trick that we used in our BobTest in Chapter 8 when we wanted to speed up rendering by
reducing state changes.

The next piece of code just draws the 25 cubes in a grid formation via a simple nested for loop. Since we
have to multiply the model-view matrix by a translation matrix in order to put the cube vertices at a specific
position, we must also use glPushMatrix() and glPopMatrix() so that we don’t destroy the camera matrix
that’s also stored in the model-view matrix.

Once we are done with rendering our cubes, we unbind the cube vertices and disable lighting and
depth testing. This is crucial, since we are now going to render the 2D UI overlay with the button. Since the
button is actually circular, we also enable blending to make the edges of the texture transparent.

Rendering the button is done in the same way that we rendered the UI elements in Super Jumper. We tell
the Camera2D instance to set the viewport and matrices (we wouldn’t really need to set the viewport here again;
feel free to “optimize” this method) and tell the SpriteBatcher that we are going to render a sprite. We render the
complete button texture at (32,32) in our 480×320 coordinate system that we set up via the guiCamera instance.

Finally, we just disable the last few states we enabled previously: blending and texturing.

 @Override
 public void pause() {

 }

 @Override
 public void dispose() {
 }
}

The rest of the class is again just some stub methods for pause() and dispose(). Figure 11-11 shows the
output of this little program.

Figure 11-11. A simple example of first-person-shooter controls, without multitouch for simplicity

http://dx.doi.org/10.1007/978-1-4842-0472-6_8

Chapter 11 ■ 3D programming triCks

507

Pretty nice, right? It also doesn’t take a lot of code, either, thanks to the wonderful job our helper
classes do for us. Now, adding multitouch support would be awesome, of course. Here’s a hint: instead of
using polling, as in the example just seen, use the actual touch events. On a “touch down” event, check
whether the button was hit. If so, mark the pointer ID associated with it as not being able to produce swipe
gestures until a corresponding “touch up” event is signaled. Touch events from all other pointer IDs can be
interpreted as swipe gestures!

A Look-At Camera
The second type of camera usually found in games is a simple look-at camera. It is defined by the following:

•	 A position in space

•	 An up vector. Think of this as an arrow that you would see if you slapped a “This
Side Up” sticker on the back of the camera when your camera is sitting flat on a level
surface.

•	 A look-at position in space or, alternatively, a direction vector. We’ll use the former.

•	 A field of view in degrees

•	 A viewport aspect ratio

•	 A near clipping plane distance and a far clipping plane distance

The only difference between a look-at camera and the Euler camera is the way we encode the
orientation of the camera. In this case, we specify the orientation by the up vector and the look-at position.
Let’s write a helper class for this type of camera. Listing 11-11 shows the code.

Listing 11-11. LookAtCamera.java: A simple look-at camera without bells and whistles

package com.badlogic.androidgames.framework.gl;

import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLU;

import com.badlogic.androidgames.framework.math.Vector3;

public class LookAtCamera {
 final Vector3 position;
 final Vector3 up;
 final Vector3 lookAt;
 float fieldOfView;
 float aspectRatio;
 float near;
 float far;

 public LookAtCamera(float fieldOfView, float aspectRatio, float near, float far) {
 this.fieldOfView = fieldOfView;
 this.aspectRatio = aspectRatio;
 this.near = near;
 this.far = far;

Chapter 11 ■ 3D programming triCks

508

 position = new Vector3();
 up = new Vector3(0, 1, 0);
 lookAt = new Vector3(0,0,-1);
 }

 public Vector3 getPosition() {
 return position;
 }

 public Vector3 getUp() {
 return up;
 }

 public Vector3 getLookAt() {
 return lookAt;
 }

 public void setMatrices(GL10 gl) {
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 GLU.gluPerspective(gl, fieldOfView, aspectRatio, near, far);
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 GLU.gluLookAt(gl, position.x, position.y, position.z, lookAt.x, lookAt.y, lookAt.z,

up.x, up.y, up.z);
 }
}

There are no real surprises here. We just store the position, up, and lookAt values as Vector3 instances,
along with the perspective projection parameters we also had in the EulerCamera class. In addition, we
provide a couple of getters so that we can modify the attributes of the camera. The only interesting method
is setMatrices(), but even that is old hat for us. We first set the projection matrix to a perspective projection
matrix based on the field of view, aspect ratio, and near and far clipping plane distances. Then, we set the
model-view matrix to contain the camera position and orientation matrix via gluLookAt(), as discussed in
Chapter 10. This will actually produce a matrix very similar to the matrix we “handcrafted” in the EulerCamera
example. It will also rotate the objects around the camera, instead of the other way around. However, the nice
interface of the gluLookAt() method shields us from all those silly things like inverting positions or angles.

We could, in fact, use this camera just like a EulerCamera instance. All we need to do is create a
direction vector by subtracting the camera’s position from its look-at point and normalizing it. Then, we
just rotate this direction vector by the yaw and pitch angles. Finally, we set the new look-at position to
the position of the camera and add the direction vector. Both methods would produce exactly the same
transformation matrix. It’s just two different ways to handle camera orientation.

We’ll refrain from writing an explicit example for the LookAtCamera class, since the interface is perfectly
simple. We’ll use it in our last game in this book, where we let it follow a neat little spaceship! If you want to
play around with it a little, add it to the LightTest we wrote earlier or modify the EulerCameraTest in such a
way that the LookAtCamera class can be used like a first-person-shooter camera, as outlined in the previous
paragraph.

http://dx.doi.org/10.1007/978-1-4842-0472-6_10

Chapter 11 ■ 3D programming triCks

509

Loading Models
Defining models like our cube in code is very cumbersome, to say the least. A better way to create these
types of models is to use special software that allows WYSIWYG creation of complex forms and objects.
There’s a plethora of software available for this task:

•	 Blender, an open source project used in many game and movie productions. It’s very
capable and flexible, but also a bit intimidating.

•	 Wings3D, our weapon of choice and also open source. We use it for simple low-poly
(read: not many triangles) modeling of static objects. It’s very simplistic but gets the
job done.

•	 3D Studio Max, one of the de facto standards in the industry. It’s a commercial
product, but there are student versions available.

•	 Maya, another industry favorite. It’s also a commercial product but has some pricing
options that might fit smaller purses.

That’s just a selection of the more popular options out in the wild. Teaching you how to use one of these
is well outside the scope of this book. However, no matter what software you use, at some point you will save
your work to some kind of format. One such format is Wavefront OBJ, a very old plain-text format that can
easily be parsed and translated to one of our Vertices3 instances.

The Wavefront OBJ Format
We will implement a loader for a subset of this format. Our loader will support models that are composed of
triangles only and that optionally may contain texture coordinates and normals. The OBJ format also supports
the storage of arbitrary convex polygons, but we won’t go into that. Whether you simply find an OBJ model or
create your own, just make sure that it is triangulated—meaning that it’s composed of triangles only.

The OBJ format is line based. Here are the parts of the syntax we are going to process:

•	 v x y z: The v indicates that the line encodes a vertex position, while x, y, and z are
the coordinates encoded as floating-point numbers.

•	 vn i j k: The vn indicates that the line encodes a vertex normal, with i, j, and k
being the x, y, and z components of the vertex normal.

•	 vt u v: The vt indicates that the line encodes a texture coordinate pair, with u and v
being the texture coordinates.

•	 f v1/vt1/vn1 v2/vt2/vn2 v3/vt3/vn3: The f indicates that the line encodes a
triangle. Each of the v/vt/vn blocks contains the indices of the position, texture
coordinates, and vertex normal of a single vertex of the triangle. The indices are
relative to the vertex positions, texture coordinates, and vertex normal defined
previously by the other three line formats. The vt and vn indices can be left out to
indicate that there are no texture coordinates or normals for a specific vertex of a
triangle.

We will ignore any line that does not start with v, vn, vt, or f; we will also output an error if any of the
permissible lines don’t follow the formatting just described. Items within a single line are delimited by
whitespaces, which can include spaces, tabs, and so on.

Chapter 11 ■ 3D programming triCks

510

 ■ Note the oBJ format can store a lot more information than we are going to parse here. We can get away
with only parsing the syntax shown here and ignoring anything else as long as the models are triangulated and
have normal and texture coordinates.

Here’s a very simple example of a texture triangle with normals in OBJ format:

v -0.5 -0.5 0
v 0.5 -0.5 0
v 0 0.5 0
vn 0 0 1
vn 0 0 1
vn 0 0 1
vt 0 1
vt 1 1
vt 0.5 0
f 1/1/1 2/2/2 3/3/3

Note that the vertex positions, texture coordinates, and normals do not have to be defined in such a nice
order. They could be intertwined if the software that saved the file chose to do so.

The indices given in an f statement are one-based, rather than zero-based (as in the case of a
Java array). Some software even outputs negative indices at times. This is permitted by the OBJ format
specification but is a major pain. We have to keep track of how many vertex positions, texture coordinates, or
vertex normals we have loaded so far and then add that negative index to the respective number of positions,
vertex coordinates, or normals, depending on what vertex attribute that index is indicating.

Implementing an OBJ Loader
Our plan of attack will be to load the file completely into memory and to create a string per line. We will also
create temporary float arrays for all of the vertex positions, texture coordinates, and normals that we are
going to load. Their size will be equal to the number of lines in the OBJ file times the number of components
per attribute; that is, two for texture coordinates or three for normals. By doing this, we overshoot the
necessary amount of memory needed to store the data, but that’s still better than allocating new arrays every
time we have filled them up.

We also do the same for the indices that define each triangle. While the OBJ format is indeed an indexed
format, we can’t use those indices directly with our Vertices3 class. The reason for this is that a vertex
attribute might be reused by multiple vertices, so there’s a one-to-many relationship that is not allowed in
OpenGL ES. Therefore, we’ll use a nonindexed Vertices3 instance and simply duplicate the vertices. For our
needs, that’s OK.

Let’s see how we can implement all of this. Listing 11-12 shows the code.

Listing 11-12. ObjLoader.java: A simple class for loading a subset of the OBJ format

package com.badlogic.androidgames.framework.gl;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;

Chapter 11 ■ 3D programming triCks

511

import java.util.List;

import com.badlogic.androidgames.framework.impl.GLGame;

public class ObjLoader {
 public static Vertices3 load(GLGame game, String file) {
 InputStream in = null;
 try {
 in = game.getFileIO().readAsset(file);
 List<String> lines = readLines(in);

 float[] vertices = new float[lines.size()* 3];
 float[] normals = new float[lines.size()* 3];
 float[] uv = new float[lines.size()* 2];

 int numVertices = 0;
 int numNormals = 0;
 int numUV = 0;
 int numFaces = 0;

 int[] facesVerts = new int[lines.size() * 3];
 int[] facesNormals = new int[lines.size() * 3];
 int[] facesUV = new int[lines.size() * 3];
 int vertexIndex = 0;
 int normalIndex = 0;
 int uvIndex = 0;
 int faceIndex = 0;

The first thing we do is open an InputStream to the asset file specified by the file parameter. We then
read in all of the lines of that file using a method called readLines() (defined in the code that follows). Based
on the number of lines, we allocate float arrays that will store the x, y, and z coordinates of each vertex’s
position; the x, y, and z components of each vertex’s normal; and the u and v components of each vertex’s
texture coordinates. Since we don’t know how many vertices there are in the file, we just allocate more space
than needed for the arrays. Each vertex attribute is stored in subsequent elements of the three arrays. The
position of the first read vertex is in vertices[0], vertices[1], and vertices[2], and so on. We also keep
track of the indices in the triangle definitions for each of the three attributes of a vertex. In addition, we have
a couple of counters to keep track of how many things we have already loaded.

for (int i = 0; i < lines.size(); i++) {
 String line = lines.get(i);

Next, we have a for loop that iterates through all the lines in the files.

if (line.startsWith("v ")) {
 String[] tokens = line.split("[]+");
 vertices[vertexIndex] = Float.parseFloat(tokens[1]);
 vertices[vertexIndex + 1] = Float.parseFloat(tokens[2]);
 vertices[vertexIndex + 2] = Float.parseFloat(tokens[3]);
 vertexIndex += 3;
 numVertices++;
 continue;
}

Chapter 11 ■ 3D programming triCks

512

If the current line is a vertex position definition, we split the line by whitespaces, read the x, y, and z
coordinates, and store it in the vertices array.

if (line.startsWith("vn ")) {
 String[] tokens = line.split("[]+");
 normals[normalIndex] = Float.parseFloat(tokens[1]);
 normals[normalIndex + 1] = Float.parseFloat(tokens[2]);
 normals[normalIndex + 2] = Float.parseFloat(tokens[3]);
 normalIndex += 3;
 numNormals++;
 continue;
}

if (line.startsWith("vt")) {
 String[] tokens = line.split("[]+");
 uv[uvIndex] = Float.parseFloat(tokens[1]);
 uv[uvIndex + 1] = Float.parseFloat(tokens[2]);
 uvIndex += 2;
 numUV++;
 continue;
}

We do the same thing for the normals and texture coordinates.

if (line.startsWith("f ")) {
 String[] tokens = line.split("[]+");

 String[] parts = tokens[1].split("/");
 facesVerts[faceIndex] = getIndex(parts[0], numVertices);
 if (parts.length > 2)
 facesNormals[faceIndex] = getIndex(parts[2], numNormals);
 if (parts.length > 1)
 facesUV[faceIndex] = getIndex(parts[1], numUV);
 faceIndex++;

 parts = tokens[2].split("/");
 facesVerts[faceIndex] = getIndex(parts[0], numVertices);
 if (parts.length > 2)
 facesNormals[faceIndex] = getIndex(parts[2], numNormals);
 if (parts.length > 1)
 facesUV[faceIndex] = getIndex(parts[1], numUV);
 faceIndex++;

 parts = tokens[3].split("/");
 facesVerts[faceIndex] = getIndex(parts[0], numVertices);
 if (parts.length > 2)
 facesNormals[faceIndex] = getIndex(parts[2], numNormals);
 if (parts.length > 1)
 facesUV[faceIndex] = getIndex(parts[1], numUV);
 faceIndex++;
 numFaces++;

Chapter 11 ■ 3D programming triCks

513

 continue;
 }
}

In this code, each vertex of a triangle (here called a face, as that is the term used in the OBJ format) is
defined by a triplet of indices into the vertex position, texture coordinate, and normal arrays. The texture
coordinate and normal indices can be omitted, so we keep track of this. The indices can also be negative,
in which case we have to add them to the number of positions/texture coordinates/normals loaded so far.
That’s what the getIndex() method does for us.

float[] verts = new float[(numFaces * 3)
 * (3 + (numNormals > 0 ? 3 : 0) + (numUV > 0 ? 2 : 0))];

Once we have loaded all vertex positions, texture coordinates, normals, and triangles, we can start
assembling a float array that holds the vertices in the format expected by a Vertices3 instance. The number
of floats needed to store these vertices can easily be derived from the number of triangles we loaded and
whether normal and texture coordinates are given.

for (int i = 0, vi = 0; i < numFaces * 3; i++) {
 int vertexIdx = facesVerts[i] * 3;
 verts[vi++] = vertices[vertexIdx];
 verts[vi++] = vertices[vertexIdx + 1];
 verts[vi++] = vertices[vertexIdx + 2];

 if (numUV > 0) {
 int uvIdx = facesUV[i] * 2;
 verts[vi++] = uv[uvIdx];
 verts[vi++] = 1 - uv[uvIdx + 1];
 }

 if (numNormals > 0) {
 int normalIdx = facesNormals[i] * 3;
 verts[vi++] = normals[normalIdx];
 verts[vi++] = normals[normalIdx + 1];
 verts[vi++] = normals[normalIdx + 2];
 }
}

To fill the verts array, we just loop over all the triangles, fetch the vertex attribute for each vertex of a
triangle, and put them into the verts array in the layout we usually use for a Vertices3 instance.

Vertices3 model = new Vertices3(game.getGLGraphics(), numFaces * 3,
 0, false, numUV > 0, numNormals > 0);
model.setVertices(verts, 0, verts.length);
return model;

The last thing we do is instantiate the Vertices3 instance and set the vertices.

} catch (Exception ex) {
 throw new RuntimeException("couldn't load '" + file + "'", ex);
} finally {
 if (in != null)

Chapter 11 ■ 3D programming triCks

514

 try {
 in.close();
 } catch (Exception ex) {

 }
 }
}

The rest of the method just does some exception handling and closing of the InputStream.

static int getIndex(String index, int size) {
 int idx = Integer.parseInt(index);
 if (idx < 0)
 return size + idx;
 else
 return idx - 1;
}

The getIndex() method takes one of the indices given for an attribute of a vertex in a triangle
definition, as well as the number of attributes loaded so far, and returns a suitable index to reference the
attribute in one of our working arrays.

 static List<String> readLines(InputStream in) throws IOException {
 List<String> lines = new ArrayList<String>();

 BufferedReader reader = new BufferedReader(new InputStreamReader(in));
 String line = null;
 while ((line = reader.readLine()) != null)
 lines.add(line);
 return lines;
 }
}

Finally, there’s the readLines() method, which just reads in each line of a file and returns all these lines
as a List of strings.

To load an OBJ file from an asset, we can use the ObjLoader as follows:

Vertices3 model = ObjLoader.load(game, "mymodel.obj");

Pretty straightforward after all of this index juggling, right? To render this Vertices3 instance, we
need to know how many vertices it has, though. Let’s extend the Vertices3 class one more time, adding
two methods to return the number of vertices and the number of indices currently defined in the instance.
Listing 11-13 shows the code.

Listing 11-13. Excerpt from Vertices3.java: Fetching the number of vertices and indices

public int getNumIndices() {
 return indices.limit();
}

public int getNumVertices() {
 return vertices.limit()/ (vertexSize / 4);
}

Chapter 11 ■ 3D programming triCks

515

For the number of indices, we just return the limit of the ShortBuffer storing the indices. For the
number of vertices, we do the same. However, since the limit is reported in the number of floats defined
in the FloatBuffer, we have to divide it by the vertex size. Since we store that in number of bytes in
vertexSize, we divide vertexSize by 4.

Using the OBJ Loader
To demonstrate the OBJ loader, let’s rewrite the previous example and create a new test called ObjTest
along with an ObjScreen. Copy over all the code from the previous example and only change the line in the
constructor of the ObjScreen class that’s responsible for creating the cube:

cube = ObjLoader.load(glGame, "cube.obj");

Instead of using the createCube() method (which we removed), we are now directly loading a model
from an OBJ file, called cube.obj. We created a replica of the cube we previously specified programmatically
in createCube() in Wings3D. You can find it in the SVN repository just like all other assets. It has the same
vertex positions, texture coordinates, and normals as the handcrafted version. It should come as no surprise
that, when you run ObjTest, it will look exactly like our EulerCameraTest. We’ll therefore spare you the
obligatory screenshot.

Some Notes on Loading Models
For the game we are going to write in the next chapter, our loader is sufficient, but it is far from robust. There
are some caveats:

•	 String processing in Android is inherently slow. The OBJ format is a plain-text format
and, as such, it needs a lot of parsing. This will have a negative influence on load
times. We can work around this issue by converting our OBJ models to a custom
binary format. We could, for example, just serialize the verts array that we fill in the
ObjLoader.load() method.

•	 The OBJ format has a lot more features that we don’t exploit. If you want to extend
our simple loader, look up the format specification on the Web. It should be easy to
add more functionality.

•	 An OBJ file is usually accompanied by what’s called a material file. This file defines
the colors and textures to be used by groups of vertices in the OBJ file. We will not
need this functionality since we know which texture to use for a specific OBJ file. For
a more robust loader, you’ll want to look into the material file specification as well.

A Little Physics in 3D
In Chapter 8, we developed a very simple point mass–based physics model in 2D. Here’s the good news:
everything works the same in 3D!

•	 Positions are now 3D vectors instead of 2D vectors. We just add a z coordinate.

•	 Velocities are still expressed in meters per second on each axis. We just add one
more component for the z axis!

•	 Accelerations are also still expressed in meters per second squared (m/s2) on each
axis. Again, we just add another coordinate.

http://dx.doi.org/10.1007/978-1-4842-0472-6_8

Chapter 11 ■ 3D programming triCks

516

In Chapter 8, the pseudocode with which we described a physics simulation update looked like this:

Vector2 position = new Vector2();
Vector2 velocity = new Vector2();
Vector2 acceleration = new Vector2(0, -10);
while(simulationRuns) {
 float deltaTime = getDeltaTime();
 velocity.add(acceleration.x * deltaTime, acceleration.y * deltaTime);
 position.add(velocity.x * deltaTime, velocity.y * deltaTime);
}

We can translate this into 3D space by simply exchanging the Vector2 instances with Vector3 instances:

Vector3 position = new Vector3();
Vector3 velocity = new Vector3();
Vector3 acceleration = new Vector3(0, -10, 0);
while(simulationRuns) {
 float deltaTime = getDeltaTime();
 velocity.add(acceleration.x * deltaTime, acceleration.y * deltaTime, acceleration.z *

deltaTime);
 position.add(velocity.x * deltaTime, velocity.y * deltaTime, velocity.z * deltaTime);
}

And that is all there is to it! This simple physics model is again sufficient for many simple 3D games. In the
final game of this book, we will not even use any acceleration because of the nature of the objects in the game.

More complex physics in 3D (and 2D) are, of course, harder to implement. For this purpose, you’d
usually want to use a third-party library instead of reinventing the wheel yourself. The problem on Android
is that Java-based solutions will be much too slow because of the heavy computations involved. There are
some solutions for 2D physics for Android that wrap native C++ libraries like Box2D via the Java Native
Interface (JNI), providing the native API to a Java application. For 3D physics, there’s a library called Bullet.
However, there aren’t any usable JNI bindings for this library yet. These topics are well outside of the scope
of this book, though, and in many cases we don’t need any sophisticated rigid-body physics.

Collision Detection and Object Representation in 3D
In Chapter 8, we discussed the relationship between object representation and collision detection. We strive
to make our game-world objects as independent from their graphical representation as possible. Instead,
we’d like to define them in terms of their bounding shape, position, and orientation. Position and orientation
are not much of a problem; we can express the former as a Vector3 instance and the latter as the rotation
around the x, y, and z axes (minding the potential gimbal-lock problem mentioned in Chapter 10). Let’s take
a look at bounding shapes, however.

Bounding Shapes in 3D
In terms of bounding shapes, as with 2D programming, we again have a ton of options. Figure 11-12 shows
some of the more popular bounding shapes in 3D programming.

http://dx.doi.org/10.1007/978-1-4842-0472-6_8
http://dx.doi.org/10.1007/978-1-4842-0472-6_8
http://dx.doi.org/10.1007/978-1-4842-0472-6_10

Chapter 11 ■ 3D programming triCks

517

•	 Triangle mesh: This bounds the object as tightly as possible. However, colliding two
objects based on their triangle meshes is computationally heavy.

•	 Axis-aligned bounding box: This bounds the object loosely. It is a lot less
computationally intensive than a triangle mesh.

•	 Bounding sphere: This bounds the object even less well. It is the fastest way to check
for collisions, though.

Another problem with triangle meshes and bounding boxes is that we have to reorient them
whenever we rotate or scale the object, just as in 2D. Bounding spheres, on the other hand, don’t need any
modification if we rotate an object. If we scale an object, we just need to scale the radius of the sphere, which
is a simple multiplication issue.

Bounding Sphere Overlap Testing
The mathematics of triangle mesh and bounding box collision detection can be pretty involved. For our next
game, bounding spheres will do just fine. There’s also a little trick we can apply that we already used in Super
Jumper: to make the bounding sphere fit a little better, we make it smaller than the graphical representation.
Figure 11-13 shows how that could look in the case of a spaceship.

That’s, of course, a very cheap trick, but it turns out that, in many situations, it is more than sufficient to
keep up the illusion of mostly correct collision detection.

Figure 11-12. Various bounding shapes. From left to right: triangle mesh, axis-aligned bounding box, and
bounding sphere.

Figure 11-13. Making the bounding sphere smaller to better fit an object

Chapter 11 ■ 3D programming triCks

518

So, how do we collide two spheres with each other? Or rather, how do we test for overlap? It works
exactly the same as in the case of circles! All we need to do is measure the distance from the center of one
sphere to the center of the other sphere. If that distance is smaller than the two radii of the spheres added
together, then we have a collision. Let’s create a simple Sphere class. Listing 11-14 shows the code.

Listing 11-14. Sphere.java: A simple bounding sphere

package com.badlogic.androidgames.framework.math;

public class Sphere {
 public final Vector3 center = new Vector3();
 public float radius;

 public Sphere(float x, float y, float z, float radius) {
 this.center.set(x,y,z);
 this.radius = radius;
 }
}

That’s the same code that we used in the Circle class in Chapter 8. All we changed is the vector holding
the center, which is now a Vector3 instead of a Vector2.

Let’s also extend our OverlapTester class with methods to check for the overlap of two spheres and to
test whether a point is inside a sphere. Listing 11-15 shows the code.

Listing 11-15. Excerpt from OverlapTester.java: Adding sphere-testing methods

public static boolean overlapSpheres(Sphere s1, Sphere s2) {
 float distance = s1.center.distSquared(s2.center);
 float radiusSum = s1.radius + s2.radius;
 return distance <= radiusSum * radiusSum;
}

public static boolean pointInSphere(Sphere c, Vector3 p) {
 return c.center.distSquared(p) < c.radius * c.radius;
}

public static boolean pointInSphere(Sphere c, float x, float y, float z) {
 return c.center.distSquared(x, y, z) < c.radius * c.radius;
}

That’s again exactly the same code as in the case of circle overlap testing. We just use the center of the
spheres, which are Vector3 instances instead of Vector2 instances, as in the case of a circle.

 ■ Note entire books have been filled on the topic of 3D collision detection. if you want to dive deeper into
that rather interesting world, we suggest the book Real-Time Collision Detection by Christer ericson (morgan
kaufmann, 2005). it should be on the shelf of any self-respecting game developer!

http://dx.doi.org/10.1007/978-1-4842-0472-6_8

Chapter 11 ■ 3D programming triCks

519

GameObject3D and DynamicGameObject3D
Now that we have a nice bounding shape for our 3D objects, we can easily write the equivalent of the
GameObject and DynamicGameObject classes we used in 2D. We just replace any Vector2 instance with
a Vector3 instance and use the Sphere class instead of the Rectangle class. Listing 11-16 shows the
GameObject3D class.

Listing 11-16. GameObject3D.java: Representing a simple object with a position and bounds

package com.badlogic.androidgames.framework;

import com.badlogic.androidgames.framework.math.Sphere;
import com.badlogic.androidgames.framework.math.Vector3;

public class GameObject3D {
 public final Vector3 position;
 public final Sphere bounds;

 public GameObject3D(float x, float y, float z, float radius) {
 this.position = new Vector3(x,y,z);
 this.bounds = new Sphere(x, y, z, radius);
 }
}

This code is so trivial that you probably don’t need any explanation. The only hitch is that we have to
store the same position twice: once as the position member in the GameObject3D class, and again within the
position member of the Sphere instance that’s contained in the GameObject3D class. This is somewhat ugly,
but, for the sake of clarity, we’ll stick to it.

Deriving a DynamicGameObject3D class from this class is also simple. Listing 11-17 shows the code.

Listing 11-17. DynamicGameObject3D.java: The dynamic equivalent to GameObject3D

package com.badlogic.androidgames.framework;

import com.badlogic.androidgames.framework.math.Vector3;

public class DynamicGameObject3D extends GameObject3D {
 public final Vector3 velocity;
 public final Vector3 accel;

 public DynamicGameObject3D(float x, float y, float z, float radius) {
 super(x, y, z, radius);
 velocity = new Vector3();
 accel = new Vector3();
 }
}

We again just replace any Vector2 instance with a Vector3 instance and smile happily.

Chapter 11 ■ 3D programming triCks

520

In 2D, we had to think hard about the relationship between the graphical representation of our objects
(given in pixels) and the units used within the model of our world. In 3D, we can break free from this! The
vertices of our 3D models that we load from, say, an OBJ file can be defined in whatever unit system we want.
We no longer need to transform pixels to world units and vice versa. This makes working in 3D a little easier.
We just need to train our artist so that he or she provides us with models that are properly scaled to the unit
system of our world.

Summary
We have again uncovered a lot of mysteries in the world of game programming. We talked a little bit about
vectors in 3D, which turned out to be as simple to use as their 2D counterparts. The general theme is as
follows: just add a z coordinate! We also took a look at lighting in OpenGL ES. With the helper classes we
wrote to represent materials and light sources, it is pretty simple to set up the lighting in a scene. For better
performance and fewer graphical artifacts, we also implemented simple mipmapping as part of our Texture
class. We also explored the implementation of simple Euler and look-at cameras, using very little code and a
little help from the Matrix class to do so.

Since the creation of 3D meshes by hand in code is tedious, we also looked at one of the simplest and
most popular 3D file formats: Wavefront OBJ. We revisited our simple physics model and transferred it to the
realm of 3D, which turned out to be as simple as creating 3D vectors.

The last point on our agenda was to figure out how to cope with bounding shapes and object
representation in 3D. Given our modest needs, we arrived at very simple solutions for both problems, which
are very similar or even identical to those we used in 2D.

While there is a lot more to 3D programming than we can present here, you now have a pretty good idea
about what is needed in order to write a 3D game. The big realization is that there is not a lot of difference
between a 2D game and a 3D game (up to a certain degree of complexity, of course). We don’t have to be
afraid of 3D anymore! In Chapter 12, we’ll use our new knowledge to write the final game of this book: Droid
Invaders!

http://dx.doi.org/10.1007/978-1-4842-0472-6_12

521© Mario Zechner, J. F. DiMarzio and Robert Green 2016
M. Zechner et al., Beginning Android Games, DOI 10.1007/978-1-4842-0472-6_12

CHAPTER 12

Android Invaders: The Grand
Finale

We are finally ready to create the last game for this book. This time, we are going to develop a simple action/
arcade game, adapting an old classic and giving it a nice 3D look by using the techniques discussed in the
previous two chapters.

Core Game Mechanics
As you might have guessed from the title of this chapter, we are about to implement a variation of Space
Invaders, which was a 2D game in its original form (illustrated in Figure 12-1).

Figure 12-1. The original Space Invaders arcade game

Chapter 12 ■ android invaders: the Grand Finale

522

Here’s a little surprise: we’ll continue to stay in 2D, for the most part. All of our objects will have 3D
bounds in the form of bounding spheres and positions in 3D space. However, movement will only happen in
the x-z plane, which makes certain things a little easier. Figure 12-2 shows the adapted 3D Android Invaders
world. The mock-up was created with Wings3D.

Now, to define the game mechanics:

•	 A ship is flying at the bottom of the playfield and is capable of navigating only on the
x axis.

•	 The movement is limited to the boundaries of the playfield. When the ship reaches
the left or right boundaries of the game field, it simply stops moving.

•	 We want to give the player the option to use either the accelerometer to navigate the
ship or the onscreen buttons for left and right movement.

•	 The ship can fire one shot per second. The player shoots by pressing an onscreen
button.

•	 At the bottom of the game field, there are three shields, each composed of five cubes.

•	 Invaders start off with the configuration shown in Figure 12-2 and then move to the
left for some distance, then move some distance in the positive z direction, and then
move to the right for some distance. There will be 32 invaders in total, making up
four rows of eight invaders.

•	 Invaders will shoot randomly.

•	 When a shot hits the ship, the ship explodes and loses one life.

•	 When a shot hits a shield, the shield disappears permanently.

Figure 12-2. The 3D game field mock-up

Chapter 12 ■ android invaders: the Grand Finale

523

•	 When a shot hits an invader, the invader explodes and the score is increased by 10
points.

•	 When all invaders are destroyed, a new wave of invaders appears, moving slightly
faster than the last wave.

•	 When an invader collides directly with a ship, the game is over.

•	 When the ship has lost all of its lives, the game is over.

That’s not an overwhelming list, is it? All operations can essentially be performed in 2D (in the x-z plane
instead of in the x-y plane). We’ll still use 3D bounding spheres, however. If you’d like to, you can extend the
game to real 3D after we are done with the first iteration. For now, let’s move on to the backstory and art style.

Developing a Backstory and Choosing an Art Style
We’ll call the game Android Invaders, in deference to Android and Space Invaders. That’s cheap, but we
don’t plan on producing a AAA title yet. In the tradition of classic shooters, like Doom, the backstory will be
minimal. It goes like this:

Invaders from outer space attack Earth. You are the sole person capable of fending off the
evil forces.

That was good enough for Doom and Quake, so it’s good enough for Android Invaders, too.
The art style will be a little retro when it comes to the GUI, using the same old-fashioned font we used

in Chapter 9 for Super Jumper. Our game world itself will be displayed in fancy 3D, with textured and lighted
3D models. Figure 12-3 shows what the game screen will look like.

The music will be a rock/metal mixture, and the sound effects will match the scenario.

Figure 12-3. The Android Invaders mockup. Fancy!

http://dx.doi.org/10.1007/978-1-4842-0472-6_9

Chapter 12 ■ android invaders: the Grand Finale

524

Defining Screens and Transitions
Since we have already implemented help screens and high-scores screens twice, in Chapter 6’s Mr. Nom and
in Chapter 9’s Super Jumper, we’ll refrain from doing so for Android Invaders; it’s always the same principle,
and a player should immediately know what to do once he or she is presented with the game screen,
anyway. Instead, we’ll add a settings screen that allows the player to select the type of input (multitouch or
accelerometer) and to disable or enable sound. Here’s the list of screens for Android Invaders:

•	 A main screen with a logo and PLAY and SETTINGS options.

•	 A game screen that immediately starts with the game (no more READY? signal!) and
also handles the paused state (with RESUME and QUIT options) and displays GAME
OVER once the ship has no more lives.

•	 A settings screen that displays three icons representing the configuration options
(multitouch, accelerometer, and sound).

This is very similar to what we had in the previous two games. Figure 12-4 shows all the screens and
transitions.

Figure 12-4. Screens and transitions of Android Invaders

http://dx.doi.org/10.1007/978-1-4842-0472-6_6
http://dx.doi.org/10.1007/978-1-4842-0472-6_9

Chapter 12 ■ android invaders: the Grand Finale

525

Defining the Game World
One of the joys of working in 3D is that we are free from the shackles of pixels. We can define our world in
whatever units we want. The game mechanics that we outlined dictate a limited playing field, so let’s start by
defining that field. Figure 12-5 shows the area of the playing field in our game’s world.

Everything in our world will happen inside this boundary in the x-z plane. Coordinates will be limited
on the x axis from –14 to 14 and on the z axis from 0 to –15. The ship will be able to move along the bottom
edge of the playing field, from (–14,0,0) to (14,0,0).

Next, we define the sizes of the objects in our world:

•	 The ship will have a radius of 0.5 units.

•	 The invaders will have a slightly larger radius of 0.75 units. This makes them easier to
hit.

•	 The shield blocks each have a radius of 0.5 units.

•	 The shots each have a radius of 0.1 units.

How did we arrive at these values? We simply divided up our game world into cells of 1 unit by 1 unit
and determined how big each game element should be in relation to the size of the playing field. Usually,
you’d arrive at these measurements through a little experimentation or by using real-world units like meters.
In Android Invaders, we’ll use nameless units.

The radii we just defined can be directly translated to bounding spheres, of course. In the case of
the shield blocks and the ship, we can cheat a little, as those are clearly not spherical. Thanks to the 2D
properties of our world, we can get away with this little trick. In the case of the invaders, the sphere is
actually a pretty good approximation.

Figure 12-5. The playing field

Chapter 12 ■ android invaders: the Grand Finale

526

We also have to define the velocities of our moving objects:

•	 The ship can move with a maximum velocity of 20 units per second. As in Super
Jumper, we’ll usually have a lower velocity, as it is dependent on the device’s tilt.

•	 The invaders will initially move 1 unit per second. Each wave will slightly increase
this speed.

•	 The shots will move at 10 units per second.

With these definitions, we can start implementing the logic of our game world. Before we jump into
implementing the logic, we’ll create our assets first.

Creating the Assets
As in our previous games, we have two kinds of graphical assets: UI elements, such as logos and buttons, and
the models for the different types of objects in our game.

The UI Assets
We’ll again create our UI assets relative to some target resolution. Our game will be run in landscape mode,
so we simply choose a target resolution of 480×320 pixels. The screens in Figure 12-4 show the elements we
already have in our UI: a logo, different menu items, a couple of buttons, and some text. For the text, we’ll
reuse the font from Super Jumper. We’ve already done the compositing for all these elements in previous
games, and you’ve learned that putting them into a texture atlas can be beneficial for performance. The
texture atlas we’ll use for Android Invaders, containing all the UI elements (as well as the font for all the
screens in the game), is shown in Figure 12-6.

Figure 12-6. The UI element atlas, with buttons, logo, and font. It is stored in the file items.png, which is
512×512 pixels.

Chapter 12 ■ android invaders: the Grand Finale

527

This is essentially the same concept we used in Super Jumper. We also have a background that will be
rendered in all screens. Figure 12-7 shows this image.

As previously shown in Figure 12-4, we only need to use the top-left region of this image to render a full
frame (480×320 pixels).

Those are all the UI elements we need. Now we can look at our 3D models and their textures.

The Game Assets
As mentioned in Chapter 11, going into detail on how to create 3D models with software like Wings3D is
beyond the scope of this book. If you want to create your own models, choose an application to work with
and plow through some tutorials, which are often freely available on the Internet. For the models of Android
Invaders, we used Wings3D and simply exported them to the OBJ format, which we can load with our
framework. All models are composed of triangles only and have texture coordinates and normals. We won’t
need texture coordinates for some of the models, but it doesn’t hurt to have them.

The ship model and its texture are illustrated in Figure 12-8.

Figure 12-7. The background stored in background.jpg, 512×512 pixels

http://dx.doi.org/10.1007/978-1-4842-0472-6_11

Chapter 12 ■ android invaders: the Grand Finale

528

The crucial thing is that the ship in Figure 12-8 has roughly the “radius” outlined in the previous section.
We don’t need to scale anything or transform sizes and positions from one coordinate system to the other.
The ship’s model is defined with the same units as its bounding sphere!

Figure 12-9 shows the invader model and its texture.

The invader model follows the same principles as the ship model does. We have one OBJ file storing the
vertex positions, texture coordinates, normals and faces, and texture image.

The shield blocks and shots are modeled as cubes and are stored in the files shield.obj and shot.obj.
Although they have texture coordinates assigned, we don’t actually use texture mapping when rendering
them. We just draw them as (translucent) objects with a specific color (blue in the case of the shield blocks,
yellow for the shots).

Finally, we have our explosions (see Figure 12-3 again). How do we model those? We don’t. We do what
we did in 2D and simply draw a rectangle with a proper z position in our 3D world, then texture map it with
a frame from a texture image containing an explosion animation. It’s the same principle we used for the
animated objects in Super Jumper. The only difference is that we draw the rectangle at a z position less than
0 (wherever the exploding object is located). We can even abuse the SpriteBatcher class to do this. Hurray
for OpenGL ES! Figure 12-10 shows the texture.

Figure 12-9. The invader model (invader.obj) and its texture (invader.png, 256×256 pixels)

Figure 12-8. The ship model in Wings3D (ship.obj) and its texture (ship.png, 256×256 pixels)

Chapter 12 ■ android invaders: the Grand Finale

529

Each frame of the animation is 64×64 pixels in size. All we need to do is generate texture regions for each
frame and put them into an Animation instance we can use to fetch the correct frame for a given animation
time, just as we did for the squirrel and Bob animations in Super Jumper.

Sound and Music
For the sound effects, we used as3sfxr again. We found the explosion sound effect on the Web. It’s a public
domain sound effect, so we can use it in Android Invaders. For our own version of Android Invaders, we
recorded the music ourselves with real instruments. Yes—that’s very old-school. Here’s the list of audio files
for Android Invaders:

•	 click.ogg: A click sound used for the menu items/buttons

•	 shot.ogg: A shot sound

•	 explosion.ogg: An explosion sound

•	 music.mp3: The rock/metal song we wrote for Android Invaders

Plan of Attack
With our game mechanics, design, and assets in place, we can start coding. As usual, we create a new
project, copy over all of our framework code, ensure that we have a proper manifest and icons, and so on.
By now, you should have a pretty good grasp of how to set things up. All the code of Android Invaders will
be placed in the package com.badlogic.androidgames.androidinvaders. The assets are stored in the
assets/ directory of the Android project. We use the same general structure we used in Super Jumper: a
default activity deriving from GLGame; a couple of GLScreen instances implementing the different screens and
transitions, as shown in Figure 12-4; classes for loading assets and storing settings, as well as the classes for
the game objects; and a rendering class that can draw our game world in 3D. Let’s start with the Assets class.

Figure 12-10. The explosion animation texture (explode.png, 256×256 pixels)

Chapter 12 ■ android invaders: the Grand Finale

530

The Assets Class
Well, we’ve done this before in Mr. Nom and Super Jumper, so don’t expect any surprises. Listing 12-1 shows
the code of the Assets class.

Listing 12-1. Assets.java, loading and storing assets as always

package com.badlogic.androidgames.androidinvaders;

import com.badlogic.androidgames.framework.Music;
import com.badlogic.androidgames.framework.Sound;
import com.badlogic.androidgames.framework.gl.Animation;
import com.badlogic.androidgames.framework.gl.Font;
import com.badlogic.androidgames.framework.gl.ObjLoader;
import com.badlogic.androidgames.framework.gl.Texture;
import com.badlogic.androidgames.framework.gl.TextureRegion;
import com.badlogic.androidgames.framework.gl.Vertices3;
import com.badlogic.androidgames.framework.impl.GLGame;

public class Assets {
 public static Texture background;
 public static TextureRegion backgroundRegion;
 public static Texture items;
 public static TextureRegion logoRegion;
 public static TextureRegion menuRegion;
 public static TextureRegion gameOverRegion;
 public static TextureRegion pauseRegion;
 public static TextureRegion settingsRegion;
 public static TextureRegion touchRegion;
 public static TextureRegion accelRegion;
 public static TextureRegion touchEnabledRegion;
 public static TextureRegion accelEnabledRegion;
 public static TextureRegion soundRegion;
 public static TextureRegion soundEnabledRegion;
 public static TextureRegion leftRegion;
 public static TextureRegion rightRegion;
 public static TextureRegion fireRegion;
 public static TextureRegion pauseButtonRegion;
 public static Font font;

We have several members storing the texture of the UI elements, as well as the background image. We
also store a couple of TextureRegions, as well as a Fontinstance. This covers all of our UI needs.

 public static Texture explosionTexture;
 public static Animation explosionAnim;
 public static Vertices3 shipModel;
 public static Texture shipTexture;
 public static Vertices3 invaderModel;
 public static Texture invaderTexture;
 public static Vertices3 shotModel;
 public static Vertices3 shieldModel;

Chapter 12 ■ android invaders: the Grand Finale

531

We use Texture instances and Vertices3 instances to store the models and textures of our game’s
objects. We use an Animation instance to hold the frames of the explosion animation.

 public static Music music;
 public static Sound clickSound;
 public static Sound explosionSound;
 public static Sound shotSound;

We use a Music instance and a few Sound instances to store our game’s audio.

 public static void load(GLGame game) {
 background = new Texture(game, "background.jpg", true);
 backgroundRegion = new TextureRegion(background, 0, 0, 480, 320);
 items = new Texture(game, "items.png", true);
 logoRegion = new TextureRegion(items, 0, 256, 384, 128);
 menuRegion = new TextureRegion(items, 0, 128, 224, 64);
 gameOverRegion = new TextureRegion(items, 224, 128, 128, 64);
 pauseRegion = new TextureRegion(items, 0, 192, 160, 64);
 settingsRegion = new TextureRegion(items, 0, 160, 224, 32);
 touchRegion = new TextureRegion(items, 0, 384, 64, 64);
 accelRegion = new TextureRegion(items, 64, 384, 64, 64);
 touchEnabledRegion = new TextureRegion(items, 0, 448, 64, 64);
 accelEnabledRegion = new TextureRegion(items, 64, 448, 64, 64);
 soundRegion = new TextureRegion(items, 128, 384, 64, 64);
 soundEnabledRegion = new TextureRegion(items, 190, 384, 64, 64);
 leftRegion = new TextureRegion(items, 0, 0, 64, 64);
 rightRegion = new TextureRegion(items, 64, 0, 64, 64);
 fireRegion = new TextureRegion(items, 128, 0, 64, 64);
 pauseButtonRegion = new TextureRegion(items, 0, 64, 64, 64);
 font = new Font(items, 224, 0, 16, 16, 20);

The load() method starts off by creating the UI-related stuff. It’s just some texture loading and region
creation, as usual.

 explosionTexture = new Texture(game, "explode.png", true);
 TextureRegion[] keyFrames = new TextureRegion[16];
 int frame = 0;
 for (int y = 0; y < 256; y += 64) {
 for (int x = 0; x < 256; x += 64) {
 keyFrames[frame++] = new TextureRegion(explosionTexture, x, y, 64, 64);
 }
 }
 explosionAnim = new Animation(0.1f, keyFrames);

Next, we create the Texture for the explosion animation, along with the TextureRegions for each frame
and the Animation instance. We simply loop from the top left to the bottom right in 64-pixel increments and
create one TextureRegion per frame. We then feed all the regions to an Animation instance that has a frame
duration of 0.1 seconds.

 shipTexture = new Texture(game, "ship.png", true);
 shipModel = ObjLoader.load(game, "ship.obj");
 invaderTexture = new Texture(game, "invader.png", true);

Chapter 12 ■ android invaders: the Grand Finale

532

 invaderModel = ObjLoader.load(game, "invader.obj");
 shieldModel = ObjLoader.load(game, "shield.obj");
 shotModel = ObjLoader.load(game, "shot.obj");

Next, we load the models and textures for the ship, the invaders, the shield blocks, and the shots. This is
pretty simple with our mighty ObjLoader, isn’t it? Note that we use mipmapping for the Textures.

 music = game.getAudio().newMusic("music.mp3");
 music.setLooping(true);
 music.setVolume(0.5f);
 if (Settings.soundEnabled)
 music.play();

 clickSound = game.getAudio().newSound("click.ogg");
 explosionSound = game.getAudio().newSound("explosion.ogg");
 shotSound = game.getAudio().newSound("shot.ogg");
 }

Here, we load the music and sound effects for our game. The reference to the Settings class is
essentially the same as in Super Jumper and Mr. Nom. When our game is started, this method will be called
once in the AndroidInvaders class, which we’ll implement in a minute. Once all assets are loaded, we can
forget about most of them, except for the Textures, which we need to reload if the game is paused and then
resumed.

 public static void reload() {
 background.reload();
 items.reload();
 explosionTexture.reload();
 shipTexture.reload();
 invaderTexture.reload();
 if (Settings.soundEnabled)
 music.play();
 }

This is where the reload() method comes in. We call this method in the AndroidInvaders.onResume()
method so that our textures will be reloaded and the music will be unpaused.

 public static void playSound(Sound sound) {
 if (Settings.soundEnabled)
 sound.play(1);
 }
}

Finally, we have the same convenience method we used in Super Jumper to ease the pain of playing
back a sound effect. When the user disables sound, we don’t play anything in this method.

 ■ Note although this method of loading and managing assets is easy to implement, it can become a mess if
you have more than a handful of assets. another issue is that sometimes not all assets will fit into the memory
all at once. For simple games, like the ones we’ve developed in this book, the method is fine. We often use it in
our games, as well. For larger games, you will have to consider a more elaborate asset-management strategy.

Chapter 12 ■ android invaders: the Grand Finale

533

The Settings Class
As with the Assets class, for the Settings class we can reuse what we wrote for the previous games, to some
extent. We can now store an additional Boolean that tells us whether the user wants to use the touchscreen
or the accelerometer for moving the ship. We can drop the high-score support, as we don’t need to keep
track of this. (As an exercise, you can, of course, reintroduce both the high-scores screen and the saving of
these scores to the SD card.) Listing 12-2 shows the code.

Listing 12-2. Settings.java: Same old, same old

package com.badlogic.androidgames.androidinvaders;

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;

import com.badlogic.androidgames.framework.FileIO;

public class Settings {
 public static boolean soundEnabled = true;
 public static boolean touchEnabled = true;
 public final static String file = ".androidinvaders";

First, we store whether the sounds are enabled and whether the user wants to use touch input to
navigate the ship. The settings will be stored in the file .androidinvaders on the SD card.

 public static void load(FileIO files) {
 BufferedReader in = null;
 try {
 in = new BufferedReader(new InputStreamReader(files.readFile(file)));
 soundEnabled = Boolean.parseBoolean(in.readLine());
 touchEnabled = Boolean.parseBoolean(in.readLine());
 } catch (IOException e) {
 // :(It's ok we have defaults
 } catch (NumberFormatException e) {
 // :/ It's ok, defaults save our day
 } finally {
 try {
 if (in != null)
 in.close();
 } catch (IOException e) {
 }
 }
 }

There is nothing in this section that we need to go over, really; we’ve done this before. We try to read the
two Booleans from the file on the SD card. If that fails, we fall back to the default values.

 public static void save(FileIO files) {
 BufferedWriter out = null;

Chapter 12 ■ android invaders: the Grand Finale

534

 try {
 out = new BufferedWriter(new OutputStreamWriter(
 files.writeFile(file)));
 out.write(Boolean.toString(soundEnabled));
 out.write("\n");
 out.write(Boolean.toString(touchEnabled));
 } catch (IOException e) {
 } finally {
 try {
 if (out != null)
 out.close();
 } catch (IOException e) {
 }
 }
 }
}

Saving is again very boring. We just store whatever we have, and if that fails, we ignore the error. This is
another good place for improvement, as you’ll probably want to let the user know that something went wrong.

The Main Activity
As usual, we have a main activity that derives from the GLGame class. It is responsible for loading the assets
through a call to Assets.load() on startup, as well as pausing and resuming the music when the activity
is paused or resumed. As the start screen, we just return the MainMenuScreen, which we will implement
shortly. One thing we need to remember is to set the orientation to landscape in the activity’s definition in
the manifest file. Listing 12-3 shows the code.

Listing 12-3. AndroidInvaders.java, the main activity

package com.badlogic.androidgames.androidinvaders;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import com.badlogic.androidgames.framework.Screen;
import com.badlogic.androidgames.framework.impl.GLGame;

public class AndroidInvaders extends GLGame {
 boolean firstTimeCreate = true;

 public Screen getStartScreen() {
 return new MainMenuScreen(this);
 }

 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 super.onSurfaceCreated(gl, config);
 if (firstTimeCreate) {
 Settings.load(getFileIO());
 Assets.load(this);

Chapter 12 ■ android invaders: the Grand Finale

535

 firstTimeCreate = false;
 } else {
 Assets.reload();
 }
 }

 @Override
 public void onPause() {
 super.onPause();
 if (Settings.soundEnabled)
 Assets.music.pause();
 }
}

This is exactly the same as in Super Jumper. On a call to getStartScreen(), we return a new instance of
the MainMenuScreen, which we’ll write next. In onSurfaceCreated(), we make sure our assets are reloaded,
and in onPause() we pause the music if it is playing.

As you can see, there are a lot of things that can be repeated once you have a good idea of how to
approach the implementation of a simple game. Think about how you could reduce the boilerplate code
even more by moving things to the framework!

The Main Menu Screen
We’ve already written many trivial screens for the previous games. Android Invaders also has some of these.
The principle is always the same: offer some UI elements to click that trigger transitions or configuration
changes, and display some information. The main menu screen presents only the logo and the PLAY and
SETTINGS options, as shown earlier in Figure 12-4. Touching one of these buttons triggers a transition to the
GameScreen or the SettingsScreen. Listing 12-4 shows the code.

Listing 12-4. MainMenuScreen.java, the main menu screen

package com.badlogic.androidgames.androidinvaders;

import java.util.List;

import javax.microedition.khronos.opengles.GL10;

import com.badlogic.androidgames.framework.Game;
import com.badlogic.androidgames.framework.Input.TouchEvent;
import com.badlogic.androidgames.framework.gl.Camera2D;
import com.badlogic.androidgames.framework.gl.SpriteBatcher;
import com.badlogic.androidgames.framework.impl.GLScreen;
import com.badlogic.androidgames.framework.math.OverlapTester;
import com.badlogic.androidgames.framework.math.Rectangle;
import com.badlogic.androidgames.framework.math.Vector2;

public class MainMenuScreen extends GLScreen {
 Camera2D guiCam;
 SpriteBatcher batcher;
 Vector2 touchPoint;
 Rectangle playBounds;
 Rectangle settingsBounds;

Chapter 12 ■ android invaders: the Grand Finale

536

As usual, we need a camera in order to set up our viewport, and we need the virtual target resolution of
480×320 pixels. We use a SpriteBatcher to render the UI elements and background image. The Vector2 and
Rectangle instances will help us decide whether a touch hit a button.

 public MainMenuScreen(Game game) {
 super(game);

 guiCam = new Camera2D(glGraphics, 480, 320);
 batcher = new SpriteBatcher(glGraphics, 10);
 touchPoint = new Vector2();
 playBounds = new Rectangle(240 - 112, 100, 224, 32);
 settingsBounds = new Rectangle(240 - 112, 100 - 32, 224, 32);
 }

In the constructor, we set up the camera and the SpriteBatcher, as we always do. We instantiate the
Vector2 and Rectangle instances using the position, width, and height of the two elements onscreen in our
480×320 target resolution.

 @Override
 public void update(float deltaTime) {
 List<TouchEvent> events = game.getInput().getTouchEvents();
 int len = events.size();
 for(int i = 0; i < len; i++) {
 TouchEvent event = events.get(i);
 if(event.type != TouchEvent.TOUCH_UP)
 continue;

 guiCam.touchToWorld(touchPoint.set(event.x, event.y));
 if(OverlapTester.pointInRectangle(playBounds, touchPoint)) {
 Assets.playSound(Assets.clickSound);
 game.setScreen(new GameScreen(game));
 }
 if(OverlapTester.pointInRectangle(settingsBounds, touchPoint)) {
 Assets.playSound(Assets.clickSound);
 game.setScreen(new SettingsScreen(game));
 }
 }
 }

In the update() method, we fetch the touch events and check for “touch-up” events. If there is such an
event, we transform its real coordinates to the coordinate system the camera sets up. All that’s left to do is to
check the touch point against the two rectangles bounding the menu entries. If one of them is hit, we play
the click sound and transition to the respective screen.

 @Override
 public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
 guiCam.setViewportAndMatrices();

Chapter 12 ■ android invaders: the Grand Finale

537

 gl.glEnable(GL10.GL_TEXTURE_2D);

 batcher.beginBatch(Assets.background);
 batcher.drawSprite(240, 160, 480, 320, Assets.backgroundRegion);
 batcher.endBatch();

 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA);

 batcher.beginBatch(Assets.items);
 batcher.drawSprite(240, 240, 384, 128, Assets.logoRegion);
 batcher.drawSprite(240, 100, 224, 64, Assets.menuRegion);
 batcher.endBatch();

 gl.glDisable(GL10.GL_BLEND);
 gl.glDisable(GL10.GL_TEXTURE_2D);
 }

The present() method does the same thing it did in most of the screens for Super Jumper. We clear the
screen and set up the projection matrix via our camera. We enable texturing and then immediately render
the background via the SpriteBatcher and TextureRegion we defined in the Assets class. The menu items
have translucent areas, so we enable blending before we render them.

 @Override
 public void pause() {
 }

 @Override
 public void resume() {
 }

 @Override
 public void dispose() {
 }
}

The rest of the class consists of boilerplate methods that don’t do anything. Texture reloading is done in
the AndroidInvaders activity, so there isn’t anything left to take care of in the MainMenuScreen.

The Settings Screen
The settings screen offers the player options to change the input method and an option to enable or disable
audio. We indicate these options with three different icons (see Figure 12-4). Touching either the hand icon
or the tilted-device icon enables the respective input method. The icon for the currently active input method
will have a gold color. For the audio icon, we do the same as in the previous games.

The user’s choices are reflected by setting the respective Boolean values in the Settings class. We also
make sure these settings are instantly saved to the SD card via a call to Settings.save() each time one of
them changes. Listing 12-5 shows the code.

Chapter 12 ■ android invaders: the Grand Finale

538

Listing 12-5. SettingsScreen.java, the settings screen

package com.badlogic.androidgames.androidinvaders;

import java.util.List;

import javax.microedition.khronos.opengles.GL10;

import com.badlogic.androidgames.framework.Game;
import com.badlogic.androidgames.framework.Input.TouchEvent;
import com.badlogic.androidgames.framework.gl.Camera2D;
import com.badlogic.androidgames.framework.gl.SpriteBatcher;
import com.badlogic.androidgames.framework.impl.GLScreen;
import com.badlogic.androidgames.framework.math.OverlapTester;
import com.badlogic.androidgames.framework.math.Rectangle;
import com.badlogic.androidgames.framework.math.Vector2;

public class SettingsScreen extends GLScreen {
 Camera2D guiCam;
 SpriteBatcher batcher;
 Vector2 touchPoint;
 Rectangle touchBounds;
 Rectangle accelBounds;
 Rectangle soundBounds;
 Rectangle backBounds;

As usual, we have a camera and a SpriteBatcher to render our UI elements and the background. To
check whether a touch event hit a button, we store a Vector2 instance and four Rectangle instances for the
four buttons onscreen.

 public SettingsScreen(Game game) {
 super(game);
 guiCam = new Camera2D(glGraphics, 480, 320);
 batcher = new SpriteBatcher(glGraphics, 10);
 touchPoint = new Vector2();

 touchBounds = new Rectangle(120 - 32, 160 - 32, 64, 64);
 accelBounds = new Rectangle(240 - 32, 160 - 32, 64, 64);
 soundBounds = new Rectangle(360 - 32, 160 - 32, 64, 64);
 backBounds = new Rectangle(32, 32, 64, 64);
 }

In the constructor, we set up all the members for the screen. No rocket science involved here.

 @Override
 public void update(float deltaTime) {
 List<TouchEvent> events = game.getInput().getTouchEvents();
 int len = events.size();
 for (int i = 0; i < len; i++) {
 TouchEvent event = events.get(i);
 if (event.type != TouchEvent.TOUCH_UP)
 continue;

Chapter 12 ■ android invaders: the Grand Finale

539

 guiCam.touchToWorld(touchPoint.set(event.x, event.y));
 if (OverlapTester.pointInRectangle(touchBounds, touchPoint)) {
 Assets.playSound(Assets.clickSound);
 Settings.touchEnabled = true;
 Settings.save(game.getFileIO());
 }
 if (OverlapTester.pointInRectangle(accelBounds, touchPoint)) {
 Assets.playSound(Assets.clickSound);
 Settings.touchEnabled = false;
 Settings.save(game.getFileIO());
 }
 if (OverlapTester.pointInRectangle(soundBounds, touchPoint)) {
 Assets.playSound(Assets.clickSound);
 Settings.soundEnabled = !Settings.soundEnabled;
 if (Settings.soundEnabled) {
 Assets.music.play();
 } else {
 Assets.music.pause();
 }
 Settings.save(game.getFileIO());
 }
 if (OverlapTester.pointInRectangle(backBounds, touchPoint)) {
 Assets.playSound(Assets.clickSound);
 game.setScreen(new MainMenuScreen(game));
 }
 }
 }

The update() method fetches the touch events and checks whether a “touch-up” event has been
registered. If so, it transforms the touch coordinates to the camera’s coordinate system. With these
coordinates, it tests the various rectangles to decide what action to take.

 @Override
 public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
 guiCam.setViewportAndMatrices();

 gl.glEnable(GL10.GL_TEXTURE_2D);

 batcher.beginBatch(Assets.background);
 batcher.drawSprite(240, 160, 480, 320, Assets.backgroundRegion);
 batcher.endBatch();

 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA);

 batcher.beginBatch(Assets.items);
 batcher.drawSprite(240, 280, 224, 32, Assets.settingsRegion);
 batcher.drawSprite(120, 160, 64, 64,
 Settings.touchEnabled ? Assets.touchEnabledRegion : Assets.touchRegion);

Chapter 12 ■ android invaders: the Grand Finale

540

 batcher.drawSprite(240, 160, 64, 64,
 Settings.touchEnabled ? Assets.accelRegion
 : Assets.accelEnabledRegion);
 batcher.drawSprite(360, 160, 64, 64,
 Settings.soundEnabled ? Assets.soundEnabledRegion : Assets.soundRegion);
 batcher.drawSprite(32, 32, 64, 64, Assets.leftRegion);
 batcher.endBatch();

 gl.glDisable(GL10.GL_BLEND);
 gl.glDisable(GL10.GL_TEXTURE_2D);
 }

The present() method does the same thing as the MainMenuScreen.render() method does. We render
the background and buttons with texturing and blending where needed. Based on the current settings, we
decide which TextureRegion to use to render the three settings buttons.

 @Override
 public void pause() {
 }

 @Override
 public void resume() {
 }

 @Override
 public void dispose() {
 }
}

The rest of the class is again composed of a few boilerplate methods with no functionality whatsoever.
Before we can create the GameScreen class, we first have to implement the logic and rendering of our

world. Model-View-Controller to the rescue!

The Simulation Classes
As usual, we’ll create a single class for each object in our world:

•	 Shield blocks

•	 Shots

•	 A ship

•	 Invaders

The orchestration is performed by an all-knowing World class. As we saw in Chapter 11, there’s
really not such a huge difference between 2D and 3D when it comes to object representation. Instead
of GameObject and DynamicObject, we can now use GameObject3D and DynamicObject3D. The only
differences are that we use Vector3 instances instead of Vector2 instances to store positions, velocities, and
accelerations, and we use bounding spheres instead of bounding rectangles to represent the shapes of the
objects. All that’s left to do is implement the behavior of the different objects in our world.

http://dx.doi.org/10.1007/978-1-4842-0472-6_11

Chapter 12 ■ android invaders: the Grand Finale

541

The Shield Block Class
From the game mechanics definition, we know the size and behavior of our shield blocks. They just sit there
in our world at some location, waiting to be annihilated by a shot, either from the ship or from an invader.
There’s not a lot of logic in them, so the code is rather concise. Listing 12-6 shows the internals of a shield
block.

Listing 12-6. Shield.java, the shield block class

package com.badlogic.androidgames.androidinvaders;

import com.badlogic.androidgames.framework.GameObject3D;

public class Shield extends GameObject3D {
 static float SHIELD_RADIUS = 0.5f;

 public Shield(float x, float y, float z) {
 super(x, y, z, SHIELD_RADIUS);
 }
}

We define the shield’s radius and initialize its position and bounding sphere according to the
constructor parameters. That’s all there is to it!

The Shot Class
The Shot class is equally simple. It derives from DynamicGameObject3D, as it is actually moving. Listing 12-7
shows the code.

Listing 12-7. Shot.java, the shot class

package com.badlogic.androidgames.androidinvaders;

import com.badlogic.androidgames.framework.DynamicGameObject3D;

public class Shot extends DynamicGameObject3D {
 static float SHOT_VELOCITY = 10f;
 static float SHOT_RADIUS = 0.1f;

 public Shot(float x, float y, float z, float velocityZ) {
 super(x, y, z, SHOT_RADIUS);
 velocity.z = velocityZ;
 }

 public void update(float deltaTime) {
 position.z += velocity.z * deltaTime;
 bounds.center.set(position);
 }
}

Chapter 12 ■ android invaders: the Grand Finale

542

Here, we define some constants, namely the shot velocity and its radius. The constructor takes a shot’s
initial position, as well as its velocity on the z axis. Wait, didn’t we just define the velocity as a constant? Yes,
but that would let our shot travel only in the direction of the positive z axis. That’s fine for shots fired by the
invaders, but the shots from the ship must travel in the opposite direction. When we create a shot (outside of
this class), we know in which direction the shot should travel.

The update() method just does the usual point-mass physics. There is no acceleration involved, and
thus we only need to add the constant velocity, multiplied by the delta time, to the shot’s position. The
crucial part is that we also update the position of the bounding sphere’s center in accordance with the shot’s
position. Otherwise, the bounding sphere would not move with the shot.

The Ship Class
The Ship class is responsible for updating the ship’s position, keeping it within the bounds of the game field,
and keeping track of the state it is in. It can be either alive or exploding. In both cases, we keep track of the
amount of time the ship has been in this state. We can then use the state time to do animations, for example,
just as we did in Super Jumper and its WorldRenderer class. The ship will get its current velocity from the
outside, based either on the accelerometer readings, as we did for Bob, or on a constant, depending on what
onscreen buttons are being pressed. Additionally, the ship will keep track of the number of lives it has and
offer us a way to tell it that it has been killed. Listing 12-8 shows the code.

Listing 12-8. Ship.java, the ship class

package com.badlogic.androidgames.androidinvaders;

import com.badlogic.androidgames.framework.DynamicGameObject3D;

public class Ship extends DynamicGameObject3D {
 static float SHIP_VELOCITY = 20f;
 static int SHIP_ALIVE = 0;
 static int SHIP_EXPLODING = 1;
 static float SHIP_EXPLOSION_TIME = 1.6f;
 static float SHIP_RADIUS = 0.5f;

We start off with some constants to define the maximum ship velocity, two states (alive and exploding),
the amount of time it takes the ship to explode fully, and the ship’s bounding sphere radius. Also, we let the
class derive from DynamicGameObject3D, since it has a position and bounding sphere, as well as a velocity.
The acceleration vector stored in a DynamicGameObject3D will again be unused.

 int lives;
 int state;
 float stateTime = 0;

Next, we have the members, consisting of two integers, to keep track of the number of lives the ship has
and its state (either SHIP_ALIVE or SHIP_EXPLODING). The last member keeps track of how many seconds the
ship has been in its current state.

 public Ship(float x, float y, float z) {
 super(x, y, z, SHIP_RADIUS);
 lives = 3;
 state = SHIP_ALIVE;
 }

Chapter 12 ■ android invaders: the Grand Finale

543

The constructor performs the usual superclass constructor call and initializes some of the members.
The ship will have a total of three lives.

 public void update(float deltaTime, float accelY) {
 if (state == SHIP_ALIVE) {
 velocity.set(accelY / 10 * SHIP_VELOCITY, 0, 0);
 position.add(velocity.x * deltaTime, 0, 0);
 if (position.x < World.WORLD_MIN_X)
 position.x = World.WORLD_MIN_X;
 if (position.x > World.WORLD_MAX_X)
 position.x = World.WORLD_MAX_X;
 bounds.center.set(position);
 } else {
 if (stateTime >= SHIP_EXPLOSION_TIME) {
 lives--;
 stateTime = 0;
 state = SHIP_ALIVE;
 }
 }
 stateTime += deltaTime;
 }

The update() method is pretty simple. It takes the delta time and the current accelerometer reading on
the y axis of the device (remember, we are in landscape mode, so the accelerometer y axis is our screen’s x
axis). If the ship is alive, we set its velocity based on the accelerometer value (which will be in the range from
–10 to 10), just as we did for Bob in Super Jumper. Additionally, we update its position based on the current
velocity. Next, we check whether the ship has left the boundaries of the playing field using two constants that
we’ll define later on in our World class. When the position is fixed, we can update the center of the bounding
sphere for the ship.

If the ship is exploding, we check how long that’s been the case. After 1.6 seconds in the exploding state,
the ship is finished exploding, loses one life, and goes back to the alive state.

Finally, we update the stateTime member based on the given delta time.

 public void kill() {
 state = SHIP_EXPLODING;
 stateTime = 0;
 velocity.x = 0;
 }
}

The last kill() method will be called by the World class if it determines a collision has occurred
between the ship and either a shot or an invader. It will set the state to exploding, reset the state time, and
make sure that the ship’s velocity is zero on all axes (we never set the y and z components of the velocity
vector, since we only move on the x axis).

The Invader Class
Invaders are simply floating in space according to a predefined pattern. Figure 12-11 shows this pattern.

Chapter 12 ■ android invaders: the Grand Finale

544

An invader follows an extremely simplistic movement pattern. From its initial position, it first moves
to the right for some distance. Next, it moves downward (which means in the direction of the positive z axis
on the playing field), again for a specified distance. Once it is done with that, it starts moving to the right,
basically backtracking to the same x coordinate where it was before it started moving left.

The left and right movement distances are always the same, except in the beginning. Figure 12-11
illustrates the movement of the top-left invader. Its first left movement is shorter than all subsequent
movements to the left or right. The horizontal movement distance is half the playing field width, 14 units in
this case. For the first horizontal movement, the distance an invader has to travel is half this, or 7 units.

What we have to do is keep track of the direction in which an invader is moving and how far it has
already moved in that direction. If it reaches the movement distance for the given movement state (14 units
for horizontal movement, 1 unit for vertical movement), it switches to the next movement state. All invaders
will initially have their movement distance set to half the playing field’s width. Look again at Figure 12-11 to
see why this works. This will make the invaders bounce off the edges of the playing field to the left and right.

Invaders also have a constant velocity. Well, the velocity will actually increase each time we generate
a new wave of invaders if all the invaders from the current wave are dead. We can achieve this simply
by multiplying this default velocity by some constant that is set from outside, namely the World class
responsible for updating all invaders.

Finally, we have to keep track of the state of the individual invaders, which can be alive or exploding.
We’ll use the same mechanism as in the case of the ship, with a state and a state time. Listing 12-9 shows the
code.

Listing 12-9. Invader.java, the invader class

package com.badlogic.androidgames.androidinvaders;

import com.badlogic.androidgames.framework.DynamicGameObject3D;

Figure 12-11. Movement of the invaders: left, down, right, down, left, down, right, down. . .

Chapter 12 ■ android invaders: the Grand Finale

545

public class Invader extends DynamicGameObject3D {
 static final int INVADER_ALIVE = 0;
 static final int INVADER_DEAD = 1;
 static final float INVADER_EXPLOSION_TIME = 1.6f;
 static final float INVADER_RADIUS = 0.75f;
 static final float INVADER_VELOCITY = 1;
 static final int MOVE_LEFT = 0;
 static final int MOVE_DOWN = 1;
 static final int MOVE_RIGHT = 2;

We start with some constants that define the state of an invader, the duration of its explosion, its radius,
and its default velocity, followed by three constants that allow us to keep track of the direction in which the
invader is currently moving.

 int state = INVADER_ALIVE;
 float stateTime = 0;
 int move = MOVE_LEFT;
 boolean wasLastStateLeft = true;
 float movedDistance = World.WORLD_MAX_X / 2;

We keep track of an invader’s state, state time, movement direction, and movement distance, which
should initially be set to half the playing field width. We also keep track of whether the last horizontal
movement was to the left or not. This allows us to decide in which direction the invader should go once it
has finished its vertical movement on the z axis.

 public Invader(float x, float y, float z) {
 super(x, y, z, INVADER_RADIUS);
 }

The constructor performs the usual setup of the invader’s position and bounding ship via the super
class constructor.

 public void update(float deltaTime, float speedMultiplier) {
 if (state == INVADER_ALIVE) {
 movedDistance += deltaTime * INVADER_VELOCITY * speedMultiplier;
 if (move == MOVE_LEFT) {
 position.x -= deltaTime * INVADER_VELOCITY * speedMultiplier;
 if (movedDistance > World.WORLD_MAX_X) {
 move = MOVE_DOWN;
 movedDistance = 0;
 wasLastStateLeft = true;
 }
 }
 if (move == MOVE_RIGHT) {
 position.x += deltaTime * INVADER_VELOCITY * speedMultiplier;
 if (movedDistance > World.WORLD_MAX_X) {
 move = MOVE_DOWN;
 movedDistance = 0;
 wasLastStateLeft = false;
 }
 }

Chapter 12 ■ android invaders: the Grand Finale

546

 if (move == MOVE_DOWN) {
 position.z += deltaTime * INVADER_VELOCITY * speedMultiplier;
 if (movedDistance > 1) {
 if (wasLastStateLeft)
 move = MOVE_RIGHT;
 else
 move = MOVE_LEFT;
 movedDistance = 0;
 }
 }

 bounds.center.set(position);
 }

 stateTime += deltaTime;
 }

The update() method takes the current delta time and speed multiplier to make the new waves of
invaders move faster. We perform the movement only if the invader is alive, of course.

We start off by calculating how many units the invader will travel in this update, and we increase the
movedDistance member accordingly. If it moves to the left, we update the position directly by subtracting the
movement velocity from the x coordinate of the position multiplied by the delta time and speed multiplier. If
it has moved far enough, we tell it to start moving vertically by setting the move member to MOVE_DOWN. Also,
we set wasLastStateLeft to true so that we know that, after the down movement is finished, the invader has
to move to the right.

We do exactly the same thing for handling movement to the right. The only difference is that we subtract
the movement velocity from the position’s x coordinate and set wasLastStateLeft to false once the
movement distance has been reached.

If the invader moves downward, we manipulate the z coordinate of the invader’s position and again
check how far it has been moving in that direction. If it has reached the movement distance for downward
movement, we switch the movement state to either MOVE_LEFT or MOVE_RIGHT, depending on the last
horizontal movement direction encoded in the wasLastStateLeft member. Once we are done updating the
invader’s position, we set the position of the bounding sphere, as we did for the ship. Finally, we update the
current state time and consider the update to be done.

 public void kill() {
 state = INVADER_DEAD;
 stateTime = 0;
 }
}

The kill() method here serves the same purpose as the kill() method for the Ship class. It allows
us to tell the invader that it should start dying. We set its state to INVADER_DEAD and reset its state time. The
invader will then stop moving and will only update its state time based on the current delta time.

The World Class
The World class is the mastermind in all of this. It stores the ship, the invaders, and the shots, and it is
responsible for updating them and checking on collisions. It’s much the same as in Super Jumper, with a few
minor differences. The initial placement of the shield blocks, as well as the invaders, is also a responsibility

Chapter 12 ■ android invaders: the Grand Finale

547

of the World class. We create a WorldListener interface to inform any outside parties of events within our
world, such as an explosion or a shot that’s been fired. This will allow us to play sound effects, just like in
Super Jumper. It helps to go through the code one method at a time. Listing 12-10 shows the code.

Listing 12-10. World.java, the world class, tying everything together

package com.badlogic.androidgames.androidinvaders;

import java.util.ArrayList;
import java.util.List;
import java.util.Random;

import com.badlogic.androidgames.framework.math.OverlapTester;

public class World {
 public interface WorldListener {
 public void explosion();

 public void shot();
 }

We want outside parties to know when an explosion takes place or when a shot is fired. For this, we
define a listener interface, which we can implement and register with a World instance that will be called
when one of these events happen. This is much like Super Jumper, just with different events.

 final static float WORLD_MIN_X = -14;
 final static float WORLD_MAX_X = 14;
 final static float WORLD_MIN_Z = -15;

We also have a couple of constants that define the extents of the world, as discussed earlier in the
“Defining the Game World” section.

 WorldListener listener;
 int waves = 1;
 int score = 0;
 float speedMultiplier = 1;
 final List<Shot> shots = new ArrayList<Shot>();
 final List<Invader> invaders = new ArrayList<Invader>();
 final List<Shield> shields = new ArrayList<Shield>();
 final Ship ship;
 long lastShotTime;
 Random random;

Our world keeps track of a couple of things. We have a listener that we invoke when an explosion
happens or a shot is fired. Also, we keep track of how many waves of invaders the player has already
destroyed. The score member keeps track of the current score, and the speedMultiplier member allows
us to speed up the movement of the invaders (remember the Invaders.update() method). Also, we store
lists of the shots, invaders, and shield blocks currently alive in the world. Finally, we have an instance of a
Ship, and we store the last time a shot was fired by the ship. We store this time in nanoseconds, as returned
by System.nanoTime()—hence the long data type. The Random instance will come in handy when we want to
decide whether an invader should fire a shot or not.

Chapter 12 ■ android invaders: the Grand Finale

548

 public World() {
 ship = new Ship(0, 0, 0);
 generateInvaders();
 generateShields();
 lastShotTime = System.nanoTime();
 random = new Random();
 }

In the constructor, we create the Ship at its initial position, generate the invaders and shields, and
initialize the rest of the members.

 private void generateInvaders() {
 for (int row = 0; row < 4; row++) {
 for (int column = 0; column < 8; column++) {
 Invader invader = new Invader(-WORLD_MAX_X / 2 + column * 2f,
 0, WORLD_MIN_Z + row * 2f);
 invaders.add(invader);
 }
 }
 }

The generateInvaders() method simply creates a grid of invaders, eight by four, arranged as shown in
Figure 12-11.

 private void generateShields() {
 for (int shield = 0; shield < 3; shield++) {
 shields.add(new Shield(-10 + shield * 10 - 1, 0, -3));
 shields.add(new Shield(-10 + shield * 10 + 0, 0, -3));
 shields.add(new Shield(-10 + shield * 10 + 1, 0, -3));
 shields.add(new Shield(-10 + shield * 10 - 1, 0, -2));
 shields.add(new Shield(-10 + shield * 10 + 1, 0, -2));
 }
 }

The generateShields() method does pretty much the same thing: instantiates three shields composed
of five shield blocks each, as laid out in Figure 12-2.

 public void setWorldListener(WorldListener worldListener) {
 this.listener = worldListener;
 }

We also have a setter method to set a listener on the world. We’ll use this to get informed about events
in the world and react accordingly; e.g., play a sound effect.

 public void update(float deltaTime, float accelX) {
 ship.update(deltaTime, accelX);
 updateInvaders(deltaTime);
 updateShots(deltaTime);

 checkShotCollisions();
 checkInvaderCollisions();

Chapter 12 ■ android invaders: the Grand Finale

549

 if (invaders.size() == 0) {
 generateInvaders();
 waves++;
 speedMultiplier += 0.5f;
 }
 }

The update() method is surprisingly simple. It uses the current delta time as well as the reading
on the accelerometer’s y axis, which we can pass to Ship.update(). Once the ship has updated, we call
updateInvaders() and updateShots(), which are responsible for updating these two types of objects. After
all the objects in the world have been updated, we start checking for a collision. The checkShotCollision()
method will check collisions between any shots and the ship and/or invaders.

Finally, we check whether the invaders are dead. If they are, we generate a new wave of invaders. For
love of the garbage collector (GC), we could reuse the old Invader instances; for example, via the Pool
class. However, to keep things simple, we simply create new instances. The same is true for shots, by the
way. Given the small number of objects we create in one game session, the GC is unlikely to fire. If you want
to make the GC really happy, just use a Pool instance to reuse dead invaders and shots. Also, note that we
increase the speed multiplier here!

 private void updateInvaders(float deltaTime) {
 int len = invaders.size();
 for (int i = 0; i < len; i++) {
 Invader invader = invaders.get(i);
 invader.update(deltaTime, speedMultiplier);

 if (invader.state == Invader.INVADER_ALIVE) {
 if (random.nextFloat() < 0.001f) {
 Shot shot = new Shot(invader.position.x,
 invader.position.y,
 invader.position.z,
 Shot.SHOT_VELOCITY);
 shots.add(shot);
 listener.shot();
 }
 }

 if (invader.state == Invader.INVADER_DEAD &&
 invader.stateTime > Invader.INVADER_EXPLOSION_TIME) {
 invaders.remove(i);
 i--;
 len--;
 }
 }
 }

The updateInvaders() method has a couple of responsibilities. It loops through all invaders and calls
their update() method. Once an Invader instance is updated, we check whether it is alive. If it is, we give
it a chance to fire a shot by generating a random number. If that number is below 0.001, it fires a shot. This
means that each invader has a 0.1% chance of firing a shot each frame. If that happens, we instantiate a new
shot, set its velocity so that it moves in the direction of the positive z axis, and inform the listener of that
event. If the invader is dead and has finished exploding, we simply remove it from the current list of invaders.

Chapter 12 ■ android invaders: the Grand Finale

550

 private void updateShots(float deltaTime) {
 int len = shots.size();
 for (int i = 0; i < len; i++) {
 Shot shot = shots.get(i);
 shot.update(deltaTime);
 if (shot.position.z < WORLD_MIN_Z ||
 shot.position.z > 0) {
 shots.remove(i);
 i--;
 len--;
 }
 }
 }

The updateShots() method is simple, as well. We loop through all shots, update them, and check
whether each one has left the playing field, in which case we remove it from the shots list.

 private void checkInvaderCollisions() {
 if (ship.state == Ship.SHIP_EXPLODING)
 return;

 int len = invaders.size();
 for (int i = 0; i < len; i++) {
 Invader invader = invaders.get(i);
 if (OverlapTester.overlapSpheres(ship.bounds, invader.bounds)) {
 ship.lives = 1;
 ship.kill();
 return;
 }
 }
 }

In the checkInvaderCollisions() method, we check whether any of the invaders has collided with the
ship. That’s a pretty simple affair, since all we need to do is loop through all invaders and check for overlap
between each invader’s bounding sphere and the ship’s bounding sphere. According to our game mechanics
definition, the game ends if the ship collides with an invader. This is why we set the ship’s lives to 1 before we
call the Ship.kill() method. After that call, the ship’s lives member is set to 0, which we’ll use in another
method to check for the game-over state.

 private void checkShotCollisions() {
 int len = shots.size();
 for (int i = 0; i < len; i++) {
 Shot shot = shots.get(i);
 boolean shotRemoved = false;

 int len2 = shields.size();
 for (int j = 0; j < len2; j++) {
 Shield shield = shields.get(j);
 if (OverlapTester.overlapSpheres(shield.bounds, shot.bounds)) {
 shields.remove(j);
 shots.remove(i);

Chapter 12 ■ android invaders: the Grand Finale

551

 i--;
 len--;
 shotRemoved = true;
 break;
 }
 }
 if (shotRemoved)
 continue;

 if (shot.velocity.z < 0) {
 len2 = invaders.size();
 for (int j = 0; j < len2; j++) {
 Invader invader = invaders.get(j);
 if (OverlapTester.overlapSpheres(invader.bounds,
 shot.bounds)
 && invader.state == Invader.INVADER_ALIVE) {
 invader.kill();
 listener.explosion();
 score += 10;
 shots.remove(i);
 i--;
 len--;
 break;
 }
 }
 } else {
 if (OverlapTester.overlapSpheres(shot.bounds, ship.bounds)
 && ship.state == Ship.SHIP_ALIVE) {
 ship.kill();
 listener.explosion();
 shots.remove(i);
 i--;
 len--;
 }
 }
 }
 }

The checkShotCollisions() method is a little bit more complex. It loops through each Shot instance
and checks for overlap between it and a shield block, an invader, or the ship. Shield blocks can be hit by
shots fired by the ship or by an invader. An invader can only be hit by a shot fired by the ship. And the ship
can only be hit by a shot fired by an invader. To distinguish whether a shot was fired by a ship or an invader,
all we need to do is look at its z velocity. If it is positive, it moves toward the ship, and was therefore fired by
an invader. If it is negative, it was fired by the ship.

 public boolean isGameOver() {
 return ship.lives == 0;
 }

The isGameOver() method simply tells an outside party if the ship has lost all its lives.

Chapter 12 ■ android invaders: the Grand Finale

552

 public void shoot() {
 if (ship.state == Ship.SHIP_EXPLODING)
 return;

 int friendlyShots = 0;
 int len = shots.size();
 for (int i = 0; i < len; i++) {
 if (shots.get(i).velocity.z < 0)
 friendlyShots++;
 }

 if (System.nanoTime() - lastShotTime > 1000000000 || friendlyShots == 0) {
 shots.add(new Shot(ship.position.x, ship.position.y,
 ship.position.z, -Shot.SHOT_VELOCITY));
 lastShotTime = System.nanoTime();
 listener.shot();
 }
 }
}

Finally, the shoot() method will be called from outside each time the Fire button is pressed by the
user. As noted in the “Core Game Mechanics” section, a shot can be fired by the ship every second, or it
can be fired if no ship has been shot on the field yet. The ship can’t fire if it explodes, of course, so that’s the
first thing we check. Next, we run through all the Shot instances and check if one of them is a ship shot. If
that’s not the case, we can shoot immediately. Otherwise, we check when the last shot was fired. If more
than a second has passed since the last shot, we fire a new one. This time, we set the velocity to –Shot.
SHOT_VELOCITY so that the shot moves in the direction of the negative z axis toward the invaders. As always,
we invoke the listener to inform it of the event.

And that’s all the classes that make up our game world! Compare that to what we had in Super Jumper.
The principles are nearly the same, and the code looks quite similar. Android Invaders is, of course, a very
simple game, so we can get away with simple solutions, such as using bounding spheres for everything. For
many simple 3D games, that’s all you’ll need. On to the last two parts of our game: the GameScreen class and
the WorldRenderer class!

The GameScreen Class
Once the game transitions to the GameScreen class, the player can immediately start playing without having
to state that he or she is ready. The only states we have are these:

•	 The running state, where we render the background, the world, and the UI elements,
as shown in Figure 12-4

•	 The paused state, where we render the background, the world, and the paused
menu, as shown in Figure 12-4

•	 The game-over state, where we render pretty much the same thing as for the pause
state.

We’ll follow the same pattern we used in Super Jumper and have different update() and present()
methods for each of the three states.

Chapter 12 ■ android invaders: the Grand Finale

553

The most interesting part of this class is how we handle the user input to move the ship. We want our
player to be able to control the ship with either onscreen buttons or the accelerometer. We can read the
Settings.touchEnabled field to figure out what the user wants in regards to this. Depending on which
input method is active, we decide on whether to render the onscreen buttons or not and pass the proper
accelerometer values to the World.update() method to move the ship.

If the player chooses the onscreen buttons, we don’t need to use the accelerometer values, of course;
instead, we just pass a constant artificial acceleration value to the World.update() method. It has to be in
the range –10 (left) to 10 (right). After a little experimentation, we arrived at a value of –5 for left movement
and 5 for right movement via the onscreen buttons.

The other interesting part of this class is the way we combine the rendering of the 3D game world and
the 2D UI elements. Let’s take a look at the code of the GameScreen class in Listing 12-11.

Listing 12-11. GameScreen.java, the game screen

package com.badlogic.androidgames.androidinvaders;

import java.util.List;

import javax.microedition.khronos.opengles.GL10;

import com.badlogic.androidgames.androidinvaders.World.WorldListener;
import com.badlogic.androidgames.framework.Game;
import com.badlogic.androidgames.framework.Input.TouchEvent;
import com.badlogic.androidgames.framework.gl.Camera2D;
import com.badlogic.androidgames.framework.gl.FPSCounter;
import com.badlogic.androidgames.framework.gl.SpriteBatcher;
import com.badlogic.androidgames.framework.impl.GLScreen;
import com.badlogic.androidgames.framework.math.OverlapTester;
import com.badlogic.androidgames.framework.math.Rectangle;
import com.badlogic.androidgames.framework.math.Vector2;

public class GameScreen extends GLScreen {
 static final int GAME_RUNNING = 0;
 static final int GAME_PAUSED = 1;
 static final int GAME_OVER = 2;

As usual, we have a couple of constants for encoding the screen’s current state.

 int state;
 Camera2D guiCam;
 Vector2 touchPoint;
 SpriteBatcher batcher;
 World world;
 WorldListener worldListener;
 WorldRenderer renderer;
 Rectangle pauseBounds;
 Rectangle resumeBounds;
 Rectangle quitBounds;

Chapter 12 ■ android invaders: the Grand Finale

554

 Rectangle leftBounds;
 Rectangle rightBounds;
 Rectangle shotBounds;
 int lastScore;
 int lastLives;
 int lastWaves;
 String scoreString;
 FPSCounter fpsCounter;

The members of the GameScreen are business as usual. We have a member keeping track of the state,
a camera, a vector for the touch point, a SpriteBatcher for rendering the 2D UI elements, and the World
instance, along with the WorldListener, the WorldRenderer (which we are going to write in a minute), and a
couple of Rectangles for checking whether a UI element was touched. In addition, three integers keep track
of the last number of lives, waves, and score so that we don’t have to update the scoreString each time, in
order to reduce GC activity. Finally, we have an FPSCounter so that later on we can figure out how well the
game performs.

 public GameScreen(Game game) {
 super(game);

 state = GAME_RUNNING;
 guiCam = new Camera2D(glGraphics, 480, 320);
 touchPoint = new Vector2();
 batcher = new SpriteBatcher(glGraphics, 100);
 world = new World();
 worldListener = new WorldListener() {
 public void shot() {
 Assets.playSound(Assets.shotSound);
 }

 public void explosion() {
 Assets.playSound(Assets.explosionSound);
 }
 };
 world.setWorldListener(worldListener);
 renderer = new WorldRenderer(glGraphics);
 pauseBounds = new Rectangle(480 - 64, 320 - 64, 64, 64);
 resumeBounds = new Rectangle(240 - 80, 160, 160, 32);
 quitBounds = new Rectangle(240 - 80, 160 - 32, 160, 32);
 shotBounds = new Rectangle(480 - 64, 0, 64, 64);
 leftBounds = new Rectangle(0, 0, 64, 64);
 rightBounds = new Rectangle(64, 0, 64, 64);
 lastScore = 0;
 lastLives = world.ship.lives;
 lastWaves = world.waves;
 scoreString = "lives:" + lastLives + " waves:" + lastWaves + " score:"
 + lastScore;
 fpsCounter = new FPSCounter();
 }

Chapter 12 ■ android invaders: the Grand Finale

555

In the constructor, we set up all the members, as we are now accustomed to doing. The WorldListener
is responsible for playing the correct sound when an event occurs in our world. The rest is the same as for
Super Jumper, though adapted slightly for the somewhat different UI elements.

 @Override
 public void update(float deltaTime) {
 switch (state) {
 case GAME_PAUSED:
 updatePaused();
 break;
 case GAME_RUNNING:
 updateRunning(deltaTime);
 break;
 case GAME_OVER:
 updateGameOver();
 break;
 }
 }

The update() method delegates the real updating to one of the other three update methods, depending
on the current state of the screen.

 private void updatePaused() {
 List<TouchEvent> events = game.getInput().getTouchEvents();
 int len = events.size();
 for (int i = 0; i < len; i++) {
 TouchEvent event = events.get(i);
 if (event.type != TouchEvent.TOUCH_UP)
 continue;

 guiCam.touchToWorld(touchPoint.set(event.x, event.y));
 if (OverlapTester.pointInRectangle(resumeBounds, touchPoint)) {
 Assets.playSound(Assets.clickSound);
 state = GAME_RUNNING;
 }

 if (OverlapTester.pointInRectangle(quitBounds, touchPoint)) {
 Assets.playSound(Assets.clickSound);
 game.setScreen(new MainMenuScreen(game));
 }
 }
 }

The updatePaused() method loops through any available touch events and checks whether one of the
two menu entries was pressed (Resume or Quit). In each case, we play the click sound. Nothing new here.

 private void updateRunning(float deltaTime) {
 List<TouchEvent> events = game.getInput().getTouchEvents();
 int len = events.size();
 for (int i = 0; i < len; i++) {
 TouchEvent event = events.get(i);

Chapter 12 ■ android invaders: the Grand Finale

556

 if (event.type != TouchEvent.TOUCH_DOWN)
 continue;

 guiCam.touchToWorld(touchPoint.set(event.x, event.y));

 if (OverlapTester.pointInRectangle(pauseBounds, touchPoint)) {
 Assets.playSound(Assets.clickSound);
 state = GAME_PAUSED;
 }
 if (OverlapTester.pointInRectangle(shotBounds, touchPoint)) {
 world.shoot();
 }
 }

 world.update(deltaTime, calculateInputAcceleration());
 if (world.ship.lives != lastLives || world.score != lastScore
 || world.waves != lastWaves) {
 lastLives = world.ship.lives;
 lastScore = world.score;
 lastWaves = world.waves;
 scoreString = "lives:" + lastLives + " waves:" + lastWaves
 + " score:" + lastScore;
 }
 if (world.isGameOver()) {
 state = GAME_OVER;
 }
 }

The updateRunning() method is responsible for two things: checking whether the pause button was
pressed (and reacting accordingly) and updating the world based on the user input. The first piece of
the puzzle is trivial, so let’s take a look at the world-updating mechanism. We delegate the acceleration
value calculation to a method called calculateInputAcceleration(). Once the world is updated, we
check whether any of the three states (lives, waves, or score) have changed and update the scoreString
accordingly. Finally, we check whether the game is over, in which case we enter the GameOver state.

 private float calculateInputAcceleration() {
 float accelX = 0;
 if (Settings.touchEnabled) {
 for (int i = 0; i < 2; i++) {
 if (game.getInput().isTouchDown(i)) {
 guiCam.touchToWorld(touchPoint.set(game.getInput()
 .getTouchX(i), game.getInput().getTouchY(i)));
 if (OverlapTester.pointInRectangle(leftBounds, touchPoint)) {
 accelX = -Ship.SHIP_VELOCITY / 5;
 }
 if (OverlapTester.pointInRectangle(rightBounds, touchPoint)) {
 accelX = Ship.SHIP_VELOCITY / 5;
 }
 }
 }
 } else {

Chapter 12 ■ android invaders: the Grand Finale

557

 accelX = game.getInput().getAccelY();
 }
 return accelX;
 }

The calculateInputAcceleration() method is where we actually interpret the user input. If touch is
enabled, we check whether the left or right onscreen movement button was pressed, and, if so, we set the
acceleration value accordingly to either –5 (left) or 5 (right). If the accelerometer is used, we simply return its
current value on the y axis (remember, we are in landscape mode).

 private void updateGameOver() {
 List<TouchEvent> events = game.getInput().getTouchEvents();
 int len = events.size();
 for (int i = 0; i < len; i++) {
 TouchEvent event = events.get(i);
 if (event.type == TouchEvent.TOUCH_UP) {
 Assets.playSound(Assets.clickSound);
 game.setScreen(new MainMenuScreen(game));
 }
 }
 }

The updateGameOver() method is again trivial and simply checks for a touch event, in which case we
transition to the MainMenuScreen.

 @Override
 public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
 guiCam.setViewportAndMatrices();

 gl.glEnable(GL10.GL_TEXTURE_2D);
 batcher.beginBatch(Assets.background);
 batcher.drawSprite(240, 160, 480, 320, Assets.backgroundRegion);
 batcher.endBatch();
 gl.glDisable(GL10.GL_TEXTURE_2D);

 renderer.render(world, deltaTime);

 switch (state) {
 case GAME_RUNNING:
 presentRunning();
 break;
 case GAME_PAUSED:
 presentPaused();
 break;
 case GAME_OVER:
 presentGameOver();
 }

 fpsCounter.logFrame();
 }

Chapter 12 ■ android invaders: the Grand Finale

558

The present() method is actually pretty simple, as well. As always, we start off by clearing the
framebuffer. Also, we clear the z-buffer, since we are going to render some 3D objects for which we need z
testing. Next, we set up the projection matrix so that we can render our 2D background image, just as we did
in the MainMenuScreen or SettingsScreen classes. Once that is done, we tell the WorldRenderer member
to render our game world. Finally, we delegate the rendering of the UI elements depending on the current
state. Note that the WorldRenderer.render() method is responsible for setting up all things needed to
render the 3D world.

 private void presentPaused() {
 GL10 gl = glGraphics.getGL();
 guiCam.setViewportAndMatrices();
 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA);
 gl.glEnable(GL10.GL_TEXTURE_2D);

 batcher.beginBatch(Assets.items);
 Assets.font.drawText(batcher, scoreString, 10, 320-20);
 batcher.drawSprite(240, 160, 160, 64, Assets.pauseRegion);
 batcher.endBatch();

 gl.glDisable(GL10.GL_TEXTURE_2D);
 gl.glDisable(GL10.GL_BLEND);
 }

The presentPaused() method just renders the scoreString via the Font instance we stored in the
Assets class, as well as the Pause menu. Note that, at this point, we have already rendered the background
image, as well as the 3D world. All the UI elements will thus overlay the 3D world.

 private void presentRunning() {
 GL10 gl = glGraphics.getGL();
 guiCam.setViewportAndMatrices();
 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA);
 gl.glEnable(GL10.GL_TEXTURE_2D);

 batcher.beginBatch(Assets.items);
 batcher.drawSprite(480- 32, 320 - 32, 64, 64, Assets.pauseButtonRegion);
 Assets.font.drawText(batcher, scoreString, 10, 320-20);
 if(Settings.touchEnabled) {
 batcher.drawSprite(32, 32, 64, 64, Assets.leftRegion);
 batcher.drawSprite(96, 32, 64, 64, Assets.rightRegion);
 }
 batcher.drawSprite(480 - 40, 32, 64, 64, Assets.fireRegion);
 batcher.endBatch();

 gl.glDisable(GL10.GL_TEXTURE_2D);
 gl.glDisable(GL10.GL_BLEND);
 }

The presentRunning() method is also pretty straightforward. We render the scoreString first. If touch
input is enabled, we render the left and right movement buttons. Finally, we render the Fire button and reset
any OpenGL ES states we’ve changed (texturing and blending).

Chapter 12 ■ android invaders: the Grand Finale

559

 private void presentGameOver() {
 GL10 gl = glGraphics.getGL();
 guiCam.setViewportAndMatrices();
 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA);
 gl.glEnable(GL10.GL_TEXTURE_2D);

 batcher.beginBatch(Assets.items);
 batcher.drawSprite(240, 160, 128, 64, Assets.gameOverRegion);
 Assets.font.drawText(batcher, scoreString, 10, 320-20);
 batcher.endBatch();

 gl.glDisable(GL10.GL_TEXTURE_2D);
 gl.glDisable(GL10.GL_BLEND);
 }

The presentGameOver() method is more of the same—just some string and UI rendering.

 @Override
 public void pause() {
 state = GAME_PAUSED;
 }

Finally, the pause() method simply puts the GameScreen into the paused state.

 @Override
 public void resume() {

 }

 @Override
 public void dispose() {

 }
}

The rest is just empty stubs so that we fulfill the GLGame interface definition. On to our final class:
WorldRenderer!

The WorldRender Class
Let’s recall what we have to render in 3D:

•	 The ship, using the ship model and texture, and applying lighting

•	 The invaders, using the invader model and texture, again with lighting

•	 Any shots on the playfield, based on the shot model, this time without texturing but
with lighting

•	 The shield blocks, based on the shield block model, again without texturing, but with
lighting and transparency (see Figure 12-3)

Chapter 12 ■ android invaders: the Grand Finale

560

•	 Explosions instead of the ship or invader model, in case the ship or invader is
exploding. The explosion is not lit, of course.

We know how to code the first four items on this list. But what about the explosions?
It turns out that we can abuse the SpriteBatcher for this. Based on the state time of the exploding ship

or invader, we can fetch a TextureRegion from the Animation instance holding the explosion animation
(see Assets class). The SpriteBatcher can render textured rectangles only in the x-y plane, so we have to
find a way to move such a rectangle to an arbitrary position in space (where the exploding ship or invader is
located). We can easily achieve this by using glTranslatef() on the model-view matrix before rendering the
rectangle via the SpriteBatcher!

The rendering setup for the other objects is pretty straightforward. We have a directional light coming
from the top right, and we have an ambient light to light all the objects a little, no matter their orientation.
The camera is located a little above and behind the ship, and it will look at a point a little ahead of the ship.
We use our LookAtCamera instance for this. To let the camera follow the ship, we just need to keep the x
coordinate of its position and the look-at point in sync with the ship’s x coordinate.

For some extra eye candy, we’ll rotate the invaders around the y axis, and we’ll rotate the ship around
the z axis based on its current velocity, so that it appears to be leaning in the direction in which it is moving.

Let’s put this into code! Listing 12-12 shows the final class of Android Invaders.

Listing 12-12. WorldRenderer.java, the world renderer

package com.badlogic.androidgames.androidinvaders;

import java.util.List;

import javax.microedition.khronos.opengles.GL10;

import com.badlogic.androidgames.framework.gl.AmbientLight;
import com.badlogic.androidgames.framework.gl.Animation;
import com.badlogic.androidgames.framework.gl.DirectionalLight;
import com.badlogic.androidgames.framework.gl.LookAtCamera;
import com.badlogic.androidgames.framework.gl.SpriteBatcher;
import com.badlogic.androidgames.framework.gl.TextureRegion;
import com.badlogic.androidgames.framework.impl.GLGraphics;
import com.badlogic.androidgames.framework.math.Vector3;

public class WorldRenderer {
 GLGraphics glGraphics;
 LookAtCamera camera;
 AmbientLight ambientLight;
 DirectionalLight directionalLight;
 SpriteBatcher batcher;
 float invaderAngle = 0;

The WorldRenderer keeps track of the GLGraphics instance from which we’ll fetch the GL10 instance.
We also have a LookAtCamera, an AmbientLight, a DirectionLight, and a SpriteBatcher. Finally, we use a
member to keep track of the current rotation angle for all invaders.

 public WorldRenderer(GLGraphics glGraphics) {
 this.glGraphics = glGraphics;
 camera = new LookAtCamera(67, glGraphics.getWidth()
 / (float) glGraphics.getHeight(), 0.1f, 100);

Chapter 12 ■ android invaders: the Grand Finale

561

 camera.getPosition().set(0, 6, 2);
 camera.getLookAt().set(0, 0, -4);
 ambientLight = new AmbientLight();
 ambientLight.setColor(0.2f, 0.2f, 0.2f, 1.0f);
 directionalLight = new DirectionalLight();
 directionalLight.setDirection(-1, -0.5f, 0);
 batcher = new SpriteBatcher(glGraphics, 10);
 }

In the constructor, we set up all members, as usual. The camera has a field of view of 67 degrees, a near
clipping plane distance of 0.1 units, and a far clipping plane distance of 100 units. The view frustum will thus
easily contain the entire game world. We position it above and behind the ship and let it look at (0,0,–4). The
ambient light is just a faint gray, and the directional light is white and comes from the top-right side. Finally,
we instantiate the SpriteBatcher so that we can render the explosion rectangles.

 public void render(World world, float deltaTime) {
 GL10 gl = glGraphics.getGL();
 camera.getPosition().x = world.ship.position.x;
 camera.getLookAt().x = world.ship.position.x;
 camera.setMatrices(gl);

 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glEnable(GL10.GL_LIGHTING);
 gl.glEnable(GL10.GL_COLOR_MATERIAL);
 ambientLight.enable(gl);
 directionalLight.enable(gl, GL10.GL_LIGHT0);

 renderShip(gl, world.ship);
 renderInvaders(gl, world.invaders, deltaTime);

 gl.glDisable(GL10.GL_TEXTURE_2D);

 renderShields(gl, world.shields);
 renderShots(gl, world.shots);

 gl.glDisable(GL10.GL_COLOR_MATERIAL);
 gl.glDisable(GL10.GL_LIGHTING);
 gl.glDisable(GL10.GL_DEPTH_TEST);
 }

In the render() method, we start off by setting the camera’s x coordinate to the ship’s x coordinate.
Of course, we also set the x coordinate of the camera’s look-at point accordingly. This way, the camera will
follow the ship. Once the position and look-at point are updated, we can set the projection and model-view
matrix via a call to LookAtCamera.setMatrices().

Next, we set up all the states that we need for rendering. We’ll need depth testing, texturing, lighting,
and the color material functionality so that we don’t have to specify a material for the objects via
glMaterial(). The next two statements activate the ambient and directional light. With these calls, we have
everything set up and can start rendering the objects.

The first thing we render is the ship via a call to renderShip(). Next, we render the invaders with a call
to renderInvaders().

Chapter 12 ■ android invaders: the Grand Finale

562

Since the shield blocks and shots don’t need texturing, we simply disable that to save some
computations. Once texturing is turned off, we render the shots and shields via calls to renderShots() and
renderShields().

Finally, we disable the other states we set so that we return a clean OpenGL ES state to whoever called us.

 private void renderShip(GL10 gl, Ship ship) {
 if (ship.state == Ship.SHIP_EXPLODING) {
 gl.glDisable(GL10.GL_LIGHTING);
 renderExplosion(gl, ship.position, ship.stateTime);
 gl.glEnable(GL10.GL_LIGHTING);
 } else {
 Assets.shipTexture.bind();
 Assets.shipModel.bind();
 gl.glPushMatrix();
 gl.glTranslatef(ship.position.x, ship.position.y, ship.position.z);
 gl.glRotatef(ship.velocity.x / Ship.SHIP_VELOCITY * 90, 0, 0, -1);
 Assets.shipModel.draw(GL10.GL_TRIANGLES, 0,
 Assets.shipModel.getNumVertices());
 gl.glPopMatrix();
 Assets.shipModel.unbind();
 }
 }

The renderShip() method starts off by checking the state of the ship. If it is exploding, we disable
lighting, call renderExplosion() to render an explosion at the position of the ship, and enable lighting again.

If the ship is alive, we bind its texture and model, push the model-view matrix, move it to its position
and rotate it around the z axis based on its velocity, and draw its model. Finally, we pop the model-view
matrix again (leaving only the camera’s view) and unbind the ship model’s vertices.

 private void renderInvaders(GL10 gl, List<Invader> invaders, float deltaTime) {
 invaderAngle += 45 * deltaTime;

 Assets.invaderTexture.bind();
 Assets.invaderModel.bind();
 int len = invaders.size();
 for (int i = 0; i < len; i++) {
 Invader invader = invaders.get(i);
 if (invader.state == Invader.INVADER_DEAD) {
 gl.glDisable(GL10.GL_LIGHTING);
 Assets.invaderModel.unbind();
 renderExplosion(gl, invader.position, invader.stateTime);
 Assets.invaderTexture.bind();
 Assets.invaderModel.bind();
 gl.glEnable(GL10.GL_LIGHTING);
 } else {
 gl.glPushMatrix();
 gl.glTranslatef(invader.position.x, invader.position.y,
 invader.position.z);
 gl.glRotatef(invaderAngle, 0, 1, 0);
 Assets.invaderModel.draw(GL10.GL_TRIANGLES, 0,
 Assets.invaderModel.getNumVertices());
 gl.glPopMatrix();

Chapter 12 ■ android invaders: the Grand Finale

563

 }
 }
 Assets.invaderModel.unbind();
 }

The renderInvaders() method is pretty much the same thing as the renderShip() method. The only
difference is that it binds the texture and mesh before we render each invader. This considerably reduces the
number of binds and speeds up the rendering. For each invader, we check its state again and render either
an explosion or the normal invader model. Since we bind the model and texture outside the for loop, we
have to unbind and rebind them before we can render an explosion instead of an invader.

 private void renderShields(GL10 gl, List<Shield> shields) {
 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA);
 gl.glColor4f(0, 0, 1, 0.4f);
 Assets.shieldModel.bind();
 int len = shields.size();
 for (int i = 0; i < len; i++) {
 Shield shield = shields.get(i);
 gl.glPushMatrix();
 gl.glTranslatef(shield.position.x, shield.position.y,
 shield.position.z);
 Assets.shieldModel.draw(GL10.GL_TRIANGLES, 0,
 Assets.shieldModel.getNumVertices());
 gl.glPopMatrix();
 }
 Assets.shieldModel.unbind();
 gl.glColor4f(1, 1, 1, 1f);
 gl.glDisable(GL10.GL_BLEND);
 }

The renderShields() method renders the shield blocks. We apply the same principle as in the case
of rendering invaders. We only bind the model once. Since we have no texture, we don’t need to bind one.
However, we need to enable blending. We set the global vertex color to blue, with the alpha component set
to 0.4. This will make the shield blocks a little transparent.

 private void renderShots(GL10 gl, List<Shot> shots) {
 gl.glColor4f(1, 1, 0, 1);
 Assets.shotModel.bind();
 int len = shots.size();
 for (int i = 0; i < len; i++) {
 Shot shot = shots.get(i);
 gl.glPushMatrix();
 gl.glTranslatef(shot.position.x, shot.position.y, shot.position.z);
 Assets.shotModel.draw(GL10.GL_TRIANGLES, 0,
 Assets.shotModel.getNumVertices());
 gl.glPopMatrix();
 }
 Assets.shotModel.unbind();
 gl.glColor4f(1, 1, 1, 1);
 }

Chapter 12 ■ android invaders: the Grand Finale

564

Rendering the shots in renderShots() is the same as rendering the shields, except that we don’t use
blending and we use a different vertex color (yellow).

 private void renderExplosion(GL10 gl, Vector3 position, float stateTime) {
 TextureRegion frame = Assets.explosionAnim.getKeyFrame(stateTime,
 Animation.ANIMATION_NONLOOPING);

 gl.glEnable(GL10.GL_BLEND);
 gl.glPushMatrix();
 gl.glTranslatef(position.x, position.y, position.z);
 batcher.beginBatch(Assets.explosionTexture);
 batcher.drawSprite(0, 0, 2, 2, frame);
 batcher.endBatch();
 gl.glPopMatrix();
 gl.glDisable(GL10.GL_BLEND);
 }
}

Finally, we have the mysterious renderExplosion() method. We get the position at which we want to
render the explosion, as well as the state time of the object that is exploding. The latter is used to fetch the
correct TextureRegion from the explosion Animation, just as we did for Bob in Super Jumper.

The first thing we do is fetch the explosion animation frame based on the state time. Next, we enable
blending, since the explosion has transparent pixels that we don’t want to render. We push the current model-
view matrix and call glTranslatef() so that anything we render after that call will be positioned at the given
location. We tell the SpriteBatcher that we are about to render a rectangle using the explosion texture.

The next call is where the magic happens. We tell the SpriteBatcher to render a rectangle at (0,0,0) (the
z coordinate is not given but is implicitly zero, remember?) with a width and height of 2 units. Because we
used glTranslatef(), that rectangle will be centered not around the origin, but rather around the position
we specified to glTranslatef(), which is exactly the position of the ship or invader that exploded. Finally,
we pop the model-view matrix and disable blending again.

That’s it. Twelve classes, forming a full 3D game, parroting the classic Space Invaders game. Try it out.
When you come back, we’ll have a look at the performance characteristics.

Optimizations
Before we think about optimizing the game, we have to evaluate how well it performs. We put an FPSCounter
in the GameScreen class, so let’s look at its output on a Hero, a Droid, and a Nexus One.

Hero (Android 1.5):
02-17 00:59:04.180: DEBUG/FPSCounter(457): fps: 25
02-17 00:59:05.220: DEBUG/FPSCounter(457): fps: 26
02-17 00:59:06.260: DEBUG/FPSCounter(457): fps: 26
02-17 00:59:07.280: DEBUG/FPSCounter(457): fps: 26

Nexus One (Android 2.2.1):
02-17 01:05:40.679: DEBUG/FPSCounter(577): fps: 41
02-17 01:05:41.699: DEBUG/FPSCounter(577): fps: 41
02-17 01:05:42.729: DEBUG/FPSCounter(577): fps: 41
02-17 01:05:43.729: DEBUG/FPSCounter(577): fps: 40

Chapter 12 ■ android invaders: the Grand Finale

565

Droid (Android 2.1.1):
02-17 01:47:44.096: DEBUG/FPSCounter(1758): fps: 47
02-17 01:47:45.112: DEBUG/FPSCounter(1758): fps: 47
02-17 01:47:46.127: DEBUG/FPSCounter(1758): fps: 47
02-17 01:47:47.135: DEBUG/FPSCounter(1758): fps: 46

The Hero struggles quite a bit, but the game is playable at 25 FPS. The Nexus One achieves around 41
FPS, and the Droid reaches 47 FPS, which is pretty playable. Can it get better?

In terms of state changes, this is not all that bad. We could reduce some redundant changes here and
there, such as some glEnable()/glDisable() calls, but we know from previous optimization attempts that
doing so won’t shave off a lot of overhead.

On the Hero, there’s one thing we can do: disable lighting. Once we remove the respective
glEnable()/glDisable() calls in WorldRenderer.render(), as well as WorldRenderer.renderShip() and
WorldRenderer.renderInvaders(), the Hero achieves the following frame rate:

Hero (Android 1.5):
02-17 01:14:44.580: DEBUG/FPSCounter(618): fps: 31
02-17 01:14:45.600: DEBUG/FPSCounter(618): fps: 31
02-17 01:14:46.610: DEBUG/FPSCounter(618): fps: 31
02-17 01:14:47.630: DEBUG/FPSCounter(618): fps: 31

That’s quite a bit of improvement, and all we have to do is turn off lighting. Special-casing the rendering
code for a certain device is possible, but it’s good to avoid that. Is there anything else we can do?

The way we render explosions is suboptimal in the case of an exploding invader. We change the model
and texture bindings in the middle of rendering all invaders, which makes the graphics pipeline a little
unhappy. However, explosions don’t happen often, and don’t take a long time (1.6 seconds). Plus, the
measurements just shown were taken without any explosions onscreen, so that’s not the culprit.

The truth is that we are rendering too many objects per frame, causing significant call overhead and
stalling the pipeline a little. With our current knowledge of OpenGL ES, there’s nothing much we can do
about that. However, given that the game “feels” rather playable on all devices, it’s not an absolute must to
achieve 60 FPS. The Droid and Nexus One have a notoriously hard time rendering even mildly complex 3D
scenes at 60 FPS. So, the final lesson to take away from this is: don’t get crazy if your game doesn’t run at 60
FPS. If it is visually smooth and plays well, you can even make do with 30 FPS.

 ■ Note other common optimization strategies involve using culling, vertex buffer objects, and other more
advanced topics that aren’t discussed here. We tried adding these to our android invaders—the effect: zero.
none of these devices benefit from these optimizations. that does not mean these techniques are useless. it
depends on a lot of factors and their side effects, and it’s hard to predict how certain configurations will behave.
if you are interested, just search for those terms on the Web and try the techniques out yourself!

Summary
In this chapter, we completed our third game, a full-blown 3D Space Invaders clone. We employed all the
techniques and tricks we learned on our way through this book, and the final outcome is rather satisfying. Of
course, these are not AAA games. In fact, none of these are enjoyable for a long period of time. That’s where
you come in. Get creative, extend these games, and make them fun! You have the tools at your disposal.

567© Mario Zechner, J. F. DiMarzio and Robert Green 2016
M. Zechner et al., Beginning Android Games, DOI 10.1007/978-1-4842-0472-6_13

CHAPTER 13

Going Native with the NDK

After all the 3D extravagance in the past three chapters, it’s time to look into one more aspect of
programming games for Android. While Java and the Dalvik VM are sufficient for a lot of game genres in
terms of execution speed, there are times when you need a bit more power. This is especially true for physics
simulations, complex 3D animation, collision detection, and so on. This type of code is best written in more
“to-the-metal” languages like C/C++ or even assembly language. The Android native development kit (NDK)
lets us do exactly that.

Implementing 3D animation or a physics engine in C/C++ is way outside the scope of this book.
However, in Chapter 8 we identified a bottleneck that can be fixed with a bit of native code. Copying a float
array to a ByteBuffer is terribly slow on Android. Some of our OpenGL ES classes rely on this mechanism. In
this chapter, we’ll look into fixing this with a bit of C/C++ code!

 ■ Note The following sections show you how to interface with C/C++ code from your Java application. If you
don’t feel confident jumping into this topic, just skip this chapter and return to it if you want to know more.

What Is the Android NDK?
The NDK is an addition to the Android SDK that lets you write C/C++ and assembly code that you can then
integrate into your Android application. The NDK consists of a set of Android-specific C libraries, a cross-
compiler toolchain based on the GNU Compiler Collection (GCC) that compiles to all the different CPU
architectures supported by Android (ARM, x86, and MIPS), and a custom-built system that should make
compiling C/C++ code easier when compared to writing your own makefiles.

The NDK doesn’t expose most of the Androids APIs, such as the UI toolkit. It is mostly intended to
speed up slow Java methods by rewriting them in C/C++ and calling them from within Java. Since Android
2.3, Java can be bypassed almost completely by using the NativeActivity class instead of Java activities.
The NativeActivity class is specifically designed to be used for games with full window control, but it does
not give you access to Java at all, so it can’t be used with other Java-based Android libraries. Many game
developers coming from iOS choose that route because it lets them reuse most of the C/C++ on Android
without having to go too deep into the Android Java APIs. However, integration of services such as Facebook
authentication or ads still needs to be done in Java, so designing the game to start in Java and call into C++
via the JNI is often the most compatible way. With that said, how does one use the JNI?

http://dx.doi.org/10.1007/978-1-4842-0472-6_8

ChapTer 13 ■ GoInG naTIve wITh The nDK

568

The Java Native Interface
The Java Native Interface (JNI) is a way to let the virtual machine (and hence Java code) communicate
with C/C++ code. This works in both directions; you can call C/C++ code from Java, and you can call Java
methods from C/C++. Many of Android’s libraries use this mechanism to expose native code, such as
OpenGL ES or audio decoders.

Once you use the JNI, your application consists of two parts: Java code and C/C++ code. On the Java
side, you declare class methods to be implemented in native code by adding a special qualifier called
native. This could look like this:

package com.badlogic.androidgames.ndk;
public class MyJniClass {
 public native int add(int a, int b);
}

As you can see, the method we declared doesn’t have a method body. When the VM running your Java
code sees this qualifier on a method, it knows that the corresponding implementation is found in a shared
library instead of in the JAR file or the APK file.

A shared library is very similar to a Java JAR file. It contains compiled C/C++ code that can be called by
any program that loads this shared library. On Windows, these shared libraries usually have the suffix .dll;
on Unix systems, they end in .so.

On the C/C++ side, we have a lot of header and source files that define the signature of the native
methods in C and contain the actual implementation. The header file for our class in the preceding code
would look something like this:

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class com_badlogic_androidgames_ndk_MyJniClass */

#ifndef _Included_com_badlogic_androidgames_ndk_MyJniClass
#define _Included_com_badlogic_androidgames_ndk_MyJniClass
#ifdef __cplusplus extern "C" {

#endif
/*
 * Class: com_badlogic_androidgames_ndk_MyJniClass
 * Method: add
 * Signature: (II)I
 */
JNIEXPORT jint JNICALL Java_com_badlogic_androidgames_ndk_MyJniClass_add
(JNIEnv *, jobject, jint, jint);

#ifdef __cplusplus
}
#endif
#endif

This header file was generated with a JDK tool called javah. The tool takes a Java class as input and
generates a C function signature for any native methods it finds. There’s a lot going on here, as the C code
needs to follow a specific naming schema and needs to be able to marshal Java types to their corresponding
C types (e.g., Java’s int becomes a jint in C). We also get two additional parameters of type JNIEnv and
jobject. The first can be thought of as a handle to the VM. It contains methods to communicate with the

ChapTer 13 ■ GoInG naTIve wITh The nDK

569

VM, such as to call methods of a class instance. The second parameter is a handle to the class instance on
which this method was invoked. We could use this in combination with the JNIEnv parameter to call other
methods of this class instance from the C code.

This header file does not contain the implementation of the function yet. We need a corresponding C/
C++ source file that implements the function:

#include "myjniclass.h"

JNIEXPORT jint JNICALL Java_com_badlogic_androidgames_ndk_MyJniClass_add
 (JNIEnv * env, jobject obj, jint a, jint b) {
 return a + b;
}

These C/C++ sources are compiled to a shared library, which we then load through a specific Java API
so that the VM can find the implementation of the native methods of our Java classes:

 System.loadLibrary("myjnitest");
int result = new MyJniClass().add(12, 32);

The call to System.loadLibrary() takes the name of the shared library. How it finds the corresponding
file is up to the VM implementation to some degree. This method is called only once, at startup, so that the
VM knows where to find the implementations of any native libraries. As you can see, we can invoke the
MyJniClass.add() method just like any other Java class method!

Enough of all this talk. Let’s get our hands dirty with a little C code on Android! We will write a few
simple C functions that we want to invoke from our Java application. We’ll guide you through the process of
compiling the shared library, loading it, and calling into the native methods.

Setting Up the NDK
Before we start, we have to install the NDK. This is actually a rather simple process.

 1. Head over to http://developer.android.com/tools/sdk/ndk/index.html,
click on Download, and pick the archive for your platform.

 2. Extract the archive to a location of your liking and note down its location.

 3. Add the base NDK directory to your system path:

 a. On Linux or Mac OS X, open a shell and add the path of the NDK
installation directory to your $PATH environment variable. Generally, it’s in
.profile and the line looks like this: export PATH = $PATH:/ path/to/
your/ndk/installation

 b. On Windows, choose Control Panel ➤ System and Security ➤ System ➤
Advanced System Settings ➤ Environment Variables ➤ System Variables.
Select Path in the System Variables list, click Edit, and add the directory to the
end of the variable value, starting with a semicolon (e.g., ;c:\Android_NDK).

 4. To verify that your NDK has been installed successfully, issue the command ndk-
build in your terminal. It should spit out a few comments about the lack of an
Android project.

 5. In Chapter 2, we set up the JDK and added its bin/ directory to our path.

 6. Make sure the tools in that directory are still available by issuing the command
javah. It should print out the usage information for that tool. We’ll need it later.

http://developer.android.com/tools/sdk/ndk/index.html
http://dx.doi.org/10.1007/978-1-4842-0472-6_2

ChapTer 13 ■ GoInG naTIve wITh The nDK

570

Setting Up an NDK Android Project
As in the previous coding chapters, you have to create a new Android project. Copy over all the framework
code from Chapter 12. Then, create a new package called com.badlogic.androidgames.ndk, place into
it a copy of one of the starter activities from previous chapters, rename it to NdkStarter, and make it the
launcher activity. As always, remember to add any new tests to both the manifest file and the starter activity.

To make things easier, you should open your terminal now and navigate to that new project’s root directory.
Make sure your PATH still contains the correct entries so that the ndk-build and javah tools can be invoked.

Creating Java Native Methods
As we saw previously, it’s rather simple to specify which methods of a Java class are implemented in native
code. However, we need to be careful when defining what types we pass into the method and what return
type we get out of the method.

While we can pass any Java type to a native method, some types are considerably harder to handle than
others. The easiest types to work with are primitive types like int, byte, boolean, char, and so on, which
correspond directly to the equivalent C types. The next easiest types to handle on the C/C++ side are one-
dimensional arrays of primitive types, such as int[] or float[].

These arrays can be converted to C arrays or pointers with methods provided by the JNIEnv type
we saw earlier. Next on the easiness scale are direct ByteBuffer instances. As with arrays, they can be
easily converted to a pointer. Depending on the use case, strings can be easy to use as well. Objects and
multidimensional arrays are a lot harder to handle. Working with these on the C/C++ side is similar to
working with the reflection APIs on the Java side.

We can also return any Java type from native methods. Primitive types are again rather easy to handle.
Returning other types usually involves creating an instance of that type on the C/C++ side, which can be
pretty complicated.

We’ll only look into passing around primitive types, arrays, ByteBuffer instances, and strings a little
bit. If you want to know more about how to handle types via the JNI, we refer you to the (online) book Java
Native Interface 5.0 Specification, found at http://docs.oracle.com/javase/1.5.0/ docs/guide/jni/
spec/jniTOC.html.

For our JNI experiment, we’ll create two methods. One will copy a float[] to a direct ByteBuffer in C
code, and the other will print out a string to logcat. Listing 13-1 shows our JniUtils class.

Listing 13-1. JniUtils.java: We keep it simple

package com.badlogic.androidgames.ndk;

import java.nio.ByteBuffer;

public class JniUtils {
 static {
 System.loadLibrary("jniutils");
 }

 public static native void log(String tag, String message);

 public static native void copy(ByteBuffer dst, float[] src, int offset, int len);
}

http://dx.doi.org/10.1007/978-1-4842-0472-6_12
http://docs.oracle.com/javase/1.5.0/

ChapTer 13 ■ GoInG naTIve wITh The nDK

571

The class starts with a static block. The code in this block will be invoked the first time the VM encounters
a reference to the JNIUtils class. It’s the perfect place to call System.loadLibrary(), which will load the
shared library we’ll compile in a bit. The parameter we pass to the method is the pure name of the shared
library. As we’ll see later, the actual file is called libjniutils.so. The method will figure this out on its own.

The log() method mimics the Android Java Log.d() method. It takes a tag and a message that will get
printed to logcat.

The copy() method is actually useful. In Chapter 8, we investigated the performance problems for the
FloatBuffer.put() method. We resorted to using a pure Java implementation that used IntBuffer and
some nasty tricks so we could speed up the copying of a float array to a direct ByteBuffer in the Vertices
class. We’ll now implement a method that takes a direct ByteBuffer and a float array and copies the array
to the buffer. This is a lot faster than using the corresponding Java APIs. We can later modify our Vertices
and Vertices3 classes to use this new functionality.

Note that both methods are static methods instead of instance methods. This means we can call them
without having an instance of the class JniTest! This also has minor effects on our C signatures, as we’ll see
in a bit.

Creating the C/C++ Header and Implementation
The first thing we do when we start to write the C/C++ code is generate the header file via the javah JDK
command-line tool. It takes a few parameters that are useful to us:

•	 The name of the output file, which in our case is jni/jniutils.h. The javah tool will
create the jni/ folder for us if it doesn’t exist yet.

•	 The path containing the .class file of the Java class for which it should generate a
C header. This will be bin/classes if we invoke javah from the root directory of our
project. It’s the output path for the Eclipse compiler when it compiles any of our
Android project’s source files.

•	 The fully qualified name of the class, which is com.badlogic. androidgames.ndk.
JniUtils in our case.

Open the terminal or command prompt and navigate to the root folder of the Android project. Make
sure that the NDK and JDK are in your $PATH as described earlier. Now execute the following command:

javah -o jni/jniutils.h -classpath bin/classes com.badlogic.androidgames.ndk.JniUtils

This will create a file called jniutils.h in the jni/ folder of our Android project. Listing 13-2 shows its
content.

Listing 13-2. jniutils.h, containing the C functions that implement our native methods

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class com_badlogic_androidgames_ndk_JniUtils */

#ifndef _Included_com_badlogic_androidgames_ndk_JniUtils
#define _Included_com_badlogic_androidgames_ndk_JniUtils
#ifdef __cplusplus extern "C" {

http://dx.doi.org/10.1007/978-1-4842-0472-6_8

ChapTer 13 ■ GoInG naTIve wITh The nDK

572

#endif
/*
 * Class: com_badlogic_androidgames_ndk_JniUtils
 * Method: log
 * Signature: (Ljava/lang/String;Ljava/lang/String;)V
 */
JNIEXPORT void JNICALL Java_com_badlogic_androidgames_ndk_JniUtils_log
(JNIEnv *, jclass, jstring, jstring);

/*
 * Class: com_badlogic_androidgames_ndk_JniUtils
 * Method: copy
 * Signature: (Ljava/nio/ByteBuffer;[FII)V
 */
JNIEXPORT void JNICALL Java_com_badlogic_androidgames_ndk_JniUtils_copy
(JNIEnv *, jclass, jobject, jfloatArray, jint, jint);

#ifdef __cplusplus
}
#endif
#endif

Time to implement those functions. First, we create a new file called jniutils.cpp in the jni/ folder.
Listing 13-3 shows its content.

Listing 13-3. jniutils.cpp, the implementation of the JniUtils native methods

#include <android/log.h>
#include <string.h>
#include "jniutils.h"

We need a few C includes, namely log.h, which is provided by the NDK; string.h; and our own jniutils.h.
The first include lets us use the native Android logging functions. The second include lets us use memcpy(). The
last one imports the signatures of our native methods as well as jni.h, which contains the JNI APIs.

JNIEXPORT void JNICALL Java_com_badlogic_androidgames_ndk_JniUtils_log
 (JNIEnv *env, jclass clazz, jstring tag, jstring message) {
 const char *cTag = env-> GetStringUTFChars(tag, 0);
 const char *cMessage = env-> GetStringUTFChars(message, 0);

 __android_log_print(ANDROID_LOG_VERBOSE, cTag, cMessage);

 env-> ReleaseStringUTFChars(tag, cTag);
 env-> ReleaseStringUTFChars(message, cMessage);
}

This function implements the JniUtils.log() method, which takes a JNIEnv and a jclass as the first
two parameters. The env parameter allows us to work directly with the JVM. The jclass parameter represents
the JniUtils class. Remember that our methods are static methods. Instead of getting a jobject, as in the
previous example, we get the class. The tag and message parameters are the two strings we pass in from Java.

ChapTer 13 ■ GoInG naTIve wITh The nDK

573

The log.h header defines a function called android_log_print, which is similar to the standard C
printf function. It takes a log level and two char* pointers representing the tag and the message. Our tag
and message parameters have the type jstring and can’t be cast to char* pointers. Instead, we have to
temporarily convert them to char* pointers via methods exposed by the env parameter. This is done in the
first two lines of the function via calls to

env-> GetStringUTFChars().
env-> ReleaseStringUTFChars().

Next, we simply call the logging method, passing in the parameters. Finally, we need to clean up the
converted strings so that we don’t leak memory. This is done via

JNIEXPORT void JNICALL Java_com_badlogic_androidgames_ndk_JniUtils_copy
 (JNIEnv *env, jclass clazz, jobject dst, jfloatArray src, jint offset, jint len) {
 unsigned char* pDst = (unsigned char*)env-> GetDirectBufferAddress(dst);
 float* pSrc = (float*)env-> GetPrimitiveArrayCritical(src, 0); memcpy(pDst,
 pSrc + offset, len * 4);
 env-> ReleasePrimitiveArrayCritical(src, pSrc, 0);
}

The second function takes a direct ByteBuffer, a float array, an offset into the float array, and the
number of floats we want to copy. Note that the ByteBuffer has the type jobject! Whenever you pass in
anything other than a primitive type or an array, you will get a jobject. Your C/C++ code needs to know
which type to expect! In our case, we know that we are getting a ByteBuffer instance. ByteBuffer instances
are just thin wrappers around a native memory area. They are super easy to handle in C; we can simply fetch
a pointer to their memory address via env-> GetDirectBufferAddress().

Our float array is a bit more difficult to handle. The env-> GetPrimitiveArrayCritical() method will
lock the array and return a pointer to its first element. Using this function is dangerous; you should not try to
concurrently modify the array in Java. Calling any other JNI method from this point on is prohibited as well.
Otherwise, you’ll get hard-to-debug behaviors in your C/C++ code!

Once we have the pointers, we simply use memcpy() to copy the contents of the float array to the
ByteBuffer. Note that we do not perform any kind of bounds checking, which means the Java code calling
this method must be bulletproof. Trying to copy more floats into the ByteBuffer than we allocated might
result in a nasty segmentation fault. The same is true when we specify offsets and lengths that are outside of
the float array we passed in. The general takeaway is that you have to know what you are doing when using
JNI and the NDK. If you don’t, your application will just explode with hard-to-debug errors!

At the end of the function, we unlock the float array again via a call to env->
ReleasePrimitiveArrayCritical(). You must call this method under all circumstances; otherwise, you’ll
run into all kinds of issues.

With our C/C++ header and source files in place, it’s time to build the shared library.

Building the Shared Library
As mentioned earlier, the NDK comes with its own build system. While it still uses standard makefiles
under the hood, you as a user don’t have to deal with their complexity. Instead, you write two files: an
Application.mk file specifying which CPU architectures you want to target, and an Android.mk file defining
which other libraries you want to link to, which source files to compile, and how the final shared library
should be called.

The Application.mk file is placed into the jni/ folder. Listing 13-4 shows its content.

ChapTer 13 ■ GoInG naTIve wITh The nDK

574

Listing 13-4. Application.mk, defining the CPUs we want to target

APP_ABI := armeabi armeabi-v7a x86 mips

And that’s all there is to it! All it defines are the four architectures our native code should run on. The
ARM architectures are the most common targets—pretty much all current Android devices have an ARM
CPU. The x86 architecture can be found in soon-to-be-released Intel devices, according to rumors. There
are also some emulator images that support this architecture. The MIPS architecture is currently used by a
handful of low-end Android tablets.

Having defined the architectures, we can now move on to the Android.mk file, which specifies how our
native code should be built. This file is also located in the jni/ folder. Listing 13-5 shows the content.

Listing 13-5. Android.mk, specifying our build

LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)

LOCAL_MODULE := jniutils
LOCAL_LDLIBS := − llog
LOCAL_ARM_MODE := arm
LOCAL_SRC_FILES := jniutils.cpp

include $(BUILD_SHARED_LIBRARY)

The first two lines are pretty much boilerplate. They make sure the paths are correctly handled and that
various variables are reset.

The next line defines our shared library’s name, which is jniutils in this case.
Next, we specify which libraries we want to link to. We use the native Android logging facilities, so we

link to the liblog library provided by the NDK.
The next line is specific to the ARM architecture. It tells the build system that we want to generate non-

thumb code. ARM processors have two modes in which they operate: thumb and 32-bit ARM. The former
results in smaller code, but it is often slower. For our C/C++ code, it doesn’t really matter that much, but it’s
good practice to enable this option.

Next, we specify the C/C++ source files that should be compiled. We only have a single file. To specify
additional files, just add them to the same line, separated with a space, or add them on a new line. If you
choose the second option, you have to append a backslash at the end of the previous line.

The last line tells the build system to generate a shared library. We could also let it generate a static
library, which we would then compile into a shared library with other static libraries. This is a mechanism
used by more complicated JNI projects. We are happy with a simple shared library.

 ■ Note The nDK build system is a really complex beast under the hood. You can modify pretty much any
aspect of how your code is built with the Android.mk and Application.mk files. If you want to learn more
about the build system, have a look into the doc/ folder of your nDK installation.

Now, it’s time to build our shared library. To do that, open your terminal, make sure your PATH
environment variable is in order, navigate to the root directory of your project, and issue the following
command:

ndk-build

If all went well, you should be greeted with the following output:

ChapTer 13 ■ GoInG naTIve wITh The nDK

575

Compile++ arm : jniutils <= jniutils.cpp
In file included from jni/jniutils.h:2:0,
 from jni/jniutils.cpp:2:
D:/workspaces/book/android-ndk-r8b/platforms/android-14/arch-arm/usr/include/jni.h:592:13:
note:
the mangling of 'va_list' has changed in GCC 4.4
StaticLibrary : libstdc++.a
SharedLibrary : libjniutils.so
Install : libjniutils.so => libs/armeabi/libjniutils.so
Compile++ arm : jniutils <= jniutils.cpp
In file included from jni/jniutils.h:2:0,
 from jni/jniutils.cpp:2:
D:/workspaces/book/android-ndk-r8b/platforms/android-14/arch-arm/usr/include/jni.h:592:13:
note:
the mangling of 'va_list' has changed in GCC 4.4
StaticLibrary : libstdc++.a
SharedLibrary : libjniutils.so
Install : libjniutils.so => libs/armeabi-v7a/libjniutils.so
Compile++ x86 : jniutils <= jniutils.cpp
StaticLibrary : libstdc++.a
SharedLibrary : libjniutils.so
Install : libjniutils.so => libs/x86/libjniutils.so
Compile++ mips : jniutils <= jniutils.cpp
StaticLibrary : libstdc++.a
SharedLibrary : libjniutils.so
Install : libjniutils.so => libs/mips/libjniutils.so

This cryptic output tells us a few things. First, our code got compiled for each of the four CPU
architectures separately. The resulting shared libraries are all called libjniutils.so. They are placed in
the libs/ folder. Each architecture has a subdirectory (e.g., armeabi or x86). When we compile our APK,
those shared libraries get packaged with our application. When we call System.loadLibrary(), as in Listing
13-1, Android knows where to find the correct shared library for the architecture on which our application is
currently running. Great, let’s put this to the test!

 ■ Note every time you modify the C/C++ code, you’ll have to rebuild the shared libraries with a call to
ndk-build. If you have more than one source file, and only modified a subset of files, the build tool will only
recompile the files that changed, thereby reducing the compile time. If you need to make sure all source files
are recompiled, just invoke ndk-build clean.

Putting It All Together
We now have everything in place to test our native methods. Let’s create a test that invokes both of the
JniUtils methods. We call the class JniUtilsTest; it extends the GLGame class and contains a GLScreen
implementation, as usual. It simply copies a float[] array into a direct ByteBuffer and then outputs the
contents of the ByteBuffer to logcat via the other native method. Listing 13-6 shows the entire code. Don’t
forget to add it to the NdkStarter class and the manifest file.

ChapTer 13 ■ GoInG naTIve wITh The nDK

576

Listing 13-6. JniUtilsTest.java: Testing our native methods

package com.badlogic.androidgames.ndk;

import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.FloatBuffer;

import com.badlogic.androidgames.framework.Game; import com.badlogic.androidgames.framework.
Screen; import com.badlogic.androidgames.framework.impl.GLGame;
import com.badlogic.androidgames.framework.impl.GLScreen;

public class JniUtilsTest extends GLGame {

 public Screen getStartScreen() {
 return new JniUtilsScreen(this);
 }

 class JniUtilsScreen extends GLScreen {
 public JniUtilsScreen(Game game) {
 super(game);
 float[] values = { 1.231f, 554.3f, 348.6f, 499.3f }; ByteBuffer buffer =
 ByteBuffer.allocateDirect(3 * 4);
 buffer.order(ByteOrder.nativeOrder());

 JniUtils.copy(buffer, values, 1, 3);
 FloatBuffer floatBuffer = buffer.asFloatBuffer();
 for(int i = 0; i < 3; i++) {
 JniUtils.log("JniUtilsTest", Float.toString(floatBuffer.get(i)));
 }
 }

 @Override
 public void update(float deltaTime) {
 }

 @Override
 public void present(float deltaTime) {
 }

 @Override
 public void pause() {
 }

 @Override
 public void resume() {
 }

 @Override
 public void dispose() {
 }
 }
}

ChapTer 13 ■ GoInG naTIve wITh The nDK

577

All the important stuff happens in the screen’s constructor. We start off by creating a small float[] array
with some dummy values and a direct ByteBuffer instance that can hold 12 bytes, or 4 floats. We also make
sure that the ByteBuffer instance uses native byte order so that we don’t run into some nasty issues when
we pass it to our C/C++ code.

We then copy three floats from the float[] array, starting at index 1, over to our ByteBuffer instance.
The final few lines output the copied floats via our native logging method. Executing this code on a device
will output the following in logcat:

08–15 17:28:31.953: V/JniUtilsTest(1901): 554.3
08–15 17:28:31.953: V/JniUtilsTest(1901): 348.6
08–15 17:28:31.953: V/JniUtilsTest(1901): 499.3

Exactly what we were expecting.
Now you can use the JniUtils class to copy the float[] array to the direct ByteBuffer instance in your

game code. Note that we set the limit and position of the buffer manually. This is necessary because our JNI
method doesn’t manipulate the position and limit fields of the buffer. The OpenGL ES methods we pass
that buffer to might use that information, though.

By using our native copy() method, we can gain quite a lot of speed, especially when we draw many
sprites via the SpriteBatcher class. Having to move vertices from the CPU to the GPU every frame costs in
performance quality, while doing so by making a copy first and converting everything to ints is even worse.
Our new JniUtils reduces the amount of copying considerably, while also being faster than the IntBuffer
trick we employed earlier!

To test our implementation, simply copy all the necessary assets from previous chapters. Hook them up
with the NdkStarter activity and try them out on your Android device.

Summary
We only scratched the surface of what’s possible with the NDK. But, as you witnessed, even lightweight use
of the NDK can pay off quite a bit. Our copy() method was simple to implement but let us display more
sprites per frame by being a lot faster than the old, Java-based implementation. This is a recurring theme
with NDK development: identify your bottlenecks and implement only very small pieces of code on the
native side. Don’t go overboard, as calling native methods has overhead. Just making everything a native
method is unlikely to increase the performance of your application.

It’s now time to look into marketing considerations for our game.

579© Mario Zechner, J. F. DiMarzio and Robert Green 2016
M. Zechner et al., Beginning Android Games, DOI 10.1007/978-1-4842-0472-6_14

CHAPTER 14

Marketing and Monetizing

So, having read the previous 13 chapters, you now are imbued with the skill and knowledge required to build
a great Android game. Is it as simple as “build it and get rich?” Certainly not! Making money by marketing
and monetizing your game is a skill in itself, and there is a lot you need to learn to become successful at
it—not just after your game is completed, but even before you start developing it. The real moneymakers are
often designed from the planning stage to become popular and to make money, on top of being well made.

Monetizing Your Game
Monetization is a commonly used term that roughly translates to the process of making money from a
product or service. When someone says, “I need to monetize my game,” what they are saying is that they
need to take the current user base of the game and find a way to start bringing in real money from it.

There are many ways to monetize your game:

•	 Banner ads: Graphics or text ads that generally operate on a pay-per-click basis.
We’ve all seen banner ads on the Web and in apps and games. They are ubiquitous
on websites.

•	 Full-screen ads: Much like banner ads except they demand much more attention
from the user, often requiring the user to click a button or wait a certain length of
time to dismiss them. Video and registration forms are common in this format.

•	 In-app purchases: Options for the user to purchase content, items, upgrades, or
virtual currency for real money. An example would be buying a level pack for 99
cents or purchasing a “low gravity” cheat for $1.99.

•	 Virtual currency incentives: Options that provide the user with in-game virtual
currency in exchange for performing a task. For example, the user might be
presented with an option to install a third-party app in exchange for 50 in-game
coins that can be used to purchase an upgrade for a character.

•	 In this scenario, the third-party app publisher pays a fee to a service for that install,
and the service, in turn, pays you, the game developer, a portion of that fee. These
are usually called “discovery” services, because a publisher is paying to have their
app discovered by new users.

•	 Direct sales: The user pays directly for the game and installs it. This was the first
monetization method before ads and virtual currency.

•	 Licensing: A broad range of options through which the game developer licenses the
game to other companies for bundles, preinstalls, or other mass deployment.

Chapter 14 ■ Marketing and Monetizing

580

There are, of course, more ways to make money through your games, but these are definitely the most
common methods. They are discussed in more depth next.

Advertising
Advertising was one of the first “big” ways that Android games were monetized. Anecdotally, we can tell you
that advertising is best regarded as a supplementary rather than a primary monetization method because
of its volatility. Mobile ad space has been very unreliable in terms of revenue generation, and there is a
significant amount of competition. Basically, there are a lot of mobile apps advertising and not as much
money behind those ads, so naturally that money is spread thin throughout the ecosystem. Does this mean
putting some ads in your free Android game isn’t a good idea? Surely not. It’s still possible to make a lot of
money through ad revenue alone, but be prepared to test a number of different advertising solutions to find
the one that fits your market niche the best.

Ad Providers
Ad providers deliver the ads directly from advertisers and pay you for clicks. You are paid only a portion of
the amount that the advertiser pays for the click, with the rest going to the ad provider, which is how the
ad provider makes money. Ad content can range anywhere from automotive parts to dietary supplements.
Often, you will need to configure keywords for your app so the content can be more relevant for your users.
Ad providers use a variety of formats, but the most common are banner ads and full-screen ads. The target is
moving fast, but here are a few examples of major ad providers:

•	 AdMob, owned by Google (www.admob.com)

•	 Millennial Media (www.millennialmedia.com)

•	 Greystripe (www.greystripe.com)

Ad Aggregation Services
With mobile ads, it isn’t just a matter of implementing banners or full-screen ads. You may also want to
consider an ad aggregation service. An aggregation service serves up ads from a number of providers
for your game. In this way, you can set up a single ad placement (such as “banner top”) and rely on an
aggregator to search different ad providers for the most valuable ad for your ad space, allowing you to get the
highest paying advertisement in that spot. Many of these services have popped up in the past few years, but
here’s another quick list of current major players:

•	 MoPub (www.mopub.com)

•	 AdWhirl (www.adwhirl.com)

•	 Inneractive (http://inner-active.com)

•	 Mobclix (www.mobclix.com)

Each of these services has its own API, most of which are generally easy to use. For any particular
service, visit their website and view their documentation for more technical information on implementation.

Game Advertising Tips
So, if you’ve decided to advertise within your game, what’s the best way to go about it? Sometimes less is
better, so let’s run through the list of what not to do with your advertising:

http://www.admob.com/
http://www.millennialmedia.com/
http://www.greystripe.com/
http://www.mopub.com/
http://www.adwhirl.com/
http://inner-active.com/
http://www.mobclix.com/

Chapter 14 ■ Marketing and Monetizing

581

•	 Interrupt your player just as they are getting engaged

•	 Frustrate your player

•	 Ruin an otherwise good experience with an ad always showing

•	 Trick the user into clicking

It’s easy to overdo it with ads. The point of advertising is to make some money from your game, right?
More ads doesn’t mean more money; rather, more ads usually leads to lower ratings for your game, and lower
ratings leads to fewer users, which isn’t good in any way. Keep the ad exposure tasteful. Users expect some
advertising in exchange for a free game. Placing ads at the top or bottom of a menu during idle time is good.

For full-screen ads, wait! You may want to show that ad right away when the user starts your game, but
you’ll just lose credibility. Wait until the third, fourth, or even fifth time the player has launched the game to
display a full-screen advertisement.

Focus on building a good game experience, and your players will trust your ads more. If you focus too
much on how to maximize your payout, your users will feel it and your game will suffer.

In-App Products
In-app products (IAPs)can be huge moneymakers. The general idea is that the player wants something that
is offered in your game and is willing to pay a small amount of money to get it. There are two types of in-app
product options given for the Google Play store:

•	 Managed items: Things such as a character, a level, or an ability. Managed items can
be purchased only once, and they attach to the buyer, not to the device; that is, if the
buyer buys the item on one device, the item will be available on the buyer’s other
devices so long as the buyer uses the same Google account on all devices.

•	 Unmanaged items: Things such as virtual currency, coins, expendable upgrades,
entry tickets, and anything else that gets “used up” by the player and needs to be
“refilled.” Unmanaged items can be purchased over and over again, adding to the
existing number or amount. Unmanaged items are also attached to the Google
account, not to the device on which they are purchased.

On top of that, you can also set up subscriptions that bill at regular intervals. Subscriptions are seen by
your game as just “on” or “off” at any point in time, so you can provide whatever content, service, upgrade,
or other feature you want while the player is subscribed.

The Google Play service for processing IAPs is called In-app Billing. The Google Play Developer Console
provides you with an interface for your game to set up your purchasable items. The most compatible
way to name your purchasable items is to use your app package name as the prefix; for example, com.
badlogicgames.awesomegame.300points would work for a 300-point purchase.

So, what’s a good strategy for setting up purchasable items? There is no clear answer because it depends
entirely on your game. One very effective strategy centers on using virtual currency for everything.

Virtual Currency
Virtual currency (VC) is in-game money. Whether you call it gold, gems, rubies, coins, credits, or a name you
invent, VC is a number that your game stores for the player, allowing the player to buy stuff. Your VC doesn’t
need to have a one-to-one relationship with real money, just a clear relationship with the game. VC is nice
because acquiring it becomes a primary or secondary goal of the game, and you can utilize that goal to monetize
your game. Without getting too deep into the psychology of it, people seem to be motivated to buy VC because
they either want a shortcut in gameplay, enjoy personalizing their game experience, or just like buying stuff.

Chapter 14 ■ Marketing and Monetizing

582

VC, being one of the most popular types of purchasable items that games offer right now, is commonly
sold in tiered amounts, with discounts for larger purchases; for example, 100 points for .99 cents, 500 points
for $3.99, 5,000 points for $29.99, and so forth.

One good strategy that many game programmers use is to award VC for in-game actions, like breaking
a golden brick or winning a level. Some games have timed levels that award more VC for beating the level in
less time. Other games have multiple types of VC so that the programmer can control how scarce one type
of VC or the other is, forcing the player to choose between item purchases and upgrades more carefully or to
play more to get enough of one type of VC so that they can purchase a particular upgrade or item. A common
strategy is to make the game free, allowing the user to collect VC and purchase things organically, but to also
offer shortcuts and cheats as IAPs, such as giving the player the option of advancing faster—basically, paying
you real money in exchange for being able to play through the game quicker or score a little higher. This
strategy and variations of it are very effective monetization tools.

There are VC-related services, like TapJoy (www.tapjoy.com), that allow you to monetize your game
not just with VC, but also by making offers to the user that pay the user with more VC. These services offer
incentives like “Install this other game and get 50 coins” or “Click on this ad and get 25 coins.” So far, this
type of service seems to be effective. The service pays you, the publisher, a converted amount of real money
for these actions, and your players love it because they don’t have to spend any real money to get the VC they
so desperately want.

To Sell or Not to Sell
In the early mobile game market, the primary revenue model was to offer both a free, limited-functionality
version of the game and a paid, fully functional version, with the goal being to get players hooked on the trial
version and wanting more, leading them to buy the paid version.

The landscape since then has changed drastically, with game developers giving away more and more
functionality to users for “free” and relying more heavily on monetizing their games using forms such as
those discussed in the “Monetizing Your Game” section. It’s important to really study the market and see
how well new games do when they go straight to the paid model. You can gather rough information just by
viewing details on the top games in the Google Play store. Users are more apprehensive than ever about
paying for something that they haven’t already engaged in, and they have so many free options that they may
pass a new paid game straight over.

On the flip side, Google Play still has a “paid” category, so in some cases it may make sense to publish
a paid game that you believe can rise up in that category. Either way, the choice depends heavily on how
desirable your product is. A game that uses a recognizable, licensed character, for example, will likely sell
copies no matter what the content is. A brand new game with no previous track record may struggle to sell
any copies at all. You will want to take all marketing facets into account when making this decision.

Licensing
Licensing is a great option for quickly monetizing a game. When we say “licensing,” we’re talking about making
a deal where another company pays you for the rights to distribute a certain number of copies of your game. For
example, a major cellular service provider or smartphone vendor may want to preinstall your game on a new
model of phone that will be released soon as an extra incentive to potential buyers. In this deal, the company
will either ask you to let them preinstall the game at no cost to them or ask you to quote them some per-unit
prices. Per-unit prices these companies are willing to pay are typically several times lower than the retail price
of the game. If your game normally sells for $2.99, for example, the bundle price may be 20 to 50 cents per unit.
It depends entirely on a number of factors, such as how popular your game is and how many installs there will
be. Obviously, you will want to negotiate the best deal you can get, but if you structured your game such that it’s
freely distributed and relies on monetization through VC and IAPs, you not only can afford to give it away for
free, but can reap big returns through the greatly expanded user base. In such a case, everyone wins.

http://www.tapjoy.com/

Chapter 14 ■ Marketing and Monetizing

583

With any agreement, make sure you read the contract and negotiate terms that are right for you. It takes
a little extra time and effort up front but adds up in the long run.

Getting Your Game Discovered
There are many thousands of Android games available already, with many more on the way. Just scroll
through the list of most popular games on Google Play and you’re sure to see many new titles that you’ve
never heard of, developed by new companies that you didn’t know existed. Some developers get lucky, but
most games that are popular haven’t become popular by accident. Their publishers knew how to get the
games discovered by users. How do you get your game discovered by new users? Discovery is key to the
success of any game, and while you can always throw money at the problem by buying visibility in the form
of advertisements, it’s not nearly as cost effective as some other means, discussed next.

Social Network Integration
If you don’t use Facebook and Twitter, then by all means, put this book down right now and come back after
you are registered on both. Social networking sites like these are heavy hitters when it comes to getting your
game known. The tactics aren’t so obvious at first, though. Should you just create a Facebook page for your
game and tell all your friends to like it? That will get you a couple of downloads, but not much more. Does
tweeting help? A little. Neither of these approaches is going to get your game the kind of visibility you need in
order to really make it a commercial success.

A few of the great things about these two social networking sites from a marketing perspective are that
nearly everyone uses them, they are free to use, and they are friendly to more creative solutions. Here are
some examples of how you can exploit these websites to market your game: Give 50 free VC credits to users
who “like” your game on Facebook. Give 50 free VC credits to users who mention your game in a tweet. Hold
a high-score contest once a month using a service like GREE where the prize is a new Android device, and
only allow people to register if they’ve liked you on Facebook. In the last example, you’d have to actually
purchase a device to give away as a prize, of course, but as far as incentivizing “likes” goes, such a strategy
can work really well. It’s easy to create incentives to get people to share your game with each other, and these
networks are the perfect platform for that kind of information sharing.

Both Facebook and Twitter provide Android SDKs that you can download and use to integrate the
networks with your game. The specifics change all the time, so it doesn’t make a lot of sense to document
them here. Both are fairly easy to use, so there’s no excuse for not trying them out!

 ■ Tip gree recently bought openFeint and migrated its users to the gree platform. gree provides VC,
high score, achievement, friend, and other such services. Check out the gree developer Center at https://
developer.gree.net/en/ for more information.

Discovery Services
There are companies such as AppBrain whose sole purpose is to help you get your game discovered. Other
companies, such as TapJoy, Scoreloop, and Flurry, also have discovery services. Most of these services
provide ways to put your game “in network” so that it will be promoted by other games. You can pay for
installs and control a campaign to get your game into the hands of numerous people. Remember that we
said TapJoy has a service where it pays your player VC for installing another app or game and in turn pays
you real money? This is the other side of the equation, where you are the one who is paying TapJoy to have
your game installed by players in return for VC.

https://developer.gree.net/en/
https://developer.gree.net/en/

Chapter 14 ■ Marketing and Monetizing

584

Different companies offer different methods of discovery, but, in short, if you’re looking to get your
game discovered and you have a budget to work with, you may want to look into one or more of these
services. When you combine such a service with a good social networking strategy, you might just get the
snowball rolling and create a buzz about your game.

Blogs and Conventional Web Media
Another strategy for getting your game discovered is to put together pilots for stories, create videos for
demos, and send all of this to blogs that review new Android apps and games. The editors of these sites are
bombarded with requests to review apps and games, so do as much work for them as possible by giving them
all the information they need up front. Be patient, and you may get some reviews. Reviews alone aren’t going
to make or break a game, but it’s one part of creating the snowball effect that can lead to a successful title.

Monetizable by Design
We’ve talked a lot about ways to monetize a game, but we want to make something very clear: it’s much
easier to design a game to be monetized than it is to take an already completed game and try to retrofit it
to a monetization scheme. A game that’s designed to make money may have one or more of the following
elements:

•	 Optional modifiers that affect gameplay:

•	 Boosts

•	 Upgrades

•	 Cheats

•	 Optional content that does not affect gameplay:

•	 Skins

•	 Characters

•	 Item variations that are effectively identical

•	 Additional content:

•	 New levels

•	 New cinematics

•	 Unlockable parts of levels

•	 New parts

•	 Virtual currency that has the following properties:

•	 Can be acquired through regular gameplay

•	 Is used to purchase upgrades

•	 Is used to purchase additional content

•	 Can be purchased using real money

Chapter 14 ■ Marketing and Monetizing

585

Using these elements, you can design a game from the onset to offer very compelling reasons for users
to purchase virtual currency and virtual goods in the game. Sometimes you need to change VC-providing
services because of a new feature or because a company has gone out of business. This design is pervasive
enough to allow swapping of VC-based services and purchasing services without harming the game
by changing or removing content or costing you too much development time when switching services.
Therefore, a game that exhibits the following properties can be said to be monetizable by design:

•	 Allows the player to purchase virtual products and currency

•	 Provides incentive for the player to purchase virtual products and currency

This scheme isn’t the only way to do it, but it certainly has been a successful one. There are many
successful Android games that use this scheme in some form or another, and we recommend considering it
or at least taking note of the general ideas and applying them to your game.

Discoverable by Design
What good is a game that no one ever finds? The truth of the matter is that the market is so competitive now,
with so many free games, that to have your game become a big success, you need to pay particular attention
during the design phase to how people will discover your game. Some games may seem to spring up out of
nowhere and just become popular by chance, but usually quite a bit of thought went into the discoverability
of those games when they were being designed.

Games that are readily discoverable have elements beyond a “wow” factor and a good game design.
They provide incentives for players to tell other people about the game. Much like a game that’s designed
to be monetized, a game that’s designed to be discoverable incorporates most or all of the same elements
(virtual currency, virtual goods, unlockables, additional content, etc.) as incentives for telling other people
about the game.

Here are a few ideas of how to incorporate into your game content incentives for players to share your
game with others:

•	 Make a piece of content that can only be unlocked by entering a referral code
received from another player.

•	 Give additional content or VC for tweeting about the game or sharing or liking it on
Facebook.

•	 Award players with VC for all referrals they make to other players.

•	 Integrate with Facebook or other social media to post achievements and new high
scores.

•	 Create another part of the game that is played as a Facebook app but ties in to the
mobile game in some way.

There are many more ways to add incentives, but if you think creatively about how to reward people for
sharing your game with others, you’ll be on the right track and will have a game that naturally lends itself to
becoming more popular.

Summary
Just developing a game and publishing it isn’t enough to get it noticed or make any money from it. If you
employ some of the tactics we outlined in this chapter, you will have a much higher chance of success.
The tides of technology are always ebbing and flowing, but the general lessons and ideas provided in this
chapter should remain constant. Take what you learned here and think about how you can create additional
applications and methods for marketing and monetizing your game.

587© Mario Zechner, J. F. DiMarzio and Robert Green 2016
M. Zechner et al., Beginning Android Games, DOI 10.1007/978-1-4842-0472-6_15

CHAPTER 15

Publishing Your Game

The last step in becoming an Android game developer is getting your game to your players. There are two
possible routes:

•	 Take the APK file from your project’s build/ folder, put it on the Web, and tell your
friends to download it and install it on their devices.

•	 Publish your application on Google Play or Amazon App Store like a real pro.

The first option is a great way to let other people test your application before you throw it on the Google
Play store. All they need to do is get a hold of the APK file and install it on their devices. The real fun starts
once your game is ready for prime time.

A Word on Testing
As we’ve seen in the previous chapters, there are various differences among devices. Before you publish
your application, make sure it runs well on a couple of common devices and different Android versions.
There are a few ways to approach this problem. You can either purchase an array of devices with different
hardware capabilities running different versions of Android and test in-house, or you can pay for any one of
the new Android testing services. We are lucky enough to have several phones and tablets, covering different
device classes and generations, for testing. Depending on your budget, though, neither of these approaches
might be an option. You might have to rely on the emulator (but not too much, as it is indeed unreliable) or
preferably on a couple of friends to help you out.

Another way to test your application is to put a beta version on the Google Play store. Google Play
supports the use of invite-only beta channels where you can upload testable versions of your apps and invite
others to test it.

If you look for outside testers, make sure you get coverage of most of the device generations. Newer
devices should, of course, also be on your list, but less for reasons of performance testing than for
compatibility testing. If nothing else, make sure you at least are testing on a few of the official Google devices,
which include the Nexus Pixel, Nexus 6P, or even the Nexus 6 devices. If your game isn’t working well on
these devices, you are sure to have trouble heading your way if you don’t make changes.

Finally, you have to accept the fact that you can’t test your application on all the devices out there.
You are likely to receive error reports that are inexplicable and might well stem from the fact that a user is
running a custom ROM that doesn’t behave as expected. In any case, don’t panic; this is normal to some
extent. If the problem with errors goes overboard, though, you’ll have to try to come up with a scheme to
battle it. Luckily, Google Play helps us out in that regard. We’ll see how that works in a bit.

Chapter 15 ■ publishing Your game

588

 ■ Note apart from google play’s error-reporting feature, there’s another nice solution called application
Crash report for android (aCra), which is an open source library specifically designed to report all crashes
of your android application. it’s available at http://code.google.com/p/acra/ and is very easy to use. Just
follow the guide on the google Code page to integrate it into your application.

Becoming a Registered Developer
Google makes it really easy to publish your application on the Google Play store. All you have to do is register
an Android developer account for a one-time fee of $25 USD. Assuming you live in one of the countries on
Google’s long list of supported locations for distributing applications, this account will allow you to post
your apps on Google Play. Whether you can post free apps only or both free and paid apps depends on
which country you live in. To post paid apps, you must live in one of the countries on Google's somewhat
shorter list of supported locations for merchants. Google also has separate lists of countries to which you can
distribute apps freely and countries to which you can distribute paid apps. Google is working hard to expand
these lists so that your apps can reach the entire globe.

Your Google Play store publisher account is tied directly to a Google account. Unless restrictions have
been lifted, you may not separate the publisher account from the Google account. It’s important to take
that into account when deciding between registering with an existing account or registering with a new,
dedicated account. Keep in mind that if you use an existing Google account and for some reason your
publisher account is suspended, you will lose access to that existing Google Account. Once you’ve made that
decision and have your Google account ready, visit https://play.google.com/apps/publish/signup and
follow the instructions given there to register for the Google Play store.

In addition to your Android developer account, you will also need to register for a free Google Checkout
merchant account if you want to sell your applications. You will have the option to do this during the
developer account sign-up process. We’re not lawyers, so we can’t give you any legal advice at this point,
but make sure you understand the legal implications of selling an application before you do so. If in doubt,
consider consulting an expert on the matter. We don’t mean to scare you off by this, as the process is pretty
streamlined in general, but you should be prepared to keep your government’s tax department apprised
about your sales activity.

Google will take a percentage of your hard-earned money (30 percent, as of this writing) for distributing
your app and providing the infrastructure. That seems to be pretty much the standard cut taken by all the
application stores on the various platforms.

http://code.google.com/p/acra/
https://play.google.com/apps/publish/signup

Chapter 15 ■ publishing Your game

589

Signing Your Game’s APK
After you have successfully registered as an official Android developer, it’s time to prepare your application
for publication to Google Play. In order to publish your application, you have to sign the APK file. Before you
do that, you should make sure everything is in place. Here’s a laundry list of things to do before signing the
APK file:

•	 If your build target is equal to or higher than SDK level 8 (Android 2.2), you should
also make sure the <manifest> tag has the android:installLocation attribute
set to preferExternal or auto. This will satisfy your users by ensuring that your
application is installed on external storage if possible.

•	 Make sure you only specify the permissions that your game really needs. Users don’t
like to install applications that seem to demand unnecessary permissions. Check the
<uses-permission> tags in your manifest file.

Double-check all of these items. Once you are done, you can finally export a signed APK file that is ready
to be uploaded to Google Play by following these steps:

 1. In Android Studio, click on Build ➤ Generate signed APK. This will bring up the
Generate Signed APK dialog, shown in Figure 15-1.

 2. Click the Create new. . . button to move to the New Key Store dialog, shown in
Figure 15-2.

Figure 15-1. The signed export dialog

Chapter 15 ■ publishing Your game

590

 3. A key store is a password-protected file that stores the key with which you sign
your APK file. Since you haven’t created a key store yet, you’ll do so now in this
dialog.

 4. To create a valid key, you have to complete the Alias, Password, and Validity
(years) fields, as well as enter a name in the First and Last Name field. The rest
of the fields are optional, but it’s a good idea to fill them out nevertheless. Click
Next, and you are shown the final dialog, illustrated in Figure 15-3.

Figure 15-2. Choosing or creating the key store

Chapter 15 ■ publishing Your game

591

 5. Specify where the exported APK file should be stored, and make sure to note the
path. You’ll need it later when you want to upload that APK. Click Finish.

When you want to publish a new version of a previously published application, you can just reuse the
key store you created the first time you went through the wizard. Launch the wizard, and when you get to
the Generate Signed APK dialog shown in Figure 15-1, select the “Choose existing. . .” button, provide the
location of the key store file you created previously, and provide the password for the key store. Just select
the key you created previously, provide the password for it, click Next, and proceed as before. In both cases,
the result will be a signed APK file that is ready for upload to Google Play.

 ■ Note once you upload a signed apK, you have to use the same key to sign any subsequent versions of the
same application.

So, you’ve created your first signed APK—congratulations! Now, we’ll throw a wrench into the works
and inform you about the multiple APK support. For a single app, you can create multiple APKs that use
device capability filtering to get the “best fit” for each user who installs your app. This is a great feature
because it means you can do things like the following:

•	 Ship specific image sets that are compatible with specific GPUs

•	 Have a limited feature set targeted for older versions of Android

•	 Ship larger-scale graphics for larger screen sizes and regular-scale graphics for all others

Google will surely add more filters as time goes by, but just the set outlined here enables you to really
hone in on a target device (like tablets) without having to jump through too many hoops to keep the
download at a reasonable size for first-generation device support.

Figure 15-3. Specifying the destination file

Chapter 15 ■ publishing Your game

592

Putting Your Game on Google Play
It’s time to log in to your developer account on the Google Play website. Just go to https://play.google.
com/apps/publish and register. You’ll be greeted with the interface shown in Figure 15-4.

This interface is what Google calls the Android Developer Console, which is what you caught a glimpse
of when initially registering. Now we’re ready to actually use it. Clicking the Add New Application button
at the top right-hand side of the screen will let you do that. This will open the Add New Application dialog,
which is shown in Figure 15-5.

Figure 15-4. Welcome to Google Play, developer!

https://play.google.com/apps/publish
https://play.google.com/apps/publish

Chapter 15 ■ publishing Your game

593

After supplying your application’s title, click on the Upload APK button.
You should now see the screen shown in Figure 15-6. This is where you upload your APK and finalize

your listing.

Figure 15-5. Add New Application dialog of the Android Developer Console

Figure 15-6. Uploading an APK

Chapter 15 ■ publishing Your game

594

This is where you can select to upload your APK file to either the Production, Beta, or Alpha channels.
Google has made publishing of apps to Google Play very easy.

Publish!
After providing all of that information, it’s time to click the huge Publish button at the bottom of the page
and make your game available to millions of people around the globe! There is no review process, so after an
hour or two of server propagation time, your game will come online for all of the supported devices in the
Google Play store.

More on the Developer Console
Once your game is published on Google Play, you will want to keep track of its status. How many people
have downloaded it so far? Have there been crashes? What are the users saying? You can check all this out in
the Android Developer Console (see Figure 15-4).

For each of your published applications, you can get a few pieces of information:

•	 Overall rating of your game and number of ratings

•	 Comments made by users (just click the Comments link for the respective
application)

•	 Number of times your application has been installed

•	 Number of active installs of your application

•	 Error reports

Summary
Publishing your game on Google Play is a breeze, and it has a very low barrier of entry. You now have all the
knowledge necessary to design, implement, and publish your first game on Android. May the force be with you!

595

��������� A
Activity life cycle

LifeCycleTest activity, 99
LogCat, 98, 102
onCreate() method, 98
onPause() method, 98
onResume() method, 98
paused, 95
protected methods, 95–96
run the application, 100
sole UI component, 98
stopped, 95
TextView, 100

Abstract Window Toolkit (AWT), 6
Accelerometer state

comments, 118
onAccuracyChanged() method, 117
onSensorChanged() method, 117
SensorEvent, 115
SensorEventListener, 115
SensorManager, 115
test activity, 116

Action games, 37–40
Action Mask, 107
Activity class, 396–397
Activity life cycle

running, 95
StringBuilder, 100

Advanced Emulator Features, 27
Advertising

Ad aggregation services, 580
Ad providers, 580
game advertising tips, 580–581

Alpha blending
BlendingScreen implementation, 286
glColor4f(), 285
GLUtils.texImage2D(), 285
methods, 284
per-vertex colors, 287
present() method, 286

vertex and texel colors, 285
vertex color and texture blended, 287

Android
architecture, 4

application framework, 7
components, 5
Dalvik VM, 6
Kernel, 5
Runtime and Dalvik, 6
system libraries, 6

Compatibility Definition
Document (CDD), 11

developer community, 8
devices, 9

hardware, 9
minimum practical target, 10

features, 4–5
fragmentation, 3
Google, 3

Android Open Source Project, 3
Google I/O, 4
Google Play, 4

history, 1
mobile gaming, 12

casual and hardcore games, 13
connectivity, 13
description, 12
games market, 14
gaming machine, 12

project butter, 2
SDK, 7–8
version distributions, 11

Android APIs
Activity life cycle (see Activity life cycle)
AndroidBasicsStarter Activity

(see AndroidBasicsStarter Activity)
audio programming

(see Audio programming)
file handling (see File handling)
graphics programming

(see Graphics programming)

Index

© Mario Zechner, J. F. DiMarzio and Robert Green 2016
M. Zechner et al., Beginning Android Games, DOI 10.1007/978-1-4842-0472-6

■ INDEX

596

input device handling
accelerometer state, 115–118
key events, 111–114
multi-touch events

(see Multi touch events)
single-touch events, 102–105

Android application
APIs (see Android APIs)
Google Play filters, 89
icon, 90
Manifest File (see Manifest File)

AndroidBasicsStarter activity
ArrayAdapter constructor, 92
ListActivity, 91
onCreate() method, 92
onListItemClick() method, 93
setListAdapter() method, 92
test activity, 94–95

Android event-logging system, 31
Android game development framework

AccelerometerHandler, 166–167
Activity class, 195
AndroidAudio class, 161–162
AndroidFastRenderView, 196
AndroidFileIO class, 159, 161
AndroidGame.setScreen() method, 197
AndroidMusic class, MediaPlayer

constructor, 164
dispose() method, 164
implementation, 163
isLooping(), isPlaying(),

and isStopped(), 164
OnCompletionListener.on

Completion(), 163
pause() method, 164
play() method, 165
setLooping() and setVolume()

methods, 165
stop() method, 165

AndroidSound class, 162–163
commentary, 194
CompassHandler, 167–169
getInput(), getFileIO(), getGraphics(),

and getAudio() methods, 197
getStartScreen() method, 196
graphics (see AndroidGraphics)
KeyboardHandler (see KeyboardHandler)
onCreate() method, 195
onPause() method, 196–197
onResume() method, 196
plan of attack, 159
Pool class, 169–171
responsibilities, 194
setScreen() method, 197

AndroidGraphics
AndroidFastRenderView, 191–194
AndroidGraphics.drawPixmap(), 188
AndroidPixmap, 187–188
artificial framebuffer, 189
aspect ratio, 184–185
clear() method, 190
constructor, 189
density, 184
drawPixel() method, 190
drawPixmap() method, 191
drawRect() method, 190, 191
implementation, graphics interface, 188
newPixmap() method, 190
Replica Island, 184–186
screen sizes and resolutions, 183
target resolution, 186

Android NDK
C/C++ header and implementation, 571–573
defined, 567
Java Native Methods, creation, 570–571
settings, 569
shared library, 573–574
testing, native method, 576–577

Android Robot, 9
Android Software Development Kit (SDK)

components types, 16
debugging and profiling, 30

breakpoint setting, 30
logcat, 31

implementation, 25
advanced emulator features installation, 27
android virtual device creation, 25
AVD manager window, 29
device connection, 25
HAXM, 27
real device vs. emulator, 29

JDK set up, 15
set up, 16
softwares, 15

Android Studio
breakpoint, 19
code completion, 18
debugging, 30
installation, 16
project

application code, 23
creation, 20
exploration, 21

Android Studio. See Android Software
Development Kit (SDK)

Android Studio version 2, 8
Android virtual devices (AVDs), 25
Application programming interfaces (APIs), 2
Arcade games, 37–40

Android APIs (cont.)

■ INDEX

597

ARGB4444 format, 70
ARGB8888 format, 69–70
ASCII bitmap font, 387
ASCII characters, 386
Assets class, 392
Audio programming, 59

music stream, 130–131, 133
sound effects, 127–130
volume controls, 127

Audio quality, 60

��������� B
Beginning Android Games, 53
Bejeweled, 35
Bithack Apparatus, 37
Bitmap font, 385, 387
Blending equations, 69, 70
Blogs and Conventional Web Media, 584
Building blocks, 36

��������� C
Casual games

accessibility, 34
definition, 34
Gem Miner\: Dig Deeper, 34–35
Temple Run, 34

Cathode ray tube (CRT), 63
Code

application, 54–55
file I/O, 58–59
game programming, 54
input module

acceleration, 56
accelerometer, 56
axes, 56
event-based handling, 55
helper classes, 58
keyboard, 56
key-down events, 56
KeyEvent, 57
operating systems, 55
polling access, 55, 57, 58
TouchEvent classes, 57
touchscreen, 56
USB hardware, 56

modules, 54
pseudocode, 54
window management, 54–55

Codehead’s Bitmap Font Generator (CBFG), 387
Collision detection

bounding shapes
axis-aligned bounding box, 330
bounding circle, 331

construction, 331–333
game object attributes, 333–334
oriented bounding shape, 331
rotation, 331
scaling, 331
triangle mesh, 330

broad phase, 334
cannon, 342
DynamicGameObject, 342
GameObject, 341
spatial hash grid, 341
Super Mario Brothers scene, 341

collision response, 330
CollisionTest class, 349

members and constructor, 349–350
present() method, 352
update() method, 351

narrow phase, 334
circle collision, 335
circle/rectangle collision, 337–338
overlapTester, 339–340
rectangle collision, 336–337

Color cube, 65, 66
Compatibility Definition Document (CDD), 11
Compression, 67
Crate solar system, 460
createCube() method, 463
Cupcake, 2
Cyanogen, 2

��������� D
Dalvik Executable (DEX) bytecode format, 6
Dalvik virtual machine, 6
Defender, 41
2D graphics programming

camera, 353
Camera2D class, 356–357
Camera2DScreen class, 358–359
view frustum, 353–354
zooming, 355–356

collision (see Collision detection)
GameDev2DStarter, 309
physics

CannonTest, 325–327
force and mass, 324
getDeltaTime(), 324
numerical Euler integration, 323
point masses, 323
present() method, 328
triangle cannon, 329
update() method, 327

sprite animation
animation class, 372–374
cavemen walking, 376

■ INDEX

598

keyframes, 372
looping animation, 372
present() method, 376
resume() method, 375
update() method, 374, 376

SpriteBatcher Class, 366
sprite batchers, 365

batcher.endBatch(), 372
beginBatch() method, 368
definition, 366
drawSprite() method, 369
endBatch() method, 368
offerings, 366
scaling, 370
SpriteBatcher.drawSprite()

method, 367, 369
SpriteBatcherTest, 371
usage pattern, 366
vertices instance, 368

sprites, 364
texture atlas, 359

arbitrarily sized images, 363
bitmap font, 364
face-lifting operation, 363
GL_LINEAR, 363
objects, 360
resume() method, 361
usage, 361
vertex-creation, 361

texture regions, 364, 365
trignometry

atan2 function, 313
cosine and sine, 312

vectors
add() and sub() methods, 316
ad hoc representation, 310
angle() method, 316
cannon touch event, 322
cannon triangle test, 318–319
class implementation, 314
cpy() method, 315
direction and distance, 310
len() method, 316
mul() method, 316
normalizing, 312
nor() method, 316
position, 309
present() method, 321
rotate() method, 317
scalars, 310, 311
semi-mathematical representaion, 310
set() method, 315
static constants, 315
unit vectors, 312

update() method, 320
velocity and acceleration, 310

Digital encoding colors, 66–67
Discoverable by design, 585
Discovery Services, 583
3D meshes

cube and corner points, 451
Donut, 2
Double-buffering, 64
3D programming

cameras
handcrafted matrix, 508
instances, 508
LookAtCamera, 507

collision detection and object representation
bounding shapes, 516
DynamicGameObject3D, 519
real time collision, 518
sphere class, 518
sphere overlap testing, 517
testing methods, 518

first-person camera (see Euler camera)
initialising, 471
loading models

exception handling, 514
implementing OBJ loader, 510
normals and texture coordinates, 512–513
ObjLoader, 514–515
plethora, 509
subset, 510–511
syntax, 509
texture triangle, 510
WaveFront OBJ format, 509

mipmapping
aliasing effects, 494
canvas class, 495
chain, 494
define, 493
texture class, 495

in OpenGL ES, lighting
Ambient lights, 477, 480–481
color specification, source, 478
cube, vertex, 486
directional lights, 477, 483–484
enabling and disabling, 480
gathering performances, 489–493
material specification, 484–485
normal specification, 485–489
notifications, 493
point lights, 477, 481–483
reflections, 477
render object, 479
source, material, 478
specular reflection, 477
sphere, vertex, 479

2D graphics programming (cont.)

■ INDEX

599

spotlights, 477
syntax, source enabling, 480
types, material/light, 478
version, normals, 486
vertex normals, 479
working process, 476

in physics
JNI, 516
mass based model, 515
pseudocode, 516

vectors
components, 473
constructors and setters, 473
coordinates, 474
dist() method, 476
distSquared() method, 476
implementation, 474
interpretations, 472
java coding, 472
methods, 475
OpenGL ES, 472
Pythagorean equation, 472
rotate() method, 475
statements, 472

Dragon, Fly!, 40

��������� E
Éclair, 2
Euler camera

angles, 499–500
attributes, 498
disabling states, 506
EUlerCameraScreen, 502
first person shooter, 506
gesture processing, 505
grid formation, 506
initial setup, 501
operational methods, 504
point light, 502
projection and model view matrix, 505
SetMatrices() method, 500
SpriteBatcher, 503
stub methods, 506
transformation matrix, 501
UI rendering, 503

��������� F
File handling

assets/directory, 118–121
external storage, 121–123, 125–126
SharedPreferences, 126

Firmware, 2
Fixed-time-step simulation, 227

Font class, 397–398
Fragmentation, 3
Framebuffer memory, 62–63, 69
Frame rate–independent movement, 79
FreeType, 7
Froyo, 2, 6

��������� G
Game design

building blocks, 45
core mechanics, 44, 46–47
mechanics, 44
screens, 48–49, 51–53
sketching, 44
snake, 44
story and art style, 47
transitions, 48–49, 51–53

Game development
alpha compositing, 68–71
Android, 43
audio interface, 61
audio quality, 60
be-all and end-all solution, 33
blending, 68–71
color models, 65
compression, 60
entertainment factor, 44
framebuffer, 71, 73
framework, 73–75
Google Play application, 44
graphics, 62, 71
mechanics, 33
music interface, 61–62
pixmap, 71
primary colors, 65
requirements, 61
RGB color cube, 66
simulation code, 33
sound interface, 59, 62
tablet, 43
three-minute songs, 61
WASD keys, 33

Game-mechanics item, 46, 47
Garbage collector (GC), 6
Gem Miner\: Dig Deeper, 34–35
General Public License (GPL), 3
generateLevel() method, 416
Gingerbread, 2
GL3DBasicsStarter, 435
glFrustumf(), 443
Global Positioning System (GPS), 5
glPopMatrix() method, 458
glPushMatrix() method, 458
GLScreen Class, 399

■ INDEX

600

GLScreen.update() method, 424
gluPerspective(), 443
Glyph, 386
Google, 3

Android
Google I/O, 4
Google Play, 4
Open Source Project, 3

Google I/O, 4
Google Play filters, 3–4, 89
Graphics, 62
Graphics.drawPixmap() method, 72
Graphics.newPixmap() method, 72
Graphics processing units (GPUs), 10, 64
Graphics programming, 133

bitmaps
Canvas.drawBitmap, 144–145
dispose, 144
loading and examining, 143–144
test activity, 145–146

continuous rendering, surface view
motivation, 151–152
SurfaceCreation and validity, 152
SurfaceHolder and locking, 152
test activity, 152–155

coordinate systems, 137–138
drawing methods

blending, 140
circles, 140
lines, 139
pixels, 139
rectangles, 139–140
testing, 140–142

going fullscreen, 134
hardware-accelerated rendering, 156
rendering text

alignment and boundaries, 148–149
drawing text, fonts, 148
loading fonts, 148
test activity, 149–151

RenderView, 135–137
screen resolution, 137

Graphics software program, 70

��������� H
Half-size VGA (HVGA) screens, 10
Hardware Accelerated Execution

Manager (HAXM), 8, 27
HelloWorldActivity.java, 23
Help screens, 51
Hierarchical systems, matrix stack

crate solar system, 460
glTranslatef(), 459
HierarchicalObject Class, 460

parent-child relationships, 460
render() method, 462

High-scores screen, 49–50
hitPlatform() method, 414
hitSquirrel(), 414
Honeycomb, 2
Human computer interfaces (HCI), 48

��������� I
Ice Cream Sandwich (ICS), 2
Image formats, 67
Imangi Studios, 34
In-app products (IAPs), 581
Indexed Vertices

class, 281–282
constructor, 282
glDrawElements()/glDrawArrays(), 284
glEnableClientState(), 279
glVertexPointer()/glTexCoordPointer(), 279
implementation, 279–280
indexed bob, 281
rectangle rendering, 278
setVertices() and setIndices() methods, 283
vertices definition, 278

Input devices
multitouch events, 102
action mask and types, 107

Input.getAccelX(), 58
Input.getAccelY(), 58
Input.getAccelZ(), 58
Integrated development environment (IDE), 8

��������� J
Java Development Kit (JDK)

set up, 15
Java Micro Edition (ME), 6
Java Native Interface (JNI), 568
Java Standard Edition (SE), 6
Jelly Bean, 2

��������� K
Kerning, 387
KeyboardHandler

AndroidInput, 181–182
Android KeyEvent type, 173
constructor, 172
game thread, 174
getKeyEvents(), 173
implementation, 171
isKeyPressed() method, 173
KeyEvent class, 171
keyEventsBuffer, 173–174

■ INDEX

601

MultiTouchHandler, 178–181
onKey() method, 173
OnKeyEventListener.onKeyEvent() method, 172
OnKeyListener.onKey() interface method, 173
Pool class, 172–173
SingleTouchHandler Class, 175–178
TouchHandler, 174–175

KeyEvent, 111–114
KitKat, 2

��������� L
Licensing, 582
Liquid-crystal display (LCD), 63
load() method, 394
logcat, 32
LogCat, 31
Lollipop, 2

��������� M
Main menu screen, 399–401
Manifest File

components, 81–82
<activity> element, 84–85
<application> element, 83
<uses-feature> element, 87
<uses-permission> element, 85–86

Marshmallow, 3
Matrix stack

glPushMatrix() method, 458
glTranslatef(), 458
hierarchical system, 459
manipulation, 459
model-view matrix, 457
TOS, 458

Max Payne, 40
Mipmapping

aliasing effects, 494
createMipmaps(), 496–497
define, 493
texture, 494, 498

Mobile gaming, 12
casual and hardcore games, 13
connectivity, 13
description, 12
games market, 14
gaming machine, 12

Model-View-Controller (MVC), 334, 457
Monetization, 579–580, 584–585
Mr. Nom AndroidGame

abstract representation, 217
accelerometer, 217
Audacity, 199
audio assets, 199

benefits, 217
convenient asset store, 202–203
coordinate system, 218
determination, game over, 225
GameScreen class, 217–218

coding, 228–229
constructor, 229
defined, 227
drawReadUI(), drawRunningUI(),

drawPausedUI() and
drawGameOverUI(), 234

drawText(), 234
drawWorld(), 233–234
GameState, 229
garbage collector, 229
paused(), 235
present(), 232
ready, running, paused and game over, 228
rendering methods, 232–233
stain images, 228
update() method, 230
updateGameOver(), 232
updatePaused(), 231
updateReady(), 230–231
updateRunning(), 231

graphical assets
background.png, 200
buttons.png, 201
filenames and sizes, pixels, 200
headdown.png, 201
help1.png, 201
logo.png, 201
mainmenu.png, 201
numbers.png, 201
PNG format, 199
ready.png, 201
stain1.png, 201
tail.png, 201
target resolution, 199

HelpScreen classes, 210–212
High-scores screen

images, 212
implementation, 214–216
rendering numbers, 213–214

integer coordinates, 218
loading screen, 205–206
main activity, 202
main menu screen, 207–210
model classes, 217
Model-View-Controller (MVC), 217–218
placing Stains, 224–225
Snake and SnakePart classes

advance(), 223
checkBitten(), 223
constants, 220

■ INDEX

602

direction, 222
eat() method, 222, 223
head’s position, 221
initial configuration, 220–221
overlapping, 222
representation, 219–221
tail parts, 222
turnLeft() and turnRight(), 222

stain class, 219
time-based movement, 224
user settings and high scores, 203–205
World class, 223–227

Multitouch events
Action Mask and More Event Types, 107
onTouch() method, 109–110
pointer identifier, 106
pointer index, 106
process, 105
test activity, 107–109

Music stream, 127
MySuperAwesomeGame, 77–79

��������� N
Nougat, 3

��������� O
OpenCore, 7
OpenGL ES, 6

2D transformations
Bob class, 292–293
combining transformations, 299–301
matrices, 290–291
moving bobs, 294, 296
rotation, 296, 298
scaling, 298
translation, 291
world and model space, 289–290

3D meshes, 450, 452
createCube() method, 456
cube and corner points, 451
CubeTest class, 454–455
present() method, 456
resume() method, 456
spinning texture cube, 456
texture coordinates, 453
update() method, 456

3D vertices
coordinate systems, 441
positions, 436–437
present() method, 441
right-hand rule, 441
Vertices3Test, 438–440

camera system, 465
attributes, 467
Euler rotation camera, 467
gimbal lock, 467
GLU.glLookAt() method, 468
present() method, 466

C header files, 238
coordinate system, 255
frame rate measurement, 302
Game.getStartScreen(), 262
GLGame

getGLGraphics() method, 252
getters and setters, 248
GLGraphics.java, 248–249
onCreate() method, 250
onPause(), 252
onResume() method, 250
onSurfaceChanged(), 250
onSurfaceCreate(), 250
Screen implementation, 254
synchronization, 250

GLGraphics and FloatBuffer, 262
GLSurfaceView

color buffer, 247
EGLConfig, 245
glClearColor(), 247
GLSurfaceViewTest.java, 245–246
onCreate() method, 246
onDrawFrame(), 245
onPause()/onResume(), 245
onResume() and onPause() methods, 246
onSurfaceChanged(), 245
onSurfaceCreated() method, 245

matrices
identity, 242
model-view, 243
projection, 243
texture, 243

matrices and transformations, 456
crate solar system, 460
createCube() method, 463
HierarchicalObject class, 460–462
hierarchical systems, 459–460
matrix stack, 457–459
model-view matrix, 457
projection matrix, 457
render() method, 464
texture matrix, 457
update() method, 464

matrix modes and active matrices, 255
NIO buffers, 259–260
normalized device space, 242
optimization, 264

batching, 308
binding vertices, 305–308

Mr. Nom AndroidGame (cont.)

■ INDEX

603

issues, 303
rendering, 303
state modifications, 304–305

orthographic projection matrix, 255–257
perspective projection

glFrustumf() method, 443
GLU.gluPerspective(), 444
vs. orthographic projection, 442
parameters, 443

per-vertex color, 265–268
primitives, 288–289
programming model, 238–239
projection matrix, 255
projections, 240–241
rendering pipeline, 243–244
sending vertices, 260–261
snippet, 258
triangles specification, 258, 264
versions, 237
viewport, 242, 254
z-buffer, 444

blending, 447–449
depth test or z-test, 445
depth value, 444
precision and fighting, 449–450
ZBufferTest, 445

Open Handset Alliance (OHA), 2

��������� P
Perspective projection, 442
Per-vertex color, 265–268
Pixels, 62–63
Playback, 59–60
pointerIndex, 106
presentLevelEnd() method, 428
presentPaused() method, 428
presentRunning() method, 428
Procedural generation, 416
Projections, 240–241
Pseudocode, 54
Psym Mobile, 34
Publishing, game

developer console, 594
registered developer, 588
signing APK file, 589–591
testing, 587
uploading on Google Play, 592–594

Puzzle games
building blocks, 36
iOS App Store, 35
match-three formula, 35, 37
physics puzzler, 35

��������� Q
Quarter Video Graphics Array (QVGA), 10

��������� R
Rasters, 62–63
Recording, 59–60
render() method, 428
RGB color model, 65

��������� S
Screen interfaces, 75–77
SDK. See Software development kit (SDK)
SDK Manager, 17
Secure Digital (SD) cards, 4
Settings class, 395
SHADOWGUN, 37–38
SharedPreferences, 126
Simulation classes, Super Jumper game

Bob class, 412–414
Castle class, 409
Coin class, 408–409
Platform class, 411, 412
Spring class, 408
Squirrel class, 410
World class

Bob.hitPlatform(), 420
checkCollisions() method, 419
checkItemCollisions() method, 421
checkPlatformCollisions() method, 420
checkSquirrelCollisions(), 420
generateLevel() method, 416
method update(), 418
Random.nextFloat(), 417
updateBob() method, 418
update methods, 418
updateSquirrels() method, 419
World.update() method, 419
game over–checking method, 421

Single system on chip (SoC), 10
Single-touch events

coordinate system, 104
first-generation devices, 105
MotionEvent, 103
onTouch() method, 104
test activity, 103–104

Skia Graphics Library (Skia), 6
Snake game, 44
Social games, 41–43
Social Network Integration, 583
Software Development Kit (SDK), 7–8

■ INDEX

604

Space Invaders
assets

class, 530–532
game, 527–529
sound and music, 529
UI assets, 526–527

backstory, 523
game mechanics, 521–523
GameScreen class, 553

calculateInputAcceleration() method, 557
constructor, 555
presentGameOver() method, 559
present() method, 558
presentPaused() method, 558
presentRunning() method, 559
updateGameOver() method, 557
update() method, 555
updatePaused() method, 556
updateRunning() method, 556

main activity, 534
main menu screen, 535, 537

present() method, 537
update() method, 536

optimizations, 565
plan of attack, 529
playing field, 525
screens and transitions, 524
settings class, 533
settings screen, 538–539

present() method, 540
update() method, 539

simulation classes, 540
invaders, 544–547
shield blocks, 541
ship, 542–543
shots, 541–542

world class, 547
checkInvaderCollisions() method, 550
checkShotCollisions() method, 552
constructor, 548
generateInvaders() method, 548
generateShields() method, 548
shoot() method, 552
updateInvaders() method, 550
update() method, 549
updateShots() method, 550

WorldRender class, 560–561
renderExplosion() method, 564
renderInvaders() method, 563
render() method, 562
renderShields() method, 564
renderShip() method, 562

Spatial hash grid
cellIds array, 345
clearDynamicCells() method, 347

GameObjects, 344–345
game world, 343
getPotentialColliders() method, 347
insertDynamicObject() method, 346
insertStaticObject() method, 346
object overlap, 349
removeObject() method, 347

Super Jumper game
assets

bitmap fonts, handling text, 385
game elements, 387
music and sound, 390
texture atlas, 389
UI elements, 384

backstory development, 380
Bob’s horizontal movement, 383
bounding rectangles, 383
definition, 382
game screen

members and constructors, 422
rendering methods, 427
update methods, 424

implementation
assets class, 392
font class, 397
GLScreen class, 399
help screen, 402
high-scores screen, 405
main activity, 396
main menu screen, 399
settings class, 395

mechanics, 379–380
mock-up and grid, 382
screens and transitions, 381
simulationc lasses (see Simulation classes,

Super Jumper game)
velocities and accelerations, 383
world class implementation, 414

collision detection
and response, 419

game over-checking method, 421
procedural generation, 416
update methods, 418
WorldListener, 415
WORLD_WIDTH and

WORLD_HEIGHT, 415
WorldRenderer class, 429

renderBackground() method, 430
renderBob() method, 431
renderCastle() method, 433
rendering code, 430
renderItems() method, 432
renderObjects() method, 431
renderPlatforms() method, 432
renderSquirrels() method, 432

■ INDEX

605

��������� T
Tank Hero, 38–39
Temple Run, 34
Tetris, 35
Texture mapping

Class, 276–277
coordinates, 268
enable and disable, 273
GL10.GL_NEAREST vs. GL_LINEAR, 272
glDrawArrays(), 275
glEnableClientState(), 270
glGenTextures(), 272
GLUtils.texImage2D(), 275
loadTexture(), 275
magnification, 271
minification, 271
snippet, 273
texture filtering, 271
texturing triangle, 273–274
uploading bitmaps, 270
vertex, triangle, 269

Thin-film transistor liquid
crystal display (TFT-LCD), 10

Three-dimensional Euclidian space, 66
Top of the stack (TOS), 458
TouchEvent code, 58
Tower-defense games, 40–41

��������� U
updateGameOver() method, 427
updateLevelEnd() method, 426
updatePaused() method, 426
updateReady() method, 425
updateRunning() method, 425
User interfaces (UIs), 2
User interface (UI) elements, 384

��������� V
Virtual currency (VC), 581
Vsync, 64

��������� W, X, Y
WorldListener, 415

��������� Z
Z-buffer, 444–446
ZeptoLab, 35–36
Z-fighting, 450

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: An Android in Every Home
	A Brief History of Android
	Fragmentation
	The Role of Google
	The Android Open Source Project
	Google Play
	Google I/O

	Android’s Features and Architecture
	The Kernel
	The Runtime and Dalvik
	System Libraries
	The Application Framework

	The Software Development Kit
	The Developer Community
	Devices, Devices, Devices!
	Hardware
	The Range of Devices
	The Minimum Practical Target

	Compatibility Across All Devices
	Mobile Gaming Is Different
	A Gaming Machine in Every Pocket
	Always Connected
	Casual and Hardcore
	Big Market, Small Developers

	Summary

	Chapter 2: First Steps with Android Studio
	Setting Up the Development Environment
	Setting Up the JDK
	Installing Android Studio
	Setting Up the Android SDK
	A Quick Tour of Android Studio
	Code Completion
	Breakpoints

	Creating a New Project in Android Studio and Writing Your Code
	Creating the Project
	Exploring the Project
	Writing the Application Code

	Running the Application on a Device or Emulator
	Connecting a Device
	Creating an Android Virtual Device
	Installing Advanced Emulator Features
	Running an Application

	Debugging and Profiling an Application
	LogCat

	Summary

	Chapter 3: Game Development 101
	Genres: To Each One’s Taste
	Casual Games
	Puzzle Games
	Action and Arcade Games
	Tower-Defense Games
	Social Games
	Beyond the Genres

	Game Design: The Pen Is Mightier Than the Code
	Core Game Mechanics
	A Story and an Art Style
	Screens and Transitions

	Code: The Nitty-Gritty Details
	Application and Window Management
	Input
	File I/O
	Audio
	The Physics of Sound
	Recording and Playback
	Audio Quality and Compression
	In Practice

	Graphics
	Of Rasters, Pixels, and Framebuffers
	Vsync and Double-Buffering
	What Is Color?
	Color Models
	Encoding Colors Digitally
	Image Formats and Compression
	Alpha Compositing and Blending
	In Practice

	The Game Framework
	The Game and Screen Interfaces
	A Simple Example
	Frame Rate–Independent Movement
	Summary

	Chapter 4: Android for Game Developers
	Defining an Android Application: The Manifest File
	The <manifest> Element
	The <application> Element
	The <activity> Element
	The <uses-permission> Element
	The <uses-feature> Element
	Game Project Setup in Six Easy Steps
	Google Play Filters
	Defining the Icon of Your Game

	Android API Basics
	Creating a Test Project
	The AndroidBasicsStarter Activity
	Starting Activities Programmatically
	Creating the Test Activities

	The Activity Life Cycle
	In Theory
	In Practice

	Input Device Handling
	Getting (Multi-)Touch Events
	Processing Single-Touch Events
	Processing Multitouch Events
	Pointer IDs and Indices
	The Action Mask and More Event Types
	In Practice

	Processing Key Events
	Reading the Accelerometer State

	File Handling
	Reading Assets
	Accessing the External Storage
	Shared Preferences

	Audio Programming
	Setting the Volume Controls

	Playing Sound Effects
	Streaming Music
	Basic Graphics Programming
	Going Full-Screen
	Continuous Rendering in the UI Thread
	Getting the Screen Resolution (and Coordinate Systems)
	Drawing Simple Shapes
	Drawing Pixels
	Drawing Lines
	Drawing Rectangles
	Drawing Circles
	Blending
	Putting It All Together

	Using Bitmaps
	Loading and Examining Bitmaps
	Disposing of Bitmaps
	Drawing Bitmaps
	Putting It All Together

	Rendering Text
	Loading Fonts
	Drawing Text with a Font
	Text Alignment and Boundaries
	Putting It All Together

	Continuous Rendering with SurfaceView
	Motivation
	SurfaceHolder and Locking
	Surface Creation and Validity
	Putting It All Together

	Hardware-Accelerated Rendering with Canvas

	Best Practices
	Summary

	Chapter 5: An Android Game Development Framework
	Plan of Attack
	The AndroidFileIO Class
	AndroidAudio, AndroidSound, and AndroidMusic: Crash, Bang, Boom!
	AndroidInput and AccelerometerHandler
	AccelerometerHandler: Which Side Is Up?

	CompassHandler
	The Pool Class: Because Reuse Is Good for You!
	KeyboardHandler: Up, Up, Down, Down, Left, Right . . .
	Touch Handlers
	The SingleTouchHandler Class
	The MultiTouchHandler

	AndroidInput: The Great Coordinator

	AndroidGraphics and AndroidPixmap: Double Rainbow
	Handling Different Screen Sizes and Resolutions
	Density
	Aspect Ratio
	Coping with Different Aspect Ratios
	A Simpler Solution
	The Implementation

	AndroidPixmap: Pixels for the People
	AndroidGraphics: Serving Our Drawing Needs
	AndroidFastRenderView: Loop, Stretch, Loop, Stretch

	AndroidGame: Tying Everything Together
	Summary

	Chapter 6: Mr. Nom Invades Android
	Creating the Assets
	Setting Up the Project
	MrNomGame: The Main Activity
	Assets: A Convenient Asset Store
	Settings: Keeping Track of User Choices and High Scores
	LoadingScreen: Fetching the Assets from Disk

	The Main Menu Screen
	The HelpScreen Classes
	The High-Scores Screen
	Rendering Numbers: An Excursion
	Implementing the Screen

	Abstracting the World of Mr. Nom: Model, View, Controller
	The Stain Class
	The Snake and SnakePart Classes
	The World Class
	Time-Based Movement of Mr. Nom
	Placing Stains
	Determining When the Game Is Over
	Implementing the World Class

	The GameScreen Class
	Summary

	Chapter 7: OpenGL ES: A Gentle Introduction
	What Is OpenGL ES and Why Should I Care?
	The Programming Model: An Analogy
	Projections
	Normalized Device Space and the Viewport
	Matrices
	The Rendering Pipeline

	Before We Begin
	GLSurfaceView: Making Things Easy Since 2008
	GLGame: Implementing the Game Interface
	Look Mom, I Got a Red Triangle!
	Defining the Viewport
	Defining the Projection Matrix
	Matrix Modes and Active Matrices
	Orthographic Projection with glOrthof
	A Helpful Snippet

	Specifying Triangles
	A Small NIO Buffer Digression
	Sending Vertices to OpenGL ES

	Putting It Together

	Specifying Per-Vertex Color
	Texture Mapping: Wallpapering Made Easy
	Texture Coordinates
	Uploading Bitmaps
	Texture Filtering
	Disposing of Textures
	A Helpful Snippet
	Enabling Texturing
	Putting It Together
	A Texture Class

	Indexed Vertices: Because Re-use Is Good for You
	Putting It Together
	A Vertices Class

	Alpha Blending: I Can See Through You
	More Primitives: Points, Lines, Strips, and Fans
	2D Transformations: Fun with the Model-View Matrix
	World and Model Space
	Matrices Again
	An Initial Example Using Translation
	Bob Becomes a Class
	Putting It Together

	More Transformations
	Rotation
	Scaling
	Combining Transformations

	Optimizing for Performance
	Measuring Frame Rate
	What’s Making My OpenGL ES Rendering So Slow?
	Removing Unnecessary State Changes
	The Concept of Binding Vertices
	In Closing

	Summary

	Chapter 8: 2D Game Programming Tricks
	Before We Begin
	In the Beginning . . . There Was the Vector
	Working with Vectors
	A Little Trigonometry
	Implementing a Vector Class
	A Simple Usage Example

	A Little Physics in 2D
	Newton and Euler: Best Friends Forever
	Force and Mass
	Playing Around, Theoretically
	Playing Around, Practically

	Collision Detection and Object Representation in 2D
	Bounding Shapes
	Constructing Bounding Shapes
	Game Object Attributes
	Broad-Phase and Narrow-Phase Collision Detection
	Narrow Phase
	Circle Collision
	Rectangle Collision
	Circle/Rectangle Collision
	Putting It All Together

	Broad Phase

	An Elaborate Example
	GameObject, DynamicGameObject, and Cannon
	The Spatial Hash Grid
	Putting It All Together

	A Camera in 2D
	The Camera2D Class
	An Example

	Texture Atlas: Because Sharing Is Caring
	An Example

	Texture Regions, Sprites, and Batches: Hiding OpenGL ES
	The TextureRegion Class
	The SpriteBatcher Class
	Using the SpriteBatcher Class

	Sprite Animation
	The Animation Class
	An Example

	Summary

	Chapter 9: Super Jumper: A 2D OpenGL ES Game
	Core Game Mechanics
	Developing a Backstory and Choosing an Art Style
	Defining Screens and Transitions
	Defining the Game World
	Creating the Assets
	The UI Elements
	Handling Text with Bitmap Fonts
	The Game Elements
	Texture Atlas to the Rescue
	Music and Sound

	Implementing Super Jumper
	The Assets Class
	The Settings Class
	The Main Activity
	The Font Class
	The GLScreen Class
	The Main Menu Screen
	The Help Screens
	The High-Scores Screen
	The Simulation Classes
	The Spring Class
	The Coin Class
	The Castle Class
	The Squirrel Class
	The Platform Class
	The Bob Class
	The World Class
	Generating the World
	Updating the World
	Collision Detection and Response
	Game Over, Buddy!

	The Game Screen
	Updating the GameScreen
	Rendering the GameScreen
	Finishing Touches

	The WorldRenderer Class

	Summary

	Chapter 10: OpenGL ES: Going 3D
	Before We Begin
	Vertices in 3D
	Vertices3: Storing 3D Positions
	An Example

	Perspective Projection: The Closer, the Bigger
	Z-buffer: Bringing Order to Chaos
	Fixing the Previous Example
	Blending: There’s Nothing Behind You
	Z-buffer Precision and Z-fighting

	Defining 3D Meshes
	A Cube: Hello World in 3D
	An Example

	Matrices and Transformations, Again
	The Matrix Stack
	Hierarchical Systems with the Matrix Stack
	A Simple Crate Solar System
	The HierarchicalObject Class
	Putting It All Together

	A Simple Camera System

	Summary

	Chapter 11: 3D Programming Tricks
	Before We Begin
	Vectors in 3D
	Lighting in OpenGL ES
	How Lighting Works
	Light Sources
	Materials
	How OpenGL ES Calculates Lighting: Vertex Normals
	In Practice
	Enabling and Disabling Lighting
	Specifying Light Sources
	Ambient Light
	Point Lights
	Directional Lights

	Specifying Materials
	Specifying Normals
	Putting It All Together

	Some Notes on Lighting in OpenGL ES

	Mipmapping
	Simple Cameras
	The First-Person, or Euler, Camera
	An Euler Camera Example
	A Look-At Camera

	Loading Models
	The Wavefront OBJ Format
	Implementing an OBJ Loader
	Using the OBJ Loader
	Some Notes on Loading Models

	A Little Physics in 3D
	Collision Detection and Object Representation in 3D
	Bounding Shapes in 3D
	Bounding Sphere Overlap Testing
	GameObject3D and DynamicGameObject3D

	Summary

	Chapter 12: Android Invaders: The Grand Finale
	Core Game Mechanics
	Developing a Backstory and Choosing an Art Style
	Defining Screens and Transitions
	Defining the Game World
	Creating the Assets
	The UI Assets
	The Game Assets
	Sound and Music

	Plan of Attack
	The Assets Class
	The Settings Class
	The Main Activity
	The Main Menu Screen
	The Settings Screen
	The Simulation Classes
	The Shield Block Class
	The Shot Class
	The Ship Class
	The Invader Class
	The World Class

	The GameScreen Class
	The WorldRender Class
	Optimizations
	Summary

	Chapter 13: Going Native with the NDK
	What Is the Android NDK?
	The Java Native Interface
	Setting Up the NDK
	Setting Up an NDK Android Project
	Creating Java Native Methods
	Creating the C/C++ Header and Implementation
	Building the Shared Library
	Putting It All Together
	Summary

	Chapter 14: Marketing and Monetizing
	Monetizing Your Game
	Advertising
	Ad Providers
	Ad Aggregation Services
	Game Advertising Tips

	In-App Products
	Virtual Currency
	To Sell or Not to Sell
	Licensing

	Getting Your Game Discovered
	Social Network Integration
	Discovery Services
	Blogs and Conventional Web Media

	Monetizable by Design
	Discoverable by Design
	Summary

	Chapter 15: Publishing Your Game
	A Word on Testing
	Becoming a Registered Developer
	Signing Your Game’s APK
	Putting Your Game on Google Play
	Publish!
	More on the Developer Console
	Summary

	Index

