

Learning RxJava

Build concurrent, maintainable, and responsive Java in less
time

Thomas Nield

BIRMINGHAM - MUMBAI

Learning RxJava

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2017

Production reference: 1140617

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78712-042-6

www.packtpub.com

http://www.packtpub.com

Credits

Author

Thomas Nield

Copy Editor

Stuti Srivastava

Reviewers

David Karnok

David Moten

Project Coordinator

Prajakta Naik

Commissioning Editor

Aaron Lazar

Proofreader

Safis Editing

Acquisition Editor

Denim Pinto

Indexer

Tejal Daruwale Soni

Content Development Editor

Siddhi Chavan

Graphics

Abhinash Sahu

Technical Editor

Pranali Badge

Production Coordinator

Shraddha Falebhai

  

About the Author
Thomas Nield is a business consultant for Southwest Airlines in Schedule Initiatives, and a
maintainer for RxJavaFX and RxKotlin. Early in his career, he became fascinated with
technology and its role in business analytics. After becoming proficient in Java, Kotlin,
Python, SQL, and reactive programming, he became an open source contributor as well as
an author/speaker at O'Reilly Media. He is passionate about sharing what he learns and
enabling others with new skill sets. He enjoys making technical content relatable and
relevant to those unfamiliar with or intimidated by it.

Currently, Thomas is interested in data science, reactive programming, and the Kotlin
language. You may find him speaking on these three subjects and how they can
interconnect.

He has also authored the book Getting Started with SQL, by O'Reilly Media.

Acknowledgements
I am blessed to have great people in my life who have enabled everything I do, including
this book. To all my family and friends who saw little of me for 6 months while I wrote this
book, thank you for being so patient and understanding.

First, I want to thank my mom and dad. They have worked hard to ensure that I have the
opportunities that I have today. My dad did everything he could to provide a better
education for my brothers and me. Growing up, my mom always pushed me forward, even
when I resisted; she taught me to never settle and always struggle past my limits.

There are so many people at my company, Southwest Airlines, who I have to thank--the
leaders and colleagues in ground ops, revenue management, and network planning, who
have taken risks to green-light my projects. They have embraced my unconventional
approaches in leveraging technology to solve industry challenges. It is amazing to work for
a company that continues to be a maverick and support a tradition started by an attorney, a
Texas businessman, and a cocktail napkin.

I also want to thank the great folks at O’Reilly Media and Packt who continue to open doors
for me to write and speak. Although I was approached by Packt to write this book, they
probably would never have found me if it was not for O’Reilly and my previous
book, Getting Started with SQL.

While he was not involved in this book or ReactiveX, I want to extend my gratitude to
Edvin Syse, the creator and maintainer of TornadoFX. I joined his project in early 2016, and
it is amazing how far it has come. Edvin’s work has helped me save a lot of my time and
enabled me to pursue initiatives like this book. If you ever need to build JVM desktop apps
quickly, Edvin’s work may change how you do so forever. More importantly, he is probably
the nicest and most helpful person you will encounter in the open source community.

Finally, I want to thank the open source community for helping me shape this journey and
what ultimately became this book. David Karnok and David Moten have been enormously
patient with me over the years when I had questions about RxJava. David Karnok seems to
have an infinite bandwidth, not only owning and maintaining RxJava, but also answering
questions and being the project’s ambassador. David Moten also contributes to RxJava and
is an Rx advocate for newbies and veterans alike, answering questions and helping anyone
at any skill level. It is an honor to have them both review this book. I also want to thank
Stepan Goncharov for checking my content on Android and everyone else in the OSS
community who has been quick to share their knowledge and insights over the years.

About the Reviewers
David Karnok is the project lead and top contributor of RxJava. He is a PhD candidate in
the field of production informatics. He is originally a mechanical engineer by trade who has
picked up computer science along the way. He is currently a research assistant at the
Engineering and Management Intelligence Research Lab under the Hungarian Academy of
Sciences. He was also the first to port the historical Rx.NET library to Java back in 2011
(Reactive4Java)--2 years before Netflix started over again. Starting from late 2013, he
contributed more than half of RxJava 1 and then designed, architected, and implemented
almost all of RxJava 2 known today. In addition, he is perhaps the only person who does
any research and development on reactive flows in terms of architecture, algorithms, and
performance, of which, the major contribution to the field is the modern internals in RxJava
2 and Pivotal's Reactor Core 3. If one wants to know the in-depths of RxJava, Reactive-
Streams, or reactive programming in general, David is the go-to "guru" worth listening to.

David is also a reviewer of the book, Learning Reactive Programming With Java 8, by Packt,
and Reactive Programming with RxJava, by O'Reilly.

David Moten is a software developer, largely on JVM, who loves creating libraries for
others and himself to use. Contributing to open source projects and participating in open
source communities has been a source of enjoyment for him and a considerable education in
recent years, with some really interesting complex problems in the RxJava project. RxJava
itself has proven to be a huge boon, both in his workplace and outside of it, and David sees
reactive programming growing in importance in mobile, backend, and frontend
applications.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at h t t p s ://w w w . a m a z o n . c o m /d p /1787120422.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422

Table of Contents
Preface 1

Chapter 1: Thinking Reactively 7

A brief history of ReactiveX and RxJava 8
Thinking reactively 9
Why should I learn RxJava? 10

What we will learn in this book? 11
Setting up 11

Navigating the Central Repository 12
Using Gradle 13
Using Maven 15

A quick exposure to RxJava 16
RxJava 1.0 versus RxJava 2.0 - which one do I use? 20
When to use RxJava 20
Summary 21

Chapter 2: Observables and Subscribers 23

The Observable 23
How Observables work 23
Using Observable.create() 24
Using Observable.just() 28

The Observer interface 30
Implementing and subscribing to an Observer 31
Shorthand Observers with lambdas 32

Cold versus hot Observables 34
Cold Observables 35
Hot Observables 38
ConnectableObservable 40

Other Observable sources 42
Observable.range() 42
Observable.interval() 44
Observable.future() 47
Observable.empty() 48
Observable.never() 48
Observable.error() 49
Observable.defer() 50

[ii]

Observable.fromCallable() 53
Single, Completable, and Maybe 54

Single 54
Maybe 55
Completable 57

Disposing 58
Handling a Disposable within an Observer 59
Using CompositeDisposable 61
Handling Disposal with Observable.create() 62

Summary 64

Chapter 3: Basic Operators 65

Suppressing operators 65
filter() 66
take() 66
skip() 68
takeWhile() and skipWhile() 69
distinct() 70
distinctUntilChanged() 72
elementAt() 73

Transforming operators 74
map() 74
cast() 75
startWith() 75
defaultIfEmpty() 77
switchIfEmpty() 77
sorted() 78
delay() 80
repeat() 81
scan() 82

Reducing operators 84
count() 84
reduce() 85
all() 86
any() 87
contains() 87

Collection operators 88
toList() 89
toSortedList() 90
toMap() and toMultiMap() 90

[iii]

collect() 93
Error recovery operators 94

onErrorReturn() and onErrorReturnItem() 95
onErrorResumeNext() 97
retry() 99

Action operators 101
doOnNext(), doOnComplete(), and doOnError() 101
doOnSubscribe() and doOnDispose() 103
doOnSuccess() 105

Summary 105

Chapter 4: Combining Observables 107

Merging 108
Observable.merge() and mergeWith() 108
flatMap() 112

Concatenation 117
Observable.concat() and concatWith() 118
concatMap() 120

Ambiguous 121
Zipping 123
Combine latest 125

withLatestFrom() 127
Grouping 128
Summary 130

Chapter 5: Multicasting, Replaying, and Caching 132

Understanding multicasting 133
Multicasting with operators 134
When to multicast 139

Automatic connection 141
autoConnect() 142
refCount() and share() 145

Replaying and caching 147
Replaying 147
Caching 152

Subjects 153
PublishSubject 153
When to use Subjects 154
When Subjects go wrong 156
Serializing Subjects 157

[iv]

BehaviorSubject 158
ReplaySubject 159
AsyncSubject 160
UnicastSubject 161

Summary 164

Chapter 6: Concurrency and Parallelization 165

Why concurrency is necessary 165
Concurrency in a nutshell 166

Understanding parallelization 167
Introducing RxJava concurrency 167

Keeping an application alive 173
Understanding Schedulers 176

Computation 177
IO 177
New thread 177
Single 178
Trampoline 178
ExecutorService 179
Starting and shutting down Schedulers 180

Understanding subscribeOn() 180
Nuances of subscribeOn() 184

Understanding observeOn() 187
Using observeOn() for UI event threads 191
Nuances of observeOn() 193

Parallelization 194
unsubscribeOn() 199
Summary 202

Chapter 7: Switching, Throttling, Windowing, and Buffering 203

Buffering 204
Fixed-size buffering 204
Time-based buffering 207
Boundary-based buffering 209

Windowing 210
Fixed-size windowing 210
Time-based windowing 212
Boundary-based windowing 213

Throttling 214
throttleLast() / sample() 216

[v]

throttleFirst() 217
throttleWithTimeout() / debounce() 217

Switching 219
Grouping keystrokes 224
Summary 227

Chapter 8: Flowables and Backpressure 228

Understanding backpressure 228
An example that needs backpressure 230
Introducing the Flowable 232
When to use Flowables and backpressure 234

Use an Observable If... 234
Use a Flowable If... 235

Understanding the Flowable and Subscriber 236
The Subscriber 237

Creating a Flowable 242
Using Flowable.create() and BackpressureStrategy 243
Turning an Observable into a Flowable (and vice-versa) 245

Using onBackpressureXXX() operators 247
onBackPressureBuffer() 247
onBackPressureLatest() 250
onBackPressureDrop() 251

Using Flowable.generate() 252
Summary 256

Chapter 9: Transformers and Custom Operators 257

Transformers 257
ObservableTransformer 258
FlowableTransformer 262
Avoiding shared state with Transformers 263

Using to() for fluent conversion 266
Operators 269

Implementing an ObservableOperator 269
FlowableOperator 274

Custom Transformers and operators for Singles, Maybes, and
Completables 277
Using RxJava2-Extras and RxJava2Extensions 278
Summary 279

Chapter 10: Testing and Debugging 281

Configuring JUnit 282

[vi]

Blocking subscribers 282
Blocking operators 285

blockingFirst() 286
blockingGet() 287
blockingLast() 288
blockingIterable() 289
blockingForEach() 290
blockingNext() 290
blockingLatest() 291
blockingMostRecent() 292

Using TestObserver and TestSubscriber 293
Manipulating time with the TestScheduler 295
Debugging RxJava code 297
Summary 302

Chapter 11: RxJava on Android 303

Creating the Android project 304
Configuring Retrolambda 310
Configuring RxJava and friends 313

Using RxJava and RxAndroid 314
Using RxBinding 318

Other RxAndroid bindings libraries 321
Life cycles and cautions using RxJava with Android 322
Summary 326

Chapter 12: Using RxJava for Kotlin New 327

Why Kotlin? 328
Configuring Kotlin 328

Configuring Kotlin for Gradle 329
Configuring Kotlin for Maven 329
Configuring RxJava and RxKotlin 331

Kotlin basics 331
Creating a Kotlin file 332
Assigning properties and variables 333
Extension functions 334
Kotlin lambdas 335

Extension operators 337
Using RxKotlin 339
Dealing with SAM ambiguity 340
Using let() and apply() 342

[vii]

Using let() 342
Using apply() 344

Tuples and data classes 345
Future of ReactiveX and Kotlin 347
Summary 348

Appendix 349

Introducing lambda expressions 349
Making a Runnable a lambda 349
Making a Supplier a lambda 351
Making a Consumer a lambda 353
Making a Function a lambda 355

Functional types 357
Mixing object-oriented and reactive programming 358
Materializing and Dematerializing 363
Understanding Schedulers 366

Index 370

Preface
Reactive programming is more than a technology or library specification. It is an entirely
new mindset in how we solve problems. The reason it is so effective and revolutionary is it
does not structure our world as a series of states, but rather something that is constantly in
motion. Being able to quickly capture the complexity and dynamic nature of movement
(rather than state) opens up powerful new possibilities in how we represent things with
code.

When I first learned Java and object-oriented programming, I felt it was useful, but not
effective enough. Although OOP is useful, I believed it needed to be paired with something
else to be truly productive, which is why I keep an eye on C# and Scala. Only a few years
later, Java 8 came out, and I put functional programming into practice for the first time.

However, something was still missing. I became fascinated with the idea of a value
notifying another value of its change, and an event triggering another event in a domino
effect. Was there not a way to model events in a fluent and functional way, much like Java 8
Streams? When I voiced this idea one day, somebody introduced me to reactive
programming. What I was looking for was the RxJava Observable, which, at first glance,
looked a lot like a Java 8 Stream. The two look and feel similar, but the Observable pushes
not just data but also events. At that moment, I found exactly what I was looking for.

For me, as well as many others, a challenge in learning RxJava is the lack of documentation
and literature. I was often left experimenting, asking questions on Stack Overflow, and
trawling obscure issues on GitHub to become knowledgeable. As I used RxJava heavily for
some business problems at work, I wrote several blog articles, sharing my discoveries on
topics such as parallelization and concurrency. To my surprise, these articles exploded with
traffic. Perhaps this should not have been surprising since these topics were sparsely
documented anywhere else. When Packt approached me to write my second book, Learning
RxJava, I jumped at the opportunity despite the work involved. Maybe, just maybe, this
book can solve the documentation problem once and for all. Every fundamental concept,
use case, helpful trick, and "gotcha" can be made accessible, and RxJava will no longer be
considered an "advanced topic." I believe RxJava should be made accessible to professional
developers of all skill levels, as it effectively makes hard problems easy and easy problems
even easier. It may require a bit more abstract understanding, but the immediate
productivity gained makes this small hurdle worthwhile.

Preface

[2]

As far as I know, this is the first published book covering RxJava 2.0, which has many major
differences from RxJava 1.0. This book you are reading now is the comprehensive, step-by-
step guide that I wish I had. It strives to not cut any corners or present code without
thorough explanation. I hope it helps you quickly find value in RxJava, and you become
successful in applying it to all your endeavors. If you have any concerns, feedback, or
comments, you are welcome to reach out to me at tmnield@outlook.com.

Good luck!

Thomas Nield

What this book covers
Chapter 1, Thinking Reactively, introduces you to RxJava.

Chapter 2, Observables and Subscribers, talks about the core types in RxJava, including the
Observable and Observer.

Chapter 3, Basic Operators, gives you a thorough introduction to the core operators that
allow you to express logic quickly and make RxJava productive.

Chapter 4, Combining Observables, teaches you how to usefully combine multiple
Observable sources together in a variety of ways.

Chapter 5, Multicasting, Replaying, and Caching, consolidates streams to prevent redundant
work with multiple Observers, as well as replay and cache emissions.

Chapter 6, Concurrency and Parallelization, helps you discover how RxJava flexibly and
powerfully enables concurrency in your application.

Chapter 7, Switching, Throttling, Windowing, and Buffering, develops strategies to cope with
rapidly-producing Observables without backpressure.

Chapter 8, Flowables and Backpressure, utilizes the Flowable to leverage backpressure and
keep producers from out-pacing consumers.

Chapter 9, Transformers and Custom Operators, teaches you how to reuse reactive logic and
create your own RxJava operators.

Chapter 10, Testing and Debugging, leverages effective tools to test and debug your RxJava
code bases.

Chapter 11, RxJava on Android, teaches you how to apply your RxJava knowledge and
RxAndroid extensions to streamline your Android apps.

Preface

[3]

Chapter 12, Using RxJava for Kotlin New, takes advantage of Kotlin’s language features to
enable expressive patterns with RxJava.

What you need for this book
We will be using Java 8, so Oracle’s JDK 1.8 will be required. You will need an environment
to write and compile your Java code (I recommend Intellij IDEA), and preferably a build
automation system such as Gradle or Maven. Later in this book, we will use Android
Studio.

Everything you need in this book should be free to use and not require commercial or
personal licensing.

Who this book is for
This book is for Java programmers who have a fundamental grasp of object-oriented
programing and core Java features. You should be familiar with variables, types, classes,
properties, methods, generics, inheritance, interfaces, and static classes/properties/methods.
In the Java standard library, you should at least be familiar with collections (including Lists,
Sets, and Maps) as well as object equality (hashcode()/equals()). If any of these topics
sound unfamiliar, you may want to read Java: A Beginner’s Guide by Herbert Schildt to learn
the fundamentals of Java. Also, Effective Java (2nd Edition) by Joshua Bloch is a classic book
that should be on every Java developer’s shelf. This book strives to use the best practices
cited by Bloch.

You do not need to be familiar with concurrency as a prerequisite. This topic will be
covered from an RxJava perspective.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We can
also use several operators between Observable and Observer to transform each pushed
item or manipulate them in some way".

Preface

[4]

A block of code is set as follows:

import io.reactivex.Observable;
public class Launcher {
 public static void main(String[] args) {
 Observable<String> myStrings =
 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon");
 }
}

Any output is written as follows:

 Alpha
 Beta
 Gamma
 Delta
 Epsilon

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "You also have the option to
use Maven, and you can view the appropriate configuration in The Central Repository by
selecting the Apache Maven configuration information."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

Preface

[5]

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /L e a r n i n g - R x J a v a . We also have other code bundles from our rich catalog of books
and videos available at h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /. Check them out!

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Thinking Reactively

It is assumed you are fairly comfortable with Java and know how to use classes, interfaces,
methods, properties, variables, static/nonstatic scopes, and collections. If you have not done
concurrency or multithreading, that is okay. RxJava makes these advanced topics much
more accessible.

Have your favorite Java development environment ready, whether it is Intellij IDEA,
Eclipse, NetBeans, or any other environment of your choosing. I will be using Intellij IDEA,
although it should not matter or impact the examples in this book. I recommend that you
have a build automation system as well such as Gradle or Maven, which we will walk
through shortly.

Before we dive deep into RxJava, we will cover some core topics first:

A brief history of Reactive Extensions and RxJava
Thinking reactively
Leveraging RxJava
Setting up your first RxJava project
Building your first reactive applications
Differences between RxJava 1.0 and RxJava 2.0

Thinking Reactively

[8]

A brief history of ReactiveX and RxJava
As developers, we tend to train ourselves to think in counter-intuitive ways. Modeling our
world with code has never been short of challenges. It was not long ago that object-oriented
programming was seen as the silver bullet to solve this problem. Making blueprints of what
we interact with in real life was a revolutionary idea, and this core concept of classes and
objects still impacts how we code today. However, business and user demands continued to
grow in complexity. As 2010 approached, it became clear that object-oriented programming
only solved part of the problem.

Classes and objects do a great job of representing an entity with properties and methods,
but they become messy when they need to interact with each other in increasingly complex
(and often unplanned) ways. Decoupling patterns and paradigms emerged, but this yielded
an unwanted side effect of growing amounts of boilerplate code. In response to these
problems, functional programming began to make a comeback, not to replace object-
oriented programming, but rather to complement it and fill this void. Reactive
programming, a functional event-driven programming approach, began to receive special
attention.
A couple of reactive frameworks emerged ultimately, including Akka and Sodium. But at
Microsoft, a computer scientist named Erik Meijer created a reactive programming
framework for .NET called Reactive Extensions. In a matter of years, Reactive Extensions
(also called ReactiveX or Rx) was ported to several languages and platforms, including
JavaScript, Python, C++, Swift, and Java, of course. ReactiveX quickly emerged as a cross-
language standard to bring reactive programming into the industry.

RxJava, the ReactiveX port for Java, was created in large part by Ben Christensen from
Netflix and David Karnok. RxJava 1.0 was released in November 2014, followed by RxJava
2.0 in November 2016. RxJava is the backbone to other ReactiveX JVM ports, such as
RxScala, RxKotlin, and RxGroovy. It has become a core technology for Android
development and has also found its way into Java backend development. Many
RxJavaadapter libraries, such as RxAndroid (h t t p s ://g i t h u b . c o m /R e a c t i v e X /R x A n d r o i d),
RxJava-JDBC (h t t p s ://g i t h u b . c o m /d a v i d m o t e n /r x j a v a - j d b c), RxNetty (h t t p s ://g i t h u

b . c o m /R e a c t i v e X /R x N e t t y), and RxJavaFX (h t t p s ://g i t h u b . c o m /R e a c t i v e X /R x J a v a F X)
adapted several Java frameworks to become reactive and work with RxJava out of the box.
This all shows that RxJava is more than a library. It is part of a greater ReactiveX ecosystem
that represents an entire approach to programming. The fundamental idea of ReactiveX is
that events are data and data are events. This is a powerful concept that we will explore later in
this chapter, but first, let's step back and look at the world through the reactive lens.

https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX

Thinking Reactively

[9]

Thinking reactively
Suspend everything you know about Java (and programming in general) for a moment, and
let's make some observations about our world. These may sound like obvious statements,
but as developers, we can easily overlook them. Bring your attention to the fact that
everything is in motion. Traffic, weather, people, conversations, financial transactions, and
so on are all moving. Technically, even something stationary as a rock is in motion due to
the earth's rotation and orbit. When you consider the possibility that everything can be
modeled as in motion, you may find it a bit overwhelming as a developer.

Another observation to note is that these different events are happening concurrently.
Multiple activities are happening at the same time. Sometimes, they act independently, but
other times, they can converge at some point to interact. For instance, a car can drive with
no impact on a person jogging. They are two separate streams of events. However, they
may converge at some point and the car will stop when it encounters the jogger.

If this is how our world works, why do we not model our code this way?. Why do we not
model code as multiple concurrent streams of events or data happening at the same time? It
is not uncommon for developers to spend more time managing the states of objects and
doing it in an imperative and sequential manner. You may structure your code to execute
Process 1, Process 2, and then Process 3, which depends on Process 1 and Process 2. Why
not kick-off Process 1 and Process 2 simultaneously, and then the completion of these two
events immediately kicks-off Process 3? Of course, you can use callbacks and Java
concurrency tools, but RxJava makes this much easier and safer to express.

Let's make one last observation. A book or music CD is static. A book is an unchanging
sequence of words and a CD is a collection of tracks. There is nothing dynamic about them.
However, when we read a book, we are reading each word one at a time. Those words are
effectively put in motion as a stream being consumed by our eyes. It is no different with a
music CD track, where each track is put in motion as sound waves and your ears are
consuming each track. Static items can, in fact, be put in motion too. This is an abstract but
powerful idea because we made each of these static items a series of events. When we level
the playing field between data and events by treating them both the same, we unleash the
power of functional programming and unlock abilities you previously might have thought
impractical.

Thinking Reactively

[10]

The fundamental idea behind reactive programming is that events are data and data are events.
This may seem abstract, but it really does not take long to grasp when you consider our
real-world examples. The runner and car both have properties and states, but they are also
in motion. The book and CD are put in motion when they are consumed. Merging the event
and data to become one allows the code to feel organic and representative of the world we
are modeling.

Why should I learn RxJava?
 ReactiveX and RxJava paints a broad stroke against many problems programmers face
daily, allowing you to express business logic and spend less time engineering code. Have
you ever struggled with concurrency, event handling, obsolete data states, and exception
recovery? What about making your code more maintainable, reusable, and evolvable so it
can keep up with your business? It might be presumptuous to call reactive programming a
silver bullet to these problems, but it certainly is a progressive leap in addressing them.

There is also growing user demand to make applications real time and responsive. Reactive
programming allows you to quickly analyse and work with live data sources such as
Twitter feeds or stock prices. It can also cancel and redirect work, scale with concurrency,
and cope with rapidly emitting data. Composing events and data as streams that can be
mixed, merged, filtered, split, and transformed opens up radically effective ways to
compose and evolve code.

In summary, reactive programming makes many hard tasks easy, enabling you to add
value in ways you might have thought impractical earlier. If you have a process written
reactively and you discover that you need to run part of it on a different thread, you can
implement this change in a matter of seconds. If you find network connectivity issues
crashing your application intermittently, you can gracefully use reactive recovery strategies
that wait and try again. If you need to inject an operation in the middle of your process, it is
as simple as inserting a new operator. Reactive programming is broken up into modular
chain links that can be added or removed, which can help overcome all the aforementioned
problems quickly. In essence, RxJava allows applications to be tactical and evolvable while
maintaining stability in production.

Thinking Reactively

[11]

What we will learn in this book?
 As stated earlier, RxJava is the ReactiveX port for Java. In this book, we will focus primarily
on RxJava 2.0, but I will call out significant differences in RxJava 1.0. We will place priority
on learning to think reactively and leverage the practical features of RxJava. Starting with a
high-level understanding, we will gradually move deeper into how RxJava works. Along
the way, we will learn about reactive patterns and tricks to solve common problems
programmers encounter.

 In Chapter 2, The Observable and Subscribers, Chapter 3, Basic Operators, and Chapter
4, Combining Observables, we will cover core Rx concepts with Observable, Observer, and
Operator. These are the three core entities that make up RxJava applications. You will start
writing reactive programs immediately and have a solid knowledge foundation to build on
for the rest of the book.

Chapter 5, Multicasting, Replaying, and Caching, and Chapter 6, Concurrency and
Parallelization, will explore more of the nuances of RxJava and how to effectively leverage
concurrency.

In Chapter 7, Switching, Throttling, Windowing, and Buffering and Chapter 8, Flowables and
Backpressure, we will learn about the different ways to cope with reactive streams that
produce data/events faster than they can be consumed.

Finally, Chapter 9, Transformers and Custom Operators, Chapter 10, Testing and
Debugging, Chapter 11, RxJava on Android, and Chapter 12, Using RxJava with Kotlin New,
will touch on several miscellaneous (but essential) topics including custom operators as
well as how to use RxJava with testing frameworks, Android, and the Kotlin language.

Setting up
There are two co-existing versions of RxJava currently: 1.0 and 2.0. We will go through
some of the major differences later and discuss which version you should use.

RxJava 2.0 is a fairly lightweight library and comes just above 2 Megabytes (MBs) in size.
This makes it practical for Android and other projects that require a low dependency
overhead. RxJava 2.0 has only one dependency, called Reactive Streams (h t t p ://w w w . r e a c

t i v e - s t r e a m s . o r g /), which is a core library (made by the creators of RxJava) that sets a
standard for asynchronous stream implementations, one of which is RxJava 2.0.

http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/

Thinking Reactively

[12]

It may be used in other libraries beyond RxJava and is a critical effort in the standardization
of reactive programming on the Java platform. Note that RxJava 1.0 does not have any
dependencies, including Reactive Streams, which was realized after 1.0.

 If you are starting a project from scratch, try to use RxJava 2.0. This is the version we will
cover in this book, but I will call out significant differences in 1.0. While RxJava 1.0 will be
supported for a good while due to countless projects using it, innovation will likely only
continue onward in RxJava 2.0. RxJava 1.0 will only get maintenance and bug fixes.

Both RxJava 1.0 and 2.0 run on Java 1.6+. In this book, we will use Java 8, and it is
recommended that you use a minimum of Java 8 so you can use lambdas out of the box. For
Android, there are ways to leverage lambdas in earlier Java versions that will be addressed
later. But weighing the fact that Android Nougat uses Java 8 and Java 8 has been out since
2014, hopefully, you will not have to do any workarounds to leverage lambdas.

Navigating the Central Repository
To bring in RxJava as a dependency, you have a few options. The best place to start is to go
to The Central Repository (search h t t p ://s e a r c h . m a v e n . o r g /) and search for rxjav. You
should see RxJava 2.0 and RxJava 1.0 as separate repositories at the top of the search results,
as shown in the following screenshot:

Searching for RxJava in the Central Repository (RxJava 2.0 and 1.0 are highlighted)

http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/

Thinking Reactively

[13]

At the time of writing, RxJava 2.0.2 is the latest version for RxJava 2.0 and RxJava 1.2.3 is the
latest for RxJava 1.0. You can download the latest JAR file for either by clicking the JAR
links in the far right under the Download column. You can then configure your project to
use the JAR file.

However, you might want to consider using Gradle or Maven to automatically import these
libraries into your project. This way, you can easily share and store your code project
(through GIT or other version control systems) without having to download and configure
RxJava manually into it each time. To view the latest configurations for Maven, Gradle, and
several other build automation systems, click on the version number for either of the
repositories, as highlighted in the following screenshot:

Click the version number under the Latest Version column to view the configurations for Maven, Gradle, and other major build automation systems

Using Gradle
There are several automated build systems available, but the two most mainstream options
are Gradle and Maven. Gradle is somewhat a successor to Maven and is especially the go-to
build automation solution for Android development. If you are not familiar with Gradle
and would like to learn how to use it, check out the Gradle Getting Started guide (h t t p s

://g r a d l e . o r g /g e t t i n g - s t a r t e d - g r a d l e - j a v a /).

https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/

Thinking Reactively

[14]

There are also several decent books that cover Gradle in varying degrees of depth, which
you can find at h t t p s ://g r a d l e . o r g /b o o k s /. The following screenshot displays the The
Central Repository page showing how to set up RxJava 2.0.2 for Gradle:

You can find the latest Gradle configuration code and copy it into your Gradle script

In your build.gradle script, ensure that you have declared mavenCentral() as one of
your repositories. Type in or paste that dependency line compile
'io.reactivex.rxjava2:rxjava:x.y.z', where x.y.z is the version number you want
to use, as shown in the following code snippet:

apply plugin: 'java'

sourceCompatibility = 1.8

repositories {
 mavenCentral()
}

dependencies {
 compile 'io.reactivex.rxjava2:rxjava:x.y.z'
}

https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/

Thinking Reactively

[15]

Build your Gradle project and you should be good to go! You will then have RxJava and its
types available for use in your project.

Using Maven
You also have the option to use Maven, and you can view the appropriate configuration in
The Central Repository by selecting the Apache Maven configuration information, as
shown in the following screenshot:

Select and then copy the Apache Maven configuration

You can then copy and paste the <dependency> block containing the RxJava configuration
and paste it inside a <dependencies> block in your pom.xml file. Rebuild your project,
and you should now have RxJava set up as a dependency. The x.y.z version number
corresponds to the desired RxJava version that you want to use:

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.nield</groupId>
 <artifactId>mavenrxtest</artifactId>

Thinking Reactively

[16]

 <version>1.0</version>
 <dependencies>
 <dependency>
 <groupId>io.reactivex.rxjava2</groupId>
 <artifactId>rxjava</artifactId>
 <version>x.y.z</version>
 </dependency>
 </dependencies>
</project>

A quick exposure to RxJava
 Before we dive deep into the reactive world of RxJava, here is a quick exposure to get your
feet wet first. In ReactiveX, the core type you will work with is the Observable. We will be
learning more about the Observable throughout the rest of this book. But essentially, an
Observable pushes things. A given Observable<T>pushes things of type T through a
series of operators until it arrives at an Observer that consumes the items.

For instance, create a new Launcher.java file in your project and put in the following
code:

import io.reactivex.Observable;
public class Launcher {
 public static void main(String[] args) {
 Observable<String> myStrings =
 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon");
 }
}

In our main() method, we have an Observable<String> that will push five string
objects. An Observable can push data or events from virtually any source, whether it is a
database query or live Twitter feeds. In this case, we are quickly creating an Observable
using Observable.just(), which will emit a fixed set of items.

In RxJava 2.0, most types you will use are contained in the io.reactivex
package. In RxJava 1.0, the types are contained in the rx package.

Thinking Reactively

[17]

However, running this main() method is not going to do anything other than
declare Observable<String>. To make this Observable actually push these five strings
(which are called emissions), we need an Observer to subscribe to it and receive the items.
We can quickly create and connect an Observer by passing a lambda expression that
specifies what to do with each string it receives:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {
 Observable<String> myStrings =
 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon");

 myStrings.subscribe(s -> System.out.println(s));
 }
}

 When we run this code, we should get the following output:

 Alpha
 Beta
 Gamma
 Delta
 Epsilon

What happened here is that our Observable<String> pushed each string object one at a
time to our Observer, which we shorthanded using the lambda expression s ->
System.out.println(s). We pass each string through the parameter s (which I
arbitrarily named) and instructed it to print each one. Lambdas are essentially mini
functions that allow us to quickly pass instructions on what action to take with each
incoming item. Everything to the left of the arrow -> are arguments (which in this case is a
string we named s), and everything to the right is the action (which is
System.out.println(s)).

If you are unfamiliar with lambda expressions, turn to Appendix, to learn more about how
they work. If you want to invest extra time in understanding lambda expressions, I highly
recommend that you read at least the first few chapters of Java 8 Lambdas (O'Reilly) (h t t p

://s h o p . o r e i l l y . c o m /p r o d u c t /0636920030713. d o) by Richard Warburton. Lambda
expressions are a critical topic in modern programming and have become especially
relevant to Java developers since their adoption in Java 8. We will be using lambdas
constantly in this book, so definitely take some time getting comfortable with them.

http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do

Thinking Reactively

[18]

 We can also use several operators between Observable and Observer to transform each
pushed item or manipulate them in some way. Each operator returns a new Observable
derived-off the previous one but reflects that transformation. For example, we can use
map() to turn each string emission into its length(), and each length integer will then be
pushed to Observer , as shown in the following code snippet:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable<String> myStrings =
 Observable.just("Alpha", "Beta", "Gamma", "Delta",
 "Epsilon");

 myStrings.map(s -> s.length()).subscribe(s ->
 System.out.println(s));
 }
}

When we run this code, we should get the following output:

 5
 4
 5
 5
 7

If you have used Java 8 Streams or Kotlin sequences, you might be wondering how
Observable is any different. The key difference is that Observable pushes the items while
Streams and sequences pull the items. This may seem subtle, but the impact of a push-based
iteration is far more powerful than a pull-based one. As we saw earlier, you can push not
only data, but also events. For instance, Observable.interval() will push a consecutive
Long at each specified time interval, as shown in the following code snippet. This Long
emission is not only data, but also an event! Let's take a look:

import io.reactivex.Observable;
import java.util.concurrent.TimeUnit;

public class Launcher {
 public static void main(String[] args) {
 Observable<Long> secondIntervals =
 Observable.interval(1, TimeUnit.SECONDS);

 secondIntervals.subscribe(s -> System.out.println(s));
 /* Hold main thread for 5 seconds

Thinking Reactively

[19]

 so Observable above has chance to fire */
 sleep(5000);
 }

 public static void sleep(long millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

When we run this code, we should get the following output:

0
1
2
3
4

When you run the preceding code, you will see that a consecutive emission fires every
second. This application will run for about five seconds before it quits, and you will likely
see emissions 0 to 4 fired, each separated by a just a second's gap. This simple idea that data
is a series of events over time will unlock new possibilities in how we tackle programming.

On a side note, we will get more into concurrency later, but we had to create a sleep()
method because this Observable fires emissions on a computation thread when subscribed
to. The main thread used to launch our application is not going to wait on this Observable
since it fires on a computation thread, not the main thread. Therefore, we use sleep() to
pause the main thread for 5000 milliseconds and then allow it to reach the end of the
main() method (which will cause the application to terminate). This gives
Observable.interval() a chance to fire for a five second window before the application
quits.

Thinking Reactively

[20]

Throughout this book, we will uncover many mysteries about Observable and the
powerful abstractions it takes care of for us. If you've conceptually understood what is
going on here so far, congrats! You are already becoming familiar with how reactive code
works. To emphasize again, emissions are pushed one at a time all the way to Observer.
Emissions represent both data and an event, which can be emitted over time. Of course,
beyond map(), there are hundreds of operators in RxJava, and we will learn about the key
ones in this book. Learning which operators to use for a situation and how to combine them
is the key to mastering RxJava. In the next chapter, we will cover Observable and
Observer much more comprehensively. We will also demystify events and data being
represented in Observable a bit more.

RxJava 1.0 versus RxJava 2.0 - which one do
I use?
As stated earlier, you are encouraged to use RxJava 2.0 if you can. It will continue to grow
and receive new features, while RxJava 1.0 will be maintained for bug fixes. However, there
are other considerations that may lead you to use RxJava 1.0.

If you inherit a project that is already using RxJava 1.0, you will likely continue using that
until it becomes feasible to refactor to 2.0. You can also check out David Akarnokd's
RxJava2Interop project (h t t p s ://g i t h u b . c o m /a k a r n o k d /R x J a v a 2I n t e r o p), which converts
Rx types from RxJava 1.0 to RxJava 2.0 and vice versa. After you finish this book, you may
consider using this library to leverage RxJava 2.0 even if you have the RxJava 1.0 legacy
code.

In RxJava, there are several libraries to make several Java APIs reactive and plug into
RxJava seamlessly. Just to name a few, these libraries include RxJava-JDBC, RxAndroid,
RxJava-Extras, RxNetty, and RxJavaFX. At the time of writing this, only RxAndroid and
RxJavaFX have been fully ported to RxJava 2.0 (although many other libraries are
following). By the time you are reading this, all major RxJava extension libraries will
hopefully be ported to RxJava 2.0.

You will also want to prefer RxJava 2.0 because it was built on much of the hindsight and
wisdom gained from RxJava 1.0. It has better performance, simpler APIs, a cleaner
approach to backpressure, and a bit more safety when hacking together your own
operators.

https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop

Thinking Reactively

[21]

When to use RxJava
A common question ReactiveX newcomers ask is what circumstances warrant a reactive
approach? Do we always want to use RxJava? As someone who has been living and
breathing reactive programming for a while, I have learned that there are two answers to
this question:

The first answer is when you first start out: yes! You always want to take a reactive
approach. The only way to truly become a master of reactive programming is to build
reactive applications from the ground up. Think of everything as Observable and always
model your program in terms of data and event flows. When you do this, you will leverage
everything reactive programming has to offer and see the quality of your applications go up
significantly.

The second answer is that when you become experienced in RxJava, you will find cases
where RxJava may not be appropriate. There will occasionally be times where a reactive
approach may not be optimal, but usually, this exception applies to only part of your code.
Your entire project itself should be reactive. There may be parts that are not reactive and for
good reason. These exceptions only stand out to a trained Rx veteran who sees that
returning List<String> is perhaps better than returning Observable<String>.

Rx greenhorns should not worry about when something should be reactive versus
something not reactive. Over time, they will start to see cases where the benefits of Rx are
marginalized, and this is something that only comes with experience.

So for now, no compromises. Go reactive all the way!

Summary
 In this chapter, we learned how to look at the world in a reactive way. As a developer, you
may have to retrain yourself from a traditional imperative mindset and develop a reactive
one. Especially if you have done imperative, object-oriented programming for a long time,
this can be challenging. But the return on investment will be significant as your applications
will become more maintainable, scalable, and evolvable. You will also have faster turn
around and more legible code.

Thinking Reactively

[22]

We also covered how to configure a RxJava project using Gradle or Maven and what
decisions should drive whether you should choose RxJava 2.0 versus RxJava 1.0. We also
got a brief introduction to reactive code and how Observable works through push-based
iteration.

By the time you finish this book, you will hopefully find reactive programming intuitive
and easy to reason with. I hope you find that RxJava not only makes you more productive,
but also helps you take on tasks you hesitated to do earlier. So let's get started!

2
Observables and Subscribers

We already got a glimpse into the Observable and how it works in Chapter 1, Thinking
Reactively. You probably have many questions on how exactly it operates and what practical
applications it holds. This chapter will provide a foundation for understanding how an
Observable works as well as the critical relationship it has with the Observer. We will
also cover several ways to create an Observable as well make it useful by covering a few
operators. To make the rest of the book flow smoothly, we will also cover all critical
nuances head-on to build a solid foundation and not leave you with surprises later.

Here is what we will cover in this chapter:

The Observable
The Observer
Other Observable factories
Single, Completable, and Maybe
Disposable

The Observable
As introduced in Chapter 1, Thinking Reactively, the Observable is a push-based,
composable iterator. For a given Observable<T>, it pushes items (called emissions) of type
T through a series of operators until it finally arrives at a final Observer, which consumes
the items. We will cover several ways to create an Observable, but first, let's dive into how
an Observable works through its onNext(), onCompleted(), and onError() calls.

Observables and Subscribers

[24]

How Observables work
Before we do anything else, we need to study how an Observable sequentially passes
items down a chain to an Observer. At the highest level, an Observable works by passing
three types of events:

onNext(): This passes each item one at a time from the source Observable all
the way down to the Observer.
onComplete(): This communicates a completion event all the way down to the
Observer, indicating that no more onNext() calls will occur.
onError(): This communicates an error up the chain to the Observer, where
the Observer typically defines how to handle it. Unless a retry() operator is
used to intercept the error, the Observable chain typically terminates, and no
more emissions will occur.

These three events are abstract methods in the Observer type, and we will cover some of
the implementation later. For now, we will focus pragmatically on how they work in
everyday usage.

In RxJava 1.0, the onComplete() event is actually called onCompleted().

Using Observable.create()
Let's start with creating a source Observable using Observable.create(). Relatively
speaking, a source Observable is an Observable where emissions originate from and is
the starting point of our Observable chain.

The Observable.create() factory allows us to create an Observable by providing a
lambda receiving an Observable emitter. We can call the Observable emitter's onNext()
method to pass emissions (one a time) up the chain as well as onComplete() to signal
completion and communicate that there will be no more items. These onNext() calls will
pass these items up the chain towards the Observer, where it will print each item, as
shown in the following code snippet:

 import io.reactivex.Observable;

 public class Launcher {

Observables and Subscribers

[25]

 public static void main(String[] args) {

 Observable<String> source = Observable.create(emitter -> {
 emitter.onNext("Alpha");
 emitter.onNext("Beta");
 emitter.onNext("Gamma");
 emitter.onNext("Delta");
 emitter.onNext("Epsilon");
 emitter.onComplete();
 });

 source.subscribe(s -> System.out.println("RECEIVED: " + s));
 }
 }

The output is as follows:

 RECEIVED: Alpha
 RECEIVED: Beta
 RECEIVED: Gamma
 RECEIVED: Delta
 RECEIVED: Epsilon

In RxJava 1.0, ensure that you use Observable.fromEmitter() instead
of Observable.create(). The latter is something entirely different in
RxJava 1.0 and is only for advanced RxJava users.

The onNext() method is a way to hand each item, starting with Alpha, to the next step in
the chain. In this example, the next step is the Observer, which prints the item using the s
-> System.out.println("RECEIVED: " + s) lambda. This lambda is invoked in
the onNext() call of Observer, and we will look at Observer more closely in a moment.

Note that the Observable contract (h t t p ://r e a c t i v e x . i o /d o c u m e n t a t i o

n /c o n t r a c t . h t m l) dictates that emissions must be passed sequentially
and one at a time. Emissions cannot be passed by an Observable
concurrently or in parallel. This may seem like a limitation, but it does in
fact simplify programs and make Rx easier to reason with. We will learn
some powerful tricks to effectively leverage concurrency and
parallelization in Chapter 6, Concurrency and Parallelization , without
breaking the Observable contract.

http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html

Observables and Subscribers

[26]

The onComplete() method is used to communicate up the chain to the Observer that no
more items are coming. Observables can indeed be infinite, and if this is the case, the
onComplete() event will never be called. Technically, a source could stop emitting
onNext() calls and never call onComplete(). This would likely be bad design, though, if
the source no longer plans to send emissions.

Although this particular example is unlikely to throw an error, we can catch errors that may
occur within our Observable.create() block and emit them through onError(). This
way, the error can be pushed up the chain and handled by the Observer. This particular
Observer that we have set up does not handle exceptions, but you can do that, as shown
here:

 import io.reactivex.Observable;

 public class Launcher {

 public static void main(String[] args) {

 Observable<String> source = Observable.create(emitter -> {
 try {
 emitter.onNext("Alpha");
 emitter.onNext("Beta");
 emitter.onNext("Gamma");
 emitter.onNext("Delta");
 emitter.onNext("Epsilon");
 emitter.onComplete();
 } catch (Throwable e) {
 emitter.onError(e);
 }
 });

 source.subscribe(s -> System.out.println("RECEIVED: " + s),
Throwable::printStackTrace);
 }
 }

Note that onNext(), onComplete(), and onError() do not necessarily push directly to
the final Observer. They can also push to an operator serving as the next step in the chain.
In the following code, we derive new Observables with the map() and filter() operators,
which will act between the source Observable and final Observer printing the items:

 import io.reactivex.Observable;

 public class Launcher {
 public static void main(String[] args) {
 Observable<String> source = Observable.create(emitter -> {

Observables and Subscribers

[27]

 try {
 emitter.onNext("Alpha");
 emitter.onNext("Beta");
 emitter.onNext("Gamma");
 emitter.onNext("Delta");
 emitter.onNext("Epsilon");
 emitter.onComplete();
 } catch (Throwable e) {
 emitter.onError(e);
 }
 });
 Observable<Integer> lengths = source.map(String::length);

 Observable<Integer> filtered = lengths.filter(i -> i >= 5);

 filtered.subscribe(s -> System.out.println("RECEIVED: " +
 s));
 }
 }

This is the output after running the code:

 RECEIVED: 5
 RECEIVED: 5
 RECEIVED: 5
 RECEIVED: 7

With the map() and filter() operators between the source Observable and
Observer, onNext() will hand each item to the map() operator. Internally, it will act as
an intermediary Observer and convert each string to its length(). This, in turn, will call
onNext() on filter() to pass that integer, and the lambda condition i -> i >= 5 will
suppress emissions that fail to be at least five characters in length. Finally, the filter()
operator will call onNext() to hand each item to the final Observer where they will be
printed.

It is critical to note that the map() operator will yield a new
Observable<Integer> derived off the original Observable<String>. The filter()will
also return an Observable<Integer> but ignore emissions that fail to meet the criteria.
Since operators such as map() and filter() yield new Observables (which internally use
Observer implementations to receive emissions), we can chain all our returned
Observables with the next operator rather than unnecessarily saving each one to an
intermediary variable:

 import io.reactivex.Observable;

 public class Launcher {

Observables and Subscribers

[28]

 public static void main(String[] args) {
 Observable<String> source = Observable.create(emitter -> {
 try {
 emitter.onNext("Alpha");
 emitter.onNext("Beta");
 emitter.onNext("Gamma");
 emitter.onNext("Delta");
 emitter.onNext("Epsilon");
 emitter.onComplete();
 } catch (Throwable e) {
 emitter.onError(e);
 }
 });
 source.map(String::length)
 .filter(i -> i >= 5)
 .subscribe(s -> System.out.println("RECEIVED: " + s));
 }
 }

The output is as follows:

 RECEIVED: 5
 RECEIVED: 5
 RECEIVED: 5
 RECEIVED: 7

Chaining operators in this way is common (and encouraged) in reactive programming. It
has a nice quality of being readable from left to right and top to bottom much like a book,
and this helps in maintainability and legibility.

In RxJava 2.0, Observables no longer support emitting null values. You
will immediately get a non-null exception if you create an Observable
that attempts to emit a null value. If you need to emit a null, consider
wrapping it in a Java 8 or Google Guava Optional.

Using Observable.just()
Before we look at the subscribe() method a bit more, note that you likely will not need to
use Observable.create() often. It can be helpful in hooking into certain sources that are
not reactive, and we will see this in a couple of places later in this chapter. But typically, we
use streamlined factories to create Observables for common sources.

Observables and Subscribers

[29]

In our previous example with Observable.create(), we could have used
Observable.just() to accomplish this. We can pass it up to 10 items that we want to
emit. It will invoke the onNext() call for each one and then invoke onComplete() when
they all have been pushed:

 import io.reactivex.Observable;

 public class Launcher {
 public static void main(String[] args) {
 Observable<String> source =
 Observable.just("Alpha", "Beta", "Gamma", "Delta",
 "Epsilon");
 source.map(String::length).filter(i -> i >= 5)
 .subscribe(s -> System.out.println("RECEIVED: " + s));
 }
 }

We can also use Observable.fromIterable() to emit the items from any Iterable type,
such as a List. It also will call onNext() for each element and then call onComplete()
after the iteration is complete. You will likely use this factory frequently since Iterables in
Java are common and can easily be made reactive:

 import io.reactivex.Observable;
 import java.util.Arrays;
 import java.util.List;

 public class Launcher {
 public static void main(String[] args) {

 List<String> items =
 Arrays.asList("Alpha", "Beta", "Gamma", "Delta", "Epsilon");

 Observable<String> source = Observable.fromIterable(items);
 source.map(String::length).filter(i -> i >= 5)
 .subscribe(s -> System.out.println("RECEIVED: " + s));
 }
 }

We will explore other factories to create Observables later in this chapter, but for now, let's
put that on hold and learn more about Observers.

Observables and Subscribers

[30]

The Observer interface
The onNext(), onComplete(), and onError() methods actually define the Observer type,
an abstract interface implemented throughout RxJava to communicate these events. This is
the Observer definition in RxJava shown in the code snippet. Do not bother yourself
about onSubscribe() for now, as we will cover it at the end of this chapter. Just bring
your attention to the other three methods:

 package io.reactivex;

 import io.reactivex.disposables.Disposable;

 public interface Observer<T> {
 void onSubscribe(Disposable d);
 void onNext(T value);
 void onError(Throwable e);
 void onComplete();
 }

Observers and source Observables are somewhat relative. In one context, a source
Observable is where your Observable chain starts and where emissions originate. In our
previous examples, you could say that the Observable returned from our
Observable.create() method or Observable.just() is the source Observable. But to
the filter() operator, the Observable returned from the map() operator is the source. It
has no idea where the emissions are originating from, and it just knows that it is receiving
emissions from the operator immediately upstream from it, which come from map().

Conversely, each Observable returned by an operator is internally an Observer that
receives, transforms, and relays emissions to the next Observer downstream. It does not
know whether the next Observer is another operator or the final Observer at the end of the
chain. When we talk about the Observer, we are often talking about the final Observer at
the end of the Observable chain that consumes the emissions. But each operator, such
as map() and filter(), also implements Observer internally.

We will learn in detail about how operators are built in Chapter 9, Transformers and Custom
Operators. For now, we will focus on using an Observer for the subscribe() method.

In RxJava 1.0, the Subscriber essentially became a Observer in RxJava 2.0.
There is an Observer type in RxJava 1.0 that defines the three event
methods, but the Subscriber is what you passed to the subscribe()
method, and it is implemented Observer. In RxJava 2.0, a Subscriber only
exists when talking about Flowables, which we will discuss in Chapter 8,
Flowables and Backpressure.

Observables and Subscribers

[31]

Implementing and subscribing to an Observer
When you call the subscribe() method on an Observable, an Observer is used to
consume these three events by implementing its methods. Instead of specifying lambda
arguments like we were doing earlier, we can implement an Observer and pass an instance
of it to the subscribe() method. Do not bother yourself about onSubscribe() at the
moment. Just leave its implementation empty until we discuss it at the end of this chapter:

 import io.reactivex.Observable;
 import io.reactivex.Observer;
 import io.reactivex.disposables.Disposable;

 public class Launcher {

 public static void main(String[] args) {

 Observable<String> source =
 Observable.just("Alpha", "Beta", "Gamma", "Delta",
 "Epsilon");

 Observer<Integer> myObserver = new Observer<Integer>() {
 @Override
 public void onSubscribe(Disposable d) {
 //do nothing with Disposable, disregard for now
 }

 @Override
 public void onNext(Integer value) {
 System.out.println("RECEIVED: " + value);
 }

 @Override
 public void onError(Throwable e) {
 e.printStackTrace();
 }

 @Override
 public void onComplete() {
 System.out.println("Done!");
 }
 };

 source.map(String::length).filter(i -> i >= 5)
 .subscribe(myObserver);
 }
 }

Observables and Subscribers

[32]

The output is as follows:

 RECEIVED: 5
 RECEIVED: 5
 RECEIVED: 5
 RECEIVED: 7
 Done!

We quickly create an Observer<Integer> that serves as our Observer, and it will receive
integer length emissions. Our Observer receives emissions at the end of an Observable
chain and serves as the endpoint where the emissions are consumed. By consumed, this
means they reach the end of the process where they are written to a database, text file, a
server response, displayed in a UI, or (in this case) just printed to the console.

To further explain this example in detail, we start with string emissions at our source. We
declare our Observer in advance and pass it to the subscribe() method at the end of our
Observable chain. Note that each string is transformed to its length. The
onNext() method receives each integer length emission and prints it using
System.out.println("RECEIVED: " + value). We will not get any errors running this
simple process, but if one did occur anywhere in our Observable chain, it will be pushed
to our onError() implementation on Observer, where the stack trace of Throwable will
be printed. Finally, when the source has no more emissions (after pushing "Epsilon"), it
will call onComplete() up the chain all the way to the Observer, where its
onComplete() method will be called and print Done! to the console.

Shorthand Observers with lambdas
Implementing an Observer is a bit verbose and cumbersome. Thankfully, the
subscribe() method is overloaded to accept lambda arguments for our three events. This
is likely what we will want to use for most cases, and we can specify three lambda
parameters separated by commas: the onNext lambda, the onError lambda, and the
onComplete lambda. For our previous example, we can consolidate our three method
implementations using these three lambdas:

 Consumer<Integer> onNext = i -> System.out.println("RECEIVED: "
+ i);

 Action onComplete = () -> System.out.println("Done!");

 Consumer<Throwable> onError = Throwable::printStackTrace;

Observables and Subscribers

[33]

We can pass these three lambdas as arguments to the subscribe() method, and it will use
them to implement an Observer for us. This is much more concise and requires far less
boilerplate code:

 import io.reactivex.Observable;

 public class Launcher {

 public static void main(String[] args) {

 Observable<String> source =
 Observable.just("Alpha", "Beta", "Gamma", "Delta",
 "Epsilon");

 source.map(String::length).filter(i -> i >= 5)
 .subscribe(i -> System.out.println("RECEIVED: " + i),
 Throwable::printStackTrace,
() -> System.out.println("Done!"));
 }
 }

The output is as follows:

 RECEIVED: 5
 RECEIVED: 5
 RECEIVED: 5
 RECEIVED: 7
 Done!

Note that there are other overloads for subscribe(). You can omit onComplete() and
only implement onNext() and onError(). This will no longer perform any action for
onComplete(), but there will likely be cases where you do not need one:

 import io.reactivex.Observable;

 public class Launcher {

 public static void main(String[] args) {

 Observable<String> source =
 Observable.just("Alpha", "Beta", "Gamma", "Delta",
 "Epsilon");

 source.map(String::length).filter(i -> i >= 5)
 .subscribe(i -> System.out.println("RECEIVED: " + i),

Observables and Subscribers

[34]

 Throwable::printStackTrace);
 }
 }

The output is as follows:

 RECEIVED: 5
 RECEIVED: 5
 RECEIVED: 5
 RECEIVED: 7

As you have seen in earlier examples, you can even omit onError and just specify onNext:

 import io.reactivex.Observable;

 public class Launcher {

 public static void main(String[] args) {

 Observable<String> source =
 Observable.just("Alpha", "Beta", "Gamma", "Delta",
 "Epsilon");

 source.map(String::length).filter(i -> i >= 5)
 .subscribe(i -> System.out.println("RECEIVED: " + i));
 }
 }

However, not implementing onError() is something you want to avoid doing in
production. Errors that happen anywhere in the Observable chain will be propagated
to onError() to be handled and then terminate the Observable with no more emissions.
If you do not specify an action for onError, the error will go unhandled.

You can use retry() operators to attempt recovery and resubscribe to an
Observable if an error occurs. We will cover how to do that in the next
chapter.

It is critical to note that most of the subscribe() overload variants (including the
shorthand lambda ones we just covered) return a Disposable that we did not do anything
with. disposables allow us to disconnect an Observable from an Observer so emissions
are terminated early, which is critical for infinite or long-running Observables. We will
cover disposables at the end of this chapter.

Observables and Subscribers

[35]

Cold versus hot Observables
There are subtle behaviors in a relationship between an Observable and an Observer
depending on how the Observable is implemented. A major characteristic to be aware of is
cold versus hot Observables, which defines how Observables behave when there are
multiple Observers. First, we will cover cold Observables.

Cold Observables
Cold Observables are much like a music CD that can be replayed to each listener, so each
person can hear all the tracks at any time. In the same manner, cold Observables will replay
the emissions to each Observer, ensuring that all Observers get all the data. Most data-
driven Observables are cold, and this includes the Observable.just() and
Observable.fromIterable() factories.

In the following example, we have two Observers subscribed to one Observable. The
Observable will first play all the emissions to the first Observer and then call
onComplete(). Then, it will play all the emissions again to the second Observer and
call onComplete(). They both receive the same datasets by getting two separate streams
each, which is typical behavior for a cold Observable:

 import io.reactivex.Observable;

 public class Launcher {
 public static void main(String[] args) {

 Observable<String> source =
 Observable.just("Alpha","Beta","Gamma","Delta","Epsilon");

 //first observer
 source.subscribe(s -> System.out.println("Observer 1 Received:
 " + s));

 //second observer
 source.subscribe(s -> System.out.println("Observer 2 Received:
 " + s));

 }
 }

Observables and Subscribers

[36]

The output is as follows:

 Observer 1 Received: Alpha
 Observer 1 Received: Beta
 Observer 1 Received: Gamma
 Observer 1 Received: Delta
 Observer 1 Received: Epsilon
 Observer 2 Received: Alpha
 Observer 2 Received: Beta
 Observer 2 Received: Gamma
 Observer 2 Received: Delta
 Observer 2 Received: Epsilon

Even if the second Observer transforms its emissions with operators, it will still get its own
stream of emissions. Using operators such as map() and filter() against a cold
Observable will still maintain the cold nature of the yielded Observables:

 import io.reactivex.Observable;

 public class Launcher {
 public static void main(String[] args) {

 Observable<String> source =
 Observable.just("Alpha","Beta","Gamma","Delta","Epsilon");

 //first observer
 source.subscribe(s -> System.out.println("Observer 1 Received:
 " + s));

 //second observer
 source.map(String::length).filter(i -> i >= 5)
 .subscribe(s -> System.out.println("Observer 2 Received: " +
 s));

 }
 }

The output is as follows:

 Observer 1 Received: Alpha
 Observer 1 Received: Beta
 Observer 1 Received: Gamma
 Observer 1 Received: Delta
 Observer 1 Received: Epsilon
 Observer 2 Received: 5
 Observer 2 Received: 5
 Observer 2 Received: 5
 Observer 2 Received: 7

Observables and Subscribers

[37]

As stated earlier, Observable sources that emit finite datasets are usually cold.

Here is a more real-world example: Dave Moten's RxJava-JDBC (h t t p s ://g i t h u b . c o m /d a v

i d m o t e n /r x j a v a - j d b c) allows you to create cold Observables built off of SQL database
queries. We will not digress into this library for too long, but if you want to query a SQLite
database, for instance, include the SQLite JDBC driver and RxJava-JDBC libraries in your
project. You can then query a database table reactively, as shown in the following code
snippet:

 import com.github.davidmoten.rx.jdbc.ConnectionProviderFromUrl;
 import com.github.davidmoten.rx.jdbc.Database;
 import rx.Observable;
 import java.sql.Connection;

 public class Launcher {
 public static void main(String[] args) {
 Connection conn =
 new ConnectionProviderFromUrl("jdbc:sqlite:/home/thomas
 /rexon_metals.db").get();
 Database db = Database.from(conn);

 Observable<String> customerNames =
 db.select("SELECT NAME FROM CUSTOMER")
 .getAs(String.class);

 customerNames.subscribe(s -> System.out.println(s));
 }
 }

The output is as follows:

 LITE Industrial
 Rex Tooling Inc
 Re-Barre Construction
 Prairie Construction
 Marsh Lane Metal Works

https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc

Observables and Subscribers

[38]

This SQL-driven Observable is cold. Many Observables emitting from finite data sources
such as databases, text files, or JSON are cold. It is still important to note how the source
Observable is architected. RxJava-JDBC will run the query each time for each Observer.
This means that if the data changes in between two subscriptions, the second Observer will
get different emissions than the first one. But the Observable is still cold since it is
replaying the query even if the resulting data changes from the underlying tables.

Again, cold Observables will, in some shape or form, repeat the operation to generate these
emissions to each Observer. Next, we will cover hot Observables that resemble events
more than data.

Hot Observables
You just learned about the cold Observable, which works much like a music CD. A hot
Observable is more like a radio station. It broadcasts the same emissions to all Observers
at the same time. If an Observer subscribes to a hot Observable, receives some emissions,
and then another Observer comes in afterwards, that second Observer will have missed
those emissions. Just like a radio station, if you tune in too late, you will have missed that
song.

Logically, hot Observables often represent events rather than finite datasets. The events can
carry data with them, but there is a time-sensitive component where late observers can miss
previously emitted data.

For instance, a JavaFX or Android UI event can be represented as a hot Observable. In
JavaFX, you can create an Observable<Boolean> off a selectedProperty() operator of
a ToggleButton using Observable.create(). You can then transform the Boolean
emissions into strings indicating whether the ToggleButton is UP or DOWN and then use
an Observer to display them in Label, as shown in the following code snippet:

 import io.reactivex.Observable;
 import javafx.application.Application;
 import javafx.beans.value.ChangeListener;
 import javafx.beans.value.ObservableValue;
 import javafx.scene.Scene;
 import javafx.scene.control.Label;
 import javafx.scene.control.ToggleButton;
 import javafx.scene.layout.VBox;
 import javafx.stage.Stage;

 public class MyJavaFxApp extends Application {

Observables and Subscribers

[39]

 @Override
 public void start(Stage stage) throws Exception {

 ToggleButton toggleButton = new ToggleButton("TOGGLE ME");
 Label label = new Label();

 Observable<Boolean> selectedStates =
 valuesOf(toggleButton.selectedProperty());

 selectedStates.map(selected -> selected ? "DOWN" : "UP")
 .subscribe(label::setText);

 VBox vBox = new VBox(toggleButton, label);

 stage.setScene(new Scene(vBox));
 stage.show();
 }

 private static <T> Observable<T> valuesOf(final
 ObservableValue<T> fxObservable) {
 return Observable.create(observableEmitter -> {

 //emit initial state
 observableEmitter.onNext(fxObservable.getValue());

 //emit value changes uses a listener
 final ChangeListener<T> listener = (observableValue, prev,
 current) -> observableEmitter.onNext(current);

 fxObservable.addListener(listener);
 });
 }
 }

A JavaFX app backed by a hot Observable<Boolean> created off a ToggleButton's selection state

Observables and Subscribers

[40]

Note that if you are using OpenJDK, you will need to get the JavaFX library
separately. It is easiest to use Oracle's official JDK, which includes JavaFX and
is available at h t t p ://w w w . o r a c l e . c o m /t e c h n e t w o r k /j a v a /j a v a s e /d o w n l o a

d s /i n d e x . h t m l .

A JavaFX ObservableValue has nothing to do with an RxJava Observable. It is
proprietary to JavaFX, but we can easily turn it into an RxJava Observable using the
valuesOf() factory implemented earlier to hook ChangeListener as an onNext() call.
Every time you click on the ToggleButton, the Observable<Boolean> will emit a true
or false reflecting the selection state. This is a simple example, showing that this
Observable is emitting events but is also emitting data in the form of true or false. It
will transform that boolean into a string and have an Observer modify a text of Label.

We only have one Observer in this JavaFX example. If we were to bring in more Observers
to this ToggleButton's events after emissions have occurred, those new Observers will
have missed these emissions.

UI events on JavaFX and Android are prime examples of hot Observables, but you can also
use hot Observables to reflect server requests. If you created an Observable off a live
Twitter stream emitting tweets for a certain topic, that also would be a hot Observable. All
of these sources are likely infinite, and while many hot Observables are indeed infinite, they
do not have to be. They just have to share emissions to all Observers simultaneously and
not replay missed emissions for tardy Observers.

Note that RxJavaFX (as well as RxAndroid, covered in Chapter 11, RxJava
on Android) has factories to turn various UI events into Observables and
bindings for you. Using RxJavaFX, you can simplify the previous example
using the valuesOf() factory.

Note that we did leave a loose end with this JavaFX example, as we never handled disposal.
We will revisit this when we cover Disposables at the end of this chapter.

ConnectableObservable
A helpful form of hot Observable is ConnectableObservable. It will take any
Observable, even if it is cold, and make it hot so that all emissions are played to all
Observers at once. To do this conversion, you simply need to call publish() on any
Observable, and it will yield a ConnectableObservable. But subscribing will not start
the emissions yet. You need to call its connect() method to start firing the emissions. This
allows you to set up all your Observers beforehand. Take a look at the following code
snippet:

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Observables and Subscribers

[41]

 import io.reactivex.Observable;
 import io.reactivex.observables.ConnectableObservable;

 public class Launcher {
 public static void main(String[] args) {

 ConnectableObservable<String> source =
 Observable.just("Alpha","Beta","Gamma","Delta","Epsilon")
 .publish();

 //Set up observer 1
 source.subscribe(s -> System.out.println("Observer 1: " + s));

 //Set up observer 2
 source.map(String::length)
 .subscribe(i -> System.out.println("Observer 2: " + i));

 //Fire!
 source.connect();
 }
}

Take a look at the following code:

 Observer 1: Alpha
 Observer 2: 5
 Observer 1: Beta
 Observer 2: 4
 Observer 1: Gamma
 Observer 2: 5
 Observer 1: Delta
 Observer 2: 5
 Observer 1: Epsilon
 Observer 2: 7

Note how one Observer is receiving the string while the other is receiving the length and
the two are printing them in an interleaved fashion. Both subscriptions are set up
beforehand, and then connect() is called to fire the emissions. Rather than Observer 1
processing all the emissions before Observer 2, each emission goes to each Observer
simultaneously. Observer 1 receives Alpha and Observer 2 receives 5 and then
Beta and 4, and so on. Using ConnectableObservable to force each emission to go to all
Observers simultaneously is known as multicasting, which we will cover in detail in
Chapter 5, Multicasting.

Observables and Subscribers

[42]

ConnectableObservable is helpful in preventing the replay of data to each Observer. You
may want to do this if replaying emissions is expensive and you would rather emit them to
all Observers at once. You may also do it simply to force the operators upstream to use a
single stream instance even if there are multiple Observers downstream. Multiple
Observers normally result in multiple stream instances upstream, but using publish() to
return ConnectableObservable consolidates all the upstream operations before
publish() into a single stream. Again, these nuances will be covered more in Chapter 5,
Multicasting.

For now, remember that ConnectableObservable is hot, and therefore, if new
subscriptions occur after connect() is called, they will miss emissions that were fired
previously.

Other Observable sources
We already covered a few factories to create Observable sources, including
Observable.create(), Observable.just(), and Observable.fromIterable(). After
our detour covering Observers and their nuances, let's pick up where we left off and cover a
few more Observable factories.

Observable.range()
To emit a consecutive range of integers, you can use Observable.range(). This will emit
each number from a start value and increment each emission until the specified count is
reached. These numbers are all passed through the onNext() event, followed by the
 onComplete() event:

 import io.reactivex.Observable;

 public class Launcher {
 public static void main(String[] args) {
 Observable.range(1,10)
 .subscribe(s -> System.out.println("RECEIVED: " + s));

 }
 }

Observables and Subscribers

[43]

The output is as follows:

 RECEIVED: 1
 RECEIVED: 2
 RECEIVED: 3
 RECEIVED: 4
 RECEIVED: 5
 RECEIVED: 6
 RECEIVED: 7
 RECEIVED: 8
 RECEIVED: 9
 RECEIVED: 10

Note closely that the two arguments for Observable.range() are not lower/upper
bounds. The first argument is the starting value. The second argument is the total count of
emissions, which will include both the initial value and incremented values. Try emitting
Observable.range(5,10), and you will notice that it emits 5 followed by the next nine
consecutive integers following it (for a grand total of 10 emissions):

 import io.reactivex.Observable;

 public class Launcher {
 public static void main(String[] args) {
 Observable.range(5,10)
 .subscribe(s -> System.out.println("RECEIVED: " + s));

 }
 }

The output is as follows:

 RECEIVED: 5
 RECEIVED: 6
 RECEIVED: 7
 RECEIVED: 8
 RECEIVED: 9
 RECEIVED: 10
 RECEIVED: 11
 RECEIVED: 12
 RECEIVED: 13
 RECEIVED: 14

Note that there is also a long equivalent called
Observable.rangeLong() if you need to emit larger numbers.

Observables and Subscribers

[44]

Observable.interval()
As we have seen, Observables have a concept of emissions over time. Emissions are handed
from the source up to the Observer sequentially. But these emissions can be spaced out over
time depending on when the source provides them. Our JavaFX example with
ToggleButton demonstrated this, as each click resulted in an emission of true or false.

But let's look at a simple example of a time-based Observable using
Observable.interval(). It will emit a consecutive long emission (starting at 0) at every
specified time interval. Here, we have an Observable<Long> that emits every second:

 import io.reactivex.Observable;

 import java.util.concurrent.TimeUnit;

 public class Launcher {
 public static void main(String[]args) {

 Observable.interval(1, TimeUnit.SECONDS)
 .subscribe(s -> System.out.println(s + " Mississippi"));
 sleep(5000);

 }
 public static void sleep(int millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

The output is as follows:

 0 Mississippi
 1 Mississippi
 2 Mississippi
 3 Mississippi
 4 Mississippi

Observables and Subscribers

[45]

Observable.interval() will emit infinitely at the specified interval (which is 1 second in
this case). However, because it operates on a timer, it needs to run on a separate thread and
will run on the computation Scheduler by default. We will cover concurrency in Chapter 6,
Concurrency and Parallelization and learn about schedulers. For now, just note that our
main() method is going to kick off this Observable, but it will not wait for it to finish. It is
now emitting on a separate thread. To keep our main() method from finishing and exiting
the application before our Observable has a chance to fire, we use a sleep() method to
keep this application alive for five seconds. This gives our Observable five seconds to fire
emissions before the application quits. When you create production applications, you likely
will not run into this issue often as non-daemon threads for tasks such as web services,
Android apps, or JavaFX will keep the application alive.

Trick question: does Observable.interval() return a hot or a cold Observable?
Because it is event-driven (and infinite), you may be tempted to say it is hot. But put a
second Observer on it, wait for five seconds, and then add another Observer. What
happens? Let's take a look:

 import io.reactivex.Observable;
 import java.util.concurrent.TimeUnit;

 public class Launcher {

 public static void main(String[] args) {

 Observable<Long> seconds = Observable.interval(1,
 TimeUnit.SECONDS);

 //Observer 1
 seconds.subscribe(l -> System.out.println("Observer 1: " + l));

 //sleep 5 seconds
 sleep(5000);

 //Observer 2
 seconds.subscribe(l -> System.out.println("Observer 2: " + l));

 //sleep 5 seconds
 sleep(5000);
 }

 public static void sleep(int millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();

Observables and Subscribers

[46]

 }
 }
 }

The output is as follows:

 Observer 1: 0
 Observer 1: 1
 Observer 1: 2
 Observer 1: 3
 Observer 1: 4
 Observer 1: 5
 Observer 2: 0
 Observer 1: 6
 Observer 2: 1
 Observer 1: 7
 Observer 2: 2
 Observer 1: 8
 Observer 2: 3
 Observer 1: 9
 Observer 2: 4

Look what happened after five seconds elapsed, when Observer 2 came in. Note that it is
on its own separate timer and starting at 0! These two observers are actually getting their
own emissions, each starting at 0. So this Observable is actually cold. To put all observers
on the same timer with the same emissions, you will want to use ConnectableObservable
to force these emissions to become hot:

 import io.reactivex.Observable;
 import io.reactivex.observables.ConnectableObservable;
 import java.util.concurrent.TimeUnit;

 public class Launcher {

 public static void main(String[] args) {
 ConnectableObservable<Long> seconds =
 Observable.interval(1, TimeUnit.SECONDS).publish();

 //observer 1
 seconds.subscribe(l -> System.out.println("Observer 1: " + l));
 seconds.connect();

 //sleep 5 seconds
 sleep(5000);

 //observer 2
 seconds.subscribe(l -> System.out.println("Observer 2: " + l));

Observables and Subscribers

[47]

 //sleep 5 seconds
 sleep(5000);

 }

 public static void sleep(int millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

The output is as follows:

 Observer 1: 0
 Observer 1: 1
 Observer 1: 2
 Observer 1: 3
 Observer 1: 4
 Observer 1: 5
 Observer 2: 5
 Observer 1: 6
 Observer 2: 6
 Observer 1: 7
 Observer 2: 7
 Observer 1: 8
 Observer 2: 8
 Observer 1: 9
 Observer 2: 9

Now Observer 2, although 5 seconds late and having missed the previous emissions, will
at least be completely in sync with Observer 1 and receive the same emissions.

Observable.future()
RxJava Observables are much more robust and expressive than Futures, but if you have
existing libraries that yield Futures, you can easily turn them into Observables via
Observable.future():

 import io.reactivex.Observable;
 import java.util.concurrent.Future;

 public class Launcher {
 public static void main(String[] args) {

Observables and Subscribers

[48]

 Future<String> futureValue = ...;
 Observable.fromFuture(futureValue)
 .map(String::length)
 .subscribe(System.out::println);
 }
 }

Observable.empty()
Although this may not seem useful yet, it is sometimes helpful to create an Observable
that emits nothing and calls onComplete():

 import io.reactivex.Observable;

 public class Launcher {
 public static void main(String[] args) {

 Observable<String> empty = Observable.empty();

 empty.subscribe(System.out::println,
 Throwable::printStackTrace,
 () -> System.out.println("Done!"));
 }
 }

The output is as follows:

 Done!

Note that no emissions were printed because there were none. It went straight to calling
onComplete , which printed the Done! message in the Observer. Empty observables are
common to represent empty datasets. They can also result from operators such
as filter() when all emissions fail to meet a condition. Sometimes, you will deliberately
create empty Observables using Observable.empty(), and we will see examples of this in
a few places throughout this book.

An empty Observable is essentially RxJava's concept of null. It is the absence of a value (or
technically, "values"). Empty Observables are much more elegant than nulls because
operations will simply continue empty rather than throw NullPointerExceptions. But
when things go wrong in RxJava programs, sometimes it is because observers are receiving
no emissions. When this happens, you have to trace through your Observable's chain of
operators to find which one caused emissions to become empty.

Observables and Subscribers

[49]

Observable.never()
A close cousin of Observable.empty() is Observable.never(). The only difference
between them is that it never calls onComplete(), forever leaving observers waiting for
emissions but never actually giving any:

 import io.reactivex.Observable;

 public class Launcher {
 public static void main(String[] args) {

 Observable<String> empty = Observable.never();

 empty.subscribe(System.out::println,
 Throwable::printStackTrace,
 () -> System.out.println("Done!"));

 sleep(5000);

 }

 public static void sleep(int millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

This Observable is primarily used for testing and not that often in production. We have to
use sleep() here just like Observable.interval() because the main thread is not going
to wait for it after kicking it off. In this case, we just use sleep() for five seconds to prove
that no emissions are coming from it. Then, the application will quit.

Observable.error()
This too is something you likely will only do with testing, but you can create an
Observable that immediately calls onError() with a specified exception:

 import io.reactivex.Observable;

 public class Launcher {
 public static void main(String[] args) {
 Observable.error(new Exception("Crash and burn!"))

Observables and Subscribers

[50]

 .subscribe(i -> System.out.println("RECEIVED: " + i),
 Throwable::printStackTrace,
 () -> System.out.println("Done!"));
 }
 }

The output is as follows:

 java.lang.Exception: Crash and burn!
 at Launcher.lambda$main$0(Launcher.java:7)
 at io.reactivex.internal.operators.observable.
 ObservableError.subscribeActual(ObservableError.java:32)
 at io.reactivex.Observable.subscribe(Observable.java:10514)
 at io.reactivex.Observable.subscribe(Observable.java:10500)
 ...

You can also provide the exception through a lambda so that it is created from scratch and
separate exception instances are provided to each Observer:

 import io.reactivex.Observable;

 public class Launcher {
 public static void main(String[] args) {

 Observable.error(() -> new Exception("Crash and burn!"))
 .subscribe(i -> System.out.println("RECEIVED: " + i),
 Throwable::printStackTrace,
 () -> System.out.println("Done!"));
 }
 }

Observable.defer()
Observable.defer() is a powerful factory due to its ability to create a separate state for
each Observer. When using certain Observable factories, you may run into some nuances
if your source is stateful and you want to create a separate state for each Observer. Your
source Observable may not capture something that has changed about its parameters and
send emissions that are obsolete. Here is a simple example: we have an
Observable.range() built off two static int properties, start and count.

Observables and Subscribers

[51]

If you subscribe to this Observable, modify the count, and then subscribe again, you will
find that the second Observer does not see this change:

 import io.reactivex.Observable;

 public class Launcher {

 private static int start = 1;
 private static int count = 5;
 public static void main(String[] args) {
 Observable<Integer> source = Observable.range(start,count);

 source.subscribe(i -> System.out.println("Observer 1: " + i));

 //modify count
 count = 10;

 source.subscribe(i -> System.out.println("Observer 2: " + i));
 }
 }

The output is as follows:

 Observer 1: 1
 Observer 1: 2
 Observer 1: 3
 Observer 1: 4
 Observer 1: 5
 Observer 2: 1
 Observer 2: 2
 Observer 2: 3
 Observer 2: 4
 Observer 2: 5

To remedy this problem of Observable sources not capturing state changes, you can create
a fresh Observable for each subscription. This can be achieved using
Observable.defer(), which accepts a lambda instructing how to create an Observable
for every subscription. Because this creates a new Observable each time, it will reflect any
changes driving its parameters:

 import io.reactivex.Observable;

 public class Launcher {

 private static int start = 1;
 private static int count = 5;

Observables and Subscribers

[52]

 public static void main(String[] args) {

 Observable<Integer> source = Observable.defer(() ->
 Observable.range(start,count));

 source.subscribe(i -> System.out.println("Observer 1: " + i));

 //modify count
 count = 10;

 source.subscribe(i -> System.out.println("Observer 2: " + i));
 }
 }

The output is as follows:

 Observer 1: 1
 Observer 1: 2
 Observer 1: 3
 Observer 1: 4
 Observer 1: 5
 Observer 2: 1
 Observer 2: 2
 Observer 2: 3
 Observer 2: 4
 Observer 2: 5
 Observer 2: 6
 Observer 2: 7
 Observer 2: 8
 Observer 2: 9
 Observer 2: 10

That's better! When your Observable source is not capturing changes to the things driving
it, try putting it in Observable.defer(). If your Observable source was implemented
naively and behaves brokenly with more than one Observer (for example, it reuses an
Iterator that only iterates data once), Observable.defer() provides a quick workaround
for this as well.

Observables and Subscribers

[53]

Observable.fromCallable()
If you need to perform a calculation or action and then emit it, you can use
Observable.just() (or Single.just() or Maybe.just(), which we will learn about
later). But sometimes, we want to do this in a lazy or deferred manner. Also, if that
procedure throws an error, we want it to be emitted up the Observable chain through
onError() rather than throw the error at that location in traditional Java fashion. For
instance, if you try to wrap Observable.just() around an expression that divides 1 by
0, the exception will be thrown, not emitted up to Observer:

 import io.reactivex.Observable;
 public class Launcher {
 public static void main(String[] args) {

 Observable.just(1 / 0)
 .subscribe(i -> System.out.println("RECEIVED: " + i),
 e -> System.out.println("Error Captured: " + e));
 }
 }

The output is as follows:

 Exception in thread "main" java.lang.ArithmeticException: / by zero
 at Launcher.main(Launcher.java:6)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at sun.reflect.NativeMethodAccessorImpl.invoke
 (NativeMethodAccessorImpl.java:62)
 at sun.reflect.DelegatingMethodAccessorImpl.
 invoke(DelegatingMethodAccessorImpl.java:43)
 at java.lang.reflect.Method.invoke(Method.java:498)
 at com.intellij.rt.execution.
 application.AppMain.main(AppMain.java:147)

If we are going to be reactive in our error handling, this may not be desirable. Perhaps you
would like the error to be emitted down the chain to the Observer where it will be
handled. If that is the case, use Observable.fromCallable() instead, as it accepts a
lambda Supplier<T> and it will emit any error that occurs down to Observer:

 import io.reactivex.Observable;

 public class Launcher {
 public static void main(String[] args) {

 Observable.fromCallable(() -> 1 / 0)
 .subscribe(i -> System.out.println("Received: " + i),

Observables and Subscribers

[54]

 e -> System.out.println("Error Captured: " + e));
 }
 }

The output is as follows:

 Error Captured: java.lang.ArithmeticException: / by zero

That is better! The error was emitted to the Observer rather than being thrown where it
occurred. If initializing your emission has a likelihood of throwing an error, you should use
Observable.fromCallable() instead of Observable.just().

Single, Completable, and Maybe
There are a few specialized flavors of Observable that are explicitly set up for one or no
emissions: Single, Maybe, and Completable. These all follow the Observable closely and
should be intuitive to use in your reactive coding workflow. You can create them in similar
ways as the Observable (for example, they each have their own create() factory), but
certain Observable operators may return them too.

Single
Single<T> is essentially an Observable<T> that will only emit one item. It works just like
an Observable, but it is limited only to operators that make sense for a single emission. It
has its own SingleObserver interface as well:

 interface SingleObserver<T> {
 void onSubscribe(Disposable d);
 void onSuccess(T value);
 void onError(Throwable error);
 }

The onSuccess() essentially consolidates onNext() and onComplete() into a single
event that accepts the one emission. When you call subscribe() against a Single, you
provide the lambdas for onSuccess() as well as an optional onError():

 import io.reactivex.Single;

 public class Launcher {
 public static void main(String[] args) {
 Single.just("Hello")
 .map(String::length)

Observables and Subscribers

[55]

 .subscribe(System.out::println,
 Throwable::printStackTrace);
 }
 }

Certain RxJava Observable operators will yield a Single, as we will see in the next chapter.
For instance, the first() operator will return a Single since that operator is logically
concerned with a single item. However, it accepts a default value as a parameter (which I
specified as Nil in the following example) if the Observable comes out empty:

 import io.reactivex.Observable;

 public class Launcher {
 public static void main(String[] args) {
 Observable<String> source =
 Observable.just("Alpha","Beta","Gamma");

 source.first("Nil") //returns a Single
 .subscribe(System.out::println);
 }
 }

The output is as follows:

 Alpha

The Single must have one emission, and you should prefer it if you only have one
emission to provide. This means that instead of using Observable.just("Alpha"), you
should try to use Single.just("Alpha") instead. There are operators on Single that will
allow you to turn it into an Observable when needed, such as toObservable().

If there are 0 or 1 emissions, you will want to use Maybe.

Maybe
Maybe is just like a Single except that it allows no emission to occur at all (hence Maybe).
MaybeObserver is much like a standard Observer, but onNext() is called onSuccess()
instead:

 public interface MaybeObserver<T> {
 void onSubscribe(Disposable d);
 void onSuccess(T value);
 void onError(Throwable e);
 void onComplete();
 }

Observables and Subscribers

[56]

A given Maybe<T> will only emit 0 or 1 emissions. It will pass the possible emission to
onSuccess(), and in either case, it will call onComplete() when done. Maybe.just()
can be used to create a Maybe emitting the single item. Maybe.empty() will create a Maybe
that yields no emission:

 import io.reactivex.Maybe;

 public class Launcher {

 public static void main(String[] args) {

 // has emission
 Maybe<Integer> presentSource = Maybe.just(100);

 presentSource.subscribe(s -> System.out.println("Process 1
 received: " + s),
 Throwable::printStackTrace,
 () -> System.out.println("Process 1 done!"));

 //no emission
 Maybe<Integer> emptySource = Maybe.empty();

 emptySource.subscribe(s -> System.out.println("Process 2
 received: " + s),
 Throwable::printStackTrace,
 () -> System.out.println("Process 2 done!"));
 }
 }

 The output is as follows:

 Process 1 received: 100
 Process 2 done!

Certain Observable operators that we will learn about later yield a Maybe. One example is
the firstElement() operator, which is similar to first(), but it returns an empty result
if no elements are emitted:

 import io.reactivex.Observable;

 public class Launcher {

 public static void main(String[] args) {

 Observable<String> source =
 Observable.just("Alpha","Beta","Gamma","Delta","Epsilon");

Observables and Subscribers

[57]

 source.firstElement().subscribe(
 s -> System.out.println("RECEIVED " + s),
 Throwable::printStackTrace,
 () -> System.out.println("Done!"));
 }
 }

 The output is as follows:

 RECEIVED Alpha

Completable
Completable is simply concerned with an action being executed, but it does not receive
any emissions. Logically, it does not have onNext() or onSuccess() to receive emissions,
but it does have onError() and onComplete():

 interface CompletableObserver<T> {
 void onSubscribe(Disposable d);
 void onComplete();
 void onError(Throwable error);
 }

Completable is something you likely will not use often. You can construct one quickly by
calling Completable.complete() or Completable.fromRunnable(). The former will
immediately call onComplete() without doing anything, while fromRunnable() will
execute the specified action before calling onComplete():

 import io.reactivex.Completable;

 public class Launcher {

 public static void main(String[] args) {

 Completable.fromRunnable(() -> runProcess())
 .subscribe(() -> System.out.println("Done!"));

 }
 public static void runProcess() {
 //run process here
 }
 }

 The output is as follows:

 Done!

Observables and Subscribers

[58]

Disposing
When you subscribe() to an Observable to receive emissions, a stream is created to
process these emissions through the Observable chain. Of course, this uses resources. When
we are done, we want to dispose of these resources so that they can be garbage-collected.
Thankfully, the finite Observables that call onComplete() will typically dispose of
themselves safely when they are done. But if you are working with infinite or long-running
Observables, you likely will run into situations where you want to explicitly stop the
emissions and dispose of everything associated with that subscription. As a matter of fact,
you cannot trust the garbage collector to take care of active subscriptions that you no longer
need, and explicit disposal is necessary in order to prevent memory leaks.

The Disposable is a link between an Observable and an active Observer, and you can call its
dispose() method to stop emissions and dispose of all resources used for that Observer. It
also has an isDisposed() method, indicating whether it has been disposed of already:

 package io.reactivex.disposables;

 public interface Disposable {
 void dispose();
 boolean isDisposed();
 }

When you provide onNext(), onComplete(), and/or onError() lambdas as arguments to
the subscribe() method, it will actually return a Disposable. You can use this to stop
emissions at any time by calling its dispose() method. For instance, we can stop receiving
emissions from an Observable.interval() after five seconds:

 import io.reactivex.Observable;
 import io.reactivex.disposables.Disposable;
 import java.util.concurrent.TimeUnit;

 public class Launcher {

 public static void main(String[] args) {

 Observable<Long> seconds =
 Observable.interval(1, TimeUnit.SECONDS);

 Disposable disposable =
 seconds.subscribe(l -> System.out.println("Received: " + l));

 //sleep 5 seconds
 sleep(5000);

Observables and Subscribers

[59]

 //dispose and stop emissions
 disposable.dispose();

 //sleep 5 seconds to prove
 //there are no more emissions
 sleep(5000);

 }

 public static void sleep(int millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

Here, we let Observable.interval() run for five seconds with an Observer, but we save
the Disposable returned from the subscribe() method. Then we call the Disposable's
dispose() method to stop the process and free any resources that were being used. Then,
we sleep for another five seconds just to prove that no more emissions are happening.

Handling a Disposable within an Observer
Earlier, I shied away from talking about the onSubscribe() method in the Observer, but
now we will address it. You may have noticed that Disposable is passed in the
implementation of an Observer through the onSubscribe() method. This method was
added in RxJava 2.0, and it allows the Observer to have the ability to dispose of the
subscription at any time.

For instance, you can implement your own Observer and use onNext(), onComplete(),
or onError() to have access to the Disposable. This way, these three events can call
dispose() if, for whatever reason, the Observer does not want any more emissions:

 Observer<Integer> myObserver = new Observer<Integer>() {
 private Disposable disposable;

 @Override
 public void onSubscribe(Disposable disposable) {
 this.disposable = disposable;
 }

 @Override

Observables and Subscribers

[60]

 public void onNext(Integer value) {
 //has access to Disposable
 }

 @Override
 public void onError(Throwable e) {
 //has access to Disposable
 }

 @Override
 public void onComplete() {
 //has access to Disposable
 }
 };

The Disposable is sent from the source all the way up the chain to the Observer, so each
step in the Observable chain has access to the Disposable.

Note that passing an Observer to the subscribe() method will be void and not return a
Disposable since it is assumed that the Observer will handle it. If you do not want to
explicitly handle the Disposable and want RxJava to handle it for you (which is probably
a good idea until you have reason to take control), you can extend ResourceObserver as
your Observer, which uses a default Disposable handling. Pass this to subscribeWith()
instead of subscribe(), and you will get the default Disposable returned:

 import io.reactivex.Observable;
 import io.reactivex.disposables.Disposable;
 import io.reactivex.observers.ResourceObserver;
 import java.util.concurrent.TimeUnit;

 public class Launcher {
 public static void main(String[] args) {

 Observable<Long> source =
 Observable.interval(1, TimeUnit.SECONDS);

 ResourceObserver<Long> myObserver = new
 ResourceObserver<Long>() {
 @Override
 public void onNext(Long value) {
 System.out.println(value);
 }

 @Override
 public void onError(Throwable e) {
 e.printStackTrace();
 }

Observables and Subscribers

[61]

 @Override
 public void onComplete() {
 System.out.println("Done!");
 }
 };

 //capture Disposable
 Disposable disposable = source.subscribeWith(myObserver);
 }
 }

Using CompositeDisposable
If you have several subscriptions that need to be managed and disposed of, it can be helpful
to use CompositeDisposable. It implements Disposable, but it internally holds a
collection of disposables, which you can add to and then dispose all at once:

 import io.reactivex.Observable;
 import io.reactivex.disposables.CompositeDisposable;
 import io.reactivex.disposables.Disposable;
 import java.util.concurrent.TimeUnit;

 public class Launcher {

 private static final CompositeDisposable disposables
 = new CompositeDisposable();

 public static void main(String[] args) {

 Observable<Long> seconds =
 Observable.interval(1, TimeUnit.SECONDS);

 //subscribe and capture disposables
 Disposable disposable1 =
 seconds.subscribe(l -> System.out.println("Observer 1: " +
 l));

 Disposable disposable2 =
 seconds.subscribe(l -> System.out.println("Observer 2: " +
 l));

 //put both disposables into CompositeDisposable
 disposables.addAll(disposable1, disposable2);

 //sleep 5 seconds

Observables and Subscribers

[62]

 sleep(5000);

 //dispose all disposables
 disposables.dispose();

 //sleep 5 seconds to prove
 //there are no more emissions
 sleep(5000);

 }

 public static void sleep(int millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

CompositeDisposable is a simple but helpful utility to maintain a collection of
disposables that you can add to by calling add() or addAll(). When you no longer
want these subscriptions, you can call dispose() to dispose of all of them at once.

Handling Disposal with Observable.create()
If your Observable.create() is returning a long-running or infinite Observable, you
should ideally check the isDisposed() method of ObservableEmitter regularly, to see
whether you should keep sending emissions. This prevents unnecessary work from being
done if the subscription is no longer active.

In this case, you should use Observable.range(), but for the sake of the example, let's
say we are emitting integers in a for loop in Observable.create(). Before emitting each
integer, you should make sure that ObservableEmitter does not indicate that a disposal
was called:

 import io.reactivex.Observable;

 public class Launcher {
 public static void main(String[] args) {
 Observable<Integer> source =
 Observable.create(observableEmitter -> {
 try {
 for (int i = 0; i < 1000; i++) {
 while (!observableEmitter.isDisposed()) {

Observables and Subscribers

[63]

 observableEmitter.onNext(i);
 }
 if (observableEmitter.isDisposed())
 return;
 }
 observableEmitter.onComplete();
 } catch (Throwable e) {
 observableEmitter.onError(e);
 }
 });
 }
 }

If your Observable.create() is wrapped around some resource, you should also handle
the disposal of that resource to prevent leaks. ObservableEmitter has
the setCancellable() and setDisposable() methods for that. In our earlier JavaFX
example, we should remove the ChangeListener from our JavaFX ObservableValue
when a disposal occurs. We can provide a lambda to setCancellable(), which will
execute the following action for us, which will occur when dispose() is called:

 private static <T> Observable<T> valuesOf(final ObservableValue<T>
 fxObservable) {
 return Observable.create(observableEmitter -> {

 //emit initial state
 observableEmitter.onNext(fxObservable.getValue());

 //emit value changes uses a listener
 final ChangeListener<T> listener =
 (observableValue, prev, current) ->
 observableEmitter.onNext(current);

 //add listener to ObservableValue
 fxObservable.addListener(listener);

 //Handle disposing by specifying cancellable
 observableEmitter.setCancellable(() ->
 fxObservable.removeListener(listener));
 });
 }

Observables and Subscribers

[64]

Summary
This was an intense chapter, but it will provide a solid foundation as you learn how to use
RxJava to tackle real-world work. RxJava, with all of its expressive power, has some
nuances that are entirely due to the change of mindset it demands. It has done an
impressive amount of work taking an imperative language like Java and adapting it to
become reactive and functional. But this interoperability requires some understanding of
the implementations between an Observable and a Observer. We touched on various
ways to create Observables as well as how they interact with Observers.

Take your time trying to digest all this information but do not let it stop you from moving
on to the next two chapters, where the usefulness of RxJava starts to take formation. In the
next chapters, the pragmatic usefulness of RxJava will start to become clear.

3
Basic Operators

In the previous chapter, you learned a lot about the Observable and Observer. We also
covered a small number of operators, particularly map() and filter(), to understand the
role of operators as well. But there are hundreds of RxJava operators we can leverage to
express business logic and behaviors. We will cover operators comprehensively throughout
much of this book, so you know which ones to use and when. Being aware of the operators
available and combining them is critical to being successful using ReactiveX. You should
strive to use operators to express business logic so your code stays as reactive as possible.

It should be noted that operators themselves are Observers to the Observable they are
called on. If you call map() on an Observable, the returned Observable will subscribe to
it. It will then transform each emission and in turn be a producer for Observers
downstream, including other operators and the terminal Observer itself.

You should strive to execute as much logic as possible using RxJava operators, and you
should use an Observer to receive the end product emissions that are ready to be
consumed. Try not to cheat or get creative by extracting values out of the Observable
chain, or resort to blocking processes or imperative programming tactics. When you keep
algorithms and processes reactive, you can easily leverage the benefits of reactive
programming such as lower memory usage, flexible concurrency, and disposability.

In this chapter, we will cover the following topics:

Suppressing operators
Transforming operators
Reducing operators
Error-recovery operators
Action operators

Basic Operators

[66]

Suppressing operators
There are a number of operators that will suppress emissions that fail to meet a specified
criterion. These operators work by simply not calling the onNext() function downstream
for a disqualified emission, and therefore does not go down the chain to Observer. We
have already seen the filter() operator, which is probably the most common suppressing
operator. We will start with this one.

filter()
The filter() operator accepts Predicate<T> for a given Observable<T>. This means
that you provide it a lambda that qualifies each emission by mapping it to a Boolean value,
and emissions with false will not go forward.

For instance, you can use filter() to only allow string emissions that are not five
characters in length:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable.just("Alpha", "Beta", "Gamma", "Delta", "Epsilon")
 .filter(s -> s.length() != 5)
 subscribe(s -> System.out.println("RECEIVED: " + s));
 }
}

The output of the preceding code snippet is as follows:

RECEIVED: Beta
RECEIVED: Epsilon

The filter() function is probably the most commonly used operator to suppress
emissions.

Note that if all emissions fail to meet your criteria, the returned
Observable will be empty, with no emissions occurring before
onComplete() is called.

Basic Operators

[67]

take()
The take() operator has two overloads. One will take a specified number of emissions and
then call onComplete() after it captures all of them. It will also dispose of the entire
subscription so that no more emissions will occur. For instance, take(3) will emit the first
three emissions and then call the onComplete() event:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable.just("Alpha", "Beta", "Gamma", "Delta", "Epsilon")
 .take(3)
 .subscribe(s -> System.out.println("RECEIVED: " + s));
 }
}

The output of the preceding code snippet is as follows:

 RECEIVED: Alpha
 RECEIVED: Beta
 RECEIVED: Gamma

Note that if you receive fewer emissions than you specify in your take() function, it will
simply emit what it does get and then call the onComplete() function.

The other overload will take emissions within a specific time duration and then call
onComplete(). Of course, our cold Observable here will emit so quickly that it would
serve as a bad example for this case. Maybe a better example would be to use an
Observable.interval() function. Let's emit every 300 milliseconds, but
take()emissions for only 2 seconds in the following code snippet:

import io.reactivex.Observable;
import java.util.concurrent.TimeUnit;

public class Launcher {
 public static void main(String[] args) {

 Observable.interval(300, TimeUnit.MILLISECONDS)
 .take(2, TimeUnit.SECONDS)
 .subscribe(i -> System.out.println("RECEIVED: " + i));

 sleep(5000);
 }

Basic Operators

[68]

 public static void sleep(long millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

The output of the preceding code snippet is as follows:

RECEIVED: 0
RECEIVED: 1
RECEIVED: 2
RECEIVED: 3
RECEIVED: 4
RECEIVED: 5

You will likely get the output that's shown here (each print happening every 300
milliseconds). You can only get six emissions in 2 seconds if they are spaced out by 300
milliseconds.

Note that there is also a takeLast() operator, which will take the last specified number of
emissions (or time duration) before the onComplete() function is called. Just keep in mind
that it will internally queue emissions until its onComplete() function is called, and then it
can logically identify and emit the last emissions.

skip()
The skip() operator does the opposite of the take() operator. It will ignore the specified
number of emissions and then emit the ones that follow. If I wanted to skip the first 90
emissions of an Observable, I could use this operator, as shown in the following code
snippet:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable.range(1,100)
 .skip(90)
 .subscribe(i -> System.out.println("RECEIVED: " + i));
 }
}

Basic Operators

[69]

The output of the following code snippet is as follows:

RECEIVED: 91
RECEIVED: 92
RECEIVED: 93
RECEIVED: 94
RECEIVED: 95
RECEIVED: 96
RECEIVED: 97
RECEIVED: 98
RECEIVED: 99
RECEIVED: 100

Just like the take() operator, there is also an overload accepting a time duration. There is
also a skipLast() operator, which will skip the last specified number of items (or time
duration) before the onComplete() event is called. Just keep in mind that the skipLast()
operator will queue and delay emissions until it confirms the last emissions in that scope.

takeWhile() and skipWhile()
Another variant of the take() operator is the takeWhile() operator, which takes
emissions while a condition derived from each emission is true. The following example will
keep taking emissions while emissions are less than 5. The moment it encounters one that is
not, it will call the onComplete() function and dispose of this:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable.range(1,100)
 .takeWhile(i -> i < 5)
 .subscribe(i -> System.out.println("RECEIVED: " + i));
 }
}

The output of the preceding code snippet is as follows:

RECEIVED: 1
RECEIVED: 2
RECEIVED: 3
RECEIVED: 4

Basic Operators

[70]

Just like the takeWhile() function, there is a skipWhile() function. It will keep skipping
emissions while they qualify with a condition. The moment that condition no longer
qualifies, the emissions will start going through. In the following code, we skip emissions as
long as they are less than or equal to 95. The moment an emission is encountered that does
not meet this condition, it will allow all subsequent emissions going forward:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable.range(1,100)
 .skipWhile(i -> i <= 95)
 .subscribe(i -> System.out.println("RECEIVED: " + i));
 }
}

The output of the preceding code snippet is as follows:

RECEIVED: 96
RECEIVED: 97
RECEIVED: 98
RECEIVED: 99
RECEIVED: 100

The takeUntil() operator is similar to takeWhile(), but it accepts
another Observable as a parameter. It will keep taking emissions until
that other Observable pushes an emission.
The skipUntil() operator has similar behavior. It also accepts
another Observable as an argument but it will keep skipping until the
other Observable emits something.

distinct()
The distinct() operator will emit each unique emission, but it will suppress any
duplicates that follow. Equality is based on hashCode()/equals() implementation of the
emitted objects. If we wanted to emit the distinct lengths of a string sequence, it could be
done as follows:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

Basic Operators

[71]

 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon")
 .map(String::length)
 .distinct()
 .subscribe(i -> System.out.println("RECEIVED: " + i));
 }
}

The output of the preceding code snippet is as follows:

RECEIVED: 5
RECEIVED: 4
RECEIVED: 7

Keep in mind that if you have a wide, diverse spectrum of unique values, distinct() can
use a bit of memory. Imagine that each subscription results in a HashSet that tracks
previously captured unique values.

You can also add a lambda argument that maps each emission to a key used for equality
logic. This allows the emissions, but not the key, to go forward while using the key for
distinct logic. For instance, we can key off each string's length and use it for uniqueness, but
emit the strings rather than their lengths:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon")
 .distinct(String::length)
 .subscribe(i -> System.out.println("RECEIVED: " + i));
 }
}

The output of the preceding code snippet is as follows:

RECEIVED: Alpha
RECEIVED: Beta
RECEIVED: Epsilon

Alpha is five characters, and Beta is four. Gamma and Delta were ignored because
Alpha was already emitted and is 5 characters. Epsilon is seven characters, and because
no seven-character string was emitted yet, it was emitted forward.

Basic Operators

[72]

distinctUntilChanged()
The distinctUntilChanged() function will ignore duplicate consecutive emissions. It is
a helpful way to ignore repetitions until they change. If the same value is being emitted
repeatedly, all the duplicates will be ignored until a new value is emitted. Duplicates of the
next value will be ignored until it changes again, and so on. Observe the output for the
following code to see this behavior in action:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable.just(1, 1, 1, 2, 2, 3, 3, 2, 1, 1)
 .distinctUntilChanged()
 .subscribe(i -> System.out.println("RECEIVED: " + i));
 }
}

The output of the preceding code snippet is as follows:

RECEIVED: 1
RECEIVED: 2
RECEIVED: 3
RECEIVED: 2
RECEIVED: 1

We first receive an emission of 1, which is allowed forward. But the next two 1 are ignored
because they are consecutive duplicates. When it switches to 2, that initial 2 is emitted, but
the following duplicate is ignored. A 3 is emitted and its following duplicate is ignored as
well. Finally, we switch back to a 2 that emits and then a 1 whose duplicate is ignored.

Just like distinct(), you can provide an optional argument for a key through a lambda
mapping. In the following code snippet, we execute the distinctUntilChanged()
operation with strings keyed on their lengths:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable.just("Alpha", "Beta", "Zeta", "Eta", "Gamma",
"Delta")
 .distinctUntilChanged(String::length)

Basic Operators

[73]

 .subscribe(i -> System.out.println("RECEIVED: " + i));
 }
}

The output of the preceding code snippet is as follows:

RECEIVED: Alpha
RECEIVED: Beta
RECEIVED: Eta
RECEIVED: Gamma

Note that Zeta was skipped because it comes right after Beta, which also is four characters.
Delta is ignored as well because it follows Gamma, which is five characters as well.

elementAt()
You can get a specific emission by its index specified by a Long, starting at 0. After that item
is found and emitted, onComplete() will be called and the subscription will be disposed
of.

If you want to get the fourth emission coming from an Observable, you can do it as shown
in the following code snippet:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable.just("Alpha", "Beta", "Zeta", "Eta", "Gamma",
"Delta")
 .elementAt(3)
 .subscribe(i -> System.out.println("RECEIVED: " + i));
 }
}

The output of the following code snippet is as follows:

RECEIVED: Eta

You may not have noticed, but elementAt() returns Maybe<T> instead
of Observable<T>. This is because it will yield one emission, but if there are fewer
emissions than the sought index, it will be empty.

Basic Operators

[74]

There are other flavors of elementAt(), such as elementAtOrError(), which return a
Single and will emit an error if an element at that index is not found. singleElement()
will turn an Observable into a Maybe, but will produce an error if there is anything
beyond one element. Finally, firstElement() and lastElement() will yield, maybe
emitting the first or last emission, respectively.

Transforming operators
Next, we will cover various common operators that transform emissions. A series of
operators in an Observable chain is a stream of transformations. You have already seen
map(), which is the most obvious operator in this category. We will start with that one.

map()
For a given Observable<T>, the map() operator will transform a T emission into an R
emission using the provided Function<T,R> lambda. We have already used this operator
many times, turning strings into lengths. Here is a new example: we can take raw date
strings and use the map() operator to turn each one into a LocalDate emission, as shown
in the following code snippet:

import io.reactivex.Observable;
import java.time.LocalDate;
import java.time.format.DateTimeFormatter;

public class Launcher {
 public static void main(String[] args) {

 DateTimeFormatter dtf = DateTimeFormatter.ofPattern("M/d
 /yyyy");

 Observable.just("1/3/2016", "5/9/2016", "10/12/2016")
 .map(s -> LocalDate.parse(s, dtf))
 .subscribe(i -> System.out.println("RECEIVED: " + i));
 }
}

The output of the preceding code snippet is as follows:

RECEIVED: 2016-01-03
RECEIVED: 2016-05-09
RECEIVED: 2016-10-12

Basic Operators

[75]

We passed a lambda that turns each string into a LocalDate object. We created
a DateTimeFormatter in advance in order to assist with the LocalDate.parse()
operation, which returns a LocalDate. In turn, we pushed each LocalDate emission to
our Observer to be printed.

The map() operator does a one-to-one conversion for each emission. If you need to do a
one-to-many conversion (turn one emission into several emissions), you will likely want to
use flatMap() or concatMap(), which we will cover in the next chapter.

cast()
A simple, map-like operator to cast each emission to a different type is cast(). If we want
to take Observable<String> and cast each emission to an object (and return an
Observable<Object>), we could use the map() operator like this:

Observable<Object> items =
 Observable.just("Alpha", "Beta", "Gamma").map(s -> (Object) s);

But a shorthand we can use instead is cast(), and we can simply pass the class type we
want to cast to, as shown in the following code snippet:

Observable<Object> items =
 Observable.just("Alpha", "Beta", "Gamma").cast(Object.class);

If you find that you are having typing issues due to inherited or polymorphic types being
mixed, this is an effective brute-force way to cast everything down to a common base type.
But strive to properly use generics and type wildcards appropriately first.

startWith()
For a given Observable<T>, the startWith() operator allows you to insert a T emission
that precedes all the other emissions. For instance, if we have an Observable<String>that
emits items on a menu we want to print, we can use startWith() to append a title header
first:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable<String> menu =
 Observable.just("Coffee", "Tea", "Espresso", "Latte");

Basic Operators

[76]

 //print menu
 menu.startWith("COFFEE SHOP MENU")
 .subscribe(System.out::println);

 }
}

The output of the preceding code snippet is as follows:

COFFEE SHOP MENU
Coffee
Tea
Espresso
Latte

If you want to start with more than one emission, use startWithArray() to accept
varargs parameters. If we want to add a divider between our header and menu items, we
can start with both the header and divider as emissions:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable<String> menu =
 Observable.just("Coffee", "Tea", "Espresso", "Latte");

 //print menu
 menu.startWithArray("COFFEE SHOP MENU","----------------")
 .subscribe(System.out::println);

 }
}

The output of the preceding code snippet is as follows:

COFFEE SHOP MENU

Coffee
Tea
Espresso
Latte

The startWith() operator is helpful for cases like this, where we want to seed an initial
value or precede our emissions with one or more emissions.

Basic Operators

[77]

If you want an entire emissions of Observable to precede emissions of
another Observable, you will want to use Observable.concat() or
concatWith(), which we will cover in the next chapter.

defaultIfEmpty()
If we want to resort to a single emission if a given Observable comes out empty, we can
use defaultIfEmpty(). For a given Observable<T>, we can specify a default T emission
if no emissions occur when onComplete() is called.

If we have an Observable<String> and filter for items that start with Z but no items meet
this criteria, we can resort to emitting None:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable<String> items =
Observable.just("Alpha","Beta","Gamma","Delta","Epsilon");

 items.filter(s -> s.startsWith("Z"))
 .defaultIfEmpty("None")
 .subscribe(System.out::println);
 }
}

The output of the preceding code snippet is as follows:

None

Of course, if emissions were to occur, we would never see None emitted. It will only happen
if the preceding Observable is empty.

switchIfEmpty()
Similar to defaultIfEmpty(), switchIfEmpty() specifies a different Observable to
emit values from if the source Observable is empty. This allows you specify a different
sequence of emissions in the event that the source is empty rather than emitting just one
value.

Basic Operators

[78]

We could choose to emit three additional strings, for example, if the preceding Observable
came out empty due to a filter() operation:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon")
 .filter(s -> s.startsWith("Z"))
 .switchIfEmpty(Observable.just("Zeta", "Eta", "Theta"))
 .subscribe(i -> System.out.println("RECEIVED: " + i),
 e -> System.out.println("RECEIVED ERROR: " + e)
);
 }
}

The output of the preceding code snippet is as follows:

RECEIVED: Zeta
RECEIVED: Eta
RECEIVED: Theta

Of course, if the preceding Observable is not empty, then switchIfEmpty() will have no
effect and not use that specified Observable.

sorted()
If you have a finite Observable<T> emitting items that implement Comparable<T>, you
can use sorted() to sort the emissions. Internally, it will collect all the emissions and then
re-emit them in their sorted order. In the following code snippet, we sort emissions
from Observable<Integer>so that they are emitted in their natural order:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable.just(6, 2, 5, 7, 1, 4, 9, 8, 3)
 .sorted()
 .subscribe(System.out::println);
 }
}

Basic Operators

[79]

The output of the preceding code snippet is as follows:

1
2
3
4
5
6
7
8
9

Of course, this can have some performance implications as it will collect all emissions in
memory before emitting them again. If you use this against an infinite Observable, you
may get an OutOfMemory error.

You can also provide Comparator as an argument to specify an explicit sorting criterion.
We can provide Comparator to reverse the sorting order, such as the one shown as follows:

import io.reactivex.Observable;
import java.util.Comparator;

public class Launcher {
 public static void main(String[] args) {

 Observable.just(6, 2, 5, 7, 1, 4, 9, 8, 3)
 .sorted(Comparator.reverseOrder())
 .subscribe(System.out::println);
 }
}

The output of the preceding code snippet is as follows:

9
8
7
6
5
4
3
2
1

Basic Operators

[80]

Since Comparator is a single-abstract-method interface, you can implement it quickly with
a lambda. Specify the two parameters representing two emissions, and then map them to
their comparison operation. We can use this to sort string emissions by their lengths, for
instance. This also allows us to sort items that do not implement Comparable:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable.just("Alpha", "Beta", "Gamma" ,"Delta",
"Epsilon")
 .sorted((x,y) -> Integer.compare(x.length(), y.length()))
 .subscribe(System.out::println);
 }
}

The output of the preceding code snippet is as follows:

 Beta
 Alpha
 Gamma
 Delta
 Epsilon

delay()
We can postpone emissions using the delay() operator. It will hold any received emissions
and delay each one for the specified time period. If we wanted to delay emissions by three
seconds, we could do it like this:

import io.reactivex.Observable;
import java.util.concurrent.TimeUnit;

public class Launcher {
 public static void main(String[] args) {

 Observable.just("Alpha", "Beta", "Gamma" ,"Delta",
"Epsilon")
 .delay(3, TimeUnit.SECONDS)
 .subscribe(s -> System.out.println("Received: " + s));

 sleep(5000);
 }
 public static void sleep(long millis) {
 try {

Basic Operators

[81]

 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

The output of the preceding code snippet is as follows:

 Received: Alpha
 Received: Beta
 Received: Gamma
 Received: Delta
 Received: Epsilon

Because delay() operates on a different scheduler (such as Observable.interval()), we
need to leverage a sleep() method to keep the application alive long enough to see this
happen. Each emission will be delayed by three seconds. You can pass an optional third
Boolean argument indicating whether you want to delay error notifications as well.

For more advanced cases, you can pass another Observable as your delay() argument,
and this will delay emissions until that other Observable emits something.

Note that there is a delaySubscription() operator, which will delay
subscribing to the Observable preceding it rather than delaying each
individual emission.

repeat()
The repeat() operator will repeat subscription upstream after onComplete() a specified
number of times.

For instance, we can repeat the emissions twice for a given Observable by passing a long 2
as an argument for repeat(), as shown in the following code snippet:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable.just("Alpha", "Beta", "Gamma" ,"Delta",
"Epsilon")

Basic Operators

[82]

 .repeat(2)
 .subscribe(s -> System.out.println("Received: " + s));
 }
}

The output of the preceding code snippet is as follows:

 Received: Alpha
 Received: Beta
 Received: Gamma
 Received: Delta
 Received: Epsilon
 Received: Alpha
 Received: Beta
 Received: Gamma
 Received: Delta
 Received: Epsilon

If you do not specify a number, it will repeat infinitely, forever re-subscribing after every
onComplete(). There is also a repeatUntil() operator that accepts a Boolean Supplier
lambda argument and will continue repeating until it yields true.

scan()
The scan() method is a rolling aggregator. For every emission, you add it to an
accumulation. Then, it will emit each incremental accumulation.

For instance, you can emit the rolling sum for each emission by passing a lambda to
thescan() method that adds each next emission to the accumulator:

 import io.reactivex.Observable;

 public class Launcher {
 public static void main(String[] args) {

 Observable.just(5, 3, 7, 10, 2, 14)
 .scan((accumulator, next) -> accumulator + next)
 .subscribe(s -> System.out.println("Received: " + s));

 }
 }

Basic Operators

[83]

The output of the preceding code snippet is as follows:

Received: 5
Received: 8
Received: 15
Received: 25
Received: 27
Received: 41

It emitted the initial value of 5, which was the first emission it received. Then, it received 3
and added it to 5, emitting 8. After that, 7 was received, which was added to 8, emitting 15,
and so on. This does not have to be used just for rolling sums. You can create many kinds of
accumulations (even non-math ones such as string concatenations or Boolean reductions).

Note that scan() is very similar to reduce(), which we will learn about shortly. Be careful
to not confuse the two. The scan() method emits the rolling accumulation for each
emission, whereas reduce() yields a single emission reflecting the final accumulation once
onComplete() is called. scan()can be used on infinite Observables safely since it does not
require an onComplete() call.

You can also provide an initial value for the first argument and aggregate into a different
type than what is being emitted. If we wanted to emit the rolling count of emissions, we can
provide an initial value of 0 and just add 1 to it for every emission. Keep in mind that the
initial value will be emitted first, so use skip(1) after scan() if you do not want that
initial emission:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon")
 .scan(0, (total, next) -> total + 1)
 .subscribe(s -> System.out.println("Received: " + s));

 }
}

Basic Operators

[84]

The output of the preceding code snippet is as follows:

 Received: 0
 Received: 1
 Received: 2
 Received: 3
 Received: 4
 Received: 5

Reducing operators
You will likely have moments where you want to take a series of emissions and consolidate
them into a single emission (usually emitted through a Single). We will cover a few
operators that accomplish this. Note that nearly all of these operators only work on a finite
Observable that calls onComplete() because typically, we can consolidate only finite
datasets. We will explore this behavior as we cover these operators.

count()
The simplest operator to consolidate emissions into a single one is count(). It will count
the number of emissions and emit through a Single once onComplete() is called, shown
as follows:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon")
 .count()
 .subscribe(s -> System.out.println("Received: " + s));

 }
}

The output of the preceding code snippet is as follows:

 Received: 5

Like most reduction operators, this should not be used on an infinite Observable. It will
hang up and work infinitely, never emitting a count or calling onComplete(). You should
consider using scan() to emit a rolling count instead.

Basic Operators

[85]

reduce()
The reduce() operator is syntactically identical to scan(), but it only emits the final
accumulation when the source calls onComplete(). Depending on which overload you
use, it can yield Single or Maybe. If you want to emit the sum of all integer emissions, you
can take each one and add it to the rolling total. But it will only emit once it is finalized:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable.just(5, 3, 7, 10, 2, 14)
 .reduce((total, next) -> total + next)
 .subscribe(s -> System.out.println("Received: " + s));
 }
}

The output of the preceding code snippet is as follows:

 Received: 41

Similar to scan(), there is a seed argument that you can provide that will serve as the
initial value to accumulate on. If we wanted to turn our emissions into a single comma-
separated value string, we could use reduce() like this, shown as follows:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable.just(5, 3, 7, 10, 2, 14)
 .reduce("", (total, next) -> total + (total.equals("") ?
"" :
 ",") + next)
 .subscribe(s -> System.out.println("Received: " +
s));
 }
}

The output of the preceding code snippet is as follows:

 Received: 5,3,7,10,2,14

Basic Operators

[86]

We provided an empty string as our seed value, and we maintain a rolling concatenation
total and keep adding to it. We prevent a preceding comma using a ternary operator to
check whether the total is the seed value and returning an empty string instead of a
comma if it is.

Your seed value should be immutable, such as an integer or string. Bad
side-effects can happen if it is mutable, and you should use collect() (or
seedWith()) for these cases, which we will cover in a moment. For
instance, if you want to reduce T emissions into a collection, such as
List<T>, use collect() instead of reduce(). Using reduce() will have
an undesired side-effect of using the same list for each subscription, rather
than creating a fresh, empty one each time.

all()
The all() operator verifies that each emission qualifies with a specified condition and
return a Single<Boolean>. If they all pass, it will emit True. If it encounters one that fails,
it will immediately emit False. In the following code snippet, we emit a test against six
integers, verifying that they all are less than 10:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable.just(5, 3, 7, 11, 2, 14)
 .all(i -> i < 10)
 .subscribe(s -> System.out.println("Received: " + s));
 }
}

The output of the preceding code snippet is as follows:

 Received: false

When the all() operator encountered 11, it immediately emitted False and called
onComplete(). It did not even get to 2 or 14 because that would be unnecessary work. It
already found an element that fails the entire test.

Basic Operators

[87]

If you call all() on an empty Observable, it will emit true due to the
principle of vacuous truth. You can read more about vacuous truth on
Wikipedia at h t t p s ://e n . w i k i p e d i a . o r g /w i k i /V a c u o u s _ t r u t h .

any()
The any() method will check whether at least one emission meets a specific criterion and
return a Single<Boolean>. The moment it finds an emission that qualifies, it will emit true
and then call onComplete(). If it processes all emissions and finds that they all are false, it
will emit false and call onComplete().

In the following code snippet, we emit four date strings, convert them into LocalDate
emissions, and test for any that are in the month of June or later:

import io.reactivex.Observable;
import java.time.LocalDate;

public class Launcher {
 public static void main(String[] args) {

 Observable.just("2016-01-01", "2016-05-02", "2016-09-12",
"2016-04-03")
 .map(LocalDate::parse)
 .any(dt -> dt.getMonthValue() >= 6)
 .subscribe(s -> System.out.println("Received: " + s));
 }
}

The output of the preceding code snippet is as follows:

 Received: true

When it encountered the 2016-09-12 date, it immediately emitted true and called
onComplete(). It did not proceed to process 2016-04-03.

If you call any() on an empty Observable, it will emit false due to the
principle of vacuous truth. You can read more about vacuous truth on
Wikipedia at h t t p s ://e n . w i k i p e d i a . o r g /w i k i /V a c u o u s _ t r u t h .

https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Vacuous_truth

Basic Operators

[88]

contains()
The contains() operator will check whether a specific element (based on the
hashCode()/equals() implementation) ever emits from an Observable. It will return a
Single<Boolean> that will emit true if it is found and false if it is not.

In the following code snippet, we emit the integers 1 through 10000, and we check whether
the number 9563 is emitted from it using contains():

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable.range(1,10000)
 .contains(9563)
 .subscribe(s -> System.out.println("Received: " + s));
 }
}

The output of the preceding code snippet is as follows:

 Received: true

As you can probably guess, the moment the element is found, it will emit true and call
onComplete() and dispose of the operation. If the source calls onComplete() and the
element was not found, it will emit false.

Collection operators
Collection operators will accumulate all emissions into a collection such as a list or map and
then emit that entire collection as a single emission. Collection operators are another form of
reducing operators since they consolidate emissions into a single one. We will cover them
separately since they are a significant category on their own, though.

Note that you should avoid reducing emissions into collections for the
sake of it. It can undermine the benefits of reactive programming where
items are processed in a beginning-to-end, one-at-a-time sequence. You
only want to consolidate emissions into collections when you are logically
grouping them in some way.

Basic Operators

[89]

toList()
A common collection operator is toList(). For a given Observable<T>, it will collect
incoming emissions into a List<T> and then push that entire List<T> as a single emission
(through Single<List<T>>). In the following code snippet, we collect string emissions
into a List<String>. After the preceding Observable signals onComplete(), that list is
pushed forward to the observer to be printed:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon")
 .toList()
 .subscribe(s -> System.out.println("Received: " + s));
 }
}

The output of the preceding code snippet is as follows:

 Received: [Alpha, Beta, Gamma, Delta, Epsilon]

By default, toList() will use a standard ArrayList implementation. You can optionally
specify an integer argument to serve as the capacityHint, and that will optimize the
initialization of ArrayList to expect roughly that number of items:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable.range(1,1000)
 .toList(1000)
 .subscribe(s -> System.out.println("Received: " + s));
 }
}

If you want to specify a different list implementation besides ArrayList, you can provide a
Callable lambda as an argument to construct one. In the following code snippet, I provide
a CopyOnWriteArrayList instance to serve as my list:

import io.reactivex.Observable;
import java.util.concurrent.CopyOnWriteArrayList;

Basic Operators

[90]

public class Launcher {
 public static void main(String[] args) {

 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon")
 .toList(CopyOnWriteArrayList::new)
 .subscribe(s -> System.out.println("Received: " + s));
 }
}

If you want to use Google Guava's immutable list, this is a little trickier since it is immutable
and uses a builder. We will show you how to do this with collect() later in this section.

toSortedList()
A different flavor of toList() is toSortedList(). This will collect the emissions into a
list that sorts the items naturally based on their Comparator implementation. Then, it will
emit that sorted List<T> forward to the Observer:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable.just(6, 2, 5, 7, 1, 4, 9, 8, 3)
 .toSortedList()
 .subscribe(s -> System.out.println("Received: " + s));
 }
}

The output of the preceding code snippet is as follows:

Received: [1, 2, 3, 4, 5, 6, 7, 8, 9]

Like sorted(), you can provide a Comparator as an argument to apply a different sorting
logic. You can also specify an initial capacity for the backing ArrayList just like toList().

toMap() and toMultiMap()
For a given Observable<T>, the toMap() operator will collect emissions into Map<K,T>,
where K is the key type derived off a lambda Function<T,K> argument producing the key
for each emission.

Basic Operators

[91]

If we want to collect strings into Map<Char,String>, where each string is keyed off their
first character, we can do it like this:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon")
 .toMap(s -> s.charAt(0))
 .subscribe(s -> System.out.println("Received: " + s));
 }
}

The output of the preceding code snippet is as follows:

 Received: {A=Alpha, B=Beta, D=Delta, E=Epsilon, G=Gamma}

The s -> s.charAt(0) lambda argument takes each string and derives the key to pair it
with. In this case, we are making the first character of that string the key.

If we wanted to yield a different value other than the emission to associate with the key, we
can provide a second lambda argument that maps each emission to a different value. We
can, for instance, map each first letter key with the length of that string:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon")
 .toMap(s -> s.charAt(0), String::length)
 .subscribe(s -> System.out.println("Received: " + s));
 }
}

The output of the preceding code snippet is as follows:

 Received: {A=5, B=4, D=5, E=7, G=5}

Basic Operators

[92]

By default, toMap() will use HashMap. You can also provide a third lambda argument that
provides a different map implementation. For instance, I can provide ConcurrentHashMap
instead of HashMap :

import io.reactivex.Observable;
import java.util.concurrent.ConcurrentHashMap;

public class Launcher {
 public static void main(String[] args) {
 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon")
 .toMap(s -> s.charAt(0), String::length,
ConcurrentHashMap::new)
 .subscribe(s -> System.out.println("Received: " + s));
 }
}

Note that if I have a key that maps to multiple emissions, the last emission for that key is
going to replace subsequent ones. If I make the string length the key for each emission,
Alpha is going to be replaced by Gamma, which is going to be replaced by Delta:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon")
 .toMap(String::length)
 .subscribe(s -> System.out.println("Received: " + s));
 }
}

The output of the preceding code snippet is as follows:

 Received: {4=Beta, 5=Delta, 7=Epsilon}

If you want a given key to map to multiple emissions, you can use toMultiMap() instead,
which will maintain a list of corresponding values for each key. Alpha, Gamma, and
Delta will then all be put in a list that is keyed off the length five:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

Basic Operators

[93]

 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon")
 .toMultimap(String::length)
 .subscribe(s -> System.out.println("Received: " + s));
 }
}

The output of the preceding code snippet is as follows:

 Received: {4=[Beta], 5=[Alpha, Gamma, Delta], 7=[Epsilon]}

collect()
When none of the collection operators have what you need, you can always use the
collect() operator to specify a different type to collect items into. For instance, there is no
toSet() operator to collect emissions into a Set<T>, but you can quickly use collect()
to effectively do this. You will need to specify two arguments that are built with lambda
expressions: initialValueSupplier, which will provide a new HashSetfor a new
Observer, and collector, which specifies how each emission is added to that HashSet:

import io.reactivex.Observable;
import java.util.HashSet;

public class Launcher {
 public static void main(String[] args) {

 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon")
 .collect(HashSet::new, HashSet::add)
 .subscribe(s -> System.out.println("Received: " + s));
 }
}

The output of the preceding code snippet is as follows:

 Received: [Gamma, Delta, Alpha, Epsilon, Beta]

Now our collect() operator will emit a single HashSet<String> containing all the
emitted values.

Use collect() instead of reduce() when you are putting emissions into a mutable object,
and you need a new mutable object seed each time. We can also use collect() for trickier
cases that are not straightforward collection implementations.

Basic Operators

[94]

Say you added Google Guava as a dependency (h t t p s ://g i t h u b . c o m /g o o g l e /g u a v a) and
you want to collect emissions into an ImmutableList. To create an ImmutableList , you
have to call its builder() factory to yield an ImmutableList.Builder<T>. You then call
its add() method to put items in the builder, followed by a call to build(), which returns a
sealed, final ImmutableList<T> that cannot be modified.

To collect emissions into ImmutableList, you can supply
an ImmutableList.Builder<T> for your first lambda argument and then add each
element through its add() method in the second argument. This will emit
ImmutableList.Builder<T> once it is fully populated, and you can map() it to its
build() call in order to emit an ImmutableList<T>:

import com.google.common.collect.ImmutableList;
import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {
 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon")
 .collect(ImmutableList::builder,
ImmutableList.Builder::add)
 .map(ImmutableList.Builder::build)
 .subscribe(s -> System.out.println("Received: " + s));
 }
}

The output of the preceding code snippet is as follows:

 Received: [Alpha, Beta, Gamma, Delta, Epsilon]

Again, the collect() operator is helpful to collect emissions into any arbitrary type that
RxJava does not provide out of the box.

Error recovery operators
Exceptions can occur in your Observable chain across many operators depending on what
you are doing. We already know about the onError() event that is communicated down
the Observable chain to the Observer. After that, the subscription terminates and no
more emissions will occur. But sometimes, we want to intercept exceptions before they get
to the Observer and attempt some form of recovery. We cannot necessarily pretend that
the error never happened and expect emissions to resume, but we can attempt re-
subscribing or switch to an alternate source Observable.

https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava
https://github.com/google/guava

Basic Operators

[95]

We can still do the former, just not with RxJava operators, which we will see shortly. If you
find that the error recovery operators do not meet your needs, chances are you can compose
them creatively.

For these examples, let's divide each integer emission by 10, where one of the emissions is 0.
This will result in a "/ by zero" exception being emitted to the Observer, as shown in the
following code snippet:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable.just(5, 2, 4, 0, 3, 2, 8)
 .map(i -> 10 / i)
 .subscribe(i -> System.out.println("RECEIVED: " + i),
 e -> System.out.println("RECEIVED ERROR: " + e)
);
 }
}

The output of the preceding code snippet is as follows:

 RECEIVED: 2
 RECEIVED: 5
 RECEIVED: 2
 RECEIVED ERROR: java.lang.ArithmeticException: / by zero

onErrorReturn() and onErrorReturnItem()
When you want to resort to a default value when an exception occurs, you can use
onErrorReturnItem(). If we want to emit -1 when an exception occurs, we can do it like
this:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable.just(5, 2, 4, 0, 3, 2, 8)
 .map(i -> 10 / i)
 .onErrorReturnItem(-1)
 .subscribe(i -> System.out.println("RECEIVED: " + i),

Basic Operators

[96]

 e -> System.out.println("RECEIVED ERROR: " + e)
);
 }
}

The output of the preceding code snippet is as follows:

 RECEIVED: 2
 RECEIVED: 5
 RECEIVED: 2
 RECEIVED: -1

You can also supply Function<Throwable,T> to dynamically produce the value using a
lambda. This gives you access to Throwable , which you can use to determine the returned
value as shown in the following code snippet:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable.just(5, 2, 4, 0, 3, 2, 8)
 .map(i -> 10 / i)
 .onErrorReturn(e -> - 1)
 .subscribe(i -> System.out.println("RECEIVED: " + i),
 e -> System.out.println("RECEIVED ERROR: " + e)
);
 }
}

The placement of onErrorReturn() matters. If we put it before the map() operator, the
error would not be caught because it happened after onErrorReturn(). To intercept the
emitted error, it must be downstream from where the error occurred.

Note that even though we emitted -1 to handle the error, the sequence still terminated after
that. We did not get the 3, 2, or 8 that was supposed to follow. If you want to resume
emissions, you will just want to handle the error within the map() operator where the error
can occur. You would do this in lieu of onErrorReturn() or onErrorReturnItem():

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable.just(5, 2, 4, 0, 3, 2, 8)
 .map(i -> {
 try {

Basic Operators

[97]

 return 10 / i;
 } catch (ArithmeticException e) {
 return -1;
 }
 })
 .subscribe(i -> System.out.println("RECEIVED: " +
i),
 e -> System.out.println("RECEIVED ERROR: " + e)
);
 }
}

The output of the preceding code snippet is as follows:

 RECEIVED: 2
 RECEIVED: 5
 RECEIVED: 2
 RECEIVED: -1
 RECEIVED: 3
 RECEIVED: 5
 RECEIVED: 1

onErrorResumeNext()
Similar to onErrorReturn() and onErrorReturnItem(), onErrorResumeNext() is very
similar. The only difference is that it accepts another Observable as a parameter to emit
potentially multiple values, not a single value, in the event of an exception.

This is somewhat contrived and likely has no business use case, but we can emit three -1
emissions in the event of an error:

 import io.reactivex.Observable;

 public class Launcher {
 public static void main(String[] args) {

 Observable.just(5, 2, 4, 0, 3, 2, 8)
 .map(i -> 10 / i)
 .onErrorResumeNext(Observable.just(-1).repeat(3))
 .subscribe(i -> System.out.println("RECEIVED: " + i),
 e -> System.out.println("RECEIVED ERROR: " + e)
);
 }
 }

Basic Operators

[98]

The output of the preceding code snippet is as follows:

 RECEIVED: 2
 RECEIVED: 5
 RECEIVED: 2
 RECEIVED: -1
 RECEIVED: -1
 RECEIVED: -1

We can also pass it Observable.empty() to quietly stop emissions in the event that there
is an error and gracefully call the onComplete() function:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable.just(5, 2, 4, 0, 3, 2, 8)
 .map(i -> 10 / i)
 .onErrorResumeNext(Observable.empty())
 .subscribe(i -> System.out.println("RECEIVED: " + i),
 e -> System.out.println("RECEIVED ERROR: " + e)
);
 }
}

The output of the preceding code snippet is as follows:

RECEIVED: 2
RECEIVED: 5
RECEIVED: 2

Similar to onErrorReturn(), you can provide a Function<Throwable,Observable<T>>
lambda to produce an Observable dynamically from the emitted Throwable, as shown in
the code snippet:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable.just(5, 2, 4, 0, 3, 2, 8)
 .map(i -> 10 / i)
 .onErrorResumeNext((Throwable e) ->
Observable.just(-1).repeat(3))
 .subscribe(i -> System.out.println("RECEIVED: " + i),

Basic Operators

[99]

 e -> System.out.println("RECEIVED ERROR: " + e)
);
 }
}

The output of the preceding code is as follows:

RECEIVED: 2
RECEIVED: 5
RECEIVED: 2
RECEIVED: -1
RECEIVED: -1
RECEIVED: -1

retry()
Another way to attempt recovery is to use the retry() operator, which has several
parameter overloads. It will re-subscribe to the preceding Observable and, hopefully, not
have the error again.

If you call retry() with no arguments, it will resubscribe an infinite number of times for
each error. You need to be careful with retry() as it can have chaotic effects. Using it with
our example will cause it to emit these integers infinitely and repeatedly:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable.just(5, 2, 4, 0, 3, 2, 8)
 .map(i -> 10 / i)
 .retry()
 .subscribe(i -> System.out.println("RECEIVED: " + i),
 e -> System.out.println("RECEIVED ERROR: " + e)
);
 }
}

Basic Operators

[100]

The output of the preceding code snippet is as follows:

 RECEIVED: 5
 RECEIVED: 2
 RECEIVED: 2
 RECEIVED: 5
 RECEIVED: 2
 RECEIVED: 2
 RECEIVED: 5
 RECEIVED: 2
 ...

It might be safer to specify a fixed number of times to retry() before it gives up and just
emits the error to the Observer. In the following code snippet, we will only retry two
times:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable.just(5, 2, 4, 0, 3, 2, 8)
 .map(i -> 10 / i)
 .retry(2)
 .subscribe(i -> System.out.println("RECEIVED: " + i),
 e -> System.out.println("RECEIVED ERROR: " + e)
);
 }
}

The output of the preceding code snippet is as follows:

 RECEIVED: 2
 RECEIVED: 5
 RECEIVED: 2
 RECEIVED: 2
 RECEIVED: 5
 RECEIVED: 2
 RECEIVED: 2
 RECEIVED: 5
 RECEIVED: 2
 RECEIVED ERROR: java.lang.ArithmeticException: / by zero

Basic Operators

[101]

You can also provide Predicate<Throwable> or BiPredicate<Integer,Throwable> to
conditionally control when retry() is attempted. The retryUntil() operator will allow
retries while a given BooleanSupplier lambda is false. There is also an advanced
retryWhen() operator that supports advanced composition for tasks such as delaying
retries.

Action operators
To close this chapter, we will cover some helpful operators that can assist in debugging as
well as getting visibility into an Observable chain. These are the action or doOn operators.

doOnNext(), doOnComplete(), and doOnError()
These three operators: doOnNext(), doOnComplete(), and doOnError() are like putting
a mini Observer right in the middle of the Observable chain.

The doOnNext() operator allows you to peek at each emission coming out of an operator
and going into the next. This operator does not affect the operation or transform the
emissions in any way. We just create a side-effect for each event that occurs at that point in
the chain. For instance, we can perform an action with each string before it is mapped to its
length. In this case, we will just print them by providing a Consumer<T> lambda:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon")
 .doOnNext(s -> System.out.println("Processing: " + s))
 .map(String::length)
 .subscribe(i -> System.out.println("Received: " + i));
 }
}

Basic Operators

[102]

The output of the preceding code snippet is as follows:

 Processing: Alpha
 Received: 5
 Processing: Beta
 Received: 4
 Processing: Gamma
 Received: 5
 Processing: Delta
 Received: 5
 Processing: Epsilon
 Received: 7

You can also leverage doAfterNext(), which performs the action after
the emission is passed downstream rather than before.

The onComplete() operator allows you to fire off an action when onComplete() is called
at the point in the Observable chain. This can be helpful in seeing which points of the
Observable chain have completed, as shown in the following code snippet:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon")
 .doOnComplete(() -> System.out.println("Source is done
 emitting!"))
 .map(String::length)
 .subscribe(i -> System.out.println("Received: " + i));
 }
}

The output of the preceding code snippet is as follows:

 Received: 5
 Received: 4
 Received: 5
 Received: 5
 Received: 7
 Source is done emitting!

Basic Operators

[103]

And, of course, onError() will peek at the error being emitted up the chain, and you can
perform an action with it. This can be helpful to put between operators to see which one is
to blame for an error:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable.just(5, 2, 4, 0, 3, 2, 8)
 .doOnError(e -> System.out.println("Source failed!"))
 .map(i -> 10 / i)
 .doOnError(e -> System.out.println("Division failed!"))
 .subscribe(i -> System.out.println("RECEIVED: " + i),
 e -> System.out.println("RECEIVED ERROR: " + e)
);
 }
}

The output of the preceding code snippet is as follows:

 RECEIVED: 2
 RECEIVED: 5
 RECEIVED: 2
 Division failed!
 RECEIVED ERROR: java.lang.ArithmeticException: / by zero

We used doOnError() in two places to see where the error first appeared. Since we did not
see Source failed! printed but we saw Division failed!, we can deduct that the
error occurred in the map() operator.

Use these three operators together to get an insight into what your Observable operation
is doing or to quickly create side-effects.

You can specify all three actions for onNext(), onComplete(), and
onError() using doOnEach() as well. The subscribe() method accepts
these three actions as lambda arguments or an entire Observer<T>. It is
like putting subscribe() right in the middle of your Observable chain!
There is also a doOnTerminate() operator, which fires for an
onComplete() or onError() event.

Basic Operators

[104]

doOnSubscribe() and doOnDispose()
Two other helpful action operators are doOnSubscribe() and doOnDispose().
The doOnSubscribe() fires a specific Consumer<Disposable> the moment subscription
occurs at that point in the Observable chain. It provides access to the Disposable in case
you want to call dispose() in that action. The doOnDispose() operator will perform a
specific action when disposal is executed at that point in the Observable chain.

We use both operators to print when subscription and disposal occur, as shown in the
following code snippet. As you can predict, we see the subscribe event fire off first. Then,
the emissions go through, and then disposal is finally fired:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon")
 .doOnSubscribe(d -> System.out.println("Subscribing!"))
 .doOnDispose(() -> System.out.println("Disposing!"))
 .subscribe(i -> System.out.println("RECEIVED: " + i));
 }
}

The output of the preceding code snippet is as follows:

 Subscribing!
 RECEIVED: Alpha
 RECEIVED: Beta
 RECEIVED: Gamma
 RECEIVED: Delta
 RECEIVED: Epsilon
 Disposing!

Note that doOnDispose() can fire multiple times for redundant disposal requests or not at
all if it is not disposed of in some form or another. Another option is to use the
doFinally() operator, which will fire after either onComplete() or onError() is called
or disposed of by the downstream.

Basic Operators

[105]

doOnSuccess()
Remember that Maybe and Single types do not have an onNext() event but rather an
onSuccess() operator to pass a single emission. Therefore, there is no doOnNext()
operator on either of these types, as observed in the following code snippet, but rather a
doOnSuccess() operator. Its usage should effectively feel like doOnNext():

import io.reactivex.Observable;

public class Launcher {

 public static void main(String[] args) {
 Observable.just(5, 3, 7, 10, 2, 14)
 .reduce((total, next) -> total + next)
 .doOnSuccess(i -> System.out.println("Emitting: " + i))
 .subscribe(i -> System.out.println("Received: " + i));
 }
}

The output of the preceding code snippet is as follows:

 Emitting: 41
 Received: 41

Summary
We covered a lot of ground in this chapter, and hopefully by now, you are starting to see
that RxJava has a lot of practical use. We covered various operators that suppress and
transform emissions as well as reduce them to a single emission in some form. You learned
how RxJava provides robust ways to recover from errors as well as get visibility into what
Observable chains are doing with action operators.

If you want to learn more about RxJava operators, there are many resources online. Marble
diagrams are a popular form of Rx documentation, visually showing how each operator
works. The rxmarbles.com (h t t p ://r x m a r b l e s . c o m) site is a popular, interactive web app
that allows you to drag marble emissions and see the affected behavior with each operator.
There is also an RxMarbles Android App (h t t p s ://p l a y . g o o g l e . c o m /s t o r e /a p p s /d e t a i l s

?i d =c o m . m o o n f l e e t . r x m a r b l e s) that you can use on your Android device. Of course, you
can also see a comprehensive list of operators on the ReactiveX website (h t t p ://r e a c t i v e x

. i o /d o c u m e n t a t i o n /o p e r a t o r s . h t m l).

http://rxmarbles.com
http://rxmarbles.com
http://rxmarbles.com
http://rxmarbles.com
http://rxmarbles.com
http://rxmarbles.com
http://rxmarbles.com
http://rxmarbles.com
http://rxmarbles.com
http://rxmarbles.com
http://rxmarbles.com
http://rxmarbles.com
http://rxmarbles.com
http://rxmarbles.com
http://rxmarbles.com
http://rxmarbles.com
http://rxmarbles.com
http://rxmarbles.com
http://rxmarbles.com
http://rxmarbles.com
http://rxmarbles.com
http://rxmarbles.com
http://rxmarbles.com
http://rxmarbles.com
http://rxmarbles.com
http://rxmarbles.com
http://rxmarbles.com
http://rxmarbles.com
http://rxmarbles.com
http://rxmarbles.com
http://rxmarbles.com
http://rxmarbles.com
http://rxmarbles.com
http://rxmarbles.com
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
https://play.google.com/store/apps/details?id=com.moonfleet.rxmarbles
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html

Basic Operators

[106]

Believe it or not, we have barely gotten started. This chapter only covered the basic
operators. In the coming chapters, we will cover operators that perform powerful
behaviors, such as concurrency and multicasting. But before we do that, let's move on to
operators that combine Observables.

4
Combining Observables

We have covered many operators that suppress, transform, reduce, and collect emissions.
These operators can do a lot of work, but what about combining multiple Observables and
consolidating them into one? If we want to accomplish more with ReactiveX, we need to
take multiple streams of data and events and make them work together, and there are
operators and factories to achieve this. These combining operators and factories also work
safely with Observables occurring on different threads (discussed in Chapter 6, Concurrency
and Parallelization).

This is where we start to transition from making RxJava useful to making it powerful. We
will cover the following operations to combine Observables:

Merging
Concatenating
Ambiguous
Zipping
Combine latest
Grouping

Combining Observables

[108]

Merging
A common task done in ReactiveX is taking two or more Observable<T> instances and
merging them into one Observable<T>. This merged Observable<T> will subscribe to all
of its merged sources simultaneously, making it effective for merging both finite and
infinite Observables. There are a few ways that we can leverage this merging behavior
using factories as well as operators.

Observable.merge() and mergeWith()
The Observable.merge() operator will take two or more Observable<T> sources
emitting the same type T and then consolidate them into a single Observable<T>.

If we have only two to four Observable<T> sources to merge, you can pass each one as an
argument to the Observable.merge() factory. In the following code snippet, I have
merged two Observable<String> instances into one Observable<String>:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable<String> source1 =
 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon");

 Observable<String> source2 =
 Observable.just("Zeta", "Eta", "Theta");

 Observable.merge(source1, source2)
 .subscribe(i -> System.out.println("RECEIVED: " + i));
 }
}

The output of the preceding program is as follows:

 RECEIVED: Alpha
 RECEIVED: Beta
 RECEIVED: Gamma
 RECEIVED: Delta
 RECEIVED: Epsilon
 RECEIVED: Zeta
 RECEIVED: Eta
 RECEIVED: Theta

Combining Observables

[109]

Alternatively, you can use mergeWith(), which is the operator version of
Observable.merge():

 source1.mergeWith(source2)
 .subscribe(i -> System.out.println("RECEIVED: " + i));

The Observable.merge() factory and the mergeWith() operator will subscribe to all the
specified sources simultaneously, but will likely fire the emissions in order if they are cold
and on the same thread. This is just an implementation detail, and you should use
Observable.concat() if you explicitly want to fire elements of each Observable
sequentially and keep their emissions in a sequential order.

You should not rely on ordering when using merge factories and
operators even if ordering seems to be preserved. Having said that, the
order of emissions from each source Observable is maintained. The way
the sources are merged is an implementation detail, so use concatenation
factories and operators if you want to guarantee order.

If you have more than four Observable<T> sources, you can use the
Observable.mergeArray() to pass a varargs of Observable[] instances that you want
to merge, as shown in the following code snippet. Since RxJava 2.0 was written for JDK 6+
and has no access to a @SafeVarargs annotation, you will likely get some type safety
warnings:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable<String> source1 =
 Observable.just("Alpha", "Beta");

 Observable<String> source2 =
 Observable.just("Gamma", "Delta");

 Observable<String> source3 =
 Observable.just("Epsilon", "Zeta");

 Observable<String> source4 =
 Observable.just("Eta", "Theta");

 Observable<String> source5 =
 Observable.just("Iota", "Kappa");

 Observable.mergeArray(source1, source2, source3, source4,
source5)

Combining Observables

[110]

 .subscribe(i -> System.out.println("RECEIVED: " + i));
 }
}

The output of the preceding code is as follows:

 RECEIVED: Alpha
 RECEIVED: Beta
 RECEIVED: Gamma
 RECEIVED: Delta
 RECEIVED: Epsilon
 RECEIVED: Zeta
 RECEIVED: Eta
 RECEIVED: Theta
 RECEIVED: Iota
 RECEIVED: Kappa

You can pass Iterable<Observable<T>> to Observable.merge() as well. It will merge
all the Observable<T> instances in that Iterable. I could achieve the preceding example
in a more type-safe way by putting all these sources in List<Observable<T>> and passing
them to Observable.merge():

import io.reactivex.Observable;
import java.util.Arrays;
import java.util.List;

public class Launcher {
 public static void main(String[] args) {

 Observable<String> source1 =
 Observable.just("Alpha", "Beta");

 Observable<String> source2 =
 Observable.just("Gamma", "Delta");

 Observable<String> source3 =
 Observable.just("Epsilon", "Zeta");

 Observable<String> source4 =
 Observable.just("Eta", "Theta");

 Observable<String> source5 =
 Observable.just("Iota", "Kappa");

 List<Observable<String>> sources =
 Arrays.asList(source1, source2, source3, source4,
source5);

Combining Observables

[111]

 Observable.merge(sources)
 .subscribe(i -> System.out.println("RECEIVED: " + i));
 }
}

The reason mergeArray() gets its own method and is not a merge()
overload instead is to avoid ambiguity with the Java 8 compiler and its
treatment with functional types. This is true for all the xxxArray()
operators.

The Observable.merge() works with infinite Observables. Since it will subscribe to all
Observables and fire their emissions as soon as they are available, you can merge multiple
infinite sources into a single stream. Here, we merge two Observable.interval()
sources that emit at one second and 300 millisecond intervals, respectively. But before we
merge, we do some math with the emitted index to figure out how much time has elapsed
and emit it with the source name in a string. We let this process run for three seconds:

import io.reactivex.Observable;
import java.util.concurrent.TimeUnit;

public class Launcher {
 public static void main(String[] args) {

 //emit every second
 Observable<String> source1 = Observable.interval(1,
TimeUnit.SECONDS)
 .map(l -> l + 1) // emit elapsed seconds
 .map(l -> "Source1: " + l + " seconds");

 //emit every 300 milliseconds
 Observable<String> source2 =
 Observable.interval(300, TimeUnit.MILLISECONDS)
 .map(l -> (l + 1) * 300) // emit elapsed milliseconds
 .map(l -> "Source2: " + l + " milliseconds");

 //merge and subscribe
 Observable.merge(source1, source2)
.subscribe(System.out::println);
 //keep alive for 3 seconds
 sleep(3000);
 }

 public static void sleep(long millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();

Combining Observables

[112]

 }
 }
}

The output of the preceding code is as follows:

 Source2: 300 milliseconds
 Source2: 600 milliseconds
 Source2: 900 milliseconds
 Source1: 1 seconds
 Source2: 1200 milliseconds
 Source2: 1500 milliseconds
 Source2: 1800 milliseconds
 Source1: 2 seconds
 Source2: 2100 milliseconds
 Source2: 2400 milliseconds
 Source2: 2700 milliseconds
 Source1: 3 seconds
 Source2: 3000 milliseconds

To summarize, Observable.merge() will combine multiple Observable<T> sources
emitting the same type T and consolidate into a single Observable<T>. It works on infinite
Observables and does not necessarily guarantee that the emissions come in any order. If
you care about the emissions being strictly ordered by having each Observable source
fired sequentially, you will likely want to use Observable.concat(), which we will cover
shortly.

flatMap()
One of the most powerful and critical operators in RxJava is flatMap(). If you have to
invest time in understanding any RxJava operator, this is the one. It is an operator that
performs a dynamic Observable.merge() by taking each emission and mapping it to an
Observable. Then, it merges the emissions from the resulting Observables into a single
stream.

The simplest application of flatMap() is to map one emission to many emissions. Say, we
want to emit the characters from each string coming from Observable<String>. We can
use flatMap() to specify a Function<T,Observable<R>> lambda that maps each string
to an Observable<String>, which will emit the letters. Note that the mapped
Observable<R> can emit any type R, different from the source T emissions. In this
example, it just happened to be String, like the source:

import io.reactivex.Observable;

Combining Observables

[113]

public class Launcher {
 public static void main(String[] args) {

 Observable<String> source =
 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon");

 source.flatMap(s -> Observable.fromArray(s.split("")))
 .subscribe(System.out::println);
 }
}

The output of the preceding code is as follows:

 A
 l
 p
 h
 a
 B
 e
 t
 a
 G
 a
 m
 m
 ...

We have taken those five string emissions and mapped them (through flatMap()) to emit
the letters from each one. We did this by calling each string's split() method, and we
passed it an empty String argument "", which will separate on every character. This
returns an array String[] containing all the characters, which we pass to
Observable.fromArray() to emit each one. The flatMap() expects each emission to
yield an Observable, and it will merge all the resulting Observables and emit their values
in a single stream.

Here is another example: let's take a sequence of String values (each a concatenated series
of values separated by "/"), use flatMap() on them, and filter for only numeric values
before converting them into Integer emissions:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

Combining Observables

[114]

 Observable<String> source =
 Observable.just("521934/2342/FOXTROT", "21962/12112/78886
 /TANGO",
"283242/4542/WHISKEY/2348562");

 source.flatMap(s -> Observable.fromArray(s.split("/")))
 .filter(s -> s.matches("[0-9]+")) //use regex to filter
 integers
 .map(Integer::valueOf)
 .subscribe(System.out::println);
 }
}

The output of the preceding code is as follows:

 521934
 2342
 21962
 12112
 78886
 283242
 4542
 2348562

We broke up each String by the / character, which yielded an array. We turned that into
an Observable and used flatMap() on it to emit each String. We filtered only for String
values that are numeric using a regular expression [0-9]+ (eliminating FOXTROT, TANGO,
and WHISKEY) and then turned each emission into an Integer.

Just like Observable.merge(), you can also map emissions to infinite Observables and
merge them. For instance, we can emit simple Integer values from
Observable<Integer> but use flatMap() on them to drive an
Observable.interval(), where each one serves as the period argument. In the following
code snippet, we emit the values 2, 3, 10, and 7, which will yield interval Observables that
emit at 2 seconds, 3 seconds, 10 seconds, and 7 seconds, respectively. These four
Observables will be merged into a single stream:

import io.reactivex.Observable;
import java.util.concurrent.TimeUnit;

public class Launcher {
 public static void main(String[] args) {

 Observable<Integer> intervalArguments =
 Observable.just(2, 3, 10, 7);

Combining Observables

[115]

 intervalArguments.flatMap(i ->
Observable.interval(i, TimeUnit.SECONDS)
 .map(i2 -> i + "s interval: " + ((i + 1) * i) + "
seconds
 elapsed")
).subscribe(System.out::println);

 sleep(12000);
 }
 public static void sleep(long millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

The output of the preceding code is as follows:

 2s interval: 2 seconds elapsed
 3s interval: 3 seconds elapsed
 2s interval: 4 seconds elapsed
 2s interval: 6 seconds elapsed
 3s interval: 6 seconds elapsed
 7s interval: 7 seconds elapsed
 2s interval: 8 seconds elapsed
 3s interval: 9 seconds elapsed
 2s interval: 10 seconds elapsed
 10s interval: 10 seconds elapsed
 2s interval: 12 seconds elapsed
 3s interval: 12 seconds elapsed

The Observable.merge() operator will accept a fixed number of Observable sources.
But flatMap() will dynamically keep adding new Observable sources for each emission
that comes in. This means that you can keep merging new incoming Observables over time.

Another quick note about flatMap() is it can be used in many clever ways. To this day, I
keep finding new ways to use it. But another way you can get creative is to evaluate each
emission within flatMap() and figure out what kind of Observable you want to return.
For example, if my previous example emitted an emission of 0 to flatMap(), this will
break the resulting Observable.interval(). But I can use an if statement to check
whether it is 0 and return Observable.empty() instead, as used in the following code
snippet:

Observable<Integer> secondIntervals =
Observable.just(2, 0, 3, 10, 7);

Combining Observables

[116]

secondIntervals.flatMap(i -> {
if (i == 0)
return Observable.empty();
else
return Observable.interval(i, TimeUnit.SECONDS)
.map(l -> i + "s interval: " + ((l + 1) * i) + " seconds
elapsed");
}).subscribe(System.out::println);

Of course, this is probably too clever as you can just put filter() before flatMap() and
filter out emissions that are equal to 0. But the point is that you can evaluate an emission in
flatMap() and determine what kind of Observable you want to return.

The flatMap() is also a great way to take a hot Observable UI event
stream (such as JavaFX or Android button clicks) and flatMap() each of
those events to an entire process within flatMap(). The failure and error
recovery can be handled entirely within that flatMap(), so each instance
of the process does not disrupt future button clicks.

If you do not want rapid button clicks to produce several redundant
instances of a process, you can disable the button using doOnNext() or
leverage switchMap() to kill previous processes, which we will discuss in
Chapter 7, Switching, Throttling, Windowing, and Buffering.

Note that there are many flavors and variants of flatMap(), accepting a number of
overloads that we will not get into deeply for the sake of brevity. We can pass a second
combiner argument, which is a BiFunction<T,U,R> lambda, to associate the originally
emitted T value with each flat-mapped U value and turn both into an R value. In our earlier
example of emitting letters from each string, we can associate each letter with the original
string emission it was mapped from:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {
 Observable<String> source =
 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon");

 source.flatMap(s -> Observable.fromArray(s.split("")),
(s,r) ->
s + "-" + r)
 .subscribe(System.out::println);
 }

Combining Observables

[117]

}

The output of the preceding code is as follows:

 Alpha-A
 Alpha-l
 Alpha-p
 Alpha-h
 Alpha-a
 Beta-B
 Beta-e
 Beta-t
 Beta-a
 Gamma-G
 ...

We can also use flatMapIterable() to map each T emission into an Iterable<R>
instead of an Observable<R>. It will then emit all the R values for each Iterable<R>,
saving us the step and overhead of converting it into an Observable. There are also
flatMap() variants that map to Singles (flatMapSingle()), Maybes
(flatMapMaybe()), and Completables (flatMapCompletable()). A lot of these
overloads also apply to concatMap(), which we will cover next.

Concatenation
Concatenation is remarkably similar to merging, but with an important nuance: it will fire
elements of each provided Observable sequentially and in the order specified. It will not
move on to the next Observable until the current one calls onComplete(). This makes it
great to ensure that merged Observables fire their emissions in a guaranteed order.
However, it is often a poor choice for infinite Observables, as an infinite Observable will
indefinitely hold up the queue and forever leave subsequent Observables waiting.

We will cover the factories and operators used for concatenation. You will find that they are
much like the merging ones except that they have the sequential behavior.

You should prefer concatenation when you want to guarantee that
Observables fire their emissions in order. If you do not care about
ordering, prefer merging instead.

Combining Observables

[118]

Observable.concat() and concatWith()
The Observable.concat() factory is the concatenation equivalent to
Observable.merge(). It will combine the emissions of multiple Observables, but will fire
each one sequentially and only move to the next after onComplete() is called.

In the following code, we have two source Observables emitting strings. We can use
Observable.concat() to fire the emissions from the first one and then fire the emissions
from the second one:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable<String> source1 =
 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon");

 Observable<String> source2 =
 Observable.just("Zeta", "Eta", "Theta");

 Observable.concat(source1, source2)
 .subscribe(i -> System.out.println("RECEIVED: " + i));
 }
}

The output of the preceding code is as follows:

 RECEIVED: Alpha
 RECEIVED: Beta
 RECEIVED: Gamma
 RECEIVED: Delta
 RECEIVED: Epsilon
 RECEIVED: Zeta
 RECEIVED: Eta
 RECEIVED: Theta

This is the same output as our Observable.merge() example earlier. But as discussed in
the merging section, we should use Observable.concat() to guarantee emission
ordering, as merging does not guarantee it. You can also use the concatWith() operator to
accomplish the same thing, as shown in the following code line:

 source1.concatWith(source2)
 .subscribe(i -> System.out.println("RECEIVED: " + i));

Combining Observables

[119]

If we use Observable.concat() with infinite Observables, it will forever emit from the
first one it encounters and prevent any following Observables from firing. If we ever want
to put an infinite Observable anywhere in a concatenation operation, it would likely be
specified last. This ensures that it does not hold up any Observables following it because
there are none. We can also use take() operators to make infinite Observables finite.

Here, we fire an Observable that emits every second, but only take two emissions from it.
After that, it will call onComplete() and dispose it. Then, a second
Observable concatenated after it will emit forever (or in this case, when the application
quits after five seconds). Since this second Observable is the last one specified in
Observable.concat(), it will not hold up any subsequent Observables by being infinite:

import io.reactivex.Observable;
import java.util.concurrent.TimeUnit;

public class Launcher {
 public static void main(String[] args) {

 //emit every second, but only take 2 emissions
 Observable<String> source1 =
 Observable.interval(1, TimeUnit.SECONDS)
 .take(2)
 .map(l -> l + 1) // emit elapsed seconds
 .map(l -> "Source1: " + l + " seconds");

 //emit every 300 milliseconds
 Observable<String> source2 =
 Observable.interval(300, TimeUnit.MILLISECONDS)
 .map(l -> (l + 1) * 300) // emit elapsed milliseconds
 .map(l -> "Source2: " + l + " milliseconds");

 Observable.concat(source1, source2)
 .subscribe(i -> System.out.println("RECEIVED: " + i));

 //keep application alive for 5 seconds
 sleep(5000);
 }

 public static void sleep(long millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

Combining Observables

[120]

The output of the preceding code is as follows:

RECEIVED: Source1: 1 seconds
RECEIVED: Source1: 2 seconds
RECEIVED: Source2: 300 milliseconds
RECEIVED: Source2: 600 milliseconds
RECEIVED: Source2: 900 milliseconds
RECEIVED: Source2: 1200 milliseconds
RECEIVED: Source2: 1500 milliseconds

There are concatenation counterparts for arrays and Iterable<Observable<T>> inputs as
well, just like there is for merging. The Observable.concatArray() factory will fire off
each Observable sequentially in an Observable[] array. The Observable.concat()
factory will also accept an Iterable<Observable<T>> and fire off each Observable<T>
in the same manner.

Note there are a few variants of concatMap(). Use concatMapIterable() when you
want to map each emission to an Iterable<T> instead of an Observable<T>. It will emit
all T values for each Iterable<T>, saving you the step and overhead of turning each one
into an Observable<T>. There is also a concatMapEager() operator that will eagerly
subscribe to all Observable sources it receives and will cache the emissions until it is their
turn to emit.

concatMap()
Just as there is flatMap(), which dynamically merges Observables derived off each
emission, there is a concatenation counterpart called concatMap(). You should prefer this
operator if you care about ordering and want each Observable mapped from each
emission to finish before starting the next one. More specifically, concatMap() will merge
each mapped Observable sequentially and fire it one at a time. It will only move to the
next Observable when the current one calls onComplete(). If source emissions produce
Observables faster than concatMap() can emit from them, those Observables will be
queued.

Our earlier flatMap() examples would be better suited for concatMap() if we explicitly
cared about emission order. Although our example here has the same output as the
flatMap() example, we should use concatMap() when we explicitly care about
maintaining ordering and want to process each mapped Observable sequentially:

import io.reactivex.Observable;

Combining Observables

[121]

public class Launcher {
 public static void main(String[] args) {

 Observable<String> source =
 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon");

 source.concatMap(s -> Observable.fromArray(s.split("")))
 .subscribe(System.out::println);
 }
}

The output will be as follows:

A
l
p
h
a
B
e
t
a
G
a
m
m
...

Again, it is unlikely that you will ever want to use concatMap() to map to infinite
Observables. As you can guess, this would result in subsequent Observables never firing.
You will likely want to use flatMap() instead, and we will see it used in concurrency
examples in Chapter 6, Concurrency and Parallelization.

Ambiguous
After covering merging and concatenation, let's get an easy combine operation out of the
way. The Observable.amb() factory (amb stands for ambiguous) will accept an
Iterable<Observable<T>> and emit the emissions of the first Observable that emits,
while the others are disposed of. The first Observable with an emission is the one whose
emissions go through. This is helpful when you have multiple sources for the same data or
events and you want the fastest one to win.

Combining Observables

[122]

Here, we have two interval sources and we combine them with the Observable.amb()
factory. If one emits every second while the other every 300 milliseconds, the latter is going
to win because it will emit first:

import io.reactivex.Observable;
import java.util.Arrays;
import java.util.concurrent.TimeUnit;

public class Launcher {
 public static void main(String[] args) {

 //emit every second
 Observable<String> source1 =
 Observable.interval(1, TimeUnit.SECONDS)
 .take(2)
 .map(l -> l + 1) // emit elapsed seconds
 .map(l -> "Source1: " + l + " seconds");

 //emit every 300 milliseconds
 Observable<String> source2 =
 Observable.interval(300, TimeUnit.MILLISECONDS)
 .map(l -> (l + 1) * 300) // emit elapsed
milliseconds
 .map(l -> "Source2: " + l + "
milliseconds");

 //emit Observable that emits first
 Observable.amb(Arrays.asList(source1, source2))
 .subscribe(i -> System.out.println("RECEIVED: " +
i));

 //keep application alive for 5 seconds
 sleep(5000);
 }

 public static void sleep(long millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

Combining Observables

[123]

The output is as follows:

RECEIVED: Source2: 300 milliseconds
RECEIVED: Source2: 600 milliseconds
RECEIVED: Source2: 900 milliseconds
RECEIVED: Source2: 1200 milliseconds
RECEIVED: Source2: 1500 milliseconds
RECEIVED: Source2: 1800 milliseconds
RECEIVED: Source2: 2100 milliseconds
...

You can also use an ambWith() operator, which will accomplish the same result:

//emit Observable that emits first
source1.ambWith(source2)
 .subscribe(i -> System.out.println("RECEIVED: " + i));

You can also use Observable.ambArray() to specify a varargs array rather
than Iterable<Observable<T>>.

Zipping
Zipping allows you to take an emission from each Observable source and combine it into
a single emission. Each Observable can emit a different type, but you can combine these
different emitted types into a single emission. Here is an example, If we have an
Observable<String> and an Observable<Integer>, we can zip each String and
Integer together in a one-to-one pairing and concatenate it with a lambda:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable<String> source1 =
 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon");

 Observable<Integer> source2 = Observable.range(1,6);

 Observable.zip(source1, source2, (s,i) -> s + "-" + i)
 .subscribe(System.out::println);
 }
}

Combining Observables

[124]

The output is as follows:

Alpha-1
Beta-2
Gamma-3
Delta-4
Epsilon-5

The zip() function received both Alpha and a 1 and then paired them up into a
concatenated string separated by a dash - and pushed it forward. Then, it received
Beta and 2 and emitted them forward as a concatenation, and so on. An emission from
one Observable must wait to get paired with an emission from the other Observable. If
one Observable calls onComplete() and the other still has emissions waiting to get
paired, those emissions will simply drop, since they have nothing to couple with. This
happened to the 6 emission since we only had five string emissions.

You can also accomplish this using a zipWith() operator, as shown here:

source1.zipWith(source2, (s,i) -> s + "-" + i)

You can pass up to nine Observable instances to the Observable.zip() factory. If you
need more than that, you can pass an Iterable<Observable<T>> or use zipArray() to
provide an Observable[] array. Note that if one or more sources are producing emissions
faster than another, zip() will queue up those rapid emissions as they wait on the slower
source to provide emissions. This could cause undesirable performance issues as each
source queues in memory. If you only care about zipping the latest emission from each
source rather than catching up an entire queue, you will want to use combineLatest(),
which we will cover later in this section.

Use Observable.zipIterable() to pass a Boolean delayError
argument to delay errors until all sources terminate and an int
bufferSize to hint an expected number of elements from each source for
queue size optimization. You may specify the latter to increase
performance in certain scenarios by buffering emissions before they are
zipped.

Zipping can also be helpful in slowing down emissions using Observable.interval().
Here, we zip each string with a 1-second interval. This will slow each string emission by
one second, but keep in mind the five string emissions will likely be queued as they wait for
an interval emission to pair with:

import io.reactivex.Observable;
import java.time.LocalTime;
import java.util.concurrent.TimeUnit;

Combining Observables

[125]

public class Launcher {
 public static void main(String[] args) {

 Observable<String> strings =
 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon");

 Observable<Long> seconds =
 Observable.interval(1, TimeUnit.SECONDS);

 Observable.zip(strings,seconds, (s,l) -> s)
 .subscribe(s ->
System.out.println("Received " + s +
 " at " + LocalTime.now())
);

 sleep(6000);
 }
 public static void sleep(long millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

The output is as follows:

Received Alpha at 13:28:28.428
Received Beta at 13:28:29.388
Received Gamma at 13:28:30.389
Received Delta at 13:28:31.389
Received Epsilon at 13:28:32.389

Combine latest
The Observable.combineLatest() factory is somewhat similar to zip(), but for every
emission that fires from one of the sources, it will immediately couple up with the latest
emission from every other source. It will not queue up unpaired emissions for each source,
but rather cache and pair the latest one.

Combining Observables

[126]

Here, let's use Observable.combineLatest() between two interval Observables, the first
emitting at 300 milliseconds and the other every one second:

import io.reactivex.Observable;
import java.util.concurrent.TimeUnit;

public class Launcher {
 public static void main(String[] args) {

 Observable<Long> source1 =
 Observable.interval(300, TimeUnit.MILLISECONDS);

 Observable<Long> source2 =
 Observable.interval(1, TimeUnit.SECONDS);

 Observable.combineLatest(source1, source2,
 (l1,l2) -> "SOURCE 1: " + l1 + " SOURCE 2: " + l2)
 .subscribe(System.out::println);

 sleep(3000);
 }
 public static void sleep(long millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

The output is as follows:

SOURCE 1: 2 SOURCE 2: 0
SOURCE 1: 3 SOURCE 2: 0
SOURCE 1: 4 SOURCE 2: 0
SOURCE 1: 5 SOURCE 2: 0
SOURCE 1: 5 SOURCE 2: 1
SOURCE 1: 6 SOURCE 2: 1
SOURCE 1: 7 SOURCE 2: 1
SOURCE 1: 8 SOURCE 2: 1
SOURCE 1: 9 SOURCE 2: 1
SOURCE 1: 9 SOURCE 2: 2

Combining Observables

[127]

There is a lot going on here, but let's try to break it down. source1 is emitting every 300
milliseconds, but the first two emissions do not yet have anything to pair with from
source2, which emits every second, and no emission has occurred yet. Finally, after one
second, source2 pushes its first emission 0, and it pairs with the latest emission 2 (the third
emission) from source1. Note that the two previous emissions 0 and 1 from source1 were
completely forgotten because the third emission 2 is now the latest emission. source1 then
pushes 3, 4, and then 5 at 300 millisecond intervals, but 0 is still the latest emission from
source2, so all three pair with it. Then, source2 emits its second emission 1, and it pairs
with 5, the latest emission from source2.

In simpler terms, when one source fires, it couples with the latest emissions from the others.
Observable.combineLatest() is especially helpful in combining UI inputs, as previous
user inputs are frequently irrelevant and only the latest is of concern.

withLatestFrom()
Similar to Observable.combineLatest(), but not exactly the same, is the
withLatestfrom() operator. It will map each T emission with the latest values from other
Observables and combine them, but it will only take one emission from each of the other
Observables:

import io.reactivex.Observable;
import java.util.concurrent.TimeUnit;

public class Launcher {
 public static void main(String[] args) {

 Observable<Long> source1 =
 Observable.interval(300, TimeUnit.MILLISECONDS);

 Observable<Long> source2 =
 Observable.interval(1, TimeUnit.SECONDS);

 source2.withLatestFrom(source1,
 (l1,l2) -> "SOURCE 2: " + l1 + " SOURCE 1: " + l2
) .subscribe(System.out::println);

 sleep(3000);
 }
 public static void sleep(long millis) {
 try {
 Thread.sleep(millis);

Combining Observables

[128]

 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

The output is as follows:

SOURCE 2: 0 SOURCE 1: 2
SOURCE 2: 1 SOURCE 1: 5
SOURCE 2: 2 SOURCE 1: 9

As you can see here, source2 emits every one second while source1 emits every 300
milliseconds. When you call withLatestFrom() on source2 and pass it source1, it will
combine with the latest emission from source1 but it does not care about any previous or
subsequent emissions.

You can pass up to four Observable instances of any varying types to
withLatestFrom(). If you need more than that, you can pass it an
Iterable<Observable<T>>.

Grouping
A powerful operation that you can achieve with RxJava is to group emissions by a specified
key into separate Observables. This can be achieved by calling the groupBy() operator,
which accepts a lambda mapping each emission to a key. It will then return an
Observable<GroupedObservable<K,T>>, which emits a special type of Observable
called GroupedObservable. GroupedObservable<K,T> is just like any other
Observable, but it has the key K value accessible as a property. It will emit the T emissions
that are mapped for that given key.

For instance, we can use the groupBy() operator to group emissions for an
Observable<String> by each String's length. We will subscribe to it in a moment, but
here is how we declare it:

import io.reactivex.Observable;
import io.reactivex.observables.GroupedObservable;

public class Launcher {
 public static void main(String[] args) {

 Observable<String> source =
Observable.just("Alpha", "Beta", "Gamma", "Delta", "Epsilon");

Combining Observables

[129]

 Observable<GroupedObservable<Integer,String>> byLengths =
 source.groupBy(s -> s.length());
 }
}

We will likely need to use flatMap() on each GroupedObservable, but within that
flatMap() operation, we may want to reduce or collect those common-key emissions
(since this will return a Single, we will need to use flatMapSingle()). Let's call
toList() so that we can emit the emissions as lists grouped by their lengths:

import io.reactivex.Observable;
import io.reactivex.observables.GroupedObservable;

public class Launcher {
 public static void main(String[] args) {

 Observable<String> source =
 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon");

 Observable<GroupedObservable<Integer,String>> byLengths =
 source.groupBy(s -> s.length());

 byLengths.flatMapSingle(grp -> grp.toList())
 .subscribe(System.out::println);
 }
}

The output is as follows:

[Beta]
[Alpha, Gamma, Delta]
[Epsilon]

Beta is the only emission with length four, so it is the only element in the list for that length
key. Alpha, Beta, and Gamma all have lengths of five, so they were emitted from the same
GroupedObservable emitting items for the length five and were collected into the same
list. Epsilon was the only emission with length seven so it was the only element in its list.

Keep in mind that GroupedObservable also has a getKey() method, which returns the
key value identified with that GroupedObservable. If we wanted to simply concatenate
the String emissions for each GroupedObservable and then concatenate the length key
in form of it, we could do it like this:

import io.reactivex.Observable;
import io.reactivex.observables.GroupedObservable;

Combining Observables

[130]

public class Launcher {
 public static void main(String[] args) {

 Observable<String> source =
 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon");

 Observable<GroupedObservable<Integer,String>> byLengths =
 source.groupBy(s -> s.length());

 byLengths.flatMapSingle(grp ->
grp.reduce("",(x,y) -> x.equals("") ? y : x + ", " + y)
 .map(s -> grp.getKey() + ": " + s)
).subscribe(System.out::println);
 }
}

The output is as follows:

4: Beta
5: Alpha, Gamma, Delta
7: Epsilon

Note closely that GroupedObservables are a weird combination of a hot and cold
Observable. They are not cold in that they will not replay missed emissions to a second
Observer, but they will cache emissions and flush them to the first Observer, ensuring
none are missed. If you need to replay the emissions, collect them into a list, like we did
earlier, and perform your operations against that list. You can also use caching operators,
which we will learn about in the next chapter.

Summary
In this chapter, we covered combining Observables in various useful ways. Merging is
helpful in combining and simultaneously firing multiple Observables and combining their
emissions into a single stream. The flatMap() operator is especially critical to know, as
dynamically merging Observables derived from emissions opens a lot of useful
functionality in RxJava. Concatenation is similar to merging, but it fires off the source
Observables sequentially rather than all at once. Combining with ambiguous allows us to
select the first Observable to emit and fire its emissions. Zipping allows you to combine
emissions from multiple Observables, whereas combine latest combines the latest emissions
from each source every time one of them fires. Finally, grouping allows you to split up an
Observable into several GroupedObservables, each with emissions that have a common
key.

Combining Observables

[131]

Take time to explore combining Observables and experiment to see how they work. They
are critical to unlock functionalities in RxJava and quickly express event and data
transformations. We will look at some powerful applications with flatMap() when we
cover concurrency in Chapter 6, Concurrency and Parallelization, where we will also cover
how to multitask and parallelize.

5
Multicasting, Replaying, and

Caching
We have seen the hot and cold Observable in action throughout this book, although most
of our examples have been cold Observables (even ones using Observable.interval()).
As a matter of fact, there are a lot of subtleties in the hotness and coldness of Observables,
which we will look at in this chapter. When you have more than one Observer, the default
behavior is to create a separate stream for each one. This may or may not be desirable, and
we need to be aware of when to force an Observable to be hot by multicasting using a
ConnectableObservable. We got a brief introduction to the ConnectableObservable in
Chapter 2, Observables and Subscribers, but we will look at it in deeper context within an
entire Observable chain of operators.

In this chapter, we will learn about multicasting with ConnectableObservable in detail
and uncover its subtleties. We will also learn about replaying and caching, both of which
multicast and leverage the ConnectableObservable. Finally, we will learn about Subjects,
a utility that can be useful for decoupling while multicasting but should be used
conservatively for only certain situations. We will cover the different flavors of subjects as
well as when and when not to use them.

Here is a broad outline of what to expect:

Understanding multicasting
Automatic connection
Replaying and caching
Subjects

Multicasting, Replaying, and Caching

[133]

Understanding multicasting
We have used the ConnectableObservable earlier in Chapter 2, Observables and
Subscribers. Remember how cold Observables, such as Observable.range(), will
regenerate emissions for each Observer? Let's take a look at the following code:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable<Integer> threeIntegers = Observable.range(1,
3);

 threeIntegers.subscribe(i -> System.out.println("Observer
One: " + i));
 threeIntegers.subscribe(i -> System.out.println("Observer
Two: " + i));
 }
}

The output is as follows:

Observer One: 1
Observer One: 2
Observer One: 3
Observer Two: 1
Observer Two: 2
Observer Two: 3

Here, Observer One received all three emissions and called onComplete(). After that,
Observer Two received the three emissions (which were regenerated again) and called
onComplete(). These were two separate streams of data generated for two separate
subscriptions. If we wanted to consolidate them into a single stream of data that pushes
each emission to both Observers simultaneously, we can call publish() on Observable,
which will return a ConnectableObservable. We can set up the Observers in advance
and then call connect() to start firing the emissions so both Observers receive the same
emissions simultaneously. This will be indicated by the printing of each Observer
interleaving here:

import io.reactivex.Observable;
import io.reactivex.observables.ConnectableObservable;

public class Launcher {
 public static void main(String[] args) {

Multicasting, Replaying, and Caching

[134]

 ConnectableObservable<Integer> threeIntegers =
 Observable.range(1, 3).publish();

 threeIntegers.subscribe(i -> System.out.println("Observer
One: " + i));
 threeIntegers.subscribe(i -> System.out.println("Observer
Two: " + i));

 threeIntegers.connect();
 }
}

The output is as follows:

Observer One: 1
Observer Two: 1
Observer One: 2
Observer Two: 2
Observer One: 3
Observer Two: 3

Using ConnectableObservable will force emissions from the source to become hot,
pushing a single stream of emissions to all Observers at the same time rather than giving a
separate stream to each Observer. This idea of stream consolidation is known as
multicasting, but there are nuances to it, especially when operators become involved. Even
when you call publish() and use a ConnectableObservable, any operators that follow
can create separate streams again. We will take a look at this behavior and how to manage it
next.

Multicasting with operators
To see how multicasting works within a chain of operators, we are going to
use Observable.range() and then map each emission to a random integer. Since these
random values will be nondeterministic and different for each subscription, this will
provide a good means to see whether our multicasting is working because Observers
should receive the same numbers.

Multicasting, Replaying, and Caching

[135]

Let's start with emitting the numbers 1 through 3 and map each one to a random integer
between 0 and 100,000. If we have two Observers, we can expect different integers for each
one. Note that your output will be different than mine due to the random number
generation and just acknowledge that both Observers are receiving different random
integers:

import io.reactivex.Observable;
import java.util.concurrent.ThreadLocalRandom;

public class Launcher {
 public static void main(String[] args) {

 Observable<Integer> threeRandoms = Observable.range(1,3)
 .map(i -> randomInt());

 threeRandoms.subscribe(i -> System.out.println("Observer 1:
" + i));
 threeRandoms.subscribe(i -> System.out.println("Observer 2:
" + i));

 }

 public static int randomInt() {
 return ThreadLocalRandom.current().nextInt(100000);
 }
}

The output is as follows:

Observer 1: 38895
Observer 1: 36858
Observer 1: 82955
Observer 2: 55957
Observer 2: 47394
Observer 2: 16996

What happens here is that the Observable.range() source will yield two separate
emission generators, and each will coldly emit a separate stream for each Observer. Each
stream also has its own separate map() instance, hence each Observer gets different
random integers. You can visually see this structure of two separate streams in the
following figure:

Multicasting, Replaying, and Caching

[136]

Figure 5.1 - Two separate streams of operations are created for each Observer

Say, you want to emit the same three random integers to both Observers. Your first instinct
might be to call publish() after Observable.range() to yield a
ConnectableObservable. Then, you may call the map() operator on it, followed by the
Observers and a connect() call. But you will see that this does not achieve our desired
result. Each Observer still gets three separate random integers:

import io.reactivex.Observable;
import io.reactivex.observables.ConnectableObservable;
import java.util.concurrent.ThreadLocalRandom;

public class Launcher {
 public static void main(String[] args) {

 ConnectableObservable<Integer> threeInts =
Observable.range(1,3).publish();

 Observable<Integer> threeRandoms = threeInts.map(i ->
randomInt());

 threeRandoms.subscribe(i -> System.out.println("Observer 1:
" + i));
 threeRandoms.subscribe(i -> System.out.println("Observer 2:
" + i));

 threeInts.connect();

Multicasting, Replaying, and Caching

[137]

 }

 public static int randomInt() {
 return ThreadLocalRandom.current().nextInt(100000);
 }
}

The output is as follows:

Observer 1: 99350
Observer 2: 96343
Observer 1: 4155
Observer 2: 75273
Observer 1: 14280
Observer 2: 97638

This occurred because we multicast after Observable.range(), but the multicasting
happens before the map() operator. Even though we consolidated to one set of emissions
coming from Observable.range(), each Observer is still going to get a separate stream
at map(). Everything before publish() was consolidated into a single stream (or more
technically, a single proxy Observer). But after publish(), it will fork into separate
streams for each Observer again, as shown in the following figure:

Figure 5.2 - Mulitcasting after Observable.range() will consolidate the interval emissions into a single stream before publish(), but will still fork to two separate streams after
publish() for each Observer.

Multicasting, Replaying, and Caching

[138]

If we want to prevent the map() operator from yielding two separate streams for each
Observer, we need to call publish() after map() instead:

import io.reactivex.Observable;
import io.reactivex.observables.ConnectableObservable;
import java.util.concurrent.ThreadLocalRandom;

public class Launcher {
 public static void main(String[] args) {

 ConnectableObservable<Integer> threeRandoms =
Observable.range(1,3)
 .map(i -> randomInt()).publish();

 threeRandoms.subscribe(i -> System.out.println("Observer 1:
" + i));
 threeRandoms.subscribe(i -> System.out.println("Observer 2:
" + i));

 threeRandoms.connect();
 }

 public static int randomInt() {
 return ThreadLocalRandom.current().nextInt(100000);
 }
}

The output is as follows:

Observer 1: 90125
Observer 2: 90125
Observer 1: 79156
Observer 2: 79156
Observer 1: 76782
Observer 2: 76782

Multicasting, Replaying, and Caching

[139]

That is better! Each Observer got the same three random integers, and we have effectively
multicast the entire operation right before the two Observers, as shown in the following
figure. We now have a single stream instance throughout the entire chain since map() is
now behind, not in front, of publish():

Figure 5.3 - A fully multicast operation that guarantees both Observers get the same emissions since all operators are behind the publish() call

When to multicast
Multicasting is helpful in preventing redundant work being done by multiple Observers
and instead makes all Observers subscribe to a single stream, at least to the point where
they have operations in common. You may do this to increase performance, reducing
memory and CPU usage, or simply because your business logic requires pushing the same
emissions to all Observers.

Data-driven cold Observables should only be multicast when you are doing so for
performance reasons and have multiple Observers receiving the same data simultaneously.
Remember that multicasting creates hot ConnectableObservables, and you have to be
careful and time the connect() call so data is not missed by Observers. Typically in your
API, keep your cold Observables cold and call publish() when you need to make them
hot.

Multicasting, Replaying, and Caching

[140]

Even if your source Observable is hot (such as a UI event in JavaFX or Android), putting
operators against that Observable can cause redundant work and listeners. It is not
necessary to multicast when there is only a single Observer (and multicasting can cause
unnecessary overhead). But if there are multiple Observers, you need to find the proxy
point where you can multicast and consolidate the upstream operations. This point is
typically the boundary where Observers have common operations upstream and diverge
into different operations downstream.

For instance, you may have one Observer that prints the random integers but another one
that finds the sum with reduce(). At this point, that single stream should, in fact, fork into
two separate streams because they are no longer redundant and doing different work, as
shown in the following code snippet:

import io.reactivex.Observable;
import io.reactivex.observables.ConnectableObservable;
import java.util.concurrent.ThreadLocalRandom;

public class Launcher {
 public static void main(String[] args) {

 ConnectableObservable<Integer> threeRandoms =
Observable.range(1,3)
 .map(i -> randomInt()).publish();

 //Observer 1 - print each random integer
 threeRandoms.subscribe(i -> System.out.println("Observer 1:
" + i));

 //Observer 2 - sum the random integers, then print
 threeRandoms.reduce(0, (total,next) -> total + next)
 .subscribe(i -> System.out.println("Observer 2: " +
i));

 threeRandoms.connect();
 }

 public static int randomInt() {
 return ThreadLocalRandom.current().nextInt(100000);
 }
}

Multicasting, Replaying, and Caching

[141]

The output is as follows:

Observer 1: 40021
Observer 1: 78962
Observer 1: 46146
Observer 2: 165129

Here is a visual diagram showing the common operations being multicasted:

Figure 5.4 - Common operations that are shared between both Observers are put behind publish(), but divergent operations happen after publish()

With a thorough understanding of ConnectableObservable and multicasting under our
belt, we will move on to some convenience operators that help streamline multicasting.

Automatic connection
There are definitely times you will want to manually call connect() on
ConnectableObservable to precisely control when the emissions start firing. There are
convenient operators that automatically call connect() for you, but with this convenience,
it is important to have awareness of their subscribe timing behaviors. Allowing an
Observable to dynamically connect can backfire if you are not careful, as emissions can be
missed by Observers.

Multicasting, Replaying, and Caching

[142]

autoConnect()
The autoConnect() operator on ConnectableObservable can be quite handy. For a
given ConnectableObservable<T>, calling autoConnect() will return an
Observable<T> that will automatically call connect() after a specified number of
Observers are subscribed. Since our previous example had two Observers, we can
streamline it by calling autoConnect(2) immediately after publish():

import io.reactivex.Observable;
import java.util.concurrent.ThreadLocalRandom;

public class Launcher {
 public static void main(String[] args) {

 Observable<Integer> threeRandoms = Observable.range(1,3)
 .map(i -> randomInt())
 .publish()
 .autoConnect(2);

 //Observer 1 - print each random integer
 threeRandoms.subscribe(i -> System.out.println("Observer 1:
" + i));

 //Observer 2 - sum the random integers, then print
 threeRandoms.reduce(0, (total,next) -> total + next)
 .subscribe(i -> System.out.println("Observer 2: " +
i));
 }

 public static int randomInt() {
 return ThreadLocalRandom.current().nextInt(100000);
 }
}

The output is as follows:

Observer 1: 83428
Observer 1: 77336
Observer 1: 64970
Observer 2: 225734

This saved us the trouble of having to save ConnectableObservable and call its
connect() method later. Instead, it will start firing when it gets 2 subscriptions, which we
have planned and specified as an argument in advance. Obviously, this does not work well
when you have an unknown number of Observers and you want all of them to receive all
emissions.

Multicasting, Replaying, and Caching

[143]

Even when all downstream Observers finish or dispose, autoConnect() will persist its
subscription to the source. If the source is finite and disposes, it will not subscribe to it again
when a new Observer subscribes downstream. If we add a third Observer to our
example but keep autoConnect() specified at 2 instead of 3, it is likely that the third
Observer is going to miss the emissions:

import io.reactivex.Observable;
import java.util.concurrent.ThreadLocalRandom;

public class Launcher {
 public static void main(String[] args) {

 Observable<Integer> threeRandoms = Observable.range(1,3)
 .map(i -> randomInt()).publish().autoConnect(2);

 //Observer 1 - print each random integer
 threeRandoms.subscribe(i -> System.out.println("Observer 1:
" + i));

 //Observer 2 - sum the random integers, then print
 threeRandoms.reduce(0, (total,next) -> total + next)
 .subscribe(i -> System.out.println("Observer 2: " +
i));

 //Observer 3 - receives nothing
 threeRandoms.subscribe(i -> System.out.println("Observer 3:
" + i);
 }

 public static int randomInt() {
 return ThreadLocalRandom.current().nextInt(100000);
 }
}

The output is as follows:

Observer 1: 8198
Observer 1: 31718
Observer 1: 97915
Observer 2: 137831

Multicasting, Replaying, and Caching

[144]

Note that if you pass no argument for numberOfSubscribers, it will default to 1. This can
be helpful if you want it to start firing on the first subscription and do not care about any
subsequent Observers missing previous emissions. Here, we publish and
autoConnect the Observable.interval(). The first Observer starts the firing of
emissions, and 3 seconds later, another Observer comes in but misses the first few
emissions. But it does receive the live emissions from that point on:

import io.reactivex.Observable;
import java.util.concurrent.TimeUnit;

public class Launcher {
 public static void main(String[] args) {

 Observable<Long> seconds =
 Observable.interval(1, TimeUnit.SECONDS)
 .publish()
 .autoConnect();

 //Observer 1
 seconds.subscribe(i -> System.out.println("Observer 1: " +
i));

 sleep(3000);

 //Observer 2
 seconds.subscribe(i -> System.out.println("Observer 2: " +
i));

 sleep(3000);
 }
 public static void sleep(long millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

The output is as follows:

Observer 1: 0
Observer 1: 1
Observer 1: 2
Observer 1: 3
Observer 2: 3
Observer 1: 4

Multicasting, Replaying, and Caching

[145]

Observer 2: 4
Observer 1: 5
Observer 2: 5

If you pass 0 to autoConnect() for the numberOfSubscribers argument, it will start
firing immediately and not wait for any Observers. This can be handy to start firing
emissions immediately without waiting for any Observers.

refCount() and share()
The refCount() operator on ConnectableObservable is similar to
autoConnect(1), which fires after getting one subscription. But there is one important
difference; when it has no Observers anymore, it will dispose of itself and start over when a
new one comes in. It does not persist the subscription to the source when it has no more
Observers, and when another Observer follows, it will essentially "start over".

Look at this example: we have Observable.interval() emitting every second, and it is
multicast with refCount(). Observer 1 takes five emissions, and Observer 2 takes
two emissions. We stagger their subscriptions with our sleep() function to put three-
second gaps between them. Because these two subscriptions are finite due to the take()
operators, they should be terminated by the time Observer 3 comes in, and there should
no longer be any previous Observers. Note how Observer 3 has started over with a fresh
set of intervals starting at 0! Let's take a look at the following code snippet:

import io.reactivex.Observable;
import java.util.concurrent.TimeUnit;

public class Launcher {
 public static void main(String[] args) {

 Observable<Long> seconds =
 Observable.interval(1, TimeUnit.SECONDS)
 .publish()
 .refCount();

 //Observer 1
 seconds.take(5)
 .subscribe(l -> System.out.println("Observer 1: " +
l));

 sleep(3000);

 //Observer 2
 seconds.take(2)

Multicasting, Replaying, and Caching

[146]

 .subscribe(l -> System.out.println("Observer 2: " +
l));

 sleep(3000);
 //there should be no more Observers at this point

 //Observer 3
 seconds.subscribe(l -> System.out.println("Observer 3: " +
l));

 sleep(3000);
 }
 public static void sleep(long millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

The output is as follows:

Observer 1: 0
Observer 1: 1
Observer 1: 2
Observer 1: 3
Observer 2: 3
Observer 1: 4
Observer 2: 4
Observer 3: 0
Observer 3: 1
Observer 3: 2

Using refCount() can be helpful to multicast between multiple Observers but dispose of
the upstream connection when no downstream Observers are present anymore. You can
also use an alias for publish().refCount() using the share() operator. This will
accomplish the same result:

Observable<Long> seconds =
 Observable.interval(1, TimeUnit.SECONDS).share();

Multicasting, Replaying, and Caching

[147]

Replaying and caching
Multicasting also allows us to cache values that are shared across multiple Observers. This
may sound surprising, but when you think about it long enough, you may realize this
makes sense. If we are sharing data across multiple Observers, it makes sense that any
caching feature would be shared across Observers too. Replaying and caching data is a
multicasting activity, and we will explore how to do it safely and efficiently with RxJava.

Replaying
The replay() operator is a powerful way to hold onto previous emissions within a certain
scope and re-emit them when a new Observer comes in. It will return a
ConnectableObservable that will both multicast emissions as well as emit previous
emissions defined in a scope. Previous emissions it caches will fire immediately to a new
Observer so it is caught up, and then it will fire current emissions from that point forward.

Let's start with a replay() with no arguments. This will replay all previous emissions to
tardy Observers, and then emit current emissions as soon as the tardy Observer is caught
up. If we use Observable.interval() to emit every second, we can call replay() on it
to multicast and replay previous integer emissions. Since replay() returns
ConnectableObservable, let's use autoConnect() so it starts firing on the first
subscription. After 3 seconds, we will bring in a second Observer. Look closely at what
happens:

import io.reactivex.Observable;
import java.util.concurrent.TimeUnit;

public class Launcher {
 public static void main(String[] args) {

 Observable<Long> seconds =
 Observable.interval(1, TimeUnit.SECONDS)
 .replay()
 .autoConnect();

 //Observer 1
 seconds.subscribe(l -> System.out.println("Observer 1: " +
l));

 sleep(3000);

 //Observer 2
 seconds.subscribe(l -> System.out.println("Observer 2: " +

Multicasting, Replaying, and Caching

[148]

l));

 sleep(3000);
 }
 public static void sleep(long millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

The output is as follows:

Observer 1: 0
Observer 1: 1
Observer 1: 2
Observer 2: 0
Observer 2: 1
Observer 2: 2
Observer 1: 3
Observer 2: 3
Observer 1: 4
Observer 2: 4
Observer 1: 5
Observer 2: 5

Did you see that? After 3 seconds, Observer 2 came in and immediately received the first
three emissions it missed: 0, 1, and 2. After that, it receives the same emissions as Observer
1 going forward. Just note that this can get expensive with memory, as replay() will keep
caching all emissions it receives. If the source is infinite or you only care about the last
previous emissions, you might want to specify a bufferSize argument to limit only
replaying a certain number of last emissions. If we called replay(2) on our second
Observer to cache the last two emissions, it will not get 0, but it will receive 1 and 2. The 0
fell out of that window and was released from the cache as soon as 2 came in.

The output is as follows:

Observer 1: 0
Observer 1: 1
Observer 1: 2
Observer 2: 1
Observer 2: 2
Observer 1: 3
Observer 2: 3
Observer 1: 4

Multicasting, Replaying, and Caching

[149]

Observer 2: 4
Observer 1: 5
Observer 2: 5

Note that if you always want to persist the cached values in your replay()even if there are
no subscriptions, use it in conjunction with autoConnect(), not refCount(). If we emit
our Alpha through Epsilon strings and use replay(1).autoConnect() to hold on to the
last value, our second Observer will only receive the last value, as expected:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable<String> source =
 Observable.just("Alpha", "Beta", "Gamma",
"Delta", "Epsilon")
 .replay(1)
 .autoConnect();

 //Observer 1
 source.subscribe(l -> System.out.println("Observer 1: " +
l));

 //Observer 2
 source.subscribe(l -> System.out.println("Observer 2: " +
l));
 }
}

The output is as follows:

Observer 1: Alpha
Observer 1: Beta
Observer 1: Gamma
Observer 1: Delta
Observer 1: Epsilon
Observer 2: Epsilon

Make a modification here to use refCount() instead of autoConnect() and see what
happens:

Observable<String> source =
 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon")
 .replay(1)
 .refCount();

Multicasting, Replaying, and Caching

[150]

The output is as follows:

Observer 1: Alpha
Observer 1: Beta
Observer 1: Gamma
Observer 1: Delta
Observer 1: Epsilon
Observer 2: Alpha
Observer 2: Beta
Observer 2: Gamma
Observer 2: Delta
Observer 2: Epsilon

What happened here is that refCount() causes the cache (and the entire chain) to dispose
of and reset the moment Observer 1 is done, as there are no more Observers. When
Observer 2 came in, it starts all over and emits everything just like it is the first Observer,
and another cache is built. This may not be desirable, so you may consider using
autoConnect() to persist the state of replay() and not have it dispose of when no
Observers are present.

There are other overloads for replay(), particularly a time-based window you can specify.
Here, we construct an Observable.interval() that emits every 300 milliseconds and
subscribe to it. We also map each emitted consecutive integer into the elapsed milliseconds.
We will replay only the last 1 second of emissions for each new Observer, which we will
bring in after 2 seconds:

import io.reactivex.Observable;
import java.util.concurrent.TimeUnit;

public class Launcher {
 public static void main(String[] args) {

 Observable<Long> seconds =
 Observable.interval(300, TimeUnit.MILLISECONDS)
 .map(l -> (l + 1) * 300) // map to elapsed
milliseconds
 .replay(1, TimeUnit.SECONDS)
 .autoConnect();

 //Observer 1
 seconds.subscribe(l -> System.out.println("Observer 1: " +
l));

 sleep(2000);

 //Observer 2

Multicasting, Replaying, and Caching

[151]

 seconds.subscribe(l -> System.out.println("Observer 2: " +
l));

 sleep(1000);
 }
 public static void sleep(long millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

The output is as follows:

Observer 1: 300
Observer 1: 600
Observer 1: 900
Observer 1: 1200
Observer 1: 1500
Observer 1: 1800
Observer 2: 1500
Observer 2: 1800
Observer 1: 2100
Observer 2: 2100
Observer 1: 2400
Observer 2: 2400
Observer 1: 2700
Observer 2: 2700
Observer 1: 3000
Observer 2: 3000

Look closely at the output, and you will see that when Observer 2 comes in, it
immediately receives emissions that happened in the last second, which were 1500 and
1800. After these two values are replayed, it receives the same emissions as Observer 1
from that point on.

You can also specify a bufferSize argument on top of a time interval, so only a certain
number of last emissions are buffered within that time period. If we modify our example to
only replay one emission that occurred within the last second, it should only replay 1800 to
Observer 2:

Observable<Long> seconds =
 Observable.interval(300, TimeUnit.MILLISECONDS)
 .map(l -> (l + 1) * 300) // map to elapsed
milliseconds

Multicasting, Replaying, and Caching

[152]

 .replay(1, 1, TimeUnit.SECONDS)
 .autoConnect();

The output is as follows:

Observer 1: 300
Observer 1: 600
Observer 1: 900
Observer 1: 1200
Observer 1: 1500
Observer 1: 1800
Observer 2: 1800
Observer 1: 2100
Observer 2: 2100
Observer 1: 2400
Observer 2: 2400
Observer 1: 2700
Observer 2: 2700
Observer 1: 3000
Observer 2: 3000

Caching
When you want to cache all emissions indefinitely for the long term and do not need to
control the subscription behavior to the source with ConnectableObservable, you can
use the cache() operator. It will subscribe to the source on the first downstream Observer
that subscribes and hold all values indefinitely. This makes it an unlikely candidate for
infinite Observables or large amounts of data that could tax your memory:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {

 Observable<Integer> cachedRollingTotals =
 Observable.just(6, 2, 5, 7, 1, 4, 9, 8, 3)
 .scan(0, (total,next) -> total + next)
 .cache();

 cachedRollingTotals.subscribe(System.out::println);
 }
}

Multicasting, Replaying, and Caching

[153]

You can also call cacheWithInitialCapacity() and specify the number of elements to
be expected in the cache. This will optimize the buffer for that size of elements in advance:

Observable<Integer> cachedRollingTotals =
 Observable.just(6, 2, 5, 7, 1, 4, 9, 8, 3)
 .scan(0, (total,next) -> total + next)
 .cacheWithInitialCapacity(9);

Again, do not use cache() unless you really want to hold all elements
indefinitely and do not have plans to dispose it at any point. Otherwise,
prefer replay() so you can more finely control cache sizing and windows
as well as disposal policies.

Subjects
Before we discuss Subjects, it would be remiss to not highlight, they have use cases but
beginners often use them for the wrong ones, and end up in convoluted situations. As you
will learn, they are both an Observer and an Observable, acting as a proxy mulitcasting
device (kind of like an event bus). They do have their place in reactive programming, but
you should strive to exhaust your other options before utilizing them. Erik Meijer, the
creator of ReactiveX, described them as the "mutable variables of reactive programming". Just
like mutable variables are necessary at times even though you should strive for
immutability, Subjects are sometimes a necessary tool to reconcile imperative paradigms
with reactive ones.

But before we discuss when to and when not to use them, let's take a look at what they
exactly do.

PublishSubject
There are a couple implementations of Subject, which is an abstract type that implements
both Observable and Observer. This means that you can manually call onNext(),
onComplete(), and onError() on a Subject, and it will, in turn, pass those events
downstream toward its Observers.

The simplest Subject type is the PublishSubject, which, like all Subjects, hotly
broadcasts to its downstream Observers. Other Subject types add more behaviors, but
PublishSubject is the "vanilla" type, if you will.

Multicasting, Replaying, and Caching

[154]

We can declare a Subject<String>, create an Observer that maps its lengths and
subscribes to it, and then call onNext() to pass three strings. We can also call
onComplete() to communicate that no more events will be passed through this Subject:

import io.reactivex.subjects.PublishSubject;
import io.reactivex.subjects.Subject;

public class Launcher {
 public static void main(String[] args) {

 Subject<String> subject = PublishSubject.create();

 subject.map(String::length)
 .subscribe(System.out::println);

 subject.onNext("Alpha");
 subject.onNext("Beta");
 subject.onNext("Gamma");
 subject.onComplete();
 }
}

The output is as follows:

5
4
5

This shows Subjects act like magical devices that can bridge imperative programming with
reactive programming, and you would be right. Next, let's look at cases of when to and
when not to use Subjects.

When to use Subjects
More likely, you will use Subjects to eagerly subscribe to an unknown number of multiple
source Observables and consolidate their emissions as a single Observable. Since Subjects
are an Observer, you can pass them to a subscribe() method easily. This can be helpful
in modularized code bases where decoupling between Observables and Observers takes
place and executing Observable.merge() is not that easy. Here, I use Subject to merge
and multicast two Observable interval sources:

import io.reactivex.Observable;
import io.reactivex.subjects.PublishSubject;
import io.reactivex.subjects.Subject;
import java.util.concurrent.TimeUnit;

Multicasting, Replaying, and Caching

[155]

public class Launcher {
 public static void main(String[] args) {

 Observable<String> source1 =
 Observable.interval(1, TimeUnit.SECONDS)
 .map(l -> (l + 1) + " seconds");

 Observable<String> source2 =
 Observable.interval(300, TimeUnit.MILLISECONDS)
 .map(l -> ((l + 1) * 300) + " milliseconds");

 Subject<String> subject = PublishSubject.create();

 subject.subscribe(System.out::println);

 source1.subscribe(subject);
 source2.subscribe(subject);

 sleep(3000);
 }

 public static void sleep(long millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

The output is as follows:

300 milliseconds
600 milliseconds
900 milliseconds
1 seconds
1200 milliseconds
1500 milliseconds
1800 milliseconds
2 seconds
2100 milliseconds
2400 milliseconds
2700 milliseconds
3 seconds
3000 milliseconds

Multicasting, Replaying, and Caching

[156]

Of course, I could use Observable.merge() to accomplish this (and technically for this
case, I should). But when you have modularized code managed through dependency
injection or other decoupling mechanisms, you may not have your Observable sources
prepared in advance to put in Observable.merge(). For example, I could have a JavaFX
application that has a refresh event coming from a menu bar, button, or a keystroke
combination. I can declare these event sources as Observables and subscribe them to a
Subject in a backing class to consolidate the event streams without any hard coupling.

Another note to make is that the first Observable to call onComplete() on Subject is
going to cease other Observables from pushing their emissions, and downstream
cancellation requests are ignored. This means that you will most likely use Subjects for
infinite, event-driven (that is, user action-driven) Observables. That being said, we will next
look at cases where Subjects become prone to abuse.

When Subjects go wrong
Hopefully, you will feel that our earlier Subject example emitting Alpha, Beta, and
Gamma is counterintuitive and backward considering how we have architected our reactive
applications so far, and you would be right to think that way. We did not define the source
emissions until the end after all the Observers are set up, and the process no longer reads
left-to-right, top-to-bottom. Since Subjects are hot, executing the onNext() calls before the
Observers are set up would result in these emissions being missed with our Subject. If you
move the onNext() calls like this, you will not get any output because the Observer will
miss these emissions:

import io.reactivex.subjects.PublishSubject;
import io.reactivex.subjects.Subject;

public class Launcher {
 public static void main(String[] args) {

 Subject<String> subject = PublishSubject.create();

 subject.onNext("Alpha");
 subject.onNext("Beta");
 subject.onNext("Gamma");
 subject.onComplete();

 subject.map(String::length)
 .subscribe(System.out::println);
 }
}

Multicasting, Replaying, and Caching

[157]

This shows that Subjects can be somewhat haphazard and dangerous, especially if you
expose them to your entire code base and any external code can call onNext() to pass
emissions. For instance, say our Subject was exposed to an external API and something
can arbitrarily pass the emission Puppy on top of Alpha, Beta, and Gamma. If we want our
source to only emit these Greek letters, it is prone to receiving accidental or unwanted
emissions. Reactive programming only maintains integrity when source Observables are
derived from a well-defined and predictable source. Subjects are not disposable either, as
they have no public dispose() method and will not release their sources in the event
that dispose() is called downstream.

It is much better to keep data-driven sources like this cold and to multicast using
publish() or replay() if you want to make them hot. When you need to use Subject,
cast it down to Observable or just do not expose it at all. You can also wrap a Subject
inside a class of some sorts and have methods pass the events to it.

Serializing Subjects
A critical gotcha to note with Subjects is this: the onSubscribe(), onNext(), onError(),
and onComplete() calls are not threadsafe! If you have multiple threads calling these four
methods, emissions could start to overlap and break the Observable contract, which
demands that emissions happen sequentially. If this happens, a good practice to adopt is to
call toSerialized() on Subject to yield a safely serialized Subject implementation
(backed by the private SerializedSubject). This will safely sequentialize concurrent
event calls so no train wrecks occur downstream:

Subject<String> subject =
 PublishSubject.<String>create().toSerialized();

Unfortunately, due to limitations with the Java compiler (including Java
8), we have to explicitly declare the type parameter String for our
create() factory earlier. The compiler's type inference does not cascade
beyond more than one method invocation, so having two invocations as
previously demonstrated would have a compilation error without an
explicit type declaration.

Multicasting, Replaying, and Caching

[158]

BehaviorSubject
There are a few other flavors of Subjects. Aside from the commonly used PublishSubject,
there is also BehaviorSubject. It behaves almost the same way as PublishSubject, but
it will replay the last emitted item to each new Observer downstream. This is somewhat
like putting replay(1).autoConnect() after a PublishSubject, but it consolidates
these operations into a single optimized Subject implementation that subscribes eagerly to
the source:

import io.reactivex.subjects.BehaviorSubject;
import io.reactivex.subjects.Subject;

public class Launcher {
 public static void main(String[] args) {

 Subject<String> subject =
 BehaviorSubject.create();

 subject.subscribe(s -> System.out.println("Observer 1: " +
s));

 subject.onNext("Alpha");
 subject.onNext("Beta");
 subject.onNext("Gamma");

 subject.subscribe(s -> System.out.println("Observer 2: " +
s));
 }
}

The output is as follows:

Observer 1: Alpha
Observer 1: Beta
Observer 1: Gamma
Observer 2: Gamma

Here, you can see that Observer 2 received the last emission Gamma even though it missed
the three emissions that Observer 1 received. If you find yourself needing a Subject and
want to cache the last emission for new Observers, you will want to use
a BehaviorSubject.

Multicasting, Replaying, and Caching

[159]

ReplaySubject
ReplaySubject is similar to PublishSubject followed by a cache() operator. It
immediately captures emissions regardless of the presence of downstream Observers and
optimizes the caching to occur inside the Subject itself:

import io.reactivex.subjects.ReplaySubject;
import io.reactivex.subjects.Subject;

public class Launcher {
 public static void main(String[] args) {

 Subject<String> subject =
 ReplaySubject.create();

 subject.subscribe(s -> System.out.println("Observer 1: " +
s));

 subject.onNext("Alpha");
 subject.onNext("Beta");
 subject.onNext("Gamma");
 subject.onComplete();

 subject.subscribe(s -> System.out.println("Observer 2: " +
s));
 }
}

The output is as follows:

Observer 1: Alpha
Observer 1: Beta
Observer 1: Gamma
Observer 2: Alpha
Observer 2: Beta
Observer 2: Gamma

Obviously, just like using a parameterless replay() or a cache() operator, you need to be
wary of using this with a large volume of emissions or infinite sources because it will cache
them all and take up memory.

Multicasting, Replaying, and Caching

[160]

AsyncSubject
AsyncSubject has a highly tailored, finite-specific behavior: it will only push the last value
it receives, followed by an onComplete() event:

import io.reactivex.subjects.AsyncSubject;
import io.reactivex.subjects.Subject;

public class Launcher {
 public static void main(String[] args) {

 Subject<String> subject =
 AsyncSubject.create();

 subject.subscribe(s ->
 System.out.println("Observer 1: " + s),
 Throwable::printStackTrace,
 () -> System.out.println("Observer 1 done!")
);

 subject.onNext("Alpha");
 subject.onNext("Beta");
 subject.onNext("Gamma");
 subject.onComplete();

 subject.subscribe(s ->
 System.out.println("Observer 2: " + s),
 Throwable::printStackTrace,
 () -> System.out.println("Observer 2 done!")
);
 }
}

The output is as follows:

Observer 1: Gamma
Observer 1 done!
Observer 2: Gamma
Observer 2 done!

As you can tell from the preceding command, the last value to be pushed to AsyncSubject
was Gamma before onComplete() was called. Therefore, it only emitted Gamma to all
Observers. This is a Subject you do not want to use with infinite sources since it only
emits when onComplete() is called.

Multicasting, Replaying, and Caching

[161]

AsyncSubject resembles CompletableFuture from Java 8 as it will do a
computation that you can choose to observe for completion and get the
value. You can also imitate AsyncSubject using
takeLast(1).replay(1) on an Observable. Try to use this approach
first before resorting to AsyncSubject.

UnicastSubject
An interesting and possibly helpful kind of Subject is UnicastSubject. A
UnicastSubject, like all Subjects, will be used to observe and subscribe to the sources. But
it will buffer all the emissions it receives until an Observer subscribes to it, and then it will
release all these emissions to the Observer and clear its cache:

import io.reactivex.Observable;
import io.reactivex.subjects.ReplaySubject;
import io.reactivex.subjects.Subject;
import io.reactivex.subjects.UnicastSubject;
import java.util.concurrent.TimeUnit;

public class Launcher {
 public static void main(String[] args) {

 Subject<String> subject =
 UnicastSubject.create();

 Observable.interval(300, TimeUnit.MILLISECONDS)
 .map(l -> ((l + 1) * 300) + " milliseconds")
 .subscribe(subject);

 sleep(2000);

 subject.subscribe(s -> System.out.println("Observer 1: " +
s));

 sleep(2000);

 }
 public static void sleep(long millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

Multicasting, Replaying, and Caching

[162]

The output is as follows:

Observer 1: 300 milliseconds
Observer 1: 600 milliseconds
Observer 1: 900 milliseconds
Observer 1: 1200 milliseconds
Observer 1: 1500 milliseconds
Observer 1: 1800 milliseconds
Observer 1: 2100 milliseconds
Observer 1: 2400 milliseconds
Observer 1: 2700 milliseconds
Observer 1: 3000 milliseconds
Observer 1: 3300 milliseconds
Observer 1: 3600 milliseconds
Observer 1: 3900 milliseconds

When you run this code, you will see that after 2 seconds, the first six emissions are released
immediately to the Observer when it subscribes. Then, it will receive live emissions from
that point on. But there is one important property of UnicastSubject; it will only work
with one Observer and will throw an error for any subsequent ones. Logically, this makes
sense because it is designed to release buffered emissions from its internal queue once it
gets an Observer. But when these cached emissions are released, they cannot be released
again to a second Observer since they are already gone. If you want a second Observer to
receive missed emissions, you might as well use ReplaySubject. The benefit of
UnicastSubject is that it clears its buffer, and consequently frees the memory used for
that buffer, once it gets an Observer.

If you want to support more than one Observer and just let subsequent Observers receive
the live emissions without receiving the missed emissions, you can trick it by calling
publish() to create a single Observer proxy that multicasts to more than one
Observer as shown in the following code snippet:

import io.reactivex.Observable;
import io.reactivex.subjects.Subject;
import io.reactivex.subjects.UnicastSubject;
import java.util.concurrent.TimeUnit;

public class Launcher {
 public static void main(String[] args) {

 Subject<String> subject =
 UnicastSubject.create();

 Observable.interval(300, TimeUnit.MILLISECONDS)
 .map(l -> ((l + 1) * 300) + " milliseconds")
 .subscribe(subject);

Multicasting, Replaying, and Caching

[163]

 sleep(2000);

 //multicast to support multiple Observers
 Observable<String> multicast =
subject.publish().autoConnect();

 //bring in first Observer
 multicast.subscribe(s -> System.out.println("Observer 1: "
+ s));
 sleep(2000);

 //bring in second Observer
 multicast.subscribe(s -> System.out.println("Observer 2: "
+ s));
 sleep(1000);
 }
 public static void sleep(long millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

The output is as follows:

Observer 1: 300 milliseconds
Observer 1: 600 milliseconds
Observer 1: 900 milliseconds
Observer 1: 1200 milliseconds
...
Observer 1: 3900 milliseconds
Observer 1: 4200 milliseconds
Observer 2: 4200 milliseconds
Observer 1: 4500 milliseconds
Observer 2: 4500 milliseconds

Multicasting, Replaying, and Caching

[164]

Summary
In this chapter, we covered multicasting using ConnectableObservable and Subject.
The biggest takeaway is that Observable operators result in separate streams of events for
each Observer that subscribes. If you want to consolidate these multiple streams into a
single stream to prevent redundant work, the best way is to call publish() on an
Observable to yield ConnectableObservable. You can then manually call connect() to
fire emissions once your Observers are set up or automatically trigger a connection using
autoConnect() or refCount().

Mutlicasting also enables replaying and caching, so tardy Observers can receive missed
emissions. Subjects provide a means to multicast and cache emissions as well, but you
should only utilize them if existing operators cannot achieve what you want.

In the next chapter, we will start working with concurrency. This is where RxJava truly
shines and is often the selling point of reactive programming.

6
Concurrency and Parallelization

The need for concurrency has grown rapidly in the past 10 years and has become a
necessity for every professional Java programmer. Concurrency (also called
multithreading) is essentially multitasking, where you have several processes executing at
the same time. If you want to fully utilize your hardware's computing power (whether it is
a phone, server, laptop, or desktop computer), you need to learn how to multithread and
leverage concurrency. Thankfully, RxJava makes concurrency much easier and safer to
achieve.

In this chapter, we will cover the following:

An overview of concurrency and its necessity
subscribeOn()

observeOn()

Parallelization
unsubscribeOn()

Why concurrency is necessary
In simpler times, computers had only one CPU and this marginalized the need for
concurrency. Hardware manufacturers successfully found ways to make CPUs faster, and
this made single-threaded programs faster. But eventually, this had a diminishing return,
and manufacturers found they could increase computational power by putting multiple
CPUs in a device. From desktops and laptops to servers and smartphones, most hardware
nowadays sports multiple CPUs, or cores.

Concurrency and Parallelization

[166]

For developers, this is a major disruption in building software and how coding is done.
Single-threaded software is easier to code and works fine on a single-core device. But a
single-threaded program on a multi-core device will only use one core, leaving the others
not utilized. If you want your program to scale, it needs to be coded in a way that utilizes
all cores available in a processor.

However, concurrency is traditionally not easy to implement. If you have several
independent processes that do not interact with each other, it is easier to accomplish. But
when resources, especially mutable objects, are shared across different threads and
processes, chaos can ensue if locking and synchronization are not carefully implemented.
Not only can threads race each other chaotically to read and change an object's properties,
but a thread may simply not see a value changed by another thread! This is why you should
strive to make your objects immutable and make as many properties and variables final as
possible. This ensures that properties and variables are thread-safe and anything that is
mutable should be synchronized or at least utilize the volatile keyword.

Thankfully, RxJava makes concurrency and multithreading much easier and safer. There
are ways you can undermine the safety it provides, but generally, RxJava handles
concurrency safely for you mainly using two operators: subscribeOn() and
observeOn(). As we will find out in this chapter, other operators such as flatMap() can
be combined with these two operators to create powerful concurrency dataflows.

While RxJava can help you make safe and powerful concurrent
applications with little effort, it can be helpful to be aware of the traps and
pitfalls in multithreading. Joshua Bloch's famous book Effective Java is an
excellent resource that every Java developer should have, and it succinctly
covers best practices for concurrent applications. If you want deep
knowledge in Java concurrency, ensure that you read Brian Goetz' Java
Concurrency in Practice as well.

Concurrency in a nutshell
Concurrency, also called multithreading, can be applied in a variety of ways. Usually, the
motivation behind concurrency is to run more than one task simultaneously in order to get
work done faster. As we discussed in the beginning of this book, concurrency can also help
our code resemble the real world more, where multiple activities occur at the same time.

First, let's cover some fundamental concepts behind concurrency.

Concurrency and Parallelization

[167]

One common application of concurrency is to run different tasks simultaneously. Imagine
that you have three yard chores: mow the lawn, trim the trees, and pull the weeds. If you do
these three chores by yourself, you can only do one chore at a time. You cannot mow the
lawn and trim the trees simultaneously. You have to sequentially mow the lawn first, then
trim the trees, then pull the weeds. But if you have a friend to help you, one of you can
mow the lawn while the other trims the trees. The first one of you to get done can then
move on to the third task: pulling the weeds. This way, these three tasks get done much
more quickly.

Metaphorically, you and your friend are threads. You do work together. Collectively, you
both are a thread pool ready to execute tasks. The chores are tasks that are queued for the
thread pool, which you can execute two at a time. If you have more threads, your thread
pool will have more bandwidth to take on more tasks concurrently. However, depending
on how many cores your computer has (as well as the nature of the tasks), you can only
have so many threads. Threads are expensive to create, maintain, and destroy, and there is a
diminishing return in performance as you create them excessively. That is why it is better to
have a thread pool to reuse threads and have them work a queue of tasks.

Understanding parallelization
Parallelization (also called parallelism) is a broad term that could encompass the preceding
scenario. In effect, you and your friend are executing two tasks at the same time and are
thus processing in parallel. But let's apply parallelization to processing multiple identical
tasks at the same time. Take, for example, a grocery store that has 10 customers waiting in a
line for checkout. These 10 customers represent 10 tasks that are identical. They each need
to check out their groceries. If a cashier represents a thread, we can have multiple cashiers
to process these customers more quickly. But like threads, cashiers are expensive. We do not
want to create a cashier for each customer, but rather pool a fixed number of cashiers and
reuse them. If we have five cashiers, we can process five customers at a time while the rest
wait in the queue. The moment a cashier finishes a customer, they can process the next one.

This is essentially what parallelization achieves. If you have 1000 objects and you need to
perform an expensive calculation on each one, you can use five threads to process five
objects at a time and potentially finish this process five times more quickly. It is critical to
pool these threads and reuse them because creating 1000 threads to process these 1000
objects could overwhelm your memory and crash your program.

With a conceptual understanding of concurrency, we will move on to discussing how it is
achieved in RxJava.

Concurrency and Parallelization

[168]

Introducing RxJava concurrency
Concurrency in RxJava is simple to execute, but somewhat abstract to understand. By
default, Observables execute work on the immediate thread, which is the thread that
declared the Observer and subscribed it. In many of our earlier examples, this was the
main thread that kicked off our main() method.

But as hinted in a few other examples, not all Observables will fire on the immediate thread.
Remember those times we used Observable.interval(), as shown in the following
code? Let's take a look:

import io.reactivex.Observable;
import java.util.concurrent.TimeUnit;

public class Launcher {

 public static void main(String[] args) {

 Observable.interval(1, TimeUnit.SECONDS)
 .map(i -> i + " Mississippi")
 .subscribe(System.out::println);

 sleep(5000);
 }
 public static void sleep(long millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

The output is as follows:

0 Mississippi
1 Mississippi
2 Mississippi
3 Mississippi
4 Mississippi

Concurrency and Parallelization

[169]

This Observable will actually fire on a thread other than the main one. Effectively, the
main thread will kick-off Observable.interval(), but not wait for it to complete
because it is operating on its own separate thread now. This, in fact, makes it a concurrent
application because it is leveraging two threads now. If we do not call a sleep() method to
pause the main thread, it will charge to the end of the main() method and quit the
application before the intervals have a chance to fire.

Usually, concurrency is useful only when you have long-running or calculation-intensive
processes. To help us learn concurrency without creating noisy examples, we will create a
helper method called intenseCalculation() to emulate a long-running process. It will
simply accept any value and then sleep for 0-3 seconds and then return the same value.
Sleeping a thread, or pausing it, is a great way to simulate a busy thread doing work:

public static <T> T intenseCalculation(T value) {
 sleep(ThreadLocalRandom.current().nextInt(3000));
 return value;
}
public static void sleep(long millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
}

Let's create two Observables with two Observers subscribing to them. In each operation.
map each emission to the intenseCalculation() method in order to slow them down:

import rx.Observable;
import java.util.concurrent.ThreadLocalRandom;
import io.reactivex.Observable;

public class Launcher {

 public static void main(String[] args) {

 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon")
 .map(s -> intenseCalculation((s)))
 .subscribe(System.out::println);

 Observable.range(1,6)
 .map(s -> intenseCalculation((s)))
 .subscribe(System.out::println);
 }

Concurrency and Parallelization

[170]

 public static <T> T intenseCalculation(T value) {
 sleep(ThreadLocalRandom.current().nextInt(3000));
 return value;
 }
 public static void sleep(long millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

The output is as follows:

Alpha
Beta
Gamma
Delta
Epsilon
1
2
3
4
5
6

Note how both Observables fire emissions slowly as each one is slowed by 0-3 seconds in
the map() operation. More importantly, note how the first Observable firing Alpha, Beta,
Gamma must finish first and call onComplete() before firing the second Observable
emitting the numbers 1 through 6. If we fire both Observables at the same time rather than
waiting for one to complete before starting the other, we could get this operation done
much more quickly.

We can achieve this using the subscribeOn() operator, which suggests to the source to
fire emissions on a specified Scheduler. In this case, let us use
Schedulers.computation(), which pools a fixed number of threads appropriate for
computation operations. It will provide a thread to push emissions for each Observer.
When onComplete() is called, the thread will be given back to Scheduler so it can be
reused elsewhere:

import io.reactivex.Observable;
import io.reactivex.schedulers.Schedulers;
import java.util.concurrent.ThreadLocalRandom;

public class Launcher {

Concurrency and Parallelization

[171]

 public static void main(String[] args) {

 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon")
 .subscribeOn(Schedulers.computation())
 .map(s -> intenseCalculation((s)))
 .subscribe(System.out::println);

 Observable.range(1,6)
 .subscribeOn(Schedulers.computation())
 .map(s -> intenseCalculation((s)))
 .subscribe(System.out::println);

 sleep(20000);
 }

 public static <T> T intenseCalculation(T value) {
 sleep(ThreadLocalRandom.current().nextInt(3000));
 return value;
 }
 public static void sleep(long millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

The output is as follows (yours may be different):

1
2
Alpha
3
4
Beta
5
Gamma
Delta
6
Epsilon

Concurrency and Parallelization

[172]

Your output will likely be different from mine due to the random sleeping times. But note
how both operations are firing simultaneously now, allowing the program to finish much
more quickly. Rather than the main thread becoming occupied, executing emissions for the
first Observable before moving onto the second, it will fire-off both Observables
immediately and move on. It will not wait for either Observable to complete.

Having multiple processes occurring at the same time is what makes an application
concurrent. It can result in much greater efficiency as it will utilize more cores and finish
work more quickly. Concurrency also makes code models more powerful and more
representative of how our world works, where multiple activities occur simultaneously.

Something else that is exciting about RxJava is its operators (at least the official ones and the
custom ones built properly). They can work with Observables on different threads safely.
Even operators and factories that combine multiple Observables, such as merge() and
zip(), will safely combine emissions pushed by different threads. For instance, we can use
zip() on our two Observables in the preceding example even if they are emitting on two
separate computation threads:

import io.reactivex.Observable;
import io.reactivex.schedulers.Schedulers;
import java.util.concurrent.ThreadLocalRandom;

public class Launcher {

 public static void main(String[] args) {

 Observable<String> source1 =
 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon")
 .subscribeOn(Schedulers.computation())
 .map(s -> intenseCalculation((s)));

 Observable<Integer> source2 =
 Observable.range(1,6)
 .subscribeOn(Schedulers.computation())
 .map(s -> intenseCalculation((s)));

 Observable.zip(source1, source2, (s,i) -> s + "-" + i)
 .subscribe(System.out::println);

 sleep(20000);
 }

 public static <T> T intenseCalculation(T value) {
 sleep(ThreadLocalRandom.current().nextInt(3000));
 return value;

Concurrency and Parallelization

[173]

 }
 public static void sleep(long millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

The output is as follows:

Alpha-1
Beta-2
Gamma-3
Delta-4
Epsilon-5

Being able to split and combine Observables happening on different threads is powerful
and eliminates the pain points of callbacks. Observables are agnostic to whatever thread
they work on, making concurrency easy to implement, configure, and evolve at any time.

When you start making reactive applications concurrent, a subtle
complication can creep in. By default, a non-concurrent application will
have one thread doing all the work from the source to the final Observer.
But having multiple threads can cause emissions to be produced faster
than an Observer can consume them (for instance, the zip() operator
may have one source producing emissions faster than the other). This can
overwhelm the program and memory can run out as backlogged
emissions are cached by certain operators. When you are working with a
high volume of emissions (more than 10,000) and leveraging concurrency,
you will likely want to use Flowables instead of Observables, which we
will cover in Chapter 8, Flowables and Backpressure.

Keeping an application alive
Up until this point, we have used a sleep() method to keep concurrent reactive
applications from quitting prematurely, just long enough for the Observables to fire. If you
are using Android, JavaFX, or other frameworks that manage their own non-daemon
threads, this is not a concern as the application will be kept alive for you. But if you are
simply firing off a program with a main() method and you want to kick off long-running
or infinite Observables, you may have to keep the main thread alive for a period longer
than 5-20 seconds. Sometimes, you may want to keep it alive indefinitely.

Concurrency and Parallelization

[174]

One way to keep an application alive indefinitely is to simply pass Long.MAX_VALUE to the
Thread.sleep() method, as shown in the following code, where we
have Observable.interval() firing emissions forever:

import io.reactivex.Observable;
import java.util.concurrent.ThreadLocalRandom;
import java.util.concurrent.TimeUnit;

public class Launcher {

 public static void main(String[] args) {

 Observable.interval(1, TimeUnit.SECONDS)
 .map(l -> intenseCalculation((l)))
 .subscribe(System.out::println);

 sleep(Long.MAX_VALUE);
 }

 public static <T> T intenseCalculation(T value) {
 sleep(ThreadLocalRandom.current().nextInt(3000));
 return value;
 }
 public static void sleep(long millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

Okay, sleeping your main thread for 9,223,372,036,854,775,807 milliseconds is not forever,
but that is the equivalent to 292,471,208.7 years. For the purposes of sleeping a thread, that
might as well be forever!

There are ways to keep an application alive only long enough for a subscription to finish.
With classical concurrency tools discussed in Brian Goetz' book Java Concurrency in Practice,
you can keep an application alive using CountDownLatch to wait for two subscriptions to
finish. But an easier way is to use blocking operators in RxJava.

Concurrency and Parallelization

[175]

You can use blocking operators to stop the declaring thread and wait for emissions.
Usually, blocking operators are used for unit testing (as we will discuss in Chapter 10,
Testing and Debugging), and they can attract antipatterns if used improperly in production.
However, keeping an application alive based on the life cycle of a finite Observable
subscription is a valid case to use a blocking operator. As shown here,
blockingSubscribe() can be used in place of subscribe() to stop and wait for
onComplete() to be called before the main thread is allowed to proceed and exit the
application:

import io.reactivex.schedulers.Schedulers;
import io.reactivex.Observable;
import java.util.concurrent.ThreadLocalRandom;

public class Launcher {

 public static void main(String[] args) {

 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon")
 .subscribeOn(Schedulers.computation())
 .map(Launcher::intenseCalculation)
 .blockingSubscribe(System.out::println,
 Throwable::printStackTrace,
 () -> System.out.println("Done!"));
 }

 public static <T> T intenseCalculation(T value) {
 sleep(ThreadLocalRandom.current().nextInt(3000));
 return value;
 }
 public static void sleep(int millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

The output is as follows:

Alpha
Beta
Gamma
Delta
Epsilon
Done!

Concurrency and Parallelization

[176]

We will discuss blocking operators in further detail in Chapter 10, Testing and Debugging.
For the remainder of this chapter, we will explore concurrency in detail using the
subscribeOn() and observeOn() operators. But first, we will cover the different
Scheduler types available in RxJava.

Understanding Schedulers
As discussed earlier, thread pools are a collection of threads. Depending on the policy of
that thread pool, threads may be persisted and maintained so they can be reused. A queue
of tasks is then executed by that thread pool.

Some thread pools hold a fixed number of threads (such as the computation() one we
used earlier), while others dynamically create and destroy threads as needed. Typically in
Java, you use an ExecutorService as your thread pool. However, RxJava implements its
own concurrency abstraction called Scheduler. It define methods and rules that an actual
concurrency provider such as an ExecutorService or actor system must obey. The
construct flexibly makes RxJava non-opinionated on the source of concurrency.

Many of the default Scheduler implementations can be found in the Schedulers static
factory class. For a given Observer, a Scheduler will provide a thread from its pool that
will push the emissions. When onComplete() is called, the operation will be disposed of
and the thread will be given back to the pool, where it may be persisted and reused by
another Observer.

To keep this book practical, we will only look at Schedulers in their
natural environment: being used with subscribeOn() and
observeOn(). If you want to learn more about Schedulers and how they
work in isolation, refer to Appendix X to learn more.

Here are a few Scheduler types in RxJava. There are also some common third-party ones
available in other libraries such as RxAndroid (covered in Chapter 11, RxJava for Android)
and RxJavaFX (covered later in this chapter).

Concurrency and Parallelization

[177]

Computation
We already saw the computation Scheduler, which you can get the global instance of by
calling Schedulers.computation(). This will maintain a fixed number of threads based
on the processor count available to your Java session, making it appropriate for
computational tasks. Computational tasks (such as math, algorithms, and complex logic)
may utilize cores to their fullest extent. Therefore, there is no benefit in having more worker
threads than available cores to perform such work, and the computational Scheduler will
ensure that:

Observable.just("Alpha", "Beta", "Gamma", "Delta", "Epsilon")
 .subscribeOn(Schedulers.computation());

When you are unsure how many tasks will be executed concurrently or are simply unsure
which Scheduler is the right one to use, prefer the computation one by default.

A number of operators and factories will use the computation Scheduler
by default unless you specify a different one as an argument. These
include one or more overloads for interval(), delay(), timer(),
timeout(), buffer(), take(), skip(), takeWhile(), skipWhile(),
window(), and a few others.

IO
IO tasks such as reading and writing databases, web requests, and disk storage are less
expensive on the CPU and often have idle time waiting for the data to be sent or come back.
This means you can create threads more liberally, and Schedulers.io() is appropriate for
this. It will maintain as many threads as there are tasks and will dynamically grow, cache,
and reduce the number of threads as needed. For instance, you may use Schedulers.io()
to perform SQL operations using RxJava-JDBC (h t t p s ://g i t h u b . c o m /d a v i d m o t e n /r x j a v a

- j d b c):

 Database db = Database.from(conn);

 Observable<String> customerNames =
 db.select("SELECT NAME FROM CUSTOMER")
 .getAs(String.class)
 .subscribeOn(Schedulers.io());

But you have to be careful! As a rule of thumb, assume that each subscription will result in
a new thread.

https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc

Concurrency and Parallelization

[178]

New thread
The Schedulers.newThread() factory will return a Scheduler that does not pool
threads at all. It will create a new thread for each Observer and then destroy the thread
when it is done. This is different than Schedulers.io() because it does not attempt to
persist and cache threads for reuse:

Observable.just("Alpha", "Beta", "Gamma", "Delta", "Epsilon")
 .subscribeOn(Schedulers.newThread());

This may be helpful in cases where you want to create, use, and then destroy a thread
immediately so it does not take up memory. But for complex applications generally, you
will want to use Schedulers.io() so there is some attempt to reuse threads if possible.
You also have to be careful as Schedulers.newThread() can run amok in complex
applications (as can Schedulers.io()) and create a high volume of threads, which could
crash your application.

Single
When you want to run tasks sequentially on a single thread, you can invoke
Schedulers.single(). This is backed by a single-threaded implementation appropriate
for event looping. It can also be helpful to isolate fragile, non-threadsafe operations to a
single thread:

Observable.just("Alpha", "Beta", "Gamma", "Delta", "Epsilon")
 .subscribeOn(Schedulers.single());

Trampoline
Schedulers.trampoline() is an interesting Scheduler. In practicality, you will not
invoke it often as it is used primarily in RxJava's internal implementation. Its pattern is also
borrowed for UI Schedulers such as RxJavaFX and RxAndroid. It is just like default
scheduling on the immediate thread, but it prevents cases of recursive scheduling where a
task schedules a task while on the same thread. Instead of causing a stack overflow error, it
will allow the current task to finish and then execute that new scheduled task afterward.

Concurrency and Parallelization

[179]

ExecutorService
You can build a Scheduler off a standard Java ExecutorService. You may choose to do
this in order to have more custom and fine-tuned control over your thread management
policies. For example, say, we want to create a Scheduler that uses 20 threads. We can create
a new fixed ExecutorService specified with this number of threads. Then, you can wrap
it inside a Scheduler implementation by calling Schedulers.from():

import io.reactivex.Observable;
import io.reactivex.Scheduler;
import io.reactivex.schedulers.Schedulers;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class Launcher {

 public static void main(String[] args) {

 int numberOfThreads = 20;

 ExecutorService executor =
 Executors.newFixedThreadPool(numberOfThreads);

 Scheduler scheduler = Schedulers.from(executor);

 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon")
 .subscribeOn(scheduler)
 .doFinally(executor::shutdown)
 .subscribe(System.out::println);
 }
}

ExecutorService will likely keep your program alive indefinitely, so you have to manage
its disposal if its life is supposed to be finite. If I only wanted to support the life cycle of one
Observable subscription, I need to call its shutdown() method. That is why I called its
shutdown() method after the operation terminates or disposes via the doFinally()
operator.

Concurrency and Parallelization

[180]

Starting and shutting down Schedulers
Each default Scheduler is lazily instantiated when you first invoke its usage. You can
dispose the computation(), io(), newThread(), single(), and trampoline()
Schedulers at any time by calling their shutdown() method or all of them by calling
Schedulers.shutdown(). This will stop all their threads and forbid new tasks from
coming in and will throw an error if you try otherwise. You can also call their start()
method, or Schedulersers.start(), to reinitialize the Schedulers so they can accept
tasks again.

In desktop and mobile app environments, you should not run into many
cases where you have to start and stop the Schedulers. On the server side,
however, J2EE-based applications (for example, Servlets) may get
unloaded and reloaded and use a different classloader, causing the old
Schedulers instances to leak. To prevent this from occurring, the Servlet
should shut down the Schedulers manually in its destroy() method.

Only manage the life cycle of your Schedulers if you absolutely have to. It is better to let the
Schedulers dynamically manage their usage of resources and keep them initialized and
available so tasks can quickly be executed at a moment's notice. Note carefully that it is
better to ensure that all outstanding tasks are completed or disposed of before you shut
down the Schedulers, or else you may leave the sequences in an inconsistent state.

Understanding subscribeOn()
We kind of touched on using subscribeOn() already, but in this section, we will explore it
in more detail and look at how it works.

The subscribeOn() operator will suggest to the source Observable upstream which
Scheduler to use and how to execute operations on one of its threads. If that source is not
already tied to a particular Scheduler, it will use the Scheduler you specify. It will then
push emissions all the way to the final Observer using that thread (unless you add
observeOn() calls, which we will cover later). You can put subscribeOn() anywhere in
the Observable chain, and it will suggest to the upstream all the way to the origin
Observable which thread to execute emissions with.

Concurrency and Parallelization

[181]

In the following example, it makes no difference whether you put this subscribeOn()
right after Observable.just() or after one of the operators. The subscribeOn() will
communicate upstream to the Observable.just() which Scheduler to use no matter
where you put it. For clarity, though, you should place it as close to the source as possible:

//All three accomplish the same effect with subscribeOn()

Observable.just("Alpha", "Beta", "Gamma", "Delta", "Epsilon")
 .subscribeOn(Schedulers.computation()) //preferred
 .map(String::length)
 .filter(i -> i > 5)
 .subscribe(System.out::println);

Observable.just("Alpha", "Beta", "Gamma", "Delta", "Epsilon")
 .map(String::length)
 .subscribeOn(Schedulers.computation())
 .filter(i -> i > 5)
 .subscribe(System.out::println);

Observable.just("Alpha", "Beta", "Gamma", "Delta", "Epsilon")
 .map(String::length)
 .filter(i -> i > 5)
 .subscribeOn(Schedulers.computation())
 .subscribe(System.out::println);

Having multiple Observers to the same Observable with subscribeOn() will result in
each one getting its own thread (or have them waiting for an available thread if none are
available). In the Observer, you can print the executing thread's name by calling
Thread.currentThread().getName(). We will print that with each emission to see that
two threads, in fact, are being used for both Observers:

import io.reactivex.Observable;
import io.reactivex.schedulers.Schedulers;
import java.util.concurrent.ThreadLocalRandom;

public class Launcher {

 public static void main(String[] args) {

 Observable<Integer> lengths =
 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon")
 .subscribeOn(Schedulers.computation())
 .map(Launcher::intenseCalculation)
 .map(String::length);

Concurrency and Parallelization

[182]

 lengths.subscribe(i ->
System.out.println("Received " + i + " on thread " +
 Thread.currentThread().getName()));

 lengths.subscribe(i ->
System.out.println("Received " + i + " on thread " +
 Thread.currentThread().getName()));

 sleep(10000);

 }
 public static <T> T intenseCalculation(T value) {
 sleep(ThreadLocalRandom.current().nextInt(3000));
 return value;
 }
 public static void sleep(int millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

The output is as follows:

Received 5 on thread RxComputationThreadPool-2
Received 4 on thread RxComputationThreadPool-2
Received 5 on thread RxComputationThreadPool-2
Received 5 on thread RxComputationThreadPool-2
Received 5 on thread RxComputationThreadPool-1
Received 7 on thread RxComputationThreadPool-2
Received 4 on thread RxComputationThreadPool-1
Received 5 on thread RxComputationThreadPool-1
Received 5 on thread RxComputationThreadPool-1

Note how one Observer is using a thread named RxComputationThreadPool-2, while
the other is using RxComputationThreadPool-1. These names indicate which Scheduler
they came from (which is the Computation one) and what their index is. As shown here, if
we want only one thread to serve both Observers, we can multicast this operation. Just
make sure subscribeOn() is before the multicast operators:

import io.reactivex.Observable;
import io.reactivex.schedulers.Schedulers;
import java.util.concurrent.ThreadLocalRandom;

public class Launcher {

Concurrency and Parallelization

[183]

 public static void main(String[] args) {

 Observable<Integer> lengths =
 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon")
 .subscribeOn(Schedulers.computation())
 .map(Launcher::intenseCalculation)
 .map(String::length)
 .publish()
 .autoConnect(2);

 lengths.subscribe(i ->
System.out.println("Received " + i + " on thread " +
 Thread.currentThread().getName()));

 lengths.subscribe(i ->
System.out.println("Received " + i + " on thread " +
 Thread.currentThread().getName()));

 sleep(10000);

 }
 public static <T> T intenseCalculation(T value) {
 sleep(ThreadLocalRandom.current().nextInt(3000));
 return value;
 }
 public static void sleep(int millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

The output is as follows:

Received 5 on thread RxComputationThreadPool-1
Received 5 on thread RxComputationThreadPool-1
Received 4 on thread RxComputationThreadPool-1
Received 4 on thread RxComputationThreadPool-1
Received 5 on thread RxComputationThreadPool-1
Received 5 on thread RxComputationThreadPool-1
Received 5 on thread RxComputationThreadPool-1

Concurrency and Parallelization

[184]

Most Observable factories, such as Observable.fromIterable() and
Observable.just(), will emit items on the Scheduler specified by subscribeOn(). For
factories such as Observable.fromCallable() and Observable.defer(), the
initialization of these sources will also run on the specified Scheduler when using
subscribeOn(). For instance, if you use Observable.fromCallable() to wait on a URL
response, you can actually do that work on the IO Scheduler so the main thread is not
blocking and waiting for it:

import io.reactivex.Observable;
import io.reactivex.schedulers.Schedulers;
import java.net.URL;
import java.util.Scanner;

public class Launcher {

 public static void main(String[] args) {

 Observable.fromCallable(() ->
getResponse("https://api.github.com/users/thomasnield/starred")
).subscribeOn(Schedulers.io())
 .subscribe(System.out::println);

 sleep(10000);
 }
 private static String getResponse(String path) {
 try {
 return new Scanner(new URL(path).openStream(),
"UTF-8").useDelimiter("\\A").next();
 } catch (Exception e) {
 return e.getMessage();
 }
 }
 public static void sleep(int millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

The output is as follows:

[{"id":23095928,"name":"RxScala","full_name":"ReactiveX/RxScala","o
....

Concurrency and Parallelization

[185]

Nuances of subscribeOn()
It is important to note that subscribeOn() will have no practical effect with certain
sources (and will keep a worker thread unnecessarily on standby until that operation
terminates). This might be because these Observables already use a specific Scheduler,
and if you want to change it, you can provide a Scheduler as an argument. For
example, Observable.interval() will use Schedulers.computation() and will
ignore any subscribeOn()you specify otherwise. But you can provide a third argument to
specify a different Scheduler to use. Here, I specify Observable.interval() to
use Schedulers.newThread(), as shown here:

import io.reactivex.Observable;
import io.reactivex.schedulers.Schedulers;
import java.util.concurrent.TimeUnit;

public class Launcher {

 public static void main(String[] args) {

 Observable.interval(1, TimeUnit.SECONDS,
Schedulers.newThread())
 .subscribe(i -> System.out.println("Received " + i
+
 " on thread " +
Thread.currentThread().getName()));

 sleep(5000);
 }

 public static void sleep(int millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

The output is as follows:

Received 0 on thread RxNewThreadScheduler-1
Received 1 on thread RxNewThreadScheduler-1
Received 2 on thread RxNewThreadScheduler-1
Received 3 on thread RxNewThreadScheduler-1
Received 4 on thread RxNewThreadScheduler-1

Concurrency and Parallelization

[186]

This also brings up another point: if you have multiple subscribeOn() calls on a given
Observable chain, the top-most one, or the one closest to the source, will win and cause
any subsequent ones to have no practical effect (other than unnecessary resource usage). If I
call subscribeOn() with Schedulers.computation() and then call subscribeOn() for
 Schedulers.io(), Schedulers.computation() is the one that will be used:

import io.reactivex.Observable;
import io.reactivex.schedulers.Schedulers;

public class Launcher {

 public static void main(String[] args) {

 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon")
 .subscribeOn(Schedulers.computation())
 .filter(s -> s.length() == 5)
 .subscribeOn(Schedulers.io())
 .subscribe(i -> System.out.println("Received " + i
+
 " on thread " +
Thread.currentThread().getName()));

 sleep(5000);
 }
 public static void sleep(int millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

The output is as follows:

Received Alpha on thread RxComputationThreadPool-1
Received Gamma on thread RxComputationThreadPool-1
Received Delta on thread RxComputationThreadPool-1

This can happen when an API returns an Observable already preapplied with a
Scheduler via subscribeOn(), although the consumer of the API wants a different
Scheduler. API designers are, therefore, encouraged to provide methods or overloads that
allow parameterizing which Scheduler to use, just like RxJava's Scheduler-dependent
operators (for example, Observable.interval()).

Concurrency and Parallelization

[187]

In summary, subscribeOn() specifies which Scheduler the source Observable should
use, and it will use a worker from this Scheduler to push emissions all the way to the final
Observer. Next, we will learn about observeOn(), which switches to a different
Scheduler at that point in the Observable chain.

Understanding observeOn()
The subscribeOn() operator instructs the source Observable which Scheduler to emit
emissions on. If subscribeOn() is the only concurrent operation in an Observable chain,
the thread from that Scheduler will work the entire Observable chain, pushing emissions
from the source all the way to the final Observer. The observeOn() operator, however,
will intercept emissions at that point in the Observable chain and switch them to a
different Scheduler going forward.

Unlike subscribeOn(), the placement of observeOn() matters. It will leave all operations
upstream on the default or subscribeOn()-defined Scheduler, but will switch to a
different Scheduler downstream. Here, I can have an Observable emit a series of strings
that are /-separated values and break them up on an IO Scheduler. But after that, I can
switch to a computation Scheduler to filter only numbers and calculate their sum, as
shown in the following code snippet:

import io.reactivex.Observable;
import io.reactivex.schedulers.Schedulers;

public class Launcher {

 public static void main(String[] args) {

 //Happens on IO Scheduler
 Observable.just("WHISKEY/27653/TANGO", "6555/BRAVO",
"232352/5675675/FOXTROT")
 .subscribeOn(Schedulers.io())
 .flatMap(s -> Observable.fromArray(s.split("/")))

 //Happens on Computation Scheduler
 .observeOn(Schedulers.computation())
 .filter(s -> s.matches("[0-9]+"))
 .map(Integer::valueOf)
 .reduce((total, next) -> total + next)
 .subscribe(i -> System.out.println("Received " + i
+ " on thread "
 + Thread.currentThread().getName()));

Concurrency and Parallelization

[188]

 sleep(1000);
 }

 public static void sleep(int millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

The output is as follows:

Received 5942235 on thread RxComputationThreadPool-1

Of course, this example is not computationally intensive, and in real life, it should be done
on a single thread. The overhead of concurrency that we introduced is not warranted, but
let's pretend it is a long-running process.

Again, use observeOn() to intercept each emission and push them forward on a different
Scheduler. In the preceding example, operators before observeOn() are executed on
 Scheduler.io(), but the ones after it are executed by Schedulers.computation().
Upstream operators before observeOn() are not impacted, but downstream ones are.

You might use observeOn() for a situation like the one emulated earlier. If you want to
read one or more data sources and wait for the response to come back, you will want to do
that part on Schedulers.io() and will likely leverage subscribeOn() since that is the
initial operation. But once you have that data, you may want to do intensive computations
with it, and Scheduler.io() may no longer be appropriate. You will want to constrain
these operations to a few threads that will fully utilize the CPU. Therefore, you use
observeOn() to redirect data to Schedulers.computation().

You can actually use multiple observeOn() operators to switch Schedulers more than
once. Continuing with our earlier example, let's say we want to write our computed sum to
a disk and write it in a file. Let's pretend this was a lot of data rather than a single number
and we want to get this disk-writing operation off the computation Scheduler and put it
back in the IO Scheduler. We can achieve this by introducing a second observeOn().
Let's also add some doOnNext() and doOnSuccess() (due to the Maybe) operators to
peek at which thread each operation is using:

import io.reactivex.Observable;
import io.reactivex.schedulers.Schedulers;
import java.io.BufferedWriter;
import java.io.File;

Concurrency and Parallelization

[189]

import java.io.FileWriter;

public class Launcher {

 public static void main(String[] args) {

 //Happens on IO Scheduler
 Observable.just("WHISKEY/27653/TANGO", "6555/BRAVO",
"232352/5675675/FOXTROT")
 .subscribeOn(Schedulers.io())
 .flatMap(s -> Observable.fromArray(s.split("/")))
 .doOnNext(s -> System.out.println("Split out " + s
+ " on thread "
 + Thread.currentThread().getName()))

 //Happens on Computation Scheduler
 .observeOn(Schedulers.computation())
 .filter(s -> s.matches("[0-9]+"))
 .map(Integer::valueOf)
 .reduce((total, next) -> total + next)
 .doOnSuccess(i -> System.out.println("Calculated
sum " + i + " on thread "
 + Thread.currentThread().getName()))

 //Switch back to IO Scheduler
 .observeOn(Schedulers.io())
 .map(i -> i.toString())
 .doOnSuccess(s -> System.out.println("Writing " + s
+ " to file on thread "
 + Thread.currentThread().getName()))
 .subscribe(s ->
write(s,"/home/thomas/Desktop/output.txt"));

 sleep(1000);
 }
 public static void write(String text, String path) {
 BufferedWriter writer = null;
 try {
 //create a temporary file
 File file = new File(path);
 writer = new BufferedWriter(new FileWriter(file));
 writer.append(text);
 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 try {
 writer.close();
 } catch (Exception e) {

Concurrency and Parallelization

[190]

 }
 }
 }

 public static void sleep(int millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

The output is as follows:

Split out WHISKEY on thread RxCachedThreadScheduler-1
Split out 27653 on thread RxCachedThreadScheduler-1
Split out TANGO on thread RxCachedThreadScheduler-1
Split out 6555 on thread RxCachedThreadScheduler-1
Split out BRAVO on thread RxCachedThreadScheduler-1
Split out 232352 on thread RxCachedThreadScheduler-1
Split out 5675675 on thread RxCachedThreadScheduler-1
Split out FOXTROT on thread RxCachedThreadScheduler-1
Calculated sum 5942235 on thread RxComputationThreadPool-1
Writing 5942235 to file on thread RxCachedThreadSchedule

If you look closely at the output, you will see that the String emissions were initially
pushed and split on the IO Scheduler via the thread RxCachedThreadScheduler-1.
After that, each emission was switched to the computation Scheduler and pushed into a
sum calculation, which was all done on the thread RxComputationThreadPool-1. That
sum was then switched to the IO scheduler to be written to a text file (which I specified to
output on my Linux Mint desktop), and that work was done on
RxCachedThreadScheduler-1 (which happened to be the thread that pushed the initial
emissions and was reused!).

Concurrency and Parallelization

[191]

Using observeOn() for UI event threads
When it comes to building mobile apps, desktop applications, and other user experiences,
users have little patience for interfaces that hang up or freeze while work is being done. The
visual updating of user interfaces is often done by a single dedicated UI thread, and
changes to the user interface must be done on that thread. User input events are typically
fired on the UI thread as well. If a user input triggers work, and that work is not moved to
another thread, that UI thread will become busy. This is what makes the user interface
unresponsive, and today's users expect better than this. They want to still interact with the
application while work is happening in the background, so concurrency is a must-have.

Thankfully, RxJava can come to the rescue! You can use observeOn() to move UI events to
a computation or IO Scheduler to do the work, and when the result is ready, move it back
to the UI thread with another observeOn(). This second usage of observeOn() will put
emissions on a UI thread using a custom Scheduler that wraps around the UI thread.
RxJava extension libraries such as RxAndroid (h t t p s ://g i t h u b . c o m /R e a c t i v e X /R x A n d r o i

d), RxJavaFX (h t t p s ://g i t h u b . c o m /R e a c t i v e X /R x J a v a F X), and RxSwing (h t t p s ://g i t h u b

. c o m /R e a c t i v e X /R x S w i n g) come with these custom Scheduler implementations.

For instance, say we have a simple JavaFX application that displays a ListView<String>
of the 50 U.S. states every time a button is clicked on. We can create
Observable<ActionEvent> off the button and then switch to an IO Scheduler with
observeOn() (subscribeOn() will have no effect against UI event sources). We can load
the 50 states from a text web response while on the IO Scheduler. Once the states are
returned, we can use another observeOn() to put them back on JavaFxScheduler, and
safely populate them into ListView<String> on the JavaFX UI thread:

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.ListView;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;
import io.reactivex.Observable;
import io.reactivex.rxjavafx.observables.JavaFxObservable;
import io.reactivex.rxjavafx.schedulers.JavaFxScheduler;
import io.reactivex.schedulers.Schedulers;
public final class JavaFxApp extends Application {

 @Override
 public void start(Stage stage) throws Exception {

 VBox root = new VBox();

https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxSwing

Concurrency and Parallelization

[192]

 ListView<String> listView = new ListView<>();
 Button refreshButton = new Button("REFRESH");

 JavaFxObservable.actionEventsOf(refreshButton)
 .observeOn(Schedulers.io())
 .flatMapSingle(a ->
 Observable.fromArray(getResponse("https://goo.gl/S0xuOi")
 .split("\\r?\\n")
).toList()
).observeOn(JavaFxScheduler.platform())
 .subscribe(list ->
listView.getItems().setAll(list));

 root.getChildren().addAll(listView, refreshButton);
 stage.setScene(new Scene(root));
 stage.show();
}

 private static String getResponse(String path) {
 try {
 return new Scanner(new URL(path).openStream(),
"UTF-8").useDelimiter("\\A").next();
 } catch (Exception e) {
 return e.getMessage();
 }
 }
}

The code should run the JavaFX application shown as follows:

Concurrency and Parallelization

[193]

 The preceding screenshot demonstrates that hitting the REFRESH button will emit an
event but switch it to an IO Scheduler where the work is done to retrieve the U.S. states.
When the response is ready, it will emit a List<String> and put it back on the JavaFX
Scheduler to be displayed in a ListView.

These concepts apply to Android development as well, and you put all operations affecting
the app user interface on AndroidSchedulers.mainThread() rather
than JavaFxScheduler.platform(). We will cover Android development in Chapter 11,
RxJava for Android.

Nuances of observeOn()
observeOn()comes with nuances to be aware of, especially when it comes to performance
implications due to lack of backpressure, which we will cover in Chapter 8, Flowables and
Backpressure.

Say, you have an Observable chain with two sets of operations, Operation A and
Operation B. Let's not worry what operators each one is using. If you do not have any
observeOn()between them, the operation will pass emissions strictly one at a time from
the source to Operation A, then Operation B, and finally to the Observer. Even with a
subscribeOn(), the source will not pass the next emission down the chain until the
current one is passed all the way to the Observer.

This changes when you introduce an observeOn() and say we put it between Operation A
and Operation B. What happens is after Operation A hands an emission to the
observeOn(), it will immediately start the next emission and not wait for the downstream
to finish the current one, including Operation B and the Observer. This means that the
source and Operation A can produce emissions faster than Operation B and the Observer
can consume them. This is a classic producer/consumer scenario where the producer is
producing emissions faster than the consumer can consume them. If this is the case,
unprocessed emissions will be queued in observeOn() until the downstream is able to
process them. But if you have a lot of emissions, you can potentially run into memory
issues.

This is why when you have a flow of 10,000 emissions or more, you will definitely want to
use a Flowable (which supports backpressure) instead of an Observable. Backpressure
communicates upstream all the way to the source to slow down and only produce so many
emissions at a time. It restores pull-based requesting of emissions even when complex
concurrency operations are introduced. We will cover this in Chapter 8, Flowables and
Backpressure.

Concurrency and Parallelization

[194]

Parallelization
Parallelization, also called parallelism or parallel computing, is a broad term that can be
used for any concurrent activity (including what we covered). But for the purposes of
RxJava, let's define it as processing multiple emissions at a time for a given Observable. If
we have 1000 emissions to process in a given Observable chain, we might be able to get
work done faster if we process eight emissions at a time instead of one. If you recall, the
Observable contract dictates that emissions must be pushed serially down an Observable
chain and never race each other due to concurrency. As a matter of fact, pushing eight
emissions down an Observable chain at a time would be downright catastrophic and
wreak havoc.

This seems to put us at odds with what we want to accomplish, but thankfully, RxJava gives
you enough operators and tools to be clever. While you cannot push items concurrently on
the same Observable, you are allowed to have multiple Observables running at once, each
having its own single thread pushing items through. As we have done throughout this
chapter, we created several Observables running on different threads/schedulers and even
combined them. You actually have the tools already, and the secret to achieving
parallelization is in the flatMap() operator, which is, in fact, a powerful concurrency
operator.

Here, we have an Observable emitting 10 integers, and we are
performing intenseCalculation() on each one. This process can take a while due to the
artificial processing we emulated with sleep(). Let's print each one with the time in the
Observer so we can measure the performance, as shown in the following code:

import io.reactivex.Observable;
import java.time.LocalTime;
import java.util.concurrent.ThreadLocalRandom;

public class Launcher {
 public static void main(String[] args) {

 Observable.range(1,10)
 .map(i -> intenseCalculation(i))
 .subscribe(i -> System.out.println("Received " + i +
" "
 + LocalTime.now()));
 }

 public static <T> T intenseCalculation(T value) {
 sleep(ThreadLocalRandom.current().nextInt(3000));
 return value;
 }

Concurrency and Parallelization

[195]

 public static void sleep(long millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

The output is as follows (yours will be different):

Received 1 19:11:41.812
Received 2 19:11:44.174
Received 3 19:11:45.588
Received 4 19:11:46.034
Received 5 19:11:47.059
Received 6 19:11:49.569
Received 7 19:11:51.259
Received 8 19:11:54.192
Received 9 19:11:56.196
Received 10 19:11:58.926

The randomness causes some variability, of course, but in this instance, it took roughly 17
seconds to complete (although your time will likely vary). We will probably get better
performance if we process emissions in parallel, so how do we do that?

Remember, serialization (emitting items one at a time) only needs to happen on the same
Observable. The flatMap() operator will merge multiple Observables derived off each
emission even if they are concurrent. If a light bulb has not gone off yet, read on. In
flatMap(), let's wrap each emission into Observable.just(), use subscribeOn() to
emit it on Schedulers.computation(), and then map it to the intenseCalculation().
For good measure, let's print the current thread in the Observer as well, as shown in the
following code:

import io.reactivex.Observable;
import io.reactivex.schedulers.Schedulers;
import java.time.LocalTime;
import java.util.concurrent.ThreadLocalRandom;

public class Launcher {
 public static void main(String[] args) {

 Observable.range(1,10)
 .flatMap(i -> Observable.just(i)
 .subscribeOn(Schedulers.computation())
 .map(i2 -> intenseCalculation(i2))
)

Concurrency and Parallelization

[196]

 .subscribe(i -> System.out.println("Received " + i +
" "
 + LocalTime.now() + " on thread "
 + Thread.currentThread().getName()));

 sleep(20000);
 }

 public static <T> T intenseCalculation(T value) {
 sleep(ThreadLocalRandom.current().nextInt(3000));
 return value;
 }
 public static void sleep(long millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

The output is as follows (yours will be different):

Received 1 19:28:11.163 on thread RxComputationThreadPool-1
Received 7 19:28:11.381 on thread RxComputationThreadPool-7
Received 9 19:28:11.534 on thread RxComputationThreadPool-1
Received 6 19:28:11.603 on thread RxComputationThreadPool-6
Received 8 19:28:11.629 on thread RxComputationThreadPool-8
Received 3 19:28:12.214 on thread RxComputationThreadPool-3
Received 4 19:28:12.961 on thread RxComputationThreadPool-4
Received 5 19:28:13.274 on thread RxComputationThreadPool-5
Received 2 19:28:13.374 on thread RxComputationThreadPool-2
Received 10 19:28:14.335 on thread RxComputationThreadPool-2

This took three seconds to complete, and you will find that this processes items much
faster. Of course, my computer has eight cores and that is why my output likely indicates
that there are eight threads in use. If you have a computer with less cores, this process will
take longer and use fewer threads. But it will likely still be faster than the single-threaded
implementation we ran earlier.

What we did is we created a Observable off each emission, used subscribeOn() to emit
it on the computation Scheduler, and then performed the intenseCalculation(),
which will occur on one of the computation threads. Each instance will request its own
thread from the computation Scheduler, and flatMap() will merge all of them safely
back into a serialized stream.

Concurrency and Parallelization

[197]

The flatMap()will only let one thread out of it at a time to push
emissions downstream, which maintains that the Observable contract
demanding emissions stays serialized. A neat little behavior with
flatMap() is that it will not use excessive synchronization or blocking to
accomplish this. If a thread is already pushing an emission out of
flatMap() downstream toward Observer, any threads also waiting to
push emissions will simply leave their emissions for that occupying thread
to take ownership of.

The example here is not necessarily optimal, however. Creating an Observable for each
emission might create some unwanted overhead. There is a leaner way to achieve
parallelization, although it has a few more moving parts. If we want to avoid creating
excessive Observable instances, maybe we should split the source Observable into a
fixed number of Observables where emissions are evenly divided and distributed through
each one. Then, we can parallelize and merge them with flatMap(). Even better, since I
have eight cores on my computer, maybe it would be ideal that I have eight Observables for
eight streams of calculations.

We can achieve this using a groupBy() trick. If I have eight cores, I want to key each
emission to a number in the range 0 through 7. This will yield me eight
GroupedObservables that cleanly divide the emissions into eight streams. More
specifically, I want to cycle through these eight numbers and assign them as a key to each
emission. GroupedObservables are not necessarily impacted by subscribeOn() (it will
emit on the source's thread with the exception of the cached emissions), so I will need to use
observeOn() to parallelize them instead. I can also use an io() or
newThread() scheduler since I have already constrained the number of workers to the
number of cores, simply by constraining the number of GroupedObservables.

Here is how I do this, but instead of hardcoding for eight cores, I dynamically query the
number of cores available:

import io.reactivex.Observable;
import io.reactivex.schedulers.Schedulers;
import java.time.LocalTime;
import java.util.concurrent.ThreadLocalRandom;
import java.util.concurrent.atomic.AtomicInteger;

public class Launcher {
 public static void main(String[] args) {

 int coreCount = Runtime.getRuntime().availableProcessors();
 AtomicInteger assigner = new AtomicInteger(0);
 Observable.range(1,10)

Concurrency and Parallelization

[198]

 .groupBy(i -> assigner.incrementAndGet() %
coreCount)
 .flatMap(grp -> grp.observeOn(Schedulers.io())
 .map(i2 -> intenseCalculation(i2))
)
 .subscribe(i -> System.out.println("Received " + i +
" "
 + LocalTime.now() + " on thread "
 + Thread.currentThread().getName()));

 sleep(20000);
 }

 public static <T> T intenseCalculation(T value) {
 sleep(ThreadLocalRandom.current().nextInt(3000));
 return value;
 }
 public static void sleep(long millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

Here is the output (yours will be different):

Received 8 20:27:03.291 on thread RxCachedThreadScheduler-8
Received 6 20:27:03.446 on thread RxCachedThreadScheduler-6
Received 5 20:27:03.495 on thread RxCachedThreadScheduler-5
Received 4 20:27:03.681 on thread RxCachedThreadScheduler-4
Received 7 20:27:03.989 on thread RxCachedThreadScheduler-7
Received 2 20:27:04.797 on thread RxCachedThreadScheduler-2
Received 1 20:27:05.172 on thread RxCachedThreadScheduler-1
Received 9 20:27:05.327 on thread RxCachedThreadScheduler-1
Received 10 20:27:05.913 on thread RxCachedThreadScheduler-2
Received 3 20:27:05.957 on thread RxCachedThreadScheduler-3

For each emission, I will need to increment the number it groups on, and after it reaches 7,
it will start over at 0. This ensures that the emissions are distributed as evenly as possible.
We achieve this using AtomicInteger with a modulus operation. If we keep incrementing
AtomicInteger for each emission, we can divide that result by the numbers of cores, but
return the remainder, which will always be a number between 0 and 7.

Concurrency and Parallelization

[199]

AtomicInteger is just an integer protected inside a threadsafe
container and has convenient threadsafe methods, such
as incrementAndGet(). Typically, when you have an object or state
existing outside an Observable chain but is modified by the Observable
chain's operations (this is known as creating side effects), that object
should be made threadsafe, especially when concurrency is involved.
You can learn more about AtomicInteger and other utilities in Brian
Goetz's Java Concurrency in Practice.

You do not have to use the processor count to control how many GroupedObservables are
created. You can specify any number if you, for some reason, deem that more workers
would result in better performance. If your concurrent operations are a mix between IO and
computation, and you find that there is more IO, you might benefit from increasing the
number of threads/GroupedObservables allowed.

unsubscribeOn()
One last concurrency operator that we need to cover is unsubscribeOn(). When you
dispose an Observable, sometimes, that can be an expensive operation depending on the
nature of the source. For instance, if your Observable is emitting the results of a database
query using RxJava-JDBC, (h t t p s ://g i t h u b . c o m /d a v i d m o t e n /r x j a v a - j d b c) it can be
expensive to stop and dispose that Observable because it needs to shut down the JDBC
resources it is using.

This can cause the thread that calls dispose() to become busy, as it will be doing all the
work stopping an Observable subscription and disposing it. If this is a UI thread in JavaFX
or Android (for instance, because a CANCEL PROCESSING button was clicked), this can
cause undesirable UI freezing because the UI thread is working to stop and dispose the
Observable operation.

Here is a simple Observable that is emitting every one second. We stop the main thread
for three seconds, and then it will call dispose() to shut the operation down. Let's
use doOnDispose() (which will be executed by the disposing thread) to see that the main
thread is indeed disposing of the operation:

import io.reactivex.Observable;
import io.reactivex.disposables.Disposable;
import java.util.concurrent.TimeUnit;

public class Launcher {
 public static void main(String[] args) {

https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc

Concurrency and Parallelization

[200]

 Disposable d = Observable.interval(1, TimeUnit.SECONDS)
 .doOnDispose(() -> System.out.println("Disposing on
thread "
 + Thread.currentThread().getName()))
 .subscribe(i -> System.out.println("Received " +
i));

 sleep(3000);
 d.dispose();
 sleep(3000);
 }

 public static void sleep(long millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

The output is as follows:

Received 0
Received 1
Received 2
Disposing on thread main

Let's add unsubscribeOn() and specify to unsubscribe on Schedulers.io(). You should
put unsubscribeOn() wherever you want all operations upstream to be affected:

import io.reactivex.Observable;
import io.reactivex.disposables.Disposable;
import io.reactivex.schedulers.Schedulers;
import java.util.concurrent.TimeUnit;

public class Launcher {
 public static void main(String[] args) {

 Disposable d = Observable.interval(1, TimeUnit.SECONDS)
 .doOnDispose(() -> System.out.println("Disposing on
thread "
 + Thread.currentThread().getName()))
 .unsubscribeOn(Schedulers.io())
 .subscribe(i -> System.out.println("Received " +
i));

 sleep(3000);

Concurrency and Parallelization

[201]

 d.dispose();
 sleep(3000);
 }

 public static void sleep(long millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

The output is as follows:

Received 0
Received 1
Received 2
Disposing on thread RxCachedThreadScheduler-1

Now you will see that disposal is being done by the IO Scheduler, whose thread is
identified by the name RxCachedThreadScheduler-1. This allows the main thread to
kick off disposal and continue without waiting for it to complete.

Like any concurrency operators, you really should not need to use unsubscribeOn() for
lightweight operations such as this example, as it adds unnecessary overhead. But if you
have Observable operations that are heavy with resources which are slow to dispose of,
unsubscribeOn() can be a crucial tool if threads calling dispose() are sensitive to high
workloads.

You can use multiple unsubscribeOn() calls if you want to target
specific parts of the Observable chain to be disposed of with different
Schedulers. Everything upstream to an unsubscribeOn() will be
disposed of with that Scheduler until another unsubscribeOn() is
encountered, which will own the next upstream segment.

Concurrency and Parallelization

[202]

Summary
This was probably our most intense chapter yet, but it provides a turning point in your
proficiency as an RxJava developer as well as a master of concurrency! We covered the
different Schedulers available in RxJava as well as ones available in other libraries such as
RxJavaFX and RxAndroid. The subscribeOn() operator is used to suggest to the upstream
in an Observable chain which Scheduler to push emissions on. The observeOn()will
switch emissions to a different Scheduler at that point in the Observable chain and use
that Scheduler downstream. You can use these two operators in conjunction with
flatMap() to create powerful parallelization patterns so you can fully utilize your multi-
CPU power. We finally covered unsubscribeOn(), which helps us specify a different
Scheduler to dispose operations on, preventing subtle hang-ups on threads we want to
keep free and available even if they call the dispose() method.

It is important to note that when you start playing with concurrency, you need to become
wary of how much data you are juggling between threads now. A lot of data can queue up
in your Observable chain, and some threads will produce work faster than other threads
can consume them. When you are dealing with 10,000+ elements, you will want to use
Flowables to prevent memory issues, and we will cover this in Chapter 8, Flowables and
Backpressure.

The next chapter will look into this topic of dealing with Observables that produce
emissions too quickly, and there are some operators that can help with this without
backpressure. We will hit that next.

7
Switching, Throttling,

Windowing, and Buffering
It is not uncommon to run into situations where an Observable is producing emissions
faster than an Observer can consume them. This happens particularly when you introduce
concurrency, and the Observable chain has different operators running on different
Schedulers. Whether it is one operator struggling to keep up with a preceding one, or the
final Observer struggling to keep up with emissions from the upstream, bottlenecks can
occur where emissions start to queue up behind slow operations.

Of course, the ideal way to handle bottlenecks is to leverage backpressure using Flowable
instead of Observable.The Flowable is not much different than the Observable other
than that it tells the source to slow down by having the Observer request emissions at its
own pace, as we will learn about it in Chapter 8, Flowables and Backpressure. But not every
source of emissions can be backpressured. You cannot instruct Observable.interval()
(or even Flowable.interval()) to slow down because the emissions are logically time-
sensitive. Asking it to slow down would make those time-based emissions inaccurate. User
input events, such as button clicks, logically cannot be backpressured either because you
cannot programmatically control the user.

Switching, Throttling, Windowing, and Buffering

[204]

Thankfully, there are some operators that help cope with rapidly firing sources without
using backpressure and are especially appropriate for situations where backpressure cannot
be utilized. Some of these operators batch up emissions into chunks that are more easily
consumed downstream. Others simply sample emissions while ignoring the rest. There is
even a powerful switchMap() operator that functions similarly to flatMap() but will only
subscribe to the Observable derived from the latest emission and dispose of any previous
ones.

We will cover all of these topics in this chapter:

Buffering
Windowing
Throttling
Switching

We will also end the chapter with an exercise that groups up keystrokes to emit strings of
user inputs.

Buffering
The buffer() operator will gather emissions within a certain scope and emit each batch as
a list or another collection type. The scope can be defined by a fixed buffer sizing or a
timing window that cuts off at intervals or even slices by the emissions of another
Observable.

Fixed-size buffering
The simplest overload for buffer() accepts a count argument that batches emissions in
that fixed size. If we wanted to batch up emissions into lists of eight elements, we can do
that as follows:

import io.reactivex.Observable;

public class Launcher {
public static void main(String[] args) {
 Observable.range(1,50)
 .buffer(8)
 .subscribe(System.out::println);
 }
}

Switching, Throttling, Windowing, and Buffering

[205]

The output is as follows:

[1, 2, 3, 4, 5, 6, 7, 8]
[9, 10, 11, 12, 13, 14, 15, 16]
[17, 18, 19, 20, 21, 22, 23, 24]
[25, 26, 27, 28, 29, 30, 31, 32]
[33, 34, 35, 36, 37, 38, 39, 40]
[41, 42, 43, 44, 45, 46, 47, 48]
[49, 50]

Of course, if the number of emissions does not cleanly divide, the remaining elements will
be emitted in a final list even if it is less than the specified count. This is why the last
emission in the preceding code has a list of two elements (not eight), containing only 49 and
50.

You can also supply a second bufferSupplier lambda argument to put items in another
collection besides a list, such as HashSet, as demonstrated here (this should yield the same
output):

import io.reactivex.Observable;
import java.util.HashSet;
public class Launcher {
 public static void main(String[] args) {
 Observable.range(1,50)
 .buffer(8, HashSet::new)
 .subscribe(System.out::println);
 }
}

To make things more interesting, you can also provide a skip argument that specifies how
many items should be skipped before starting a new buffer. If skip is equal to count, the
skip has no effect. But if they are different, you can get some interesting behaviors. For
instance, you can buffer 2 emissions but skip 3 before the next buffer starts, as shown here.
This will essentially cause every third element to not be buffered:

import io.reactivex.Observable;
public class Launcher {
 public static void main(String[] args) {
 Observable.range(1,10)
 .buffer(2, 3)
 .subscribe(System.out::println);
 }
}

Switching, Throttling, Windowing, and Buffering

[206]

The output is as follows:

[1, 2]
[4, 5]
[7, 8]
[10]

If you make skip less than count, you can get some interesting rolling buffers. If you
buffer items into a size of 3 but have skip of 1, you will get rolling buffers. In the following
code, for instance, we emit the numbers 1 through 10 but create buffers [1, 2, 3], then
[2, 3, 4], then [3, 4, 5], and so on:

import io.reactivex.Observable;
public class Launcher {
 public static void main(String[] args) {
 Observable.range(1,10)
 .buffer(3, 1)
 .subscribe(System.out::println);
 }
}

The output is as follows:

[1, 2, 3]
[2, 3, 4]
[3, 4, 5]
[4, 5, 6]
[5, 6, 7]
[6, 7, 8]
[7, 8, 9]
[8, 9, 10]
[9, 10]
[10]

Definitely play with the skip argument for buffer() , and you may find surprising use
cases for it. For example, I sometimes use buffer(2,1) to emit the "previous" emission
and the next emission together, as shown here. I also use filter() to omit the last list ,
which only contains 10:

import io.reactivex.Observable;
public class Launcher {
 public static void main(String[] args) {
 Observable.range(1,10)
 .buffer(2, 1)
 .filter(c -> c.size() == 2)

Switching, Throttling, Windowing, and Buffering

[207]

 .subscribe(System.out::println);
 }
}

The output is as follows:

[1, 2]
[2, 3]
[3, 4]
[4, 5]
[5, 6]
[6, 7]
[7, 8]
[8, 9]
[9, 10]

Time-based buffering
You can use buffer() at fixed time intervals by providing a long and TimeUnit. To
buffer emissions into a list at 1-second intervals, you can run the following code. Note that
we are making the source emit every 300 milliseconds, and each resulting buffered list will
likely contain three or four emissions due to the one-second interval cut-offs:

import io.reactivex.Observable;
import java.util.concurrent.TimeUnit;
public class Launcher {
 public static void main(String[] args) {
 Observable.interval(300, TimeUnit.MILLISECONDS)
 .map(i -> (i + 1) * 300) // map to elapsed time
 .buffer(1, TimeUnit.SECONDS)
 .subscribe(System.out::println);
 sleep(4000);
 }
 public static void sleep(int millis) {
 try {
 Thread.sleep(millis);
 }
 catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

Switching, Throttling, Windowing, and Buffering

[208]

The output is as follows:

[300, 600, 900]
[1200, 1500, 1800]
[2100, 2400, 2700]
[3000, 3300, 3600, 3900]

There is an option to also specify a timeskip argument, which is the timer-based
counterpart to skip. It controls the timing of when each buffer starts.

You can also leverage a third count argument to provide a maximum buffer size. This will
result in a buffer emission at each time interval or when count is reached, whichever
happens first. If the count is reached right before the time window closes, it will result in
an empty buffer being emitted.

Here, we buffer emissions every 1 second, but we limit the buffer size to 2:

import io.reactivex.Observable;
import java.util.concurrent.TimeUnit;
public class Launcher {
 public static void main(String[] args) {
 Observable.interval(300, TimeUnit.MILLISECONDS)
 .map(i -> (i + 1) * 300) // map to elapsed time
 .buffer(1, TimeUnit.SECONDS, 2)
 .subscribe(System.out::println);
 sleep(5000);
 }
 public static void sleep(int millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

The output is as follows:

[300, 600]
[900]
[1200, 1500]
[1800]
[2100, 2400]
[2700]
[3000, 3300]
[3600, 3900]
[]

Switching, Throttling, Windowing, and Buffering

[209]

[4200, 4500]
[4800]

Note that time-based buffer() operators will operate on the computation Scheduler .
This makes sense since a separate thread needs to run on a timer to execute the cutoffs.

Boundary-based buffering
The most powerful variance of buffer() is accepting another Observable as a boundary
argument. It does not matter what type this other Observable emits. All that matters is
every time it emits something, it will use the timing of that emission as the buffer cut-off. In
other words, the arbitrary occurrence of emissions of another Observable will determine
when to "slice" each buffer.

For example, we can perform our previous example with 300-millisecond emissions
buffered every 1-second using this technique. We can have Observable.interval() of 1
second serve as the boundary for our Observable.interval()emitting every 300
milliseconds:

import io.reactivex.Observable;
import java.util.concurrent.TimeUnit;
public class Launcher {
 public static void main(String[] args) {
 Observable<Long> cutOffs =
 Observable.interval(1, TimeUnit.SECONDS);
 Observable.interval(300, TimeUnit.MILLISECONDS)
 .map(i -> (i + 1) * 300) // map to elapsed time
 .buffer(cutOffs)
 .subscribe(System.out::println);
 sleep(5000);
 }
 public static void sleep(int millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

Switching, Throttling, Windowing, and Buffering

[210]

The output is as follows:

[300, 600, 900]
[1200, 1500, 1800]
[2100, 2400, 2700]
[3000, 3300, 3600, 3900]
[4200, 4500, 4800]

This is probably the most flexible way to buffer items based on highly variable events.
While the timing of each slicing is consistent in the preceding example (which is every 1
second), the boundary can be any Observable representing any kind of event happening
at any time. This idea of an Observable serving as a cut-off for another Observable is a
powerful pattern we will see throughout this chapter.

Windowing
The window() operators are almost identical to buffer(), except that they buffer into
other Observables rather than collections. This results in an
Observable<Observable<T>> that emits Observables. Each Observable emission will
cache emissions for each scope and then flush them once subscribed (much like
the GroupedObservable from groupBy(), which we worked with in Chapter 4,
Combining Observables). This allows emissions to be worked with immediately as they
become available rather than waiting for each list or collection to be finalized and emitted.
The window() operator is also convenient to work with if you want to use operators to
transform each batch.

Just like buffer(), you can cut-off each batch using fixed sizing, a time interval, or a
boundary from another Observable.

Fixed-size windowing
Let's modify our earlier example, where we buffered 50 integers into lists of size 8, but we
will use window() to buffer them as Observables instead. We can reactively transform each
batch into something else besides a collection, such as concatenating emissions into strings
with pipe "|" separators:

import io.reactivex.Observable;
public class Launcher {
 public static void main(String[] args) {
 Observable.range(1,50)
 .window(8)

Switching, Throttling, Windowing, and Buffering

[211]

 .flatMapSingle(obs -> obs.reduce("", (total,
next) -> total
 + (total.equals("") ? "" : "|") + next))
 .subscribe(System.out::println);
 }
}

The output is as follows:

1|2|3|4|5|6|7|8
9|10|11|12|13|14|15|16
17|18|19|20|21|22|23|24
25|26|27|28|29|30|31|32
33|34|35|36|37|38|39|40
41|42|43|44|45|46|47|48
49|50

Just like buffer(), you can also provide a skip argument. This is how many emissions
need to be skipped before starting a new window. Here, our window size is 2, but we skip
three items. We then take each windowed Observable and reduce it to a String
concatenation:

import io.reactivex.Observable;
public class Launcher {
 public static void main(String[] args) {
 Observable.range(1,50)
 .window(2, 3)
 .flatMapSingle(obs -> obs.reduce("", (total,
next) -> total
 + (total.equals("") ? "" : "|") + next))
 .subscribe(System.out::println);
 }
}

The output is as follows:

1|2
4|5
7|8
10|11
13|14
16|17
19|20
22|23
25|26
28|29
31|32
34|35

Switching, Throttling, Windowing, and Buffering

[212]

37|38
40|41
43|44
46|47
49|50

Time-based windowing
As you might be able to guess, you can cut-off windowed Observables at time intervals just
like buffer(). Here, we have an Observable emitting every 300 milliseconds like earlier,
and we are slicing it into separate Observables every 1 second. We will then
use flatMapSingle() on each Observable to a String concatenation of the emissions:

import io.reactivex.Observable;
import java.util.concurrent.TimeUnit;
public class Launcher {
 public static void main(String[] args) {
 Observable.interval(300, TimeUnit.MILLISECONDS)
 .map(i -> (i + 1) * 300) // map to elapsed time
 .window(1, TimeUnit.SECONDS)
 .flatMapSingle(obs -> obs.reduce("", (total,
next) -> total
 + (total.equals("") ? "" : "|") + next))
 .subscribe(System.out::println);
 sleep(5000);
 }
 public static void sleep(int millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

The output is as follows:

300|600|900
1200|1500|1800
2100|2400|2700
3000|3300|3600|3900
4200|4500|4800

Switching, Throttling, Windowing, and Buffering

[213]

Of course, you can use these yielded Observables for other transformations besides String
concatenations. You can use all the operators we learned up to this point to perform
different operations on each windowed Observable, and you will likely do that work in
flatMap(), concatMap(), or switchMap().

With time-based window() operators, you can also specify count or timeshift
arguments, just like its buffer() counterpart.

Boundary-based windowing
It probably is no surprise that since window() is similar to buffer() (other than that it
emits Observables instead of connections), you can also use another Observable as
boundary.

Here, we use an Observable.interval() emitting every 1 second to serve as
the boundary on an Observable emitting every 300 milliseconds. We leverage each
emitted Observable to concatenate emissions into concatenated strings:

import io.reactivex.Observable;
import java.util.concurrent.TimeUnit;
public class Launcher {
 public static void main(String[] args) {
 Observable<Long> cutOffs =
 Observable.interval(1, TimeUnit.SECONDS);
 Observable.interval(300, TimeUnit.MILLISECONDS)
 .map(i -> (i + 1) * 300) // map to elapsed time
 .window(cutOffs)
 .flatMapSingle(obs -> obs.reduce("", (total, next) ->
total
 + (total.equals("") ? "" : "|") + next))
 .subscribe(System.out::println);
 sleep(5000);
 }
 public static void sleep(int millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

Switching, Throttling, Windowing, and Buffering

[214]

The output is as follows:

300|600|900
1200|1500|1800
2100|2400|2700
3000|3300|3600|3900
4200|4500|4800

Again, the benefit of using another Observable as a boundary is that it allows you to use
the arbitrary timing of emissions from any Observable to cut-off each window, whether it
is a button click, a web request, or any other event. This makes it the most flexible way to
slice window() or buffer() operations when variability is involved.

Throttling
The buffer() and window() operators batch up emissions into collections or Observables
based on a defined scope, which regularly consolidates rather than omits
emissions.The throttle() operator, however, omits emissions when they occur rapidly.
This is helpful when rapid emissions are assumed to be redundant or unwanted, such as a
user clicking on a button repeatedly. For these situations, you can use the
throttleLast(), throttleFirst(), and throttleWithTimeout() operators to only let
the first or last element in a rapid sequence of emissions through. How you choose one of
the many rapid emissions is determined by your choice of operator, parameters, and
arguments.

For the examples in this section, we are going to work with this case: we have three
Observable.interval() sources, the first emitting every 100 milliseconds, the second
every 300 milliseconds, and the third every 2000 milliseconds. We only take 10 emissions
from the first source, three from the second, and two from the third. As you can see here,
we will use Observable.concat() on them together in order to create a rapid sequence
that changes pace at three different intervals:

import io.reactivex.Observable;
import java.util.concurrent.TimeUnit;
public class Launcher {
 public static void main(String[] args) {
 Observable<String> source1 = Observable.interval(100,
TimeUnit.MILLISECONDS)
 .map(i -> (i + 1) * 100) // map to elapsed time
 .map(i -> "SOURCE 1: " + i)
 .take(10);
 Observable<String> source2 = Observable.interval(300,
TimeUnit.MILLISECONDS)

Switching, Throttling, Windowing, and Buffering

[215]

 .map(i -> (i + 1) * 300) // map to elapsed time
 .map(i -> "SOURCE 2: " + i)
 .take(3);
 Observable<String> source3 = Observable.interval(2000,
TimeUnit.MILLISECONDS)
 .map(i -> (i + 1) * 2000) // map to elapsed time
 .map(i -> "SOURCE 3: " + i)
 .take(2);
 Observable.concat(source1, source2, source3)
 .subscribe(System.out::println);
 sleep(6000);
 }
 public static void sleep(int millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

The output is as follows:

SOURCE 1: 100
SOURCE 1: 200
SOURCE 1: 300
SOURCE 1: 400
SOURCE 1: 500
SOURCE 1: 600
SOURCE 1: 700
SOURCE 1: 800
SOURCE 1: 900
SOURCE 1: 1000
SOURCE 2: 300
SOURCE 2: 600
SOURCE 2: 900
SOURCE 3: 2000
SOURCE 3: 4000

The first source rapidly pushes 10 emissions within a second, the second pushes three
within a second, and the third pushes two within four seconds. Let's use some throttle()
operators to only choose a few of these emissions and ignore the rest.

Switching, Throttling, Windowing, and Buffering

[216]

throttleLast() / sample()
The throttleLast() operator (which is aliased as sample()) will only emit the last item
at a fixed time interval. Modify your earlier example to use throttleLast() at 1-second
intervals, as shown here:

Observable.concat(source1, source2, source3)
 .throttleLast(1, TimeUnit.SECONDS)
 .subscribe(System.out::println);

The output is as follows:

SOURCE 1: 900
SOURCE 2: 900
SOURCE 3: 2000

If you study the output, you can see that the last emission at every 1-second interval was all
that got through. This effectively samples emissions by dipping into the stream on a timer
and pulling out the latest one.

If you want to throttle more liberally at larger time intervals, you will get fewer emissions
as this effectively reduces the sample frequency. Here, we use throttleLast() every two
seconds:

Observable.concat(source1, source2, source3)
 .throttleLast(2, TimeUnit.SECONDS)
 .subscribe(System.out::println);

The output is as follows:

SOURCE 2: 900
SOURCE 3: 2000

If you want to throttle more aggressively at shorter time intervals, you will get more
emissions, as this increases the sample frequency. Here, we use throttleLast() every 500
milliseconds:

Observable.concat(source1, source2, source3)
 .throttleLast(500, TimeUnit.MILLISECONDS)
 .subscribe(System.out::println);

Switching, Throttling, Windowing, and Buffering

[217]

The output is as follows:

SOURCE 1: 400
SOURCE 1: 900
SOURCE 2: 300
SOURCE 2: 900
SOURCE 3: 2000

Again, throttleLast() will push the last emission at every fixed time interval. Next, we
will cover throttleFirst(), which emits the first item instead.

throttleFirst()
The throttleFirst() operates almost identically to throttleLast(), but it will emit the
first item that occurs at every fixed time interval. If we modify our example to
throttleFirst() every 1 second, we should get an output like this:

Observable.concat(source1, source2, source3)
 .throttleFirst(1, TimeUnit.SECONDS)
 .subscribe(System.out::println);

The output is as follows:

SOURCE 1: 100
SOURCE 2: 300
SOURCE 3: 2000
SOURCE 3: 4000

Effectively, the first emission found after each interval starts is the emission that gets
pushed through. The 100 from source1 was the first emission found on the first interval.
On the next interval, 300 from source2 was emitted, then 2000, followed by 4000. The 4000
was emitted right on the cusp of the application quitting, hence we got four emissions from
throttleFirst() as opposed to three from throttleLast().

Besides the first item being emitted rather than the last at each interval, all the behaviors
from throttleLast() also apply to throttleFirst(). Specifying shorter intervals will
yield more emissions, whereas longer intervals will yield less.

Both throttleFirst() and throttleLast() emit on the computation Scheduler, but
you can specify your own Scheduler as a third argument.

Switching, Throttling, Windowing, and Buffering

[218]

throttleWithTimeout() / debounce()
If you play with throttleFirst() and throttleLast(), you might be dissatisfied with
one aspect of their behavior. They are agnostic to the variability of emission frequency, and
they simply "dip in" at fixed intervals and pull the first or last emission they find. There is
no notion of waiting for a "period of silence" where emissions stop for a moment, and that
might be an opportune time to push the last emission that occurred forward.

Think of Hollywood action movies where a protagonist is under heavy gunfire. While
bullets are flying, he/she has to take cover and is unable to act. But the moment their
attackers stop to reload, there is a period of silence where they have time to react. This is
essentially what throttleWithTimout() does. While emissions are firing rapidly, it will
not emit anything until there is a "period of silence", and then it will push the last emission
forward.

throttleWithTimout() (also called debounce()) accepts time interval arguments that
specify how long a period of inactivity (which means no emissions are coming from the
source) must be before the last emission can be pushed forward. In our earlier example, our
three concatenated Observable.interval() sources are rapidly firing at 100 milliseconds
and then 300-millisecond spurts for approximately 2 seconds. But after that, intervals slow
down to every 2 seconds. If we wanted to only emit after 1 second of silence, we are not
going to emit anything until we hit that third Observable.interval(), emitting every 2
seconds, as shown here:

import io.reactivex.Observable;
import java.util.concurrent.TimeUnit;
public class Launcher {
 public static void main(String[] args) {
 Observable<String> source1 = Observable.interval(100,
TimeUnit.MILLISECONDS)
 .map(i -> (i + 1) * 100) // map to elapsed time
 .map(i -> "SOURCE 1: " + i)
 .take(10);
 Observable<String> source2 = Observable.interval(300,
TimeUnit.MILLISECONDS)
 .map(i -> (i + 1) * 300) // map to elapsed time
 .map(i -> "SOURCE 2: " + i)
 .take(3);
 Observable<String> source3 = Observable.interval(2000,
TimeUnit.MILLISECONDS)
 .map(i -> (i + 1) * 2000) // map to elapsed time
 .map(i -> "SOURCE 3: " + i)
 .take(2);
 Observable.concat(source1, source2, source3)
 .throttleWithTimeout(1, TimeUnit.SECONDS)

Switching, Throttling, Windowing, and Buffering

[219]

 .subscribe(System.out::println);
 sleep(6000);
 }
 public static void sleep(int millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

The output is as follows:

SOURCE 2: 900
SOURCE 3: 2000
SOURCE 3: 4000

The 900 emission from source2 was the last emission as soon as source3 started, since
source3 will not push its first emission for 2 seconds, which gave more than the needed 1-
second period of silence for the 900 emission to be fired. The 2000 emission then emitted
next and 1 second later no further emissions occurred, so it was pushed forward by
throttleWithTimeout(). Another second later, the 4000 emission was pushed and the 2-
second silence (before the program exited) allowed it to fire as well.

The throttleWithTimeout() is an effective way to handle excessive inputs (such as a
user clicking on a button rapidly) and other noisy, redundant events that sporadically speed
up, slow down, or cease. The only disadvantage of throttleWithTimeout() is that it will
delay each winning emission. If an emission does make it through
throttleWithTimeout(), it will be delayed by the specified time interval in order to
ensure no more emissions are coming. Especially for user experiences, this artificial delay
may be unwelcome. For these situations, which are sensitive to delays, a better option might
be to leverage switchMap(), which we will cover next.

Switching
In RxJava, there is a powerful operator called switchMap(). Its usage feels like flatMap(),
but it has one important behavioral difference: it will emit from the latest Observable
derived from the latest emission and dispose of any previous Observables that were
processing. In other words, it allows you to cancel an emitting Observable and switch to a
new one, preventing stale or redundant processing.

Switching, Throttling, Windowing, and Buffering

[220]

Say we have a process that emits nine strings, and it delays each string emission randomly
from 0 to 2000 milliseconds. This is to emulate an intense calculation done to each one, as
demonstrated here:

import io.reactivex.Observable;
import java.util.concurrent.ThreadLocalRandom;
import java.util.concurrent.TimeUnit;
public class Launcher {
 public static void main(String[] args) {
 Observable<String> items = Observable.just("Alpha", "Beta",
"Gamma", "Delta", "Epsilon",
 "Zeta", "Eta", "Theta", "Iota");
 //delay each String to emulate an intense calculation
 Observable<String> processStrings = items.concatMap(s ->
 Observable.just(s)
 .delay(randomSleepTime(),
TimeUnit.MILLISECONDS)
);
 processStrings.subscribe(System.out::println);
 //keep application alive for 20 seconds
 sleep(20000);
 }
 public static int randomSleepTime() {
 //returns random sleep time between 0 to 2000 milliseconds
 return ThreadLocalRandom.current().nextInt(2000);
 }
 public static void sleep(int millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

The output is as follows:

Alpha
Beta
Gamma
Delta
Epsilon
Zeta
Eta
Theta
Iota

Switching, Throttling, Windowing, and Buffering

[221]

As you can tell, each emission takes between 0-2 seconds to be emitted, and processing all
the strings can take up to 20 seconds.

Say we want to run this process every 5 seconds, but we want to cancel (or more
technically, dispose()) previous instances of the process and only run the latest one. This
is easy to do with switchMap(). Here, we create another Observable.interval(),
emitting every 5 seconds and then we use switchMap() on it to the Observable we want
to process (which in this case is processStrings). Every 5 seconds, the emission going
into switchMap() will promptly dispose of the currently processing Observable (if there
are any) and then emit from the new Observable it maps to. To prove that dispose() is
being called, we will put doOnDispose() on the Observable inside switchMap() to
display a message:

import io.reactivex.Observable;
import java.util.concurrent.ThreadLocalRandom;
import java.util.concurrent.TimeUnit;
public class Launcher {
 public static void main(String[] args) {
 Observable<String> items = Observable.just("Alpha", "Beta",
"Gamma", "Delta", "Epsilon",
 "Zeta", "Eta", "Theta", "Iota");
 //delay each String to emulate an intense calculation
 Observable<String> processStrings = items.concatMap(s ->
 Observable.just(s)
 .delay(randomSleepTime(),
TimeUnit.MILLISECONDS)
);
 //run processStrings every 5 seconds, and kill each
previous instance to start next
 Observable.interval(5, TimeUnit.SECONDS)
 .switchMap(i ->
 processStrings
 .doOnDispose(() ->
System.out.println("Disposing! Starting next"))
).subscribe(System.out::println);
 //keep application alive for 20 seconds
 sleep(20000);
 }
 public static int randomSleepTime() {
 //returns random sleep time between 0 to 2000 milliseconds
 return ThreadLocalRandom.current().nextInt(2000);
 }
 public static void sleep(int millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {

Switching, Throttling, Windowing, and Buffering

[222]

 e.printStackTrace();
 }
 }
}

The output is as follows (yours will be different):

Alpha
Beta
Gamma
Delta
Epsilon
Zeta
Eta
Disposing! Starting next
Alpha
Beta
Gamma
Delta
Disposing! Starting next
Alpha
Beta
Gamma
Delta
Disposing! Starting next

Again, switchMap() is just like flatMap() except that it will cancel any previous
Observables that were processing and only chase after the latest one. This can be helpful in
many situations to prevent redundant or stale work and is especially effective in user
interfaces where rapid user inputs create stale requests. You can use it to cancel database
queries, web requests, and other expensive tasks and replace it with a new task.

 For switchMap() to work effectively, the thread pushing emissions into switchMap()
cannot be occupied doing the work inside switchMap(). This means that you may have to
use observeOn() or subscribeOn() inside switchMap() to do work on a different
thread. If the operations inside switchMap() are expensive to stop (for instance, a database
query using RxJava-JDBC), you might want to use unsubscribeOn() as well to keep the
triggering thread from becoming occupied with disposal.

A neat trick you can do to cancel work within switchMap() (without providing new work
immediately) is to conditionally yield Observable.empty(). This can be helpful to cancel
a long-running or infinite process. For example, if you bring in RxJavaFX (h t t p s ://g i t h u b

. c o m /R e a c t i v e X /R x J a v a F X) as a dependency, we can quickly create a stop watch
application using switchMap(), as shown in the following code snippet:

import io.reactivex.Observable;

https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX

Switching, Throttling, Windowing, and Buffering

[223]

import io.reactivex.rxjavafx.observables.JavaFxObservable;
import io.reactivex.rxjavafx.schedulers.JavaFxScheduler;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.control.ToggleButton;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;
import java.util.concurrent.TimeUnit;
public final class JavaFxApp extends Application {
 @Override
 public void start(Stage stage) throws Exception {
 VBox root = new VBox();
 Label counterLabel = new Label("");
 ToggleButton startStopButton = new ToggleButton();
 // Multicast the ToggleButton's true/false selected state
 Observable<Boolean> selectedStates =
JavaFxObservable.valuesOf(startStopButton.selectedProperty())
 .publish()
 .autoConnect(2);
 // Using switchMap() with ToggleButton's selected state will
drive
 // whether to kick off an Observable.interval(),
 // or dispose() it by switching to empty Observable
 selectedStates.switchMap(selected -> {
 if (selected)
 return Observable.interval(1,
TimeUnit.MILLISECONDS);
 else
 return Observable.empty();
 }).observeOn(JavaFxScheduler.platform()) // Observe
on JavaFX UI thread
 .map(Object::toString)
 .subscribe(counterLabel::setText);
 // Change ToggleButton's text depending on its state
 selectedStates.subscribe(selected ->
 startStopButton.setText(selected ? "STOP" :
"START")
);
 root.getChildren().addAll(counterLabel, startStopButton);
 stage.setScene(new Scene(root));
 stage.show();
 }
}

Switching, Throttling, Windowing, and Buffering

[224]

 The code preceding yields a stopwatch application that uses switchMap() , as shown
below in Figure 7.1:

Figure 7.1 - A stopwatch application that uses switchMap()

Pressing the ToggleButton will start and stop the stopwatch, which displays in
milliseconds. Note that the ToggleButton will emit a Boolean True/False value through
an Observable called selectedStates. We multicast it to prevent duplicate listeners on
JavaFX, and we have two Observers. The first will use switchMap() on each Boolean
value, where true will emit from an Observable.interval() every millisecond, and
false will cancel it by replacing it with an Observable.empty(). Since
Observable.interval() will emit on a Scheduler computation, we will use
observeOn() to put it back on the JavaFX Scheduler provided by RxJavaFX. The other
Observer will change the text of the ToggleButton to STOP or START depending on its
state.

Grouping keystrokes
We will wrap up this chapter by integrating most of what we learned and achieve a
complex task: grouping keystrokes that happen in rapid succession to form strings without
any delay! It can be helpful in user interfaces to immediately "jump" to items in a list based
on what is being typed or perform auto-completion in some way. This can be a challenging
task, but as we will see, it is not that difficult with RxJava.

This exercise will use JavaFX again with RxJavaFX. Our user interface will simply have a
Label that receives rolling concatenations of keys we are typing. But after 300 milliseconds,
it will reset and receive an empty "" to clear it. Here is the code that achieves this as well as
some screenshots with the console output when I type "Hello" and then type "World" a
moment later:

import io.reactivex.Observable;
import io.reactivex.rxjavafx.observables.JavaFxObservable;
import io.reactivex.rxjavafx.schedulers.JavaFxScheduler;
import javafx.application.Application;

Switching, Throttling, Windowing, and Buffering

[225]

import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.input.KeyEvent;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;
import java.util.concurrent.TimeUnit;
public final class JavaFxApp extends Application {
 @Override
 public void start(Stage stage) throws Exception {
 VBox root = new VBox();
 root.setMinSize(200, 100);
 Label typedTextLabel = new Label("");
 root.getChildren().addAll(typedTextLabel);
 Scene scene = new Scene(root);
 // Multicast typed keys
 Observable<String> typedLetters =
 JavaFxObservable.eventsOf(scene,
KeyEvent.KEY_TYPED)
 .map(KeyEvent::getCharacter)
 .share();
 // Signal 300 milliseconds of inactivity
 Observable<String> restSignal =
 typedLetters
 .throttleWithTimeout(500,
TimeUnit.MILLISECONDS)
 .startWith(""); //trigger initial
 // switchMap() each period of inactivity to
 // an infinite scan() concatenating typed letters
 restSignal.switchMap(s ->
 typedLetters.scan("", (rolling, next) -> rolling +
next)
).observeOn(JavaFxScheduler.platform())
 .subscribe(s -> {
 typedTextLabel.setText(s);
 System.out.println(s);
 });
 stage.setScene(scene);
 stage.show();
 }
}

Switching, Throttling, Windowing, and Buffering

[226]

The output is as follows:

H
He
Hel
Hell
Hello
W
Wo
Wor
Worl
World

This is the rendered UI:

When you type keys, the Label will display a rolling String concatenation of their
characters in live time on both the UI as well as the console. Note that after 500 milliseconds
of no activity, it resets and emits a new scan() operation and disposes of the old one,
starting with an empty "" string. This can be enormously helpful to instantly send search
requests or autocomplete suggestions while the user is typing.

The way it works is that we have an Observable emitting the characters that were pressed
on the keyboard, but it is multicast with share() and used for two purposes. It is first used
to create another Observable that signals the last character typed after 500 milliseconds of
inactivity. But we do not care about the character as much as the emission's timing, which
signals 500 milliseconds of inactivity has occurred. We then use switchMap() on it to the
Observable emitting the characters again, and we infinitely concatenate each typed
character in succession and emit each resulting string. However, this scan() operation in
switchMap() will be disposed of when 500 milliseconds of inactivity occurs and start over
with a new scan() instance.

If you find this example dizzying, take your time and keep studying it. It will click
ultimately and once it does, you will have truly mastered the ideas in this chapter!

Switching, Throttling, Windowing, and Buffering

[227]

Summary
In this chapter, you learned how to leverage buffering, windowing, throttling, and
switching to cope with rapidly emitting Observables. Ideally, we should leverage Flowables
and backpressure when we see that Observables are emitting faster than the Observers can
keep up with, which we will learn about in the next chapter. But for situations where
backpressure cannot work, such as user inputs or timer events, you can leverage these three
categories of operations to limit how many emissions are passed downstream.

In the next chapter, we will learn about backpressuring with Flowables, which provides
more proactive ways to cope with common cases of rapid emissions overwhelming
Observers.

8
Flowables and Backpressure

In the previous chapter, we learned about different operators that intercept rapidly firing
emissions and either consolidate or omit them to decrease the emissions passed
downstream. But for most cases where a source is producing emissions faster than the
downstream can process them, it is better to proactively make the source slow down in the
first place and emit at a pace that agrees with the downstream operations. This is known as
backpressure or flow control, and it can be enabled by using a Flowable instead of
an Observable. This will be the core type that we work with in this chapter, and we will
learn about the right times to leverage it in our applications. We will cover the following
topics in this chapter:

Understanding backpressure
Flowable and Subscriber
Using Flowable.create()
Interoperating Observables and Flowables
Backpressure operators
Using Flowable.generate()

Understanding backpressure
Throughout this book, I emphasized the "push-based" nature of Observables. Pushing items
synchronously and one at a time from the source all the way to the Observer is indeed how
Observable chains work by default without any concurrency.

Flowables and Backpressure

[229]

For instance, the following is an Observable that will emit the numbers 1 through
999,999,999. It will map each integer to a MyItem instance, which simply holds it as a
property. But let's slow down the processing of each emission by 50 milliseconds in the
Observer. This shows that even if the downstream is slowly processing each emission, the
upstream synchronously keeps pace with it. This is because one thread is doing all the
work:

 import io.reactivex.Observable;

 public class Launcher {

 public static void main(String[] args) {

 Observable.range(1, 999_999_999)
 .map(MyItem::new)
 .subscribe(myItem -> {
 sleep(50);
 System.out.println("Received MyItem " +
myItem.id);
 });
 }

 static void sleep(long milliseconds) {
 try {
 Thread.sleep(milliseconds);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

 static final class MyItem {

 final int id;

 MyItem(int id) {
 this.id = id;
 System.out.println("Constructing MyItem " + id);
 }
 }
 }

The output is as follows:

 Constructing MyItem 1
 Received MyItem 1
 Constructing MyItem 2
 Received MyItem 2

Flowables and Backpressure

[230]

 Constructing MyItem 3
 Received MyItem 3
 Constructing MyItem 4
 Received MyItem 4
 Constructing MyItem 5
 Received MyItem 5
 Constructing MyItem 6
 Received MyItem 6
 Constructing MyItem 7
 Received MyItem 7
 ...

The outputted alternation between Constructing MyItem and Received MyItem shows
that each emission is bring processed one at a time from the source all the way to the
terminal Observer. This is because one thread is doing all the work for this entire
operation, making everything synchronous. The consumers and producers are passing
emissions in a serialized, consistent flow.

An example that needs backpressure
When you add concurrency operations to an Observable chain (particularly
observeOn(), parallelization, and operators such as delay()), the operation become
asynchronous. This means hat multiple parts of the Observable chain can be processing
emissions at a given time, and producers can outpace consumers as they are now operating
on different threads. An emission is no longer strictly being handed downstream one at a
time from the source all the way to the Observer before starting the next one. This is
because once an emission hits a different Scheduler through observeOn() (or other
concurrent operators), the source is no longer in charge of pushing that emission to the
Observer. Therefore, the source will start pushing the next emission even though the
previous emission may not have reached the Observer yet.

If we take our previous example and add observeOn(Shedulers.io()) right
before subscribe() (as shown in the following code), you will notice something very
blatant:

 import io.reactivex.Observable;
 import io.reactivex.schedulers.Schedulers;

 public class Launcher {

 public static void main(String[] args) {

 Observable.range(1, 999_999_999)

Flowables and Backpressure

[231]

 .map(MyItem::new)
 .observeOn(Schedulers.io())
 .subscribe(myItem -> {
 sleep(50);
 System.out.println("Received MyItem " +
myItem.id);
 });

 sleep(Long.MAX_VALUE);
 }

 static void sleep(long milliseconds) {
 try {
 Thread.sleep(milliseconds);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

 static final class MyItem {

 final int id;

 MyItem(int id) {
 this.id = id;
 System.out.println("Constructing MyItem " + id);
 }
 }
 }

 The output is as follows:

 ...
 Constructing MyItem 1001899
 Constructing MyItem 1001900
 Constructing MyItem 1001901
 Constructing MyItem 1001902
 Received MyItem 38
 Constructing MyItem 1001903
 Constructing MyItem 1001904
 Constructing MyItem 1001905
 Constructing MyItem 1001906
 Constructing MyItem 1001907
 ..

Flowables and Backpressure

[232]

This is just a section of my console output. Note that when MyItem 1001902 is created, the
Observer is still only processing MyItem 38. The emissions are being pushed much faster
than the Observer can process them, and because backlogged emissions get queued by
observeOn() in an unbounded manner, this could lead to many problems, including
OutOfMemoryError exceptions.

Introducing the Flowable
So how do we mitigate this? You could get hacky and try to use native Java concurrency
tools such as semaphores. But thankfully, RxJava has a streamlined solution to this
problem: the Flowable. The Flowable is a backpressured variant of the Observable that
tells the source to emit at a pace specified by the downstream operations.

In the following code, replace Observable.range() with Flowable.range(), and this
will make this entire chain work with Flowables instead of Observables. Run the code and
you will see a very different behavior with the output:

 import io.reactivex.Observable;
 import io.reactivex.schedulers.Schedulers;
 import io.reactivex.Flowable;

 public class Launcher {

 public static void main(String[] args) {

 Flowable.range(1, 999_999_999)
 .map(MyItem::new)
 .observeOn(Schedulers.io())
 .subscribe(myItem -> {
 sleep(50);
 System.out.println("Received MyItem " +
myItem.id);
 });

 sleep(Long.MAX_VALUE);
 }

 static void sleep(long milliseconds) {
 try {
 Thread.sleep(milliseconds);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

Flowables and Backpressure

[233]

 static final class MyItem {

 final int id;

 MyItem(int id) {
 this.id = id;
 System.out.println("Constructing MyItem " + id);
 }
 }
 }

 The output is as follows:

 Constructing MyItem 1
 Constructing MyItem 2
 Constructing MyItem 3
 ...
 Constructing MyItem 127
 Constructing MyItem 128
 Received MyItem 1
 Received MyItem 2
 Received MyItem 3
 ...
 Received MyItem 95
 Received MyItem 96
 Constructing MyItem 129
 Constructing MyItem 130
 Constructing MyItem 131
 ...
 Constructing MyItem 223
 Constructing MyItem 224
 Received MyItem 97
 Received MyItem 98
 Received MyItem 99
 ...

Note that Flowables do not subscribe with Observers but rather
Subscribers, which we will dive into later.

You will notice something very different with the output when using Flowable. I omitted
parts of the preceding output using ... to highlight some key events. 128 emissions were
immediately pushed from Flowable.range(), which constructed 128 MyItem instances.
After that, observeOn() pushed 96 of them downstream to Subscriber. After these 96
emissions were processed by Subscriber, another 96 were pushed from the source. Then
another 96 were passed to Subscriber.

Flowables and Backpressure

[234]

Do you see a pattern yet? The source started by pushing 128 emissions, and after that, a
steady flow of 96 emissions at a time was processed by the Flowable chain. It is almost like
the entire Flowable chain strives to have no more than 96 emissions in its pipeline at any
given time. Effectively, that is exactly what is happening! This is what we call backpressure,
and it effectively introduces a pull dynamic to the push-based operation to limit how
frequently the source emits.

But why did Flowable.range() start with 128 emissions, and why did observeOn() only
send 96 downstream before requesting another 96, leaving 32 unprocessed emissions? The
initial batch of emissions is a bit larger so some extra work is queued if there is any idle
time. If (in theory) our Flowable operation started by requesting 96 emissions and
continued to emit steadily at 96 emissions at a time, there would be moments where
operations might wait idly for the next 96. Therefore, an extra rolling cache of 32 emissions
is maintained to provide work during these idle moments, which can provide greater
throughput. This is much like a warehouse holding a little extra inventory to supply orders
while it waits for more from the factory.

What is great about Flowables and their operators is that they usually do all the work for
you. You do not have to specify any backpressure policies or parameters unless you need to
create your own Flowables from scratch or deal with sources (such as Observables) that do
not implement backpressure. We will cover these cases in the rest of the chapter, and
hopefully, you will not run into them often.

Otherwise, Flowable is just like an Observable with nearly all the operators we learned so
far. You can convert from an Observable into a Flowable and vice-versa, which we will
cover later. But first, let's cover when we should use Flowables instead of Observables.

When to use Flowables and backpressure
It is critical to know when to use Flowable versus Observable. Overall, the benefits
offered from the Flowable are leaner usage of memory (preventing OutOfMemoryError
exceptions) as well as prevention of MissingBackpressureException. The latter can
occur if operations backpressure against a source but the source has no backpressure
protocol in its implementation. However, the disadvantage of Flowable is that it adds
overhead and may not perform as quickly as an Observable.

Here are a few guidelines to help you choose between an Observable versus a Flowable.

Flowables and Backpressure

[235]

Use an Observable If...
You expect few emissions over the life of the Observable subscription (less than
1000) or the emissions are intermittent and far apart. If you expect only a trickle
of emissions coming from a source, an Observable will do the job just fine and
have less overhead. But when you are dealing with large amounts of data and
performing complex operations on them, you will likely want to use a Flowable.
Your operation is strictly synchronous and has limited usage of concurrency. This
includes simple usage of subscribeOn() at the start of an Observable chain
because the process is still operating on a single thread and emitting items
synchronously downstream. However, when you start zipping and combining
different streams on different threads, parallelize, or use operators such
as observeOn(), interval(), and delay(), your application is no longer
synchronous and you might be better-off using a Flowable.
You want to emit user interface events such as button clicks, ListView
selections, or other user inputs on Android, JavaFX, or Swing. Since users cannot
programmatically be told to slow down, there is rarely any opportunity using a
Flowable. To cope with rapid user inputs, you are likely better-off using the
operators discussed in Chapter 7, Switching, Throttling, Windowing, and Buffering.

Use a Flowable If...
You are dealing with over 10,000 elements and there is opportunity for the source
to generate emissions in a regulated manner. This is especially true when the
source is asynchronous and pushes large amounts of data.
You want to emit from IO operations that support blocking while returning
results, which is how many IO sources work. Data sources that iterate records,
such as lines from files or a ResultSet in JDBC, are especially easy to control
because iteration can pause and resume as needed. Network and Streaming APIs
that can request a certain amount of returned results can easily be backpressured
as well.

Note in RxJava 1.0, the Observable was backpressured and was essentially what the
Flowable is in RxJava 2.0. The reason the Flowable and Observable became separate
types is due to the merits of both for different situations, as described precedingly.

You will find that you can easily interoperate Observables and Flowables together. But you
need to be careful and aware of the context they are being used in and where undesired
bottlenecks can occur.

Flowables and Backpressure

[236]

Understanding the Flowable and Subscriber
Pretty much all the Observable factories and operators you learned up to this point also
apply to Flowable. On the factory side, there is Flowable.range(), Flowable.just(),
Flowable.fromIterable(), and Flowable.interval(). Most of these implement
backpressure for you, and usage is generally the same as the Observable equivalent.

However, consider Flowable.interval(), which pushes time-based emissions at fixed
time intervals. Can this be backpressured logically? Contemplate the fact that each emission
is sensitively tied to the time it emits. If we slowed down Flowable.interval(), our
emissions would no longer reflect time intervals and become misleading. Therefore,
Flowable.interval() is one of those few cases in the standard API that can throw
MissingBackpressureException the moment downstream requests backpressure. Here,
if we emit every millisecond against a slow intenseCalculation() that occurs after
observeOn(), we will get this error:

 import io.reactivex.Flowable;
 import io.reactivex.schedulers.Schedulers;
 import java.util.concurrent.ThreadLocalRandom;
 import java.util.concurrent.TimeUnit;
 public class Launcher {
 public static void main(String[] args) {
 Flowable.interval(1, TimeUnit.MILLISECONDS)
 .observeOn(Schedulers.io())
 .map(i -> intenseCalculation(i))
 .subscribe(System.out::println,
Throwable::printStackTrace);
 sleep(Long.MAX_VALUE);
 }
 public static <T> T intenseCalculation(T value) {
 sleep(ThreadLocalRandom.current().nextInt(3000));
 return value;
 }
 public static void sleep(long millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

Flowables and Backpressure

[237]

The output is as follows:

0
io.reactivex.exceptions.MissingBackpressureException: Cant deliver
value 128 due to lack of requests
 at io.reactivex.internal.operators.flowable.FlowableInterval
 ...

To overcome this issue, you can use operators such as onBackpresureDrop() or
onBackPressureBuffer(), which we will learn about later in this chapter.
Flowable.interval() is one of those factories that logically cannot be backpressured at
the source, so you can use operators after it to handle backpressure for you. Otherwise,
most of the other Flowable factories you work with support backpressure. Later, we need
to call out how to create our own Flowable sources that conform to backpressure, and we
will discuss this shortly. But first, we will explore the Subscriber a bit more.

The Subscriber
Instead of an Observer, the Flowable uses a Subscriber to consume emissions and
events at the end of a Flowable chain. If you pass only lambda event arguments (and not
an entire Subscriber object), subscribe() does not return a Disposable but rather
a Subscription, which can be disposed of by calling cancel() instead of dispose().
The Subscription can also serve another purpose; it communicates upstream how many
items are wanted using its request() method. Subscription can also be leveraged in the
onSubscribe() method of Subscriber to request() elements the moment it is ready to
receive emissions.

Just like an Observer, the quickest way to create a Subscriber is to pass lambda
arguments to subscribe(), as we have been doing earlier (and shown again in the
following code). This default implementation of Subscriber will request an unbounded
number of emissions upstream, but any operators preceding it will still automatically
handle backpressure:

 import io.reactivex.Flowable;
 import io.reactivex.schedulers.Schedulers;
 import java.util.concurrent.ThreadLocalRandom;
public class Launcher {
 public static void main(String[] args) {
 Flowable.range(1,1000)
 .doOnNext(s -> System.out.println("Source pushed "
+ s))
 .observeOn(Schedulers.io())
 .map(i -> intenseCalculation(i))

Flowables and Backpressure

[238]

 .subscribe(s -> System.out.println("Subscriber
received " + s),
 Throwable::printStackTrace,
 () -> System.out.println("Done!")
);
 sleep(20000);
 }
 public static <T> T intenseCalculation(T value) {
 //sleep up to 200 milliseconds
 sleep(ThreadLocalRandom.current().nextInt(200));
 return value;
 }
 public static void sleep(long millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

Of course, you can implement your own Subscriber as well, which, of course, has
the onNext(), onError(), and onComplete() methods as well as onSubscribe(). This
is not as straightforward as implementing an Observer because you need to call
request() on Subscription to request emissions at the right moments.

The quickest and easiest way to implement a Subscriber is to have the onSubscribe()
method call request(Long.MAX_VALUE) on Subscription, which essentially tells the
upstream "give me everything now". Even though the operators preceding Subscriber
will request emissions at their own backpressured pace, no backpressure will exist between
the last operator and the Subscriber. This is usually fine since the upstream operators will
constrain the flow anyway.

Here, we reimplement our previous example but implement our own Subscriber:

 import io.reactivex.Flowable;
 import io.reactivex.schedulers.Schedulers;
 import org.reactivestreams.Subscriber;
 import org.reactivestreams.Subscription;
 import java.util.concurrent.ThreadLocalRandom;
 public class Launcher {
 public static void main(String[] args) {
 Flowable.range(1,1000)
 .doOnNext(s -> System.out.println("Source pushed "
+ s))
 .observeOn(Schedulers.io())

Flowables and Backpressure

[239]

 .map(i -> intenseCalculation(i))
 .subscribe(new Subscriber<Integer>() {
 @Override
 public void onSubscribe(Subscription
subscription) {
 subscription.request(Long.MAX_VALUE);
 }
 @Override
 public void onNext(Integer s) {
 sleep(50);
 System.out.println("Subscriber received " +
s);
 }
 @Override
 public void onError(Throwable e) {
 e.printStackTrace();
 }
 @Override
 public void onComplete() {
 System.out.println("Done!");
 }
 });
 sleep(20000);
 }
 public static <T> T intenseCalculation(T value) {
 //sleep up to 200 milliseconds
 sleep(ThreadLocalRandom.current().nextInt(200));
 return value;
 }
 public static void sleep(long millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

If you want your Subscriber to establish an explicit backpressured relationship with the
operator preceding it, you will need to micromanage the request() calls. Say, for some
extreme situation, you decide that you want Subscriber to request 40 emissions initially
and then 20 emissions at a time after that. This is what you would need to do:

 import io.reactivex.Flowable;
 import io.reactivex.schedulers.Schedulers;
 import org.reactivestreams.Subscriber;
 import org.reactivestreams.Subscription;
 import java.util.concurrent.ThreadLocalRandom;

Flowables and Backpressure

[240]

 import java.util.concurrent.atomic.AtomicInteger;
public class Launcher {
 public static void main(String[] args) {
 Flowable.range(1,1000)
 .doOnNext(s -> System.out.println("Source pushed "
+ s))
 .observeOn(Schedulers.io())
 .map(i -> intenseCalculation(i))
 .subscribe(new Subscriber<Integer>() {
 Subscription subscription;
 AtomicInteger count = new AtomicInteger(0);
 @Override
 public void onSubscribe(Subscription
subscription) {
 this.subscription = subscription;
 System.out.println("Requesting 40 items!");
 subscription.request(40);
 }
 @Override
 public void onNext(Integer s) {
 sleep(50);
 System.out.println("Subscriber received " +
s);
 if (count.incrementAndGet() % 20 == 0 &&
count.get() >= 40)
 System.out.println("Requesting 20
more!");
 subscription.request(20);
 }
 @Override
 public void onError(Throwable e) {
 e.printStackTrace();
 }
 @Override
 public void onComplete() {
 System.out.println("Done!");
 }
 });
 sleep(20000);
 }
 public static <T> T intenseCalculation(T value) {
 //sleep up to 200 milliseconds
 sleep(ThreadLocalRandom.current().nextInt(200));
 return value;
 }
 public static void sleep(long millis) {
 try {
 Thread.sleep(millis);

Flowables and Backpressure

[241]

 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

The output is as follows:

 Requesting 40 items!
 Source pushed 1
 Source pushed 2
 ...
 Source pushed 127
 Source pushed 128
 Subscriber received 1
 Subscriber received 2
 ...
 Subscriber received 39
 Subscriber received 40
 Requesting 20 more!
 Subscriber received 41
 Subscriber received 42
 ...
 Subscriber received 59
 Subscriber received 60
 Requesting 20 more!
 Subscriber received 61
 Subscriber received 62
 ...
 Subscriber received 79
 Subscriber received 80
 Requesting 20 more!
 Subscriber received 81
 Subscriber received 82
 ...

Note that the source is still emitting 128 emissions initially and then still pushes 96
emissions at a time. But our Subscriber received only 40 emissions, as specified, and then
consistently calls for 20 more. The request() calls in our Subscriber only communicate
to the immediate operator upstream to it, which is map(). The map() operator likely relays
that request to observeOn(), which is caching items and only flushing out 40 and then 20,
as requested by the Subscriber. When its cache gets low or clears out, it will request
another 96 from the upstream.

Flowables and Backpressure

[242]

This is a warning: you should not rely on these exact numbers of
requested emissions, such as 128 and 96. These are an internal
implementation we happen to observe, and these numbers may be
changed to aid further implementation optimizations in the future.

This custom implementation may actually be reducing our throughput, but it demonstrates
how to manage custom backpressure with your own Subscriber implementation. Just
keep in mind that the request() calls do not go all the way upstream. They only go to the
preceding operator, which decides how to relay that request upstream.

Creating a Flowable
Earlier in this book, we used Observable.create() a handful of times to create our own
Observable from scratch, which describes how to emit items when it is subscribed to, as
shown in the following code snippet:

import io.reactivex.Observable;
import io.reactivex.schedulers.Schedulers;
public class Launcher {
 public static void main(String[] args) {
 Observable<Integer> source = Observable.create(emitter -> {
 for (int i=0; i<=1000; i++) {
 if (emitter.isDisposed())
 return;
 emitter.onNext(i);
 }
 emitter.onComplete();
 });
 source.observeOn(Schedulers.io())
 .subscribe(System.out::println);
 sleep(1000);
 }
 }

The output is as follows:

 0
 1
 2
 3
 4
 ...

Flowables and Backpressure

[243]

This Observable.create()will emit the integers 0 to 1000 and then call onComplete(). It
can be stopped abruptly if dispose() is called on the Disposable returned from
subscribe(), and the for-loop will check for this.

However, think for a moment how something like this can be backpressured if we
execute Flowable.create(), the Flowable equivalent of Observable.create(). Using
a simple for-loop like the preceding one, there is no notion of emissions stopping and
resuming based on the requests of a downstream Subscriber. Doing backpressure properly
is going to add some complexity. There are simpler ways to support backpressure, but they
often involve compromised strategies such as buffering and dropping, which we will cover
first. There are also a few utilities to implement backpressure at the source, which we will
cover afterward.

Using Flowable.create() and
BackpressureStrategy
Leveraging Flowable.create() to create a Flowable feels much like
Observable.create(), but there is one critical difference; you must specify a
BackpressureStrategy as a second argument. This enumerable type does not by any
means provide magic implementations of backpressure support. As a matter of fact, this
simply supports backpressure by caching or dropping emissions or not implementing
backpressure at all.

Here, we use Flowable.create() to create a Flowable, but we provide a second
BackpressureStrategy.BUFFER argument to buffer the emissions before they are
backpressured:

 import io.reactivex.BackpressureStrategy;
 import io.reactivex.Flowable;
 import io.reactivex.schedulers.Schedulers;
public class Launcher {
 public static void main(String[] args) {
 Flowable<Integer> source = Flowable.create(emitter -> {
 for (int i=0; i<=1000; i++) {
 if (emitter.isCancelled())
 return;
 emitter.onNext(i);
 }
 emitter.onComplete();
 }, BackpressureStrategy.BUFFER);
 source.observeOn(Schedulers.io())
 .subscribe(System.out::println);

Flowables and Backpressure

[244]

 sleep(1000);
 }
 public static void sleep(long millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

The output is as follows:

 0
 1
 2
 3
 4
 ...

This is not optimal because the emissions will be held in an unbounded queue, and it is
possible that when Flowable.create() pushes too many emissions, you will get an
OutOfMemoryError. But at least it prevents MissingBackpressureException and can
make your custom Flowable workable to a small degree. We will learn about a more
robust way to implement backpressure later in this chapter using Flowable.generate().

There are currently five BackpressureStrategy options you can choose from.

BackpressureStrategy Description

MISSING Essentially results in no backpressure implementation at all. The
downstream must deal with backpressure overflow, which can be
helpful when used with onBackpressureXXX() operators, which we
will cover later in this chapter.

ERROR Signals a MissingBackpressureException the moment the
downstream cannot keep up with the source.

BUFFER Queues up emissions in an unbounded queue until the downstream is
able to consume them, but can cause an OutOfMemoryError if the
queue gets too large.

DROP If the downstream cannot keep up, this will ignore upstream emissions
and not queue anything while the downstream is busy.

LATEST This will keep only the latest emission until the downstream is ready
to receive it.

Flowables and Backpressure

[245]

Next, we will see some of these strategies used as operators, particularly converting
Observables into Flowables.

Turning an Observable into a Flowable (and vice-
versa)
There is another way that you can implement BackpressureStrategy against a source
that has no notion of backpressure. You can turn an Observable into Flowable easily by
calling its toFlowable() operator, which accepts a BackpressureStrategy as an
argument. In the following code, we turn Observable.range() into
Flowable using BackpressureStrategy.BUFFER. The Observable has no notion of
backpressure, so it is going to push items as quickly as it can regardless if the downstream
can keep up. But toFlowable(), with a buffering strategy, will act as a proxy to backlog
the emissions when the downstream cannot keep up:

 import io.reactivex.BackpressureStrategy;
 import io.reactivex.Observable;
 import io.reactivex.schedulers.Schedulers;
public class Launcher {
 public static void main(String[] args) {
 Observable<Integer> source = Observable.range(1,1000);
 source.toFlowable(BackpressureStrategy.BUFFER)
 .observeOn(Schedulers.io())
 .subscribe(System.out::println);
 sleep(10000);
 }
 public static void sleep(long millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

Again, note that toFlowable(), with a buffering strategy, is going to
have an unbounded queue, which can cause an OutOfMemoryError. In
the real world, it would be better to use Flowable.range() in the first
place, but sometimes, you may only be provided with an Observable.

Flowables and Backpressure

[246]

The Flowable also has a toObservable() operator, which will turn a Flowable<T> into
an Observable<T>. This can be helpful in making a Flowable usable in an Observable
chain, especially with operators such as flatMap(), as shown in the following code:

 import io.reactivex.Flowable;
 import io.reactivex.Observable;
 import io.reactivex.schedulers.Schedulers;
public class Launcher {
 public static void main(String[] args) {
 Flowable<Integer> integers =
 Flowable.range(1, 1000)
 .subscribeOn(Schedulers.computation());
 Observable.just("Alpha","Beta","Gamma","Delta","Epsilon")
 .flatMap(s -> integers.map(i -> i + "-" +
s).toObservable())
 .subscribe(System.out::println);
 sleep(5000);
 }
 public static void sleep(long millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

If Observable<String> had much more than five emissions (such as 1,000 or 10,000), then
it would probably be better to turn that into a Flowable instead of turning the flat-mapped
Flowable into an Observable.

Even if you call toObservable(), the Flowable will still leverage backpressure upstream.
But at the point it becomes an Observable, the downstream will no longer be
backpressured and will request a Long.MAX_VALUE number of emissions. This may be fine
as long as no more intensive operations or concurrency changes happen downstream and
the Flowable operations upstream constrains the number of emissions.

But typically, when you commit to using a Flowable, you should strive to make your
operations remain Flowable.

Flowables and Backpressure

[247]

Using onBackpressureXXX() operators
If you are provided a Flowable that has no backpressure implementation (including ones
derived from Observable), you can apply BackpressureStrategy using
onBackpressureXXX() operators. These also provide a few additional configuration
options. This can be helpful if, for example, you have a Flowable.interval() that emits
faster than consumers can keep up. Flowable.interval() cannot be slowed down at the
source because it is time-driven, but we can use an onBackpressureXXX() operator to
proxy between it and the downstream. We will use Flowable.interval() for these
examples, but this can apply to any Flowable that does not have backpressure
implemented.

Sometimes, Flowable may simply be configured with BackpressureStrategy.MISSING
so these onBackpressureXXX() operators can specify the strategy later.

onBackPressureBuffer()
The onBackPressureBuffer()will take an existing Flowable that is assumed to not have
backpressure implemented and then essentially apply BackpressureStrategy.BUFFER at
that point to the downstream. Since Flowable.interval() cannot be backpressured at
the source, putting onBackPressureBuffer() after it will proxy a backpressured queue to
the downstream:

import io.reactivex.Flowable;
 import io.reactivex.schedulers.Schedulers;
 import java.util.concurrent.TimeUnit;
public class Launcher {
 public static void main(String[] args) {
 Flowable.interval(1, TimeUnit.MILLISECONDS)
 .onBackpressureBuffer()
 .observeOn(Schedulers.io())
 .subscribe(i -> {
 sleep(5);
 System.out.println(i);
 });
 sleep(5000);
 }
 public static void sleep(long millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {

Flowables and Backpressure

[248]

 e.printStackTrace();
 }
 }
 }

The output is as follows:

 0
 1
 2
 3
 4
 5
 6
 7
 ...

There are a number of overload arguments that you can provide as well. We will not get
into all of them, and you can refer to the JavaDocs for more information, but we will
highlight the common ones. The capacity argument will create a maximum threshold for
the buffer rather than allowing it to be unbounded. An onOverflow Action lambda can be
specified to fire an action when an overflow exceeds the capacity. You can also specify a
BackpressureOverflowStrategy enum to instruct how to handle an overflow that
exceeds the capacity.

Here are the three BackpressureOverflowStrategy enum items that you can choose
from:

BackpressureOverflowStrategy Description

ERROR Simply throws an error the moment capacity is exceeded

DROP_OLDEST Drops the oldest value from the buffer to make way for a
new one

DROP_LATEST Drops the latest value from the buffer to prioritize older,
unconsumed values

In the following code, we hold a maximum capacity of 10 and specify to use
BackpressureOverflowStrategy.DROP_LATEST in the event of an overflow. We also
will print a notification in the event of an overflow:

import io.reactivex.BackpressureOverflowStrategy;
 import io.reactivex.Flowable;
 import io.reactivex.schedulers.Schedulers;
 import java.util.concurrent.TimeUnit;
public class Launcher {

Flowables and Backpressure

[249]

 public static void main(String[] args) {
 Flowable.interval(1, TimeUnit.MILLISECONDS)
 .onBackpressureBuffer(10,
 () -> System.out.println("overflow!"),
 BackpressureOverflowStrategy.DROP_LATEST)
 .observeOn(Schedulers.io())
 .subscribe(i -> {
 sleep(5);
 System.out.println(i);
 });
 sleep(5000);
 }
 public static void sleep(long millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

The output is as follows:

 ...
 overflow!
 overflow!
 135
 overflow!
 overflow!
 overflow!
 overflow!
 overflow!
 136
 overflow!
 overflow!
 overflow!
 overflow!
 overflow!
 492
 overflow!
 overflow!
 overflow!
 ...

Note that in this part of my noisy output, there was a large range of numbers skipped
between 136 and 492. This is because these emissions were dropped from the queue due
to BackpressureOverflowStrategy.DROP_LATEST. The queue was already filled with
emissions waiting to be consumed, so the new emissions were ignored.

Flowables and Backpressure

[250]

onBackPressureLatest()
A slight variant of onBackpressureBuffer() is onBackPressureLatest(). This will
retain the latest value from the source while the downstream is busy, and once the
downstream is free to process more, it will provide the latest value. Any previous values
emitted during this busy period will be lost:

import io.reactivex.Flowable;
 import io.reactivex.schedulers.Schedulers;
import java.util.concurrent.TimeUnit;
public class Launcher {
 public static void main(String[] args) {
 Flowable.interval(1, TimeUnit.MILLISECONDS)
 .onBackpressureLatest()
 .observeOn(Schedulers.io())
 .subscribe(i -> {
 sleep(5);
 System.out.println(i);
 });
 sleep(5000);
 }
 public static void sleep(long millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

The output is as follows:

 ...
 122
 123
 124
 125
 126
 127
 494
 495
 496
 497
 ...

Flowables and Backpressure

[251]

If you study my output, you will notice that there is a jump between 127 and 494. This is
because all numbers in between were ultimately beaten by 494 being the latest value, and at
that time, the downstream was ready to process more emissions. It started by consuming
the cached 494 and the others before it was dropped.

onBackPressureDrop()
The onBackpressureDrop()will simply discard emissions if the downstream is too busy
to process them. This is helpful when emissions are considered redundant if the
downstream is already occupied (such as a "RUN" request being sent repeatedly, although
the resulting process is already running). You can optionally provide an onDrop lambda
argument specifying what to do with each dropped item, which we will simply print, as
shown in the following code:

import io.reactivex.Flowable;
 import io.reactivex.schedulers.Schedulers;
 import java.util.concurrent.TimeUnit;
public class Launcher {
 public static void main(String[] args) {
 Flowable.interval(1, TimeUnit.MILLISECONDS)
 .onBackpressureDrop(i ->
System.out.println("Dropping " + i))
 .observeOn(Schedulers.io())
 .subscribe(i -> {
 sleep(5);
 System.out.println(i);
 });
 sleep(5000);
 }
 public static void sleep(long millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

The output is as follows:

 ...
 Dropping 653
 Dropping 654
 Dropping 655
 Dropping 656

Flowables and Backpressure

[252]

 127
 Dropping 657
 Dropping 658
 Dropping 659
 Dropping 660
 Dropping 661
 493
 Dropping 662
 Dropping 663
 Dropping 664
 ...

In my output, note that there is a large jump between 127 and 493. The numbers between
them were dropped because the downstream was already busy when they were ready to be
processed, so they were discarded rather than queued.

Using Flowable.generate()
A lot of the content we covered so far in this chapter did not show the optimal approaches
to backpressure a source. Yes, using a Flowable and most of the standard factories and
operators will automatically handle backpressure for you. However, if you are creating
your own custom sources, Flowable.create() or the onBackPressureXXX() operators
are somewhat compromised in how they handle backpressure requests. While quick and
effective for some cases, caching emissions or simply dropping them is not always
desirable. It would be better to make the source backpressured in the first place.

Thankfully, Flowable.generate() exists to help create backpressure, respecting sources
at a nicely abstracted level. It will accept a Consumer<Emitter<T>> much like
Flowable.create(), but it will use a lambda to specify what onNext(), onComplete(),
and onError() events to pass each time an item is requested from the upstream.

Before you use Flowable.generate(), consider making your source Iterable<T>
instead and passing it to Flowable.fromIterable(). The
Flowable.fromIterable()will respect backpressure and might be easier to use for many
cases. Otherwise, Flowable.generate() is your next best option if you need something
more specific.

Flowables and Backpressure

[253]

The simplest overload for Flowable.generate() accepts just
Consumer<Emitter<T>> and assumes that there is no state maintained between emissions.
This can be helpful in creating a backpressure-aware random integer generator, as
displayed here. Note that 128 emissions are immediately emitted, but after that, 96 are
pushed downstream before another 96 are sent from the source:

import io.reactivex.Flowable;
 import io.reactivex.schedulers.Schedulers;
 import java.util.concurrent.ThreadLocalRandom;
public class Launcher {
 public static void main(String[] args) {
 randomGenerator(1,10000)
 .subscribeOn(Schedulers.computation())
 .doOnNext(i -> System.out.println("Emitting " +
i))
 .observeOn(Schedulers.io())
 .subscribe(i -> {
 sleep(50);
 System.out.println("Received " + i);
 });
 sleep(10000);
 }
 static Flowable<Integer> randomGenerator(int min, int max) {
 return Flowable.generate(emitter ->

emitter.onNext(ThreadLocalRandom.current().nextInt(min, max))
);
 }
 public static void sleep(long millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

The output is as follows:

 ...
 Emitting 8014
 Emitting 3112
 Emitting 5958
 Emitting 4834 //128th emission
 Received 9563
 Received 4359
 Received 9362

Flowables and Backpressure

[254]

 ...
 Received 4880
 Received 3192
 Received 979 //96th emission
 Emitting 8268
 Emitting 3889
 Emitting 2595
...

With Flowable.generate(), invoking multiple onNext() operators within
Consumer<Emitter<T>> will result in IllegalStateException. The downstream needs
it only to invoke onNext() once, so it can make the repeated calls, as required, to maintain
flow. It will also emit onError() for you in the event that an exception occurs.

You can also provide a state that can act somewhat like a "seed" similar to reduce() and
maintain a state that is passed from one emission to the next. Suppose we want to create
something similar to Flowable.range() but instead, we want to emit the integers in
reverse between upperBound and lowerBound. Using AtomicInteger as our state, we can
decrement it and pass its value to the emitter's onNext() operator until lowerBound is
encountered. This is demonstrated as follows:

import io.reactivex.Flowable;
 import io.reactivex.schedulers.Schedulers;
 import java.util.concurrent.atomic.AtomicInteger;
public class Launcher {
 public static void main(String[] args) {
 rangeReverse(100,-100)
 .subscribeOn(Schedulers.computation())
 .doOnNext(i -> System.out.println("Emitting " +
i))
 .observeOn(Schedulers.io())
 .subscribe(i -> {
 sleep(50);
 System.out.println("Received " + i);
 });
 sleep(50000);
 }
 static Flowable<Integer> rangeReverse(int upperBound, int
lowerBound) {
 return Flowable.generate(() -> new
AtomicInteger(upperBound + 1),
 (state, emitter) -> {
 int current = state.decrementAndGet();
 emitter.onNext(current);
 if (current == lowerBound)
 emitter.onComplete();

Flowables and Backpressure

[255]

 }
);
 }
 public static void sleep(long millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

The output is as follows:

 Emitting 100
 Emitting 99
 ...
 Emitting -25
 Emitting -26
 Emitting -27 //128th emission
 Received 100
 Received 99
 Received 98
 ...
 Received 7
 Received 6
 Received 5 // 96th emission
 Emitting -28
 Emitting -29
 Emitting -30

Flowable.generator() provides a nicely abstracted mechanism to create a source that
respects backpressure. For this reason, you might want to prefer this over
Flowable.create() if you do not want to mess with caching or dropping emissions.

With Flowable.generate(), you can also provide a third Consumer<? super S>
disposeState argument to do any disposal operations on termination, which can be
helpful for IO sources.

Flowables and Backpressure

[256]

Summary
In this chapter, you learned about Flowable and backpressure and which situations it
should be preferred over an Observable. Flowables are especially preferable when
concurrency enters your application and a lot of data can flow through it, as it regulates
how much data comes from the source at a given time. Some Flowables, such as
Flowable.interval() or those derived from an Observable, do not have backpressure
implemented. In these situations, you can use onBackpressureXXX() operators to queue
or drop emissions for the downstream. If you are creating your own Flowable source from
scratch, prefer to use the existing Flowable factories, and if that fails, prefer
Flowable.generate() instead of Flowable.create().

If you got to this point and understand most of the content in this book so far, congrats! You
have all the core concepts of RxJava in your toolkit, and the rest of the book is all a walk in
the park from here. The next chapter will cover how to create your own operators, which
can be a somewhat advanced task. At a minimum, you should know how to compose
existing operators to create new operators, which will be one of the next topics.

9
Transformers and Custom

Operators
In RxJava, there are ways to implement your own custom operators using the compose()
and lift() methods, which exist on both Observable and Flowable. Most of the time,
you will likely want to compose existing RxJava operators to create a new operator. But on
occasion, you may find yourself needing an operator that must be built from scratch. The
latter is a lot more work, but we will cover how to do both of these tasks.

In this chapter, we will cover the following topics:

Composing new operators with existing operators using compose() and
Transformers
The to() operator
Implementing operators from scratch with lift()
RxJava2-Extras and RxJava2Extensions

Transformers
When working with RxJava, you may find yourself wanting to reuse pieces of an
Observable or Flowable chain and somehow consolidate these operators into a new
operator. Good developers find opportunities to reuse code, and RxJava provides this
ability using ObservableTransformer and FlowableTransformer, which you can pass
to the compose() operator.

Transformers and Custom Operators

[258]

ObservableTransformer
Bring back Google Guava as a dependency. In Chapter 3, Basic Operators, we covered the
collect() operator and used it to turn Observable<T> into
a Single<ImmutableList<T>>. Effectively, we want to collect T emissions into a Google
Guava ImmutableList<T>. Suppose we do this operation enough times until it starts to
feel redundant. Here, we use this ImmutableList operation for two different Observable
subscriptions:

 import com.google.common.collect.ImmutableList;
 import io.reactivex.Observable;

 public class Launcher {

 public static void main(String[] args) {

 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon")
 .collect(ImmutableList::builder,
ImmutableList.Builder::add)
 .map(ImmutableList.Builder::build)
 .subscribe(System.out::println);

 Observable.range(1,15)
 .collect(ImmutableList::builder,
ImmutableList.Builder::add)
 .map(ImmutableList.Builder::build)
 .subscribe(System.out::println);
 }
 }

The output is as follows:

[Alpha, Beta, Gamma, Delta, Epsilon]
 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Take a look at this part of the Observable chain used in two places above:

collect(ImmutableList::builder, ImmutableList.Builder::add)
 .map(ImmutableList.Builder::build)

http://search.maven.org/#artifactdetails%7Ccom.google.guava%7Cguava%7C21.0%7Cbundle

Transformers and Custom Operators

[259]

This is a bit redundant to invoke twice, so is it possible that we can compose these operators
into a single operator that collects emissions into an ImmutableList? As a matter of fact,
yes! To target an Observable<T>, you can implement ObservableTransformer<T,R>.
This type has an apply() method that accepts an Observable<T> upstream and returns
an Observable<R> downstream. In your implementation, you can return an Observable
chain that adds on any operators to the upstream, and after those transformations, it returns
an Observable<R>.

For our example, we will target any generic type T for a given Observable<T>, and R will
be an ImmutableList<T> emitted through an Observable<ImmutableList<T>>. We will
package all of this up in an ObservableTransformer<T,ImmutableList<T>>
implementation, as shown in the following code snippet:

public static <T> ObservableTransformer<T, ImmutableList<T>>
toImmutableList() {

 return new ObservableTransformer<T, ImmutableList<T>>() {
 @Override
 public ObservableSource<ImmutableList<T>>
apply(Observable<T> upstream) {
 return upstream.collect(ImmutableList::<T>builder,
ImmutableList.Builder::add)
 .map(ImmutableList.Builder::build)
 .toObservable(); // must turn Single into
Observable
 }
 };
 }

Since collect() returns a Single, we will invoke toObservable() on it since
ObservableTransformer expects an Observable, not Single, to be returned. It is not
uncommon for Transformers to be delivered through static factory methods, so that is what
we did here.

Since there is only one single abstract method in ObservableTransformer, we can
streamline this more using a lambda instead. This reads a bit easier, as it reads left-to-
right/top-to-bottom and expresses for a given upstream Observable, return it with these operators
added to the downstream:

public static <T> ObservableTransformer<T, ImmutableList<T>>
toImmutableList() {

 return upstream ->
upstream.collect(ImmutableList::<T>builder,
ImmutableList.Builder::add)

Transformers and Custom Operators

[260]

 .map(ImmutableList.Builder::build)
 .toObservable(); // must turn Single into
Observable
 }

To invoke a Transformer into an Observable chain, you pass it to the compose() operator.
When called on an Observable<T>, the compose() operator accepts
an ObservableTransformer<T,R> and returns the transformed Observable<R>. This
allows you to reuse Rx logic and invoke it in multiple places, and now we can call
compose(toImmutableList()) on both of our Observable operations:

 import com.google.common.collect.ImmutableList;
 import io.reactivex.Observable;
 import io.reactivex.ObservableTransformer;

 public class Launcher {

 public static void main(String[] args) {

 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon")
 .compose(toImmutableList())
 .subscribe(System.out::println);

 Observable.range(1,10)
 .compose(toImmutableList())
 .subscribe(System.out::println);
 }

 public static <T> ObservableTransformer<T, ImmutableList<T>>
toImmutableList() {

 return upstream ->
upstream.collect(ImmutableList::<T>builder,
ImmutableList.Builder::add)
 .map(ImmutableList.Builder::build)
 .toObservable(); // must turn Single into
Observable
 }
 }

The output is as follows:

[Alpha, Beta, Gamma, Delta, Epsilon]
 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Transformers and Custom Operators

[261]

It is common for APIs to organize Transformers in a static factory class. In a real-world
application, you may store your toImmutableList() Transformer inside a
GuavaTransformers class. Then, you can invoke it by calling
compose(GuavaTransformers.toImmutableList()) in your Observable operation.

Note for this example, we could actually make the toImmutableList() a
reusable singleton since it does not take any parameters.

You can also create Transformers that target specific emission types and accept arguments.
For example, you can create a joinToString() Transformer that accepts a separator
argument and concatenates String emissions with that separator. Usage of this
ObservableTransformer will only compile when invoked on an Observable<String>:

 import io.reactivex.Observable;
 import io.reactivex.ObservableTransformer;

 public class Launcher {

 public static void main(String[] args) {

 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon")
 .compose(joinToString("/"))
 .subscribe(System.out::println);
 }

 public static ObservableTransformer<String, String>
joinToString(String separator) {
 return upstream -> upstream
 .collect(StringBuilder::new, (b,s) -> {
 if (b.length() == 0)
 b.append(s);
 else
 b.append(separator).append(s);
 })
 .map(StringBuilder::toString)
 .toObservable();
 }
 }

The output is as follows:

Alpha/Beta/Gamma/Delta/Epsilon

Transformers and Custom Operators

[262]

Transformers are a great way to reuse a series of operators that perform a common task,
and leveraging them can greatly increase your Rx code reusability. Usually, you will get the
most flexibility and speed by implementing them through static factory methods, but you
can also extend ObservableTransformer onto your own class implementation.

As we will learn in Chapter 12, Using RxJava with Kotlin, the Kotlin language enables
powerful language features that streamline RxJava even more. Instead of using
Transformers, you can leverage extension functions to add operators to the Observable
and Flowable types without inheritance. We will learn more about this later.

FlowableTransformer
When you implement your own ObservableTransformer, you might want to create a
FlowableTransformer counterpart as well. This way, you can use your operator on both
Observables and Flowables.

The FlowableTransformer is not much different from ObservableTransformer. Of
course, it will support backpressure since it is composed with Flowables. Otherwise, it is
pretty much the same in its usage except that you obviously pass it to compose() on
a Flowable, not Observable.

Here, we take our toImmutableList() method returning
an ObservableTransformer and implement it as FlowableTransformer instead:

 import com.google.common.collect.ImmutableList;
 import io.reactivex.Flowable;
 import io.reactivex.FlowableTransformer;

 public class Launcher {

 public static void main(String[] args) {

 Flowable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon")
 .compose(toImmutableList())
 .subscribe(System.out::println);

 Flowable.range(1,10)
 .compose(toImmutableList())
 .subscribe(System.out::println);
 }

 public static <T> FlowableTransformer<T, ImmutableList<T>>

Transformers and Custom Operators

[263]

toImmutableList() {

 return upstream ->
upstream.collect(ImmutableList::<T>builder,
ImmutableList.Builder::add)
 .map(ImmutableList.Builder::build)
 .toFlowable(); // must turn Single into Flowable
 }
 }

You should be able to make a similar conversion to FlowableTransformer for our
joinToString() example as well.

You might consider creating separate static utility classes to store your
FlowableTransformers and ObservableTransformers separately to prevent name
clashes. Our FlowableTransformer and ObservableTransformer variants of
toImmutableList() cannot exist in the same static utility class unless they have different
method names. But it might be cleaner to put them in separate classes, such
as MyObservableTransformers and MyFlowableTransformers. You could also have
them in separate packages with the same class name, MyTransformers, one for
Observables and the other for Flowables.

Avoiding shared state with Transformers
When you start creating your own Transformers and custom operators (covered later), an
easy way to shoot yourself in the foot is to share states between more than one subscription.
This can quickly create unwanted side effects and buggy applications and is one of the
reasons you have to tread carefully as you create your own operators.

Say, you want to create an ObservableTransformer<T,IndexedValue<T>>, which pairs
each emission with its consecutive index starting at 0. First, you create an
IndexedValue<T> class to simply pair each T value with an int index:

 static final class IndexedValue<T> {
 final int index;
 final T value;

 IndexedValue(int index, T value) {
 this.index = index;
 this.value = value;
 }

 @Override
 public String toString() {

Transformers and Custom Operators

[264]

 return index + " - " + value;
 }
 }

Then, you create an ObservableTransformer<T,IndexedValue<T>> that uses
an AtomicInteger to increment and attach an integer to each emission. But there is
something wrong with our implementation here:

static <T> ObservableTransformer<T,IndexedValue<T>> withIndex() {
 final AtomicInteger indexer = new AtomicInteger(-1);
 return upstream -> upstream.map(v -> new
IndexedValue<T>(indexer.incrementAndGet(), v));
 }

See anything wrong yet? Try to run this Observable operation, which has two Observers
and uses this withIndex() Transformer. Look at the output carefully:

 import io.reactivex.Observable;
 import io.reactivex.ObservableTransformer;
 import java.util.concurrent.atomic.AtomicInteger;

 public class Launcher {

 public static void main(String[] args) {

 Observable<IndexedValue<String>> indexedStrings =
 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon")
 .compose(withIndex());

 indexedStrings.subscribe(v ->
System.out.println("Subscriber 1: " + v));
 indexedStrings.subscribe(v ->
System.out.println("Subscriber 2: " + v));
 }

 static <T> ObservableTransformer<T,IndexedValue<T>>
withIndex() {
 final AtomicInteger indexer = new AtomicInteger(-1);
 return upstream -> upstream.map(v -> new
IndexedValue<T>(indexer.incrementAndGet(), v));
 }

 static final class IndexedValue<T> {
 final int index;
 final T value;

 IndexedValue(int index, T value) {

Transformers and Custom Operators

[265]

 this.index = index;
 this.value = value;
 }

 @Override
 public String toString() {
 return index + " - " + value;
 }
 }
 }

The output is as follows:

 Subscriber 1: 0 - Alpha
 Subscriber 1: 1 - Beta
 Subscriber 1: 2 - Gamma
 Subscriber 1: 3 - Delta
 Subscriber 1: 4 - Epsilon
 Subscriber 2: 5 - Alpha
 Subscriber 2: 6 - Beta
 Subscriber 2: 7 - Gamma
 Subscriber 2: 8 - Delta
 Subscriber 2: 9 - Epsilon

Note that a single instance of AtomicInteger was shared between both subscriptions,
which means its state was shared as well. On the second subscription, instead of starting
over at 0, it picks up at the index left by the previous subscription and starts at index 5 since
the previous subscription ended at 4.

Unless you have some stateful behaviors you are deliberately implementing, this is
probably an unwanted side-effect that can result in maddening bugs. Constants are usually
fine, but a mutable shared state between subscriptions is often something you want to
avoid.

A quick and easy way to create a new resource (such as AtomicInteger) for each
subscription is to wrap everything in Observable.defer(), including the
AtomicInteger instance. This way, a new AtomicInteger is created each time with the
returned indexing operations:

static <T> ObservableTransformer<T,IndexedValue<T>> withIndex() {
 return upstream -> Observable.defer(() -> {
 AtomicInteger indexer = new AtomicInteger(-1);
 return upstream.map(v -> new
IndexedValue<T>(indexer.incrementAndGet(), v));
 });
 }

Transformers and Custom Operators

[266]

You can also create an AtomicInteger within Observable.fromCallable() and
use flatMap() on it to the Observable that uses it.

In this particular example, you can also use Observable.zip() or zipWith()
with Observable.range(). Since this is a pure Rx approach as well, no state will be
shared between multiple subscribers, and this will also solve our problem:

 static <T> ObservableTransformer<T,IndexedValue<T>> withIndex() {
 return upstream ->
 Observable.zip(upstream,
 Observable.range(0,Integer.MAX_VALUE),
 (v,i) -> new IndexedValue<T>(i, v)
);
 }

Again, inadvertent shared state and side-effects are dangerous in Rx! Whatever
implementation you use to create your Transformer, it is better to rely on pure Rx factories
and operators in your implementation if possible. Avoid creating imperative states and
objects that risk being shared across subscriptions unless you are fulfilling some strange
business requirement where a shared state is explicitly wanted.

Using to() for fluent conversion
On rare occasions, you may find yourself having to pass an Observable to another API
that converts it into a proprietary type. This can be done simply by passing an Observable
as an argument to a factory that does this conversion. However, this does not always feel
fluent, and this is where the to() operator comes in.

For example, JavaFX has a Binding<T> type that houses a mutable value of type T, and it
will notify affected user interface elements to update when it changes. RxJavaFX has
JavaFxObserver.toBinding() and JavaFxSubscriber.toBinding() factories, which
can turn an Observable<T> or Flowable<T> into a JavaFX Binding<T>. Here is a simple
JavaFX Application that uses Binding<String> built-off Observable<String>, which
is used to bind to a textProperty() operator of label:

 import io.reactivex.Observable;
 import io.reactivex.rxjavafx.observers.JavaFxObserver;
 import io.reactivex.rxjavafx.schedulers.JavaFxScheduler;
 import javafx.application.Application;
 import javafx.beans.binding.Binding;
 import javafx.scene.Scene;
 import javafx.scene.control.Label;
 import javafx.scene.layout.VBox;

Transformers and Custom Operators

[267]

 import javafx.stage.Stage;

 import java.util.concurrent.TimeUnit;

 public final class JavaFxApp extends Application {

 @Override
 public void start(Stage stage) throws Exception {

 VBox root = new VBox();
 Label label = new Label("");

 // Observable with second timer
 Observable<String> seconds =
 Observable.interval(1, TimeUnit.SECONDS)
 .map(i -> i.toString())
 .observeOn(JavaFxScheduler.platform());

 // Turn Observable into Binding
 Binding<String> binding =
JavaFxObserver.toBinding(seconds);

 //Bind Label to Binding
 label.textProperty().bind(binding);

 root.setMinSize(200, 100);
 root.getChildren().addAll(label);

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.show();
 }
 }

Since we have gotten so used to fluent programming with RxJava, would it not be nice to
make the conversion of the Observable<String> to a Binding<String> part of the
Observable chain too? This way, we do not have to break our fluent style and save
intermediary variables. That can be done with the to() operator, which simply accepts
an Function<Observable<T>,R> to turn an Observable<T> into any arbitrary R type. In
this case, we can turn our Observable<String> into a Binding<String>at the end of our
Observable chain using to():

 import io.reactivex.Observable;
 import io.reactivex.rxjavafx.observers.JavaFxObserver;
 import io.reactivex.rxjavafx.schedulers.JavaFxScheduler;
 import javafx.application.Application;
 import javafx.beans.binding.Binding;

Transformers and Custom Operators

[268]

 import javafx.scene.Scene;
 import javafx.scene.control.Label;
 import javafx.scene.layout.VBox;
 import javafx.stage.Stage;
 import java.util.concurrent.TimeUnit;

 public final class JavaFxApp extends Application {

 @Override
 public void start(Stage stage) throws Exception {

 VBox root = new VBox();
 Label label = new Label("");

 // Turn Observable into Binding
 Binding<String> binding =
 Observable.interval(1, TimeUnit.SECONDS)
 .map(i -> i.toString())
 .observeOn(JavaFxScheduler.platform())
 .to(JavaFxObserver::toBinding);

 //Bind Label to Binding
 label.textProperty().bind(binding);

 root.setMinSize(200, 100);
 root.getChildren().addAll(label);

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.show();
 }
 }

Simple but helpful, right? When you are dealing with proprietary non-Rx types that can be
built off Rx Observabes and Flowables, this is a handy utility to maintain the fluent Rx style,
especially when interoperating with binding frameworks.

Transformers and Custom Operators

[269]

Operators
Ideally, you will rarely get to a point where you need to build your own operator from
scratch by implementing ObservableOperator or FlowableOperator.
ObservableTransformer and FlowableTransformer will hopefully satisfy most cases
where you can use existing operators to compose new ones, and this is usually the safest
route. But on occasion, you may find yourself having to do something that the existing
operators cannot do or not do easily. After you exhaust all other options, you may have to
create an operator that manipulates each onNext(), onComplete(), and onError() event
between the upstream and the downstream.

Before you go out and create your own operator, try to use existing operators first with
compose() and a Transformer. After that fails, it is recommended that you post a question
on StackOverflow and ask the RxJava community whether such an operator exists or can be
composed easily. The RxJava community is very active on StackOverflow and they will
likely provide a solution and only escalate the complexity of the solution as required.

Note that David Karnok's RxJava2Extensions and Dave Moten's RxJava2-
Extras have many useful Transformers and operators to augment RxJava
as well. You should check out these libraries to see whether they fulfill
your needs.

If it is determined that there are no existing solutions, then proceed carefully to build your
own operator. Again, it is recommended that you solicit help from StackOverflow first.
Building a native operator is no easy task, and getting insight and experience from an Rx
expert is highly valuable and most likely necessary.

Implementing an ObservableOperator
Implementing your own ObservableOperator (as well as FlowableTransformer) is
more involved than creating an ObservableTransformer. Instead of composing a series of
existing operators, you intercept the onNext(), onComplete(), onError(), and
onSubscribe() calls from the upstream by implementing your own Observer instead.
This Observer will then logically pass the onNext(), onComplete(), and onError()
events to the downstream Observer in a way that fulfills the desired operation.

https://github.com/akarnokd/RxJava2Extensions
https://github.com/davidmoten/rxjava2-extras
https://github.com/davidmoten/rxjava2-extras

Transformers and Custom Operators

[270]

Say, you want to create your own doOnEmpty() operator that will execute an Action when
onComplete() is called and no emissions have occurred. To create your own
ObservableOperator<Downstream,Upstream> (where Upstream is the upstream
emission type and Downstream is the downstream emission type), you will need to
implement its apply() method. This accepts an Observer<Downstream> observer
argument and returns an Observer<Upstream>.

You can then use this ObservableOperator by calling it in the lift() operator in your
Observable chain, as shown here:

 import io.reactivex.Observable;
 import io.reactivex.ObservableOperator;
 import io.reactivex.Observer;
 import io.reactivex.functions.Action;
 import io.reactivex.observers.DisposableObserver;

 public class Launcher {

 public static void main(String[] args) {

 Observable.range(1, 5)
 .lift(doOnEmpty(() ->
System.out.println("Operation 1 Empty!")))
 .subscribe(v -> System.out.println("Operation 1: "
+ v));

 Observable.<Integer>empty()
 .lift(doOnEmpty(() ->
System.out.println("Operation 2 Empty!")))
 .subscribe(v -> System.out.println("Operation 2: "
+ v));
 }

 public static <T> ObservableOperator<T,T> doOnEmpty(Action
action) {
 return new ObservableOperator<T, T>() {

 @Override
 public Observer<? super T> apply(Observer<? super T>
observer) throws Exception {
 return new DisposableObserver<T>() {
 boolean isEmpty = true;

 @Override
 public void onNext(T value) {
 isEmpty = false;

Transformers and Custom Operators

[271]

 observer.onNext(value);
 }

 @Override
 public void onError(Throwable t) {
 observer.onError(t);
 }

 @Override
 public void onComplete() {
 if (isEmpty) {
 try {
 action.run();
 } catch (Exception e) {
 onError(e);
 return;
 }
 }
 observer.onComplete();
 }
 };
 }
 };
 }
 }

The output is as follows:

 Operation 1: 1
 Operation 1: 2
 Operation 1: 3
 Operation 1: 4
 Operation 1: 5
 Operation 2 Empty!

Inside apply(), you take the passed Observer that accepts events for the downstream.
You create another Observer (in this case, we should use a DisposableObserver
that handles disposal requests for us) to receive emissions and events from the upstream
and relay them to the downstream Observer. You can manipulate the events to execute the
desired logic as well as add any side-effects.

In this case, we simply passed the events from the upstream to the downstream
untampered but track whether onNext() was called to flag if emissions were present.
When onComplete() is called and no emissions are present, it will execute the user-
specified action within onComplete(). It is usually a good idea to wrap any code that
could throw runtime errors in try-catch and pass those captured errors to onError().

Transformers and Custom Operators

[272]

With ObservableOperator, it may seem odd that you get the downstream as an input and
have to produce an Observer for the upstream as the output. With the map() operator, for
example, the function receives the upstream value and returns the value to be emitted
toward the downstream. The reason for this is that code from an ObservableOperator
gets executed at subscription time where the call travels from the end Observer
(downstream) toward the source Observable (upstream).

Since it is a single abstract method class, you can also express your ObservableOperator
implementation as a lambda, as shown here:

 public static <T> ObservableOperator<T,T> doOnEmpty(Action action)
{
 return observer -> new DisposableObserver<T>() {
 boolean isEmpty = true;

 @Override
 public void onNext(T value) {
 isEmpty = false;
 observer.onNext(value);
 }

 @Override
 public void onError(Throwable t) {
 observer.onError(t);
 }

 @Override
 public void onComplete() {
 if (isEmpty) {
 try {
 action.run();
 } catch (Exception e) {
 onError(e);
 return;
 }
 }
 observer.onComplete();
 }
 };
 }

Transformers and Custom Operators

[273]

Just like Transformers, be mindful when creating custom operators to not share states
between subscriptions unless you absolutely mean to. This is a relatively simple operator
because it is a simple reactive building block, but operators can be made enormously
complex. This is especially the case when the operators deal with concurrency (for
example, observeOn() and subscribeOn()) or share states between subscriptions (for
example, replay()). The implementations of groupBy(), flatMap(), and window() are
complicated and intricate as well.

There are a couple of rules in the Observable contract you must follow
when calling the three events. Never call onComplete() after onError()
has occurred (or vice versa). Do not call onNext() after onComplete() or
onError() is called, and do not call any events after disposal. Breaking
these rules can have unintended consequences downstream.

Another thing that needs to be pointed out is that onNext(), onComplete(), and
onError() calls can be manipulated and mixed as needed. For example, toList() does
not pass an onNext()call downstream for every onNext()it receives from the upstream. It
will keep collecting these emissions in an internal list. When onComplete() is called from
the upstream, it will call onNext() on the downstream to pass that list before it calls
onComplete(). Here, we implement our own myToList() operator to understand how
toList() could work, even though in normal circumstances, we should use collect() or
toList():

 import io.reactivex.Observable;
 import io.reactivex.ObservableOperator;
 import io.reactivex.observers.DisposableObserver;
 import java.util.ArrayList;
 import java.util.List;

 public class Launcher {

 public static void main(String[] args) {

 Observable.range(1, 5)
 .lift(myToList())
 .subscribe(v -> System.out.println("Operation 1: "
+ v));

 Observable.<Integer>empty()
 .lift(myToList())
 .subscribe(v -> System.out.println("Operation 2: "
+ v));
 }

Transformers and Custom Operators

[274]

 public static <T> ObservableOperator<List<T>,T> myToList() {
 return observer -> new DisposableObserver<T>() {

 ArrayList<T> list = new ArrayList<>();

 @Override
 public void onNext(T value) {
 //add to List, but don't pass anything downstream
 list.add(value);
 }

 @Override
 public void onError(Throwable t) {
 observer.onError(t);
 }

 @Override
 public void onComplete() {
 observer.onNext(list); //push List downstream
 observer.onComplete();
 }
 };
 }
 }

The output is as follows:

 Operation 1: [1, 2, 3, 4, 5]
 Operation 2: []

Before you start getting ambitious in creating your own operators, it might be good to study
the source code of RxJava or other libraries, such as RxJava2-Extras. Operators can be
difficult to implement correctly as you need to have a good understanding of how to build
reactive patterns from imperative ones. You will also want to test the heck out of it (which
we will cover in Chapter 10, Testing and Debugging) in order to ensure that it behaves
correctly before putting it in production.

FlowableOperator
When you create your own ObservableOperator, you will most likely want to create a
FlowableOperator counterpart as well. This way, your operator can be used for both
Observables and Flowables. Thankfully, FlowableOperator is implemented in a similar
manner to ObservableOperator, as shown here:

 import io.reactivex.Flowable;

Transformers and Custom Operators

[275]

 import io.reactivex.FlowableOperator;
 import io.reactivex.functions.Action;
 import io.reactivex.subscribers.DisposableSubscriber;
 import org.reactivestreams.Subscriber;

 public class Launcher {

 public static void main(String[] args) {

 Flowable.range(1, 5)
 .lift(doOnEmpty(() ->
System.out.println("Operation 1 Empty!")))
 .subscribe(v -> System.out.println("Operation 1: "
+ v));

 Flowable.<Integer>empty()
 .lift(doOnEmpty(() ->
System.out.println("Operation 2 Empty!")))
 .subscribe(v -> System.out.println("Operation 2: "
+ v));
 }

 public static <T> FlowableOperator<T,T> doOnEmpty(Action
action) {
 return new FlowableOperator<T, T>() {
 @Override
 public Subscriber<? super T> apply(Subscriber<? super
T> subscriber) throws Exception {
 return new DisposableSubscriber<T>() {
 boolean isEmpty = true;

 @Override
 public void onNext(T value) {
 isEmpty = false;
 subscriber.onNext(value);
 }

 @Override
 public void onError(Throwable t) {
 subscriber.onError(t);
 }

 @Override
 public void onComplete() {
 if (isEmpty) {
 try {
 action.run();

Transformers and Custom Operators

[276]

 } catch (Exception e) {
 onError(e);
 return;
 }
 }
 subscriber.onComplete();
 }
 };
 }
 };
 }
 }

Instead of Observers, we used Subscribers, which hopefully is not surprising at this point.
The Subscriber passed via apply() receives events for the downstream, and the
implemented Subscriber receives events from the upstream, which it relays to the
downstream (just as we used DisposableObserver, we use DisposableSubscriber to
handle disposal/unsubscription for us). Just like earlier, onComplete() will verify that no
emissions occurred and run the specified action if that is the case.

And of course, you can express your FlowableOperatoras a lambda too:

 public static <T> FlowableOperator<T,T> doOnEmpty(Action action) {
 return subscriber -> new DisposableSubscriber<T>() {
 boolean isEmpty = true;

 @Override
 public void onNext(T value) {
 isEmpty = false;
 subscriber.onNext(value);
 }

 @Override
 public void onError(Throwable t) {
 subscriber.onError(t);
 }

 @Override
 public void onComplete() {
 if (isEmpty) {
 try {
 action.run();
 } catch (Exception e) {
 onError(e);
 return;
 }
 }

Transformers and Custom Operators

[277]

 subscriber.onComplete();
 }
 };
 }

Again, be studious and thorough when you start implementing your own operators,
especially as they pass a threshold of complexity. Strive to use existing operators to
compose Transformers, and hit StackOverflow or the RxJava community to see whether
others can point out an obvious solution first. Implementing operators is something you
should be conservative about and only pursue when all other options have been exhausted.

Custom Transformers and operators for
Singles, Maybes, and Completables
There are Transformer and operator counterparts for Single, Maybe, and Completable.
When you want to create an Observable or Flowable operator that yields Single, you
might find it easier to convert it back into an Observable/Flowable by calling its
toObservable() or toFlowable() operators. This also applies to Maybe.

If on some rare occasion you need to create a Transformer or operator specifically to take
a Single and transform it into another Single, you will want to use SingleTransformer
or SingleOperator. Maybe and Completable will have counterparts with
MaybeTransformer/MaybeOperator and
CompletableTransformer/CompletableOperator, respectively. The implementation of
apply() for all of these should largely be the same experience, and you will use
SingleObserver, MaybeObserver, and CompletableObserver to proxy the upstream
and downstream.

Here is an example of a SingleTransformer that takes Single<Collection<T>> and
maps the emitted Collection to an unmodifable collection:

 import io.reactivex.Observable;
 import io.reactivex.SingleTransformer;
 import java.util.Collection;
 import java.util.Collections;

 public class Launcher {

 public static void main(String[] args) {
 Observable.just("Alpha","Beta","Gamma","Delta","Epsilon")
 .toList()
 .compose(toUnmodifiable())

Transformers and Custom Operators

[278]

 .subscribe(System.out::println);
 }

 public static <T> SingleTransformer<Collection<T>,
Collection<T>> toUnmodifiable() {
 return singleObserver ->
singleObserver.map(Collections::unmodifiableCollection);
 }
 }

The output is as follows:

[Alpha, Beta, Gamma, Delta, Epsilon]

Using RxJava2-Extras and
RxJava2Extensions
If you are interested in learning about additional operators beyond what RxJava provides, it
may be worthwhile to explore the RxJava2-Extras and RxJava2Extensions libraries. While
neither of these libraries are at a 1.0 version, useful operators, Transformers, and
Observable/Flowable factories are continually added as an ongoing project.

Two useful operators are toListWhile() and collectWhile(). These will buffer
emissions into a list or collection while they meet a certain condition. Because
a BiPredicate passes both the list/collection and the next T item as lamda input
parameters, you can use this to buffer items but cut off the moment something changes
about the emissions. Here, we keep collecting strings into a list but push that list forward
when the length changes (kind of like distinctUntilChanged()). We also will qualify a
list being empty, as that is the start of the next buffer, as well as sample an item from the list
to compare lengths with the next emission:

 import com.github.davidmoten.rx2.flowable.Transformers;
 import io.reactivex.Flowable;

 public class Launcher {

 public static void main(String[] args) {

Flowable.just("Alpha","Beta","Zeta","Gamma","Delta","Theta","Epsilo
n")
 .compose(Transformers.toListWhile((list,next) ->
 list.size() == 0 || list.get(0).length() ==

https://github.com/davidmoten/rxjava2-extras
https://github.com/akarnokd/RxJava2Extensions

Transformers and Custom Operators

[279]

next.length()
)).subscribe(System.out::println);
 }
 }

The output is as follows:

 [Alpha]
 [Beta, Zeta]
 [Gamma, Delta, Theta]
 [Epsilon]

Spend some quality time with RxJava2-Extras and RxJava2Extensions to learn about their
custom operators. This way, you will not have to reinvent something that may already be
done, and there are already many powerful factories and operators. One of my personal
favorites is a resettable cache() operator, which works like the cache we studied in
Chapter 5, Multicasting, but it can be cleared and then resubscribed to the source at any
time. It can also clear the cache at fixed time intervals or periods of no activity, preventing
stale caches from persisting.

Summary
In this chapter, we got our feet wet by creating our own operators. It is preferable to use
ObservableTransformer and FlowableTransformer to compose existing operators
together to create new ones, and even with that, you need to be cautious when introducing
stateful resources that cause undesirable side-effects. When all else fails, you can create your
own ObservableOperator or FlowableOperator and create an operator at a low level
that intercepts and relays each emission and event. This can be tricky and you should
exhaust all other options, but with careful study and testing, creating operators can be a
valuable advanced skill to have. Just be careful to not reinvent the wheel and seek guidance
from the Rx community as you start dabbling in custom operators.

If you truly are interested in implementing your own operators (at a low level, not with
Transformers), definitely study existing operators in RxJava and other reputable RxJava
extension libraries. It is easy to hack an operator together and believe nothing will go
wrong, when in fact there are a lot of complications you can overlook. Your operator needs
to be serialized, cancellable, concurrent, and handle re-entrancy (which occurs when an
emission invokes a request on the same thread). Of course, some operators are simpler than
others, but you should never assume without committed study first.

Transformers and Custom Operators

[280]

In the next chapter, we will learn about the different strategies to do unit testing against
RxJava APIs and utilities. Whether you create your own custom operators or you have an
Rx project at work, automated testing is something you will want to be proficient in. We
will also learn how to debug RxJava applications, which is not always easy, but it can be
done effectively.

10
Testing and Debugging

While unit testing is not a silver bullet to ensure that your code works properly, it is a good
practice to strive for. This is especially true if your logic is highly deterministic and modular
enough to isolate.

Testing with RxJava at first glance may not seem straightforward. After all, RxJava declares
behaviors rather than states. So how do we test whether behaviors are working correctly,
especially when most testing frameworks expect a stateful result? Fortunately, RxJava
comes with several tools to aid testing, and you can use these tools with your favorite
testing frameworks. There are many testing tools available on the market that can work
with RxJava, but in this chapter, we will use JUnit.

We will also cover a few tips to effectively debug RxJava programs. One of the downsides
of RxJava is that when bugs occur, traditional approaches to debugging are not always
effective, particularly because the stack traces are not always helpful and breakpoints do
not apply easily. But there is a benefit RxJava offers in debugging: with the right approach,
you can walk through your entire reactive chain and find the operator that causes things to
go wrong. The problem becomes very linear and a matter of isolating the bad link. This can
simplify the debugging process significantly.

This chapter has a number of testing features to cover, so we will start with simpler naive
approaches to cover basic blocking operators. Then, we will escalate to the more robust
tools, such as TestObserver, TestSubscriber, and TestScheduler, which you will
likely use in your applications.

Testing and Debugging

[282]

In this chapter, we will cover the following topics:

blockingSubscribe()

Blocking operators
TestObserver and TestSubscriber
TestScheduler

RxJava debugging strategies

Configuring JUnit
In this section, we will be using JUnit as our testing framework. Add the following
dependency to your Maven or Gradle project.

Here is the configuration for Maven:

<dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.12</version>
 </dependency>

Here is the configuration for Gradle:

dependencies {
 compile 'junit:junit:4.12'
}

To save yourself hassle, organize your code project to conform to the Maven Standard
Directory layout. You might want to place your test classes in a /src/test/java/ folder
so Maven and Gradle will automatically recognize it as the test code folder. You also should
put your production code in a /src/main/java/ folder in your project. You can read more
about the Maven Standard Directory layout at h t t p s ://m a v e n . a p a c h e . o r g /g u i d e s /i n t r o d

u c t i o n /i n t r o d u c t i o n - t o - t h e - s t a n d a r d - d i r e c t o r y - l a y o u t . h t m l .

Blocking subscribers
Remember how sometimes we have to stop the main thread from racing past an
Observable or Flowable that operates on a different thread and keep it from exiting the
application before it has a chance to fire? We often prevented this using Thread.sleep(),
especially when we used Observable.interval(), subscribeOn(), or observeOn().

https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html

Testing and Debugging

[283]

The following code shows how we did this typically and kept an
Observable.interval() application alive for five seconds:

 import io.reactivex.Observable;
 import java.util.concurrent.TimeUnit;

 public class Launcher {

 public static void main(String[] args) {
 Observable.interval(1, TimeUnit.SECONDS)
 .take(5)
 .subscribe(System.out::println);

 sleep(5000);
 }

 public static void sleep(int millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

When it comes to unit testing, the unit test usually has to complete before it starts the next
one. This can become quite messy when we have an Observable or Flowable operation
that happens on a different thread. When a test method declares an asynchronous
Observable or Flowable chain operation, we need to block and wait for that operation to
complete.

Here, we create a test to ensure that five emissions are emitted from
Observable.interval(), and we increment AtomicInteger before validating that it
was incremented five times:

 import io.reactivex.Observable;
 import org.junit.Test;
 import java.util.concurrent.TimeUnit;
 import java.util.concurrent.atomic.AtomicInteger;
 import static org.junit.Assert.assertTrue;

 public class RxTest {

 @Test
 public void testBlockingSubscribe() {

 AtomicInteger hitCount = new AtomicInteger();

Testing and Debugging

[284]

 Observable<Long> source = Observable.interval(1,
TimeUnit.SECONDS)
 .take(5);

 source.subscribe(i -> hitCount.incrementAndGet());

 assertTrue(hitCount.get() == 5);
 }
 }

We use the @Test annotation to tell JUnit that this is a test method. You
can run it in Intellij IDEA by clicking on its green triangular play button in
the gutter or by running the test task in Gradle or Maven.

There is a problem, though. When you run this test, the assertion fails.
Observable.interval() is running on a computation thread and the main thread rushes
past it. The main thread performs assertTrue() before the five emissions are fired and
therefore finds hitCount to be 0 rather than 5. We need to stop the main thread until
subscribe() finishes and calls onComplete().

Thankfully, we do not have to get creative using synchronizers and other native Java
concurrency tools. Instead, we can use blockingSubscribe(), which will block the
declaring main thread until onComplete() (or onError()) is called. Once those five
emissions are gathered, the main thread can proceed and perform the assertion successfully,
as demonstrated here. The test should then pass:

 import io.reactivex.Observable;
 import org.junit.Test;
 import java.util.concurrent.TimeUnit;
 import java.util.concurrent.atomic.AtomicInteger;
 import static org.junit.Assert.assertTrue;

 public class RxTest {

 @Test
 public void testBlockingSubscribe() {

 AtomicInteger hitCount = new AtomicInteger();

 Observable<Long> source = Observable.interval(1,
TimeUnit.SECONDS)
 .take(5);

 source.blockingSubscribe(i -> hitCount.incrementAndGet());

Testing and Debugging

[285]

 assertTrue(hitCount.get() == 5);
 }
 }

As we will see in this chapter, there are better ways to test other than
blockingSubscribe(). But blockingSubscribe() is a quick and effective way to stop
the declaring thread and wait for the Observable or Flowable to finish before proceeding,
even if it is on a different thread. Just make sure that the source terminates at some point, or
the test will never finish.

Be judicious in how you use blockingSubscribe() outside the context
of testing and using it in production. There are definitely times it is a
legitimate solution to interface with a non-reactive API. For example, it
can be valid to use it in production to keep an application alive
indefinitely and is an effective alternative to using Thread.sleep(). Just
be careful to ensure the asynchronous benefits of RxJava are not
undermined.

Blocking operators
In RxJava, there is a set of operators we have not covered yet called blocking operators.
These operators serve as an immediate proxy between the reactive world and the stateful
one, blocking and waiting for results to be emitted, but returned in a non-reactive way.
Even if the reactive operations are working on different threads, blocking operators will
stop the declaring thread and make it wait for the results in a synchronized manner, much
like blockingSubscribe().

Blocking operators are especially helpful in making the results of an Observable or
Flowable easily available for evaluation. However, you will want to avoid using them in
production because they encourage anti-patterns and undermine the benefits of reactive
programming. For testing, you will still want to prefer TestObserver and
TestSubscriber, which we will cover later. But here are the blocking operators if you ever
have a need for them.

Testing and Debugging

[286]

blockingFirst()
The blockingFirst() operator will stop the calling thread and make it wait for the first
value to be emitted and returned (even if the chain is operating on a different thread with
observeOn() and subscribeOn()). Say we want to test an Observable chain that filters
a sequence of string emissions for only ones that have a length of four. If we want to assert
that the first emission to make it through this operation is Beta, we can test for it like this:

 import io.reactivex.Observable;
 import org.junit.Test;
 import static org.junit.Assert.assertTrue;

 public class RxTest {

 @Test
 public void testFirst() {
 Observable<String> source =
 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Zeta");

 String firstWithLengthFour = source.filter(s -> s.length()
== 4)
 .blockingFirst();

 assertTrue(firstWithLengthFour.equals("Beta"));
 }
 }

Here, our unit test is called testFirst(), and it will assert that the first string emitted with
a length of four is Beta. Note that instead of using subscribe() or
blockingSubscribe() to receive the emissions, we use blockingFirst(), which will
return the first emission in a non-reactive way. In other words, it returns a straight-up
string and not an Observable emitting string.

This will block the declaring thread until the value is returned and assigned to
firstWithLengthFour. We then use that saved value to assert that it is, in fact, Beta.

Testing and Debugging

[287]

Looking at blockingFirst(), you may be tempted to use it in
production code to save a result statefully and refer to it later. Try not to
do that! While there are certain cases where you might be able to justify it
(such as saving emissions into a HashMap for expensive computations and
lookups), blocking operators can easily be abused. If you need to persist
values, try to use replay() and other reactive caching strategies so that
you can easily change its behaviors and concurrency policies down the
road. Blocking will often make your code less flexible and undermine the
benefits of Rx.

Note that the blockingFirst() operator will throw an error and fail the test if no
emissions come through. However, you can provide a default value as an overload to
blockingFirst() so it always has a value to fall back on.

A similar blocking operator to blockingFirst() is blockingSingle(), which expects
only a single item to be emitted, but throws an error if there are more.

blockingGet()
Maybe and Single do not have blockingFirst() since there can only be one element at
most. Logically, for a Single and Maybe, it is not exactly the first element, but rather the
only element, so the equivalent operator is blockingGet().

Here, we assert that all items of length four include only Beta and Zeta, and we collect
them with toList(), which yields a Single<List<String>>. We can use
blockingGet() to wait for this list and assert that it is equal to our desired result:

 import io.reactivex.Observable;
 import org.junit.Test;
 import java.util.Arrays;
 import java.util.List;
 import static org.junit.Assert.assertTrue;

 public class RxTest {

 @Test
 public void testSingle() {
 Observable<String> source =
 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Zeta");

 List<String> allWithLengthFour = source.filter(s ->
s.length() == 4)

Testing and Debugging

[288]

 .toList()
 .blockingGet();

assertTrue(allWithLengthFour.equals(Arrays.asList("Beta","Zeta")));
 }
 }

blockingLast()
If there is blockingFirst(), it only makes sense to have blockingLast(). This will
block and return the last value to be emitted from an Observable or Flowable operation.
Of course, it will not return anything until onComplete() is called, so this is something you
will want to avoid using with infinite sources.

Here, we assert that the last four-character string emitted from our operation is Zeta:

 import io.reactivex.Observable;
 import org.junit.Test;
 import static org.junit.Assert.assertTrue;

 public class RxTest {

 @Test
 public void testLast() {
 Observable<String> source =
 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Zeta");

 String lastWithLengthFour = source.filter(s -> s.length()
== 4)
 .blockingLast();

 assertTrue(lastWithLengthFour.equals("Zeta"));
 }
 }

Just like blockingFirst(), blockingLast() will throw an error if no emissions occur,
but you can specify an overload for a default value.

Testing and Debugging

[289]

blockingIterable()
One of the most interesting blocking operators is blockingIterable(). Rather than
returning a single emission like our previous examples, it will provide the emissions as they
become available through iterable<T>. The Iterator<T> provided by the Iterable<T>
will keep blocking the iterating thread until the next emission is available, and the iteration
will end when onComplete() is called. Here, we iterate through each returned string value
to ensure that its length is actually 5:

 import io.reactivex.Observable;
 import org.junit.Test;
 import static org.junit.Assert.assertTrue;

 public class RxTest {

 @Test
 public void testIterable() {
 Observable<String> source =
 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Zeta");

 Iterable<String> allWithLengthFive = source.filter(s ->
s.length() == 5)
 .blockingIterable();

 for (String s: allWithLengthFive) {
 assertTrue(s.length() == 5);
 }
 }
 }

The blockingIterable() will queue up unconsumed values until the Iterator is able to
process them. This can be problematic without backpressure as you may run into
OutOfMemoryException errors.

Unlike C#, note that Java's for-each construct will not handle cancellation, breaking, or
disposal. You can work around this by iterating the Iterator from the iterable inside try-
finally. In the finally block, cast the Iterator to a disposable so you can call its
dispose() method.

The blockingIterable() can be helpful in quickly turning an Observable or Flowable
into pull-driven functional sequence types such as a Java 8 Stream or Kotlin sequence,
which can be built-off iterables. However, for Java 8 streams, you are likely better-off using
David Karnok's RxJava2Jdk8Interop library (h t t p s ://g i t h u b . c o m /a k a r n o k d /R x J a v a 2J d k

8I n t e r o p), so that termination is handled more safely.

https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop
https://github.com/akarnokd/RxJava2Jdk8Interop

Testing and Debugging

[290]

blockingForEach()
A more fluent way in which we can execute a blocking for each task is to use the
blockingForEach() operator instead of blockingIterable(). This will block the
declaring thread and wait for each emission to be processed before allowing the thread to
continue. We can streamline our earlier example, where we iterated each emitted string and
ensured that its length was five and specify the assertion as a lambda in the forEach()
operator instead:

 import io.reactivex.Observable;
 import org.junit.Test;
 import static org.junit.Assert.assertTrue;

 public class RxTest {

 @Test
 public void testBlockingForEach() {
 Observable<String> source =
 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Zeta");

 source.filter(s -> s.length() == 5)
 .blockingForEach(s -> assertTrue(s.length() ==
5));
 }
 }

A variant of blockingForEach() is blockingForEachWhile(), which accepts a
predicate that gracefully terminates the sequence if the predicate evaluates to false against
an emission. This can be desirable if all emissions are not going to be consumed and you
want to gracefully terminate.

blockingNext()
The blockingNext() will return an iterable and block each iterator's next() request until
the next value is provided. Emissions that occur after the last fulfilled next() request and
before the current next() are ignored. Here, we have a source that emits every
microsecond (1/1000th of a millisecond). Note that the iterable returned from
blockingNext() ignored previous values it missed:

 import io.reactivex.Observable;
 import org.junit.Test;
 import java.util.concurrent.TimeUnit;

Testing and Debugging

[291]

 public class RxTest {

 @Test
 public void testBlockingNext() {
 Observable<Long> source =
 Observable.interval(1, TimeUnit.MICROSECONDS)
 .take(1000);

 Iterable<Long> iterable = source.blockingNext();

 for (Long i: iterable) {
 System.out.println(i);
 }
 }
 }

The output is as follows:

0
6
9
11
17
23
26

blockingLatest()
The iterable from blockingLatest(), on the other hand, does not wait for the next value,
but requests the last emitted value. Any values before that which were not captured are
forgotten. It will not reconsume the latest value if the iterator's next() consumed it
previously and will block until the next one comes:

 import io.reactivex.Observable;
 import org.junit.Test;
 import java.util.concurrent.TimeUnit;

 public class RxTest {

 @Test
 public void testBlockingLatest() {
 Observable<Long> source =
 Observable.interval(1, TimeUnit.MICROSECONDS)
 .take(1000);

 Iterable<Long> iterable = source.blockingLatest();

Testing and Debugging

[292]

 for (Long i: iterable) {
 System.out.println(i);
 }
 }
 }

The output is as follows:

0
49
51
53
55
56
58
...

blockingMostRecent()
The blockingMostRecent() is similar to blockingLatest(), but it will re-consume the
latest value repeatedly for every next() call from the iterator even if it was consumed
already. It also requires a defaultValue argument so it has something to return if no value
is emitted yet. Here, we use blockingMostRecent() against an Observable emitting
every 10 milliseconds. The default value is -1, and it consumes each value repeatedly until
the next value is provided:

 import io.reactivex.Observable;
 import org.junit.Test;
 import java.util.concurrent.TimeUnit;

 public class RxTest {

 @Test
 public void testBlockingMostRecent() {
 Observable<Long> source =
 Observable.interval(10, TimeUnit.MILLISECONDS)
 .take(5);

 Iterable<Long> iterable = source.blockingMostRecent(-1L);

 for (Long i: iterable) {
 System.out.println(i);
 }
 }
 }

Testing and Debugging

[293]

The output is as follows:

-1
-1
-1
...
0
0
0
...
1
1
1
...

As we finish covering blocking operators, it should be emphasized again that they can be an
effective way to do simple assertions and provide means to block for results so they can be
consumed easily by a testing framework. However, you will want to avoid using blocking
operators for production as much as possible. Try not to give into the sirens of convenience,
as you will find that they can quickly undermine the flexibility and benefits of reactive
programming.

Using TestObserver and TestSubscriber
We've covered blockingSubscribe() and several blocking operators in this chapter so
far. While you can use these blocking tools to do simple assertions, there is a much more
comprehensive way to test reactive code than simply blocking for one or more values. After
all, we should do more than test onNext() calls. We also have onComplete() and
onError() events to account for! It also would be great to streamline testing other RxJava
events, such as subscription, disposal, and cancellation.

So let's introduce the TestObserver and TestSubscriber, your two best friends in
testing your RxJava applications.

TestObserver and TestSubscriber are a treasure trove of convenient methods to aid
testing, many of which assert that certain events have occurred or specific values were
received. There are also blocking methods, such as awaitTerminalEvent(), which will
stop the calling thread until the reactive operation terminates.

Testing and Debugging

[294]

TestObserver is used for Observable, Single, Maybe, and Completable sources, while
TestSubscriber is used for Flowable sources. Here is a unit test showcasing several
TestObserver methods, which also exist on TestSubscriber if you are working with
Flowables. These methods perform tasks such as asserting that certain events have (or have
not) occurred, awaiting terminations or asserting that certain values were received:

 import io.reactivex.Observable;
 import io.reactivex.observers.TestObserver;
 import org.junit.Test;
 import java.util.concurrent.TimeUnit;

 public class RxTest {

 @Test
 public void usingTestObserver() {

 //An Observable with 5 one-second emissions
 Observable<Long> source = Observable.interval(1,
TimeUnit.SECONDS)
 .take(5);

 //Declare TestObserver
 TestObserver<Long> testObserver = new TestObserver<>();

 //Assert no subscription has occurred yet
 testObserver.assertNotSubscribed();

 //Subscribe TestObserver to source
 source.subscribe(testObserver);

 //Assert TestObserver is subscribed
 testObserver.assertSubscribed();

 //Block and wait for Observable to terminate
 testObserver.awaitTerminalEvent();

 //Assert TestObserver called onComplete()
 testObserver.assertComplete();

 //Assert there were no errors
 testObserver.assertNoErrors();

 //Assert 5 values were received
 testObserver.assertValueCount(5);

 //Assert the received emissions were 0, 1, 2, 3, 4

Testing and Debugging

[295]

 testObserver.assertValues(0L, 1L, 2L, 3L, 4L);
 }
 }

This is just a handful of many testing methods available, and they will make your unit tests
in a much more comprehensive and streamlined manner. Most of the TestObserver
methods return TestObserver so you can actually chain these assertions fluently (and this
also applies to TestSubscriber).

Note also that the awaitTerminalEvent() operator can accept a timeout
argument that will throw an error if the source does not complete before
that time.

Spend some time going through all these testing methods so you are aware of the different
assertions you make. Prefer TestObserver and TestSubscriber over blocking operators
as much as possible. This way, you can spend less time maintaining your tests and ensure
that you cover the full spectrum of events in the life cycle of an Observable or Flowable
operation.

TestObserver implements Observer, MaybeObserver, SingleObserver, and
CompetableObserver to support all these reactive types. If you live test a long-running
asynchronous source, you might want to use awaitCount() to wait for a minimum
number of emissions to assert with and not wait for the onComplete() call.

Manipulating time with the TestScheduler
In our previous examples, did you notice that testing a time-driven Observable or
Flowable requires that time to elapse before the test completes? In the last exercise, we
took five emissions from an Observable.interval() emitting every 1 second, so that test
took 5 seconds to complete. If we have a lot of unit tests that deal with time-driven sources,
it can take a long time for testing to complete. Would it not be nice if we could simulate
time elapses rather than experiencing them?

The TestScheduler does exactly this. It is a Scheduler implementation that allows us to
fast-forward by a specific amount of elapsed time, and we can do any assertions after each
fast-forward to see what events have occurred.

Testing and Debugging

[296]

Here, we create a test against Observable.interval() that emits every minute and
ultimately asserts that 90 emissions have occurred after 90 minutes. Rather than having to
wait the entire 90 minutes in real time, we use TestObserver to artificially elapse these 90
minutes. This allows the test to run instantly:

 import io.reactivex.Observable;
 import io.reactivex.observers.TestObserver;
 import io.reactivex.schedulers.TestScheduler;
 import org.junit.Test;

 import java.util.concurrent.TimeUnit;

 public class RxTest {

 @Test
 public void usingTestScheduler() {

 //Declare TestScheduler
 TestScheduler testScheduler = new TestScheduler();

 //Declare TestObserver
 TestObserver<Long> testObserver = new TestObserver<>();

 //Declare Observable emitting every 1 minute
 Observable<Long> minuteTicker =
 Observable.interval(1, TimeUnit.MINUTES,
testScheduler);

 //Subscribe to TestObserver
 minuteTicker.subscribe(testObserver);

 //Fast forward by 30 seconds
 testScheduler.advanceTimeBy(30, TimeUnit.SECONDS);

 //Assert no emissions have occurred yet
 testObserver.assertValueCount(0);

 //Fast forward to 70 seconds after subscription
 testScheduler.advanceTimeTo(70, TimeUnit.SECONDS);

 //Assert the first emission has occurred
 testObserver.assertValueCount(1);

 //Fast Forward to 90 minutes after subscription
 testScheduler.advanceTimeTo(90, TimeUnit.MINUTES);

 //Assert 90 emissions have occurred

Testing and Debugging

[297]

 testObserver.assertValueCount(90);
 }
 }

Cool, right? It is almost like time travel! We put Observable.interval() on our
TestScheduler. This way, TestScheduler controls how the Observable interprets time
and pushes emissions. We fast-forward 30 seconds using advanceTimeBy() and then
assert that no emissions have happened yet. We then use advanceTimeTo() to jump 70
seconds after subscription occurred and assert that one emission did happen. Finally, we
advance 90 minutes after subscription, and we assert that 90 emissions did, in fact, occur.

This all ran instantly rather than taking 90 minutes, showing that it is indeed possible to test
time-driven Observable/Flowable operations without having to actually elapse that time.
Carefully note that advanceTimeBy() will fast-forward the specified time interval relative
to the current time, whereas advanceTimeTo() will jump to the exact time elapsed since
the subscription has occurred.

In summary, use TestScheduler when you need to virtually represent time elapsing, but
note that it is not a thread-safe Scheduler and should not be used with actual concurrency.
A common pitfall is complicated flows that use many operators and Schedulers are not
easily configurable to use TestScheduler. In this case, you can use
RxJavaPlugins.setComputationScheduler() and similar methods that override the
standard Schedulers and inject TestScheduler in its place.

There are two other methods to note in TestScheduler. The now() will return how much
time has virtually elapsed in the unit you specify. The triggerActions() method will
kick-off any actions that are scheduled to be triggered, but have not virtually been elapsed
yet.

Debugging RxJava code
RxJava is not easy to debug at first glance, primarily due to the lack of debug tooling and
the large stack traces it can produce. There are efforts in creating effective debugging tools
for RxJava, most notably the Frodo library for Android (h t t p s ://g i t h u b . c o m /a n d r o i d 10/f

r o d o). We will not cover any debugging tools for RxJava as nothing has been standardized
quite yet, but we will learn about an effective approach that you can take to debug reactive
code.

https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo
https://github.com/android10/frodo

Testing and Debugging

[298]

A common theme in debugging RxJava operations is finding the bad link or the operator in
the Observable/Flowable chain that is causing the problem. Whether an error is being
emitted, onComplete() is never being called, or an Observable is unexpectedly empty,
you often have to start at the beginning of the chain at the source and then validate each
step downstream until you find the one not working correctly.

Say, we have an Observable pushing five strings containing numbers and alphabetic
words separated by slashes "/". We want to break these up on the slashes "/", filter only for
the alphabetic words, and capture them in TestObserver. However, run this operation
and you will see that this test fails:

 import io.reactivex.observers.TestObserver;
 import org.junit.Test;
 import io.reactivex.Observable;

 public class RxTest {

 @Test
 public void debugWalkthrough() {

 //Declare TestObserver
 TestObserver<String> testObserver = new TestObserver<>();

 //Source pushing three strings
 Observable<String> items =
 Observable.just("521934/2342/Foxtrot",
 "Bravo/12112/78886/Tango",
 "283242/4542/Whiskey/2348562");

 //Split and concatMap() on "/"
 items.concatMap(s ->
 Observable.fromArray(s.split("/"))
)
 //filter for only alphabetic Strings using regex
 .filter(s -> s.matches("[A-Z]+"))

 //Subscribe the TestObserver
 .subscribe(testObserver);

 //Why are no values being emitted?
 System.out.println(testObserver.values());

 //This fails due to no values

testObserver.assertValues("Foxtrot","Bravo","Tango","Whiskey");
 }
 }

Testing and Debugging

[299]

The output is as follows:

[]

java.lang.AssertionError: Value count differs; Expected: 4
[Foxtrot, Bravo, Tango, Whiskey],
 Actual: 0 [] (latch = 0, values = 0, errors = 0, completions =
1)

 at
io.reactivex.observers.BaseTestConsumer.fail(BaseTestConsumer.java:
163)
 at
io.reactivex.observers.BaseTestConsumer.assertValues(BaseTestConsum
er.java:485)
 at RxTest.debugWalkthrough(RxTest.java:32)
...

So what in the world went wrong? How do we debug this failing test? Well, remember that
RxJava operations are a pipeline. The correct emissions are supposed to flow through and
make it to the Observer. But no emissions were received instead. Let's get our plumber
gear on and find out where the clog in the pipeline is. We will start at the source.

Place doOnNext() immediately after the source and before concatMap(), and print each
emission. This gives us visibility into what is coming out of the source Observable. As
shown here, we should see all the emissions from the source print, which shows that no
emissions are being omitted and the source upstream is working correctly:

//Split and concatMap() on "/"
 items.doOnNext(s -> System.out.println("Source pushed: " + s))
 .concatMap(s ->
 Observable.fromArray(s.split("/"))
)

The output is as follows:

Source pushed: 521934/2342/Foxtrot
Source pushed: Bravo/12112/78886/Tango
Source pushed: 283242/4542/Whiskey/2348562
[]

java.lang.AssertionError: Value count differs; Expected ...

Testing and Debugging

[300]

Let's move downstream and look at concatMap() next. Maybe that is omitting emissions,
so let's check. Move doOnNext() after concatMap() and print each emission to see
whether all of them are coming through, as shown next:

//Split and concatMap() on "/"
 items.concatMap(s ->
 Observable.fromArray(s.split("/"))
)
 .doOnNext(s -> System.out.println("concatMap() pushed: " + s))

The output is as follows:

concatMap() pushed: 521934
concatMap() pushed: 2342
concatMap() pushed: Foxtrot
concatMap() pushed: Bravo
concatMap() pushed: 12112
concatMap() pushed: 78886
concatMap() pushed: Tango
concatMap() pushed: 283242
concatMap() pushed: 4542
concatMap() pushed: Whiskey
concatMap() pushed: 2348562
[]

java.lang.AssertionError: Value count differs; Expected ...

Okay, so concatMap() is working fine and all the emissions are going through. So nothing
is wrong with the splitting operation inside concatMap(). Let's move on downstream and
put doOnNext() after filter(). As shown, print each emission to see whether the ones
we want come out of the filter():

//filter for only alphabetic Strings using regex
 .filter(s -> s.matches("[A-Z]+"))
 .doOnNext(s -> System.out.println("filter() pushed: " + s))

The output is as follows:

[]

java.lang.AssertionError: Value count differs; Expected ...

Testing and Debugging

[301]

Aha! No emissions were printed after filter(), which means nothing flowed through it.
The filter() is the operator causing the problem. We intended to filter out the numeric
strings and only emit the alphabetic words. But for some reason, all emissions were filtered
out. If you know anything about regular expressions, note that we are only qualifying
strings that are entirely uppercase. We actually need to qualify lowercase letters too, so here
is the correction we need:

//filter for only alphabetic Strings using regex
 .filter(s -> s.matches("[A-Za-z]+"))
 .doOnNext(s -> System.out.println("filter() pushed: " + s))

The output is as follows:

filter() pushed: Foxtrot
filter() pushed: Bravo
filter() pushed: Tango
filter() pushed: Whiskey
[Foxtrot, Bravo, Tango, Whiskey]

Alright, it is fixed! Our unit test passed finally, and here it is in its entirety. Now that the
problem is solved and we are finished debugging, we can remove doOnNext() and any
print calls:

 import io.reactivex.observers.TestObserver;
 import org.junit.Test;
 import io.reactivex.Observable;

 public class RxTest {

 @Test
 public void debugWalkthrough() {

 //Declare TestObserver
 TestObserver<String> testObserver = new TestObserver<>();

 //Source pushing three strings
 Observable<String> items =
 Observable.just("521934/2342/Foxtrot",
 "Bravo/12112/78886/Tango",
 "283242/4542/Whiskey/2348562");

 //Split and concatMap() on "/"
 items.concatMap(s ->
 Observable.fromArray(s.split("/"))
)
 //filter for only alphabetic Strings using regex
 .filter(s -> s.matches("[A-Za-z]+"))

Testing and Debugging

[302]

 //Subscribe the TestObserver
 .subscribe(testObserver);

 //This succeeds

testObserver.assertValues("Foxtrot","Bravo","Tango","Whiskey");
 }
 }

The output is as follows:

[Foxtrot, Bravo, Tango, Whiskey]

In summary, when you have an Observable or Flowable operation that is emitting an
error, the wrong items, or no items at all, start at the source and work your way
downstream until you find the operator causing the problem. You can also put
TestObserver at each step to get a more comprehensive report of what happened in that
operation, but using operators such as doOnNext(), doOnError(), doOnComplete(),
doOnSubscribe(), and so on are quick and easy ways to get an insight into what is
happening in that part of the pipeline.

It may not be optimal that you have to modify code with doXXX() operators to debug it. If
you are using Intellij IDEA, you can try to use breakpoints within lambdas, although I have
only had mixed success with this approach. You can also research RxJava debugging
libraries to get detailed logs without modifying your code. Hopefully, as RxJava continues
to gain traction, more useful debugging tools will pop up and become standardized.

Summary
In this chapter, you learned how to test and debug RxJava code. When you create an
application or an API that is built on RxJava, you may want to build unit tests around it in
order to ensure that sanity checks are always enforced. You can use blocking operators to
help perform assertions, but TestObserver and TestSubscriber will give you a much
more comprehensive and streamlined testing experience. You can also use TestScheduler
to simulate time elapses so that time-based Observables can be tested instantly. Finally, we
covered a debugging strategy in RxJava, which often involves finding the broken operator,
starting at the source, and moving downstream until it is found.

This chapter closes our journey covering the RxJava library, so congratulations if you got
here! You now have a solid foundation of building reactive Java applications. In the final
two chapters, we will cover RxJava in two specific domains: Android and Kotlin.

11
RxJava on Android

If there is one domain that reactive programming has taken by storm, it is definitely mobile
apps. As discussed throughout this book, ReactiveX is highly useful for many domains. But
mobile apps are becoming increasingly complex, and users have a short tolerance for apps
that are unresponsive, slow, or buggy. Therefore, mobile applications were quick to be early
adopters of ReactiveX to solve these problems. RxSwift has quickly become popular on iOS
after RxJava got a foothold on Android. There are also RxAndroid and RxBinding libraries
to integrate RxJava easily with the Android environment, which we will cover in this
chapter.

One of the pain points that Android developers have coped with for some time is being
stuck with Java 6. This means that many of the widely used versions of Android (KitKat,
Lollipop, and Marshmallow) do not support Java 8 lambdas (although this changed in
Android Nougat, which finally uses OpenJDK 8). At first glance, this means you are stuck
using boilerplate-riddled anonymous classes to express your RxJava operators (refer to
Appendix A for examples). However, by using Retrolambda, you can, in fact, use earlier
versions of Android while using lambdas, which we will go through in this chapter.
Another option you have is using the Kotlin language, which has become an increasingly
popular platform for Android development. Kotlin is an arguably more modern and
expressive language than Java and can compile to Java 6 bytecode. We will cover Kotlin
with RxJava in the next chapter.

If you have no interest in Android development, feel free to skip this chapter. But the rest of
you reading this book are most likely Android developers, so it is assumed that you have
done some Android development already.

If you have little or no experience with Android and would like to learn, a
great book to get started is Android Programming: The Big Nerd Ranch Guide
by Bill Phillips, Chris Stewart, and Kristin Marsicano (h t t p s ://w w w . b i g n e

r d r a n c h . c o m /b o o k s /a n d r o i d - p r o g r a m m i n g /). It is an excellent book to
become thoroughly proficient in Android development quickly.

https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/
https://www.bignerdranch.com/books/android-programming/

RxJava on Android

[304]

In this chapter, we will cover the following topics:

Creating an Android project
Configuring RxJava for Android
Using RxJava and RxAndroid
Using RxBinding
Other Android Rx libraries

Creating the Android project
We are going to use Android Studio for the examples in this chapter, with Android 5.1
Lollipop as our platform target. Launch Android Studio and create a new project, as
shown in the following figure:

Figure 11.1: Creating a new Android project

RxJava on Android

[305]

In the next screen (shown in the following figure), name your project RxJavaApp with a
Company domain of packtpub.com or whatever you prefer. Then, click on Next:

Figure 11.2

RxJava on Android

[306]

We are going to target Phone and Tablet. Since we may want our app to be compatible
with devices running earlier versions of Android, let's select Android 5.1 (Lollipop) as our
Minimum SDK. This will also give us an opportunity to practice using Retrolambda. After
this, click on Next:

Figure 11.3

RxJava on Android

[307]

On the next screen, choose Empty Activity as our your template, as shown in the following
figure. Then, click on Next. As you probably know, an activity is one interactive screen
containing controls. For the examples in this chapter, we will use one activity:

Figure 11.4

RxJava on Android

[308]

Finally, we come to the final screen to configure the Activity. Feel free to leave Activity
Name as MainActivity and its corresponding Layout Name as activity_main. We will
populate this Activity later. Then, click on Finish:

Figure 11.5

RxJava on Android

[309]

You should now come to a screen shortly with your entire Android project, and it should
already be configured with Gradle. Open build.gradle (Module: app) so we can
configure our required dependencies next, as shown in the following figure:

Figure 11.6

You will need to make a few changes to the build.gradle script targeting the app module
so we can use RxJava and Retrolambda.

RxJava on Android

[310]

Configuring Retrolambda
First, let's get Retrolambda set up. We will also leverage a quick unit test to see whether it
works correctly. Open the ExampleUnitTest.java file that was created with the project
template. Remove the sample unit test method inside it and declare a new one called
lambdaTest(). Inside it, try to declare a Callable<Integer> with a lambda, as shown in
the following figure. Note that it throws a compiler error because we are not using Java 8 to
support lambdas.

Figure 11.7 - Lambdas are not supported with this Android and Java version

We cannot use Java 8 if we are targeting Android Lollipop, so we need Retrolambda to save
us from creating boilerplate-riddled anonymous inner classes. It will compile our lambdas
to anonymous classes at the bytecode level, so it supports Java 6.

To get Retrolambda set up, we are going to use the gradle-retrolambda plugin to make the
configuration process as seamless as possible. Go back to your build.gradle (Module:
app) script and modify it like this:

buildscript {
 repositories {
 mavenCentral()
 }

RxJava on Android

[311]

 dependencies {
 classpath 'me.tatarka:gradle-retrolambda:3.6.1'
 }
 }

 apply plugin: 'com.android.application'
 apply plugin: 'me.tatarka.retrolambda'

 android {
 compileSdkVersion 25
 buildToolsVersion "25.0.2"
 defaultConfig {
 applicationId "com.packtpub.rxjavademo"
 minSdkVersion 22
 targetSdkVersion 25
 versionCode 1
 versionName "1.0"
 testInstrumentationRunner
"android.support.test.runner.AndroidJUnitRunner"
 }
 buildTypes {
 release {
 minifyEnabled false
 proguardFiles getDefaultProguardFile('proguard-
android.txt'), 'proguard-rules.pro'
 }
 }
 compileOptions {
 sourceCompatibility JavaVersion.VERSION_1_8
 targetCompatibility JavaVersion.VERSION_1_8
 }
 }

 dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])

androidTestCompile('com.android.support.test.espresso:espresso-
core:2.2.2', {
 exclude group: 'com.android.support', module: 'support-
annotations'
 })
 compile 'com.android.support:appcompat-v7:25.3.1'
 compile 'com.android.support.constraint:constraint-
layout:1.0.2'
 testCompile 'junit:junit:4.12'
 }

RxJava on Android

[312]

Click on the Sync Now prompt after you save the script to rebuild the project. The big
change to note in the preceding code is that we added a buildscript { } block that brings in
Retrolambda 3.6.1 as a dependency from mavenCentral(). We can then apply the
retrolambda plugin. Finally, we add a compileOptions { } block inside the android { }
one and set the source and target to be compatible with Java 8.

Run our unit test containing our lambda now. Score! As shown in the following figure,
everything compiles and runs successfully, and we are now running lambdas on Java 6!
Let's take a look:

Figure 11.8 - We can now use lambdas with Java 6 on Android Lollipop with Retrolambda set up

Retrolambda is a brilliant tool for Android developers constrained to using Java 6. It
cleverly compiles lambdas as traditional anonymous classes, and you can save yourself
some terrible boilerplate work when using RxJava.

RxJava on Android

[313]

To learn more about Retrolambda and additional tweaks and
configurations you can make, check out its GitHub page at h t t p s ://g i t h u

b . c o m /e v a n t /g r a d l e - r e t r o l a m b d a . At the time of writing this, there are
also upcoming lambda tools on Android Studio (h t t p s ://d e v e l o p e r . a n d

r o i d . c o m /s t u d i o /p r e v i e w /f e a t u r e s /j a v a 8- s u p p o r t . h t m l). These
features may serve as an alternative to Retrolambda.

Configuring RxJava and friends
Now that the hard part is over and you have Retrolambda set up, all that is left for the
configuration is bringing in RxJava and RxAndroid. Another set of libraries to add to your
stack is Jake Wharton's RxBinding (h t t p s ://g i t h u b . c o m /J a k e W h a r t o n /R x B i n d i n g), which
streamlines RxJava usage for Android UI controls.

Add these three libraries to your dependencies { } block for your module (not the one
inside the buildscript { } block!):

 compile 'io.reactivex.rxjava2:rxjava:2.1.0'
 compile 'io.reactivex.rxjava2:rxandroid:2.0.1'
 compile 'com.jakewharton.rxbinding2:rxbinding:2.0.0'

So these should now be your full build.gradle (Module: app) contents:

buildscript {
 repositories {
 mavenCentral()
 }

 dependencies {
 classpath 'me.tatarka:gradle-retrolambda:3.6.1'
 }
 }

 apply plugin: 'com.android.application'
 apply plugin: 'me.tatarka.retrolambda'

 android {
 compileSdkVersion 25
 buildToolsVersion "25.0.2"
 defaultConfig {
 applicationId "com.packtpub.rxjavademo"
 minSdkVersion 22
 targetSdkVersion 25
 versionCode 1
 versionName "1.0"

https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://developer.android.com/studio/preview/features/java8-support.html
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding
https://github.com/JakeWharton/RxBinding

RxJava on Android

[314]

 testInstrumentationRunner
"android.support.test.runner.AndroidJUnitRunner"
 }
 buildTypes {
 release {
 minifyEnabled false
 proguardFiles getDefaultProguardFile('proguard-
android.txt'), 'proguard-rules.pro'
 }
 }
 compileOptions {
 sourceCompatibility JavaVersion.VERSION_1_8
 targetCompatibility JavaVersion.VERSION_1_8
 }
 }

 dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])

androidTestCompile('com.android.support.test.espresso:espresso-
core:2.2.2', {
 exclude group: 'com.android.support', module: 'support-
annotations'
 })
 compile 'com.android.support:appcompat-v7:25.3.1'
 compile 'com.android.support.constraint:constraint-
layout:1.0.2'

 compile 'io.reactivex.rxjava2:rxjava:2.1.0'
 compile 'io.reactivex.rxjava2:rxandroid:2.0.1'
 compile 'com.jakewharton.rxbinding2:rxbinding:2.0.0'

 testCompile 'junit:junit:4.12'
 }

Ensure that you click on the Sync Now prompt to rebuild the project with these
dependencies in place. For the remainder of the chapter, we will touch on a few ways in
which you can use RxJava, RxAndroid, and RxBinding together in your Android
application. I could easily write a small book about different reactive features, bindings, and
patterns you can use with Android, but in this chapter, we will take a minimalistic
approach to focus on the core Rx features. We will touch on other libraries and resources
you can research at the end of this chapter.

RxJava on Android

[315]

Using RxJava and RxAndroid
The primary feature of the RxAndroid library (h t t p s ://g i t h u b . c o m /R e a c t i v e X /R x A n d r o i

d) is that it has Android Schedulers to help your concurrency goals for your Android app. It
has a Scheduler for the Android main thread as well as an implementation that can target
any message Looper. Striving to be a core library, RxAndroid does not have many other
features. You will need specialized reactive binding libraries for Android to do more than
that, which we will explore later.

Let's start simple. We will modify TextView in the middle of our MainActivity (which
already contains "Hello World!") to change to "Goodbye World!" after 3 seconds. We
will do all of this reactively using Observable.delay(). Because this will emit on a
computational Scheduler, we will need to leverage observeOn() to safely switch the
emission to the Android main thread.

First, in the res/layout/activity_main.xml file, modify the TextView block to have an
ID property called my_text_view (as shown in the following code). This way, we can refer
to it from our app code in a moment:

 <?xml version="1.0" encoding="utf-8"?>
 <android.support.constraint.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.packtpub.rxjavademo.MainActivity">

 <TextView
 android:id="@+id/my_text_view"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello World!"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

 </android.support.constraint.ConstraintLayout>

Finally, rebuild your project and go to the MainActivity.java file. In the onCreate()
method implementation, we are going to look up our "my_text_view" component and save
it to a variable called myTextView (and cast it to TextView).

https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid

RxJava on Android

[316]

Then, immediately, we are going to create an Observable emitting just the string Goodbye
World! and delay it for 3 seconds. Because delay() will put it on a computational
Scheduler, we will use observeOn() to put that emission back in
AndroidSchedulers.mainThread() once it is received. Implement all this, as shown in
the following code:

 package com.packtpub.rxjavademo;

 import android.support.v7.app.AppCompatActivity;
 import android.os.Bundle;
 import android.widget.TextView;
 import java.util.concurrent.TimeUnit;
 import io.reactivex.Observable;
 import io.reactivex.android.schedulers.AndroidSchedulers;

 public class MainActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 TextView myTextView = (TextView)
findViewById(R.id.my_text_view);

 Observable.just("Goodbye World!")
 .delay(3, TimeUnit.SECONDS)
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe(s -> myTextView.setText(s));
 }
 }

Run this application either on an emulated virtual device or an actual connected device.
Sure enough, you will get an app that shows "Hello World!" for 3 seconds and then
changes to "Goodbye World!". Here, I run this app on a virtual Pixel phone, as shown in
the following figure:

RxJava on Android

[317]

Figure 11.9 - An Android app that switches text from "Hello World!" to "Goodbye World!" after 3 seconds.

If you do not use this observeOn() operation to switch back to the Android
mainThread(), the app will likely crash. Therefore, it is important to make sure any
emissions that modify the Android UI happen on the mainThread(). Thankfully, RxJava
makes this easy to do compared to traditional concurrency tools.

RxJava on Android

[318]

Pretty much everything you learned earlier in this book can be applied to Android
development, and you can mix RxJava and RxAndroid with your favorite Android utilities,
libraries, and design patterns. However, if you want to create Observables off of Android
widgets, you will need to use RxBinding and other libraries to augment your Rx capabilities
on Android.

There is also an AndroidSchedulers.from() factory that accepts an event Looper and
returns a Scheduler that will execute emissions on any Android Looper. This will operate
the Observable/Flowable on a new thread and emit results through onNext() on the
thread running a background operation.

Using RxBinding
RxAndroid does not have any tools to create Observables off Android events, but there are
many libraries that provide means to do this. The most popular library is RxBinding, which
allows you to create Observables off of UI widgets and events.

There are many factories available in RxBinding. One static factory class you may use
frequently is RxView, which allows you to create Observables off controls that extend View
and broadcast different events as emissions. For instance, change your
activity_main.xmlto have a Button and TextView class, as follows:

 <?xml version="1.0" encoding="utf-8"?>
 <android.support.constraint.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.packtpub.rxjavademo.MainActivity">

 <LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:orientation="vertical"
 tools:layout_editor_absoluteY="8dp"
 tools:layout_editor_absoluteX="8dp">

 <Button
 android:id="@+id/increment_button"
 android:text="Increment"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />
 <TextView

RxJava on Android

[319]

 android:id="@+id/my_text_view"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="0"/>
 </LinearLayout>

 </android.support.constraint.ConstraintLayout>

We saved Button and TextView to increment_button and my_text_view IDs,
respectively. Now let's switch over to the MainActivity.java class and have the Button
broadcast the number of times it was pressed to the TextView. Use the RxView.clicks()
factory to emit each Button click as an Object and map it to a 1. As we did in Chapter 3,
Basic Operators, we can use the scan() operator to emit a rolling count of emissions, as
shown in the following code:

 package com.packtpub.rxjavademo;

 import android.os.Bundle;
 import android.support.v7.app.AppCompatActivity;
 import android.widget.Button;
 import android.widget.TextView;

 import com.jakewharton.rxbinding2.view.RxView;

 public class MainActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 TextView myTextView = (TextView)
findViewById(R.id.my_text_view);
 Button incrementButton = (Button)
findViewById(R.id.increment_button);

 //broadcast clicks into a cumulative increment, and
display in TextView
 RxView.clicks(incrementButton)
 .map(o -> 1)
 .scan(0,(total, next) -> total + next)
 .subscribe(i -> myTextView.setText(i.toString()));
 }
 }

RxJava on Android

[320]

Now run this app and press the button a few times. Each press will result in the number
incrementing in the TextView, as shown in the following figure:

)

Figure 11.10 - Reactively turning Button clicks into a scan() emitting the number of times it was pressed.

RxJava on Android

[321]

Just in the RxView alone, there are dozens of factories to emit the states and events of a
variety of properties on a View widget. Just to name a few, some of these other factories
include hover(), drag(), and visibility(). There are also a large number of specialized
factories for different widgets, such as RxTextView, RxSearchView, and RxToolbar.

There is so much functionality in RxBinding that it is difficult to cover all of it in this
chapter. The most effective way to see what is available is to explore the RxBinding project
source code on GitHub, which you can find at h t t p s ://g i t h u b . c o m /J a k e W h a r t o n /R x B i n d i

n g /.

Note that RxBinding has several "support" modules you can optionally
bring in, including design bindings, RecyclerView bindings, and even
Kotlin extensions. You can read more about these modules on GitHub
README.

Other RxAndroid bindings libraries
If you are fully embracing the reactive approach in making Android apps, there are many
other specialized reactive bindings libraries you can leverage in your apps. They often deal
with specific domains of Android but can be helpful nonetheless if you work with these
domains. Outside of RxBinding, here are some notable bindings libraries you can use
reactively with Android:

SqlBrite (h t t p s ://g i t h u b . c o m /s q u a r e /s q l b r i t e): A SQLite wrapper that brings
reactive semantics to SQL queries.
RxLocation (h t t p s ://g i t h u b . c o m /p a t l o e w /R x L o c a t i o n): A reactive location
API
rx-preferences (h t t p s ://g i t h u b . c o m /f 2p r a t e e k /r x - p r e f e r e n c e s): A reactive
SharedPreferences API
RxFit (h t t p s ://g i t h u b . c o m /p a t l o e w /R x F i t): Reactive fitness API for Android
RxWear (h t t p s ://g i t h u b . c o m /p a t l o e w /R x W e a r): A reactive API for the
Wearable library
ReactiveNetwork (h t t p s ://g i t h u b . c o m /p w i t t c h e n /R e a c t i v e N e t w o r k):
Reactively listens for the network connectivity state
ReactiveBeacons (h t t p s ://g i t h u b . c o m /p w i t t c h e n /R e a c t i v e B e a c o n s):
Reactively scans for BLE (Bluetooth Low Energy) beacons in proximity

https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/JakeWharton/RxBinding/
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/square/sqlbrite
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/patloew/RxLocation
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/f2prateek/rx-preferences
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxFit
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/patloew/RxWear
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveNetwork
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons
https://github.com/pwittchen/ReactiveBeacons

RxJava on Android

[322]

As you can see, there is quite an RxJava ecosystem for Android, and you can view a fuller
list on the RxAndroid wiki (h t t p s ://g i t h u b . c o m /R e a c t i v e X /R x A n d r o i d /w i k i). Definitely
leverage Google to see whether others exist for your specific task in mind. If you cannot
find a library, there might be an OSS opportunity to start one!

Life cycles and cautions using RxJava with
Android
As always, be deliberate and careful about how you manage the life cycle of your
subscriptions. Make sure you do not rely on weak references in your Android app and
assume reactive streams will dispose of themselves because they will not! So always call
dispose() on your disposables when a piece of your Android application is no longer
being used.

For instance, say you create a simple app that displays the number of seconds since it was
launched. For this exercise, set up your layout like this in order to have timer_field in
the TextView class:

 <?xml version="1.0" encoding="utf-8"?>
 <android.support.constraint.ConstraintLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.packtpub.rxjavaapp.MainActivity">

 <TextView
 android:id="@+id/timer_field"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="0"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

 </android.support.constraint.ConstraintLayout>

https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid/wiki

RxJava on Android

[323]

We can use an Observable.interval() to emit every second to a TextField. But we
need to decide carefully how and if this counter persists when the app is no longer active.
When onPause() is called, we might want to dispose of this timer operation. When
onResume() is called, we can subscribe again and create a new disposable, effectively
restarting the timer. For good measure, we should dispose of it when onDestroy() is
called as well. Here is a simple implementation that manages these life cycle rules:

 package com.packtpub.rxjavaapp;

 import android.support.v7.app.AppCompatActivity;
 import android.os.Bundle;
 import android.widget.TextView;

 import java.util.concurrent.TimeUnit;

 import io.reactivex.Observable;
 import io.reactivex.android.schedulers.AndroidSchedulers;
 import io.reactivex.disposables.Disposable;

 public class MainActivity extends AppCompatActivity {

 private final Observable<String> timer;
 private Disposable disposable;

 MainActivity() {
 timer = Observable.interval(1, TimeUnit.SECONDS)
 .map(i -> Long.toString(i))
 .observeOn(AndroidSchedulers.mainThread());
 }

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }

 @Override
 protected void onPause() {
 super.onPause();
 disposable.dispose();
 }

 @Override
 protected void onResume() {
 super.onResume();
 TextView tv = (TextView) findViewById(R.id.timer_field);
 disposable = timer.subscribe(s -> tv.setText(s));

RxJava on Android

[324]

 }

 @Override
 protected void onDestroy() {
 super.onDestroy();
 if (disposable != null)
 disposable.dispose();
 }
 }

If you want to persist or save the state of your app, you may have to get creative and find a
way to dispose of your reactive operations when onPause() is called while allowing it to
pick up where it left when onResume() happens. In the following code, I statefully hold the
last value emitted from my timer an inAtomicInteger and use that as the starting value in
the event that a pause/resume occurs with a new subscription:

 package com.packtpub.rxjavaapp;

 import android.support.v7.app.AppCompatActivity;
 import android.os.Bundle;
 import android.widget.TextView;

 import java.util.concurrent.TimeUnit;
 import java.util.concurrent.atomic.AtomicInteger;

 import io.reactivex.Observable;
 import io.reactivex.android.schedulers.AndroidSchedulers;
 import io.reactivex.disposables.Disposable;

 public class MainActivity extends AppCompatActivity {

 private final Observable<String> timer;
 private final AtomicInteger lastValue = new AtomicInteger(0);
 private Disposable disposable;

 MainActivity() {
 timer = Observable.interval(1, TimeUnit.SECONDS)
 .map(i -> 1)

.startWith(Observable.fromCallable(lastValue::get))
 .scan((current,next) -> current + next)
 .doOnNext(lastValue::set)
 .map(i -> Integer.toString(i))
 .observeOn(AndroidSchedulers.mainThread());
 }

 @Override

RxJava on Android

[325]

 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }

 @Override
 protected void onPause() {
 super.onPause();
 disposable.dispose();
 }

 @Override
 protected void onResume() {
 super.onResume();
 TextView tv = (TextView) findViewById(R.id.timer_field);
 disposable = timer.subscribe(s -> tv.setText(s));

 }

 @Override
 protected void onDestroy() {
 super.onDestroy();

 if (disposable != null)
 disposable.dispose();
 }
 }

So again, make sure you manage your reactive operations carefully and dispose of them
deliberately with the life cycle of your app.

Also, make sure that you leverage multicasting for UI events when multiple
Observers/Subscribers are listening. This prevents multiple listeners from being attached to
widgets, which may not always be efficient. On the other hand, do not add the overhead of
multicasting when there is only one Observer/Subscriber to a widget's events.

RxJava on Android

[326]

Summary
In this chapter, we touched on various parts of the rich RxAndroid ecosystem to build
reactive Android applications. We covered Retrolambda so we can leverage lambdas with
earlier versions of Android that only support Java 6. This way, we do not have to resort to
anonymous inner classes to express our RxJava operators. We also touched on RxAndroid,
which is the core of the reactive Android ecosystem, and it only contains Android
Schedulers. To plug in your various Android widgets, controls, and domain-specific events,
you will need to rely on other libraries, such as RxBinding.

In the next chapter, we will cover using RxJava with Kotlin. We will learn how to use this
exciting new language, which has essentially become the Swift of Android, and why it
works so well with RxJava.

12
Using RxJava for Kotlin New

In our final chapter, we will apply RxJava to an exciting new frontier on the JVM: the Kotlin
language.

Kotlin was developed by JetBrains, the company behind Intellij IDEA, PyCharm, and
several other major IDEs and developer tools. For some time, JetBrains used Java to build its
products, but after 2010, JetBrains began to question whether it was the best language to
meet their needs and modern demands. After investigating existing languages, they
decided to build and open source their own. In 2016 (5 years later), Kotlin 1.0 was released.
In 2017, Kotlin 1.1 was released to a growing community of users. Shortly afterward,
Google announced Kotlin as an officially supported language for Android.

We will cover the following topics in this chapter:

Why Kotlin?
Configuring Kotlin
Kotlin basics
Extension operators
Using RxKotlin
Dealing with SAM ambiguity
let() and apply()
Tuples and data classes
The future of ReactiveX and Kotlin

Using RxJava for Kotlin New

[328]

Why Kotlin?
Kotlin strives to be a pragmatic and industry-focused language, seeking a minimal (but
legible) syntax that expresses business logic rather than boilerplate. However, it does not
cut corners like many concise languages. It is statically typed and performs robustly in
production and yet is speedy enough for prototyping. It also works 100% with Java libraries
and source code, making it feasible for a gradual transition.

Android developers, who were stuck on Java 6 until recently, were quick to adopt Kotlin
and effectively make it the "Swift of Android". Funnily, Swift and Kotlin have a similar feel
and syntax, but Kotlin came into existence first. On top of that, a Kotlin community and
ecosystem of libraries continued to grow quickly. In 2017, Google announced Kotlin as an
officially supported language to develop Android apps. Due to JetBrains and Google's
commitment, it is clear Kotlin has a bright future in the JVM.

But what does Kotlin have to do with RxJava? Kotlin has many useful language features
that Java does not, and they can greatly improve the expressibility of RxJava. Also, more
Android developers are using Kotlin as well as RxJava, so it makes sense to show how these
two platforms can work together.

Kotlin is a language that can quickly be picked up by Java developers within a matter of
days. If you want to learn Kotlin in detail, Kotlin in Action (h t t p s ://w w w . m a n n i n g . c o m /b o o k

s /k o t l i n - i n - a c t i o n) by Dmitry Jemerov and Svetlana Isakova is an excellent book. There
is also the excellent online reference (h t t p s ://k o t l i n l a n g . o r g /d o c s /r e f e r e n c e /)
provided by JetBrains. In this chapter, we will quickly go through some basic features of
Kotlin to sell its pertinence in expressing RxJava more quickly.

Configuring Kotlin
You can use either Gradle or Maven to build your Kotlin project. You can create a new
Kotlin project in Intellij IDEA without any build automation, but here is how to set up a
Kotlin project for Gradle and Maven.

https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/

Using RxJava for Kotlin New

[329]

Configuring Kotlin for Gradle
To use the Kotlin language with Gradle, first add the following buildscript { } block to
your build.gradle file:

buildscript {
 ext.kotlin_version = '<version to use>'

 repositories {
 mavenCentral()
 }

 dependencies {
 classpath "org.jetbrains.kotlin:kotlin-gradle-
 plugin:$kotlin_version"
 }
 }

Then, you will need to apply the plugin, as shown in the following code, as well as the
directories that will hold the source code.

Note that src/main/kotlin is already specified by default, but you would use the
sourceSets { } block to specify a different directory if needed:

apply plugin: "kotlin"

 sourceSets {
 main.kotlin.srcDirs += 'src/main/kotlin'
 }

You can learn more about the Kotlin Gradle configuration in detail on the
Kotlin website at h t t p s ://k o t l i n l a n g . o r g /d o c s /r e f e r e n c e /u s i n g - g r a

d l e . h t m l .

Configuring Kotlin for Maven
For Maven, define a kotlin.version property and the Kotlin-stdlib as a dependency
in your POM, as shown in the following code. Then, build the project:

 <properties>
 <kotlin.version>1.1.2-2</kotlin.version>
 </properties>

 <dependencies>

https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/using-gradle.html

Using RxJava for Kotlin New

[330]

 <dependency>
 <groupId>org.jetbrains.kotlin</groupId>
 <artifactId>kotlin-stdlib</artifactId>
 <version>${kotlin.version}</version>
 </dependency>
 </dependencies>

You will also need to specify the source code directories and the kotlin-maven-plugin, as
demonstrated in the following code:

<build>

<sourceDirectory>${project.basedir}/src/main/kotlin</sourceDirector
y>

<testSourceDirectory>${project.basedir}/src/test/kotlin</testSource
Directory>
 <plugins>
 <plugin>
 <artifactId>kotlin-maven-plugin</artifactId>
 <groupId>org.jetbrains.kotlin</groupId>
 <version>${kotlin.version}</version>

 <executions>
 <execution>
 <id>compile</id>
 <goals> <goal>compile</goal> </goals>
 </execution>

 <execution>
 <id>test-compile</id>
 <goals> <goal>test-compile</goal> </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>

You can learn more about the Kotlin Maven configuration in detail on the Kotlin website at
h t t p s ://k o t l i n l a n g . o r g /d o c s /r e f e r e n c e /u s i n g - m a v e n . h t m l .

https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-maven.html

Using RxJava for Kotlin New

[331]

Configuring RxJava and RxKotlin
In this chapter, we will also be using RxJava as well as an extension library called RxKotlin.
For Gradle, add these two libraries as your dependencies like this:

 compile 'io.reactivex.rxjava2:rxjava:2.1.0'
 compile 'io.reactivex.rxjava2:rxkotlin:2.0.2'

For Maven, set them up like this:

<dependency>
 <groupId>io.reactivex.rxjava2</groupId>
 <artifactId>rxjava</artifactId>
 <version>2.1.0</version>
 </dependency>
 <dependency>
 <groupId>io.reactivex.rxjava2</groupId>
 <artifactId>rxkotlin</artifactId>
 <version>2.0.2</version>
 </dependency>

Kotlin basics
Although Kotlin has a standalone compiler and can work with Eclipse, we are going to use
Intellij IDEA.

A Kotlin project is structured much like a Java project. Following a standard Maven
convention, you typically put your Kotlin source code in a /src/main/kotlin/ folder
instead of a /src/main/java/ folder. The Kotlin source code is stored in text files with a
.kt extension instead of .java. However, Kotlin files do not have to contain a class sharing
the same name as the file.

Using RxJava for Kotlin New

[332]

Creating a Kotlin file
In Intellij IDEA, import your Kotlin project, if you haven't already. Right-click on the
/src/main/kotlin/ folder and navigate to New | Kotlin File/Class, as shown in the
following figure:

Figure 12.1: Creating a new Kotlin file

Using RxJava for Kotlin New

[333]

In the following dialog, name the file Launcher and then click on OK. You should now see
the Launcher.kt file in the Project pane. Double-click on it to open the editor. Write the
following "Hello World" Kotlin code, as shown here, and then run it by clicking on the K
icon in the gutter:

This is our first Kotlin application. Kotlin uses "functions" instead of methods, but it has a
main() function just like Java has a main() method. Note that we do not have to house our
main() function in a Java class. This is one benefit of Kotlin. Although it does compile to
Java bytecode, you are not restricted to only object-oriented conventions and can be
procedural or functional as well.

Assigning properties and variables
To declare a variable or property, you must decide whether to make it mutable or not.
Preceding a variable declaration with a val will make it only assignable once, whereas var
is mutable and can be reassigned a value multiple times. The name of the variable then
follows with a colon separating it from the type. Then, you can assign a value if you have it
on hand. In the following code, we assign a variable for an Int and a String and print
them in an interpolated string:

fun main(args: Array<String>) {
 val myInt: Int = 5
 val myString: String = "Alpha"

 println("myInt=$myInt and myString=$myString")
 }

Using RxJava for Kotlin New

[334]

The output is as follows:

myInt=5 and myString=Alpha

Kotlin's compiler is pretty smart and does not always have to have the type explicitly
declared for variables and properties. If you assign it a value immediately, it will infer the
type from that value. Therefore, we can remove the type declarations as follows:

fun main(args: Array<String>) {
 val myInt = 5 //infers type as `Int`
 val myString = "Alpha" //infers type as `String`

 println("myInt=$myInt and myString=$myString")
 }

Extension functions
When you are doing RxJava work in Kotlin, something that is immensely helpful is creating
extension functions. We will cover specifically how later, but here is a nonreactive example.

Say we want to add a convenient function to LocalDate in order to quickly compute the
number of days to another LocalDate. Rather than invoking verbose helper classes to do
this task repeatedly, we can quickly add an extension function to LocalDate called
numberOfDaysTo(), as shown here. This does not extend LocalDate but rather lets the
compiler resolve it as a static method:

 import java.time.LocalDate
 import java.time.temporal.ChronoUnit

 fun main(args: Array<String>) {
 val startDate = LocalDate.of(2017,5,1)
 val endDate = LocalDate.of(2017,5,11)

 val daysBetween = startDate.numberOfDaysTo(endDate)

 println(daysBetween)
 }

 fun LocalDate.numberOfDaysTo(otherLocalDate: LocalDate): Long {
 return ChronoUnit.DAYS.between(this, otherLocalDate)
 }

Using RxJava for Kotlin New

[335]

The output is as follows:

10

An extension function is just like a normal function in Kotlin, but you immediately declare
the type you are adding the function to, followed by a dot, and then the extension function
name (for example, fun LocalDate.numberOfDaysTo()). In the block that follows, it will
treat the targeted LocalDate as this, just as if it was inside the class. But again, it resolves
all this as a static method upon compilation. Kotlin magically abstracts this away for you.

This allows you to create a more fluent DSL (domain-specific language) that is streamlined
for your particular business. As an added bonus, Intellij IDEA will show this extension
function in the autocompletion as you work with LocalDate.

Since the body of this extension function is only one line, you can actually use the equals(=)
syntax to declare a function more succinctly and omit the return keyword as well as the
explicit type declaration, as shown in the following code:

fun LocalDate.numberOfDaysTo(otherLocalDate: LocalDate) =
 ChronoUnit.DAYS.between(this, otherLocalDate)

As we will see soon, Kotlin extension functions are a powerful tool to add new operators to
Observables and Flowables, and they offer much more flexibility and convenience than
compose() and lift(). But first, let's look at Kotlin lambdas.

Kotlin lambdas
I could spend a lot of time deconstructing lambdas in Kotlin, but in the interest of "getting
to the point", I will show how they are expressed in the context of RxJava. You can learn
about Kotlin lambdas in depth on the Kotlin reference site (h t t p s ://k o t l i n l a n g . o r g /d o c s

/r e f e r e n c e /l a m b d a s . h t m l).

Kotlin offers a few more ways to express lambdas than Java 8, and it also uses curly
brackets { } instead of round brackets () to accept lambda arguments into functions. The
following is how we express an Observable chain emitting strings and then map and print
their lengths:

 import io.reactivex.Observable

 fun main(args: Array<String>) {

https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/lambdas.html

Using RxJava for Kotlin New

[336]

 Observable.just("Alpha", "Beta", "Gama", "Delta", "Epsilon")
 .map { s: String -> s.length }
 .subscribe { i: Int -> println(i) }
 }

The output is as follows:

 5
 4
 4
 5
 7

Note how we express our lambda arguments for map() and subscribe(). This feels weird
at first, using the curly brackets { } to accept lambda arguments, but it does not take long
before it feels pretty natural. They help make a distinction between stateful arguments and
functional ones. You can put rounded brackets around them if you like, but this is messy
and is only needed if you need to pass multiple lambda arguments (for operators such as
collect()):

 import io.reactivex.Observable

 fun main(args: Array<String>) {

 Observable.just("Alpha", "Beta", "Gama", "Delta", "Epsilon")
 .map({ s: String -> s.length })
 .subscribe({ i: Int -> println(i) })
 }

As said earlier, the Kotlin compiler is smart when it comes to type inference. So most of the
time, we do not need to declare our lambda s or i parameters as String and Int. The
compiler can figure that out for us, as shown in the following code:

 import io.reactivex.Observable

 fun main(args: Array<String>) {

 Observable.just("Alpha", "Beta", "Gama", "Delta", "Epsilon")
 .map { s -> s.length }
 .subscribe { i -> println(i) }
 }

Using RxJava for Kotlin New

[337]

Even better, these are simple one-parameter lambdas, so we do not even have to name these
parameters. We can omit them entirely and refer to them using the it keyword as shown
next:

 import io.reactivex.Observable

 fun main(args: Array<String>) {

 Observable.just("Alpha", "Beta", "Gama", "Delta", "Epsilon")
 .map { it.length }
 .subscribe { println(it) }
 }

Similar to Java 8, we can also use a function-reference syntax. If we are simply passing our
arguments exactly in the same manner and order to a function or a constructor, we can use
a double-colon :: syntax, as shown here. Note that we do use rounded brackets here:

 import io.reactivex.Observable

 fun main(args: Array<String>) {

 Observable.just("Alpha", "Beta", "Gama", "Delta", "Epsilon")
 .map(String::length)
 .subscribe(::println)
 }

Something else that is interesting about Kotlin lambda arguments is that when you have
multiple arguments where the last one is a lambda, you can put a lambda expression
outside the rounded parentheses. In the following code, scan() emits the rolling total of
string lengths and provides a seed value of 0. However, we can put the final lambda
argument outside of the rounded parentheses ():

import io.reactivex.Observable

fun main(args: Array<String>) {

 Observable.just("Alpha", "Beta", "Gama", "Delta", "Epsilon")
 .map { s: String -> s.length }
 .scan(0) { total, next -> total + next }
 .subscribe {
 println("Rolling sum of String lengths is $it")
 }
 }

Using RxJava for Kotlin New

[338]

Extension operators
As covered earlier, Kotlin provides extension functions. These can be an enormously
helpful alternative to using just compose() and lift().

For instance, we could not use Transformers and compose() to turn an Observable<T>
into a Single<R>. But this is more than doable with Kotlin extension functions. In the
following code, we create a toSet() operator and add it to Observable<T>:

import io.reactivex.Observable

fun main(args: Array<String>) {

 val source = Observable.just("Alpha", "Beta", "Gama", "Delta",
 "Epsilon")

 val asSet = source.toSet()

 }

 fun <T> Observable<T>.toSet() =
 collect({ HashSet<T>() }, { set, next -> set.add(next) })
 .map { it as Set<T> }

The toSet()returns a Single<Set<T>>, and it was called on an Observable<T>. In the
extension function, the collect() operator is called on the invoked Observable, and then
it cast the HashSet to a Set so the implementation is hidden. As you can see, it is easy to
create new operators and make them easy to discover.

You can also make extension functions target only certain generic types. For example, I can
create a sum() extension function that only targets Observable<Int> (Int is the
Integer/int abstraction type in Kotlin). It will only be valid when used with an Observable
emitting integers and can only compile or show up in autocomplete for that type:

import io.reactivex.Observable

fun main(args: Array<String>) {

 val source = Observable.just(100, 50, 250, 150)

 val total = source.sum()
 }

 fun Observable<Int>.sum() =
 reduce(0) { total, next -> total + next }

Using RxJava for Kotlin New

[339]

Using RxKotlin
There is a small library called RxKotlin (h t t p s ://g i t h u b . c o m /R e a c t i v e X /R x K o t l i n /),
which we made a dependency at the beginning of this chapter. At the time of writing this, it
is hardly a complex library but rather a small collection of convenient extension functions
for common reactive conversions. It also attempts to standardize some conventions when
using RxJava with Kotlin.

For instance, there are the toObservable() and toFlowable() extension functions that
can be invoked on iterables, sequences, and a few other sources. In the following code,
instead of using Observable.fromIterable() to turn a List into an Observable, we
just call its toObservable() extension function:

import io.reactivex.rxkotlin.toObservable

fun main(args: Array<String>) {

 val myList = listOf("Alpha", "Beta", "Gamma", "Delta",
 "Epsilon")

 myList.toObservable()
 .map(String::length)
 .subscribe(::println)
 }

There are some other extensions in RxKotlin worth exploring, and you can view it all on the
GitHub page. The library is deliberately small and focused since it is easy to clutter an API
with every extension function for every task possible. But it holds the functionality for
common tasks such as the preceding one.

RxKotlin also has useful helpers to get around the SAM problem that exists between Java
and Kotlin (you might have noticed this issue if you have been experimenting already). We
will cover this next.

https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/
https://github.com/ReactiveX/RxKotlin/

Using RxJava for Kotlin New

[340]

Dealing with SAM ambiguity
At the time of writing this, there is a nuance when Kotlin invokes Java libraries with
functional parameters. This problem especially rears its head in RxJava 2.0 when many
parameter overloads are introduced. Kotlin does not have this issue when invoking Kotlin
libraries but it does with Java libraries. When there are multiple argument overloads for
different functional SAM types on a given Java method, Kotlin gets lost in its inference and
needs help. Until JetBrains resolves this issue, you will need to work around this either by
being explicit or using RxKotlin's helpers.

Here is a notorious example: The zip() operator. Try to do a simple zip here and you will
get a compile error due to failed inference:

import io.reactivex.Observable

fun main(args: Array<String>) {

 val strings = Observable.just("Alpha", "Beta", "Gamma",
 "Delta")
 val numbers = Observable.range(1,4)

 //compile error, can't infer parameters
 val zipped = Observable.zip(strings, numbers) { s,n -> "$s $n"
}

 zipped.subscribe(::println)
 }

One way to resolve this is to explicitly construct the SAM type with your lambda. In this
case, we need to tell the compiler that we are giving it
a BiFunction<String,Int,String>, as shown here:

 import io.reactivex.Observable
 import io.reactivex.functions.BiFunction

 fun main(args: Array<String>) {

 val strings = Observable.just("Alpha", "Beta", "Gamma",
 "Delta")
 val numbers = Observable.range(1,4)

 val zipped = Observable.zip(strings, numbers,
 BiFunction<String,Int,String> { s,n -> "$s $n" }
)

Using RxJava for Kotlin New

[341]

 zipped.subscribe(::println)
 }

Unfortunately, this is pretty verbose. Many use RxJava and Kotlin to have less code, not
more, so this is not ideal. Thankfully, RxKotlin provides some utilities to work around this
issue. You can use the Observables, Flowables, Singles, and Maybes utility classes to invoke
implementations of the factories affected by the SAM problem. Here is our example using
this approach:

 import io.reactivex.Observable
 import io.reactivex.rxkotlin.Observables

 fun main(args: Array<String>) {

 val strings = Observable.just("Alpha", "Beta", "Gamma",
 "Delta")
 val numbers = Observable.range(1,4)

 val zipped = Observables.zip(strings, numbers) { s, n -> "$s
$n" }

 zipped.subscribe(::println)
 }

There are also extension functions for non-factory operators affected by the SAM issue. The
following is our example using a zipWith() extension function that successfully performs
inference with our Kotlin lambda argument. Note that we have to import this extension
function to use it:

 import io.reactivex.Observable
 import io.reactivex.rxkotlin.zipWith

 fun main(args: Array<String>) {

 val strings = Observable.just("Alpha", "Beta", "Gamma",
 "Delta")
 val numbers = Observable.range(1,4)

 val zipped = strings.zipWith(numbers) { s, n -> "$s $n" }

 zipped.subscribe(::println)
 }

Using RxJava for Kotlin New

[342]

It should also be pointed out that subscribe() on Single and Maybe is affected by the
SAM ambiguity issue as well, so there are subscribeBy() extensions to cope with it, as
shown next:

 import io.reactivex.Observable
 import io.reactivex.rxkotlin.subscribeBy

 fun main(args: Array<String>) {

 Observable.just("Alpha", "Beta", "Gamma", "Delta", "Epsilon")
 .count()
 .subscribeBy { println("There are $it items") }
 }

Try not to let the issue of SAM ambiguity deter you from trying Kotlin. It is a nuance when
interoperating Kotlin lambdas with Java SAM types. The issue has been acknowledged by
JetBrains and should be temporary. Also, there has been a discussion in the Kotlin
community to create a ReactiveX implementation in pure Kotlin for other reasons, and we
will touch on the future of RxKotlin at the end of this chapter.

Using let() and apply()
In Kotlin, every type has a let() and apply() extension function. These are two simple
but helpful tools to make your code more fluent and expressive.

Using let()
let() simply accepts a lambda that maps the invoked object T to another object R. It is
similar to how RxJava offers the to() operator, but it applies to any type T and not just
Observables/Flowables. For example, we can call let() on a string that has been
lowercased and then immediately do any arbitrary transformation on it, such as
concatenating its reversed() string to it. Take a look at this operation:

fun main(args: Array<String>) {

 val str = "GAMMA"

 val lowerCaseWithReversed = str.toLowerCase().let { it + " " +
 it.reversed() }

 println(lowerCaseWithReversed)
 }

Using RxJava for Kotlin New

[343]

The output is as follows:

gamma ammag

The let() comes in handy when you do not want to save a value to a variable just so you
can refer to it multiple times. In the preceding code, we did not have to save the result of
toLowerCase() to a variable. Instead, we just immediately called let() on it to do what
we need.

In an RxJava context, the let() function can be helpful in quickly taking an Observable,
forking it, and then recombining it using a combine operator. In the following code, we
multicast an Observable of numbers to a let() operator, which creates a sum and a
count, and then returns the result of the zipWith() operator that uses both to find the
average:

 import io.reactivex.Observable
 import io.reactivex.rxkotlin.subscribeBy
 import io.reactivex.rxkotlin.zipWith

 fun main(args: Array<String>) {

 val numbers =
 Observable.just(180.0, 160.0, 140.0, 100.0, 120.0)

 val average = numbers.publish()
 .autoConnect(2)
 .let {
 val sum = it.reduce(0.0) { total, next -> total +
 next}
 val count = it.count()

 sum.zipWith(count) { s, c -> s / c }
 }

 average.subscribeBy(::println)
 }

The output is as follows:

140.0

The last line in let() is what gets returned and does not require a return keyword.

In summary, let() is a powerful and simple tool to fluently convert an item into another
item. Using it to fork an Observable or Flowable streams and then joining them again is
one helpful application for it in RxJava.

Using RxJava for Kotlin New

[344]

Using apply()
A tool similar to let() is apply(). Instead of turning a T item into an R item,which let()
does, apply() executes a series of actions against the T item instead, before returning the
same T item itself. This is helpful in declaring an item T but doing tangential operations on
it without breaking the declaration/assignment flow.

Here is a nonreactive example. We have a simple class, MyItem, which has a
startProcess() function. We can instantiate MyItem but use apply() to call this
startProcess() method before assigning MyItem to a variable, as shown in the following
code:

fun main(args: Array<String>) {

 val myItem = MyItem().apply {
 startProcess()
 }

 }

 class MyItem {

 fun startProcess() = println("Starting Process!")
 }

The output is as follows:

Starting Process!

In RxJava, apply() is helpful in adding an Observer or Subscriber in the middle of an
Observable/Flowable chain but not breaking the flow from the primary task at hand. This
can be helpful in emitting status messages to a separate stream.

In the following code, we emit five 1-second intervals and multiply each one. However, we
create a statusObserver and subscribe to it within apply() right before the
multiplication. We multicast before apply() as well so emissions are pushed to both
destinations:

 import io.reactivex.Observable
 import io.reactivex.subjects.PublishSubject
 import java.util.concurrent.TimeUnit

 fun main(args: Array<String>) {

 val statusObserver = PublishSubject.create<Long>()
 statusObserver.subscribe { println("Status Observer: $it") }

Using RxJava for Kotlin New

[345]

 Observable.interval(1, TimeUnit.SECONDS)
 .take(5)
 .publish()
 .autoConnect(2)
 .apply {
 subscribe(statusObserver)
 }
 .map { it * 100 }
 .subscribe {
 println("Main Observer: $it")
 }

 Thread.sleep(7000)
 }

The output is as follows:

 Status Observer: 0
 Main Observer: 0
 Status Observer: 1
 Main Observer: 100
 Status Observer: 2
 Main Observer: 200
 Status Observer: 3
 Main Observer: 300
 Status Observer: 4
 Main Observer: 400

So again, apply() is helpful in taking a multicasted stream of emissions and pushing them
to multiple Observers without having any intermediary variables.

Similiar to apply() is the extension function run(), which executes a
series of actions but has a void return type (or in Kotlin-speak, Unit).
There is also with(), which is identical to run() except than it is not an
extension function. It accepts the targeted item as an argument.

Tuples and data classes
Kotlin supports Tuples to a small degree, but it also offers something even better with data
classes. We will look at both of these in an RxJava context.

Using RxJava for Kotlin New

[346]

Kotlin supports the quick creation of a Pair containing two items (which can be of differing
types). This is a simple two-value, but statically-typed, tuple. You can construct one quickly
by putting the to keyword between two values. This is helpful in doing zip() operations
between two streams, and you just want to pair the two items together.

In the following code, we zip a stream of string items with a stream of Int items and put
each pair into Pair<String,Int>.

import io.reactivex.Observable
import io.reactivex.rxkotlin.Observables

 fun main(args: Array<String>) {

 val strings = Observable.just("Alpha", "Beta", "Gamma",
 "Delta")
 val numbers = Observable.range(1,4)

 //Emits Pair<String,Int>
 Observables.zip(strings, numbers) { s, n -> s to n }
 .subscribe {
 println(it)
 }
 }

The output is as follows:

 (Alpha, 1)
 (Beta, 2)
 (Gamma, 3)
 (Delta, 4)

An even better approach is to use a data class. A data class is a powerful Kotlin tool that
works just like a class, but it automatically implements hashcode()/equals(),
toString(), as well as a nifty copy() function that allows you to clone and modify
properties onto a new instance of that class.

But for now, we will just use a data class as a cleaner approach than a Pair because we
actually give each property a name instead of first and second. In the following code, we
will create a StringAndNumber data class and use it to zip each pair of values:

 import io.reactivex.Observable
 import io.reactivex.rxkotlin.Observables

 fun main(args: Array<String>) {

 val strings = Observable.just("Alpha", "Beta", "Gamma",

Using RxJava for Kotlin New

[347]

 "Delta")
 val numbers = Observable.range(1,4)

 data class StringAndNumber(val myString: String, val myNumber:
Int)

 Observables.zip(strings, numbers) { s, n ->
StringAndNumber(s,n) }
 .subscribe {
 println(it)
 }
 }

The output is as follows:

 StringAndNumber(myString=Alpha, myNumber=1)
 StringAndNumber(myString=Beta, myNumber=2)
 StringAndNumber(myString=Gamma, myNumber=3)
 StringAndNumber(myString=Delta, myNumber=4)

Data classes (as well as just plain Kotlin classes) are quick and easy to declare, so you can
use them tactically for even small tasks. Use them to make your code clearer and easier to
maintain.

Future of ReactiveX and Kotlin
Kotlin is a powerful and pragmatic language. JetBrains put in a lot of effort not only to
make it effective, but also compatible with existing Java code and libraries. Despite a few
rough patches such as SAM lambda inference, they did a phenomenal job making Java and
Kotlin work together. However, even with this solid compatibility, many developers
become eager to migrate entirely to Kotlin to leverage its functionality. Named parameters,
optional parameters, nullable types, extension functions, inline functions, delegates, and
other language features make Kotlin attractive for exclusive use. Not to mention, JetBrains
has successfully made Kotlin compilable to JavaScript and will soon support LLVM native
compilation. Libraries built in pure Kotlin can potentially be compiled to all these
platforms. To solidify Kotlin's position even further, Google officially established it as the
next supported language for Android.

Using RxJava for Kotlin New

[348]

So this begs the question: would there the benefit in creating a ReactiveX implementation in
pure Kotlin and not rely on RxJava? After all, the Kotlin language has a powerful set of
features that could offer a lot to a ReactiveX implementation and bring it to multiple
platforms Kotlin will compile to. It would also create a ReactiveX experience optimized for
Kotlin, supporting nullable type emissions, extension operators, and coroutine-based
concurrency.

Coroutines provide an interesting and useful abstraction to quickly (and more safely)
implement concurrency into a Kotlin application. Because coroutines support task
suspension, they provide a natural mechanism to support backpressure. In the event that a
ReactiveX implementation in Kotlin is pursued, coroutines can play a huge part in making
backpressure simple to implement.

If you want to learn about how Kotlin coroutines can be leveraged to
create a ReactiveX implementation in Kotlin, read Roman Elizarov's
fascinating article at h t t p s ://g i t h u b . c o m /K o t l i n /k o t l i n x . c o r o u t i n e s

/b l o b /m a s t e r /r e a c t i v e /c o r o u t i n e s - g u i d e - r e a c t i v e . m d .

So yes, there could be a lot to gain by making a ReactiveX implementation in pure Kotlin.
At the time of writing this, this conversation is getting more traction in the Kotlin
community. Keep an eye out as people continue to experiment and proof-of-concepts creep
toward prototypes and then the official release.

Summary
In this chapter, we covered how to use RxJava for Kotlin. The Kotlin language is an exciting
opportunity to express code on the JVM more pragmatically, and RxJava can leverage many
of its useful features. Extension functions, data classes, RxKotlin, and functional operators
such as let()/apply() allow you to express your reactive domain more easily. Although
SAM inference can cause you to hit snags, you can leverage RxKotlin's helper utilities to get
around this issue until JetBrains creates a fix. Down the road, it will be interesting to see if a
ReactiveX implementation in pure Kotlin appears. Such an implementation would bring in
a lot of functionality that Kotlin allows and Java does not.

This is the end! If you have covered this book cover-to-cover, congrats! You should have a
strong foundation to leverage RxJava in your workplace and projects. Reactive
programming is a radically different approach to problem solving, but it is radically
effective too. Reactive programming will continue to grow in pertinence and shape the
future of how we model code. Being on this cutting edge will make you not only
marketable, but also a leader for the years to come.

https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md

Appendix
This appendix will walk you through lambda expressions, functional types, mixing object-
oriented and reactive programming, and how schedulers work.

Introducing lambda expressions
Java officially supported lambda expressions when Java 8 was released in 2014. Lambda
expressions are shorthand implementations for single abstract method (SAM) classes. In
other words, they are quick ways to pass functional arguments instead of anonymous
classes.

Making a Runnable a lambda
Prior to Java 8, you might have leveraged anonymous classes to implement interfaces, such
as Runnable, on the fly as shown in the following code snippet:

public class Launcher {

 public static void main(String[] args) {

Runnable runnable = new Runnable() {
@Override
public void run() {

System.out.println("run() was called!");
}

};

runnable.run();
 }
}

Appendix

[350]

The output is as follows:

run() was called!

To implement Runnable without declaring an explicit class, you had to implement its
run() abstract method in a block immediately after the constructor. This created a lot of
boilerplate and became a major pain point with Java development, and was a barrier to
using Java for functional programming. Thankfully, Java 8 officially brought lambdas to the
Java language. With lambda expressions, you can express this in a much more concise way:

public class Launcher {

 public static void main(String[] args) {

Runnable runnable = () -> System.out.println("run() was
called!");

runnable.run();
 }
}

Awesome, right? That is a lot less code and boilerplate noise, and we will dive into how this
works. Lambda expressions can target any interface or abstract class with one abstract
method, which is called single abstract method types. In the preceding code, the Runnable
interface has a single abstract method called run(). If you pass a lambda that matches the
arguments and return type for that abstract method, the compiler will use that lambda for
the implementation of that method.

Everything to the left of the -> arrow is an argument. The run() method of Runnable does
not take any arguments, so the lambda provides no arguments with the empty parenthesis
(). The right side of the arrow -> is the action to be executed. In this example, we are
calling a single statement and printing a simple message with
System.out.println("run() was called!");.

Java 8 lambdas can support multiple statements in the body. Say we have this Runnable
anonymous inner class with multiple statements in its run() implementation, as shown in
the following code snippet:

public class Launcher {
 public static void main(String[] args) {

Runnable runnable = new Runnable() {
@Override
public void run() {

System.out.println("Message 1");

Appendix

[351]

System.out.println("Message 2");
}

};

runnable.run();
 }
}

You can move both System.out.println() statements to a lambda by wrapping them in
a multiline { } block to the right of the arrow ->. Note that you need to use semicolons to
terminate each line within the lambda, shown in the following code snippet:

public class Launcher {
 public static void main(String[] args) {

Runnable runnable = () -> {
System.out.println("Message 1");
System.out.println("Message 2");

};

runnable.run();
 }
}

Making a Supplier a lambda
Lambdas can also implement methods that return items. For instance, the Supplier class
introduced in Java 8 (and originally introduced in Google Guava) has an abstract get()
method that returns a T item for a given Supplier<T>. If we have a
Supplier<List<String>> whose get() returns List<String>, we can implement it
using an old-fashioned anonymous class:

import java.util.ArrayList;
import java.util.List;
import java.util.function.Supplier;

public class Launcher {

 public static void main(String[] args) {

Supplier<List<String>> listGenerator = new
Supplier<List<String>>() {

@Override
public List<String> get() {

return new ArrayList<>();

Appendix

[352]

}
};
List<String> myList = listGenerator.get();

 }
}

But we can also use a lambda, which can implement get() much more succinctly and
yield List<String>, shown as follows:

import java.util.ArrayList;
import java.util.List;
import java.util.function.Supplier;

public class Launcher {

 public static void main(String[] args) {

Supplier<List<String>> listGenerator = () -> new
ArrayList<>

();

List<String> myList = listGenerator.get();
 }
}

When your lambda is simplify invoking a constructor on a type using the new keyword,
you can use a double colon :: lambda syntax to invoke the constructor on that class. This
way, you can leave out the symbols () and ->, shown as follows:

import java.util.ArrayList;
import java.util.List;
import java.util.function.Supplier;

public class Launcher {

 public static void main(String[] args) {

Supplier<List<String>> listGenerator = ArrayList::new;

List<String> myList = listGenerator.get();
 }
}

RxJava does not have Java 8's Supplier but rather a Callable, which
accomplishes the same purpose.

Appendix

[353]

Making a Consumer a lambda
Consumer<T> accepts a T argument and performs an action with it but does not return any
value. Using an anonymous class, we can create a Consumer<String> that simply prints
the string as shown in the following code snippet:

import java.util.function.Consumer;

public class Launcher {

 public static void main(String[] args) {

Consumer<String> printConsumer = new Consumer<String>() {
@Override
public void accept(String s) {

System.out.println(s);
}

};

printConsumer.accept("Hello World");
 }
}

The output is as follows:

Hello World

You can implement this as a lambda. We can choose to call the String parameter s on the
left-hand side of the lambda arrow -> and print it on the right-hand side:

import java.util.function.Consumer;

public class Launcher {

 public static void main(String[] args) {

Consumer<String> printConsumer = (String s) ->
System.out.println(s);

printConsumer.accept("Hello World");
 }
}

Appendix

[354]

The compiler can actually infer that s is a String type based on the Consumer<String>
you are targeting. So you can leave that explicit type declaration out, as shown in the
following code:

import java.util.function.Consumer;

public class Launcher {

 public static void main(String[] args) {

 Consumer<String> printConsumer = s ->
System.out.println(s);

 printConsumer.accept("Hello World");
 }
}

For a simple single method invocation, you can actually use another syntax to declare the
lambda using a double colon ::. Declare the type you are targeting on the left-hand side of
the double-colon and invoke its method on the right-hand side of the double colon. The
compiler will be smart enough to figure out you are trying to pass the String argument
to System.out::println:

import java.util.function.Consumer;

public class Launcher {

 public static void main(String[] args) {

 Consumer<String> printConsumer = System.out::println;

 printConsumer.accept("Hello World");
 }
}

Appendix

[355]

Making a Function a lambda
Lambdas can also implement single abstract methods that accept arguments and return an
item. For instance, RxJava 2.0 (as well as Java 8) has a Function<T,R> type that accepts a T
type and returns an R type. For instance, you can declare a
Function<String,Integer>, whose apply() method will accept a String and return
an Integer. Here, we implement apply() by returning the string's length in an
anonymous class, as shown here:

import java.util.function.Function;

public class Launcher {

 public static void main(String[] args) {

 Function<String,Integer> lengthMapper = new
Function<String,
Integer>() {
 @Override
 public Integer apply(String s) {
 return s.length();
 }
 };

 Integer length = lengthMapper.apply("Alpha");

 System.out.println(length);
 }
}

You can make this even more concise by implementing Function<String,Integer> with
a lambda, as shown here:

import java.util.function.Function;

public class Launcher {

 public static void main(String[] args) {

 Function<String,Integer> lengthMapper = (String s) ->
s.length();

 Integer length = lengthMapper.apply("Alpha");

 System.out.println(length);
 }
}

Appendix

[356]

We have a couple of syntaxes we can alternatively use to implement
Function<String,Integer>.

Java 8's compiler is smart enough to see that our parameter s is a String based on the
Function<String,Integer> type we are assigning it to. Therefore, we do not need to
explicitly declare s as a String because it can infer it:

 Function<String,Integer> lengthMapper = (s) -> s.length();

We do not need to wrap our s in parentheses (s) either, as those are not needed for a single
argument (but are needed for multiple arguments, as we will see later):

 Function<String,Integer> lengthMapper = s -> s.length();

If we are simply calling a method or property on the incoming item, we can use the double
colon :: syntax to call the method on that type:

 Function<String,Integer> lengthMapper = String::length;

Function<T,R> is heavily used in RxJava as Observable operators often to transform
emissions. The most common example is the map() operator, which turns each T emission
into an R emission and derives an Observable<R> from an Observable<T>.:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {
 Observable.just("Alpha","Beta","Gamma")
 .map(String::length) //accepts a Function<T,R>
 .subscribe(s -> System.out.println(s));
 }
}

Note that there are other flavors of Function, such as Predicate and BiFunction, which
 accept two arguments, not one. The reduce() operator accepts a BiFunction<T,T,T>
where the first T argument is the rolling aggregation, the second T is the next item to put
into the aggregation, and the third T is the result of merging the two. In this case, we use
reduce() to add all the items using a rolling total:

import io.reactivex.Observable;

public class Launcher {
 public static void main(String[] args) {
 Observable.just("Alpha","Beta","Gamma")
 .map(String::length)
 .reduce((total,next) -> total + next) //accepts a

Appendix

[357]

 BiFunction<T,T,T>
 .subscribe(s -> System.out.println(s));
 }
}

Functional types
Here are all the functional types available in RxJava 2.0 at the time of writing this, and you
can find them in the io.reactivex.functions package. You may recognize many of
these functional types as being almost identical to those in Java 8
(in java.util.function) or Google Guava. However, they were somewhat copied in
RxJava 2.0 to make them available for use in Java 6 and 7. A subtle difference is that
RxJava's implementations throw checked exceptions. This eliminates a pain point from
RxJava 1.0 where checked exceptions had to be handled in lambdas that yielded them.

The RxJava 1.0 equivalents are listed as well, but note that the single abstract method (SAM)
column corresponds to the RxJava 2.0 type. RxJava 1.0 functions implement call() and do
not support primitives. RxJava 2.0 implemented a few functional types with primitives to
reduce boxing overhead where reasonably possible:

RxJava 2.0 RxJava 1.0 SAM Description

Action Action0 run() Executes an
action, much
like Runnable

Callable<T> Func0<T> get() Returns a single
item of type T

Consumer<T> Action1<T> accept() Performs an
action on a
given T
item but
returns nothing

Function<T,R> Func1<T,R> apply() Accepts a type
T and returns a
type R

Appendix

[358]

Predicate<T> Func1<T,Boolean> test() Accepts a T
item and
returns a
primitive
boolean

BiConsumer<T1,T2> Action2<T1,T2> accept() Performs an
action on a T1
and T2 item but
returns nothing

BiFunction<T1,T2,R> Func2<T1,T2,R> apply() Accepts a T1
and T2 and
returns a type R

BiPredicate<T1,T2> Func2<T1,T2,Boolean> test() Accepts a T1
and T2 and
returns a
primitive
boolean

Function3<T1,T2,T3,R> Func3<T1,T2,T3,R> apply() Accepts three
arguments and
returns an R

BooleanSupplier Func0<Boolean> getAsBoolean() Returns a single
primitive
boolean value

LongConsumer Action1<Long> accept() Performs an
action on a
given Long but
returns nothing

IntFunction Func1<T> apply() Accepts a
primitive int
and returns an
item of type T

Not every primitive equivalent for a functional type has been implemented in RxJava 2.0.
For example, currently, there is no IntSupplier like there is in Java 8's standard library.
This is because RxJava 2.0 does not need it to implement any of its operators.

Appendix

[359]

Mixing object-oriented and reactive
programming
As you start applying your RxJava knowledge to real-world problems, something that may
not immediately be clear is how to mix it with object-oriented programming. Leveraging
multiple paradigms such as object-oriented and functional programming is becoming
increasingly common. Reactive programming and object-oriented programming, especially
in a Java environment, can definitely work together for the greater good.

Obviously, you can emit any type T from an Observable or any of the other reactive types.
Emitting objects built off your own classes is one way object-oriented and reactive
programming work together. We have seen a number of examples in this book. For
instance, Java 8's LocalDate is a complex object-oriented type, but you can push it through
an Observable<LocalDate>, as shown in the following code:

import io.reactivex.Observable;
import java.time.LocalDate;

public class Launcher {

 public static void main(String[] args) {

 Observable<LocalDate> dates = Observable.just(
 LocalDate.of(2017,11,3),
 LocalDate.of(2017,10,4),
 LocalDate.of(2017,7,5),
 LocalDate.of(2017,10,3)
);

 // get distinct months
 dates.map(LocalDate::getMonth)
 .distinct()
 .subscribe(System.out::println);
 }
}

The output is as follows:

NOVEMBER
OCTOBER
JULY

Appendix

[360]

As we have seen in several examples throughout the book, a number of RxJava operators
provide adapters to take a stateful, object-oriented item and turn it into a reactive stream.
For instance, there is the generate() factory for Flowable and Observable to build a
series of emissions off a mutable object that is updated incrementally. In the following code,
we emit an infinite, consecutive sequence of Java 8 LocalDates but take only the first 60
emissions. Since LocalDate is immutable, we wrap the seed LocalDate of 2017-1-1 in an
AtomicReference so it can be mutably replaced with each increment:

import io.reactivex.Emitter;
import io.reactivex.Flowable;
import java.time.LocalDate;
import java.util.concurrent.atomic.AtomicReference;

public class Launcher {

 public static void main(String[] args) {

 Flowable<LocalDate> dates =
 Flowable.generate(() -> new AtomicReference<>
(LocalDate.of(2017,1,1)),
 (AtomicReference<LocalDate> next, Emitter<LocalDate>
emitter) ->
 emitter.onNext(next.getAndUpdate(dt ->
dt.plusDays(1)))
);
 dates.take(60)
 .subscribe(System.out::println);
 }
}

The output is as follows:

2017-01-01
2017-01-02
2017-01-03
2017-01-04
2017-01-05
2017-01-06
...

So again, RxJava has many factories and tools to adapt your object-oriented, imperative
operations and make them reactive. Many of them are covered throughout this book.

Appendix

[361]

But are there cases for a class to return an Observable, Flowable, Single, or Maybe from
a property or method? Certainly! When your object has properties or methods whose
results are dynamic and change over time and represent an event(s) or a sizable sequence of
data, they are candidates to be returned as a reactive type.

Here is an abstract example: say, you have a DroneBot type that represents a flying drone.
You could have a property called getLocation() that returns an Observable<Point>
instead of Point. This way, you can get a live feed that pushes a new Point emission every
time the drone's location changes:

import io.reactivex.Observable;

public class Launcher {

 public static void main(String[] args) {
 DroneBot droneBot = null; // create DroneBot

 droneBot.getLocation()
 .subscribe(loc ->
 System.out.println("Drone moved to " + loc.x + "," +
loc.y));
 }

 interface DroneBot {
 int getId();
 String getModel();
 Observable<Location> getLocation();
 }

 static final class Location {
 private final double x;
 private final double y;
 Location(double x, double y) {
 this.x = x;
 this.y = y;
 }
 }
}

Appendix

[362]

This DroneBot example shows another way in which you can mix object-oriented and
reactive programming effectively. You can easily get a live feed of that drone's movements
by returning an Observable. There are many use cases for this pattern: stock feeds, vehicle
locations, weather station feeds, social networks, and so on. However, be careful if the
properties are infinite. If you wanted to manage the location feeds of 100 drones, flat
mapping all their infinite location feeds together into a single stream is likely not going to
produce anything meaningful, apart from a noisy sequence of locations with no context.
You will likely subscribe to each one separately, in a UI that populates a Location field in a
table displaying all the drones, or you will use Observable.combineLatest() to emit a
snapshot of the latest locations for all drones. The latter can be helpful in displaying points
on a geographic map live.

Having reactive class properties is useful when they are finite as well. Say you have a list of
warehouses, and you want to count the total inventory across all of them. Each Warehouse
contains an Observable<ProductStock>, which returns a finite sequence of the product
stocks currently available. The getQuantity() operator of ProductStock returns the
quantity of that product available. We can use reduce() on the getQuantity() values to
get a sum of all the available inventory, as shown here:

import io.reactivex.Observable;
import java.util.List;

public class Launcher {

 public static void main(String[] args) {
 List<Warehouse> warehouses = null; // get warehouses

 Observable.fromIterable(warehouses)
 .flatMap(Warehouse::getProducts)
 .map(ProductStock::getQuantity)
 .reduce(0,(total,next) -> total + next)
 .subscribe(i -> System.out.println("There are " + i + "
 units in inventory"));
 }

 interface Warehouse {
 Observable<ProductStock> getProducts();
 }
 interface ProductStock {
 int getId();
 String getDescription();
 int getQuantity();
 }
}

Appendix

[363]

So, finite Observables like the ones returned from getProducts() on Warehouse can be
helpful too and are especially helpful for analytical tasks. But note that this particular
business case decided that getProducts() would return the products available at that
moment, not an infinite feed that broadcasts the inventory every time it changes. This was a
design decision, and sometimes, representing snapshot data in a cold manner is better than
a hot infinite feed. An infinite feed would have
required Observable<List<ProductStock>> (or
Observable<Observable<ProductStock>>) to be returned so logical snapshots are
emitted. You can always add a separate Observable that emits notifications of changes and
then uses flatMap() on your getProducts() to create a hot feed of inventory changes.
This way, you create basic building blocks in your code model and then compose them
together reactively to accomplish more complex tasks.

Note that you can have methods that return reactive types accept arguments. This is a
powerful way to create an Observable or Flowable catered to a specific task. For instance,
we could add a getProductsOnDate() method to our warehouse that returns an
Observable emitting product stock from a given date, as shown in the following code:

interface Warehouse {
 Observable<ProductStock> getProducts();
 Observable<ProductStock> getProductsOnDate(LocalDate date);
}

In summary, mixing reactive and object-oriented programming is not only beneficial, but
also necessary. When you design your domain classes, think carefully what properties and
methods should be made reactive and whether they should be cold, hot, and/or infinite.
Imagine how you will be using your class and whether your candidate design will be easy
or difficult to work with. Be sure to not make every property and method reactive for the
sake of being reactive either. Only make it reactive when there is usability or performance
benefit. For example, you should not make a getId() property for your domain type
reactive. This ID on that class instance is unlikely to change, and it is just a single value, not
a sequence of values.

Materializing and Dematerializing
Two interesting operators we did not cover are materialize() and dematerialize().
We did not cover them in Chapter 3, Basic Operators, with all the other operators because it
might have been confusing at that point in your learning curve. But hopefully, the point at
which you are reading this, you understand the onNext(), onComplete(), and
onError() events well enough to use an operator that abstractly packages them in a
different way.

Appendix

[364]

The materialize() operator will take these three events, onNext(), onComplete(), and
onError(), and turn all of them into emissions wrapped in a Notification<T>. So if
your source emits five emissions, you will get six emissions where the last one will
be onComplete() or onError(). In the following code, we materialize an Observable
emitting five strings, which are turned into six Notification emissions:

import io.reactivex.Observable;

public class Launcher {

 public static void main(String[] args) {

 Observable<String> source =
 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon");

 source.materialize()
 .subscribe(System.out::println);

 }
}

The output is as follows:

OnNextNotification[Alpha]
OnNextNotification[Beta]
OnNextNotification[Gamma]
OnNextNotification[Delta]
OnNextNotification[Epsilon]
OnCompleteNotification

Each Notification has three methods, isOnNext(), isOnComplete(), and
isOnError(), to determine what type of event Notification is. There is also
getValue(), which will return the emission value for onNext() but will be null for
onComplete() or onError(). We leverage these methods on Notification, as shown in
the following code, to filter out the three events to three separate Observers:

import io.reactivex.Notification;
import io.reactivex.Observable;

public class Launcher {

 public static void main(String[] args) {

 Observable<Notification<String>> source =
 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon")

Appendix

[365]

 .materialize()
 .publish()
 .autoConnect(3);

 source.filter(Notification::isOnNext)
 .subscribe(n -> System.out.println("onNext=" +
n.getValue()));

 source.filter(Notification::isOnComplete)
 .subscribe(n -> System.out.println("onComplete"));

 source.filter(Notification::isOnError)
 .subscribe(n -> System.out.println("onError"));
 }
}

The output is as follows:

onNext=Alpha
onNext=Beta
onNext=Gamma
onNext=Delta
onNext=Epsilon
onComplete

You can also use dematerialize() to turn an Observable or Flowable emitting
notifications back into a normal Observable or Flowable. It will produce an error if any
emissions are not Notification. Unfortunately, at compile time, Java cannot enforce
operators being applied to Observables/Flowables emitting specific types such as Kotlin:

import io.reactivex.Observable;

public class Launcher {

 public static void main(String[] args) {

 Observable.just("Alpha", "Beta", "Gamma", "Delta",
"Epsilon")
 .materialize()
 .doOnNext(System.out::println)
 .dematerialize()
 .subscribe(System.out::println);
 }
}

Appendix

[366]

The output is as follows:

OnNextNotification[Alpha]
Alpha
OnNextNotification[Beta]
Beta
OnNextNotification[Gamma]
Gamma
OnNextNotification[Delta]
Delta
OnNextNotification[Epsilon]
Epsilon
OnCompleteNotification

So what exactly would you use materialize() and dematerialize() for? You may not
use them often, which is another reason why they are covered here in the appendix. But
they can be handy in composing more complex operators with transformers and stretching
transformers to do more without creating low-level operators from scratch. For instance,
RxJava2-Extras uses materialize() for a number of its operators, including
collectWhile(). By treating onComplete() an emission itself, collectWhile() can
map it to push the collection buffer downstream and start the next buffer.

Otherwise, you will likely not use it often. But it is good to be aware that it exists if you
need it to build more complex transformers.

Understanding Schedulers
You will likely not use schedulers like this in isolation as we are about to do in this section.
You are more likely to use them with observeOn() and subscribeOn(). But here is how
they work in isolation outside of an Rx context.

A Scheduler is RxJava's abstraction for pooling threads and scheduling tasks to be executed
by them. These tasks may be executed immediately, delayed, or repeated periodically
depending on which of its execution methods are called. These execution methods are
scheduleDirect() and schedulePeriodicallyDirect(), which have a few overloads.
Below, we use the computation Scheduler to execute an immediate task, a delayed task, and
a repeated task as shown below:

import io.reactivex.Scheduler;
import io.reactivex.schedulers.Schedulers;

import java.util.concurrent.TimeUnit;

Appendix

[367]

public class Launcher {

 public static void main(String[] args) {

 Scheduler scheduler = Schedulers.computation();

 //run task now
 scheduler.scheduleDirect(() -> System.out.println("Now!"));

 //delay task by 1 second
 scheduler.scheduleDirect(() ->
System.out.println("Delayed!"), 1, TimeUnit.SECONDS);

 //repeat task every second
 scheduler.schedulePeriodicallyDirect(() ->
System.out.println("Repeat!"), 0, 1, TimeUnit.SECONDS);

 //keep alive for 5 seconds
 sleep(5000);
 }

 public static void sleep(long millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

Your output will likely be the following:

Now!
Repeat!
Delayed!
Repeat!
Repeat!
Repeat!
Repeat!
Repeat!

The scheduleDirect() will only execute a one-time task, and accepts optional overloads
to specify a time delay. schedulePeriodicallyDirect() will repeat infinitely.
Interestingly, all of these methods return a Disposable to allow cancellation of the task it is
executing or waiting to execute.

Appendix

[368]

These three methods will automatically pass tasks to a Worker, which is an abstraction that
wraps around a single thread that sequentially does work given to it. You can actually call
the Scheduler's createWorker() method to explicitly get a Worker and delegate tasks to it
directly. Its schedule() and schedulePeriodically() methods operate just like
Scheduler's scheduleDirect() and schedulePeriodicallyDirect() respectively (and
also return disposables), but they are executed by the specified worker. When you are done
with a worker, you should dispose it so it can be discarded or returned to the Scheduler.
Here is an equivalent of our earlier example using a Worker:

import io.reactivex.Scheduler;
import io.reactivex.schedulers.Schedulers;

import java.util.concurrent.TimeUnit;

public class Launcher {

 public static void main(String[] args) {

 Scheduler scheduler = Schedulers.computation();
 Scheduler.Worker worker = scheduler.createWorker();

 //run task now
 worker.schedule(() -> System.out.println("Now!"));

 //delay task by 1 second
 worker.schedule(() -> System.out.println("Delayed!"), 1,
TimeUnit.SECONDS);

 //repeat task every second
 worker.schedulePeriodically(() ->
System.out.println("Repeat!"), 0, 1, TimeUnit.SECONDS);

 //keep alive for 5 seconds, then dispose Worker
 sleep(5000);
 worker.dispose();
 }

 public static void sleep(long millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

Appendix

[369]

This is the output you may get:

Now!
Repeat!
Repeat!
Delayed!
Repeat!
Repeat!
Repeat!
Repeat!

Of course, every Scheduler is implemented differently . A Scheduler may use one thread or
several threads. It may cache and reuse threads, or not reuse them at all. It may use an
Android thread or a JavaFX thread (as we have seen with RxAndroid and RxJavaFX in this
book). But that is essentially how schedulers work, and you can perhaps see why they are
useful in implemeting RxJava operators.

Index

A
action operators
 about 101
 doOnComplete() 101
 doOnDispose() 104
 doOnError() 101
 doOnNext() 101
 doOnSubscribe() 104
 doOnSuccess() 105
Akka 8
all() operator 86
ambiguous 121, 122, 123
Android programming
 reference 303
Android project
 creating 304, 306, 307, 308, 309
any() operator 87
apply()
 using 344
AsyncSubject 160
autoConnect() operator 142, 144
automatic connection
 about 141
 autoConnect() operator 142, 144
 refCount 145
 share() 145

B
backpressure
 about 228, 229
 example 230
 Flowable 232
 using 234
BackpressureStrategy
 BUFFER 244
 DROP 244

 ERROR 244
 LATEST 244
 MISSING 244
 using 243
BehaviorSubject 158
bindings libraries, RxAndroid
 ReactiveBeacons 321
 ReactiveNetwork 321
 rx-preferences 321
 RxFit 321
 RxLocation 321
 RxWear 321
 SqlBrite 321
blocking operators 285
blockingFirst() operator 286, 287
blockingForEach() operator 290
blockingGet() operator 287
blockingIterable() operator 289
blockingLast() operator 288
blockingLatest() operator 291
blockingMostRecent() 292
blockingNext() operator 290
boundary-based buffering 209, 210
boundary-based windowing 213
buffer() operator 204
buffering
 about 204
 boundary-based buffering 209, 210
 fixed-size buffering 204, 206
 time-based buffering 207, 208

C
caching 147, 152, 153
cast() operator 75
Central Repository
 reference 12
classes 8

[371]

cold Observables
 about 35, 36, 38
 versus hot Observables 35
collect() operator 93, 94
collection operators
 about 88
 collect() 93
 toList() 89
 toMap() 90, 91
 toMultiMap() 90, 91
 toSortedList() 90
combine latest
 about 125
 withLatestFrom() operator 127
CompositeDisposable
 using 61
concatenation
 about 117
 concatMap() 120
 Observable.concat() 118
 Observable.concatWith() 118
concatMap() operator 120
concurrency
 about 165
 fundamentals 166, 167
 significance 166
ConnectableObservable 40, 42
Consumer
 lambda, making 353, 354
contains() operator 88
coroutines 348
count() operator 84
custom transformers 277

D
data class 346
defaultIfEmpty() operator 77
delay() operator 80
dematerializing 363, 366
Disposable
 handling, within Observer 59
Disposal
 handling, with Observable.create() 62
disposing 58
distinct() operator 70

distinctUntilChanged() operator 72
doOnComplete() 101
doOnDispose() operator 104
doOnError() operator 101
doOnNext() operator 101
doOnSubscribe() operator 104
doOnSuccess() operator 105

E
elementAt() operator 73, 74
error recovery operators
 about 94
 onErrorResumeNext() 97
 onErrorReturn() 95
 onErrorReturnItem() 95
 retry() 99
extension operators, Kotlin 338

F
filter() operator 66
fixed-size buffering 204, 206
fixed-size windowing 210
flatMap() 112
Flowable If...
 using 235
Flowable.create()
 using 243
Flowable.generate()
 using 252, 253
Flowable
 about 232, 236
 creating 242, 243
 Observable, turning into 245
 turning, into Observable 245
FlowableOperator
 implementing 274
FlowableTransformer 262
fluent conversion
 to(), using for 266
Friends
 configuring 313
Frodo library
 reference 297
Function
 lambda, making 355

[372]

functional types 357

G
Google Guava
 reference 94
Gradle
 Kotlin, configuring for 329
 reference 13
 using 13, 14
grouping 128

H
hot Observables
 about 38, 40
 versus cold Observables 35

J
JUnit
 configuring 282

K
keystrokes
 grouping 224, 226
Kotlin file
 creating 332, 333
Kotlin Gradle configuration
 reference 329
Kotlin in Action
 reference 328
Kotlin lambdas
 about 335
 reference 335
Kotlin Maven configuration
 reference 330
Kotlin
 basics 331
 configuring 328
 configuring, for Gradle 329
 configuring, for Maven 329
 extension functions 334, 335
 extension operators 338
 future 347
 need for 328
 properties, assigning 333

 reference 328
 variables, assigning 333

L
lambda expressions 349
Lambdas
 shorthand Observers, using with 32
let()
 using 342

M
map() operator 74
materializing 363, 366
Maven Standard Directory layout
 reference 282
Maven
 Kotlin, configuring for 329
 using 15
merging
 about 108
 flatMap() 112
 Observable.merge() 108
 Observable.mergeWith() 108
multicasting
 about 41, 133
 usage 139, 140
 working, with operators 134, 135, 138, 139
multithreading 165, 166

O
object-oriented, and reactive programming
 mixing 359, 360, 361, 362
objects 8
Observable contract
 reference 25
Observable If...
 using 235
Observable sources 42
Observable.combineLatest() factory 125, 126, 127
Observable.concat() 118
Observable.concatWith() 118
Observable.create()
 Disposal, handling with 62
 using 24, 26
Observable.defer() 50, 51

[373]

Observable.empty() 48
Observable.error() 49
Observable.fromCallable() 53
Observable.future() 47
Observable.interval() 44, 45
Observable.just() method
 using 28, 29
Observable.merge() operator 108
Observable.mergeWith() operator 108
Observable.never() 49
Observable.range() 42, 43
Observable
 about 23
 Completable 57
 Flowable, turning into 245
 MayBe 55
 onComplete() 24
 onError() event 24
 onNext() event 24
 Single 54
 turning, into Flowable 245
 working 24
ObservableOperator
 implementing 269, 270, 273
ObservableTransformer 258, 259
observeOn()
 about 187
 nuances 193
 using, for UI event threads 191
Observer interface
 about 30
 Disposable, handling within 59
 implementing 31
 subscribing to 31
onBackPressureBuffer()
 using 247
onBackPressureDrop()
 using 251
onBackPressureLatest()
 using 250
onBackpressureXXX() operators
 using 247
onErrorResumeNext() operator 97
onErrorReturn() operator 95
onErrorReturnItem() operator 95

operators
 about 269
 FlowableOperator 274
 for Completables 277
 for Maybes 277
 for Singles 277
 ObservableOperator 269, 270

P
parallel computing 194
parallelism 167, 194
parallelization 167, 194
PublishSubject 153, 154

R
Reactive Extensions 8
Reactive Streams
 reference 11
ReactiveBeacons
 reference 321
ReactiveNetwork
 reference 321
ReactiveX
 future 348
 history 8
reduce() operator 85
reducing operators
 about 84
 all() 86
 any() 87
 contains() 88
 count() 84
 reduce() 85
refCount() operator 145
repeat() operator 81
replay() operator 147
replaying 147
ReplaySubject 159
Retrolambda
 about 312
 configuring 310
 reference 312
retry() operator 99
Runnable
 lambda, making 349, 350

[374]

rx-preferences
 reference 321
RxAndroid
 bindings libraries 321
 reference 8, 191, 315
 using 315
RxBinding
 reference 313, 321
 using 318
RxFit
 reference 321
RxGroovy 8
RxJava 1.0
 versus RxJava 2.0 20
RxJava code
 debugging 297, 298, 300, 301
RxJava concurrency
 about 168, 169, 172
 application, keeping alive 174
RxJava, with Android
 cautions 322
 lifecycles 322
RxJava-JDBC libraries 37
RxJava-JDBC
 reference 8, 37
RxJava2-Extras
 using 278
RxJava2Extensions
 using 278
RxJava2Jdk8Interop library
 reference 289
RxJava
 about 10
 Central Repository, navigating 12
 configuring 313
 history 8
 leveraging 16, 18
 setting up 11
 using 21, 315
RxJavaFX
 reference 8, 191
RxKotlin
 about 8
 configuring 331
 reference 339

 using 339
RxNetty
 reference 8
RxScala 8
RxSwing
 reference 191
RxWear
 reference 321

S
SAM ambiguity
 dealing with 340, 342
scan() operator 82
schedulers
 about 176, 366
 computation 177
 ExecutorService 179
 IO tasks 177
 new thread 178
 shutting down 180
 single thread 178
 starting 180
 trampoline 178
share() operator 145
shared state
 avoiding, with transformers 263, 266
shorthand Observers
 using, with Lambdas 32
single abstract method (SAM) 349
skip() operator 68
skipWhile() operator 69, 70
Sodium 8
sorted() operator 78, 79, 80
SqlBrite
 about 321
 reference 321
SQLite JDBC 37
startWith() operator 75
Subjects
 about 153
 AsyncSubject 160
 BehaviorSubject 158
 issues 156
 PublishSubject 153, 154
 ReplaySubject 159

[375]

 serializing 157
 UnicastSubject 161
 using 154
subscribeOn() operator
 about 180, 181, 184
 nuances 185
Subscriber
 about 237
 blocking 282
 creating 237
 implementing 238
Supplier
 lambda, making 351
suppressing operators
 about 66
 distinct() 70
 distinctUntilChanged() 72
 elementAt() 73, 74
 filter() 66
 skip() 68
 skipWhile() 69, 70
 take() 67
 takeWhile() 69, 70
switchIfEmpty() operator 77
switching 219, 220, 221

T
take() operator 67
takeWhile() operator 69, 70
TestObserver
 using 293, 295
TestScheduler
 time, manipulating with 295, 296
TestSubscriber
 using 293, 295
thread pool 167
threads 167
throttle() operators 214
throttleFirst() operator 217
throttleLast() operator 216
throttleWithTimeout() operator 218
throttling 214
time-based buffering 207, 208
time-based windowing 212
time

 manipulating, with TestScheduler 295, 296
to()
 using, for fluent conversion 266
toList() operator 89
toMap() operator 91
toMultiMap() operator 91
toSortedList() operator 90
transformers
 about 257
 FlowableTransformer 262
 ObservableTransformer 258, 259
 shared state, avoiding with 263, 266
transforming operators
 about 74
 cast() 75
 defaultIfEmpty() 77
 delay() 80
 map() 74
 repeat() 81
 scan() 82
 sorted() 78, 79, 80
 startWith() 75
 switchIfEmpty() 77
Tuples 345

U
UI event threads
 observeOn(), using for 191
UnicastSubject 161
unsubscribeOn() 199

V
volatile keyword 166

W
window() operators 210
windowing
 about 210
 boundary-based windowing 213
 fixed-size windowing 210
 time-based windowing 212
withLatestFrom() operator 127

Z zipping
 about 123, 124

	Cover
	Credits
	About the Author
	Acknowledgements
	About the Reviewers
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Thinking Reactively
	A brief history of ReactiveX and RxJava
	Thinking reactively
	Why should I learn RxJava?
	What we will learn in this book?

	Setting up
	Navigating the Central Repository
	Using Gradle
	Using Maven

	A quick exposure to RxJava
	RxJava 1.0 versus RxJava 2.0 - which one do I use?
	When to use RxJava
	Summary

	Chapter 2: Observables and Subscribers
	The Observable
	How Observables work
	Using Observable.create()
	Using Observable.just()

	The Observer interface
	Implementing and subscribing to an Observer
	Shorthand Observers with lambdas

	Cold versus hot Observables
	Cold Observables
	Hot Observables
	ConnectableObservable

	Other Observable sources
	Observable.range()
	Observable.interval()
	Observable.future()
	Observable.empty()
	Observable.never()
	Observable.error()
	Observable.defer()
	Observable.fromCallable()

	Single, Completable, and Maybe
	Single
	Maybe
	Completable

	Disposing
	Handling a Disposable within an Observer
	Using CompositeDisposable
	Handling Disposal with Observable.create()

	Summary

	Chapter 3: Basic Operators
	Suppressing operators
	filter()
	take()
	skip()
	takeWhile() and skipWhile()
	distinct()
	distinctUntilChanged()
	elementAt()

	Transforming operators
	map()
	cast()
	startWith()
	defaultIfEmpty()
	switchIfEmpty()
	sorted()
	delay()
	repeat()
	scan()

	Reducing operators
	count()
	reduce()
	all()
	any()
	contains()

	Collection operators
	toList()
	toSortedList()
	toMap() and toMultiMap()
	collect()

	Error recovery operators
	onErrorReturn() and onErrorReturnItem()
	onErrorResumeNext()
	retry()

	Action operators
	doOnNext(), doOnComplete(), and doOnError()
	doOnSubscribe() and doOnDispose()
	doOnSuccess()

	Summary

	Chapter 4: Combining Observables
	Merging
	Observable.merge() and mergeWith()
	flatMap()

	Concatenation
	Observable.concat() and concatWith()
	concatMap()

	Ambiguous
	Zipping
	Combine latest
	withLatestFrom()

	Grouping
	Summary

	Chapter 5: Multicasting, Replaying, and Caching
	Understanding multicasting
	Multicasting with operators
	When to multicast

	Automatic connection
	autoConnect()
	refCount() and share()

	Replaying and caching
	Replaying
	Caching

	Subjects
	PublishSubject
	When to use Subjects
	When Subjects go wrong
	Serializing Subjects
	BehaviorSubject
	ReplaySubject
	AsyncSubject
	UnicastSubject

	Summary

	Chapter 6: Concurrency and Parallelization
	Why concurrency is necessary
	Concurrency in a nutshell
	Understanding parallelization

	Introducing RxJava concurrency
	Keeping an application alive

	Understanding Schedulers
	Computation
	IO
	New thread
	Single
	Trampoline
	ExecutorService
	Starting and shutting down Schedulers

	Understanding subscribeOn()
	Nuances of subscribeOn()

	Understanding observeOn()
	Using observeOn() for UI event threads
	Nuances of observeOn()

	Parallelization
	unsubscribeOn()
	Summary

	Chapter 7: Switching, Throttling, Windowing, and Buffering
	Buffering
	Fixed-size buffering
	Time-based buffering
	Boundary-based buffering

	Windowing
	Fixed-size windowing
	Time-based windowing
	Boundary-based windowing

	Throttling
	throttleLast() / sample()
	throttleFirst()
	throttleWithTimeout() / debounce()

	Switching
	Grouping keystrokes
	Summary

	Chapter 8: Flowables and Backpressure
	Understanding backpressure
	An example that needs backpressure
	Introducing the Flowable
	When to use Flowables and backpressure
	Use an Observable If...
	Use a Flowable If...

	Understanding the Flowable and Subscriber
	The Subscriber

	Creating a Flowable
	Using Flowable.create() and BackpressureStrategy
	Turning an Observable into a Flowable (and vice-versa)

	Using onBackpressureXXX() operators
	onBackPressureBuffer()
	onBackPressureLatest()
	onBackPressureDrop()

	Using Flowable.generate()
	Summary

	Chapter 9: Transformers and Custom Operators
	Transformers
	ObservableTransformer
	FlowableTransformer
	Avoiding shared state with Transformers

	Using to() for fluent conversion
	Operators
	Implementing an ObservableOperator
	FlowableOperator

	Custom Transformers and operators for Singles, Maybes, and Completables
	Using RxJava2-Extras and RxJava2Extensions
	Summary

	Chapter 10: Testing and Debugging
	Configuring JUnit
	Blocking subscribers
	Blocking operators
	blockingFirst()
	blockingGet()
	blockingLast()
	blockingIterable()
	blockingForEach()
	blockingNext()
	blockingLatest()
	blockingMostRecent()

	Using TestObserver and TestSubscriber
	Manipulating time with the TestScheduler
	Debugging RxJava code
	Summary

	Chapter 11: RxJava on Android
	Creating the Android project
	Configuring Retrolambda
	Configuring RxJava and friends

	Using RxJava and RxAndroid
	Using RxBinding

	Other RxAndroid bindings libraries
	Life cycles and cautions using RxJava with Android
	Summary

	Chapter 12: Using RxJava for Kotlin New
	Why Kotlin?
	Configuring Kotlin
	Configuring Kotlin for Gradle
	Configuring Kotlin for Maven
	Configuring RxJava and RxKotlin

	Kotlin basics
	Creating a Kotlin file
	Assigning properties and variables
	Extension functions
	Kotlin lambdas

	Extension operators
	Using RxKotlin
	Dealing with SAM ambiguity
	Using let() and apply()
	Using let()
	Using apply()

	Tuples and data classes
	Future of ReactiveX and Kotlin
	Summary

	Appendix
	Introducing lambda expressions
	Making a Runnable a lambda
	Making a Supplier a lambda
	Making a Consumer a lambda
	Making a Function a lambda

	Functional types
	Mixing object-oriented and reactive programming
	Materializing and Dematerializing
	Understanding Schedulers

	Index

