

Learning C++ Functional
Programming

Metaprogramming, concurrency, lazy evaluation, and more

Wisnu Anggoro

BIRMINGHAM - MUMBAI

Learning C++ Functional Programming

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2017

Production reference: 1080817

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78728-197-4

www.packtpub.com

http://www.packtpub.com

Credits

Author
Wisnu Anggoro

Copy Editor
Zainab Bootwala

Reviewer
Aivars Kalvāns

Project Coordinator
Prajakta Naik

Commissioning Editor
Aaron Lazar

Proofreader
Safis Editing

Acquisition Editor
Chaitanya Nair

Indexer
Rekha Nair

Content Development Editor
Lawrence Veigas

Graphics
Abhinash Sahu

Technical Editor
Supriya Thabe

Production Coordinator
Nilesh Mohite

About the Author
Wisnu Anggoro is a Microsoft Certified Professional in C# programming and an
experienced C/C++ developer. He has also authored the books Boost.Asio C++ Network
Programming - Second Edition and Functional C# by Packt. He has been programming since
he was in junior high school, which was about 20 years ago, and started developing
computer applications using the BASIC programming language in the MS-DOS
environment. He has solid experience in smart card programming, as well as desktop and
web application programming, including designing, developing, and supporting the use of
applications for SIM Card Operating System Porting, personalization, PC/SC
communication, and other smart card applications that require the use of C# and C/C++. He
is currently a senior smart card software engineer at CIPTA, an Indonesian company that
specializes in innovation and technology for smart cards. He can be reached through his
email at wisnu@anggoro.net.

First and foremost, I would like to thank God, the almighty, for providing me with this
opportunity and granting me the capability to proceed successfully. To my wife and best
motivator, Vivin, who never stopped supporting me in finishing what I started. To my
beloved sons, Olav and Oliver, who are the source of my joy; you both never fail to make
me happy every day. And to my parents and family for their inspiration.

The best team at PACKT, especially Lawrence Veigas, my content development editor, for
his effort to help me supply the best content for this book, and Denim Pinto, who invited
me to author this book.

Also, I would like to show my gratitude to Benediktus Dwi Desiyanto, my best mentor,
teacher, and superior at CIPTA, who always supports me to leverage my skill set, for both
hard and soft skills. And to all my friends at CIPTA, for the insight of C++ and functional
programming I have learned from all of you.

About the Reviewer

Aivars Kalvāns holds the position of Lead Software Architect at Tieto Latvia. He has been
working on the Card Suite payment card system for more than 15 years and maintains
many core C++ libraries and programs. He is also responsible for the C++ programming
guidelines, secure coding training, and code reviews, and he organizes and speaks at
internal C++ developer meetups as well.

I would like to thank my lovely wife, Anete, and sons, Kārlis, Gustavs, and Leo, for making life
much more interesting.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1787281973.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1787281973
https://www.amazon.com/dp/1787281973

Table of Contents
Preface 1

Chapter 1: Diving into Modern C++ 7

Getting closer with several new features in modern C++ 8
Defining the data type automatically using the auto keyword 8
Querying the type of an expression using the decltype keyword 11
Pointing to a null pointer 13
Returning an iterator using non-member begin() and end() function 14
Iterating over collections using range-based for loops 15

Leveraging the use of C++ language with the C++ Standard Libraries 17
Placing any objects in the container 17
Using algorithms 20

Simplifying the function notation using a Lambda expression 26
Using the Lambda expression for a tiny function 27
Using the Lambda expression for multiline functions 28
Returning a value from the Lambda expression 30
Capturing a value to the Lambda expression 32
Preparing the value using initialization captures 38
Writing a generic Lambda expression to be used many times with many
different data types 39

Avoiding manual memory management with smart pointers 41
Replacing a raw pointer using unique_ptr 41
Sharing objects using shared_ptr 47
Tracking the objects using a weak_ptr pointer 50

Storing many different data types using tuples 52
Unpacking tuples values 53
Returning a tuple value type 55

Summary 56

Chapter 2: Manipulating Functions in Functional Programming 57

Applying the first-class function in all functions 58
Passing a function as another function's parameter 58
Assigning a function to a variable 61
Storing a function in the container 64
Creating a new function from the existing functions at runtime 67

[ii]

Getting acquainted with three functional techniques in the higher-order
function 71

Executing each element list using map 71
Extracting data using filter 73
Combining all elements of a list using fold 76

Avoiding the side effect with pure function 80
Reducing a multiple arguments function with currying 83
Summary 87

Chapter 3: Applying Immutable State to the Function 88

Understanding the essential part from immutable object 88
Modifying a local variable 89
Modifying a variable passed into a function 91

Preventing the modification of a value 94
Applying the first-class function and the pure function to the immutable
object 97
Developing the immutable object 99

Starting with a mutable object 100
Refactoring a mutable object into an immutable one 103

Enumerating the benefits of being immutable 108
Summary 109

Chapter 4: Repeating Method Invocation Using Recursive Algorithm 110

Repeating the function invocation recursively 111
Performing the iteration procedure to repeat the process 111
Performing the recursion procedure to repeat the process 114

Recurring the immutable function 116
Getting closer to tail recursion 118
Getting acquainted with functional, procedural, and backtracking
recursion 122

Expecting results from functional recursion 122
Running a task recursively in procedural recursion 124
Backtracking recursion 126

Summary 137

Chapter 5: Procrastinating the Execution Process Using Lazy
Evaluation 138

Evaluating the expression 138
Running the expression immediately with strict evaluation 139
Delaying the expression with non-strict evaluation 140

The basic concept of lazy evaluation 142

[iii]

Delaying the process 142
Caching the value using the memoization technique 145
Optimizing the code using the memoization technique 151

Lazy evaluation in action 157
Designing Chunk and Row classes 159
Concatenating several rows 162
Iterating each Row class' element 163
Generating the infinite integer row 163
Generating an infinite prime numbers row 164
Refactoring eager evaluation to lazy evaluation 168

Summary 170

Chapter 6: Optimizing Code with Metaprogramming 171

Introduction to metaprogramming 171
Preprocessing the code using a macro 171
Dissecting template metaprogramming in the Standard Library 175

Building the template metaprogramming 176
Adding a value to the variable in the template 177
Mapping a function to the input parameters 177
Choosing the correct process based on the condition 178
Repeating the process recursively 179

Selecting a type in compile-time 180
Flow control with template metaprogramming 183

Deciding the next process by the current condition 183
Selecting the correct statement 186
Looping the process 190

Executing the code in compile-time 193
Getting a compile-time constant 193
Generating the class using a compile-time class generation 195

Benefits and drawbacks of metaprogramming 198
Summary 199

Chapter 7: Running Parallel Execution Using Concurrency 200

Concurrency in C++ 200
Processing a single threading code 201
Processing a multithreading code 203

Synchronizing the threads using mutex 206
Avoiding synchronization issues 206
Unlocking the variable automatically 210
Avoiding deadlock using recursive mutex 211

[iv]

Understanding the thread processing in a Windows operating system 214
Working with handle 214
Refactoring to a unique handle 216
Triggering an event 222
Calling an event from a thread 227

Summary 238

Chapter 8: Creating and Debugging Application in Functional
Approach 239

Preparing an imperative class 240
Refactoring the imperative class to become a functional class 245

Passing a function as a parameter 245
Adding a base class 250
Transforming the class to become pure 258
Filtering the condition and implementing a Lambda expression 265
Implementing recursion and memoization techniques to the Customer
class 274

Debugging the code 276
Starting the debugging tool 277
Continuing and stepping the debugging process 278
Setting and deleting the breakpoint 280
Printing the object value 281

Summary 282

Index 283

Preface
Functional programming is a style of constructing the elements and structure of a computer
program by composing pure functions, avoiding shared state, mutable data, and side-
effects, like we usually see in mathematics. The variable in the code function represents the
value of the function parameter, and it is similar to the mathematical function. The idea is
that a programmer defines the functions that contain the expression, definition, and the
parameters that can be expressed by a variable to solve problems.
Functional programming is declarative rather than imperative, which means programming
is done with expressions or declarations instead of statements. The application state of
functional programming flows through pure functions, so it avoids the side effect. In
contrast to imperative programming, the application state is usually shared and collocated
with methods in objects. In imperative programming, the expressions are evaluated, and
the resulting value is assigned to variables. For instance, when we group a series of
expressions into a function, the resulting value depends upon the state of variables at that
point in time. Because of the continuous changes in state, the order of evaluation matters. In
functional programming, destructive assignment is forbidden, and each time an assignment
happens, a new variable is induced. Best of all, functional code tends to be more concise and
predictable, and easier to test than imperative or object-oriented code.
Although there are some specifically designed languages for functional programming, such
as Haskell and Scala, we can also use C++ to accomplish designing functional programming,
as we will discuss throughout this book.

What this book covers
Chapter 1, Diving into Modern C++, provides an overview of modern C++, including the
implementation of several new features in modern C++, such as the auto keyword, decltype
keyword, null pointer, range-based for loop, standard template library, Lambda
expressions, smart pointer, and tuple.

Chapter 2, Manipulating Functions in Functional Programming, covers the essential
techniques in functional programming to manipulate a function; they are the first-class
function technique, pure function, and currying technique. By applying the first-class
function, we can treat our function as a data, which means it can be assigned to any variable
instead of only being invoked as function. We also will apply the pure function technique
so the function won't produce the side effect anymore. Moreover, to simplify the function,
we can apply currying techniques, which will reduce the multiple arguments function by
evaluating a sequence of functions with a single argument in each function.

Preface

[2]

Chapter 3, Applying Immutable State to the Function, explains how we implement the
immutable object for the mutable object. We will also delve into first-class functions and
pure functions, which we discussed in the previous chapter, to produce an immutable
object.

Chapter 4, Repeating Method Invocation Using Recursive Algorithm, discusses the difference
between iteration and recursion and why recursion techniques are better for functional
programming. We will also enumerate the three kinds of recursion: functional, procedural,
and backtracking recursion.

Chapter 5, Procrastinating the Execution Process Using Lazy Evaluation, explains how to delay
the process of execution to get more efficient code. We will also implement caching and
memoization techniques to make our code run faster.

Chapter 6, Optimizing Code with Metaprogramming, talks about running code with compile-
time execution by using metaprogramming to optimize code. We will also discuss how to
refactor flow control into template metaprogramming.

Chapter 7, Running Parallel Execution Using Concurrency, walks us through running
multiple threads in C++ programming, as well as synchronizing threads to avoid deadlocks.
We will also apply thread processing in a Windows operating system.

Chapter 8, Creating and Debugging Application in Functional Approach, elaborates all the
techniques we discussed in the previous chapters to design a functional programming.
Also, we will try to debug code to find a solution if there are unexpected results or the
program crashes in the middle of execution.

What you need for this book
To walk through this book and successfully compile all the source code examples, you will
require a personal computer that runs Microsoft Windows 8.1 (or later) and contains the
following software:

The latest version of GCC, which supports C++11, C++14, and C++17 (during the
writing of this book, the latest version was GCC v7.1.0)
The Microsoft C++ compiler provided in Microsoft Visual Studio 2017 for
supporting C++11, C++14, and C++17 (for Chapter 7, Running Parallel Execution
Using Concurrency)
Code::Blocks v16.01 (all sample code is written using the Code::Blocks IDE;
however, it's optional to use this IDE)

Preface

[3]

Who this book is for
This book is for C++ developers comfortable with OOP who are interested in learning how
to apply the functional paradigm to create robust and testable apps.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, and user input are shown as follows: "the auto keyword can
also be applied to a function to deduce a function's return type automatically."

A block of code is set as follows:

 int add(int i, int j)
 {
 return i + j;
 }

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

 // Initializing a string variable
 Name n = {"Frankie Kaur"};
 cout << "Initial name = " << n.str;
 cout << endl;

New terms and important words are shown in bold.

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

mailto:feedback@packtpub.com
http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[5]

The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /L e a r n i n g C P P F u n c t i o n a l P r o g r a m m i n g . We also have other code bundles from our
rich catalog of books and videos available at h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /.
Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from h t t p s ://w w w . p a c k t p u b . c o m /s i t e s /d e f a u l t /f i l e s /d o w n

l o a d s /L e a r n i n g C P P F u n c t i o n a l P r o g r a m m i n g _ C o l o r I m a g e s . p d f .

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a ,
selecting your book, clicking on the Errata Submission Form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningCPPFunctionalProgramming_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
mailto:copyright@packtpub.com

Preface

[6]

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

mailto:questions@packtpub.com

1
Diving into Modern C++

The C++ programming language has been changed dramatically since its invention in 1979.
Some people in this era might be a little bit scared to code using C++ language since it is not
user-friendly. The memory management we have to deal with sometimes makes people
unwilling to use this language. Fortunately, since C++11--also known as modern C++, along
with C++14 and C++17--has been released, numerous features have been introduced to
simplify our code in the C++ language. Moreover, the best part of it is that the C++
programming language is a great language for any project, from low-level programming to
web programming, as well as functional programming.

This chapter is the best place to start our journey in this book, as it is addressed to the C++
programmers to refresh their knowledge and will discuss the following topics:

Understanding several new features in modern C++
Implementing the C++ Standard Libraries in modern C++
The use of the Lambda expression and all features included in C++ Lambda
Using smart pointer to avoid manual memory management
Dealing with many return values using tuples

Diving into Modern C++

[8]

Getting closer with several new features in
modern C++
So, what is new in modern C++ in comparison to the old one? There are so many changes in
modern C++ compared to the old one, and the book pages will dramatically increase if we
discuss all of them. However, we will discuss the new features in modern C++, which we
should know about, to make us more productive in coding activities. We will discuss
several new keywords, such as auto, decltype, and nullptr. We will also discuss the
enhancement of the begin() and end() function that has now become a non-member class
function. We will also discuss the augmented support for the for-each technique to iterate
over collections using the range-based for loop techniques.

The next few subsections in this chapter will also discuss the new features of modern C++,
namely Lambda expressions, smart pointers, and tuples, which were just added in the
C++11 release.

Defining the data type automatically using the
auto keyword
Prior to the modern C++, the C++ language has a keyword named auto that is used to
explicitly specify that the variable should have automatic duration. The automatic duration
that adheres to the variable will create the variable at the point of definition (and initialized,
if relevant) and destroy the variable when the block they are defined in is exited. For
instance, the local variable will be created when it is defined at the beginning of the function
and destroyed when the program exits the function where the local variable is there.

Since C++11, the auto keyword is used to tell the compiler to deduce the actual type of a
variable that is being declared from its initializer. And since C++14, the keyword can also be
applied to a function to specify the return type of the function that is a trailing return type.
Now, in modern C++, the use of the auto keyword to specify the automatic duration is
abolished since all variables are set to automatic duration by default.

The following is an auto.cpp code demonstrating the use of the auto keyword in the
variables. We will define four variables with the auto keyword, and then find out the data
type for each variable using the typeid() function. Let's take a look:

 /* auto.cpp */

 #include <iostream>
 #include <typeinfo>

Diving into Modern C++

[9]

 int main()
 {
 std::cout << "[auto.cpp]" << std::endl;

 // Creating several auto-type variables
 auto a = 1;
 auto b = 1.0;
 auto c = a + b;
 auto d = {b, c};

 // Displaying the preceding variables' type
 std::cout << "type of a: " << typeid(a).name() << std::endl;
 std::cout << "type of b: " << typeid(b).name() << std::endl;
 std::cout << "type of c: " << typeid(c).name() << std::endl;
 std::cout << "type of d: " << typeid(d).name() << std::endl;
 return 0;
 }

As we can see in the preceding code, we have an a variable that will store the integer
value and have a b variable that will store the double value. We calculate the addition of a
and b and store the result in variable c. Here, we expect that c will store the double object
since we add the integer and double object. The last is the d variable that will store the
initializer_list<double> data type. When we run the preceding code, we will see the
following output on the console:

As can be seen in the preceding snapshot, we are just given the first character of the data
type, such as i for integer, d for double, and St16initializer_listIdE for
initializer_list<double>, that is the last lowercase d character that stands for double.

We may have to enable the Run-Time Type Information (RTTI) feature in
our compiler options to retrieve the data type object. However, GCC has
enabled the feature by default. Also, the output of the use of the typeid()
function depends on the compiler. We may get the raw type name or just a
symbol as we did in the preceding example.

Diving into Modern C++

[10]

Besides, for variable, as we discussed earlier, the auto keyword can also be applied to a
function to deduce a function's return type automatically. Suppose we have the following
trivial function named add() to calculate the addition of two parameters:

 int add(int i, int j)
 {
 return i + j;
 }

We can refactor the preceding method to use the auto keyword, as we can see in the
following lines of code:

 auto add(int i, int j)
 {
 return i + j;
 }

Similar to the auto-type variable, the compiler can decide the correct return type based on
the returned value of the function. And, as shown in the preceding code, the function will
indeed return the integer value since we just add two integer values.

Another feature that uses the auto keyword in modern C++ is trailing the return type
syntax. By using this feature, we can specify the return type, the rest of the function
prototype, or function signature. From the preceding code, we can refactor it to use the
feature as follows:

 auto add(int i, int j) -> int
 {
 return i + j;
 }

You might ask me why we have to specify the data type again after the arrow symbol (->),
even though we have used the auto keyword. We will find the answer when we cover the
decltype keyword in the next section. Also, by using this feature, we can now refactor the
preceding auto.cpp code a little bit by modifying the syntax of the main() method,
instead of the following syntax of main() function signature:

 int main()
 {
 // The body of the function
 }

Diving into Modern C++

[11]

We can change the signature syntax into the following line of code:

 auto main -> int
 {
 // The body of the function
 }

Now, we will see all of our code in this book using this trailing return type feature to apply
the modern C++ syntax.

Querying the type of an expression using the
decltype keyword
We discussed in the preceding section that the auto keyword can automatically deduce the
type of the variable based on the type of values it stores. The keyword can also deduce the
function's return type based on the type of its return value. Now, let's combine the auto
keyword and the decltype keyword to gain the power of modern C++.

Before we combine the two keywords, we will find out what the decltype keyword is used
for--it is used for asking the type of an object or an expression. Let's take a look at the
following several lines of trivial variable declaration:

 const int func1();
 const int& func2();
 int i;

 struct X { double d; };
 const X* x = new X();

Now, based on the preceding code, we can declare other variables using the decltype
keyword as follows:

 // Declaring const int variable
 // using func1() type
 decltype(func1()) f1;

 // Declaring const int& variable
 // using func2() type
 decltype(func2()) f2;

 // Declaring int variable
 // using i type
 decltype(i) i1;

Diving into Modern C++

[12]

 // Declaring double variable
 // using struct X type
 decltype(x->d) d1; // type is double
 decltype((x->d)) d2; // type is const double&

As we can see in the preceding code, we can specify the type of an object based on another
object's type. Now, let's suppose we need to refactor the preceding add() method to
become a template. Without the auto and decltype keyword, we will have the following
template implementation:

 template<typename I, typename J, typename K>
 K add(I i, J j)
 {
 return i + j;
 }

Fortunately, since the auto keyword can specify the return type of the function, which is a
trailing return type, and the decltype keyword can deduce the type based on the
expression, we can refactor the preceding template as follows:

 template<typename I, typename J>
 auto add(I i, J j) -> decltype(i + j)
 {
 return i + j;
 }

To prove, let's compile and run the following decltype.cpp code. We will use the
following template to calculate the addition of two different value types--integer and
double:

 /* decltype.cpp */
 #include <iostream>

 // Creating template
 template<typename I, typename J>
 auto add(I i, J j) -> decltype(i + j)
 {
 return i + j;
 }

 auto main() -> int
 {
 std::cout << "[decltype.cpp]" << std::endl;

 // Consuming the template
 auto d = add<int, double>(2, 2.5);

Diving into Modern C++

[13]

 // Displaying the preceding variables' type
 std::cout << "result of 2 + 2.5: " << d << std::endl;

 return 0;
 }

The compilation process should run smoothly without error. We will see the following
output on the screen if we run the preceding code:

As we can see, we have successfully combined the auto and decltype keyword to create a
template simpler than we usually do before the modern C++ is announced.

Pointing to a null pointer
Another new feature in modern C++ is a keyword named nullptr that replaces the NULL
macro to represent a null pointer. Now, there's no ambiguity in the use of the NULL macro
for zero numeric or a null pointer. Let's suppose we have the following two method's
signature in our declaration:

 void funct(const char *);
 void funct(int)

The former function will pass a pointer as the argument and the latter will pass the integer
number as its argument. Then, we invoke the funct() method and pass the NULL macro as
the parameter, as shown here:

 funct(NULL);

What we intend to call is the former function. However, since we pass the NULL parameters,
which is basically defined as 0, the latter function will be invoked. In modern C++, we can
use the nullptr keyword to ensure that we will pass a null pointer to the argument. The
invocation of the funct() method should be as follows:

 funct(nullptr);

Now the compiler will invoke the former function since it passes a null pointer to the
argument, and this is what we expect. There will be no ambiguity anymore, and it will
avoid unnecessary future problems.

Diving into Modern C++

[14]

Returning an iterator using non-member begin()
and end() function
Prior to modern C++, to iterate a sequence, we call the begin() and end() member method
of each container. For array, we can iterate its element by iterating the index. Since C++11,
the language has a non-member function--begin() and end()--to retrieve the iterator of
the sequence. Let's suppose we have an array of the following elements:

 int arr[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

When the language doesn't have the begin() and end() function, we need to iterate the
elements of the array using the index we can see in the following lines of code:

 for (unsigned int i = 0; i < sizeof(arr)/sizeof(arr[0]); ++i)
 // Do something to the array

Fortunately, using the begin() and end() function, we can refactor the preceding for
loop to become as follows:

 for (auto i = std::begin(arr); i != std::end(arr); ++i)
 // Do something to the array

As we can see, the use of the begin() and end() function creates a compact code since we
don't need to worry about the length of the array because the iterator pointer of begin()
and end() will do it for us. For comparison, let's take a look at the following
begin_end.cpp code:

 /* begin_end.cpp */
 #include <iostream>

 auto main() -> int
 {
 std::cout << "[begin_end.cpp]" << std::endl;

 // Declaring an array
 int arr[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

 // Displaying the array elements
 // using conventional for-loop
 std::cout << "Displaying array element using conventional for-
 loop";
 std::cout << std::endl;
 for (unsigned int i = 0; i < sizeof(arr)/sizeof(arr[0]); ++i)
 std::cout << arr[i] << " ";
 std::cout << std::endl;

Diving into Modern C++

[15]

 // Displaying the array elements
 // using non-member begin() and end()
 std::cout << "Displaying array element using non-member begin()
 and end()";
 std::cout << std::endl;
 for (auto i = std::begin(arr); i != std::end(arr); ++i)
 std::cout << *i << " ";
 std::cout << std::endl;

 return 0;
 }

To prove the preceding code, we can compile the code, and, when we run it, the following
output should be displayed on the console screen:

As we can see in the screenshot, we've got the exact same output when we use the
conventional for-loop or begin() and end() functions.

Iterating over collections using range-based for
loops
In the modern C++, there is a new feature that is augmented to support the for-each
technique to iterate over collections. This feature is useful if you want to do something to
the elements of a collection or array without caring about the number of elements or the
indexes. The syntax of the feature is also simple. Suppose we have an array named arr and
we want to iterate each element using the range-based for loop technique; we can use
the following syntax:

 for (auto a : arr)
 // Do something with a

Diving into Modern C++

[16]

So, we can refactor our preceding begin_end.cpp code to use range-based for loop as
we can see in the following code:

 /* range_based_for_loop.cpp */
 #include <iostream>

 auto main() -> int
 {
 std::cout << "[range_based_for_loop.cpp]" << std::endl;

 // Declaring an array
 int arr[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

 // Displaying the array elements
 // using non-member begin() and end()
 std::cout << "Displaying array element using range-based for
 loop";
 std::cout << std::endl;
 for (auto a : arr) std::cout << a << " ";
 std::cout << std::endl;

 return 0;
 }

The syntax we see in the preceding code is simpler now. If we compile the preceding code,
we should find no error and, if we run the code, we should see the following output on the
console screen:

We now have a new technique to iterate over the collection without caring about the
indexes of the collection. We will keep using it in this book.

Diving into Modern C++

[17]

Leveraging the use of C++ language with the
C++ Standard Libraries
The C++ Standard Libraries are a powerful set of classes and functions that have many
capabilities needed to create an application. They are controlled by the C++ ISO Standard
Committee and is influenced by the Standard Template Libraries (STL), which were the
generic libraries before C++11 was introduced. All features in Standard Libraries are
declared in std namespace and no headers end in .h anymore (except 18 headers of the
ISO C90 C Standard Library that is incorporated into the C++ Standard Libraries).

There are several header files containing the declaration of the C++ Standard Libraries.
However, it is almost impossible to discuss all header files in these tiny chapters. We will,
therefore, talk about some features that we will use most in our daily coding activities.

Placing any objects in the container
Container is an object that is used to store other objects and manage the memory that is
used by the objects it contains. An array is a new feature added in C++11 to store the
collection of specific data types. It is a sequence container since it stores the same data type
objects and arranges them linearly. Let's take a look at the following code snippet:

 /* array.cpp */
 #include <array>
 #include <iostream>

 auto main() -> int
 {
 std::cout << "[array.cpp]" << std::endl;

 // Initializing an array containing five integer elements
 std::array<int, 10> arr = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

 // Displaying the original elements of the array
 std::cout << "Original Data : ";
 for(auto a : arr) std::cout << a << " ";
 std::cout << std::endl;

 // Modifying the content of
 // the 1st and 3rd element of the array
 arr[1] = 9;
 arr[3] = 7;

 // Displaying the altered array elements

Diving into Modern C++

[18]

 std::cout << "Manipulated Data: ";
 for(auto a : arr) std::cout << a << " ";
 std::cout << std::endl;

 return 0;
 }

As we can see in the preceding code, we instance a new array named arr, set its length as
10, and only approve the int element. As we can guess, the output of the code is a line of
numbers 0 through 9, which is shown in the original data, and the other line will show the
altered data, as we can see in the following screenshot:

There is no performance issue if we declare an array using std::array;
we use in the array.cpp code and compare it with a usual array as we
use in the begin_end.cpp code. However, in modern C++, we are given a
new array declaration that has a friendly value semantic, so that it can be
passed to or returned from functions by value. Also, the interface of this
new array declaration makes it more convenient to find the size, and use it
with Standard Template Library (STL)-style iterator-based algorithms.

It is good to use an array as the container since we can store the data and manipulate them.
We can also sort and find a specific element if we want. However, since the array is a
compile-time non-resizable object, we have to decide the size of the array we intend to use
at the very beginning as we cannot change the size later. In other words, we cannot insert or
remove the element from the existing array. As a solution to this problem, and for the best
practice of using the container as well, we can now use a vector to store our collection.
Let's take a look at the following code:

 /* vector.cpp */
 #include <vector>
 #include <iostream>

 auto main() -> int
 {
 std::cout << "[vector.cpp]" << std::endl;

 // Initializing a vector containing three integer elements
 std::vector<int> vect = { 0, 1, 2 };

Diving into Modern C++

[19]

 // Displaying the original elements of the vector
 std::cout << "Original Data : ";
 for (auto v : vect) std::cout << v << " ";
 std::cout << std::endl;

 // Adding two new data
 vect.push_back(3);
 vect.push_back(4);

 // Displaying the elements of the new vector
 // and reverse the order
 std::cout << "New Data Added : ";
 for (auto v : vect) std::cout << v << " ";
 std::cout << std::endl;

 // Modifying the content of
 // the 2nd and 4th element of the vector
 vect.at(2) = 5;
 vect.at(4) = 6;

 // Displaying the altered array elements
 std::cout << "Manipulate Data: ";
 for (auto v : vect) std::cout << v << " ";
 std::cout << std::endl;

 return 0;
 }

Now, we have a vector instance in our preceding code instead of an array instance. As
we can see, we give an additional value for the vector instance using the push_back()
method. We can add the value anytime we want. The manipulation of each element is also
easier since vector has an at() method that returns a reference to the element of the
specific index. The following screenshot is what we will see as the output when running the
code:

Diving into Modern C++

[20]

It is better to always use the at() method instead of the [] operator when
we want to access the specific element by its index in a vector instance.
It's because, when we accidentally access the out of range position, the
at() method will throw an out_of_range exception. Otherwise, the []
operator will give undefined behavior.

Using algorithms
We can sort the elements of the collection we have in array or vector, as well as find
specific content of the element. For these purposes, we have to use the algorithm feature
provided by the C++ Standard Library. Let's take a look at the following code to
demonstrate the sorting element capability in the algorithm feature:

 /* sort.cpp */
 #include <vector>
 #include <algorithm>
 #include <iostream>

 bool comparer(int a, int b)
 {
 return (a > b);
 }

 auto main() -> int
 {
 std::cout << "[sort.cpp]" << std::endl;

 // Initializing a vector containing several integer elements
 std::vector<int> vect = { 20, 43, 11, 78, 5, 96 };

 // Displaying the original elements of the vector
 std::cout << "Original Data : ";
 for (auto v : vect)
 std::cout << v << " ";
 std::cout << std::endl;

 // Sorting the vector element ascending
 std::sort(std::begin(vect), std::end(vect));

 // Displaying the ascending sorted elements
 // of the vector
 std::cout << "Ascending Sorted : ";
 for (auto v : vect)
 std::cout << v << " ";
 std::cout << std::endl;

Diving into Modern C++

[21]

 // Sorting the vector element descending
 // using comparer
 std::sort(std::begin(vect), std::end(vect), comparer);

 // Displaying the descending sorted elements
 // of the vector
 std::cout << "Descending Sorted: ";
 for (auto v : vect)
 std::cout << v << " ";
 std::cout << std::endl;

 return 0;
 }

As we see in the preceding code, we invoked the sort() method twice. First, we just
supplied the range of the elements we wanted to sort. Then we added the comparison
function, comparer(), to be provided to the sort() method to gain more flexibility the
method has. The output we will see on the console from the preceding code is as follows:

From the preceding screenshot, we can see that we have six elements in a vector at the
beginning. We then sort the elements of the vector using a simple sort() method. Then,
we invoke the sort() method again, but instead of a simple sort() method, we now
supply comparer() to the sort() method. As a result, the vector elements will be sorted
descendingly since the comparer() function looks for the greater value from two inputs.

Now, let's move to another capability the algorithm feature has, which is finding a
particular element. Let's suppose we have the Vehicle class in our code. It has two private
fields named m_vehicleType and m_totalOfWheel, and we can retrieve the value from
the getter methods named GetType() and GetNumOfWheel() respectively. It also has two
constructors, which are the default constructor and the user-defined one. The declaration of
the class should be as follows:

 /* vehicle.h */
 #ifndef __VEHICLE_H__
 #define __VEHICLE_H__

Diving into Modern C++

[22]

 #include <string>

 class Vehicle
 {
 private:
 std::string vehicleType;
 int totalOfWheel;

 public:
 Vehicle(
 const std::string &type,
 int _wheel);
 Vehicle();
 ~Vehicle();
 std::string GetType() const {return vehicleType;}
 int GetNumOfWheel() const {return totalOfWheel;}
 };

 #endif // End of __VEHICLE_H__

The implementation of the Vehicle class is as follows:

 /* vehicle.cpp */
 #include "vehicle.h"

 using namespace std;

 // Constructor with default value for
 // m_vehicleType and m_totalOfWheel
 Vehicle::Vehicle() : m_totalOfWheel(0)
 {
 }

 // Constructor with user-defined value for
 // m_vehicleType and m_totalOfWheel
 Vehicle::Vehicle(const string &type, int wheel) :
 m_vehicleType(type),
 m_totalOfWheel(wheel)
 {
 }

 // Destructor
 Vehicle::~Vehicle()
 {
 }

Diving into Modern C++

[23]

We will store a collection of Vehicle in the vector container, and then we will search for
some elements based on its property. The code will be as follows:

 /* find.cpp */
 #include <vector>
 #include <algorithm>
 #include <iostream>
 #include "../vehicle/vehicle.h"

 using namespace std;
 bool TwoWheeled(const Vehicle &vehicle)
 {
 return _vehicle.GetNumOfWheel() == 2 ?
 true : false;
 }

 auto main() -> int
 {
 cout << "[find.cpp]" << endl;

 // Initializing several Vehicle instances
 Vehicle car("car", 4);
 Vehicle motorcycle("motorcycle", 2);
 Vehicle bicycle("bicycle", 2);
 Vehicle bus("bus", 6);
 // Assigning the preceding Vehicle instances to a vector
 vector<Vehicle> vehicles = { car, motorcycle, bicycle, bus };

 // Displaying the elements of the vector
 cout << "All vehicles:" << endl;;
 for (auto v : vehicles)
 std::cout << v.GetType() << endl;
 cout << endl;

 // Displaying the elements of the vector
 // which are the two-wheeled vehicles
 cout << "Two-wheeled vehicle(s):" << endl;;
 auto tw = find_if(
 begin(vehicles),
 end(vehicles),
 TwoWheeled);
 while (tw != end(vehicles))
 {
 cout << tw->GetType() << endl ;
 tw = find_if(++tw, end(vehicles), TwoWheeled);
 }
 cout << endl;

Diving into Modern C++

[24]

 // Displaying the elements of the vector
 // which are not the two-wheeled vehicles
 cout << "Not the two-wheeled vehicle(s):" << endl;;
 auto ntw = find_if_not(begin(vehicles),
 end(vehicles),
 TwoWheeled);
 while (ntw != end(vehicles))
 {
 cout << ntw->GetType() << endl ;
 ntw = find_if_not(++ntw, end(vehicles), TwoWheeled);
 }

 return 0;
 }

As we can see, we instance four Vehicle objects, then store them in vector. There, we try
to find the vehicle that has two wheels. The find_if() function is used for this purpose.
We also have the TwoWheeled() method to provide the comparison value. Since we are
finding the two-wheeled vehicle, we will inspect the totalOfWheel variable in the
Vehicle class by invoking the GetNumOfWheel() method. In contrast, if we want to find
the element that doesn't conform to the comparison value, we can use the find_if_not()
function, which had been added in C++11. The output we get should look like this:

Diving into Modern C++

[25]

As we can see in the vehicle.cpp code and find.cpp code, we now add
the using namespace std; line in the *.cpp files. We do this to make
our coding activity become more productive since we don't have to type
many words. In contrast, in vehicle.h, we still using std:: followed by
the methods or properties name rather than use the std namespace at the
beginning. It's best practice to not declare using namespace in header
files since the header files are the files we will deliver if we create some
libraries for instances. The user of our library may have another method
with the same name as the function our library has. It will definitely create
conflict between these two functions.

Another algorithm feature we will use most is the for_each loop. Instead of using the for
loop, the use of the for_each loop will make our code more concise in many cases. It's also
simpler and less error prone than a for loop because we can define a specific function for
the for_each loop. Now let's refactor our previous code to use the for_each loop. The
code is written as follows:

 /* for_each.cpp */
 #include <vector>
 #include <algorithm>
 #include <iostream>
 #include "vehicle.h"

 using namespace std;

 void PrintOut(const Vehicle &vehicle)
 {
 cout << vehicle.GetType() << endl;
 }

 auto main() -> int
 {
 cout << "[for_each.cpp]" << endl;

 // Initializing several Vehicle instances
 Vehicle car("car", 4);
 Vehicle motorcycle("motorcycle", 2);
 Vehicle bicycle("bicycle", 2);
 Vehicle bus("bus", 6);

 // Assigning the preceding Vehicle instances to a vector
 vector<Vehicle> vehicles = { car, motorcycle, bicycle, bus };

 // Displaying the elements of the vector
 cout << "All vehicles:" << endl;

Diving into Modern C++

[26]

 for_each(begin(vehicles), end(vehicles), PrintOut);

 return 0;
 }

Now, with the for_each loop, we have a clearer code. We only need to provide the first
and last iterator and then pass a function--the PrintOut() function in this case--that will
be invoked in each element in the range.

Simplifying the function notation using a
Lambda expression
The Lambda expression is an anonymous notation that represents something that performs
an operation or calculation. In functional programming, the Lambda expression is useful to
produce the first class and pure function, which we will discuss in separate chapters in this
book. For now, let's familiarize ourselves with this new feature introduced in C++11 by
investigating three basic parts of the Lambda expression:

capturing list: []
parameter list: ()
body: {}

The order of these three basic parts is as follows:

 [](){}

The capturing list part is also used as a mark to identify the Lambda expression. It is a
placeholder to value to be involved in the expression. The only capture defaults are the
ampersand symbol (&), which will implicitly capture the automatic variables by reference,
and the equal sign (=), which will implicitly capture the automatic variables by copy (we
will discuss it further in the upcoming section). The parameter list is similar to the capturing
list in every function where we can pass the value to it. The body is the implementation of
the function itself.

Diving into Modern C++

[27]

Using the Lambda expression for a tiny function
Imagine we have a tiny one-line function that we invoke only once. It's better if we write the
operation of that function directly when we need it. We actually had this function in our
previous example when discussing the C++ Standard Library. Just go back to the
for_each.cpp file and we will find the PrintOut() function that is only invoked once by
for_each(). We can make this for_each loop more readable if we use Lambda. Let's take
a look at the following code snippet to examine how we refactor the for_each.cpp file:

 /* lambda_tiny_func.cpp */
 #include <vector>
 #include <algorithm>
 #include <iostream>
 #include "../vehicle/vehicle.h"

 using namespace std;

 auto main() -> int
 {
 cout << "[lambda_tiny_func.cpp]" << endl;

 // Initializing several Vehicle instances
 Vehicle car("car", 4);
 Vehicle motorcycle("motorcycle", 2);
 Vehicle bicycle("bicycle", 2);
 Vehicle bus("bus", 6);

 // Assigning the preceding Vehicle instances to a vector
 vector<Vehicle> vehicles = { car, motorcycle, bicycle, bus };

 // Displaying the elements of the vector
 // using Lambda expression
 cout << "All vehicles:" << endl;
 for_each(
 begin(vehicles),
 end(vehicles),
 [](const Vehicle &vehicle){
 cout << vehicle.GetType() << endl;
 });

 return 0;
 }

Diving into Modern C++

[28]

As we can see, we have transformed the PrintOut() function that we used in the
for_each.cpp file into a Lambda expression and passed it to the for_each loop. It will
indeed give the same output as the for_each.cpp file does. However, now our code
becomes more concise and readable.

Using the Lambda expression for multiline
functions
The Lambda expression can also be used for multiline functions, so we can put the body of
the function on it. This will make our code more readable as well. Let's make a new code. In
that code, we will have an integer collection and an intent to inspect whether the selected
element is the prime number or not. We can make a separate function, for instance,
PrintPrime(), then invoke it. However, since the prime number checking operation is
called only once, it's more readable if we transform it into a Lambda expression. The code
should look like this:

 /* lambda_multiline_func.cpp */
 #include <vector>
 #include <algorithm>
 #include <iostream>

 using namespace std;

 auto main() -> int
 {
 cout << "[lambda_multiline_func.cpp]" << endl;

 // Initializing a vector containing integer element
 vector<int> vect;
 for (int i = 0; i < 10; ++i)
 vect.push_back(i);

 // Displaying whether or not the element is prime number
 for_each(
 begin(vect),
 end(vect),
 [](int n) {
 cout << n << " is";
 if(n < 2)
 {
 if(n == 0)
 cout << " not";
 }
 else

Diving into Modern C++

[29]

 {
 for (int j = 2; j < n; ++j)
 {
 if (n % j == 0)
 {
 cout << " not";
 break;
 }
 }
 }

 cout << " prime number" << endl;
 });

 return 0;
 }

The output we should see on the screen is as follows:

As we can see in the preceding screenshot, we have successfully identified the prime
number by using the Lambda expression.

Diving into Modern C++

[30]

Returning a value from the Lambda expression
Our two preceding samples of the Lambda expression are just for the purpose to print on
console. It means the function does not need to return any value. However, we can ask the
Lambda expression to return a value for an instance if we do the calculation inside the
function and return the calculation result. Let's take a look at the following code to examine
the use of this Lambda:

 /* lambda_returning_value.cpp */
 #include <vector>
 #include <algorithm>
 #include <iostream>

 using namespace std;

 auto main() -> int
 {
 cout << "[lambda_returning_value.cpp]" << endl;

 // Initializing a vector containing integer element
 vector<int> vect;
 for (int i = 0; i < 10; ++i)
 vect.push_back(i);

 // Displaying the elements of vect
 cout << "Original Data:" << endl;
 for_each(
 begin(vect),
 end(vect),
 [](int n){
 cout << n << " ";
 });
 cout << endl;

 // Creating another vect2 vector
 vector<int> vect2;
 // Resize the size of vect2 exactly same with vect
 vect2.resize(vect.size());
 // Doubling the elements of vect and store to vect2
 transform(
 begin(vect),
 end(vect),
 begin(vect2),
 [](int n) {
 return n * n;
 });

Diving into Modern C++

[31]

 // Displaying the elements of vect2
 cout << "Squared Data:" << endl;
 for_each(
 begin(vect2),
 end(vect2),
 [](int n) {
 cout << n << " ";
 });
 cout << endl;

 // Creating another vect3 vector
 vector<double> vect3;
 // Resize the size of vect3 exactly same with vect
 vect3.resize(vect.size());
 // Finding the average of the elements of vect
 // and store to vect2
 transform(
 begin(vect2),
 end(vect2),
 begin(vect3),
 [](int n) -> double {
 return n / 2.0;
 });

 // Displaying the elements of vect3
 cout << "Average Data:" << endl;
 for_each(
 begin(vect3),
 end(vect3),
 [](double d) {
 cout << d << " ";
 });
 cout << endl;

 return 0;
 }

When we use the transform() method in the preceding code, we have a Lambda
expression that returns a value from the calculation of n * n. However, there's no return
type stated in the expression. This is because we can omit the statement of the return type
since the compiler has understood that the expression will return an integer value. So,
after we have another vector, vect2, which has the same size as vect, we can invoke the
transform() method along with the Lambda expression, and the value of vect will be
doubled and stored in vect2.

Diving into Modern C++

[32]

We can, if we want to, specify the return type to the Lambda expression. As we can see in
the preceding code, we transformed the vect3 vector based on all values of the vect
vector, but now we specify the return type to double using the arrow symbol (->). The
result of the preceding code should be like the following screenshot:

As we can see from the preceding screenshot, we have successfully found the doubled and
average result using the Lambda expression.

Capturing a value to the Lambda expression
In our previous Lambda expression examples, we keep the capturing part and the square
bracket ([]) empty since the Lambda doesn't capture anything and doesn't have any extra
member variable in the anonymous object generated by the compiler. We can also specify
the object we want to capture in the Lambda expression by specifying it in this square
bracket. Let's take a look at the following piece of code to go through the discussion:

 /* lambda_capturing_by_value.cpp */
 #include <vector>
 #include <algorithm>
 #include <iostream>

 using namespace std;

 auto main() -> int
 {
 cout << "[lambda_capturing_by_value.cpp]" << endl;

 // Initializing a vector containing integer element
 vector<int> vect;
 for (int i = 0; i < 10; ++i)
 vect.push_back(i);

 // Displaying the elements of vect

Diving into Modern C++

[33]

 cout << "Original Data:" << endl;
 for_each(
 begin(vect),
 end(vect),
 [](int n){
 cout << n << " ";
 });
 cout << endl;

 // Initializing two variables
 int a = 2;
 int b = 8;

 // Capturing value explicitly from the two variables
 cout << "Printing elements between " << a;
 cout << " and " << b << " explicitly [a,b]:" << endl;
 for_each(
 begin(vect),
 end(vect),
 [a,b](int n){
 if (n >= a && n <= b)
 cout << n << " ";
 });
 cout << endl;

 // Modifying variable a and b
 a = 3;
 b = 7;

 // Capturing value implicitly from the two variables
 cout << "printing elements between " << a;
 cout << " and " << b << " implicitly[=]:" << endl;
 for_each(
 begin(vect),
 end(vect),
 [=](int n){
 if (n >= a && n <= b)
 cout << n << " ";
 });
 cout << endl;

 return 0;
 }

Diving into Modern C++

[34]

In the preceding code, we will try to capture the value in the Lambda expression, explicitly
and implicitly. Let's suppose we have two variables, a and b, and we want to explicitly
capture the values, we can specify them in the Lambda expression using the [a,b]
statement, and then using the values inside the function body. Moreover, if we wish to
capture the value implicitly, just use [=] for the capturing part and then the expression will
know which variable we intend to use when we specify them in the function body. If we
run the preceding code, we will get the following output on the screen:

We can also mutate the state of the values we capture without modifying the value outside
the Lambda expression function body. For this purpose, we can use the same techniques as
used previously, and add the mutable keyword as shown in the following block of code:

 /* lambda_capturing_by_value_mutable.cpp */
 #include <vector>
 #include <algorithm>
 #include <iostream>

 using namespace std;

 auto main() -> int
 {
 cout << "[lambda_capturing_by_value_mutable.cpp]" << endl;

 // Initializing a vector containing integer element
 vector<int> vect;
 for (int i = 0; i < 10; ++i)
 vect.push_back(i);

 // Displaying the elements of vect
 cout << "Original Data:" << endl;
 for_each(
 begin(vect),
 end(vect),
 [](int n){
 cout << n << " ";

Diving into Modern C++

[35]

 });
 cout << endl;

 // Initializing two variables
 int a = 1;
 int b = 1;

 // Capturing value from the two variables
 // without mutate them
 for_each(
 begin(vect),
 end(vect),
 [=](int& x) mutable {
 const int old = x;
 x *= 2;
 a = b;
 b = old;
 });

 // Displaying the elements of vect
 cout << "Squared Data:" << endl;
 for_each(
 begin(vect),
 end(vect),
 [](int n) {
 cout << n << " ";
 });
 cout << endl << endl;

 // Displaying value of variable a and b
 cout << "a = " << a << endl;
 cout << "b = " << b << endl;

 return 0;
 }

Diving into Modern C++

[36]

The preceding code will double the element of the vect vector. It uses capturing by value in
the Lambda expression and also the mutable keyword. As we can see, we passed the
vector element by reference (int& x) and multiplied it by two, then changed the value of
a and b. However, since we use the mutable keyword, the final result of a and b will
remain the same, although, we have passed the vector by reference. The output on the
console looks like the following screenshot:

If we want to change the value of the a and b variables, we have to use the Lambda
expression to capture by reference. We can do this by passing the reference to the angle
bracket in the Lambda expression, for instance, [&a, &b]. For more detail, let's take a look
at the following piece of code:

 /* lambda_capturing_by_reference.cpp */
 #include <vector>
 #include <algorithm>
 #include <iostream>

 using namespace std;

 auto main() -> int
 {
 cout << "[lambda_capturing_by_reference.cpp]" << endl;

 // Initializing a vector containing integer element
 vector<int> vect;
 for (int i = 0; i < 10; ++i)
 vect.push_back(i);

 // Displaying the elements of vect
 cout << "Original Data:" << endl;
 for_each(
 begin(vect),
 end(vect),
 [](int n){

Diving into Modern C++

[37]

 cout << n << " ";
 });
 cout << endl;

 // Initializing two variables
 int a = 1;
 int b = 1;

 // Capturing value from the two variables
 // and mutate them
 for_each(
 begin(vect),
 end(vect),
 [&a, &b](int& x){
 const int old = x;
 x *= 2;
 a = b;
 b = old;
 });

 // Displaying the elements of vect
 cout << "Squared Data:" << endl;
 for_each(
 begin(vect),
 end(vect),
 [](int n) {
 cout << n << " ";
 });
 cout << endl << endl;

 // Displaying value of variable a and b
 cout << "a = " << a << endl;
 cout << "b = " << b << endl;

 return 0;
 }

Diving into Modern C++

[38]

The preceding code has the same behavior with the
lambda_capturing_by_value_mutable.cpp file that will double the element of the
vect vector. However, by capturing by reference, it now also modifies the value of a and b
when they are processed in the for_each loop. The a and b values will be changed at the
end of the code, as we can see in the following screenshot:

Preparing the value using initialization captures
Another great feature of the Lambda expression coming up in C++14 is its initialization
captures. The expression can capture a value of the variable and assign it to the expression's
variable. Let's take a look at the following piece of code implementing the initialization
captures:

 /* lambda_initialization_captures.cpp */
 #include <iostream>

 using namespace std;

 auto main() -> int
 {
 cout << "[lambda_initialization_captures.cpp]" << endl;

 // Initializing a variable
 int a = 5;
 cout << "Initial a = " << a << endl;

 // Initializing value to lambda using the variable
 auto myLambda = [&x = a]() { x += 2; };

 // Executing the Lambda
 myLambda();

 // Displaying a new value of the variable

Diving into Modern C++

[39]

 cout << "New a = " << a << endl;

 return 0;
 }

As we can see in the preceding code, we have an int variable named a with the value 5. The
Lambda expression, myLambda, then captures the a value and executes it in the code. The
result is that now the a value will be 7 since it is added by 2. The following output
screenshot should appear in our console window when we run the preceding code:

From the preceding snapshot, we see that we can prepare the value to be included in the
calculation inside the Lambda expression.

Writing a generic Lambda expression to be used
many times with many different data types
Before C++14, we have to specifically state the type of the parameter list. Fortunately, now
in C++14, Lambda expressions accept auto as a valid parameter type. Therefore, we can
now build a generic Lambda expression as demonstrated in the following code. In that
code, we have only one Lambda expression to find out which is the greatest value between
two numbers passed to the expression. We will use the auto keyword in parameter
declaration so it can be passed by any data type. Therefore, the findMax() function
parameters can be passed by both the int and float data type. The code should be as
follows:

 /* lambda_expression_generic.cpp */
 #include <iostream>

 using namespace std;

 auto main() -> int
 {
 cout << "[lambda_expression_generic.cpp]" << endl;

 // Creating a generic lambda expression

Diving into Modern C++

[40]

 auto findMax = [](auto &x, auto &y){
 return x > y ? x : y; };

 // Initializing various variables
 int i1 = 5, i2 = 3;
 float f1 = 2.5f, f2 = 2.05f;

 // Consuming generic lambda expression
 // using integer data type
 cout << "i1 = 5, i2 = 3" << endl;
 cout << "Max: " << findMax(i1, i2) << endl << endl;

 // Consuming generic lambda expression
 // using double data type
 cout << "f1 = 2.5f, f2 = 2.05f" << endl;
 cout << "Max: " << findMax(f1, f2) << endl << endl;

 return 0;
 }

The output we will see on the console should be as follows:

The C++17 language plans to introduce two new features for the Lambda
expression--they are capturing ∗this, which allows the expression to
capture the enclosing object by copy, and the constexpr Lambda
expressions, which allows us to use the result of the Lambda expressions
and generate constexpr objects at compile time. However, since C++17
has not been released yet, we cannot try it for now.

Diving into Modern C++

[41]

Avoiding manual memory management with
smart pointers
The smart pointers are highly useful and have an essential knowledge in using C++
efficiently. C++11 added many new abilities for the smart pointer we can find in the memory
header file. For a long time, before C++11, we used auto_ptr as a smart pointer. However,
it was quite unsafe since it had incompatible copy semantics. It's also deprecated now, and
we should not use it anymore. Fortunately, C++ has presented unique_ptr, which has a
similar functionality, but with additional features, such as adding deleters and support
for arrays. Anything we can do with auto_pt, we can and should do with unique_ptr
instead. We will discuss unique_ptr in depth along with other new smart pointers in
C++11--shared_ptr and weak_ptr.

Replacing a raw pointer using unique_ptr
The next pointer we will see is the unique_ptr pointer. It is fast, efficient, and a near drop-
in replacement for raw or naked pointers. It provides exclusive ownership semantics, which
exclusively owns the object that it points to. By its exclusiveness, it can destroy the object
when its destructor is called if it has a non-null pointer. It also cannot be copied due to its
exclusiveness. It has no copy constructor and copy assignment. Although it cannot be
copied, it can be moved since it provides a move constructor and a move assignment.

These are the methods we can use to construct unique_ptr:

 auto up1 = unique_ptr<int>{};
 auto up2 = unique_ptr<int>{ nullptr };
 auto up3 = unique_ptr<int>{ new int { 1234 } };

Based on the preceding code, up1 and up2 will construct two new unique_ptr that point
to nothing (null), whereas up3 will point to the address that holds the 1234 value.
However, C++14 adds a new library function to construct unique_ptr, that is,
make_unique. So, we can construct a new unique_ptr pointer as follows:

 auto up4 = make_unique<int>(1234);

The up4 variable will also point to the address that holds the 1234 value.

Diving into Modern C++

[42]

Now, let's take a look at the following block of code:

 /* unique_ptr_1.cpp */
 #include <memory>
 #include <iostream>

 using namespace std;

 struct BodyMass
 {
 int Id;
 float Weight;

 BodyMass(int id, float weight) :
 Id(id),
 Weight(weight)
 {
 cout << "BodyMass is constructed!" << endl;
 cout << "Id = " << Id << endl;
 cout << "Weight = " << Weight << endl;
 }
 ~BodyMass()
 {
 cout << "BodyMass is destructed!" << endl;
 }
 };

 auto main() -> int
 {
 cout << "[unique_ptr_1.cpp]" << endl;
 auto myWeight = make_unique<BodyMass>(1, 165.3f);
 cout << endl << "Doing something!!!" << endl << endl;
 return 0;
 }

We try to construct a new unique_ptr pointer that points to the address that holds a
BodyMass data type. In BodyMass, we have a constructor as well as a destructor. Now, let's
see how the unique_ptr pointer works by running the preceding code. The output we get
on the screen should be like the following screenshot:

Diving into Modern C++

[43]

As we can see in the preceding screenshot, the constructor is invoked when we construct
unique_ptr. Moreover, unlike the traditional C++ language, where we have to free the
memory up when we use a pointer, in modern C++, the memory will be freed up
automatically when it is out of scope. We can see that the destructor of BodyMass is
invoked when the program exits, which means myWeight is out of scope.

Now, let's test the exclusiveness of unique_ptr by analyzing the following code snippet:

 /* unique_ptr_2.cpp */
 #include <memory>
 #include <iostream>

 using namespace std;
 struct BodyMass
 {
 int Id;
 float Weight;

 BodyMass(int id, float weight) :
 Id(id),
 Weight(weight)
 {
 cout << "BodyMass is constructed!" << endl;
 cout << "Id = " << Id << endl;
 cout << "Weight = " << Weight << endl;
 }

 BodyMass(const BodyMass &other) :
 Id(other.Id),
 Weight(other.Weight)
 {
 cout << "BodyMass is copy constructed!" << endl;
 cout << "Id = " << Id << endl;
 cout << "Weight = " << Weight << endl;
 }

Diving into Modern C++

[44]

 ~BodyMass()
 {
 cout << "BodyMass is destructed!" << endl;
 }
 };

 auto main() -> int
 {
 cout << "[unique_ptr_2.cpp]" << endl;

 auto myWeight = make_unique<BodyMass>(1, 165.3f);

 // The compiler will forbid to create another pointer
 // that points to the same allocated memory/object
 // since it's unique pointer
 //auto myWeight2 = myWeight;

 // However, we can do the following expression
 // since it actually copies the object that has been allocated
 // (not the unique_pointer)
 auto copyWeight = *myWeight;

 return 0;
 }

As we can see in the preceding code, we see that we can't assign the unique_ptr instance
to another pointer since it will break the exclusiveness of unique_ptr. The compiler will
throw an error if we make the following expression:

 auto myWeight2 = myWeight;

However, we can assign the value of the unique_ptr to another object since it has been
allocated. To prove it, we have added a copy constructor to log when the following
expression is executed:

 auto copyWeight = *myWeight;

Diving into Modern C++

[45]

If we run the preceding unique_ptr_2.cpp code, we will see the following output on the
screen:

As we can see in the preceding screenshot, the copy constructor is called when the copy
assignment is executed. It proves that we can copy the value of the unique_ptr object but
not the object itself.

As we discussed earlier, unique_ptr has moved the constructor, although it has no copy
constructor. The use of this construction can be found in the following piece of code:

 /* unique_ptr_3.cpp */
 #include <memory>
 #include <iostream>

 using namespace std;

 struct BodyMass
 {
 int Id;
 float Weight;

 BodyMass(int id, float weight) :
 Id(id),
 Weight(weight)
 {
 cout << "BodyMass is constructed!" << endl;
 cout << "Id = " << Id << endl;
 cout << "Weight = " << Weight << endl;
 }

 ~BodyMass()
 {
 cout << "BodyMass is destructed!" << endl;

Diving into Modern C++

[46]

 }
 };

 unique_ptr<BodyMass> GetBodyMass()
 {
 return make_unique<BodyMass>(1, 165.3f);
 }

 unique_ptr<BodyMass> UpdateBodyMass(
 unique_ptr<BodyMass> bodyMass)
 {
 bodyMass->Weight += 1.0f;
 return bodyMass;
 }

 auto main() -> int
 {
 cout << "[unique_ptr_3.cpp]" << endl;

 auto myWeight = GetBodyMass();

 cout << "Current weight = " << myWeight->Weight << endl;

 myWeight = UpdateBodyMass(move(myWeight));
 cout << "Updated weight = " << myWeight->Weight << endl;

 return 0;
 }

In the preceding code, we have two new functions--GetBodyMass() and
UpdateBodyMass(). We construct a new unique_ptr object from the GetBodyMass()
function, then we update the value of its Weight using the UpdateBodyMass() function. We
can see that we use the move function when we pass an argument to the
UpdateBodyMass() function. It's because unique_ptr has no copy constructor, and it has
to be moved in order to update the value of its property. The screen output of the preceding
code is as follows:

Diving into Modern C++

[47]

Sharing objects using shared_ptr
In contrast to unique_ptr, shared_ptr implements shared ownership semantics, so it
offers the ability of copy constructor and copy assignment. Although they have a difference
in the implementation, shared_ptr is actually the counted version of unique_ptr. We can
call the use_count() method to find out the counter value of the shared_ptr reference.
Each instance of the shared_ptr valid object is counted as one. We can copy the
shared_ptr instance to other shared_ptr variables and the reference count will be
incremented. When a shared_ptr object is destroyed, the destructor decrements the
reference count. The object will be deleted only if the count reaches zero. Now let's examine
the following shared_ptr code:

 /* shared_ptr_1.cpp */
 #include <memory>
 #include <iostream>

 using namespace std;

 auto main() -> int
 {
 cout << "[shared_ptr_1.cpp]" << endl;

 auto sp1 = shared_ptr<int>{};

 if(sp1)
 cout << "sp1 is initialized" << endl;
 else
 cout << "sp1 is not initialized" << endl;
 cout << "sp1 pointing counter = " << sp1.use_count() << endl;
 if(sp1.unique())
 cout << "sp1 is unique" << endl;
 else
 cout << "sp1 is not unique" << endl;

Diving into Modern C++

[48]

 cout << endl;
 sp1 = make_shared<int>(1234);
 if(sp1)
 cout << "sp1 is initialized" << endl;
 else
 cout << "sp1 is not initialized" << endl;
 cout << "sp1 pointing counter = " << sp1.use_count() << endl;
 if(sp1.unique())
 cout << "sp1 is unique" << endl;
 else
 cout << "sp1 is not unique" << endl;
 cout << endl;

 auto sp2 = sp1;
 cout << "sp1 pointing counter = " << sp1.use_count() << endl;
 if(sp1.unique())
 cout << "sp1 is unique" << endl;
 else
 cout << "sp1 is not unique" << endl;
 cout << endl;

 cout << "sp2 pointing counter = " << sp2.use_count() << endl;
 if(sp2.unique())
 cout << "sp2 is unique" << endl;
 else
 cout << "sp2 is not unique" << endl;
 cout << endl;

 sp2.reset();

 cout << "sp1 pointing counter = " << sp1.use_count() << endl;
 if(sp1.unique())
 cout << "sp1 is unique" << endl;
 else
 cout << "sp1 is not unique" << endl;
 cout << endl;

 return 0;
 }

Diving into Modern C++

[49]

Before we examine each line of the preceding code, let's take a look at the following output
that should appear on the console window:

First, we create a shared_ptr object named sp1 without instantiating it. From the console,
we see that sp1 is not initialized and the counter is still 0. It is also not unique since the
pointer is pointed to nothing. We then construct sp1 using the make_shared method. Now,
sp1 is initialized and the counter becomes 1. It also becomes unique since it's only one of
the shared_ptr object (proven by the value of the counter that is 1). Next, we create
another variable named sp2, and copy sp1 to it. As a result, sp1 and sp2 now share the
same object proven by the counter and the uniqueness value. Then, invoking the reset()
method in sp2 will destroy the object of sp2. Now, the counter of sp1 becomes 1, and it is
unique again.

In the shared_ptr_1.cpp code, we declare the unique_ptr object using
shared_ptr<int>, then invoke make_shared<int> to instance the
pointer. It's because we just need to analyze the shared_ptr behavior.
However, we should use make_shared<> for shared pointers since it has
to keep the reference counter somewhere in memory and allocates the
counter and memory for objects together instead of two separate
allocations.

Diving into Modern C++

[50]

Tracking the objects using a weak_ptr pointer
We have discussed the shared_ptr in the preceding section. The pointer is actually a little
bit fat pointer. It logically points to two objects, the object being managed and the pointing
counter using the use_count() method. Every shared_ptr basically has a strong
reference count that prevents the object from being deleted and a weak reference count that
does not prevent the object being deleted if the shared_ptr object's use count reaches 0,
although we don't even use the weak reference count. For this reason, we can use only one
reference count so we can use the weak_ptr pointer. The weak_ptr pointer refers to an
object that is managed by shared_ptr. The advantage of weak_ptr is that it can be used to
refer to an object, but we can only access it if the object still exists and without preventing
the object from being deleted by some other reference holder if the strong reference count
reaches zero. It is useful when we deal with data structures. Let's take a look at the
following block of code to analyze the use of weak_ptr:

 /* weak_ptr_1.cpp */
 #include <memory>
 #include <iostream>

 using namespace std;

 auto main() -> int
 {
 cout << "[weak_ptr_1.cpp]" << endl;

 auto sp = make_shared<int>(1234);

 auto wp = weak_ptr<int>{ sp };

 if(wp.expired())
 cout << "wp is expired" << endl;
 else
 cout << "wp is not expired" << endl;
 cout << "wp pointing counter = " << wp.use_count() << endl;
 if(auto locked = wp.lock())
 cout << "wp is locked. Value = " << *locked << endl;
 else
 {
 cout << "wp is unlocked" << endl;
 wp.reset();
 }
 cout << endl;

 sp = nullptr;

 if(wp.expired())

Diving into Modern C++

[51]

 cout << "wp is expired" << endl;
 else
 cout << "wp is not expired" << endl;
 cout << "wp pointing counter = " << wp.use_count() << endl;
 if(auto locked = wp.lock())
 cout << "wp is locked. Value = " << *locked << endl;
 else
 {
 cout << "wp is unlocked" << endl;
 wp.reset();
 }
 cout << endl;

 return 0;
 }

Before we analyze the preceding code, let's take a look at the following screenshot from the
output console if we run the code:

At first, we instantiate shared_ptr and, as we discussed previously, the weak_ptr points
to the object managed by shared_ptr. We then assign wp to the shared_ptr variable, sp.
After we have a weak_ptr pointer, we then check its behavior. By calling the expired()
method, we can figure out whether the referenced object was already deleted. And, since
the wp variable is just constructed, it is not expired yet. The weak_ptr pointer also holds the
value of the object counting by calling the use_count() method, as we used in
shared_ptr. We then invoke the locked() method to create a shared_ptr that manages
the referenced object and finds the value weak_ptr is pointing at. We now have a
shared_ptr variable pointing to the address that holds the 1234 value.

Diving into Modern C++

[52]

We reset sp to nullptr afterward. Although we don't touch the weak_ptr pointer, it is
also changed. As we can see from the console screenshot, now wp is expired since the object
has been deleted. The counter also changes and becomes 0 since it points to nothing.
Moreover, it is unlocked since the shared_ptr object has been deleted.

Storing many different data types using
tuples
We will get acquainted with tuples, an object that is able to hold a collection of elements,
and each element can be of a different type. It is a new feature in C++11 and gives power to
functional programming. The tuples will be most useful when creating a function that
returns the value. Moreover, since functions don't change the global state in functional
programming, we can return the tuples for all the values we need to change instead. Now,
let's examine the following piece of code:

 /* tuples_1.cpp */
 #include <tuple>
 #include <iostream>

 using namespace std;

 auto main() -> int
 {
 cout << "[tuples_1.cpp]" << endl;

 // Initializing two Tuples
 tuple<int, string, bool> t1(1, "Robert", true);
 auto t2 = make_tuple(2, "Anna", false);

 // Displaying t1 Tuple elements
 cout << "t1 elements:" << endl;
 cout << get<0>(t1) << endl;
 cout << get<1>(t1) << endl;
 cout << (get<2>(t1) == true ? "Male" : "Female") << endl;
 cout << endl;

 // Displaying t2 Tuple elements
 cout << "t2 elements:" << endl;
 cout << get<0>(t2) << endl;
 cout << get<1>(t2) << endl;
 cout << (get<2>(t2) == true ? "Male" : "Female") << endl;
 cout << endl;

Diving into Modern C++

[53]

 return 0;
 }

In the preceding code, we created two tuples, t1 and t2, with different constructing
techniques using tuple<int, string, bool> and make_tuple. However, these two
different techniques will give the same result. Obviously, in the code, we access each
element in tuples using get<x>(y), where x is the index and y is the tuple object. And,
with confidence, we will get the following result on the console:

Unpacking tuples values
Another useful member that functions in the tuples classes is tie(), which is used to
unpack a tuple into individual objects or create a tuple of lvalue references. Also, we have
the ignore helper class in tuples, a placeholder to skip an element when unpacking a tuple
is using tie(). Let's see the use of tie() and ignore in the following block of code:

 /* tuples_2.cpp */
 #include <tuple>
 #include <iostream>

 using namespace std;

 auto main() -> int
 {
 cout << "[tuples_2.cpp]" << endl;

 // Initializing two Tuples
 tuple<int, string, bool> t1(1, "Robert", true);
 auto t2 = make_tuple(2, "Anna", false);

Diving into Modern C++

[54]

 int i;
 string s;
 bool b;

 // Unpacking t1 Tuples
 tie(i, s, b) = t1;
 cout << "tie(i, s, b) = t1" << endl;
 cout << "i = " << i << endl;
 cout << "s = " << s << endl;
 cout << "b = " << boolalpha << b << endl;
 cout << endl;

 // Unpacking t2 Tuples
 tie(ignore, s, ignore) = t2;
 cout << "tie(ignore, s, ignore) = t2" << endl;
 cout << "new i = " << i << endl;
 cout << "new s = " << s << endl;
 cout << "new b = " << boolalpha << b << endl;
 cout << endl;

 return 0;
 }

In the preceding code, we have the same two tuples that tuples_1.cpp has. We want to
unpack t1 into variables i, s, and b respectively, using the tie() method. Then, we
unpack t2 to the s variable only, ignoring the int and bool data in t2. If we run the code,
the output should be as follows:

Diving into Modern C++

[55]

Returning a tuple value type
As we discussed earlier, we can maximize the use of tuples in functional programming
when we want to write a function that returns multiple data. Let's take a look at the
following block of code to know how to return the tuple and access the return value:

 /* tuples_3.cpp */
 #include <tuple>
 #include <iostream>

 using namespace std;

 tuple<int, string, bool> GetData(int DataId)
 {
 if (DataId == 1)
 return std::make_tuple(0, "Chloe", false);
 else if (DataId == 2)
 return std::make_tuple(1, "Bryan", true);
 else
 return std::make_tuple(2, "Zoey", false);
 }

 auto main() -> int
 {
 cout << "[tuples_3.cpp]" << endl;

 auto name = GetData(1);
 cout << "Details of Id 1" << endl;
 cout << "ID = " << get<0>(name) << endl;
 cout << "Name = " << get<1>(name) << endl;
 cout << "Gender = " << (get<2>(name) == true ?
 "Male" : "Female");
 cout << endl << endl;

 int i;
 string s;
 bool b;
 tie(i, s, b) = GetData(2);
 cout << "Details of Id 2" << endl;
 cout << "ID = " << i << endl;
 cout << "Name = " << s << endl;
 cout << "Gender = " << (b == true ? "Male" : "Female");
 cout << endl;
 return 0;
 }

Diving into Modern C++

[56]

As we can see in the preceding code, we have a new function named GetData() returning
a Tuple value. From that function, we will consume the data returning from it. We begin
with creating the name variable and get the value from the GetData() function. We can
also use the tie() method to unpack the tuple coming from the GetData() function, as we
can see in the code when we access the data when ID = 2. The output on the console should
be like the following screenshot when we run the code:

Summary
We have refreshed our experience in the C++ language by completing this chapter. Now we
know that C++ is more modern, and it comes with numerous features that assist us in
creating a better program. We can use the Standard Library to make our code efficient since
we don't need to write too many redundant functions. We can use the Lambda expression
to make our code tidy, easy to read, and easy to maintain. We can also use the smart pointer
so we don't need to worry about memory management anymore. Moreover, as we are
concerned about immutability in functional programming, we will discuss that deeper in
the next chapter; the use of tuples can help us ensure that no global state is involved in our
code.

In the next chapter, we will discuss First-Class and Pure Function, which is used to purify
our class and ensure that no outside state is involved in the current function. As a result, it
will avoid side effects in our functional code.

2
Manipulating Functions in
Functional Programming

In the previous chapter, we talked about modern C++ in depth, especially about the new
feature in C++11--the Lambda expression. As we discussed earlier, the Lambda expression
is useful in simplifying function notation. Thus, in this chapter, we will apply the power of
the Lambda expression again, which will be used in functional code, especially when we
talk about currying--the technique to split and reduce the current function.

In this chapter, we will discuss the following topics:

Applying the first-class function and higher-order function so that our functions
can not only be invoked as a function, but also be assigned to any variable, pass a
function, and return a function
Pure function, to avoid side effect in our function since it no longer contacts an
outside state
Currying, as mentioned at the beginning of this chapter, to reduce the multiple
arguments function so we can evaluate a sequence of functions, with a single
argument in each function

Manipulating Functions in Functional Programming

[58]

Applying the first-class function in all
functions
The first-class function is just a normal class. We can treat the first-class function like any
other data type. However, in the language that supports the first-class function, we can do
the following tasks without invoking the compiler recursively:

Passing a function as another function's parameter
Assigning functions to variables
Storing functions in collections
Creating new functions from the existing functions at runtime

Fortunately, C++ can be used to solve the preceding tasks. We will discuss it in depth in the
following topics.

Passing a function as another function's
parameter
Let's start to pass a function as the function parameter. We will choose one of four functions
and invoke the function from its main function. The code will look like this:

 /* first_class_1.cpp */
 #include <functional>
 #include <iostream>

 using namespace std;

 // Defining a type of function named FuncType
 // representing a function
 // that pass two int arguments
 // and return an int value
 typedef function<int(int, int)> FuncType;

 int addition(int x, int y)
 {
 return x + y;
 }

 int subtraction(int x, int y)
 {
 return x - y;
 }

Manipulating Functions in Functional Programming

[59]

 int multiplication(int x, int y)
 {
 return x * y;
 }

 int division(int x, int y)
 {
 return x / y;
 }

 void PassingFunc(FuncType fn, int x, int y)
 {
 cout << "Result = " << fn(x, y) << endl;
 }

 auto main() -> int
 {
 cout << "[first_class_1.cpp]" << endl;
 int i, a, b;
 FuncType func;

 // Displaying menu for user
 cout << "Select mode:" << endl;
 cout << "1. Addition" << endl;
 cout << "2. Subtraction" << endl;
 cout << "3. Multiplication" << endl;
 cout << "4. Division" << endl;
 cout << "Choice: ";
 cin >> i;

 // Preventing user to select
 // unavailable modes
 if(i < 1 || i > 4)
 {
 cout << "Please select available mode!";
 return 1;
 }
 // Getting input from user for variable a
 cout << "a -> ";
 cin >> a;

 // Input validation for variable a
 while (cin.fail())
 {
 // Clearing input buffer to restore cin to a usable state
 cin.clear();
 // Ignoring last input
 cin.ignore(INT_MAX, '\n');

Manipulating Functions in Functional Programming

[60]

 cout << "You can only enter numbers.\n";
 cout << "Enter a number for variable a -> ";
 cin >> a;
 }

 // Getting input from user for variable b
 cout << "b -> ";
 cin >> b;

 // Input validation for variable b
 while (cin.fail())
 {
 // Clearing input buffer to restore cin to a usable state
 cin.clear();

 // Ignoring last input
 cin.ignore(INT_MAX, '\n');

 cout << "You can only enter numbers.\n";
 cout << "Enter a number for variable b -> ";
 cin >> b;
 }
 switch(i)
 {
 case 1: PassingFunc(addition, a, b); break;
 case 2: PassingFunc(subtraction, a, b); break;
 case 3: PassingFunc(multiplication, a, b); break;
 case 4: PassingFunc(division, a, b); break;
 }

 return 0;
 }

From the preceding code, we can see that we have four functions, and we want the user to
choose one, and then run it. In the switch statement, we will invoke one of the four
functions based on the choice of the user. We will pass the selected function to
PassingFunc(), as we can see in the following code snippet:

 case 1: PassingFunc(addition, a, b); break;
 case 2: PassingFunc(subtraction, a, b); break;
 case 3: PassingFunc(multiplication, a, b); break;
 case 4: PassingFunc(division, a, b); break;

We also have the input validation to prevent the user from selecting unavailable modes as
well as inputting a non-integer value for variable a and b. The output we will see on the
screen should look like this:

Manipulating Functions in Functional Programming

[61]

The preceding screenshot shows that we select the Multiplication mode from the
available modes. Then, we try to input the r and e variables for variable a. Fortunately, the
program rejects it since we have had the input validation. Then, we give 4 to variable a and
2 to variable b. As we expect, the program gives us 8 as a result.

As we can see in the first_class_1.cpp program, we use the
std::function class and the typedef keyword to simplify the code. The
std::function class is used to store, copy, and invoke any callable
functions, Lambda expressions, or other function objects, as well as
pointers to member functions and pointers to data members. However, the
typedef keyword is used as an alias name for another type or function.

Assigning a function to a variable
We can also assign a function to the variable so we can call the function by calling the
variable. We will refactor first_class_1.cpp, and it will be as follows:

 /* first_class_2.cpp */
 #include <functional>
 #include <iostream>
 using namespace std;

 // Defining a type of function named FuncType
 // representing a function
 // that pass two int arguments
 // and return an int value
 typedef function<int(int, int)> FuncType;

Manipulating Functions in Functional Programming

[62]

 int addition(int x, int y)
 {
 return x + y;
 }

 int subtraction(int x, int y)
 {
 return x - y;
 }

 int multiplication(int x, int y)
 {
 return x * y;
 }

 int division(int x, int y)
 {
 return x / y;
 }

 auto main() -> int
 {
 cout << "[first_class_2.cpp]" << endl;

 int i, a, b;
 FuncType func;

 // Displaying menu for user
 cout << "Select mode:" << endl;
 cout << "1. Addition" << endl;
 cout << "2. Subtraction" << endl;
 cout << "3. Multiplication" << endl;
 cout << "4. Division" << endl;
 cout << "Choice: ";
 cin >> i;

 // Preventing user to select
 // unavailable modes
 if(i < 1 || i > 4)
 {
 cout << "Please select available mode!";
 return 1;
 }

 // Getting input from user for variable a
 cout << "a -> ";
 cin >> a;

Manipulating Functions in Functional Programming

[63]

 // Input validation for variable a
 while (cin.fail())
 {
 // Clearing input buffer to restore cin to a usable state
 cin.clear();

 // Ignoring last input
 cin.ignore(INT_MAX, '\n');

 cout << "You can only enter numbers.\n";
 cout << "Enter a number for variable a -> ";
 cin >> a;
 }

 // Getting input from user for variable b
 cout << "b -> ";
 cin >> b;

 // Input validation for variable b
 while (cin.fail())
 {
 // Clearing input buffer to restore cin to a usable state
 cin.clear();

 // Ignoring last input
 cin.ignore(INT_MAX, '\n');

 cout << "You can only enter numbers.\n";
 cout << "Enter a number for variable b -> ";
 cin >> b;
 }

 switch(i)
 {
 case 1: func = addition; break;
 case 2: func = subtraction; break;
 case 3: func = multiplication; break;
 case 4: func = division; break;
 }
 cout << "Result = " << func(a, b) << endl;

 return 0;
 }

Manipulating Functions in Functional Programming

[64]

We will now assign the four functions based on the user's choice and store the selected
function in the func variable inside the switch statement as follows:

 case 1: func = addition; break;
 case 2: func = subtraction; break;
 case 3: func = multiplication; break;
 case 4: func = division; break;

After the func variable is assigned with the user's choice, the code will just call the variable
like it calls the function, as shown in the following line of code:

 cout << "Result = " << func(a, b) << endl;

And we will then obtain the same output on the console if we run the code.

Storing a function in the container
Now, let's save the function to the container. Here, we will use vector as the container. The
code is written as follows:

 /* first_class_3.cpp */
 #include <vector>
 #include <functional>
 #include <iostream>

 using namespace std;

 // Defining a type of function named FuncType
 // representing a function
 // that pass two int arguments
 // and return an int value
 typedef function<int(int, int)> FuncType;

 int addition(int x, int y)
 {
 return x + y;
 }

 int subtraction(int x, int y)
 {
 return x - y;
 }

 int multiplication(int x, int y)
 {
 return x * y;

Manipulating Functions in Functional Programming

[65]

 }

 int division(int x, int y)
 {
 return x / y;
 }

 auto main() -> int
 {
 cout << "[first_class_3.cpp]" << endl;

 // Declaring a vector containing FuncType element
 vector<FuncType> functions;

 // Assigning several FuncType elements to the vector
 functions.push_back(addition);
 functions.push_back(subtraction);
 functions.push_back(multiplication);
 functions.push_back(division);

 int i, a, b;
 function<int(int, int)> func;

 // Displaying menu for user
 cout << "Select mode:" << endl;
 cout << "1. Addition" << endl;
 cout << "2. Subtraction" << endl;
 cout << "3. Multiplication" << endl;
 cout << "4. Division" << endl;
 cout << "Choice: ";
 cin >> i;

 // Preventing user to select
 // unavailable modes
 if(i < 1 || i > 4)
 {
 cout << "Please select available mode!";
 return 1;
 }

 // Getting input from user for variable a
 cout << "a -> ";
 cin >> a;

 // Input validation for variable a
 while (cin.fail())
 {
 // Clearing input buffer to restore cin to a usable state

Manipulating Functions in Functional Programming

[66]

 cin.clear();

 // Ignoring last input
 cin.ignore(INT_MAX, '\n');

 cout << "You can only enter numbers.\n";
 cout << "Enter a number for variable a -> ";
 cin >> a;
 }

 // Getting input from user for variable b
 cout << "b -> ";
 cin >> b;

 // Input validation for variable b
 while (cin.fail())
 {
 // Clearing input buffer to restore cin to a usable state
 cin.clear();

 // Ignoring last input
 cin.ignore(INT_MAX, '\n');

 cout << "You can only enter numbers.\n";
 cout << "Enter a number for variable b -> ";
 cin >> b;
 }

 // Invoking the function inside the vector
 cout << "Result = " << functions.at(i - 1)(a, b) << endl;

 return 0;
 }

From the preceding code, we can see that we create a new vector named functions, then
store four different functions to it. Just like we did with our two previous code examples,
we ask the user to select the mode as well. However, now the code becomes simpler, since
we don't need to add the switch statement; we can select the function directly by selecting
the vector index, as we can see in the following code snippet:

 cout << "Result = " << functions.at(i - 1)(a, b) << endl;

However, since the vector is a zero-based index, we have to adjust the index with the menu
choice. The result will be same with our two previous code samples.

Manipulating Functions in Functional Programming

[67]

Creating a new function from the existing
functions at runtime
Now let's make a new function at runtime from the preexisting functions. Let's suppose we
have two collections of functions, the first is hyperbolic functions and the second is the
inverse of the first one. Beside these built-in functions, we also add one user-defined
function to calculate the squared number in the first collection and the inverse of the
squared number in the second collection. Then, we will implement the function
composition and build a new function from two existing functions.

Function composition is a process to combine two or more simple
functions to create a more complex one. The result of each function is
passed as the argument to the next function. The final result is obtained
from the last function result. In a mathematical approach, we usually use
the following notation to function composition: compose(f, g) (x) =
f(g(x)). Let's suppose we have the following code:
double x, y, z; // ... y = g(x); z = f(y);

So, to simplify the notation, we can use the function composition and have
the following notation for z:

z = f(g(x));

If we run the hyperbolic functions, then pass the result to the inverse one, we will see that
we indeed get the original value that we passed to the hyperbolic function. Now, let's take a
look at the following code:

 /* first_class_4.cpp */
 #include <vector>
 #include <cmath>
 #include <algorithm>
 #include <functional>
 #include <iostream>

 using std::vector;
 using std::function;
 using std::transform;
 using std::back_inserter;
 using std::cout;
 using std::endl;

 // Defining a type of function named HyperbolicFunc
 // representing a function
 // that pass a double argument

Manipulating Functions in Functional Programming

[68]

 // and return an double value
 typedef function<double(double)> HyperbolicFunc;

 // Initializing a vector containing four functions
 vector<HyperbolicFunc> funcs = {
 sinh,
 cosh,
 tanh,
 [](double x) {
 return x*x; }
 };

 // Initializing a vector containing four functions
 vector<HyperbolicFunc> inverseFuncs = {
 asinh,
 acosh,
 atanh,
 [](double x) {
 return exp(log(x)/2); }
 };

 // Declaring a template to be able to be reused
 template <typename A, typename B, typename C>
 function<C(A)> compose(
 function<C(B)> f,
 function<B(A)> g) {
 return [f,g](A x) {
 return f(g(x));
 };
 }

 auto main() -> int
 {
 cout << "[first_class_4.cpp]" << endl;

 // Declaring a template to be able to be reused
 vector<HyperbolicFunc> composedFuncs;

 // Initializing a vector containing several double elements
 vector<double> nums;
 for (int i = 1; i <= 5; ++i)
 nums.push_back(i * 0.2);

 // Transforming the element inside the vector
 transform(
 begin(inverseFuncs),
 end(inverseFuncs),
 begin(funcs),

Manipulating Functions in Functional Programming

[69]

 back_inserter(composedFuncs),
 compose<double, double, double>);

 for (auto num: nums)
 {
 for (auto func: composedFuncs)
 cout << "f(g(" << num << ")) = " << func(num) << endl;

 cout << "---------------" << endl;
 }

 return 0;
 }

As we can see in the preceding code, we have two function collections--funcs and
inverseFuncs. Moreover, as we discussed previously, the inverseFuncs function is the
inverse of the funcs function. The funcs function contains three built-in hyperbolic
functions, along with one user-defined function to calculate the squared number, whereas
inverseFuncs contains three built-in inverse hyperbolic functions along with one user-
defined function to compute the inverse of the squared number.

As we can see in the preceding first_class_4.cpp code, we will use
individual classes/functions when calling the using keyword. Compared
to the other code samples in this chapter, the use of the using keyword in
individual classes/functions is inconsistent, since we use using
namespace std. It's because there's a clashing function name in the std
namespace, so we have to call them individually.

By using these two collections of functions, we will construct one new function from them.
To achieve this purpose, we will use the transform() function to combine the two
functions from the two different collections. The code snippet is as follows:

 transform(
 begin(inverseFuncs),
 inverseFuncs.end(inverseFuncs),
 begin(funcs),
 back_inserter(composedFuncs),
 compose<double, double, double>);

Manipulating Functions in Functional Programming

[70]

Now, we have a new function collection stored in the composedFuncs vector. We can
iterate the collection and pass the value we have provided in the nums variable to this new
function. We should obtain the following output on the console if we run the code:

As we can see from the preceding output, whatever we pass to the transforming function,
we will get the same output as the input. Here, we can prove that C++ programming can be
used to compose a function from two or more existing functions.

On the preceding first_class_4.cpp code, we use template<> in the
code. If you need a more detailed explanation about template<>, refer to
Chapter 7, Running Parallel Execution Using Concurrency.

Manipulating Functions in Functional Programming

[71]

Getting acquainted with three functional
techniques in the higher-order function
We discussed that in the first-class function, the C++ language treats the functions as the
value, which means we can pass them to the other functions, assign to variables, and so on.
However, we have another term in functional programming, that is, a higher-order
function, which are functions that work on other functions. It means the higher-order
function can pass functions as the argument and can also return a function.

The higher-order function concept can be applied to the function in general, like in a
mathematical function, instead of the first-class function concept that can only be applied in
the functional programming language. Now, let's examine the three most useful higher-
order functions in functional programming--map, filter, and fold.

Executing each element list using map
We won't talk about map as a container in the C++ language, but a feature in the higher-
order function instead. This feature is used to apply a given function to each element of the
list and return a list of results in the same order. We can use the transform() function to
achieve this purpose. As you know, we already discussed this function previously.
However, we can take a look at the following piece of code to view the use of the
transform() function:

 /* transform_1.cpp */
 #include <vector>
 #include <algorithm>
 #include <iostream>

 using namespace std;

 auto main() -> int
 {
 cout << "[transform_1.cpp]" << endl;

 // Initializing a vector containing integer element
 vector<int> v1;
 for (int i = 0; i < 5; ++i)
 v1.push_back(i);

 // Creating another v2 vector
 vector<int> v2;
 // Resizing the size of v2 exactly same with v1

Manipulating Functions in Functional Programming

[72]

 v2.resize(v1.size());

 // Transforming the element inside the vector
 transform (
 begin(v1),
 end(v1),
 begin(v2),
 [](int i){
 return i * i;});

 // Displaying the elements of v1
 std::cout << "v1 contains:";
 for (auto v : v1)
 std::cout << " " << v;
 std::cout << endl;

 // Displaying the elements of v2
 std::cout << "v2 contains:";
 for (auto v : v2)
 std::cout << " " << v;
 std::cout << endl;

 return 0;
 }

As shown in our preceding definition of map in the higher-order function, it will apply the
given function to each element of the list. In the preceding code, we try to map the v1 vector
to the v2 vector with the given function in the Lambda expression as follows:

 transform (
 begin(v1),
 end(v1),
 begin(v2),
 [](int i){
 return i * i;});

If we run the code, we should get the following output on the console screen:

Manipulating Functions in Functional Programming

[73]

As we can see in the output display, we transform v1 into v2 using the given function
notating in the Lambda expression, which is doubling the input value.

Extracting data using filter
Filter, in a higher-order function, is a function to produce a new data structure from the
existing one that exactly matches each element in the new data structure to a given
predicate returning a Boolean value. In C++ language, we can apply the copy_if()
function, which is added in C++11, to gain the filtering processes. Let's take a look at the
following piece of code to analyze the filtering process using the copy_if() function:

 /* filter_1.cpp */
 #include <vector>
 #include <algorithm>
 #include <iterator>
 #include <iostream>

 using namespace std;

 auto main() -> int
 {
 cout << "[filter_1.cpp]" << endl;

 // Initializing a vector containing integer elements
 vector<int> numbers;
 for (int i = 0; i < 20; ++i)
 numbers.push_back(i);

 // Displaying the elements of numbers
 cout << "The original numbers: " << endl;
 copy(
 begin(numbers),
 end(numbers),
 ostream_iterator<int>(cout, " "));
 cout << endl;

 // Declaring a vector containing int elements
 vector<int> primes;

 // Filtering the vector
 copy_if(
 begin(numbers),
 end(numbers),
 back_inserter(primes),
 [](int n) {

Manipulating Functions in Functional Programming

[74]

 if(n < 2) {
 return (n != 0) ? true : false;}
 else {
 for (int j = 2; j < n; ++j) {
 if (n % j == 0){
 return false;}
 }

 return true;
 }});

 // Displaying the elements of primes
 // using copy() function
 cout << "The primes numbers: " << endl;
 copy(
 begin(primes),
 end(primes),
 ostream_iterator<int>(cout, " "));
 cout << endl;

 return 0;
 }

As we see in the preceding code, we filter the numbers vector into the 0 primes vector using
the copy_if() function. We will pass the Lambda expression to decide whether or not the
selected element is a prime number, as we used for the lambda_multiline_func.cpp
code in Chapter 1, Diving into Modern C++. We will also use the copy() function to copy all
elements in the selected vector to be printed. The result, when we run the preceding code,
should be like this:

Manipulating Functions in Functional Programming

[75]

Beside the copy_if() function, we can also use the remove_copy_if() function to filter
the data structure. Instead of selecting the match predicate element from the existing data
structure, using the remove_copy_if() function will omit the match predicate element,
choose the unmatch one, and store it in the new data structure. Let's refactor our
filter_1.cpp code and create a new vector that is not a prime number. The code will be
as follows:

 /* filter_2.cpp */
 #include <vector>
 #include <algorithm>
 #include <iterator>
 #include <iostream>

 using namespace std;

 int main()
 {
 cout << "[filter_2.cpp]" << endl;

 // Initializing a vector containing integer elements
 vector<int> numbers;
 for (int i = 0; i < 20; ++i)
 numbers.push_back(i);

 // Displaying the elements of numbers
 cout << "The original numbers: " << endl;
 copy(
 begin(numbers),
 end(numbers),
 ostream_iterator<int>(cout, " "));
 cout << endl;

 // Declaring a vector containing int elements
 vector<int> nonPrimes;

 // Filtering the vector
 remove_copy_if(
 numbers.begin(),
 numbers.end(),
 back_inserter(nonPrimes),
 [](int n) {
 if(n < 2){
 return (n != 0) ? true : false;}
 else {
 for (int j = 2; j < n; ++j){
 if (n % j == 0) {
 return false;}

Manipulating Functions in Functional Programming

[76]

 }

 return true;
 }});

 // Displaying the elements of nonPrimes
 // using copy() function
 cout << "The non-primes numbers: " << endl;
 copy(
 begin(nonPrimes),
 end(nonPrimes),
 ostream_iterator<int>(cout, " "));
 cout << endl;

 return 0;
 }

As we can see from the preceding highlighted code, we refactor the previous code and use
the remove_copy_if() function to choose non-prime numbers. As we expect, the console
window will display the following output:

We now have the non-prime number instead of the prime number, like we have in the
filter_1.cpp code.

Combining all elements of a list using fold
In functional programming, a fold is a technique to reduce a data structure into a single
value. There are two types of fold--left fold (foldl) and right fold (foldr). Let's suppose
we have a list that contains 0, 1, 2, 3, and 4. Let's use the fold technique to add all the
contents of the list, first using foldl and then foldr. However, there is a significant
difference between the two--foldl is the left associative, which means we combine the
leftmost element then move towards the rightmost element. For instance, by the list we
have, we will get the following parentheses:

 ((((0 + 1) + 2) + 3) + 4)

Manipulating Functions in Functional Programming

[77]

While foldr is the right associative, which means we will combine the rightmost element
then move towards the leftmost element. The parentheses will be like the following line of
code:

 (0 + (1 + (2 + (3 + 4))))

Now, let's take a look at the following code:

 /* fold_1.cpp */
 #include <vector>
 #include <numeric>
 #include <functional>
 #include <iostream>

 using namespace std;

 auto main() -> int
 {
 cout << "[fold_1.cpp]" << endl;

 // Initializing a vector containing integer elements
 vector<int> numbers = {0, 1, 2, 3, 4};

 // Calculating the sum of the value
 // in the vector
 auto foldl = accumulate(
 begin(numbers),
 end(numbers),
 0,
 std::plus<int>());

 // Calculating the sum of the value
 // in the vector
 auto foldr = accumulate(
 rbegin(numbers),
 rend(numbers),
 0,
 std::plus<int>());

 // Displaying the calculating result
 cout << "foldl result = " << foldl << endl;
 cout << "foldr result = " << foldr << endl;

 return 0;
 }

Manipulating Functions in Functional Programming

[78]

In C++ programming, we can apply the fold technique using the accumulate() function.
As we can see in the preceding code, we use the forward iterator in foldl while we use the
backward iterator in foldr. The output on the console should be like following screenshot:

As we can see in the preceding output screenshot, we've got the same result for both, the
foldl and foldr techniques. For those curious about the order of the sum, we can refactor
the preceding code into the following one:

 /* fold_2.cpp */
 #include <vector>
 #include <numeric>
 #include <functional>
 #include <iostream>

 using namespace std;

 // Function for logging the flow
 int addition(const int& x, const int& y)
 {
 cout << x << " + " << y << endl;
 return x + y;
 }

 int main()
 {
 cout << "[fold_2.cpp]" << endl;

 // Initializing a vector containing integer elements
 vector<int> numbers = {0, 1, 2, 3, 4};

 // Calculating the sum of the value
 // in the vector
 // from left to right
 cout << "foldl" << endl;
 auto foldl = accumulate(
 begin(numbers),
 end(numbers),
 0,
 addition);

Manipulating Functions in Functional Programming

[79]

 // Calculating the sum of the value
 // in the vector
 // from right to left
 cout << endl << "foldr" << endl;
 auto foldr = accumulate(
 rbegin(numbers),
 rend(numbers),
 0,
 addition);

 cout << endl;

 // Displaying the calculating result
 cout << "foldl result = " << foldl << endl;
 cout << "foldr result = " << foldr << endl;

 return 0;
 }

In the preceding code, we pass a new addition() function and pass it to the
accumulate() function. From the addition() function, we will track the operation of
each element. Now, let's run the preceding code whose the output will be as follows:

From the preceding output screenshot, we can see that, even though both foldl and foldr
give the exact same result, they make a different operation order. Since we set the initial
value to 0, the addition operation starts by adding 0 to the first element in the foldl
technique and to the last element in the foldr technique.

Manipulating Functions in Functional Programming

[80]

We will set the initial value to 0 because 0 is the additive identity that
won't impact the addition result. However, in multiplication, we have to
consider changing the initial value to 1 since 1 is the identity element for
multiplication.

Avoiding the side effect with pure function
A pure function is a function that will always return the same result every time it is given
the same input. The result doesn't depend on any information or state and won't produce a
side effect, or a change of the system state outside of the function. Let's take a look at the
following piece of code:

 /* pure_function_1.cpp */
 #include <iostream>

 using namespace std;

 float circleArea(float r)
 {
 return 3.14 * r * r;
 }

 auto main() -> int
 {
 cout << "[pure_function_1.cpp]" << endl;

 // Initializing a float variable
 float f = 2.5f;

 // Invoking the circleArea() function
 // passing the f variable five times
 for(int i = 1; i <= 5; ++i)
 {
 cout << "Invocation " << i << " -> ";
 cout << "Result of circleArea(" << f << ") = ";
 cout << circleArea(f) << endl;
 }

 return 0;
 }

Manipulating Functions in Functional Programming

[81]

From the preceding code, we can see that we have a function named circleArea() to
calculate the area of a circle based on the given radius. We then invoke the function five
times and pass the same radius value. The output on the console should be like the
following screenshot:

As we can see, in five invocations passing the same input, the function returns the same
output as well. So that we can say that circleArea() is a pure function. Now, let's see
how the impure function looks like in the following piece of code:

 /* impure_function_1.cpp */
 #include <iostream>

 using namespace std;

 // Initializing a global variable
 int currentState = 0;

 int increment(int i)
 {
 currentState += i;
 return currentState;
 }

 auto main() -> int
 {
 cout << "[impure_function_1.cpp]" << endl;

 // Initializing a local variable
 int fix = 5;

 // Involving the global variable
 // in the calculation
 for(int i = 1; i <= 5; ++i)
 {
 cout << "Invocation " << i << " -> ";
 cout << "Result of increment(" << fix << ") = ";

Manipulating Functions in Functional Programming

[82]

 cout << increment(fix) << endl;
 }

 return 0;
 }

In the preceding code, we see that a function named increment() increases the value of
the currentState variable. As we can see, the increment() function depends on the
value of the currentState variable, so it's not a pure function. Let's prove it by running
the preceding code. The console window should display the following screenshot:

We see that the increment() function gives a different result even though we pass the
same input. It's the side effect of the impure function when it depends on the outside state
or changes the value of the outside state.

We have been able to distinguish the pure function over the impure function. However,
consider the following code:

 /* im_pure_function_1.cpp */
 #include <iostream>

 using namespace std;

 // Initializing a global variable
 float phi = 3.14f;

 float circleArea(float r)
 {
 return phi * r * r;
 }

 auto main() -> int
 {
 cout << "[im_pure_function_1.cpp]" << endl;

 // Initializing a float variable

Manipulating Functions in Functional Programming

[83]

 float f = 2.5f;

 // Involving the global variable
 // in the calculation
 for(int i = 1; i <= 5; ++i)
 {
 cout << "Invocation " << i << " -> ";
 cout << "Result of circleArea(" << f << ") = ";
 cout << circleArea(f) << endl;
 }

 return 0;
 }

The preceding code comes from pure_function_1.cpp, but we add a global state, phi. If
we run the preceding code, we will definitely obtain the same result as
pure_function_1.cpp. Although the function returns the same result in the five
invocations, circleArea() in im_pure_function_1.cpp is not a pure function since it
depends on the phi variable.

The side effect is not only the change of global state that is done by the
function. Printing to the screen is also the side effect. However, since we
need to show the result of every code we create, we cannot avoid the
existence of printing to screen in our codes. In the next chapter, we will
also discuss the immutable state, which is the way we can turn an impure
function into a pure function.

Reducing a multiple arguments function with
currying
Currying is a technique to split a function that takes multiple arguments into evaluating a
sequence of functions, each with a single argument. In other words, we create other
functions based on a current function by reducing the current function. Let's suppose we
have a function named areaOfRectangle(), which takes two parameters, length and
width. The code will be like this:

 /* curry_1.cpp */

 #include <functional>
 #include <iostream>

 using namespace std;

Manipulating Functions in Functional Programming

[84]

 // Variadic template for currying
 template<typename Func, typename... Args>
 auto curry(Func func, Args... args)
 {
 return [=](auto... lastParam)
 {
 return func(args..., lastParam...);
 };
 }

 int areaOfRectangle(int length, int width)
 {
 return length * width;
 }

 auto main() -> int
 {
 cout << "[curry_1.cpp]" << endl;

 // Currying the areaOfRectangle() function
 auto length5 = curry(areaOfRectangle, 5);

 // Invoking the curried function
 cout << "Curried with spesific length = 5" << endl;
 for(int i = 0; i <= 5; ++i)
 {
 cout << "length5(" << i << ") = ";
 cout << length5(i) << endl;
 }

 return 0;
 }

As we can see in the preceding code, we have a variadic template and function named
curry. We will use this template to construct a currying function. In a normal function
invocation, we can invoke the areaOfRectangle() function as follows:

 int i = areaOfRectangle(5, 2);

As we can see in the preceding code snippet, we pass 5 and 2 as the argument to the
areaOfRectangle() function. However, using the curried function, we can reduce the
areaOfRectangle() function so we just have a single argument. All we have to do is
invoke the curry function template as follows:

 auto length5 = curry(areaOfRectangle, 5);

Manipulating Functions in Functional Programming

[85]

Now, we have the areaOfRectangle() function having the value for the length
argument named length5. It's easier for us to call the function and add just the width
argument as the following code snippet:

 length5(i) // where i is the width parameter we want to pass

Let's take a look at the output we will see on the console when we run the preceding code:

The variadic template and function has helped us reduce the areaOfRectangle() function
to become the length5() function. However, it can also help us reduce the function that
has more than two arguments. Let's suppose we have a function named
volumeOfRectanglular() that passes three arguments. We will reduce the function as
well, as shown in the following code:

 /* curry_2.cpp */

 #include <functional>
 #include <iostream>

 using namespace std;

 // Variadic template for currying
 template<typename Func, typename... Args>
 auto curry(Func func, Args... args)
 {
 return [=](auto... lastParam)
 {
 return func(args..., lastParam...);
 };
 }

 int volumeOfRectanglular(
 int length,
 int width,
 int height)
 {

Manipulating Functions in Functional Programming

[86]

 return length * width * height;
 }

 auto main() -> int
 {
 cout << "[curry_2.cpp]" << endl;

 // Currying the volumeOfRectanglular() function
 auto length5width4 = curry(volumeOfRectanglular, 5, 4);

 // Invoking the curried function
 cout << "Curried with spesific data:" << endl;
 cout << "length = 5, width 4" << endl;
 for(int i = 0; i <= 5; ++i)
 {
 cout << "length5width4(" << i << ") = ";
 cout << length5width4(i) << endl;
 }

 return 0;
 }

As we can see in the preceding code, we have successfully passed the length and width
arguments to the volumeOfRectanglular() function only, then reduced it as
length5width4(). We can invoke the length5width4() function and just pass the rest
argument, height, to it. The following is the output we will see on the console screen if we
run the preceding code:

By using the currying technique, we can partially evaluate a multiple arguments function
by reducing the function so it will only pass a single parameter.

Manipulating Functions in Functional Programming

[87]

Summary
We have discussed that there are some techniques to manipulate a function. We will gain
many advantages from it. Since we can implement the first-class function in the C++
language, we can pass a function as another function's parameter. We can treat a function as
a data object so we can assign it to a variable and store it in the container. Also, we can
compose a new function from the existing one. Moreover, by using map, filter, and fold, we
can implement the higher-order function in every function we create.

Another technique we have to implement in gaining a better functional code is a pure
function to avoid a side effect. We can refactor all the functions we have so it won't talk to
outside variables or states and won't change and retrieve the value from the outside state.
Also, to reduce the multiple arguments function so we can evaluate its sequence, we can
implement the currying technique to our function.

In the next chapter, we will discuss another technique to avoid side effects. We will make all
states in our code immutable so there's no state that will mutate each time the function is
invoked.

3
Applying Immutable State to the

Function
After discussing the first-class function and pure function in the previous chapter, now let's
talk about a mutable and immutable object. As you have learned, we have to be able to pass
a function to another function in a first-class function and ensure that the function returns
the same value if we pass the same argument as well. The immutable object, which we will
discuss, can help us make these two functional programming concepts available in our
code. The topics we will discuss in this chapter are as follows:

Modifying the variable in a functional programming approach
Demonstrating the use of const keyword to avoid value modification
Applying first-class and pure functions to immutable objects
Refactoring the mutable object into an immutable object
The benefit of an immutable object over a mutable one

Understanding the essential part from
immutable object
In object-oriented programming, we usually manipulate the variable objects many times,
even inside the class itself, which we usually describe as the attributes. Also, we sometimes
change the global variable from the specific function. However, to gain the immutability
feature in functional programming, there are two rules we have to obey. First, we are not
allowed to change the local variable. Second, we have to avoid the involvement of the
global variable in the function since it will affect the function result.

Applying Immutable State to the Function

[89]

Modifying a local variable
When we talk about a variable, we are talking about a container to store our data. In our
daily programming, we usually reuse the variable we have created. To make it clear, let's
take a look at the mutable_1.cpp code. We have the mutableVar variable and store 100 to
it. We then manipulate its value for the i variable iteration. The code is written as follows:

 /* mutable_1.cpp */
 #include <iostream>

 using namespace std;

 auto main() -> int
 {
 cout << "[mutable_1.cpp]" << endl;

 // Initializing an int variable
 int mutableVar = 100;
 cout << "Initial mutableVar = " << mutableVar;
 cout << endl;

 // Manipulating mutableVar
 for(int i = 0; i <= 10; ++i)
 mutableVar = mutableVar + i;

 // Displaying mutableVar value
 cout << "After manipulating mutableVar = " << mutableVar;
 cout << endl;

 return 0;
 }

The result we should see on the screen will be like the following screenshot:

Applying Immutable State to the Function

[90]

As we can see, we have successfully manipulated the mutableVar variable. However, we
treat the mutableVar variable as a mutable object. It's because we reuse the mutableVar
variable many times. In other words, we have broken the immutable rule we discussed
earlier. We can, if we want, refactor the mutable_1.cpp code to be the immutable one.
Let's analyze the immutable_1.cpp code. Here, we will create a new local variable each
time we intend to change the previous variable. The code is written as follows:

 /* immutable_1.cpp */
 #include <iostream>

 using namespace std;

 auto main() -> int
 {
 cout << "[immutable_1.cpp]" << endl;

 // Initializing an int variable
 int mutableVar = 100;
 cout << "Initial mutableVar = " << mutableVar;
 cout << endl;

 // Manipulating mutableVar using immutable approach
 int mutableVar0 = mutableVar + 0;
 int mutableVar1 = mutableVar0 + 1;
 int mutableVar2 = mutableVar1 + 2;
 int mutableVar3 = mutableVar2 + 3;
 int mutableVar4 = mutableVar3 + 4;
 int mutableVar5 = mutableVar4 + 5;
 int mutableVar6 = mutableVar5 + 6;
 int mutableVar7 = mutableVar6 + 7;
 int mutableVar8 = mutableVar7 + 8;
 int mutableVar9 = mutableVar8 + 9;
 int mutableVar10 = mutableVar9 + 10;

 // Displaying mutableVar value in mutable variable
 cout << "After manipulating mutableVar = " << mutableVar10;
 cout << endl;

 return 0;
 }

Applying Immutable State to the Function

[91]

As we can see, to avoid changing the local variable, mutableVar, we create the other ten
local variables. The result is stored in the mutableVar10 variable. We then show the result
to the console. Indeed, it's uncommon in our programming activities habit. However, this is
the way we can do to get the immutable object. By doing this immutable approach, we
never miss the previous state since we have all states. Also, the output we get by running
immutable_1.cpp is completely the same as the output from the mutable_1.cpp code, as
we can see in the following screenshot:

However, since we have more code lines in immutable_1.cpp compared to the
mutable_1.cpp code, the performance of the immutable_1.cpp code will be slower than
the mutable_1.cpp code. In addition, of course, the mutable_1.cpp code is more efficient
than the immutable_1.cpp code.

Modifying a variable passed into a function
Now, we will talk about modifying the variable when it is passed to a function. Let's
suppose we have a variable named n that contains a string data. We then pass it as a
parameter to a function named Modify(). Inside the function, we manipulate the name
variable. Let's take a look at the following immutable_2.cpp code and analyze it:

 /* immutable_2.cpp */
 #include <iostream>

 using namespace std;

 void Modify(string name)
 {
 name = "Alexis Andrews";
 }

 auto main() -> int
 {
 cout << "[immutable_2.cpp]" << endl;

 // Initializing a string variable
 string n = "Frankie Kaur";

Applying Immutable State to the Function

[92]

 cout << "Initial name = " << n;
 cout << endl;

 // Invoking Modify() function
 // to modify the n variable
 Modify(n);

 // Displaying n value
 cout << "After manipulating = " << n;
 cout << endl;

 return 0;
 }

From the preceding code, we see that we store Frankie Kaur as the initial value of the n
variable, then modify into Alexis Andrews inside the Modify() function. Now, let's see
the output on the screen when we run the preceding code:

As we can see from the preceding screenshot, the name variable still contains Frankie
Kaur as its value, although we have modified it inside the Modify() function. It's because
we pass the n variable in the main() function and the Modify() function receives a copy of
the value stored in the name variable so that the name variable remains unchanged and
contains the original value. We can mutate the n variable if we pass it as the reference, as we
can see in the following mutable_2.cpp code:

 /* mutable_2.cpp */
 #include <iostream>

 using namespace std;

 void Modify(string &name)
 {
 name = "Alexis Andrews";
 }

 auto main() -> int
 {
 cout << "[mutable_2.cpp]" << endl;

Applying Immutable State to the Function

[93]

 // Initializing a string variable
 string n = "Frankie Kaur";
 cout << "Initial name = " << n;
 cout << endl;

 // Invoking Modify() function
 // to modify the n variable
 Modify(n);

 // Displaying n value
 cout << "After manipulating = " << n;
 cout << endl;

 return 0;
 }

Just adding the ampersand symbol (&) to the argument of the Modify() function now
passes the parameter as a reference. The output on the screen will be like the following
screenshot:

Based on the preceding screenshot, the n variable has now been changed successfully in the
Modify() function since we pass by the reference of the n variable, not a value itself. There
is also another best approach to mutate the variable using struct or class type, as we can see
in the following mutable_2a.cpp code:

 /* mutable_2a.cpp */
 #include <iostream>

 using namespace std;

 class Name
 {
 public:
 string str;
 };

 void Modify(Name &name)
 {
 name.str = "Alexis Andrews";
 }

Applying Immutable State to the Function

[94]

 auto main() -> int
 {
 cout << "[mutable_2a.cpp]" << endl;

 // Initializing a string variable
 Name n = {"Frankie Kaur"};
 cout << "Initial name = " << n.str;
 cout << endl;

 // Invoking Modify() function
 // to modify the n variable
 Modify(n);

 // Displaying n value
 cout << "After manipulating = " << n.str;
 cout << endl;

 return 0;
 }

As we can see in the preceding code, we have a class named Name that contains a string
variable on it. At the beginning, we instance the Name class with an initial value. We then
modify the str value inside the class. If we run the code, we will get the exact same output
comparing with the mutable_2.cpp code. However, we see that although the n variable
didn't change, name.str did.

Preventing the modification of a value
The essential point of immutability is preventing value modification. In C++ programming
language, there is a keyword to prevent the code modifying a value. The keyword is const
and we are going to use it in the const.cpp code. We have a class named MyAge which
contains a public field named age and we set it as const. We will play with this const
field and the code will look like following:

 /* const.cpp */
 #include <iostream>

 using namespace std;

 // My Age class will store an age value
 class MyAge
 {
 public:
 const int age;

Applying Immutable State to the Function

[95]

 MyAge(const int initAge = 20) :
 age(initAge)
 {
 }
 };

 auto main() -> int
 {
 cout << "[const.cpp]" << endl;

 // Initializing several MyAge variables
 MyAge AgeNow, AgeLater(8);

 // Displaying age property in AgeNow instance
 cout << "My current age is ";
 cout << AgeNow.age << endl;

 // Displaying age property in AgeLater instance
 cout << "My age in eight years later is ";
 cout << AgeLater.age << endl;

 return 0;
 }

As we can see in the preceding code, we instantiate two MyAge class; they are AgeNow and
AgeLater. For AgeNow, we use the initial value for age, while, for AgeLater, we give 8 to
the age field. The output on the console will be as follow:

However, it's impossible to insert the assignment to age field. The following
const_error.cpp code will not be run since the compiler will refuse it:

 /* const_error.cpp */
 #include <iostream>

 using namespace std;

 // My Age class will store an age value
 class MyAge
 {
 public:

Applying Immutable State to the Function

[96]

 const int age;
 MyAge(const int initAge = 20) :
 age(initAge)
 {
 }
 };

 auto main() -> int
 {
 cout << "[const_error.cpp]" << endl;

 // Initializing several MyAge variables
 MyAge AgeNow, AgeLater(8);

 // Displaying age property in AgeNow instance
 cout << "My current age is ";
 cout << AgeNow.age << endl;

 // Displaying age property in AgeLater instance
 cout << "My age in eight years later is ";
 cout << AgeLater.age << endl;

 // Trying to assign age property
 // in AgeLater instance
 // However, the compiler will refuse it
 AgeLater.age = 10;

 return 0;
 }

As we can see, we modify the age value to 10. The compiler will refuse to run since the age
is set as const and will display the following error:

Thus, we have successfully created an immutable object by adding the const keyword.

Applying Immutable State to the Function

[97]

Applying the first-class function and the
pure function to the immutable object
We gained an introduction to the immutable object from the preceding discussion. As you
learned in the previous chapter, we can take advantage of the first-class function and pure
function to create an immutable programming approach. Let's borrow the code from
Chapter 2, Manipulating Functions in Functional Programming, that is first_class_1.cpp.
We will have the addition(), subtraction(), multiplication(), and division()
methods in our following first_class_pure_immutable.cpp code. We will then invoke
the pure function on the class and assign the result to the variable. The code is written as
follows:

 /* first_class_pure_immutable.cpp */
 #include <iostream>

 using namespace std;

 // MyValue class stores the value
 class MyValue
 {
 public:
 const int value;
 MyValue(int v) : value(v)
 {
 }
 };

 // MyFunction class stores the methods
 class MyFunction
 {
 public:
 const int x, y;

 MyFunction(int _x, int _y) :
 x(_x), y(_y)
 {
 }

 MyValue addition() const
 {
 return MyValue(x + y);
 }

 MyValue subtraction() const
 {

Applying Immutable State to the Function

[98]

 return MyValue(x - y);
 }

 MyValue multiplication() const
 {
 return MyValue(x * y);
 }

 MyValue division() const
 {
 return MyValue(x / y);
 }
 };

 auto main() -> int
 {
 cout << "[first_class_pure_immutable.cpp]" << endl;

 // Setting the initial value
 // for MyFunction class constructor
 int a = 100;
 int b = 10;

 // Displaying initial value
 cout << "Initial value" << endl;
 cout << "a = " << a << endl;
 cout << "b = " << b << endl;
 cout << endl;

 // Constructing the MyFunction class
 MyFunction func(a, b);

 // Generating wrapper for each function
 // in the MyFunction class
 // so it will be the first-class function
 auto callableAdd = mem_fn(&MyFunction::addition);
 auto callableSub = mem_fn(&MyFunction::subtraction);
 auto callableMul = mem_fn(&MyFunction::multiplication);
 auto callableDiv = mem_fn(&MyFunction::division);

 // Invoking the functions
 auto value1 = callableAdd(func);
 auto value2 = callableSub(func);
 auto value3 = callableMul(func);
 auto value4 = callableDiv(func);

 // Displaying result
 cout << "The result" << endl;

Applying Immutable State to the Function

[99]

 cout << "addition = " << value1.value << endl;
 cout << "subtraction = " << value2.value << endl;
 cout << "multiplication = " << value3.value << endl;
 cout << "division = " << value4.value << endl;

 return 0;
 }

As we can see in the preceding code, the addition(), subtraction(),
multiplication(), and division() methods are a pure function as they produce the
same output as long as they receive the same input. We also make a class named MyValue
and set it as const to make it immutable. Then, to make our function become the first-class
function, we wrap each method in the MyFunction class using the mem_fn() function.
Afterward, we assign four variables with the function wrapper we've got. The output on the
screen should look like the following screenshot:

Developing the immutable object
After we discuss the concept of immutability, now let's develop the immutable object. We
will start with the mutable object first, then refactor it into an immutable one.

Applying Immutable State to the Function

[100]

Starting with a mutable object
Now, let's go further. We will create another class to design an immutable object. First, we
will create a mutable class named MutableEmployee. We have some fields and methods in
that class. The header of the class will be like the following piece of code:

 /* mutableemployee.h */
 #ifndef __MUTABLEEMPLOYEE_H__
 #define __MUTABLEEMPLOYEE_H__

 #include <string>

 class MutableEmployee
 {
 private:
 int m_id;
 std::string m_firstName;
 std::string m_lastName;
 double m_salary;

 public:
 MutableEmployee(
 int id,
 const std::string& firstName,
 const std::string& lastName,
 const double& salary);
 MutableEmployee();

 void SetId(const int id);
 void SetFirstName(
 const std::string& FirstName);
 void SetLastName(
 const std::string& LastName);
 void SetSalary(
 const double& Salary);

 int Id() const {return m_id;}
 std::string FirstName() const {return m_firstName;}
 std::string LastName() const {return m_lastName;}
 double Salary() const {return m_salary;}
 };

 #endif // End of __MUTABLEEMPLOYEE_H__

Applying Immutable State to the Function

[101]

As we can see, we have four fields--m_id, m_firstName, m_lastName, and m_salary. We
also have the definition of four methods to store any value to those fields. The
implementation of those methods is as follows:

 /* mutableemployee.cpp */
 #include "mutableemployee.h"

 using namespace std;

 MutableEmployee::MutableEmployee() :
 m_id(0),
 m_salary(0.0)
 {
 }

 MutableEmployee::MutableEmployee(
 int id,
 const string& firstName,
 const string& lastName,
 const double& salary) :
 m_id(id),
 m_firstName(firstName),
 m_lastName(lastName),
 m_salary(salary)
 {
 }

 void MutableEmployee::SetId(const int id)
 {
 m_id = id;
 }

 void MutableEmployee::SetFirstName(
 const std::string& FirstName) {
 m_firstName = FirstName;
 }

 void MutableEmployee::SetLastName(
 const std::string& LastName) {
 m_lastName = LastName;
 }

 void MutableEmployee::SetSalary(
 const double& Salary) {
 m_salary = Salary;
 }

Applying Immutable State to the Function

[102]

As we can see in the preceding code, we have a good OOP code in which the members are
private; however, we can access them through setters and getters. In other words, any code
can change any value so that it is mutable. Now, let's consume the preceding class using
this coming mutable_3.cpp code. We will instance the class with the initial value and try
to mutate them. The code will look as follows:

 /* mutable_3.cpp */
 #include <iostream>
 #include "../mutableemployee/mutableemployee.h"

 using namespace std;

 auto main() -> int
 {
 cout << "[mutable_3.cpp]" << endl;

 // Initializing several variables
 string first = "Frankie";
 string last = "Kaur";
 double d = 1500.0;

 // Creating an instance of MutableEmployee
 MutableEmployee me(0, first, last, d);

 // Displaying initial value
 cout << "Content of MutableEmployee instance" << endl;
 cout << "ID : " << me.Id() << endl;
 cout << "Name : " << me.FirstName();
 cout << " " << me.LastName() << endl;
 cout << "Salary : " << me.Salary() << endl << endl;

 // Mutating the instance of MutableEmployee
 me.SetId(1);
 me.SetFirstName("Alexis");
 me.SetLastName("Andrews");
 me.SetSalary(2100.0);

 // Displaying mutate value
 cout << "Content of MutableEmployee after mutating" << endl;
 cout << "ID : " << me.Id() << endl;
 cout << "Name : " << me.FirstName();
 cout << " " << me.LastName() << endl;
 cout << "Salary : " << me.Salary() << endl;

 return 0;
 }

Applying Immutable State to the Function

[103]

As we can see in the preceding code, we have the initial value stored in three variables--
first, last, and d. We will then successfully mutate the instance using the setter. The
output should be as follows:

The preceding screenshot shows us the mutation result of the MutableEmployee class.
Since we need to avoid the side effect by avoiding the mutate state, we have to refactor the
class to an immutable class.

Refactoring a mutable object into an immutable
one
As we discussed earlier, to avoid side effects, we have to design our class to be an
immutable object. We will refactor the previous MutableEmployee class. Let's take a look
at the following header class:

 /* immutableemployee.h */
 #ifndef __IMMUTABLEEMPLOYEE_H__
 #define __IMMUTABLEEMPLOYEE_H__

 #include <string>

 class ImmutableEmployee
 {
 private:
 int m_id;
 std::string m_firstName;
 std::string m_lastName;
 double m_salary;

Applying Immutable State to the Function

[104]

 public:
 ImmutableEmployee(
 const int id,
 const std::string& firstName,
 const std::string& lastName,
 const double& _salary);
 ImmutableEmployee();

 const int Id() const {
 return m_id;
 }

 const std::string& FirstName() const {
 return m_firstName;
 }

 const std::string& LastName() const {
 return m_lastName;
 }

 const double Salary() const {
 return m_salary;
 }
 };

 #endif // End of __IMMUTABLEEMPLOYEE_H__

As we can see in the preceding header code, we removed the setters from the previous
MutableEmployee class. We did that to make the ImmutableEmployee class immutable.
The implementation of the header can be found in the following code:

 /* immutableemployee.cpp */
 #include "immutableemployee.h"

 using namespace std;

 ImmutableEmployee::ImmutableEmployee() :
 m_id(0),
 m_salary(0.0)
 {
 }

 ImmutableEmployee::ImmutableEmployee(
 const int id,
 const string& firstName,
 const string& lastName,
 const double& salary) :
 m_id(id),

Applying Immutable State to the Function

[105]

 m_firstName(firstName),
 m_lastName(lastName),
 m_salary(salary)
 {
 }

Now, let's analyze the ImmutableEmployee class and compare it with the
MutableEmployee class. The following is what we should obtain:

We now set all member variables to const, which means the variables can be
initialized in the constructor only. This would be the best approach in creating an
immutable object. However, the const members prevent making a move
operation to other members, which is a neat C++11 optimization.
The getter methods now return the const reference instead of the value. Since
the immutable object cannot modify the value, it's better to return the reference to
them.
The getters now return the const value to avoid the result to be modified by
other statements. It also prevents some common errors, like the use of = rather
than == in comparison. It declares the fact that we use an immutable type.

The problem occurs if we want to change the m_firstName or m_salary fields, for
instance. To solve this problem, we can add the setter to the ImmutableEmployee class.
However, it now returns the ImmutableEmployee instance instead of mutating the field
target. The immutableemployee.h code will be as follows:

 /* immutableemployee.h */
 #ifndef __IMMUTABLEEMPLOYEE_H__
 #define __IMMUTABLEEMPLOYEE_H__

 #include <string>

 class ImmutableEmployee
 {
 private:
 int m_id;
 std::string m_firstName;
 std::string m_lastName;
 double m_salary;

 public:
 ImmutableEmployee(
 const int id,
 const std::string& firstName,
 const std::string& lastName,
 const double& _salary);

Applying Immutable State to the Function

[106]

 ImmutableEmployee();
 ~ImmutableEmployee();

 const int Id() const {
 return m_id;
 }

 const std::string& FirstName() const {
 return m_firstName;
 }

 const std::string& LastName() const {
 return m_lastName;
 }

 const double Salary() const {
 return m_salary;
 }

 const ImmutableEmployee SetId(
 const int id) const {
 return ImmutableEmployee(
 id, m_firstName, m_lastName, m_salary);
 }

 const ImmutableEmployee SetFirstName(
 const std::string& firstName) const {
 return ImmutableEmployee(
 m_id, firstName, m_lastName, m_salary);
 }
 const ImmutableEmployee SetLastName(
 const std::string& lastName) const {
 return ImmutableEmployee(
 m_id, m_firstName, lastName, m_salary);
 }

 const ImmutableEmployee SetSalary(
 const double& salary) const {
 return ImmutableEmployee(
 m_id, m_firstName, m_lastName, salary);
 }
 };

 #endif // End of __IMMUTABLEEMPLOYEE_H__

Applying Immutable State to the Function

[107]

As we can see, now, in the immutableemployee.h file, we have four setters. They are
SetId, SetFirstName, SetLastName, and SetSalary. Although the name of setter in the
ImmutableEmployee class is completely the same as the MutableEmployee class, in the
ImmutableEmployee class, the setters return the instance of the class, as we discussed
earlier. By using this ImmutableEmployee class, we have to adopt the functional approach
since the class is the immutable object. The following code is immutable_3.cpp, which we
refactor from the mutable_3.cpp file:

 /* immutable_3.cpp */
 #include <iostream>
 #include "../immutableemployee/immutableemployee.h"

 using namespace std;

 auto main() -> int
 {
 cout << "[immutable_3.cpp]" << endl;

 // Initializing several variables
 string first = "Frankie";
 string last = "Kaur";
 double d = 1500.0;

 // Creating the instance of ImmutableEmployee
 ImmutableEmployee me(0, first, last, d);

 // Displaying initial value
 cout << "Content of ImmutableEmployee instance" << endl;
 cout << "ID : " << me.Id() << endl;
 cout << "Name : " << me.FirstName()
 << " " << me.LastName() << endl;
 cout << "Salary : " << me.Salary() << endl << endl;

 // Modifying the initial value
 ImmutableEmployee me2 = me.SetId(1);
 ImmutableEmployee me3 = me2.SetFirstName("Alexis");
 ImmutableEmployee me4 = me3.SetLastName("Andrews");
 ImmutableEmployee me5 = me4.SetSalary(2100.0);

 // Displaying the new value
 cout << "Content of ImmutableEmployee after modifying" << endl;
 cout << "ID : " << me5.Id() << endl;
 cout << "Name : " << me5.FirstName()
 << " " << me5.LastName() << endl;
 cout << "Salary : " << me5.Salary() << endl;

 return 0;

Applying Immutable State to the Function

[108]

 }

As we see in the preceding code, we modify the content by instancing four other
ImmutableEmployee classes--me2, me3, me4, and me5. This resembles what we did in
immutable_1.cpp. However, we now deal with a class. The output of the preceding code
should look like the following screenshot:

By obtaining the preceding output, we can say that we have successfully modified the
instance of the ImmutableEmployee class without mutating it.

Enumerating the benefits of being
immutable
After our discussion, we now know that an immutable object is an essential part of the
functional programming. The following are the benefits we can get from the immutable
object:

We won't deal with the side effect. It's because we have ensured that no outside
state is modified. We also create a new object every time we intend to change the
value inside the object.
There is no invalid object's state. It's because we will always be in an inconsistent
state. If we forget to invoke a particular method, we will definitely get the correct
state since there is no connection between methods.
It will be thread-safe since we can run many methods together with no need to
lock the first method that is run in the pool. In other words, we will never face
any synchronization issues.

Applying Immutable State to the Function

[109]

Summary
First, in this chapter, we tried to modify a local variable in a functional way. We cannot
reuse the variable we created; instead, we have to create another one when we need to
modify it. We also discussed the technique to modify the variable we passed to another
function. Instead of passing the argument by value, we have to pass it by reference to make
it change.

Then, we dug the use of the const keyword to provide the immutable behavior to the
function. By using this keyword, we can ensure that the variable inside the class cannot be
modified. Another discussion was about applying the first-class and pure functions--things
you learned in the previous chapter--to gain the power of immutability.

We also created the mutable class and then refactored it into an immutable class. We are
now able to distinguish the mutable and immutable object and can apply it in our
functional code. Lastly, in this chapter, we enumerated the benefit of the immutable object,
so we are confident to use it in our daily code.

Another question may appear in our minds now. How do we run the recursion if we have
to deal with the immutable object? We cannot even modify a single variable in the method.
In the next chapter, we will sort this problem out by discussing recursion in functional
programming.

4
Repeating Method Invocation

Using Recursive Algorithm
In the last chapter, you learned about immutable states that make us not deal with the side
effect. In this chapter, let's take a look at the concept of recursion. As a programmer in
object-oriented programming, we usually use iteration to repeat the process instead of
recursion. However, recursion gives more benefit than iteration. For instance, some
problems (mathematics, especially) are solved easily using recursion, and, fortunately, all
algorithms can be defined recursively. That makes it much, much easier to visualize and
prove. To get to know more about the recursion, the following topics will be discussed in
this chapter:

Differentiating the iteration and recursion invocation
Recurring the immutable function
Finding a better way in recursion using tail recursion
Enumerating three kinds of recursion--functional, procedural, and backtracking
recursion

Repeating Method Invocation Using Recursive Algorithm

[111]

Repeating the function invocation
recursively
As a programmer, especially in object-oriented programming, we usually use the iteration
technique to repeat our process. For now, we will discuss the recursion method to repeat
our process and use it in the functional approach. Basically, recursion and iteration perform
the same task, which is to solve a complicated task piece by piece then combine the results.
However, they have a difference. The iteration process emphasizes that we should keep
repeating the process until the task is done, whereas recursion emphasizes that need to
break the task up into smaller pieces until we can solve the task, then combine the result.
We can use the iteration process when we need to run a certain process until the limit is
reached or read a stream until it reaches eof(). Also, recursion can give the best value
when we use it, for instance, on the calculation of a factorial.

Performing the iteration procedure to repeat the
process
We will start with the iteration process. As we discussed earlier, the calculation of a factorial
will be better if it's designed using the recursion approach. However, it's possible as well to
design it with the iteration approach. Here, we will have a
factorial_iteration_do_while.cpp code that we can use to calculate the factorial. We
will have a function named factorial () that passes a single parameter that will
calculate the factorial value we pass in the argument. The code should look like this:

 /* factorial_iteration_do_while.cpp */
 #include <iostream>

 using namespace std;

 // Function containing
 // do-while loop iteration

 int factorial (int n)
 {
 int result = 1;
 int i = 1;

 // Running iteration using do-while loop
 do
 {
 result *= i;

Repeating Method Invocation Using Recursive Algorithm

[112]

 }
 while(++i <= n);

 return result;
 }

 auto main() -> int
 {
 cout << "[factorial_iteration_do_while.cpp]" << endl;

 // Invoking factorial() function nine times
 for(int i = 1; i < 10; ++i)
 {
 cout << i << "! = " << factorial(i) << endl;
 }

 return 0;
 }

As we can see in the preceding code, we depend on the value of n, which we pass to the
factorial() function, in determining how many iterations will occur. Every time the
iteration performs, the result variable will be multiplied by the counter i. At the end, the
result variable will hold the last result by combining the iteration's result value. The
output we should get on the screen is as follows:

Repeating Method Invocation Using Recursive Algorithm

[113]

Another technique in an iteration is using another iteration procedure. We can refactor the
preceding code to use the for loop in the factorial() function. The following is the
factorial_iteration_for.cpp code that is refactored from our preceding
factorial_iteration_do_while.cpp code:

 /* factorial_iteration_do_while.cpp */
 #include <iostream>

 using namespace std;

 // Function containing
 // for loop iteration
 int factorial (int n)
 {
 int result = 1;

 // Running iteration using for loop
 for(int i = 1; i <= n; ++i)
 {
 result *= i;
 }

 return result;
 }

 auto main() -> int
 {
 cout << "[factorial_iteration_for.cpp]" << endl;

 // Invoking factorial() function nine times
 for(int i = 1; i < 10; ++i)
 {
 cout << i << "! = " << factorial(i) << endl;
 }

 return 0;
 }

As we can see, we replace the do-while loop with the for loop. However, the behavior of
the program will be exactly the same, since it will also multiply the current result with the i
counter each time the iteration performs. At the end of this iteration, we will obtain the final
result from this multiplication process. The screen should display the following output:

Repeating Method Invocation Using Recursive Algorithm

[114]

Now that we have successfully performed iteration to gain the factorial purpose, either use
the do-while or for loop.

It looks too trivial when we try to refactor the do-while loop into the for
loop. As we may know, for loops allow us to run through the loop when
we know how many times we'd like it to run through the problem, while
the do-while loops give us more flexibility in what we put in it and when
it will stop, for instance while(i > 0) or use a Boolean value such as
while(true). However, based on the preceding example, we now can
say that we can switch the for loop or the do-while loop into recursion.

Performing the recursion procedure to repeat the
process
We discussed earlier that recursion gives better performance in functional programming.
We also developed the factorial() function in the iteration approach. Now, let's refactor
our previous code into factorial_recursion.cpp, which will use the recursion
approach rather than the iteration one. The code will perform the same task comparing our
previous code. However, we will modify the factorial() function to call itself at the end
of the function. The code is written as follows:

 /* factorial_recursion.cpp */
 #include <iostream>

 using namespace std;

 int factorial(int n)
 {

Repeating Method Invocation Using Recursive Algorithm

[115]

 // Running recursion here
 if (n == 0)
 return 1;
 else
 return n * factorial (n - 1);
 }

 auto main() -> int
 {
 cout << "[factorial_recursion.cpp]" << endl;

 for(int i = 1; i < 10; ++i)
 {
 cout << i << "! = " << factorial(i) << endl;
 }

 return 0;
 }

As we can see, the factorial() function in the preceding code calls itself until n is 0. Each
time the function calls itself, it decrements the n parameter. The function will return 1 soon
after the passed parameter is 0. We will also get the same output compared to our two
previous code blocks, as shown in the following screenshot:

Although recursion gives us the simplicity required to easily maintain
code, we have to be aware of the parameter we pass to the recursion
function. For instance, in the factorial() function in the
factorial_recursion.cpp code, if we pass the negative number to the
n < 0 function, we will get the infinity loop, and it can crash our device.

Repeating Method Invocation Using Recursive Algorithm

[116]

Recurring the immutable function
As we discussed in the previous chapter, we need to loop the immutable function
recursively. Let's suppose we have the fibonacci() function that is immutable. We then
need to refactor it to be a recursive function. The fibonacci_iteration.cpp code
implements the fibonacci() function in the iteration way. The code is written as follows:

 /* fibonacci_iteration.cpp */
 #include <iostream>

 using namespace std;

 // Function for generating
 // Fibonacci sequence using iteration
 int fibonacci(int n)
 {
 if (n == 0)
 return 0;

 int previous = 0;
 int current = 1;

 for (int i = 1; i < n; ++i)
 {
 int next = previous + current;
 previous = current;
 current = next;
 }

 return current;
 }

 auto main() -> int
 {
 cout << "[fibonacci_iteration.cpp]" << endl;

 // Invoking fibonacci() function ten times
 for(int i = 0; i < 10; ++i)
 {
 cout << fibonacci(i) << " ";
 }
 cout << endl;

 return 0;
 }

Repeating Method Invocation Using Recursive Algorithm

[117]

As we can see in the preceding code, the fibonacci() function is immutable since it will
return the same value each time it gets the exact same n input. The output should look like
the following screenshot:

If we need to refactor it to be a recursive function, we can use the following
fibonacci_recursion.cpp code:

 /* fibonacci_recursion.cpp */
 #include <iostream>
 using namespace std;

 // Function for generating
 // Fibonacci sequence using recursion
 int fibonacci(int n)
 {
 if(n <= 1)
 return n;

 return fibonacci(n-1) + fibonacci(n-2);
 }

 auto main() -> int
 {
 cout << "[fibonacci_recursion.cpp]" << endl;

 // Invoking fibonacci() function ten times
 for(int i = 0; i < 10; ++i)
 {
 cout << fibonacci(i) << " ";
 }
 cout << endl;

 return 0;
 }

As we can see, the preceding code has the recursion approach since it calls the function
itself at the end of the function. Now that we have the recursion fibonacci() function, it
will give the following output on the console:

Repeating Method Invocation Using Recursive Algorithm

[118]

Now, compared to the fibonacci_iteration.cpp code, the
fibonacci_recursion.cpp code shows the exact same output.

Getting closer to tail recursion
A tail recursion happens when the recursive call is executed at the end by the function. It's
considered better than the non-tail recursion code we developed previously because the
compiler can optimize the code better. Since the recursive call is the last statement that is
executed by the function, there is nothing more to do in this function. The result is that the
compiler does not need to save the current function's stack frame. Let's see the following
tail_recursion.cpp code implementing tail recursion:

 /* tail_recursion.cpp */
 #include <iostream>

 using namespace std;

 void displayNumber(long long n)
 {
 // Displaying the current n value
 cout << n << endl;
 // The last executed statement
 // is the recursive call
 displayNumber(n + 1);
 }

 auto main() -> int
 {
 cout << "[tail_recursion.cpp]" << endl;

 // Invoking the displayNumber() function
 // containing tail recursion
 displayNumber(0);

 return 0;
 }

Repeating Method Invocation Using Recursive Algorithm

[119]

As we can see in the preceding code, the displayNumber() function is a tail recursive call
function since it calls itself at the end of the process. Indeed, if we run the preceding
tail_recursion.cpp code, the program will not end since it will increase the value of n in
the displayNumber() function. The program may be crashed when the value of n has
reached the maximum value of the long long data type. However, the program will not
have the stack issued (stack overflowed) since the tail recursion doesn't store a value in the
stack.

Also, we can refactor the preceding displayNumber() function in the
tail_recursion.cpp code to use the goto keyword instead of calling the function over
and over. The refactored code can be seen in the following tail_recursion_goto.cpp
code:

 /* tail_recursion_goto.cpp */
 #include <iostream>

 using namespace std;

 void displayNumber(long long n)
 {
 loop:
 // Displaying the current n value
 cout << n << endl;

 // Update parameters of recursive call
 // and replace recursive call with goto
 n++;
 goto loop;
 }

 auto main() -> int
 {
 cout << "[tail_recursion_goto.cpp]" << endl;

 // Invoking the displayNumber() function
 // containing tail recursion
 displayNumber(0);

 return 0;
 }

Repeating Method Invocation Using Recursive Algorithm

[120]

As we can see in the preceding code, we can remove the last call in the displayNumber()
function with the goto keyword. This is how the compiler optimizes the tail recursion by
performing a tail-call elimination that will replace the last call with the goto keyword. We
will also see that no stack is needed in the displayNumber() function.

Don't forget to compile the code containing a tail recursion with the
optimization option provided by the compiler. Since we use GCC, always
enable optimization level 2 (-O2) to gain the optimized code. The effect of
not compiling with optimizations enabled, is that our two preceding
programs (tail_recursion.cpp and tail_recursion_goto.cpp) will
crash with the stack overflowed issue. For more information about the
optimizations option in GCC, check out h t t p s ://g c c . g n u . o r g /o n l i n e d o

c s /g c c - 7. 1. 0/g c c /O p t i m i z e - O p t i o n s . h t m l .

Now, let's create a useful tail recursion call. In the previous section, we have successfully
refactored our iteration function into a recursive one. The factorial() function now has
become a recursive function and calls itself at the end of the function. However, it is not tail
recursion, although the function calls itself at the end of the function. If we look closer, the
value returned by factorial(n-1) is used in factorial(n), so the call to
factorial(n-1) is not the last thing done by factorial(n).

We can create our factorial_recursion.cpp code to become the tail recursion function.
We will develop the following factorial_recursion_tail.cpp code, modify the
factorial() function, and add a new function named factorialTail(). The code is
written as follows:

 /* factorial_recursion_tail.cpp */
 #include <iostream>

 using namespace std;

 // Function for calculating factorial
 // tail recursion
 int factorialTail(int n, int i)
 {
 if (n == 0)
 return i;

 return factorialTail(n - 1, n * i);
 }

 // The caller of tail recursion function
 int factorial(int n)
 {

https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html

Repeating Method Invocation Using Recursive Algorithm

[121]

 return factorialTail(n, 1);
 }

 auto main() -> int
 {
 cout << "[factorial_recursion_tail.cpp]" << endl;
 // Invoking fibonacci() function ten times
 for(int i = 1; i < 10; ++i)
 {
 cout << i << "! = " << factorial(i) << endl;
 }

 return 0;
 }

As we can see, we have moved the factorial() function in the
factorial_recursion.cpp code to the factorialTail() function that requires two
arguments in the factorial_recursion_tail.cpp code. As the result, after we invoke
factorial(i), it will then invoke the factorialTail() function. At the end of this
function, the factorialTail() function is the only function that is invoked. The following
image is the output of the factorial_recursion_tail.cpp code, which is exactly the
same as the factorial_recursion.cpp code. It also proves that we have successfully
refactored the factorial_recursion.cpp code into tail recursion.

Repeating Method Invocation Using Recursive Algorithm

[122]

Getting acquainted with functional,
procedural, and backtracking recursion
So now that we have understood a little about recursion, the recursion function will call
itself from inside its body. The recursion will be stopped only when it has reached a certain
value. There are three types of recursion that we will discuss right away--functional
recursion, procedural recursion, and backtracking recursion; however, these three types of
recursion may not be standard terms. Functional recursion is a recursion process that
returns some value. Procedural recursion is a recursion process that doesn't return a value,
yet performs the action in each recursion it takes. Backtracking recursion is a recursion
process to break down the task into a small set of subtasks that can be cancelled if they don't
work. Let's consider these recursion types in the following discussion.

Expecting results from functional recursion
In functional recursion, the process tries to solve the problem by combining the results from
the subproblems recursively. The result we combine comes from the return value of
subproblems. Let's suppose we have a problem to calculate a number to a power, for
instance, 2 power 2 is 4 (22 = 4). By using iteration, we can build a code like the following
exponential_iteration.cpp code. We have a function named power() that will be
passed by two arguments--base and exp. The notation will be baseexp and the code looks
like this:

 /* exponential_iteration.cpp */
 #include <iostream>

 using namespace std;

 // Calculating the power of number
 // using iteration
 int power(int base, int exp)
 {
 int result = 1;

 for(int i = 0; i < exp; ++i)
 {
 result *= base;
 }

 return(result);
 }

Repeating Method Invocation Using Recursive Algorithm

[123]

 auto main() -> int
 {
 cout << "[exponential_iteration.cpp]" << endl;

 // Invoking power() function six times
 for(int i = 0; i <= 5; ++i)
 {
 cout << "power (2, " << i << ") = ";
 cout << power(2, i) << endl;
 }

 return 0;
 }

As we can see in the preceding code, we use the iteration version first, before we go to the
recursive one, since we usually use the iteration most on a daily basis. We combine the
result value in each iteration by multiplying it by the base value. If we run the preceding
code, we will get the following output on the console:

Now, let's refactor our preceding code to the recursive version. We will have the
exponential_recursion.cpp code that will have the same power() function signature.
However, we will not use the for loop instead of the recursion that the function calls itself
at the end of the function. The code should be written as follows:

 /* exponential_recursion.cpp */
 #include <iostream>

 using namespace std;

 // Calculating the power of number
 // using recursion
 int power(int base, int exp)
 {
 if(exp == 0)
 return 1;

Repeating Method Invocation Using Recursive Algorithm

[124]

 else
 return base * power(base, exp - 1);
 }

 auto main() -> int
 {
 cout << "[exponential_recursion.cpp]" << endl;

 // Invoking power() function six times
 for(int i = 0; i <= 5; ++i)
 {
 cout << "power (2, " << i << ") = ";
 cout << power(2, i) << endl;
 }

 return 0;
 }

As we discussed earlier that functional recursion returns value, the power() function is a
functional recursion since it returns the int value. We will get the final result from the
value returned by each subfunction. As a result, we will get the following output on the
console:

Running a task recursively in procedural
recursion
So, we have a functional recursion that expects the return value from the function.
Sometimes, we don't need the return value since we run the task from inside the function.
To achieve that purpose, we can use procedural recursion. Let's suppose we want to
permute a short string to find all possible arrangements of it. Instead of returning the value,
we just need to print the result every time the recursion is performed.

Repeating Method Invocation Using Recursive Algorithm

[125]

We have the following permutation.cpp code to demonstrate this task. It has the
permute() function that will be invoked once, then it will invoke the doPermute()
function recursively. The code should be written as follows:

 /* permutation.cpp */
 #include <iostream>

 using namespace std;

 // Calculation the permutation
 // of the given string
 void doPermute(
 const string &chosen,
 const string &remaining)
 {
 if(remaining == "")
 {
 cout << chosen << endl;
 }
 else
 {
 for(uint32_t u = 0; u < remaining.length(); ++u)
 {
 doPermute(
 chosen + remaining[u],
 remaining.substr(0, u)
 + remaining.substr(u + 1));
 }
 }
 }

 // The caller of doPermute() function
 void permute(
 const string &s)
 {
 doPermute("", s);
 }

 auto main() -> int
 {
 cout << "[permutation.cpp]" << endl;

 // Initializing str variable
 // then ask user to fill in
 string str;
 cout << "Permutation of a string" << endl;
 cout << "Enter a string: ";
 getline(cin, str);

Repeating Method Invocation Using Recursive Algorithm

[126]

 // Finding the possibility of the permutation
 // by calling permute() function
 cout << endl << "The possibility permutation of ";
 cout << str << endl;
 permute(str);

 return 0;
 }

As we can see in the preceding code, we ask the user to input a string, then the code will
find the possibility of this permutation using the permute() function. It will start with the
empty string in doPermute() since the given string from the user is possible also. The
output on the console should be as follows:

Backtracking recursion
As we discussed earlier, we can undo the process if the subtask doesn't work. Let's try with
a labyrinth where we have to find the way from the starting point to the finishing point.
Let's suppose we have to find the way from S to F as in the following labyrinth:

 # # # # # # # #
 # S #
 # # # # # # #
 # # # # # #
 # #
 # # # # # # #
 # F #
 # # # # # # # #

Repeating Method Invocation Using Recursive Algorithm

[127]

To solve this problem, we have to decide the route we need, to find the finishing point.
However, we will assume that each choice is good until we prove it's not. The recursion will
return a Boolean value to mark whether it's the right way or not. If we choose the wrong
way, the call stack unwinds and it will undo the choice. First, we will draw the labyrinth
in our code. In the following code, there will be the createLabyrinth() and
displayLabyrinth() functions. The code looks like this:

 /* labyrinth.cpp */
 #include <iostream>
 #include <vector>

 using namespace std;

 vector<vector<char>> createLabyrinth()
 {
 // Initializing the multidimensional vector
 // labyrinth
 // # is a wall
 // S is the starting point
 // E is the finishing point
 vector<vector<char>> labyrinth =
 {
 {'#', '#', '#', '#', '#', '#', '#', '#'},
 {'#', 'S', ' ', ' ', ' ', ' ', ' ', '#'},
 {'#', '#', '#', ' ', '#', '#', '#', '#'},
 {'#', ' ', '#', ' ', '#', '#', '#', '#'},
 {'#', ' ', ' ', ' ', ' ', ' ', ' ', '#'},
 {'#', ' ', '#', '#', '#', '#', '#', '#'},
 {'#', ' ', ' ', ' ', ' ', ' ', 'F', '#'},
 {'#', '#', '#', '#', '#', '#', '#', '#'}
 };

 return labyrinth;
 }

 void displayLabyrinth(vector<vector<char>> labyrinth)
 {
 cout << endl;
 cout << "====================" << endl;
 cout << "The Labyrinth" << endl;
 cout << "====================" << endl;

 // Displaying all characters in labyrinth vector
 for (int i = 0; i < rows; i++)
 {
 for (int j = 0; j < cols; j++)
 {

Repeating Method Invocation Using Recursive Algorithm

[128]

 cout << labyrinth[i][j] << " ";
 }
 cout << endl;
 }
 cout << "====================" << endl << endl;
 }

 auto main() -> int
 {
 vector<vector<char>> labyrinth = createLabyrinth();
 displayLabyrinth(labyrinth);

 string line;
 cout << endl << "Press enter to continue..." << endl;
 getline(cin, line);

 return 0;
 }

As we can see, there's no recursion in the preceding code. The createLabyrinth()
function just creates a two-dimensional array that contains the pattern of the labyrinth,
whereas displayLabyrinth() just shows the array to console. We will see the following
output on the console if we run the preceding code:

Repeating Method Invocation Using Recursive Algorithm

[129]

From the preceding screenshot, we can see there are two points there--S is the starting point
and F is the finishing point. The code has to find the way to reach F from S. The expected
route should be as follows:

The white arrow on the preceding screenshot is a path we expected to reach F from S. Now,
let's develop the code to solve this labyrinth problem. We will create a function named
navigate to find the possible route by figuring out these three states:

If we find F in the [x,y] position, for instance labyrinth[2][4], we have solved
the problem then just return true as the return value.
If the [x,y] position is #, it means that we face the wall and have to revisit the
other [x,y] position.
Otherwise, we print * on that position to mark that we have visited it.

After we have analyzed the three states, we will start with the recursive cases as follows:

The path seeker will go upward if it can navigate to row - 1, and it's greater
than or equal to 0 (row - 1 >= 0 && navigate(labyrinth, row - 1,
col))
The path seeker will go downward if it can navigate to row + 1, and it's smaller
than 8 (row + 1 < 8 && navigate(labyrinth, row + 1, col))
The path seeker will go to the left if it can navigate to col - 1, and it's greater
than or equal to 0 (col - 1 >= 0 && navigate(labyrinth, row, col -
1))

Repeating Method Invocation Using Recursive Algorithm

[130]

The path seeker will go to the right if it can navigate to col + 1, and it's smaller
than 8 (col + 1 < 8 && navigate(labyrinth, row, col + 1))

We will have the navigate() function as follows:

 bool navigate(
 vector<vector<char>> labyrinth,
 int row,
 int col)
 {
 // Displaying labyrinth
 displayLabyrinth(labyrinth);

 cout << "Checking cell (";
 cout << row << "," << col << ")" << endl;

 // Pause 1 millisecond
 // before navigating
 sleep(1);

 if (labyrinth[row][col] == 'F')
 {
 cout << "Yeayy.. ";
 cout << "Found the finish flag ";
 cout << "at point (" << row << ",";
 cout << col << ")" << endl;
 return (true);
 }
 else if (
 labyrinth[row][col] == '#' ||
 labyrinth[row][col] == '*')
 {
 return (false);
 }
 else if (labyrinth[row][col] == ' ')
 {
 labyrinth[row][col] = '*';
 }
 if ((row + 1 < rows) &&
 navigate(labyrinth, row + 1, col))
 return (true);

 if ((col + 1 < cols) &&
 navigate(labyrinth, row, col + 1))
 return (true);

 if ((row - 1 >= 0) &&

Repeating Method Invocation Using Recursive Algorithm

[131]

 navigate(labyrinth, row - 1, col))
 return (true);

 if ((col - 1 >= 0) &&
 navigate(labyrinth, row, col - 1))
 return (true);

 return (false);
 }

We now have the navigate() function to find out the correct path to find F. However,
before we run the navigate() function, we have to ensure that S is there. We then have to
develop the helper function named isLabyrinthSolvable(). It will loop through the
labyrinth array and will inform whether S is there or not. The following code snippet is the
implementation of the isLabyrinthSolvable() function:

 bool isLabyrinthSolvable(
 vector<vector<char>> labyrinth)
 {
 int start_row = -1;
 int start_col = -1;
 for (int i = 0; i < rows; i++)
 {
 for (int j = 0; j < cols; j++)
 {
 if (labyrinth[i][j] == 'S')
 {
 start_row = i;
 start_col = j;
 break;
 }
 }
 }

 if (start_row == -1 || start_col == -1)
 {
 cout << "No valid starting point found!" << endl;
 return (false);
 }

 cout << "Starting at point (" << start_row << ",";
 cout << start_col << ")" << endl;

 return navigate(labyrinth, start_row, start_col);
 }

Repeating Method Invocation Using Recursive Algorithm

[132]

As we can see in the preceding code snippet, we mention the rows and cols variables. We
will initialize them as global variables, as we can see in the following code snippet:

 const int rows = 8;
 const int cols = 8;

Now, let's take a look at the following code if we insert the navigate() and
isLabyrinthSolvable() functions to the labyrinth.cpp code:

 /* labyrinth.cpp */
 #include <iostream>
 #include <vector>
 #include <unistd.h>

 using namespace std;

 const int rows = 8;
 const int cols = 8;

 vector<vector<char>> createLabyrinth()
 {
 // Initializing the multidimensional vector
 // labyrinth
 // # is a wall
 // S is the starting point
 // E is the finishing point
 vector<vector<char>> labyrinth =
 {
 {'#', '#', '#', '#', '#', '#', '#', '#'},
 {'#', 'S', ' ', ' ', ' ', ' ', ' ', '#'},
 {'#', '#', '#', ' ', '#', '#', '#', '#'},
 {'#', ' ', '#', ' ', '#', '#', '#', '#'},
 {'#', ' ', ' ', ' ', ' ', ' ', ' ', '#'},
 {'#', ' ', '#', '#', '#', '#', '#', '#'},
 {'#', ' ', ' ', ' ', ' ', ' ', 'F', '#'},
 {'#', '#', '#', '#', '#', '#', '#', '#'}
 };

 return labyrinth;
 }

 void displayLabyrinth(
 vector<vector<char>> labyrinth)
 {
 cout << endl;
 cout << "====================" << endl;
 cout << "The Labyrinth" << endl;
 cout << "====================" << endl;

Repeating Method Invocation Using Recursive Algorithm

[133]

 // Displaying all characters in labyrinth vector
 for (int i = 0; i < rows; i++)
 {
 for (int j = 0; j < cols; j++)
 {
 cout << labyrinth[i][j] << " ";
 }
 cout << endl;
 }
 cout << "====================" << endl << endl;
 }

 bool navigate(
 vector<vector<char>> labyrinth,
 int row,
 int col)
 {
 // Displaying labyrinth
 displayLabyrinth(labyrinth);

 cout << "Checking cell (";
 cout << row << "," << col << ")" << endl;

 // Pause 1 millisecond
 // before navigating
 sleep(1);

 if (labyrinth[row][col] == 'F')
 {
 cout << "Yeayy.. ";
 cout << "Found the finish flag ";
 cout << "at point (" << row << ",";
 cout << col << ")" << endl;
 return (true);
 }
 else if (
 labyrinth[row][col] == '#' ||
 labyrinth[row][col] == '*')
 {
 return (false);
 }
 else if (labyrinth[row][col] == ' ')
 {
 labyrinth[row][col] = '*';
 }

 if ((row + 1 < rows) &&
 navigate(labyrinth, row + 1, col))

Repeating Method Invocation Using Recursive Algorithm

[134]

 return (true);

 if ((col + 1 < cols) &&
 navigate(labyrinth, row, col + 1))
 return (true);

 if ((row - 1 >= 0) &&
 navigate(labyrinth, row - 1, col))
 return (true);

 if ((col - 1 >= 0) &&
 navigate(labyrinth, row, col - 1))
 return (true);

 return (false);
 }

 bool isLabyrinthSolvable(
 vector<vector<char>> labyrinth)
 {
 int start_row = -1;
 int start_col = -1;
 for (int i = 0; i < rows; i++)
 {
 for (int j = 0; j < cols; j++)
 {
 if (labyrinth[i][j] == 'S')
 {
 start_row = i;
 start_col = j;
 break;
 }
 }
 }

 if (start_row == -1 || start_col == -1)
 {
 cerr << "No valid starting point found!" << endl;
 return (false);
 }

 cout << "Starting at point (" << start_row << ",";
 cout << start_col << ")" << endl;

 return navigate(labyrinth, start_row, start_col);
 }

 auto main() -> int

Repeating Method Invocation Using Recursive Algorithm

[135]

 {
 vector<vector<char>> labyrinth = createLabyrinth();
 displayLabyrinth(labyrinth);

 string line;
 cout << endl << "Press enter to continue..." << endl;
 getline(cin, line);

 if (isLabyrinthSolvable(labyrinth))
 cout << "Labyrinth solved!" << endl;
 else
 cout << "Labyrinth could not be solved!" << endl;

 return 0;
 }

As we can see in the preceding quote, in the main() function, we first run the
isLabyrinthSolvable() function, which, in turn, invokes the navigate() function. The
navigate() function will then go through the labyrinth to find out the correct path. The
following is the output of the code:

However, if we trace how the program solves the labyrinth, it faces the wrong route when it
finds the finish flag, as we can see in the following screenshot:

Repeating Method Invocation Using Recursive Algorithm

[136]

As we can see, there is a white square in the preceding screenshot. It's the wrong choice
when it is looking for the correct path. Once it meets an obstacle, it goes back and finds the
other ways. It will also undo the choice it has made. Let's see the following screenshot that
shows us when the recursion finds another route and undoes the previous choice:

In the preceding screenshot, we can see that the recursion tries another route and the
previously failed route has disappeared since the backtrack recursion undoes the route. The
recursion now has the correct path, and it can just continue until it finds the finish flag. As a
result, we now have successfully developed the backtracking recursion.

Repeating Method Invocation Using Recursive Algorithm

[137]

Summary
This chapter has given us the technique for repeating the function invocation by using
iteration and recursion. However, since recursion is more functional than iteration, we
emphasized our discussion on recursion instead of iteration. We started with the difference
between iteration and recursion. We then continued the discussion about refactoring the
immutable function to become a recursive immutable function.

After we learned about the recursion, we found other better recursion techniques. We also
discussed tail recursion to get this improved technique. Lastly, we enumerated three kinds
of recursion--functional, procedural, and backtracking recursion. We usually use functional
recursion when we expect the return value for the recursion. Otherwise, we use procedural
recursion. And, if we need to break down the problem and undo the recursion performance
when it doesn't work, we can use backtracking recursion to solve the problem.

In the next chapter, we will discuss lazy evaluation to make the code run faster. This will
make the code become efficient since it will make sure that unnecessary code won't be
executed.

5
Procrastinating the Execution

Process Using Lazy Evaluation
In the previous chapter, we discussed recursion for repeating the function invocation in the
functional approach. Now, we will discuss lazy evaluation that can make our code become
more efficient since it will only run when we need it. We will also apply recursion, the topic
we talked about in the previous chapter, to produce the lazy code.

In this chapter, we discuss lazy evaluation to make code run faster. This will make the code
become efficient since it will make sure that unnecessary code won't be executed. The
following are the topics we will discuss to dive into lazy evaluation:

Distinguishing the difference between eager and lazy evaluation
Optimizing code using the caching technique
Refactoring eager evaluation into lazy evaluation
Designing the useful classes that can be reused in others' functional code

Evaluating the expression
Every programming language has its own strategy to determine when to evaluate the
arguments of a function call and what type of value that has to be passed to the parameter.
There are two kinds of strategy evaluation that are mostly used in a programming
language--strict (eager) evaluation and non-strict (lazy) evaluation.

Procrastinating the Execution Process Using Lazy Evaluation

[139]

Running the expression immediately with strict
evaluation
Strict evaluation is used in the most imperative programming language. It will immediately
execute the code we have. Let's suppose we have the following equation:

 int i = (x + (y * z));

In a strict evaluation, the innermost bracket will be calculated first, then work outwards for
the preceding equation. This means we will calculate y * z, then add the result to x. To
make it clearer, let's see the following strict.cpp code:

 /* strict.cpp */
 #include <iostream>

 using namespace std;

 int OuterFormula(int x, int yz)
 {
 // For logging purpose only
 cout << "Calculate " << x << " + ";
 cout << "InnerFormula(" << yz << ")";
 cout << endl;

 // Returning the calculation result
 return x * yz;
 }

 int InnerFormula(int y, int z)
 {
 // For logging purpose only
 cout << "Calculate " << y << " * ";
 cout << z << endl;
 // Returning the calculation result
 return y * z;
 }

 auto main() -> int
 {
 cout << "[strict.cpp]" << endl;

 // Initializing three int variables
 // for the calculation
 int x = 4;
 int y = 3;
 int z = 2;

Procrastinating the Execution Process Using Lazy Evaluation

[140]

 // Calculating the expression
 cout << "Calculate " << x <<" + ";
 cout << "(" << y << " * " << z << ")";
 cout << endl;
 int result = OuterFormula(x, InnerFormula(y, z));

 // For logging purpose only
 cout << x << " + ";
 cout << "(" << y << " * " << z << ")";
 cout << " = " << result << endl;
 return 0;
 }

As we discussed earlier, the execution of the preceding code will be y * z first, then we
will add the result to x, as we can see in the following output:

The preceding execution order is what we usually expect. However, in non-strict
evaluation, we will reorder this execution process.

Delaying the expression with non-strict
evaluation
In a non-strict evaluation, the + operator is reduced first, and then we reduce the inner
formula, which is (y * z). We will see that the evaluation will be started from the outside
to the inside. We will refactor our previous strict.cpp code to make it become a non-
strict evaluation. The code should be like the following non_strict.cpp code:

 /* non_strict.cpp */
 #include <functional>
 #include <iostream>

 using namespace std;

 int OuterFormulaNonStrict(
 int x,

Procrastinating the Execution Process Using Lazy Evaluation

[141]

 int y,
 int z,
 function<int(int, int)> yzFunc)
 {
 // For logging purpose only
 cout << "Calculate " << x << " + ";
 cout << "InnerFormula(" << y << ", ";
 cout << z << ")" << endl;

 // Returning the calculation result
 return x * yzFunc(y, z);
 }

 int InnerFormula(int y, int z)
 {
 // For logging purpose only
 cout << "Calculate " << y << " * ";
 cout << z << endl;

 // Returning the calculation result
 return y * z;
 }

 auto main() -> int
 {
 cout << "[non_strict.cpp]" << endl;

 // Initializing three int variables
 // for the calculation
 int x = 4;
 int y = 3;
 int z = 2;

 // Calculating the expression
 cout << "Calculate " << x <<" + ";
 cout << "(" << y << " * " << z << ")";
 cout << endl;
 int result = OuterFormulaNonStrict(x, y, z, InnerFormula);

 // For logging purpose only
 cout << x << " + ";
 cout << "(" << y << " * " << z << ")";
 cout << " = " << result << endl;

 return 0;
 }

Procrastinating the Execution Process Using Lazy Evaluation

[142]

As we can see, we modify the OuterFormula() function in the strict.cpp code into an
OuterFormulaNonStrict() function in the non_strict.cpp code. In the
OuterFormulaNonStrict() function, we pass a function as the argument in addition to
the three variables--x, y, and z. As a result, the order of execution of the preceding
expression is changed. Here is what we should see on the console screen when we run the
non_strict.cpp code:

From the preceding output, we have proved that our code is performing non-strict
evaluation since it now calculates the addition operator (+) first instead of the multiplication
(*). However, the result is still correct, although the order has been changed.

The basic concept of lazy evaluation
Before we create a lazy code, let's discuss the basic concepts of lazy evaluation. We will use
the delaying process to make our code lazy, the caching technique to increase the
performance of the code by avoiding needless calculations, and the optimizing technique to
speed up the code by storing the results of expensive function calls and returning the
cached result when the same inputs occur again. After we have looked at these techniques,
we will try to develop the real lazy code.

Delaying the process
The basic concept of laziness is delaying a process. In this section, we will discuss how to
delay the execution of a particular process. We will create a new class named Delay. We
will pass a function into it when we construct the class. The function won't be run unless we
invoke the Fetch() method. The implementation of the function is as follows:

 template<class T> class Delay
 {
 private:
 function<T()> m_func;

Procrastinating the Execution Process Using Lazy Evaluation

[143]

 public:
 Delay(
 function<T()> func)
 : m_func(func)
 {
 }

 T Fetch()
 {
 return m_func();
 }
 };

Now, let's consume the Delay class to procrastinate the execution. We will create a file
named delaying.cpp that will run two functions--multiply and division. However,
these two functions will only be run after we call the Fetch() method. The content of the
file is as follows:

 /* delaying.cpp */
 #include <iostream>
 #include <functional>

 using namespace std;

 template<class T> class Delay
 {
 private:
 function<T()> m_func;

 public:
 Delay(function<T()> func) : m_func(func)
 {
 }

 T Fetch()
 {
 return m_func();
 }
 };

 auto main() -> int
 {
 cout << "[delaying.cpp]" << endl;

 // Initializing several int variables
 int a = 10;
 int b = 5;

Procrastinating the Execution Process Using Lazy Evaluation

[144]

 cout << "Constructing Delay<> named multiply";
 cout << endl;
 Delay<int> multiply([a, b]()
 {
 cout << "Delay<> named multiply";
 cout << " is constructed." << endl;
 return a * b;
 });

 cout << "Constructing Delay<> named division";
 cout << endl;
 Delay<int> division([a, b]()
 {
 cout << "Delay<> named division ";
 cout << "is constructed." << endl;
 return a / b;
 });

 cout << "Invoking Fetch() method in ";
 cout << "multiply instance." << endl;
 int c = multiply.Fetch();

 cout << "Invoking Fetch() method in ";
 cout << "division instance." << endl;
 int d = division.Fetch();

 // Displaying the result
 cout << "The result of a * b = " << c << endl;
 cout << "The result of a / b = " << d << endl;

 return 0;
 }

Procrastinating the Execution Process Using Lazy Evaluation

[145]

As we discussed in Chapter 1, Diving into Modern C++, we can use a Lambda expression to
build the multiply and division functions. We then pass them in each Delay
constructor. In this stage, the function is not run yet. It will be run after the Fetch()
method is invoked--multiply.Fetch() and division.Fetch(). The output we will see
on the screen should look like the following screenshot:

As we can see in the preceding output screenshot, the multiply and division instance is
constructed when the Fetch() method is invoked (see the two white arrows), not when the
constructor of the Delay class is invoked. Now, we have successfully delayed the execution,
and we can say that the process is only executed when it is needed.

Caching the value using the memoization
technique
We now have successfully delayed the execution of the function by consuming the Delay
class. However, since the function of the Delay class instance will be run each time the
Fetch() method is invoked, an unexpected result might occur if the function is not pure or
has side effects. Let's refactor our previous delaying.cpp code by modifying the
multiply function. This function now becomes a non-pure function since it depends on an
outside variable. The code should look like this:

 /* delaying_non_pure.cpp */
 #include <iostream>
 #include <functional>

 using namespace std;

 template<class T> class Delay
 {

Procrastinating the Execution Process Using Lazy Evaluation

[146]

 private:
 function<T()> m_func;

 public:
 Delay(function<T()> func) : m_func(func)
 {
 }

 T Fetch()
 {
 return m_func();
 }
 };

 auto main() -> int
 {
 cout << "[delaying_non_pure.cpp]" << endl;

 // Initializing several int variables
 int a = 10;
 int b = 5;
 int multiplexer = 0;

 // Constructing Delay<> named multiply_impure
 Delay<int> multiply_impure([&]()
 {
 return multiplexer * a * b;
 });

 // Invoking Fetch() method in multiply_impure instance
 // multiple times
 for (int i = 0; i < 5; ++i)
 {
 ++multiplexer;
 cout << "Multiplexer = " << multiplexer << endl;
 cout << "a * b = " << multiply_impure.Fetch();
 cout << endl;
 }

 return 0;
 }

Procrastinating the Execution Process Using Lazy Evaluation

[147]

As we can see in the preceding code, we now have a new Lambda expression named
multiply_impure, which is the refactored version of the multiply function we created in
the delaying.cpp code. The multiply_impure function depends on the multiplexer
variable, whose value will be increased each time before we invoke the Fetch() method.
The following is the screenshot output we should see on the screen:

As we can see, the Fetch() method gives a different result each time it's invoked. We now
have to refactor the Delay class to ensure that it will return the exact same result each time
the Fetch() method runs the function with the same passed arguments. To achieve it, we
will use the memoization technique that stores the results of the function calls and returns
the cached result when the same inputs occur again.

We will rename the Delay class to Memoization class. This will not only delay the function
call, it will also record the function with specific passed arguments. So the next time the
function with those arguments occurs, the function itself will not be run but it will just
return the cached result instead. To ease our discussion, let's take a look at the following
Memoization class implementation:

 template<class T> class Memoization
 {
 private:
 T const & (*m_subRoutine)(Memoization *);
 mutable T m_recordedFunc;
 function<T()> m_func;

 static T const & ForceSubroutine(Memoization * d)
 {
 return d->DoRecording();
 }

Procrastinating the Execution Process Using Lazy Evaluation

[148]

 static T const & FetchSubroutine(Memoization * d)
 {
 return d->FetchRecording();
 }

 T const & FetchRecording()
 {
 return m_recordedFunc;
 }

 T const & DoRecording()
 {
 m_recordedFunc = m_func();
 m_subRoutine = &FetchSubroutine;
 return FetchRecording();
 }

 public:
 Memoization(function<T()> func) : m_func(func),
 m_subRoutine(&ForceSubroutine),
 m_recordedFunc(T())
 {
 }

 T Fetch()
 {
 return m_subRoutine(this);
 }
 };

As we can see in the preceding code snippet, we now have FetchRecording() and
DoRecording() to get and set the function we have stored. Moreover, when the class is
constructed, it will record the passed function and save it to m_subRoutine. The class will
inspect m_subRoutine when the Fetch() method is called and find whether it has the
value from the function with current passed arguments. If yes, it simply returns the value
from m_subRoutine instead of running the function. Now, let's see the following
delaying_non_pure_memoization.cpp code, that consumes the Memoization class:

 /* delaying_non_pure_memoization.cpp */
 #include <iostream>
 #include <functional>

 using namespace std;

 template<class T> class Memoization
 {
 private:

Procrastinating the Execution Process Using Lazy Evaluation

[149]

 T const & (*m_subRoutine)(Memoization *);
 mutable T m_recordedFunc;
 function<T()> m_func;

 static T const & ForceSubroutine(Memoization * d)
 {
 return d->DoRecording();
 }
 static T const & FetchSubroutine(Memoization * d)
 {
 return d->FetchRecording();
 }

 T const & FetchRecording()
 {
 return m_recordedFunc;
 }

 T const & DoRecording()
 {
 m_recordedFunc = m_func();
 m_subRoutine = &FetchSubroutine;
 return FetchRecording();
 }

 public:
 Memoization(function<T()> func) : m_func(func),
 m_subRoutine(&ForceSubroutine),
 m_recordedFunc(T())
 {
 }

 T Fetch()
 {
 return m_subRoutine(this);
 }
 };

 auto main() -> int
 {
 cout << "[delaying_non_pure_memoization.cpp]" << endl;

 // Initializing several int variables
 int a = 10;
 int b = 5;
 int multiplexer = 0;

 // Constructing Memoization<> named multiply_impure

Procrastinating the Execution Process Using Lazy Evaluation

[150]

 Memoization<int> multiply_impure([&]()
 {
 return multiplexer * a * b;
 });

 // Invoking Fetch() method in multiply_impure instance
 // multiple times
 for (int i = 0; i < 5; ++i)
 {
 ++multiplexer;
 cout << "Multiplexer = " << multiplexer << endl;
 cout << "a * b = " << multiply_impure.Fetch();
 cout << endl;
 }

 return 0;
 }

From the preceding code snippet, we see we don't have much modification in the main()
function. What we modify is only the class type we use for the multiply_impure variable,
from Delay to Memoization. However, the result has now changed since we will get the
exact same return value from the five times invocation of the multiply_impure()
function. Let's take a look at the following screenshot to prove it:

From the preceding screenshot, we can see that even the value of the Multiplexer is
increased and the return of the calculation is always the same. This is because the return
value of the first function invocation is recorded, so there's no need to run the function
again for the remaining invocation.

Procrastinating the Execution Process Using Lazy Evaluation

[151]

As we discussed in Chapter 2, Manipulating Functions in Functional
Programming, having an impure function seems wrong in functional
programming. Hiding an impure function behind memoization might also
cause a bug if the code really needs a different result (non-cached result).
Use the preceding technique for caching the impure function wisely.

Optimizing the code using the memoization
technique
Memoization is quite useful for applying in a non-pure function or a function that has been
the side effect. However, it can also be used to optimize the code. By using memoization,
the code we have developed will be run faster. Let's suppose we need to run the exact same
functions with the exact same passed arguments multiple times. It will be faster if the code
fetches the value from the place we record the value instead of running the function. It
would also be better for an expensive function call because by using memoization, we don't
need to execute the unnecessary expensive function call over and over again.
Let's create a code to discuss the further optimization. We will use the Delay class to
demonstrate it's not an optimized code compared to the Memoization class. We will have
the not_optimize_code.cpp code that will consume the Delay class. In this unoptimized
code, we will call the fibonacci() function that we created in Chapter 4, Repeating Method
Invocation Using Recursive Algorithm. We will pass 40 as the argument to the fibonacci()
function and call the Fetch() method from the fib40 class instance five times. We will
also calculate the elapsed time in each invocation of the method, using the
high_resolution_clock class resided in the chrono header, to record the start and end
time to retrieve the elapsed time by subtracting the end value with the start value. In
addition to the elapsed time of each Fetch() method invocation, we also calculate the
elapsed time of the entire code. The implementation of the not_optimize_code.cpp code
is as follows:

 /* not_optimize_code.cpp */
 #include <iostream>
 #include <functional>
 #include <chrono>

 using namespace std;

 template<class T> class Delay
 {
 private:
 function<T()> m_func;

https://cdp.packtpub.com/learning_c___functional_programming/_wp_link_placeholder

Procrastinating the Execution Process Using Lazy Evaluation

[152]

 public:
 Delay(function<T()> func): m_func(func)
 {
 }

 T Fetch()
 {
 return m_func();
 }
 };

 // Function for calculating Fibonacci sequence
 int fibonacci(int n)
 {
 if(n <= 1)
 return n;
 return fibonacci(n-1) + fibonacci(n-2);
 }

 auto main() -> int
 {
 cout << "[not_optimize_code.cpp]" << endl;
 // Recording start time for the program
 auto start = chrono::high_resolution_clock::now();
 // Initializing int variable to store the result
 // from Fibonacci calculation
 int fib40Result = 0;

 // Constructing Delay<> named fib40
 Delay<int> fib40([]()
 {
 return fibonacci(40);
 });

 for (int i = 1; i <= 5; ++i)
 {
 cout << "Invocation " << i << ". ";

 // Recording start time
 auto start = chrono::high_resolution_clock::now();

 // Invoking the Fetch() method
 // in fib40 instance
 fib40Result = fib40.Fetch();

 // Recording end time
 auto finish = chrono::high_resolution_clock::now();

Procrastinating the Execution Process Using Lazy Evaluation

[153]

 // Calculating the elapsed time
 chrono::duration<double, milli> elapsed = finish - start;

 // Displaying the result
 cout << "Result = " << fib40Result << ". ";

 // Displaying elapsed time
 // for each fib40.Fetch() invocation
 cout << "Consuming time = " << elapsed.count();
 cout << " milliseconds" << endl;
 }

 // Recording end time for the program
 auto finish = chrono::high_resolution_clock::now();

 // Calculating the elapsed time for the program
 chrono::duration<double, milli> elapsed = finish - start;

 // Displaying elapsed time for the program
 cout << "Total consuming time = ";
 cout << elapsed.count() << " milliseconds" << endl;

 return 0;
 }

Now, let's run the code to obtain the elapsed time of the preceding code process. The
following screenshot is what we will see on the screen:

Procrastinating the Execution Process Using Lazy Evaluation

[154]

From the preceding screenshot, we can see that we need about 2357.79 milliseconds to
process the code. And each time it invokes the fib40.Fetch() method, it needs an
average of about 470 milliseconds, although we pass the exact same argument to the
fibonacci() function, which is 40. Now, let's see what will happen if we use the
memoization technique on the preceding code. We won't modify the code much, just
refactor the instantiation of fib40. Instead of instancing from the Delay class, now it
instances from the Memoization class. The code should be as follows:

 /* optimizing_memoization.cpp */
 #include <iostream>
 #include <functional>
 #include <chrono>

 using namespace std;

 template<class T> class Memoization
 {
 private:
 T const & (*m_subRoutine)(Memoization *);
 mutable T m_recordedFunc;
 function<T()> m_func;

 static T const & ForceSubroutine(Memoization * d)
 {
 return d->DoRecording();
 }

 static T const & FetchSubroutine(Memoization * d)
 {
 return d->FetchRecording();
 }

 T const & FetchRecording()
 {
 return m_recordedFunc;
 }

 T const & DoRecording()
 {
 m_recordedFunc = m_func();
 m_subRoutine = &FetchSubroutine;
 return FetchRecording();
 }

 public:
 Memoization(function<T()> func): m_func(func),
 m_subRoutine(&ForceSubroutine),

Procrastinating the Execution Process Using Lazy Evaluation

[155]

 m_recordedFunc(T())
 {
 }

 T Fetch()
 {
 return m_subRoutine(this);
 }
 };

 // Function for calculating Fibonacci sequence
 int fibonacci(int n)
 {
 if(n <= 1)
 return n;
 return fibonacci(n-1) + fibonacci(n-2);
 }

 auto main() -> int
 {
 cout << "[optimizing_memoization.cpp]" << endl;

 // Recording start time for the program
 auto start = chrono::high_resolution_clock::now();

 // Initializing int variable to store the result
 // from Fibonacci calculation
 int fib40Result = 0;

 // Constructing Memoization<> named fib40
 Memoization<int> fib40([]()
 {
 return fibonacci(40);
 });

 for (int i = 1; i <= 5; ++i)
 {
 cout << "Invocation " << i << ". ";

 // Recording start time
 auto start = chrono::high_resolution_clock::now();

 // Invoking the Fetch() method
 // in fib40 instance
 fib40Result = fib40.Fetch();

 // Recording end time
 auto finish = chrono::high_resolution_clock::now();

Procrastinating the Execution Process Using Lazy Evaluation

[156]

 // Calculating the elapsed time
 chrono::duration<double, milli> elapsed = finish - start;

 // Displaying the result
 cout << "Result = " << fib40Result << ". ";

 // Displaying elapsed time
 // for each fib40.Fetch() invocation
 cout << "Consuming time = " << elapsed.count();
 cout << " milliseconds" << endl;
 }

 // Recording end time for the program
 auto finish = chrono::high_resolution_clock::now();

 // Calculating the elapsed time for the program
 chrono::duration<double, milli> elapsed = finish - start;

 // Displaying elapsed time for the program
 cout << "Total consuming time = ";
 cout << elapsed.count() << " milliseconds" << endl;

 return 0;
 }

Here is what we'll get on the console screen when we run the
optimizing_memoization.cpp code:

Surprisingly, we just need 494.681 milliseconds to execute the
optimizing_memoization.cpp code. Compared to the not_optimize_code.cpp code,
the speed of the code is about 4.7 times faster. This happens because the code successfully
cached the result of the fibonacci() function when it passed the 40 to its parameter. Each
time we call the fib40.Fetch() method again, it will invoke the fibonacci() function
again, with the exact same input. The code will just return the cached result so it can avoid
running the expensive function calls that are unnecessary to run.

Procrastinating the Execution Process Using Lazy Evaluation

[157]

Lazy evaluation in action
Having discussed the basic concept of lazy evaluation, let's dig into lazy evaluation by
designing the code in the lazy approach. In this section, we will develop an eager
evaluation code first, then refactor that code into the lazy evaluation one. The code we
develop will generate a sequence of prime numbers. First, we will use the for loop to
iterate the integer number to obtain the prime number in the eager evaluation. The
following prime.cpp code is what we are talking about:

 /* prime.cpp */
 #include <iostream>
 #include <cmath>

 using namespace std;

 bool PrimeCheck(int i)
 {
 // All even numbers are not prime number
 // except 2
 if ((i % 2) == 0)
 {
 return i == 2;
 }

 // Calculating the square root of i
 // and store in int data type variable
 // if the argument i is not even number,
 int sqr = sqrt(i);

 // For numbers 9 and below,
 // the prime numbers is simply the odd numbers
 // For number above 9
 // the prime numbers is all of odd numbers
 // except the square number
 for (int t = 3; t <= sqr; t += 2)
 {
 if (i % t == 0)
 {
 return false;
 }
 }

 // The number 1 is not prime number
 // but still passing the preceding test
 return i != 1;
 }

Procrastinating the Execution Process Using Lazy Evaluation

[158]

 auto main() -> int
 {
 cout << "[delaying.cpp]" << endl;

 // Initializing a counting variable
 int n = 0;

 // Displaying the first 100 prime numbers
 cout << "List of the first 100 prime numbers:" << endl;
 for (int i = 0; ; ++i)
 {
 if (PrimeCheck(i))
 {
 cout << i << "\t";

 if (++n == 100)
 return 0;
 }
 }

 return 0;
 }

As we can see in the preceding code, we have a simple PrimeCheck() function to analyze
whether the integer number is a prime number or not. Afterward, the code iterates the
infinity integer numbers using the for loop, then checks whether it's a prime number. The
loop will be ended if we've got one hundred prime numbers. The following screenshot is
the output on the console we should see:

Procrastinating the Execution Process Using Lazy Evaluation

[159]

We now have a code generating prime numbers using eager evaluation. As we can see in
the preceding screenshot, we have a hundred prime numbers that we generated using the
for loop. Next, we will refactor it into the lazy code.

Designing Chunk and Row classes
In the prime.cpp code, we generate a row of integer numbers using the for loop. In this
row, there are several numbers that are called Chunk. Now, before we refactor the code, we
will prepare a class named Row and Chunk for our further discussion. From our preceding
analogy, the Row class will hold the sequence of integer number and the Chunk class will
hold a single number. We will start with the smallest part in the data, which is the chunk.
And here is the implementation of the Chunk class:

 template<class T> class Chunk
 {
 private:
 T m_value;
 Row<T> m_lastRow;

 public:
 Chunk()
 {
 }

 Chunk(T value, Row<T> lastRow): m_value(value),
 m_lastRow(std::move(lastRow))
 {
 }

 explicit Chunk(T value) : m_value(value)
 {
 }

 T Value() const
 {
 return m_value;
 }

 Row<T> ShiftLastToFirst() const
 {
 return m_lastRow;
 }
 };

Procrastinating the Execution Process Using Lazy Evaluation

[160]

Since the Row class is constructed from several Chunk classes, besides the value of Chunk
itself, the Chunk class also has the next value of Chunk in the current Row notated by the
m_lastRow member variable. We also can get the m_lastRow value by invoking the
ShiftLastToFirst() method. Now, let's move to the Row class. The implementation of
the class is as follows:

 template<class T> class Row
 {
 private:
 std::shared_ptr <Memoization<Chunk<T>>>
 m_lazyChunk;

 public:
 Row()
 {
 }

 explicit Row(T value)
 {
 auto chunk = ChunkPreparation<T>(value);
 m_lazyChunk = std::make_shared<Memoization<Chunk<T>>>
 (chunk);
 }

 Row(T value, Row row)
 {
 auto chunk = ChunkPreparation<T>(value, std::move(row));

 m_lazyChunk = std::make_shared<Memoization<Chunk<T>>>(
 chunk);
 }
 Row(std::function<Chunk<T>()> func): m_lazyChunk(
 std::make_shared<Memoization<Chunk<T>>>(func))
 {
 }

 bool IsEmpty() const
 {
 return !m_lazyChunk;
 }
 T Fetch() const
 {
 return m_lazyChunk->Fetch().Value();
 }

 Row<T> ShiftLastToFirst() const
 {

Procrastinating the Execution Process Using Lazy Evaluation

[161]

 return m_lazyChunk->Fetch().ShiftLastToFirst();
 }

 Row Pick(int n) const
 {
 if (n == 0 || IsEmpty())
 return Row();

 auto chunk = m_lazyChunk;
 return Row([chunk, n]()
 {
 auto val = chunk->Fetch().Value();
 auto row = chunk->Fetch().ShiftLastToFirst();
 return Chunk<T>(val, row.Pick(n - 1));
 });
 }
 };

As we can see in the preceding code snippet, the Row class has only one private member to
store a memoization of the Chunk data. There are four constructors the Row class has, and
we will use them all in our next code. It also has the Fetch() method, which we got when
we designed the Memoization class in the previous section, to get the m_lazyChunk value.
The other methods are also useful to our next lazy code. The IsEmpty() method will check
if the m_lazyChunk value is empty, the ShiftLastToFirst() method will take the last
row of m_lazyChunk, and the Pick(int n) method will take out the first n row's elements
that we will use if we need to take out a hundred of the integer prime numbers later.

We can also see that one of the Row constructors is invoking the ChunkPreparation class
constructor. The ChunkPreparation class will initialize a new Chunk class constructor
using the given value and the last row value. The implementation of the class is as follows:

 template<class T> class ChunkPreparation
 {
 public:
 T m_value;
 Row<T> m_row;

 ChunkPreparation(T value, Row<T> row) :
 m_value(value),
 m_row(std::move(row))
 {
 }

 explicit ChunkPreparation(T value) :
 m_value(value)
 {

Procrastinating the Execution Process Using Lazy Evaluation

[162]

 }

 Chunk<T> operator()()
 {
 return Chunk<T>(
 m_value,
 m_row);
 }
 };

As we can see, by invoking operator (), the new Chunk will be generated with the given
m_value and m_row value.

Concatenating several rows
When we plan to generate a row of prime numbers, we have to be able to concatenate the
current with the new row generated by code. To address this need, the following is the
implementation of the ConcatenateRows() function that will concatenate the two rows:

 template<class T> Row<T> ConcatenateRows(
 Row<T> leftRow,
 Row<T> rightRow)
 {
 if (leftRow.IsEmpty())
 return rightRow;

 return Row<T>([=]()
 {
 return Chunk<T>(
 leftRow.Fetch(),
 ConcatenateRows<T>(
 leftRow.ShiftLastToFirst(),
 rightRow));
 });
 }

It's quite clear what the ConcatenateRows() function does when we take a look at the
preceding code snippet. If leftRow is still empty, just return the second row, which is
rightRow. If leftRow and rightRow is available, we can return the chunks of the given
rows that have been formed as a row.

Procrastinating the Execution Process Using Lazy Evaluation

[163]

Iterating each Row class' element
After we construct the row of prime numbers, we need to iterate each row's element to
manipulate it, for instance, to print the value to the console. For this purpose, we have to
develop the following ForEach() method:

 template<class T, class U> void ForEach(Row<T> row, U func)
 {
 while (!row.IsEmpty())
 {
 func(row.Fetch());
 row = row.ShiftLastToFirst();
 }
 }

We will pass the row itself and a function into the ForEach() method. The function we
passed to it will be run to each element of the row.

For our convenience in developing the lazy code in this chapter, I will
bundle our previous discussion template class into a single header file
named lazyevaluation.h; we can also reuse it for other projects. The
header will contain the Memoization, Row, Chunk, ChunkPreparation,
ConcatenateRows, and ForEach template class. You can create the
header file yourself or download it from the code repository on the Packt
website (h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /L e a r n i n g C P P F u n c t i o n

a l P r o g r a m m i n g).

Generating the infinite integer row
Now it's time to generating the infinite integer row as we did using the for loop in our
previous prime.cpp code. However, we will now create a new function named
GenerateInfiniteIntRow() to generate an integer row from several integer chunks. The
following code snippet is an implementation of the function:

 Row<int> GenerateInfiniteIntRow(int initialNumber)
 {
 return Row<int>([initialNumber]()
 {
 return Chunk<int>(
 initialNumber,
 GenerateInfinityIntRow(
 initialNumber + 1));
 });

https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming

Procrastinating the Execution Process Using Lazy Evaluation

[164]

 }

As we can see, first, we create Chunk from initialNumber until infinity. The chunks will
be transformed to the Row data type at the end. To stop this recursive function, we can call
the Pick() method inside the Row class.

Generating an infinite prime numbers row
After successfully generated infinite numbers, we now have to limit the row to only
generate the prime number. We will modify the CheckPrime() function from the
prime.cpp code. We will change the return value of the function, Row<void*>(nullptr)
if it's not a prime number or Row<void*>() if the opposite. The implementation of the
function should be as follows:

 Row<void*> PrimeCheck(int i)
 {
 if ((i % 2) == 0)
 {
 if (i == 2)
 return Row<void*>(nullptr);
 else
 return Row<void*>();
 }

 int sqr = sqrt(i);

 for (int t = 3; t <= sqr; t = t + 2)
 {
 if (i % t == 0)
 {
 return Row<void*>();
 }
 }

 if (i == 1)
 return Row<void*>();
 else
 return Row<void*>(nullptr);
 }

Procrastinating the Execution Process Using Lazy Evaluation

[165]

Why do we need to change the return value of the function? Because we want to pass the
return value to the JoiningPrimeNumber() function, which will join the generated Chunk
with the following implementation:

 template<class T, class U>
 auto JoiningPrimeNumber(
 Row<T> row, U func) -> decltype(func())
 {
 return JoiningAllRows(
 MappingRowByValue(row, func));
 }

Moreover, the MappingRowByValue() function will map the given row to the given
function. The implementation of the function is as follows:

 template<class T, class U>
 auto MappingRowByValue(
 Row<T> row, U func) -> Row<decltype(func())>
 {
 using V = decltype(func());

 if (row.IsEmpty())
 return Row<V>();

 return Row<V>([row, func]()
 {
 return Chunk<V>(
 func(),
 MappingRowByValue(
 row.ShiftLastToFirst(),
 func));
 });
 }

After we have successfully joined all prime numbers using the JoiningPrimeNumber()
function, we have to bind it to the existing row using the Binding() function with the
following implementation:

 template<class T, class U> Row<T>
 Binding(Row<T> row, U func)
 {
 return JoiningAllRows(MappingRow(row, func));
 }

Procrastinating the Execution Process Using Lazy Evaluation

[166]

From the preceding code snippet, the MappingRow() function will map the given row to
the given function, then JoiningAllRows() will join all rows from the MappingRow()
return value. The implementation of the MappingRow() and JoiningAllRows() functions
are as follows:

 template<class T, class U>
 auto MappingRow(
 Row<T> row, U func) -> Row<decltype(
 func(row.Fetch()))>
 {
 using V = decltype(func(row.Fetch()));

 if (row.IsEmpty())
 return Row<V>();

 return Row<V>([row, func]()
 {
 return Chunk<V>(func(
 row.Fetch()),
 MappingRow(
 row.ShiftLastToFirst(),
 func));
 });
 }

 template<class T> Row<T>
 JoiningAllRows(
 Row<Row<T>> rowOfRows)
 {
 while (!rowOfRows.IsEmpty() &&
 rowOfRows.Fetch().IsEmpty())
 {
 rowOfRows = rowOfRows.ShiftLastToFirst();
 }

 if (rowOfRows.IsEmpty())
 return Row<T>();

 return Row<T>([rowOfRows]()
 {
 Row<T> row = rowOfRows.Fetch();

 return Chunk<T>(
 row.Fetch(),
 ConcatenateRows(
 row.ShiftLastToFirst(),
 JoiningAllRows(

Procrastinating the Execution Process Using Lazy Evaluation

[167]

 rowOfRows.ShiftLastToFirst())));
 });
 }

Now we can create a function to limit the infinite integer number rows with the following
implementation:

 Row<int> GenerateInfinitePrimeRow()
 {
 return Binding(
 GenerateInfiniteIntRow(1),
 [](int i)
 {
 return JoiningPrimeNumber(
 PrimeCheck(i),
 [i]()
 {
 return ConvertChunkToRow(i);
 });
 });
 }

Since the second argument of the JoiningPrimeNumber() function needs a row as a data
type, we need to convert the Chunk to Row using the ConvertChunkToRow() function with
the following implementations:

 template<class T> Row<T>
 ConvertChunkToRow(
 T value)
 {
 return Row<T>([value]()
 {
 return Chunk<T>(value);
 });
 }

Now we can consume all preceding classes and functions to refactor our prime.cpp code.

Procrastinating the Execution Process Using Lazy Evaluation

[168]

Refactoring eager evaluation to lazy evaluation
We have all the functions we need to refactor the prime.cpp code into a lazy code. We will
create a prime_lazy.cpp code that will generate infinite integer numbers first and pick the
first one hundred of its elements. After that, we iterate a hundred elements and give them
to the function that will print the value on the console. The code should look like this:

 /* prime_lazy.cpp */
 #include <iostream>
 #include <cmath>
 #include "../lazyevaluation/lazyevaluation.h"

 using namespace std;

 Row<void*> PrimeCheck(int i)
 {
 // Use preceding implementation
 }

 Row<int> GenerateInfiniteIntRow(
 int initialNumber)
 {
 // Use preceding implementation
 }

 template<class T, class U>
 auto MappingRow(
 Row<T> row, U func) -> Row<decltype(
 func(row.Fetch()))>
 {
 // Use preceding implementation
 }

 template<class T, class U>
 auto MappingRowByValue(
 Row<T> row, U func) -> Row<decltype(func())>
 {
 // Use preceding implementation
 }

 template<class T> Row<T>
 ConvertChunkToRow(
 T value)
 {
 // Use preceding implementation
 }

Procrastinating the Execution Process Using Lazy Evaluation

[169]

 template<class T> Row<T>
 JoiningAllRows(
 Row<Row<T>> rowOfRows)
 {
 // Use preceding implementation
 }

 template<class T, class U> Row<T>
 Binding(
 Row<T> row, U func)
 {
 // Use preceding implementation
 }

 template<class T, class U>
 auto JoiningPrimeNumber(
 Row<T> row, U func) -> decltype(func())
 {
 // Use preceding implementation
 }

 Row<int> GenerateInfinitePrimeRow()
 {
 // Use preceding implementation
 }

 auto main() -> int
 {
 cout << "[prime_lazy.cpp]" << endl;

 // Generating infinite prime numbers list
 Row<int> r = GenerateInfinitePrimeRow();

 // Picking the first 100 elements from preceding list
 Row<int> firstAHundredPrimeNumbers = r.Pick(100);

 // Displaying the first 100 prime numbers
 cout << "List of the first 100 prime numbers:" << endl;
 ForEach(
 move(firstAHundredPrimeNumbers),
 [](int const & i)
 {
 cout << i << "\t";
 });

 return 0;
 }

Procrastinating the Execution Process Using Lazy Evaluation

[170]

As we can see from the preceding code, we have r that holds the infinite numbers, then we
pick the first one hundred prime numbers and store them to
firstAHundredPrimeNumbers. To print the value of the element to the console, we use
the ForEach() function and pass the Lambda expression to it. If we run the code, the result
is exactly the same as the prime.cpp code, except the title that is used is a differentiator.
The following output is what we should see on the console if we run the prime_lazy.cpp
code:

By using the template class, we have revealed in this chapter that we can develop other
lazy code to gain the benefit of being lazy.

In the preceding prime_lazy.cpp code, I omitted several lines of code
that were written in the previous section to avoid the code redundancy. If
you find any difficulty following the code because it's not complete, go to
h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /L e a r n i n g C P P F u n c t i o n a l P r o g r a

m m i n g .

Summary
Lazy evaluation is not only useful for functional programming, but it actually also has
benefits for imperative programming. Using the lazy evaluation, we can have an efficient
and faster code by implementing caching and optimizing techniques.

In the next chapter, we will talk about metaprogramming that we can use in the functional
approach. We will discuss how to use metaprogramming to gain all its benefits, including
code optimization.

https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming
https://github.com/PacktPublishing/LearningCPPFunctionalProgramming

6
Optimizing Code with

Metaprogramming
We discussed the optimizing techniques using lazy evaluation in the previous chapter, and
used the delaying process, caching technique, and memoization to make our code run fast.
In this chapter, we will optimize the code using metaprogramming, where we will create a
code that will create more code. The topics we will discuss in this chapter are as follows:

Introduction to metaprogramming
The part that builds the template metaprogramming
Refactoring flow control into template metaprogramming
Running the code in the compile-time execution
The advantages and disadvantages of template metaprogramming

Introduction to metaprogramming
The simplest way to say this is that metaprogramming is a technique that creates a code by
using a code. Implementing metaprogramming, we write a computer program that
manipulates the other programs and treats them as its data. In addition, templates are a
compile-time mechanism in C++ that is Turing-complete, which means any computation
expressible by a computer program can be computed, in some form, by a template
metaprogram before runtime. It also uses recursion a lot and has immutable variables. So,
in metaprogramming, we create code that will run when the code is compiled.

Optimizing Code with Metaprogramming

[172]

Preprocessing the code using a macro
To start our discussion on metaprogramming, let's go back to the era when the ANSI C
programming language was a popular language. For simplicity, we used the C
preprocessor by creating a macro. The C parameterized macro is also known as
metafunctions, and is one of the examples of metaprogramming. Consider the following
parameterized macro:

 #define MAX(a,b) (((a) > (b)) ? (a) : (b))

Since the C++ programming language has a drawback compatibility to the C language, we
can compile the preceding macro using our C++ compiler. Let's create the code to consume
the preceding macro, which will be as follows:

 /* macro.cpp */
 #include <iostream>

 using namespace std;

 // Defining macro
 #define MAX(a,b) (((a) > (b)) ? (a) : (b))

 auto main() -> int
 {
 cout << "[macro.cpp]" << endl;

 // Initializing two int variables
 int x = 10;
 int y = 20;

 // Consuming the MAX macro
 // and assign the result to z variable
 int z = MAX(x,y);

 // Displaying the result
 cout << "Max number of " << x << " and " << y;
 cout << " is " << z << endl;

 return 0;
 }

Optimizing Code with Metaprogramming

[173]

As we can see in the preceding macro.cpp code, we pass two arguments to the MAX macro
since it is a parameterized macro, which means the parameter can be obtained from the
users. If we run the preceding code, we should see the following output on the console:

As we discussed at the beginning of this chapter, metaprogramming is a code that will run
in compile time. By using a macro in the preceding code, we can demonstrate there's a new
code generated from the MAX macro. The preprocessor will parse the macro in compile time
and bring the new code. In compile time, the compiler modifies the code as follows:

 auto main() -> int
 {
 // same code
 // ...
 int z = (((a) > (b)) ? (a) : (b)); // <-- Notice this section

 // same code
 // ...

 return 0;
 }

Besides a one line macro preprocessor, we can also generate a multiline macro
metafunction. To achieve this, we can use the backslash character at the end of the line. Let's
suppose we need to swap the two values. We can create a parameterized macro named
SWAP and consume it like the following code:

 /* macroswap.cpp */
 #include <iostream>

 using namespace std;

 // Defining multi line macro
 #define SWAP(a,b) { \
 (a) ^= (b); \
 (b) ^= (a); \
 (a) ^= (b); \
 }

 auto main() -> int
 {

Optimizing Code with Metaprogramming

[174]

 cout << "[macroswap.cpp]" << endl;

 // Initializing two int variables
 int x = 10;
 int y = 20;

 // Displaying original variable value
 cout << "before swapping" << endl;
 cout << "x = " << x << ", y = " << y ;
 cout << endl << endl;

 // Consuming the SWAP macro
 SWAP(x,y);

 // Displaying swapped variable value
 cout << "after swapping" << endl;
 cout << "x = " << x << ", y = " << y;
 cout << endl;

 return 0;
 }

As we can see in the preceding code, we will create a multiline preprocessor macro and use
backslash characters at the end of each line. Each time we invoke the SWAP parameterized
macro, it will then be replaced with the implementation of the macro. We will see the
following output on the console if we run the preceding code:

Now we have a basic understanding of the metaprogramming, especially in metafunction,
we can move further in the next topics.

Optimizing Code with Metaprogramming

[175]

We use parenthesis for each variable in every implementation of the
macro preprocessor because the preprocessor is simply replacing our code
with the implementation of the macro. Let's suppose we have the
following macro:
MULTIPLY(a,b) (a * b)

It won't be a problem if we pass the number as the parameters. However,
if we pass an operation as the argument, a problem will occur. For
instance, if we use the MULTIPLY macro as follows:
MULTIPLY(x+2,y+5);

Then the compiler will replace it as (x+2*y+5). This happens because the
macro just replaces the a variable with the x + 2 expression and the b
variable with the y + 5 expression, with any additional parentheses. And
because the order of multiplication is higher than addition, we will have
got the result as follows:
(x+2y+5)

And that is not what we expect. As a result, the best approach is to use
parenthesis in each variable of the parameter.

Dissecting template metaprogramming in the
Standard Library
We discussed the Standard Library in Chapter 1, Diving into Modern C++, and dealt with it
in the previous chapter too. The Standard Library provided in the C++ language is mostly a
template that contains an incomplete function. However, it will be used to generate
complete functions. The template metaprogramming is the C++ template to generate C++
types and code in compile time.

Optimizing Code with Metaprogramming

[176]

Let's pick up one of the classes in the Standard Library--the Array class. In the Array class,
we can define a data type for it. When we instance the array, the compiler actually
generates the code for an array of the data type we define. Now, let's try to build a simple
Array template implementation as follows:

 template<typename T>
 class Array
 {
 T element;
 };

Then, we instance the char and int arrays as follows:

 Array<char> arrChar;
 Array<int> arrInt;

What the compiler does is it creates these two implementations of the template based on the
data type we define. Although we won't see this in the code, the compiler actually creates
the following code:

 class ArrayChar
 {
 char element;
 };

 class ArrayInt
 {
 int element;
 };

 ArrayChar arrChar;
 ArrayInt arrInt;

As we can see in the preceding code snippet, the template metaprogramming is a code that
creates another code in compile time.

Building the template metaprogramming
Before we go further in the template metaprogramming discussion, it's better if we discuss
the skeleton that builds the template metaprogramming. There are four factors that form
the template metaprogramming--type, value, branch, and recursion. In this topic, we will
dig into the factors that form the template.

Optimizing Code with Metaprogramming

[177]

Adding a value to the variable in the template
At the beginning of this chapter, we discussed the concept of metafunction when we talked
about the macro preprocessor. In the macro preprocessor, we explicitly manipulate the
source code; in this case, the macro (metafunction) manipulates the source code. In contrast,
we work with types in C++ template metaprogramming. This means the metafunction is a
function that works with types. So, the better approach to use template metaprogramming
is working with type parameters only when possible. When we are talking about the
variables in template metaprogramming, it's actually not a variable since the value on it
cannot be modified. What we need from the variable is its name so we can access it. Because
we will code with types, the named values are typedef, as we can see in the following code
snippet:

 struct ValueDataType
 {
 typedef int valueDataType;
 };

By using the preceding code, we store the int type to the valueDataType alias name so we
can access the data type using the valueDataType variable. If we need to store a value
instead of the data type to the variable, we can use enum so it will be the data member of the
enum itself. Let's take a look at the following code snippet if we want to store the value:

 struct ValuePlaceHolder
 {
 enum
 {
 value = 1
 };
 };

Based on the preceding code snippet, we can now access the value variable to fetch its
value.

Mapping a function to the input parameters
We can add the variable to the template metaprogramming. Now, what we have to do next
is retrieve the user parameters and map them to a function. Let's suppose we want to
develop a Multiplexer function that will multiply two values and we have to use the
template metaprogramming. The following code snippet can be used to solve this problem:

 template<int A, int B>
 struct Multiplexer

Optimizing Code with Metaprogramming

[178]

 {
 enum
 {
 result = A * B
 };
 };

As we can see in the preceding code snippet, the template requires two arguments, A and B,
from the user, and it will use them to get the value of result variable by multiplying these
two parameters. We can access the result variable using the following code:

 int i = Multiplexer<2, 3>::result;

If we run the preceding code snippet, the i variable will store 6 since it will calculate 2
times 3.

Choosing the correct process based on the
condition
When we have more than one function, we have to choose one over the others based on
certain conditions. We can construct the conditional branch by providing two alternative
specializations of the template class, as shown here:

 template<typename A, typename B>
 struct CheckingType
 {
 enum
 {
 result = 0
 };
 };

 template<typename X>
 struct CheckingType<X, X>
 {
 enum
 {
 result = 1
 };
 };

Optimizing Code with Metaprogramming

[179]

As we can see in the preceding template code, we have two templates that have X and A/B
as their type. When the template has only a single type, that is, typename X, it means that
the two types (CheckingType <X, X>) we compare are exactly the same. Otherwise, these
two data types are different. The following code snippet can be used to consume the two
preceding templates:

 if (CheckingType<UnknownType, int>::result)
 {
 // run the function if the UnknownType is int
 }
 else
 {
 // otherwise run any function
 }

As we can see in the preceding code snippet, we try to compare the UnknownType data type
with the int type. The UnknownType data type might be coming from the other process.
Then, we can decide the next process we want to run by comparing these two types using
templates.

Up to here, you might wonder how template multiprogramming will help
us make code optimization. Soon we will use the template
metaprogramming to optimize code. However, we need to discuss other
things that will solidify our knowledge in template multiprogramming.
For now, please be patient and keep reading.

Repeating the process recursively
We have successfully added value and data type to the template, then created a branch to
decide the next process based on the current condition. Another thing we have to consider
in the basic template is repeating the process. However, since the variable in the template is
immutable, we cannot iterate the sequence. Instead, we have to recur the process as we
discussed in Chapter 4, Repeating Method Invocation Using Recursive Algorithm.
Let's suppose we are developing a template to calculate the factorial value. The first thing
we have to do is develop a general template that passes the I value to the function as
follows:

 template <int I>
 struct Factorial
 {
 enum
 {
 value = I * Factorial<I-1>::value

Optimizing Code with Metaprogramming

[180]

 };
 };

As we can see in the preceding code, we can obtain the value of the factorial by running the
following code:

 Factorial<I>::value;

In the preceding code, I is an integer number.
Next, we have to develop a template to ensure that it doesn't end up with an infinite loop.
We can create the following template that passes zero (0) as a parameter to it:

 template <>
 struct Factorial<0>
 {
 enum
 {
 value = 1
 };
 };

Now we have a pair of templates that will generate the value of the factorial in compile
time. The following is a sample code to get the value of Factorial(10) in compile time:

 int main()
 {
 int fact10 = Factorial<10>::value;
 }

If we run the preceding code, we will get 3628800 as a result of the factorial of 10.

Selecting a type in compile-time
As we discussed in the preceding topic, type is a basic part of a template. However, we can
select a certain type based on the input from the user. Let's create a template that can decide
what type should be used in the variable. The following types.cpp code will show the
implementation of the template:

 /* types.cpp */
 #include <iostream>

 using namespace std;

 // Defining a data type
 // in template

Optimizing Code with Metaprogramming

[181]

 template<typename T>
 struct datatype
 {
 using type = T;
 };

 auto main() -> int
 {
 cout << "[types.cpp]" << endl;

 // Selecting a data type in compile time
 using t = typename datatype<int>::type;

 // Using the selected data type
 t myVar = 123;

 // Displaying the selected data type
 cout << "myVar = " << myVar;

 return 0;
 }

As we can see in the preceding code, we have a template named datatype. This template
can be used to select the type we pass to it. We can use the using keyword to assign a
variable to a type. From the preceding types.cpp code, we will assign a t variable to type
from the datatype template. The t variable now will be int since we passed the int data
type to the template.
We can also create a code to select the correct data type based on the current condition. We
will have an IfElseDataType template that takes three arguments which are predicate,
the data type when the predicate parameter is true, and the data type when the
predicate parameter is false. The code will look as follows:

 /* selectingtype.cpp */
 #include <iostream>

 using namespace std;

 // Defining IfElseDataType template
 template<
 bool predicate,
 typename TrueType,
 typename FalseType>
 struct IfElseDataType
 {
 };

Optimizing Code with Metaprogramming

[182]

 // Defining template for TRUE condition
 // passed to 'predicate' parameter
 template<
 typename TrueType,
 typename FalseType>
 struct IfElseDataType<
 true,
 TrueType,
 FalseType>
 {
 typedef TrueType type;
 };

 // Defining template for FALSE condition
 // passed to 'predicate' parameter
 template<
 typename TrueType,
 typename FalseType>
 struct IfElseDataType<
 false,
 TrueType,
 FalseType>
 {
 typedef FalseType type;
 };

 auto main() -> int
 {
 cout << "[types.cpp]" << endl;

 // Consuming template and passing
 // 'SHRT_MAX == 2147483647'
 // It will be FALSE
 // since the maximum value of short
 // is 32767
 // so the data type for myVar
 // will be 'int'
 IfElseDataType<
 SHRT_MAX == 2147483647,
 short,
 int>::type myVar;

 // Assigning myVar to maximum value
 // of 'short' type
 myVar = 2147483647;

 // Displaying the data type of myVar
 cout << "myVar has type ";

Optimizing Code with Metaprogramming

[183]

 cout << typeid(myVar).name() << endl;

 return 0;
 }

Now, by having the IfElseDataType template, we can select the correct type to the
variable based on the condition we have. Let's suppose we want to assign 2147483647 to a
variable so we can check if it's a short number. If so, myVar will be of type short,
otherwise, it will be int. Moreover, since the maximum value of short type is 32767, by
giving the predicate as SHRT_MAX == 2147483647 will be resulting FALSE. Therefore, the
type of myVar will be an int type, as we can see in the following output that will appear on
the console:

Flow control with template
metaprogramming
Code flow is an important aspect in coding a program. In many programming languages,
they have an if-else, switch, and do-while statement to arrange the flow of the code.
Now, let's refactor the usual flow of code to become a template-based flow. We will start by
using the if-else statement, followed by the switch statement, and finally ending with
the do-while statement, all in templates.

Deciding the next process by the current
condition
Now it's time to use the template as we discussed previously. Let's suppose we have two
functions that we have to choose by a certain condition. What we usually do is use the if-
else statement as follows:

 /* condition.cpp */
 #include <iostream>

 using namespace std;

Optimizing Code with Metaprogramming

[184]

 // Function that will run
 // if the condition is TRUE
 void TrueStatement()
 {
 cout << "True Statement is run." << endl;
 }

 // Function that will run
 // if the condition is FALSE
 void FalseStatement()
 {
 cout << "False Statement is run." << endl;
 }

 auto main() -> int
 {
 cout << "[condition.cpp]" << endl;

 // Choosing the function
 // based on the condition
 if (2 + 3 == 5)
 TrueStatement();
 else
 FalseStatement();

 return 0;
 }

As we can see in the preceding code, we have two functions--TrueStatement() and
FalseStatement(). We also have a condition in the code--2 + 3 == 5. And since the
condition is TRUE, then the TrueStatement() function will be run as we can see in the
following screenshot:

Now, let's refactor the preceding condition.cpp code. We will create three templates here.
First, the template initialization that inputs the condition as follows:

 template<bool predicate> class IfElse

Optimizing Code with Metaprogramming

[185]

Then, we create two templates for each condition--TRUE or FALSE. The name will be as
follows:

 template<> class IfElse<true>
 template<> class IfElse<false>

Each template in the preceding code snippet will run the functions we have created before--
the TrueStatement() and FalseStatement() functions. And we will get the complete
code as the following conditionmeta.cpp code:

 /* conditionmeta.cpp */
 #include <iostream>

 using namespace std;

 // Function that will run
 // if the condition is TRUE
 void TrueStatement()
 {
 cout << "True Statement is run." << endl;
 }

 // Function that will run
 // if the condition is FALSE
 void FalseStatement()
 {
 cout << "False Statement is run." << endl;
 }

 // Defining IfElse template
 template<bool predicate>
 class IfElse
 {
 };

 // Defining template for TRUE condition
 // passed to 'predicate' parameter
 template<>
 class IfElse<true>
 {
 public:
 static inline void func()
 {
 TrueStatement();
 }
 };

 // Defining template for FALSE condition

Optimizing Code with Metaprogramming

[186]

 // passed to 'predicate' parameter
 template<>
 class IfElse<false>
 {
 public:
 static inline void func()
 {
 FalseStatement();
 }
 };

 auto main() -> int
 {
 cout << "[conditionmeta.cpp]" << endl;

 // Consuming IfElse template
 IfElse<(2 + 3 == 5)>::func();

 return 0;
 }

As we can see, we put the condition on the bracket of the IfElse template, then call the
func() method inside the template. If we run the conditionmeta.cpp code, we will get
the exact same output such as the condition.cpp code, as shown here:

We now have the if-else statement to flow our code in the template metaprogramming.

Selecting the correct statement
In C++ programming, and other programming languages as well, we use the switch
statement to select a certain process based on the value we give to the switch statement. If
the value matches with the one of the switch case, it will run the process under that case.
Let's take a look at the following switch.cpp code that implements the switch statement:

 /* switch.cpp */
 #include <iostream>

 using namespace std;

Optimizing Code with Metaprogramming

[187]

 // Function to find out
 // the square of an int
 int Square(int a)
 {
 return a * a;
 }

 auto main() -> int
 {
 cout << "[switch.cpp]" << endl;

 // Initializing two int variables
 int input = 2;
 int output = 0;

 // Passing the correct argument
 // to the function
 switch (input)
 {
 case 1:
 output = Square(1);
 break;
 case 2:
 output = Square(2);
 break;
 default:
 output = Square(0);
 break;
 }

 // Displaying the result
 cout << "The result is " << output << endl;

 return 0;
 }

As we can see in the preceding code, we have a function named Square() that takes an
argument. The argument we pass to it is based on the value that we give to the switch
statement. Since the value we pass to switch is 2, the Square(2) method will be run. The
following screenshot is what we will see on the console screen:

Optimizing Code with Metaprogramming

[188]

To refactor the switch.cpp code to template metaprogramming, we have to create three
templates that consist of the function we plan to run. First, we will create the initialization
template to retrieve the value from the user, as follows:

 template<int val> class SwitchTemplate

The preceding initialization template will also be used for the default value. Next, we will
add two templates for each possible value as follows:

 template<> class SwitchTemplate<1>
 template<> class SwitchTemplate<2>

Each preceding template will run the Square() function and pass the argument based on
the value of the template. The complete code is written as follows:

 /* switchmeta.cpp */
 #include <iostream>

 using namespace std;

 // Function to find out
 // the square of an int
 int Square(int a)
 {
 return a * a;
 }

 // Defining template for
 // default output
 // for any input value
 template<int val>
 class SwitchTemplate
 {
 public:
 static inline int func()
 {
 return Square(0);
 }
 };

 // Defining template for
 // specific input value
 // 'val' = 1
 template<>
 class SwitchTemplate<1>
 {
 public:
 static inline int func()

Optimizing Code with Metaprogramming

[189]

 {
 return Square(1);
 }
 };

 // Defining template for
 // specific input value
 // 'val' = 2
 template<>
 class SwitchTemplate<2>
 {
 public:
 static inline int func()
 {
 return Square(2);
 }
 };

 auto main() -> int
 {
 cout << "[switchmeta.cpp]" << endl;

 // Defining a constant variable
 const int i = 2;

 // Consuming the SwitchTemplate template
 int output = SwitchTemplate<i>::func();

 // Displaying the result
 cout << "The result is " << output << endl;

 return 0;
 }

As we can see, we do the same as conditionmeta.cpp--we call the func() method inside
the template to run the selected function. The value for this switch-case condition is the
template we put in the angle bracket. If we run the preceding switchmeta.cpp code, we
will see the following output on the console:

Optimizing Code with Metaprogramming

[190]

As we can see in the preceding screenshot, we've got the exact same output for
switchmeta.cpp code as compared to the switch.cpp code. Thus, we have successfully
refactored the switch.cpp code into the template metaprogramming.

Looping the process
We usually use the do-while loop when we iterate something. Let's suppose we need to
print certain numbers until it reaches zero (0). The code is as follows:

 /* loop.cpp */
 #include <iostream>

 using namespace std;

 // Function for printing
 // given number
 void PrintNumber(int i)
 {
 cout << i << "\t";
 }

 auto main() -> int
 {
 cout << "[loop.cpp]" << endl;

 // Initializing an int variable
 // marking as maximum number
 int i = 100;

 // Looping to print out
 // the numbers below i variable
 cout << "List of numbers between 100 and 1";
 cout << endl;
 do
 {
 PrintNumber(i);
 }
 while (--i > 0);
 cout << endl;

 return 0;
 }

Optimizing Code with Metaprogramming

[191]

As we can see in the preceding code, we will print the number 100, decrease its value, and
print again. It will always run until the number reaches zero (0). The output on the console
should be as follows:

Now, let's refactor it to the template metaprogramming. Here, we need only two templates
to achieve the do-while loop in template metaprogramming. First, we will create the
following template:

 template<int limit> class DoWhile

The limit in the preceding code is the value that is passed to the do-while loop. And, to not
make the loop become an infinite loop, we have to design the DoWhile template when it
has reached zero (0), as shown here:

 template<> class DoWhile<0>

The preceding template will do nothing since it's used only to break the loop. The complete
refactoring of the do-while loop is like the following loopmeta.cpp code:

 /* loopmeta.cpp */
 #include <iostream>

 using namespace std;

 // Function for printing
 // given number
 void PrintNumber(int i)
 {
 cout << i << "\t";
 }

Optimizing Code with Metaprogramming

[192]

 // Defining template for printing number
 // passing to its 'limit' parameter
 // It's only run
 // if the 'limit' has not been reached
 template<int limit>
 class DoWhile
 {
 private:
 enum
 {
 run = (limit-1) != 0
 };

 public:
 static inline void func()
 {
 PrintNumber(limit);
 DoWhile<run == true ? (limit-1) : 0>
 ::func();
 }
 };

 // Defining template for doing nothing
 // when the 'limit' reaches 0
 template<>
 class DoWhile<0>
 {
 public:
 static inline void func()
 {
 }
 };

 auto main() -> int
 {
 cout << "[loopmeta.cpp]" << endl;

 // Defining a constant variable
 const int i = 100;

 // Looping to print out
 // the numbers below i variable
 // by consuming the DoWhile
 cout << "List of numbers between 100 and 1";
 cout << endl;
 DoWhile<i>::func();
 cout << endl;

Optimizing Code with Metaprogramming

[193]

 return 0;
 }

We then call the func() method inside the template to run our desired function. And, if we
run the code, we will see the following output on the screen:

Again, we have successfully refactored the loop.cpp code into loopmeta.cpp code since
both have the exact same output.

Executing the code in compile-time
As we discussed earlier, template metaprogramming will run the code in compile-time by
creating a new code. Now, let's see how we can get the compile-time constant and generate
a compile-time class in this section.

Getting a compile-time constant
To retrieve a compile-time constant, let's create a code that has the template for a Fibonacci
algorithm in it. We will consume the template so the compiler will provide the value in
compile time. The code should be as follows:

 /* fibonaccimeta.cpp */
 #include <iostream>

 using namespace std;

 // Defining Fibonacci template
 // to calculate the Fibonacci sequence

Optimizing Code with Metaprogramming

[194]

 template <int number>
 struct Fibonacci
 {
 enum
 {
 value =
 Fibonacci<number - 1>::value +
 Fibonacci<number - 2>::value
 };
 };

 // Defining template for
 // specific input value
 // 'number' = 1
 template <>
 struct Fibonacci<1>
 {
 enum
 {
 value = 1
 };
 };

 // Defining template for
 // specific input value
 // 'number' = 0
 template <>
 struct Fibonacci<0>
 {
 enum
 {
 value = 0
 };
 };

 auto main() -> int
 {
 cout << "[fibonaccimeta.cpp]" << endl;

 // Displaying the compile-time constant
 cout << "Getting compile-time constant:";
 cout << endl;
 cout << "Fibonacci(25) = ";
 cout << Fibonacci<25>::value;
 cout << endl;

 return 0;
 }

Optimizing Code with Metaprogramming

[195]

As we can see in the preceding code, the value variable in the Fibonacci template will
provide a compile-time constant. And if we run the preceding code, we will see the
following output on the console screen:

Now, we have 75025 that is generated by the compiler as a compile-time constant.

Generating the class using a compile-time class
generation
Besides the generation of a compile-time constant, we will also generate the class in compile
time. Let's suppose we have a template to find out the prime number in the range 0 to X.
The following isprimemeta.cpp code will explain the implementation of the template
metaprogramming to find the prime number:

 /* isprimemeta.cpp */
 #include <iostream>

 using namespace std;

 // Defining template that decide
 // whether or not the passed argument
 // is a prime number
 template <
 int lastNumber,
 int secondLastNumber>
 class IsPrime
 {
 public:
 enum
 {
 primeNumber = (
 (lastNumber % secondLastNumber) &&
 IsPrime<lastNumber, secondLastNumber - 1>
 ::primeNumber)
 };
 };

Optimizing Code with Metaprogramming

[196]

 // Defining template for checking
 // the number passed to the 'number' parameter
 // is a prime number
 template <int number>
 class IsPrime<number, 1>
 {
 public:
 enum
 {
 primeNumber = 1
 };
 };

 // Defining template to print out
 // the passed argument is it's a prime number
 template <int number>
 class PrimeNumberPrinter
 {
 public:
 PrimeNumberPrinter<number - 1> printer;

 enum
 {
 primeNumber = IsPrime<number, number - 1>
 ::primeNumber
 };

 void func()
 {
 printer.func();

 if (primeNumber)
 {
 cout << number << "\t";
 }
 }
 };

 // Defining template to just ignoring the number
 // we pass 1 as argument to the parameter
 // since 1 is not prime number
 template<>
 class PrimeNumberPrinter<1>
 {
 public:
 enum
 {
 primeNumber = 0

Optimizing Code with Metaprogramming

[197]

 };

 void func()
 {
 }
 };

 int main()
 {
 cout << "[isprimemeta.cpp]" << endl;

 // Displaying the prime numbers between 1 and 500
 cout << "Filtering the numbers between 1 and 500 ";
 cout << "for of the prime numbers:" << endl;

 // Consuming PrimeNumberPrinter template
 PrimeNumberPrinter<500> printer;

 // invoking func() method from the template
 printer.func();

 cout << endl;
 return 0;
 }

There are two kinds of templates with different roles--the prime checker, that ensures the
number that is passed is a prime number, and the printer, that displays the prime number
to the console. The compiler then generates the class in compile-time when the code
accesses PrimeNumberPrinter<500> printer and printer.func(). And when we run
the preceding isprimemeta.cpp code, we will see the following output on the console
screen:

Optimizing Code with Metaprogramming

[198]

Since we pass 500 to the template, we will get the prime number from 0 to 500. The
preceding output has proven that the compiler has successfully generated a compile-time
class so we can get the correct value.

Benefits and drawbacks of
metaprogramming
After our discussion about template metaprogramming, the following are the advantages
we derive:

Template metaprogramming has no side effect since it is immutable, so we
cannot modify an existing type
There is better code readability compared to code that does not implement
metaprogramming
It reduces repetition of the code

Although we can gain benefits from template metaprogramming, there are several
disadvantages, which are as follows:

The syntax is quite complex.
The compilation time takes longer since we now execute code during compile-
time.
The compiler can optimize the generated code much better and perform inlining,
for instance, the C qsort() function and the C++ sort template. In C, the
qsort() function takes a pointer to a comparison function, so there will be one
copy of the qsort code that is not inlined. It will make a call through the pointer
to the comparison routine. In C++, std::sort is a template, and it can take a
functor object as a comparator. There is a different copy of std::sort for each
different type used as a comparator. If we use a functor class with an
overloaded operator() function, the call to the comparator can easily be inlined
into this copy of std::sort.

Optimizing Code with Metaprogramming

[199]

Summary
Metaprogramming, especially template metaprogramming, creates new code for us
automatically so we don't need to write a lot of code in our source. By using template
metaprogramming, we can refactor the flow control of our code as well as run the code in
compile-time execution.
In the next chapter, we will talk about concurrency techniques that will bring a responsive
enhancement to the application that we build. We can run the processes in our code
simultaneously using the parallelism technique.

7
Running Parallel Execution

Using Concurrency
In the previous chapter, we discussed template metaprogramming that will make a code in
compile-time execution. It will also improve the flow control of our code since we can
refactor the flow using the template. Now, in this chapter, we will talk about concurrency in
C++, where we have to control the flow again when we run two or more processes
simultaneously. In this chapter, we will discuss the following topics:

Running single as well as multiple threads in C++ programming
Synchronizing the thread to avoid a deadlock
Using the handle resource in Windows to create a thread

Concurrency in C++
Many programming languages have provided support for concurrency today. Instead of
sequentially, the computation of the code is executed during overlapping time periods in
concurrent programming. It will make our program responsive since the code doesn't need
to wait until all computation is finished. Let's suppose we want to develop a program that
can play a video and download a huge video file at the same time. Without the concurrency
technique, we have to wait for the video to be downloaded successfully before we can play
another video file. By using this technique, we can split these two tasks, playing and
downloading a video, then run them together concurrently.

Running Parallel Execution Using Concurrency

[201]

Before C++11 was announced, the C++ programmer depended on Boost::thread to create
a concurrent program using the multithreading technique. In multithreading, we split up
the process into the smallest sequence and run these small processes concurrently. Now, in
the C++11 library, we get the thread class to address our need for concurrency using the
multithreading technique.

Processing a single threading code
To use the thread class, we just need to create an instance of std::thread and pass the
function name as the argument. We then call std::join() to pause the process until the
selected thread finishes its process. Let's take a look at the following singlethread.cpp
code:

 /* singlethread.cpp */
 #include <thread>
 #include <iostream>

 using namespace std;

 void threadProc()
 {
 cout << "Thread ID: ";
 cout << this_thread::get_id() << endl;
 }

 auto main() -> int
 {
 cout << "[singlethread.cpp]" << endl;

 thread thread1(threadProc);
 thread1.join();

 return 0;
 }

As we can see in the preceding code, we have a function named threadProc(), and we
pass it into the thread1 initialization in the main() function. After initialization, we call
the join() method to execute the thread1 object. The output that we will see on the
console should be as follows:

Running Parallel Execution Using Concurrency

[202]

We have successfully run a thread in our code. Now, let's add a piece of code in the main()
function that will iterate a line of code. We will run them together concurrently. The code
for singlethread2.cpp is as follows:

 /* singlethread2.cpp */
 #include <thread>
 #include <chrono>
 #include <iostream>

 using namespace std;

 void threadProc()
 {
 for (int i = 0; i < 5; i++)
 {
 cout << "thread: current i = ";
 cout << i << endl;
 }
 }

 auto main() -> int
 {
 cout << "[singlethread2.cpp]" << endl;

 thread thread1(threadProc);

 for (int i = 0; i < 5; i++)
 {
 cout << "main : current i = " << i << endl;

 this_thread::sleep_for(
 chrono::milliseconds(5));
 }

 thread1.join();

 return 0;
 }

Running Parallel Execution Using Concurrency

[203]

As we can see in the preceding code, we add a for loop to iterate some code and to run it
concurrently with thread1. To make sense of it, we add a for loop in the threadProc()
function as well. Let's take a look at the following screenshot to figure out what output we
will get:

We see that the threadProc() function and the code in the main() function is run
together concurrently. Some of you may get a different result, but it's okay since the result
cannot be predicted because it depends on the device itself. However, for now, we have
been able to run two processes concurrently.

I ran the preceding code multiple times to get the output we see in the
preceding screenshot. You might see different order in between the
threadProc() and main() function or get a messy output since the flow
of the thread is unpredictable.

Processing a multithreading code
In the multithread technique, we run two or more threads concurrently. Let's suppose we
are running five threads simultaneously. We can use the following multithread.cpp code
that will store these five threads in an array:

 /* multithread.cpp */
 #include <thread>
 #include <iostream>

 using namespace std;

 void threadProc()
 {

Running Parallel Execution Using Concurrency

[204]

 cout << "Thread ID: ";
 cout << this_thread::get_id() << endl;
 }

 auto main() -> int
 {
 cout << "[multithread.cpp]" << endl;

 thread threads[5];

 for (int i = 0; i < 5; ++i)
 {
 threads[i] = thread(threadProc);
 }

 for (auto& thread : threads)
 {
 thread.join();
 }

 return 0;
 }

After we initialize these five threads based on the preceding code, we will run the join()
method for all threads to execute them. By using the join() method, the program will wait
for all processes in the calling threads to be finished, then continue the next process if any.
The result we see in the console is as follows:

In the preceding screenshot, we see that all five threads have been successfully executed.
We can also initialize the thread using the Lambda expression. The following
lambdathread.cpp code is refactored from the preceding code which uses Lambda
instead of creating a separated function:

 /* lambdathread.cpp */
 #include <thread>
 #include <iostream>

Running Parallel Execution Using Concurrency

[205]

 using namespace std;

 auto main() -> int
 {
 cout << "[lambdathread.cpp]" << endl;

 thread threads[5];

 for (int i = 0; i < 5; ++i)
 {
 threads[i] = thread([]()
 {
 cout << "Thread ID: ";
 cout << this_thread::get_id() << endl;
 });
 }

 for (auto& thread : threads)
 {
 thread.join();
 }

 return 0;
 }

There is no significant change if we see the lambdathread.cpp code comparing with the
multithread.cpp code. However, since the function will only be called once, it's better to
use Lambda so it is easier to maintain it. The output we will see on the console is like the
following screenshot, not much different compared to the multithread.cpp code output:

Although we retrieve the same output when running lambdathread.cpp comparing with
the multithread.cpp code, we have a clear code when we initialize the thread using the
Lambda expression. We don't need to create another method to be passed to Thread, for
instance, threadProc(), since this method is actually used only once.

Running Parallel Execution Using Concurrency

[206]

Again, note that the result you see on your screen might be different from
the screenshot I gave.

Synchronizing the threads using mutex
As of now, we have successfully executed a multithreading code. However, a problem will
occur if we consume a shared object and manipulate it inside the thread. It is called
synchronization. In this section, we will try to avoid this problem by applying a mutex
technique.

Avoiding synchronization issues
As we discussed earlier, in this section, we have to ensure that the shared object we run in
the thread gives the correct value when it is executing. Let's suppose we have a global
variable named counter and we plan to increase its value in all the five threads we have.
Each thread will execute 10000 times increment iteration, so we expect to get 50000 as a
result for all five threads. The code is as follows:

 /* notsync.cpp */
 #include <thread>
 #include <iostream>

 using namespace std;

 auto main() -> int
 {
 cout << "[notsync.cpp]" << endl;

 int counter = 0;

 thread threads[5];

 for (int i = 0; i < 5; ++i)
 {
 threads[i] = thread([&counter]()
 {
 for (int i = 0; i < 10000; ++i)
 {
 ++counter;
 cout << "Thread ID: ";

Running Parallel Execution Using Concurrency

[207]

 cout << this_thread::get_id();
 cout << "\tCurrent Counter = ";
 cout << counter << endl;
 }
 });
 }

 for (auto& thread : threads)
 {
 thread.join();
 }

 cout << "Final result = " << counter << endl;

 return 0;
 }

Now, let's take a look at the following screenshot we may get on the console when we run
the preceding code:

Unfortunately, based on the preceding screenshot, we don't get what we expect. This
happens because an incrementation process is not an atomic operation since the atomic
operation will guarantee the isolation of the concurrent process.

If you get a different output, don't worry, we are still on the right track as
this program demonstrates synchronization issues, as you will see next.

Running Parallel Execution Using Concurrency

[208]

If we trace the output deeper, we will see that there are two threads that execute exactly the
same value for the counter variable, as we can see in the following screenshot:

We see that the thread with ID 2504 and 5524 access the counter variable when its value is
44143. That's why we retrieve an unexpected result when we run the preceding code. Now
we need to make the increment operation to become an atomic operation that will be
executed without any other processes being able to read or change the state that is read or
changed during the operation.

To solve this problem, we can use the mutex class to make our counter variable thread-
safe. It means that before the thread accesses the counter variable, it has to ensure that the
variable is not accessed by others threads. We can use the lock() and unlock() methods
in the mutex class to lock and unlock the targeted variable. Let's take a look at the following
mutex.cpp code to demonstrate mutex implementation:

 /* mutex.cpp */
 #include <thread>
 #include <mutex>
 #include <iostream>

 using namespace std;

 auto main() -> int
 {
 cout << "[mutex.cpp]" << endl;

 mutex mtx;
 int counter = 0;

 thread threads[5];

 for (int i = 0; i < 5; ++i)
 {
 threads[i] = thread([&counter, &mtx]()
 {
 for (int i = 0; i < 10000; ++i)

Running Parallel Execution Using Concurrency

[209]

 {
 mtx.lock();
 ++counter;
 mtx.unlock();

 cout << "Thread ID: ";
 cout << this_thread::get_id();
 cout << "\tCurrent Counter = ";
 cout << counter << endl;
 }
 });
 }

 for (auto& thread : threads)
 {
 thread.join();
 }

 cout << "Final result = " << counter << endl;

 return 0;
 }

As we can see in the preceding code, before the code increments the counter variable, it
calls the lock() method. And after that, it calls the unlock() method to notify the other
threads that the counter variable is free to manipulate now. If we run the preceding code,
we should see the following output on the console:

By using the mutex class, now we retrieve the result we expect, as we can see in the
preceding screenshot.

Running Parallel Execution Using Concurrency

[210]

Unlocking the variable automatically
We now know how to lock the variable to ensure that no two threads working on the same
value simultaneously retrieve the correct value from it. However, the problem will occur if
an exception is thrown before the thread calls the unlock() method. The program will be
completely locked if the state of the variable remains locked. To solve this problem, we can
use lock_guard<mutex> to lock the variable and to ensure that it will be unlocked at the
end of the scope no matter what happens. The following piece of code is refactored from the
preceding code by adding the lock_guard<mutex> functionality:

 /* automutex.cpp */
 #include <thread>
 #include <mutex>
 #include <iostream>

 using namespace std;

 auto main() -> int
 {
 cout << "[automutex.cpp]" << endl;

 mutex mtx;
 int counter = 0;

 thread threads[5];

 for (int i = 0; i < 5; ++i)
 {
 threads[i] = thread([&counter, &mtx]()
 {
 for (int i = 0; i < 10000; ++i)
 {
 {
 lock_guard <mutex> guard(mtx);
 ++counter;
 }

 cout << "Thread ID: ";
 cout << this_thread::get_id();
 cout << "\tCurrent Counter = ";
 cout << counter << endl;
 }
 });
 }

 for (auto& thread : threads)
 {

Running Parallel Execution Using Concurrency

[211]

 thread.join();
 }

 cout << "Final result = " << counter << endl;

 return 0;
 }

As we can see from the preceding automutex.cpp code, it calls lock_guard <mutex>
guard(mtx) before it increments the counter variable. If we run the code, we will get
exactly the same output with the mutex.cpp code. However, now we have a program that
won't be locked unpredictably.

Avoiding deadlock using recursive mutex
In the previous section, we used lock_guard to ensure that the variable is not accessed by
more than one thread. However, we will still face a problem if more than one lock_guard
obtains the lock. In the following piece of code, we have two functions that will call
lock_guard--Multiplexer() and Divisor(). Besides them, we also have a function that
will call these two functions--RunAll() that will call lock_guard first before calling the
two functions. The code should look like this:

 /* deadlock.cpp */
 #include <thread>
 #include <mutex>
 #include <iostream>

 using namespace std;

 struct Math
 {
 mutex mtx;
 int m_content;

 Math() : m_content(0)
 {
 }

 // This method will lock the mutex
 void Multiplexer(int i)
 {
 lock_guard<mutex> lock(mtx);
 m_content *= i;
 cout << "Multiplexer() is called. m_content = ";
 cout << m_content << endl;

Running Parallel Execution Using Concurrency

[212]

 }

 // This method will lock the mutex also
 void Divisor(int i)
 {
 lock_guard<mutex> lock(mtx);
 m_content /= i;
 cout << "Divisor() is called. m_content = ";
 cout << m_content << endl;
 }

 // This method will invoke
 // the two preceding methods
 // which each method locks the mutex
 void RunAll(int a)
 {
 lock_guard<mutex> lock(mtx);
 Multiplexer(a);
 Divisor(a);
 }
 };

 auto main() -> int
 {
 cout << "[deadlock.cpp]" << endl;

 // Instantiating Math struct
 // and invoking the RunAll() method
 Math math;
 math.RunAll(10);

 return 0;
 }

We will successfully compile the following piece of code. However, if we run the preceding
code, an error will occur since the program won't exit due to the deadlock. It is because the
same mutex cannot be acquired by multiple threads twice. When the RunAll() function is
invoked, it acquires the lock object. The Multiplexer() function inside the RunAll()
function wants to acquire lock as well. However, lock has been locked by the RunAll()
function. To solve this problem, we can replace lock_guard<mutex> with
lock_guard<recursive_mutex>, as you can see in the following piece of code:

 /* recursivemutex.cpp */
 #include <thread>
 #include <mutex>
 #include <iostream>

Running Parallel Execution Using Concurrency

[213]

 using namespace std;

 struct Math
 {
 recursive_mutex mtx;
 int m_content;

 Math() : m_content(1)
 {
 }

 // This method will lock the mutex
 void Multiplexer(int i)
 {
 lock_guard<recursive_mutex> lock(mtx);
 m_content *= i;
 cout << "Multiplexer() is called. m_content = ";
 cout << m_content << endl;
 }

 // This method will lock the mutex also
 void Divisor(int i)
 {
 lock_guard<recursive_mutex> lock(mtx);
 m_content /= i;
 cout << "Divisor() is called. m_content = ";
 cout << m_content << endl;
 }

 // This method will invoke
 // the two preceding methods
 // which each method locks the mutex
 void RunAll(int a)
 {
 lock_guard<recursive_mutex> lock(mtx);
 Multiplexer(a);
 Divisor(a);
 }
 };

 auto main() -> int
 {
 cout << "[recursivemutex.cpp]" << endl;

 // Instantiating Math struct
 // and invoking the RunAll() method
 Math math;
 math.RunAll(10);

Running Parallel Execution Using Concurrency

[214]

 return 0;
 }

Now, we can successfully compile and run the preceding code. We can use the
lock_guard<recursive_mutex> class that will allow mutex to be locked more than once
without getting to the deadlock. The following screenshot will be seen on the console when
we run the preceding code:

Now, we know we need to use one recursive mutex if we want to call functions that lock
the same mutex recursively.

Understanding the thread processing in a
Windows operating system
Let's move to a specific operating system that is widely used by many user computers, that
is Windows. Our code must need to be run on some commercial platform from a leading OS
vendor, such as Microsoft. So, we will now run the thread in Windows OS. In this OS, the
thread is a kernel resource, which means it is an object that is created and owned by the OS
kernel and lives in the kernel. The kernel itself is a core program that has complete control
over everything in the system. In this section, we will develop a thread in Windows OS so
our program can work well in this OS.

Working with handle
In the Windows operating system, handle is an abstract reference value to a resource. In this
discussion, we will use the abstract reference to hold the thread. Let's suppose we have a
threadProc() function that will be called inside a thread which is held in the hnd variable.
The code will be as follows:

 /* threadhandle.cpp */
 #include <iostream>
 #include <windows.h>

Running Parallel Execution Using Concurrency

[215]

 using namespace std;

 auto threadProc(void*) -> unsigned long
 {
 cout << "threadProc() is run." << endl;
 return 100;
 }

 auto main() -> int
 {
 cout << "[threadhandle.cpp]" << endl;

 auto hnd = HANDLE
 {
 CreateThread(
 nullptr,
 0,
 threadProc,
 nullptr,
 0,
 nullptr)
 };

 if (hnd)
 {
 WaitForSingleObject(hnd, INFINITE);

 unsigned long exitCode;
 GetExitCodeThread(hnd, &exitCode);

 cout << "The result = " << exitCode << endl;

 CloseHandle(hnd);
 }

 return 0;
 }

As we can see in the preceding code, we use the CreateThread() function provided by the
windows.h header to generate a thread. For now, we just pass the nullptr value as the
default parameter, except threadProc as a function that we will call from the thread.

Running Parallel Execution Using Concurrency

[216]

After we initialize the handle of the thread, we can ensure that the hnd variable contains the
handle of the thread, then invokes the WaitForSingleObject() function. It is similar to
the join() method we used in the preceding section that will run the thread and wait until
the thread is finished. Since the thread handle is a resource we use, don't forget to release it
by using the CloseHandle() function. If we run the preceding code, we will see the
following output on the console screen:

As we can see, we have successfully run the thread since we've got the expected process
from the threadProc() function.

Refactoring to a unique handle
Now, to ease our programming process, we will create a class named NullHandle that will
automatically release the resource each time we no longer need it. It will be constructed
from the UniqueHandle class, which we will develop as well. These classes can be found in
the uniquehandle.h file. The implementation of UniqueHandle is as follows:

 template <typename C>
 class UniqueHandle
 {
 private:
 HANDLE m_val;

 void Close()
 {
 if (*this)
 {
 C::Exit(m_val);
 }
 }

 public:
 // Copy assignment operator
 UniqueHandle(UniqueHandle const &) = delete;
 auto operator=(UniqueHandle const &)->UniqueHandle & = delete;

 // UniqueHandle constructor

Running Parallel Execution Using Concurrency

[217]

 explicit UniqueHandle(HANDLE value = C::Invalid()) :
 m_val{ value }
 {
 }

 // Move assignment operator
 UniqueHandle(UniqueHandle && other) :
 m_val{ other.Release() }
 {
 }

 // Move assignment operator
 auto operator=(UniqueHandle && other) -> UniqueHandle &
 {
 if (this != &other)
 {
 Reset(other.Release());
 }

 return *this;
 }

 // Destructor of UniqueHandle class
 ~UniqueHandle()
 {
 Close();
 }

 // bool operator for equality
 explicit operator bool() const
 {
 return m_val != C::Invalid();
 }

 // Method for retrieving the HANDLE value
 HANDLE Get() const
 {
 return m_val;
 }

 // Method for releasing the HANDLE value
 HANDLE Release()
 {
 auto value = m_val;
 m_val = C::Invalid();
 return value;
 }
 // Method for reseting the HANDLE

Running Parallel Execution Using Concurrency

[218]

 bool Reset(HANDLE value = C::Invalid())
 {
 if (m_val != value)
 {
 Close();
 m_val = value;
 }

 return static_cast<bool>(*this);
 }
 };

As we can see, we have a complete implementation of the UniqueHandle class that can be
instanced and will automatically close the handle from its destructor. To use NullHandle
object, we will use the following code:

 using NullHandle = UniqueHandle<NullHandleCharacteristics>;

The implementation of the NullHandleCharacteristics struct is as follows:

 struct NullHandleCharacteristics
 {
 // Returning nullptr when the HANDLE is invalid
 static HANDLE Invalid()
 {
 return nullptr;
 }

 // Exit the HANDLE by closing it
 static void Exit(HANDLE val)
 {
 CloseHandle(val);
 }
 };

Now, let's refactor our preceding threadhandle.cpp code. We will replace HANDLE with
NullHandle, so it will be as follows:

 auto hnd = NullHandle
 {
 CreateThread(
 nullptr,
 0,
 threadProc,
 nullptr,
 0,
 nullptr)
 };

Running Parallel Execution Using Concurrency

[219]

Then, we will create a new function named WaitOneThread() to call the thread itself and
wait until it finishes. The implementation should be as follows:

 auto WaitOneThread(
 HANDLE const h,
 DWORD const ms = INFINITE) -> bool
 {
 auto const r = WaitForSingleObject(
 h,
 ms);

 // Inform that thread is not idle
 if (r == WAIT_OBJECT_0)
 return true;

 // Inform that thread is not idle
 if (r == WAIT_TIMEOUT)
 return false;

 throw WinException();
 }

By using the WaitOneThread() function, we can know whether or not the thread has been
run. The WinException struct can be implemented as follows:

 struct WinException
 {
 unsigned long error;

 explicit WinException(
 unsigned long value = GetLastError()) :
 error{ value }
 {
 }
 };

Now, we can add the following piece of code to the main() function after we initialize the
hnd HANDLE:

 if (hnd)
 {
 if (WaitOneThread(hnd.Get(), 0))
 cout << "Before running thread" << endl;

 WaitOneThread(hnd.Get());

 if (WaitOneThread(hnd.Get(), 0))
 cout << "After running thread" << endl;

Running Parallel Execution Using Concurrency

[220]

 unsigned long exitCode;
 GetExitCodeThread(hnd.Get(), &exitCode);

 cout << "The result = " << exitCode << endl;
 }

As we can see from the preceding code, we call the WaitOneThread() function and pass 0
as the ms parameter to find out the status of the WaitForSingleObject() function call.
We can pass the INFINITE value to it to call the thread and wait for it until it finishes. The
following is the threaduniquehandle.cpp code that is refactored from the
threadhandle.cpp code and has consumed the UniqueHandle class:

 /* threaduniquehandle.cpp */
 #include <iostream>
 #include <windows.h>
 #include "../uniquehandle_h/uniquehandle.h"

 using namespace std;

 unsigned long threadProc(void*)
 {
 cout << "threadProc() is run." << endl;
 return 100;
 }

 struct WinException
 {
 unsigned long error;
 explicit WinException(
 unsigned long value = GetLastError()) :
 error{ value }
 {
 }
 };

 auto WaitOneThread(
 HANDLE const h,
 DWORD const ms = INFINITE) -> bool
 {
 auto const r = WaitForSingleObject(
 h,
 ms);

 // Inform that thread is not idle
 if (r == WAIT_OBJECT_0)
 return true;

Running Parallel Execution Using Concurrency

[221]

 // Inform that thread is not idle
 if (r == WAIT_TIMEOUT)
 return false;

 throw WinException();
 }

 auto main() -> int
 {
 cout << "[threaduniquehandle.cpp]" << endl;

 auto hnd = NullHandle
 {
 CreateThread(
 nullptr,
 0,
 threadProc,
 nullptr,
 0,
 nullptr)
 };

 if (hnd)
 {
 if (WaitOneThread(hnd.Get(), 0))
 cout << "Before running thread" << endl;

 WaitOneThread(hnd.Get());

 if (WaitOneThread(hnd.Get(), 0))
 cout << "After running thread" << endl;

 unsigned long exitCode;
 GetExitCodeThread(hnd.Get(), &exitCode);

 cout << "The result = " << exitCode << endl;
 }

 return 0;
 }

Running Parallel Execution Using Concurrency

[222]

The following screenshot is the output we should see on the console screen:

As we can see from the preceding screenshot, we don't have the Before running thread
line on it. It's because we will get the WAIT_TIMEOUT output each time the thread is not
called. And still, we have successfully executed the code in the threadProc() function.

Triggering an event
After playing with thread in Windows, let's try another concurrency type--Event. It is an
action that can be triggered by the system. To know further about it, let's take a look at the
following code snippet where we create a new class named Event that implements
UniqueHandle as well:

 class Event
 {
 private:
 NullHandle hnd;

 public:
 Event(Event const &) = delete;
 auto operator=(Event const &)->Event & = delete;
 ~Event() = default;

 explicit Event(bool manual) :
 hnd
 {
 CreateEvent(nullptr,
 manual, false, nullptr)
 }
 {
 if (!hnd)
 throw WinException();
 }

 explicit Event(EventType evType) :
 hnd

Running Parallel Execution Using Concurrency

[223]

 {
 CreateEvent(
 nullptr,
 static_cast<BOOL>(evType),
 false,
 nullptr)
 }
 {
 if (!hnd)
 throw WinException();
 }

 Event(Event && other) throw() :
 hnd
 {
 other.hnd.Release()
 }
 {
 }

 auto operator=(Event && other) throw()->Event &
 {
 hnd = move(other.hnd);
 }

 void Set()
 {
 cout << "The event is set" << endl;
 SetEvent(hnd.Get());
 }

 void Clear()
 {
 cout << "The event is cleared" << endl;
 ResetEvent(hnd.Get());
 }

 auto Wait(
 DWORD const ms = INFINITE) -> bool
 {
 auto const result = WaitForSingleObject(
 hnd.Get(), ms);

 return result == WAIT_OBJECT_0;
 }
 };

Running Parallel Execution Using Concurrency

[224]

As we can see in the preceding Event class implementation, we have the Set(), Clear(),
and Wait() methods to set an event, clear an event, and wait for the event to complete
respectively. We have two event types, which are automatic reset and manual reset, which
are declared as follows:

 enum class EventType
 {
 AutoReset,
 ManualReset
 };

Now, we will create content in the main() function. We will instance the Event class first,
then we will check the event signaling. If it's not signaled, we will set the event. On the
contrary, we will clear the event. The code will be the following event.cpp code:

 /* event.cpp */
 #include <iostream>
 #include <windows.h>
 #include "../uniquehandle_h/uniquehandle.h"

 using namespace std;

 struct WinException
 {
 unsigned long error;

 explicit WinException(
 unsigned long value = GetLastError()) :
 error{ value }
 {
 }
 };

 enum class EventType
 {
 AutoReset,
 ManualReset
 };

 class Event
 {
 private:
 NullHandle hnd;

 public:
 Event(Event const &) = delete;
 auto operator=(Event const &)->Event & = delete;

Running Parallel Execution Using Concurrency

[225]

 ~Event() = default;

 explicit Event(bool manual) :
 hnd
 {
 CreateEvent(nullptr,
 manual, false, nullptr)
 }
 {
 if (!hnd)
 throw WinException();
 }

 explicit Event(EventType evType) :
 hnd
 {
 CreateEvent(
 nullptr,
 static_cast<BOOL>(evType),
 false,
 nullptr)
 }
 {
 if (!hnd)
 throw WinException();
 }

 Event(Event && other) throw() :
 hnd
 {
 other.hnd.Release()
 }
 {
 }

 auto operator=(Event && other) throw() -> Event &
 {
 hnd = move(other.hnd);
 }

 void Set()
 {
 cout << "The event is set" << endl;
 SetEvent(hnd.Get());
 }

 void Clear()
 {

Running Parallel Execution Using Concurrency

[226]

 cout << "The event is cleared" << endl;
 ResetEvent(hnd.Get());
 }

 auto Wait(
 DWORD const ms = INFINITE) -> bool
 {
 auto const result = WaitForSingleObject(
 hnd.Get(), ms);
 return result == WAIT_OBJECT_0;
 }
 };

 void CheckEventSignaling(bool b)
 {
 if (b)
 {
 cout << "The event is signaled" << endl;
 }
 else
 {
 cout << "The event is not signaled" << endl;
 }
 }

 auto main() -> int
 {
 cout << "[event.cpp]" << endl;

 auto ev = Event{
 EventType::ManualReset };

 CheckEventSignaling(ev.Wait(0));

 ev.Set();

 CheckEventSignaling(ev.Wait(0));

 ev.Clear();

 CheckEventSignaling(ev.Wait(0));

 return 0;
 }

Running Parallel Execution Using Concurrency

[227]

As we can see in the preceding code, here is what the code does:

It creates the instance of the Event class in the main() function and manually1.
resets the event.
It invokes the CheckEventSignaling() function to find out the status of the2.
event by passing the Wait() function to the CheckEventSignaling() function,
which in turn calls the WaitForSingleObject() function.
It invokes the Set() and Reset() functions.3.
Now run the preceding event.cpp code. You will see the following output on4.
the console:

If we take a look at the preceding screenshot, at first, the initialization of the Event class is
not signaled. We then set the event, and it is now signaled as the status from the
CheckEventSignaling() method. Here, we can say that we can check the status of the
signaled event by calling the WaitForSingleObject() function.

Calling an event from a thread
Now, let's use thread to call the Event class. However, before that, we have to be able to
wrap more than one thread, call them together, and wait until their processes are finished.
The following code block is a Wrap() function that will pack the threads:

 void Wrap(HANDLE *)
 {
 }

 template <typename T, typename... Args>
 void Wrap(
 HANDLE * left,
 T const & right,
 Args const & ... args)
 {
 *left = right.Get();
 Wrap(++left, args...);
 }

Running Parallel Execution Using Concurrency

[228]

We will call the preceding Wrap() function when we join all the threads. So, we will need
another function named WaitAllThreads(), as we can see in the following piece of code:

 template <typename... Args>
 void WaitAllThreads(Args const & ... args)
 {
 HANDLE handles[sizeof...(Args)];

 Wrap(handles, args...);

 WaitForMultipleObjects(
 sizeof...(Args),
 handles,
 true,
 INFINITE);
 }

Now, we can create our full code that will run the two threads using the following
eventthread.cpp code:

 /* eventthread.cpp */
 #include <iostream>
 #include <windows.h>
 #include "../uniquehandle_h/uniquehandle.h"

 using namespace std;

 void Wrap(HANDLE *)
 {
 }

 template <typename T, typename... Args>
 void Wrap(
 HANDLE * left,
 T const & right,
 Args const & ... args)
 {
 *left = right.Get();
 Wrap(++left, args...);
 }

 template <typename... Args>
 void WaitAllThreads(Args const & ... args)
 {
 HANDLE handles[sizeof...(Args)];

 Wrap(handles, args...);

Running Parallel Execution Using Concurrency

[229]

 WaitForMultipleObjects(
 sizeof...(Args),
 handles,
 true,
 INFINITE);
 }

 auto threadProc(void*) -> unsigned long
 {
 cout << "Thread ID: ";
 cout << GetCurrentThreadId() << endl;
 return 120;
 }

 auto main() -> int
 {
 cout << "[eventthread.cpp]" << endl;

 auto thread1 = NullHandle
 {
 CreateThread(
 nullptr,
 0,
 threadProc,
 nullptr,
 CREATE_SUSPENDED,
 nullptr)
 };

 auto thread2 = NullHandle
 {
 CreateThread(
 nullptr,
 0,
 threadProc,
 nullptr,
 CREATE_SUSPENDED,
 nullptr)
 };

 ResumeThread(thread1.Get());
 ResumeThread(thread2.Get());

 WaitAllThreads(thread1, thread2);

 return 0;
 }

Running Parallel Execution Using Concurrency

[230]

Moreover, if we run the preceding eventthread.cpp code, we will see the following
output on the console screen:

We have successfully triggered an Event, so it can be set to become signaled and can be
cleared to become unsignaled in the event.cpp code. We have also successfully wrapped
more than one thread, then called them together in the eventthread.cpp code. Now, let's
concatenate these two codes so we can access the event from the thread. The code should be
like the following eventthread2.cpp code:

 /* eventthread2.cpp */
 #include <iostream>
 #include <windows.h>
 #include "../uniquehandle_h/uniquehandle.h"

 using namespace std;

 struct WinException
 {
 unsigned long error;

 explicit WinException(
 unsigned long value = GetLastError()) :
 error{ value }
 {
 }
 };

 enum class EventType
 {
 AutoReset,
 ManualReset
 };

 class Event
 {
 private:
 NullHandle hnd;

 public:

Running Parallel Execution Using Concurrency

[231]

 Event(Event const &) = delete;
 auto operator=(Event const &)->Event & = delete;
 ~Event() = default;

 explicit Event(bool manual) :
 hnd
 {
 CreateEvent(nullptr,
 manual, false, nullptr)
 }
 {
 if (!hnd)
 throw WinException();
 }

 explicit Event(EventType evType) :
 hnd
 {
 CreateEvent(
 nullptr,
 static_cast<BOOL>(evType),
 false,
 nullptr)
 }
 {
 if (!hnd)
 throw WinException();
 }

 Event(Event && other) throw() :
 hnd
 {
 other.hnd.Release()
 }
 {
 }

 auto operator=(Event && other) throw() -> Event &
 {
 hnd = move(other.hnd);
 }

 void Set()
 {
 cout << "The event is set" << endl;
 SetEvent(hnd.Get());
 }

Running Parallel Execution Using Concurrency

[232]

 void Clear()
 {
 cout << "The event is cleared" << endl;
 ResetEvent(hnd.Get());
 }

 auto Wait(DWORD const ms = INFINITE) -> bool
 {
 auto const result = WaitForSingleObject(
 hnd.Get(), ms);

 return result == WAIT_OBJECT_0;
 }
 };

 void Wrap(HANDLE *)
 {
 }

 template <typename T, typename... Args>
 void Wrap(
 HANDLE * left,
 T const & right,
 Args const & ... args)
 {
 *left = right.Get();
 Wrap(++left, args...);
 }

 template <typename... Args>
 void WaitAllThreads(Args const & ... args)
 {
 HANDLE handles[sizeof...(Args)];

 Wrap(handles, args...);

 WaitForMultipleObjects(
 sizeof...(Args),
 handles,
 true,
 INFINITE);
 }

 static auto ev = Event{
 EventType::ManualReset };

 auto threadProc(void*) -> unsigned long
 {

Running Parallel Execution Using Concurrency

[233]

 cout << "Thread ID: ";
 cout << GetCurrentThreadId() << endl;

 ev.Wait();

 cout << "Run Thread ID: ";
 cout << GetCurrentThreadId() << endl;

 return 120;
 }

 auto main() -> int
 {
 cout << "[eventthread2.cpp]" << endl;

 auto thread1 = NullHandle
 {
 CreateThread(
 nullptr,
 0,
 threadProc,
 nullptr,
 0,
 nullptr)
 };

 auto thread2 = NullHandle
 {
 CreateThread(
 nullptr,
 0,
 threadProc,
 nullptr,
 0,
 nullptr)
 };

 Sleep(100);
 ev.Set();
 Sleep(100);

 WaitAllThreads(thread1, thread2);

 return 0;
 }

Running Parallel Execution Using Concurrency

[234]

In the preceding eventthread2.cpp code, we try to trigger the event using the thread. We
initialize two NullHandle object threads at first. Then, we set the event and call the
Sleep() function to make the event active. The WaitAllThreads() function then invokes
the threadProc() function and runs each thread. This will trigger the event by calling the
ev.Wait() function. The threads will be run then. The following screenshot is the output
we will see on the console screen:

The preceding code is the event that we set manually to reset the event. This means that we
have to state when we clear the event. Now, we pass AutoReset to the event instance. We
will also modify the threadProc() function a little bit. The following piece of code is
eventthread3.cpp that we are talking about:

 /* eventthread3.cpp */
 #include <iostream>
 #include <windows.h>
 #include "../uniquehandle_h/uniquehandle.h"

 using namespace std;

 struct WinException
 {
 unsigned long error;

 explicit WinException(
 unsigned long value = GetLastError()) :
 error{ value }
 {
 }
 };

 enum class EventType
 {
 AutoReset,
 ManualReset
 };

Running Parallel Execution Using Concurrency

[235]

 class Event
 {
 private:
 NullHandle hnd;

 public:
 Event(Event const &) = delete;
 auto operator=(Event const &)->Event & = delete;
 ~Event() = default;

 explicit Event(bool manual) :
 hnd
 {
 CreateEvent(nullptr,
 manual, false, nullptr)
 }
 {
 if (!hnd)
 throw WinException();
 }

 explicit Event(EventType evType) :
 hnd
 {
 CreateEvent(
 nullptr,
 static_cast<BOOL>(evType),
 false,
 nullptr)
 }
 {
 if (!hnd)
 throw WinException();
 }

 Event(Event && other) throw() :
 hnd
 {
 other.hnd.Release()
 }
 {
 }

 auto operator=(Event && other) throw() -> Event &
 {
 hnd = move(other.hnd);
 }

Running Parallel Execution Using Concurrency

[236]

 void Set()
 {
 cout << "The event is set" << endl;
 SetEvent(hnd.Get());
 }

 void Clear()
 {
 cout << "The event is cleared" << endl;
 ResetEvent(hnd.Get());
 }

 auto Wait(
 DWORD const ms = INFINITE) -> bool
 {
 auto const result = WaitForSingleObject(
 hnd.Get(), ms);

 return result == WAIT_OBJECT_0;
 }
 };

 void Wrap(HANDLE *)
 {
 }

 template <typename T, typename... Args>
 void Wrap(
 HANDLE * left,
 T const & right,
 Args const & ... args)
 {
 *left = right.Get();
 Wrap(++left, args...);
 }

 template <typename... Args>
 void WaitAllThreads(Args const & ... args)
 {
 HANDLE handles[sizeof...(Args)];

 Wrap(handles, args...);

 WaitForMultipleObjects(
 sizeof...(Args),
 handles,
 true,
 INFINITE);

Running Parallel Execution Using Concurrency

[237]

 }

 static auto ev = Event{
 EventType::AutoReset };

 auto threadProc(void*) -> unsigned long
 {
 cout << "Thread ID: ";
 cout << GetCurrentThreadId() << endl;

 ev.Wait();

 cout << "Run Thread ID: ";
 cout << GetCurrentThreadId() << endl;

 Sleep(1000);
 ev.Set();

 return 120;
 }

 auto main() -> int
 {
 cout << "[eventthread3.cpp]" << endl;

 auto thread1 = NullHandle
 {
 CreateThread(
 nullptr,
 0,
 threadProc,
 nullptr,
 0,
 nullptr)
 };

 auto thread2 = NullHandle
 {
 CreateThread(
 nullptr,
 0,
 threadProc,
 nullptr,
 0,
 nullptr)
 };

 Sleep(100);

Running Parallel Execution Using Concurrency

[238]

 ev.Set();
 Sleep(100);

 WaitAllThreads(thread1, thread2);

 return 0;
 }

As we can see in the preceding code, we move the Set() method of the event from the
main() function to the threadProc() function. Now, every time the threadProc()
function is invoked, the event is set automatically. The following screenshot is the output
we should see on the console screen:

Summary
We have learned a concept of C++ concurrency in this chapter. We now can process a single
thread as well as multithreads. We can also synchronize the multithreads so it can run
smoothly; therefore, we can avoid synchronization issues and deadlock. Lastly, we can
consume the handle resource in Windows to create a thread and trigger the event using that
event.

In the next chapter, we will apply all we have learned in the previous chapters to produce
an application in a functional way. It will also explain how to test an application that is built
using the C++ language.

8
Creating and Debugging
Application in Functional

Approach
We discussed some basic techniques to develop functional programming in the previous
chapters that include a first-class function, a pure function, and an immutable object. In this
chapter, we will use all the techniques we have learned in the previous chapters to produce
an application in a functional way. It will also explain how to debug an application that is
built using the C++ language.

In this chapter, we will cover the following topics:

Preparing an imperative code as a base code to be transformed to the functional
code
Implementing the pure function to the base code
Implementing the template metaprogramming to the base code
Implementing the filtering technique to the base code using the Lambda
expression
Implementing the recursion technique to the base code
Implementing the memoization technique to the base code
Debugging the code to solve, if we get an unexpected result

Creating and Debugging Application in Functional Approach

[240]

Preparing an imperative class
We will now develop the functional class so we can consume it to our functional program.
Before that, let's prepare a new imperative class named Customer. The class will have an
int property named id as a unique customer ID number. It also has four string properties
to store the information about our customer--name, address, phoneNumber, and email.
The class also has a flag--isActive--to indicate whether or not our customer is active. If the
customer has signed a contract with us, they are regarded as an active customer. Another
property is registeredCustomers, to save all registered customers we have, regardless of
the active customer. We will make the registeredCustomers member become static so
we can fill it from outside the class and can keep the list of the Customer class.

Besides these properties, our class will also have four methods to access the list of our
properties. They will be the following methods:

GetActiveCustomerNames(): This can be used to get the list of active customer
names
GetActiveCustomerAddresses(): This can be used to get the list of active
customer addresses
GetActiveCustomerPhoneNumbers(): This can be used to get the list of active
customer phone numbers
GetActiveCustomerEmails(): This can be used to get the list of active
customer emails

Now, let's take a look at the following Customer.h code that we can find in the Step01
folder to accommodate our preceding scenario:

 /* Customer.h - Step01 */
 #ifndef __CUSTOMER_H__
 #define __CUSTOMER_H__

 #include <string>
 #include <vector>

 class Customer
 {
 public:
 static std::vector<Customer> registeredCustomers;
 int id = 0;
 std::string name;
 std::string address;
 std::string phoneNumber;
 std::string email;

Creating and Debugging Application in Functional Approach

[241]

 bool isActive = true;

 std::vector<std::string> GetActiveCustomerNames();
 std::vector<std::string> GetActiveCustomerAddresses();
 std::vector<std::string> GetActiveCustomerPhoneNumbers();
 std::vector<std::string> GetActiveCustomerEmails();
 };
 #endif // __CUSTOMER_H__

From the preceding code, we have four public methods that haven't been defined yet. Now,
let's define them as we can see in the following Customer.cpp code:

 /* Customer.cpp - Step01 */
 #include "Customer.h"

 using namespace std;

 vector<Customer> Customer::registeredCustomers;

 vector<string> Customer::GetActiveCustomerNames()
 {
 vector<string> returnList;
 for (auto &customer : Customer::registeredCustomers)
 {
 if (customer.isActive)
 {
 returnList.push_back(customer.name);
 }
 }
 return returnList;
 }

 vector<string> Customer::GetActiveCustomerAddresses()
 {
 vector<string> returnList;
 for (auto &customer : Customer::registeredCustomers)
 {
 if (customer.isActive)
 {
 returnList.push_back(customer.address);
 }
 }
 return returnList;
 }

 vector<string> Customer::GetActiveCustomerPhoneNumbers()
 {
 vector<string> returnList;

Creating and Debugging Application in Functional Approach

[242]

 for (auto &customer : Customer::registeredCustomers)
 {
 if (customer.isActive)
 {
 returnList.push_back(customer.phoneNumber);
 }
 }
 return returnList;
 }

 vector<string> Customer::GetActiveCustomerEmails()
 {
 vector<string> returnList;
 for (auto &customer : Customer::registeredCustomers)
 {
 if (customer.isActive)
 {
 returnList.push_back(customer.email);
 }
 }
 return returnList;
 }

From the preceding code, we can see the definition of the four methods we have in the
Customer class. For instance, in the GetActiveCustomerNames() method, the code loops
each element in the registeredCustomers vector to find out the active customer. If it
finds them, the code will extract the name of each customer and store it to the returnList
vector. After finishing the method process, the method will feed the returnList result to
the method user.

Now, let's consume the preceding class using the following main.cpp code:

 /* Main.cpp - Step01 */
 #include <iostream>
 #include <algorithm>
 #include "Customer.h"

 using namespace std;

 void RegisterCustomers()
 {
 int i = 0;
 bool b = false;

 // Initialize name
 vector<string> nameList =
 {

Creating and Debugging Application in Functional Approach

[243]

 "William",
 "Aiden",
 "Rowan",
 "Jamie",
 "Quinn",
 "Haiden",
 "Logan",
 "Emerson",
 "Sherlyn",
 "Molly"
 };

 // Clear the registeredCustomers vector array
 Customer::registeredCustomers.clear();

 for (auto name : nameList)
 {
 // Create Customer object
 // and fill all properties
 Customer c;
 c.id = i++;
 c.name = name;
 c.address = "somewhere";
 c.phoneNumber = "0123";
 c.email = name + "@xyz.com";
 c.isActive = b;

 // Flip the b value
 b = !b;

 // Send data to the registeredCustomers
 Customer::registeredCustomers.push_back(c);
 }
 }

 auto main() -> int
 {
 cout << "[Step01]" << endl;
 cout << "--------" << endl;

 // Fill the Customer::registeredCustomers
 // with the content
 RegisterCustomers();

 // Instance Customer object
 Customer customer;

 // Get the active customer names

Creating and Debugging Application in Functional Approach

[244]

 cout << "List of active customer names:" << endl;
 vector<string> activeCustomerNames =
 customer.GetActiveCustomerNames();
 for (auto &name : activeCustomerNames)
 {
 cout << name << endl;
 }

 return 0;
 }

From the preceding code, in the main() method, we can see that we first register our
customer from the RegisterCustomers() method. There, we fill the static public property
of the Customer class, registeredCustomers, with a bunch of our customer information.
After that, the code instances the Customer class and invokes the method of the class
named GetActiveCustomerNames(). As we can see, the method returns a vector of string
that contains the list of active customer names that we will then store in the
activeCustomerNames vector. Now, we can iterate the vector to extract the list of the
active customer names. The following is the output we should see in the console:

As we can see in the RegisterCustomer() method, only five from ten customers are
active, so not all of the names will be listed in the preceding output. We can try the
remaining three methods to the information about the active customers specifically, their
addresses, phone numbers, and email addresses. Our goal in this chapter is to use the
concepts we've learned in the previous chapters and make an application using the
functional approach. So, let's see how we can achieve that.

Creating and Debugging Application in Functional Approach

[245]

Refactoring the imperative class to become
a functional class
Indeed, the preceding Customer class can work well, and we have successfully invoked its
methods. However, the class can still be tweaked by transforming it into a functional class.
As we can see in the preceding code, we can implement a pure function, first-class function,
higher-order function, and memoization to it to make it become functional. So, in this
section, we will refactor the Customer class to become a functional class and use the
knowledge we have from the previous chapters. In the upcoming section, we will
implement the functional method that we have discussed in the previous chapter, which is
the first-class function.

Passing a function as a parameter
As we discussed in Chapter 2, Manipulating Functions in Functional Programming, we can
rewrite the function to be a first-class function, which means we can pass a function to
another function. We will simplify the definition of all the four methods we have in the
Step01 code, then we will call the function by passing it to another method named
GetActiveCustomerByFunctionField(). We will also create a new method named
GetActiveCustomerByField() to select the correct method we should run. The definition
of the Customer class is now like the following Customer.h code:

 /* Customer.h - Step02 */
 #ifndef __CUSTOMER_H__
 #define __CUSTOMER_H__

 #include <string>
 #include <vector>
 #include <functional>

 class Customer
 {
 private:
 std::string GetActiveCustomerNames(
 Customer customer) const;
 std::string GetActiveCustomerAddresses(
 Customer customer) const;
 std::string GetActiveCustomerPhoneNumbers(
 Customer customer) const;
 std::string GetActiveCustomerEmails(
 Customer customer) const;

Creating and Debugging Application in Functional Approach

[246]

 public:
 static std::vector<Customer> registeredCustomers;
 int id = 0;
 std::string name;
 std::string address;
 std::string phoneNumber;
 std::string email;
 bool isActive = true;

 std::vector<std::string> GetActiveCustomerByField(
 const std::string &field);

 std::vector<std::string> GetActiveCustomerByFunctionField(
 std::function<std::string(const Customer&, Customer)>
 funcField);
 };
 #endif //#ifndef __CUSTOMER_H__

As we can see in the preceding header file, besides the four private methods, we add a new
public method named GetActiveCustomerByFunctionField(), which we will invoke
when we need a list of one of the properties. Now, let's define the four methods we create in
the preceding header file. The code should be as the following Customer.cpp file:

 /* Customer.cpp - Step02 */
 #include <stdexcept>
 #include "Customer.h"

 using namespace std;

 vector<Customer> Customer::registeredCustomers;

 string Customer::GetActiveCustomerNames(
 Customer customer) const
 {
 return customer.name;
 }

 string Customer::GetActiveCustomerAddresses(
 Customer customer) const
 {
 return customer.address;
 }

 string Customer::GetActiveCustomerPhoneNumbers(
 Customer customer) const
 {
 return customer.phoneNumber;
 }

Creating and Debugging Application in Functional Approach

[247]

 string Customer::GetActiveCustomerEmails(
 Customer customer) const
 {
 return customer.email;
 }

 vector<string> Customer::GetActiveCustomerByFunctionField(
 function<string(const Customer&, Customer)> funcField)
 {
 vector<string> returnList;

 Customer c;
 for (auto customer : Customer::registeredCustomers)
 {
 if (customer.isActive)
 {
 returnList.push_back(
 funcField(c, customer));
 }
 }
 return returnList;
 }

 vector<string> Customer::GetActiveCustomerByField(
 const string &field)
 {
 function<string(const Customer&, Customer)> funct;

 if (field == "name")
 {
 funct = &Customer::GetActiveCustomerNames;
 }
 else if (field == "address")
 {
 funct = &Customer::GetActiveCustomerAddresses;
 }
 else if (field == "phoneNumber")
 {
 funct = &Customer::GetActiveCustomerPhoneNumbers;
 }
 else if (field == "email")
 {
 funct = &Customer::GetActiveCustomerEmails;
 }
 else
 {
 throw invalid_argument("Unknown field");
 }

Creating and Debugging Application in Functional Approach

[248]

 return GetActiveCustomerByFunctionField(funct);
 }

Comparing with the Step01 code, the implementation of the
GetActiveCustomerNames(), GetActiveCustomerAddresses(),
GetActiveCustomerPhoneNumbers(), and GetActiveCustomerEmails() methods is
more concise now. They only contain a single line code. However, we need a new method
to accommodate the process to get a list of the class' private properties, that is the
GetActiveCustomerByField() method. The method is passed to the function to make it a
first-class function, as we can see in the preceding code. In this Step02 folder, the
main.cpp code should be as follows:

 /* Main.cpp - Step02 */
 #include <iostream>
 #include "Customer.h"

 using namespace std;

 void RegisterCustomers()
 {
 int i = 0;
 bool b = false;

 // Initialize name
 vector<string> nameList =
 {
 "William",
 "Aiden",
 "Rowan",
 "Jamie",
 "Quinn",
 "Haiden",
 "Logan",
 "Emerson",
 "Sherlyn",
 "Molly"
 };

 // Clear the registeredCustomers vector array
 Customer::registeredCustomers.clear();
 for (auto name : nameList)
 {
 // Create Customer object
 // and fill all properties
 Customer c;
 c.id = i++;
 c.name = name;

Creating and Debugging Application in Functional Approach

[249]

 c.address = "somewhere";
 c.phoneNumber = "0123";
 c.email = name + "@xyz.com";
 c.isActive = b;

 // Flip the b value
 b = !b;

 // Send data to the registeredCustomers
 Customer::registeredCustomers.push_back(c);
 }
 }

 auto main() -> int
 {
 cout << "[Step02]" << endl;
 cout << "--------" << endl;

 // Fill the Customer::registeredCustomers
 // with the content
 RegisterCustomers();

 // Instance Customer object
 Customer customer;

 // Get the active customer names
 cout << "List of active customer names:" << endl;
 vector<string> activeCustomerNames =
 customer.GetActiveCustomerByField("name");
 for (auto &name : activeCustomerNames)
 {
 cout << name << endl;
 }

 return 0;
 }

As we can see in the preceding main.cpp code, we will now invoke the
GetActiveCustomerByField() method instead of GetActiveCustomerNames(), as we
do in Step01. We just need to pass a field name in string data type to the
GetActiveCustomerNames() method and it will call the appropriate method to retrieve
the properties value. For instance, we will retrieve the name properties value because we
pass name in the GetActiveCustomerByField() method. And, if we run the preceding
Step02 code, we should see the following screenshot, which is exactly the same as what we
see in the Step01 code:

Creating and Debugging Application in Functional Approach

[250]

Although we have the code running properly, there's a problem we will face if we want to
add more fields or properties to the class, and then need to collect the list of that new field.
By using the preceding code, we have to add a new else section in the
GetActiveCustomerByFunctionField() method. Next, we will find the solution to
counter it.

Adding a base class
If we want to add more fields in the class and want to access the list of it easily every time
we add a new field, we have to create a new class that derives from a base class containing a
virtual function. By doing this, we can derive the base class virtual method and implement
the correct code to it. We will also gain the power of template metaprogramming here, since
we will design the base class as a template. The declaration of the base class will be as
follows:

 template<typename T, typename U>
 class BaseClass
 {
 public:
 virtual U InvokeFunction(
 const std::shared_ptr<T>&) = 0;
 };

Now, we can declare four new classes derived from the base class for the four methods in
the class. The declaration of the classes should be as follows:

 class CustomerName :
 public BaseClass<Customer, std::string>
 {
 public:
 virtual std::string InvokeFunction(
 const std::shared_ptr<Customer> &customer)
 {

Creating and Debugging Application in Functional Approach

[251]

 return customer->name;
 }
 };

 class CustomerAddress :
 public BaseClass<Customer, std::string>
 {
 public:
 virtual std::string InvokeFunction(
 const std::shared_ptr<Customer> &customer)
 {
 return customer->address;
 }
 };

 class CustomerPhoneNumber :
 public BaseClass<Customer, std::string>
 {
 public:
 virtual std::string InvokeFunction(
 const std::shared_ptr<Customer> &customer)
 {
 return customer->phoneNumber;
 }
 };

 class CustomerEmail :
 public BaseClass<Customer, std::string>
 {
 public:
 virtual std::string InvokeFunction(
 const std::shared_ptr<Customer> &customer)
 {
 return customer->email;
 }
 };

We also need to modify the argument type for the
GetActiveCustomerByFunctionField() method, so the signature of the method should
be as follows:

 template<typename T>
 static std::vector<T> GetActiveCustomerByFunctionField(
 const std::shared_ptr<BaseClass<Customer, T>>
 &classField);

Creating and Debugging Application in Functional Approach

[252]

Additionally, the complete header file for this Step03 code that implements the preceding
codes should be as follows:

 /* Customer.h - Step03 */
 #ifndef __CUSTOMER_H__
 #define __CUSTOMER_H__

 #include <string>
 #include <vector>
 #include <memory>

 class Customer
 {
 private:
 template<typename T, typename U>
 class BaseClass
 {
 public:
 virtual U InvokeFunction(
 const std::shared_ptr<T>&) = 0;
 };

 class CustomerName :
 public BaseClass<Customer, std::string>
 {
 public:
 virtual std::string InvokeFunction(
 const std::shared_ptr<Customer> &customer)
 {
 return customer->name;
 }
 };

 class CustomerAddress :
 public BaseClass<Customer, std::string>
 {
 public:
 virtual std::string InvokeFunction(
 const std::shared_ptr<Customer> &customer)
 {
 return customer->address;
 }
 };

 class CustomerPhoneNumber :
 public BaseClass<Customer, std::string>
 {
 public:

Creating and Debugging Application in Functional Approach

[253]

 virtual std::string InvokeFunction(
 const std::shared_ptr<Customer> &customer)
 {
 return customer->phoneNumber;
 }
 };

 class CustomerEmail :
 public BaseClass<Customer, std::string>
 {
 public:
 virtual std::string InvokeFunction(
 const std::shared_ptr<Customer> &customer)
 {
 return customer->email;
 }
 };

 public:
 static std::vector<Customer> registeredCustomers;
 int id = 0;
 std::string name;
 std::string address;
 std::string phoneNumber;
 std::string email;
 bool isActive = true;

 static std::vector<std::string> GetActiveCustomerNames();
 static std::vector<std::string>
 GetActiveCustomerAddresses();
 static std::vector<std::string>
 GetActiveCustomerPhoneNumbers();
 static std::vector<std::string> GetActiveCustomerEmails();

 template<typename T>
 static std::vector<T> GetActiveCustomerByFunctionField(
 const std::shared_ptr<BaseClass<Customer, T>>
 &classField);
 };
 #endif // __CUSTOMER_H__

Creating and Debugging Application in Functional Approach

[254]

Now, each method in each preceding class has a different task and can be identified by the
class' name. We will also modify the GetActiveCustomerByFunctionField() method
implementation since it's now passed a new argument type, which is the class name. By
passing a class, it's now easier to pass our desired task that lied in the class' method. The
implementation of the GetActiveCustomerByFunctionField() method should be as
follows:

 template<typename T>
 vector<T> Customer::GetActiveCustomerByFunctionField(
 const shared_ptr<BaseClass<Customer, T>> &classField)
 {
 vector<T> returnList;
 for (auto customer : Customer::registeredCustomers)
 {
 if (customer.isActive)
 {
 returnList.push_back(
 classField->InvokeFunction(
 make_shared<Customer>(customer)));
 }
 }
 return returnList;
 }

As we can see, the preceding method can run the method of the class we have passed,
which is classField. Moreover, since the class we have is derived from the BaseClass
class, we can notify the method to receive the parameter typed BaseClass.

Now we can implement the public method that we have declared in the header file-- the
GetActiveCustomerNames(), GetActiveCustomerAddresses(),
GetActiveCustomerPhoneNumbers(), and GetActiveCustomerEmails() methods.
These four methods will invoke the GetActiveCustomerByFunctionField() method
and pass the definition of the InvokeFunction() method. The code should be as follows:

 vector<string> Customer::GetActiveCustomerNames()
 {
 return Customer::GetActiveCustomerByFunctionField<string>(
 make_shared<CustomerName>());
 }

 vector<string> Customer::GetActiveCustomerAddresses()
 {
 return Customer::GetActiveCustomerByFunctionField<string>(
 make_shared<CustomerAddress>());
 }

Creating and Debugging Application in Functional Approach

[255]

 vector<string> Customer::GetActiveCustomerPhoneNumbers()
 {
 return Customer::GetActiveCustomerByFunctionField<string>(
 make_shared<CustomerPhoneNumber>());
 }

 vector<string> Customer::GetActiveCustomerEmails()
 {
 return Customer::GetActiveCustomerByFunctionField<string>(
 make_shared<CustomerEmail>());
 }

Then, we will have a complete Customer.cpp file as follows:

 /* Customer.cpp - Step03 */
 #include "Customer.h"

 using namespace std;

 vector<Customer> Customer::registeredCustomers;

 vector<string> Customer::GetActiveCustomerNames()
 {
 return Customer::GetActiveCustomerByFunctionField<string>(
 make_shared<CustomerName>());
 }

 vector<string> Customer::GetActiveCustomerAddresses()
 {
 return Customer::GetActiveCustomerByFunctionField<string>(
 make_shared<CustomerAddress>());
 }

 vector<string> Customer::GetActiveCustomerPhoneNumbers()
 {
 return Customer::GetActiveCustomerByFunctionField<string>(
 make_shared<CustomerPhoneNumber>());
 }

 vector<string> Customer::GetActiveCustomerEmails()
 {
 return Customer::GetActiveCustomerByFunctionField<string>(
 make_shared<CustomerEmail>());
 }

 template<typename T>
 vector<T> Customer::GetActiveCustomerByFunctionField(
 const shared_ptr<BaseClass<Customer, T>> &classField)

Creating and Debugging Application in Functional Approach

[256]

 {
 vector<T> returnList;
 for (auto &customer : Customer::registeredCustomers)
 {
 if (customer.isActive)
 {
 returnList.push_back(
 classField->InvokeFunction(
 make_shared<Customer>(customer)));
 }
 }
 return returnList;
 }

By having the Customer.h and Customer.cpp code in this Step03 folder, it's now easier
for us to fetch the list of the properties we have in the Customer class. For instance, if we
want to retrieve a list of active customers, we can directly invoke the
GetActiveCustomerNames() method, as we can see in the following main.cpp code:

 /* Main.cpp - Step03 */
 #include <iostream>
 #include "Customer.h"

 using namespace std;

 void RegisterCustomers()
 {
 int i = 0;
 bool b = false;

 // Initialize name
 vector<string> nameList =
 {
 "William",
 "Aiden",
 "Rowan",
 "Jamie",
 "Quinn",
 "Haiden",
 "Logan",
 "Emerson",
 "Sherlyn",
 "Molly"
 };

 // Clear the registeredCustomers vector array
 Customer::registeredCustomers.clear();

Creating and Debugging Application in Functional Approach

[257]

 for (auto name : nameList)
 {
 // Create Customer object
 // and fill all properties
 Customer c;
 c.id = i++;
 c.name = name;
 c.address = "somewhere";
 c.phoneNumber = "0123";
 c.email = name + "@xyz.com";
 c.isActive = b;

 // Flip the b value
 b = !b;

 // Send data to the registeredCustomers
 Customer::registeredCustomers.push_back(c);
 }
 }

 auto main() -> int
 {
 cout << "[Step03]" << endl;
 cout << "--------" << endl;

 // Fill the Customer::registeredCustomers
 // with the content
 RegisterCustomers();

 // Instance Customer object
 Customer customer;

 // Get the active customer names
 cout << "List of active customer names:" << endl;
 vector<string> activeCustomerNames =
 customer.GetActiveCustomerNames();
 for (auto &name : activeCustomerNames)
 {
 cout << name << endl;
 }

 return 0;
 }

Creating and Debugging Application in Functional Approach

[258]

Now, let's run the program in the Step03 folder. We should see the following screenshot on
the console:

Again, we've got the exact same output comparing the previous step. We will make the
Customer class become pure in the next section. So, keep going!

Transforming the class to become pure
As we discussed in Chapter 2, Manipulating Functions in Functional Programming, we have
to create a pure function in functional programming to avoid the side effect. If we come
back to the previous GetActiveCustomerByFunctionField() method definition, it
iterates a registeredCustomers static member that is a global variable. It will be a
problem since the GetActiveCustomerByFunctionField() method will feed a different
output, although with the exact same passed as an argument.

To counter this problem, we have to abolish this global variable. We then have to modify
the method definition as follows:

 template<typename T>
 vector<T> Customer::GetActiveCustomerByFunctionField(
 vector<Customer> customers,
 const shared_ptr<BaseClass<Customer, T>>
 &classField)
 {
 vector<T> returnList;
 for (auto &customer : customers)
 {
 if (customer.isActive)
 {
 returnList.push_back(
 classField->InvokeFunction(
 make_shared<Customer>(customer)));

Creating and Debugging Application in Functional Approach

[259]

 }
 }
 return returnList;
 }

Since we don't have the registeredCustomers properties anymore, we also have to pass
a registered customer list to the GetActiveCustomerByFunctionField() method. The
method will then iterate the customer list we pass, to find the active customer. Moreover,
because we have modified the method signature, we also have to modify the method
declaration in the Customer.h file as follows:

 template<typename T>
 static std::vector<T> GetActiveCustomerByFunctionField(
 std::vector<Customer> customers,
 const std::shared_ptr<BaseClass<Customer, T>>
 &classField);

We discussed that the GetActiveCustomerByFunctionField() method is called by the
other methods in the Customer class. As a result, we also have to modify the method
implementation, as we can see in the following code snippet:

 vector<string> Customer::GetActiveCustomerNames(
 vector<Customer> customers)
 {
 return Customer::GetActiveCustomerByFunctionField<string>(
 customers,
 make_shared<CustomerName>());
 }

 vector<string> Customer::GetActiveCustomerAddresses(
 vector<Customer> customer)
 {
 return Customer::GetActiveCustomerByFunctionField<string>(
 customer,
 make_shared<CustomerAddress>());
 }

 vector<string> Customer::GetActiveCustomerPhoneNumbers(
 vector<Customer> customer)
 {
 return Customer::GetActiveCustomerByFunctionField<string>(
 customer,
 make_shared<CustomerPhoneNumber>());
 }

 vector<string> Customer::GetActiveCustomerEmails(
 vector<Customer> customer)

Creating and Debugging Application in Functional Approach

[260]

 {
 return Customer::GetActiveCustomerByFunctionField<string>(
 customer,
 make_shared<CustomerEmail>());
 }

We also need to modify the method declarations in the Customer.h file, as shown in the
following code snippet:

 static std::vector<std::string> GetActiveCustomerNames(
 std::vector<Customer> customer);
 static std::vector<std::string> GetActiveCustomerAddresses(
 std::vector<Customer> customer);
 static std::vector<std::string> GetActiveCustomerPhoneNumbers(
 std::vector<Customer> customer);
 static std::vector<std::string> GetActiveCustomerEmails(
 std::vector<Customer> customer);

Now, the Customer.h file will contain the following complete code block:

 /* Customer.h - Step04 */
 #ifndef __CUSTOMER_H__
 #define __CUSTOMER_H__

 #include <string>
 #include <vector>
 #include <memory>

 class Customer
 {
 private:
 template<typename T, typename U>
 class BaseClass
 {
 public:
 virtual U InvokeFunction(
 const std::shared_ptr<T>&) = 0;
 };

 class CustomerName :
 public BaseClass<Customer, std::string>
 {
 public:
 virtual std::string InvokeFunction(
 const std::shared_ptr<Customer> &customer)
 {
 return customer->name;
 }

Creating and Debugging Application in Functional Approach

[261]

 };

 class CustomerAddress :
 public BaseClass<Customer, std::string>
 {
 public:
 virtual std::string InvokeFunction(
 const std::shared_ptr<Customer> &customer)
 {
 return customer->address;
 }
 };

 class CustomerPhoneNumber :
 public BaseClass<Customer, std::string>
 {
 public:
 virtual std::string InvokeFunction(
 const std::shared_ptr<Customer> &customer)
 {
 return customer->phoneNumber;
 }
 };

 class CustomerEmail :
 public BaseClass<Customer, std::string>
 {
 public:
 virtual std::string InvokeFunction(
 const std::shared_ptr<Customer> &customer)
 {
 return customer->email;
 }
 };

 public:
 int id = 0;
 std::string name;
 std::string address;
 std::string phoneNumber;
 std::string email;
 bool isActive = true;

 static std::vector<std::string> GetActiveCustomerNames(
 std::vector<Customer> customer);
 static std::vector<std::string> GetActiveCustomerAddresses(
 std::vector<Customer> customer);
 static std::vector<std::string> GetActiveCustomerPhoneNumbers(

Creating and Debugging Application in Functional Approach

[262]

 std::vector<Customer> customer);
 static std::vector<std::string> GetActiveCustomerEmails(
 std::vector<Customer> customer);

 template<typename T>
 static std::vector<T> GetActiveCustomerByFunctionField(
 std::vector<Customer> customers,
 const std::shared_ptr<BaseClass<Customer, T>>
 &classField);
 };
 #endif // __CUSTOMER_H__

And, the Customer.cpp file will be as follows:

 /* Customer.cpp - Step04 */
 #include "Customer.h"

 using namespace std;

 vector<string> Customer::GetActiveCustomerNames(
 vector<Customer> customers)
 {
 return Customer::GetActiveCustomerByFunctionField<string>(
 customers,
 make_shared<CustomerName>());
 }

 vector<string> Customer::GetActiveCustomerAddresses(
 vector<Customer> customer)
 {
 return Customer::GetActiveCustomerByFunctionField<string>(
 customer,
 make_shared<CustomerAddress>());
 }

 vector<string> Customer::GetActiveCustomerPhoneNumbers(
 vector<Customer> customer)
 {
 return Customer::GetActiveCustomerByFunctionField<string>(
 customer,
 make_shared<CustomerPhoneNumber>());
 }

 vector<string> Customer::GetActiveCustomerEmails(
 vector<Customer> customer)
 {
 return Customer::GetActiveCustomerByFunctionField<string>(
 customer,

Creating and Debugging Application in Functional Approach

[263]

 make_shared<CustomerEmail>());
 }

 template<typename T>
 vector<T> Customer::GetActiveCustomerByFunctionField(
 vector<Customer> customers,
 const shared_ptr<BaseClass<Customer, T>>
 &classField)
 {
 vector<T> returnList;
 for (auto &customer : customers)
 {
 if (customer.isActive)
 {
 returnList.push_back(
 classField->InvokeFunction(
 make_shared<Customer>(customer)));
 }
 }
 return returnList;
 }

Since the Customer class has been changed and has no registeredCustomer variable
anymore, we also need to modify the RegisterCustomers() method in the main.cpp file.
The previous version of the method returns nothing. Now, we will make the code return the
list of customers. We also need to modify the main() method since we have to consume the
new RegisterCustomers() method in the Main.cpp file. The file will contain the
following block of code:

 /* Main.cpp - Step04 */
 #include <iostream>
 #include "Customer.h"

 using namespace std;

 vector<Customer> RegisterCustomers()
 {
 int i = 0;
 bool b = false;

 vector<Customer> returnValue;

 // Initialize name
 vector<string> nameList =
 {
 "William",
 "Aiden",

Creating and Debugging Application in Functional Approach

[264]

 "Rowan",
 "Jamie",
 "Quinn",
 "Haiden",
 "Logan",
 "Emerson",
 "Sherlyn",
 "Molly"
 };

 for (auto name : nameList)
 {
 // Create Customer object
 // and fill all properties
 Customer c;
 c.id = i++;
 c.name = name;
 c.address = "somewhere";
 c.phoneNumber = "0123";
 c.email = name + "@xyz.com";
 c.isActive = b;
 // Flip the b value
 b = !b;
 // Send data to the registeredCustomers
 returnValue.push_back(c);
 }

 return returnValue;
 }

 auto main() -> int
 {
 cout << "[Step04]" << endl;
 cout << "--------" << endl;

 // Instance Customer object
 Customer customer;

 // Get the active customer names
 cout << "List of active customer names:" << endl;
 vector<string> activeCustomerNames =
 customer.GetActiveCustomerNames(
 RegisterCustomers());
 for (auto name : activeCustomerNames)
 {
 cout << name << endl;
 }

Creating and Debugging Application in Functional Approach

[265]

 return 0;
 }

As we can see in the preceding main() method, we invoke the
GetActiveCustomerNames() method and pass the result of the RegisterCustomers()
method. Now, let's try the code by running the program in the Step06 folder. We should
get the following output on the console when we run the program:

Again, we've got the exact same output we saw in the previous step, but with a new
approach in functional programming. Next, we will refactor the code to use a Lambda
expression to ease the filtering task.

Filtering the condition and implementing a
Lambda expression
Let's focus on the GetActiveCustomerByFunctionField() method. There, we can find
an if structure to filter the active customer. As we discussed in the previous chapters, we
can use the copy_if() method to filter the condition. The following code snippet
implements the copy_if() method to filter the active customer:

 template<typename T>
 vector<T> Customer::GetActiveCustomerByFunctionField(
 vector<Customer> customers,
 const shared_ptr<BaseClass<Customer, T>>
 &classField)
 {
 vector<Customer> activeCustomers;
 vector<T> returnList;

 copy_if(
 customers.begin(),
 customers.end(),

Creating and Debugging Application in Functional Approach

[266]

 back_inserter(activeCustomers),
 [](Customer customer)
 {
 if (customer.isActive)
 return true;
 else
 return false;
 });

 for (auto &customer : customers)
 {
 if (customer.isActive)
 {
 returnList.push_back(
 classField->InvokeFunction(
 make_shared<Customer>(customer)));
 }
 }

 return returnList;
 }

As we can see in the preceding code snippet, we create an anonymous method that returns
true if the customer instance we pass is active. Also, we can refactor the preceding
GetActiveCustomerByFunctionField() method so it will use an anonymous method
again, as we can see in the following code snippet:

 template<typename T>
 vector<T> Customer::GetActiveCustomerByFunctionField(
 vector<Customer> customers,
 const shared_ptr<BaseClass<Customer, T>>
 &classField)
 {
 vector<Customer> activeCustomers;
 vector<T> returnList;

 copy_if(
 customers.begin(),
 customers.end(),
 back_inserter(activeCustomers),
 [](Customer customer)
 {
 if (customer.isActive)
 return true;
 else
 return false;
 });

Creating and Debugging Application in Functional Approach

[267]

 for_each(
 activeCustomers.begin(),
 activeCustomers.end(),
 [&returnList, &classField](Customer customer)
 {
 returnList.push_back(
 classField->InvokeFunction(
 make_shared<Customer>(customer))
);
 });

 return returnList;
 }

In addition to implementing the filtering technique using the Lambda expression, we will
also add a method to the Customer class named CountActiveCustomers(). The method
will count the active customers. The definition of this method should be as follows:

 int Customer::CountActiveCustomers(
 vector<Customer> customer)
 {
 int add = 0;

 for (auto cust : customer)
 {
 // Adding 1 if the customer is active
 if(cust.isActive)
 ++add;
 }

 return add;
 }

Now, we will have the Customer.cpp code in this Step05 code block as follows:

 /* Customer.cpp - Step05 */
 #include <algorithm>
 #include "Customer.h"

 using namespace std;

 vector<string> Customer::GetActiveCustomerNames(
 vector<Customer> customers)
 {
 return Customer::GetActiveCustomerByFunctionField<string>(
 customers,
 make_shared<CustomerName>());
 }

Creating and Debugging Application in Functional Approach

[268]

 vector<string> Customer::GetActiveCustomerAddresses(
 vector<Customer> customer)
 {
 return Customer::GetActiveCustomerByFunctionField<string>(
 customer,
 make_shared<CustomerAddress>());
 }

 vector<string> Customer::GetActiveCustomerPhoneNumbers(
 vector<Customer> customer)
 {
 return Customer::GetActiveCustomerByFunctionField<string>(
 customer,
 make_shared<CustomerPhoneNumber>());
 }

 vector<string> Customer::GetActiveCustomerEmails(
 vector<Customer> customer)
 {
 return Customer::GetActiveCustomerByFunctionField<string>(
 customer,
 make_shared<CustomerEmail>());
 }

 int Customer::CountActiveCustomers(
 vector<Customer> customer)
 {
 int add = 0;

 for (auto cust : customer)
 {
 // Adding 1 if the customer is active
 if(cust.isActive)
 ++add;
 }

 return add;
 }

 template<typename T>
 vector<T> Customer::GetActiveCustomerByFunctionField(
 vector<Customer> customers,
 const shared_ptr<BaseClass<Customer, T>>
 &classField)
 {
 vector<Customer> activeCustomers;
 vector<T> returnList;

Creating and Debugging Application in Functional Approach

[269]

 copy_if(
 customers.begin(),
 customers.end(),
 back_inserter(activeCustomers),
 [](Customer customer)
 {
 if (customer.isActive)
 return true;
 else
 return false;
 });

 for_each(
 activeCustomers.begin(),
 activeCustomers.end(),
 [&returnList, &classField](Customer customer)
 {
 returnList.push_back(
 classField->InvokeFunction(
 make_shared<Customer>(customer))
);
 });

 return returnList;
 }

Don't forget to modify the Customer.h file as well, since we have added a new method to
the class. The file should contain the following piece of code:

 /* Customer.h - Step05 */
 #ifndef __CUSTOMER_H__
 #define __CUSTOMER_H__

 #include <string>
 #include <vector>
 #include <memory>

 class Customer
 {
 private:
 template<typename T, typename U>
 class BaseClass
 {
 public:
 virtual U InvokeFunction(
 const std::shared_ptr<T>&) = 0;
 };

Creating and Debugging Application in Functional Approach

[270]

 class CustomerName :
 public BaseClass<Customer, std::string>
 {
 public:
 virtual std::string InvokeFunction(
 const std::shared_ptr<Customer> &customer)
 {
 return customer->name;
 }
 };

 class CustomerAddress :
 public BaseClass<Customer, std::string>
 {
 public:
 virtual std::string InvokeFunction(
 const std::shared_ptr<Customer> &customer)
 {
 return customer->address;
 }
 };

 class CustomerPhoneNumber :
 public BaseClass<Customer, std::string>
 {
 public:
 virtual std::string InvokeFunction(
 const std::shared_ptr<Customer> &customer)
 {
 return customer->phoneNumber;
 }
 };

 class CustomerEmail :
 public BaseClass<Customer, std::string>
 {
 public:
 virtual std::string InvokeFunction(
 const std::shared_ptr<Customer> &customer)
 {
 return customer->email;
 }
 };

 public:
 int id = 0;
 std::string name;
 std::string address;

Creating and Debugging Application in Functional Approach

[271]

 std::string phoneNumber;
 std::string email;
 bool isActive = true;

 static std::vector<std::string> GetActiveCustomerNames(
 std::vector<Customer> customer);
 static std::vector<std::string> GetActiveCustomerAddresses(
 std::vector<Customer> customer);
 static std::vector<std::string> GetActiveCustomerPhoneNumbers(
 std::vector<Customer> customer);
 static std::vector<std::string> GetActiveCustomerEmails(
 std::vector<Customer> customer);

 static int CountActiveCustomers(
 std::vector<Customer> customer);

 template<typename T>
 static std::vector<T> GetActiveCustomerByFunctionField(
 std::vector<Customer> customers,
 const std::shared_ptr<BaseClass<Customer, T>>
 &classField);
 };
 #endif // __CUSTOMER_H__

Now, we will invoke the CountActiveCustomers() method in our main() function. We
will see how we do that by examining the following Main.cpp code block:

 /* Main.cpp - Step05 */
 #include <iostream>
 #include <chrono>
 #include "Customer.h"

 using namespace std;

 vector<Customer> RegisterCustomers()
 {
 int i = 0;
 bool b = false;

 vector<Customer> returnValue;

 // Initialize name
 vector<string> nameList =
 {
 "William",
 "Aiden",
 "Rowan",
 "Jamie",

Creating and Debugging Application in Functional Approach

[272]

 "Quinn",
 "Haiden",
 "Logan",
 "Emerson",
 "Sherlyn",
 "Molly"
 };

 for (auto name : nameList)
 {
 // Create Customer object
 // and fill all properties
 Customer c;
 c.id = i++;
 c.name = name;
 c.address = "somewhere";
 c.phoneNumber = "0123";
 c.email = name + "@xyz.com";
 c.isActive = b;

 // Flip the b value
 b = !b;

 // Send data to the registeredCustomers
 returnValue.push_back(c);
 }

 return returnValue;
 }

 auto main() -> int
 {
 cout << "[Step05]" << endl;
 cout << "--------" << endl;

 // Recording start time for the program
 auto start = chrono::high_resolution_clock::now();

 // Instance Customer object
 Customer customer;

 // Counting active customers
 cout << "Total active customers: " << endl;
 cout << customer.CountActiveCustomers(
 RegisterCustomers());
 cout << endl << "--------" << endl;

 // Get the active customer names

Creating and Debugging Application in Functional Approach

[273]

 cout << "List of active customer names:" << endl;
 vector<string> activeCustomerNames =
 customer.GetActiveCustomerNames(
 RegisterCustomers());
 for (auto name : activeCustomerNames)
 {
 cout << name << endl;
 }

 // Recording end time for the program
 auto finish = chrono::high_resolution_clock::now();

 // Calculating the elapsed time for the program
 chrono::duration<double, milli> elapsed = finish - start;

 // Displaying elapsed time for the program
 cout << "--------" << endl;
 cout << "Total consuming time = ";
 cout << elapsed.count() << " milliseconds" << endl;

 return 0;
 }

As we can see in the preceding code, we invoke the CountActiveCustomers() method
and pass the output of the RegisterCustomers() method as the argument. We also add a
simple stopwatch to calculate how long the code needs to run the program. The output of
the preceding code should be as follows:

As we can see, we need 0.997 milliseconds to run the code in this step. However, we can
optimize the preceding code to run faster by implementing recursion and memoization,
which we will discuss in the next section.

Creating and Debugging Application in Functional Approach

[274]

Indeed, we can find out the total of the active customers by running the
method of activeCustomerNames.size() to get the number of elements
in the vector after we run the following code line:

vector<string> activeCustomerNames =
customer.GetActiveCustomerNames(RegisterCustomers())

However, the preceding code example wants to show us how the for loop
can be transformed into recursion, to optimize the speed of execution. We
will discuss this in the upcoming
section.

Implementing recursion and memoization
techniques to the Customer class
If we look at the CountActiveCustomers() method definition in Step05, we use the for
loop to count the active customers. However, we can rewrite the method to use the
recursion technique. Let's take a look at the following code, which is the new definition for
the CountActiveCustomers() method:

 int Customer::CountActiveCustomers(
 vector<Customer> customer)
 {
 if(customer.empty())
 return 0;
 else
 {
 // Adding 1 if the customer is active
 int add = customer.front().isActive ? 1 : 0;

 // Removing the first element of vector
 // It's similar with removing head
 // and pass the tail
 customer.erase(customer.begin());

 // Running the recursion
 return add + CountActiveCustomers(
 customer);
 }
 }

Creating and Debugging Application in Functional Approach

[275]

As we can see in the preceding code snippet, we use tail recursion for the
CountActiveCustomers() method. We just need to increment the add variable every time
we find an active customer in the customer vector. The code then removes the first element
of the customer vector and passes it to the CountActiveCustomers() method again. We
recurse this process until the element of the customer vector is empty.

Also, we use the Memoization class we discussed in Chapter 5, Procrastinating the
Execution Process Using Lazy Evaluation, to optimize our code. We will modify the main()
function in the Main.cpp file so the main() function contains the following code snippet:

 auto main() -> int
 {
 cout << "[Step06]" << endl;
 cout << "--------" << endl;

 // Recording start time for the program
 auto start = chrono::high_resolution_clock::now();

 // Instance Customer object
 Customer customer;

 // Counting active customers
 cout << "Total active customers: " << endl;
 cout << customer.CountActiveCustomers(
 RegisterCustomers());
 cout << endl << "--------" << endl;

 // Initializing memoization instance
 Memoization<vector<string>> custMemo(
 [customer]()
 {
 return customer.GetActiveCustomerNames(
 RegisterCustomers());
 });

 // Get the active customer names
 cout << "List of active customer names:" << endl;
 vector<string> activeCustomerNames =
 custMemo.Fetch();
 for (auto name : activeCustomerNames)
 {
 cout << name << endl;
 }

 // Recording end time for the program
 auto finish = chrono::high_resolution_clock::now();

Creating and Debugging Application in Functional Approach

[276]

 // Calculating the elapsed time for the program
 chrono::duration<double, milli> elapsed = finish - start;

 // Displaying elapsed time for the program
 cout << "--------" << endl;
 cout << "Total consuming time = ";
 cout << elapsed.count() << " milliseconds" << endl;

 return 0;
 }

As we can see in the preceding code snippet, we now run the
GetActiveCustomerNames() method from the Memoization instance by calling the
Fetch() method. If we run the Step06 code, we should see the following output on the
console:

The code now only needs 0.502 milliseconds to run. Compared to the Step05 code, the
speed of code execution is almost twice as fast. It proves that, by using the functional
approach, we can gain not only a better code structure, but also speed optimization.

Debugging the code
Sometimes, in the coding process, when we run the code, we've got an unexpected result
from one or more variables. It might happen in the middle of the execution. To avoid
getting stuck in this situation, we can analyze our program by running it step-by-step. We
can use the debugger tool that is included in the GCC compiler--GDB (The GNU Project
Debugger). This tool allows us to figure out what happens inside the target program while
it executes, or what it was doing at the moment it crashed. In this section, we will apply the
GDB to ease our programming task and find a solution for the problem and deal with it.

Creating and Debugging Application in Functional Approach

[277]

Starting the debugging tool
Now, let's prepare the executable file we will analyze. We will use the code from the
Step01 folder since it's a simple code, and we can learn easily from it. We have to
recompile the code using the -g option and name the executable as customer.exe. The
following are the three commands to compile the code so it can be debugged:

g++ -Wall -g -c Main.cpp -o Main.o
g++ -Wall -g -c Customer.cpp -o Customer.o
g++ Main.o Customer.o -o Customer.exe

GDB can only analyze the executable file that contains the debugging
information and symbols that are important in the debugging process. We
can insert the -g option when we compile the source so the debugging
information and symbol will be added to the executable file.

Typing gdb customer on the console will open the debugger tool and load the debugger
information and symbol from the customer.exe file. We will then see the following
screenshot on the console:

Creating and Debugging Application in Functional Approach

[278]

As we can see in the preceding screenshot, it has successfully read the symbol from the
customer.exe file. Then, type start in the GDB console to start the analyzing process.
The debugger will create a temporary breakpoint in the first line of the main() method. We
will see the following screenshot on the console after starting the GDB:

Now, the program is in the debugging process. We can continue the process to analyze
what is going on with the program. In the next section, we can choose between continuing
step by step or running the program until the next breakpoint is found.

To start the debugging process, we can either call the run or start
command. The former will start our program under GDB, while the latter
will behave similarly but will execute the code line by line. The difference
is, if we don't have the breakpoint yet, the program will run as usual, just
like it does when we call the run command, while the debugger will
automatically set the breakpoint in the main block of code and the
program will stop when it reaches that breakpoint, if we start with the
start command.

Continuing and stepping the debugging process
There are three commands to continue the step in the preceding section. They are as
follows:

continue: This resumes the execution of the program until our program
completes normally. If it finds a breakpoint, the execution will stop at the line
where the breakpoint is set.

Creating and Debugging Application in Functional Approach

[279]

step: This executes just one more step of our program. The step might mean
either one line of source code or one machine instruction. If it finds the invocation
of a function, it will come into the function and run one more step inside the
function.
next: This continues to the next line in the current stack frame. In other words, if
the next command finds the invocation of a function, it will not enter the
function.

Since we haven't set the breakpoint yet, let's type the next command so the debugging
pointer goes to the next line of the code. We will run the next command multiple times
until the end of the code is reached (or until we can see that the process is exited normally).
We should see the following screenshot when we apply the next command multiple times:

As we can see in the preceding screenshot, we can analyze our program by running it step
by step. Next, we will set the breakpoint if we have a suspect object to be analyzed.

We just need to press the Enter key to run the previous command in
GDB. Pressing the Q key will make the debugging console exit to the
window console.

Creating and Debugging Application in Functional Approach

[280]

Setting and deleting the breakpoint
Let's exit from the debugging console by typing the Q key. We need to restart the
debugging, so we need to type gdb customer again on the window console. After that,
instead of typing the start command, let's set the breakpoint before we continue the
process. Let's type break 68 and break Customer.cpp:15 respectively in the GDB
console. The output is shown as follows:

Now, we have two breakpoint in separate files--Main.cpp and Customer.cpp. We can
now start the debugger by typing run in GDB console, as we can see in the following
screenshot:

Creating and Debugging Application in Functional Approach

[281]

Since the debugger hit the GetActiveCustomerNames() method first, it stops in the line
where we put the breakpoint in that method, which is line 15 in the Customer.cpp file.
Just type the continue command and press Enter multiple times until it hits the breakpoint
in the Main.cpp file, line 69.

Printing the object value
Let's rerun the debugger by setting the breakpoint on line 68 in the Main.cpp file, then start
the debugger until it hits the breakpoint. After the breakpoint is hit, type print name to
see what the value of the name variable is. The following screenshot shows the steps of the
process:

As we can see in the preceding screenshot, the value of the name variable is Aiden. We can
continue the debugging by typing the continue command so the debugger hits the
breakpoint again in the for loop, then typing print name to find out the next name value.

Creating and Debugging Application in Functional Approach

[282]

There are so many commands in the GDB that, will be overloaded if they
are written in this book. If you need to find more commands in the GDB,
refer to the following link:

h t t p s ://w w w . g n u . o r g /s o f t w a r e /g d b /d o c u m e n t a t i o n /

Summary
In the last chapter of this book, we developed the functional class successfully by
refactoring it from the imperative class that we can use to create a more complex program
with. We implemented what we learned in the previous chapters. We also discussed the
debugging technique, which is a useful weapon when we face an unexpected result or get a
crash in the middle of the program.

https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/

Index

A
algorithms
 using 20, 23, 26
auto keyword
 used, for defining data type 8
automatic duration 8

B
backtracking recursion 122, 126, 129, 135, 136
breakpoint
 deleting 280
 setting 280

C
C++ language 17
C++ Standard Libraries 17
C++11 7
C++14 7
C++17 7
C++
 concurrency 200
Chunk
 designing 159
code
 debugging 276
 debugging tool, using 277
compile-time class generation
 used, for class generation 195, 198
compile-time constant
 obtaining 193
compile-time
 code, executing 193
 type, selecting 180
concurrency
 in C++ 200
container

 function, storing 64
 objects, placing 17
currying
 used, for multiple arguments function 86
 used, for reducing multiple arguments 83

D
data types
 storing, tuples used 52
data
 extracting, with filter 73, 76
deadlock
 about 212
 avoiding, recursive mutex used 211
debugging process
 continuing 278
 stepping 278
decltype keyword
 used, for querying type of expression 11

E
eager evaluation
 refactoring, to lazy evaluation 168, 170

F
filter
 used, for data extraction 73, 76
first-class function
 applying, in all functions 58
 applying, to immutable object 97
fold
 used, for combining elements of list 76, 79
function invocation
 repeating recursively 111
function notation
 simplifying, Lambda expression used 26

[284]

function
 assigning, to variable 61
 creating, from existing function at runtime 67, 70
 passed variable, modifying 91
 passing, as another function 's parameter 61
 passing, as another function's parameter 58
 storing, in container 64
functional recursion
 about 122
 results, expecting 122, 124

G
GDB (The GNU Project Debugger)
 about 276
 documentation, reference 281
generic Lambda expression
 writing 39

H
higher-order function
 functional techniques 71

I
immutable function
 recurring 116, 117
immutable object
 benefits 108
 developing 99
 essential part 88
 first-class function, applying 97
 local variable, modifying 89
 local variable, verifying 91
 passed variable, modifying 94
 pure function, applying 97
imperative class
 base class, adding 250, 254, 258
 condition, filtering 265, 273
 function, passing as parameter 245, 248
 Lambda expression, implementing 265, 273
 preparing 240, 242, 244
 recursion, implementing to customer class 274
 refactoring, for functional class 245
 transforming, to become pure 258, 263
infinite integer row
 generating 163

infinite prime numbers row
 generating 164, 167
initialization captures
 used, for preparing value 38
iteration procedure
 performing, for process repetition 111

L
Lambda expression
 used, for multiline functions 28
 used, for simplifying function notation 26
 used, for tiny function 27
 value, capturing 32, 36
 value, returning 30
lazy evaluation
 about 138, 142
 memoization technique, used for code

optimization 156
 process, delaying 142, 145
 using 157, 159
 value caching, memoization technique used 145,

148, 150

M
macro
 used, for code processing 172, 174
manual memory management
 avoiding, with smart pointers 41
map
 used, for executing element 71
metaprogramming 171
modern C++
 about 7
 features 8
multiline functions
 Lambda expression, using 28
multiple arguments function
 reducing, with currying 83, 86
multithreading code
 processing 203, 205
mutable object
 refactoring, into immutable one 103, 107
 starting with 100, 103

[285]

N
non-member begin() function
 used, for returning iterator 14
non-member end() function
 used, for returning iterator 14
non-strict evaluation
 about 138
 used, for delaying expression 140
null pointer
 pointing to 13

O
object value
 printing 281
objects
 sharing, with shared_ptr 47
 tracking, with weak_ptr pointer 50
optimizations option, GCC
 reference 120

P
procedural recursion
 about 122
 task, running recursively 124
pure function
 about 80
 applying, to immutable object 97
 used, for avoiding side effect 80, 83

R
range-based, for loops
 used, for iterating over collections 15
raw pointer
 replacing, with unique_ptr 41, 44, 46
recursion procedure
 performing, for process repetition 114
recursion
 memoization techniques, implementing to

customer class 274
recursive mutex
 used, for avoiding deadlock 211, 216
Row class
 designing 159
 each element, iterating 163

Run-Time Type Information (RTTI) 10

S
several rows
 concatenating 162
shared_ptr
 used, for sharing objects 47
side effect
 about 80
 avoiding, with pure function 80, 83
single threading code
 processing 201, 203
smart pointers
 used, for avoiding manual memory management

41

Standard Library
 template metaprogramming, dissecting 175
Standard Template Library (STL) 17, 18
strict evaluation
 about 138
 used, for running expression 139
synchronization
 about 206
 issues, avoiding 206, 208

T
tail recursion
 exploring 118, 121
template metaprogramming
 benefits 198
 building 176
 correct process based on condition, selecting

178

 correct statement, selecting 186, 190
 current condition, used for deciding next process

183, 186
 dissecting, in Standard Library 176
 drawbacks 198
 flow control 183
 function mapping, to input parameters 177
 process, looping 190
 process, repeating 179
 value, adding to variable 177
thread processing, Windows operating system
 about 214

 event, calling from thread 227, 234
 event, triggering 222, 227
 handle, working with 214
 unique handle, refactoring 216, 220
thread synchronization
 mutex, using 206
tuples
 used, for storing data types 52
 value type, returning 55
 values, unpacking 53
Turing-complete 171

U
unique_ptr

 used, for replacing raw pointer 41, 44, 46

V
value modification
 preventing 94
variable
 function, assigning to 61, 64
 unlocking automatically 210
vector 64

W
weak_ptr pointer
 used, for tracking objects 50

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Diving into Modern C++
	Getting closer with several new features in modern C++
	Defining the data type automatically using the auto keyword
	Querying the type of an expression using the decltype keyword
	Pointing to a null pointer
	Returning an iterator using non-member begin() and end() function
	Iterating over collections using range-based for loops

	Leveraging the use of C++ language with the C++ Standard Libraries
	Placing any objects in the container
	Using algorithms

	Simplifying the function notation using a Lambda expression
	Using the Lambda expression for a tiny function
	Using the Lambda expression for multiline functions
	Returning a value from the Lambda expression
	Capturing a value to the Lambda expression
	Preparing the value using initialization captures
	Writing a generic Lambda expression to be used many times with many different data types

	Avoiding manual memory management with smart pointers
	Replacing a raw pointer using unique_ptr
	Sharing objects using shared_ptr
	Tracking the objects using a weak_ptr pointer

	Storing many different data types using tuples
	Unpacking tuples values
	Returning a tuple value type

	Summary

	Chapter 2: Manipulating Functions in Functional Programming
	Applying the first-class function in all functions
	Passing a function as another function's parameter
	Assigning a function to a variable
	Storing a function in the container
	Creating a new function from the existing functions at runtime

	Getting acquainted with three functional techniques in the higher-order function
	Executing each element list using map
	Extracting data using filter
	Combining all elements of a list using fold

	Avoiding the side effect with pure function
	Reducing a multiple arguments function with currying
	Summary

	Chapter 3: Applying Immutable State to the Function
	Understanding the essential part from immutable object
	Modifying a local variable
	Modifying a variable passed into a function

	Preventing the modification of a value
	Applying the first-class function and the pure function to the immutable object
	Developing the immutable object
	Starting with a mutable object
	Refactoring a mutable object into an immutable one

	Enumerating the benefits of being immutable
	Summary

	Chapter 4: Repeating Method Invocation Using Recursive Algorithm
	Repeating the function invocation recursively
	Performing the iteration procedure to repeat the process
	Performing the recursion procedure to repeat the process

	Recurring the immutable function
	Getting closer to tail recursion
	Getting acquainted with functional, procedural, and backtracking recursion
	Expecting results from functional recursion
	Running a task recursively in procedural recursion
	Backtracking recursion

	Summary

	Chapter 5: Procrastinating the Execution Process Using Lazy Evaluation
	Evaluating the expression
	Running the expression immediately with strict evaluation
	Delaying the expression with non-strict evaluation

	The basic concept of lazy evaluation
	Delaying the process
	Caching the value using the memoization technique
	Optimizing the code using the memoization technique

	Lazy evaluation in action
	Designing Chunk and Row classes
	Concatenating several rows
	Iterating each Row class' element
	Generating the infinite integer row
	Generating an infinite prime numbers row
	Refactoring eager evaluation to lazy evaluation

	Summary

	Chapter 6: Optimizing Code with Metaprogramming
	Introduction to metaprogramming
	Preprocessing the code using a macro
	Dissecting template metaprogramming in the Standard Library

	Building the template metaprogramming
	Adding a value to the variable in the template
	Mapping a function to the input parameters
	Choosing the correct process based on the condition
	Repeating the process recursively

	Selecting a type in compile-time
	Flow control with template metaprogramming
	Deciding the next process by the current condition
	Selecting the correct statement
	Looping the process

	Executing the code in compile-time
	Getting a compile-time constant
	Generating the class using a compile-time class generation

	Benefits and drawbacks of metaprogramming
	Summary

	Chapter 7: Running Parallel Execution Using Concurrency
	Concurrency in C++
	Processing a single threading code
	Processing a multithreading code

	Synchronizing the threads using mutex
	Avoiding synchronization issues
	Unlocking the variable automatically
	Avoiding deadlock using recursive mutex

	Understanding the thread processing in a Windows operating system
	Working with handle
	Refactoring to a unique handle
	Triggering an event
	Calling an event from a thread

	Summary

	Chapter 8: Creating and Debugging Application in Functional Approach
	Preparing an imperative class
	Refactoring the imperative class to become a functional class
	Passing a function as a parameter
	Adding a base class
	Transforming the class to become pure
	Filtering the condition and implementing a Lambda expression
	Implementing recursion and memoization techniques to the Customer class

	Debugging the code
	Starting the debugging tool
	Continuing and stepping the debugging process
	Setting and deleting the breakpoint
	Printing the object value

	Summary

	Index

