EXPERT INSIGHT

Modern
Python
Cookbook

133 recipes to develop flawless
and expressive programs
in Python 3.8

HHI; “ \

Steven F. Lott

Modern Python
Cookbook

Second Edition

133 recipes to develop flawless and expressive programs
in Python 3.8

Steven F. Lott

BIRMINGHAM - MUMBAI

Modern Python Cookbook

Second Edition
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers
and distributors, will be held liable for any damages caused or alleged to have been caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

Producer: Tushar Gupta

Acquisition Editor - Peer Reviews: Divya Mudaliar
Project Editor: Tom Jacob

Content Development Editor: Alex Patterson
Technical Editor: Karan Sonawane

Copy Editor: Safis Editing

Proofreader: Safis Editing

Indexer: Priyanka Dhadke

Presentation Designer: Pranit Padwal

First published: November 2016
Second edition: July 2020

Production reference: 1280720

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-80020-745-5

www . packt .com

http://www.packt.com

Packt

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?

» Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Learn better with Skill Plans built especially for you
Get a free eBook or video every month
Fully searchable for easy access to vital information

vV v.v Vv

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . Packt .com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www . Packt . com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

https://subscribe.packtpub.com/
http://www.Packt.com
mailto:customercare@packtpub.com
http://www.packtpub.com/

Contributors

About the author

Steven F. Lott has been programming since the 70s, when computers were large,
expensive, and rare. As a contract software developer and architect, he has worked on
hundreds of projects, from very small to very large. He's been using Python to solve business
problems for almost 20 years.

He's currently leveraging Python to implement cloud management tools. His other titles
with Packt include Python Essentials, Mastering Object-Oriented Python, Functional Python
Programming, and Python for Secret Agents.

Steven is currently a technomad who lives in various places on the east coast of the U.S.

About the reviewers

Alex Martelli is an Italian-born computer engineer, and Fellow and Core Committer of the
Python Software Foundation. For over 15 years now, he has lived and worked in Silicon Valley,
currently as Tech Lead for "long tail" community support for Google Cloud Platform.

Alex holds a Laurea (Master's degree) in Electrical Engineering from Bologna University; he
is the author of Python in a Nutshell (co-author, in the current 3rd edition), co-editor of the
Python Cookbook's first two editions, and has written many other (mostly Python-related)
materials, including book chapters, interviews, and many tech talks. Check out https://
www.google.com/search?g=alex+martelli, especially the Videos tab thereof.

Alex won the 2002 Activators' Choice Award, and the 2006 Frank Willison award for
outstanding contributions to the Python community.

Alex has taught courses on programming, development methods, object-oriented design,
cloud computing, and numerical computing, at Ferrara University and other universities and
schools. Alex was also the keynote speaker for the 2008 SciPy Conference, and for many
editions of Pycon APAC and Pycon Italia conferences.

Anna Martelli Ravenscroft is an experienced speaker and trainer, with a diverse
background from bus driving to bridge, disaster preparedness to cognitive science.

A frequent track chair, program committee member, and speaker at Python and Open Source
conferences, Anna also frequently provides technical reviewing for Python books. She co-
edited the 2nd edition of the Python Cookbook and co-authored the 3rd edition of Python

in a Nutshell. Anna is a Fellow of the Python Software Foundation and won a Frank Willison
Memorial Award for her contributions to Python.

https://en.wikipedia.org/wiki/Python_Software_Foundation
https://en.wikipedia.org/wiki/Laurea
https://en.wikipedia.org/wiki/Electrical_Engineering
https://en.wikipedia.org/wiki/Bologna_University
https://en.wikipedia.org/w/index.php?title=Python_in_a_Nutshell&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Python_Cookbook&action=edit&redlink=1
https://www.google.com/search?q=alex+martelli
https://www.google.com/search?q=alex+martelli
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Object-oriented_design
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/University_of_Ferrara
https://en.wikipedia.org/wiki/SciPy

Table of Contents

Preface \
Chapter 1: Numbers, Strings, and Tuples 1
Working with large and small integers 2
Choosing between float, decimal, and fraction 4
Choosing between true division and floor division 11
Rewriting an immutable string 14
String parsing with regular expressions 20
Building complex strings with f-strings 24
Building complicated strings from lists of characters 28
Using the Unicode characters that aren't on our keyboards 30
Encoding strings - creating ASCII and UTF-8 bytes 33
Decoding bytes - how to get proper characters from some bytes 35
Using tuples of items 38
Using NamedTuples to simplify item access in tuples 42
Chapter 2: Statements and Syntax 45
Writing Python script and module files - syntax basics 46
Writing long lines of code 51
Including descriptions and documentation 56
Writing better RST markup in docstrings 61
Designing complex if...elif chains 67
Saving intermediate results with the := "walrus" 71
Avoiding a potential problem with break statements 74
Leveraging exception matching rules 79
Avoiding a potential problem with an except: clause 82
Concealing an exception root cause 84
Managing a context using the with statement 87
Chapter 3: Function Definitions 921
Function parameters and type hints 92
Designing functions with optional parameters 97
Designing type hints for optional parameters 102
Using super flexible keyword parameters 105
Forcing keyword-only arguments with the * separator 109
Defining position-only parameters with the / separator 114
Writing hints for more complex types 116
Picking an order for parameters based on partial functions 121
Writing clear documentation strings with RST markup 126

Table of Contents

Designing recursive functions around Python's stack limits 131
Writing testable scripts with the script-library switch 136
Chapter 4: Built-In Data Structures Part 1: Lists and Sets 141
Choosing a data structure 142
Building lists - literals, appending, and comprehensions 146
Slicing and dicing a list 153
Deleting from a list - deleting, removing, popping, and filtering 158
Writing list-related type hints 164
Reversing a copy of a list 168
Building sets - literals, adding, comprehensions, and operators 171
Removing items from a set - remove(), pop(), and difference 178
Writing set-related type hints 181
Chapter 5: Built-In Data Structures Part 2: Dictionaries 187
Creating dictionaries - inserting and updating 188
Removing from dictionaries - the pop() method and the del statement 193
Controlling the order of dictionary keys 198
Writing dictionary-related type hints 202
Understanding variables, references, and assignment 206
Making shallow and deep copies of objects 209
Avoiding mutable default values for function parameters 213
Chapter 6: User Inputs and Outputs 219
Using the features of the print() function 220
Using input() and getpass() for user input 225
Debugging with f"{value=}" strings 232
Using argparse to get command-line input 234
Using cmd to create command-line applications 241
Using the OS environment settings 246
Chapter 7: Basics of Classes and Objects 251
Using a class to encapsulate data and processing 252
Essential type hints for class definitions 257
Designing classes with lots of processing 261
Using typing.NamedTuple for immutable objects 268
Using dataclasses for mutable objects 271
Using frozen dataclasses for immutable objects 275
Optimizing small objects with __slots__ 278
Using more sophisticated collections 282
Extending a built-in collection - a list that does statistics 286
Using properties for lazy attributes 290
Creating contexts and context managers 296
Managing multiple contexts with multiple resources 301

Table of Contents

Chapter 8: More Advanced Class Design 307
Choosing between inheritance and composition - the "is-a" question 308
Separating concerns via multiple inheritance 317
Leveraging Python's duck typing 324
Managing global and singleton objects 328
Using more complex structures - maps of lists 334
Creating a class that has orderable objects 339
Improving performance with an ordered collection 345
Deleting from a list of complicated objects 352

Chapter 9: Functional Programming Features 359
Introduction 359
Writing generator functions with the yield statement 361
Applying transformations to a collection 369
Using stacked generator expressions 375
Picking a subset - three ways to filter 386
Summarizing a collection - how to reduce 392
Combining the map and reduce transformations 397
Implementing "there exists" processing 404
Creating a partial function 409
Simplifying complex algorithms with immutable data structures 415
Writing recursive generator functions with the yield from statement 420

Chapter 10: Input/Output, Physical Format, and Logical Layout 427
Using pathlib to work with filenames 429
Replacing a file while preserving the previous version 438
Reading delimited files with the CSV module 443
Using dataclasses to simplify working with CSV files 449
Reading complex formats using regular expressions 453
Reading JSON and YAML documents 460
Reading XML documents 467
Reading HTML documents 475
Refactoring a .csv DictReader as a dataclass reader 483

Chapter 11: Testing 491
Test tool setup 492
Using docstrings for testing 494
Testing functions that raise exceptions 501
Handling common doctest issues 506
Unit testing with the unittest module 513
Combining unittest and doctest tests 522
Unit testing with the pytest module 527
Combining pytest and doctest tests 532

Table of Contents

Testing things that involve dates or times 537
Testing things that involve randomness 543
Mocking external resources 550
Chapter 12: Web Services 561
Defining the card model 563
Using the Flask framework for RESTful APls 569
Parsing the query string in a request 576
Making REST requests with urllib 583
Parsing the URL path 592
Parsing a JSON request 607
Implementing authentication for web services 620
Chapter 13: Application Integration: Configuration 641
Finding configuration files 642
Using YAML for configuration files 649
Using Python for configuration files 656
Using class-as-namespace for configuration 660
Designing scripts for composition 668
Using logging for control and audit output 677
Chapter 14: Application Integration: Combination 689
Combining two applications into one 690
Combining many applications using the Command Design Pattern 697
Managing arguments and configuration in composite applications 702
Wrapping and combining CLI applications 709
Wrapping a program and checking the output 719
Controlling complex sequences of steps 726
Chapter 15: Statistical Programming and Linear Regression 733
Using the built-in statistics library 734
Average of values in a counter 742
Computing the coefficient of a correlation 747
Computing regression parameters 753
Computing an autocorrelation 758
Confirming that the data is random - the null hypothesis 766
Locating outliers 774
Analyzing many variables in one pass 782
Other Books You May Enjoy 791
Index 795

Preface

Python is the preferred choice of developers, engineers, data scientists, and hobbyists
everywhere. It is a great scripting language that can power your applications and provide great
speed, safety, and scalability. By exposing Python as a series of simple recipes, you can gain
insights into specific language features in a particular context. Having a tangible context helps
make the language or standard library feature easier to understand.

This book takes a recipe-based approach, where each recipe addresses specific problems and
issues.

What you need for this book

All you need to follow through the examples in this book is a computer running any Python
3.8.5 or newer. Some of the examples can be adapted to work with Python 3 versions prior to
3.8. A number of examples are specific to Python 3.8 features.

It's often easiest to install a fresh copy of Python. This can be downloaded from https://
www . python.org/downloads/. An alternative is to start with Miniconda (https://
docs.conda.io/en/latest/miniconda.html) and use the conda tool to create a
Python 3.8 (or newer) environment.

Python 2 cannot easily be used any more. Some Linux distributions and older macOS releases
included a version of Python 2. It should be thought of as part of the operating system, and
not a general software development tool.

https://www.python.org/downloads/
https://www.python.org/downloads/
https://docs.conda.io/en/latest/miniconda.html
https://docs.conda.io/en/latest/miniconda.html

Preface
Who this book is for

The book is for web developers, programmers, enterprise programmers, engineers, and
big data scientists. If you are a beginner also, this book will get you started. If you are
experienced, it will expand your knowledge base. A basic knowledge of programming would
help.

What this book covers

Chapter 1, Numbers, Strings, and Tuples, will look at the different kinds of numbers, work with
strings, use tuples, and use the essential built-in types in Python. We will also exploit the full
power of the unicode character set.

Chapter 2, Statements and Syntax, will cover some basics of creating script files first. Then
we'll move on to looking at some of the complex statements, including if, while, for, try,
with, and raise.

Chapter 3, Function Definitions, will look at a number of function definition techniques.
We'll also look at the Python 3.5 typing module and see how we can create more formal
annotations for our functions.

Chapter 4, Built-In Data Structures Part 1 - Lists and Sets, will look at an overview of the
various structures that are available and what problems they solve. From there, we can look at
lists and sets in detail.

Chapter 5, Built-In Data Structures Part 2 - Dictionaries, will continue examining the built-
in data structures, looking at dictionaries in detail. This chapter will also look at some more
advanced topics related to how Python handles references to objects.

Chapter 6, User Inputs and Outputs, will explain how to use the different features of the
print () function. We'll also look at the different functions used to provide user input.

Chapter 7, Basics of Classes and Objects, will create classes that implement a number
of statistical formulae.

Chapter 8, More Advanced Class Design, will dive a little more deeply into Python classes. We
will combine some features we have previously learned about to create more sophisticated
objects.

Chapter 9, Functional Programming Features, will examine ways Python can be used for
functional programming,. This will emphasize function definitions and stateless, immutable
objects.

.

file:///\\192.168.0.200\All_Books\2020\Working_Titles\16020_Modern Python Cookbook 2E\BookDrafts\9781786469250\a2a60fe4-07af-4a14-80ee-96c80e2fb12f.xhtml
file:///\\192.168.0.200\All_Books\2020\Working_Titles\16020_Modern Python Cookbook 2E\BookDrafts\9781786469250\69a2d7aa-ecb6-4a0d-83af-26827d8369f7.xhtml
file:///\\192.168.0.200\All_Books\2020\Working_Titles\16020_Modern Python Cookbook 2E\BookDrafts\9781786469250\3e2cb5b0-8560-4f63-b34a-27191b225ace.xhtml
file:///\\192.168.0.200\All_Books\2020\Working_Titles\16020_Modern Python Cookbook 2E\BookDrafts\9781786469250\c46b36ee-e2f1-4759-8b4d-b7a68d8d65b5.xhtml
file:///C:\192.168.0.200\All_Books\2020\Working_Titles\16020_Modern Python Cookbook 2E\BookDrafts\9781786469250\30e58d1b-a40b-448e-9ba6-ad19e4f60885.xhtml
file:///C:\192.168.0.200\All_Books\2020\Working_Titles\16020_Modern Python Cookbook 2E\BookDrafts\9781786469250\f228734a-a940-4f49-b94e-d69fbca25a39.xhtml
file:///C:\192.168.0.200\All_Books\2020\Working_Titles\16020_Modern Python Cookbook 2E\BookDrafts\9781786469250\fc98b33d-f2df-41cc-b4da-207a06bea925.xhtml

Preface

Chapter 10, Input/Output, Physical Format, and Logical Layout, will work with different file
formats such as JSON, XML, and HTML.

Chapter 11, Testing, will give us a detailed description of the different testing frameworks
used in Python.

Chapter 12, Web Services, will look at a number of recipes for creating RESTful web services
and also serving static or dynamic content.

Chapter 13, Application Integration: Configuration, will start looking at ways that we can
design applications that can be composed to create larger, more sophisticated composite
applications.

Chapter 14, Application Integration: Combination, will look at ways that complications that
can arise from composite applications and the need to centralize some features, such as
command-line parsing.

Chapter 15, Statistical Programming and Linear Regression, will look at some basic statistical
calculations that we can do with Python's built-in libraries and data structures. We'll look at
the questions of correlation, randomness, and the null hypothesis.

To get the most out of this book

To get the most out of this book you can download the example code files and the color
images as per the instructions below.

Download the example code files

You can download the example code files for this book from your account at packtpub. com.
If you purchased this book elsewhere, you can visit packtpub.com/support and register to
have the files emailed directly to you.

You can download the code files by following these steps:
1. Log in or register at packtpub. com.
Select the SUPPORT tab.

2
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box and follow the on-screen instructions.

file:///C:\192.168.0.200\All_Books\2020\Working_Titles\16020_Modern Python Cookbook 2E\BookDrafts\9781786469250\79fe124f-c610-4410-9a95-2b0336a71677.xhtml
file:///C:\192.168.0.200\All_Books\2020\Working_Titles\16020_Modern Python Cookbook 2E\BookDrafts\9781786469250\be3c25a0-eeb7-4c75-839e-488611e32f82.xhtml
file:///C:\192.168.0.200\All_Books\2020\Working_Titles\16020_Modern Python Cookbook 2E\BookDrafts\9781786469250\2a688f33-1c9d-42ce-9796-92a01ccd1bb3.xhtml
file:///C:\192.168.0.200\All_Books\2020\Working_Titles\16020_Modern Python Cookbook 2E\BookDrafts\9781786469250\47bd1387-0bdf-42e8-bc97-0cc20ef9a13e.xhtml
file:///C:\192.168.0.200\All_Books\2020\Working_Titles\16020_Modern Python Cookbook 2E\BookDrafts\9781786469250\47bd1387-0bdf-42e8-bc97-0cc20ef9a13e.xhtml
https://www.packtpub.com/sites/default/files/downloads/Statistical_Programming_and_Linear_Regression.pdf
http://www.packtpub.com/
http://www.packtpub.com/support

Preface

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

» WInRAR / 7-Zip for Windows
» Zipeg/ iZip / UnRarX for Mac
» 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Modern-Python-Cookbook-Second-Edition. This repository

is also the best places to start a conversation about specific topics discussed in the book.
Feel free to open an issue if you want to engage with the authors or other readers. We also
have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We can
include other contexts through the use of the include directive."

A block of code is set as follows:

if distance is None:

distance = rate * time
elif rate is None:

rate = distance / time
elif time is None:

time = distance / rate

Any command-line input or output is written as follows:

>>> import math
>>> math.factorial (52)

80658175170943878571660636856403766975289505440883277824000000000000

New terms and important words are shown in bold.

https://github.com/PacktPublishing/Modern-Python-Cookbook-Second-Edition
https://github.com/PacktPublishing/Modern-Python-Cookbook-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

\/{p’, Warnings or important notes appear like this.

N\ ! /
‘@\‘ Tips and tricks appear like this.

/

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book's title in the
subject of your message. If you have questions about any aspect of this book, please email us
at questions@packtpub. com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you have found a mistake in this book we would be grateful if you would report this
to us. Please visit, packtpub.com/support/errata, selecting your book, clicking on the
Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name. Please
contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub. com.

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub. com.

g

http://authors.packtpub.com/
http://authors.packtpub.com/
https://www.packtpub.com/

Numbers, Strings,
and Tuples

This chapter will look at some of the central types of Python objects. We'll look at working

with different kinds of numbers, working with strings, and using tuples. These are the simplest
kinds of data Python works with. In later chapters, we'll look at data structures built on these
foundations.

Most of these recipes assume a beginner's level of understanding of Python 3.8. We'll

be looking at how we use the essential built-in types available in Python—numbers, strings,
and tuples. Python has a rich variety of numbers, and two different division operators, so we'll
need to look closely at the choices available to us.

When working with strings, there are several common operations that are important. We'll
explore some of the differences between bytes—as used by our OS files, and strings—as used
by Python. We'll look at how we can exploit the full power of the Unicode character set.

In this chapter, we'll show the recipes as if we're working from the >>> prompt in interactive
Python. This is sometimes called the read-eval-print loop (REPL). In later chapters, we'll
change the style so it looks more like a script file. The goal in this chapter is to encourage
interactive exploration because it's a great way to learn the language.

We'll cover these recipes to introduce basic Python data types:

Working with large and small integers

v

Choosing between float, decimal, and fraction

v

Choosing between true divisionand floor division

v

Rewriting an immutable string

Numbers, Strings, and Tuples

» String parsing with regular expressions

Building complex strings with £-strings

Building complex strings from lists of characters

Using the Unicode characters that aren't on our keyboards
Encoding strings - creating ASCIl and UTF-8 bytes

Decoding bytes - how to get proper characters from some bytes
Using tuples of items

vV v vy VvVvVvyywyypy

Using NamedTuples to simplify item access in tuples

We'll start with integers, work our way through strings, and end up working with simple
combinations of objects in the form of tuples and NamedTuples.

Working with large and small integers

Many programming languages make a distinction between integers, bytes, and long integers.
Some languages include distinctions for signed versus unsigned integers. How do we map
these concepts to Python?

The easy answer is that we don't. Python handles integers of all sizes in a uniform way. From
bytes to immense numbers with hundreds of digits, they're all integers to Python.

Getting ready

Imagine you need to calculate something really big. For example, we want to calculate the
number of ways to permute the cards in a 52-card deck. The factorial 52! = 52 x 51 x 50 % ...
x 2 x 1, is a very, very large number. Can we do this in Python?

How to do it...

Don't worry. Really. Python has one universal type of integer, and this covers all of the bases,
from individual bytes to numbers that fill all of the memory. Here are the steps to use integers
properly:
1. Write the numbers you need. Here are some smallish numbers: 355, 113. There's
no practical upper limit.
2. Creating a very small value—a single byte—looks like this:
>>> 2
2
Or perhaps this, if you want to use base 16:

>>> Oxff
255

g

Chapter 1

3. Creating a much, much bigger number with a calculation using the ** operator
("raise to power") might look like this:

>>> 2%*%2048
323...656

This number has 617 digits. We didn't show all of them.

Internally, Python has two representations for numbers. The conversion between these two is
seamless and automatic.

For smallish numbers, Python will generally use 4-byte or 8-byte integer values. Details are
buried in CPython's internals; they depend on the facilities of the C compiler used to build
Python.

For numbers over sys.maxsize, Python switches to internally representing integer numbers
as sequences of digits. Digit, in this case, often means a 30-bit value.

How many ways can we permute a standard deck of 52 cards? The answer is 52! ~ 8 x 10°7,
Here's how we can compute that large number. We'll use the factorial function in the math
module, shown as follows:

>>> import math

>>> math.factorial (52)

80658175170943878571660636856403766975289505440883277824000000000000
Yes, this giant number works perfectly.

The first parts of our calculation of 52! (from 52 x 51 x 50 x ... down to about 42) could be
performed entirely using the smallish integers. After that, the rest of the calculation had to
switch to largish integers. We don't see the switch; we only see the results.

For some of the details on the internals of integers, we can look at this:

>>> import sys

>>> import math

>>> math.log(sys.maxsize, 2)

63.0

>>> sys.int info

sys.int info(bits per digit=30, sizeof digit=4)

The sys.maxsize value is the largest of the small integer values. We computed the log to
base 2 to find out how many bits are required for this number.

(3 |-

Numbers, Strings, and Tuples

This tells us that our Python uses 63-bit values for small integers. The range of smallish
integers is from -2%3 ... 253 - 1. Qutside this range, largish integers are used.

The values in sys.int_info tell us that large integers are a sequence of 30-bit digits, and
each of these digits occupies 4 bytes.

A large value like 52! consists of 8 of these 30-bit-sized digits. It can be a little confusing to
think of a digit as requiring 30 bits in order to be represented. Instead of the commonly used
symbols, 0, 1, 2, 3, ..., 9, for base-10 numbers, we'd need 23° distinct symbols for each digit of
these large numbers.

A calculation involving big integer values can consume a fair bit of memory. What about small
numbers? How can Python manage to keep track of lots of little numbers like one and zero?

For some commonly used numbers (-5 to 256), Python can create a secret pool of objects to
optimize memory management. This leads to a small performance improvement.

Python offers us a broad set of arithmetic operators: +, -, *, /, //, %,and **. The / and //
operators are for division; we'll look at these in a separate recipe named Choosing between
true division and floor division. The ** operator raises a number to a power.

For dealing with individual bits, we have some additional operations. We can use &, *, |, <<,
and >>. These operators work bit by bit on the internal binary representations of integers.
These compute a binary AND, a binary Exclusive OR, Inclusive OR, Left Shift, and Right
Shift respectively.

» We'll look at the two division operators in the Choosing between true division and
floor division recipe, later in this chapter.

» We'll look at other kinds of numbers in the Choosing between float, decimal,
and fraction recipe, which is the next recipe in this chapter.

» For details on integer processing, see https://www.python.org/dev/peps/
pep-0237/.

Choosing between float, decimal,

and fraction

Python offers several ways to work with rational numbers and approximations of irrational
numbers. We have three basic choices:

—4a1]

https://www.python.org/dev/peps/pep-0237/
https://www.python.org/dev/peps/pep-0237/

Chapter 1

» Float
» Decimal
» Fraction

With so many choices, when do we use each?

Getting ready

It's important to be sure about our core mathematical expectations. If we're not sure what
kind of data we have, or what kinds of results we want to get, we really shouldn't be coding
yet. We need to take a step back and review things with a pencil and paper.

There are three general cases for math that involve numbers beyond integers, which are:

1. Currency: Dollars, cents, euros, and so on. Currency generally has a fixed number
of decimal places. Rounding rules are used to determine what 7.25% of $2.95 is,
rounded to the nearest penny.

2. Rational Numbers or Fractions: When we're working with American units like feet
and inches, or cooking measurements in cups and fluid ounces, we often need to
work in fractions. When we scale a recipe that serves eight, for example, down to five
people, we're doing fractional math using a scaling factor of 5/8. How do we apply
this scaling to 2/3 cup of rice and still get a measurement that fits an American
kitchen gadget?

3. Irrational Numbers: This includes all other kinds of calculations. It's important
to note that digital computers can only approximate these numbers, and we'll
occasionally see odd little artifacts of this approximation. Float approximations are
very fast, but sometimes suffer from truncation issues.

When we have one of the first two cases, we should avoid floating-point numbers.

How to do it...

We'll look at each of the three cases separately. First, we'll look at computing with currency.
Then, we'll look at rational numbers, and after that, irrational or floating-point numbers.
Finally, we'll look at making explicit conversions among these various types.

Doing currency calculations

When working with currency, we should always use the decimal module. If we try to use
the values of Python's built-in £1oat type, we can run into problems with the rounding and
truncation of numbers:

1. To work with currency, we'll do this. Import the Decimal class from the decimal
module:

>>> from decimal import Decimal

(5 -

Numbers, Strings, and Tuples

2. Create Decimal objects from strings or integers. In this case, we want 7.25%, which
is 7.25/100. We can compute the value using Decimal objects. We could have used
Decimal ('0.0725") instead of doing the division explicitly. The result is a hair over
$0.21. It's computed correctly to the full number of decimal places:

>>> tax_rate = Decimal('7.25')/Decimal(100)
>>> purchase_amount = Decimal('2.95')
>>> tax_rate * purchase_ amount

Decimal ('0.213875"')

3. Toround to the nearest penny, create a penny object:

>>> penny = Decimal('0.01"')
4. Quantize your data using this penny object:

>>> total amount = purchase amount + tax rate * purchase amount
>>> total amount.quantize (penny)

Decimal('3.16"')
This shows how we can use the default rounding rule of ROUND HALF EVEN.

Every financial wizard (and many world currencies) have different rules for rounding. The
Decimal module offers every variation. We might, for example, do something like this:

>>> import decimal
>>> total amount.quantize(penny, decimal.ROUND UP)

Decimal ('3.17"')

This shows the consequences of using a different rounding rule.

Fraction calculations

When we're doing calculations that have exact fraction values, we can use the fractions
module. This provides us with handy rational numbers that we can use. In this example, we
want to scale a recipe for eight down to five people, using 5/8 of each ingredient. When we

1
need 25 cups of sugar, what does that turn out to be?
To work with fractions, we'll do this:

1. Import the Fraction class from the fractions module:

>>> from fractions import Fraction

Chapter 1

2. Create Fraction objects from strings, integers, or pairs of integers. If you create
fraction objects from floating-point values, you may see unpleasant artifacts of

11
float approximations. When the denominator is a power of 2, - 5, Z’ and so on,

converting from float to fraction can work out exactly. We created one fraction from a
string, '2.5'. We created the second fraction from a floating-point calculation, 5/8.
Because the denominator is a power of 2, this works out exactly:

>>> sugar cups = Fraction('2.5"')
>>> scale factor = Fraction(5/8)
>>> sugar cups * scale factor

Fraction (25, 16)

25
3. Theresult, —, is a complex-looking fraction. What's a nearby fraction that might be
simpler?
>>> Fraction (24,16)

Fraction (3, 2)

We can see that we'll use almost a cup and a half of sugar to scale the recipe for five people
instead of eight.

Floating-point approximations

Python's built-in £1oat type can represent a wide variety of values. The trade-off here is that
float often involves an approximation. In a few cases—specifically when doing division that
involves powers of 2—it can be as exact as fraction. In all other cases, there may be small
discrepancies that reveal the differences between the implementation of £1oat and the
mathematical ideal of an irrational number:

1. To work with £loat, we often need to round values to make them look sensible.
It's important to recognize that all £1oat calculations are an approximation:

>>> (19/155) * (155/19)
0.9999999999999999

2. Mathematically, the value should be 1. Because of the approximations used for
float, the answer isn't exact. It's not wrong by much, but it's wrong. In this example,
we'll use round (answer, 3) to round to three digits, creating a value that's more
useful:

>>> answer = (19/155)*(155/19)
>>> round(answer, 3)

1.0

Numbers, Strings, and Tuples

3. Know the error term. In this case, we know what the exact answer is supposed to be,
S0 we can compare our calculation with the known correct answer. This gives us the
general error value that can creep into floating-point numbers:

>>> l-answer

1.1102230246251565e-16

For most floating-point errors, this is the typical value—about 106, Python has clever rules
that hide this error some of the time by doing some automatic rounding. For this calculation,
however, the error wasn't hidden.

This is a very important consequence.

\/{p’, Don't compare floating-point values for exact equality.

When we see code that uses an exact == test between floating-point numbers, there are going
to be problems when the approximations differ by a single bit.

Converting numbers from one type into another

We can use the £loat () function to create a £1loat value from another value. It looks like
this:

>>> float (total_ amount)

3.163875

>>> float(sugar cups * scale factor)

1.5625

In the first example, we converted a Decimal value into float. In the second example, we
converted a Fraction value into float.

It rarely works out well to try to convert float into Decimal or Fraction:

>>> Fraction(19/155)

Fraction (8832866365939553, 72057594037927936)

>>> Decimal (19/155)

Decimal ('0.12258064516129031640279123394066118635237216949462890625")

In the first example, we did a calculation among integers to create a £1oat value that has a

known truncation problem. When we created a Fraction from that truncated £1loat value,
we got some terrible - looking numbers that exposed the details of the truncation.

—e1]

Chapter 1

Similarly, the second example tries to create a Decimal value from a £1oat value that has
a truncation problem, resulting in a complicated value.

For these numeric types, Python offers a variety of operators: +, -, *, /, //, %, and **,
These are for addition, subtraction, multiplication, true division, truncated division, modulo,
and raising to a power, respectively. We'll look at the two division operators in the Choosing
between true division and floor division recipe.

Python is adept at converting numbers between the various types. We can mix int

and float values; the integers will be promoted to floating-point to provide the most
accurate answer possible. Similarly, we can mix int and Fraction and the results will be
a Fraction object. We can also mix int and Decimal. We cannot casually mix Decimal
with float or Fraction; we need to provide explicit conversions in that case.

/ It's important to note that £1oat values are really approximations. The
(- N Python syntax allows us to write numbers as decimal values; however,
that's not how they're processed internally.

(

We can write a value like this in Python, using ordinary base-10 values:

>>> 8.066e+67
8.066e+67

The actual value used internally will involve a binary approximation of the decimal value we
wrote. The internal value for this example, 8.066e+67, is this:

>>> (6737037547376141/ (2**53)) * (2%%*226)
8.066e+67

The numerator is a big number, 6737037547376141. The denominator is always 2%3. Since
the denominator is fixed, the resulting fraction can only have 53 meaningful bits of data.

This is why values can get truncated. This leads to tiny discrepancies between our idealized
abstraction and actual numbers. The exponent (222) is required to scale the fraction up to the
proper range.

6737037547376141 x 2226
253)
We can use math. frexp () to see these internal details of a number:

Mathematically,

>>> import math
>>> math.frexp(8.066E+67)
(0.7479614202861186, 226)

Numbers, Strings, and Tuples

The two parts are called the mantissa (or significand) and the exponent. If we multiply the
mantissa by 2%, we always get a whole number, which is the numerator of the binary fraction.

\/ _;\)/ The error we noticed earlier matches this quite nicely: 1026 ~ 253,

Unlike the built-in £1oat, a Fraction is an exact ratio of two integer values. As we saw in
the Working with large and small integers recipe, integers in Python can be very large. We can
create ratios that involve integers with a large number of digits. We're not limited by a fixed
denominator.

A Decimal value, similarly, is based on a very large integer value, as well as a scaling factor
to determine where the decimal place goes. These numbers can be huge and won't suffer
from peculiar representation issues.

Why use floating-point? Two reasons: Not all computable numbers can
be represented as fractions. That's why mathematicians introduced (or
‘ / perhaps discovered) irrational numbers. The built-in float type is as close
\’/ as we can get to the mathematical abstraction of irrational numbers. A
value like /2, for example, can't be represented as a fraction. Also, float
values are very fast on modern processors.

The Python math module contains several specialized functions for working with floating-point
values. This module includes common elementary functions such as square root, logarithms,
and various trigonometry functions. It also has some other functions such as gamma,
factorial, and the Gaussian error function.

The math module includes several functions that can help us do more accurate floating-point
calculations. For example, the math. fsum () function will compute a floating-point sum more
carefully than the built-in sum () function. It's less susceptible to approximation issues.

We can also make use of the math.isclose () function to compare two floating-point values
to see if they're nearly equal:

>>> (19/155) *(155/19) == 1.0

False

>>> math.isclose ((19/155) * (155/19), 1)

True

]

Chapter 1

This function provides us with a way to compare floating-point numbers meaningfully for near-
equality.

Python also offers complex numbers. A complex number has a real and an imaginary part.
In Python, we write 3.14+2.787 to represent the complex number 3.14 + 2.78v/—1 . Python
will comfortably convert between float and complex. We have the usual group of operators
available for complex numbers.

To support complex numbers, there's the cmath package. The cmath.sqgrt () function,
for example, will return a complex value rather than raise an exception when extracting the
square root of a negative number. Here's an example:
>>> math.sqrt (-2)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: math domain error
>>> cmath.sqgrt(-2)

1.41421356237309517j

This is essential when working with complex numbers.

» We'll talk more about floating-point numbers and fractions in the Choosing between
true division and floor division recipe.

» Seehttps://en.wikipedia.org/wiki/IEEE floating point

Choosing between true division and floor

division

Python offers us two kinds of division operators. What are they, and how do we know which
one to use? We'll also look at the Python division rules and how they apply to integer values.

Getting ready

There are several general cases for division:

» Adiv-mod pair: We want both parts - the quotient and the remainder. The name

refers to the division and modulo operations combined together. We can summarize
a

the quotient and remainder as q,7 = (lBJ ,amod b).

https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point

Numbers, Strings, and Tuples

We often use this when converting values from one base into another. When we

convert seconds into hours, minutes, and seconds, we'll be doing a div-mod kind
of division. We don't want the exact number of hours; we want a truncated number
of hours, and the remainder will be converted into minutes and seconds.

» The true value: This is a typical floating-point value; it will be a good approximation to
the quotient. For example, if we're computing an average of several measurements,
we usually expect the result to be floating-point, even if the input values are all
integers.

» A rational fraction value: This is often necessary when working in American units of
feet, inches, and cups. For this, we should be using the Fraction class. When we
divide Fraction objects, we always get exact answers.

We need to decide which of these cases apply, so we know which division operator to use.

How to do it...

We'll look at these three cases separately. First, we'll look at truncated floor division. Then,
we'll look at true floating-point division. Finally, we'll look at the division of fractions.

Doing floor division

When we are doing the div-mod kind of calculations, we might use the floor division operator,
//, and the modulo operator, %. The expression a % b gives us the remainder from an integer
division of a // b. Or, we might use the divmod () built-in function to compute both at once:

1. We'll divide the number of seconds by 3,600 to get the value of hours. The modulo,
or remainder in division, computed with the % operator, can be converted separately
into minutes and seconds:

>>> total seconds = 7385
>>> hours = total seconds//3600

>>> remaining seconds = total seconds % 3600

2. Next, we'll divide the number of seconds by 60 to get minutes; the remainder is the
number of seconds less than 60:

>>> minutes = remaining seconds//60
>>> seconds = remaining seconds % 60
>>> hours, minutes, seconds

(2, 3, 5)

Chapter 1

Here's the alternative, using the divmod () function to compute quotient and modulo
together:

1. Compute quotient and remainder at the same time:

>>> total_ seconds = 7385

>>> hours, remaining seconds = divmod(total seconds, 3600)

2. Compute quotient and remainder again:
>>> minutes, seconds = divmod(remaining seconds, 60)
>>> hours, minutes, seconds

(2, 3, 5)

Doing true division

A true value calculation gives as a floating-point approximation. For example, about how many
hours is 7,386 seconds? Divide using the true division operator:

>>> total_ seconds = 7385

>>> hours = total seconds / 3600

>>> round (hours, 4)

2.0514

/ We provided two integer values, but got a floating-point exact result.

\/(p, Consistent with our previous recipe, when using floating-point values,

we rounded the result to avoid having to look at tiny error values.

This true division is a feature of Python 3 that Python 2 didn't offer by default.

Rational fraction calculations

We can do division using Fraction objects and integers. This forces the result to be a
mathematically exact rational number:

1. Create at least one Fraction value:
>>> from fractions import Fraction

>>> total_seconds = Fraction(7385)

2. Use the Fraction value in a calculation. Any integer will be promoted to a
Fraction:

>>> hours = total seconds / 3600
>>> hours

Fraction (1477, 720)

[}

Numbers, Strings, and Tuples

3. If necessary, convert the exact fraction into a floating-point approximation:

>>> round(float (hours), 4)
2.0514
First, we created a Fraction object for the total number of seconds. When we do arithmetic

on fractions, Python will promote any integers to be fractions; this promotion means that the
math is done as precisely as possible.

Python has two division operators:

» The / true division operator produces a true, floating-point result. It does this even
when the two operands are integers. This is an unusual operator in this respect. All
other operators preserve the type of the data. The true division operation - when
applied to integers - produces a float result.

» The // truncated division operator always produces a truncated result. For two
integer operands, this is the truncated quotient. When floating-point operands are
used, this is a truncated floating-point result:

>>> 7358.0 // 3600.0
2.0

See also

» For more on the choice between floating-point and fractions, see the Choosing
between float, decimal, and fraction recipe.

» Seehttps://www.python.org/dev/peps/pep-0238/

Rewriting an immutable string

How can we rewrite an immutable string? We can't change individual characters inside a
string:

>>> title = "Recipe 5: Rewriting, and the Immutable String"

>>> title[8] = '!

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: 'str' object does not support item assignment

Sz

https://www.python.org/dev/peps/pep-0238/
https://www.python.org/dev/peps/pep-0238/

Chapter 1

Since this doesn't work, how do we make a change to a string?

Getting ready

Let's assume we have a string like this:
>>> title = "Recipe 5: Rewriting, and the Immutable String"
We'd like to do two transformations:

» Remove the part up to the :

> Replace the punctuation with _, and make all the characters lowercase
Since we can't replace characters in a string object, we have to work out some alternatives.
There are several common things we can do, shown as follows:

» A combination of slicing and concatenating a string to create a new string.

» When shortening, we often use the partition () method.

» We can replace a character or a substring with the replace () method.

>

We can expand the string into a list of characters, then join the string back into
a single string again. This is the subject of a separate recipe, Building complex
strings with a list of characters.

How to do it...

Since we can't update a string in place, we have to replace the string variable's object with
each modified result. We'll use an assignment statement that looks something like this:

some_string = some_string.method()
Or we could even use an assignment like this:
some_string = some_string[:chop here]

We'll look at a few specific variations of this general theme. We'll slice a piece of a string, we'll
replace individual characters within a string, and we'll apply blanket transformations such as
making the string lowercase. We'll also look at ways to remove extra _ that show up in our final
string.

Slicing a piece of a string
Here's how we can shorten a string via slicing:

1. Find the boundary:

>>> colon position = title.index(':")

Numbers, Strings, and Tuples

The index function locates a particular substring and returns the position where
that substring can be found. If the substring doesn't exist, it raises an exception. The
following expression will always be true: title [colon position] == ':'.

2. Pick the substring:
>>> discard, post colon = titlel[:colon position], titlel[colon
position+1:]
>>> discard
'Recipe 5'
>>> post colon

' Rewriting, and the Immutable String'

We've used the slicing notation to show the start : end of the characters to pick. We also
used multiple assignment to assign two variables, discard and post_colon, from the two
expressions.

We can use partition (), as well as manual slicing. Find the boundary and partition:

>>> pre colon text, , post colon text = title.partition(':')
>>> pre_colon_text

'Recipe 5'

>>> post colon_ text

' Rewriting, and the Immutable String'

The partition function returns three things: the part before the target, the target, and
the part after the target. We used multiple assignment to assign each object to a different
variable. We assigned the target to a variable named _ because we're going to ignore that
part of the result. This is a common idiom for places where we must provide a variable, but
we don't care about using the object.

Updating a string with a replacement

We can use a string's replace () method to create a new string with punctuation marks
removed. When using replace to switch punctuation marks, save the results back into
the original variable. In this case, post _colon text:

>>> post colon text = post colon text.replace(' ', ' ')

>>> post colon text = post colon text.replace(',', ' ')

>>> post colon text

' Rewriting and the Immutable String'

Chapter 1

This has replaced the two kinds of punctuation with the desired _ characters. We can
generalize this to work with all punctuation. This leverages the for statement, which
we'll look at in Chapter 2, Statements and Syntax.

We can iterate through all punctuation characters:

>>> from string import whitespace, punctuation
>>> for character in whitespace + punctuation:

post _colon text = post colon text.replace(character, ' ')
>>> post colon_ text

' Rewriting and the Immutable String'

As each kind of punctuation character is replaced, we assign the latest and greatest version
of the string to the post_colon_text variable.

We can also use a string's translate () method for this. This relies on creating a dictionary
object to map each source character's position to a resulting character:

>>> from string import whitespace, punctuation

>>> title = "Recipe 5: Rewriting an Immutable String"

>>> title.translate({ord(c): ' ' for c in whitespace+punctuation})
Recipe_5_ Rewriting an Immutable String

We've created a mapping with {ord(c): ' ' for ¢ in whitespace+punctuation}
to translate any character, ¢, in the whitespace+punctuation sequence of characters to

the ' ' character. This may have better performance than a sequence of individual character
replacements.

Removing extra punctuation marks
In many cases, there are some additional steps we might follow. We often want to remove
leading and trailing _ characters. We can use strip () for this:

>>> post_colon_text = post_colon text.strip('_')

In some cases, we'll have multiple _ characters because we had multiple punctuation marks.
The final step would be something like this to clean up multiple _ characters:
>>> while ' ' in post_colon_text:
post _colon text = post colon text.replace(' ', ' ')
This is yet another example of the same pattern we've been using to modify a string in place.

This depends on the while statement, which we'll look at in Chapter 2, Statements and
Syntax.

file:///\\192.168.0.200\All_Books\C:\Users\kishorr\Downloads\9781786469250\69a2d7aa-ecb6-4a0d-83af-26827d8369f7.xhtml
file:///\\192.168.0.200\All_Books\C:\Users\kishorr\Downloads\9781786469250\69a2d7aa-ecb6-4a0d-83af-26827d8369f7.xhtml

Numbers, Strings, and Tuples

We can't—technically—modify a string in place. The data structure for a string is immutable.
However, we can assign a new string back to the original variable. This technique behaves the
same as modifying a string in place.

When a variable's value is replaced, the previous value no longer has any references and is
garbage collected. We can see this by using the id () function to track each individual string
object:

>>> id(post colon text)

4346207968

>>> post colon text = post colon text.replace(' ','-")

>>> id(post colon text)

4346205488

Your actual ID numbers may be different. What's important is that the original string

object assigned to post _colon_text had one ID. The new string object assigned to
post_colon_text has a different ID. It's a new string object.

When the old string has no more references, it is removed from memory automatically.

We made use of slice notation to decompose a string. A slice has two parts: [start:end].
A slice always includes the starting index. String indices always start with zero as the first
item. A slice never includes the ending index.

‘ p’ The items in a slice have an index from start to end-1. Thisis
sometimes called a half-open interval.

Think of a slice like this: all characters where the index i is in the range start <i < end.

We noted briefly that we can omit the start or end indices. We can actually omit both. Here are
the various options available:

> titlel[colon position]:A single item, thatis, the : we found using
title.index(':").

> titlel[:colon position]:A slice with the start omitted. It begins at the first
position, index of zero.

> titlel[colon position+1:]:Aslice with the end omitted. It ends at the end of
the string, as if we said len (title).

» titlel[:]:Since both start and end are omitted, this is the entire string. Actually, it's
a copy of the entire string. This is the quick and easy way to duplicate a string.

Chapter 1

There's more...

There are more features for indexing in Python collections like a string. The normal indices
start with O on the left. We have an alternate set of indices that use negative numbers that
work from the right end of a string:

» title[-1] isthe last character in the title, 'g"

» title[-2] isthe next-to-last character, 'n'
» title[-6:] isthe last six characters, 'String’

We have a lot of ways to pick pieces and parts out of a string.

Python offers dozens of methods for modifying a string. The Text Sequence Type — str section
of the Python Standard Library describes the different kinds of transformations that are
available to us. There are three broad categories of string methods: we can ask about the
string, we can parse the string, and we can transform the string to create a new one. Methods
such as isnumeric () tell us if a string is all digits.

Here's an example:

>>> 'some word'.isnumeric()
False
>>> '1298'.isnumeric()

True
Before doing comparisons, it can help to change a string so that it has the same uniform case.

It's frequently helpful to use the 1lower () method, thus assigning the result to the original
variable:

>>> post colon text = post colon text.lower()

We've looked at parsing with the partition () method. We've also looked at transforming
with the lower () method, as well as the replace () and translate () methods.

See also

> We'll look at the string as list technigque for modifying a string in the Building complex
strings from lists of characters recipe.

» Sometimes, we have data that's only a stream of bytes. In order to make sense of it,
we need to convert it into characters. That's the subject of the Decoding bytes - how
to get proper characters from some bytes recipe.

Numbers, Strings, and Tuples

String parsing with regular expressions

How do we decompose a complex string? What if we have complex, tricky punctuation? Or—
worse yet—what if we don't have punctuation, but have to rely on patterns of digits to locate
meaningful information?

Getting ready

The easiest way to decompose a complex string is by generalizing the string into a pattern and
then writing a regular expression that describes that pattern.

There are limits to the patterns that regular expressions can describe. When we're confronted
with deeply nested documents in a language like HTML, XML, or JSON, we often run into
problems, and can't use regular expressions.

The re module contains all of the various classes and functions we need to create and use
regular expressions.

Let's say that we want to decompose text from a recipe website. Each line looks like this:
>>> ingredient = "Kumquat: 2 cups"

We want to separate the ingredient from the measurements.

How to do it...

To write and use regular expressions, we often do this:

1. Generalize the example. In our case, we have something that we can generalize as:

(ingredient words): (amount digits) (unit words)

2. We've replaced literal text with a two-part summary: what it means and how it's
represented. For example, ingredient is represented as words, while amount is
represented as digits. Import the re module:

>>> import re
3. Rewrite the pattern into Regular expression (RE) notation:

>>> ingredient pattern = re.compile(r' ([\w\sl+) :\s+(\d+)\s+(\w+)"')

We've replaced representation hints such as ingredient words, a mixture of
letters and spaces, with [\w\s] +. We've replaced amount digits with \d+. And
we've replaced single spaces with \ s+ to allow one or more spaces to be used
as punctuation. We've left the colon in place because, in the regular expression
notation, a colon matches itself.

Chapter 1

For each of the fields of data, we've used () to capture the data matching the
pattern. We didn't capture the colon or the spaces because we don't need the
punctuation characters.

REs typically use a lot of \ characters. To make this work out nicely in Python,
we almost always use raw strings. The r' prefix tells Python not to look at the
\ characters and not to replace them with special characters that aren't on our
keyboards.

4. Compile the pattern:
>>> pattern = re.compile(pattern text)
5. Match the pattern against the input text. If the input matches the pattern, we'll get
a match object that shows details of the matching:
>>> match = pattern.match(ingredient)
>>> match is None
False
>>> match.groups ()
('Kumquat', '2', 'cups')
6. Extract the named groups of characters from the match object:
>>> match.group (1)
'Kumquat'
>>> match.group (2)
191
>>> match.group (3)
'cups'
Each group is identified by the order of the capture ()s in the regular expression. This gives
us a tuple of the different fields captured from the string. We'll return to the use of tuples in

the Using tuples recipe. This can be confusing in more complex regular expressions; there is
a way to provide a name, instead of the numeric position, to identify a capture group.

There are a lot of different kinds of string patterns that we can describe with RE.
We've shown a number of character classes:

» \w matches any alphanumeric character (ato z, Ato Z, O to 9)
» \d matches any decimal digit
» \s matches any space or tab character

Numbers, Strings, and Tuples

These classes also have inverses:

» \W matches any character that's not a letter or a digit
» \D matches any character that's not a digit
» \S matches any character that's not some kind of space or tab

Many characters match themselves. Some characters, however, have a special meaning, and
we have to use \ to escape from that special meaning:

» We saw that + as a suffix means to match one or more of the preceding patterns. \d+
matches one or more digits. To match an ordinary +, we need to use \ +.

» We also have * as a suffix, which matches zero or more of the preceding patterns.
\w* matches zero or more characters. To match a *, we need to use \ *.

» We have ? as a suffix, which matches zero or one of the preceding expressions.
This character is used in other places, and has a different meaning in the other
context. We'll see it used in (?P<names>. ..), whereitis inside () to define special
properties for the grouping.

» . matches any single character. To match a . specifically, we need to use \ ..

We can create our own unique sets of characters using [] to enclose the elements of the set.
We might have something like this:

(?P<name>\w+) \s* [=:] \s* (?P<value>.*)

This has a \w+ to match any number of alphanumeric characters. This will be collected into a
group called name.

It uses \ s* to match an optional sequence of spaces.

It matches any character in the set [=:1. Exactly one of the characters in this set must be
present.

It uses \ s* again to match an optional sequence of spaces.

Finally, it uses . * to match everything else in the string. This is collected into a group named
value.

We can use this to parse strings, like this:
size = 12
weight: 14

By being flexible with the punctuation, we can make a program easier to use. We'll tolerate
any number of spaces, and either an = or a : as a separator.

=

Chapter 1

There's more...

A long regular expression can be awkward to read. We have a clever Pythonic trick for
presenting an expression in a way that's much easier to read:

>>> ingredient pattern = re.compile(
. r'(?P<ingredient>[\w\sl+) :\s+' # name of the ingredient up to the ":"
. r'(?P<amount>\d+) \s+' # amount, all digits up to a space

. ' (?P<unit>\w+) ' # units, alphanumeric characters

)
This leverages three syntax rules:

> Astatementisn't finished until the () characters match.
» Adjacent string literals are silently concatenated into a single long string.
» Anything between # and the end of the line is a comment, and is ignored.

We've put Python comments after the important clauses in our regular expression. This can
help us understand what we did, and perhaps help us diagnose problems later.

We can also use the regular expression's "verbose" mode to add gratuitous whitespace and
comments inside a regular expression string. To do this, we must use re.X as an option when
compiling a regular expression to make whitespace and comments possible. This revised
syntax looks like this:

>>> ingredient pattern x = re.compile(r'''

(?P<ingredient>[\w\sl+) :\s+ # name of the ingredient up to the ":"!'

(?P<amount>\d+) \s+ # amount, all digits up to a space!’
(?P<unit>\w+) # units, alphanumeric characters
11, re.X)

We can either break the pattern up or make use of extended syntax to make the regular
expression more readable.

See also

» The Decoding Bytes - How to get proper characters from some bytes recipe

» There are many books on Regular expressions and Python Regular expressions
in particular, like Mastering Python Regular Expressions (https://www.
packtpub.com/application-development /mastering-python-regular-
expressions)

s

https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions

Numbers, Strings, and Tuples

Building complex strings with f-strings

Creating complex strings is, in many ways, the polar opposite of parsing a complex string. We
generally find that we use a template with substitution rules to put data into a more complex
format.

Getting ready

Let's say we have pieces of data that we need to turn into a nicely formatted message.
We might have data that includes the following:

>>> id = "IAD"

>>> location = "Dulles Intl Airport"
>>> max temp = 32

>>> min _temp = 13

>>> precipitation = 0.4
And we'd like a line that looks like this:

IAD : Dulles Intl Airport : 32 / 13 / 0.40

How to do it...

1. Create an £-string from the result, replacing all of the data items with { }
placeholders. Inside each placeholder, put a variable name (or an expression.) Note
that the string uses the prefix of £'. The £ prefix creates a sophisticated string object
where values are interpolated into the template when the string is used:

£'{id} : {location} : {max temp} / {min temp} / {precipitation}’

2. For each name or expression, an optional :data type can be appended to the
names in the template string. The basic data type codes are:

» s forstring
» dfor decimal number
» £ for floating-point number

It would look like this:

f'{id:s} : {location:s} : {max temp:d} / {min temp:d} /
{precipitation:f}"

Chapter 1

Add length information where required. Length is not always required, and in some
cases, it's not even desirable. In this example, though, the length information ensures
that each message has a consistent format. For strings and decimal numbers, prefix
the format with the length like this: 19s or 3d. For floating-point numbers, use a two-
part prefix like 5. 2f to specify the total length of five characters, with two to the right
of the decimal point. Here's the whole format:

>>> £'{id:3d} : {location:19s} : {max temp:3d} / {min temp:3d} /
{precipitation:5.2£f}"'

'IAD : Dulles Intl Airport : 32/ 13 / 0.40'°

f-strings can do a lot of relatively sophisticated string assembly by interpolating data into a
template. There are a number of conversions available.

We've seen three of the formatting conversions—s, d, £—but there are many others. Details
can be found in the Formatted string literals section of the Python Standard Library:
https://docs.python.org/3/reference/lexical analysis.html#formatted-
string-literals.

Here are some of the format conversions we might use:

>
>

b is for binary, base 2.

c is for Unicode character. The value must be a number, which is converted into a
character. Often, we use hexadecimal numbers for these characters, so you might
want to try values such as 0x2661 through 0x2666 to see interesting Unicode
glyphs.

d is for decimal numbers.

E and e are for scientific notations. 6. 626E-34 or 6 . 626e-34, depending on which
E or e character is used.

F and £ are for floating-point. For not a number, the £ format shows lowercase nan;
the F format shows uppercase NAN.

G and g are for general use. This switches automatically between E and F (or e and
f) to keep the output in the given sized field. For a format of 20. 5G, up to 20-digit
numbers will be displayed using F formatting. Larger numbers will use E formatting.

n is for locale-specific decimal numbers. This will insert , or . characters, depending
on the current locale settings. The default locale may not have 1,000 separators
defined. For more information, see the 1ocale module.

Numbers, Strings, and Tuples

>
>
>

>

o is for octal, base 8.
s is for string.

X and x are for hexadecimal, base 16. The digits include uppercase A-F and
lowercase a-f, depending on which X or x format character is used.

% is for percentage. The number is multiplied by 100 and includes the %.

We have a number of prefixes we can use for these different types. The most common one is
the length. We might use {name:5d} to put in a 5-digit number. There are several prefixes for
the preceding types:

>

Fill and alignment: We can specify a specific filler character (space is the default)
and an alignment. Numbers are generally aligned to the right and strings to the left.
We can change that using <, >, or *. This forces left alignment, right alignment, or
centering, respectively. There's a peculiar = alignment that's used to put padding
after a leading sign.

Sign: The default rule is a leading negative sign where needed. We can use + to put
a sign on all numbers, - to put a sign only on negative numbers, and a space to use
a space instead of a plus for positive numbers. In scientific output, we often use
{value: 5.3f}.The space makes sure that room is left for the sign, ensuring that
all the decimal points line up nicely.

Alternate form: We can use the # to get an alternate form. We might have something
like {0:#x}, {0:#0}, or {0:#b} to get a prefix on hexadecimal, octal, or binary
values. With a prefix, the numbers will look like 0xnnn, 0onnn, or 0Obnnn. The default
is to omit the two-character prefix.

Leading zero: We can include 0 to get leading zeros to fill in the front of a number.
Something like {code: 08x} will produce a hexadecimal value with leading zeroes to
pad it out to eight characters.

Width and precision: For integer values and strings, we only provide the width. For
floating-point values, we often provide width.precision.

There are some times when we won't use a {name: format } specification. Sometimes,
we'll need to use a {name ! conversion} specification. There are only three conversions
available:

>
>

{name!r} shows the representation that would be produced by repr (name).

{name!s} shows the string value that would be produced by str (name) ; this is the
default behavior if you don't specify any conversion. Using ! s explicitly lets you add
string-type format specifiers.

{name!a} shows the ASCII value that would be produced by ascii (name).

Additionally, there's a handy debugging format specifier available in Python 3.8. We
can include a trailing equals sign, =, to get a handy dump of a variable or expression.
The following example uses both forms:

Chapter 1

>>> value = 2**12-1
>>> f'{value=} {2**7+1=}"'
'value=4095 2**74+1=129"

The f-string showed the value of the variable named value and the result of an
expression, 2**7+1.

In Chapter 7, Basics of Classes and Objects, we'll leverage the idea of the {name ! r} format
specification to simplify displaying information about related objects.

There's more...

The f-string processing relies on the string format () method. We can leverage this
method and the related format_map () method for cases where we have more complex data
structures.

Looking forward to Chapter 4, Built-In Data Structures Part 1: Lists and Sets, we might have a
dictionary where the keys are simple strings that fit with the format _map () rules:

>>> data = dict(
. id=id, location=location, max temp=max temp,
. min temp=min temp, precipitation=precipitation
)

>>> '{id:3s} : {location:19s} : {max temp:3d} / {min temp:3d} /
{precipitation:5.2£f}'.format map (data)

'"IAD : Dulles Intl Airport : 32/ 13 / 0.40°

We've created a dictionary object, data, that contains a number of values with keys that
are valid Python identifiers: id, location, max_temp, min temp, and precipitation. We
can then use this dictionary with format _map () to extract values from the dictionary using
the keys.

Note that the formatting template here is not an £ -string. It doesn't have the £" prefix.
Instead of using the automatic formatting features of an £-string, we've done the
interpolation "the hard way" using the format map () method.

See also

» More details can be found in the Formatted string literals section of the Python
Standard Library: https://docs.python.org/3/reference/lexical
analysis.html#formatted-string-literals

file:///\\192.168.0.200\All_Books\C:\Users\kishorr\Downloads\9781786469250\f228734a-a940-4f49-b94e-d69fbca25a39.xhtml

Numbers, Strings, and Tuples

Building complicated strings from lists of

characters

How can we make complicated changes to an immutable string? Can we assemble a string
from individual characters?

In most cases, the recipes we've already seen give us a number of tools for creating and
modifying strings. There are yet more ways in which we can tackle the string manipulation
problem. In this recipe, we'll look at using a 1ist object as a way to decompose and rebuild
a string. This will dovetail with some of the recipes in Chapter 4, Built-In Data Structures
Part 1: Lists and Sets.

Getting ready

Here's a string that we'd like to rearrange:
>>> title = "Recipe 5: Rewriting an Immutable String"
We'd like to do two transformations:

» Remove the part before:

» Replace the punctuation with _ and make all the characters lowercase
We'll make use of the string module:
>>> from string import whitespace, punctuation
This has two important constants:

» string.whitespace lists all of the ASCII whitespace characters, including space
and tab.

» string.punctuation lists the ASCII punctuation marks.

How to do it...

We can work with a string exploded into a list. We'll look at lists in more depth in Chapter 4,
Built-In Data Structures Part 1: Lists and Sets:

1. Explode the string into a 1ist object:
>>> title list = list(title)

2. Find the partition character. The index () method for a list has the same semantics
as the index () method has for a string. It locates the position with the given value:

>>> colon position = title list.index(':')

file:///\\192.168.0.200\All_Books\C:\Users\kishorr\Downloads\9781786469250\c46b36ee-e2f1-4759-8b4d-b7a68d8d65b5.xhtml
file:///\\192.168.0.200\All_Books\C:\Users\kishorr\Downloads\9781786469250\c46b36ee-e2f1-4759-8b4d-b7a68d8d65b5.xhtml

Chapter 1

3. Delete the characters that are no longer needed. The del statement can remove
items from a list. Unlike strings, lists are mutable data structures:

>>> del title list[:colon position+l]

4. Replace punctuation by stepping through each position. In this case, we'll use a for
statement to visit every index in the string:

>>> for position in range(len(title list)):
if title list[position] in whitespace+punctuation:

title_list[position]= '_‘

5. The expression range (len(title list)) generates all of the values between 0
and len(title 1list) -1.This assures us that the value of position will be each
value index in the list. Join the list of characters to create a new string. It seems a
little odd to use a zero-length string, ' ', as a separator when concatenating strings
together. However, it works perfectly:

>>> title = ''.join(title list)
>>> title

' Rewriting an Immutable String'

We assigned the resulting string back to the original variable. The original string object, which
had been referred to by that variable, is no longer needed: it's automatically removed from
memory (this is known as "garbage collection"). The new string object replaces the value of
the variable.

This is a change in representation trick. Since a string is immutable, we can't update it. We
can, however, convert it into a mutable form; in this case, a list. We can make whatever
changes are required to the mutable list object. When we're done, we can change the
representation from a list back to a string and replace the original value of the variable.

Lists provide some features that strings don't have. Conversely, strings provide a number
of features lists don't have. As an example, we can't convert a list into lowercase the way
we can convert a string.

There's an important trade-off here:

» Strings are immutable, which makes them very fast. Strings are focused on Unicode
characters. When we look at mappings and sets, we can use strings as keys for
mappings and items in sets because the value is immutable.

» Lists are mutable. Operations are slower. Lists can hold any kind of item. We can't
use a list as a key for a mapping or an item in a set because the list value could
change.

s

Numbers, Strings, and Tuples

Strings and lists are both specialized kinds of sequences. Consequently, they have a number
of common features. The basic item indexing and slicing features are shared. Similarly, a list
uses the same kind of negative index values that a string does: 1ist [-1] is the last item in
a list object.

We'll return to mutable data structures in Chapter 4, Built-In Data Structures Part 1: Lists
and Sets.

» We can also work with strings using the internal methods of a string. See the
Rewriting an immutable string recipe for more techniques.

» Sometimes, we need to build a string, and then convert it into bytes. See the
Encoding strings - creating ASCIl and UTF-8 bytes recipe for how we can do this.

» Other times, we'll need to convert bytes into a string. See the Decoding Bytes - How
to get proper characters from some bytes recipe for more information.

Using the Unicode characters that aren’t on

our keyboards

A big keyboard might have almost 100 individual keys. Fewer than 50 of these are letters,
numbers, and punctuation. At least a dozen are function keys that do things other than
simply insert letters into a document. Some of the keys are different kinds of modifiers that
are meant to be used in conjunction with another key—for example, we might have Shift, Ctrl,
Option, and Command.

Most operating systems will accept simple key combinations that create about 100 or so
characters. More elaborate key combinations may create another 100 or so less popular
characters. This isn't even close to covering the vast domain of characters from the world's
alphabets. And there are icons, emoticons, and dingbats galore in our computer fonts. How do
we get to all of those glyphs?

Getting ready

Python works in Unicode. There are thousands of individual Unicode characters available.

We can see all the available characters at https://en.wikipedia.org/wiki/List of
Unicode characters,aswellasathttp://www.unicode.org/charts/.

We'll need the Unicode character number. We may also want the Unicode character name.

file:///\\192.168.0.200\All_Books\C:\Users\kishorr\Downloads\9781786469250\c46b36ee-e2f1-4759-8b4d-b7a68d8d65b5.xhtml
https://en.wikipedia.org/wiki/List_of_Unicode_characters
https://en.wikipedia.org/wiki/List_of_Unicode_characters
http:/www.unicode.org/charts/

Chapter 1

A given font on our computer may not be designed to provide glyphs for all of those
characters. In particular, Windows computer fonts may have trouble displaying some

of these characters. Using the following Windows command to change to code page 65001
is sometimes necessary:

chcp 65001

Linux and macOS rarely have problems with Unicode characters.

How to do it...

Python uses escape sequences to extend the ordinary characters we can type to cover the
vast space of Unicode characters. Each escape sequence starts with a \ character. The next
character tells us exactly how the Unicode character will be represented. Locate the character
that's needed. Get the name or the number. The numbers are always given as hexadecimal,
base 16. Websites describing Unicode often write the character as U+2680. The name might
be DIE FACE-1.Use \unnnn with up to a four-digit number. Or, use \N{name} with the
spelled-out name. If the number is more than four digits, use \Unnnnnnnn with the number
padded out to exactly eight digits:

>>> 'You Rolled \u2680"'

'You Rolled :|!

>>> 'You drew \u0001F000'

'You drew F!

>>> 'Discard \N{MAHJONG TILE RED DRAGON}'

'Discard '

Yes, we can include a wide variety of characters in Python output. To place a \ character in the
string, we need to use \ \. For example, we might need this for Windows file paths.

Python uses Unicode internally. The 128 or so characters we can type directly using the
keyboard all have handy internal Unicode numbers.

When we write:

"HELLO'

Python treats it as shorthand for this:
'\u0048\u0045\u004c\u004c\u004f"

Once we get beyond the characters on our keyboards, the remaining thousands of characters
are identified only by their number.

Es

Numbers, Strings, and Tuples

When the string is being compiled by Python, \uxxxx, \Uxxxxxxxx, and \N{name} are
all replaced by the proper Unicode character. If we have something syntactically wrong—for
example, \N{name with no closing }—we'll get an immediate error from Python's internal
syntax checking.

Back in the String parsing with regular expressions recipe, we noted that regular expressions
use a lot of \ characters and that we specifically do not want Python's normal compiler to
touch them; we used the r' prefix on a regular expression string to prevent \ from being
treated as an escape and possibly converted into something else. To use the full domain

of Unicode characters, we cannot avoid using \ as an escape.

What if we need to use Unicode in a Regular expression? We'll need to use \\ all over the
place in the Regular expression. We might see this: ' \\w+ [\u2680\u2681\u2682\
u2683\u2684\u2685]1\\d+'. We couldn't use the r' prefix on the string because we
needed to have the Unicode escapes processed. This forced us to double the \ used for
Regular expressions. We used \uxxxx for the Unicode characters that are part of the
pattern. Python's internal compiler will replace \uxxxx with Unicode characters and \\w
with a required \w internally.

When we look at a string at the >>> prompt, Python will display the
string in its canonical form. Python prefers to use ' as a delimiter, even
though we can use either ' or " for a string delimiter. Python doesn't
/ generally display raw strings; instead, it puts all of the necessary
\/;n> escape sequences back into the string:
>>> r"\w+"

1 \\W+ 1

We provided a string in raw form. Python displayed it in canonical form.

» Inthe Encoding strings - creating ASCIl and UTF-8 bytes and the Decoding Bytes
- How to get proper characters from some bytes recipes, we'll look at how Unicode
characters are converted into sequences of bytes so we can write them to a file. We'll
look at how bytes from a file (or downloaded from a website) are turned into Unicode
characters so they can be processed.

» If you're interested in history, you can read up on ASCIl and EBCDIC and other old-
fashioned character codes here: http://www.unicode.org/charts/.

http://www.unicode.org/charts/

Chapter 1

Encoding strings - creating ASCII and UTF-

8 bytes

Our computer files are bytes. When we upload or download from the internet, the
communication works in bytes. A byte only has 256 distinct values. Our Python characters are
Unicode. There are a lot more than 256 Unicode characters.

How do we map Unicode characters to bytes to write to a file or for transmission?

Getting ready

Historically, a character occupied 1 byte. Python leverages the old ASCIl encoding scheme
for bytes; this sometimes leads to confusion between bytes and proper strings of Unicode
characters.

Unicode characters are encoded into sequences of bytes. There are a number of standardized
encodings and a number of non-standard encodings.

Plus, there also are some encodings that only work for a small subset of Unicode characters.
We try to avoid these, but there are some situations where we'll need to use a subset
encoding scheme.

Unless we have a really good reason not to, we almost always use UTF-8 encoding for Unicode
characters. Its main advantage is that it's a compact representation of the Latin alphabet,
which is used for English and a number of European languages.

Sometimes, an internet protocol requires ASCII characters. This is a special case that requires
some care because the ASCIl encoding can only handle a small subset of Unicode characters.

How to do it...

Python will generally use our OS's default encoding for files and internet traffic. The details are
unique to each 0S:

1. We can make a general setting using the PYTHONIOENCODING environment
variable. We set this outside of Python to ensure that a particular encoding is used
everywhere. When using Linux or macOS, use export to set the environment
variable. For Windows, use the set command, or the PowerShell Set - Item cmdlet.
For Linux, it looks like this:

export PYTHONIOENCODING=UTF-8

Numbers, Strings, and Tuples

2. Run Python:
python3.8

3. We sometimes need to make specific settings when we open a file inside our script.
We'll return to this topic in Chapter 10, Input/Output, Physical Format and, Logical
Layout. Open the file with a given encoding. Read or write Unicode characters to the file:

>>> with open('some file.txt', 'w', encoding='utf-8') as output:
print('You drew \UOOO1F000', file=output)

>>> with open('some file.txt', 'r', encoding='utf-8') as input:
text = input.read()

>>> text

'You drew T'

We can also manually encode characters, in the rare case that we need to open a file in bytes
mode; if we use a mode of wb, we'll need to use manual encoding:

>>> string bytes = 'You drew \U00OO01lF000'.encode('utf-8"')
>>> string bytes

b'You drew \xf0\x9£f\x80\x80"

We can see that a sequence of bytes (\xf0\x9f\x80\x80) was used to encode a single
Unicode character, U+1F000, #.

Unicode defines a number of encoding schemes. While UTF-8 is the most popular, there is
also UTF-16 and UTF-32. The number is the typical number of bits per character. A file with
1,000 characters encoded in UTF-32 would be 4,000 8-bit bytes. A file with 1,000 characters
encoded in UTF-8 could be as few as 1,000 bytes, depending on the exact mix of characters.
In UTF-8 encoding, characters with Unicode numbers above U+007F require multiple bytes.

Various 0OSes have their own coding schemes. macOS files can be encoded in Mac Roman or
Latin-1. Windows files might use cP1252 encoding.

The point with all of these schemes is to have a sequence of bytes that can be mapped to

a Unicode character and—going the other way—a way to map each Unicode character to one
or more bytes. Ideally, all of the Unicode characters are accounted for. Pragmatically, some of
these coding schemes are incomplete.

The historical form of ASCII encoding can only represent about 100 of the Unicode characters
as bytes. It's easy to create a string that cannot be encoded using the ASCIl scheme.

Chapter 1
Here's what the error looks like:

>>> 'You drew \UOOO1lF000'.encode('ascii')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
UnicodeEncodeError: 'ascii' codec can't encode character '\U0001£000' in

position 9: ordinal not in range(128)

We may see this kind of error when we accidentally open a file with a poorly chosen encoding.
When we see this, we'll need to change our processing to select a more useful encoding;
ideally, UTF-8.

Bytes versus strings: Bytes are often displayed using printable
characters. We'llsee b'hello!' as shorthand for a five-byte value.
The letters are chosen using the old ASCII encoding scheme, where

, byte values from 0x20 to 0x7F will be shown as characters, and
\P/ outside this range, more complex-looking escapes will be used.
This use of characters to represent byte values can be confusing. The

prefix of b' is our hint that we're looking at bytes, not proper Unicode
characters.

» There are a number of ways to build strings of data. See the Building complex strings
with f'strings" and the Building complex strings from lists of characters recipes for
examples of creating complex strings. The idea is that we might have an application
that builds a complex string, and then we encode it into bytes.

» For more information on UTF-8 encoding, see https://en.wikipedia.org/
wiki/UTF-8.

» For general information on Unicode encodings, see http://unicode.org/faq/
utf bom.html.

Decoding bytes - how to get proper

characters from some bytes

How can we work with files that aren't properly encoded? What do we do with files written in
ASCII encoding?

A download from the internet is almost always in bytes—not characters. How do we decode the
characters from that stream of bytes?

s

https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8

Numbers, Strings, and Tuples

Also, when we use the subprocess module, the results of an OS command are in bytes. How
can we recover proper characters?

Much of this is also relevant to the material in Chapter 10, Input/Output, Physical Format and
Logical Layout. We've included this recipe here because it's the inverse of the previous recipe,
Encoding strings - creating ASCIl and UTF-8 bytes.

Getting ready

Let's say we're interested in offshore marine weather forecasts. Perhaps this is because we
own a large sailboat, or perhaps because good friends of ours have a large sailboat and are
departing the Chesapeake Bay for the Caribbean.

Are there any special warnings coming from the National Weather Services office in
Wakefield, Virginia?

Here's where we can get the warnings: https://forecast.weather.gov/product . php
?site=CRH&1issuedby=AKQ&product=SMW&format=TXT.

We can download this with Python's ur11ib module:

>>> import urllib.request

>>> warnings uri= 'https://forecast.weather.gov/product.php?site=CRH&issu
edby=AKQ&product=SMW&format=TXT'

>>> with urllib.request.urlopen(warnings uri) as source:

warnings text = source.read()

Or, we can use programs like curl or wget to get this. At the OS Terminal prompt, we might
run the following (long) command:

$ curl 'https://forecast.weather.gov/product.php?site=CRH&issuedby=AKQ&pr
oduct=SMW&format=TXT' -o AKQ.html

Typesetting this book tends to break the command onto many lines. It's really one very long
line.

The code repository includes a sample file, Chapter 01/National Weather Service
Text Product Display.html.

The forecast_text value is a stream of bytes. It's not a proper string. We can tell because
it starts like this:

>>> warnings text[:80]

b'<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://
www.w3.or'

NEQ

file:///\\192.168.0.200\All_Books\C:\Users\kishorr\Downloads\9781786469250\79fe124f-c610-4410-9a95-2b0336a71677.xhtml
https://forecast.weather.gov/product.php?site=CRH&issuedby=AKQ&product=SMW&format=TXT
https://forecast.weather.gov/product.php?site=CRH&issuedby=AKQ&product=SMW&format=TXT
https://forecast.weather.gov/product.php?site=CRH&issuedby=AKQ&product=SMW&format=TXT

Chapter 1

The data goes on for a while, providing details from the web page. Because the displayed
value starts with b', it's bytes, not proper Unicode characters. It was probably encoded with
UTF-8, which means some characters could have weird-looking \xnn escape sequences
instead of proper characters. We want to have the proper characters.

While this data has many easy-to-read characters, the b' prefix shows that it's a collection

of byte values, not proper text. Generally, a bytes object behaves somewhat like a string
object. Sometimes, we can work with bytes directly. Most of the time, we'll want to decode the
bytes and create proper Unicode characters from them.

How to do it...

1.

Determine the coding scheme if possible. In order to decode bytes to create proper
Unicode characters, we need to know what encoding scheme was used. When we
read XML documents, there's a big hint provided within the document:

<?xml version="1.0" encoding="UTF-8"?>

When browsing web pages, there's often a header containing this information:
Content-Type: text/html; charset=IS0-8859-4

Sometimes, an HTML page may include this as part of the header:
<meta http-equiv="Content-Type" content="text/html;
charset=utf-8">

In other cases, we're left to guess. In the case of US weather data, a good first guess
is UTF-8. Other good guesses include ISO-8859-1. In some cases, the guess will
depend on the language.

The codecs — Codec registry and base classes section of the Python Standard Library
lists the standard encodings available. Decode the data:

>>> document = forecast text.decode("UTF-8")

>>> document[:80]

'<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.or"

The b' prefix is no longer used to show that these are bytes. We've created a proper
string of Unicode characters from the stream of bytes.

If this step fails with an exception, we guessed wrong about the encoding. We need to
try another encoding. Parse the resulting document.

Since this is an HTML document, we should use Beautiful Soup. See http://www.crummy .
com/software/BeautifulSoup/.

http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/

Numbers, Strings, and Tuples

We can, however, extract one nugget of information from this document without completely
parsing the HTML:

>>> import re

>>> title pattern = re.compile(r"\<h3\>(.*?)\</h3\>")

>>> title pattern.search(document)

<_sre.SRE Match object; span=(3438, 3489), match='<h3>There are no

products active at this time.</h>

This tells us what we need to know: there are no warnings at this time. This doesn't mean
smooth sailing, but it does mean that there aren't any major weather systems that could
cause catastrophes.

See the Encoding strings - creating ASCIl and UTF-8 bytes recipe for more information on
Unicode and the different ways that Unicode characters can be encoded into streams of bytes.

At the foundation of the operating system, files and network connections are built up from
bytes. It's our software that decodes the bytes to discover the content. It might be characters,
images, or sounds. In some cases, the default assumptions are wrong and we need to do our
own decoding.

See also

» Once we've recovered the string data, we have a number of ways of parsing or
rewriting it. See the String parsing with regular expressions recipe for examples of
parsing a complex string.

» For more information on encodings, see https://en.wikipedia.org/wiki/
UTF-8 and http://unicode.org/fag/utf bom.html.

Using tuples of items

What's the best way to represent simple (x,y) and (r,g,b) groups of values? How can we keep
things that are pairs, such as latitude and longitude, together?

Getting ready

In the String parsing with regular expressions recipe, we skipped over an interesting data
structure.

E

38

https://en.wikipedia.org/wiki/UTF-8
http://unicode.org/faq/utf_bom.html
http://unicode.org/faq/utf_bom.html

Chapter 1
We had data that looked like this:
>>> ingredient = "Kumquat: 2 cups"

We parsed this into meaningful data using a regular expression, like this:

>>> import re

>>> ingredient pattern = re.compile(r' (?P<ingredient>\w+) :\s+ (?P<amount>\
d+) \s+ (?P<unit>\w+) ')

>>> match = ingredient pattern.match(ingredient)
>>> match.groups ()
('Kumgquat', '2', 'cups')

The result is a tuple object with three pieces of data. There are lots of places where this kind
of grouped data can come in handy.

How to do it...

We'll look at two aspects to this: putting things into tuples and getting things out of tuples.

Creating tuples

There are lots of places where Python creates tuples of data for us. In the Getting ready
section of the String parsing with regular expressions recipe, we showed you how a regular
expression match object will create a tuple of text that was parsed from a string.

We can create our own tuples, too. Here are the steps:

1. Enclose the datain ().
2. Separate the items with , :

>>> from fractions import Fraction

>>> my data = ('Rice', Fraction(1/4), 'cups')

There's an important special case for the one-tuple, or singleton. We have to include an
extra ,, even when there's only one item in the tuple:

>>> one_ tuple = ('item',)

>>> len(one_ tuple)

1

Numbers, Strings, and Tuples

The () characters aren't always required. There are a few times where
we can omit them. It's not a good idea to omit them, but we can see

, funny things when we have an extra comma:
\\::' >>> 355,

(355,)

The extra comma after 355 turns the value into a singleton tuple.

Extracting items from a tuple

The idea of a tuple is for it to be a container with a number of items that's fixed by the problem
domain: for example, for (red, green, blue) color numbers, the number of items is always
three.

In our example, we've got an ingredient, and amount, and units. This must be a three-
item collection. We can look at the individual items in two ways:

» By index position; that is, positions are numbered starting with zero from the left:
>>> my datal[l]

Fraction(1l, 4)
» Using multiple assignment:

>>> ingredient, amount, unit = my data
>>> ingredient

'Rice!

>>> unit

'cups’

Tuples—like strings—are immutable. We can't change the individual items inside a tuple. We
use tuples when we want to keep the data together.

Tuples are one example of the more general Sequence class. We can do a few things with
sequences.

Here's an example tuple that we can work with:
>>> t = ('Kumquat', '2', 'cups')
Here are some operations we can perform on this tuple:

» How many items in t?
>>> len(t)
3

=)

Chapter 1

How many times does a particular value appear in t?
>>> t.count('2"')

1

Which position has a particular value?
>>> t.index('cups')

2

>>> t[2]

'cups’

When an item doesn't exist, we'll get an exception:
>>> t.index('Rice')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: tuple.index(x): x not in tuple
Does a particular value exist?
>>> 'Rice' in t

False

There's more...

Atuple, like a string, is a sequence of items. In the case of a string, it's a sequence of
characters. In the case of a tuple, it's a sequence of many things. Because they're both
sequences, they have some common features. We've noted that we can pluck out individual
items by their index position. We can use the index () method to locate the position of

an item.

The similarities end there. A string has many methods it can use to create a new string that's
a transformation of a string, plus methods to parse strings, plus methods to determine the
content of the strings. A tuple doesn't have any of these bonus features. It's—perhaps—the
simplest possible data structure.

See also

>

We looked at one other sequence, the list, in the Building complex strings from lists
of characters recipe.

We'll also look at sequences in Chapter 4, Built-In Data Structures Part 1: Lists and
Sets.

file:///\\192.168.0.200\All_Books\C:\Users\kishorr\Downloads\9781786469250\c46b36ee-e2f1-4759-8b4d-b7a68d8d65b5.xhtml

Numbers, Strings, and Tuples

Using NamedTuples to simplify item access

in tuples

When we worked with tuples, we had to remember the positions as numbers. When we use
a (r,8,b) tuple to represent a color, can we use "red" instead of zero, "green" instead of 1, and
"blue" instead of 2?

Getting ready

Let's continue looking at items in recipes. The regular expression for parsing the string had
three attributes: ingredient, amount, and unit. We used the following pattern with names for
the various substrings:

r' (?P<ingredient>\w+) : \s+ (?P<amount>\d+) \s+ (?P<unit>\w+) ')
The resulting data tuple looked like this:

>>> item = match.groups()

('Kumgquat', '2', 'cups')

While the matching between ingredient, amount, and unit is pretty clear, using
something like the following isn't ideal. What does "1" mean? Is it really the quantity?

>>> Fraction(item[1])

Fraction(2, 1)

We want to define tuples with names, as well as positions.

How to do it...

1. We'll use the NamedTuple class definition from the typing package:

>>> from typing import NamedTuple

2. With this base class definition, we can define our own unique tuples, with names for
the items:

>>> class Ingredient (NamedTuple) :
ingredient: str
amount: str

unit: str

3. Now, we can create an instance of this unique kind of tuple by using the classname:

>>> item 2 = Ingredient ('Kumqguat', '2', 'cups')

Chapter 1

4. When we want a value, we can use name instead of the position:
>>> Fraction(item 2.amount)
Fraction(2, 1)
>>> f"Use {item 2.amount} {item 2.unit} fresh {item 2.ingredient}"

'Use 2 cups fresh Kumquat'

The NamedTuple class definition introduces a core concept from Chapter 7, Basics of
Classes and Objects. We've extended the base class definition to add unique features for our
application. In this case, we've named the three attributes each Ingredient tuple must
contain.

Because a NamedTuple class is a tuple, the order of the attribute names is fixed. We can use
a reference like the expression item 2 [0] as well as the expression item 2.ingredient.
Both names refer to the item in index O of the tuple, item 2.

The core tuple types can be called "anonymous tuples" or maybe "index-only tuples." This can
help to distinguish them from the more sophisticated "named tuples" introduced through the
typing module.

Tuples are very useful as tiny containers of closely related data. Using the NamedTuple class
definition makes them even easier to work with.

There's more...

We can have a mixed collection of values in a tuple or a named tuple. We need to perform
conversion before we can build the tuple. It's important to remember that a tuple cannot ever
be changed. It's an immutable object, similar in many ways to the way strings and numbers
are immutable.

For example, we might want to work with amounts that are exact fractions. Here's a more
sophisticated definition:
>>> class IngredientF (NamedTuple) :

ingredient: str

amount: Fraction

unit: str

These objects require some care to create. If we're using a bunch of strings, we can't simply
build this object from three string values; we need to convert the amount into a Fraction
instance. Here's an example of creating an item using a Fraction conversion:

>>> item 3 = IngredientF ('Kumquat', Fraction('2'), ‘'cups')

Numbers, Strings, and Tuples

This tuple has a more useful value for the amount of each ingredient. We can now do
mathematical operations on the amounts:

>>> f'{item 3.ingredient} doubled: {item 3.amount*2}!'

'Kumquat doubled: 4!

It's very handy to specifically state the data type within NamedTuple. It turns out Python
doesn't use the type information directly. Other tools, for example, mypy, can check the type
hints in NamedTuple against the operations in the rest of the code to be sure they agree.

See also

» We'll look at class definitions in Chapter 7, Basics of Classes and Objects.

Statements and Syntax

Python syntax is designed to be simple. There are a few rules; we'll look at some of the
interesting statements in the language as a way to understand those rules. Concrete
examples can help clarify the language's syntax.

We'll cover some basics of creating script files first. Then we'll move on to looking at some
of the more commonly-used statements. Python only has about 20 or so different kinds

of imperative statements in the language. We've already looked at two kinds of statements
in Chapter 1, Numbers, Strings, and Tuples, the assignment statement and the expression
statement.

When we write something like this:

>>> print("hello world")

hello world

We're actually executing a statement that contains only the evaluation of a function,
print (). This kind of statement—where we evaluate a function or a method of an object—is
common.

The other kind of statement we've already seen is the assignment statement. Python has
many variations on this theme. Most of the time, we're assigning a single value to a single
variable. Sometimes, however, we might be assigning two variables at the same time, like this:

quotient, remainder = divmod(355, 113)

These recipes will look at some of the more common of the complex statements, including
if,while, for, try, and with. We'll touch on a few of the simpler statements as we go,
like break and raise.

file:///\\192.168.0.200\All_Books\2019\Working_Titles\Books\14110_AI Crash Course\9781786469250\a2a60fe4-07af-4a14-80ee-96c80e2fb12f.xhtml

Statements and Syntax

In this chapter, we'll look at the following recipes:

Writing Python script and module files - syntax basics
Writing long lines of code

Including descriptions and documentation

Better RST markup in docstrings

Designing complex if...elif chains

Saving intermediate results with the : = "walrus"
Avoiding a potential problem with break statements
Leveraging exception matching rules

Avoiding a potential problem with an except : clause
Concealing an exception root cause

vV Vv v vV v vV v VvYy

Managing a context using the with statement

We'll start by looking at the big picture - scripts and modules - and then we'll move down
into details of individual statements. New with Python 3.8 is the assignment operator,
sometimes called the "walrus" operator. We'll move into exception handling and context
management as more advanced recipes in this section.

Writing Python script and module files -

syntax basics

We'll need to write Python script files in order to do anything that's fully automated. We can
experiment with the language at the interactive >>> prompt. We can also use JupyterLab
interactively. For automated work, however, we'll need to create and run script files.

How can we make sure our code matches what's in common use? We need to look at some
common aspects of style: how we organize our programming to make it readable.

We'll also look at a number of more technical considerations. For example, we need to be
sure to save our files in UTF-8 encoding. While ASCII encoding is still supported by Python,
it's a poor choice for modern programming. We'll also need to be sure to use spaces instead
of tabs. If we use Unix newlines as much as possible, we'll also find it slightly simpler to
create software that runs on a variety of operating systems.

Most text editing tools will work properly with Unix (newline) line endings as well as Windows
or DOS (return-newline) line endings. Any tool that can't work with both kinds of line endings
should be avoided.

Chapter 2

Getting ready

To edit Python scripts, we'll need a good programming text editor. Python comes with a handy
editor, IDLE. It works well for simple projects. It lets us jump back and forth between a file and
an interactive >>> prompt, but it's not a good programming editor for larger projects.

There are dozens of programming editors. It's nearly impossible to suggest just one. So we'll
suggest a few.

The JetBrains PyCharm editor has numerous features. The community edition version is free.
See https://www.jetbrains.com/pycharm/download/.

ActiveState has Komodo IDE, which is also very sophisticated. The Komodo Edit version is free
and does some of the same things as the full Komodo IDE. See http://komodoide.com/
komodo-edit/.

Notepad++ is good for Windows developers. See https://notepad-plus-plus.org.

BBEdit is very nice for macOS X developers. See http://www.barebones.com/
products/bbedit/.

For Linux developers, there are several built-in editors, including VIM, gedit, and Kate. These
are all good. Since Linux tends to be biased toward developers, the editors available are all
suitable for writing Python.

What's important is that we'll often have two windows open while we're working;:

» The script or file that we're working on in our editor of choice.

» Python's >>> prompt (perhaps from a shell or perhaps from IDLE) where we can try
things out to see what works and what doesn't. We may be creating our script in
Notepad++ but using IDLE to experiment with data structures and algorithms.

We actually have two recipes here. First, we need to set some defaults for our editor. Then,
once the editor is set up properly, we can create a generic template for our script files.

How to do it...

First, we'll look at the general setup that we need to do in our editor of choice. We'll use
Komodo examples, but the basic principles apply to all editors. Once we've set the edit
preferences, we can create our script files:

1. Open your editor of choice. Look at the preferences page for the editor.

2. Find the settings for preferred file encoding. With Komodo Edit Preferences, it's on
the Internationalization tab. Set this to UTF-8.

http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
https://notepad-plus-plus.org
http://www.barebones.com/products/bbedit/
http://www.barebones.com/products/bbedit/

Statements and Syntax

3. Find the settings for indentation. If there's a way to use spaces instead of tabs,
check this option. With Komodo Edit, we actually do this backward—we uncheck
"prefer spaces over tabs." Also, set the spaces per indent to four. That's typical for
Python code. It allows us to have several levels of indentation and still keep the
code fairly narrow.

N

‘/@\‘ The rule is this: we want spaces; we do not want tabs.

/

Once we're sure that our files will be saved in UTF-8 encoding, and we're also sure we're
using spaces instead of tabs, we can create an example script file:

1. The first line of most Python script files should look like this:
#!/usr/bin/env python3

This sets an association between the file you're writing and Python.

For Windows, the filename-to-program association is done through a setting in one
of the Windows control panels. Within the Default Programs control panel, there's a
panel to Set Associations. This control panel shows that . py files are bound to the
Python program. This is normally set by the installer, and we rarely need to change
it or set it manually.

macOS X and Linux folks happy when they download the project from
GitHub.

C’ Windows developers can include the preamble line anyway. It will make
\’/

2. After the preamble, there should be a triple-quoted block of text. This is the
documentation string (called a docstring) for the file we're going to create. It's not
technically mandatory, but it's essential for explaining what a file contains:

A summary of this script.

Because Python triple-quoted strings can be indefinitely long, feel free to write as
much as necessary. This should be the primary vehicle for describing the script or
library module. This can even include examples of how it works.

3. Now comes the interesting part of the script: the part that really does something.
We can write all the statements we need to get the job done. For now, we'll use
this as a placeholder:

Chapter 2

print ('hello world')

This isn't much, but at least the script does something. In other recipes, we'll look at
more complex processing. It's common to create function and class definitions, as
well as to write statements to use the functions and classes to do things.

For our first, simple script, all of the statements must begin at the left margin and must be
complete on a single line. There are many Python statements that have blocks of statements
nested inside them. These internal blocks of statements must be indented to clarify their
scope. Generally—because we set indentation to four spaces—we can hit the Tab key to indent.

Our file should look like this:

#!/usr/bin/env python3

My First Script: Calculate an important value.

print(355/113)

Unlike other languages, there's very little boilerplate in Python. There's only one line of
overhead and even the #! /usr/bin/env python3 line is generally optional.

Why do we set the encoding to UTF-8? While the entire language is designed to work using
just the original 128 ASCII characters, we often find that ASCII is limiting. It's easier to set our
editor to use UTF-8 encoding. With this setting, we can simply use any character that makes
sense. We can use characters like i as Python variables if we save our programs in UTF-8
encoding.

This is legal Python if we save our file in UTF-8:

T = 355/113
print ()

/ It's important to be consistent when choosing between spaces and
\n/ tabs in Python. They are both more or less invisible, and mixing them
can easily lead to confusion. Spaces are suggested.

When we set up our editor to use a four-space indent, we can then use the button labeled
Tab on our keyboard to insert four spaces. Our code will align properly, and the indentation
will show how our statements nest inside each other.

@]

Statements and Syntax

The initial #! line is a comment. Because the two characters are sometimes called sharp
and bang, the combination is called "shebang." Everything between a # and the end of the
line is ignored. The Linux loader (a program named execve) looks at the first few bytes of

a file to see what the file contains. The first few bytes are sometimes called magic because
the loader's behavior seems magical. When present, this two-character sequence of #! is
followed by the path to the program responsible for processing the rest of the data in the file.
We prefer to use /usr/bin/env to start the Python program for us. We can leverage this

to make Python-specific environment settings via the env program.

The Python Standard Library documents are derived, in part, from the documentation strings
present in the module files. It's common practice to write sophisticated docstrings in modules.
There are tools like pydoc and Sphinx that can reformat the module docstrings into elegant
documentation. We'll look at this in other recipes.

Additionally, unit test cases can be included in the docstrings. Tools like doctest can
extract examples from the document string and execute the code to see if the answers

in the documentation match the answers found by running the code. Most of this book is
validated with doctest.

Triple-quoted documentation strings are preferred over # comments. While all text between
and the end of the line is ignored, this is limited to a single line, and it is used sparingly.
A docstring can be of indefinite size; they are used widely.

Prior to Python 3.6, we might sometimes see this kind of thing in a script file:

color = 355/113

The # type: float comment can be used by a type inferencing system to establish that
the various data types can occur when the program is actually executed. For more information
on this, see Python Enhancement Proposal (PEP) 484: https://www.python.org/dev/
peps/pep-0484/.

The preferred style is this:

color: float = 355/113

The type hint is provided immediately after the variable name. This is based on PEP 526,
https://www.python.org/dev/peps/pep-0526. In this case, the type hint is obvious
and possibly redundant. The result of exact integer division is a floating-point value, and
type inferencing tools like mypy are capable of figuring out the specific type for obvious
cases like this.

https://www.python.org/dev/peps/pep-0484/

Chapter 2

There's another bit of overhead that's sometimes included in a file. The VIM and gedit
editors let us keep edit preferences in the file. This is called a modeline. We may see these;
they can be ignored. Here's a typical modeline that's useful for Python:

This sets the Unicode u+0009 TAB characters to be transformed to eight spaces; when we hit
the Tab key, we'll shift four spaces. This setting is carried in the file; we don't have to do any
VIM setup to apply these settings to our Python script files.

» We'll look at how to write useful document strings in the Including descriptions and
documentation and Writing better RST markup in docstrings recipes.

» For more information on suggested style, see https://www.python.org/dev/
peps/pep-0008/

Writing long lines of code

There are many times when we need to write lines of code that are so long that they're
very hard to read. Many people like to limit the length of a line of code to 80 characters or
fewer. It's a well-known principle of graphic design that a narrower line is easier to read.
See http://webtypography.net/2.1.2 for a deeper discussion of line width and
readability.

While shorter lines are easier on the eyes, our code can refuse to cooperate with this
principle. Long statements are a common problem. How can we break long Python
statements into more manageable pieces?

Getting ready

Often, we'll have a statement that's awkwardly long and hard to work with. Let's say we've
got something like this:

>>> import math

>>> example value = (63/25) * (17+15*math.sqrt(5)) / (7+15*math.sqrt(5))
>>> mantissa fraction, exponent = math.frexp(example value)

>>> mantissa whole = int (mantissa_ fraction*2**53)

>>> message text = f'the internal representation is {mantissa_
whole:d}/2**53*2**{exponent:d}"

>>> print (message_text)

the internal representation is 7074237752514592/2%*53%2%%2

https://www.python.org/dev/peps/pep-0008/
http://webtypography.net/2.1.2
http://webtypography.net/2.1.2

Statements and Syntax

This code includes a long formula, and a long format string into which we're injecting values.
This looks bad when typeset in a book; the f-string line may be broken incorrectly. It looks
bad on our screen when trying to edit this script.

We can't haphazardly break Python statements into chunks. The syntax rules are clear that
a statement must be complete on a single logical line.

The term "logical line" provides a hint as to how we can proceed. Python makes a distinction
between logical lines and physical lines; we'll leverage these syntax rules to break up long
statements.

How to do it...

Python gives us several ways to wrap long statements so they're more readable:

» We can use \ at the end of a line to continue onto the next line.

» We can leverage Python's rule that a statement can span multiple logical lines
because the (), [1, and {} characters must balance. In addition to using () or \, we
can also exploit the way Python automatically concatenates adjacent string literals to
make a single, longer literal; ("a" "b") isthe same as "ab".

» In some cases, we can decompose a statement by assigning intermediate results
to separate variables.

We'll look at each one of these in separate parts of this recipe.

Using a backslash to break a long statement into logical lines
Here's the context for this technique:

>>> import math

>>> example value = (63/25) * (17+15*math.sqrt(5)) / (7+15*math.sqrt(5))
>>> mantissa fraction, exponent = math.frexp(example value)

>>> mantissa whole = int (mantissa_ fraction*2**53)
Python allows us to use \ to break the logical line into two physical lines:

1. Write the whole statement on one long line, even if it's confusing:

>>> message text = f'the internal representation is {mantissa_
whole:d}/2**53*2**{exponent:d}"

2. [If there's a meaningful break, insert the \ to separate the statement:

>>> message_text = f'the internal representation is \

{mantissa whole:d}/2**53*2**{exponent:d}"'

Chapter 2

For this to work, the \ must be the last character on the line. We can't even have a single
space after the \. An extra space is fairly hard to see; for this reason, we don't encourage
using back-slash continuation like this. PEP 8 provides guidelines on formatting and
discourages this.

In spite of this being a little hard to see, the \ can always be used. Think of it as the last
resort in making a line of code more readable.

Using the () characters to break a long statement into sensible
pieces
1. Write the whole statement on one line, even if it's confusing;:
>>> import math

>>> example valuel = (63/25) * (17+15*math.sqrt(5)) / (7+15*math.
sqrt(5))

2. Addthe extra () characters, which don't change the value, but allow breaking the
expression into multiple lines:

>>> example value2 = (63/25) * ((17+15*math.sqrt(5)) /
(7+15*math.sqrt (5)))

>>> example value2 == example valuel

True

3. Break the line inside the () characters:

>>> example value3 = (63/25) * (
(17+15*math.sqrt(5))
/ (7+15*math.sqrt(5))
)
>>> example value3 == example valuel

True

The matching () character's technique is quite powerful and will work in a wide variety of
cases. This is widely used and highly recommended.

We can almost always find a way to add extra () characters to a statement. In rare cases
when we can't add () characters, or adding () characters doesn't improve readability, we can
fall back on using \ to break the statement into sections.

Using string literal concatenation

We can combine the () characters with another rule that joins adjacent string literals.
This is particularly effective for long, complex format strings:

1. Wrap a long string value in the () characters.

Statements and Syntax

2. Break the string into substrings:

>>> message text = (
f'the internal representation '
f'is {mantissa whole:d}/2**53*2**{exponent:d}"'
)
>>> message_text

'the internal representation is 7074237752514592/2**%53%2%%21

We can always break a long string into adjacent pieces. Generally, this is most effective when
the pieces are surrounded by () characters. We can then use as many physical line breaks
as we need. This is limited to those situations where we have particularly long string literals.

Assigning intermediate results to separate variables
Here's the context for this technique:

>>> import math
>>> example value = (63/25) * (17+15*math.sqrt(5)) / (7+15*math.sqrt(5))

We can break this into three intermediate values:

1. Identify sub-expressions in the overall expression. Assign these to variables:
>>> a = (63/25)

>>> b

(17+15*math.sqrt(5))
>>> ¢ = (7+15*math.sqrt(5))

This is generally quite simple. It may require a little care to do the algebra to locate
sensible sub-expressions.

2. Replace the sub-expressions with the variables that were created:
>>> example value = a * b / ¢

We can always take a sub-expression and assign it to a variable, and use the variable
everywhere the sub-expression was used. The 15*sqgrt (5) product is repeated; this, too,
is a good candidate for refactoring the expression.

We didn't give these variables descriptive names. In some cases, the sub-expressions have
some semantics that we can capture with meaningful names. In this case, however, we
chose short, arbitrary identifiers instead.

=

Chapter 2

The Python Language Manual makes a distinction between logical lines and physical lines.
A logical line contains a complete statement. It can span multiple physical lines through
techniques called line joining. The manual calls the techniques explicit line joining and
implicit line joining.

The use of \ for explicit line joining is sometimes helpful. Because it's easy to overlook, it's not
generally encouraged. PEP 8 suggests this should be the method of last resort.

The use of () for implicit line joining can be used in many cases. It often fits semantically
with the structure of the expressions, so it is encouraged. We may have the () characters as
a required syntax. For example, we already have () characters as part of the syntax for the
print () function. We might do this to break up a long statement:
>>> print(

'several values including',

'mantissa =', mantissa,

'exponent =', exponent

)

There's more...

Expressions are used widely in a number of Python statements. Any expression can have ()
characters added. This gives us a lot of flexibility.

There are, however, a few places where we may have a long statement that does not
specifically involve an expression. The most notable example of this is the import
statement—it can become long, but doesn't use any expressions that can be parenthesized.
In spite of not having a proper expression, it does, however, still permit the use of (). The
following example shows we can surround a very long list of imported names:

>>> from math import (
sin, cos, tan,
sqgrt, log, frexp)

In this case, the () characters are emphatically not part of an expression. The () characters
are available syntax, included to make the statement consistent with other statements.

Statements and Syntax

» Implicit line joining also applies to the matching [1 and {} characters. These apply to
collection data structures that we'll look at in Chapter 4, Built-In Data Structures Part
1: Lists and Sets.

Including descriptions and documentation

When we have a useful script, we often need to leave notes for ourselves—and others—on
what it does, how it solves some particular problem, and when it should be used.

Because clarity is important, there are some formatting recipes that can help make
the documentation very clear. This recipe also contains a suggested outline so that the
documentation will be reasonably complete.

Getting ready

If we've used the Writing Python script and module files - syntax basics recipe to build a
script file, we'll have to put a small documentation string in our script file. We'll expand on
this documentation string in this recipe.

There are other places where documentation strings should be used. We'll look at these
additional locations in Chapter 3, Function Definitions, and Chapter 7, Basics of Classes
and Objects.

We have two general kinds of modules for which we'll be writing summary docstrings:

» Library modules: These files will contain mostly function definitions as well as class
definitions. In this case, the docstring summary can focus on what the module is
more than what it does. The docstring can provide examples of using the functions
and classes that are defined in the module. In Chapter 3, Function Definitions, and
Chapter 7, Basics of Classes and Objects, we'll look more closely at this idea of a
package of functions or classes.

» Scripts: These are files that we generally expect will do some real work. In this case,
we want to focus on doing rather than being. The docstring should describe what it
does and how to use it. The options, environment variables, and configuration files
are important parts of this docstring.

We will sometimes create files that contain a little of both. This requires some careful editing
to strike a proper balance between doing and being. In most cases, we'll provide both kinds
of documentation.

file:///\\192.168.0.200\All_Books\2019\Working_Titles\Books\14110_AI Crash Course\9781786469250\c46b36ee-e2f1-4759-8b4d-b7a68d8d65b5.xhtml
file:///\\192.168.0.200\All_Books\2019\Working_Titles\Books\14110_AI Crash Course\9781786469250\3e2cb5b0-8560-4f63-b34a-27191b225ace.xhtml
file:///\\192.168.0.200\All_Books\2019\Working_Titles\Books\14110_AI Crash Course\9781786469250\f228734a-a940-4f49-b94e-d69fbca25a39.xhtml
file:///\\192.168.0.200\All_Books\2019\Working_Titles\Books\14110_AI Crash Course\9781786469250\3e2cb5b0-8560-4f63-b34a-27191b225ace.xhtml
file:///\\192.168.0.200\All_Books\2019\Working_Titles\Books\14110_AI Crash Course\9781786469250\f228734a-a940-4f49-b94e-d69fbca25a39.xhtml
file:///\\192.168.0.200\All_Books\2019\Working_Titles\Books\14110_AI Crash Course\9781786469250\f228734a-a940-4f49-b94e-d69fbca25a39.xhtml

Chapter 2

How to do it...

The first step in writing documentation is the same for both library modules and scripts:

1. Write a brief summary of what the script or module is or does. The summary doesn't
dig too deeply into how it works. Like a lede in a newspaper article, it introduces the
who, what, when, where, how, and why of the module. Details will follow in the body
of the docstring.

The way the information is displayed by tools like Sphinx and pydoc suggests a specific
style for the summaries we write. In the output from these tools, the context is pretty clear,
therefore it's common to omit a subject in the summary sentence. The sentence often
begins with the verb.

For example, a summary like this: This script downloads and decodes the current Special
Marine Warning (SMW) for the area AKQ has a needless This script. We can drop that and
begin with the verb phrase Downloads and decodes....

We might start our module docstring like this:

Downloads and decodes the current Special Marine Warning (SMW)
for the area 'AKQ'.

We'll separate the other steps based on the general focus of the module.

Writing docstrings for scripts

When we document a script, we need to focus on the needs of a person who will use
the script.

1. Start as shown earlier, creating a summary sentence.

2. Sketch an outline for the rest of the docstring. We'll be using ReStructuredText (RST)
markup. Write the topic on one line, then put a line of = under the topic to make it
a proper section title. Remember to leave a blank line between each topic.

Topics may include:

» SYNOPSIS: A summary of how to run this script. If the script uses the argparse
module to process command-line arguments, the help text produced by
argparse is the ideal summary text.

» DESCRIPTION: A more complete explanation of what this script does.

» OPTIONS: If argparse is used, this is a place to put the details of each
argument. Often, we'll repeat the argparse help parameter.

» ENVIRONMENT: If os.environ is used, this is the place to describe the
environment variables and what they mean.

7}

Statements and Syntax

» FILES: Names of files that are created or read by a script are very important
pieces of information.

» EXAMPLES: Some examples of using the script are always helpful.
» SEE ALSO: Any related scripts or background information.

Other topics that might be interesting include EXIT STATUS, AUTHOR, BUGS,
REPORTING BUGS, HISTORY, or COPYRIGHT. In some cases, advice on reporting
bugs, for instance, doesn't really belong in a module's docstring, but belongs
elsewhere in the project's GitHub or SourceForge pages.

Fill in the details under each topic. It's important to be accurate. Since we're
embedding this documentation within the same file as the code, it needs to be
correct, complete, and consistent.

For code samples, there's a cool bit of RST markup we can use. Recall that all
elements are separated by blank lines. In one paragraph, use : : by itself. In the
next paragraph, provide the code example indented by four spaces.

Here's an example of a docstring for a script:

Downloads and decodes the current Special Marine Warning (SMW)
for the area 'AKQ'

SYNOPSIS

python3 akq_weather.py

DESCRIPTION

Writes a file, '""AKW.html'".

EXAMPLES

Chapter 2

Here's an example::

slott$ python3 akq weather.py
<h3>There are no products active at this time.</h3>

In the SYNOPSIS section, we used : : as a separate paragraph. In the EXAMPLES section, we
used : : at the end of a paragraph. Both versions are hints to the RST processing tools that
the indented section that follows should be typeset as code.

Writing docstrings for library modules

When we document a library module, we need to focus on the needs of a programmer who
will import the module to use it in their code:

1. Sketch an outline for the rest of the docstring. We'll be using RST markup. Write the
topic on one line. Include a line of = under each topic to make the topic into a proper
heading. Remember to leave a blank line between each paragraph.

2. Start as shown previously, creating a summary sentence:

» DESCRIPTION: A summary of what the module contains and why the module is
useful

» MODULE CONTENTS: The classes and functions defined in this module
» EXAMPLES: Examples of using the module

3. Fillin the details for each topic. The module contents may be a long list of class or
function definitions. This should be a summary. Within each class or function, we'll
have a separate docstring with the details for that item.

4. For code examples, see the previous examples. Use : : as a paragraph or the
ending of a paragraph. Indent the code example by four spaces.

Over the decades, the man page outline has evolved to contain a complete description of
Linux commands. This general approach to writing documentation has proven useful and
resilient. We can capitalize on this large body of experience, and structure our documentation
to follow the man page model.

These two recipes for describing software are based on summaries of many individual pages
of documentation. The goal is to leverage the well-known set of topics. This makes our
module documentation mirror the common practice.

Statements and Syntax

We want to prepare module docstrings that can be used by the Sphinx Python Documentation
Generator (see http://www.sphinx-doc.org/en/stable/). This is the tool used

to produce Python's documentation files. The autodoc extension in Sphinx will read the
docstring headers on our modules, classes, and functions to produce the final documentation
that looks like other modules in the Python ecosystem.

RST markup has a simple, central syntax rule: paragraphs are separated by blank lines.

This rule makes it easy to write documents that can be examined by the various RST
processing tools and reformatted to look extremely nice.

When we want to include a block of code, we'll have some special paragraphs:

» Separate the code from the text with blank lines.
» Indent the code by four spaces.

» Provide a prefix of : :. We can either do this as its own separate paragraph or as
a special double-colon at the end of the lead-in paragraph:

Here's an example::

more_code()

» The :: isused in the lead-in paragraph.

There are places for novelty and art in software development. Documentation is not really
the place to push the envelope.

, A unique voice or quirky presentation isn't fun for users who simply
; Ay want to use the software. An amusing style isn't helpful when

debugging. Documentation should be commonplace and conventional.

It can be challenging to write good software documentation. There's a broad chasm between
too little information and documentation that simply recapitulates the code. Somewhere,
there's a good balance. What's important is to focus on the needs of a person who doesn't
know too much about the software or how it works. Provide this semi-knowledgeable user
with the information they need to describe what the software does and how to use it.

In many cases, we need to separate two parts of the use cases:

» The intended use of the software
» How to customize or extend the software

&)

http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/

Chapter 2

These may be two distinct audiences. There may be users who are distinct from developers.
Each has a unique perspective, and different parts of the documentation need to respect
these two perspectives.

See also

» We look at additional techniques in Writing better RST markup in docstrings.

» If we've used the Writing Python script and module files - syntax basics recipe,
we'll have put a documentation string in our script file. When we build functions in
Chapter 3, Function Definitions, and classes in Chapter 7, Basics of Classes and
Objects, we'll look at other places where documentation strings can be placed.

» Seehttp://www.sphinx-doc.org/en/stable/ for more information on
Sphinx.

» For more background on the man page outline, see https://en.wikipedia.
org/wiki/Man_page

Writing better RST markup in docstrings

When we have a useful script, we often need to leave notes on what it does, how it works,
and when it should be used. Many tools for producing documentation, including docutils, work
with RST markup. What RST features can we use to make documentation more readable?

Getting ready

In the Including descriptions and documentation recipe, we looked at putting a basic set of
documentation into a module. This is the starting point for writing our documentation. There
are a large number of RST formatting rules. We'll look at a few that are important for creating
readable documentation.

How to do it...

1. Be sure to write an outline of the key points. This may lead to creating RST section
titles to organize the material. A section title is a two-line paragraph with the title
followed by an underline using =, -, *, ~, or one of the other docutils characters for
underlining.

A heading will look like this:
Topic

file:///\\192.168.0.200\All_Books\2019\Working_Titles\Books\14110_AI Crash Course\9781786469250\3e2cb5b0-8560-4f63-b34a-27191b225ace.xhtml
file:///\\192.168.0.200\All_Books\2019\Working_Titles\Books\14110_AI Crash Course\9781786469250\f228734a-a940-4f49-b94e-d69fbca25a39.xhtml
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
https://en.wikipedia.org/wiki/Man_page

Statements and Syntax

The heading text is on one line and the underlining characters are on the next line.
This must be surrounded by blank lines. There can be more underline characters
than title characters, but not fewer.

The RST tools will infer our pattern of using underlining characters. As long as the
underline characters are used consistently, the algorithm for matching underline
characters to the desired heading will detect the pattern. The keys to this are
consistency and a clear understanding of sections and subsections.

When starting out, it can help to make an explicit reminder sticky note like this:

Character Level
= 1
- 2
» 3
~ 4

Example of heading characters

Fill in the various paragraphs. Separate paragraphs (including the section titles)
with blank lines. Extra blank lines don't hurt. Omitting blank lines will lead the RST
parsers to see a single, long paragraph, which may not be what we intended.

We can use inline markup for emphasis, strong emphasis, code, hyperlinks, and
inline math, among other things. If we're planning on using Sphinx, then we have an
even larger collection of text roles that we can use. We'll look at these techniques
soon.

If the programming editor has a spell checker, use that. This can be frustrating
because we'll often have code samples that may include abbreviations that fail
spell checking.

The docutils conversion programs will examine the document, looking for sections and body
elements. A section is identified by a title. The underlines are used to organize the sections
into a properly nested hierarchy. The algorithm for deducing this is relatively simple and has

these rules:
» If the underline character has been seen before, the level is known
» If the underline character has not been seen before, then it must be indented one
level below the previous outline level
» If there is no previous level, this is level one

Chapter 2

A properly nested document might have the following sequence of underline characters:

MORE

ANAN

EXTRA

ANNANNN

LEVEL 2

LEVEL 3

ANNANNNANAN

We can see that the first title underline character, =, will be level one. The next, -, is unknown
but appears after a level one, so it must be level two. The third headline has *, which is
previously unknown, is inside level two, and therefore must be level three. The next * is
still level three. The next two, - and *, are known to be level two and three respectively.

|
\@'_ From this overview, we can see that inconsistency will lead to

4 confusion.

If we change our mind partway through a document, this algorithm can't detect that. If—for
inexplicable reasons—we decide to skip over a level and try to have a level four heading
inside a level two section, that simply can't be done.

There are several different kinds of body elements that the RST parser can recognize. We've
shown a few. The more complete list includes:

» Paragraphs of text: These might use inline markup for different kinds of emphasis or
highlighting.

» Literal blocks: These are introduced with : : and indented four spaces. They may
also be introduced with the .. parsed-literal: : directive. A doctest block is
indented four spaces and includes the Python >>> prompt.

(&5}

Statements and Syntax

>

>

Lists, tables, and block quotes: We'll look at these later. These can contain other
body elements.

Footnotes: These are special paragraphs. When rendered, they may be put on the
bottom of a page or at the end of a section. These can also contain other body
elements.

Hyperlink targets, substitution definitions, and RST comments: These are
specialized text items.

For completeness, we'll note here that RST paragraphs are separated by blank lines. There's
quite a bit more to RST than this core rule.

In the Including descriptions and documentation recipe, we looked at several different kinds
of body elements we might use:

>

Paragraphs of Text: This is a block of text surrounded by blank lines. Within these,
we can make use of inline markup to emphasize words, or to use a font to show that
we're referring to elements of our code. We'll look at inline markup in the Using inline
markup recipe.

Lists: These are paragraphs that begin with something that looks like a number or
a bullet. For bullets, use a simple - or *. Other characters can be used, but these
are common. We might have paragraphs like this.

It helps to have bullets because:

» They can help clarify
» They can help organize
Numbered Lists: There are a variety of patterns that are recognized. We might use a
pattern like one of the four most common kinds of numbered paragraphs:
1. Numbers followed by punctuation like . or).
2. A letter followed by punctuation like . or).
3. A Roman numeral followed by punctuation.
4. A special case of # with the same punctuation used on the previous items.
This continues the numbering from the previous paragraphs.

Literal Blocks: A code sample must be presented literally. The text for this must be
indented. We also need to prefix the code with : :. The : : character must either be
a separate paragraph or the end of a lead-in to the code example.

Chapter 2

» Directives: A directive is a paragraph that generally looks like .. directive::.It
may have some content that's indented so that it's contained within the directive. It
might look like this:

important::

Do not flip the bozo bit.

The .. important:: paragraph is the directive. This is followed by a short paragraph of
text indented within the directive. In this case, it creates a separate paragraph that includes
the admonition of important.

Using directives

Docutils has many built-in directives. Sphinx adds a large number of directives with a variety
of features.

Some of the most commonly used directives are the admonition directives: attention,
caution, danger, error, hint, important, note, tip, warning, and the generic
admonition. These are compound body elements because they can have multiple
paragraphs and nested directives within them.

We might have things like this to provide appropriate emphasis:

note:: Note Title

We need to indent the content of an admonition.
This will set the text off from other material.

One of the other common directives is the parsed-1literal directive:

parsed-literal::

any text
almost any format
the text is preserved

but **inline** markup can be used.

This can be handy for providing examples of code where some portion of the code is
highlighted. A literal like this is a simple body element, which can only have text inside.
It can't have lists or other nested structures.

Statements and Syntax

Using inline markup
Within a paragraph, we have several inline markup techniques we can use:

» We can surround a word or phrase with * for *emphasis*. This is commonly typeset
as italic.

» We can surround a word or phrase with ** for **strong**. This is commonly
typeset as bold.

» We surround references with single back-ticks (~, it's on the same key as the ~ on
most keyboards). Links are followed by an underscore, " _". We might use ~section
title™_to refer to a specific section within a document. We don't generally need to
put anything around URLs. The docutils tools recognize these. Sometimes we want a
word or phrase to be shown and the URL concealed. We can use this: “the Sphinx
documentation <http://www.sphinx-doc.org/en/stable/>~

» We can surround code-related words with a double back-tick (~ ~) to make them look
like ~~code™"

There's also a more general technique called a text role. A role is a little more complex-looking
than simply wrapping a word or phrase in * characters. We use :word: as the role name
followed by the applicable word or phrase in single ~ back-ticks. A text role looks like this
:strong: “this”.

There are a number of standard role names, including : emphasis:, :literal:,

:code:, :math:, :pep-reference:, :rfc-reference:, :strong:, :subscript:,
:superscript:,and :title-reference:. Some of these are also available with simpler
markup like *emphasis* or **strong**. The rest are only available as explicit roles.

Also, we can define new roles with a simple directive. If we want to do very sophisticated
processing, we can provide docutils with class definitions for handling roles, allowing us to
tweak the way our document is processed. Sphinx adds a large number of roles to support
detailed cross-references among functions, methods, exceptions, classes, and modules.

» For more information on RST syntax, see http://docutils.sourceforge.net.
This includes a description of the docutils tools.

» For information on Sphinx Python Documentation Generator, see http://www.
sphinx-doc.org/en/stable/

» The sphinx tool adds many additional directives and text roles to basic definitions.

(&)

http://docutils.sourceforge.net
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/

Chapter 2

Designing complex if...elif chains

In most cases, our scripts will involve a number of choices. Sometimes the choices are simple,
and we can judge the quality of the design with a glance at the code. In other cases, the
choices are more complex, and it's not easy to determine whether or not our if statements
are designed properly to handle all of the conditions.

In the simplest case, we have one condition, C, and its inverse, -C" . These are the two
conditions for an i f. . .else statement. One condition, C, is stated in the if clause, the
other condition, C's inverse, is implied in else.

This is the Law of the Excluded Middle: we're claiming there's no missing alternative
between the two conditions, C and -C. For a complex condition, though, this isn't always true.

If we have something like:

if weather == RAIN and plan == GO_OUT:
bring("umbrella™)
else:

bring("sunglasses")

It may not be immediately obvious, but we've omitted a number of possible alternatives.
The weather and plan variables have four different combinations of values. One of the
conditions is stated explicitly, the other three are assumed:

> weather == RAINandplan == GO_OUT. Bringing an umbrella seems right.
> weather != RAINandplan == GO_OUT. Bringing sunglasses seems appropriate.
» weather == RAINandplan != GO_OUT. If we're staying in, then neither

accessory seems right.
» weather != RAINandplan != GO_OUT. Again, the accessory question seems
moot if we're not going out.

How can we be sure we haven't missed anything?

Getting ready

Let's look at a concrete example of an if. . .elif chain. In the casino game of Craps, there
are a number of rules that apply to a roll of two dice. These rules apply on the first roll of the
game, called the come-out roll:

» 2,3,0r12is Craps, which is a loss for all bets placed on the pass line

» 7 or11isa winner for all bets placed on the pass line

» The remaining numbers establish a point

Statements and Syntax

Many players place their bets on the pass line. We'll use this set of three conditions as an
example for looking at this recipe because it has a potentially vague clause in it.

How to do it...

When we write an i f statement, even when it appears trivial, we need to be sure that all
conditions are covered.

1. Enumerate the conditions we know. In our example, we have three rules: (2, 3, 12),
(7, 11), and a vague statement of "the remaining numbers." This forms a first draft
of the if statement.

2. Determine the universe of all possible alternatives. For this example, there are 11
alternative outcomes: the numbers from 2 to 12, inclusive.

3. Compare the conditions, C, with the universe of alternatives, U. There are three
possible outcomes of this comparison:

» More conditions than are possible in the universe of alternatives, ¢ > U. The
most common cause is failing to completely enumerate all possible alternatives in
the universe. We might, for example, have modeled dice using O to 5 instead of 1
to 6. The universe of alternatives appears to be the values from 0 to 10, yet there
are conditions for 11 and 12.

» Gaps in the conditions, J\ C # @. There are one or more alternatives without
a condition. The most common cause is failing to fully understand the various
conditions. We might, for example, have enumerated the vales as two tuples
instead of sums. (1, 1), (1, 2), (2, 1), and (6, 6) have special rules. It's possible to
miss a condition like this and have a condition untested by any clause of the i f
statement.

» Match between conditions and the universe of alternatives, U = (. This is ideal.
The universe of all possible alternatives matches of all the conditions in the i f
statement.

The first outcome is a rare problem where the conditions in our code seem to describe too
many alternative outcomes. It helps to uncover these kinds of problems as early as possible
to permit rethinking the design from the foundations. Often, this suggests the universe of
alternatives is not fully understood; either we wrote too many conditions or failed to identify
all the alternative outcomes.

A more common problem is to find a gap between the designed conditions in the draft i £
statement and the universe of possible alternatives. In this example, it's clear that we haven't
covered all of the possible alternatives. In other cases, it takes some careful reasoning to
understand the gap. Often, the outcome of our design effort is to replace any vague or poorly
defined terms with something much more precise.

&)

Chapter 2

In this example, we have a vague term, which we can replace with something more specific.
The term remaining numbers appears to be the list of values (4, 5, 6, 8, 9, 10). Supplying
this list removes any possible gaps and doubts.

The goal is to have the universe of known alternatives match the collection of conditions
in our if statement. When there are exactly two alternatives, we can write a condition
expression for one of the alternatives. The other condition can be implied; a simple if and
else will work.

When we have more than two alternatives, we'll have more than two conditions. We need to
use this recipe to write a chain of 1 f and elif statements, one statement per alternative:

1. Writeanif...elif...elif chain that covers all of the known alternatives. For our
example, it will look like this:
dice = die_1 + die_2
if dice in (2, 3, 12):
game.craps()
elif dice in (7, 11):
game.winner()
elif dice in (4, 5, 6, 8, 9, 10):
game.point(die)

2. Add an else clause that raises an exception, like this:

else:
raise Exception('Design Problem")

This extra else gives us a way to positively identify when a logic problem is found. We can
be sure that any design error we made will lead to a conspicuous problem when the program
runs. ldeally, we'll find any problems while we're unit testing.

In this case, it is clear that all 11 alternatives are covered by the if statement conditions.

The extra else can't ever be used. Not all real-world problems have this kind of easy proof
that all the alternatives are covered by conditions, and it can help to provide a noisy failure
mode.

Our goal is to be sure that our program always works. While testing helps, we can still have
the same wrong assumptions when doing design and creating test cases.

While rigorous logic is essential, we can still make errors. Further, someone doing ordinary
software maintenance might introduce an error. Adding a new feature to a complex i f
statement is a potential source of problems.

Statements and Syntax

This else-raise design pattern forces us to be explicit for each and every condition.
Nothing is assumed. As we noted previously, any error in our logic will be uncovered if the
exception gets raised.

The else-raise design pattern doesn't have a significant performance impact. A simple
else clause is slightly faster than an elif clause with a condition. However, if we think that
our application performance depends in any way on the cost of a single expression, we've
got more serious design problems to solve. The cost of evaluating a single expression is
rarely the costliest part of an algorithm.

Crashing with an exception is sensible behavior in the presence of a design problem. An
alternative is to write a message to an error log. However, if we have this kind of logic gap,
the program should be viewed as fatally broken. It's important to find and fix this as soon
as the problem is known.

In many cases, we can derive an if...elif...elif chain from an examination of the
desired post condition at some point in the program's processing. For example, we may
need a statement that establishes something simple, like: m is equal to the larger of a or b.

(For the sake of working through the logic, we'll avoid Python's handym = max(a, b),and
focus on the way we can compute a result from exclusive choices.)

We can formalize the final condition like this:

(m=avm=b)Am=aAm=b

We can work backward from this final condition, by writing the goal as an assert statement:

assert (m == a or m==D>b) and m >> a and m >= b

Once we have the goal stated, we can identify statements that lead to that goal. Clearly
assignment statements likem = aorm = b would be appropriate, but each of these works
only under certain conditions.

Each of these statements is part of the solution, and we can derive a precondition that shows
when the statement should be used. The preconditions for each assignment statement are
the if and elif expressions. We needtousem = awhena >= b;weneedtousem = b
whenb >= a.Rearranging logic into code gives us this:

if a >= b:
m=a
elif b >= a:
m=>b

Chapter 2

else:
raise Exception('Design Problem")

assert (m == a orm==>b) and m >> a and m >= b

Note that our universe of conditions, U = {a > b, b > a}, is complete; there's no other
possible relationship. Also notice that in the edge case of a = b, we don't actually care
which assignment statement is used. Python will process the decisions in order, and will
executem = a. The fact that this choice is consistent shouldn't have any impact on our
designof if...elif...elif chains. We should always write the conditions without
regard to the order of evaluation of the clauses.

» This is similar to the syntactic problem of a dangling else. See http://www.
mathcs.emory.edu/~cheung/Courses/561/Syllabus/2-C/dangling-
else.html

» Python's indentation removes the dangling else syntax problem. It doesn't remove
the semantic issue of trying to be sure that all conditions are properly accounted
forinacomplexif...elif...elif chain.

Saving intermediate results with the :=

"walrus"”

Sometimes we'll have a complex condition where we want to preserve an expensive
intermediate result for later use. Imagine a condition that involves a complex calculation;
the cost of computing is high measured in time, or input-output, or memory, or network
resource use. Resource use defines the cost of computation.

An example includes doing repetitive searches where the result of the search may be either

a useful value or a sentinel value indicating that the target was not found. This is common

in the Regular Expression (re) package where the match () method either returns a match
object or a None object as a sentinel showing the pattern wasn't found. Once this computation
is completed, we may have several uses for the result, and we emphatically do not want to
perform the computation again.

This is an example where it can be helpful to assign a name to the value of an expression.
We'll look at how to use the "assignment expression" or "walrus" operator. It's called the
walrus because the assignment expression operator, : =, looks like the face of a walrus

to some people.

Statements and Syntax

Getting ready

Here's a summation where - eventually - each term becomes so small that there's no point
in continuing to add it to the overall total:

> Grr)

0sn<co

In effect, this is something like the following summation function:
>>> s = sum((1/(2*n+1))**2 for n in range(0, 20 000))

What's not clear is the question of how many terms are required. In the example, we've
summed 20,000. But what if 16,000 are enough to provide an accurate answer?

We don't want to write a summation like this:

>>> b =0
>>> for n in range(0, 20 000):
if (1/(2*n+1))**2 >= 0.000_000_001:
b =b + (1/(2*n+1))**2

This example repeats an expensive computation, (1/ (2*n+1)) **2. That's likely to be a
waste of time.

How to do it...

1. Isolate an expensive operation that's part of a conditional test. In this example, the
variable term is used to hold the expensive result:

>>> p = 0
>>> for n in range(0, 20 000):
term = (1/(2%n+l)) **2
if term >= 0.000_000 001:
P = p + term
2. Rewrite the assignment statement to use the : = assignment operator. This replaces
the simple condition of the i f statement.

3. Add an else condition to break out of the for statement if no more terms are
needed. Here's the results of these two steps:

Chapter 2

>>> q =0
>>> for n in range(0, 20 000):
if (term := (1/(2*n+1))**2) >= 0.000 000 001:
g =g + term
else:

break

The assignment expression, : =, lets us do two things in the i f statement. We can both
compute a value and also check to see that the computed value meets some useful criteria.
We can provide the computation and the test criteria adjacent to each other.

The assignment expression operator, : =, saves an intermediate result. The operator's result
value is the same as the right-hand side operand. This means that the expressiona + (b:=
c+d) has the same as the expression a+ (c+d) . The difference between the expression a

+ (b:= c+d) and the expression a+ (c+d) is the side-effect of setting the value of the b
variable partway through the evaluation.

An assignment expression can be used in almost any kind of context where expressions are
permitted in Python. The most common cases are if statements. Another good idea is inside
a while condition.

They're also forbidden in a few places. They cannot be used as the operator in an expression
statement. We're specifically prohibited from writing a := 2 as a statement: there's a
perfectly good assignment statement for this purpose and an assignment expression,

while similar in intent, is potentially confusing.

There's more...

We can do some more optimization of our infinite summation example, shown earlier in this
recipe. The use of a for statement and a range () object seems simple. The problem is that
we want to end the for statement early when the terms being added are so small that they
have no significant change in the final sum.

We can combine the early exit with the term computation:

>>>r = 0

>>>n = 0

>>> while (term := (1/(2*n+1))**2) >= 0.000_000 001:
r += term

n += 1

Statements and Syntax

We've used a while statement with the assignment expression operator. This will compute
avalue using (1/ (2*n+1)) **2, and assign this to term. If the value is significant, we'll add
it to the sum, r, and increment the value for the n variable. If the value is too small to be
significant, the while statement will end.

Here's another example, showing how to compute running sums of a collection of values.
This looks forward to concepts in Chapter 4, Built-In Data Structures Part 1: Lists and Sets.
Specifically, this shows a list comprehension built using the assignment expression operator:
>>> data = [11, 13, 17, 19, 23, 29]

>>> total = 0

>>> running sum = [(total := total + d) for 4 in datal

>>> total

112

>>> running sum

[11, 24, 41, 60, 83, 112]

We've started with some data, in the data variable. This might be minutes of exercise each
day for most of a week. The value of running_sum is a list object, built by evaluating the
expression (total := total + d) foreach value, 4, in the data variable. Because the
assignment expression changes the value of the total variable, the resulting list is the
result of each new value being accumulated.

» For details on assignment expression, see PEP 572 where the feature was first
described: https://www.python.org/dev/peps/pep-0572/

Avoiding a potential problem with break

statements

The common way to understand a for statement is that it creates a for all condition. At the
end of the statement, we can assert that, for all items in a collection, some processing has
been done.

This isn't the only meaning for a for statement. When we introduce the break statement
inside the body of a for, we change the semantics to there exists. When the break
statement leaves the for (or while) statement, we can assert only that there exists at least
one item that caused the statement to end.

There's a side issue here. What if the for statement ends without executing break? Either
way, we're at the statement after the for statement.

7

Chapter 2

The condition that's true upon leaving a for or while statement with a break can be
ambiguous. Did it end normally? Did it execute break? We can't easily tell, so we'll provide
a recipe that gives us some design guidance.

This can become an even bigger problem when we have multiple break statements, each
with its own condition. How can we minimize the problems created by having complex
conditions?

Getting ready

When parsing configuration files, we often need to find the first occurrence of a : or =
character in a string. This is common when looking for lines that have a similar syntax

to assignment statements, for example, option = value oroption : value.The
properties file format uses lines where : (or =) separate the property name from the property
value.

This is a good example of a there exists modification to a for statement. We don't want to
process all characters; we want to know where there is the leftmost : or =.

Here's the sample data we're going use as an example:

>>> sample_1 = "some name = the_value"
Here's a small for statement to locate the leftmost "=" or " : " character in the sample
string value:

>>> for position in range(len(sample 1)):
if sample 1l[position] in '=:':
break
>>> print (f"name={sample 1l[:position]!r}",
f'value={sample 1[position+1:]!r}")

name='some name ' value=' the value'

When the "=" character is found, the break statement stops the for statement. The value
of the position variable shows where the desired character was found.

What about this edge case?

>>> sample_2 = "name only"
>>> for position in range(len(sample 2)):
if sample 2[position] in '=:':
break
>>> print (f"name={sample 2[:position]!r}",
f'value={sample 2[position+1l:]!r}")

name='name_onl' value='"

(7]

Statements and Syntax

The result is awkwardly wrong: the y character got dropped from the value of name. Why did
this happen? And, more importantly, how can we make the condition at the end of the for
statement more clear?

How to do it...

Every statement establishes a post condition. When designing a for or while statement,
we need to articulate the condition that's true at the end of the statement. In this case, the
post condition of the for statement is quite complicated.

Ideally, the post condition is something simple like text [position] in '=:'.In other
words, the value of position is the location of the "=" or " : " character. However, if
there's no = or : in the given text, the overly simple post condition can't be true. At the end
of the for statement, one of two things are true: either (a) the character with the index

of positionis "="or ":", or (b) all characters have been examined and no character
ism=rormn:n,

Our application code needs to handle both cases. It helps to carefully articulate all of the
relevant conditions.

1. Write the obvious post condition. We sometimes call this the happy-path condition
because it's the one that's true when nothing unusual has happened:

text[position] in '=:
2. Create the overall post condition by adding the conditions for the edge cases. In
this example, we have two additional conditions:
» There'sno=or :.

» There are no characters at all. 1en () is zero, and the for statement never
actually does anything. In this case, the position variable will never be created.
In this example, we have three conditions:

(len(text) ==
or not('=" in text or ':' in text)
or text[position] in '=:")

3. Ifawhile statement is being used, consider redesigning it to have the overall post
condition in the while clause. This can eliminate the need for a break statement.

4. If a for statement is being used, be sure a proper initialization is done, and add
the various terminating conditions to the statements after the loop. It can look
redundant to have x = 0 followed by for x =It's necessary in the case of
a for statement that doesn't execute the break statement. Here's the resulting
for statement and a complicated if statement to examine all of the possible
post conditions:

Chapter 2

>>> position = -1

>>> for position in range(len(sample 2)):

if sample 2[position] in '=:':
break
>>> if position == -1:

print (f"name=None value=None")

elif not(sample 2[position] == ':' or sample 2[position]

|=|):

print (f"name={sample 2!r} value=None")
else:
print (f"name={sample 2[:position]!r}",
f'"value={sample 2[position+l:]!r}")

name= name only value= None

In the statements after the for, we've enumerated all of the terminating conditions explicitly.
If the position found is -1, then the for loop did not process any characters. If the position

is not the expected character, then all the characters were examined. The third case is one

of the expected characters were found. The final output, name="'name only' value=None,
confirms that we've correctly processed the sample text.

This approach forces us to work out the post condition carefully so that we can be absolutely
sure that we know all the reasons for the loop terminating.

In more complex, nested for and while statements—with multiple break statements—the
post condition can be difficult to work out fully. A for statement's post condition must include
all of the reasons for leaving the loop: the normal reasons plus all of the break conditions.

In many cases, we can refactor the for statement. Rather than simply asserting that
position is the index of the = or : character, we include the next processing steps of
assigning substrings to the name and value variables. We might have something like this:

>>> if len(sample 2) > O0:
name, value = sample 2, None
else:
name, value = None, None
>>> for position in range(len(sample 2)):
if sample 2[position] in '=:':

name, value = sample 2[:position], sample2[position:]

(77}

Statements and Syntax

break
>>> print (f"{name=} {value=}")

name='name only' value=None

This version pushes some of the processing forward, based on the complete set of post
conditions evaluated previously. The initial values for the name and value variables reflect
the two edge cases: there's no = or : in the data or there's no data at all. Inside the for
statement, the name and value variables are set prior to the break statement, assuring a
consistent post condition.

The idea here is to forego any assumptions or intuition. With a little bit of discipline, we can
be sure of the post conditions. The more we think about post conditions, the more precise
our software can be. It's imperative to be explicit about the condition that's true when our
software works. This is the goal for our software, and you can work backward from the goal
by choosing the simplest statements that will make the goal conditions true.

We can also use an else clause on a for statement to determine if the statement finished
normally or a break statement was executed. We can use something like this:
>>> for position in range(len(sample 2)):
if sample 2[position] in '=:':
name, value = sample 2[:position], sample 2[position+l:]
break
. else:
if len(sample 2) > O0:
name, value = sample 2, None
else:
name, value = None, None
>>> print (f"{name=} {value=}")
name='name only' value=None
Using an else clause in a for statement is sometimes confusing, and we don't

recommend it. It's not clear if its version is substantially better than any of the alternatives. It's
too easy to forget the reason why else is executed because it's used so rarely.

Chapter 2

» Aclassic article on this topic is by David Gries, A note on a standard strategy for
developing loop invariants and loops. See http://www.sciencedirect.com/
science/article/pii/0167642383900151

Leveraging exception matching rules

The try statement lets us capture an exception. When an exception is raised, we have a
number of choices for handling it:

» Ignore it: If we do nothing, the program stops. We can do this in two ways—don't use
a try statement in the first place, or don't have a matching except clause in the
try statement.

» Log it: We can write a message and use a raise statement to let the exception
propagate after writing to a log; generally, this will stop the program.

» Recover from it: We can write an except clause to do some recovery action to
undo any effects of the partially completed try clause.

» Silence it: If we do nothing (that is, use the pass statement), then processing is
resumed after the try statement. This silences the exception.

» Rewrite it: We can raise a different exception. The original exception becomes a
context for the newly raised exception.

What about nested contexts? In this case, an exception could be ignored by an inner try
but handled by an outer context. The basic set of options for each try context is the same.
The overall behavior of the software depends on the nested definitions.

Our design of a try statement depends on the way that Python exceptions form a
class hierarchy. For details, see Section 5.4, Python Standard Library. For example,
ZeroDivisionError is also an ArithmeticError and an Exception. For another
example, FileNotFoundError is also an OSError as well as an Exception.

This hierarchy can lead to confusion if we're trying to handle detailed exceptions as well as
generic exceptions.

Getting ready

Let's say we're going to make use of the shutil module to copy a file from one place to
another. Most of the exceptions that might be raised indicate a problem too serious to work
around. However, in the specific event of FileNotFoundError, we'd like to attempt a
recovery action.

http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151

Statements and Syntax
Here's a rough outline of what we'd like to do:

>>> from pathlib import Path
>>> import shutil

>>> import os

>>> source dir = Path.cwd()/"data"

>>> target dir = Path.cwd()/"backup"

>>> for source path in source dir.glob('**/*.csv'):
source name = source path.relative to(source dir)
target path = target dir/source name

shutil.copy(source path, target path)

We have two directory paths, source _dir and target dir. We've used the glob ()
method to locate all of the directories under source dir that have * . csv files.

The expression source path.relative to(source dir) gives us the tail end of
the filename, the portion after the directory. We use this to build a new, similar path under
the target_dir directory. This assures that a file named wcl.csvin the source dir
directory will have a similar name in the target_dir directory.

The problems arise with handling exceptions raised by the shutil.copy () function. We
need a try statement so that we can recover from certain kinds of errors. We'll see this
kind of error if we try to run this:

FileNotFoundError: [Errno 2] No such file or directory: '/Users/slott/
Documents/Writing/Python/Python Cookbook 2e/Modern-Python-Cookbook-
Second-Edition/backup/wcl.csv'

This happens when the backup directory hasn't been created. It will also happen when there
are subdirectories inside the source_dir directory tree that don't also exist in the target
dir tree. How do we create a try statement that handles these exceptions and creates the
missing directories?

How to do it...

1. Write the code we want to use indented in the try block:

>>> try:
shutil.copy(source_path, target_path)

2. Include the most specific exception classes first. In this case, we have a meaningful
response to the specific FileNot FoundError.

(&)

Chapter 2

3. Include any more general exceptions later. In this case, we'll report any generic
OSError that's encountered. This leads to the following;:

>>> try:
target = shutil.copy(source_path, target path)
except FileNotFoundError:

B target_path.parent.mkdir(exist_ok=True,
parents=True)
target = shutil.copy(source_path, target_path)

except OSError as ex:

cen print(f"Copy {source_path} to {target_path} error
{ex}")

We've matched exceptions with the most specific first and the more generic after that.

We handled FileNotFoundError by creating the missing directories. Then we did copy ()
again, knowing it would now work properly.

We logged any other exceptions of the class OSError. For example, if there's a permission
problem, that error will be written to a log and the next file will be tried. Our objective is to try
and copy all of the files. Any files that cause problems will be logged, but the copying process
will continue.

Python's matching rules for exceptions are intended to be simple:

» Process except clauses in order.

» Match the actual exception against the exception class (or tuple of exception
classes). A match means that the actual exception object (or any of the base classes
of the exception object) is of the given class in the except clause.

These rules show why we put the most specific exception classes first and the more general
exception classes last. A generic exception class like Exception will match almost every
kind of exception. We don't want this first, because no other clauses will be checked. We
must always put generic exceptions last.

There's an even more generic class, the BaseException class. There's no good reason
to ever handle exceptions of this class. If we do, we will be catching SystemExit and
KeyboardInterrupt exceptions; this interferes with the ability to kill a misbehaving
application. We only use the BaseException class as a superclass when defining new
exception classes that exist outside the normal exception hierarchy.

Statements and Syntax

Our example includes a nested context in which a second exception can be raised. Consider
this except clause:

except FileNotFoundError:
target_path.parent.mkdir(exist_ok=True, parents=True)

target = shutil.copy(source_path, target_path)

If the mkdir () method or shutil.copy () functions raise an exception while handling
the FileNotFoundError exception, it won't be handled. Any exceptions raised within an
except clause can crash the program as a whole. Handling this can involve nested try
statements.

We can rewrite the exception clause to include a nested try during recovery:

try:
target = shutil.copy(source_path, target_path)
except FileNotFoundError:
try:
. target_path.parent.mkdir(exist_ok=True,
parents=True)
target = shutil.copy(source_path, target_path)
except OSError as ex2:
print(f"{target_path.parent} problem: {ex2}")
except OSError as ex:

print(f"Copy {source_path} to {target path} error {ex}")

In this example, a nested context writes one message for OSError. In the outer context,
a slightly different error message is used to log the error. In both cases, processing can
continue. The distinct error messages make it slightly easier to debug the problems.

» Inthe Avoiding a potential problem with an except: clause recipe, we look at some
additional considerations when designing exception handling statements.

Avoiding a potential problem with an

except: clause

There are some common mistakes in exception handling. These can cause programs to
become unresponsive.

[

Chapter 2

One of the mistakes we can make is to use the except : clause with no named exceptions
to match. There are a few other mistakes that we can make if we're not cautious about the
exceptions we try to handle.

This recipe will show some common exception handling errors that we can avoid.

Getting ready
When code can raise a variety of exceptions, it's sometimes tempting to try and match as

many as possible. Matching too many exceptions can interfere with stopping a misbehaving
Python program. We'll extend the idea of what not to do in this recipe.

How to do it...

We need to avoid using the bare except : clause. Instead, use except Exception: to
match the most general kind of exception that an application can reasonably handle.

Handling too many exceptions can interfere with our ability to stop a misbehaving Python

program. When we hit Ctrl + C, or send a SIGINT signal via the OS's kill -2 command, we
generally want the program to stop. We rarely want the program to write a message and keep
running. If we use a bare except : clause, we can accidentally silence important exceptions.

There are a few other classes of exceptions that we should be wary of attempting to handle:

» SystemError
» RuntimeError
» MemoryError
Generally, these exceptions mean things are going badly somewhere in Python's internals.

Rather than silence these exceptions, or attempt some recovery, we should allow the program
to fail, find the root cause, and fix it.

There are two techniques we should avoid:

» Don't capture the BaseException class.

» Don't use except : with no exception class. This matches all exceptions, including
exceptions we should avoid trying to handle.

H

Statements and Syntax

Using either of the above techniques can cause a program to become unresponsive at
exactly the time we need to stop it. Further, if we capture any of these exceptions, we can
interfere with the way these internal exceptions are handled:

» SystemExit

» KeyboardInterrupt

» GeneratorExit
If we silence, wrap, or rewrite any of these, we may have created a problem where none

existed. We may have exacerbated a simple problem into a larger and more mysterious
problem.

It's a noble aspiration to write a program that never crashes. Interfering

\/V with some of Python's internal exceptions, however, doesn't create a

more reliable program. Instead, it creates a program where a clear
failure is masked and made into an obscure mystery.

See also

» Inthe Leveraging the exception matching rules recipe, we look at some
considerations when designing exception-handling statements.

Concealing an exception root cause

In Python 3, exceptions contain a root cause. The default behavior of internally raised
exceptions is to use an implicit __context__ to include the root cause of an exception.
In some cases, we may want to deemphasize the root cause because it's misleading or
unhelpful for debugging.

This technique is almost always paired with an application or library that defines a unique
exception. The idea is to show the unique exception without the clutter of an irrelevant
exception from outside the application or library.

Getting ready

Assume we're writing some complex string processing. We'd like to treat a number of different
kinds of detailed exceptions as a single generic error so that users of our software are
insulated from the implementation details. We can attach details to the generic error.

Chapter 2

How to do it...

1. To create a new exception, we can do this:
>>> class MyAppError (Exception) :

pass
This creates a new, unique class of exception that our library or application can use.
2. When handling exceptions, we can conceal the root cause exception like this:

>>> try:
None.some method (42)
except AttributeError as exception:

raise MyAppError ("Some Known Problem") from None

In this example, we raise a new exception instance of the module's unique MyAppError
exception class. The new exception will not have any connection with the root cause
AttributeError exception

The Python exception classes all have a place to record the cause of the exception. We can
setthis _cause _ attribute using the raise Visible from RootCause statement.
This is done implicitly using the exception context as a default if the from clause is omitted.

Here's how it looks when this exception is raised:

>>> try:
None.some method (42)
except AttributeError as exception:
raise MyAppError ("Some Known Problem") from None
Traceback (most recent call last):

File "/Applications/PyCharm CE.app/Contents/helpers/pycharm/docrunner.
py", line 139, in run

exec (compile (example.source, filename, "single",
File "<doctest examples.txt[67]>", line 4, in <module>
raise MyAppError ("Some Known Problem") from None

MyAppError: Some Known Problem

Statements and Syntax

The underlying cause has been concealed. If we omit from None, then the exception will
include two parts and will be quite a bit more complex. When the root cause is shown, the
output looks like this:
Traceback (most recent call last):
File "<doctest examples.txt[66]>", line 2, in <module>
None.some method (42)

AttributeError: 'NoneType' object has no attribute 'some method’
During handling of the above exception, another exception occurred:

Traceback (most recent call last):

File "/Applications/PyCharm CE.app/Contents/helpers/pycharm/docrunner.
py", line 139, in _ run

exec (compile (example.source, filename, "single",
File "<doctest examples.txt[66]>", line 4, in <module>
raise MyAppError ("Some Known Problem")

MyAppError: Some Known Problem

This shows the underlying AttributeError. This may be an implementation detail that's
unhelpful and better left off the printed display of the exception.

There's more...

There are a number of internal attributes of an exception. These include _ cause ,
context , traceback ,and__ suppress context . The overall exception context
isinthe context attribute. The cause, if provided via a raise from statement, is

in __cause__ . The context for the exception is available but can be suppressed from being
printed.

See also

» Inthe Leveraging the exception matching rules recipe, we look at some
considerations when designing exception-handling statements.

» Inthe Avoiding a potential problem with an except: clause recipe, we look at some
additional considerations when designing exception-handling statements.

Chapter 2

Managing a context using the with

statement

There are many instances where our scripts will be entangled with external resources. The
most common examples are disk files and network connections to external hosts. A common
bug is retaining these entanglements forever, tying up these resources uselessly. These are
sometimes called memory leaks because the available memory is reduced each time a new
file is opened without closing a previously used file.

We'd like to isolate each entanglement so that we can be sure that the resource is acquired
and released properly. The idea is to create a context in which our script uses an external
resource. At the end of the context, our program is no longer bound to the resource and we
want to be guaranteed that the resource is released.

Getting ready

Let's say we want to write lines of data to a file in CSV format. When we're done, we want
to be sure that the file is closed and the various OS resources—including buffers and file
handles—are released. We can do this in a context manager, which guarantees that the file
will be properly closed.

Since we'll be working with CSV files, we can use the csv module to handle the details of
the formatting:

>>> import csv

We'll also use the pathlib module to locate the files we'll be working with:
>>> from pathlib import Path

For the purposes of having something to write, we'll use this silly data source:
>>> some source = [[2,3,5], [7,11,13], [17,19,23]]

This will give us a context in which to learn about the with statement.

How to do it...

1. Create the context by opening the path, or creating the network connection with
urllib.request.urlopen (). Other common contexts include archives like zip
files and tar files:

>>> target path = Path.cwd()/"data"/"test.csv"

>>> with target path.open('w', newline='') as target file:

Statements and Syntax

2. Include all the processing, indented within the with statement:
>>> target path = Path.cwd()/"data"/"test.csv"
>>> with target path.open('w', newline='') as target file:
writer = csv.writer (target file)
writer.writerow(['column', 'data', 'heading']l)

writer.writerows (some_ source)

3. When we use a file as a context manager, the file is automatically closed at the end
of the indented context block. Even if an exception is raised, the file is still closed
properly. Outdent the processing that is done after the context is finished and the
resources are released:
>>> target path = Path.cwd()/"data"/"test.csv"
>>> with target path.open('w', newline='') as target file:
writer = csv.writer (target file)
writer.writerow(['column', 'data', 'heading'])
writer.writerows (some_ source)

>>> print (f'finished writing {target path.name}')

The statements outside the with context will be executed after the context is closed.
The named resource—the file opened by target path.open () —will be properly closed.

Even if an exception is raised inside the with statement, the file is still properly closed.
The context manager is notified of the exception. It can close the file and allow the exception
to propagate.

A context manager is notified of three significant events surrounding the indented block
of code:

> Entry

» Normal exit with no exception

» Exit with an exception pending
The context manager will—under all conditions—disentangle our program from external

resources. Files can be closed. Network connections can be dropped. Database transactions
can be committed or rolled back. Locks can be released.

(e

Chapter 2

We can experiment with this by including a manual exception inside the with statement.
This can show that the file was properly closed:

>>> try:
with target path.open('w', newline='') as target file:
writer = csv.writer(target file)
writer.writerow(['column', 'data', 'heading'l)
writer.writerow(some source[0])
raise Exception("Testing")
. except Exception as exc:
print (f"{target file.closed=}")
print (£"{exc=}")
>>> print (£"Finished Writing {target path.name}")

In this example, we've wrapped the real work in a try statement. This allows us to raise an
exception after writing the first line of data to the CSV file. Because the exception handling is
outside the with context, the file is closed properly. All resources are released and the part
that was written is properly accessible and usable by other programs.

The output confirms the expected file state:

target file.closed=True

exc=Exception('Testing"')

This shows us that the file was properly closed. It also shows us the message associated

with the exception to confirm that it was the exception we raised manually. This kind of
technique allows us to work with expensive resources like database connections and network
connections and be sure these don't "leak." A resource leak is a common description used
when resources are not released properly back to the 0S; it's as if they slowly drain away, and
the application stops working because there are no more available OS network sockets or
file handles. The with statement can be used to properly disentangle our Python application
from OS resources.

Python offers us a number of context managers. We noted that an open file is a context, as
is an open network connection created by urllib.request.urlopen ().

For all file operations, and all network connections, we should always use a with statement
as a context manager. It's very difficult to find an exception to this rule.

Statements and Syntax

It turns out that the decimal module makes use of a context manager to allow localized
changes to the way decimal arithmetic is performed. We can use the decimal.
localcontext () function as a context manager to change rounding rules or precision for
calculations isolated by a with statement.

We can define our own context managers, also. The context1lib module contains functions
and decorators that can help us create context managers around resources that don't
explicitly offer them.

When working with locks, the with statement context manager is the ideal way to acquire
and release a lock. See https://docs.python.org/3/library/threading.
html#with-1locks for the relationship between a lock object created by the threading
module and a context manager.

See also

» Seehttps://www.python.org/dev/peps/pep-0343/ for the origins of the with
statement.

» Numerous recipes in Chapter 9, Functional Programming Features, will make use
of this technique. The recipes Reading delimited files with the cvs module, Reading
complex formats using regular expressions, and Reading HTML documents, among
others, will make use of the with statement.

https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/
https://www.python.org/dev/peps/pep-0343/

Function Definitions

Function definitions are a way to decompose a large problem into smaller problems.
Mathematicians have been doing this for centuries. It's a way to package our Python
programming into intellectually manageable chunks.

We'll look at a number of function definition techniques in these recipes. This will include
ways to handle flexible parameters and ways to organize the parameters based on some
higher-level design principles.

We'll also look at the typing module and how we can create more formal annotations for
our functions. We will start down the road toward using the mypy project to make more formal
assertions about the data types in use.

In this chapter, we'll look at the following recipes:

vV Vv v vV v vV v VvYy

Function parameters and type hints

Designing functions with optional parameters

Type hints for optional parameters

Using super flexible keyword parameters

Forcing keyword-only arguments with the * separator
Defining position-only parameters with the / separator
Writing hints for more complicated types

Picking an order for parameters based on partial functions
Writing clear documentation strings with RST markup
Designing recursive functions around Python's stack limits
Writing testable scripts with the script library switch

Function Definitions

Function parameters and type hints

Python 3 added syntax for type hints. The mypy tool is one way to validate these type hints
to be sure the hints and the code agree. All the examples shown in this book have been
checked with the mypy tool.

This extra syntax for the hints is optional. It's not used at runtime and has no performance
costs. If hints are present, tools like mypy can use them. The tool checks that the operations
on the n parameter inside the function agree with the type hint about the parameter. The
tool also tries to confirm that the return expressions both agree with the type hint. When an
application has numerous function definitions, this extra scrutiny can be very helpful.

Getting ready

For an example of type hints, we'll look at some color computations. The first of these is
extracting the Red, Green, and Blue values from the color codes commonly used in the style
sheets for HTML pages. There are a variety of ways of encoding the values, including strings,
integers, and tuples. Here are some of the varieties of types:

» A string of six hexadecimal characters with a leading #; for example, "#C62D42".

» Astring of six hexadecimal characters without the extra #; for example, "Cc62D42".

» A numeric value; for example, 0xC62D42. In this case, we've allowed Python to
translate the literal value into an internal integer.

» Athree-tuple of R, G, and B numeric values; for example, (198, 45, 66).

Each of these has a specific type hint. For strings and numbers, we use the type name
directly, str or int. For tuples, we'll need to import the Tuple type definition from the
typing module.

The conversion from string or integer into three values involves two separate steps:

1. If the value is a string, convert it into an integer using the int () function.

2. Forinteger values, split the integer into three separate values using the >> and &
operators. This is the core computation for converting an integer, hx_int, into r, g,
and b:

r, g, b = (hx int >> 16) & O0xFF, (hx int >> 8) & OxFF, hx int &
OxFF.

A single RGB integer has three separate values that are combined via bit shifting. The red
value is shifted left 16 bits, the green value is shifted left eight bits, and the blue value
occupies the least-significant eight bits. A shift left by 16 bits is mathematically equivalent
to multiplying by 216, Recovering the value via a right shift is similar to dividing by 226, The >>
operator does the bit shifting, while the & operator applies a "mask" to save a subset of the
available bits.

[

Chapter 3

How to do it...

For functions that work with Python's atomic types (strings, integers, floats, and tuples), it's
generally easiest to write the function without type hints and then add the hints. For more
complex functions, it's sometimes easier to organize the type hints first. Since this function
works with atomic types, we'll start with the function's implementation:

1. Write the function without any hints:
def hex2rgb(hx_int):
if isinstance(hx_int, str):
if hx_int [0] == "#":
hx_int = int(hx_int [1:], 16)
else:
hx_int = int(hx_int, 16)
r, g, b = (hx_int >> 16) & oxff, (hx_int >> 8) & oxff, hx_
int & oxff
return r, g, b

2. Add the result hint; this is usually the easiest way to do this. It's based on the return
statement. In this example, the return is a tuple of three integers. We can use
Tuple [int, int, int] for this. We'll need the Tuple definition from the typing
module. Note the capitalization of the Tuple type hint, which is distinct from the
underlying type object:

from typing import Tuple
3. Add the parameter hints. In this case, we've got two alternative types for the
parameter: it can be a string or an integer. In the formal language of the type hints,

this is a union of two types. The parameter is described as Union [str, int].
We'll need the Union definition from the typing module as well.

Combining the hints into a function leads to the following definition:

def hex2rgb(hx_int: Union[int, str]) -> Tuple[int, int, int]:
if isinstance(hx_int, str):
if hx_int[@] == "#":
hx_int = int(hx_int[1:], 16)
else:
hx_int = int(hx_int, 16)
r, g, b = (hx_int >> 16)&0xff, (hx_int >> 8)&0xff, hx_int&oxff

return r, g, b

Function Definitions

The type hints have no impact when the Python code is executed. The hints are designed for
people to read and for external tools, like mypy, to process.

When mypy is examining this block of code, it will confirm that the hx_int variable is always
used as either an integer or a string. If inappropriate methods or functions are used with this
variable, mypy will report the potential problem. The mypy tool relies on the presence of the
isinstance () function to discern that the body of the first i £ statement is only used on a
string value, and never used on an integer value.

Inthe r, g, b =assignment statement, the value for hx_int is expected to be an integer.
If the isinstance (hx_int, str) value was true, the int () function would be used to
create an integer. Otherwise, the parameter would be an integer to start with. The mypy tool
will confirm the >> and & operations are appropriate for the expected integer value.

We can observe mypy's analysis of a type by inserting the reveal type (hx_int) function
into our code. This statement has function-like syntax; it's only used when running the mypy
tool. We will only see output from this when we run mypy, and we have to remove this extra
line of code before we try to do anything else with the module.

A temporary use of reveal type () looks like this example:

def hex2rgb(hx_int: Union[int, str]) -> Tuple[int, int, int]:
if isinstance(hx_int, str):
if hx_int[@] == "#":
hx_int = int(hx_int[1:], 16)
else:
hx_int = int(hx_int, 16)
reveal_ type(hx_int)
r, g, b = (hx_int >> 16)&0xff, (hx_int >> 8)&0xff, hx_int&oxff
return r, g, b

The output looks like this when we run mypy on the specific module:

(cookbook) % mypy Chapter 03/ch03 r0l.py
Chapter 03/ch03 r0l.py:55: note: Revealed type is 'builtins.int'

The output from the reveal type (hx_int) line tells us mypy is certain the variable will
have an integer value after the first i £ statement is complete.

Once we've seen the revealed type information, we need to delete the reveal type (hx
int) line from the file. In the example code available online, reveal type () is turned into
a comment on line 55 to show where it can be used. Pragmatically, these lines are generally
deleted when they're no longer used.

=

Chapter 3

Let's look at a related computation. This converts RGB numbers into Hue-Saturation-Lightness
values. These HSL values can be used to compute complementary colors. An additional
algorithm required to convert from HSL back into RGB values can help encode colors for a
web page:

» RGB to HSL: We'll look at this closely because it has complex type hints.

» HSL to complement: There are a number of theories on what the "best" complement
might be. We won't look at this function. The hue value is in the range of O to 1 and
represents degrees around a color circle. Adding (or subtracting) 0.5 is equivalent
to a 180° shift, and is the complementary color. Offsets by 1/6 and 1/3 can provide
a pair of related colors.

» HSL to RGB: This will be the final step, so we'll ignore the details of this computation.

We won't look closely at all of the implementations. Information is available at https://
www .easyrgb.com/en/math.php if you wish to create working implementations of most
of these functions.

We can rough out a definition of the function by writing a stub definition, like this:

def rgb_to hsl(rgb: Tuple[int, int, int]) -> Tuple[float, float,
float]:

This can help us visualize a number of related functions to be sure they all have consistent
types. The other two functions have stubs like these:

def hsl complement(hsl: Tuple[float, float, float]) -> Tuple[float,
float, float]:

def hasl to rgb(hsl: Tuple[float, float, float]) -> Tuple[int, int,
int]:
After writing down this initial list of stubs, we can identify that type hints are repeated

in slightly different contexts. This suggests we need to create a separate type to avoid
repetition of the details. We'll provide a name for the repeated type detail:

RGB = Tuple[int, int, int]

HSL = Tuple[float, float, float]

def rgb_to _hsl(color: RGB) -> HSL:

def hsl complement(color: HSL) -> HSL:

def hsl to rgb(color: HSL) -> RGB:

This overview of the various functions can be very helpful for assuring that each function
does something appropriate for the problem being solved, and has the proper parameters
and return values.

[55]-

Function Definitions

As noted in Chapter 1, Numbers, Strings, and Tuples, Using NamedTuples to Simplify ltem
Access in Tuples recipe, we can provide a more descriptive set of names for these tuple types:

from typing import NamedTuple
class RGB(NamedTuple):

red: int
green: int
blue: int

def hex_to rgb2(hx_int: Union[int, str]) -> RGB:
if isinstance(hx_int, str):
if hx_int[@] == "#":
hx_int = int(hx_int[1:], 16)
else:
hx_int = int(hx_int, 16)
reveal type(hx_1int)
return RGB(
(hx_int >> 16)8&0xff,
(hx_int >> 8)&6xff,
(hx_int&oxff)

)

We've defined a unique, new Tuple subclass, the RGB named tuple. This has three elements,
available by name or position. The expectation stated in the type hints is that each of the
values will be an integer.

In this example, we've included a reveal type () to show where it might be useful. In the
long run, once the author understands the types in use, this kind of code can be deleted.

The hex_to_rgb2 () function creates an RGB object from either a string or an integer. We
can consider creating a related type, HSL, as a named tuple with three float values. This can
help clarify the intent behind the code. It also lets the mypy tool confirm that the various
objects are used appropriately.

See also

» The mypy project contains a wealth of information. See https://mypy.
readthedocs.io/en/latest/index.html for more information on the way type
hints work.

https://mypy.readthedocs.io/en/latest/index.html
https://mypy.readthedocs.io/en/latest/index.html

Chapter 3

Designing functions with optional

parameters

When we define a function, we often have a need for optional parameters. This allows us to
write functions that are more flexible and easier to read.

We can also think of this as a way to create a family of closely-related functions. We can think
of each function as having a slightly different collection of parameters - called the signature
- but all sharing the same simple name. This is sometimes called an "overloaded" function.
Within the typing module, an @overload decorator can help create type hints in very
complex cases.

An example of an optional parameter is the built-in int () function. This function has two
signatures:

» int (str):For example, the value of int ('355') has a value of 355. In this case,
we did not provide a value for the optional base parameter; the default value of 10
was used.

» int(str, base): For example, the value of int ('163', 16) is 355. In this case,
we provided a value for the base parameter.

Getting ready

A great many games rely on collections of dice. The casino game of Craps uses two dice.
A game like Zonk (or Greed or Ten Thousand) uses six dice. Variations of the game may
use more.

It's handy to have a dice-rolling function that can handle all of these variations. How can
we write a dice simulator that works for any number of dice, but will use two as a handy
default value?

How to do it...

We have two approaches to designing a function with optional parameters:

» General to Particular: We start by designing the most general solution and provide
handy defaults for the most common case.

» Particular to General: We start by designing several related functions. We then
merge them into one general function that covers all of the cases, singling out one
of the original functions to be the default behavior. We'll ook at this first, because
it's often easier to start with a number of concrete examples.

Function Definitions

Particular to General design

When following the particular to general strategy, we'll design several individual functions
and look for common features. Throughout this example, we'll use slightly different names as
the function evolves. This simplifies unit testing the different versions and comparing them:

1.

Write one game function. We'll start with the Craps game because it seems to be
the simplest:

import random
def die() -> int:
return random.randint(1, 6)

def craps() -> Tuple[int, int]:
return (die(), die())

We defined a function, die (), to encapsulate a basic fact about standard dice.
There are five platonic solids that can be pressed into service, yielding four-sided, six-
sided, eight-sided, twelve-sided, and twenty-sided dice. The six-sided die has a long
history, starting as Astragali bones, which were easily trimmed into a six-sided cube.

Write the next game function. We'll move on to the Zonk game because it's a little
more complex:

def zonk() -> Tuple[int, ...]:
return tuple(die() for x in range(6))

We've used a generator expression to create a tuple object with six dice. We'll look
at generator expressions in depth online in Chapter 9, Functional Programming
Features (link provided in the Preface).

The generator expression in the body of the zonk () function has a variable, x,

which is required syntax, but the value is ignored. It's also common to see this written
as tuple (die() for _ in range(6)).The variable is a valid Python variable
name; this name can be used as a hint that we don't ever want to use the value of
this variable.

Here's an example of using the zonk () function:
>>> zonk ()

(51 31 21 41 1, 1)

This shows us a roll of six individual dice. There's a short straight (1-5), as well as
a pair of ones. In some versions of the game, this is a good scoring hand.

Locate the common features in the craps () and zonk () functions. This may
require some refactoring of the various functions to locate a common design. In many
cases, we'll wind up introducing additional variables to replace constants or other
assumptions.

https://www.packtpub.com/sites/default/files/downloads/Functional_and_Reactive_Programming_Features.pdf
file:///C:\Users\kishorr\Downloads\9781786469250\a79d874d-3467-4fb4-8ad5-6b170beec072.xhtml

Chapter 3

In this case, we can refactor the design of craps () to follow the pattern set by
zonk (). Rather than building exactly two evaluations of the die () function, we
can introduce a generator expression based on range (2) that will evaluate the
die () function twice:

def craps v2() -> Tuple[int, ...]:
return tuple(die() for x in range(2))
Merge the two functions. This will often involve exposing a variable that had
previously been a literal or other hardwired assumption:
def dice v2(n: int) -> Tuple[int, ...]:
return tuple(die() for x in range(n))

This provides a general function that covers the needs of both Craps and Zonk.

3. Identify the most common use case and make this the default value for any
parameters that were introduced. If our most common simulation was Craps,
we might do this:

def dice v3(n: int = 2) -> Tuple[int, ...]:
return tuple(die() for x in range(n))

Now, we can simply use dice_ v3 () for Craps. We'll need to use dice v3 (6)
for Zonk.

4. Check the type hints to be sure they describe the parameters and the return values.
In this case, we have one parameter with an integer value, and the return is a tuple
of integers, described by Tuple [int, ...].

Throughout this example, the name evolved from dice to dice_v2 and thento dice v3.
This makes it easier to see the differences here in the recipe. Once a final version is written,
it makes sense to delete the others and rename the final versions of these functions to
dice (), craps (), and zonk (). The story of their evolution may make an interesting

blog post, but it doesn't need to be preserved in the code.

General to Particular design
When following the general to particular strategy, we'll identify all of the needs first. It can
be difficult to foresee all the alternatives, so this may be difficult in practice. We'll often do
this by introducing variables to the requirements:
1. Summarize the requirements for dice-rolling. We might start with a list like this:
» Craps: Two dice
» Firstroll in Zonk: Six dice

» Subsequent rolls in Zonk: One to six dice

This list of requirements shows a common theme of rolling n dice.

Function Definitions

2. Rewrite the requirements with an explicit parameter in place of any literal value.
We'll replace all of our numbers with a parameter, n, and show the values for this
new parameter that we've introduced:

» Craps: n dice, where n =2
» First roll in Zonk: n dice, where n =6

» Subsequent rolls in Zonk: n dice, where 1 <n <6

The goal here is to be absolutely sure that all of the variations really have a common
abstraction. We also want to be sure we've properly parameterized each of the
various functions.

3. Write the function that fits the General pattern:
def dice(n):
return tuple(die() for x in range(n))
In the third case - subsequent rolls in Zonk - we identified a constraintof 1 <n <
6. We need to determine if this is a constraint that's part of our dice () function,
or if this constraint is imposed on the dice by the simulation application that uses

the dice function. In this example, the upper bound of six is part of the application
program to play Zonk; this not part of the general dice () function.

4. Provide a default value for the most common use case. If our most common
simulation was Craps, we might do this:
def dice(n=2):
return tuple(die() for x in range(n))
5. Add type hints. These will describe the parameters and the return values. In this

case, we have one parameter with an integer value, and the return is a tuple of
integers, described by Tuple [int, ..]:

def dice(n: int=2) -> Tuple[int, ...]:
return tuple(die() for x in range(n))
Now, we can simply use dice () for Craps. We'll need to use dice (6) for Zonk.

In this recipe, the name didn't need to evolve through multiple versions. This version looks
precisely like dice_v2 () from the previous recipe. This isn't an accident - the two design
strategies often converge on a common solution.

Python's rules for providing parameter values are very flexible. There are several ways to
ensure that each parameter is given an argument value when the function is evaluated.
We can think of the process like this:

100

Chapter 3

1. Set each parameter to its default value. Not all parameters have defaults, so some
parameters will be left undefined.

2. For arguments without names - for example, dice (2) - the argument values are
assigned to the parameters by position.

3. Forarguments with names - for example, dice (n: int = 2) - the argument
values are assigned to parameters by name. It's an error to assign a parameter
both by position and by name.

4. If any parameter still doesn't have a value, this raises a TypeError exception.

These rules allow us to create functions that use default values to make some parameters
optional. The rules also allow us to mix positional values with named values.

The use of optional parameters stems from two considerations:

» Can we parameterize the processing?
» What's the most common argument value for that parameter?

Introducing parameters into a process definition can be challenging. In some cases, it helps
to have concrete example code so that we can replace literal values (such as 2 or 6) with
a parameter.

In some cases, however, the literal value doesn't need to be replaced with a parameter.

It can be left as a literal value. Our die () function, for example, has a literal value of 6
because we're only interested in standard, cubic dice. This isn't a parameter because we
don't see a need to make a more general kind of die. For some popular role-playing games,
it may be necessary to parameterize the number of faces on the die to support monsters
and wizards.

If we want to be very thorough, we can write functions that are specialized versions of our
more generalized function. These functions can simplify an application:

def craps():

return dice(2)

def zonk():

return dice(6)

Function Definitions

Our application features - craps () and zonk () - depend on a general function, dice ().
This, in turn, depends on another function, die (). We'll revisit this idea in the Picking an
order for parameters based on partial functions recipe.

Each layer in this stack of dependencies introduces a handy abstraction that saves us from
having to understand too many details in the lower layers. This idea of layered abstractions
is sometimes called chunking. It's a way of managing complexity by isolating the details.

In this example, our stack of functions only has two layers. In a more complex application,
we may have to introduce parameters at many layers in a hierarchy.

» We'll extend on some of these ideas in the Picking an order for parameters based
on partial functions recipe, later in this chapter.

» We've made use of optional parameters that involve immutable objects. In this
recipe, we focused on numbers. In Chapter 4, Built-In Data Structures Part 1: Lists
and Sets, we'll look at mutable objects, which have an internal state that can be
changed. In the Avoiding mutable default values for function parameters recipe, we'll
look at some additional considerations that are important for designing functions
that have optional values, which are mutable objects.

Designing type hints for optional parameters

This recipe combines the two previous recipes. It's common to define functions with fairly
complex options and then add type hints around those definitions. For atomic types like
strings and integers, it can make sense to write a function first, and then add type hints to
the function.

In later chapters, when we look at more complex data types, it often makes more sense
to create the data type definitions first, and then define the functions (or methods) related
to those types. This philosophy of type first is one of the foundations for object-oriented
programming.

Getting ready

We'll look at the two dice-based games, Craps and Zonk. In the Craps game, the players will
be rolling two dice. In the Zonk game, they'll roll a number of dice, varying from one to six.
The games have a common, underlying requirement to be able to create collections of dice.
As noted in the Designing functions with optional parameters recipe, there are two broad
strategies for designing the common function for both games; we'll rely on the General to
Particular strategy and create a very general dice function.

102

file:///C:\Users\kishorr\Downloads\9781786469250\c46b36ee-e2f1-4759-8b4d-b7a68d8d65b5.xhtml

Chapter 3

How to do it...

1. Define a function with the required and optional parameters. This can be derived
from combining a number of examples. Or, it can be designed through careful
consideration of the alternatives. For this example, we have a function where one
parameter is required and one is optional:

def dice(n, sides=6):
return tuple(random.randint(1, sides) for _ in range(n))
2. Add the type hint for the return value. This is often easiest because it is based on
the return statement. In this case, it's a tuple of indefinite size, but all the elements

are integers. This is represented as Tuple [int, ...]1.(... isvalid Python syntax
for a tuple with an indefinite number of items.)

3. Add required parameter type hints. The parameter n must be an integer, so we'll
replace the simple n parameter with n: int to include a type hint.

4. Add optional parameter type hints. The syntax is more complex for these because
we're inserting the hint between the name and the default value. In this case, the
sides parameter must also be an integer, so we'll replace sides = 6 with sides:
int = 6.

Here's the final definition with all of the type hints included. We've changed the name to
make it distinct from the dice () example shown previously:

def dice_t(n: int, sides: int = 6) -> Tuple[int, ...]:
return tuple(random.randint(l, sides) for _ in range(n))
The syntax for the optional parameter contains a wealth of information, including the

expected type and a default value.

Tuple [int, ..], as a description of a tuple that's entirely filled with int values, can be a
little confusing at first. Most tuples have a fixed, known number of items. In this case, we're
extending the concept to include a fixed, but not fully defined number of items in a tuple.

The type hint syntax can seem unusual at first. The hints can be included wherever variables
are created:

» Function (and class method) parameter definitions. The hints are right after the
parameter name, separated by a colon. As we've seen in this recipe, any default
value comes after the type hint.

» Assignment statements. We can include a type hint after the variable name on the
left-hand side of a simple assignment statement. It might look like this:

Pi: float = 355/113

Function Definitions

Additionally, we can include type hints on function (and class method) return types. The hints
are after the function definition, separated by a - >. The extra syntax makes them easy to read
and helpful for a person to understand the code.

The type hint syntax is optional. This keeps the language simple, and puts the burden of type
checking on external tools like mypy.

In some cases, the default value can't be computed in advance. In other cases, the default
value would be a mutable object, like a 1ist, which we don't want to provide in the
parameter definitions.

Here, we'll look at a function with very complex default values. We're going to be simulating
a very wide domain of games, and our assumptions about the number of dice and the
shape of the dice are going to have to change dramatically.

There are two fundamental use cases:

» When we're rolling six-sided dice, the default number of dice is two. This fits with two-
dice games like Craps. If we call the function with no argument values, this is what
we'd like to happen. We can also explicitly provide the number of dice in order to
support multi-dice games.

» When we're rolling other dice, the default number of dice changes to one. This fits
with games that use polyhedral dice of four, eight, twelve, or twenty sides. It even
fits with irregular dice with ten sides.

These rules will dramatically change the way default values need to be handled in our dice ()
and dice_t () functions. We can't trivially provide a default value for the number of dice. A
common practice is to provide a special value like None, and compute an appropriate default
when the None value is provided.

The None value also expands the type hint requirement. When we can provide a value for
an int or None, this is effectively Union [None, int]. The typing module lets us use
Optional [int] for values for which None is a possibility:

from typing import Optional, Tuple
def polydice(n: Optional[int] = None, sides: int = 6) -> Tuple[int,
.
if n is None:
n =2 if sides == 6 else 1
return tuple(random.randint(l, sides) for _ in range(n))

In this example, we've defined the n parameter as having a value that will either be an integer
or None. Since the actual default value depends on other arguments, we can't provide a
simple, fixed default in the function definition. We've used a default value of None to show
the parameter is optional.

104

Chapter 3

Here are four examples of using this function with a variety of argument values:

>>> random.seed (113)

>>> polydice ()

(1, 6)

>>> polydice (6)

(6, 3, 1, 4, 5, 3)

>>> polydice(sides=8)

(4,)

>>> polydice(n=8, sides=4)
(4, 1, 1, 3, 2, 3, 4, 3)

In the first example, neither the n nor sides parameters were provided. In this case, the
value used for n was two because the value of sides was six.

The second example provides a value for the n parameter. The expected number of six-sided
dice were simulated.

The third example provides a value for the sides parameter. Since there's no value for the
n parameter, a default value for the n parameter was computed based on the value of the
sides parameter.

The fourth example provides values for both the n and the sides parameters. No defaults
are used here.

» See the Using super flexible keyword parameters recipe for more examples of how
parameters and defaults work in Python.

Using super flexible keyword parameters

Some design problems involve solving a simple equation for one unknown when given
enough known values. For example, rate, time, and distance have a simple linear relationship.
We can solve any one when given the other two.

Here are the three rules that we can use as an example:

> d=rxt
» r=d/t
> t=d/r

When designing electrical circuits, for example, a similar set of equations is used based on
Ohm's Law. In that case, the equations tie together resistance, current, and voltage.

Function Definitions

In some cases, we want to provide a simple, high-performance software implementation
that can perform any of the three different calculations based on what's known and what's
unknown. We don't want to use a general algebraic framework; we want to bundle the three
solutions into a simple, efficient function.

Getting ready

We'll build a single function that can solve a Rate-Time-Distance (RTD) calculation by
embodying all three solutions, given any two known values. With minor variable name
changes, this applies to a surprising number of real-world problems.

There's a trick here. We don't necessarily want a single value answer. We can slightly
generalize this by creating a small Python dictionary with the three values in it. We'll look at
dictionaries in more detail in Chapter 4, Built-In Data Structures Part 1: Lists and Sets.

We'll use the warnings module instead of raising an exception when there's a problem:
>>> import warnings

Sometimes, it is more helpful to produce a result that is doubtful than to stop processing.

How to do it...

1. Solve the equation for each of the unknowns. We can base all of thisonthed =r x t
RTD calculation. This leads to three separate expressions:
» Distance = rate * time
» Rate = distance / time
» Time = distance / rate

2. Wrap each expression in an if statement based on one of the values being None
when it's unknown:
if distance is None:
distance = rate * time
elif rate is None:
rate = distance / time
elif time is None:
time = distance / rate
3. Refer to the Designing complex if...elif chains recipe from Chapter 2, Statements
and Syntax, for guidance on designing these complex if. . .elif chains. Include
a variation of the else crash option:
else:
warnings.warning("Nothing to solve for")

106

file:///C:\Users\kishorr\Downloads\9781786469250\c46b36ee-e2f1-4759-8b4d-b7a68d8d65b5.xhtml
file:///C:\Users\kishorr\Downloads\9781786469250\69a2d7aa-ecb6-4a0d-83af-26827d8369f7.xhtml

Chapter 3

4. Build the resulting dictionary object. In some very simple cases, we can use the
vars () function to simply emit all of the local variables as a resulting dictionary.
In other cases, we'll need to build the dictionary object explicitly:

return dict(distance=distance, rate=rate, time=time)
5. Wrap all of this as a function using keyword parameters with default values of None.
This leads to parameter types of Optional [f1loat]. The return type is a dictionary

with string keys and Optiona[float] values, summarized as Dict [str,
Optional [float]]:

def rtd(

distance: Optional[float] = None,

rate: Optional[float] None,

time: Optional[float] None,
) -> Dict[str, Optional[float]]:

if distance is None and rate is not None and time is not
None:

distance = rate * time

elif rate is None and distance is not None and time is not
None:

rate = distance / time

elif time is None and distance is not None and rate is not
None:

time = distance / rate
else:
warnings.warn("Nothing to solve for™)
return dict(distance=distance, rate=rate, time=time)

The type hints tend to make the function definition so long it has to be spread across five
physical lines of code. The presence of so many optional values is difficult to summarize

We can use the resulting function like this:

>>> rtd(distance=31.2, rate=6)

{'distance': 31.2, 'rate': 6, 'time': 5.2}
This shows us that going 31 .2 nautical miles at a rate of 6 knots will take 5. 2 hours.
For a nicely formatted output, we might do this:

>>> result = rtd(distance=31.2, rate=6)
>>> ('At {rate}kt, it takes '
'{time}hrs to cover {distance}nm').format map (result)

'At 6kt, it takes 5.2hrs to cover 31.2nm'

Function Definitions

To break up the long string, we used our knowledge from the Designing complex if...elif
chains recipe from Chapter 2, Statements and Syntax.

Because we've provided default values for all of the parameters, we can provide argument
values for any two of the three parameters, and the function can then solve for the third
parameter. This saves us from having to write three separate functions.

Returning a dictionary as the final result isn't essential to this. It's a handy way to show inputs
and outputs. It allows the function to return a uniform result, no matter which parameter
values were provided.

There's more...

We have an alternative formulation for this, one that involves more flexibility. Python functions
have an all other keywords parameter, prefixed with **. It is often shown like this:

def rtd2(distance, rate, time, **keywords):
print(keywords)
We can leverage the flexible keywords parameter and insist that all arguments be provided
as keywords:

def rtd2(**keywords: float) -> Dict[str, Optional[float]]:
rate = keywords.get('rate")
time = keywords.get('time")
distance = keywords.get('distance")

etc.

The keywords type hint states that all of the values for these parameters will be float
objects. In some rare case, not all of the keyword parameters are the same type; in this case,
some redesign may be helpful to make the types clearer.

This version uses the dictionary get () method to find a given key in the dictionary. If the
key is not present, a default value of None is provided.

The dictionary's get () method permits a second parameter, the default, which is provided
if the key is not present. If you don't enter a default, the default value is set to None, which
works out well for this function.

This kind of open-ended design has the potential advantage of being much more flexible. It
has some disadvantages. One potential disadvantage is that the actual parameter names

are hard to discern, since they're not part of the function definition, but instead part of the
function's body.

108

file:///C:\Users\kishorr\Downloads\9781786469250\69a2d7aa-ecb6-4a0d-83af-26827d8369f7.xhtml

Chapter 3

We can follow the Writing clear documentation strings with RST markup recipe and provide
a good docstring. It seems somehow better, though, to provide the parameter names explicitly
as part of the Python code rather than implicitly through documentation.

This has another, and more profound, disadvantage. The problem is revealed in the following
bad example:

>>> rtd2 (distnace=31.2, rate=6)

{'distance': None, 'rate': 6, 'time': None}

This isn't the behavior we want. The misspelling of "distance" is not reported as a TypeError
exception. The misspelled parameter name is not reported anywhere. To uncover these errors,
we'd need to add some programming to pop items from the keywords dictionary and report
errors on names that remain after the expected names were removed:

def rtd3(**keywords: float) -> Dict[str, Optional[float]]:
rate = keywords.pop(“rate"”, None)
time = keywords.pop("time", None)
distance = keywords.pop(“distance”, None)
if keywords:
raise TypeError(

f"Invalid keyword parameter: {', '.join(keywords.

keys())}")

This design will spot spelling errors, but has a more complex procedure for getting the values
of the parameters. While this can work, it is often an indication that explicit parameter names
might be better than the flexibility of an unbounded collection of names.

» We'll look at the documentation of functions in the Writing clear documentation
strings with RST markup recipe.

Forcing keyword-only arguments with the *

separator

There are some situations where we have a large number of positional parameters for a
function. Perhaps we've followed the Designing functions with optional parameters recipe
and that led us to designing a function with so many parameters that it gets confusing.

Pragmatically, a function with more than about three parameters can be confusing. A great
deal of conventional mathematics seems to focus on one and two-parameter functions.
There don't seem to be too many common mathematical operators that involve three or
more operands.

Function Definitions

When it gets difficult to remember the required order for the parameters, there are too
many parameters.

Getting ready

We'll look at a function that has a large number of parameters. We'll use a function that
prepares a wind-chill table and writes the data to a CSV format output file.

We need to provide a range of temperatures, a range of wind speeds, and information on
the file we'd like to create. This is a lot of parameters.

A formula for the apparent temperature, the wind chill, is this:
T(T,V)=13.12+0.6215T - 11.37V°* + 0.3965T V>

The wind chill temperature, T, , is based on the air temperature, T, in degrees, C, and the
wind speed, V, in KPH.

For Americans, this requires some conversions:

» Convert from Finto C: C=5(F-32)/ 9
> Convert windspeed from MPH, V_ . into KPH, V,: V, =V x 1.609344
» The result needs to be converted from C back into F: F= 32 + C(9/5)

We won't fold these conversions into this solution. We'll leave that as an exercise for you.

The function to compute the wind-chill temperature, Twc (), is based on the definition
provided previously. It looks like this:

def Twc(T: float, V: float) -> float:
return 13.12 + 0.6215*T - 11.37*V**0.16 + 0.3965*T*V**Q. 16

One approach to creating a wind-chill table is to create something like this:

import csv

def wind_chill(
start_T: int, stop_T: int, step T: int,
start_V: int, stop_V: int, step V: int,
target: TextIO
) -> None:
"""Wind Chill Table."""
writer= csv.writer(target)
heading = ['']+[str(t) for t in range(start_T, stop T, step T)]
writer.writerow(heading)
for V in range(start_V, stop_V, step V):

Chapter 3

row = [float(V)] + [
Twc(T, V) for T in range(start_T, stop_T, step_T)
1

writer.writerow(row)

Before we get to the design problem, let's look at the essential processing. We've opened
an output file using the with context. This follows the Managing a context using the with
statement recipe in Chapter 2, Statements and Syntax. Within this context, we've created
a write for the CSV output file. We'll look at this in more depth in Chapter 10, Input/Output,
Physical Format, and Logical Layout.

We've used an expression, ['']+[str(t) for t in range(start T, stop T,
step_T) 1, to create a heading row. This expression includes a list literal and a generator
expression that builds a list. We'll look at lists in Chapter 4, Built-In Data Structures Part
1: Lists and Sets. We'll look at the generator expression online in Chapter 9, Functional
Programming Features (link provided in the Preface).

Similarly, each cell of the table is built by a generator expression, [Twc (T, V)for T in
range (start_T, stop T, step_T)]. Thisis a comprehension that builds a 1ist
object. The list consists of values computed by the wind-chill function, Twc () . We provide
the wind velocity based on the row in the table. We provide a temperature based on the
column in the table.

The def wind chill line presents a problem: the function has seven distinct positional
parameters. When we try to use this function, we wind up with code like the following;:

>>> p = Path('data/wcl.csv')
>>> with p.open('w', newline='"') as target:
wind chill (0, -45, -5, 0, 20, 2, target)

What are all those numbers? Is there something we can do to help explain the purposes
behind all those numbers?

How to do it...

When we have a large number of parameters, it helps to use keyword arguments instead
of positional arguments.

In Python 3, we have a technique that mandates the use of keyword arguments. We can
use the * as a separator between two groups of parameters:

» Before *, we list the argument values that can be either positional or named by
keyword. In this example, we don't have any of these parameters.

> After *, we list the argument values that must be given with a keyword. For our
example, this is all of the parameters.

file:///C:\Users\kishorr\Downloads\9781786469250\69a2d7aa-ecb6-4a0d-83af-26827d8369f7.xhtml
file:///C:\Users\kishorr\Downloads\9781786469250\79fe124f-c610-4410-9a95-2b0336a71677.xhtml
file:///C:\Users\kishorr\Downloads\9781786469250\c46b36ee-e2f1-4759-8b4d-b7a68d8d65b5.xhtml
https://www.packtpub.com/sites/default/files/downloads/Functional_and_Reactive_Programming_Features.pdf
file:///C:\Users\kishorr\Downloads\9781786469250\a79d874d-3467-4fb4-8ad5-6b170beec072.xhtml

Function Definitions

For our example, the resulting function definition has the following stub definition:

def wind_chill(

*
>

start_T: int, stop_T: int, step T: int,
start_V: int, stop_V: int, step V: int,
path: Path

) -> None:

Let's see how it works in practice with different kinds of parameters.

1. When we try to use the confusing positional parameters, we'll see this:
>>> wind chill (0, -45, -5, 0, 20, 2, target)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: wind chill() takes 0 positional arguments but 7 were
given
2. We must use the function with explicit parameter names, as follows:
>>> p = Path('data/wcl.csv')
>>> with p.open('w', newline='"') as output file:
wind chill (start T=0, stop T=-45, step T=-5,
start V=0, stop_ V=20, step V=2,
target=output file)

This use of mandatory keyword parameters forces us to write a clear statement each time
we use this complex function.

The * character has a number of distinct meanings in the definition of a function:

» =+ is used as a prefix for a special parameter that receives all the unmatched
positional arguments. We often use *args to collect all of the positional arguments
into a single parameter named args.

» *x s used a prefix for a special parameter that receives all the unmatched named
arguments. We often use **kwargs to collect the named values into a parameter
named kwargs.

» *,when used by itself as a separator between parameters, separates those
parameters. It can be applied positionally or by keyword. The remaining parameters
can only be provided by keyword.

Chapter 3

The print () function exemplifies this. It has three keyword-only parameters for the output
file, the field separator string, and the line end string.

There's more...

We can, of course, combine this technique with default values for the various parameters.
We might, for example, make a change to this, thus introducing a single default value:

import sys
def wind_chill(

*
)

start_T: int, stop_T: int, step T: int,
start_V: int, stop_V: int, step_ V: int,
target: TextIO=sys.stdout

) -> None:

We can now use this function in two ways:

» Here's a way to print the table on the console, using the default target:
wind_chill(
start_T=0, stop_T=-45, step_T=-5,
start_V=0, stop_V=20, step_V=2)

> Here's a way to write to a file using an explicit target:

path = pathlib.Path("code/wc.csv")
with path.open('w', newline="") as output_file:
wind_chill(target=output_file,
start_T=0, stop_T=-45, step_T=-5,
start_V=0, stop V=20, step V=2)

We can be more confident in these changes because the parameters must be provided by
name. We don't have to check carefully to be sure about the order of the parameters.

As a general pattern, we suggest doing this when there are more than three parameters
for a function. It's easy to remember one or two. Most mathematical operators are unary or
binary. While a third parameter may still be easy to remember, the fourth (and subsequent)
parameter will become very difficult to recall, and forcing the named parameter evaluation
of the function seems to be a helpful policy.

See also

» See the Picking an order for parameters based on partial functions recipe for
another application of this technique.

Function Definitions

Defining position-only parameters with the /

separator

In Python 3.8, an additional annotation was added to function definitions. We can use the
/ character in the parameter list to separate the parameters into two groups. Before /, all
parameters work positionally, or names may not be used with argument values. After /,
parameters may be given in order, or names may be used.

This should be used for functions where the following conditions are all true:

» A few positional parameters are used (no more than three)
» They are all required
» The order is so obvious that any change might be confusing

This has always been a feature of the standard library. As an example, the math.sin ()
function can only use positional parameters. The formal definition is as follows:

>>> help (math.sin)
Help on built-in function sin in module math:

sin(x, /)

Return the sine of x (measured in radians).

Even though there's an x parameter name, we can't use this name. If we try to, we'll see
the following exception:
>>> import math
>>> math.sin (x=0.5)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: sin() takes no keyword arguments

The x parameter can only be provided positionally. The output from the help () function
provides a suggestion of how the / separator can be used to make this happen.

Getting ready

Position-only parameters are used by some of the internal built-ins; the design pattern can
also be helpful, though, in our functions. To be useful, there must be very few position-only
parameters. Since most mathematical operators have one or two operands, this suggests
one or two position-only parameters can be useful.

114

Chapter 3

We'll consider two functions for conversion of units from the Fahrenheit system used in the
US and the Centigrade system used almost everywhere else in the world:

» Convert from Finto C: C=5(F-32)/ 9
» Convert from Cinto F: F=32 + C(9/5)

Each of these functions has a single argument, making it a reasonable example for a position-
only parameter.

How to do it...

1. Define the function:

def F(c: float) -> float:
return 32 + c*(9/5)
2. Add the / parameter separator after the position-only parameters:

def F(c: float, /) -> float:
return 32 + c*(9/5)

The / separator divides the parameter names into two groups. In front of / are parameters
where the argument values must be provided positionally: named argument values cannot
be used. After / are parameters where names are permitted.

Let's look at a slightly more complex version of our temperature conversions:

def C(f: float, /, truncate: bool=False) -> float:
c = 5%(f-32) / 9
if truncate:
return round(c, 0)

return c

This function has a position-only parameter named £. It also has the truncate parameter,
which can be provided by name. This leads to three separate ways to use this function, as
shown in the following examples:

>>> C(72)
22.22222222222222

>>> C(72, truncate=True)
22.0

>>> C(72, True)

22.0

Function Definitions

The first example shows the position-only parameter and the output without any rounding.
This is an awkwardly complex-looking value.

The second example uses the named parameter style to set the non-positional parameter,
truncate, to True. The third example provides both argument values positionally.

There's more...

This can be combined with the * separator to create very sophisticated function signatures.
The parameters can be decomposed into three groups:
» Parameters before the / separator must be given by position. These must be first.
» Parameters after the / separator can be given by position or name.

» Parameters after the * separator must be given by name only. These names are
provided last, since they can never be matched by position.

See also

» See the Forcing keyword-only arguments with the * separator recipe for details on
the * separator.

Writing hints for more complex types

The Python language allows us to write functions (and classes) that are entirely generic
with respect to data type. Consider this function as an example:

def temperature(*, f_temp=None, c_temp=None):
if c_temp is None:
return {'f_temp': f_temp, 'c_temp': 5*(f_temp-32)/9}
elif f_temp is None:
return {'f_temp': 32+49*c_temp/5, 'c_temp': c_temp}
else:

raise TypeError("One of f temp or c_temp must be
provided")

This follows three recipes shown earlier: Using super flexible keyword parameters, Forcing
keyword-only arguments with the * separator, and Designing complex if...elif chains, from
Chapter 2, Statements and Syntax.

This function produces a fairly complex data structure as a result. It's not very clear what
the data structure is. Worse, it's difficult to be sure functions are using the output from this
function correctly. The parameters don't provide type hints, either.

116

file:///C:\Users\kishorr\Downloads\9781786469250\69a2d7aa-ecb6-4a0d-83af-26827d8369f7.xhtml

Chapter 3

This is valid, working Python. It lacks a formal description that would help a person
understand the intent.

We can also include docstrings. Here's the recommended style:

def temperature(*, f_temp=None, c_temp=None):
"""Convert between Fahrenheit temperature and
Celsius temperature.

:key f temp: Temperature in °F.

:key c_temp: Temperature in °C.

:returns: dictionary with two keys:
:f_temp: Temperature in °F.
:c_temp: Temperature in °C.

(LRI

The docstring doesn't support sophisticated, automated testing to confirm that the
documentation actually matches the code. The two could disagree with each other.

The mypy tool performs the needed automated type-checking. For this to work, we need to
add type hints about the type of data involved. How can we provide meaningful type hints
for more complex data structures?

Getting ready

We'll implement a version of the temperature () function. We'll need two modules that
will help us provide hints regarding the data types for parameters and return values:
from typing import Optional, Union, Dict

We've opted to import a few of the type names from the typing module. If we're going
to supply type hints, we want them to be terse. It's awkward having to write typing.
List [str]. We prefer to omit the module name by using this kind of explicit import.

How to do it...

Python 3.5 introduced type hints to the language. We can use them in three places: function
parameters, function returns, and type hint comments:
1. Annotate parameters to functions, like this:
def temperature(*,
f _temp: Optional[float]=None,
c_temp: Optional[float]=None):

Function Definitions

We've added : and a type hint as part of the parameter. The type float tells
mypy any number is allowed here. We've wrapped this with the Optional [] type
operation to state that the argument value can be either a number or None.

2. Annotate return values from functions, like this:

def temperature(*,
f _temp: Optional[float]=None,
c_temp: Optional[float]=None) -> Dict[str, float]:

We've added - > and a type hint for the return value of this function. In this case,
we've stated that the result will be a dictionary object with keys that are strings, str,
and values that are numbers, float.

The typing module introduces the type hint names, such as Dict, that describes
a data structure. This is different from the dict class, which actually builds objects.
typing.Dict is merely a description of possible objects.

3. If necessary, we can add type hints as comments to assignment statements. These
are sometimes required to clarify a long, complex series of statements. If we wanted
to add them, the annotations could look like this:

result: Dict[str, float] = {"c temp": c_temp, "f temp": f_temp}

We've added aDict [str, float] type hintto the statement that builds the final
dictionary object.

The type information we've added are called hints. They're not requirements that are
somehow checked by the Python compiler. They're not checked at runtime either.

These type hints are used by a separate program, mypy. See http://mypy-lang.org
for more information.

The mypy program examines the Python code, including the type hints. It applies some
formal reasoning and inference techniques to determine if the various type hints will always
be true. For larger and more complex programs, the output from mypy will include warnings
and errors that describe potential problems with either the code itself, or the type hints
decorating the code.

For example, here's a mistake that's easy to make. We've assumed that our function returns
a single number. Our return statement, however, doesn't match our expectation:

def temperature_bad(
*, f_temp: Optional[float] = None, c_temp: Optional[float] =
None
) -> float:

http://mypy-lang.org

Chapter 3

if f_temp is not None:
c_temp =5 * (f_temp - 32) / 9
elif f_temp is not None:8888889
f temp = 32 + 9 * c_temp / 5
else:
raise TypeError("One of f_temp or c_temp must be provided")
result = {"c_temp": c_temp, "f temp": f_temp}

return result
When we run mypy, we'll see this:

Chapter 03/ch03 r07.py:45: error: Incompatible return value type (got
"Dict[str, floatl]", expected "float")

We can see that line 45, the return statement, doesn't match the function definition. The
result was a Dict [str, float] object but the definition hint was a £1oat object. Ideally,
a unit test would also uncover a problem here.

Given this error, we need to either fix the return or the definition to be sure that the expected
type and the actual type match. It's not clear which of the two type hints is right. Either of
these could be the intent:

» Return a single value, consistent with the definition that has the -> float hint.
This means the return statement needs to be fixed.

» Return the dictionary object, consistent with the return statement where a
Dict[str, float] object was created. This means we need to correct the
def statement to have the proper return type. Changing this may spread ripples
of change to other functions that expect the temperature () function to return
a float object.

The extra syntax for parameter types and return types has no real impact on performance,
and only a very small cost when the source code is first compiled into byte code. They are—
after all—merely hints.

The docstring is an important part of the code. The code describes data and processing, but
can't clarify intent. The docstring comments can provide insight into what the values in the
dictionary are and why they have specific key names.

A dictionary with specific string keys is a common Python data structure. It's so common
there's a type hint in the mypy extensions library that's perfect for this situation. If
you've installed mypy, then mypy extensions should also be present.

Function Definitions

The TypedDict class definition is a way to define a dictionary with specific string keys,
and has an associated type hint for each of those keys:

from mypy_extensions import TypedDict

TempDict = TypedDict(

"TempDict",
{
"c_temp": float,
"f temp": float,
}

)

This defines a new type, TempDict, which is a kind of Dict [str, Anyl], a dictionary
mapping a string key to another value. This further narrows the definition by listing the
expected string keys should be from the defined set of available keys. It also provides unique
types for each individual string key. These constraints aren't checked at runtime as they're
used by mypy.

We can make another small change to make use of this type:

def temperature_d(

*
>

f_temp: Optional[float]
c_temp: Optional[float]
) -> TempDict:
if f_temp is not None:
c_temp = 5 * (f_temp - 32) / 9
elif c_temp is not None:
f temp = 32 + 9 * c_temp / 5
else:
raise TypeError("One of f_temp or c_temp must be provided")
result: TempDict = {"c_temp": c_temp, "f temp": f_temp}

None,
None

return result

We've made two small changes to the temperature () function to create this
temperature d() variant. First, we've used the TempDict type to define the resulting
type of data. Second, the assignment for the result variable has had the type hint added
to assert that we're building an object conforming to the TempDict type.

See also

» Seehttps://www.python.org/dev/peps/pep-0484/ for more information on
type hints.

120

https://www.python.org/dev/peps/pep-0484/

Chapter 3

» Seehttps://mypy.readthedocs.io/en/latest/index.html for the current
mypy project.

Picking an order for parameters based on

partial functions

When we look at complex functions, we'll sometimes see a pattern in the ways we use the
function. We might, for example, evaluate a function many times with some argument values
that are fixed by context, and other argument values that are changing with the details of
the processing.

It can simplify our programming if our design reflects this concern. We'd like to provide a way
to make the common parameters slightly easier to work with than the uncommon parameters.
We'd also like to avoid having to repeat the parameters that are part of a larger context.

Getting ready

We'll look at a version of the Haversine formula. This computes distances between two points,
P1 and P2, on the surface of the Earth, p; = (lony, lat,) and p, = (lon,, lat,):

lat, — lat lat, — lat
a = |sin? % + cos(lat,) cos(lat,) sin? %

c=2sin"la

The essential calculation yields the central angle, ¢, between two points. The angle is
measured in radians. We convert it into distance by multiplying by the Earth's mean radius
in some units. If we multiply the angle ¢ by a radius of 3,959 miles, the distance, we'll
convert the angle into miles.

Here's an implementation of this function. We've included type hints:

from math import radians, sin, cos, sqrt, asin

MI= 3959
NM= 3440
KM= 6372

def haversine(lat_1: float, lon_1: float,
lat_2: float, lon_2: float, R: float) -> float:
"""Distance between points.

https://mypy.readthedocs.io/en/latest/index.html

Function Definitions

R is Earth's radius.
R=MI computes in miles. Default is nautical miles.

>>> round(haversine(36.12, -86.67, 33.94, -118.40, R=6372.8), 5)

2887.25995

A lat = radians(lat_2) - radians(lat_1)
A lon = radians(lon_2) - radians(lon_1)
lat_1 = radians(lat_1)

lat_2 = radians(lat_2)

a = sqrt(

sin(A_lat / 2) ** 2 + cos(lat_1) * cos(lat_2) * sin(A_lon /
2) **x 2
)

return R * 2 * asin(a)

Note on the doctest example: The example uses an Earth radius with

an extra decimal point that's not used elsewhere. This example will

/ match other examples online. The Earth isn't spherical. Around the
\/(n, equator, a more accurate radius is 6378.1370 km. Across the poles,
the radius is 6356.7523 km. We're using common approximations in

the constants, separate from the more precise value used in the unit
test case.

The problem we often have is that the value for R rarely changes. In a practical application,
we may be consistently working in kilometers or nautical miles. We'd like to have a consistent,
default value like R = NM to get nautical miles throughout our application.

There are several common approaches to providing a consistent value for an argument.
We'll look at al.l of them.

How to do it...

In some cases, an overall context will establish a single value for a parameter. The value
will rarely change. There are several common approaches to providing a consistent value
for an argument. These involve wrapping the function in another function. There are
several approaches:

» Wrap the function in a new function.

122

Chapter 3

» Create a partial function. This has two further refinements:

» We can provide keyword parameters
» We can provide positional parameters

We'll look at each of these in separate variations in this recipe.

Wrapping a function

We can provide contextual values by wrapping a general function in a context-specific wrapper
function:

1.

Make some parameters positional and some parameters keywords. We want the
contextual features—the ones that rarely change—to be keywords. The parameters
that change more frequently should be left as positional. We can follow the Forcing
keyword-only arguments with the * separator recipe to do this. We might change
the basic haversine function so that it looks like this:

def haversine(lat_1: float, lon_1: float,
lat_2: float, lon_2: float, *, R: float) -> float:
We can then write a wrapper function that will apply all of the positional arguments,

unmodified. It will supply the additional keyword argument as part of the long-running
context:

def nm_haversine_1(*args):
return haversine(*args, R=NM)

We have the *args construct in the function declaration to accept all positional
argument values in a single tuple, args. We also have *args, when evaluating
the haversine () function, to expand the tuple into all of the positional argument
values to this function.

The lack of type hints in the nm_haversine 1 () function is not an oversight. Using the
*args construct, to pass a sequence of argument values to a number of parameters, makes
it difficult to be sure each of the parameter type hints are properly reflected in the *args
tuple. This isn't ideal, even though it's simple and passes the unit tests.

Creating a partial function with keyword parameters

A partial function is a function that has some of the argument values supplied. When we
evaluate a partial function, we're mixing the previously supplied parameters with additional
parameters. One approach is to use keyword parameters, similar to wrapping a function:

1.

We can follow the Forcing keyword-only arguments with the * separator recipe to
do this. We might change the basic haversine function so that it looks like this:

def haversine(lat_1: float, lon_1: float,
lat_2: float, lon_2: float, *, R: float) -> float:

Function Definitions

2. Create a partial function using the keyword parameter:

from functools import partial
nm_haversine_3 = partial(haversine, R=NM)
The partial () function builds a new function from an existing function and a concrete set

of argument values. The nm_haversine 3 () function has a specific value for R provided
when the partial was built.

We can use this like we'd use any other function:

>>> round (nm haversine 3(36.12, -86.67, 33.94, -118.40), 2)
1558.53

We get an answer in nautical miles, allowing us to do boating-related calculations without
having to patiently check that each time we used the haversine () function, it had R=NM
as an argument.

Creating a partial function with positional parameters

A partial function is a function that has some of the argument values supplied. When we
evaluate a partial function, we're supplying additional parameters. An alternative approach
is to use positional parameters.

If we try to use partial () with positional arguments, we're constrained to providing the
leftmost parameter values in the partial definition. This leads us to think of the first few
arguments to a function as candidates for being hidden by a partial function or a wrapper:

1. We might change the basic haversine function to put the radius parameter first. This
makes it slightly easier to define a partial function. Here's how we'd change things:

def p_haversine(

R: float,
lat_1: float, lon_1: float, lat_2: float, lon_2: float
) -> float:

2. Create a partial function using the positional parameter:

from functools import partial
nm_haversine_4 = partial(p_haversine, NM)

The partial () function builds a new function from an existing function and a
concrete set of argument values. The nm_haversine 4 () function has a specific
value for the first parameter, R, that's provided when the partial was built.

We can use this like we'd use any other function:

>>> round (nm haversine 4(36.12, -86.67, 33.94, -118.40), 2)
1558.53

124

Chapter 3

We get an answer in nautical miles, allowing us to do boating-related calculations without
having to patiently check that each time we used the haversine () function, it had R=NM
as an argument.

The partial function is—essentially—identical to the wrapper function. While it saves us a line
of code, it has a more important purpose. We can build partials freely in the middle of other,
more complex, pieces of a program. We don't need to use a def statement for this.

Note that creating partial functions leads to a few additional considerations when looking
at the order for positional parameters:

» If we try to use *args, it must be defined last. This is a language requirement.
It means that the parameters in front of this can be identified specifically; all the
others become anonymous and can be passed - en masse - to the wrapped
function. This anonymity means mypy can't confirm the parameters are being
used correctly.

» The leftmost positional parameters are easiest to provide a value for when creating
a partial function.

» The keyword-only parameters, after the * separator, are also a good choice.

These considerations can lead us to look at the leftmost argument as being more of a context:
these are expected to change rarely and can be provided by partial function definitions.

There's more...

There's a third way to wrap a function—we can also build a 1ambda object. This will also work:

nm_haversine L = lambda *args: haversine (*args, R=NM)
Notice that a 1ambda object is a function that's been stripped of its name and body. It's
reduced to just two essentials:

» The parameter list, *args, in this example
» Asingle expression, which is the result, haversine (*args, R=NM)

A lambda cannot have any statements. If statements are needed in the body, we have to
create a definition that includes a name and a body with multiple statements.

The lambda approach makes it difficult to create type hints. While it passes unit tests, it's
difficult to work with. Creating type hints for lambdas is rather complex and looks like this:

NM_Hav = Callable[[float, float, float, float], float]

nm_haversine_5: NM_Hav = lambda lat_1, lon_1, lat_2, lon_2:

Function Definitions

haversine(
lat_1, lon_1, lat_2, lon_2, R=NM

)

First, we define a callable type named NM_Hav. This callable accepts four float values and
returns a float value. We can then create a lambda object, nm haversine 5, of the NM Hav
type. This lambda uses the underlying haversine () function, and provides argument values
by position so that the types can be checked by mypy. This is rather complex, and a function
definition might be simpler than assigning a lambda object to a variable.

> We'll also look at extending this design further in the Writing testable scripts with the
script library switch recipe.

Writing clear documentation strings with

RST markup

How can we clearly document what a function does? Can we provide examples? Of course we
can, and we really should. In the Including descriptions and documentation recipe in Chapter
2, Statements and Syntax, and in the Better RST markup in docstrings recipes, we looked at
some essential documentation techniques. Those recipes introduced ReStructuredText (RST)
for module docstrings.

We'll extend those techniques to write RST for function docstrings. When we use a tool such
as Sphinx, the docstrings from our function will become elegant-looking documentation that
describes what our function does.

Getting ready

In the Forcing keyword-only arguments with the * separator recipe, we looked at a function
that had a large number of parameters and another function that had only two parameters.

Here's a slightly different version of one of those functions, Twc () :

>>> def Twc (T, V):

nnntwind Chill Temperature."""

if V< 4.8 or T > 10.0:

.o raise ValueError ("V must be over 4.8 kph, T must be below

10°c")
return 13.12 + 0.6215*T - 11.37*V**0.16 + 0.3965*T*V**0.16

126

file:///C:\Users\kishorr\Downloads\9781786469250\69a2d7aa-ecb6-4a0d-83af-26827d8369f7.xhtml

Chapter 3

We need to annotate this function with some more complete documentation.

Ideally, we've got Sphinx installed to see the fruits of our labor. See http://www.sphinx-
doc.org.

How to do it...

We'll generally write the following things (in this order) for a function description:

>

vVvvyvVvyTywyysyw

Synopsis

Description

Parameters

Returns

Exceptions

Test cases

Anything else that seems meaningful

Here's how we'll create nice documentation for a function. We can apply a similar method to
a function, or even a module:

1.

Write the synopsis. A proper subject isn't required—we don't write This function
computes...; we start with Computes.... There's no reason to overstate the context:
def Twc(T, V):

Computes the wind chill temperature.
Write the description and provide details:
def Twc(T, V):

Computes the wind chill temperature

The wind-chill, :math:'T_{wc}', is based on
air temperature, T, and wind speed, V.

In this case, we used a little block of typeset math in our description. The :math:
interpreted text role uses LaTeX math typesetting. Sphinx can use MathJax or
JSMath to do JavaScript math typesetting.

Describe the parameters: For positional parameters, it's common to use :param
name: description. Sphinx will tolerate a number of variations, but this is
common. For parameters that must be keywords, it's common to use :key name:
description.

http://www.sphinx-doc.org

Function Definitions

128

The word key instead of param shows that it's a keyword-only parameter:
def Twc(T: float, V: float):

Computes the wind chill temperature

The wind-chill, :math:'T_{wc}', is based on

air temperature, T, and wind speed, V.

:param T: Temperature in °C
:param V: Wind Speed in kph
There are two ways to include type information:
» Using Python 3 type hints
» Using RST :type name: markup

We generally don't use both techniques. Type hints seem to be a better idea than the
RST : type: markup.

Describe the return value using : returns::
def Twc(T: float, V: float) -> float:

Computes the wind chill temperature

The wind-chill, :math:'T_{wc}', is based on

air temperature, T, and wind speed, V.

:param T: Temperature in °C

:param V: Wind Speed in kph

:returns: Wind-Chill temperature in °C
There are two ways to include return type information:
» Using Python 3 type hints
» Using RST :rtype: markup

We generally don't use both techniques. The RST : rtype: markup has been
superseded by type hints.

Identify the important exceptions that might be raised. Use the : raises
exception: reason markup. There are several possible variations, but : raises
exception: seems to be the most popular:

def Twc(T: float, V: float) -> float:

Chapter 3

Computes the wind chill temperature

The wind-chill, :math:'T_{wc}', is based on
air temperature, T, and wind speed, V.

:param T: Temperature in °C
:param V: Wind Speed in kph
:returns: Wind-Chill temperature in °C

:raises ValueError: for wind speeds under 4.8 kph or T
above 10°C

wun

Include a doctest test case, if possible:
def Twc(T: float, V: float) -> float:

Computes the wind chill temperature

The wind-chill, :math:'T_{wc}', is based on
air temperature, T, and wind speed, V.

:param T: Temperature in °C
:param V: Wind Speed in kph
:returns: Wind-Chill temperature in °C

:raises ValueError: for wind speeds under 4.8 kph or T
above 10°C

>>> round(Twc(-10, 25), 1)
-18.8

(LRI

Write any additional notes and helpful information. We could add the following to the
docstring:

See https://en.wikipedia.org/wiki/Wind_chill
math::

T {wc}(T_a, V) = 13.12 + 0.6215 T_a - 11.37 VA{0.16} +
09.3965

T_a V~{0.16}

Function Definitions

We've included a reference to a Wikipedia page that summarizes wind-chill calculations and
has links to more detailed information. For more information, see https://web.archive.
org/web/20130627223738/http://climate.weatheroffice.gc.ca/prods_
servs/normals_documentation e.html.

We've also included a math: : directive with the LaTeX formula that's used in the function.
This will often typeset nicely, providing a very readable version of the code. Note that the
LaTeX formula is indented four spaces inside the .. math: : directive.

For more information on docstrings, see the Including descriptions and documentation
recipe in Chapter 2, Statements and Syntax. While Sphinx is popular, it isn't the only tool that
can create documentation from the docstring comments. The pydoc utility that's part of the
Python Standard Library can also produce good-looking documentation from the docstring
comments.

The Sphinx tool relies on the core features of RST processing in the docutils package.
See https://pypi.python.org/pypi/docutils for more information.

The RST rules are relatively simple. Most of the additional features in this recipe leverage
the interpreted text roles of RST. Each of our :param T:, :returns:,and :raises
ValueError: constructs is a text role. The RST processor can use this information to
decide on style and structure for the content. The style usually includes a distinctive font.
The context might be an HTML definition list format.

There's more...

In many cases, we'll also need to include cross-references among functions and classes.
For example, we might have a function that prepares a wind-chill table. This function might
have documentation that includes a reference to the Twc () function.

Sphinx will generate these cross-references using a special : func: text role:

def wind_chill table():
"""Uses :func:'Twc' to produce a wind-chill
table for temperatures from -30°C to 10°C and
wind speeds from 5kph to 50kph.

(LRI

We've used : func: 'Twc' to cross-reference one function in the RST documentation for a
different function. Sphinx will turn these into proper hyperlinks.

130

https://web.archive.org/web/20130627223738/http://climate.weatheroffice.gc.ca/prods_servs/normals_documentation_e.html
https://web.archive.org/web/20130627223738/http://climate.weatheroffice.gc.ca/prods_servs/normals_documentation_e.html
https://web.archive.org/web/20130627223738/http://climate.weatheroffice.gc.ca/prods_servs/normals_documentation_e.html
file:///C:\Users\kishorr\Downloads\9781786469250\69a2d7aa-ecb6-4a0d-83af-26827d8369f7.xhtml
https://pypi.python.org/pypi/docutils
https://pypi.python.org/pypi/docutils

Chapter 3

See also

» See the Including descriptions and documentation and Writing better RST markup in
docstrings recipes in Chapter 2, Statements and Syntax, for other recipes that show
how RST works.

Designing recursive functions around

Python's stack limits

Some functions can be defined clearly and succinctly using a recursive formula. There are
two common examples of this.

The factorial function has the following recursive definition:

n'—{ 1 ifn=20
Tlnx(n—-1) ifn>0

The recursive rule for computing a Fibonacci number, F , has the following definition:

F—{ 1 ifn=0vn=1
T Fyoy + Fy ifn>0

Each of these involves a case that has a simple defined value and a case that involves
computing the function's value, based on other values of the same function.

The problem we have is that Python imposes a limitation on the upper limit for these kinds
of recursive function definitions. While Python's integers can easily represent 1000!, the
stack limit prevents us from doing this casually.

Computing F_Fibonacci numbers involves an additional problem. If we're not careful,
we'll compute a lot of values more than once:

F5= F4+ F3

Fs=(F+ FR)+(F+ F)

And so on.

To compute F,, we'll compute F, twice, and F, three times. This can become extremely
costly as computing one Fibonacci number involves also computing a cascading torrent
of other numbers.

file:///C:\Users\kishorr\Downloads\9781786469250\69a2d7aa-ecb6-4a0d-83af-26827d8369f7.xhtml

Function Definitions

Pragmatically, the filesystem is an example of a recursive data structure. Each directory
contains subdirectories. The essential design for a simple numeric recursion also applies

to the analysis of the directory tree. Similarly, a document serialized in JSON notation is a
recursive collection of objects; often, a dictionary of dictionaries. Understanding such simple
cases for recursion make it easier to work with more complex recursive data structures.

In all of these cases, we're seeking to eliminate the recursion and replace it with iteration. In
addition to recursion elimination, we'd like to preserve as much of the original mathematical
clarity as we can.

Getting ready

Many recursive function definitions follow the pattern set by the factorial function. This is
sometimes called tail recursion because the recursive case can be written at the tail of
the function body:

def fact(n: int) -> int:
if n ==
return 1

return n*fact(n-1)

The last expression in the function refers to the function with a different argument value.

We can restate this, avoiding the recursion limits in Python.

How to do it...

A tail recursion can also be described as a reduction. We're going to start with a collection
of values, and then reduce them to a single value:

1. Expand the rule to show all of the details:n! = nx(n—1) X (n—-2)x(n—-3)...x 1
. This helps ensure we understand the recursive rule.

2. Write a loop or generator to create all the values:
N ={nn-1,n-2,...,1} . In Python, this can be as simple as range (1, n+1).
In some cases, though, we might have to apply some transformation function to the
base values: N = {f(i):1 < i < n+ 1}. Applying a transformation often looks like
this in Python:

N = (f(i) for i in range(1l, n+l1))

132

Chapter 3

3. Incorporate the reduction function. In this case, we're computing a large product,
using multiplication. We can summarize this using x notation. For this example,
we're computing a product of values in a range:

X
1<x<n+1

Here's the implementation in Python:

def prod(int_iter: Iterable[int]) -> int:
p=1
for x in int_iter:
p *=x
return p

We can refactor the fact () function to use the prod () function like this:
def fact(n: int):
return prod(range(1, n+l1))

This works nicely. We've optimized a recursive solution to combine the prod () and fact ()
functions into an iterative function. This revision avoids the potential stack overflow problems
the recursive version suffers from.

Note that the Python 3 range object is lazy: it doesn't create a big 1ist object. The range
object returns values as they are requested by the prod () function. This makes the overall
computation relatively efficient.

A tail recursion definition is handy because it's short and easy to remember. Mathematicians
like this because it can help clarify what a function means.

Many static, compiled languages are optimized in a manner similar to the technique we've
shown here. There are two parts to this optimization:

» Use relatively simple algebraic rules to reorder the statements so that the recursive
clause is actually last. The if clauses can be reorganized into a different physical
order so that return fact (n-1) * nis last. This rearrangement is necessary
for code organized like this:

def ugly fact(n: int) -> int:
if n > 0:
return fact(n-1) * n
elif n ==
return 1

Function Definitions

else:
raise ValueError(f"Unexpected {n=}")

» Inject a special instruction into the virtual machine's byte code—or the actual
machine code—that re-evaluates the function without creating a new stack frame.
Python doesn't have this feature. In effect, this special instruction transforms the
recursion into a kind of while statement:

p=n

while n != 1:
n=n-1
p *=n

This purely mechanical transformation leads to rather ugly code. In Python, it may also be
remarkably slow. In other languages, the presence of the special byte code instruction will
lead to code that runs quickly.

We prefer not to do this kind of mechanical optimization. First, it leads to ugly code. More
importantly - in Python - it tends to create code that's actually slower than the alternative
we developed here.

There's more...

The Fibonacci problem involves two recursions. If we write it naively as a recursion, it might
look like this:

def fibo(n: int) -> int:
if n <= 1:
return 1
else:

return fibo(n-1)+fibo(n-2)

It's difficult to do a simple mechanical transformation to turn something into a tail recursion.
A problem with multiple recursions like this requires some more careful design.

We have two ways to reduce the computation complexity of this:

» Use memoization
» Restate the problem

Chapter 3

The memoization technique is easy to apply in Python. We can use functools.lru
cache () as a decorator. This function will cache previously computed values. This means
that we'll only compute a value once; every other time, 1ru_cache will return the previously
computed value.

It looks like this:

from functools import lru_cache

@lru_cache(128)
def fibo_r(n: int) -> int:
if n < 2:
return 1
else:

return fibo_r(n - 1) + fibo_r(n - 2)
Adding a decorator is a simple way to optimize a more complex multi-way recursion.

Restating the problem means looking at it from a new perspective. In this case, we can think
of computing all Fibonacci numbers up to, and including, F . We only want the last value in
this sequence. We compute all the intermediates because it's more efficient to do it that
way. Here's a generator function that does this:

def fibo_iter() -> Iterator[int]:
a=1
b=1
yield a
while True:
yield b

a, b=b, a+b
This function is an infinite iteration of Fibonacci numbers. It uses Python's yield so that

it emits values in a lazy fashion. When a client function uses this iterator, the next number
in the sequence is computed as each number is consumed.

Here's a function that consumes the values and also imposes an upper limit on the otherwise
infinite iterator:

def fibo_i(n: int) -> int:
for i, f_i in enumerate(fibo_iter()):
if 1 == n:
break

return f_i

Function Definitions

This function consumes each value from the £ibo_iter () iterator. When the desired
number has been reached, the break statement ends the for statement.

When we looked at the Avoiding a potential problem with break statements recipe in Chapter
2, Statements and Syntax, we noted that a while statement with a break may have multiple
reasons for terminating. In this example, there is only one way to end the for statement.

We can always assert that 1 == n at the end of the loop. This simplifies the design of the
function. We've also optimized the recursive solution and turned it into an iteration that
avoids the potential for stack overflow.

» See the Avoiding a potential problem with break statements recipe in Chapter 2,
Statements and Syntax.

Writing testable scripts with the script-

library switch

It's often very easy to create a Python script file. A script file is very easy to use because when
we provide the file to Python, it runs immediately. In some cases, there are no function or
class definitions; the script file is the sequence of Python statements.

These simple script files are very difficult to test. More importantly, they're also difficult to
reuse. When we want to build larger and more sophisticated applications from a collection
of script files, we're often forced to re-engineer a simple script into a function.

Getting ready

Let's say that we have a handy implementation of the haversine distance function called
haversine (), and it'sin a fle named ch03_ri11.py.

Initially, the file might look like this:

import csv

from pathlib import Path

from math import radians, sin, cos, sqrt, asin
from functools import partial

MI = 3959
NM = 3440
KM = 6373

136

file:///C:\Users\kishorr\Downloads\9781786469250\69a2d7aa-ecb6-4a0d-83af-26827d8369f7.xhtml
file:///C:\Users\kishorr\Downloads\9781786469250\69a2d7aa-ecb6-4a0d-83af-26827d8369f7.xhtml

Chapter 3

def haversine(lat_1: float, lon_1: float,
lat_2: float, lon_2: float, *, R: float) -> float:
and more ...

nm_haversine = partial(haversine, R=NM)

source_path = Path("waypoints.csv")
with source_path.open() as source_file:
reader = csv.DictReader(source_file)
start = next(reader)
for point in reader:
d = nm_haversine(
float(start['lat']), float(start['lon']),
float(point['lat']), float(point['lon'])
)
print(start, point, d)

start = point

We've omitted the body of the haversine () function, showingonly ... and more.. .,
since it's exactly the same code we've already shown in the Picking an order for parameters
based on partial functions recipe. We've focused on the context in which the function is in
a Python script, which also opens a file, wapypoints.csv, and does some processing on
that file.

How can we import this module without it printing a display of distances between waypoints
in our waypoints.csv file?

How to do it...

Python scripts can be simple to write. Indeed, it's often too simple to create a working script.
Here's how we transform a simple script into a reusable library:

1. Identify the statements that do the work of the script: we'll distinguish between
definition and action. Statements such as import, def, and class are clearly
definitional—they define objects but don't take a direct action to compute or produce
the output. AImost all other statements take some action. The distinction is entirely
one of intent.

2. Inour example, we have some assignment statements that are more definition than
action. These actions are like def statements; they only set variables that are used
later. Here are the generally definitional statements:

MI 3959
NM = 3440

Function Definitions

KM = 6373

def haversine(lat_1: float, lon_1: float,
lat_2: float, lon_2: float, *, R: float) -> float:
. and more ...

nm_haversine = partial(haversine, R=NM)

The rest of the statements clearly take an action toward producing the printed
results.

So, the testability approach is as follows:

3. Wrap the actions into a function:
def distances():
source_path = Path("waypoints.csv")
with source_path.open() as source_file:
reader = csv.DictReader(source_file)
start = next(reader)
for point in reader:
d = nm_haversine(
float(start['lat']), float(start['lon']),
float(point['lat']), float(point['lon'])
)
print(start, point, d)
start = point
4. Where possible, extract literals and turn them into parameters. This is often a
simple movement of the literal to a parameter with a default value. From this:

def distances():
source_path = Path("waypoints.csv")

To this:

def distances(source_path: Path = Path("waypoints.csv")) ->
None:

This makes the script reusable because the path is now a parameter instead of an
assumption.

138

Chapter 3

5. Include the following as the only high-level action statements in the script file:

if __name__ == "_main_ ":

distances()

We've packaged the action of the script as a function. The top-level action script is now
wrapped in an if statement so that it isn't executed during import.

The most important rule for Python is that an import of a module is essentially the same
as running the module as a script. The statements in the file are executed, in order, from
top to bottom.

When we import a file, we're generally interested in executing the def and class statements.
We might be interested in some assignment statements.

When Python runs a script, it sets a number of built-in special variables. One of these is
name__. This variable has two different values, depending on the context in which the file is
being executed:

» The top-level script, executed from the command line: In this case, the value of
the built-in special name of _name issetto main .

> Afile being executed because of an import statement: In this case, the value of
name___is the name of the module being created.

The standard name of __main__ may seem a little odd at first. Why not use the filename
in all cases? This special name is assigned because a Python script can be read from one
of many sources. It can be a file. Python can also be read from the stdin pipeline, or it can
be provided on the Python command line using the -c option.

When a file is being imported, however, the value of __name__ is set to the name of the
module. [t willnot be _ main__ . In our example, the value _ name__ during import
processing will be ch03_r08.

There's more...

We can now build useful work around a reusable library. We might make several files that look
like this:

File trip 1.py:

from ch@3_rl1l import distances

distances('trip_1l.csv')

Function Definitions

Or perhaps something even more complex:
File all trips.py:
from ch@3_rl1l import distances
for trip in 'trip_1l.csv', ‘'trip_2.csv':
distances(trip)
The goal is to decompose a practical solution into two collections of features:

» The definition of classes and functions
» A very small action-oriented script that uses the definitions to do useful work

To get to this goal, we'll often start with a script that conflates both sets of features. This kind
of script can be viewed as a spike solution. Our spike solution should evolve towards a more
refined solution as soon as we're sure that it works. A spike or piton is a piece of removable
mountain-climbing gear that doesn't get us any higher on the route, but it enables us to
climb safely.

See also

» In Chapter 7, Basics of Classes and Objects, we'll look at class definitions. These are
another kind of widely used definitional statement, in addition to function definitions.

140

file:///C:\Users\kishorr\Downloads\9781786469250\f228734a-a940-4f49-b94e-d69fbca25a39.xhtml

Built-In Data Structures
Part 1: Lists and Sets

Python has a rich collection of built-in data structures. These data structures are sometimes
called "containers" or "collections" because they contain a collection of individual items.
These structures cover a wide variety of common programming situations.

We'll look at an overview of the various collections that are built-in and what problems they
solve. After the overview, we will look at the list and set collections in detail in this chapter,
and then dictionaries in Chapter 5, Built-In Data Structures Part 2: Dictionaries.

The built-in tuple and string types have been treated separately. These are sequences,
making them similar in many ways to the list collection. In Chapter 1, Numbers, Strings,
and Tuples, we emphasized the way strings and tuples behave more like immutable
numbers than like the mutable list collection.

The next chapter will look at dictionaries, as well as some more advanced topics also
related to lists and sets. In particular, it will look at how Python handles references to
mutable collection objects. This has consequences in the way functions need to be
defined that accept lists or sets as parameters.

In this chapter, we'll look at the following recipes, all related to Python's built-in data
structures:

Choosing a data structure

» Building lists - literals, appending, and comprehensions
» Slicing and dicinga 1list
» Deleting from a 1ist - deleting, removing, popping, and filtering

Built-In Data Structures Part 1: Lists and Sets

» Writing list-related type hints
Reversing a copy of a 1ist

» Building sets - literals, adding, comprehensions, and operators
» Removing items from a set - remove (), pop (), and difference
» Writing set-related type hints

Choosing a data structure

Python offers a number of built-in data structures to help us work with collections of data. It
can be confusing to match the data structure features with the problem we're trying to solve.

How do we choose which structure to use? What are the features of lists, sets, and
dictionaries? Why do we have tuples and frozen sets?

Getting ready

Before we put data into a collection, we'll need to consider how we'll gather the data, and
what we'll do with the collection once we have it. The big question is always how we'll identify
a particular item within the collection.

We'll look at a few key questions that we need to answer to decide which of the built-in
structures is appropriate.

How to do it...

1. Isthe programming focused on simple existence? Are items present or absent from
a collection? An example of this is validating input values. When the user enters
something that's in the collection, their input is valid; otherwise, their input is invalid.
Simple membership tests suggest using a set:

def confirm() -> bool:
yes = {"yes", "y"}
no = {"no", "n"}
while (answer := input("Confirm: ")).lower() not in
(yes|no):
print("Please respond with yes or no")
return answer in yes

A set holds items in no particular order. Once an item is a member, we can't add
it again:

142

Chapter 4

>>> yes = {"yes", "y"}

>>> no = {"no", "n"

>>> valid inputs = yes | no
>>> valid inputs.add("y")
>>> valid inputs

{IYeSI' 'no', 'n', |Y|}

We have created a set, valid_ inputs, by performing a set union using the |
operator among sets. We can't add another y to a set that already contains y.
There is no exception raised if we try such an addition, but the contents of the set
don't change.

Also, note that the order of the items in the set isn't exactly the order in which we
initially provided them. A set can't maintain any particular order to the items; it can
only determine if an item exists in the set. If order matters, then a 1ist is more
appropriate.

Are we going to identify items by their position in the collection? An example includes
the lines in an input file—the line number is its position in the collection. When we
must identify an item using an index or position, we must use a 1ist:

>>> month name list = ["Jan", "Feb", "Mar", "Apr",
"May", "Jun", "Jul", "Aug",
"Sep", "Oct", "Nov", "Dec"]

>>> month name list[8]

1Sep’

>>> month name list.index("Feb")

We have created a list, month _name 1list, with 12 string items in a specific order.
We can pick an item by providing its position. We can also use the index () method
to locate the index of an item in the list. List index values in Python always start with
a position of zero. While a list has a simple membership test, the test can be slow for
a very large list, and a set might be a better idea if many such tests will be needed.

If the number of items in the collection is fixed—for example, RGB colors have three
values—this suggests a tuple instead of a 1ist. If the number of items will grow
and change, then the 1ist collection is a better choice than the tuple collection.

Are we going to identify the items in a collection by a key value that's distinct

from the item's position? An example might include a mapping between strings of
characters—words—and integers that represent the frequencies of those words,

or a mapping between a color name and the RGB tuple for that color. We'll look at
mappings and dictionaries in the next chapter; the important distinction is mappings
don't locate items by position the way lists do.

Built-In Data Structures Part 1: Lists and Sets

In contrast to a list, here's an example of a dictionary:
>>> scheme = {"Crimson": (220, 14, 60),
"DarkCyan": (0, 139, 139),
"Yellow": (255, 255, 00)}
>>> scheme['Crimson']

(220, 14, 60)

In this dictionary, scheme, we've created a mapping from color names to the RGB
color tuples. When we use a key, for example "Crimson", to get an item from the
dictionary, we can retrieve the value bound to that key.

Consider the mutability of items in a set collection and the keys in a dict collection.
Each item in a set must be an immutable object. Numbers, strings, and tuples are
all immutable, and can be collected into sets. Since 1ist, dict, are set objects
and are mutable, they can't be used as items in a set. It's impossible to build a set
of 1ist objects, for example.

Rather than create a set of 1ist items, we must transform each 1ist item into
an immutable tuple. Similarly, dictionary keys must be immutable. We can use a
number, a string, or a tuple as a dictionary key. We can't use a 1ist, or a set, or
any another mutable mapping as a dictionary key.

Each of Python's built-in collections offers a specific set of unique features. The collections
also offer a large number of overlapping features. The challenge for programmers new to

Python is to identify the unique features of each collection.

The collections.abc module provides a kind of roadmap through the built-in container

classes. This module defines the Abstract Base Classes (ABCs) underlying the concrete
classes we use. We'll use the names from this set of definitions to guide us through the
features.

From the ABCs, we can see that there are actually places for a total of six kinds of collections:

» Set: Its unique feature is that items are either members or not. This means
duplicates are ignored:

» Mutable set: The set collection
» Immutable set: The frozenset collection

» Sequence: Its unique feature is that items are provided with an index position:
» Mutable sequence: The 1ist collection
» Immutable sequence: The tuple collection

Chapter 4
» Mapping: Its unique feature is that each item has a key that refers to a value:

» Mutable mapping: The dict collection.

» Immutable mapping: Interestingly, there's no built-in frozen mapping.

Python's libraries offer a large number of additional implementations of these core collection
types. We can see many of these in the Python Standard Library.

The collections module contains a number of variations of the built-in collections.
These include:

» namedtuple: A tuple that offers names for each item in a tuple. It's slightly
clearer to use rgb_color.redthan rgb color[0].

» deque: A double-ended queue. It's a mutable sequence with optimizations for
pushing and popping from each end. We can do similar things with a 1ist, but
deque is more efficient when changes at both ends are needed.

» defaultdict:Adict that can provide a default value for a missing key.

Counter: A dict that is designed to count occurrences of a key. This is sometimes
called a multiset or a bag.

» OrderedDict: A dict that retains the order in which keys were created.
ChainMap: A dict that combines several dictionaries into a single mapping.

There's still more in the Python Standard Library. We can also use the heapg module,
which defines a priority queue implementation. The bisect module includes methods
for searching a sorted list very quickly. This allows a list to have performance that is a little
closer to the fast lookups of a dictionary.

We can find lists of data structures in summary web pages, like this one: https://
en.wikipedia.org/wiki/List of data_ structures.

Different parts of the article provide slightly different summaries of data structures. We'll
take a quick look at four additional classifications of data structures:

» Arrays: The Python array module supports densely packed arrays of values. The
numpy module also offers very sophisticated array processing. See https://
numpy . org. (Python has no built-in or standard library data structure related to
linked lists).

» Trees: Generally, tree structures can be used to create sets, sequential lists, or key-
value mappings. We can look at a tree as an implementation technique for building
sets or dicts, rather than a data structure with unique features. (Python has no built-
in or standard library data structure implemented via trees).

https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures

Built-In Data Structures Part 1: Lists and Sets

» Hashes: Python uses hashes to implement dictionaries and sets. This leads to good
speed but potentially large memory consumption.

» Graphs: Python doesn't have a built-in graph data structure. However, we can easily
represent a graph structure with a dictionary where each node has a list of adjacent
nodes.

We can—with a little cleverness—implement almost any kind of data structure in Python.
Either the built-in structures have the essential features, or we can locate a built-in structure
that can be pressed into service. We'll look at mappings and dictionaries in the next chapter:
they provide a number of important features for organizing collections of data.

» For advanced graph manipulation, see https://networkx.github. io.

Building lists - literals, appending, and

comprehensions

If we've decided to create a collection based on each item's position in the container—a
1ist—we have several ways of building this structure. We'll look at a number of ways we
can assemble a list object from the individual items.

In some cases, we'll need a list because it allows duplicate values. This is common in
statistical work, where we will have duplicates but we don't require the index positions.

A different structure, called a multiset, would be useful for a statistically oriented collection
that permits duplicates. This kind of collection isn't built-in (although collections.
Counter is an excellent multiset, as long as items are immutable), leading us to use

a list object.

Getting ready

Let's say we need to do some statistical analyses of some file sizes. Here's a short script that
will provide us with the sizes of some files:

>>> from pathlib import Path

>>> home = Path.cwd()

>>> for path in home.glob('data/*.csv'):
print (path.stat() .st_size, path.name)

1810 wcl.csv

28 ex2_rl2.csv

146

http://home.glob('data/*.csv')

Chapter 4

1790 wc.csv

215 sample.csv

45 craps.csv

28 output.csv

225 fuel.csv

166 waypoints.csv
412 summary log.csv
156 fuel2.csv

We've used a pathlib.Path object to represent a directory in our filesystem. The glob ()
method expands all names that match a given pattern. In this case, we used a pattern of
'data/*.csv' to locate all CSV-formatted data files. We can use the for statement to
assign each item to the path variable. The print () function displays the size from the file's
OS stat data and the name from the Path instance, path.

We'd like to accumulate a 1ist object that has the various file sizes. From that, we can
compute the total size and average size. We can look for files that seem too large or too small.

How to do it...

We have many ways to create 1ist objects:

» Literal: We can create a literal display of a 1ist using a sequence of values
surrounded by [1 characters. It looks like this: [value, ... 1.Python needs to
match the [and] to see a complete logical line, so the literal can span physical
lines. For more information, refer to the Writing long lines of code recipe in Chapter 2,
Statements and Syntax.

» Conversion Function: We can convert some other data collection into a list using
the 1ist () function. We can convert a set, or the keys of a dict, or the values
of a dict. We'll look at a more sophisticated example of this in the Slicing and
dicing a list recipe.

» Append Method: We have 1ist methods that allow us to build a 1ist one item
a time. These methods include append (), extend (), and insert (). We'll look
at append () in the Building a list with the append() method section of this recipe.
We'll look at the other methods in the How to do it... and There's more... sections
of this recipe.

» Comprehension: A comprehension is a specialized generator expression that
describes the items in a list using a sophisticated expression to define membership.
We'll look at this in detail in the Writing a list comprehension section of this recipe.

» Generator Expression: We can use generator expressions to build 1ist objects.
This is a generalization of the idea of a list comprehension. We'll look at this in detail
in the Using the list function on a generator expression section of this recipe.

file:///\\192.168.0.200\All_Books\2019\Working_Titles\Books\16020_Modern Python Cookbook 2E\BookDrafts\9781786469250\69a2d7aa-ecb6-4a0d-83af-26827d8369f7.xhtml

Built-In Data Structures Part 1: Lists and Sets

The first two ways to create lists are single Python expressions. We won't provide recipes for
these. The last three are more complex, and we'll show recipes for each of them.

Building a list with the append() method
1. Create an empty list using literal syntax, [1, orthe 1ist () function:

>>> file sizes = []

2. Iterate through some source of data. Append the items to the list using the
append () method:
>>> home = Path.cwd()
>>> for path in home.glob('data/*.csv'):

file sizes.append(path.stat() .st size)
>>> print(file_ sizes)
[1810, 28, 1790, 160, 215, 45, 28, 225, 166, 39, 412, 156]
>>> print (sum(file sizes))
5074
We used the path's glob () method to find all files that match the given pattern. The stat ()

method of a path provides the OS stat data structure, which includes the size, st size,
in bytes.

When we print the 1ist, Python displays it in literal notation. This is handy if we ever need
to copy and paste the list into another script.

It's very important to note that the append () method does not return a value. The append ()
method mutates the 1ist object, and does not return anything.

Generally, almost all methods that mutate an object have no

return value. Methods like append (), extend (), sort (), and
reverse () have no return value. They adjust the structure of the
list object itself. The notable exception is the pop () method, which
mutates a collection and returns a value.

‘ P’r It's surprisingly common to see wrong code like this:
\/ a = ['some', 'data']
a = a.append('more data')

This is emphatically wrong. This will set a to None. The correct
approach is a statement like this, without any additional assignment:

a.append('more data')

148

http://home.glob('data/*.csv')
http://home.glob('data/*.csv')

Chapter 4

Writing a list comprehension
The goal of a 1ist comprehension is to create an object that occupies a syntax role, similar

to a list literal:
1. Write the wrapping [] brackets that surround the 1ist object to be built.

2. Write the source of the data. This will include the target variable. Note that there's
no : at the end because we're not writing a complete statement:

for path in home.glob('data/*.csv")

3. Prefix this with the expression to evaluate for each value of the target variable. Again,
since this is only a single expression, we cannot use complex statements here:

[path.stat().st_size
for path in home.glob('data/*.csv")]

In some cases, we'll need to add a filter. This is done with an if clause, included after the
for clause. We can make the generator expression quite sophisticated.

Here's the entire 1ist object construction:

>>> [path.stat() .st_size
for path in home.glob('data/*.csv')]
[1810, 28, 1790, 160, 215, 45, 28, 225, 166, 39, 412, 156]

Now that we've created a 1ist object, we can assign it to a variable and do other calculations
and summaries on the data.

The list comprehension is built around a central generator expression, called a
comprehension in the language manual. The generator expression at the heart of the
comprehension has a data expression clause and a for clause. Since this generator is an
expression, not a complete statement, there are some limitations on what it can do. The data
expression clause is evaluated repeatedly, driven by the variables assigned in the for clause.

Using the list function on a generator expression
We'll create a 1ist function that uses the generator expression:

1. Write the wrapping 1ist () function that surrounds the generator expression.
2. We'll reuse steps 2 and 3 from the list comprehension version to create a generator
expression. Here's the generator expression:

list(path.stat().st_size
for path in home.glob('data/*.csv'))

Built-In Data Structures Part 1: Lists and Sets

Here's the entire 1ist object:

>>> list(path.stat() .st_size
for path in home.glob('data/*.csv'))
[1810, 28, 1790, 160, 215, 45, 28, 225, 166, 39, 412, 156]

Using the explicit 1ist () function had an advantage when we consider the possibility of
changing the data structure. We can easily replace 1ist () with set (). In the case where
we have a more advanced collection class, which is the subject of Chapter 6, User Inputs and
Outputs, we may use one of our own customized collections here. List comprehension syntax,
using [1, can be a tiny bit harder to change because [] are used for many things in Python.

A Python 1ist object has a dynamic size. The bounds of the array are adjusted when items
are appended or inserted, or 1ist is extended with another 1ist. Similarly, the bounds
shrink when items are popped or deleted. We can access any item very quickly, and the
speed of access doesn't depend on the size of the 1ist.

In rare cases, we might want to create a 1ist with a given initial size, and then set the
values of the items separately. We can do this with a list comprehension, like this:

sieve = [True for i in range(100)]

This will create a 1ist with an initial size of 100 items, each of which is True. It's rare to
need this, though, because lists can grow in size as needed. We might need this kind of
initialization to implement the Sieve of Eratosthenes:
>>> sieve[0] = sieve[l] = False
>>> for p in range(100):
if sievelpl:
for n in range(p*2, 100, p):

sieve[n] = False

>>> prime = [p for p in range(100) if sievelpll]

The list comprehension syntax, using [1, and the 1ist () function both consume items
from a generator and append them to create a new 1ist object.

There's more...

A common goal for creating a 1ist object is to be able to summarize it. We can use a variety
of Python functions for this. Here are some examples:

>>> sizes = list(path.stat().st_size

for path in home.glob('data/*.csv'))

150

http://home.glob('data/*.csv')

Chapter 4

>>> sum(sizes)

5074

>>> max(sizes)

1810

>>> min(sizes)

28

>>> from statistics import mean
>>> round (mean (sizes), 3)

422.833

We've used the built-in sum (), min (), and max () methods to produce some descriptive
statistics of these document sizes. Which of these index files is the smallest? We want to
know the position of the minimum in the list of values. We can use the index () method
for this:

>>> sizes.index(min(sizes))

1

We found the minimum, and then used the index () method to locate the position of that
minimal value.

Other ways to extend a list

We can extend a 1ist object, as well as insert one into the middle or beginning of a 1ist.
We have two ways to extend a 1ist: we can use the + operator or we can use the extend ()
method. Here's an example of creating two lists and putting them together with +:

>>> home = Path.cwd()
>>> ch3 = list(path.stat().st size
for path in home.glob('Chapter 03/*.py'))
>>> ch4 = list(path.stat().st size
for path in home.glob('Chapter 04/*.py'))
>>> len(ch3)
12
>>> len(ch4)
16
>>> final = ch3 + ch4
>>> len(final)
28
>>> sum(final)

61089

http://home.glob('Chapter_03/*.py')
http://home.glob('Chapter_04/*.py')

Built-In Data Structures Part 1: Lists and Sets

We have created a list of sizes of documents with names like chapter 03/*.py. We
then created a second list of sizes of documents with a slightly different name pattern,
chapter 04/*.py. We then combined the two lists into a final list.

We can do this using the extend () method as well. We'll reuse the two lists and build a
new list from them:

>>> final ex = []

>>> final ex.extend(ch3)

>>> final ex.extend(ch4)

>>> len(final_ ex)

28

>>> sum(final_ ex)

61089

Previously, we noted that the append () method does not return a value. Similarly, the
extend () method does not return a value either. Like append (), the extend () method
mutates the list object "in-place."

We can insert a value prior to any particular position in a list as well. The insert () method
accepts the position of an item; the new value will be before the given position:

>>> p = [3, 5, 11, 13]

>>> p.insert (0, 2)

>>> p

[2, 3, 5, 11, 13]

>>> p.insert (3, 7)

>>> p

[2, 3, 5, 7, 11, 13]

We've inserted two new values into a 1ist object. As with the append () and extend ()
methods, the insert () method does not return a value. It mutates the 1ist object.

See also

» Refer to the Slicing and dicing a list recipe for ways to copy lists and pick sublists
from a list.

» Refer to the Deleting from a list - deleting, removing, popping, and filtering recipe for
other ways to remove items from a list.

152

Chapter 4

» Inthe Reversing a copy of a list recipe, we'll look at reversing a list.

» This article provides some insights into how Python collections work internally:
https://wiki.python.org/moin/TimeComplexity. When looking at the
tables, it's important to note the expression 0(1) means that the cost is essentially
constant. The expression O(n) means the cost varies with the index of the item we're
trying to process; the cost grows as the size of the collection grows.

Slicing and dicing a list

There are many times when we'll want to pick items from a 1ist. One of the most common
kinds of processing is to treat the first item of a 1ist as a special case. This leads to a kind
of head-tail processing where we treat the head of a list differently from the items in the tail
of a list.

We can use these techniques to make a copy of a 1ist too.

Getting ready

We have a spreadsheet that was used to record fuel consumption on a large sailboat. It has
rows that look like this:

Date Engine on Fuel height

Engine off

Other notes

10/25/2013 08:24 29

13:15 27

Calm seas—Anchor in Solomon's Island

10/26/2013 09:12 27

18:25 22

choppy—Anchor in Jackson's Creek

Example of sailboat fuel use

https://wiki.python.org/moin/TimeComplexity
https://wiki.python.org/moin/TimeComplexity

Built-In Data Structures Part 1: Lists and Sets

In this dataset, fuel is measured by height. This is because a sight-gauge is used, calibrated
in inches of depth. For all practical purposes, the tank is rectangular, so the depth shown
can be converted into volume since we know 31 inches of depth is about 75 gallons.

This example of spreadsheet data is not properly normalized. Ideally, all rows follow the first
normal form for data: a row should have identical content, and each cell should have only
atomic values. In this data, there are three subtypes of row: one with starting measurements,
one with ending measurements, and one with additional data.

The denormalized data has these two problems:

» It has four rows of headings. This is something the csv module can't deal with
directly. We need to do some slicing to remove the rows from other notes.

» Each day's travel is spread across two rows. These rows must be combined to make it
easier to compute an elapsed time and the number of inches of fuel used.

We can read the data with a function defined like this:

import csv
from pathlib import Path
from typing import List, Any

def get_fuel use(path: Path) -> List[List[Any]]:
with path.open() as source_file:
reader = csv.reader(source_file)
log rows = list(reader)

return log rows

We've used the csv module to read the log details. csv.reader () is an iterable object. In
order to collect the items into a single list, we applied the 1ist () function. We looked at the
first and last item in the list to confirm that we really have a list-of-lists structure.

Each row of the original CSV file is a list. Here's what the first and last rows look like:

>>> log rows|[0]
['date', 'engine on', 'fuel height']
>>> log rows[-1]

['', "choppy -- anchor in jackson's creek", '']
For this recipe, we'll use an extension of a list index expression to slice items from the list of

rows. The slice, like the index, follows the list object in [1 characters. Python offers several
variations of the slice expression so that we can extract useful subsets of the list of rows.

Chapter 4

Let's go over how we can slice and dice the raw list of rows to pick out the rows we need.

How to do it...

1. The first thing we need to do is remove the four lines of heading from the list of rows.
We'll use two partial slice expressions to divide the list by the fourth row:

>>> head, tail = log rows[:4], log rows[4:]
>>> head[0]

['date', 'engine on', 'fuel height']

>>> head[-1]

[re, vv, 'l

>>> tail[0]

['10/25/13', '08:24:00 AM', '29']

>>> tail[-1]

['', "choppy -- anchor in jackson's creek", '']

We've sliced the list into two sections using log_rows [:4] and log_rows [4:].
The first slice expression selects the four lines of headings; this is assigned to the
head variable. We don't really want to do any processing with the head, so we
ignore that variable. (Sometimes, the variable name _is used for data that will be
ignored.) The second slice expression selects rows from 4 to the end of the list. This
is assigned to the tail variable. These are the rows of the sheet we care about.

2. We'll use slices with steps to pick the interesting rows. The [start:stop:step]
version of a slice will pick rows in groups based on the step value. In our case, we'll
take two slices. One slice starts on row zero and the other slice starts on row one.

Here's a slice of every third row, starting with row zero:

>>> pprint(tail[0::3])

[[*10/25/13*, '08:24:00 AaM', '29'], ['10/26/13', '09:12:00 AM',
127'11]

We'll also want every third row, starting with row one:

>>> pprint(tail[l::3])
(grr, '01:15:00 pmM', '27'1, ['', '06:25:00 PM', '22']]

Built-In Data Structures Part 1: Lists and Sets

3. These two slices can then be zipped together to create pairs:
>>> list(zip(tail[0::3], tail[l::3]1))
[(['10/25/13*', '08:24:00 AM', '29'], ['', '01:15:00 PM', '27']),
(['10/26/13*, '09:12:00 AM', '27'l, ['', '06:25:00 PM', '22'])]

We've sliced the list into two parallel groups:

» The [0::3] slice starts with the first row and includes every third row. This will be
rows zero, three, six, nine, and so on.

» The [1::3] slice starts with the second row and includes every third row. This will
be rows one, four, seven, ten, and so on.

We've used the zip () function to interleave these two sequences from the 1ist.
This gives us a sequence of three tuples that's very close to something we can work
with.

4. Flatten the results:

>>> paired rows = list(zip(tail[0::3], tail[l::3]))
>>> [a+b for a, b in paired rows]
[['10/25/13', '08:24:00 AM', '29', '', '01:15:00 PM',6 '27'],
['10/26/13*', '09:12:00 AM', '27', '', '06:25:00 PM', '22']]
We've used a list comprehension from the Building lists - literals, appending, and
comprehensions recipe to combine the two elements in each pair of rows to create a single
row. Now, we're in a position to convert the date and time into a single datetime value.

We can then compute the difference in times to get the running time for the boat, and the
difference in heights to estimate the fuel burned.

The slice operator has several different forms:
» [:]1:The start and stop are implied. The expression S [:] will create a copy of
sequence S.
[:stop]: This makes a new list from the beginning to just before the stop value.
» [start:]:This makes a new list from the given start to the end of the sequence.

» [start:stopl: This picks a sublist, starting from the start index and stopping just
before the stop index. Python works with half-open intervals. The start is included,
while the end is not included.

156

Chapter 4

» [::stepl: The start and stop are implied and include the entire sequence. The
step—generally not equal to one—means we'll skip through the list from the start
using the step. For a given step, s, and a list of size |L|, the index values are

. L]
i€E{s Xn:0< n<?_

» [start::step]: The startis given, but the stop is implied. The idea is that the
start is an offset, and the step applies to that offset. For a given start, a, step, s,

, L] —a
andalistofsize|L|,theindexva|uesarelE{a+s Xn:0< n< 5 .

» [:stop:stepl: Thisis used to prevent processing the last few items in a list.
Since the step is given, processing begins with element zero.

> [start:stop:step]: This will pick elements from a subset of the sequence.
Iltems prior to start and at or after stop will not be used.

The slicing technique works for lists, tuples, strings, and any other kind of sequence. Slicing
does not cause the collection to be mutated; rather, slicing will make a copy of some part of
the sequence. The items within the source collection are now shared between collections.

There's more...

In the Reversing a copy of a list recipe, we'll look at an even more sophisticated use of slice
expressions.

The copy is called a shallow copy because we'll have two collections that contain references
to the same underlying objects. We'll look at this in detail in the Making shallow and deep
copies of objects recipe.

For this specific example, we have another way of restructuring multiple rows of data into
single rows of data: we can use a generator function. We'll look at functional programming
techniques online in Chapter 9, Functional Programming Features (link provided in the
Preface).

See also

» Refer to the Building lists - literals, appending, and comprehensions recipe for ways
to create lists.

» Refer to the Deleting from a list - deleting, removing, popping, and filtering recipe
for other ways to remove items from a list.

» Inthe Reversing a copy of a list recipe, we'll look at reversing a list.

https://www.packtpub.com/sites/default/files/downloads/Functional_and_Reactive_Programming_Features.pdf
file:///\\192.168.0.200\All_Books\2019\Working_Titles\Books\16020_Modern Python Cookbook 2E\BookDrafts\9781786469250\a79d874d-3467-4fb4-8ad5-6b170beec072.xhtml

Built-In Data Structures Part 1: Lists and Sets

Deleting from a list - deleting, removing,

popping, and filtering

There will be many times when we'll want to remove items from a 1ist collection. We might
delete items from a list, and then process the items that are left over.

Removing unneeded items has a similar effect to using filter () to create a copy that
has only the needed items. The distinction is that a filtered copy will use more memory than
deleting items from a list. We'll show both techniques for removing unwanted items from a list.

Getting ready

We have a spreadsheet that is used to record fuel consumption on a large sailboat. It has
rows that look like this:

Date Engine on Fuel height

Engine off

Other notes

10/25/2013 08:24 29
13:15 27

Calm seas—Anchor in
Solomon's Island

10/26/2013 09:12 27
18:25 22
Choppy—Anchor in Jackson's
Creek

Example of sailboat fuel use

For more background on this data, refer to the Slicing and dicing a list recipe earlier in this
chapter.

We can read the data with a function, like this:

import csv
from pathlib import Path
from typing import List, Any

def get fuel use(path: Path) -> List[List[Any]]:
with path.open() as source_file:

158

Chapter 4

reader = csv.reader(source_file)
log rows = list(reader)

return log_rows

We've used the csv module to read the log details. csv.reader () isan iterable object.
In order to collect the items into a single list, we applied the 1ist () function. We looked at
the first and last item in the list to confirm that we really have a list-of-lists structure.

Each row of the original CSV file is a list. Each of those lists contains three items.

How to do it...

We'll look at several ways to remove things from a list:

» The del statement.

The remove () method.

v

The pop () method.

v

Using the filter () function to create a copy that rejects selected rows.

v

We can also replace items in a list using slice assignment.

The del statement

We can remove items from a list using the del statement. We can provide an object and a
slice to remove a group of rows from the list object. Here's how the del statement looks:
>>> del log rows[:4]

>>> log rows[0]

[*10/25/13', '08:24:00 AM', '29']

>>> log rows[-1]

['', "choppy -- anchor in jackson's creek", '']

The del statement removed the first four rows, leaving behind the rows that we really need

to process. We can then combine these and summarize them using the Slicing and dicing
a list recipe.

The remove() method

We can remove items from a list using the remove () method. This removes matching items
from a list.

Built-In Data Structures Part 1: Lists and Sets

We might have a list that looks like this:
>>> row = ['10/25/13', '08:24:00 AM', '29', '', '01:15:00 PM', '27']
We can remove the useless ' ' item from the list:

>>> row.remove(''")
>>> row

['10/25/13', '08:24:00 AM', '29', '01:15:00 PM', '27']

Note that the remove () method does not return a value. It mutates the list in place. This is
an important distinction that applies to mutable objects.

The remove () method does not return a value. It mutates the list
object. It's surprisingly common to see wrong code like this:
N I /] 1]]
@ a = ['some', 'data']
a

g = a.remove('data")

This is emphatically wrong. This will set a to None.

The pop() method

We can remove items from a list using the pop () method. This removes items from a list
based on their index.

We might have a list that looks like this:

>>> row = ['10/25/13', '08:24:00 AM', '29', '', '01:15:00 PM', '27']

This has a useless ' ' string in it. We can find the index of the item to pop and then remove it.
The code for this has been broken down into separate steps in the following example:

>>> target position = row.index('')
>>> target position
3

>>> row.pop (target position)

>>> row

['10/25/13', '08:24:00 AM', '29', '01:15:00 PM', '27']
Note that the pop () method does two things:

» It mutates the 1ist object.

» It also returns the value that was removed.

160

Chapter 4

This combination of mutation and returning a value is rare, making this method distinctive.

Rejecting items with the filter() function

We can also remove items by building a copy that passes the desirable items and rejects the
undesirable items. Here's how we can do this with the filter () function:

1. Identify the features of the items we wish to pass or reject. The £ilter () function
expects a rule for passing data. The logical inverse of that function will reject data.
In our case, the rows we want have a numeric value in column two. We can best
detect this with a little helper function.

2. Write the filter test function. If it's trivial, use a 1ambda object. Otherwise, write
a separate function:

def number_column(row, column=2):
try:
float (row[column])
return True
except ValueError:
return False
We've used the built-in £1oat () function to see if a given string is a proper number.
If the £1oat () function does not raise an exception, the data is a valid number, and

we want to pass this row. If an exception is raised, the data was not numeric, and
we'll reject the row.

3. Use the filter test function (or lambda) with the data in the £ilter () function:

>>> tail rows = list(filter (number column, log rows))

>>> len(tail rows)

4

>>> tail rows[0]

['10/25/13', '08:24:00 AM', '29']

>>> tail rows[-1]

[*', '06:25:00 PM', '22']

We provided our test, number column () and the original data, 1og_rows. The
output from the £ilter () function is an iterable. To create a list from the iterable

result, we'll use the 1ist () function. The result contains just the four rows we want;
the remaining rows were rejected.

This design doesn't mutate the original 1og_ rows list object. Instead of deleting the rows, this
creates a copy that omits those rows.

Built-In Data Structures Part 1: Lists and Sets

Slice assignment

We can replace items in a list by using a slice expression on the left-hand side of the
assignment statement. This lets us replace items in a list. When the replacement is a
different size, it lets us expand or contract a list. This leads to a technique for removing
items from a list using slice assignment.

We'll start with a row that has an empty value in position 3. This looks like this:

>>> row = ['10/25/13', '08:24:00 AM', '29', '', '01:15:00 PM', '27']
>>> target position = row.index('')
>>> target position

3

We can assign an empty list to the slice that starts at index position 3 and ends just before
index position 4. This will replace a one-item slice with a zero-item slice, removing the item
from the list:

>>> row[3:4] = []

>>> row

[*10/25/13', '08:24:00 AM', '29', '01:15:00 PM', '27']

The del statement and methods like remove () and pop () seem to clearly state the intent
to eliminate an item from the collection. The slice assignment can be less clear because it

doesn't have an obvious method name. It does work well, however, for removing a number
of items that can be described by a slice expression.

Because a list is a mutable object, we can remove items from the 1ist. This technique
doesn't work for tuples or strings. All three collections are sequences, but only the list
is mutable.

We can only remove items with an index that's present in the list. If we attempt to remove an
item with an index outside the allowed range, we'll get an IndexError exception.

For example, here, we're trying to delete an item with an index of three from a list where the
index values are zero, one, and two:

>>> row = ['', '06:25:00 PM', '22']

>>> del rowl[3]

Traceback (most recent call last):

File "/Users/slott/miniconda3/envs/cookbook/lib/python3.8/doctest.py",
line 1328, in run

compileflags, 1), test.globs)

162

Chapter 4

File "<doctest examples.txt[80]>", line 1, in <module>
del rowl[3]

IndexError: list assignment index out of range

There are a few places in Python where deleting from a 1ist object may become
complicated. If we use a 1ist object in a for statement, we can't delete items from the list.
Doing so will lead to unexpected conflicts between the iteration control and the underlying
object.

Let's say we want to remove all even items from a list. Here's an example that does not
work properly:
>>> data_items = [1, 1, 2, 3, 5, 8, 10,

13, 21, 34, 36, 55]
>>> for £ in data items:

if £%2 ==

data items.remove (f)

>>> data items
f, 1, 3, 5, 10, 13, 21, 36, 55]

The source list had several even values. The result is clearly not right; the values of 10 and 36
remain in the list. Why are some even-valued items left in the list?

Let's look at what happens when processing data_items [5]; it has a value of eight. When
the remove (8) method is evaluated, the value will be removed, and all the subsequent
values slide forward one position. 10 will be moved into position 5, the position formerly
occupied by 8. The list's internal index will move forward to the next position, which will have
13 init. 10 will never be processed.

Similarly, confusing things will also happen if we insert the driving iterable in a for loop into
the middle of a list. In that case, items will be processed twice.

We have several ways to avoid the skip-when-delete problem:

» Make a copy of the 1ist:

>>> for £ in data items[:]:

» Use a while statement and maintain the index value explicitly:
>>> position = 0
>>> while position != len(data items):

f = data items[position]

Built-In Data Structures Part 1: Lists and Sets

if £%2 ==
data items.remove (f)
else:

position += 1

We've designed a loop that only increments the position value if the value of
data_items [position] is odd. If the value is even, then it's removed, which
means the other items are moved forward one position in the 1ist, and the value
of the position variable is left unchanged.

» We can also traverse the 1ist in reverse order. Because of the way negative index
values work in Python, the range () object works well. We can use the expression
range (len(row) -1, -1, -1) totraversethe data items listin reverse order,
deleting items from the end, where a change in position has no consequence on
subsequent positions.

See also

» Refer to the Building lists - literals, appending, and comprehensions recipe for ways
to create lists.

» Refer to the Slicing and dicing a list recipe for ways to copy lists and pick sublists
from a list.

» In the Reversing a copy of a list recipe, we'll look at reversing a list.

Writing list-related type hints

The typing module provides a few essential type definitions for describing the contents
of a 1ist object. The primary type definition is List, which we can parameterize with the
types of items in the list.

There are two common patterns to the types of items in lists in Python:

» Homogenous: Each item in the 1ist has a common type or protocol. A common
superclass is also a kind of homogeneity. A list of mixed integer and floating-point
values can be described as a list of float values, because both int and float
support the same numeric protocols.

» Heterogenous: The items in the 1ist come from a union of a number of types with
no commonality. This is less common, and requires more careful programming to
support it. This will often involve the Union type definition from the typing module.

Chapter 4

Getting ready

We'll look at a list that has two kinds of tuples. Some tuples are simple RGB colors. Other
tuples are RGB colors that are the result of some computations. These are built from float
values instead of integers. We might have a heterogenous list structure that looks like this:

scheme = [
('Brick Red', (198, 45, 66)),
('colorl', (198.00, 100.50, 45.00)),
('color2', (198.00, 45.00, 142.50)),

]

Each item in the list is a two-tuple with a color name, and a tuple of RGB values. The RGB
values are represented as a three-tuple with either integer or float values. This is potentially
difficult to describe with type hints.

We have two related functions that work with this data. The first creates a color code from
RGB values. The hints for this aren't very complicated:

def hexify(r: float, g: float, b: float) -> str:
return f'#{int(r)<<16 | int(g)<<8 | int(b):06X}"
An alternative is to treat each color as a separate pair of hex digits with an expression like
£ #{int (r) : 02X} {int (g) : 02X} {int (b) : 02X} " in the return statement.
When we use this function to create a color string from an RGB number, it looks like this:

>>> hexify (198, 45, 66)
'#C62D42"

The other function, however, is potentially confusing. This function transforms a complex
list of colors into another list with the color codes:

def source_to_hex(src):
return [
(n, hexify(*color)) for n, color in src

]

We need type hints to be sure this function properly transforms a list of colors from numeric
form into string code form.

Built-In Data Structures Part 1: Lists and Sets

How to do it...

We'll start by adding type hints to describe the individual items of the input list, exemplified by
the scheme variable, shown previously:

1. Define the resulting type first. It often helps to focus on the outcomes and work
backward toward the source data required to produce the expected results. In this
case, the result is a list of two-tuples with the color name and the hexadecimal code
for the color. We could describe this as List [Tuple [str, str]], butthat hides
some important details:

ColorCode = Tuple[str, str]
ColorCodelList = List[ColorCode]

This list can be seen as being homogenous; each item will match the ColorCode
type definition.

2. Define the source type. In this case, we have two slightly different kinds of color
definitions. While they tend to overlap, they have different origins, and the processing
history is sometimes helpful as part of a type hint:

RGB_I = Tuple[int, int, int]

RGB_F = Tuple[float, float, float]

ColorRGB = Tuple[str, Union[RGB_I, RGB_F]]

ColorRGBList = List[ColorRGB]
We've defined the two integer-based RGB three-tuple as RGB_ I, and the float-
based RGB three-tuple as RGB_F. These two alternative types are combined into
the ColorRGB tuple definition. This is a two-tuple; the second element may be an

instance of either the RGB_I type or the RGB_F type. The presence of a Union type
means that this list is effectively heterogenous.

3. Update the function to include the type hints. The input will be a list like the schema
object, shown previously. The result will be a list that matches the ColorCodeList
type description:

def source_to hex(src: ColorRGBList) -> ColorCodelist:
return [
(n, hexify(*color)) for n, color in src

]

The List [] type hint requires a single value to describe all of the object types that can be
part of this list. For homogenous lists, the type is stated directly. For heterogenous lists, a
Union must be used to define the various kinds of types.

166

Chapter 4

The approach we've taken breaks type hinting down into two layers:

» A'foundation" layer that describes the individual items in a collection. We've defined
three types of primitive items: the RGB_I and RGB_F types, as well as the resulting
ColorCode type.

» A number of "composition" layers that combine foundational types into descriptions of
composite objects. In this case, ColorRGB, ColorRGBList, and ColorCodelList
are all composite type definitions.

Once the types have been named, then the names are used with definition functions,
classes, and methods.

It's important to define types in stages to avoid long, complex type hints that don't provide any
useful insight into the objects being processed. It's good to avoid type descriptions like this:

List[Tuple[str, Union[Tuple[int, int, int], Tuple[float, float,
float]]]]

While this is technically correct, it's difficult to understand because of its complexity. It helps
to decompose complex types into useful component descriptions.

There's more...

There are a number of ways of describing tuples, but only one way to describe lists:

» The various color types could be described with a NamedTuple class. Refer to the
recipe in Chapter 1, Numbers, Strings, and Tuples, Using named tuples to simplify
item access in tuples recipe, for examples of this.

» When all the items in a tuple are the same type, we can slightly simplify the type
hint to look like this: RGB_ I = Tuple[int, ...l andRGB F = Tuple[float,
... 1. This has the additional implication of an unknown number of values, which
isn't true in this example. We have precisely three values in each RGB tuple, and it
makes sense to retain this narrow, focused definition.

> Aswe've seen in thisrecipe,the RGB_ I = Tuple[int, int, int] andRGB F =
Tuple [float, float, float] type definitions provide very narrow definitions of
what the data structure should be at runtime.

See also

» In Chapter 1, Numbers, Strings, and Tuples, the Using named tuples to simplify
item access in tuples recipe provides some alternative ways to clarify types hints
for tuples.

Built-In Data Structures Part 1: Lists and Sets

» The Writing set-related type hints recipe covers this from the view of Set types.

» The Writing dictionary-related type hints recipe discusses types with respect to
dictionaries and mappings.

Reversing a copy of a list

Once in a while, we need to reverse the order of the items in a 1ist collection. Some
algorithms, for example, produce results in a reverse order. We'll look at the way numbers
converted into a specific base are often generated from least-significant to most-significant
digit. We generally want to display the values with the most-significant digit first. This leads
to a need to reverse the sequence of digits in a list.

We have three ways to reverse a list. First, there's the reverse () method. We can also
use the reversed () function, as well as a slice that visits items in reverse order.

Getting ready

Let's say we're doing a conversion among number bases. We'll look at how a number is
represented in a base, and how we can compute that representation from a number.

Any value, v, can be defined as a polynomial function of the various digits, d , in a given
base, b:

v =d, Xxb"+d,_; xb" 1 +d,_, xb" 2+, . +d; Xxb+d,

A rational number has a finite number of digits. An irrational number would have an infinite
series of digits.

For example, the number 0xBEEF is a base 16 value. The digitsare {B = 11,E = 14,F =
15}, while the base b = 16:

48879 = 11 X 163+ 14 X 16>+ 14 X 16 + 15

We can restate this in a form that's slightly more efficient to compute:

v=(((d, Xxb+d,_;) Xb+d,_5) Xb+...4+d;) xb+d,

There are many cases where the base isn't a consistent power of some number. The ISO
date format, for example, has a mixed base that involves 7 days per week, 24 hours per day,
60 minutes per hour, and 60 seconds per minute.

168

Chapter 4

Given a week number, a day of the week, an hour, a minute, and a second, we can compute
a timestamp of seconds, t, within the given year:

ty= (WX 7 +d) X 24 +h) x 60 +m) X 60 +s

For example:

>>> week = 13

>>> day = 2

>>> hour = 7

>>> minute = 53

>>> second = 19

>>> t s = (((week*7+day) *24+hour) *60+minute) *60+second
>>> t s

8063599

This shows how we convert from the given moment into a timestamp. How do we invert this
calculation? How do we get the various fields from the overall timestamp?

We'll need to use divmod style division. For some background, refer to the Choosing between
true division and floor division recipe.

The algorithm for converting a timestamp in seconds, t, into individual week, day, and time
fields looks like this:

tm, S « tg/60,tsmod 60
tp, m < t,,/60,t,,mod 60
tgh « t,/60,t,mod 24
w,d < t4/60,tgmod 7
This has a handy pattern that leads to a very simple implementation. It has a consequence

of producing the values in reverse order:

>>> t s = 8063599

>>> fields = []

>>> for b in 60, 60, 24, 7:
t s, £ = divmod(t_s, b)
fields.append(f)

Built-In Data Structures Part 1: Lists and Sets

>>> fields.append(t_ s)
>>> fields

[19, 53, 7, 2, 13]

We've applied the divmod () function four times to extract seconds, minutes, hours, days,
and weeks from a timestamp, given in seconds. These are in the wrong order. How can we
reverse them?

How to do it...

We have three approaches: we can use the reverse () method, wecanusea [::-11
slice expression, or we can use the reversed () built-in function. Here's the reverse ()
method:

>>> fields copyl = fields.copy ()

>>> fields copyl.reverse()

>>> fields copyl

[13, 2, 7, 53, 19]

We made a copy of the original list so that we could keep an unmutated copy to compare
with the mutated copy. This makes it easier to follow the examples. We applied the
reverse () method to reverse a copy of the list.

This will mutate the list. As with other mutating methods, it does not return a useful value.
It's an error to use a statement like a = b.reverse (); the value of a will always be None.

Here's a slice expression with a negative step:

>>> fields copy2 = fields[::-1]
>>> fields copy2
[13, 2, 7, 53, 19]

In this example, we made a slice [::-11] that uses an implied start and stop, and the step
was -1. This picks all the items in the list in reverse order to create a new list.

The original list is emphatically not mutated by this s1ice operation. This creates a copy.
Check the value of the fields variable to see that it's unchanged.

Here's how we can use the reversed () function to create a reversed copy of a list of values:

>>> fields copy3 = list(reversed(fields))
>>> fields copy3
[13, 2, 7, 53, 19]

170

Chapter 4

It's important to use the 1ist () function in this example. The reversed () function is a
generator, and we need to consume the items from the generator to create a new list.

As we noted in the Slicing and dicing a list recipe, the slice notation is quite sophisticated.
Using a slice with a negative step size will create a copy (or a subset) with items processed
in right to left order, instead of the default left to right order.

It's important to distinguish between these three methods:

» The reverse () method modifies the 1ist object itself. As with methods like
append () and remove (), there is no return value from this method. Because it
changes the list, it doesn't return a value.

» The [::-1] slice expression creates a new list. This is a shallow copy of the original
list, with the order reversed.

» The reversed () function is a generator that yields the values in reverse order.
When the values are consumed by the 1ist () function, it creates a copy of the list.

» Refer to the Making shallow and deep copies of objects recipe for more information
on what a shallow copy is and why we might want to make a deep copy.

» Refer to the Building lists - literals, appending, and comprehensions recipe for ways
to create lists.

» Refer to the Slicing and dicing a list recipe for ways to copy lists and pick sublists
from a list.

» Refer to the Deleting from a list - deleting, removing, popping, and filtering recipe
for other ways to remove items from a list.

Building sets - literals, adding,

comprehensions, and operators

If we've decided to create a collection based on only an item being present—a set —we
have several ways of building this structure. Because of the narrow focus of sets, there's no
ordering to the items - no relative positions - and no concept of duplication. We'll look at a
number of ways we can assemble a set collection from individual items.

Built-In Data Structures Part 1: Lists and Sets

In some cases, we'll need a set because it prevents duplicate values. It's common to
summarize data by reducing a large collection to a set of distinct items. An interesting use
of sets is for locating repeated items when examining a connected graph. We often think
of the directories in the filesystem forming a tree from the root directory through a path of
directories to a particular file. Because there are links in the filesystem, the path is not a
simple directed tree, but can have cycles. It can be necessary to keep a set of directories
that have been visited to avoid endlessly following a circle of file links.

The set operators parallel the operators defined by the mathematics of set theory. These
can be helpful for doing bulk comparisons between sets. We'll look at these in addition to
the methods of the set class.

Sets have an important constraint: they only contain immutable objects. Informally, immutable
objects have no internal state that can be changed. Numbers are immutable, as are strings,
and tuples of immutable objects. As we noted in the Rewriting an immutable string recipe in
Chapter 1, Numbers, Strings, and Tuples, strings are complex objects, but we cannot update
them; we can only create new ones. Formally, immutable objects have an internal hash value,
and the hash () function will show this value.

Here's how this looks in practice:

>>> a = "string"

>>> hash(a)

4964286962312962439

>>> b = ["list", "of", "strings"]

>>> hash (b)

Traceback (most recent call last):
File "<input>", line 1, in <module>

TypeError: unhashable type: 'list!'

The value of the a variable is a string, which is immutable, and has a hash value. The b
variable, on the other hand, is a mutable list, and doesn't have a hash value. We can create
sets of immutable objects like strings, but the TypeError: unhashable type exception
will be raised if we try to put mutable objects into a set.

Getting ready

Let's say we need to do some analysis of the dependencies among modules in a complex
application. Here's one part of the available data:

import_details = [
('Chapter_12.ch12_re1', ['typing', 'pathlib']),
('Chapter_12.ch12_re2', ['typing', 'pathlib']),

172

Chapter 4

('Chapter_12.ch12 re3', ['typing', 'pathlib']),
('Chapter_12.ch12_re4', ['typing', 'pathlib']),
('Chapter_12.ch12_ro5', ['typing', 'pathlib']),
('Chapter_12.ch12_re6', ['typing', 'textwrap', 'pathlib']),
('Chapter_12.ch12 re7',

["typing', 'Chapter_12.chl12_re6', 'Chapter_12.chl2_re5"',
‘concurrent']),
('Chapter_12.ch12_re8', ['typing', 'argparse', 'pathlib']),
('Chapter_12.ch12_re9', ['typing', 'pathlib']),
('Chapter_12.ch12 ri1e', ['typing', 'pathlib']),
('Chapter_12.ch12_ri11', ['typing', 'pathlib']),
('Chapter_12.ch12_r12', ['typing', 'argparse'])

]

Each item in this list describes a module and the list of modules that it imports. There are a
number of questions we can ask about this collection of relationships among modules. We'd
like to compute the short list of dependencies, thereby removing duplication from this list.

We'd like to accumulate a set object that has the various imported modules. We'd also like
to separate the overall collection into subsets with modules that have names matching a
common pattern.

How to do it...

We have many ways to create set objects. There are important restrictions on what kinds of
items can be collected into a set. Items in a set must be immutable.

Here are ways to build sets:

» Literal: We can create literal display of a set using a sequence of values surrounded
by {} characters. It looks like this: {value, ... }.Python needs to match the {
and } to see a complete logical line, so the literal can span physical lines. For more
information, refer to the Writing long lines of code recipe in Chapter 2, Statements
and Syntax. Note that we can't create an empty set with { }; this is an empty
dictionary. We must use set () to create an empty set.

» Conversion Function: We can convert some other data collection into a set using
the set () function. We can convert a 1ist, or the keys of a dict, or a tuple. This
will remove duplicates from the collection. It's also subject to the constraint that the
items are all immutable objects like strings, numbers, or tuples of immutable objects.

» Add Method: The set method add () will add an item to a set. Additionally, sets
can be created by a number of set operators for performing union, intersection,
difference, and symmetrical difference.

file:///\\192.168.0.200\All_Books\2019\Working_Titles\Books\16020_Modern Python Cookbook 2E\BookDrafts\9781786469250\69a2d7aa-ecb6-4a0d-83af-26827d8369f7.xhtml

Built-In Data Structures Part 1: Lists and Sets

» Comprehension: A comprehension is a specialized generator expression that
describes the items in a set using a sophisticated expression to define membership.
We'll look at this in detail in the Writing a set comprehension section of this recipe.

» Generator Expression: We can use generator expressions to build set objects.
This is a generalization of the idea of a set comprehension. We'll look at this in detail
in the Using the set function on a generator expression section of this recipe.

The first two ways to create sets are single Python expressions. We won't provide recipes
for these. The last three are more complex, and we'll show recipes for each of them.

Building a set with the add method

Our collection of data is a list with sublists. We want to summarize the items inside each
of the sublists:

1. Create an empty set into which items can be added. Unlike lists, there's no
abbreviated syntax for an empty set, so we must use the set () function:

>>> all imports = set()
2. Write a for statement to iterate through each two-tuple in the import details
collection. This needs a nested for statement to iterate through each name in the

list of imports in each pair. Use the add () method of the all imports setto
create a complete set with duplicates removed:

>>> for item, import_ list in import_ details:
for name in import_ list:
all imports.add (name)
>>> print(all imports)

{'Chapter 12.chl2 r06', 'Chapter 12.chl2 r05', 'textwrap',
'concurrent', 'pathlib', 'argparse', 'typing'}

This result summarizes many lines of details, showing the set of distinct items imported.
Note that the order here is arbitrary and can vary each time the example is executed.

Writing a set comprehension

The goal of a set comprehension is to create an object that occupies a syntax role, similar
to a set literal:

1. Write the wrapping { } braces that surround the set object to be built.

2. Write the source of the data. This will include the target variable. We have two nested
lists, so we'll two for clauses. Note that there's no : at the end because we're not
writing a complete statement:

Chapter 4
for item, import_list in import_details for name in import_
list

3. Prefix the for clauses with the expression to evaluate for each value of the target
variable. In this case, we only want the hame from the import list within each pair of
items in the overall import details list-of-lists:

{name for item, import_list in import_details for name in
import_list}

A set comprehension cannot have duplicates, so this will always be a set of distinct values.

As with the list comprehension, a set comprehension is built around a central generator
expression. The generator expression at the heart of the comprehension has a data
expression clause and a for clause. As with list comprehensions, we can include if
clauses to act as a filter.

Using the set function on a generator expression
We'll create a set function that uses the generator expression:

Write the wrapping set () function that surrounds the generator expression.
We'll reuse steps 2 and 3 from the list comprehension version to create a generator
expression. Here's the generator expression:
set(name
for item, import_list in import_details
for name in import_list

)

Here's the entire set object:

>>> all imports = set(name
for item, import list in import_ details
for name in import_list
)
>>> all imports
{'Chapter 12.chl2 r05', 'Chapter 12.chl2 r06', 'argparse',

'concurrent', 'pathlib', 'textwrap', 'typing'}

Using the explicit List () function had an advantage when we consider the possibility of
changing the data structure. We can easily replace set () with 1ist ().

Built-In Data Structures Part 1: Lists and Sets

A set can be thought of as a collection of immutable objects. Each immutable Python object
has a hash value, and this numeric code is used to optimize locating items in the set. We can
imagine the implementation relies on an array of buckets, and the hash value directs us to a
bucket to see if the item is present in that bucket or not.

Hash values are not necessarily unique. The array of hash buckets is finite, meaning collisions
are possible. This leads to some overhead to handle these collisions and grow the array of
buckets when collisions become too frequent.

The hash values of integers, interestingly, are the integer values. Because of this, we can
create integers that will have a hash collision:

>>> vl = 7

>>> v2 = 7+sys.hash info.modulus
>>> vl

7

>>> v2

2305843009213693958

>>> hash(vl)
7
>>> hash(v2)

7

In spite of these two objects having the same hash value, hash collision processing keeps
these two objects separate from each other in a set.

There's more...

We have several ways to add items to a set:

» The example used the add () method. This works with a single item.

» We can use the union () method. This is like an operator—it creates a new result
set. It does not mutate either of the operand sets.

We can use the | union operator to compute the union of two sets.
» We can use the update () method to update one set with items from another set.
This mutates a set and does not return a value.

For most of these, we'll need to create a singleton set from the item we're going to add.
Here's an example of adding a single item, 3, to a set by turning it into a singleton set:

176

Chapter 4

>>> collection = {1}

>>> collection

>>> item = 3
>>> collection.union ({item})

{1, 3}

>>> collection
{1}

In the preceding example, we've created a singleton set, {item}, from the value of the item
variable. We then used the union () method to compute a new set, which is the union of
collectionand {item}.

Note that union () returns a resulting object and leaves the original collection set
untouched. We would need to use this as collection = collection.union ({item})
to update the collection object. This is yet another alternative that uses the union
operator, |:

>>> collection = collection | {item}

>>> collection
{1, 3}
We can also use the update () method:

>>> collection.update({4})
>>> collection

{1, 3, 4}

Methods like update () and add () mutate the set object. Because they mutate the set,
they do not return a value. This is similar to the way methods of the 1ist collection work.
Generally, a method that mutates the collection does not return a value. The only exception
to this pattern is the pop () method, which both mutates the set object and returns the
popped value.

Python has a number of set operators. These are ordinary operator symbols that we can use
in complex expressions:

» | for set union, often typesetas AU B.

» & for set intersection, often typesetas AN B.

» ~ for set symmetric difference, often typesetas AAB.

>

- for set subtraction, often typeset as A — B.

Built-In Data Structures Part 1: Lists and Sets

» In the Removing items from a set - remove, pop, and difference recipe, we'll look at
how we can update a set by removing or replacing items.

Removing items from a set - remove(), pop(),

and difference

Python gives us several ways to remove items from a set collection. We can use the
remove () method to remove a specific item. We can use the pop () method to remove
(and return) an arbitrary item.

Additionally, we can compute a new set using the set intersection, difference, and symmetric
difference operators: &, -, and *. These will produce a new set that is a subset of a given
input set.

Getting ready

Sometimes, we'll have log files that contain lines with complex and varied formats. Here's a
small snippet from a long, complex log:

[2016-03-05T09:29:31-05:00] INFO: Processing ruby block[print IP] action
run (@recipe files::/home/slott/ch4/deploy.rb line 9)
[2016-03-05T09:29:31-05:00] INFO: Installed IP: 111.222.111.222
[2016-03-05T09:29:31-05:00] INFO: ruby block[print IP] called

- execute the ruby block print IP

[2016-03-05T09:29:31-05:00] INFO: Chef Run complete in 23.233811181
seconds

Running handlers:

[2016-03-05T09:29:31-05:00] INFO: Running report handlers

Running handlers complete

[2016-03-05T09:29:31-05:00] INFO: Report handlers complete

Chef Client finished, 2/2 resources updated in 29.233811181 seconds

We need to find all of the IP: 111.222.111.222 lines in this log.

178

Chapter 4

Here's how we can create a set of matches:

>>> import re

>>> pattern = re.compile(r"IP: \d+\.\d+\.\d+\.\d+")
>>> matches = set(pattern.findall (log))

>>> matches

{'1P: 111.222.111.222'}

The problem we have is extraneous matches. The log file has lines that look similar but
are examples we need to ignore. In the full log, we'll also find lines containing text like IP:
1.2.3.4, which need to be ignored. It turns out that there is a set irrelevant of values that
need to be ignored.

This is a place where set intersection and set subtraction can be very helpful.

How to do it...

1. Create a set of items we'd like to ignore:
>>> to be ignored = {'IP: 0.0.0.0', 'IP: 1.2.3.4'}

2. Collect all entries from the log. We'll use the re module for this, as shown earlier.
Assume we have data that includes good addresses, plus dummy and placeholder
addresses from other parts of the log:

>>> matches = {'IP: 111.222.111.222', 'IP: 1.2.3.4'}

3. Remove items from the set of matches using a form of set subtraction. Here are
two examples:

>>> matches - to_be ignored
{'1P: 111.222.111.222'}

>>> matches.difference(to_be ignored)

{'1P: 111.222.111.222'}

Both of these are operators that return new sets as their results. Neither of these will mutate
the underlying set objects.

It turns out the difference () method can work with any iterable collection, including lists
and tuples. While permitted, mixing sets and lists can be confusing, and it can be challenging
to write type hints for them.

Built-In Data Structures Part 1: Lists and Sets
We'll often use these in statements, like this:

>>> valid matches = matches - to be ignored
>>> valid matches

{'1P: 111.222.111.222'}

This will assign the resulting set to a new variable, valid _matches, so that we can do the
required processing on this new set.

We can also use the remove () and pop () methods to remove specific items. The remove ()
method raises an exception when an item cannot be removed. We can use this behavior

to both confirm that an item is in the set and remove it. In this example, we have an item
inthe to_be ignored set that doesn't need to exist in the original matches object, so
these methods aren't helpful.

A set object tracks membership of items. An item is either in the set or not. We specify the
item we want to remove. Removing an item doesn't depend on an index position or a key
value.

Because we have set operators, we can remove any of the items in one set from a target
set. We don't need to process the items individually.

There's more...

We have several other ways to remove items from a set:
» Inthis example, we used the difference () method and the - operator. The
difference () method behaves like an operator and creates a new set.

> We can also use the difference update () method. This will mutate a set in
place. It does not return a value.

» We can remove an individual item with the remove () method.
» We can also remove an arbitrary item with the pop () method. This doesn't apply
to this example very well because we can't control which item is popped.
Here's how the difference update () method looks:

>>> valid matches = matches.copy ()
>>> valid matches.difference update(to be ignored)
>>> valid matches

{'1P: 111.222.111.222'}

180

Chapter 4

We applied the difference update () method to remove the undesirable items from the
valid matches set. Since the valid matches set was mutated, no value is returned.
Also, since the set is a copy, this operation doesn't modify the original matches set.

We could do something like this to use the remove () method. Note that remove () will
raise an exception if an item is not present in the set:
>>> valid matches = matches.copy ()
>>> for item in to be ignored:
if item in valid matches:
valid matches.remove (item)
>>> valid matches

{'1IP: 111.222.111.222'}

We tested to see if the item was in the valid matches set before attempting to remove it.
Using an if statement is one way to avoid raising a KeyError exception. An alternative is
to use a try: statement to silence the exception that's raised when an item is not present:
>>> valid matches = matches.copy()
>>> for item in to be ignored:
try:
valid matches.remove (item)
except KeyError:
pass
>>> valid matches

{'1IP: 111.222.111.222'}

We can also use the pop () method to remove an arbitrary item. This method is unusual
in that it both mutates the set and returns the item that was removed. For this application,
it's nearly identical to remove ().

Writing set-related type hints

The typing module provides a few essential type definitions for describing the contents of
a set object. The primary type definition is set, which we can parameterize with the types
of items in the set. This parallels the Writing list-related type hints recipe.

There are two common patterns for the types of items in sets in Python:

» Homogenous: Each item in the set has a common type or protocol.

> Heterogenous: The items in the set come from a union of a number of types with no
commonality.

Built-In Data Structures Part 1: Lists and Sets

Getting ready

A dice game like Zonk (also called 10,000 or Greed) requires a random collection of dice to
be grouped into "hands." While rules vary, there a several patterns for hands, including:

» Three of a kind.

» A'"small straight" of five ascending dice (1-2-3-4-5 or 2-3-4-5-6 are the two
combinations).

> A'large straight" of six ascending dice.

» An "ace" hand. This has at least one 1 die that's not part of a three of a kind or
straight.

More complex games, like Yatzy poker dice (or Yahtzee™) introduce a number of other
patterns. These might include two pairs, four or five of a kind, and a full house. We'll limit
ourselves to the simpler rules for Zonk.

We'll use the following definitions to create the hands of dice:

from enum import Enum

class Die(str, Enum):
d_1 = "\u2680"

"\u2681"

3 = "\u2682"

4 = "\u2683"

5

6

= "\u2684"
= "\u2685"

def zonk(n: int = 6) -> Tuple[Die, ...]:
faces = list(Die)

return tuple(random.choice(faces) for _ in range(n))

The Die class definition enumerates the six faces of a standard die by providing the Unicode
character with the appropriate value.

When we evaluate the zonk () function, it looks like this.

>>> zonk ()

(<Die.d 6: 'fi'>, <Die.d 1: '[-]'>, <Die.d 1: '[-]'>, <Die.d 6: '[i'>,
<Die.d_3: '[I'>, <Die.d 2: '[J'>)

This shows us a hand with two sixes, two ones, a two, and a three. When examining the hand
for patterns, we will often create complex sets of objects.

182

Chapter 4

How to do it...

In our analysis of the patterns of dice in a six-dice hand, creating a Set [Die] object from
the six dice reveals a great deal of information:

>

When there is one dice in the set of unique values, then all six dice have the same
value.

When there are five distinct dice in the set of unique values, then this could be a
small straight. This requires an additional check to see if the set of unique values is
1-5 or 2-6, which are the two valid small straights.

When there are six distinct items in the set of unique values, then this must be a
large straight.

For two unique dice in the set, there must be three of a kind. While there may
also be four of a kind or five of a kind, these other combinations aren't scoring
combinations.

The three and four matching dice cases are ambiguous. For three distinct values,
the patterns are xxxyyz and xxyyzz. For four distinct values, the patterns are wwwxyz,
and wwxxyz.

We can distinguish many of the patterns by looking at the cardinality of the set of distinct dice.
The remaining distinctions can be made by looking at the pattern of counts. We'll also create
a set for the values created by a collections.Counter object. The underlying value is int,
so this will be Set [int]:

1.

Define the type for each item in the set. In this example, the class Die is the item
class.

Create the set object from the hand of Die instances. Here's how the evaluation
function can begin:
def eval zonk 6(hand: Tuple[Die, ...]) -> str:
assert len(hand) == 6, "Only works for 6-dice zonk."
unique: Set[Die] = set(hand)
We'll need the two small straight definitions. We'll include this in the body of the

function to show how they're used. Pragmatically, the value of small straights
should be global and computed only once:

faces = list(Die)
small_straights = [
set(faces[:-1]), set(faces[1:])

Built-In Data Structures Part 1: Lists and Sets

4. Examine the simple cases. The number of distinct elements in the set identifies
several kinds of hands directly:

if len(unique) ==
return "large straight”
elif len(unique) == 5 and unique in small_straights:
return "small straight"
elif len(unique) ==
return "three of a kind"
elif len(unique) == 1:
return "six of a kind!"

5. Examine the more complex cases. When there are three or four distinct values, the
patterns can be summarized using the counts in a simple histogram. This will use
a distinct type for the elements of the set. This is Set [int], which will collect the
counts instead of Set [Die] to create the unique Die values:

elif len(unique) in {3, 4}:
frequencies: Set[int] = set(collections.Counter(hand).
values())

6. Compare the items in the frequency set to determine what kind of hand this is. For
the cases of four distinct Die values, these can form one of two patterns: wwwxyz
and wwxxyz. The first of these has a frequencies object with Die w occurring
three times and the other Die values occurring once each. The second has no Die
that occurred three times, showing it's non-scoring. Similarly, when there are three
distinct values, they have three patterns, two of which have the required three of
a kind. The third pattern is three pairs. Interesting, but non-scoring. If one of the
Die has a frequency of three or four, that's a scoring combination. If nothing else
matches and there's a one, that's a minimal score:

if 3 in frequencies or 4 in frequencies:
return "three of a kind"
elif Die.d_1 in unique:

return "ace

7. Are there any conditions left over? Does this cover all possible cardinalities of
dice and frequencies of dice? The remaining case is some collection of pairs and
singletons without any "one" showing. This is a non-scoring Zonk:

return "Zonk!"

This shows two ways of using sets to evaluate the pattern of a collection of data items. The
first set, Set [Die], looked at the overall pattern of unique Die values. The second set,
Set [int], looked at the pattern of frequencies of die values.

Chapter 4

Here's the whole function:

def eval zonk 6(hand: Tuple[Die, ...]) -> str:
assert len(hand) == 6, "Only works for 6-dice zonk."
faces = list(Die)
small_straights = [
set(faces[:-1]), set(faces[1:])

]
unique: Set[Die] = set(hand)

if len(unique) == 6:
return "large straight”
elif len(unique) == 5 and unique in small_straights:
return "small straight”
elif len(unique) ==
return "three of a kind"
elif len(unique) ==
return "six of a kind!"
elif len(unique) in {3, 4}:

Llen(unique) == 4: wwwxyz (good) or wwxxyz (non-scoring)

len(unique) == 3: xxxxyz, xxxyyz (good) or xxyyzz (non-
scoring)

frequencies: Set[int] = set(collections.Counter(hand).
values())

if 3 in frequencies or 4 in frequencies:
return "three of a kind"
elif Die.d_1 in unique:

return "ace
return "Zonk!"

This shows the two kinds of set objects. A simple set of dice is assigned to the variable
unique. When the number of unique values is 3 or 4, then a second set object is created,
frequencies. If 3 is in the set of frequencies, then there was a three of a kind. If 4 was in
the set of frequencies, then there was a four of a kind.

The essential property of a set is membership. When we compute a set from a collection of
Die instances, the set [Die] object will only show the distinct values. We use Set [Die]
to provide guidance to the mypy program that only instances of the Die class will be
collected in the set.

Built-In Data Structures Part 1: Lists and Sets

Similarly, when we look at the distribution of frequencies, there are only a few distinct
patterns, and they can be identified by transforming the frequencies into a set of distinct
values. The presence of a 3 or a 4 value in the set of frequencies provides all of the
information required to discern the kind of hand. The 3 (or 4) value in the frequencies
will always be the largest value, making it possible to use max (collections.

Counter (hand) .values ()) instead of set (collections.Counter (hand) .
values ()). Changing from a collection to an individual item will require some additional
changes. We leave those for you to figure out.

There's more...

Computing the score of the hand depends on which dice were part of the winning pattern.
This means that the evaluation function needs to return a more complex result when the
outcome is three of a kind. To determine the points, there are two cases we need to consider:
» The value of the dice that occurred three or more times.
» It's possible to roll two triples; this pattern must be distinguished too.
We have two separate conditions to identify the patterns of unique values indicating a three

of a kind pattern. The function needs some refactoring to properly identify the values of the
dice occurring three or more times. We'll leave this refactoring as an exercise for you.

See also

» Refer to the Writing list-related type hints recipe in this chapter for more about type
hints for lists.

» The Writing dictionary-related type hints recipe covers type hints for dictionaries.

186

Built-In Data Structures
Part 2: Dictionaries

Python has a rich collection of built-in data structures. These data structures are sometimes
called "containers" or "collections" because they contain a collection of individual items.
These structures cover a wide variety of common programming situations.

In this chapter, we'll build on some of the basics introduced in Chapter 4, Built-In Data
Structures Part 1: Lists and Sets. This chapter covers the dictionary structure. This is
a mapping from keys to values, sometimes called an associative array.

This chapter will also look at some more advanced topics related to how Python handles
references to mutable collection objects. This has consequences in the way functions need
to be defined.

In this chapter, we'll look at the following recipes, all related to Python's built-in data
structures:

» Creating dictionaries - inserting and updating
Removing items from dictionaries - the pop () method and the del statement
Controlling the order of dictionary keys
Writing dictionary-related type hints
Understanding variables, references, and assignment

Making shallow and deep copies of objects

vV v.v. vy

Avoiding mutable default values for function parameters

We'll start with how to create a dictionary.

Built-in Data Structures Part 2: Dictionaries

Creating dictionaries - inserting and

updating

A dictionary is one kind of Python mapping. The built-in type dict class provides a number
of common features. There are some common variations on these features defined in the
collections module.

As we noted in the Choosing a data structure recipe at the beginning of the previous chapter,
we'll use a dictionary when we have a key that we need to map to a given value. For example,
we might want to map a single word to a long, complex definition of the word, or perhaps
some value to a count of the number of times that value has occurred in a dataset.

A dictionary with keys and integer counts is very common. We'll look at a detailed recipe that
shows how to initialize the dictionary and update the counter.

Getting ready

We'll look at an algorithm for locating the various stages in transaction processing. This relies
on assigning a unique ID to each request and including that ID with each log record written
during the transaction starting with that request. Because a multi-threaded server may be
handling a number of requests concurrently, the stages for each request's transaction will

be interleaved unpredictably. Reorganizing the log by request ID helps segregate the various
threads.

Here's a simulated sequence of log entries for three concurrent requests:
[2019/11/12:08:09:10,123] INFO #PJQXB“eRwnEGG?2%32U path="/openapi.yaml"

method=GET

[2019/11/12:08:09:10,234] INFO 9DiC!B"nXxnEGG?2%32U path="/items?limit=x"
method=GET

[2019/11/12:08:09:10,235] INFO 9DiC!B"nXxnEGG?2%32U error="invalid query"

[2019/11/12:08:09:10,345] INFO #PJQXB“eRwnEGG?2%32U status="200"
bytes="11234"

[2019/11/12:08:09:10,456] INFO 9DiC!B“nXxnEGG?2%32U status="404"
bytes="987"

[2019/11/12:08:09:10,567] INFO >UL>PB R>&nEGG?2%32U path="/category/42"
method=GET

Each line has a timestamp. The severity level is INFO for each record shown in the example.
The next string of 20 characters is a transaction ID. This is followed by log information for
a particular step in the transaction.

188

Chapter 5

The following regular expression defines the log records:

log parser = re.compile(r"\[(.*?)\] (\w+) (\S+) (.*)")

This defines four fields. The timestamp is enclosed by [1. This is followed a word (\w+) and a
sequence without any spaces (\S+). The balance of the line is the fourth group of characters.

Parsing these lines will produce a sequence of four-tuples. The data looks like this:

[('2019/11/12:08:09:10,123", 'INFO', '#PJQXB“eRwnEGG?2%32U', 'path="/
openapi.yaml" method=GET'),

('2019/11/12:08:09:10,234', 'INFO', '9DiC!B"nXxnEGG?2%32U', ‘'path="/
items?limit=x" method=GET'),

('2019/11/12:08:09:10,235', 'INFO', '9DiC!B*“nXxnEGG?2%32U"',
'error="invalid query"'),

('2019/11/12:08:09:10,345', 'INFO', '#PJQXB“eRwnEGG?2%32U',
'status="200" bytes="11234""'),

('2019/11/12:08:09:10,456', 'INFO', '9DiC!B*“nXxnEGG?2%32U"',
'status="404" bytes="987"'),

('2019/11/12:08:09:10,567', 'INFO', '>UL>PB_R>&nEGG?2%32U"', 'path="/
category/42" method=GET')]

We need to know how often each unique path is requested. This means ignoring some log
records and collecting data from the other records. A mapping from the path string to a count
is an elegant way to gather this data. It's so elegant that the collections module provides some
alternatives for handling this use case.

How to do it...

We have a number of ways to build dictionary objects:

» Literal: We can create a display of a dictionary by using a sequence of key/value
pairs surrounded by { } characters. The {} characters overlap with the way set literals
are created. The difference is the use of : between keys and values. Literals look like
this: {"num": 355, "den": 113}.

» Conversion function: A sequence of two-tuples can be turned into a dictionary like
this: dict ([('num', 355), ('den', 113)1]).Each two-tuple becomes a key/
value pair. The keys must be immutable objects like strings, numbers, or tuples
of immutable objects. We can also build dictionaries like this: dict (num=355,
den=113). Each of the parameter names becomes a key. This limits the dictionary
keys to strings that are also valid Python variable names.

» Insertion: We can use the dictionary [key] = value syntaxto set or replace a
value in a dictionary. We'll look at this later in this recipe.

» Comprehensions: Similar to lists and sets, we can write a dictionary comprehension
to build a dictionary from some source of data.

Built-in Data Structures Part 2: Dictionaries

Building a dictionary by setting items
We build a dictionary by creating an empty dictionary and then setting items to it:

1. Create an empty dictionary to map paths to counts with { }. We can also use dict ()
to create an empty dictionary. Since we're going to create a histogram that counts the
number of times a path is used, we'll call it hi stogram. The type hint is something
we'll look at in the Writing dictionary-related type hints recipe later in this chapter:

>>> histogram = {}

2. For each of the log lines, filter out the ones that do not have a value that starts with
path in the item with an index of 3:

>>> for line in log lines:
path method = line[3] # group(4) of the original match
if path method.startswith("path"):

3. Ifthe path is not in the dictionary, we need to add it. Once the value of the path
method string is in the dictionary, we can increment the value in the dictionary,
based on the key from the data:

if path method not in histogram:
histogram[path method] = 0
histogram[path method] += 1

This technique adds each new path method value to the dictionary. Once it has been
established that the path method key is in the dictionary, we can increment the value
associated with the key.

Building a dictionary as a comprehension

The last field of each log line had one or two fields inside. There may have been a value like
path="/openapi.yaml" method=GET with two attributes, path and method; or a value
like error="1invalid query" with only one attribute, error.

Use the following regular expression to decompose this final field:
param_parser = re.compile(r'(\w+)=(".*?"|\w+)")

This regular expression matches the word in from of the =, saving that as group one. The text
after the = sign has one of two forms: it's either a quote and an arbitrary string of characters
to the next quote, or it's a simple word of one or more characters without quotes. This will
become group two.

The £indall () method of this regular expression object can decompose the fields. Each
matching group becomes a two-tuple with the name and the value separated by the =. We
can then build a dictionary from the list of matched groups:

190

Chapter 5

1. For each of the log lines, apply the regular expression to create a list of groups:
>>> for line in log lines:

name value pairs = param parser.findall(line[3])

2. Use a dictionary comprehension to use the name as the key and the value as the
value of a dictionary:

cen params = {match[0]: match[l] for match in name_value_
pairs}

We can print the params values and we'll see the following dictionaries:

{'path': 'n /openapi.yaml"', 'method': 'GET'}

{'path': '"/items?limit=x"', 'method': 'GET'}

{'error': '"invalid query"'}

{'status': '"200"', 'bytes': '"11234"'}

{'status': '"404"', 'bytes': '"987"'}

{'path': '"/category/42"', 'method': 'GET'}

Using a dictionary for the final fields of each log record makes it easy to separate the
important pieces of information.

The core feature of a dictionary is a mapping from an immutable key to a value object of any
kind. In the first example, we've used an immutable string as the key, and an integer as the
value. We describe itas Dict [str, int] inthe type hint.

As we count, we replace each value associated with a given key. It's important to understand
how the following statement works:

histogram[customer] += 1

The implementation is essentially this:

histogram[customer] = histogram[customer] + 1

The expression histogram[customer] + 1 computes a new integer object from two other
integer objects. This new object replaces the old value in the dictionary. This construct works
elegantly because the dictionary as a whole is mutable.

It's essential that dictionary key objects be immutable. We cannot use a 1ist, set, ordict
as the key in a dictionary mapping. We can, however, transform a list into an immutable tuple,
or make a set into a frozenset so that we can use one of these more complex objects as
a key. In both examples, we had immutable strings as the keys to each dictionary.

Built-in Data Structures Part 2: Dictionaries

We don't have to use an if statement to add missing keys. We can use the setdefault ()
method of a dictionary instead. Our code to compute the path and method histogram would
look like this:

>>> histogram = {}
>>> for line in log lines:
path method = line[3] # group(4) of the match
if path method.startswith("path"):
histogram.setdefault (path method, 0)
histogram[path method] += 1

If the key, path_method, doesn't exist, a default value of zero is provided. If the key does
exist, the setdefault () method does nothing.

The collections module provides a number of alternative mappings that we can use
instead of the default dict mapping:

» defaultdict: This collection saves us from having to write step two explicitly.
We provide an initialization function as part of creating a defaultdict instance.
We'll look at an example soon.

» Counter: This collection does the entire key-and-count algorithm as it is being
created. We'll look at this soon too.

Here's the version using the defaultdict class:

>>> from collections import defaultdict
>>> histogram = defaultdict (int)
>>> for line in log lines:
path method = line[3] # group(4) of the match
if path method.startswith("path"):
histogram[path method] += 1

We've created a defaultdict instance that will initialize any unknown key values using
the int () function. We provide int—the function—to the defaultdict constructor.
Defaultdict will evaluate the int () function to create default values.

This allows us to simply use histogram[path method] += 1. If the value associated

with the path method key was previously in the dictionary, it will be incremented. If the
path_method value was not in the dictionary, the int function is called with no argument;
the return value, 0, is used to create a new entry in the dictionary. Once the new default value
is present, it can be incremented.

192

Chapter 5

The other way we can accumulate frequency counts is by creating a Counter object. We need
to import the Counter class so that we can build the Counter object from the raw data:
>>> from collections import Counter
>>> histogram = Counter (line[3]
for line in log lines
if line[3].startswith("path")
)

When we create a Counter from a source of data, the Counter class will scan the data and
count the distinct occurrences.

» Inthe Removing from dictionaries - the pop() method and the del statement recipe,
we'll look at how dictionaries can be modified by removing items.

» Inthe Controlling the order of dictionary keys recipe, we'll look at how we can control
the order of keys in a dictionary.

Removing from dictionaries - the pop()

method and the del statement

A common use case for a dictionary is as an associative store: we can keep an association
between key and value objects. This means that we may be doing any of the CRUD operations
on an item in the dictionary:
» Create a new key and value pair
» Retrieve the value associated with a key
» Update the value associated with a key
» Delete the key (and the corresponding value) from the dictionary
We have two common variations on this theme:
» We have the in-memory dictionary, dict, and the variations on this theme in the
collections module. The collection only exists while our program is running.
» We also have persistent storage in the shelve and dbm modules. The data collection
is a persistent file in the filesystem, with a dict-like mapping interface.

These are similar, while the distinctions between a shelf.Shelf and dict object are minor.
This allows us to experiment with a dict object and switch to a Shelf object without making
dramatic changes to a program.

Built-in Data Structures Part 2: Dictionaries

A server process will often have multiple concurrent sessions. When sessions are created,
they can be placed into dict or shelf. When the session exits, the item can be deleted
or perhaps archived.

We'll simulate this concept of a service that handles multiple requests. We'll define
a service that works in a simulated environment with a single processing thread. We'll
avoid concurrency and multi-processing considerations.

Getting ready

A great deal of processing supports the need to group items around one (or more) different
common values. We might have web log records grouped by time, or by the resource
requested. With more sophisticated websites, we might use cookies to group transactions
around sessions defined by the value of a cookie.

We'll look at an algorithm for locating the various stages in transaction processing. This

relies on assigning a unique ID to each request and including that ID with each log record
written while handling a request. Because a multi-threaded server may be handling a number
of sessions concurrently, the steps for each of a number of requests will be interleaved
unpredictably. Reorganizing the log by request ID helps segregate the various threads.

Here's a simulated sequence of log entries for three concurrent requests:
[2019/11/12:08:09:10,123] INFO #PJQXB"eRwnEGG?2%32U path="/openapi.yaml"

method=GET

[2019/11/12:08:09:10,234] INFO 9DiC!B"nXxnEGG?2%32U path="/items?limit=x"
method=GET

[2019/11/12:08:09:10,235] INFO 9DiC!B"nXxnEGG?2%32U error="invalid query"

[2019/11/12:08:09:10,345] INFO #PJQXB“eRwnEGG?2%32U status="200"
bytes="11234"

[2019/11/12:08:09:10,456] INFO 9DiC!B*“nXxnEGG?2%32U status="404"
bytes="987"

[2019/11/12:08:09:10,567] INFO >UL>PB R>&nEGG?2%32U path="/category/42"
method=GET

Each line has a timestamp. The severity level is INFO for each record shown in the example.
The next string of 20 characters is a transaction ID. This is followed by log information for a
particular step in the transaction.

The following regular expression defines the log records:

log parser = re.compile(r"\[(.*?)\] (\w+) (\S+) (.*)")

This defines four fields. The timestamp is enclosed by [1. This is followed a word (\w+) and a
sequence without any spaces (\S+). The balance of the line is the fourth group of characters.

Chapter 5

A transaction's end is marked with a status= in the fourth group of characters. This shows
the final disposition of the web request.

We'll use an algorithm that uses the transaction ID as a key in a dictionary. The value is the
sequence of steps for the transaction. With a very long log, we don't-generally-want to save
every transaction in a gigantic dictionary. When we reach the termination, we can yield the list
of log entries for a complete transaction.

How to do it...

The context will include match := log parser.match(line) to apply the regular
expression. Given that context, the processing to use each match to update or delete from
a dictionary is as follows:

1. Define adefaultdict object to hold transaction steps. The keys are 20-character
strings. The values are lists of log records. In this case, each log record will have
been parsed from the source text into a tuple of individual strings:

LogRec = Tuple[str, ...]
requests: DefaultDict[str, List[LogRec]] = collections.
defaultdict(list)

2. Define the key for each cluster of log entries:
id = match.group(2)
3. Update a dictionary item with a log record:

requests[id].append(match.groups())

4. |If this log record completes a transaction, yield the group as part of a generator
function. Then remove the transaction from the dictionary, since it's complete:

if match.group(3).startswith('status'):
yield requests[id]
del requests[id]

Here's the essential algorithm wrapped up as a generator function:

def request iter t(source: Iterable[str]) -> Iterator[List[LogRec]]:

requests: DefaultDict[str, List[LogRec]] = collections.
defaultdict(list)

for line in source:
if match := log_parser.match(line):
id = match.group(2)
requests[id].append(tuple(match.groups()))
if match.group(3).startswith('status'):
yield requests[id]

Built-in Data Structures Part 2: Dictionaries

del requests[id]
if requests:

print("Dangling"”, requests)

This shows how the individual lines are parsed by the regular expression, then organized into
clusters around the id value in group number two.

Because a dictionary is a mutable object, we can remove keys from a dictionary. This

will delete both the key and the value object associated with the key. We do this when

a transaction is complete. A moderately busy web server handling an average of ten
transactions per second will see 864,000 transactions in a 24-hour period. If there are an
average of 2.5 log entries per transaction, there will be at least 2,160,000 lines in the file.

If we only want to know the elapsed time per resource, we don't want to keep the entire
dictionary of 864,000 transactions in memory. We'd rather transform the log into a clustered
intermediate file for further analysis.

This idea of transient data leads us to accumulate the parsed log lines into a list instance.
Each new line is appended to the appropriate list for the transaction in which the line belongs.
When the final line has been found, the group of lines can be purged from the dictionary.

In the example, we used the del statement, but the remove () or pop () method can also
be used.

There's more...

The example relies on the way a regular expression Match object's groups () method
produces a Tuple [str, ...] object. Thisisn'tideal because it leads to the opaque
group (3) and group (4) references. It's not at all clear what these groups mean in the
overall log record.

If we change the regular expression pattern, we can get a dictionary for each row. The match
object's groupdict () method produces a dictionary. Here's the revised regular expression,
with named groups:

log parser_d = re.compile(
r"\[(?P<time>.*?)\] "
r"(?P<sev>\w+) "
r" (?P<id>\S+) "
r"(?P<msg>.*)"

196

Chapter 5

This leads to a small but helpful variation on the preceding example, as shown in the following
example:

LogRecD = Dict[str, str]

def request_iter d(source: Iterable[str]) -> Iterator[List[LogRecD]]:

requests: DefaultDict[str, List[LogRecD]] = collections.
defaultdict(list)

for line in source:
if match := log_parser_d.match(line):
record = match.groupdict()
id = record.pop('id")
requests[id].append(record)
if record['msg'].startswith('status"'):
yield requests[id]
del requests[id]
if requests:

print("Dangling”, requests)

This example has a slightly different type for the log records. In the example, each log record
is a dictionary created by a Match object's groupdict () method.

The id field is popped from each record. There's no benefit in keeping this as a field in the
dictionary as well as the key used to find the list of record dictionaries.

The result of running this is a sequence of List [Dict [str, str]] instances. It looks like
the following example:

>>> for r in request iter d(log.splitlines()):
print (r)

[{'time': '2019/11/12:08:09:10,123', 'sev': 'INFO', 'msg': 'path="/
openapi.yaml" method=GET'}, {'time': '2019/11/12:08:09:10,345', 'sev':
'INFO', 'msg': 'status="200" bytes=“11234“'}]

[{'time': '2019/11/12:08:09:10,234', 'sev': 'INFO', 'msg': 'path="/
items?limit=x" method=GET'}, {'time': '2019/11/12:08:09:10,235",

'sev': 'INFO', 'msg': 'error="invalid query"'}, {'time’':
'2019/11/12:08:09:10,456"', 'sev': 'INFO', 'msg': 'status="404"
bytes="987""'}]

Dangling defaultdict(<class 'list's>, {'>UL>PB R>&nEGG?2%32U': [{'time':
'2019/11/12:08:09:10,567"', 'sev': 'INFO', 'msg': 'path="/category/42"
method=GET'}]1})

Built-in Data Structures Part 2: Dictionaries

This shows the two complete transactions, assembled from multiple log records. It also shows
the Dangling log record, where the completion of the transaction was not found in the log.
This may represent a problem, but it's more likely to represent either a transaction in process
when one log file was closed and the next log file opened, or it may represent a user that
walked away from the browser and never finished the transaction.

» Inthe Creating dictionaries - inserting and updating recipe, we look at how we create
dictionaries and fill them with keys and values.

» Inthe Controlling the order of dictionary keys recipe, we look at how we can control
the order of keys in a dictionary.

Controlling the order of dictionary keys

In the Creating dictionaries - inserting and updating recipe, we looked at the basics of creating
a dictionary object. In many cases, we'll put items into a dictionary and fetch items from a
dictionary individually. The idea of an order to the keys isn't central to using a dictionary.

Here are two common cases where key order may be important:

» Entry order: When working with documents in JSON or YAML notation, it can help
to preserve the order of keys from the source documents.

» Sorted order: When summarizing data, it often helps to provide the keys in some
easier-to-visualize order.

A Python dictionary's keys - since version 3.6 - are saved in the order in which they were
initially inserted. This can be made explicit using the collections.OrderedDict class
instead of the built-in dict class.

In the case when a dictionary contains a summary, we may want to sort the keys before
displaying the contents of the dictionary. This is done with the sorted () function.

Getting ready

We'll look at the process of working with spreadsheet data. When we use a csv.
DictReader () each row becomes a dictionary. It can be very helpful for people using the
data to preserve the order of the original columns. Here's a simple table of data from a
spreadsheet:
date,engine on, fuel height on,engine off, fuel height off
10/25/13,08:24:00,29,13:15:00,27
10/26/13,09:12:00,27,18:25:00,22
10/28/13,13:21:00,22,06:25:00,14

198

Chapter 5

When displaying this data, it's helpful to keep the columns in the original order.

How to do it...

We have two common cases where we want to control the ordering of the keys of a dictionary:

» Keys in the order the items were inserted:
» Use the built-in dict class to preserve the order in which keys are inserted.

» Use collections.OrderedDict to explicitly state the keys are kept in the
order they were inserted.

» Keys in some other order. The ordering can be imposed by using sorted () to
iterate over the keys in the desired order. This can be done when making a copy of
a dictionary, but it's more commonly done when emitting a final report or summary
from dictionary data.

Here's how using the built-in dict class will preserve the order of the columns in the original
.csv file:

import csv
from pathlib import Path
from typing import List, Dict

def get_fuel use(source_path: Path) -> List[Dict[str, str]]:
with source_path.open() as source_file:
rdr= csv.DictReader(source_file)
data: List[Dict[str, str]] = list(rdr)
return data
Each row in the list collection that's created is a dictionary. The order of the keys in each

dictionary will match the order of the columns in the source file. The items in the list will
match the original rows.

The output looks like this:

>>> source path = Path("data/fuel2.csv")
>>> fuel use = get fuel use(source path)
>>> for row in fuel use:
print (row)
{'date': '10/25/13', 'engine on': '08:24:00', 'fuel height on': '29',
'engine off': '13:15:00', 'fuel height off': '27'}
{'date': '10/26/13', 'engine on': '09:12:00', 'fuel height on': '27',
'engine off': '18:25:00', 'fuel height off': '22'}

Built-in Data Structures Part 2: Dictionaries

{'date': '10/28/13', 'engine on': '13:21:00', 'fuel height on': '22',
'engine off': '06:25:00', 'fuel height off': '14'}

Since Python 3.6, the dict class keeps the keys in the order they are inserted. This property
of the built-in dict collection class is very handy for ensuring keys remain in an order that's
easy to understand.

This is a change from other, older implementations of the dict class. It's also different from
the way a set object works. Old implementations of dict (and the current implementation of
set) rely on the hash values of the keys. This tends to put keys into a difficult-to-predict order.

We can impose a specific order by creating a dictionary object from a list of two-tuples. This
gives us complete control over the ordering of the keys. In these cases, it can be more clear
to use the colllections.OrderedDict class, but this is no longer necessary.

For example, we might have a row like this:
>>> row = {'columns': 42, 'data': 3.14, 'of': 2.718, ‘'some': 1.618}
From this dictionary, we can build a new dictionary with keys in a specific order:

>>> import collections

>>> key order = ['some', 'columns', 'of', 'data'l]
>>> collections.OrderedDict (
[(name, row[name]) for name in key order]

)

OrderedDict([('some', 1.618), ('columns', 42), ('of', 2.718), ('data’',
3.14)1)

This provides ways to create dictionaries that can be serialized with the attributes in
a predictable order. When we do JSON serialization, for example, this can be helpful.

There's more...

There's another time when we can enforce an ordering of dictionary keys. That happens
when we iterate through the keys. Implicitly, the keys () method is used as an iterator over
a dictionary. Consider this code snippet:

for field in row:

print(field, row[field])

200

Chapter 5

By definition, the statement for field in row.keys () : has the same behavior as the
statement for field in row:.We can use this to explicitly sort the keys into a more
useful order for presentation.

Consider this summary of simplified web server log entries:

>>> log rows = [
{'date': '2019-11-12T13:14:15', ‘'path': '/path/to/resource'},
{'date': '2019-11-14T15:16:17', ‘'path': '/path/to/resource'},
{'date': '2019-11-19T20:21:11', ‘'path': '/path/to/resource'},
{'date': '2019-11-20T21:22:23', 'path': '/path/to/resource'},
{'date': '2019-11-26T07:08:09', 'path': '/path/to/resource'},

1
>>> summary = collections.Counter ()
>>> for row in log rows:

. date = datetime.datetime.strptime(row['date']l, "%Y-%m-
%dT%H:%M:%S")

summary [date.weekday ()] += 1
>>> summary

Counter ({1: 3, 3: 1, 2: 1})

The summary object has day of week, as a number, and the number of times a particular path
was referenced. We'd like to change this to show the names of the days of the week. And, also
very important for understanding the data, we'd like the days to be in proper calendar order,
not in alphabetical order by day name.

We can sort the Counter dictionary keys and use the calendar module to provide day
names from the day numbers. The following snippet shows the essence of this operation:
>>> import calendar
>>> for k in sorted(summary) :
print (calendar.day name[k], summary[k])
Tuesday 3
Wednesday 1
Thursday 1

This shows how the sorted () function can be applied to the keys of a
collections.Counter dictionary to produce the keys in a meaningful order.

201

Built-in Data Structures Part 2: Dictionaries

» Inthe Creating dictionaries - inserting and updating recipe, we'll look at how we can
create dictionaries.

» In the Removing from dictionaries - the pop() method and the del statement recipe,
we'll look at how dictionaries can be modified by removing items.

Writing dictionary-related type hints

When we ook at sets and lists, we generally expect each item within a List (or a set) to be
the same type. When we look at object-oriented class designs, in Chapter 7, Basics of Classes
and Objects, we'll see how a common superclass can be the common type for a closely
related family of object types. While it's possible to have heterogeneous types in a list or set
collection, it often becomes quite complex to process.

Dictionaries are used in a number of different ways.

» Homogeneous types for values: This is common for dictionaries based on
collections.Counter or collections.defaultdict. The input froma csv.
DictReader will also be homogeneous, since every value from a CSV file is a string.

» Heterogeneous types for values: This is common for dictionaries used to represent
complex objects that have been serialized into JSON notation. It's also common for
internal data structures created as part of more complex processing.

This flexibility leads to two kinds of type hints for dictionary objects.

Getting ready

We'll look at two kinds of dictionary type hints for homogeneous value types as well as
heterogeneous value types. We'll look at data that starts out as one of these kinds of
dictionaries but is transformed to have more complex type definitions.

We'll be starting with the following CSV file:

date,engine on, fuel height on,engine off, fuel height off
10/25/13,08:24:00,29,13:15:00,27
10/26/13,09:12:00,27,18:25:00,22
10/28/13,13:21:00,22,06:25:00,14

This describes three separate legs of a multi-day trip in a sailboat. The fuel is measured by the
height in the tank, rather than some indirect method using a float or other gauges. Because
the tank is approximately rectangular, there's a relatively simple transformation from height to
gallons. For this tank, 31 inches of depth is about 75 gallons of fuel.

202

Chapter 5

How to do it...

The initial use of csv.DictReader will lead to dictionaries with homogeneous type
definitions:

1. Locate the type of the keys in the dictionary. When reading CSV files, the keys are
strings, with the type str.

2. Locate the type of the values in the dictionary. When reading CSV files, the values are
strings, with the type str.

3. Combine the types using the typing.Dict type hint. This yields Dict [str, str].
Here's an example function for reading data from a CSV file:

def get fuel use(source_path: Path) -> List[Dict[str, str]]:
with source_path.open() as source_file:
rdr = csv.DictReader(source_file)
data: List[Dict[str, str]] = list(rdr)
return data
The get _fuel use () function yields values that match the source data. In this case, it's
a dictionary that maps string column names to string cell values.

This data, by itself, is difficult to work with. A common second step is to apply transformations
to the source rows to create more useful data types. We can describe the results with
a type hint:

1. Identify the various value types that will be needed. In this example, there are five
fields with three different types, shown here:
» The date field is a datetime.date object.
» The engine onfield isa datetime.time object.

» The fuel height on field is an integer, but we know that it will be used in a
float context, so we'll create a float directly.

» The engine off field is a datetime.time object.
» The fuel height off field is also a float value.

2. Import the TypedDict type definition from the mypy extensions module.
Define TypedDict with the new heterogeneous dictionary types:

from mypy_extensions import TypedDict
History = TypedDict(

'History',

{

‘date’': datetime.date,

203

Built-in Data Structures Part 2: Dictionaries

‘start_time': datetime.time,
‘start_fuel': float,
‘end_time': datetime.time,
‘end fuel': float

)

In this example, we've also renamed the fields to make them shorter and slightly easier to
understand.

The function to perform the transformation can look like the following example:

def make history(source: Iterable[Dict[str, str]]) -»>
Iterator[History]:

for row in source:
yield dict(
date=datetime.datetime.strptime(
row['date'], "%m/%d/%y").date(),
start_time=datetime.datetime.strptime(
row['engine on'], "%H:%M:%S").time(),
start_fuel=float(row['fuel height on']),
end_time=datetime.datetime.strptime(
row['engine off'], '%H:%M:%S").time(),
end_fuel=float(row['fuel height off']),

)

This function consumes instances of the initial Dict [str, str] dictionary and creates
instances of the dictionary described by the History type hint. Here's how these two
functions work together:
>>> source path = Path("data/fuel2.csv")
>>> fuel use = make history(get fuel use(source path))
>>> for row in fuel use:

print (row)

{'date': datetime.date(2013, 10, 25), 'start time': datetime.time(8, 24),
'start_fuel': 29.0, 'end time': datetime.time(13, 15), 'end fuel': 27.0}

{'date': datetime.date(2013, 10, 26), 'start time': datetime.time(9, 12),
'start fuel': 27.0, 'end time': datetime.time(18, 25), 'end fuel': 22.0}

{'date': datetime.date(2013, 10, 28), 'start time': datetime.time (13,
21), 'start fuel': 22.0, 'end time': datetime.time(6, 25), 'end fuel':
14.0}

Chapter 5

This shows how the output from the get _fuel use () function can be processed by the
make history () function to create an iterable sequence of dictionaries. Each of the
resulting dictionaries has the source data converted to a more useful type.

The core type hint for a dictionary names the key type and the value type, in the form
Dict [key, valuel.The mypy extension type, TypedDict, lets us be more specific about
bindings between dictionary keys and a very broad domain of values.

It's important to note that type hints are only checked by the mypy program. These hints have
no runtime impact. We could, for example, write a statement like the following:

result: History = {'date': 42}

This statement claims that the result dictionary will match the type hints in the History
type definition. The dictionary literal, however, has the wrong type for the date field and a
number of other fields are missing. While this will execute, it will raise errors from mypy.

There's more...

One of the common cases for heterogeneity is optional items. The type hint Optional [str]
is the same as Union [str, None]l. This optional or union specification is a very specialized
kind of heterogeneity. This is rarely needed with a dictionary, since it can be simpler to omit
the key: wvalue pair entirely.

There are some parallels between TypedDict and the NamedTuple type definitions. We can,
for example, make a few small syntax changes to create a named tuple instead of a typed
dictionary. The alternative looks like this:

from typing import NamedTuple
HistoryT = NamedTuple(
"HistoryT',
[
('date', datetime.date),
('start _time', datetime.time),
('start _fuel', float),
('end time', datetime.time),
('end_fuel', float)

)

Because a HistoryT object has an _asdict () method, it's possible to produce a dictionary
that matches the History typed dict shown above.

Built-in Data Structures Part 2: Dictionaries

The similarities allow us the flexibility to define types with similar syntax. A dictionary that
matches the TypedDict hintis a dictionary and is mutable. The HistoryT subclass of
NamedTuple, however, is immutable. This is one central difference between these two type
hints. More importantly, a dictionary uses row ['date'] syntax to refer to one item using the
key. NamedTuple uses row.date syntax to refer to one item using a name.

» The Using NamedTuples to simplify item access in tuples recipe provides more details
on the NamedTuple type hint.

» See the Writing list-related type hints recipe in this chapter for more about type hints
for lists.

» The Writing set-related type hints recipe covers this from the view of set types.

Understanding variables, references,

and assignment

How do variables really work? What happens when we assign a mutable object to two
variables? We can easily have two variables that share references to a common object; this
can lead to potentially confusing results when the shared object is mutable.

We'll focus on this principle: Python shares references; it doesn't copy data.

To see what this rule on reference sharing means, we'll create two data structures: one is
mutable and one is immutable.

Getting ready

We'll create two data structures; one is mutable and one is immutable. We'll use two kinds
of sequences, although we could do something similar with two kinds of sets:

>>> mutable = [1, 1, 2, 3, 5, 8]
>>> immutable = (5, 8, 13, 21)

We'll look at what happens when references to these objects are shared.

We can do a similar comparison with a set and a frozenset. We can't easily do this with
a mapping because Python doesn't offer a handy immutable mapping.

206

Chapter 5

How to do it...

This recipe will show how to observe the spooky action at a distance when there are two
references to an underlying mutable object. We'll look at ways to prevent this in the Making
shallow and deep copies of objects recipe. Here are the steps for seeing the difference
between mutable and immutable collections:

1.

Assign each collection to an additional variable. This will create two references to the
structure:

>>> mutable b = mutable

>>> immutable b = immutable

We now have two references to the list [1, 1, 2, 3, 5, 8] and two references
to the tuple (5, 8, 13, 21).

We can confirm this using the is operator. This determines if two variables refer to
the same underlying object:

>>> mutable b is mutable

True

>>> immutable b is immutable

True

Make a change to one of the two references to the collection. For the list type, we
have methods like extend (), append (), or add ():

>>> mutable += [mutable[-2] + mutable[-1]]

We can do a similar thing with the immutable structure:

>>> immutable += (immutable[-2] + immutablel[-1],)

Look at the other two variables that reference the mutable structure. Because the
two variables are references to the same underlying 1ist object, each variable
shows the current state:

>>> mutable b

(1, 1, 2, 3, 5, 8, 13]

>>> mutable is mutable b

True

207

Built-in Data Structures Part 2: Dictionaries

» Look at the two variables referring to immutable structures. Initially, the two variables
shared a common object. When the assignment statement was executed, a new tuple
was created and only one variable changed to refer to the new tuple:

>>> immutable b
(5, 8, 13, 21)
>>> immutable

(5, 8, 13, 21, 34)

The two variables mutable and mutable b still refer to the same underlying object. Because
of that, we can use either variable to change the object and see the change reflected in the
other variable's value.

The two variables, immutable b and immutable, started out referring to the same object.
Because the object cannot be mutated in place, a change to one variable means that a new
object is assigned to that variable. The other variable remains firmly attached to the original
object.

In Python, a variable is a label that's attached to an object. We can think of them like adhesive
notes in bright colors that we stick on an object temporarily. Multiple labels can be attached to
an object. An assignment statement places a reference on an object.

Consider the following statement:

immutable += (immutable[-2] + immutable[-1],)

The expression on the right side of += creates a new tuple from the previous value of the
immutable tuple. The assignment statement then assigns the label immutable to the
resulting object.

When we use a variable on an assighment statement there are two possible actions:

» For mutable objects that provide definitions for appropriate assighment operators like
+=, the assignment is transformed into a special method; in this case, _iadd__ ().
The special method will mutate the object's internal state.

» For immutable objects that do not provide definitions for assignment like +=, the
assignment is transformed into = and +. A new object is built by the + operator and
the variable name is attached to that new object. Other variables that previously
referred to the object being replaced are not affected; they will continue to refer
to old objects.

Python counts the number of places from which an object is referenced. When the count of
references becomes zero, the object is no longer used anywhere, and can be removed from
memory.

208

Chapter 5

There's more...

Languages like C++ or Java have primitive types in addition to objects. In these languages,
a += statement leverages a feature of the hardware instructions or the Java Virtual Machine
instructions to tweak the value of a primitive type.

Python doesn't have this kind of optimization. Numbers are immutable objects. When we do
something like this:
>>> a = 355

>>> a += 113

we're not tweaking the internal state of the object 355. This does not rely on the internal
iadd () special method. This behaves as if we had written:
>>> a = a + 113

The expression a + 113 is evaluated, and a new immutable integer object is created. This
new object is given the label a. The old value previously assigned to a is no longer needed,
and the storage can be reclaimed.

See also

» In the Making shallow and deep copies of objects recipe, we'll look at ways we can
copy mutable structures to prevent shared references.

» Also, see Avoiding mutable default values for function parameters for another
consequence of the way references are shared in Python.

Making shallow and deep copies of objects

Throughout this chapter, we've talked about how assignment statements share references to
objects. Objects are not normally copied. When we write:

a=>b

we now have two references to the same underlying object. If the object of b has a mutable
type, like the 1ist, set, or dict types, then both a and b are references to the same
mutable object.

As we saw in the Understanding variables, references, and assignment recipe, a change
to the a variable changes the list object that both a and b refer to.

Most of the time, this is the behavior we want. There are rare situations in which we want
to actually have two independent objects created from one original object.

209

Built-in Data Structures Part 2: Dictionaries

There are two ways to break the connection that exists when two variables are references to
the same underlying object:

» Making a shallow copy of the structure
» Making a deep copy of the structure

Getting ready

Python does not automatically make a copy of an object. We've seen several kinds of syntax
for making a copy:

» Sequences - 1ist, as well as str, bytes, and tuple: We can use sequence [:]
to copy a sequence by using an empty slice expression. This is a special case for
sequences.

» Almost all collections have a copy () method. We can also use object.copy () to
make a copy of a variable named object.

» Calling a type, with an instance of the type as the only argument, returns a copy. For
example, if d is a dictionary, dict (d) creates a shallow copy of d.

What's important is that these are all shallow copies. When two collections are shallow
copies, they each contain references to the same underlying objects. If the underlying objects
are immutable, such as tuples, numbers, or strings, this distinction doesn't matter.

For example, if we havea = [1, 1, 2, 31, we can't perform any mutationon a[0].The
number 1 in a[0] has no internal state. We can only replace the object.

Questions arise, however, when we have a collection that involves mutable objects. First, we'll
create an object, then we'll create a copy:

>>> some dict = {'a': [1, 1, 2, 31}

>>> another_dict = some_dict.copy ()

This example created a shallow copy of the dictionary. The two copies will look alike

because they both contain references to the same objects. There's a shared reference to

the immutable string a and a shared reference to the mutable list [1, 1, 2, 31.We can
display the value of another_ dict to see that it looks like the some dict object we started
with:

>>> another dict
{ra': [1, 1, 2, 31}
Here's what happens when we update the shared list that's inside the copy of the dictionary:

>>> some_dict['a'].append(5)
>>> another dict
{ra': [1, 1, 2, 3, 51}

210

Chapter 5

We made a change to a mutable 1ist object that's shared between the two dict instances,
some_dict and another dict. We can see that the item is shared by using the id ()
function:

>>> id(some dict['a']) == id(another dict['a'l])

True

Because the two id () values are the same, these are the same underlying object. The value
associated with the key a is the same mutable list in both some dict and another dict.
We can also use the is operator to see that they're the same object.

This mutation of a shallow copy works for 1ist collections that contain other 1ist objects as
items as well:

>>> some_list = [[2, 3, 5], [7, 11, 13]]
>>> another list = some list.copy()

>>> some_list is another list

False

>>> some_list[0] is another list[0]

True

We've made a copy of an object, some_1ist, and assigned it to the variable another list.
The top-level 1ist object is distinct, but the items within the 1ist are shared references.

We used the is operator to show that item zero in each list are both references to the same
underlying objects.

Because we can't make a set of mutable objects, we don't really have to consider making
shallow copies of sets that share items.

What if we want to completely disconnect two copies? How do we make a deep copy instead
of a shallow copy?

How to do it...

Python generally works by sharing references. It only makes copies of objects reluctantly. The
default behavior is to make a shallow copy, sharing references to the items within a collection.
Here's how we make deep copies:
1. Import the copy module:
>>> import copy
2. Use the copy.deepcopy () function to duplicate an object and all of the mutable
items contained within that object:
>>> some dict = {'a': [1, 1, 2, 31}

>>> another dict = copy.deepcopy(some dict)

Built-in Data Structures Part 2: Dictionaries

This will create copies that have no shared references. A change to one copy's mutable
internal items won't have any effect anywhere else:

>>> some dict['a'].append(5)

>>> some dict

{*a': [1, 1, 2, 3, 51}

>>> another dict

{va': [1, 1, 2, 31}

We updated an item in some _dict and it had no effect on the copy in another dict.
We can see that the objects are distinct with the id () function:

>>> id(some dict['a']) == id(another dict['a'l])

False

Since the id () values are different, these are distinct objects. We can also use the is
operator to see that they're distinct objects.

Making a shallow copy is relatively easy. We can write our own version of the algorithm using
comprehensions (containing generator expressions):

>>> copy of list = [item for item in some list]

>>> copy of dict = {key:value for key, value in some dict.items()}

In the 1ist case, the items for the new 1ist are references to the items in the source list.
Similarly, in the dict case, the keys and values are references to the keys and values of the
source dictionary.

The deepcopy () function uses a recursive algorithm to look inside each mutable collection.
For an object with a 1ist type, the conceptual algorithm is something like this:

immutable = (numbers.Number, tuple, str, bytes)
def deepcopy list(some_list:
copy = []
for item in some_list:
if isinstance(item, immutable):
copy.append(item)
else:

copy.append(deepcopy(item))

Chapter 5

The actual code doesn't look like this, of course. It's a bit more clever in the way it
handles each distinct Python type. This does, however, provide some insight as to how the
deepcopy () function works.

» Inthe Understanding variables, references, and assignment recipe, we'll look at how
Python prefers to create references to objects.

Avoiding mutable default values for

function parameters

In Chapter 3, Function Definitions, we looked at many aspects of Python function definitions.
In the Designing functions with optional parameters recipe, we showed a recipe for handling
optional parameters. At the time, we didn't dwell on the issue of providing a reference to a
mutable structure as a default. We'll take a close look at the consequences of a mutable
default value for a function parameter.

Getting ready

Let's imagine a function that either creates or updates a mutable Counter object. We'll call it
gather stats().

Ideally, a small data gathering function could look like this:

import collections
from random import randint, seed
from typing import Counter, Optional, Callable

def gather_stats_bad(

n: int,

samples: int = 1000,

summary: Counter[int] = collections.Counter()
) -> Counter[int]:

summary . update(

sum(randint(1, 6)
for d in range(n)) for _ in range(samples)

)

return summary

213

file:///\\192.168.0.200\All_Books\2019\Working_Titles\Books\16020_Modern Python Cookbook 2E\BookDrafts\9781786469250\3e2cb5b0-8560-4f63-b34a-27191b225ace.xhtml

Built-in Data Structures Part 2: Dictionaries

This shows a bad design for a function with two stories. The first story offers no argument
value for the summary parameter. When this is omitted, the function creates and returns

a collection of statistics. Here's the example of this story:

>>> seed (1)

>>> sl = gather stats bad(2)

>>> sl

Counter ({7: 168, 6: 147, 8: 136, 9: 114, 5: 110, 10: 77, 11: 71, 4: 70,
3: 52, 12: 29, 2: 26})

The second story allows us to provide an explicit argument value for the summary parameter.
When this argument is provided this function updates the given object. Here's an example of
this story:

>>> seed (1)

>>> mc = Counter ()

>>> gather stats_bad(2, summary=mc)

Counter...

>>> mcC

Counter ({7: 168, 6: 147, 8: 136, 9: 114, 5: 110, 10: 77, 11: 71, 4: 70,
3: 52, 12: 29, 2: 26})

We've set the random number seed to be sure that the two sequences of random values are
identical. This makes it easy to confirm that the results are the same in both stories. If we
provide a Counter object or use the default Counter object, we get identical results.

The gather stats_bad () function returns a value. When writing a script, we'd simply
ignore the returned value. When working with Python's interactive REPL the output is printed.
We've shown Counter. . . instead of the lengthy output.

The problem arises when we do the following operation:

>>> seed (1)
>>> s3b = gather stats bad(2)
>>> s3b

Counter ({7: 336, 6: 294, 8: 272, 9: 228, 5: 220, 10: 154, 11l: 142, 4:
140, 3: 104, 12: 58, 2: 52})

The count values in this example are doubled. Something has gone wrong. This only happens
when we use the default story more than once. This code can pass a unit test suite and
appear correct.

As we saw in the Making shallow and deep copies of objects recipe, Python prefers to share
references. A consequence of that sharing is the object referenced by the s1 variable and the
object referenced by the s3b variable are the same object:

214

Chapter 5

>>> sl is s3b
True
This means the value of the s1 variable changed when the value for the s3b variable was

created. From this, it should be apparent the function is updating some shared collection and
returning the reference to the shared collection.

The default value used for the summary parameter of this gather stats bad () function
seems to be sharing a single object. How can we avoid this?

How to do it...

There are two approaches to solving this problem of a mutable default parameter:

» Provide an immutable default
» Change the design

We'll look at the immutable default first. Changing the design is generally a better idea. In
order to see why it's better to change the design, we'll show the purely technical solution.

When we provide default values for functions, the default object is created exactly once and
shared forever after. Here's the alternative:

1. Replace any mutable default parameter value with None:

def gather_stats_good(
n: int, samples: int = 1000, summary:
Optional[Counter[int]] = None
) -> Counter[int]:
2. Add an if statement to check for an argument value of None and replace it with
a fresh, new mutable object:
if summary is None:
summary = Counter()
3. This will assure us that every time the function is evaluated with no argument value

for a parameter, we create a fresh, new mutable object. We will avoid sharing a single
mutable object over and over again.

As we noted earlier, Python prefers to share references. It rarely creates copies of objects
without explicit use of the copy module or the copy () method of an object. Therefore,
default values for function parameter values will be shared objects. Python does not create
fresh, new objects for default parameter values.

Built-in Data Structures Part 2: Dictionaries

The rule is very important and often confuses programmers new to Python.

\/‘n, Don't use mutable defaults for functions. A mutable object (set, 1ist,

dict) should not be a default value for a function parameter.

Providing a mutable object as a default parameter value is often a very bad idea. In most
cases, we should consider changing the design, and not offering a default value at all.
The best approach is to use two separate functions, distinguished by the user stories. One
function creates a value, the second function updates the value.

We'd refactor one function to create two functions, create_stats () and update
stats (), with unambiguous parameters:

def create_stats(n: int, samples: int = 1000) -> Counter[int]:
return update_stats(n, samples, Counter())

def update_stats(
n: int, samples: int = 1000, summary: Counter[int]
) -> Counter[int]:
summary.update(
sum(randint(1, 6)
for d in range(n)) for _ in range(samples))

return summary

We've created two separate functions. This will separate the two stories so that there's no
confusion. The idea of optional mutable arguments was not a good idea. The mutable object
provided as a default value is reused. This reuse of a mutable object means the default value
will be updated, a potential source of confusion. It's very unlikely to want a default value that
is updated as an application executes.

In the standard library, there are some examples of a cool technique that shows how we can
create fresh default objects. A number of functions use a key function to create comparable
values from a complex object. We can look at sorted (), min (), and max () for examples
of this. A default key function does nothing; it's lambda item: item.A non-default key
function requires an item and produces some object that is a better choice for comparison.

In order to leverage this technique, we need to modify the design of our example function. We
will no longer update an existing counter object in the function. We'll always create a fresh,
new object. We can modify what class of object is created.

Chapter 5

Here's a function that allows us to plug in a different class in the case where we don't want
the default Counter class to be used:

T = TypeVar('T")
Summarizer = Callable[[Iterable[T]], Counter[T]]

def gather_stats_ flex(
n: int,
samples: int = 1000,
summary_func: Summarizer = collections.Counter
) -> Counter[int]:
summary = summary_func(
sum(randint(1, 6)
for d in range(n)) for _ in range(samples))
return summary
For this version, we've defined an initialization value to be a function of one argument. The
default will apply this one-argument function to a generator function for the random samples.

We can override this function with another one-argument function that will collect data. This
will build a fresh object using any kind of object that can gather data.

Here's an example using 1ist instead of collections.Counter:

test flex = "mv

>>> seed (1)

>>> gather stats flex(2, 12, summary func=list)
(7, 4, 5, 8, 10, 3, 5, 8, 6, 10, 9, 7]

>>> seed (1)

>>> gather stats flex(2, 12, summary func=list)

(7, 4, 5, 8, 10, 3, 5, 8, 6, 10, 9, 7]

In this case, we provided the 1ist () function to create a list with the individual random
samples in it.

Here's an example without an argument value. It will create a collections.Counter
object:

>>> seed(1l)

>>> gather stats flex (2, 12)

Counter ({7: 2, 5: 2, 8: 2, 10: 2, 4: 1, 3: 1, 6: 1, 9: 1})

Built-in Data Structures Part 2: Dictionaries

In this case, we've used the default value. The function created a Counter () object from the
random samples.

See also

» See the Creating dictionaries - inserting and updating recipe, which shows how
defaultdict works.

218

User Inputs and
Outputs

The key purpose of software is to produce useful output. One simple type of output is
text displaying some useful result. Python supports this with the print () function.

The input () function has a parallel with the print () function. The input () function
reads text from a console, allowing us to provide data to our programs.

There are a number of other common ways to provide input to a program. Parsing the
command line is helpful for many applications. We sometimes need to use configuration files
to provide useful input. Data files and network connections are yet more ways to provide input.
Each of these methods is distinct and needs to be looked at separately. In this chapter, we'll
focus on the fundamentals of input () and print ().

In this chapter, we'll look at the following recipes:

Using the features of the print () function
Using input () and getpass () for user input
Debugging with £" {value=}" strings

Using argparse to get command-line input

Using cmd to create command-line applications

vV v.v. vy

Using the OS environment settings

It seems best to start with the print () function and show a number of the things it can do.
After all, it's often the output from an application that creates the most value.

User Inputs and Outputs

Using the features of the print() function

In many cases, the print () function is the first function we learn about. The first script is
often a variation on the following:

>>> print ("Hello, world.")

Hello, world.
The print () function can display multiple values, with helpful spaces between items.
When we write this:

>>> count = 9973
>>> print ("Final count", count)

Final count 9973

We see that a space separator is included for us. Additionally, a line break, usually
represented by the \n character, is printed after the values provided in the function.

Can we control this formatting? Can we change the extra characters that are supplied?

It turns out that there are some more things we can do with print ().

Getting ready

Consider this spreadsheet, used to record fuel consumption on a large sailboat. It has rows
that look like this:

date engine on fuel height on engine off fuel height off
10/25/13 08:24:00 29 13:15:00 27
10/26/13 09:12:00 27 18:25:00 22
10/28/13 13:21:00 22 06:25:00 14

Example of fuel use by a sailboat

For more information on this data, refer to the Removing items from a set - remove(), pop(),
and difference and Slicing and dicing a list recipes in Chapter 4, Built-In Data Structures

Part 1: Lists and Sets. Instead of a sensor inside the tank, the depth of fuel is observed
through a glass panel on the side of the tank. Knowing the tank is approximately rectangular,
with a full depth of about 31 inches and a volume of about 72 gallons, it's possible to convert
depth to volume.

Here's an example of using this CSV data. This function reads the file and returns a list of
fields built from each row:

220

file:///\\192.168.0.200\All_Books\2019\Working_Titles\Books\16020_Modern Python Cookbook 2E\BookDrafts\9781786469250\c46b36ee-e2f1-4759-8b4d-b7a68d8d65b5.xhtml

Chapter 6

from pathlib import Path
import csv
from typing import Dict, List

def get fuel use(source_path: Path) -> List[Dict[str, str]]:
with source_path.open() as source_file:
rdr = csv.DictReader(source_file)
return list(rdr)

This example uses a given Path object to identify a file. The opened file is used to create
a dictionary-based reader for the csvV file. The list of rows represents the spreadsheet as
Python objects.

Here's an example of reading and printing rows from the csvV file:

>>> source path = Path("data/fuel2.csv")
>>> fuel use = get fuel use(source path)
>>> for row in fuel use:

print (row)

{'date': '10/25/13', ‘'engine on': '08:24:00', 'fuel height on': '29',
'engine off': '13:15:00', 'fuel height off': '27'}
{'date': '10/26/13', ‘'engine on': '09:12:00', 'fuel height on': '27',
'engine off': '18:25:00', 'fuel height off': '22'}
{'date': '10/28/13', ‘'engine on': '13:21:00', 'fuel height on': '22',

'engine off': '06:25:00', 'fuel height off': '14'}

We used a pathlib. Path object to define the location of the raw data. We evaluated the
get_fuel use () function to open and read the file with the given path. This function
creates a list of rows from the source spreadsheet. Each line of data is represented as
aDict[str, str] object.

The output from print (), shown here in long lines, could be seen as challenging for some
folks to read. Let's look at how we can improve this output using additional features of the
print () function.

How to do it...

We have two ways to control the print () formatting:

» Set the inter-field separator string, sep, which has the single space character as its
default value

» Set the end-of-line string, end, which has the single \n character as its default value

We'll show several examples of changing sep and end. The examples are similar.

221

User Inputs and Outputs
The default case looks like this. This example has no change to sep or end:

1. Read the data:

>>> fuel use = get fuel use(Path("data/fuel2.csv"))

2. Foreach item in the data, do any useful data conversions:
>>> for leg in fuel use:
start = float(leg["fuel height on"])
finish = float(leg["fuel height off"])

3. Print labels and fields using the default values of sep and end:

print ("On", leg["date"],

"from", leg["engine on"],

"to", leg["engine off"],

"change", start-finish, "in.")
On 10/25/13 from 08:24:00 to 13:15:00 change 2.0 in.
On 10/26/13 from 09:12:00 to 18:25:00 change 5.0 in.
On 10/28/13 from 13:21:00 to 06:25:00 change 8.0 in.

When we look at the output, we can see where a space was inserted between each item. The
\n character at the end of each collection of data items means that each print () function
produces a separate line.

When preparing data, we might want to use a format that's similar to CSV, perhaps using a
column separator that's not a simple comma. Here's an example using |:
>>> print("date", "start", "end", "depth", sep=" | ")

date | start | end | depth
This is a modification to step 3 of the recipe shown before:

1. Printlabels and fields using a string value of " | " for the sep parameter:
print (leg["date"], leg["engine on"],
leg["engine off"], start-finish, sep=" | ")
10/25/13 | 08:24:00 | 13:15:00 | 2.0
10/26/13 | 09:12:00 | 18:25:00 | 5.0
10/28/13 | 13:21:00 | 06:25:00 | 8.0

In this case, we can see that each column has the given separator string. Since there were
no changes to the end setting, each print () function produces a distinct line of output.

Here's how we might change the default punctuation to emphasize the field name and value.

222

Chapter 6

This is a modification to step 3 of the recipe shown before:

1. Print labels and fields using a string value of "=" for the sep parameterand ', ' for
the end parameter:
print ("date", leg["date"], sep="=", end=", ")
print ("on", leg["engine on"], sep="=", end=", ")
print ("off", leg["engine off"], sep="=", end=", ")
print ("change", start-finish, sep="=")

date=10/25/13, on=08:24:00, off=13:15:00, change=2.0
date=10/26/13, on=09:12:00, off=18:25:00, change=5.0
date=10/28/13, on=13:21:00, off=06:25:00, change=8.0

Since the string used at the end of the line was changedto ', ', each use of the print ()
function no longer produces separate lines. In order to see a proper end of line, the final
print () function has a default value for end. We could also have used an argument
value of end="\n"' to make the presence of the newline character explicit.

We can imagine that print () has a definition something like this:

def print_like(*args, sep=None, end=None, file=sys.stdout):
if sep is None: sep = " "
if end is None: end = "\n"

arg_iter = iter(args)

value = next(arg_iter)

file.write(str(value))

for value in arg_iter:
file.write(sep)
file.write(str(value))
file.write(end)

file.flush()

This only has a few of the features of the actual print () function. The purpose is to illustrate
how the separator and ending strings work. If no value is provided, the default value for the
separator is a single space character, and the default value at end-of-line is a single newline
character, "\n".

This print-like function creates an explicit iterator object, arg iter. Using next (arg_iter)
allows us to treat the first item as special, since it won't have a separator in front of it. The
for statement then iterates through the remaining argument values, inserting the separator
string, sep, in front of each item after the first.

223

User Inputs and Outputs

The end-of-line string, end, is printed after all of the values. It is always written. We can
effectively turn it off by setting it to a zero-length string, " .

Using the print () function's sep and end parameters can get quite complex for anything
more sophisticated than these simple examples. Rather than working with a complex
sequence of print () function requests, we can use the format () method of a string,

or use an f-string.

The sys module defines the two standard output files that are always available: sys . stdout
and sys.stderr. In the general case, the print () function is a handy wrapper around
stdout.write ().

We can use the f£ile= keyword argument to write to the standard error file instead of writing
to the standard output file:

>>> import sys

>>> print ("Red Alert!", file=sys.stderr)

We've imported the sys module so that we have access to the standard error file. We used
this to write a message that would not be part of the standard output stream.

Because these two files are always available, using OS file redirection techniques often works
out nicely. When our program's primary output is written to sys . stdout, it can be redirected
at the OS level. A user might enter a command line like this:

python3 myapp.py <input.dat >output.dat

This will provide the input . dat file as the input to sys . stdin. When a Python program
writes to sys . stdout, the output will be redirected by the OS to the output . dat file.

In some cases, we need to open additional files. In that case, we might see programming
like this:

>>> from pathlib import Path

>>> target path = Path("data")/"extra detail.log"

>>> with target path.open('w', encoding='utf-8') as target file:
print ("Some detailed output", file=target file)

e print ("Ordinary log")

Ordinary log

In this example, we've opened a specific path for the output and assigned the open file to
target file using the with statement. We can then use this as the file= value in a
print () function to write to this file. Because a file is a context manager, leaving the with
statement means that the file will be closed properly; all of the OS resources will be released
from the application. All file operations should be wrapped in a with statement context to
ensure that the resources are properly released.

224

Chapter 6

In large, long-running applications like web servers, the failure to close files and release
resources is termed a "leak." A memory leak, for example, can arise when files are not closed
properly and buffers remain allocated. Using a with statement assures that resources are
released, eliminating a potential source of resource management problems.

» Refer to the Debugging with "format".format_map(vars()) recipe.

» For more information on the input data in this example, refer to the Removing items
from a set - remove(), pop(), and difference and Slicing and dicing a list recipes in
Chapter 4, Built-In Data Structures Part 1: Lists and Sets.

» For more information on file operations in general, refer to Chapter 8, More Advanced
Class Design.

Using input() and getpass() for user input

Some Python scripts depend on gathering input from a user. There are several ways to do this.
One popular technique is to use the console to prompt a user for input.

There are two relatively common situations:

» Ordinary input: We can use the input () function for this. This will provide a helpful
echo of the characters being entered.

» Secure, no echo input: This is often used for passwords. The characters entered
aren't displayed, providing a degree of privacy. We use the getpass () function in
the getpass module for this.

The input () and getpass () functions are just two implementation choices for reading
from the console. It turns out that getting the string of characters is only the first step in
gathering valid, useful data. The input also needs to be validated.

When gathering input from a user there are several tiers of considerations for us to make,
including the following;:

1. The user interaction: This is the process of writing a prompt and reading input
characters from the user.

2. Validation: The user's input needs to be checked to see whether it belongs in the
expected domain of values. We might be looking for digits, yes/no values, or days
of the week. In most cases, there are two parts to the validation tier:

» We check whether the input fits some general domain - for example, numbers.

» We check whether the input fits some more specific subdomain. For example, this
might include a check to see whether the number is greater than or equal to zero,
or between zero and six.

file:///\\192.168.0.200\All_Books\2019\Working_Titles\Books\16020_Modern Python Cookbook 2E\BookDrafts\9781786469250\c46b36ee-e2f1-4759-8b4d-b7a68d8d65b5.xhtml
file:///\\192.168.0.200\All_Books\2019\Working_Titles\Books\16020_Modern Python Cookbook 2E\BookDrafts\9781786469250\c46b36ee-e2f1-4759-8b4d-b7a68d8d65b5.xhtml
file:///\\192.168.0.200\All_Books\2019\Working_Titles\Books\16020_Modern Python Cookbook 2E\BookDrafts\9781786469250\79fe124f-c610-4410-9a95-2b0336a71677.xhtml

User Inputs and Outputs

3. Validating the input in some larger context to ensure that it's consistent with other
inputs. For example, we can check whether a collection of inputs represents a date,
and that the date is prior to today.

Gathering user input isn't a trivial operation. However, Python provides several libraries to help
us implement the required tiers of input validation.

Above and beyond these techniques, we'll look at some other approaches in the Using
argparse to get command-line input recipe later in this chapter.

Getting ready

We'll look at a technique for reading a complex structure from a person. In this case, we'll
use year, month, and day as separate items. These items are then combined to create
a complete date.

Here's a quick example of user input that omits all of the validation considerations. This is
poor design:

from datetime import date

def get datel() -> date:
year = int(input("year: "))
month = int(input("month [1-12]: "))
day = int(input(“day [1-31]: "))
result = date(year, month, day)
return result

This illustrates how easy it is to use the input () function. This will behave badly when the
user enters an invalid date. Raising an exception for bad data isn't an ideal user experience.
The recipe will take a different approach than this example.

We often need to wrap this in additional processing to make it more useful. The calendar
is complex, and we'd hate to accept February 31 without warning a user that it is not
a proper date.

How to do it...

1. Ifthe inputis a password or something equally subject to redaction, the input ()
function isn't the best choice. If passwords or other secrets are involved, then use
the getpass.getpass () function. This means we need the following import when
secrets are involved:

from getpass import getpass

226

Chapter 6

Otherwise, when secret input is not required, we'll use the built-in input () function,
and no additional import is required.

2. Determine which prompt will be used. In our example, we provided a field name and
a hint about the type of data expected as the prompt string argument to the input ()
or getpass () function. It can help to separate the input from the text-to-integer
conversion. This recipe doesn't follow the snippet shown previously; it breaks the
operation into two separate steps. First, get the text value:

year_text = input("year: ")

3. Determine how to validate each item in isolation. The simplest case is a single value
with a single rule that covers everything. In more complex cases - like this one -
each individual element is a number with a range constraint. In a later step, we'll
look at validating the composite item:

year = int(year_text)
4. Wrap the input and validation into a while-try block that looks like this:

year = None
while year is None:
year_text = input(“"year: ")
try:
year = int(year_text)
except ValueError as ex:
print(ex)

This applies a single validation rule, the int (year txt) expression, to ensure that the
input is an integer. If the int () function works without raising an exception, the resulting
year object is the desired integer. If the int () function raises an exception, this is reported
with an error message. The while statement leads to a repeat of the input and conversion
sequence of steps until the value of the year variable is not None.

Raising an exception for faulty input allows us the most flexibility. We can extend this with
additional exception classes for other conditions the input must meet. In some cases, we may
need to define our own unique customized exceptions for data validation.

In some cases, the error message can be printed to sys . stderr instead of sys . stdout.
To do this, we could use print (ex, file=sys.stderr). Mixing standard output and
standard error may not work out well because the 0S-level buffering for these two files is
sometimes different, leading to confusing output. It's often a good idea to stick to a single
channel.

This processing only covers the year field. We still need to get values for the month and
day fields. This means we'll need three nearly identical loops for each of these three fields
of a complex date object. Rather than copying and pasting nearly identical code, we need to
restructure this input and validate the sequence into a separate function. We'll call the new
function get_integer ().

227

User Inputs and Outputs

Here's the definition:

def get_integer(prompt: str) -> int:
while True:
value_text = input(prompt)
try:
value = int(value_text)
return value
except ValueError as ex:

print(ex)

This function will use the built-in input () function to prompt the user for input. It uses
the int () function to try and create an integer value. If the conversion works, the value
is returned. If the conversion raises a ValueError exception, this is displayed to the user
and the input is attempted again.

We can combine this into an overall process for getting the three integers of a date. This will
involve the same while-try, but applied to the composite object. It will look like this

def get date2() -> date:
while True:

year = get_integer("year: ")

month = get_integer("month [1-12]: ")

day = get_integer("day [1-31]: ")

try:
result = date(year, month, day)
return result

except ValueError as ex:

problem = f"invalid, {ex}"

This uses individual while-try processing sequences in the get _integer () function
to get the individual values that make up a date. Then it uses the date () constructor to
create a date object from the individual fields. If the date object - as a whole - can't be
built because the pieces are invalid, then the year, month, and day must be re-entered to
create a valid date.

Given a year and a month, we can actually determine a slightly narrower range for the
number of days. This is complex because months have different numbers of days, varying
from 28 to 31, and February has a number of days that varies with the type of year.

We can compute the starting date of the next month and use a timedelta object to provide
the number of days between the two dates:

day_1 date = date(year, month, 1)
if month == 12:

228

Chapter 6

next_year, next_month
else:

next_year, next_month year, month+1
day_end_date = date(next_year, next_month, 1)
stop = (day_end _date - day 1 date).days

year+l, 1

day = get_integer(f"day [1-{stop}]: ")

This will compute the length of any given month for a given year. The algorithm works by
computing the first day of a given year and month. It then computes the first day of the next
month (which may be the first month of the next year).

The number of days between these dates is the number of days in the given month. The
(day end date - day 1 date) .days expression extracts the number of days from the
timedelta object. This can be used to display a more helpful prompt for the number of days
that are valid in a given month.

We need to decompose the input problem into several separate but closely related problems.
We can imagine a tower of conversion steps. At the bottom layer is the initial interaction with
the user. We identified two of the common ways to handle this:

» input (): This prompts and reads from a user
» getpass.getpass (): This prompts and reads passwords without an echo

These two functions provide the essential console interaction. There are other libraries that
can provide more sophisticated interactions, if that's required. For example, the c1ick project
has sophisticated prompting capabilities. See https://click.palletsprojects.com/
en/7.x/.

On top of the foundation, we've built several tiers of validation processing. The tiers are
as follows:

» A general domain validation: This uses built-in conversion functions such as int ()
or float (). These raise ValueError exceptions for invalid text.

» A subdomain validation: This uses an if statement to determine whether values fit
any additional constraints, such as ranges. For consistency, this should also raise
a ValueError exception if the data is invalid.

» Composite object validation: This is application-specific checking. For our example,
the composite object was an instance of datetime.date. This also tends to raise
ValueError exceptions for dates that are invalid.

There are a lot of potential kinds of constraints that might be imposed on values. For example,
we might want only valid OS process IDs, called PIDs. This requires checking the
/proc/<pid> path on most Linux systems.

229

https://click.palletsprojects.com/en/7.x/

User Inputs and Outputs

For BSD-based systems such as macOS X, the /proc filesystem doesn't exist. Instead,
something like the following needs to be done to determine if a PID is valid:

>>> import subprocess

>>> status = subprocess.run(["ps", str(PID)], check=True, text=True)
For Windows, the command would look like this:

>>> status = subprocess. run(

["tasklist", "/fi", £'"PID eq {PID}"'], check=True, text=True)

Either of these two functions would need to be part of the input validation to ensure that the
user is entering a proper PID value. This check can only be made safely when the value of the
PID variable is a number.

We have several alternatives for user input that involve slightly different approaches. We'll
look at these two topics in detail:

» Complex text: This will involve the simple use of input () with clever parsing of the
source text.

» Interaction via the cmd module: This involves a more complex class and somewhat
simpler parsing.

We'll start by looking at ways to process more complex text using more sophisticated parsing.

Complex text parsing

A simple date value requires three separate fields. A more complex date-time that includes
a time zone offset from UTC involves seven separate fields: year, month, day, hour, minute,
second, and time zone. Prompting for each individual field can be tedious for the person
entering all those details. The user experience might be improved by reading and parsing
a complex string rather than a large number of individual fields:

def get_date3() -> date:
while True:

raw_date_str = input("date [yyyy-mm-dd]: ")

try:
input_date = datetime.strptime(

raw_date_str, "%Y-%m-%d").date()

return input_date

except ValueError as ex:

print(f"invalid date, {ex}")

230

Chapter 6

We've used the strptime () function to parse a time string in a given format. We've
emphasized the expected date format in the prompt that's provided in the input () function.
The datetime module provides a ValueError exception for data that's not in the right
format as well as for non-dates that are in the right format; 2019-2-31, for example, also
raises a ValueError exception.

This style of input requires the user to enter a more complex string. Since it's a single string
that includes all of the details for a date, many people find it easier to use than a number
of individual prompts.

Note that both techniques - gathering individual fields and processing a complex string -
depend on the underlying input () function.

Interaction via the cmd module

The cmd module includes the cmd class, which can be used to build an interactive interface.
This takes a dramatically different approach to the notion of user interaction. It does not rely
on using input () explicitly.

We'll look at this closely in the Using cmd for creating command-line applications recipe.

In the reference material for the SunOS operating system, which is now owned by Oracle,
there is a collection of commands that prompt for different kinds of user inputs:

https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html

Specifically, all of these commands beginning with ck are for gathering and validating user
input. This could be used to define a module of input validation rules:

ckdate: This prompts for and validates a date

ckgid: This prompts for and validates a group ID

ckint: This displays a prompt, verifies, and returns an integer value

ckitem: This builds a menu, prompts for, and returns a menu item

ckkeywd: This prompts for and validates a keyword

4
4
4
>
4
» ckpath: This displays a prompt, verifies, and returns a pathname
» ckrange: This prompts for and validates an integer

» ckstr: This displays a prompt, verifies, and returns a string answer
» cktime: This displays a prompt, verifies, and returns a time of day
» ckuid: This prompts for and validates a user ID

4

ckyorn: This prompts for and validates yes/no

231

https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html

User Inputs and Outputs

This is a handy summary of the various kinds of user inputs used to support a command-line
application. Another list of validation rules can be extracted from JSON schema definitions;
this includes None, Boolean, integer, float, and string. A number of common string
formats include date-time, time, date, email, hostname, IP addresses in version 4 and version
6 format, and URIs. Another source of user input types can be found in the definition of the
HTML5 <input> tag; this includes color, date, datetime-local, email, file, month,
number, password, telephone numbers, time, URL, and week-year.

Debugging with f*{value=}" strings

One of the most important debugging and design tools available in Python is the print ()
function. There are some kinds of formatting options available; we looked at these in the
Using features of the print() function recipe.

What if we want more flexible output? We have more flexibility with £"string" formatting.

Getting ready

Let's look at a multistep process that involves some moderately complex calculations. We'll
compute the mean and standard deviation of some sample data. Given these values, we'll
locate all items that are more than one standard deviation above the mean:
>>> import statistics
>>> size = [2353, 2889, 2195, 3094,

. 725, 1099, 690, 1207, 926,

. 758, 615, 521, 1320]

>>> mean_size = statistics.mean(size)

>>> std_size = statistics.stdev(size)

>>> sigl = round(mean size + std size, 1)
>>> [x for x in size if x > sigll]

[2353, 2889, 3094]

This calculation has several working variables. The final list comprehension involves three
other variables, mean size, std size, and sigl. With so many values used to filter the
size list, it's difficult to visualize what's going on. It's often helpful to know the steps in the
calculation; showing the values of the intermediate variables can be very helpful.

How to do it...

The £" {name=}" string will have both the literal name= and the value for the name variable.
Using this with a print () function looks as follows:

232

Chapter 6

>>> print(
f"{mean size=:.2f}, {std size=:.2f}"
)
mean size=1414.77, std size=901.10

We can use {name=} to put any variable into the f-string and see the value. These examples
in the code above include : . 2f as the format specification to show the values rounded to
two decimal places. Another common suffix is ! r; to show the internal representation of the
object, we might use £"{name=!r}".

For more background on the formatting options, refer to the Building complex strings with
f'strings" recipe in Chapter 1, Numbers, Strings, and Tuples. Python 3.8 extends the basic
f-string formatting to introduce the "=" formatting option to display a variable and the value
of the variable.

There is a very handy extension to this capability. We can actually use any expression on the
left of the "=" option in the f-string. This will show the expression and the value computed by
the expression, providing us with even more debugging information.

There's more...

For example, we can use this more flexible format to include additional calculations that aren't
simply local variables:
>>> print(
f"{mean size=:.2f}, {std size=:.2f},"
f" {mean size+2*std size=:.2f}"
)

mean size=1414.77, std size=901.10, mean size+2*std size=3216.97

We've computed a new value, mean_size+2*std size, that appears only inside the
formatted output. This lets us display intermediate computed results without having to create
an extra variable.

See also

» Refer to the Building complex strings with f"strings" recipe in Chapter 1, Numbers,
Strings, and Tuples, for more of the things that can be done with the format ()
method.

» Refer to the Using features of the print() function recipe earlier in this chapter for
other formatting options.

233

file:///\\192.168.0.200\All_Books\2019\Working_Titles\Books\16020_Modern Python Cookbook 2E\BookDrafts\9781786469250\a2a60fe4-07af-4a14-80ee-96c80e2fb12f.xhtml
file:///\\192.168.0.200\All_Books\2019\Working_Titles\Books\16020_Modern Python Cookbook 2E\BookDrafts\9781786469250\a2a60fe4-07af-4a14-80ee-96c80e2fb12f.xhtml

User Inputs and Outputs

Using argparse to get command-line input

For some applications, it can be better to get the user input from the OS command line
without a lot of human interaction. We'd prefer to parse the command-line argument values
and either perform the processing or report an error.

For example, at the OS level, we might want to run a program like this:

[)

% python3 chO05 r04.py -r KM 36.12,-86.67 33.94,-118.40
From (36.12, -86.67) to (33.94, -118.4) in KM = 2887.35

The OS prompt is . We entered a command of python3 ch05_r04.py. This command
had an optional argument, -r KM, and two positional arguments of 36.12,-86.67 and
33.94,-118.40.

The program parses the command-line arguments and writes the result back to the console.
This allows a very simple kind of user interaction. It keeps the program very simple. It allows
the user to write a shell script to invoke the program or merge the program with other Python
programs to create a higher-level program.

If the user enters something incorrect, the interaction might look like this:

% python3 chO05 r04.py -r KM 36.12,-86.67 33.94,-118asd
usage: ch05 r04.py [-h] [-r {NM,MI,KM}] pl p2
ch05 r04.py: error: argument p2: could not convert string to float:

'-118asd!’

An invalid argument value of -118asd leads to an error message. The program stopped with
an error status code. For the most part, the user can hit the up-arrow key to get the previous

command line back, make a change, and run the program again. The interaction is delegated
to the OS command line.

The name of the program - ch05_r04 - isn't too informative. We could perhaps have chosen
a more informative name. The positional arguments are two (latitude, longitude) pairs. The
output shows the distance between the two in the given units.

How do we parse argument values from the command line?

Getting ready

The first thing we need to do is to refactor our code to create three separate functions:

» Afunction to get the arguments from the command line. To fit well with the
argparse module, this function will almost always return an
argparse.Namespace object.

Chapter 6

» A function that does the real work. It helps if this function is designed so that it
makes no reference to the command-line options in any direct way. The intent
is to define a function to be reused in a variety of contexts, one of which is with
parameters from the command line.

» Amain function that gathers options and invokes the real work function with the
appropriate argument values.

Here's our real work function, display ():

from ch03_r05 import haversine, MI, NM, KM
def display(latl: float, lonl: float, lat2: float, lon2: float, r:
str) -> None:

r float = {"NM": NM, "KM": KM, "MI": MI} [r]

d = haversine(latl, lonl, lat2, lon2, r float)

print (E"From {latl}, {lonl} to {lat2},{lon2} in {r} = {d:.2£f}")

We've imported the core calculation, haversine (), from another module. We've provided
argument values to this function and used an f-string to display the final result message.

We've based this on the calculations shown in the examples in the Picking an order
for parameters based on partial functions recipe in Chapter 3, Function Definitions:

lat, — lat lat, — lat
a= [sin2—>——1 4 cos(lat,) cos(lat,) sin? —= 1

c¢=2sin"la

The essential calculation yields the central angle, ¢, between two points. The angle is
measured in radians. We convert it into distance by multiplying by the Earth's mean radius
in whatever unit we like. If we multiply angle ¢ by a radius of 3,959 miles, the distance, we'll
convert the angle to miles.

Note that we expect the distance conversion factor, r, to be provided as a string. This function
will then map the string to an actual floating-point value, r _float. The "MI" string, for
example, maps to the conversion value from radians to miles, M1, equal to 3,959.

Here's how the function looks when it's used inside Python:

>>> from ch05 r04 import display
>>> display(36.12, -86.67, 33.94, -118.4, 'NM')
From 36.12,-86.67 to 33.94,-118.4 in NM = 1558.53

235

file:///\\192.168.0.200\All_Books\2019\Working_Titles\Books\16020_Modern Python Cookbook 2E\BookDrafts\9781786469250\3e2cb5b0-8560-4f63-b34a-27191b225ace.xhtml

User Inputs and Outputs

This function has two important design features. The first feature is it avoids references to
features of the argparse . Namespace object that's created by argument parsing. Our goal is
to have a function that we can reuse in a number of alternative contexts. We need to keep the
input and output elements of the user interface separate.

The second design feature is this function displays a value computed by another function. This
is a helpful decomposition of the problem. We've separated the user experience of printed
output from the essential calculation. This fits the general design pattern of separating
processing into tiers and isolating the presentation tier from the application tier.

How to do it...

1.

236

Define the overall argument parsing function:
def get options(argv: List[str]) -> argparse.Namespace:

Create the parser object:
parser = argparse.ArgumentParser()

Add the various types of arguments to the parser object. Sometimes this is difficult
because we're still refining the user experience. It's difficult to imagine all the ways
in which people will use a program and all of the questions they might have. For our
example, we have two mandatory, positional arguments, and an optional argument:

» Point 1 latitude and longitude
» Point 2 latitude and longitude
» Optional units of distance; we'll provide nautical miles as the default:

parser.add_argument (
"-u", "--units",
action="store", choices=("NM", "MI", "KM"), default="NM")
parser.add_argument (
"pl", action="store", type=point_type)
parser.add_argument (
"p2", action="store", type=point_type)
options = parser.parse_args(argv)
We've added optional and mandatory arguments. The first is the -u argument, which
starts with a single dash, -, to mark it as optional. Additionally, a longer double dash
version was added, - -units, in this case. These are equivalent, and either can be
used on the command line.
The action of 'store' will store any value that follows the -r option in the command
line. We've listed the three possible choices and provided a default. The parser will
validate the input and write appropriate errors if the input isn't one of these three
values.

Chapter 6

The mandatory arguments are named without a - prefix. These also use an action
of 'store'; since this is the default action it doesn't really need to be stated. The
function provided as the type argument is used to convert the source string to an
appropriate Python object. We'll look at the point_type () validation function in
this section.

4. Evaluate the parse _args () method of the parser object created in step 2:

options = parser.parse_args(argv)
By default, the parser uses the values from sys . argv, which are the command-line argument

values entered by the user. Testing is much easier when we can provide an explicit argument
value.

Here's the final function:

def get options(argv: List[str]) -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("-r", action="store",
choices=("NM", "MI", "KM"), default="NM")
parser.add_argument("pl”, action="store", type=point_type)
parser.add_argument("p2", action="store", type=point_type)
options = parser.parse_args(argv)

return options

This relies on the point_type () function to both validate the string and convert it to an
object of a more useful type. We might use type = int or type = float to convertto
a number.

In our example, we used point_type () to convert a string to a (latitude, longitude) two-
tuple. Here's the definition of this function:

def point_ type(text: str) -> Tuple[float, float]:
try:
lat_str, lon_str = text.split(",")
lat = float(lat_str)
lon = float(lon_str)
return lat, lon
except ValueError as ex:

raise argparse.ArgumentTypeError(ex)

The point_type () function parses the input values. First, it separates the two values at

the , character. It attempts a floating-point conversion on each part. If the f1oat () functions
both work, we have a valid latitude and longitude that we can return as a pair of floating-point
values.

237

User Inputs and Outputs

If anything goes wrong, an exception will be raised. From this exception, we'll raise an
ArgumentTypeError exception. This is caught by the argparse module and causes
it to report the error to the user.

Here's the main script that combines the option parser and the output display functions:

def main(argv: List[str] = sys.argv[1:]) -> None:
options = get_options(argv)
lat_1, lon_1 = options.pl
lat_2, lon_2 = options.p2
display(lat_1, lon_1, lat_2, lon_2, options.r)

main()

This main script connects the user inputs to the displayed output. It does this by parsing the
command-line options. Given the values provided by the user, these are decomposed into
values required by the display () function, isolating the processing from the input parsing.
Let's take a closer look at how argument parsing works.

The argument parser works in three stages:

1. Define the overall context by creating a parser object as an instance of
ArgumentParser. We can provide information such as the overall program
description. We can also provide a formatter and other options here.

2. Add individual arguments with the add_argument () method. These can include
optional arguments as well as required arguments. Each argument can have
a number of features to provide different kinds of syntax. We'll look at a number
of the alternatives in the There's more... section.

3. Parse the actual command-line inputs. The parser's parse () method will use
sys.argv automatically. We can provide an explicit value instead of the sys.
argv values. The most common reason for providing an override value is to allow
more complete unit testing.

Some simple programs will have a few optional arguments. A more complex program may
have many optional arguments.

It's common to have a filename as a positional argument. When a program reads one or more
files, the filenames are provided in the command line, as follows:

python3 some program.py *.rst

238

Chapter 6

We've used the Linux shell's globbing feature: the * . rst string is expanded into a list of all
files that match the naming rule. This is a feature of the Linux shell, and it happens before
the Python interpreter starts. This list of files can be processed using an argument defined
as follows:

parser.add_argument('file’, nargs='*")

All of the names on the command line that do not start with the - character will be collected
into the £ile value in the object built by the parser.

We can then use the following:

for filename in options.file:
process(filename)

This will process each file given in the command line.

For Windows programs, the shell doesn't glob filenames from wildcard patterns, and the
application must deal with filenames that contain wildcard characters like "*" and "?" in
them. The Python glob module can help with this. Also, the pathlib module can create
Path objects, which include globbing features.

To support Windows, we might have something like this inside the get _options () function.
This will expand file strings into all matching names:

if platform.system() == "Windows":
options.file = list(
name

for wildcard in options.file
for name in Path().glob(wildcard)

)

This will expand all of the names in the £ile parameter to create a new list similar to the list
created by the Linux and macOS platforms.

It can be difficult to refer to a file with an asterisk or question mark in the name. For example,
a file named something* . py appears to be a pattern for globbing, not a single filename.
We can enclose the pattern wildcard character in [] to create a name that matches literally:
something [*] .py Wwill only match the file named something*.py.

Some applications have very complex argument parsing options. Very complex applications
may have dozens of individual commands. As an example, look at the git version control
program; this application uses dozens of separate commands, such as git clone,

git commit, and git push. Each of these commands has unique argument parsing
requirements. We can use argparse to create a complex hierarchy of these commands
and their distinct sets of arguments.

239

User Inputs and Outputs

What kinds of arguments can we process? There are a lot of argument styles in common use.
All of these variations are defined using the add_argument () method of a parser:

» Simple options: The -o or —option arguments are often used to enable or disable
features of a program. These are often implemented with add_argument ()
parameters of action="'store true', default=False. Sometimes the
implementation is simpler if the application uses action="'store false',
default=True. The choice of default value and stored value may simplify
the programming, but it won't change the user's experience.

» Simple options with non-trivial objects: The user sees this is as simple -o or
--option arguments. We may want to implement this using a more complex
object that's not a simple Boolean constant. We can use action="'store const',
const=some_object, and default=another object.As modules, classes,
and functions are also objects, a great deal of sophistication is available here.

» Options with values: We showed -r unit as an argument that accepted the
string name for the units to use. We implemented this with an action="'store’
assignment to store the supplied string value. We can also use the type=function
option to provide a function that validates or converts the input into a useful form.

» Options that increment a counter: One common technique is to have a debugging
log that has multiple levels of detail. We can use action="'count', default=0 to
count the number of times a given argument is present. The user can provide -v for
verbose output and -vv for very verbose output. The argument parser treats -vv as
two instances of the -v argument, which means that the value will increase from the
initial value of 0 to 2.

» Options that accumulate a list: We might have an option for which the user
might want to provide more than one value. We could, for example, use a list of
distance values. We could have an argument definition with action="append’,
default=[]. This would allow the userto use -r NM -r KM to get a display in
both nautical miles and kilometers. This would require a significant change to the
display () function, of course, to handle multiple units in a collection.

» Show the help text: If we do nothing, then -h and - -help will display a help
message and exit. This will provide the user with useful information. We can disable
this or change the argument string, if we need to. This is a widely used convention,
so it seems best to do nothing so that it's a feature of our program.

» Show the version number: It's common to have -Version as an argument to
display the version number and exit. We implement this with add_argument (" --
Version", action="version", version="v 3.14").We provide an action
of version and an additional keyword argument that sets the version to display.

240

Chapter 6

This covers most of the common cases for command-line argument processing. Generally,
we'll try to leverage these common styles of arguments when we write our own applications.
If we strive to use simple, widely used argument styles, our users are somewhat more likely
to understand how our application works.

There are a few Linux commands that have even more complex command-line syntax. Some
Linux programs, such as £ind or expr, have arguments that can't easily be processed by
argparse. For these edge cases, we would need to write our own parser using the values
of sys.argv directly.

» We looked at how to get interactive user input in the Using input() and getpass() for
user input recipe.

> We'll look at a way to add even more flexibility to this in the Using the OS environment
settings recipe.

Using cmd to create command-line

applications

There are several ways of creating interactive applications. The Using input() and getpass()
for user input recipe looked at functions such as input () and getpass.getpass (). The
Using argparse to get command-line input recipe showed us how to use argparse to create
applications with which a user can interact from the OS command line.

We have a third way to create interactive applications: using the cmd module. This module will
prompt the user for input, and then invoke a specific method of the class we provide.

Here's how the interaction will look - we've marked user input like this: "help":

A dice rolling tool. ? for help.
1 help

Documented commands (type help <topic>):

dice help reroll roll

Undocumented commands:

1 help roll

241

User Inputs and Outputs

Roll the dice. Use the dice command to set the number of dice.

1 help dice

Sets the number of dice to roll.
] dice 5

Rolling 5 dice

] roll

[6, 6, 4, 3, 3]

]

There's an introductory message from the application with a very short explanation. The
application displays a prompt, 1. The user can then enter any of the available commands.

When we enter help as a command, we see a display of the commands. Four of the
commands have further details. The other two, EOF and quit, have no further details
available.

When we enter help roll, we see a brief summary for the rol1l command. Similarly,
entering help dice displays information about the dice command. We entered the dice
5 command to set the number of dice, and then the rol1l command showed the results

of rolling five dice. This shows the essence of how an interactive command-line application
prompts for input, reads commands, evaluates, and prints a result.

Getting ready

The core feature of the cmd.Cmd application is a read-evaluate-print loop (REPL). This kind of
application works well when there are a large number of individual state changes and a large
number of commands to make those state changes.

We'll make use of a simple, stateful dice game. The idea is to have a handful of dice, some
of which can be rolled and some of which are frozen. This means our Cmd class definition will
have some attributes that describe the current state of the handful of dice.

We'll define a small domain of commands, to roll and re-roll a handful of dice. The interaction
will look like the following:

] roll

[4, 4, 1, 6, 4, 6]

] reroll 2 3 5

[4, 4, 6, 5, 4, 5] (reroll 1)
] reroll 2 3 5

[4, 4, 1, 3, 4, 3] (reroll 2)

In this example, the rol1 command rolled six dice. The two reroll commands created
a hand for a particular game by preserving the dice from positions O, 1, and 4, and rerolling
the dice in positions 2, 3, and 5.

242

Chapter 6

How can we create stateful, interactive applications with an REPL?

How to do it...

1. Import the cmd module to make the cmd . Cmd class definition available:

import cmd

2. Define an extension to cmd . Cmd
class DiceCLI(cmd.Cmd):

3. Define any initialization required in the preloop () method:

def preloop(self):
self.n_dice = 6
self.dice = None # no initial rollL.
self.reroll _count = @

This preloop () method is evaluated just once when the processing starts. The
self argument is a requirement for methods within a class. For now, it's a simply
required syntax. In Chapter 7, Basics of Classes and Objects, we'll look at this more
closely.

Initialization can also be doneinan __ init () method. Doing this is a bit more
complex, though, because it must collaborate with the cmd class initialization. It's
easier to do initialization separately in the preloop () method.

4. For each command, create a do_command () method. The name of the method will
be the command, prefixed by do . The user's input text after the command will be
provided as an argument value to the method. The docstring comment in the method
definition is the help text for the command. Here are two examples for the roll
command and the reroll command

def do roll(self, arg: str) -> bool:

"""Roll the dice. Use the dice command to set the number
of dice."""

self.dice = [random.randint(1, 6) for _ in range(self.n_
dice)]

print(f"{self.dice}")

return False

def do_reroll(self, arg: str) -> bool: Reroll selected
dice. Provide the ©-based positions."""
try:
positions = map(int, arg.split())
except ValueError as ex:

print(ex)

243

file:///\\192.168.0.200\All_Books\2019\Working_Titles\Books\16020_Modern Python Cookbook 2E\BookDrafts\9781786469250\f228734a-a940-4f49-b94e-d69fbca25a39.xhtml

User Inputs and Outputs

return False
for p in positions:

self.dice[p] = random.randint(1, 6)
self.reroll count += 1
print(f"{self.dice} (reroll {self.reroll count})")
return False

5. Parse and validate the arguments to the commands that use them. The user's input
after the command will be provided as the value of the first positional argument to
the method. If the arguments are invalid, the method prints a message and returns,
making no state change. If the arguments are valid, the method can continue past
the validation step. In this example, the only validation is to be sure the number is
valid. Additional checks could be added to ensure that the number is in a sensible
range:

def do_dice(self, arg: str) -> bool:
"""Sets the number of dice to roll."""
try:
self.n_dice = int(arg)
except ValueError:
print(f"{arg!r} is invalid")
return False

self.dice = None

print(f"Rolling {self.n_dice} dice")

return False

6. Write the main script. This will create an instance of this class and execute the
cmdloop () method:

if __name__ == "_main_ ":
game = DiceCLI()
game.cmdloop()

We've created an instance of our DiceCLI subclass of cmd. When we execute the
cmdloop () method, the class will write any introductory messages that have been
provided, write the prompt, and read a command.

The cmd module contains a large number of built-in features for displaying a prompt, reading
input from a user, and then locating the proper method based on the user's input.

Chapter 6

For example, when we enter dice 5, the built-in methods of the cmd superclass will strip
the first word from the input, dice, prefix this with do_, and then evaluate the method that
implements the command. The argument value will be the string "5".

If we enter a command for which there's no matching do_ method, the command processor
writes an error message. This is done automatically; we don't need to write any code to handle
invalid commands.

Some methods, such as do_help (), are already part of the application. These methods will
summarize the other do_* methods. When one of our methods has a docstring, this can be
displayed by the built-in help feature.

The cmd class relies on Python's facilities for introspection. An instance of the class can
examine the method names to locate all of the methods that start with do_. They're available
inaclass-level __dict _ attribute. Introspection is an advanced topic, one that will be
touched on in Chapter 8, More Advanced Class Design.

The Cmd class has a number of additional places where we can add interactive features:

> We can define specific help * () methods that become part of the help topics.

» When any of the do_* methods return a non-False value, the loop will end. We
might want to add a do_quit () method that has return True as its body. This
will end the command-processing loop.

» We might provide a method named emptyline () to respond to blank lines. One
choice is to do nothing quietly. Another common choice is to have a default action
that's taken when the user doesn't enter a command.

» The default () method is evaluated when the user's input does not match any
of the do_* methods. This might be used for more advanced parsing of the input.

» The postloop () method can be used to do some processing just after the loop
finishes. This would be a good place to write a summary. This also requires a do_ *
method that returns a value - any non-False value - to end the command loop.

Also, there are a number of attributes we can set. These are class-level variables that would
be peers of the method definitions:

» The prompt attribute is the prompt string to write. For our example, we can do the
following:

class DiceCLI (cmd.Cmd) :
prompt="] "

» The intro attribute is the introductory message.

245

file:///\\192.168.0.200\All_Books\2019\Working_Titles\Books\16020_Modern Python Cookbook 2E\BookDrafts\9781786469250\fc98b33d-f2df-41cc-b4da-207a06bea925.xhtml
file:///\\192.168.0.200\All_Books\2019\Working_Titles\Books\16020_Modern Python Cookbook 2E\BookDrafts\9781786469250\fc98b33d-f2df-41cc-b4da-207a06bea925.xhtml

User Inputs and Outputs

> We can tailor the help output by setting doc_header, undoc_header, misc_
header, and ruler attributes. These will all alter how the help output looks.

The goal is to be able to create a tidy class that handles user interaction in a way that's
simple and flexible. This class creates an application that has a lot of features in common
with Python's REPL. It also has features in common with many command-line programs that
prompt for user input.

One example of these interactive applications is the command-line FTP client in Linux. It has a
prompt of <ftp>, and it parses dozens of individual FTP commands. Entering help will show
all of the various internal commands that are part of FTP interaction.

» We'll look at class definitions in Chapter 7, Basics of Classes and Objects, and
Chapter 8, More Advanced Class Design.

Using the OS environment settings

There are several ways to look at inputs provided by the users of our software:

» Interactive input: This is provided by the user on demand, as they interact with the
application or service.

» Command-line arguments: These are provided once, when the program is started.

» Environment variables: These are 0S-level settings. There are several ways these
can be set, as shown in the following list:

» Environment variables can be set at the command line, when the application
starts.

» They can be configured for a user in a configuration file for the user's selected
shell. For example, if using zsh, these files are the ~/ . zshrc file and the
~/ .profile file. There can also be system-wide files, like /etc/zshrc. This
makes the values persistent and less interactive than the command line. Other
shells offer other filenames for settings and configurations unique to the shell.

» In Windows, there's the Advanced Settings option, which allows someone to set
a long-term configuration.

» Configuration files: These vary widely by application. The idea is to edit the text
configuration file and make these options or arguments available for long periods
of time. These might apply to multiple users or even to all users of a given system.
Configuration files often have the longest time span.

246

file:///\\192.168.0.200\All_Books\2019\Working_Titles\Books\16020_Modern Python Cookbook 2E\BookDrafts\9781786469250\f228734a-a940-4f49-b94e-d69fbca25a39.xhtml
file:///\\192.168.0.200\All_Books\2019\Working_Titles\Books\16020_Modern Python Cookbook 2E\BookDrafts\9781786469250\fc98b33d-f2df-41cc-b4da-207a06bea925.xhtml

Chapter 6

In the Using input() and getpass() for user input and Using cmd for creating command-line
applications recipes, we looked at interaction with the user. In the Using argparse to get
command-line input recipe, we looked at how to handle command-line arguments. We'll
look at configuration files in Chapter 13, Application Integration: Configuration.

The environment variables are available through the os module. How can we get an
application's configuration based on these OS-level settings?

Getting ready

We may want to provide information of various types to a program via OS environment variable
settings. There's a profound limitation here: the OS settings can only be string values. This
means that many kinds of settings will require some code to parse the value and create
proper Python objects from the string.

When we work with argparse to parse command-line arguments, this module can do some
data conversions for us. When we use os to process environment variables; we'll have to
implement the conversion ourselves.

In the Using argparse to get command-line input recipe, we wrapped the haversine ()
function in a simple application that parsed command-line arguments.

At the OS level, we created a program that worked like this:

% python3 ch05 r04.py -r KM 36.12,-86.67 33.94,-118.40
From (36.12, -86.67) to (33.94, -118.4) in KM = 2887.35

After using this version of the application for a while, we found that we're often using nautical
miles to compute distances from where our boat is anchored. We'd really like to have default
values for one of the input points as well as the -r argument.

Since a boat can be anchored in a variety of places, we need to change the default without
having to tweak the actual code.

We'll set an OS environment variable, UNITS, with the distance units. We can set another
variable, HOME _PORT, with the home point. We want to be able to do the following:

% UNITS=NM

% HOME PORT=36.842952,-76.300171

% python3 ch05 r06.py 36.12,-86.67

From 36.12,-86.67 to 36.842952,-76.300171 in NM = 502.23

The units and the home point values are provided to the application via the OS environment.
This can be set in a configuration file so that we can make easy changes. It can also be set
manually, as shown in the example.

247

file:///\\192.168.0.200\All_Books\2019\Working_Titles\Books\16020_Modern Python Cookbook 2E\BookDrafts\9781786469250\47bd1387-0bdf-42e8-bc97-0cc20ef9a13e.xhtml

User Inputs and Outputs

How to do it...

1

248

Import the os module. The OS environment is available through this module:
import os

Import any other classes or objects needed for the application:
from Chapter_03.ch@3_re8 import haversine, MI, NM, KM
from Chapter_05.ch@5_ro4 import point_type, display

Define a function that will use the environment values as defaults for optional

command-line arguments. The default set of arguments to parse comes from
sys.argv, so it's important to also import the sys module:

def get options(argv: List[str] = sys.argv[1l:]) -> argparse.

Namespace:
Gather default values from the OS environment settings. This includes any validation
required:

default units = os.environ.get("UNITS", "KM")

if default_units not in ("KM", "NM", "MI"):

sys.exit(f"Invalid UNITS, {default_units!r} not KM, NM, or
MI n)
default_home_port = os.environ.get("HOME_PORT")

The sys.exit () function handles the error processing nicely. It will print the
message and exit with a non-zero status code.

Create the parser attribute. Provide any default values for the relevant arguments.
This depends on the argparse module, which must also be imported:

parser = argparse.ArgumentParser()

parser.add_argument(

"-u", "--units",

action="store", choices=("NM", "MI", "KM"),
default=default_units
)
parser.add_argument(“pl", action="store", type=point_type)
parser.add_argument(

"p2", nargs="?", action="store", type=point_type,
default=default_home_port
)

options = parser.parse_args(argv)

Chapter 6

6. Do any additional validation to ensure that arguments are set properly. In this
example, it's possible to have no value for HOME_PORT and no value provided for
the second command-line argument. This requires an if statement and a call to
sys.exit ():

if options.p2 is None:
sys.exit("Neither HOME_PORT nor p2 argument provided.")

7. Return the options object with the set of valid arguments:
return options

This will allow the -r argument and the second point to be completely optional. The argument
parser will use the configuration information to supply default values if these are omitted from
the command line.

Use the Using argparse to get command-line input recipe for ways to process the options
created by the get_options () function.

We've used the OS environment variables to create default values that can be overridden by
command-line arguments. If the environment variable is set, that string is provided as the
default to the argument definition. If the environment variable is not set, then an application-
level default value is used.

In the case of the UNITS variable, in this example, the application uses kilometers as the
default if the OS environment variable is not set.

This gives us three tiers of interaction:

» We can define settings in a configuration file appropriate to the shell in use. For bash
it is the .bashrc file; for zsh, it is the . zshrc file. For Windows, we can use the
Windows Advanced Settings option to make a change that is persistent. This value
will be used each time we log in or create a new command window.

» We can set the OS environment interactively at the command line. This will last as
long as our session lasts. When we log out or close the command window, this value
will be lost.

» We can provide a unique value through the command-line arguments each time the
program is run.

Note that there's no built-in or automatic validation of the values retrieved from environment
variables. We'll need to validate these strings to ensure that they're meaningful.

Also note that we've repeated the list of valid units in several places. This violates the Don't
Repeat Yourself (DRY) principle. A global variable with a valid collection of values is a good
improvement to make. (Python lacks formal constants, which are variables that cannot be

changed. It's common to treat globals as if they are constants that should not be changed.)

249

User Inputs and Outputs

There's more...

The Using argparse to get command-line input recipe shows a slightly different way to handle
the default command-line arguments available from sys.argv. The first of the arguments

is the name of the Python application being executed and is not often relevant to argument
parsing.

he value of sys.argv will be a list of strings:
['che5_re6.py', '-r', 'NM', '36.12,-86.67"]

We have to skip the initial value in sys.argv [0] at some point in the processing. We have
two choices:

» In this recipe, we discard the extra item as late as possible in the parsing process.
The first item is skipped when providing sys.argv [1:] to the parser.

» Inthe previous example, we discarded the value earlier in the processing. The

main () function used options = get options (sys.argv([1l:]) to provide
the shorter list to the parser.

Generally, the only relevant distinction between the two approaches is the number and
complexity of the unit tests. This recipe will require a unit test that includes an initial
argument string, which will be discarded during parsing.

See also

» We'll look at numerous ways to handle configuration files in Chapter 13, Application
Integration: Configuration.

250

file:///\\192.168.0.200\All_Books\2019\Working_Titles\Books\16020_Modern Python Cookbook 2E\BookDrafts\9781786469250\47bd1387-0bdf-42e8-bc97-0cc20ef9a13e.xhtml

Basics of Classes
and Objects

The point of computing is to process data. We often encapsulate the processing and the data
into a single definition. We can organize objects into classes with a common collection of
attributes to define their internal state and common behavior. Each instance of a class is a
distinct object with unique internal state.

This concept of state and behavior applies particularly well to the way games work. When
building something like an interactive game, the user's actions update the game state. Each
of the player's possible actions is a method to change the state of the game. In many games
this leads to a lot of animation to show the transition from state to state. In a single-player
arcade-style game, the enemies or opponents will often be separate objects, each with an
internal state that changes based on other enemy actions and the player's actions.

On the other hand, when we think of a casino game, such as Craps, there are only two game
states, called "point off" and "point on." The transitions are shown to players by moving
markers and chips around on a casino table. The game state changes based on rolls of the
dice, irrespective of the player's betting actions.

The point of object-oriented design is to define current state with attributes of an object. The
object is a member of a broader class of similar objects. The methods of each member of the
class will lead to state changes on that object.

In this chapter, we will look at the following recipes:

» Using a class to encapsulate data and processing
» Essential type hints for class definitions
» Designing classes with lots of processing

251

Basics of Classes and Objects

v

Using typing.NamedTuple for immutable objects

Using dataclasses for mutable objects

Using frozen dataclasses for immutable objects

Optimizing small objects with _ slots

Using more sophisticated collections

Extending a built-in collection - a 1ist that does statistics
Using properties for lazy attributes

Creating contexts and context managers

vV vV v v v.vVvy

Managing multiple contexts with multiple resources

The subject of object-oriented design is quite large. In this chapter, we'll cover some of the
essentials. We'll start with some foundational concepts, such as how a class definition
encapsulates state and processing details for all instances of a class.

Using a class to encapsulate data and

processing

Class design is influenced by the SOLID design principles. The Single Responsibility and
Interface Segregation principles offer helpful advice. Taken together, these principles advise
us that a class should have methods narrowly focused on a single, well-defined responsibility.

Another way of considering a class is as a group of closely-related functions working with
common data. We call these methods for working with the data. A class definition should
contain the smallest collection of methods for working with the object's data.

We'd like to create class definitions based on a narrow allocation of responsibilities. How can
we define responsibilities effectively? What's a good way to design a class?

Getting ready

Let's look at a simple, stateful object—a pair of dice. The context for this is an application
that simulates a simple game like Craps. This simulation can help measure the house edge,
showing exactly how much money we can lose playing Craps.

There's an important distinction between a class definition and the various instances of the
class, called objects or instances of the class. Our focus is on writing class definitions that
describe the objects' state and behavior. Our overall application works by creating instances
of the classes. The behavior that emerges from the collaboration of the objects is the overall
goal of the design process.

252

Chapter 7

This idea is called emergent behavior. It is an essential ingredient in object-oriented
programming. We don't enumerate every behavior of a program. Instead, we decompose the
program into objects, with state and behavior captured in class definitions. The interactions
among the objects lead to the observable behavior. Because the definition is not in a single
block of code, the behavior emerges from the ways separate objects collaborate.

A software object can be viewed as analogous to a thing—a noun. The behaviors of the class
can then be viewed as verbs. This identification of nouns and verbs gives us a hint as to how
we can proceed to design classes to work effectively.

This leads us to several steps of preparation. We'll provide concrete examples of these steps
using a pair of dice for game simulation. We proceed as follows:

1. Write down simple sentences that describe what an instance of the class does.
We can call these the problem statements. It's essential to focus on single-verb
sentences, with a focus on only the nouns and verbs. Here are some examples:

The game of Craps has two standard dice.

» Each die has six faces, with point values from one to six.
» Dice are rolled by a player. (Or, using active-voice verbs, "A player rolls the dice.")
» The total of the dice changes the state of the Craps game. Those rules are

separate from the dice.

» If the two dice match, the number was rolled the hard way. If the two dice do not
match, the roll was made the easy way. Some bets depend on this hard-easy
distinction.

2. ldentify all of the nouns in the sentences. In this example, the nouns include dice,
faces, point values, and player. Nouns may identify different classes of objects. These
are collaborators. Examples of collaborators include player and game. Nouns may
also identify attributes of objects in questions. Examples include face and point
value.

3. Identify all the verbs in the sentences. Verbs are generally methods of the class in
qguestion. In this example, verbs include roll and match. Sometimes, they are methods
of other classes. One example is to change the state of a game, which applies to a
Craps object more than the dice object.

4. ldentify any adjectives. Adjectives are words or phrases that clarify a noun. In many
cases, some adjectives will clearly be properties of an object. In other cases, the
adjectives will describe relationships among objects. In our example, a phrase such
as the total of the dice is an example of a prepositional phrase taking the role of an
adjective. The the total of phrase modifies the noun the dice. The total is a property of
the pair of dice.

This information is essential for defining the state and behavior of the objects. Having his
background information will help us write the class definition.

253

Basics of Classes and Objects

How to do it...

Since the simulation we're writing involves random throws of dice, we'll depend on from
random import randint to provide the useful randint () function. Given a low and
a high value, this returns a random number between the two values; both end values are
included in the domain of possible results:

1. Start writing the class with the class statement:

class Dice:

2. Initialize the object's attributes withan __init () method. We'll model the
internal state of the dice with a faces attribute. The self variable is required to be
sure that we're referencing an attribute of a given instance of a class. Prior to the
first roll of the dice, the faces don't really have a well-defined value, so we'll use the
tuple (0, 0).We'll provide a type hint on each attribute to be sure it's used properly
throughout the class definition:

def init_ (self) -> None:
self.faces: Tuple[int, int] = (@, 0)

3. Define the object's methods based on the various verbs. When the player rolls the
dice, a roll () method can set the values shown on the faces of the two dice. We
implement this with a method to set the faces attribute of the self object:

def roll(self) -> None:
self.faces = (randint(1,6), randint(1,6))
This method mutates the internal state of the object. We've elected to not return

a value. This makes our approach somewhat like the approach of Python's built-in
collection classes where a method that mutates the object does not return a value.

4. After a player rolls the dice, a total () method helps compute the total of the dice.
This can be used by a separate object to change the state of the game based on the
current state of the dice:

def total(self) -> int:
return sum(self.faces)

5. To resolve bets, two more methods can provide Boolean answers to the hard-way and
easy-way questions:

def hardway(self) -> bool:
return self.faces[0] == self.faces[1]
def easyway(self) -> bool:
return self.faces[0] != self.faces[1]
It's rare for a casino game to have a rule that has a simple logical inverse. It's more common

to have a rare third alternative that has a remarkably bad payoff rule. These two methods are
a rare exception to the common pattern.

Chapter 7

Here's an example of using this Dice class:

1. First, we'll seed the random number generator with a fixed value so that we can get a
fixed sequence of results. This is a way of creating a unit test for this class:

>>> import random

>>> random.seed (1)

2. We'll create a Dice object, d1. We can then set its state with the rol1 () method.
We'll then look at the total () method to see what was rolled. We'll examine the
state by looking at the faces attribute:

>>> from ch06_r0l import Dice
>>> dl = Dice()

>>> dl.roll()

>>> dl.total()

7

>>> dl.faces

(6, 1)

3. We'll create a second Dice object, d2. We can then set its state with the rol1 ()
method. We'll look at the result of the total () method, as well as the hardway ()
method. We'll examine the state by looking at the faces attribute:

>>> d2 = Dice()
>>> d2.roll()
>>> d2.total()

7

>>> d2.hardway ()
False

>>> d2.faces

(1, 6)

4. Since the two objects are independent instances of the Dice class, a change to d2
has no effect on d1.

The core idea here is to use ordinary rules of grammar—nouns, verbs, and adjectives—as a
way to identify basic features of a class. In our example, dice are real things. We try to avoid
using abstract terms such as randomizers or event generators. It's easier to describe the
tangible features of real things, and then define an implementation to match the tangible
features.

255

Basics of Classes and Objects

The idea of rolling the dice is an example physical action that we can model with a method
definition. This action of rolling the dice changes the state of the object. In rare cases—1 time
in 36—the next state will happen to match the previous state.

Adjectives often hold the potential for confusion. The following are descriptions of the most
common ways in which adjectives operate:

» Some adjectives, such as first, last, least, most, next, and previous, will have a simple
interpretation. These can have a lazy implementation as a method, or an eager
implementation as an attribute value.

» Some adjectives are a more complex phrase, such as the total of the dice. This is
an adjective phrase built from a noun (total) and a preposition (of). This, too, can be
seen as a method or an attribute.

» Some adjectives involve nouns that appear elsewhere in our software. We might
have a phrase such as the state of the Craps game, where state of modifies
another object, the Craps game. This is clearly only tangentially related to the dice
themselves. This may reflect a relationship between dice and game.

» We might add a sentence to the problem statement such as the dice are part of the
game. This can help clarify the presence of a relationship between game and dice.
Prepositional phrases, such as are part of, can always be reversed to create the
statement from the other object's point of view: for example, The game contains dice.
This can help clarify the relationships among objects.

In Python, the attributes of an object are by default dynamic. We don't specify a fixed list of
attributes. We can initialize some (or all) of the attributes inthe __init_ () method of a
class definition. Since attributes aren't static, we have considerable flexibility in our design.

Capturing the essential internal state and methods that cause state change is the first
step in good class design. We can summarize some helpful design principles using the
acronym SOLID :

» Single Responsibility Principle: A class should have one clearly defined
responsibility.

» Open/Closed Principle: A class should be open to extension - generally via
inheritance - but closed to modification. We should design our classes so that we
don't need to tweak the code to add or change features.

» Liskov Substitution Principle: We need to design inheritance so that a subclass can
be used in place of the superclass.

» Interface Segregation Principle: When writing a problem statement, we want to
be sure that collaborating classes have as few dependencies as possible. In many
cases, this principle will lead us to decompose large problems into many small class
definitions.

256

Chapter 7

» Dependency Inversion Principle: It's less than ideal for a class to depend directly
on other classes. It's better if a class depends on an abstraction, and a concrete
implementation class is substituted for the abstract class.

The goal is to create classes that have the necessary behavior and also adhere to the design
principles so they can be extended and reused.

» See the Using properties for lazy attributes recipe, where we'll look at the choice
between an eager attribute and a lazy property.

» In Chapter 8, More Advanced Class Design, we'll look in more depth at class design
techniques.

» See Chapter 11, Testing, for recipes on how to write appropriate unit tests for the
class.

Essential type hints for class definitions

A class name is also a type hint, allowing a direct reference between a variable and the class
that should define the objects associated with the variable. This relationship lets tools such
as mypy reason about our programs to be sure that object references and method references
appear to match the type hints in our code.

We'll use type hints in three common places in a class definition:

» In method definitions, we'll use type hints to annotate the parameters and the return
type.

> Inthe init () method, we may need to provide hints for the instance variables
that define the state of the object.

» Any attributes of the class overall. These are not common and type hints are rare
here.

Getting ready

We're going to examine a class with a variety of type hints. In this example, our class will
model a handful of dice. We'll allow rerolling selected dice, making the instance of the class
stateful.

The collection of dice can be set by a first roll, where all the dice are rolled. The class allows
subsequent rolls of a subset of dice. The number of rolls is counted, as well.

The type hints will reflect the nature of the collection of dice, the integer counts, a floating-
point average value, and a string representation of the hand as a whole. This will show a
number of type hints and how to write them.

257

file:///\\192.168.0.200\All_Books\2019\Working_Titles\Books\16020_Modern Python Cookbook 2E\BookDrafts\9781786469250\fc98b33d-f2df-41cc-b4da-207a06bea925.xhtml
file:///\\192.168.0.200\All_Books\2019\Working_Titles\Books\16020_Modern Python Cookbook 2E\BookDrafts\9781786469250\be3c25a0-eeb7-4c75-839e-488611e32f82.xhtml
file:///\\192.168.0.200\All_Books\2019\Working_Titles\Books\16020_Modern Python Cookbook 2E\BookDrafts\9781786469250\be3c25a0-eeb7-4c75-839e-488611e32f82.xhtml

Basics of Classes and Objects

How to do it...

1. This definition will involve random numbers as well as type hints for sets and lists. We
import the random module. From the typing module, we'll import only the types we
need, Set and List:

import random
from typing import Set, List

2. Define the class. This is a new type as well:

class Dice:

3. It's rare for class-level variables to require a type hint. They're almost always created
with assignment statements that make the type information clear to a person or
a tool like mypy. In this case, we want all instances of our class of dice to share a
common random number generator:

RNG = random.Random()

4. The init () method creates the instance variables that define the state of the
object. In this case, we'll save some configuration details, plus some internal state.
The init () method also has the initialization parameters. Generally, we'll put
the type hints on these parameters. Other internal state variables may require type
hints to show what kinds of values will be assigned by other methods of the class. In
this example, the faces attribute has no initial value; we state that when it is set, it
will be a List [int] object:

def init_ (self, n: int, sides: int = 6) -> None:
self.n_dice = n
self.sides = sides
self.faces: List[int]
self.roll number = 0
5. Methods that compute new derived values can be annotated with their return type
information. Here are three examples to return a string representation, compute the

total, and also compute an average of the dice. These functions have return types of
str, int, and float, as shown:
def str_ (self) -> str:
return ", ".join(
f"{i}: {f}"

for i, f in enumerate(self.faces)

def total(self) -> int:
return sum(self.faces)

258

Chapter 7

def average(self) -> float:
return sum(self.faces) / self.n_dice
6. For methods with parameters, we include type hints on the parameters as well as
a return type. In this case, the methods that change the internal state also return
values. The return value from both methods is a list of dice faces, described as
List [int]. The parameter for the reroll () method is a set of dice to be rolled

again, this is shown as a Set [int] requiring a set of integers. Python is a little more
flexible than this, and we'll look at some alternatives:

def first roll(self) -> List[int]:
self.roll_number = 0
self.faces = [
self.RNG.randint(1, self.sides)
for _ in range(self.n_dice)
]

return self.faces

def reroll(self, positions: Set[int]) -> List[int]:
self.roll _number += 1
for p in positions:
self.faces[p] = self.RNG.randint(1l, self.sides)
return self.faces

The type hint information is used by programs such as mypy to be sure the instances of the
class are used properly through the application.

If we try to write a function like the following:

def example mypy failure() -> None:
d = Dice(2.5)
d.first_roll()
print(d)

This attempt to create an instance of the Dice () class using a float value for the n parameter
represents a conflict with the type hints. The hint for the Dice class init () method
claimed the argument value should be an integer. The mypy program reports the following:

Chapter 07/ch07 r02.py:49: error: Argument 1 to "Dice" has incompatible
type "float"; expected "int"

259

Basics of Classes and Objects

If we try to execute this, it will raise a TypeError exception on usingthe d.first roll()
method. The exception is raised here because the body of the _init () method works
well with values of any type. The hints claim specific types are expected, but at runtime, any
object can be provided. The hints are not checked during execution.

Similarly, when we use other methods, the mypy program checks to be sure our use of the
method matches the expectations defined by the type hints. Here's another example:

rl: List[str] = d.first_roll()

This assignment statement has a type hint for the r1 variable that doesn't match the type
hint for the return type from the £irst_roll () method. This conflict is found by mypy and
reported as Incompatible types in assignment.

There's more...

One of the type hints in this example is too specific. The function for re-rolling the dice,
reroll (), has a positions parameter. The positions parameteris used in a for
statement, which means the object must be some kind of iterable object.

The mistake was providing a type hint, Set [int], which is only one of many kinds of iterable
objects. We can generalize this definition by switching the type hint from the very specific
Set [int] to the more general Tterable [int].

Relaxing the hint means that a set, 1ist, or tuple object is a valid argument value for
this parameter. The only other code change required is to add ITterable to the from typing
import statement.

The for statement has a specific protocol for getting the iterator object from an iterable
collection, assigning values to a variable, and executing the indented body. This protocol is
defined by the Tterable type hint. There are many such protocol-based types, and they allow
us to provide type hints that match Python's inherent flexibility with respect to type.

See also

» In Chapter 4, Built-In Data Structures Part 1: Lists and Sets, the recipes Writing list-
related type hints, Writing set-related type hints, and Writing dictionary-related type
hints address additional detailed type hinting.

» In Chapter 3, Function Definitions, in the recipe Function Parameters and Type Hints,
a number of similar concepts are shown.

260

Chapter 7

Designing classes with lots of processing

Some of the time, an object will contain all of the data that defines its internal state. There are
cases, however, where a class doesn't hold the data, but instead is designed to consolidate
processing for data held in separate containers.

Some prime examples of this design are statistical algorithms, which are often outside the
data being analyzed. The data might be in a built-in 1ist or Counter object; the processing
defined in a class separate from the data container.

In Python, we have to make a design choice between a module and a class. A number of
related operations can be implemented using a module with many functions. See Chapter 3,
Function Definitions, for more information on this.

A class definition can be an alternative to a module with a number of functions. How can
we design a class that makes use of Python's sophisticated built-in collections as separate
objects?

Getting ready

In Chapter 4, Built-In Data Structures Part 1: Lists and Sets, specifically the Using set methods
and operators recipe, we looked at a statistical test called the Coupon Collector's Test. The
concept is that each time we perform some process, we save a coupon that describes some
aspect or parameter for the process. The question is, how many times do | have to perform
the process before | collect a complete set of coupons?

If we have customers assigned to different demographic groups based on their purchasing
habits, we might ask how many online sales we have to make before we've seen someone
from each of the groups. If the groups are all about the same size, we can predict the average
number of customers we encounter before we get a complete set of coupons. If the groups
are different sizes, it's a little more complex to compute the expected time before collecting a
full set of coupons.

Let's say we've collected data using a Counter object. In this example, the customers fall into
eight categories with approximately equal numbers.

The data looks like this:

Counter({15: 7, 17: 5, 20: 4, 16: 3, ... etc., 45: 1})

Basics of Classes and Objects

The keys (15, 17, 20, 16, and so on) are the number of customer visits needed to get a full
set of coupons from all the demographic groups. We've run the experiment many times, and
the value associated with this key is the number of experiment trials with the given number of
visits. In the preceding data, 15 visits were required on seven different trials. 17 visits were
required for five different trials. This has a long tail. For one of the experimental trials, there
were 45 individual visits before a full set of eight coupons was collected.

We want to compute some statistics on this Counter. We have two general strategies for
storing the data:

» Extend: We can extend the Counter class definition to add statistical processing.
The complexity of this varies with the kind of processing that we want to introduce.
We'll cover this in detail in the Extending a built-in collection - a list that does
statistics recipe, as well as Chapter 8, More Advanced Class Design.

» Wrap: We can wrap the Counter object in another class that provides just the
features we need. When we do this, though, we'll often have to expose some
additional methods that are an important part of Python, but that don't matter much
for our application. We'll look at this in Chapter 8, More Advanced Class Design.

There's a variation on the wrap strategy where we define a statistical computation class that
contains a Counter object. This often leads to an elegant solution.

We have two ways to design this separate processing. These two design alternatives apply to
all of the architectural choices for storing the data:

» Eager: This means that we'll compute the statistics as soon as possible. The values
can then be attributes of the class. While this can improve performance, it also
means that any change to the data collection will invalidate the eagerly computed
values, leading to a need to recompute them to keep them consistent with the data.
We have to examine the overall context to see if this can happen.

» Lazy: This means we won't compute anything until it's required via a method function
or property. We'll look at this in the Using properties for lazy attributes recipe.

The essential math for both designs is the same. The only question is when the computation
is done.

We compute the mean using a sum of the expected values. The expected value is the
frequency of a value multiplied by the value. The mean, u, is this:

[y = Zkec(fie X k)
Ykec fx

Here, k is the key from the Counter, C, and f, is the frequency value for the given key from
the Counter. We weight each key with the number of times it was found in the Counter
collection out of the total size of the collection, the sum of all the counts.

262

Chapter 7

The standard deviation, g, depends on the mean, «. This also involves computing a sum of
values, each of which is weighted by frequency. The following is the formula:

Ykec fie X (k — p)?
c+1

Here, k is the key from the Counter, C, and f,_is the frequency value for the given key from

the Counter. The total number of items in the Counter is ¢ = sz This is the sum of
the frequencies. e

How to do it...

1. Importthe collections module as well as the type hint for the collection that will
be used:

import collections
from typing import Counter

2. Define the class with a descriptive name:

class CounterStatistics:

3. Writethe init () method to include the object where the data is located. In this
case, the type hintis Counter [int] because the keys used in the collections.
Counter object will be integers. The typing.Collection and counter.
Collection names are similar. To avoid confusion, it's slightly easier if the names
from the typing module are imported directly, and the related collection.
Counter class uses the full name, qualified by module:

def init_ (self, raw_counter: Counter[int]) -> None:
self.raw_counter = raw_counter

4. Initialize any other local variables inthe __ init () method that might be useful.
Since we're going to calculate values eagerly, the most eager possible time is when
the object is created. We'll write references to some yet to be defined functions:

self.mean = self.compute mean()
self.stddev = self.compute_stddev()

5. Define the required methods for the various values. Here's the calculation of the mean:

def compute_mean(self) -> float:
total, count = 0.0, ©
for value, frequency in self.raw_counter.items():
total += value * frequency
count += frequency
return total / count

263

Basics of Classes and Objects

6. Here's how we can calculate the standard deviation:

def compute_ stddev(self) -> float:
total, count = 0.0, ©
for value, frequency in self.raw_counter.items():
total += frequency * (value - self.mean) ** 2
count += frequency
return math.sqrt(total / (count - 1))

Note that this calculation requires that the mean is computed first and the self .mean
instance variable has been created. Also, this uses math.sqgrt (). Be sure to add the needed
import math statementin the Python file.

Here's how we can create some sample data:

from Chapter_15.collector import (
samples, arrivall, coupon_collector

)

import collections

ArrivalF = Callable[[int], Iterator[int]]

def raw_data(
n: int = 8, limit: int = 1000,
arrival function: ArrivalF = arrivall
) -> Counter[int]:
data = samples(limit, arrival_function(n))
wait_times = collections.Counter(coupon_collector(n, data))

return wait_times

We've imported functions such as expected (), arrivall (), and coupon collector ()
from the Chapter_ 15.collector module. We've also imported the standard library
collections module.

The type definition for ArrivalF describes a function used to compute individual arrivals. For
our simulation purposes, we've defined a number of these functions, each of which emits a
sequence of customer coupons. When working with actual sales receipts, this can be replaced
with a function that reads source datasets. All the functions have a common structure of
accepting a domain size and emitting a sequence of values from the domain.

The raw_data () function will generate a number of customer visits. By default, it will be
1,000 visits. The domain will be eight different classes of customers; each class will have an
equal number of members. We'll use the coupon_collector () function to step through the
data, emitting the number of visits required to collect a full set of eight coupons.

264

Chapter 7

This data is then used to assemble a collections.Counter object. This will have the
number of customers required to get a full set of coupons. Each number of customers will
also have a frequency showing how often that number of visits occurred. Because the key is
the integer count of the number of visits, the type hint is Counter [int].

Here's how we can analyze the Counter object:

>>> import random

>>> from ch07_r03 import CounterStatistics

>>> random.seed (1)

>>> data = raw _data()

>>> stats = CounterStatistics(data)

>>> print("Mean: {0:.2f}".format (stats.mean))

Mean: 20.81

>>> print("Standard Deviation: {0:.3f}".format (stats.stddev))

Standard Deviation: 7.025

First, we imported the random module so that we could pick a known seed value. This makes
it easier to test and demonstrate an application because the random numbers are consistent.
We also imported the CounterStatistics class from the ch07 r03 module.

Once we have all of the items defined, we can force the seed to a known value, and generate
the coupon collector test results. The raw_data () function will emit a Counter object,
which we called data.

We'll use the Counter object to create an instance of the CounterStatistics class. We'll
assign this to the stats variable. Creating this instance will also compute some summary
statistics. These values are available as the stats.mean attribute and the stats.stddev
attribute.

For a set of eight coupons, the theoretical average is 21 . 7 visits to collect all coupons. It looks
like the results from raw_data () show behavior that matches the expectation of random
visits. This is sometimes called the null hypothesis—the data is random.

This class encapsulates two complex algorithms, but doesn't include any of the data for
those algorithms. The data is kept separately, in a Counter object. We wrote a high-level
specification for the processing and placed itinthe _init () method. Then we wrote
methods to implement the processing steps that were specified. We can set as many
attributes as are needed, making this a very flexible approach.

The advantage of this design is that the attribute values can be used repeatedly. The cost of
computation for the mean and standard deviation is paid once; each time an attribute value is
used, no further calculating is required.

265

Basics of Classes and Objects

The disadvantage of this design is changes to the state of the underlying Counter object
will render the CounterStatistics object's state obsolete and incorrect. If, for example,
we added a few hundred more trial runs, the mean and standard deviation would need to
be recomputed. A design that eagerly computes values is appropriate when the underlying
Counter isn't going to change. An eager design works well for batches of data with few
changes

If we need to have stateful, mutable objects, we can add update methods that can change
the Counter object's internal state. For example, we can introduce a method to add another
value by delegating the work to the associated Counter. This switches the design pattern
from a simple connection between computation and collection to a proper wrapper around the
collection.

The method might look like this:

def add(self, value: int) -> None:
self.raw_counter[value] += 1
self.mean = self.compute_mean()

self.stddev = self.compute_stddev()

First, we updated the state of the Counter. Then, we recomputed all of the derived values.
This kind of processing might create tremendous computation overheads. There needs to
be a compelling reason to recompute the mean and standard deviation after every value is
changed.

There are considerably more efficient solutions. For example, if we save two intermediate
sums and an intermediate count, we can update the sums and counts and compute the mean
and standard deviation more efficiently.

For this, we might have an __init () method that looks like this:

def init_ (self, counter: Counter = None) -> None:
if counter is not None:

self.raw_counter = counter
self.count = sum(

self.raw_counter[k] for k in self.raw_counter)
self.sum = sum(

self.raw_counter[k] * k for k in self.raw_counter)
self.sum2 = sum(

self.raw_counter[k] * k ** 2

for k in self.raw_counter)

self.mean: Optional[float] = self.sum / self.count

266

Chapter 7

self.stddev: Optional[float] = math.sqrt(
(self.sum2 - self.sum ** 2 / self.count)
/ (self.count - 1)

)

else:

self.raw_counter = collections.Counter()

self.count = 0@

self.sum = ©

self.sum2 = ©

self.mean = None

self.stddev = None

We've written this method to work either with a Counter object or without an initialized
Counter instance. If no data is provided, it will start with an empty collection, and zero values
for the count and the various sums. When the count is zero, the mean and standard deviation
have no meaningful value, so None is provided.

If a Counter is provided, then count, sum, and the sum of squares are computed. These can
be incrementally adjusted easily, quickly recomputing the mean and standard deviation.

When a single new value needs to be added to the collection, the following method will
incrementally recompute the derived values:

def add(self, value: int) -> None:
self.raw_counter[value] += 1
self.count += 1
self.sum += value
self.sum2 += value ** 2
self.mean = self.sum / self.count
if self.count > 1:
self.stddev = math.sqrt(
(self.sum2 - self.sum ** 2 / self.count)
/ (self.count - 1)

)

Updating the Counter object, the count, the sum, and the sum of squares is clearly
necessary to be sure that the count, sum, and sum of squares values match the
self.raw_counter collection at all times. Since we know the count must be at least 1,
the mean is easy to compute. The standard deviation requires at least two values, and is
computed from the sum and the sum of squares.

267

Basics of Classes and Objects

Here's the formula for this variation on standard deviation:

Ykec fie X k? — (ZkLC{CXk)Z
c-1

o=

This involves computing two sums. One sum involves the frequency times the value squared.
The other sum involves the frequency and the value, with the overall sum being squared.
We've used C to represent the total number of values; this is the sum of the frequencies.

» In the Extending a built-in collection - a list that does statistics recipe, we'll look
at a different design approach where these functions are used to extend a class
definition.

» We'll look at a different approach in the Using properties for lazy attributes recipe.
This alternative recipe will use properties and compute the attributes as needed.

» In the Designing classes with little unique processing recipe, we'll look at a class with
no real processing. It acts as a polar opposite of this class.

Using typing.NamedTuple for immutable

objects

In some cases, an object is a container of rather complex data, but doesn't really do very
much processing on that data. Indeed, in many cases, we'll define a class that doesn't require
any unique method functions. These classes are relatively passive containers of data items,
without a lot of processing.

In many cases, Python's built-in container classes - 1ist, set, or dict - can cover the use
cases. The small problem is that the syntax for a dictionary or a list isn't quite as elegant as
the syntax for attributes of an object.

How can we create a class that allows us to use object .attribute syntax instead of
object ['attribute']?

Getting ready

There are two cases for any kind of class design:

» s it stateless (immutable)? Does it embody attributes with values that never change?
This is a good example of a NamedTuple.

268

Chapter 7

» s it stateful (mutable)? Will there be state changes for one or more attributes? This is
the default for Python class definitions. An ordinary class is stateful. We can simplify
creating stateful objects using the recipe Using dataclasses for mutable objects.

We'll define a class to describe simple playing cards that have a rank and a suit. Since a card's
rank and suit don't change, we'll create a small stateless class for this. typing.NamedTuple
serves as a handy base class for this class definition.

How to do it...

1. We'll define stateless objects as a subclass of typing.NamedTuple:
from typing import NamedTuple

2. Define the class name as an extension to NamedTuple. Include the attributes with
their individual type hints:

class Card(NamedTuple):
rank: int
suit: str

Here's how we can use this class definition to create Card objects:

>>> eight hearts = Card(rank=8, suit='\N{White Heart Suit}')
>>> eight hearts

Card(rank=8, suit='0")

>>> eight_hearts.rank

8

>> eight hearts.suit

1Qh

>>> eight hearts[0]

8

We've created a new class, named Card, which has two attribute names: rank and suit.
After defining the class, we can create an instance of the class. We built a single card object,
eight hearts, with a rank of eight and a suit of ©.

We can refer to attributes of this object with their name or their position within the tuple.
When we use eight hearts.rank or eight hearts[0], we'll see the rank attribute
because it's defined first in the sequence of attribute names.

269

Basics of Classes and Objects

This kind of object is immutable. Here's an example of attempting to change the instance
attributes:

>>> eight hearts.suit = '\N{Black Spade Suit}'
Traceback (most recent call last):
File "/Users/slott/miniconda3/envs/cookbook/lib/python3.8/doctest.py",
line 1328, in _ run
compileflags, 1), test.globs)
File "<doctest examples.txt[30]>", line 1, in <module>
eight hearts.suit = '\N{Black Spade Suit}'

AttributeError: can't set attribute

We attempted to change the suit attribute of the eight hearts object. This raised an
AttributeError exception showing that instances of NamedTuple are immutable.

The typing.NamedTuple class lets us define a new subclass that has a well-defined list
of attributes. A number of methods are created automatically to provide a minimal level of
Python behavior. We can see an instance will display a readable text representation showing
the values of the various attributes.

In the case of a NamedTuple subclass, the behavior is based on the way a built-in tuple
instance works. The order of the attributes defines the comparison between tuples. Our
definition of card, for example, lists the rank attribute first. This means that we can easily
sort cards by rank. For two cards of equal rank, the suits will be sorted into order. Because a
NamedTuple is also a tuple, it works well as a member of a set or a key for a dictionary.

The two attributes, rank and suit in this example, are named as part of the class definition,
but are implemented as instance variables. A variation on the tuple's new () method is
created for us. This method has two parameters matching the instance variable names. This
automatically created method will assign the instance variables automatically when the object
is created.

There's more...

We can add methods to this class definition. For example, if each card has a number of
points, we might want to extend the class to look like this example:

class CardPoints(NamedTuple):
rank: int
suit: str

def points(self) -> int:

270

Chapter 7

if 1 <= self.rank < 10:
return self.rank
else:

return 10

We've written a CardsPoint class with a points () method that returns the points assigned
to each rank. This point rule applies to games like Cribbage, not to games like Blackjack.

Because this is a tuple, the methods cannot add new attributes or change the attributes. In
some cases, we build complex tuples built from other tuples.

» In the Designing classes with lots of processing recipe, we looked at a class that is
entirely processing and almost no data. It acts as the polar opposite of this class.

Using dataclasses for mutable objects

There are two cases for any kind of class design:

» s it stateless (immutable)? Does it embody attributes with values that never change?
If so, see the Using typing.NamedTuple for immutable objects recipe for a way to
build class definitions for stateless objects.

» s it stateful (mutable)? Will there be state changes for one or more attributes? In
this case, we can either build a class from the ground up, or we can leverage the
@dataclass decorator to create a class definition from a few attributes and type
hints.

Getting ready

We'll look closely at a stateful object that holds a hand of cards. Cards can be inserted into
a hand and removed from a hand. In a game like Cribbage, the hand has a number of state
changes. Initially, six cards are dealt to both players. The players will each place a pair of
cards in a special pile, called the crib. The remaining four cards are played alternately to
create scoring opportunities. After each hand's scoring combinations are totalled, the dealer
will count the additional scoring combinations in the crib.

We'll look at a simple collection to hold the cards and discard two that form the crib.

Basics of Classes and Objects

How to do it...

1. To define data classes, we'll import the dataclass decorator:

from dataclasses import dataclass
from typing import List
2. Define the new class as a dataclass:
@dataclass
class CribbageHand:
3. Define the various attributes with appropriate type hints. For this example, we'll

expect a player to have a collection of cards represented by List [CardPoints].
Because each card is unique, we could also use a Set [CardPoints] type hint:

cards: List[CardPoints]

4. Define any methods that change the state of the object:

def to crib(self, cardl, card2):
self.cards.remove(cardl)
self.cards.remove(card2)

Here's the complete class definition, properly indented:

@dataclass
class CribbageHand:
cards: List[CardPoints]

def to crib(self, cardl, card2):
self.cards.remove(cardl)

self.cards.remove(card2)

This definition provides a single instance variable, self . cards, that can be used by any
method that is written. Because we provided a type hint, the mypy program can check the
class to be sure that it is being used properly.

Here's how it looks when we create an instance of this CribbageHand class:

>>> cards = [
. CardPoints (rank=3, suit='("),
. CardPoints(rank=6, suit='a"'),
. CardPoints(rank=7, suit='{"'),
. CardPoints(rank=1, suit='a"'),
. CardPoints(rank=6, suit='¢"'),

. CardPoints (rank=10, suit='Q")]

272

Chapter 7

>>> chl = CribbageHand (cards)
>>> chl
CribbageHand (cards=[CardPoints (rank=3, suit='('), CardPoints(rank=6,

suit='&a"'), CardPoints(rank=7, suit='('), CardPoints(rank=1l, suit='4"'),
CardPoints (rank=6, suit='()'), CardPoints(rank=10, suit='Q')])

>>> [c.points() for ¢ in chl.cards]

(3, 6, 7, 1, 6, 10]

We've created six individual CardPoints objects. This collection is used to initialize the
CribbageHand object with six cards. In a more elaborate game, we might define a deck of
cards and select from the deck.

The @dataclass decorator builta repr () method that returns a useful display string
for the CribbageHand object. It shows the value of the card's instance variable. Because it's
a display of six CardPoints objects, the text is long and sprawls over many lines. While the
display may not be the prettiest, we wrote none of the code, making it very easy to use as a
starting point for further development.

We built a small list comprehension showing the point values of each CardPoints object in
the CribbageHand instance, chil. A person uses this information (along with other details) to
decide which cards to contribute to the dealer's crib.

In this case, the player decided to lay away the 3 ¢ and A & cards for the crib:

>>> chl.to crib(CardPoints (rank=3, suit='('), CardPoints(rank=1, suit='e
"))

>>> chl

CribbageHand (cards=[CardPoints (rank=6, suit='4'), CardPoints (rank=7,
suit='('), CardPoints(rank=6, suit='('), CardPoints(rank=10, suit='Q')])
>>> [c.points() for c in chl.cards]

[6, 7, 6, 10]

After the to_crib () method removed two cards from the hand, the remaining four cards
were displayed. Another list comprehension was created with the point values of the
remaining four cards.

The edataclass decorator helps us define a class with several useful methods as well as
a list of attributes drawn from the named variables and their type hints. We can see that an
instance displays a readable text representation showing the values of the various attributes.

The attributes are named as part of the class definition, but are actually implemented as
instance variables. In this example, there's only one attribute, cards. A very sophisticated
__init__ () method is created for us. In this example, it will have a parameter that matches
the name of each instance variable and will assign a matching instance variable for us.

273

Basics of Classes and Objects

The @dataclass decorator has a number of options to help us choose what features we
want in the class. Here are the options we can select from and the default settings:

> init=True:Bydefault,an init () method will be created with parameters to
match the instance variables. If we use @dataclass (init=False), we'll have to
write ourown init () method.

> repr=True: Bydefault,a repr () method will be created to return a string
showing the state of the object.

> eg=True:Bydefaultthe eq () and __ne () methods are provided. These will
compare all of the instance variables. In the event this isn't appropriate, we can use
@dataclass (eg=False) 1o turn this feature off. In some cases, equality doesn't
apply, and the methods aren't needed. In other cases, the generated methods aren't
appropriate for the class, and more specialized methods need to be written.

» order=False:The 1t (), le (),__gt_ (),and__ge_ () methods
are not created automatically. If these are built automatically, they will use all of the
dataclass instance variables, which isn't always desirable.

> unsafe hash=False: Normally, mutable objects do not have hash values, and
cannot be used as keys for dictionaries or elements of a set. It's possible to have
a_hash () function added automatically, but this is rarely a sensible choice for
mutable objects.

» frozen=False: This creates an immutable object. Using
@dataclass (frozen=True) overlaps with typing.NamedTuple in many ways.

Because this code is written for us, it lets us focus on the attributes of the class definition. We
can write the methods that are truly distinctive and avoid writing "boilerplate" methods that
have obvious definitions.

Building a deck of cards is an example of a dataclass without an initialization. A single deck
of cardsusesan __init__ () method without any parameters, it creates a collection of 52
Card objects.

Many @dataclass definitions provide class-level names that are used to define the instance
variables and the initialization method, _init (). In this case, we want a class-level
variable with a list of suit strings. This is done with the ClassVar type hint. The Classvar
type's parameters define the class-level variable's type. In this case, it's a tuple of strings:

from typing import List, ClassVar, Tuple
@dataclass(init=False)

class Deck:
suits: ClassVar[Tuple[str, ...]] = (

Chapter 7

"\N{Black Club Suit}', '\N{White Diamond Suit}',
"\N{White Heart Suit}', '\N{Black Spade Suit}'
)

cards: List[CardPoints]

def init_(self) -> None:
self.cards = [
CardPoints(rank=r, suit=s)
for r in range(1, 14)
for s in self.suits

]

random. shufle(self.cards)

This example class definition provides a class-level variable, suits, which is shared by all
instances of the Deck class. This variable is a tuple of the characters used to define the suits.

The cards variable has a hint claiming it will have the List [CardPoints] type. This
information is used by the mypy program to confirm that the body of the _ init () method
performs the proper initialization of this attribute. It also confirms this attribute is used
appropriately by other classes.

The init () method creates the value of the self.cards variable. A list
comprehension is used to create all combinations of 13 ranks and 4 suits. Once the list has
been built, the random. shuffle () method puts the cards into a random order.

See also

» See the Using typing.NamedTuple for immutable objects recipe for a way to build
class definitions for stateless objects.

» The Using a class to encapsulate data and processing recipe covers techniques
for building a class without the additional methods created by the @dataclass
decorator.

Using frozen dataclasses for

immutable objects

In the Using typing.NamedTuple for immutable objects recipe, we saw how to define a class
that has a fixed set of attributes. The attributes can be checked by the mypy program to
ensure that they're being used properly. In some cases, we might want to make use of the
slightly more flexible dataclass to create an immutable object.

275

Basics of Classes and Objects

One potential reason for using a dataclass is because it can have more complex field
definitions than a NamedTuple subclass. Another potential reason is the ability to customize
initialization and the hashing function that is created. Because a typing.NamedTuple is
essentially a tuple, there's limited ability to fine-tune the behavior of the instances in this
class.

Getting ready

We'll revisit the idea of defining simple playing cards with rank and suit. The rank can be
modeled by an integer between 1 (ace) and 13 (king.) The suit can be modeled by a single
Unicode character from the set {'#', '#' 'Q' '('}. Since a card's rank and suit don't change, we'll
create a small, frozen dataclass for this.

How to do it...

1. From the dataclasses module, import the dataclass decorator:
from dataclasses import dataclass
2. Start the class definition with the edataclass decorator, using the frozen=True
option to ensure that the objects are immutable. We've also included order=True

so that the comparison operators are defined, allowing instances of this class to be
sorted into order:

@dataclass(frozen=True, order=True)
class Card:

3. Provide the attribute names and type hints for the attributes of each instance of this
class:

rank: int
suit: str

We can use these objects in code like the following:

>>> eight hearts = Card(rank=8, suit='\N{White Heart Suit}')

>>> eight hearts

Card(rank=8, suit='0")

>>> eight_hearts.rank

8

>>> eight_hearts.suit

VL

We've created an instance of the Card class with a specific value for the rank and suit

attributes. Because the object is immutable, any attempt to change the state will result in an
exception that looks like the following example:

276

Chapter 7

>>> eight hearts.suit = '\N{Black Spade Suit}"’
Traceback (most recent call last):

File "/Users/slott/miniconda3/envs/cookbook/lib/python3.8/doctest.py",
line 1328, in run

compileflags, 1), test.globs)
File "<doctest examples.txt[30]>", line 1, in <module>
eight hearts.suit = '\N{Black Spade Suit}’

dataclasses.FrozenInstanceError: cannot assign to field 'suit'

This shows an attempt to change an attribute of a frozen dataclass instance. The
dataclasses.FrozenInstanceError exception is raised to signal that this kind of
operation is not permitted.

This @dataclass decorator adds a number of built-in methods to a class definition. As we
noted in the Using dataclasses for mutable objects recipe, there are a number of features
that can be enabled or disabled. Each feature may have one or several individual methods.

The type hints are incorporated into all of the generated methods. This assures consistency
that can be checked by the mypy program.

There's more...

The dataclass initialization is quite sophisticated. We'll look at one feature that's sometimes
handy for defining optional attributes.

Consider a class that can hold a hand of cards. While the common use case provides a set of
cards to initialize the hand, we can also have hands that might be built incrementally, starting
with an empty collection and adding cards during the game.

We can define this kind of optional attribute using the field () function from the
dataclasses module. The f£ield () function lets us provide a function to build default
values, called default factory. We'd use it as shown in the following example:

from dataclasses import field

from typing import List

@dataclass(frozen=True, order=True)
class Hand:

cards: List[CardPoints] = field(default_factory=list)

Basics of Classes and Objects

The Hand dataclass has a single attribute, cards, which is a list of CardPoints objects.
The £ield () function provides a default factory: in the event no initial value is provided, the
list () function will be executed to create a new, empty list.

We can create two kinds of hands with this dataclass. Here's the conventional example,
where we deal six cards:

>>> cards = [
. CardPoints (rank=3, suit='0'),
. CardPoints (rank=6, suit='4'),
. CardPoints (rank=7, suit='0'),
. CardPoints (rank=1, suit='4'),
. CardPoints (rank=6, suit='90r"),
. CardPoints (rank=10, suit='0")]

>>>

>>> h = Hand(cards)

The Hands () type expects a single attribute, matching the definition of the attributes in the
class. This is optional, and we can build an empty hand as shown in this example:

>>> crib = Hand()

>>> d3 = CardPoints (rank=3, suit="'90")

>>> h.cards.remove (d3)

>>> crib.cards.append(d3)

In this example, we've created a Hand () instance with no argument values. Because the
cards attribute was defined with a field that provided a default factory, the 1ist ()
function will be used to create an empty list for the cards attribute.

» The Using dataclasses for mutable objects recipe covers some additional topics on
using dataclasses to avoid some of the complexities of writing class definitions.

Optimizing small objects with _ slots__

The general case for an object allows a dynamic collection of attributes. There's a special case
for an immutable object with a fixed collection of attributes based on the tuple class. We
looked at both of these in the Designing classes with little unique processing recipe.

There's a middle ground. We can also define an object with a fixed number of attributes,
but the values of the attributes can be changed. By changing the class from an unlimited
collection of attributes to a fixed set of attributes, it turns out that we can also save memory
and processing time.

278

Chapter 7

How can we create optimized classes with a fixed set of attributes?

Getting ready

Let's look at the idea of a hand of playing cards in the casino game of Blackjack. There are
two parts to a hand:

» The bet
» The cards

Both have dynamic values. Generally, each hand starts with a bet and an empty collection of
cards. The dealer then deals two initial cards to the hand. It's common to get more cards. It's
also possible to raise the bet via a double-down play.

Generally, Python allows adding attributes to an object. This can be undesirable, particularly
when working with a large number of objects. The flexibility of using a dictionary has a high
cost in memory use. Using specific __slots_ names limits the class to precisely the bet
and the cards attributes, saving memory.

How to do it...

We'll leverage the ~ slots special name when creating the class:

1. Define the class with a descriptive name:

class Hand:

2. Define the list of attribute names. This identifies the only two attributes that are
allowed for instances of this class. Any attempt to add another attribute will raise an
AttributeError exception:

__slots__ = ('cards', 'bet')

3. Add an initialization method. In this example, we've allowed three different kinds of
initial values for the cards. The type hint, Union ["Hand", List[Card], None],
permits a Hand instance, a List [Card] instance, or nothing at all. For more
information on this, see the Designing functions with optional parameters recipe in
Chapter 3, Function Definitions. Because the _slot names don't have type hints,

we need to provide theminthe init () method:
def init_ (
self,
bet: int,
hand: Union["Hand", List[Card], None] = None
) -> None:

self.cards: List[Card] = (

file:///\\192.168.0.200\All_Books\2019\Working_Titles\Books\16020_Modern Python Cookbook 2E\BookDrafts\9781786469250\3e2cb5b0-8560-4f63-b34a-27191b225ace.xhtml
file:///\\192.168.0.200\All_Books\2019\Working_Titles\Books\16020_Modern Python Cookbook 2E\BookDrafts\9781786469250\3e2cb5b0-8560-4f63-b34a-27191b225ace.xhtml

Basics of Classes and Objects

[1 if hand is None
else hand.cards if isinstance(hand, Hand)
else hand

)
self.bet: int = bet

4. Add a method to update the collection. We've called it deal because it's used to deal
a new card to the hand:

def deal(self, card: Card) -> None:
self.cards.append(card)

5. Adda__repr_ () method so that it can be printed easily:
def repr_(self) -> str:
return (
f"{self. class_ . name_ }("
f"bet={self.bet}, hand={self.cards})"

Here's how we can use this class to build a hand of cards. We'll need the definition of the
Card class based on the example in the Designing classes with little unique processing
recipe:

>>> from Chapter 07.ch07_r07 import Card, Hand

>>> hl = Hand(2)

>>> hl.deal (Card(rank=4, suit='®"'))

>>> hl.deal (Card(rank=8, suit='Q'))

>>> hl

Hand (bet=2, hand=[Card(rank=4, suit='#'), Card(rank=8, suit='Q"')])

We've imported the Card and Hand class definitions. We built an instance of a Hand, hi1, with
a bet of 2. We then added two cards to the hand via the deal () method of the Hand class.
This shows how the h1.hand value can be mutated.

This example also displays the instance of h1 to show the bet and the sequence of cards. The
__repr__ () method produces output that's in Python syntax.

We can replace the h1.bet value when the player doubles down (yes, this is a crazy thing to
do when showing 12):

>>> hl.bet *= 2

>>> hl

Hand (bet=4, hand=[Card(rank=4, suit='#'), Card(rank=8, suit='Q"')])

280

Chapter 7

When we displayed the Hand object, h1, it showed that the bet attribute was changed.

A better design than changing the bet attribute value is to introduce a double down ()
method that makes appropriate changes to the Hand object.

Here's what happens if we try to create a new attribute:

>>> hl.some_other attribute = True
Traceback (most recent call last):

File "/Users/slott/miniconda3/envs/cookbook/lib/python3.8/doctest.py",
line 1336, in _ run

exec (compile (example.source, filename, "single",
File "<doctest examples.txt[34]>", line 1, in <module>
hl.some other attribute = True

AttributeError: 'Hand' object has no attribute 'some other attribute’

We attempted to create an attribute named some_other attribute on the Hand object,
h1. This raised an AttributeError exception. Using slots__ means that new attributes
cannot be added to the object.

When we create an object instance, the steps in the process are defined in part by the object's
class and the built-in type () function. Implicitly, a class is assigned a special __new ()
method that handles the internal house-keeping required to create a new, empty object. After
this,the init () method creates and initializes the attributes.

Python has three essential paths for creating instances of a class:

» The default behavior, defined by a built-in object and type () : This is used when
we define a class with or without the @dataclass decorator. Each instance contains
a __dict__ attribute that is used to hold all other attributes. Because the object's
attributes are kept in a dictionary, we can add, change, and delete attributes freely.
This flexibility requires the use of a relatively large amount of memory for the
dictionary object inside each instance.

> The slots behavior: This avoids creatingthe dict attribute. Because
the object has only the attributes named inthe _ slots sequence, we can't add
or delete attributes. We can change the values of the defined attributes. This lack of
flexibility means that less memory is used for each object.

» The subclass of tuple behavior: These are immutable objects. An easy way to
create these classes is with typing.NamedTuple as a parent class. Once built, the
instances are immutable and cannot be changed.

A large application might be constrained by the amount of memory used, and switching

281

Basics of Classes and Objects

just the class with the largest number of instancesto slots can lead to a dramatic
improvement in performance.

There's more...

It's possible to tailor the way the _new () method works to replace the default dict
attribute with a different kind of dictionary. This is an advanced technique because it exposes
the inner workings of classes and objects.

Python relies on a metaclass to create instances of a class. The default metaclass is the type
class. The idea is that the metaclass provides a few pieces of functionality that are used to
create the object. Once the empty object has been created, then the class's __init ()
method will initialize the empty object.

Generally, a metaclass will provide a definition of __new (), and perhaps _ prepare (),
if there's a need to customize the namespace object. There's a widely used example in the
Python Language Reference document that tweaks the namespace used to create a class.

For more details, see https://docs.python.org/3/reference/datamodel.
htmlfmetaclass-example.

See also

» The more common cases of an immutable object or a completely flexible object are
covered in the Designing classes with little unique processing recipe.

Using more sophisticated collections

Python has a wide variety of built-in collections. In Chapter 4, Built-In Data Structures Part
1: Lists and Sets, we looked at them closely. In the Choosing a data structure recipe, we
provided a kind of decision tree to help locate the appropriate data structure from the
available choices.

When we consider built-ins and other data structures in the standard library, we have more
choices, and more decisions to make. How can we choose the right data structure for our
problem?

Getting ready

Before we put data into a collection, we'll need to consider how we'll gather the data, and
what we'll do with the collection once we have it. The big question is always how we'll identify
a particular item within the collection. We'll look at a few key questions that we need to
answer to help select a proper collection for our needs.

282

https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
file:///\\192.168.0.200\All_Books\2019\Working_Titles\Books\16020_Modern Python Cookbook 2E\BookDrafts\9781786469250\c46b36ee-e2f1-4759-8b4d-b7a68d8d65b5.xhtml

Chapter 7

Here's an overview of some of the alternative collections. The collections module contains
a number of variations on the built-in collections. These include the following:

>

deque: A double-ended queue. It's a mutable sequence with optimizations for
pushing and popping from each end. Note that the class name starts with a
lowercase letter; this is atypical for Python.

defaultdict: A mapping that can provide a default value for a missing key. Note
that the class name starts with a lowercase letter; this is atypical for Python.

Counter: A mapping that is designed to count the number of occurrences of distinct
keys. This is sometimes called a multiset or a bag.

OrderedDict: A mapping that retains the order in which keys where created.
ChainMap: A mapping that combines several dictionaries into a single mapping.

The heapg module includes a priority queue implementation. This is a specialized library that
leverages the built-in 1ist sequence to maintain items in a sorted order.

The bisect module includes methods for searching a sorted list. This creates some overlap
between the dictionary features and the list features.

How to do it...

There are a number of questions we need to answer to decide if we need a library data
collection instead of one of the built-in collections:

1.

Is the structure a buffer between the producer and the consumer? Does some part of
the algorithm produce data items and another part consume the data items?

» A queue is used for First-In-First-Out (FIFO) processing. Items are inserted at one

end and consumed from the other end. We can use 1list.append () and list.
pop (0) to simulate this, though collections.deque will be more efficient; we
can use deque . append () and deque.popleft ().

A stack is used for Last-In-First-Out (LIFO) processing. Items are inserted and
consumed from the same end. We can use 1ist.append () and 1ist.pop ()
to simulate this, though collections.deque will be more efficient; we can use
deque.append () and deque.pop ().

A priority queue (or heap queue) keeps the queue sorted in some order, distinct
from the arrival order. We can try to simulate this by using the 1ist .append (),
list.sort (key=lambda x:x.priority),and list.pop (-1) operations
to keep items in order. Performing a sort after each insert can make it inefficient.
Folding an item into a previously sorted list doesn't necessarily touch all items.
Using the heapg module can be more efficient. The heapg module has functions
for creating and updating heaps.

283

Basics of Classes and Objects

2.

How do we want to deal with missing keys from a dictionary?

>
>

Raise an exception. This is the way the built-in dict class works.

Create a default item. This is how collections.defaultdict works. We must
provide a function that returns the default value. Common examples include
defaultdict (int) and defaultdict (float) to use a default value of

zero. We can also use defauldict (1ist) and defauldict (set) to create
dictionary-of-list or dictionary-of-set structures.

The defaultdict (int) used to count items is so common that the
collections.Counter class does exactly this.

How do we want to handle the order of keys in a dictionary? Generally, Python newer
than version 3.6 keeps the keys in insertion order. If we want a different order, we'll
have to sort them manually. See the Controlling the order of dict keys recipe for more
details.

How will we build the dictionary?

>

>

We have a simple algorithm to create items. In this case, a built-in dict object
may be sufficient.

We have multiple dictionaries that will need to be merged. This can happen when
reading configuration files. We might have an individual configuration, a system-
wide configuration, and a default application configuration that all need to be
merged into a single dictionary using a ChainMap collection.

There are two principle resource constraints on data processing;:

» Storage
» Time

All of our programming must respect these constraints. In most cases, the two are in
opposition: anything we do to reduce storage use tends to increase processing time, and
anything we do to reduce processing time increases storage use. Algorithm and data structure
design seeks to find an optimal balance among the constraints.

The time aspect is formalized via a complexity metric. There are several ways to describe the
complexity of an algorithm:

> Complexity 0(1) happens in constant time; the complexity doesn't change with the
volume of data. For some collections, the actual overall long-term average is nearly
0(1) with minor exceptions. List append operations are an example: they're all
about the same complexity. Once in a while, though, a behind-the-scenes memory
management operation will add some time.

Chapter 7

> Complexity described as Q(n) happens in linear time. The cost grows as the volume
of data, n, grows. Finding an item in a list has this complexity. Finding an item in a
dictionary is closer to 0(1) because it's (nearly) the same low complexity, no matter
how large the dictionary is.

» A complexity described as O(n log n) grows more quickly than the volume of data.
Often the base two logarithm is used because each step in an algorithm considers
only half the data. The bisect module includes search algorithms that have this
complexity.

» There are even worse cases. Some algorithms have a complexity of 0(n?), 0(2™)
, or even Q(n!). We'd like to avoid these kinds of very expensive algorithms through
clever design and good choice of data structure. These can be deceptive in practice.
We may be able to work out an O(2™) algorithm where n is 3 or 4 because there are
only 8 or 16 combinations, and the processing seems fast. If real data involves 70
items, the number of combinations has 22 digits.

The various data structures reflect unique time and storage trade-offs.

As a concrete and extreme example, let's look at searching a web log file for a particular
sequence of events. We have two overall design strategies:

» Read all of the events into a list structure with something like
file.read() .splitlines (). We can then use a for statement to iterate through
the list looking for the combination of events. While the initial read may take some
time, the search will be very fast because the log is all in memory.

» Read and process each individual event from a log file. If the event is part of the
pattern, save just this event. We might use a defaultdict with the IP address as
the key and a list of events as the value. This will take longer to read the logs, but the
resulting structure in memory will be much smaller.

The first algorithm, reading everything into memory, is often wildly impractical. On a large web
server, the logs might involve hundreds of gigabytes, or perhaps even terabytes, of data. Logs
can easily be too large to fit into any computer's memory.

The second approach has a number of alternative implementations:

» Single process: The general approach to most of the Python recipes here assumes
that we're creating an application that runs as a single process.

» Multiple processes: We might expand the row-by-row search into a multi-processing
application using the multiprocessing or concurrent . futures package. These
packages let us create a collection of worker processes, each of which can process a
subset of the available data and return the results to a consumer that combines the
results. On a modern multiprocessor, multi-core computer, this can be a very effective
use of resources.

285

Basics of Classes and Objects

» Multiple hosts: The extreme case requires multiple servers, each of which handles
a subset of the data. This requires more elaborate coordination among the hosts to
share result sets. Generally, it can work out well to use a framework such as Dask
or Spark for this kind of processing. While the multiprocessing module is quite
sophisticated, tools like Dask are even more suitable for large-scale computation.

We'll often decompose a large search into map and reduce processing. The map phase
applies some processing or filtering to every item in the collection. The reduce phase
combines map results into summary or aggregate objects. In many cases, there is a complex
hierarchy of MapReduce operations applied to the results of previous MapReduce operations.

» See the Choosing a data structure recipe in Chapter 4, Built-In Data Structures Part
1: Lists and Sets, for a foundational set of decisions for selecting data structures.

Extending a built-in collection - a list that

does statistics

In the Designing classes with lots of processing recipe, we looked at a way to distinguish
between a complex algorithm and a collection. We showed how to encapsulate the algorithm
and the data into separate classes. The alternative design strategy is to extend the collection
to incorporate a useful algorithm.

How can we extend Python's built-in collections? How can we add features to the built-in list?

Getting ready

We'll create a sophisticated list class where each instance can compute the sums and
averages of the items in the list. This will require an application to only put numbers in the list;
otherwise, there will be VvalueError exceptions.

We're going to show methods that explicitly use generator expressions as places where
additional processing can be included. Rather than use sum (self), we're going to
emphasize sum (v for v in self) because there are two common future extensions:
sum(m(v) for v in self) and sum(v for v in self if £ (v)).These arethe
mapping and filtering alternatives where a mapping function, m (v), is applied to each item;
or a filter function, £ (v), is applied to each item. Computing a sum of squares, for example,
applies a mapping to each value before summing.

286

file:///\\192.168.0.200\All_Books\2019\Working_Titles\Books\16020_Modern Python Cookbook 2E\BookDrafts\9781786469250\c46b36ee-e2f1-4759-8b4d-b7a68d8d65b5.xhtml

Chapter 7

How to do it...

1

Pick a name for the list that also does simple statistics. Define the class as an
extension to the built-in 1ist class:

class StatsList(list):

Define the additional processing as new methods. The self variable will be an
object that has inherited all of the attributes and methods from the superclass. When
working with numeric data, mypy treats the f1loat type as a superclass for both
float and int, saving us from having to define an explicit Union [float, int].
We'll use a generator expression here as a place where future changes might be
incorporated. Here's a sum () method:

def sum(self) -> float:

return sum(v for v in self)

Here's another method that we often apply to a list. This counts items and returns
the size. We've used a generator expression to make it easy to add mappings or filter
criteria if that ever becomes necessary

def size(self) -> float:

return sum(l for v in self)

Here's the mean function:

def mean(self):
return self.sum() / self.count()
Here are some additional methods. The sum2 () method computes the sum of
squares of values in the list. This is used to compute variance. The variance is then
used to compute the standard deviation of the values in the list. Unlike with the
previous sum () and count () methods, where there's no mapping, in this case, the
generator expression includes a mapping transformation:

def sum2(self) -> float:
return sum(v ** 2 for v in self)

def variance(self) -> float:
return (
(self.sum2() - self.sum() ** 2 / self.size())
/ (self.size() - 1)

def stddev(self) -> float:
return math.sqrt(self.variance())

287

Basics of Classes and Objects

The StatsList class definition inherits all the features of a 1ist object. It is extended by
the methods that we added. Here's an example of creating an instance in this collection:
>>> from Chapter 07.ch07_r09 import StatsList

>>> subsetl = StatsList([10, 8, 13, 9, 111])

>>> data = StatsList([14, 6, 4, 12, 7, 51)

>>> data.extend(subsetl)

We've created two StatsList objects, subsetl and data, from literal lists of objects. We
used the extend () method, inherited from the 1ist superclass, to combine the two objects.
Here's the resulting object:

>>> data

[14, 6, 4, 12, 7, 5, 10, 8, 13, 9, 11]
Here's how we can use the additional methods that we defined on this object:

>>> data.mean()
9.0
>>> data.variance()

11.0

We've displayed the results of the mean () and variance () methods. All the features of the
built-in 1ist class are also present in our extension.

One of the essential features of class definition is the concept of inheritance. When we create
a superclass-subclass relationship, the subclass inherits all of the features of the superclass.
This is sometimes called the generalization-specialization relationship. The superclass is

a more generalized class; the subclass is more specialized because it adds or modifies
features.

All of the built-in classes can be extended to add features. In this example, we added some
statistical processing that created a subclass that's a specialized kind of list of numbers.

There's an important tension between the two design strategies:

» Extending: In this case, we extended a class to add features. The features are
deeply entrenched with this single data structure, and we can't easily use them for a
different kind of sequence.

» Wrapping: In designing classes with lots of processing, we kept the processing
separate from the collection. This leads to some more complexity in juggling two
objects.

288

Chapter 7

It's difficult to suggest that one of these is inherently superior to the other. In many cases, we'll
find that wrapping may have an advantage because it seems to be a better fit to the SOLID
design principles. However, there will always be cases where it's appropriate to extend a built-
in collection.

There's more...

The idea of generalization can lead to superclasses that are abstractions. Because an
abstract class is incomplete, it requires a subclass to extend it and provide missing
implementation details. We can't make an instance of an abstract class because it would be
missing features that make it useful.

As we noted in the Choosing a data structure recipe in Chapter 4, Built-In Data Structures Part
1: Lists and Sets, there are abstract superclasses for all of the built-in collections. Rather than
starting from a concrete class, we can also start our design from an abstract base class.

We could, for example, start a class definition like this:

from collections.abc import MutableMapping
class MyFancyMapping(MutableMapping):

etc.

In order to finish this class, we'll need to provide an implementation for a number of special
methods:
> getitem_ ()
> setitem_ ()
> delitem_ ()
> diter ()
>

Each of these methods is missing from the abstract class; they have no concrete
implementation in the Mapping class. Once we've provided workable implementations for
each method, we can then make instances of the new subclass.

See also

» In the Designing classes with lots of processing recipe, we took a different approach.
In that recipe, we left the complex algorithms in a separate class.

289

file:///\\192.168.0.200\All_Books\2019\Working_Titles\Books\16020_Modern Python Cookbook 2E\BookDrafts\9781786469250\c46b36ee-e2f1-4759-8b4d-b7a68d8d65b5.xhtml

Basics of Classes and Objects

Using properties for lazy attributes

In the Designing classes with lots of processing recipe, we defined a class that eagerly
computed a number of attributes of the data in a collection. The idea there was to compute
the values as soon as possible, so that the attributes would have no further computational
cost.

We described this as eager processing, since the work was done as soon as possible. The
other approach is lazy processing, where the work is done as late as possible.

What if we have values that are used rarely, and are very expensive to compute? What can
we do to minimize the up-front computation, and only compute values when they are truly
needed?

Getting ready...

Let's say we've collected data using a Counter object. For more information on the various
collections, see Chapter 4, Built-In Data Structures Part 1: Lists and Sets; specifically

the Using set methods and operators and Avoiding mutable default values for function
parameters recipes. In this case, the customers fall into eight categories with approximately
equal numbers.

The data looks like this:

Counter({15: 7, 17: 5, 20: 4, 16: 3, ... etc., 45: 1})

In this collection, each key is the number of visits needed to get a full set of coupons. The
values are the numbers of times that the visits occurred. In the preceding data that we saw,
there were seven occasions where 15 visits were needed to get a full set of coupons. We
can see from the sample data that there were five occasions where 17 visits were needed.
This has a long tail. At only one point, there were 45 individual visits before a full set of eight
coupons was collected.

We want to compute some statistics on this Counter. We have two overall strategies for
doing this:

» Extend: We covered this in detail in the Extending a built-in collection - a list that
does statistics recipe, and we will cover this in Chapter 8, More Advanced Class
Design.

» Wrap: We can wrap the Counter object in another class that provides just the
features we need. We'll look at this in Chapter 8, More Advanced Class Design.

A common variation on wrapping uses a statistical computation object with a separate data
collection object. This variation on wrapping often leads to an elegant solution.

290

file:///\\192.168.0.200\All_Books\2019\Working_Titles\Books\16020_Modern Python Cookbook 2E\BookDrafts\9781786469250\c46b36ee-e2f1-4759-8b4d-b7a68d8d65b5.xhtml
file:///\\192.168.0.200\All_Books\2019\Working_Titles\Books\16020_Modern Python Cookbook 2E\BookDrafts\9781786469250\fc98b33d-f2df-41cc-b4da-207a06bea925.xhtml
file:///\\192.168.0.200\All_Books\2019\Working_Titles\Books\16020_Modern Python Cookbook 2E\BookDrafts\9781786469250\fc98b33d-f2df-41cc-b4da-207a06bea925.xhtml

Chapter 7

No matter which class architecture we choose, we have two ways to design the processing:
» Eager: This means that we'll compute the statistics as soon as possible. This was the
approach followed in the Designing classes with lots of processing recipe.

» Lazy: This means we won't compute anything until it's required via a method function
or property. In the Extending a built-in collection - a list that does statistics recipe, we
added methods to a collection class. These additional methods are examples of lazy
calculation. The statistical values are computed only when required.

The essential math for both designs is the same. The only question is when the computation
is done.

The mean, U, is this:

_ Yrec(fie X k)
S S

Here, k is the key from the Counter, C, and f, is the frequency value for the given key from
the counter. The sum of all the frequencies is the total count of all the original samples.

The standard deviation, 0, depends on the mean, K. The formula is this:

Ykec fie X (k — p)?
c+1

Here, k is the key from the Counter, C, and f, is the frequency value for the given key from
the Counter. The total number of items in the counteris € = Z fr-
kec

How to do it...

1. Define the class with a descriptive name:
class LazyCounterStatistics:
2. Write the initialization method to include the object to which this object will be
connected. We've defined a method function that takes a Counter object as an

argument value. This counter object is saved as part of the Counter Statistics
instance:

def __init_ (self, raw_counter: Counter) -> None:
self.raw_counter = raw_counter

291

Basics of Classes and Objects

3. Define some useful helper methods. Each of these is decorated with @property to
make it behave like a simple attribute:
@property
def sum(self) -> float:
return sum(
f *v
for v, f in self.raw_counter.items()
)
@property
def count(self) -> float:
return sum(
f
for v, f in self.raw_counter.items()

)

4. Define the required methods for the various values. Here's the calculation of the
mean. This too is decorated with @property. The other methods can be referenced
as if they are attributes, even though they are proper method functions:

@property
def mean(self) -> float:
return self.sum / self.count
5. Here's how we can calculate the standard deviation. Note that we've been using

math.sqgrt (). Be sure to add the required import math statement in the Python
module:

@property
def sum2(self) -> float:
return sum(
f *x y **)
for v, f in self.raw_counter.items()

)
@property
def variance(self) -> float:
return (
(self.sum2 - self.sum ** 2 / self.count) /
(self.count - 1)
)

292

Chapter 7

@property
def stddev(self) -> float:
return math.sqrt(self.variance)
To show how this works, we'll apply an instance of this class to the data created by the coupon
collector function. The data from that function was organized as a Counter object that had
the counts of visits required to get a full set of coupons. For each count of visits, the Counter
instance kept the number of times it occurred. This provided a handy histogram showing a

minimum and a maximum. The question we had was whether or not real data matched the
statistical expectation.

Here's how we can create some sample data:

from Chapter_15.collector import *

import collections

from typing import Counter, Callable, Iterator
ArrivalF = Callable[[int], Iterator[int]]

def raw_data(
n: int = 8,
limit: int = 1000,
arrival_function: ArrivalF = arrivall
-> Counter[int]:

data = samples(limit, arrival_function(n))

wait_times = collections.Counter(coupon_collector(n,
data))

return wait_times

We've imported functions such as expected (), arrivall (), and coupon collector ()
from the Chapter_ 15.collector module. We've imported the standard library
collections module. We've also imported the Counter type hint to provide a description
the results of the raw_data () function.

We defined a function, raw_data (), that will generate a number of customer visits. The
default for the resulting data will contain 1,000 visits. The domain will be eight different
classes of customers; each class will have an equal number of members. We'll use the
coupon_collector () function to step through the data, emitting the number of visits
required to collect a full set of eight coupons.

This data is then used to assemble a Counter object. This will have the number of customers
required to get a full set of coupons. Each number of customers will also have a frequency
showing how often that number of visits occurred.

293

Basics of Classes and Objects

Here's how we can analyze the Counter object:

>>> import random

>>> random.seed (1)

>> data = raw _data(8)

>>> stats = LazyCounterStatistics(data)

>>> round(stats.mean, 2)

20.81
>>> round(stats.stddev, 2)

7.02

First, we imported the random module so that we could pick a known seed value. This makes
it easier to test and demonstrate an application because the random numbers are consistent.

Setting the random number seed to a known value generates predictable, testable coupon
collector test results. The results are randomized, but depend on the seed value. The
raw_data () function will emit a Counter object, which we called data.

We'll use the Counter object to create an instance of the LazyCounterStatistics class.
We'll assign this to the stats variable. When we print the value for the stats.mean property
and the stats. stddev property, the methods are invoked to do the appropriate calculations
of the various values.

For a set of eight coupons, the theoretical average is 21.7 visits to collect all coupons. It looks
like the results from raw_data () show behavior that matches the expectation of random
visits. This is sometimes called the null hypothesis—the data is random. Our customers are
visiting us in nearly random orders, distributed fairly.

This might be a good thing because we've been trying to get a wider variety of customers to
visit. It might be a bad thing because a promotional program has not moved the visits away
from a random distribution. The subsequent decisions around this data depend on a great
deal of context.

In this case, the generated data really was random. Using this is a way to validate the
statistical testing approach. We can now use this software on real-world data with some
confidence that it behaves correctly.

The idea of lazy calculation works out well when the value is used rarely. In this example, the
count is computed twice as part of computing the variance and standard deviation.

Chapter 7

A naive lazy design may not be optimal in some cases when values are recomputed
frequently. This is an easy problem to fix, in general. We can always create additional local
variables to cache intermediate results instead of recomputing them.

To make this class look like a class performing eager calculations, we used the eproperty
decorator. This makes a method function appear to be an attribute. This can only work for
method functions that have no argument values.

In all cases, an attribute that's computed eagerly can be replaced by a lazy property. The
principle reason for creating eager attribute variables is to optimize computation costs. In the
case where a value is used rarely, a lazy property can avoid an expensive calculation.

There's more...

There are some situations in which we can further optimize a property to limit the amount of
additional computation that's done when a value changes. This requires a careful analysis of
the use cases in order to understand the pattern of updates to the underlying data.

In the situation where a collection is loaded with data and an analysis is performed, we can
cache results to save computing them a second time.

We might do something like this:

class CachinglazyCounterStatistics:
def init_ (self, raw_counter: Counter) -> None:
self.raw_counter = raw_counter
self. sum: Optional[float] = None
self._count: Optional[float] = None

@property
def sum(self) -> float:
if self._sum is None:
self. sum = sum(
f *v
for v, f in self.raw_counter.items()

)

return cast(float, self._sum)

This technique uses two attributes to save the results of the sum and count calculations,
self. sumandself. count. This value can be computed once and returned as often as
needed with no cost for recalculation.

295

Basics of Classes and Objects

The type hints show these attributes as being optional. Once the values for self. sumand
self. count have been computed, the values are no longer optional, but will be present.
We describe this to mypy with the cast () type hint. This hint tells mypy to consider

self. sumas being a £loat object, not an Optional [float] object.

This caching optimization is only helpful if the state of the raw_counter object
never changes. In an application that updates the underlying Counter, this cached
value would become out of date. That kind of application would need to recreate the
LazyCounterStatistics every time the Counter was updated.

» Inthe Designing classes with lots of processing recipe, we defined a class that
eagerly computed a number of attributes. This represents a different strategy for
managing the cost of the computation.

Creating contexts and context managers

A number of Python objects behave like context managers. Some of the most visible
examples are file objects. We often use with path.open() as file: to process a file
and guarantee the resources are released. In Chapter 2, Statements and Syntax, the recipe
Context management and the "with" statement covers the basics of using a file-based context
manager.

How can we create our own classes that act as context managers?

Getting ready

We'll look at a function from Chapter 3, Function Definitions, in the Picking an order

for parameters based on partial functions recipe. This recipe introduced a function,
haversine (), which has a context-like parameter used to adjust the answer from
dimensionless radians to a useful unit of measure, such as kilometers, nautical miles, or US
statute miles. In many ways, this distance factor is a kind of context, used to define the kinds
of computations that are done.

What we want is to be able to use the with statement to describe an object that doesn't
change very quickly; indeed the change acts as a kind of boundary, defining the scope of
computations. We might want to use code like the following:
>>> with Distance(r=NM) as nm dist:

print (£"{nm dist(pl, p2)=:.2£f}")

print (£"{nm dist(p2, p3)=:.2£f}")

296

Chapter 7

The Distance (r=NM) constructor provides the definition of the context, providing a new
object, nm_dist, that has been configured to perform the required calculation in nautical
miles. This can be used only within the body of the with statement.

This Distance class definition can be seen as creating a partial function, nm_dist ().
This function provides a fixed unit-of-measure parameter, r, for a number of following
computations using the haversine () function.

There are a number of other ways to create partial functions, including a 1ambda object, the
functools.partial () function, and callable objects. We looked at the partial function
alternative in Chapter 3, Function Definitions, in the Picking an order for parameters based on
partial functions recipe.

How to do it...

A context manager class has two special methods that we need to define:

1. Start with a meaningful class name:

class Distance:

2. Define an initializer that creates any unique features of the context. In this case, we
want to set the units of distance that are used:

def init_ (self, r: float) -> None:
self.r = r

3. Definethe __enter__ () method. This is called when the with statement block
begins. The statement with Distance (r=NM) as nm_dist does two things.
First it creates the instance of the Distance class, thenitcallsthe enter ()
method of that object to start the context. The return value from __enter () is
what's assigned to a local variable via the as clause. This isn't always requir