

 1

1

 2

By
Xavier Morera

Foreword by Daniel Jebaraj

 3

3

Copyright © 2015 by Syncfusion Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

mportant licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other liability arising

from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET ESSENTIALS are the

registered trademarks of Syncfusion, Inc.

Technical Reviewer: Peter Shaw

Copy Editor: Courtney Wright

Acquisitions Coordinator: Hillary Bowling, marketing coordinator, Syncfusion, Inc.

Proofreader: Morgan Cartier Weston, content producer, Syncfusion, Inc.

I

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/

 4

Table of Contents

About the Author ... 10

Preface ... 13

Introduction .. 13

My Promise to You ... 13

Who is This Book For? ... 14

Code Examples .. 14

Acknowledgements .. 14

Chapter 1 Why Solr and Enterprise Search? .. 15

Search is Everywhere .. 15

Definition .. 16

Why Solr?... 16

Solr’s History and Famous Sites .. 17

Chapter 2 Architecture of an Enterprise Search Application .. 18

Where and How ... 18

Placing the Search Engine .. 18

Inside the Search Engine ... 19

Chapter 3 Solr Configuration .. 22

Getting Solr .. 22

Starting Solr ... 24

Configuring Solr in a Different Port .. 25

Solr’s Admin UI .. 26

Getting Assistance ... 27

Dashboard ... 27

 5

5

Logging .. 27

Core Admin .. 28

Java Properties .. 29

Core Selector ... 29

Analysis ... 30

DataImport ... 30

Documents .. 31

Files ... 32

Ping ... 32

Plugins and Stats .. 32

Query ... 33

Replication ... 35

Schema Browser ... 35

Summary .. 35

Chapter 4 Your First Index .. 36

Solr’s Sample Data .. 36

Simple Anatomy of a Query and a Response Query ... 38

Response ... 39

Other Response Sections ... 40

Docs and Modeling Your Data .. 41

Playing Around with Solr .. 43

A “Real” Query with Facets ... 43

Fields ... 44

Sorting ... 45

Summary .. 50

Chapter 5 Schema.xml: The Content ... 51

 6

Our Own Example .. 51

Version ... 52

Type Definitions ... 52

Tokenizer ... 53

Filter .. 53

Analyzers ... 53

Back to Complex Types .. 53

Field Definitions ... 54

Copy Fields .. 55

Field Properties by Use Case .. 55

Common Mistakes with Schema.Xml .. 56

Succinctly Schema.Xml ... 56

Create Your Collection .. 57

Quick Cleanup ... 58

Start by Understanding Your Data .. 62

Summary .. 64

Chapter 6 Indexing ... 65

Making Your Content Searchable .. 65

Indexing Techniques .. 66

Indexing the Succinctly Series ... 66

Indexing Documents Using CSV ... 66

Indexing via Admin UI ... 70

Updating via Admin UI .. 72

Partial Updates .. 73

Deleting Data... 75

Solr XML Format ... 77

 7

7

Using cURL ... 79

Fiddler ... 81

Re-indexing in Solr .. 85

Summary .. 86

Chapter 7 SolrConfig.Xml .. 87

Configuring Solr ... 87

Request Handlers .. 87

Creating a New Request Handler .. 89

Changing Rows in Request Handler ... 90

Appends in Request Handlers .. 91

Response Fields ... 94

Facets .. 96

Solrconfig.Xml Common mistakes and pitfalls .. 98

Summary .. 99

Chapter 8 Searching and Relevance .. 100

Do People Love Searching? .. 100

Relevance .. 100

Precision .. 100

Recall .. 100

Accuracy .. 101

Not All Results Are Created Equal .. 101

Context .. 101

Second Page? ... 102

Document Age... 102

Security ... 102

Speed .. 102

 8

Queries, Data, and Metadata ... 102

Data and Metadata Searching ... 102

Going Deeper into Solr Search Relevancy .. 103

tf (Term Frequency) .. 104

idf (Inverse Document Frequency) .. 104

Query Syntax ... 104

Search for a Word in a Field ... 104

Search for a Phrase in a Field ... 109

Proximity .. 110

Operators and Fields ... 111

Not (Negative Queries) ... 112

Wildcard Matching ... 112

Range Searches ... 115

Boosts ... 115

Keyword Search and CopyFields .. 116

Synonyms .. 121

Stopwords ... 124

Summary ... 127

Chapter 9 Add a UI ... 128

Solritas: A Fancy Name for Velocity ResponseWriter ... 128

SolrNet: An Apache Solr Client for .NET ... 130

What is SolrNet? .. 130

As the website states: .. 130

SolrNet’s History .. 130

Getting SolrNet .. 131

SolrNet ... 132

 9

9

Making the Sample App Use Our Data ... 137

Summary .. 140

Final Words .. 141

 10

The Story behind the Succinctly Series
of Books

Daniel Jebaraj, Vice President
Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components for the
Microsoft platform. This puts us in the exciting but challenging position of always
being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about
every other week these days, we have to educate ourselves quickly.

Information is plentiful but harder to digest

In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the Internet and more and more books are
being published, even on topics that are relatively new, one aspect that continues to inhibit us is
the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for
relevant blog posts and other articles. Just as everyone else who has a job to do and customers
to serve, we find this quite frustrating.

The Succinctly series

This frustration translated into a deep desire to produce a series of concise technical books that
would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics can
be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything
wonderful born out of a deep desire to change things for the better?

The best authors, the best content

Each author was carefully chosen from a pool of talented experts who shared our vision. The
book you now hold in your hands, and the others available in this series, are a result of the
authors’ tireless work. You will find original content that is guaranteed to get you up and running
in about the time it takes to drink a few cups of coffee.

S

 11

11

Free forever

Syncfusion will be working to produce books on several topics. The books will always be free.
Any updates we publish will also be free.

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader
frameworks than anyone else on the market. Developer education greatly helps us market and
sell against competing vendors who promise to “enable AJAX support with one click,” or “turn
the moon to cheese.”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at
succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic
of study. Thank you for reading.

Please follow us on Twitter and “Like” us on Facebook to help us spread the
word about the Succinctly series!

mailto:succinctly-series@syncfusion.com
http://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion

 12

About the Author

Xavier is an entrepreneur, project manager, technical author, trainer, Certified Scrum
Professional and Scrum Master, and Microsoft Certified Professional. He has spent a great deal
of his career working on cutting-edge projects with a primary focus on .NET, Solr, and
occasionally iOS. His expertise is primarily .NET web applications, with a focus on search using
Apache Solr. Throughout multiple projects he has acquired skills in dealing with complex
enterprise software solutions, working with companies that range from startups to Microsoft,
where he worked as a worldwide virtualization trainer and evangelist.

If you have questions or comments, you can contact Xavier on Twitter @xmorera or by visiting
his personal blog, www.xaviermorera.com.

https://twitter.com/xmorera
http://www.xaviermorera.com/

 13

13

Preface

Introduction

Search is everywhere, yet it is one of the most misunderstood functionalities of the IT industry. It
is an incredibly useful feature that most people (including developers) take for granted, unless
it's missing or poorly implemented—and then you frustrate and annoy your users.

Enterprise search never used to be for the faint of heart, or for those who possessed a thin
wallet; it frequently needed a lot of time and deep pockets to get it right. Apache Solr has
changed all that.

Figure 1: Apache Solr Logo

Even though Apache Solr is highly popular, getting started can sometimes be daunting. That's
what motivated me to write this book. While there's a lot of information about search engines
and Solr, in my opinion, it's not simple enough to get some people started—information is
scattered all over the place and often difficult to find. The Solr Wiki is very complete, but deeply
technical, and in many cases, scares beginners away.

Of course you also have the option to evaluate other commercial search engines, but they can
be hugely expensive and require a steep learning curve. Because of this, Solr has rapidly
become the number one choice. This is my personal opinion, but it is shared by thousands of
developers and companies all over the world.

Most importantly however, I have a promise for you.

My Promise to You

I promise that in the next couple of hours and hundred pages, I will teach you to build something
that might take you weeks to learn on your own. Together we'll create a search experience that,
if done from scratch, could cost thousands of dollars to build, and we'll have a lot of fun along
the way. That's not bad for a free e-book right? However, here's my disclaimer: it's not going to
be a fully advanced and complete application, and I will be leaving lots of room for improvement
and expansion. I will promise you though, that it will be an amazing start and a very interesting
journey.

 14

Who is This Book For?

This book is for developers in the software industry who are looking for a gentle introduction to
creating enterprise-scale search solutions. It's for the project managers whose technical teams
are telling them, "We desperately need a search solution in our project." It's for the bosses and
the administrators who've never had to build or maintain a search solution before.

It's not for those of you who already know what Apache Solr is and how it works, and it's most
definitely not for those who are looking for tech-heavy articles on digging into the source code,
or optimizing their installations.

If you’re an enterprise search newcomer looking for a gentle introduction, then this book is for
you!

This is Apache Solr Succinctly.

Code Examples

All code examples in this book can be found on GitHub at https://github.com/xaviermorera/solr-
succinctly.git.

Acknowledgements

Special thanks to Syncfusion for providing me with the opportunity to author this book, to
Pluralsight for the support on the creation of Getting Started with Enterprise Search using
Apache Solr training, and to Search Technologies for initiating me into the wonderful world of
search engines.

And of course, to my wife for being so patient with me on all my endeavors, which includes a lot
of up to 16-hour workdays and 80-hour workweeks. And to my reasons for living, my daughters
Juli and Luci.

https://github.com/xaviermorera/solr-succinctly.git
https://github.com/xaviermorera/solr-succinctly.git

 15

15

 Chapter 1 Why Solr and Enterprise
Search?

Search is Everywhere

Internet search, mainly because of Google, has an interesting side effect: people expect search
everywhere.

There are billions of people trained in search on a global scale, something you simply couldn't
afford to pay the training costs for. Yet, Google by its very way of doing business did just this—
and mostly for zero cost, ensuring billions of daily searches as of 2013, and growing.

Where do we see search applications? You have YAHOO! for web search, a search box in the
top right for your files in Windows Explorer, Spotlight in Mac, the Charms bar in Windows 8,
Bing, Outlook, iPhone, and Android; the list is huge and seemingly never-ending.

Search is everywhere to make your life easy in all aspects.

Figure 2: Various Search Tools

There is far more to search than meets the eye, however. Mr. Kamran Khan, CEO of Search
Technologies, says that in the majority of cases there are only two types of search: outside the
firewall, and inside the firewall. Outside the firewall is used to make money, and inside the
firewall to save money.

 16

So I asked, “why?”

 Outside the firewall search is a powerful tool for selling. Think, for example, of eBay and
Amazon. A good search in an e-commerce site allows a customer to find what he or she
is looking for and purchase. Ka-ching! The cash register is happy!

 Inside the firewall search helps find preexisting items, related work, or internal
documents, all of which allow employees to leverage the technology to their advantage
and avoid duplicating work.

People expect to find things, and fast—human nature craves simplicity and accuracy.

Definition

Let’s look at the definition of search:

To make a thorough examination of, or look over carefully in order to find something.

To make a careful examination or investigation of, to probe. Or to conduct a thorough
investigation, seek.

Source: American Heritage Dictionary of the English Language, Fourth Edition (or Google
“define:search”)

As the definition points out, searching is the action of seeking something, yet the most important
part of searching for something is the ability to find it. I’ve said it several times to multiple search
engineers: instead of “search engines,” we should call them “find engines,” but I have received
no traction with this idea.

Semantics aside, this book will focus on Enterprise Search, and specifically with Solr. We define
Enterprise Search as the practice of generating content and making it searchable to a
defined audience out of multiple enterprise-type data sources, like a database or a CMS.

As an example, if you use SharePoint in your organization, the search input found at the top
right is classed as an enterprise search solution. Anything that attempts to take a large tangled
mass of many different sources of internal corporate data, and allows that data to be indexed,
filtered, and organized with a goal to finding inner information easier, is classed as and
applicable to be an enterprise based search solution.

Why Solr?

Apache Solr is open-source, it has a fast and sophisticated text search, it's highly extensible,
highly scalable, and can work with dynamic content. It has great query speed when properly
scaled, and there are many more reasons. Solr also has a very active development community
made of individuals and companies who contribute with new features and bug fixes on a regular
basis.

 17

17

On an historic note, search never used to be for the faint of heart. Some of the older solutions
were very, very complex and would easily cost many tens of thousands of dollars; a fully
commercially supported solution might even cost millions of dollars. Then Solr changed the
name of the game in a very big way, and now it's here to stay.

Search engines are a totally different animal. You will either fall in love with what you can do
with a search engine, or you might end up absolutely hating them if you try to tackle them head-
on without the proper resources. With Solr, you're in luck: this is a proper resource for a small
budget with an army of helpers to help you get started smoothly and efficiently.

Solr’s History and Famous Sites

Solar (with an A) was developed as an in-house platform by CNET Networks (starting in 2004,
by Yonik Seeley) to add search to the company website. In 2006, CNET Networks decided to
openly publish the code by donating it to the Apache Foundation under the Lucene top-level
project, and it became Solr. In case you are wondering, Solr is not an acronym.

Now, Apache Solr powers some of the biggest enterprise search sites and institutions like the
White House, AOL, AT&T Interactive, Yellow Pages, Instagram, Usados.cr, eHarmony, Sears,
Netflix, Zappos, Disney, NASA, and many more.

 18

Chapter 2 Architecture of an Enterprise
Search Application

Where and How

From an architectural point of view, there are two different areas that need to be discussed. The
first one is where the search engine fits within your solution, the second one is the how to of
Solr’s architecture.

Placing the Search Engine

Let’s take a look at the following figure, something I like to call the search application 10,000-
foot view.

Figure 3: Application architecture

 19

19

It is absolutely clear that application architectures can be wildly different, but let’s make a few
assumptions here and generalize to some degree on some of the most general use cases,
starting from the top of the diagram.

We can assume that our application will have a UI, which can be built in ASP.NET Web Forms,
MVC, AngularJS, PHP, or many other UI frameworks. Our application also has an API that
might be used for other applications to connect to, such as an iOS or Android mobile
application.

Eventually we get to the application, which may be your key source of income, and you are very
proud of it. If you’re like I was before I discovered Solr, you probably have something really nice,
but that has technical elements that just do not feel right. You may even have provided a not-so-
nice user experience that frustrated a few—or even a few thousand—users.

This is where search comes in. You connect to the search engine via the search API. Solr
provides an innovative RESTful interface for your needs, or you can choose a client like SolrNet
or SolrJ. This all means that your application can run a query or two, refine and provide the user
with Indexes to the exact resulting Content, and through the use of MetaData retrieve the
required results with the appropriate levels of Security.

Let’s go to the bottom of the diagram for a moment to understand the multiple data sources that
can provide data to your search engine. Most applications get their data from a database, like
SQL Server or MySQL. However, in many cases they could also be getting it from a NoSQL
database, content source, other applications like a Content Management System, or the file
system.

There are multiple ways to retrieve the data that we will be adding to the search engines. One of
them is what’s called a connector, which retrieves data from the store and provides it to a
document-processing pipeline.

The document-processing pipeline, also known as DPMS, takes the content from a data source,
performs any necessary transformations, and prepares to feed the data to the search engine.

Inside the Search Engine

Solr is hosted in an application container, which can be either Jetty or Tomcat. For those of you
with little to no experience with Jetty or Tomcat, they are web servers just like Internet
Information Services (IIS) or nginx.

For development purposes, Solr comes with Jetty out of the box in an extremely easy-to-use,
one-line startup command. However, if you wanted to host within Tomcat, you need Solr.war.
For those of you that don't know Java, .war stands for Web Application aRchive.

Let’s now take a look at the architecture, starting from the bottom.

http://eclipse.org/jetty/
http://tomcat.apache.org/
http://www.iis.net/
http://www.iis.net/
http://nginx.org/

 20

Figure 4: Solr architecture

The first and most important point is that Lucene, a free, open-source information retrieval
software library, is the actual search engine that powers Solr. This is such an important point;
Solr has actually been made part of the much larger Apache Lucene project.

It really caught my attention when I first discovered Solr within Lucene, so much so that I simply
had to investigate it further, and I'm very glad I chose to do so. Lucene is written in Java, was
originally created in 1999 by Doug Cutting, and has since been ported to multiple other
languages. Solr, however, continues to use the Java version.

There are many other projects that extend and build on Lucene’s capabilities. One of these is
ElasticSearch, which even makes for a good Solr contender (though arguments are accepted).

On top of Lucene, we have the Solr core, which is running an instance of a Lucene index and
logs along with all the Solr configuration files. Queries are formatted and expanded in the way in
which Lucene is expecting them, meaning you do not need to do this manually (which can be
tedious and complex). These queries are configured and managed (along with how to expand
them, and configure the schema details) in the files schema.xml and solrconfig.xml. In simpler
deployments, you can often get away with modifying only these two files. What follows is the
very short explanation of the purpose of each one:

 Schema.xml contains all of the details about which fields your documents can contain
and how those fields should be accessed with when adding documents to the index or
querying those fields.

 Solrconfig.xml is the file that contains most of the parameters for configuring Solr itself.

http://lucene.apache.org/solr/

 21

21

If you look within Solr Core(s) in the Solr Architecture diagram in Figure 4, you can see where
analysis and caching reside. Analysis is in charge of processing fields during either query or
indexing time. Caching allows performance improvement.

Initially Solr only supported a single core, but more recent versions can support multiple cores,
each one of which will have all the components shown in orange on the architecture diagram.
Solr also uses the word “collection” very often; in Solr-speak, a collection is a single index that
can be distributed among multiple servers. When you download and start Solr, it comes with a
sample index called collection1, which you can also call a core.

To be very clear, let’s define some common Solr nomenclature:

 Core: A physical search index.

 Collection: A logical search index that can be made up of multiple cores.

Things get a bit more complex when you introduce SolrCloud Replication and start talking about
Shards, Leaders, Replicas, Nodes, Clusters, and ZooKeeper; these, however, are advanced
concepts that would belong in a second book about the subject.

Request handlers are responsible for defining the logic executed for any request received by
Solr. This includes queries and index updates.

Once a query is received, it is processed by the query parser. There are many parsers
available, such as the Standard query parser, DisMax, and eDisMax, which are the most
commonly used. You can, however, create your own custom parser if you wish.

In Solr 1.3 and earlier, creating a custom parser was the only way forward. Since version 1.3,
DisMax became the default query parser while still maintaining the ability to customize things
when needed.

Response writers are in charge of preparing the data in multiple formats to be sent back to the
client, for example, in JSON or XML-based data.

The HTTP request servlet is where you connect to Solr, and the update servlet is used to modify
your data via the update handler.

Note: If the term "servlet" is a strange one, don't worry. Think of a servlet as an endpoint

on a web server. Servlets are specific to the Java world, and are similar to controllers in

other web technologies.

Eventually we reach the admin interface servlet, which provides Solr’s default administration UI,
something you'll come to rely on once you have deployed your search engine.

We could easily keep peeling away layer after layer and getting into more and more complex
and advanced functionality. However, that's not the purpose of this book, so we'll keep the
details at a reasonably simple level.

 22

Chapter 3 Solr Configuration

Getting Solr

The first step to get a working installation of Solr is to actually download it, which you can do
here. You can also find it by typing “download Solr” into your favorite web search engine.

Figure 5: Solr homepage

Click Download so that you are redirected to the appropriate mirror site for downloading Solr’s
latest version. In this case, since I’m running Windows, I will be downloading the zip file, solr-
4.10.2.zip. Source code is also available for download in solr-4.10.2-src.tgz, and if you need
an older version of Apache Solr, you can go to the Apache archives.

The file may take some time to download due to its 150-MB size. While you wait, now is a good
time to start checking your prerequisites, mainly Java. In older versions you could run on Java
1.6, but with Solr 4.8 and above, you need Java 7 (hopefully update 55 or later, as there are
known bugs in previous versions). At the time of writing of this book, 4.10.2 is Solr’s latest
version.

To confirm you have the correct Java installed, open the Windows command line, which can be
done via the Windows key + R, or typing cmd in the Start menu or Run screen. Now, within the

command line, please type java –version. The response will tell you which version of Java

you are running. A ‘java’ is not recognized as an internal or external command
response means Java is not properly installed. Please go back to Java’s installation instructions,
making sure the environment variable PATH correctly points to the Java directory. A correct
installation will show the following:

Figure 6: Output that should be seen from running "java -version"

http://lucene.apache.org/solr/

 23

23

I have Java 1.6 update 67, which means I am good to go.

Once your download is complete, extract all contents into a folder called c:\solr-succinctly in the
root of your hard drive.

Figure 7: Solr unzipped

In the solr-succinctly directory, you will find several folders and files. First, there are a few text
files, which include changes, license, notice, readme, and system requirements.

In the example folder, you will find a fully self-contained Solr installation. It comes complete with
a sample configuration, documents to index, and a web application server called Jetty for
running Solr directly out of the box. Remember, if you are a .NET developer, Jetty will be the
equivalent of IIS.

The Jetty application web server provided with this distribution is meant for development
purposes. However, there are full distributions of the same software available for production use
when you reach that point.

In the dist folder, you should find a file named Solr.war; this is the main Solr application that
you deploy to your application server in order to run Apache Solr. This folder also contains
many useful JAR files. To clarify, a JAR (Java Archive) is a package file format typically used to
aggregate many Java class files and associated metadata and resources (such as text, images,
etc.) into one file to distribute application software or libraries on the Java platform.

In the contrib folder, you should find Solr’s contribution modules. As with many open source
projects, what you'll find in here are extensions to Solr. The runnable Java files for each of these
contrib modules are actually in the dist folder.

In the docs folder, you'll find HTML files and assets that will increase your understanding of
Solr. You’ll find a good, quick tutorial, and of course, Solr’s core API documentation.

 24

I’ve seen a few people copy only the example folder to get Solr started, especially during local
deployments for development. It works, but will present you with a number of problems, as there
are dependencies that you'll almost definitely need to make things run correctly. It's always best
to copy the entire contents of the downloaded zip file. Paths are relative, however, meaning you
can easily rename example to something more meaningful without causing any significant
issues.

For my purposes throughout this book, I'll rename my cloned folder succinctly.

Starting Solr

Now that we have Solr, let’s fire it up and get the party started!

At this point you might be expecting a solrinstaller.exe. This is not how it works. It is a bit
different, although not complicated at all.

We’re now ready to run the Solr development environment using the included application web
server Jetty. A word of advice: Jetty is included with Solr, but it is not the only option. I also use
Tomcat for production purposes, and there are other alternatives. The bundled-in Jetty just
makes it a lot simpler to get started quickly.

I am using Windows right now, but the process is very similar in other operating systems.

The steps are extremely simple:

1. Open the command line, which can be done by typing cmd in the Windows Run dialog.
The Run dialog can be displayed with the Windows key + R.

2. Change the folder to the one you created previously, where you extracted Solr. Then, go
into the succinctly folder, which you recently cloned from example.

3. Now run java -jar start.jar. If all goes as expected, the console will start loading.
Initialization steps will be displayed in the command line; please expect a large of
amount of text to be shown. This is normal.

Figure 8: Starting Solr

4. And finally, the most important part of the setup: open a browser and navigate to
http://localhost:8983/solr. If you see the following, you should be smiling, because you
have Apache Solr running:

http://localhost:8983/solr

 25

25

Figure 9: Solr up and running

If you don't see the screen in Figure 9 in your browser, or if Solr does not load, please review
the text output in your console. Exceptions are visible in the messages—though sometimes they
are hard to find. The most likely scenario where Solr will not load is if there are errors in the
configuration files, most likely due to changes that have been made while experimenting.

Configuring Solr in a Different Port

Now it's time to learn how to make configuration changes to Solr. For our first example, we will
perform a very simple change to run it from a different network port. This change is a common
scenario, and usually required for things like corporate firewall rules. The following steps will
guide you through this process:

1. Navigate to the etc folder using Windows Explorer.

2. Open the jetty.xml configuration file with your text editor of choice. Notepad++ is a good
recommendation.

3. Look for the word port and within the node <New
class="org.eclipse.jetty.server.bio.SocketConnector"> you will see a
subnode with the default port 8983. Please make sure you are replacing the correct one,
which is not commented out.

4. Change it to 8984.

5. Go back to the Admin UI, modify your URL to point to the new port, and refresh.

Figure 10: Solr in another port

As you can see, the new port is not yet working as expected. You need to restart Solr. This is
NOT a hot swap change!

 26

To stop the current Solr instance, you need to change to the window where you started Solr,
and then press Ctrl + C so the service shuts down. Then restart using the same command as
before, java-jar start.jar. Solr will start. Now, if you refresh your browser, once again you'll

see Apache Solr, easy as that.

Figure 11: Restarting Solr

At this point I will revert back to using 8983, the default port, and restart Solr. These steps apply
only when using Jetty as an application web container. If you use Tomcat or another container,
you’ll need to use different configuration instructions.

Solr’s Admin UI

Solr features a web interface that makes it easy for administrators and programmers to view the
Solr configuration details, run queries, analyze document fields, and fine-tune a Solr instance,
as well as access online documentation and help. As shown in Figure 12, the admin section is
made up of the sections Dashboard, Logging, Core Admin, Java Properties, and Thread Dump.
There's also core selector (a drop-down list) with multiple different functionalities, and the main
working pane to the right of the menu.

Figure 12: Solr menu

 27

27

If you've already pointed your browser at http://localhost:8983/solr, then you’re ready to review
each section in turn.

Getting Assistance

Underneath the main work pane, you'll see a small, icon-driven menu.

The main objective of this menu is to give you quick access to the various help and assistance
resources available to Solr users. It is made up of the documentation, which is hosted here, and
has links pointing to the official issue tracker located on the JIRA network. There’s also a link to
the Solr IRC channel, the community forum, and the Solr query syntax guide, all of which is
going to be very useful.

Figure 13: Solr's working pane menu

Dashboard

The Dashboard is the default section that is loaded when you navigate to the Admin UI. It
displays information it collects on your Instance, System, and Java Virtual Machine (JVM).
Depending on your configuration, it has been observed that the memory graph may not display
information when Windows virtual memory is set to automatic, or when the system is configured
not to use Swap memory.

Logging

The Logging section displays messages from Solr's log file. When you start Solr, you only have
one core, but if you have multiple cores, then all of the messages will be displayed.

Figure 14: Solr Logging

Underneath the Logging menu item, you see the hierarchy of class maps and class names for
your instance. Click the column at the right and select the logging level from All, Trace, Debug,
Info, Warn, Error, Fatal, Off, and Unset as shown in Figure 15.

http://localhost:8983/solr
http://lucene.apache.org/solr/

 28

Figure 15: Solr Logging hierarchy

Core Admin

As you might remember from a previous section, we mentioned Lucene cores. A core is a full
copy of a Lucene index with its own schema and configuration.

You can manage your cores in the core admin section. The buttons at the top allow you to add a
core, unload one of the existing cores, rename a core, swap a core, reload the core with any
changes made since the last reload, and optimize a core.

Figure 16: Core admin

Tip: When you click the Reload button, you have to wait for the button to turn green, or your

changes will not take effect. The commands here are the same ones available through the

core admin handler, but they are provided in a way that is easy to work with. If there are

problems loading the core, you will see the exceptions in the log, or if you started from the

console, the commands will also be displayed there. Restarting Solr will also load all cores,

including new ones.

 29

29

Java Properties

The Java Properties screen allows easy, read-only access to one of the most essential
components of a top-performing Solr system. It allows you to see all the properties of the JVM
running Solr, including the class paths, file encodings, JVM memory settings, operating system,
and more.

Figure 17: Java Properties Thread Dump

The Thread Dump screen lets you inspect the threads currently active in your server. Each
thread is listed, and access to the stack traces is available where applicable. There's also an
icon that indicates state; for example, a green check mark signifies a runnable state. The
available states are new, runnable, locked, waiting, time waiting, and terminated.

Figure 18: Thread Dump

Core Selector

The core selector allows you to select or find a specific core. Click Core Selector, and a drop-
down menu will appear. You can start typing your core’s name, which comes in handy when you
have many cores, or you can click the name of your desired core. Once you have selected your
core, you’ll be able to perform core-specific functions. When you click on the core, it will start by
displaying the Overview with the statistics for this particular core.

 30

Figure 19: Core drop-down menu

Analysis

The Analysis screen lets you inspect how your data will be handled during either indexing or
query time, according to the field, field type, and dynamic role configurations found in the
schema.xml. Ideally, you would want content to be handled consistently, and this screen allows
you to validate them in the field type or field analysis chains.

This screen is also very useful for development when selecting analyzers for debugging
purposes. Analyzers will be mentioned later in this book.

Figure 20: Analysis

DataImport

Some of the most common data sources include XML files and relational databases. Therefore,
we need an easy way to import from databases and XML files into Solr. This is achieved using
the DIH or data import handler. It is a contrib that provides a configuration-driven way to import
data into Solr in both full builds and incremental delta imports. The DIH within the admin UI
shows you the information about the current statuses of the data import handler.

In the current instance, there are no data import handlers configured, and they will not be
covered in this book. However, if you want to learn how to configure and use data import
handlers, your current Solr download comes with a predefined example that is easy to start and
test. Please go to the example-DIH folder in C:\solr-succinctly\example\ and open
Readme.txt. Follow the instructions you find there to get started.

 31

31

Documents

The Documents screen allows you to execute multiple Solr indexing commands in a variety of
formats directly from the browser. It allows you to copy or upload documents, JSON, CSV, and
XML and submit them to the index. You can also construct documents by selecting fields and
field values. You should always start by defining a request handler to use by typing the name of
the handler in the Request-Handler (qt) textbox. By default, /update will be defined.

Figure 21: Request handler

 32

Files

The Files screen is used to browse and view the various configuration files for a specific core
(for example, solrconfig.xml and schema.xml). It is read-only, and it is a great way to access
your files without having to actually log into the machine.

Figure 22: Files screen

Ping

You can ping a specific core and determine if it is active. It is very simple to use; simply click this
option, and it tells you how many milliseconds it took for it to respond.

Plugins and Stats

The Plugins and Stats display shows statistics like the status and performance of the caches,
searches, and configuration of handlers for both search as well as request handlers. A snapshot
is taken when the page is loaded, and you can either watch changes or refresh the values by
clicking on the marked menu items.

Figure 23: Plugins and Stats

 33

33

Query

The Query section is probably one of the most important parts of the admin UI. It's where you
submit a structured query and analyze the results. The Admin UI includes a set of options for
the multiple available parameters to make the user’s life simpler, including:

 request-Handler(qt): Specifies the request handler to use; it uses the standard if it's not
specified.

 q: The query, for which results returned will be ranked from more relevant to least
relevant.

 fq: The filter query, basically used to narrow down result sets. The difference with q is
that fq does not affect ranking.

 sort: Tells Solr by which field you want sorting to be applied, either ascending or
descending.

 start, rows: Controls how many results and starting where should be returned. Used
mainly for paging.

 fl: Specifies which fields should be returned in the response. If not specified, all are
returned. In Solr 4 and above, you can specify functions (a more advanced topic).

 df: The default field; it will only take effect if the qf (Query Fields) is not defined.

 wt: The response writer, which indicates how to format the response; for example, XML
or JSON.

 indent: Makes it more readable.

 debugQuery: Used to display debug information

 dismax: Ticking this checkbox displays the DisMax query parser parameter. DisMax is
already the default query parser in newer versions of Solr.

 edismax: Displays the Extended Dismax Parameters, which is an extended query
parser used to overcome the limitations of DisMax.

 hl: Enables highlighting of results.

 facet: Displays faceting parameter options.

 spatial: Shows options for spatial or geo-spatial search.

 spellcheck: Enables spell checking of results.

If an option is not available in the Admin UI, there are always the “Raw Query Parameters,”
which basically just pass along the specified parameters to Solr verbatim.

The options I just mentioned will be covered more in Chapter 8.

When you execute a query within the Admin UI, the results will load in the right-most panel. This
makes it very simple to run queries, review results, tweak, and run queries again.

Depending on your browser and configuration, one tip that I have for you is to open the results
within the browser and use XML instead of JSON. I normally use Google Chrome, and the
browser presents the XML in such a way so that you can expand and contract each section,
making it easy to view all results. Simply click the box with a link above the results that looks like
the one shown in Figure 24:

 34

Figure 24: Click to open query

Now let’s take a quick look at a response, which is made up of several sections that can include
the following:

 Response header: Includes the status, the query time, and the parameters.

 Results: Includes the documents returned from the search engine that match the query
in doc subsections.

 Facets: Items or search results grouped into categories that allow users to refine or drill
down in specific search results. Each facet also displays number of hits within the search
that match each specific category.

I encourage you to play around and experiment with the query section; this is where you learn
the most about Solr.

The following figure shows you how a typical response might look:

Figure 25: Example of a Solr response

 35

35

Replication

Replication using Master and Slave nodes is the old method of scaling in Solr. The replication
screen lets you enable or disable replication. It also shows you the current replication status; in
Solr, the replication is for the index only.

Replication has been superseded with SolrCloud, which provides the functionality required to
scale a Solr solution. However, if you're still using index replication, you can use this screen to
see the replication state.

Schema Browser

The Schema browser displays schema data. It loads a specific field when opened from the
analysis window, or, if you open it directly, you can select a field or field type. If you click on the
load term info, it will show you the top end terms that are in the index for that field. And if you
click on a term, you will be taken to the query screen to see the results of a query of that term in
that field.

You can load the term information for a field if there are terms for that specific field. A histogram
will show the number of terms with a given frequency in that field. This may be a bit confusing in
the beginning, but later on it will be pretty useful.

Figure 26: Schema browser

Summary

We have concluded the quick tour of the Admin UI. The objective was to provide you with an
overview of the many different components of the Admin UI, and explain what are they used for.

The next step in this journey is to move on to understanding how we model our data according
to Solr’s needs, and for this purpose, we will use the sample data provided.

 36

Chapter 4 Your First Index

Solr’s Sample Data

At this point, you should have a running Solr instance and a good understanding of the tooling
available to you in the Admin UI. Now, it’s time to start making Solr work for us.

Start by opening a command prompt and navigating to the exampledocs folder located within

C:\solr-succinctly\succinctly\. If you shut down your Solr, start it again with java -jar
start.jar. Make sure you do this in a different command prompt, however, as you'll need to

type in the first one while Solr is running.

Within exampledocs, there are several CSV and XML files with sample data ready to be

indexed and the distribution includes a simple command line tool for POSTing data to Solr,
called post.jar. For instructions and examples on usage, use the following command:

Java -jar post.jar -help

Figure 27: Help for post.jar

Before we start indexing any documents, let’s first confirm that we don't have any documents in
the index. One way to do so is to navigate to the Admin UI, chose collection1 from the Core

Selector, and click on Query. Then, at the bottom of the section, click Execute Query or click
on any of the non-multiline text boxes, and push Enter.

All-in-all this constitutes quite a few steps—there is, however, a quicker way. Navigate directly
to Solr via its RESTful interface, querying for all documents. This will not use the Admin UI; it
will just run the query. The URL looks like this:

http://localhost:8983/solr/collection1/select?q=*%3A*&wt=json&indent=true

As you can see in the results, we have zero documents in our index.

http://localhost:8983/solr/collection1/select?q=*%3A*&wt=json&indent=true

 37

37

Figure 28: No documents in the index

Time to upload the sample data. From exampledocs in your command prompt, type:

Java -jar post.jar *.xml

Figure 29: POST example files

All the XML files supplied have been posted directly into my index and have been committed;
this has all been done automatically by the POST tool. It's also worth noting that a simple
mistake that many people make is they post data to the index, but forget to commit. Data is only
ever available for searching if you remember to execute the commit; however, since the post
tool does this for you automatically, it's a mistake you often won't make.

Post.jar is only one way of indexing documents. Another mechanism is the data import handler,
which allows connections to databases and imports data in either full or incremental crawls. You
can also add XML, JSON, CSV, or other types of files via the Documents section in the Admin
UI. Additionally, you can use a client library, like SolrNet or SolrJ, and there are multiple
content-processing tools that post documents to the Solr index. One that I see being used all
the time is Search Technology’s ASPIRE, which has a PostToSolr functionality.

Switch back to your browser and run the default query again. You should now see 32
documents in your index. The following figure shows the output you should now get, allowing
you to become familiar with Solr responses.

 38

Figure 30: Example documents indexed

At this point, you’ve run a couple of queries, which amounts to asking your search engine to
perform a basic query. You did this in two ways: first by using the Query section in the Admin
UI, and second by using Solr’s RESTful interface.

Figure 31: Solr query

Simple Anatomy of a Query and a Response Query

If you select a core, click Query, and press Enter, you will be able to see a query and a
response. In this section, we'll start to really understand what is actually happening by using the
sample data we just uploaded into collection1.

Tip: If your browser supports XML formatting (like Google Chrome does), you can make a

quick change for easier readability. Please open the response in your browser, look for the

wt=json parameter in the URL, and change to wt=xml. The wt is the response writer, which

tells Solr how to format the response. Try it.

 39

39

As we've seen so far, Solr uses a fairly standard RESTful interface, which allows you to easily
see the URL used to make a query; like any standard URL, it’s made up of the host name, the
port number, and the application name.

The request handler for queries (in this case we're using select) is the default request handler,
and is the Solr equivalent of “Hello World.” The default query of exampledocs is made up of the
following URL parameters:

URL Description

http://localhost:8983/solr This is the URL where Solr is hosted.

/collection1 The second part of the URL indicates the collection that
you are currently working on. Given that you can have
multiple collections within a server, you need to specify
which one you want to use. Believe it or not, at some
point Solr could host only one collection.

/select? The next URL part indicates which request handler you
are using. Select is the default handler used for
searching. You can also use /update when you want to
modify data instead of querying. It is possible to create
your own according to your needs.

q=*%3A*&wt=json&indent=true Everything after the ? are the query parameters. Like
any URL text, it needs to be properly escaped, using
correct URL encoding rules.

Like with any technology, the best way to learn and understand is to play with it; imagine Solr's
default install as your big data and enterprise search training wheels. Open the Admin UI,
change the parameters, and see how your results are modified and what differences your
changes make to the search. Once you've tried a few queries and gotten a feel for how they
work, you’re ready to move on.

Response

When you run a query, the response you get will contain two full sections:

 ResponseHeader

 Response

 40

You can see an example in the following figure:

Figure 32: Solr response

The ResponseHeader contains information about the response itself. The status tells you the

outcome; 0 stands for OK. If you query for a nonexistent request handler, you would get a 404

response code as the HTTP response.

The ResponseHeader also includes QTime, which is the query execution time and echoing of
the parameters.

Figure 33: Response header

The response section includes the results of those documents that matched your query in doc
subsections or nodes. It includes a numFound that indicates how many documents matched your

query, and start, which is used for paging.

Other Response Sections

 highlighting: Allows fragments of documents that match the user's query to be
displayed in the response.

 facet_counts: Shows the facets that have been constructed for the result list, including
the facet fields and facet values (with counts) to populate each field.

 spellcheck: Will include suggestions for possible misspellings in the user's query.

 debug: Intended for development and debugging. Only included if specified as part of
the query. Among its subsections, it includes explain to understand how each
document scored according to the in-relevancy ranking algorithm, and timing to
understand how long each component took for processing. In parsedquery, it displays
how the query string is submitted to the query parser.

 41

41

Figure 34: A Solr document

Docs and Modeling Your Data

You are probably wondering at this point how we model our data within Solr. That’s where one
of the main configuration files comes into play—you model your data and specify to Solr how to
handle it in the Schema.xml file. The following figure shows an example.

Figure 35: Example docs schema

Each document has a set of fields, and each field can be of a different type. In this specific
sample case for the documents we just uploaded, we can see that we have id, sku, name,

manu, cat, features, includes, weight, price, popularity, inStock, and store.

The schema also includes a series of common metadata fields, named specifically to match up
with Solr Cell metadata.

 42

Note: Solr Cell is a functionality that allows sending rich documents such as Word or PDF

documents directly to Solr for parsing, extraction, and indexing for search. We will not be

covering SolrCell in this book.

To use an analogy: if you are familiar with databases, then a doc would correspond to a row.
The name would be the column name, and type is exactly the same thing—it indicates what
type of information will be stored in this specific field. Required indicates if it is mandatory, just
like specifying NOT NULL in the structured query language.

The ID in this specific case is just like the primary key, the unique id for the document. It is not
absolutely required, but highly recommended. You specify which field you want to be the
primary key in the schema in <uniquekey>.

Figure 36: Unique key ID

And now let’s get to some specifics:

 Indexed=“true|false” is used to specify that this specific field is searchable. It has to be
added to the index to be searchable.

 Stored=“true|false” can be hard to swallow at first. If you specify that a field is not stored,
then whenever you run a query, the original value of that field is not returned. There is,
however, one point that is very important. You can set a field to stored=“false” and
indexed=“true”, meaning that you index the data, but the data itself for that field is not
saved in Solr, so you can’t extract it as part of the results.

Note: While this might seem counter-intuitive, there's actually a pretty simple reason for

it. Let’s imagine you have some very large fields and you don’t care about retrieving the

full text; e.g. finding which documents contain the specific terms searched. This gives

you a very fast search solution with a very low memory footprint, allowing the client to

retrieve the larger amount of data at his own discretion.

 Multivalued=“true|false” indicates whether you want to hold multiple fields within the
same field. For example, if a book has multiple authors, all of them would be stored in
one field.

Solr supports many different data types, which are included in the Solr runtime packages. If you
want to get very technical, they are located in the org.apache.solr.schema package.

Here is the list according to Solr’s wiki:

 BCDIntField

 BCDLongField

 BCDStrField

 BinaryField

 BoolField

 FloatField

 ICUCollationField

 IntField

 LatLonType

 LongField

 SortableLongField

 SpatialRecursivePrefixTr
eeFieldType

 StrField

 TextField

 43

43

 ByteField

 CollationField

 CurrencyField

 DateField

 DoubleField

 EnumField

 ExternalFileField

 PointType

 PreAnalyzedField

 RandomSortField

 ShortField

 SortableDoubleField

 SortableFloatField

 SortableIntField

 TrieDateField

 TrieDoubleField

 TrieField

 TrieFloatField

 TrieIntField

 TrieLongField

 UUIDField

It is worth mentioning that there is something called Schemaless mode, which pretty much
allows for you to add data without the need to model it, as well as dynamic fields. We will not be
covering them in this book.

Playing Around with Solr

With our first Solr “Hello World” query, we simply looked for *:*, meaning all values for all fields,
which returned all 32 documents. Let’s raise the stakes a notch and play around with a few
queries, changing different parameters as we go. We won’t get too complicated; we’ll just show
a few examples to help you understand some of the basic functionalities of Solr.

A “Real” Query with Facets

In this example, we will run a specific query of *:* and ask for facets to be included.

Using the cores dropdown menu in the Admin UI, select the collection1 core, type in video in
the q field, check facet, and select xml as the response writer (wt). Type in manu as the facet

field and execute the query using the Execute Query button.

It should look like this:

Figure 37: Running a query

 44

Two things should definitively stand out from the response. First, you will see only relevant
results; in this case, three documents matched instead of 32.

Figure 38: Three documents found

More importantly, you can now see facets for manu. We will get into more details later about

facets, but for now please take a look at the list within facet_fields called manu, which holds

the list of all manufacturers, sorted from highest occurrence to lowest. It includes the names and
a count. Facets are also called navigators, and they allow drill down on specific result sets. In
this example, given that the list is very long, I have included an ellipsis (…) to indicate that there
are many more results, mainly with 0 values; you can see this reflected in the figure below.

Figure 39: Facets

Fields

At the present moment we are returning all fields, which may or may not make sense,
depending on your specific needs. If you need to provide all fields back to the application, then
there is no need to use fl (fields) input. If you want smaller responses to help with

performance, especially when using large documents, just include the list of fields that you want
returned in fl. Simply type them in separated by a blank space or comma. This also helps with
readability while querying for testing.

 45

45

Figure 40: Returning specific fields

A very neat and useful trick is to include score as a field, which will tell you the score (or how
relevant a document is) from the result set. Try adding a query to the previous search; I will add
q=drive, include the score field, and execute and analyze the results, as you can see in the fl

field in the following figure.

Figure 41: Include Score as a Field

Results are ranked from highest to lowest score, or most relevant to least relevant. That is, of
course, if no other sorting is applied.

Sorting

To take advantage of the ability to select which fields to display, let’s try sort. Sorting to a query
is a very simple process—simply type in the field you want to sort on, and then either asc

(ascending) or desc (descending), as the next figures demonstrate.

 46

Figure 42: Sorting ascending

Figure 43: Sorting descending

You can also sort on more than one field at a time. To do this, simply specify the field name, the
sort direction, and then separate the groups with a comma. For example: name desc, id asc.

 47

47

Paging: Start and Rows

You can add paging to your applications using Start and Rows. Start is the offset of the first
record that you are returning. For example, if you run a query, 10 results are returned by default.
You know that you want the second page, so you run the same query, but with start=11 and
rows=10, thus producing the second page also containing 10 results.1

Learning the Difference between Queries (q) and Filter Queries (fq)

I have already mentioned how q calculates results based on relevancy, and fq is only used to
drill down. I also mentioned that fq is very efficient in terms of performance; the reason for this is
that filter queries cache results and only stores ids, making access very fast. Now that we’ve
learned how to get a score for our results, we can prove that this is indeed the case.

The steps to do this are very simple:

1. Open two windows, and in each one, navigate in the Admin UI to the query section of
collection1. You will be running in both windows. Write down drive and include the
following four fields in the fl section: id name cat score. For readability, if your browser
supports nice XML formatting, please change wt to xml.

1 It is worth mentioning that if you have “deep paging,” you are asking with very large offsets (i.e. rows=1000000).
Then it is very inefficient, as Solr needs to calculate in memory the first 999999 results to return the results. In such
cases (for example, extracting all records of a large result set), the recommendation is to use cursors.

 48

Figure 44: Query for drive

2. When you execute the query you will get three results, two of which have a category of
“hard drive.”

We just ran a query using the q field. Let’s now run a new query using fq instead. The intention
is to prove how q and fq affect queries in a different way. The bottom line is that q affects
ranking, while fq does not. It is extremely important to understand this difference, as using them
incorrectly will bring results that are not as relevant as they should be.

Query

Please reload the Admin UI in both windows so that we can start from clean query pages.

In one of the windows, add in the q input box the following query: drive AND cat:“hard drive”. Be
careful with capitalization, and remember to include the following four fields in the fl section: id
name cat score. Your query should look like the following.

 49

49

Figure 45: No filter query

Your result should look like this:

Figure 46: No filter query response

Filter Query

In the other window, set q=drive and add cat:“hard drive” within fq. As before, include the four
fields in the fl section: id name cat score. Your query should match the following:

Figure 47: Query and filter query

You will get the following result:

 50

Figure 48: Query and filter query response

When you look at the response results, using 'fq' doesn't affect the score. The first run took

the longest, and the second was quicker. The third run using 'fq' has not changed at all,

showing that Solr has just returned the results already cached from the previous queries.

Element/Score q=drive
q=drive& fq=cat="hard

drive"
q=drive AND cat="hard

drive"

6H500F0 0.81656027 0.81656027 3.035773

SP2514N 0.6804669 0.6804669 2.9439263

0579B002 0.33681393 -- --

Summary

In this chapter, you’ve learned how to load Solr’s sample documents and how to run a few
simple queries. We’ve discussed the anatomy of a simple query and response, and finally,
proved the difference between q and fq in terms of ranking. In the next chapter, we'll continue
by learning how to create a schema for our own documents.

 51

51

Chapter 5 Schema.xml: The Content

Have you ever heard of the learning triangle? It basically states that the level of mastery on any
specific topic increases as you go through the following process: reading, seeing, hearing,
watching, doing, and teaching. You are reading this right now, but to maximize the learning
process, I encourage you to follow along in your own Solr installation.

In this chapter, we will create our own example using real-life data: a list of books in the
Syncfusion Succinctly Series. It's not a large set of data, but it'll do just fine for me to
demonstrate the steps required to index your own content.

Our Own Example

I chose the Succinctly series because it is something that I identify with, and it is easy to
understand. We will take the library and create an application to index the books, and allow
people to browse them via tags or by text searching. Let’s get this party started!

Figure 49: Syncfusion Succinctly Series

We will start by indexing data for only three fields, and then over the course of the chapter,
incrementally add a few more so we can perform queries with faceting, dates, multi-values, and
other features that you would most likely need in your application. Let’s take a quick look at our
sample data to see what it contains. As you can see, we have things like book title, description,
and author. We will be using a CSV file; however, for display, I am currently showing you the
data using Excel.

 52

Figure 50: Sample data

Whenever you want to add fields to your index, you need to tell Solr the name, type, and a
couple of other attributes so that it knows what to do with them. In layman’s terms, you define
the structure of the data of the index.

You do this by using the Schema.xml file. This file is usually the first one you configure when
setting up a new installation. In it you declare your fields, field types, and attributes. You specify
how to treat each field when documents are added to or queried from the index, if they are
required or multi-valued, and whether they need to be stored or used for searching. Even
though it is not required, you can also declare which one is your primary key for each document
(which needs to be unique). One very important thing to remember is that it's not advisable to
change the schema after documents have been added to the index, so try to make sure you
have everything you need before adding it.

If you look at the schema.xml provided in your download, you'll see it includes the following
sections:

Version

The version number tells Solr how to treat some of the attributes in the schema. The current
version is 1.5 as of Solr 4.10, and you should not change this version in your application.

Figure 51: Version number

Type Definitions

Logically there are two types: simple and complex. Simple types are defined as a set of
attributes that define its behavior. First you have the name, which is required, and then a class
that indicates where it is implemented. An example of a simple type is string, which is defined
as:

 53

53

Figure 52: Type definition

Complex types, besides storing data, include tokenizers and filters grouped into analyzers for
additional processing. Let’s define what each one is used for:

Tokenizer

Tokenizers are responsible for dividing the contents of a field into tokens. Wikipedia defines a
token as: “a string of one or more characters that are significant as a group. The process of
forming tokens from an input stream of characters is called tokenization.” A token can be a
letter, one word, or multiple words all embedded within a single phrase. How those tokens
emerge depends on the tokenizer we are currently using.

For example, the Standard Tokenizer splits the text field into tokens, treating whitespace and
punctuation as delimiters. Delimiter characters are discarded, with a couple of exceptions.
Another example is the Lower Case Tokenizer that tokenizes the input stream by delimiting at
non-letters and then converting all letters to lowercase. Whitespace and non-letters are
discarded. A third one is the Letter Tokenizer, which creates tokens from strings of contiguous
letters, discarding all non-letter characters. And the list goes on and on.

Filter

A filter consumes input and produces a stream of tokens. It basically looks at each token in the
stream sequentially and decides whether to pass it along, replace it, or discard it. It can also do
more complex analysis by looking ahead and considering multiple tokens at once, even though
this is not very common.

Filters are chained; therefore, the order affects the outcome significantly. In a typical scenario,
general filters are used first, while specialized ones are left at the end of the chain.

Analyzers

Field analyzers are in charge of examining the text of fields and producing an output stream. In
simpler terms, they are a logical group of multiple operations made up of at least one (but
potentially multiple) tokenizers and filters. It is possible to specify which analyzer should be used
at query time or at index time.

Figure 53: Analyzers

Back to Complex Types

Let’s take a look at one example. In this case, we are going to use one of the most commonly
used types, text_general. By using this field to store text, you will be removing stop words and

applying synonyms at query time, as well as other operations. Also, you can see that there are
two analyzers: one for query time, and the other for index time.

 54

Figure 54: Text general type

Field Definitions

In this section, you specify which fields will make up your index. For example, if you wanted to
index and search over the books in Syncfusion’s Succinctly Series or Pluralsight’s Online
trainings, then you could specify the following fields:

Figure 55: Solr fields for sample data

A field definition has a name, a type, and multiple attributes that tell Solr how to manage each
specific field. These are known as Static Fields.

Solr first looks for static definitions, and if none are found, it tries to find a match in dynamic
fields. Dynamic fields are not covered in this book.

 55

55

Copy Fields

You might want to interpret some document fields in more than one way. For this purpose, Solr
has a way of performing automatic field copying. To do this, you specify in copyField tag the

source, description, and optionally, a max size as maxChars of the field you wish to copy.

Multiple fields can easily be copied into a single copyField using this functionality.

Figure 56: Solr copy fields

Copy fields can also be specified using patterns; for example, source="*_i" will copy all fields
that end in _i to a single copyField.

Field Properties by Use Case

In the Apache Solr documentation wiki, there is an incredibly useful table that tells you the
required values of the attributes for each use case. I am copying the table here verbatim, and
will explain with an example. Please look for “Field Properties by Use Case” in the Solr wiki for
more information.

Figure 57: Field properties by use case

The way to use this table is to look for the specific scenario that you want for your field, and
determine the attributes. Let’s say you want a field where you can search, sort, and retrieve
contents.

This means there are three scenarios: Search within field, Retrieve contents, and Sort on field.
Looking for the required attributes in the columns, you would need to set indexed=“true”,
stored=“true”, and multivalued=“false”.

https://wiki.apache.org/solr/

 56

Common Mistakes with Schema.Xml

Now let's talk about how to avoid some of the mistakes that people make with the schema.xml.

1. You need to keep your schema.xml simple and organized. I actually have a friend that
cleans up the entire schema.xml first, then adds the sections that she needs. I think you
may not actually need to go to that extent, but everybody has their own way of working.

2. There's the other extreme where some people just change the field names from the
default configuration. I say this could bring some unintended consequences, as you will
be copying the fields into other fields that you don't actually intend to.

3. And then there's another extreme, where there are some people who do a lot of over-
planning and have the “everything but the kitchen sink” methodology. They over-plan for
things that they don't even intend to use. There is an acronym that describes this very
well: YAGNI, or, “you aren’t gonna need it.” Planning is good, but over-planning is
usually bad. Don't include attributes and fields that you don't need.

4. Finally, this may not be a mistake, but it's a good recommendation: upgrade your Solr
when possible. Solr has a very active development community, and you should upgrade
when there are new versions available. Of course, stick to what works with your
development capacity.

Succinctly Schema.Xml

It’s time to make it our own Solr with our data. We will take our sample data, which can be found
in GitHub in the following repository: https://github.com/xaviermorera/solr-succinctly.git.

Figure 58: The exercise repository

https://github.com/xaviermorera/solr-succinctly.git

 57

57

The repository includes two main folders:

 The source files for the exercises, located in the assets folder. It is under 50KB in size,
so you can download them separately if required.

 A finished example, which you may not need if you follow the instructions provided in
this book.

Understanding the documents that we will index in this demo is easy. In the real world, it can be
trickier.

Create Your Collection

Up until now, we indexed some sample documents included in the Solr download. We will use
this collection as a base to create our own, and will use a more appropriate name. It is worth
mentioning that whenever the word “document” is used, it refers to a logical group of data. It is
basically like saying a “record” or “row” in database language. I’ve been in meetings where non-
search-savvy attendees only think of Word documents (or something similar) when we use this
specific word. Don’t get confused.

Here are the steps to create our first index:

 Open the command line and navigate to where we unzipped Solr earlier. It should be in
C:\solr-succinctly\succinctly\solr. This is where collection1 is located.

 In this directory, you will find the collections that are available in the current installation.
Right now, we only have collection1. We need to clone collection1, so please copy and
paste, and rename the new collection to succinctlybooks.

Figure 59: Create succinctlybooks collection

Now go into the succinctlybooks folder and open core.properties. Here is where you specify

the name of the core, which is also called collection. It should look like this:

 58

Figure 60: Name the collection

Now restart your Solr and go to the Core Selector. Succinctlybooks should be displayed.

Figure 61: New collection loaded

If you forget to rename the collection name within core.properties and try to restart, you will

get an error telling you that the collection already exists. The error displayed in the console will
be similar to the following:

2972 [main] ERROR org.apache.solr.core.SolrCore
ull:org.apache.solr.common.SolrException: Found multiple cores with the name
[collection1], with instancedirs [C:\solr-succinctly\succinctly\solr\collection1\]
and [C:\solr-succinctly\succinctly\solr\succinctlybooks\]

Quick Cleanup

It is not a requirement to clear the index and comment out the existing fields; however, given
that we have data in our index, we need to do it to avoid errors on fields we remove and types
we change.

The following two steps will show you how to ensure we clean out the redundant data.

Step 1: Clear the index

The collection that we just copied came with the sample data we indexed recently. So where
does Solr store the index data? Inside the current collection in a folder called “index” in the data
folder. If you ever forget, just open the Overview section in the Admin UI section where you can
see the current working directory (CWD), instance location, data, and index.

 59

59

Figure 62: The index as seen in the Admin UI

In our case, it can be found here: C:\solr-succinctly\succinctly\solr\succinctlybooks\data\index. If
you view the folder contents, this is what a Lucene index looks like:

Figure 63: A Lucene index

The next step is to clear the index, as we will be modifying the fields so that we can create our
new index. Please stop Solr first by typing Ctrl + C from the console window where you started
Solr, open Windows Explorer in your Lucene index, select all files within the index, and delete.

When you restart Solr, your index now has 0 documents. We now have an empty index to start
with.

It is necessary to point out that if you do not delete the index, we will be changing the
uniquekey from string to int. Given that some of the keys in the original samples have keys

that look like “MA147LL/A,” you will get the following error when you restart:

Figure 64: A Solr error

 60

Soon, we will be changing our uniquekey’s name, but not its type. If you insist that you want int

as the type for bookid instead of string, you will get the error I just showed you at the start,

even if you have a clean index. Figure 65 shows the error you will run into if you do not follow
the instructions.

Figure 65: A Solr error stack trace

I’ll leave it to you to play around and figure out what the elevate.xml file is used for, which is

one of the two potential culprits of this error:

Figure 66: Elevate.xml

Step 2: Comment out existing fields

There are two sections that I like to remove within Schema.xml:

 The field definitions for the out-of-the-box sample data.

 Solr Cell fields.

First, look for the definition of id and comment it out all the way to store, as shown in the
following image. Do it with an XML comment, which starts with <!-- and ends in -->.

 61

61

Figure 67: Commenting out existing fields

Now let’s look for the Solr Cell fields, and comment out from title all the way to links. There are a
few more fields that you should comment out, which are content, manu_exact, and payloads.

Notice I did not comment out text, as it is a catchall field implemented via copyFields. We will

soon get to it.

Figure 68: Solr Cell fields

Finally, look for copyFields and comment them out.

 62

Figure 69: copyFields commented out

Leave dynamicFields and uniqueKey as they are; we will get to them soon.

Start by Understanding Your Data

Creating a search UI for Syncfusion’s Succinctly series could take a long time, and potentially
give you some headaches—or it can be done rather quickly, if you have the proper resources.
And if you have this book in your hands, you are in luck, as you have a proper resource. Here is
the data that we will be using:

Figure 70: Row of source data

 Bookid: The book id is just a number that will serve its purpose as a unique key.

 Title: The title of the book. This is the text that will be searched, stored, and retrieved.

 Description: A slightly larger text, with the description of the book.

 Author: The Succinctly series usually includes only one author per book; however, it is
potentially multivalued, so we will declare as such. We will use this one as a facet.

 Tags: Another multivalued field; we’ll use it also as a facet.

Open the schema.xml file for the "succinctlybooks” collection in Notepad++ or any other text
editor. In case you forgot or skipped the previous exercises, it is located here: C:\solr-
succinctly\succinctly\solr\succinctlybooks\conf.

 63

63

It is time to define our static fields. The fields should be located in the same section as the
sample data fields that we just commented out. Please look for the id field definition, and add
them at the same level, starting with bookid.

Bookid will be our unique key. We declare a field with this name, and add the type, which in this

case is string. If you want, it can also be an int; it does not really make a big difference.

Given that it is a uniquekey, it needs to be indexed to retrieve a specific document; it is

required, and unique keys cannot be multivalued. Remember Field Properties by Use Case?
Also, please be mindful of capitalization; for example, multiValued has an upper-case V.

Figure 71: Bookid

We changed the name of the unique key from id to bookid. Look for the uniquekey tag and

change accordingly.

Figure 72: Unique key changed

And now we define the rest of the static fields. You should end up with some entries in the
schema like this:

Figure 73: Schema entries

You may have noticed by now that title and description are of type text_general, while author

and tags are of type string. As you might have guessed, these are different data types in the

Solr landscape.

String is defined as a simple type with no tokenization. That is, it stores a word or sentence as
an exact string, as there are no analyzers. It is useful for exact matches, i.e. for faceting.

Figure 74: String definition

On the other hand, the type definition of text_general is more complex, including query and
index time analyzers, for performing tokenization and secondary processing like lower casing.
It’s useful for all scenarios when we want to match part of a sentence. If you define title as a
string, and then you searched for jquery, you would not find jQuery Succinctly. You would need
to query for the exact string. This is not what we would most definitively want.

 64

Figure 75: Querying the string

We will be creating facets for tags and authors, which means a string is the correct type to use
for these. Will we be able to find them if we only type the name or last name? Let’s wait and
see.

Summary

In this chapter, we started looking at the schema.xml file. We found out how important this file is
to Solr, and we started editing it to define our own collection containing information about the
Succinctly e-book series.

In the next chapter, we'll move on to the next stage in our game plan and cover the subject of
indexing.

 65

65

Chapter 6 Indexing

Making Your Content Searchable

When you hear the word “indexing” in the context of Solr—or other search engines for that
matter—it basically means taking content, tokenizing it, modifying it if necessary, adding it to the
index, and then making it searchable. Solr retrieves results very fast because it searches an
inverted index, instead of searching text directly.

But what exactly is an inverted index? It is a data structure that stores a mapping from content,
like words or numbers, to its location in a set of documents. Because of this, searching
becomes very fast, as the price is paid at indexing time instead of at query time. Another way of
referring to an inverted index is as a postings file or inverted file. So if you hear any of these
three terms, they mean the same thing.

During indexing, Solr inverts a page-centric data structure to a keyword-centric data structure. A
word can be found in many pages. Solr stores this index in a directory called index in the data
directory. There are many ways of indexing your content; in this chapter, I'll introduce you to a
couple of them.

Indexing is nothing new—humanity has been doing it for centuries! This is something that we do
all the time in our busy lives. The index at the back of a book for example, or a TV guide telling
you which programs are on your TV stations, are both perfect examples of indexing in action.

You use them by quickly scanning a predefined list, looking for some meaningful keyword or
topic. Once the keyword or topic is found, the entry will contain some kind of a pointer (for
example, a page number) that allows you to go straight to the information you seek.

Figure 76: A textbook index

 66

Indexing Techniques

We've already indexed some data using the post.jar tool, but there are many more options:

 You can use the Solr cell framework built on Apache Tika for binary files, like PDF,
Word, Excel, and more.

 It is also possible to upload XML files by sending them via HTTP requests.

 The DataImportHandler allows accessing a database to retrieve data, but it is not
limited to databases. The DataImportHandler can also read from RSS feeds or many
other data sources.

 You can also build your custom Java application via Solr's Java client API, SolrJ.

 And for those of you who love .NET like I do, you have SolrNet.

 As I mentioned before, there are other content processing pipeline tools like the Search
Technologies ASPIRE post-to-Solr tool.

 And finally, you can build your own on top of Solr’s RESTful interface.

Indexing the Succinctly Series

In this section, we will play around with data by indexing, updating, and deleting. The focus here
is to do things in a few different ways so that you can improve your skills.

Here is what we will do:

 Start by indexing using CSV and the post.jar tool.

 Then, learn how to update documents using the Admin UI.

 Next, we go into how to delete documents.

 Next, we’ll cover the Solr XML format.

 Finally, we’ll be indexing with two useful tools, cURL and Fiddler.

Indexing Documents Using CSV

Indexing documents is very easy if you have structured and properly escaped CSV files of your
data. We've already defined the static fields in our Schema.xml, so next we need to get our data
imported.

Start by opening the assets folder in our samples located in GitHub. Please review the
repository you have cloned and confirm it looks like the following:

 67

67

Figure 77: GitHub repository

Now from the assets folder, using Windows Explorer, please copy exercise-1-succinctly-
schema.csv and exercise-1-succinctly-schema.csv to our exampledocs folder in C:\solr-
succinctly\succinctly\exampledocs.

Figure 78: Exercise 1

You might be wondering why we are copying the CSV and BAT files to exampledocs. This is
because that is where post.jar is located, and even though you can set the correct paths, it is

easier this way.

The next step is to execute index the files. For this purpose, we will open a command prompt
and navigate to the exampledocs folder. You can just run the exercise-1-succinctly-
schema.bat file, which will execute the following command:

java -Durl=http://localhost:8983/solr/succinctlybooks/update -
Dtype=text/csv -jar post.jar "exercise-1-succinctly-schema.csv"

Read the response in the command window. If all went well, it will prompt “1 files indexed.”

 68

Figure 79: Sample file indexed

Excellent! Let’s run a query now in succinctlybooks for *:*. You can do it from the Admin UI.

If you do not get this response, please make sure that the exercise files are within the
exampledocs folder, right next to post.jar. Also, run post.jar /? from exampledocs to

confirm that it is able to execute.

Figure 80: Query with all books

Everything looks great. We have 50 documents and our data seems ok. Let’s analyze one
record:

 69

69

Figure 81: Single record

Something doesn’t look right. Can you pinpoint what it is? Look at tags. You probably noticed

by now, but let’s make it a bit more obvious. Within tags, there is only one entry with “git|source-
control”. It is a multivalued field, but it is treating git and source-control as part of the same

tag. For this example to be correct, they should be two separate values.

To review further, please click the link below for the response, with xml as wt (response writer):

http://localhost:8983/solr/succinctlybooks/select?q=*%3A*&wt=xml&indent=true

Note: If you have modified Solr’s location, please use your current location.

Let’s look at the same record for Git Succinctly.

Figure 82: Document with error on tags

You should be able to see from the previous figure that the tags field has been indexed as a
single field, not multiple fields, even though we declared as multivalued. The reason this
happened is very simple: we did not tell post.jar which field we want to separate, and which one
is the separator.

We can easily fix this by running the following command:

http://localhost:8983/solr/succinctlybooks/select?q=*%3A*&wt=xml&indent=true

 70

java -
Durl="http://localhost:8983/solr/succinctlybooks/update?f.tags.split=true&f.tags.se
parator=|" -Dtype=text/csv -jar post.jar "exercise-1-succinctly-schema.csv"

I've also included the fix in the following file in our assets folder: exercise-1-succinctly-
schema-index-fixseparator.bat.

Once we've made this change, try re-running the previous queries; you should see a difference.

Figure 83: Correct multivalue tags

Whenever you have to specify multivalue inputs as a single string, you must ensure that you tell
Solr it needs to split the input up, using the following parameter:

f.tag.encapsulator='<separator character here>'

Indexing via Admin UI

You can also create and amend indexes using the Admin UI in the Documents section. For our
first example, let’s prove that the record that I am about to add does not already exist. Open the
Core Selector, click on Query, and in the q input field, type in bookid:51 and execute the

query. No documents found. We will add book number 51, which is this one you are reading
right now.

 71

71

Figure 84: No book with ID 51

Now select Documents and type in the following text within Document(s) input field:

{"bookid":"51","title":"Solr Succinctly","description":"Solr Succinctly gets you
started in the enterprise search world.","author":"Xavier
Morera","tags":"enterprise-search"}

Click Submit Document, and you should get a success status in the right-hand section. Leave

this window open, as we will use it in the upcoming two sections, and open a new tab in the
same location to continue testing.

Figure 85: Document submitted

Now the book is available in the index, and is searchable.

 72

Figure 86: Book with ID 51 available

If you were to try and run this as a singular query all on its own as follows:

http://localhost:8983/solr/succinctlybooks/select?q=Solr&wt=xml&indent=true

You may be surprised to find that you don't get any results. I'll leave the explanation to this until
a little bit later; for now, I want to show you a little more about how Solr searches its indexes.

Updating via Admin UI

We just added one document. But what if we wanted to update a document? It’s very simple—
you just add the document again. Remove my last name and leave “author”:”Xavier”. Click

Submit Document and the run the query again. You will see that my name has been updated,
sans last name.

 73

73

Figure 87: Author modified

If you look just below the document input field, you'll see an input parameter called Overwrite;

initially this will be set to true. Its purpose with this default setting is to ensure that it updates

where needed and doesn't insert a new record. Set it to false, and try changing the author

name again, and you should find that it now adds a new record instead:

Figure 88: Overwrite option

Partial Updates

Partial updates is a feature people have been requesting for years in Solr; however, it was not
until Solr 4.0 that it became available. Put simply, partial updating involves updating a single
field within a document without the need for indexing the full document. This may not sound like
much, but if you have big documents (and a lot of them) that require a huge amount of
processing just for a simple single field change, you can quickly see how much processing time
would be wasted. This along with the sheer number of documents can make a big difference.

Let me share with you a story that happened to me a few years ago. I was working on a project
for a patent searching application. It basically had a double digit TB index, made up of about
96MM patents containing every patent application and grant filed for all patent authorities
worldwide. Document sizes ranged from a few bytes to many megabytes; we had thousands of
fields, and indexing a document meant consuming a lot of processing power due to field
normalization and many other required operations.

 74

Each patent entry has one or many classification codes that basically specify the content of
each patent; these codes used USPC, ECLA, and many others, depending on the owning
authority.

From January 1, 2013 on, the Cooperative Patent Classification started to use as the official
new classification, a scheme jointly developed by the United States Patent and Trademark
Office and the European Patent Office.

This meant that all patents suddenly needed to be reclassified, the upshot of which was
basically to add a new field for the new CPC classification code. In technical terms, this wasn't a
huge task by any stretch of the imagination. We received a CSV file that contained the patent
canonical number and the CPC codes, so we knew exactly what needed to be matched to
which records. All patents needed to be searchable with the new CPC code, and this is where
our problems began. We did not have the ability to perform partial updates, meaning we had to
fully reprocess about 80 million+ documents for every single update—a task that took weeks to
do.

A partial update could’ve reduced the amount of time needed to a couple of days. The moral of
the story is simple: use partial updates where possible, and you'll quickly realize how invaluable
they are.

Let’s do a partial update now. If you recall, here is what we have to index my book document:

{"bookid":"51","title":"Solr Succinctly","description":"Solr Succinctly gets you
started in the enterprise search world.","author":"Xavier
Morera","tags":"enterprise-search"}

Leave only bookid and author, changing author to Xavier Partial Update, and click Submit

Document.

{"bookid":"51","author":"Xavier MT"}

Now run the query to retrieve this document. What happened? Basically, when you did the
update, it added the full record with the fields you specified. Full update is not what we need; we
need partial update.

Figure 89: Full update

 75

75

Let’s try again. Start by resetting the document to its original state. Run the query to confirm.

{"bookid":"51","title":"Solr Succinctly","description":"Solr Succinctly gets you
started in the enterprise search world.","author":"Xavier
Morera","tags":"enterprise-search"}

Once you reset things, try to submit a partial update again. Specify which field you want to
update by using the key word set within {}, as follows:

{"bookid":"51","author":{"set":"Xavier MT"}}

Run the query again for bookid. Now you will have a partial update on author.

Figure 90: Partial update

One last thing you need to be aware of: for a partial update to work correctly, you must have all
your fields set to stored=true. This can be an issue if you wanted to manage your index size

by not having all fields stored, but if not specified, you won’t be able to do a partial update on
that field.

Deleting Data

Now that we know how to insert and update documents, the next step is to learn how to delete
documents. You can delete documents by ID and by Query. For example, to delete this book
from the index, you could use either of the two following ways:

The first is to delete by ID. This is the command that will tell Solr which ID it needs to delete:

<delete>
<id>51</id>
</delete>

 76

The URL that you should use to execute this is as follows:

http://localhost:8983/solr/succinctlybooks/update?stream.body=<delete><id>51</id></
delete>&commit=true

The response obtained should look like the following. A status of 0 means no errors were

returned.

Figure 91: Document deleted

However, it does not indicate the number of records, or if records were actually deleted. For this
purpose, you would need to run a query to confirm. From the Admin UI, please select the
succinctlybooks core, click on the Query section, add in q the following bookid:51, and

execute.

Figure 92: Query to confirm record deleted

To delete by query, you can try the following command:

<delete>
<query>author:"Xavier Morera"</query>
</delete>

http://localhost:8983/solr/succinctlybooks/update?stream.body=%3cdelete%3e%3cbookid%3e51%3c/bookid%3e%3c/delete%3e&commit=true
http://localhost:8983/solr/succinctlybooks/update?stream.body=%3cdelete%3e%3cbookid%3e51%3c/bookid%3e%3c/delete%3e&commit=true

 77

77

The URL to execute it is as follows:

http://localhost:8983/solr/succinctlybooks/update?stream.body=%3Cdelete%3E%3Cquery%
3Eauthor:%22Xavier%20Morera%22%3C/query%3E%3C/delete%3E&commit=true

By this point, you should be able to see that it's possible to delete the entire index, simply by
using the following URL:

http://localhost:8983/solr/succinctlybooks/update?stream.body=<delete><query>*:*</q
uery></delete>&commit=true

Specifying a wildcard is way more efficient than specifying each index individually, something
which is not always possible, as Solr may have files locked.

It is worth noting that you need to set commit to true, or else it won't be committed to the index.

If you are deleting multiple documents, it is preferred if you don’t do a commit on every single
operation.

Also, you can delete documents that match multiple fields. Any query that you can build for
searching can also be used for deleting. Then, if you're using SolrNet or SolrJ, you can do a call
to their API using the function Solr.deleteByQuery*:*. We will not be covering the API of SolrJ

or SolrNet in this book, but I believe it is worth mentioning.

Solr XML Format

Solr has its own XML format, which is very specific and verbose, yet easy to read. It deals better
with multi-valued optional fields, complex strings, and real-life requirements. I’ve participated in
multiple projects where using Solr XML format is preferred, as document processing is done
separately and potentially in parallel, generating millions of XML files that then are indexed in
Solr as a separate process.

In the example files, you should find exercise-2-solr-xml.xml. If you open this file in a text
editor, you should see that it basically has the add command, the document, and then all the

fields that I'll be adding for this specific document. This book is not really in progress right now,
but I just finished a course on it for Pluralsight, so it makes a good example subject.

http://localhost:8983/solr/succinctlybooks/update?stream.body=%3Cdelete%3E%3Cquery%3Eauthor:%22Xavier%20Morera%22%3C/query%3E%3C/delete%3E&commit=true
http://localhost:8983/solr/succinctlybooks/update?stream.body=%3Cdelete%3E%3Cquery%3Eauthor:%22Xavier%20Morera%22%3C/query%3E%3C/delete%3E&commit=true
http://localhost:8983/solr/succinctlybooks/update?stream.body=%3cdelete%3e%3cquery%3e*:*%3c/query%3e%3c/delete%3e&commit=true
http://localhost:8983/solr/succinctlybooks/update?stream.body=%3cdelete%3e%3cquery%3e*:*%3c/query%3e%3c/delete%3e&commit=true

 78

Figure 93: Indexing Solr XML sample data

Using one or both of the methods we learned earlier, perform a query for a book with an ID
equal to 52; you can use the following URL, or enter it into the Admin UI query input:

http://localhost:8983/solr/succinctlybooks/select?q=bookid%3A52&wt=json&indent=true

The next step is to add the document in the same way as we did with the CSV files. For ease of
use, you'll find a batch file along with the XML; if you run this the document will be indexed.

Figure 94: Copy sample files

If you’re not on Windows, or cannot run batch files, then the command you need is as follows:

java -Dauto -Durl=http://localhost:8983/solr/succinctlybooks/update -jar post.jar
"exercise-2-solr-xml.xml"

Notice how I used –Dauto instead of specifying the file extension. The tool is able to process
multiple extensions as depicted in the command line response.

Figure 95: Index Solr XML file

Now run the query again for bookid 52. It will return one document.

 79

79

Figure 96: Query for bookid 52

If you get this far, give yourself a pat on the back—you’re well on your way to understanding
how Solr works and creating your own search indexes.

Using cURL

cURL is a command line tool for transferring data using various protocols, one which typically
needs admin access in a shell-based scope, but is simple and easy to use. When it comes to
working with Solr, I can say that cURL is your friend. It is great because it is easy to use, and
you can easily post binary files. A training on cURL is beyond the scope of this book, but I will
show you a quick demo of how it can be used. Also, if you are in an environment where you
can’t use cURL, you can achieve similar results using plugins like Chrome’s Postman plugin.

To get started, you need to download cURL, which is very simple to install.

You actually use cURL from the command line. It allows you to post information and even post
files. It lets you add, update, and delete documents.

To invoke it, type cURL in the command line, and then the location of your update handler. You
also need to include which core you're actually committing it to.

 80

Regarding parameters, I am passing commit equals true, which means the information should

be committed to the index once I issue the command. Then I’m passing -H for the header, with

a content type of text/XML.

Next is the command for the Solr. In this case, I'm doing an add command, which is exactly the

same as in the Solr XML format, with the fields that I want included in this document.

The cURL command to complete all of these operations is as follows:

curl http://localhost:8983/solr/succinctlybooks/update?commit=true -H "Content-
Type: text/xml" --data-binary "<add><doc><field name=\"bookid\">53</field><field
name=\"title\">Scrum Succinctly</field><field name=\"author\">Xavier
Morera</field><field name=\"tags\">scrum</field></doc></add>"

To make your life easier, I have also included exercise-3-curl.bat to the exampledocs folder in
succinctlybooks and run it. You must ensure that your system can find and run the cURL
program for the batch file to work.

Figure 97: Bat File for cURL Exercise

Figure 98: Indexed via cURL

You should be able to see that the status of the previous operation is 0, which, as you now

know, means no errors. If you subsequently run a query for a book with ID = 53, you should see
one document appear within your results.

The document I indexed does not have all fields. Only bookid is required, but it is possible that

if you copy pasted the field definitions and left required=“true”, then Solr will prompt an

exception message like this:

<str name="msg">[doc=53] missing required field: description</str>

If this scenario occurs, please make sure that only bookid contains a required=“true” attribute

within Schema.xml.

 81

81

Figure 99: Bookid 53

You can also issue any other command you wish. For example, a delete command would look

like this:

curl http://localhost:8983/solr/succinctlybooks/update?commit=true -H "Content-
Type: text/xml" --data-binary "<delete><query>courseid:getting-started-enterprise-
search-apache-solr*:*</query></delete>"

Fiddler

If you are used to web development, you are probably aware of Fiddler. If not, then Fiddler is a
debugging proxy that logs all HTTP traffic into your computer. It's an excellent tool if you have
problems, or if you want to debug the requests as you are working with Solr. Use it to inspect,
reissue, and compose requests. To get Fiddler, visit http://getfiddler.com.

Once it is installed, open Fiddler. It starts monitoring all traffic within your computer, so I
recommend you set a filter so that it only picks up local requests. To do so:

 Go to Filters

 Select Show only Intranet Hosts

http://getfiddler.com/

 82

 Choose No Host Filter

Figure 100: Fiddler filter

Besides monitoring, Fiddler can also issue requests. Let’s learn how to issue a request.

Go to the Composer tab. You have the option of specifying which verb you want to use, such
as GET or POST. In this case, I'm going to do a POST to the update handler, specifically to the
succinctlybooks core. This is the URL:

http://localhost:8983/solr/succinctlybooks/update?wt=json

The next step is to add the headers. Don’t worry about the content length; Fiddler adds it
automatically.

User-Agent: Fiddler

Content-Type: application/json

Host: localhost:8983

Content-Length: 241

And now add the body:

{"add":

 { "doc":{

 "bookid":"54",

 "title":"dotTrace Succinctly",

 "description":"dotTrace in around 100 pages",

 "author":"Xavier Morera",

 "tags":"profiling"

 },

 "boost":1.0,

 "overwrite":true,

 "commitWithin":100

 }

}

http://localhost:8983/solr/succinctlybooks/update?wt=json

 83

83

Your Composer tab should appear as shown in Figure 101. Click Execute.

Figure 101: Execute in Fiddler composer

As soon as the request is issued, Fiddler will log it in the left panel. Result 200 means all went

well. If this is your first time using Fiddler, make a mistake on purpose to see an HTTP 500
response.

Figure 102: A Fiddler response

Now double-click on the request, and Fiddler will open the details.

 84

Figure 103: Response in Fiddler Inspector

You can also run queries:

Figure 104: Query Solr using Fiddler

You can then analyze the results:

 85

85

Figure 105: Analyze a Solr response in Fiddler

As you can see, this is a very powerful tool.

Re-indexing in Solr

When you are running Solr in either your production or development environments, at some
point you’ll need to re-index. One scenario that requires re-indexing is when there is a schema
change due to a new field being added. While it's true that you can make partial updates, there
are some cases you need full updates, and performing a re-index is the only way to go.

Depending on the type of schema change, you may need to delete all your documents and then
start re-indexing again from scratch. In this case, it's advantageous to have a full secondary set
of Solr servers so you don’t lose search capabilities while re-indexing takes place. The point is
that while you are reindexing because of a schema change, you need to point your application
to an exact copy of the original Solr index, and once reindexing is complete, you point your
application to the new Solr index.

What exactly does re-indexing mean? Basically, it’s the process of indexing every single
document again, just as you did when you originally added them to the index.

 86

In some cases, re-indexing can be painfully slow, because accessing the original data sources
is not very efficient. If you run into a scenario like this, I suggest you set up an intermediate
store, or another Solr that serves as a cache to help you re-index in a much quicker way.

Summary

In this chapter, you’ve learned how to index data, which is one of the most basic operations of
Solr; it’s how you insert data into the search engine. You learned how to index by using the
included post.jar, a command line tool called cURL, and Fiddler. You also learned how to delete
and update data. Regarding updates, we learned the difference between full and partial
updates, a feature that not all search engines have.

And now it is time to learn how to configure Solr’s core via Solrconfig.xml.

 87

87

 Chapter 7 SolrConfig.Xml

Configuring Solr

Solrconfig.xml is the main configuration file used to configure Solr’s core. There are multiple
sections that include XML statements used to set configuration values for a given collection,
parameters which include important features like caching, event listeners, request handlers,
request dispatchers, highlighter plugin configuration, data directory location, and items available
in the admin UI section.

Request Handlers

One particularly important feature that can be configured is the request handler. A request
handler is in charge of accepting an HTTP request, performing the search, and then returning
the results back to the calling client.

Request handlers are specified using a QT parameter, and they define logic executed for any
request passed to them.

You can, for example, include filters or facets. You can also make the changes in two modes.
One way is to append, which adds them to the request without the user asking for them, or you
can add an invariant. In this case, if you select invariant, it will be added to the request, and the
user cannot modify it. Invariants are very useful for scoping or even for security.

Multiple request handlers can be specified in the same Solrconfig, and you have named

request handlers covering multiple Solr cores.

There are three types of query parameters in a request handler:

 Defaults: Provides default parameter values that will be used if a value specified at
request time.

 Appends: Provides parameter values that will be used in addition to any values
specified at request time or as defaults.

 Invariants: Provides parameter values that will be used in spite of any values provided
at request time. It is a way of letting Solr lock down options available to Solr clients. Any
parameters values specified here are used regardless of what values may be specified
in either the query, the defaults, or the appends parameters.

The default request handler in a Solr installation is /select, which should by now be very

familiar to you, as this is the one we've been using for each example so far in this book.

 88

Figure 106: Default Request Handler as seen in the Admin UI

If you open your Solrconfig.Xml file and look for the handler, you will see that it basically has
three defaults, the echoParams, rows, and df parameters. As previously mentioned, a

requestHandler can have multiple other parameters defined to control how a query is handled
via appends or invariants.

If I uncomment the included sample sections of the /select request handler, we should see
something that looks like the following:

Figure 107: /select request handler

As you can see, this example is explicitly stating that any result to be returned has to be in
stock. This is done by adding the filter query instock:true. Don't make these uncommenting

changes yourself just yet; we’re going to build our own handler in just a moment.

 89

89

Creating a New Request Handler

Let’s create a new request handler that only returns books for one specific author. This might
not be a very realistic scenario, but it'll allow me to demonstrate how a handler works.

First, let’s make sure that the handler does not exist. It's good practice to always perform this
step just to make sure you haven't already defined a handler with that name. Pass the following
URL to your Solr install using your browser:

http://localhost:8983/solr/succinctlybooks/books?q=*%3A*&wt=json&indent=true

The following figure shows that you should receive a 404 error from that request; this is to be
expected, and indicates that you are in fact safe to add the new handler.

Figure 108: 404 error returned by Solr to show that the 'books' handler does not yet exist

Now open your Solrconfig.Xml located in your solr/succinctlybooks/conf folder. Please look
for the /select request handler, copy it, and remove all commented out lines. Don’t make any

changes just yet. It should look something like this:

Figure 109: Our new books handler

The next step is to navigate to the Core Admin and click Reload. By default, collection1 will be
selected; please make sure you select succinctlybooks. Don’t navigate away just yet—keep
looking at the Reload button. It needs to turn green for a few seconds to indicate that reload was
successful.

 90

Figure 110: Reload Cores

Run the query again, but make sure you are using /books instead of the /select request

handler, as shown in red:

http://localhost:8983/solr/succinctlybooks/books?q=*%3A*&wt=json&indent=true

This time, it will most definitely work, and you have 53 results—the same 53 results. Let’s make
a couple of changes, starting with a very simple one.

Changing Rows in Request Handler

The number of results that you return to your users depends greatly on how you display your
results. Some people do five results, others 10—I’ve seen applications that display 50. While
this is different depending on the use case, setting it is easily done as follows.

Within Solrconfig.Xml, navigate to the /books request handler and change the rows parameter

from 10 to 5. Reload the succinctlybooks core and re-execute a *:* query.

Tip: Every time you make a change to Solrconfig.xml it is required that you reload the core.

If we run the query before and after, we'll see that before we got 10 results, and afterwards we
only get five:

 91

91

Figure 111: Compare change rows books handler

Ok, so this one was pretty easy. Let’s do another one.

Appends in Request Handlers

The /books request handler returns all 53 documents—the 50 Succinctly series entries

originally added, and the ones we added in the indexing chapter. Let's make a small change
using an append so that all queries executed only return books that have my name as the
author.

To do this, add an appends section where you specify a filter query for author:"Xavier
Morera". It should look something like Figure 111, showing the addition of an 'lst' tag with a

name of 'appends' and an inner string tag with a name of 'fq' specifying the filter.

 92

Figure 112: /books handler appends section

Reload the core, and then run a query for all documents. You will get only three results.

Figure 113: Results with books handler appends

If you want a more specific query, try q= description:you. In this specific query, if you use

/select, you will get two results. One of them is my book, and the other a book is by Cody

Lindley.

 93

93

Figure 114: Query results when the '/select' handler is used

If you do the same using our '/books' handler, however, you should only get one result.

 94

Figure 115: Query results when the '/books' handler is used

Response Fields

Another aspect that you might want to control is which fields are returned in your response for
your particular request handler. This is particularly useful when you have a large number of
fields. In one of my recent projects, we had about 200 fields per document, of which only about
nine are required to be returned on each query for displaying results. So why return them all?

Selecting which fields should be returned is very easy. Basically, within defaults, just add one fl

entry and enumerate which fields you want returned.

 95

95

Figure 116: Response fields

Now let’s test. First, run a query so you have a baseline. Next, reload the core. Finally, in a
separate window, run the same query again. The difference should be clearly visible.

First:

Figure 117: First query, no score

After reloading:

Figure 118: Query with score

 96

Facets

Our final small modification will be to return facets. If you recall from previous chapters, Faceting
is the arrangement of search results into categories based on indexed terms along with counts
that indicate the occurrence of each term. It makes it easier for users to drill down into complex
result sets and categorize the information better.

Facet.query is an arbitrary query used to generate a facet count. The facet.field is used to

specify to Solr which field to be treated as a facet. The prefix indicates that only terms that begin
with this prefix can be used as a facet.

Let’s modify our /books request handler within Solrconfig.xml to return facets, and in the

process, we will also remove the filter query for author so that we get the entire result set. The
steps are simple:

1. Comment out the appends section.

2. Add an invariants with facet=true to enable faceting, and then specify two different
facets, authors and tags. The following XML code should be added to your config:

<lst name="invariants">

<str name="facet">true</str>

 <str name="facet.field">author</str>

 <str name="facet.field">tags</str>

 </lst>

Your request handler should look like this:

Figure 119: Request handler with facets

 97

97

Reload the core and run a query for all records with all default values, and scroll down within the
response. Here is what you should be looking at:

 The facet_counts section includes the resulting facets. In our case, we requested two
facet fields, author and tags. As you can see, they are ordered from highest number of
occurrences to lowest. Way to go Ryan with 6. My friend Peter has three books at the
time of writing, but my sources tell me he will be tied with Ryan pretty soon!

Figure 120: Author facet

 Further down, we can see the tags, which by the way, I made up for this exercise. They
could be refined further for more realistic results.

Figure 121: Tags facet

 Finally, we did not include any facet queries, facet dates, facet ranges, or facet intervals.

 98

Figure 122: Facets we did not include

You can specify also on multi-valued fields, like tags, and you can also use facet.mincount to

avoid showing all values below a certain number of hits.

Grouping is also possible with facets. In this case we do not have the number of pages per
Succinctly series e-book, but if we did, we could dynamically create a range by using the
following facets:

 facet.range=rangepageslong: Our range.

 f.pageslong.facet.range.start=0: The beginning of the range.

 f.pageslong.facet.range.end=200: Where I specify the top value of 200.

 f.pageslong.facet.range=20: The gap size.

Solr will generate facets with grouped values on the fly!

Your turn: why not give it a shot on your own? Add a column on page size, add the field,
reload the core index, and try this exercise!

As mentioned in previous chapters, the admin UI only includes a very small subset of fields. If
you want to use the full power of faceting, you need to use the raw query parameters.

Faceting and other operations that need full use of all the fields are generally run from a third-
party application, especially ones created to allow administration of the service. Remember
though: facets are extremely powerful and useful, and you should attempt to learn all the
possible parameters and fields you can, even if just to allow the use of facets.

Solrconfig.Xml Common mistakes and pitfalls

With great power comes great responsibility, and unfortunately, with Solr's config file, you can
also do a lot of harm. I've listed some tips for avoiding the common mistakes and pitfalls
newcomers make when configuring Solr. Avoiding them will make your search life easier.

 Focus on minimalism. For example, in a schema.xml when you included things that you
don't need, the same applies here: only include those things that you need or are
planning to use in the near future. Remember: YAGNI (you aren’t gonna need it).

 Don’t forget caching. Caching is a great tool to increase performance—especially under
heavy loads—but it's not always appropriate.

 Avoid overwarming. When Solr starts, you may define some common warming queries.
Don't define too many—the more you define, the longer startup takes.

 99

99

 Don’t define too many handlers. You can define too many handlers for each specific
scenario, which may over-complicate your deployment, and will make maintenance an
absolute nightmare.

 Remember to review the default configuration. The out-of-the-box configuration is not
always exactly the best thing for production, so remember to review it before
deployment.

 Make sure you upgrade. Solr moves at an incredible pace, so try to keep it up to date, or
you might be missing out on some important or interesting features.

Summary

In this section we learned how Solrconfig.xml is the file used to configure Solr’s core. We
learned how to create a request handler, and then to configure it using appends. Some of the
possible configurations involved specifying facets, returned rows, and response fields.

We also learned that every time a change is made in Solrconfig.xml, the core needs to be
reloaded from the Admin UI.

Now it’s time to learn about searching and relevancy with Solr.

 100

Chapter 8 Searching and Relevance

Do People Love Searching?

When it comes to searching in Solr (and in general), people love searching for things, right? At
least, that's the impression we’re always given; unfortunately, it's really very far from the truth.
The truth is this: People love finding what they're looking for.

As a developer of a search application, it's our job to return the results most relevant to a user’s
query, and let them fine-tune things from there. While you’ll definitely get brownie points if you
magically present the user with the results they want the first time, 99 percent of the time,
getting very close is good enough.

Relevance

Relevance is the degree to which a query result satisfies the user who is searching for
information. It means returning what the user wants or needs. There are basically two important
concepts we need to consider when talking about relevance: precision and recall.

Precision

Precision is the percentage of documents in the result set that are relevant to the initial query.
That is, how many of the documents contained the results the user was actually looking for. To
be clear, we’re not talking about exact matches here either; if you're looking for "red cars,"
matches containing "cars" may still be valid, but matches containing "red paint" would not.

Recall

Recall is the percentage of relevant results returned out of all the relevant results in the system.
That is, whether the user got all the documents that in reality matched his or her query. Initially,
it is a little bit difficult to understand with a definition, but it becomes a lot simpler with an
example:

 You have an index with 10 documents.

 You have a specific query that would match four documents.

 When you run this query, you only get two documents. This means that your recall is not
that good, as it is only returning half of the documents that it should.

In real life the scenarios are much more complex; search engines have from thousands to
millions of documents, so returning the relevant documents can be difficult.

Obtaining perfect recall is trivial. You simply return every document in the collection for every
query, right? But this is a problem if you return every document in the collection—it might not be
very useful for the user.

 101

101

And here is where relevancy comes in. Relevancy is the number of the documents returned by
the search engine that are really relevant to your query. To use a real life example, imagine you
run a query in Google, and the first page does not return any useful results. None of the results
are “relevant” to your query.

There are four scenarios that you need to consider:

 True Negatives: These results should never appear in a result set, as they have nothing
at all to do with satisfaction of the presented query. A true negative is as bad as it gets
for search results; returning them means your search application is not doing its job
correctly at all.

 False positives: A false positive is when a query matches something in the database,
but that match does not relate to the context of the search. Taking our precision example
from the previous section, "red paint" would be a false positive—the match occurred due
to the use of the term "red," but the context of "paint" does not relate to a context
describing cars.

 False Negatives: As the name suggests, it’s the complete opposite of a false positive. A
false negative occurs when a document result matches, but is not returned by the search
application. In our previous example, "red car paint" might get rejected on the grounds
that its context applies only to paint, and not to a car that's painted red, which is incorrect
if our search criteria involves "red cars." When designing your search application, you
never want to produce results like this.

 True positives: This is the end game—what you’re aiming for every time. These are
true, context-relevant search results that either satisfy the query, or make it easy to see
how the query can be re-organized in order to be better.

Accuracy

This leads to accuracy, which is a tradeoff. In some cases, if you get high precision, you might
get very little recall. That is, you might get documents that are extremely relevant to your query,
but you might get very few of them. This ultimately results in missing documents that potentially
include relevant, but less precise, information for the end user.

At the other end of the spectrum, we have large recall, but with much lower precision. The trick
to getting accuracy right is getting the correct balance between these two ends.

Not All Results Are Created Equal

Finally, it is very important to understand that not all results are created equal. When you are
configuring your search engine, you need to consider your user’s needs.

Context

You need to take into account the categories for each one of the contexts. For example, say you
are doing a search for a development company, and you have IT pros and developers. The IT
pros might like to get results that are more related to servers and network technologies, while
developers might want to look into web development—yet they might be using the same
keywords.

 102

Second Page?

It is also important to consider the relevance of the documents. Users rarely go beyond the
second page of results, meaning the most relevant results need to be on the first page, with the
second page containing the not-so relevant results.

Document Age

In some cases, document age is incredibly important. For example, if you were searching for
current news in a newspaper, you only want the most up-to-date results.

Security

A lot of search engineers never give this a second thought, but security is hugely important. I
worked on a project for Microsoft a number of years ago where, as part of a security initiative,
we had to perform an analysis of approximately 300,000 SharePoint sites. The goal here was to
find and prevent unintentional access to confidential company information that the search
engine may have returned by mistake. Document security must always be a number one
priority.

Speed

Finally, we get to the issue of speed, and the bottom line is this: people expect search results
pretty much instantly. A few milliseconds, or maybe even one second, is tolerable for most
people. Beyond that, you’re going to see complaints—lots of them.

I’ve seen exceptions where queries could take minutes, but this specific process used to take
hours to find the relevant information. This is generally a specialist scenario, where minutes are
a massive savings of time, in the bigger scheme of things.

Queries, Data, and Metadata

There are billions of search users worldwide, thanks mainly to Google. However, when you
search using Google, you are limited to a small subset of keywords, which includes site, link,
related, OR, info, cache, +, -, and other similar operators. If you think about it objectively, this is
fine; Google crawls the web, which is kind of a “wild west” humongous set of mainly
unstructured data, and not a nice, neatly ordered collection that we might be searching if it was
our own data.

Data and Metadata Searching

Within Solr we have more control over our data and the metadata that we have in our index.
This allows us to be very accurate and define queries that answer very specific questions. Using
our Succinctly series data set as an example, we can look for all books by Peter Shaw that talk
about Bootstrap.

 103

103

You would achieve this with the following query:

http://localhost:8983/solr/succinctlybooks/books?q=author%3A%22Peter+Shaw%22+AND+de
scription%3Abootstrap&wt=json&indent=true

As you can see in the following figure, we get a very precise and exact match to our query, with
only one result.

Figure 123: Precise query by author and description

Going Deeper into Solr Search Relevancy

To really understand search and be skilled in tuning search relevancy, it is important to
understand the Lucene scoring algorithm, known as the tf.idf model. tf.idf is an acronym

that stands for term frequency, inverse document frequency. The terms are described in the
following paragraphs.

 104

tf (Term Frequency)

Term frequency is the frequency in which a term appears in the document or fields. The higher
the term frequency, the higher the document score.

idf (Inverse Document Frequency)

The less term appears in other documents in the index, the higher its contribution to the score.

There are two other terms that are not mentioned as part of the name of the scoring algorithm
tf idf, but are equally important. The terms are as follows:

coord (Coordination Factor)

The more query terms found in the document, the higher the score.

Fieldnorm (Field Length)

The more words a field contains, the lower its score. It penalizes documents with longer field
values.

There are multiple pages in the documentation that talk about Lucene scoring. It's highly
recommended that you spend some time reading and understanding them in order to make your
search applications return better results.

Query Syntax

The DisMax query parser is the default parser used by Solr. It’s designed to process simple
phrases entered by users, and to search for terms across several fields using different weights
or boosts. DisMax is designed to be more Google-like, but with the advantage of working with
the highly structured data that resides within Solr.

DisMax stands for Maximum Disjunction, and a DisMax query is defined as follows:

A query that generates the union of documents produced by its sub-queries, and that scores
each document with the maximum score for that document as produced by any sub-query, plus
a tie-breaking increment for any additional matching sub-queries.

That is a bit of a mouthful—just know that the DisMax query parser was designed to be easy to
use and to accept input with less chance of an error.

Let’s review some of the possibilities regarding search.

Search for a Word in a Field

Up until now, we’ve been mostly looking for *:* which meant all searchable fields, all values. You
can specify what word or phrases you want to look for, and in which field.

 105

105

For example, say I want to look for all books that have “database” as part of the description. I
would run a query from the Admin UI for description:database using the /books request
handler as follows:

Figure 124: Our example query as it might be viewed using the Admin UI in Solr

The query should give you four results, which you can retrieve to a page of their own using the
following URL:

http://localhost:8983/solr/succinctlybooks/books?q=description%3Adatabase&wt=json&i
ndent=true

There is something you might notice, however: take a close look at the results returned by the
URL, specifically at the score that's returned for each.

The scores returned range from 1.05 to 0.63, which is fine for a general search using wildcards
over several fields, but in our case, we’re searching for a specific word, in a specific field that we
know occurs exactly once in each result. Shouldn't the score in this case be equal for each
result?

 106

Figure 125: Different scores for description

Let's test this on a different field and see what happens. This time, we'll search the authors’
names for occurrences of my name, using author:"Xavier Morera". Enter the following URL

into your browser, making sure to adjust where needed for domain name and port number:

http://localhost:8983/solr/succinctlybooks/books?q=author%3A%22Xavier+Morera%22&wt=
json&indent=true

This time, we can see that the score for each result is now the same.

http://localhost:8983/solr/succinctlybooks/books?q=author%3A%22Xavier+Morera%22&wt=json&indent=true
http://localhost:8983/solr/succinctlybooks/books?q=author%3A%22Xavier+Morera%22&wt=json&indent=true

 107

107

Figure 126: Same score for author field

In order to show you what's happening here, we need to repeat the "database" query, but this
time, we'll use the debugQuery option to help us. If you’re running from the Admin UI, make
sure you check the box by debugQuery before clicking Execute.

Figure 127: debugQuery Checked

If you’re entering the URL directly, make sure you add debugQuery=true to the end of the URL

before submitting it to your browser:

http://localhost:8983/solr/succinctlybooks/books?q=description%3Adatabase&wt=json&i
ndent=true&debugQuery=true

If you scroll down through the results to the debug section, you should see the answer in the
"explain" section; the "fieldnorm" process in Solr is the element that makes all the

difference.

 108

Figure 128: Fieldnorm makes a difference

Part of the analysis includes fieldnorm, which penalizes longer fields. If you look at the

following figure, you can see I've drawn a red line across the ends of the descriptions, and you
can see that the results at the top (With the more specific score) have shorter descriptions.

Figure 129: Description gets longer as ranking increases

This is just one specific case, where the keyword appeared only once in four documents, and
the only difference was the field length. Real-world queries are usually much more complex.

Let's try searching for my name only in authors. This should be something like "q=Xavier"; we'll
use the following URL and see what happens:

http://localhost:8983/solr/succinctlybooks/select?q=author%3AXavier&wt=json&indent=
true&debugQuery=true

Oddly enough, our query comes back with no results.

http://localhost:8983/solr/succinctlybooks/select?q=author%3AXavier&wt=json&indent=true&debugQuery=true
http://localhost:8983/solr/succinctlybooks/select?q=author%3AXavier&wt=json&indent=true&debugQuery=true

 109

109

Figure 130: No results for query Xavier

Initially this might seem like an odd response—after all, we know for sure that my name appears
in the author field more than once, so how could our query not find anything?

Re-open the Schema.xml file and refresh your memory on the definitions we previously created.
You'll see author is a string, but the description type is text_general.

Figure 131: Author is string and description is text_general

It’s the field type that makes the difference; string is a simple type, storing just a simple text

string. To find it, you need to run a query for an exact match. This is great for faceting, but not
so good for general searching.

However, text_general is a complex type, as it has analyzers, tokenizers, and filters.

Additionally, within analyzers, it has both query and index time. Its main use is for general

purpose text searching.

Once you understand the different field types, things get much easier.

Search for a Phrase in a Field

As we did previously with the author field, we can search for phrases. Let’s try to use our
description:database query and refine it further by querying for description:"database
system".

 110

We can easily do this using the following query:

http://localhost:8983/solr/succinctlybooks/books?q=description%3A%22database+system
%22&wt=json&indent=true&debugQuery=true

We only got one exact match. Fantastic, our search works and gives us exact results, right? Not
quite, as we don't really want to be absolutely specific when doing general searches.

Figure 132: Exact match search

Proximity

What if we wanted to find not an exact match, but a match in close proximity? For example,
MongoDB Succinctly had “database system”, but that left out Postgres Succinctly, which had

“database management system”, which is a very close match that could be useful for our

users.

To address this, we have something called proximity matching, otherwise known as the process
of finding words that are within a specific distance of our match word.

Change the query we just issued (the one that only returned one result) so that our q parameter

now reads 'q = description:"database system"~4'. If you are entering this via a URL in

your browser, the new query should look as follows:

http://localhost:8983/solr/succinctlybooks/books?q=description%3A%22database+system
%22~4&wt=json&indent=true&debugQuery=true

As you can see in the following figure, we now have two results, and more importantly, our
score gives us an idea of the order of importance or relevance.

 111

111

Figure 133: Proximity search

Operators and Fields

It's possible to use operators for querying. For example, if I want to search for all books that
have a description of databases AND use Azure as a technology, I would form my query term
as 'description:database AND description:Azure'. Converting this to a URL, we end up

with the following:

http://localhost:8983/solr/succinctlybooks/books?q=description%3Adatabase+AND+descr
iption%3AAzure&wt=json&indent=true&debugQuery=true

As you might expect, you can also do an OR search. For example, the following query term
'description:database OR description:Azure', turned into the following URL:

http://localhost:8983/solr/succinctlybooks/books?q=description%3Adatabase+OR+descri
ption%3AAzure&wt=json&indent=true&debugQuery=true

This yields four results. You can also match between fields, for example, searching for all books
with tags 'aspnet' or with 'Net' in the title. The query term would be 'tags:aspnet OR
title:net', and the following URL demonstrates this:

http://localhost:8983/solr/succinctlybooks/select?q=tags%3Aaspnet+OR+title%3Anet&wt
=json&indent=true

You can nest operators as much as you need to, but you must remember capitalization. It’s
different to use AND vs and; this is an important point. If you get the capitalization wrong, your

search won't work as expected.

http://localhost:8983/solr/succinctlybooks/books?q=description%3Adatabase+AND+description%3AAzure&wt=json&indent=true&debugQuery=true
http://localhost:8983/solr/succinctlybooks/books?q=description%3Adatabase+AND+description%3AAzure&wt=json&indent=true&debugQuery=true
http://localhost:8983/solr/succinctlybooks/books?q=description%3Adatabase+OR+description%3AAzure&wt=json&indent=true&debugQuery=true
http://localhost:8983/solr/succinctlybooks/books?q=description%3Adatabase+OR+description%3AAzure&wt=json&indent=true&debugQuery=true

 112

Not (Negative Queries)

It's also possible to perform a negative search, that is, a search where you specifically request
NOT to include results for a given term. For example, you could search for tags:aspnet, and you
will get two results: ASP.NET MVC 4 Mobile Websites and ASP.NET Web API. If we don't want
any results that relate to mobile, we can use the following query term (notice the - symbol):

tags:aspnet AND -title:Mobile

In URL format, it will look like this:

http://localhost:8983/solr/succinctlybooks/books?q=tags%3Aaspnet+AND+-
title%3AMobile&wt=json&indent=true

Try altering the URL to include only 'tags:aspnet' then include the 'AND -title:Mobile'.

Note that the first form gives two results, and the second only gives one result, just as we might
expect.

Figure 134: Negative query result showing only one match

Wildcard Matching

As you've already seen in many places in this book (*:*), we've used wildcards quite a lot so far.
There's more to wildcards than you might realize, however. Solr supports using wildcards at the
end and in the middle of a word. A ? means a variation of a single character, while * means
many characters.

 113

113

In case you’re wondering, a '*' at the beginning of a phrase (called a leading wildcard or suffix
query) was originally NOT supported in Solr. This has recently been changed, but please know
that it's an incredibly inefficient search method, and not recommended for production use.

Let’s try some example wildcard searches. Create some searches (either in the Admin UI or
with a browser URL) using the following query terms:

 author:"Xavier*"

 author:Xavier*

 author:X*a

 author:*Morera

Try creating some URLs of your own to satisfy these queries, or simply just use the Admin UI.
Once you understand how the position affects the operator, scroll down to see if your results
match those in the following table.

Query Result Notes

author:”Xavier*”

This query has zero results as
you are doing a phrase
search.

 114

Query Result Notes

author:Xavier*

Remove the quotes and we
get the expected results.

author:X*a

Works fine, as expected. Solr
returns any author that starts
with X and ends with a.

 115

115

Query Result Notes

author:*Morera

This gives us the results we
expected, but remember
placing the '*' in front of the
term is inefficient.

Due to the small sizes of our index and search data in these examples, we don’t see a great
deal of difference in the query times. However, if we had a larger data set and index, you would
easily be able to see which methods are the most efficient.

Range Searches

Range queries allow matching of documents with values within a specified range of values. In
our example, we haven’t included any dates (or for that matter, any range-based data); if we
had done so, in a field called createddate for example, we could have performed a query that

looked something like:

createddate:[20120101 TO 20130101]

This would have allowed us to search the field createddate for results that were contained in

the lower and upper bounds enclosed by the square brackets. Here are a few more range
examples.

 field:[* TO 100] retrieves all field values less than or equal to 100

 field:[100 TO *] retrieves all field values greater than or equal to 100

 field:[* TO *] matches all documents with the field

Boosts

Query time boosts allow us to define the importance of each field. For example, if you run a
query for a specific term, and you are more interested in that term appearing in the title than

in the description of the document, you might form a query term that looks like this:

 116

title:javascript^1.5 description:javascript

In this case, you are applying a boost of "1.5" to whenever your term appears in the title,

while still remaining interested if it is also present in the description.

I recommend that you use explain so that you can see how your boosting affects scoring. In

our initial tour of the Admin UI in the query section, we mentioned that there is a checkbox
called debug query that is used to display debug information. Enable it, and the response will
come with a text that explains why a particular document is a match, or relevant, to your query.
In this particular case, you can see boost being used to affect the score of your document.

Figure 135: Boosting affects scoring

Boosting does not need to be performed on every query; likewise, every query is not performed
only on the default field(df). You can specify the query fields (qf) in your Solrconfig.Xml, so

that on every query, the desired boosts are applied automatically.

The following figure shows an example of a handler for the built-in sample collection (the
collection we used before we defined our Succinctly books collection). As you can see, the
handler has pre-specified which boosts should be applied when searching, and to which fields it
should be applied automatically.

Figure 136: Boost specified in handler

This is the essence of how you tweak your Solr application. You make small changes over time
and analyze the results, log the searches your users are performing, then try the tweaks
yourself against those searches. This process of trial and error can be tedious, but in the search
industry in particular, it's often the best way to fine-tune things to provide the expected results.

It is important to take into consideration that df is only used when qf is not specified.

Keyword Search and CopyFields

Up until now, we’ve been doing mostly queries within fields, for example, author:Xavier
Morera.

 117

117

Imagine, however, that we wanted to search just for a keyword, such as “Succinctly.” This one
should match all of the books in our collection, right? After all, every book in the series has this
word in its title.

Not quite. Run a query from the Admin UI for the term 'Succinctly' and observe the results.

Figure 137: No results for query “Succinctly”

Why are no results returned? It’s very simple—let’s take a look at our Solrconfig.xml file right
now to find an answer. Please find the /books request handler. As we can see in the following

figure, we have a df of text. df stands for default field; therefore, we are telling Solr that our

default search field is called text.

Figure 138: Text is our default field

But if you look within Schema.xml for the copy field declaration for text, you will notice that it is

commented out. Therefore, it is empty now, as no information is copied over to text during

indexing.

 118

Figure 139: All copy fields commented out

Let’s give it a try and modify the df so that it points to the description, which can be done in

Solrconfig.xml. As you can see in the following figure, df has a value of description instead of

text. Don’t forget to reload the core or restart Solr.

Figure 140: Change default field to description

If we now re-run our previous query following the changes we made to our configuration, we
should now see that we get much better results.

 119

119

Figure 141: Run query again

If you wish to use the direct URL, just enter the following into your browser:

http://localhost:8983/solr/succinctlybooks/books?q=succinctly&wt=json&indent=true&d
ebugQuery=true

In this case, we are searching in a single field, so let’s revert back to text and create a
copyField for each one we would like to have copied. This is done in the Schema.xml file.

Figure 142: Copy fields

Reload and query again. You’ll notice it did not work—but why?

 120

Figure 143: Query did not work

This is the query:

http://localhost:8983/solr/succinctlybooks/books?q=succinctly&wt=json&indent=true&d
ebugQuery=true

The copyField is done when a document is indexed, so it is before the index analyzer. It is the

same process as if you provided the same input text in two different fields. In a nutshell, you
need reindexing.

Reindex the way that you did using exercise-1-succinctly-schema-index.bat from exampledocs,
from the command line.

Figure 144: Reindex sample data

Run the query again. How many results should you get?

 121

121

Figure 145: Query again with 50 results

The answer is 50. Why? We have 53 documents, but the reindexing only considers our initial
result set. We manually added the other three.

Synonyms

Synonyms are used in Solr to match words or phrases that have the same meaning. It allows
you to match strings of tokens and replace them with other strings of tokens, in order to help
increase recall. Synonym mappings can also be used to correct misspellings. Let’s try a simple
test to illustrate what I mean.

Tip: To make sure that we have all of our sample data in our index, please open a

command prompt, navigate to solr-succinctly\succinctly\exampledocs, and run the

following batch file: exercise-1-succinctly-schema-index-fixseparator.bat. By doing

so, you will reload the sample books into your index.

Run a query for q=lightning on our books collection; you should see no results found.

 122

Figure 146: Query for lightning has no results

Now open Schema.Xml for the succinctlybooks collection, and go to our default field type,
text_general. You can find it within the fieldtype name=text_general node, as you can

see in the following figure. Within the analyzer node of type=query, you can see a filter of

class=solr.SynonymFilterFactory. This indicates that your Solr has synonyms configured

for any fields of type text_general that are calculated at query time.

Great! That means no re-indexing is needed, although it might potentially affect performance at
a certain scale.

Figure 147: Review text_general

If you look closely at the filter for the synonyms, it has an attribute
synonyms=“synonyms.txt”. This means that our synonyms dictionary is this text file, which is

located in our conf directory for the succinctlybooks core.

 123

123

Figure 148: Location of synonyms.txt

Open the file and add an entry (like for lightning) so that it is used as a synonym for

bootstrap. We have comma-separated values.

lightning,bootstrap

You should have something similar to the following:

Figure 149: Synonyms.txt file contents

Now try running the query for lightning again, using the /books request handler in the

succinctlybooks core. You should get no results. As with most configuration changes, you'll
need to reload the core for things to take effect.

 124

Figure 150: Reload and query for lightning

Now, my friend Peter Shaw’s Bootstrap book is there. (Which I personally recommend to every
single developer who, like me, is UI challenged! It really makes a difference.)

Stopwords

Stopwords are how Solr deals with removing common words from a query. Common words are
defined as standard English common words such as 'a', 'an', 'and', 'are', and 'as', along with
many others. Any word that is likely to be commonly found in every sentence could be classed
as a stopword.

In some cases, a word does not have any special meaning within a specific index. In our case,
all documents have the word “succinctly,” so it provides no additional value when used. In a
previous project that I worked on, I had to index all patents and applications worldwide; this lead
to the word “patent” not having any special meaning.

Let’s try a query with q=succinctly. You should get the following results:

 125

125

Figure 151: Query for succinctly

Please remember that you can construct the URL for this query from the Admin UI, by running a
query and clicking on the gray box at the top right.

Figure 152: Where to click to construct query URL

All results are found, as the word occurs in every single document. The way to indicate which
words should not be used in a query is via stopwords. This is done via the Solr.stopfilterfactory.

To add a stopword, you need to go to the conf directory, in the same location where we
modified our synonyms.

 126

Figure 153: Location of stopwords.txt

Open stopwords.txt and add the desired word.

Figure 154: Contents of stopwords.txt

If you run the query now, all documents should still be returned, which means that the
stopwords are not working. This is expected, because we just made a configuration change, but
have not yet reloaded the core as required.

 127

127

Figure 155: No results yet

Reload the core and query again. No results were found, which is the outcome we expected.

Stopwords can be added both at query and at index time. It’s very useful at index time because
if these words are removed from your index and they are very common, it helps with the index
size. At query time, it is also useful, as no reindexing is required.

Summary

In this section, we have learned some of the basics of searching using Solr. This is an extremely
large subject that could spawn hundreds or even thousands of pages, but this kick-start puts
you in a nice position to move forward on your own.

In the next section, we will discuss user interfaces with Solr.

 128

Chapter 9 Add a UI

Solr can be used in many different ways. In a lot of cases, you can use it as a small functionality
within your application. For example, it can be used to implement a type ahead function as an
aid to the end user. In other cases, your application might be more search-centric, for example,
a patent analysis application to find prior art.

In any case, and irrespective of your current requirements, it’s highly likely that at some point
you'll need a custom user interface for Solr. In this chapter I present two well-known alternatives
that will make that task much easier.

Solritas: A Fancy Name for Velocity ResponseWriter

Now that you know how to create your own custom handlers, there is one that I'd like to direct
your interest to, as it can help you create your own search applications. The /browse request

handler is already present in your application. Open your Solrconfig.xml and find it; it should
look something like the following image.

Figure 156: Velocity ResponseWriter

 129

129

The Velocity ResponseWriter, also known as Solritas, is a handler that allows processing of
results with the use of the template system called Velocity.

You can read more at http://velocity.apache.org/. It has not been updated recently, but you can
use it to learn a lot about querying, geolocation, and much more. Velocity is a very quick and
easy way to generate a UI for testing your data. To access it, simply navigate to the following:

http://localhost:8983/solr/browse

Figure 157: Also known as Solritas

Your turn: Why not try modifying it with the Succinctly collection? I would recommend adding a
publicationdate field in Schema.Xml. Then, add random dates for all the books in our sample

data file, books.csv, index, and test. Branch in GitHub and give it a shot to learn how it works. It
includes geolocation and boosting.

http://velocity.apache.org/

 130

SolrNet: An Apache Solr Client for .NET

I have been a .NET developer since the early days of .NET Beta. If you are one too, then this
chapter will be of high interest to you, as SolrNet is an excellent choice when you want to use
Solr from .NET.

However, if you are not a .NET developer, feel free to skip the rest of this chapter, and you can
use Solr via either its RESTful interface or a package created specifically for your language.
One that is highly popular is SolrJ for Java developers.

But for those that are .NET developers, lo and behold, we have SolrNet.

What is SolrNet?

As the website states:

Figure 158: SolrNet is an Apache client for .NET

For a .NET developer, SolrNet helps you work with Solr in a very natural way, by allowing you to
represent your schema via the use of Plain Old CLR Objects (POCOs). If you are not familiar
with POCOs, they are basically a class that represents exactly what we have in our
Schema.XML, type-for-type, with the exact same names.

SolrNet makes Solr feel part of your code in a way that a RESTful interface really can’t.

SolrNet’s History

SolrNet was created by Mauricio Scheffer, from Argentina, in 2007. I contacted him personally
and asked about the history of Solr. He pointed me to the original blog post where he first
introduced SolrNet, which can be found here.

He also gave me an overview of how SolrNet was born. He had a requirement to add facets to a
site he was working on at the time, but due to other commitments with work, he did not have
time to act on it, so he was paid an additional sum of money to complete the work outside
normal office hours. As part of the project, he negotiated the release of the code as open
source.

He originally posted to code.google.com, but as it has become favorable with many open source
projects, it now lives in GitHub.

http://bugsquash.blogspot.com/2007/11/introducing-solrnet.html

 131

131

At the time, Solr was on version 1.2, meaning it was an early release, and one which had very
little documentation. He based some of his work on SolrSharp, which by this point had fallen
into an in-active state. His main driving force, however, was the desire to add unit tests and
improve the overall build of the library.

In any case, thank you Mauricio! Also, special thanks for responding to my messages with the
insight and information you did, allowing me to share the story with my readers.

Getting SolrNet

To get SolrNet, simply clone it from GitHub: https://github.com/mausch/SolrNet

If you don’t know Git, there are two things you can do. One is to just click Download to get a
local copy of the code, and the second is to get the Git Succinctly e-book. Git is an amazing tool
that you should not ignore.

Figure 159: Getting SolrNet

My Git client of choice is SourceTree, but feel free to use whichever makes you more
comfortable.

Figure 160: SourceTree as Git client

There's an old URL in code.google.com; it’s the original repository that is still alive, but no
longer maintained, so ignore it.

http://www.syncfusion.com/resources/techportal/ebooks/git
http://www.sourcetreeapp.com/

 132

SolrNet

Once you have SolrNet, there are several ways to get it up and running. You will need Visual
Studio. I have 2012, but it works with other versions as well, including Visual Studio Community.

SolrNet comes with a sample .NET application. You can use this as a base to create your own
Solr application, or just as a testing ground for your Solr configuration and development.

It comes in the form of a standard ASP.NET MVC application. If you’re not familiar with
ASP.NET MVC, you may have a few other concepts to learn to get started; the SampleSolrApp
teaches you very well how to use SolrNet.

My usual workflow is to first open the main SolrNet project and build the solution, just to check
that everything is present and working ok.

Figure 161: SolrNet solution

 133

133

Figure 162: SolrNet projects

If everything goes well, you should get a successful build report.

Figure 163: Rebuild succeeded

Once you’re happy that SolrNet is working ok, close that project and open the solution for the
sample application. As shown in the following figure, select to rebuild the solution as you did
with SolrNet.

 134

Figure 164: Open SampleSolrApp

Figure 165: Rebuild solution

At this point, you should expect to get some build errors in the solution.

 135

135

Figure 166: Errors on rebuild

If you look in the project references, you’ll see that you need to re-link the newly rebuilt SolrNet
assembly.

Figure 167: Problem with SolrNet

I know this means there is a warning, so I hide my errors.

Figure 168: Missing assembly

You can fix this by re-binding the reference to SolrNet.dll, which can be found in
SolrNet\bin\Debug.

 136

Figure 169: Get assembly and problem solved

If you rebuild again after adding the reference, you'll find you still have a couple more things to
fix.

Figure 170: New errors with SolrNet.DSL

Add SolrNet.DSL from SolrNet.DSL\bin\Debug to fix the remaining issues, then rebuild and

run.

Figure 171: Rebuild successful for SampleSolrApp

If everything has worked, you should be greeted with the following web application:

 137

137

Figure 172: SampleSolrApp running

Go ahead and play around, run queries, and analyze responses. View how facets, paging, and
items per page affect queries. Put in a breakpoint or two. Compare it with what you have in the
Admin UI.

Making the Sample App Use Our Data

The sample is currently running against the default collection1. In the next few pages, I'm going
to show you how easy it is to modify the SampleSolrApp so that it uses our succinctlybooks
collection. In the process, we'll build our own custom UI for the Syncfusion Succinctly series.

I will give you an initial step and a few tips. Let’s get started.

1. Make sure you have a running Solr instance populated with our sample succinctly data.
If you need to rebuild, you can get a new install from my GitHub page
athttps://github.com/xaviermorera/solr-succinctly.

2. In the Web.Config of SampleSolrApp that's shipped with SolrNet, find the solrUrl key
and change it to use the succinctly collection:

<add key="solrUrl" value="http://localhost:8983/solr/succinctlybooks" />

3. At this point, if you run the SolrNet app, you will get an application error as follows:

https://github.com/xaviermorera/solr-succinctly

 138

Figure 173: Error connecting to Solr

4. Open Solr’s log, and you will see the error. It all makes sense now. You are trying to
read from succinctlybooks using collection1 schema. How do I know? Please look at the
following figure. Solr did not tell me directly, but it hinted me in the right direction by
stating "document is missing mandatory field bookid". I realized I had
documents in my index that did not have the unique key, meaning that they are from
another collection. It may seem hard at this moment, but once you get experience, you
will be able to pick out these errors much easier.

Figure 174: Solr Log

5. Don’t believe me completely? Use the best trick in the book while debugging: turn on
Break on Exceptions. Quick access is via Ctrl+Alt+E in Visual Studio. Visual Studio does
not tell you when an exception is raised and caught. However, if you turn on Break on
Exceptions, you will be prompted whenever any exception occurs in the exact line.

 139

139

Figure 175: Turn on Break on Exception

Now you can clearly see that the real exception is being masked.

Figure 176: The real exception

If you've gotten to this point, you are on the right path. Here are a few tips on next steps:

 The sample apps uses a function called AddInitialDocuments to populate with sample
data. We don’t need it in the succinctlybooks collection, so comment it out.

 You need to modify your POCO to match your Solr schema.xml. It is currently defined in
Product.cs, as shown in the following figure.

 140

Figure 177: POCO

 You need to modify the facets to load only those that are related to succinctlybooks, and
not collection1.

 Make sure you use only your fields from your collection.

Finished? Commit your branch if you want!

Summary

In this section, we have learned how we can add a user interface to our Solr search engine. The
first option was using the Velocitas response writer, which is built into the downloaded Solr. The
second option was using the SolrNets sample application. It's not a finished, full-blown
application, but this is an excellent start for something that might make you some money—or
save you some money.

 141

141

Final Words

And with this, we have concluded this e-book, part of the amazing Succinctly series from
Syncfusion. Let's just take a few minutes to do a final review.

You have an idea or a need. This idea might make you some money or save you some money.
Search is an important piece of many of the ideas out there. If you don't do it right, you might
frustrate your users, but if you do it properly, you can entice them.

Search used to be difficult and expensive—it used to be a long steep road—but this has all
changed. Now, Solr comes to the rescue.

To get your idea up and running, you first have to understand where your data is. There could
be multiple data sources, like databases, custom management systems, files, feeds, web
pages, or even data entered by your users. There are different ways of getting the data, for
example, with crawlers or connectors.

Get to know your data, get your Solr ready, model your data in the schema.xml, configure your
Solr in the Solrconfig.xml, and then index your data.

Once you've stored, sorted, and indexed things, your data is searchable via REST.

If you want to take it a step further, you have SolrNet (or SolrJ, Solritas) to help you. You can
look at the Solr sample application if you want an easy way to get started. There are other
packages and applications that can be used, but I didn’t mention them here.

If you've come this far, you are on the right path to do some amazing things with your
implementation of Solr in your application.

I am Xavier Morera, and I thank you for staying with me. I hope you've enjoyed reading Solr
Succinctly and following along as much as I have enjoyed writing it.

Ping me on Twitter @xmorera if you have questions or comments, or if there is anything I can
do to help you.

This is not the end—it is the beginning of your great journey in search!

https://twitter.com/xmorera

