

Learning AWK Programming

A fast, and simple cutting-edge utility for text-processing on
the Unix-like environment

Shiwang Kalkhanda

BIRMINGHAM - MUMBAI

Learning AWK Programming
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Sunith Shetty
Acquisition Editor: Viraj Madhav
Content Development Editor: Cheryl Dsa
Technical Editor: Suwarna Patil
Copy Editors: Vikrant Phadkay, Safis Editing
Project Coordinator: Nidhi Joshi
Proofreader: Safis Editing
Indexer: Rekha Nair
Graphics: Tania Dutta
Production Coordinator: Shantanu Zagade

First published: March 2018

Production reference: 1210318

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78839-103-0

www.packtpub.com

http://www.packtpub.com

To my father, the late Ranvir Singh

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author
Shiwang Kalkhanda (RHCA, RHCSS, MCSE) is a Linux geek and consultant with expertise
in the automation of infrastructure deployment and management. He has more than 10
years of experience in security, system, and network administration and training on open
source tech. For most of his automation work, he uses shell scripting, Python & Go. He
holds a master's and bachelor's degree in computer application. He enjoys traveling and
spending time with his kids.

I thank my parents, the late Ranvir Singh and Vijay Lata, for their unconditional love and
support throughout my life. To my beautiful wife, Reetu, for making me complete and
understanding me better than myself. To my son, Ranvijay, whose precious time as a
father I stole to complete this book. To my brother, Pranjal, and my friends Sanjay
Bandyopadhyay, Tej Pratap Singh, Rajneesh Pandey for their constant support.

About the reviewers
John C Kennedy has worked with UNIX and Linux since 1998. He has worked with Nagios
as a monitoring tool for much of the past 5 years.

He has been reviewing and tech-editing books in his spare time since 2001 and has about 20
open source books to his credit. He believes the best part of reviewing is that he learns
something from every book he works on.

He was born in the USA and grew up in Northern Virginia, USA. He spent some time in the
US Air Force and has lived in Germany and the UK. He has been married to Michele since
1994 and has two children, Denise and Kieran. He lives in Virginia.

I would like to thank my family, including my nephews, Aiden and Mason, and my niece,
Harriet, for supporting all the silly things I do and for giving me the time to work on this.

Marco Ippolito is an Italian software engineer working as director of software development
for Imagining IT. Marco completed his postgraduate in software engineering in Oxford and
has worked for large corporations such as Google, Oracle, Intel, HP, and Dell, as well as for
start-ups such as Platform.sh. He can be reached
at marco.ippolito@imaginingit.com and has experience working in teams speaking
Italian, English, Spanish, Brazilian Portuguese, German, and French, remotely or on-site.

Doug Ortiz is an experienced enterprise cloud, big data, data analytics, and solutions
architect who has designed, developed, re-engineered, and integrated enterprise solutions.
His other expertise is in Amazon Web Services, Azure, Google Cloud, business intelligence,
Hadoop, Spark, NoSQL databases, and SharePoint, to mention a few.

He is the founder of Illustris, LLC and is reachable at dougortiz@illustris.org.

Huge thanks to my wonderful wife, Milla, as well as Maria, Nikolay, and our children for
all their support.

mailto:dougortiz@illustris.org

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Getting Started with AWK Programming 7
AWK programming language overview 8

What is AWK? 8
Types of AWK 8
When and where to use AWK 10

Getting started with AWK 10
Installation on Linux 10

Using the package manager 11
Compiling from the source code 12

Workflow of AWK 14
Action and pattern structure of AWK 17

Example data file 17
Pattern-only statements 18
Action-only statements 18
Printing each input line/record 19
Using the BEGIN and END blocks construct 19
The BEGIN block 20
The body block 20
The END block 20

Patterns 21
Actions 22

Running AWK programs 22
AWK as a Unix command line 22
AWK as a filter (reading input from the Terminal) 23
Running AWK programs from the source file 24
AWK programs as executable script files 25
Extending the AWK command line on multiple lines 26
Comments in AWK 26
Shell quotes with AWK 27

Data files used as examples in this book 29
Some simple examples with default usage 31

Table of Contents

[ii]

Multiple rules with AWK 44
Using standard input with names in AWK 44

AWK standard options 48
Standard command-line options 48

The -F option – field separator 49
The -f option (read source file) 50
The -v option (assigning variables) 51

GAWK-only options 51
The --dump-variables option (AWK global variables) 52
The --profile option (profiling) 53
The --sandbox option 54
The -i option (including other files in your program) 55
Include other files in the GAWK program (using @include) 56
The -V option 57

Summary 58

Chapter 2: Working with Regular Expressions 59
Introduction to regular expressions 59

What is a regular expression? 60
Why use regular expressions? 60
Using regular expressions with AWK 60

Regular expressions as string-matching patterns with AWK 61
Basic regular expression construct 63
Understanding regular expression metacharacters 64

Quoted metacharacter 65
Anchors 65

Matching at the beginning of a string 65
Matching at the end of a string 66

Dot 68
Brackets expressions 69

Character classes 70
Named character classes (POSIX standard) 73

Complemented bracket expressions 76
Complemented character classes 76
Complemented named character classes 77

Alternation operator 78
Unary operator for repetition 79

Closure 80

Table of Contents

[iii]

Positive closure 81
Zero or one 82

Repetition ranges with interval expressions 83
A single number in brackets 83
A single number followed by a comma in brackets 84
Two numbers in brackets 84

Grouping using parentheses 85
Concatenation using alternation operator within parentheses 86
Backreferencing in regular expressions – sed and grep 86

Precedence in regular expressions 87
GAWK-specific regular expression operators 88

Matching whitespaces 89
Matching not whitespaces 89
Matching words (\w) 89
Matching non-words 90
Matching word boundaries 90

Matching at the beginning of a word 90
Matching at the end of a word 91

Matching not as a sub-string using 91
Matching a string as sub-string only using 91

Case-sensitive matching 92
Escape sequences 92
Summary 95

Chapter 3: AWK Variables and Constants 96
Built-in variables in AWK 97

Field separator 97
Using a single character or simple string as a value of the FS 97
Using regular expressions as values of the FS 98
Using each character as a separate field 100
Using the command line to set the FS as -F 101

Output field separator 101
Record separator 104
Outputting the record separator 106
NR and NF 107
FILENAME 112

Environment variables in AWK 113

Table of Contents

[iv]

ARGC and ARGV 113
CONVFMT and OFMT 116
RLENGTH and RSTART 119
FNR 120
ENVIRON and SUBSET 121
FIELD (POSITIONAL) VARIABLE ($0 and $n) 124

Environment variables in GAWK 125
ARGIND 125
ERRNO 126
FIELDWIDTHS 127
IGNORECASE 128
PROCINFO 129

String constants 130
Numeric constants 132
Conversion between strings and numbers 132
Summary 133

Chapter 4: Working with Arrays in AWK 134
One-dimensional arrays 134
Assignment in arrays 135
Accessing elements in arrays 138
Referring to members in arrays 139
Processing arrays using loops 141
Using the split() function to create arrays 143
Delete operation in arrays 144
Multidimensional arrays 147
Summary 151

Chapter 5: Printing Output in AWK 152
The print statement 153
Role of output separator in print statement 156
Pretty printing with the printf statement 158
Escape sequences for special character printing 159
Different format control characters in the format specifier 163
Format specification modifiers 167

Printing with fixed column width 167

Table of Contents

[v]

Using the minus modifier (-) for left justification 168
Printing with fixed width – right justified 169
Using hash modifier (#) 170
Using plus modifier (+) for prefixing with sign/symbol 170
Printing with prefix sign/symbol 172
Dot precision as modifier 173
Positional modifier using integer constant followed by $ (N$): 174

Redirecting output to file 175
Redirecting output to a file (>) 175
Appending output to a file (>>) 177
Sending output on other commands using pipe (|) 178
Special file for redirecting output (/dev/null, stderr) 179
Closing files and pipes 179

Summary 181

Chapter 6: AWK Expressions 182
AWK variables and constants 182
Arithmetic expressions using binary operators 183
Assignment expressions 187
Increment and decrement expressions 190
Relational expressions 193
Logical or Boolean expressions 198
Ternary expressions 202
Unary expressions 203
Exponential expressions 204
String concatenation 205
Regular expression operators 206
Operators' Precedence 208
Summary 210

Chapter 7: AWK Control Flow Statements 211
Conditional statements 212

The if statement 212
if 212
If...else 215
The if...else...if statement 218

Table of Contents

[vi]

The switch statement (a GAWK-specific feature) 220
Looping statement 224

The while loop 224
do...while loop statement 228
The for loop statement 233
For each loop statement 237

Statements affecting flow control 237
Break usage 238
Usage of continue 240
Exit usage 243
Next usage 245

Summary 247

Chapter 8: AWK Functions 248
Built-in functions 248

Arithmetic functions 249
The sin (expr) function 249
The cos (expr) function 249
The atan2 (x, y) function 250
The int (expr) function 250
The exp (expr) function 251
The log (expr) function 251
The sqrt (expr) function 252
The rand() function 253
The srand ([expr]) function 254

Summary table of built-in arithmetic functions 256
String functions 256

The index (str, sub) function 257
The length (string) function 257
The split (str, arr, regex) function 259
The substr (str, start, [length]) function 260
The sub (regex, replacement, string) function 261
The gsub (regex, replacement, string) function 264
The gensub (regex, replacement, occurrence, [string]) function 265
The match (string, regex) function 267
The tolower (string) function 269
The toupper (string) function 270
The sprintf (format, expression) function 271

Table of Contents

[vii]

The strtonum (string) function 271
Summary table of built-in string functions 272

Input/output functions 273
The close (filename [to/from]) function 274
The fflush ([filename]) function 274
The system (command) function 275
The getline command 276

Simple getline 277
Getline into a variable 277
Getline from a file 278
Using getline to get a variable from a file 280
Using getline to output into a pipe 282
Using getline to change the output into a variable from a pipe 284
Using getline to change the output into a variable from a coprocess 284

The nextfile() function 285
The time function 286

The systime() function 286
The mktime (datespec) function 287
The strftime (format, timestamp) function 287

Bit-manipulating functions 290
The and (num1, num2) function 290
The or (num1, num2) function 291
The xor (num1, num2) function 292
The lshift (val, count) function 293
The rshift (val, count) function 294
The compl (num) function 294

User-defined functions 295
Function definition and syntax 295
Calling user-defined functions 297
Controlling variable scope 297
Return statement 298
Making indirect function calls 299

Summary 300

Chapter 9: GNU's Implementation of AWK – GAWK (GNU AWK) 301
Things you don't know about GAWK 302

Reading non-decimal input 302
GAWK's built-in command line debugger 304

What is debugging? 305

Table of Contents

[viii]

Debugger concepts 305
Using GAWK as a debugger 306

Starting the debugger 307
Set breakpoint 307
Removing the breakpoint 308
Running the program 309
Looking inside the program 309
Displaying some variables and data 310
Setting watch and unwatch 310
Controlling the execution 311
Viewing environment information 312
Saving the commands in file 314
Exiting the debugger 315

Array sorting 315
Sort array by values using asort() 315
Sort array indexes using asorti() 318

Two-way inter-process communication 321
Using GAWK for network programming 324

TCP client and server (/inet/tcp) 325
UDP client and server (/inet/udp) 327
Reading a web page using HttpService 328

Profiling 329
Summary 336

Chapter 10: Practical Implementation of AWK 337
Working with one-liners for text processing and pattern matching
with AWK 337

Selective printing of lines with AWK 338
Modifying line spacing in a file with AWK 347
Numbering and calculations with AWK 349
Selective deletion of certain lines in a file with AWK 352
String operation on selected lines with AWK 353
Array creation with AWK one-liner 355
Text conversion and substitution in files with AWK 355
One-liners for system administrators 362

Use case examples of pattern matching using AWK 364
Parsing web server (Apache/Nginx) log files 364

Understanding the Apache combined log format 364
Using AWK for processing different log fields 366

Table of Contents

[ix]

Identifying problems with the running website 368
Printing the top 10 request IP addresses with their GeoIP information 371
Counting and printing unique visits to a website 372
Real-time IP address lookup for requests 374

Converting text to HTML table 376
Converting decimal to binary 378
Renaming files in a directory with AWK 379
Printing a generated sequence of numbers in a specified columnate
format 380
Transposing a matrix 381
Processing multiple files using AWK 383

Summary 384
Further reading 385

Index 386

Preface
This book is for anyone who is inclined to learn text processing and data extraction in a
Unix-like environment. Readers will gain sufficient practical knowledge to write AWK one-
liners for extracting data and write clean and small AWK programs to solve complex
problems. You will be able to automate the process of cleaning any raw data, remove any
extra unnecessary stuff, and create a desired reportable output. Examples given in the book
are easily reproducible and will help you better understand AWK.

Text processing is used in data mining, data cleaning of CSV, and other similar-format
database files. System administrators use it in their shell scripts to automate tasks and filter
out command output. It is used extensively with grep, egrep, fgrep, and regular
expressions for parsing text files. Its use cases vary from industry to industry, such as
telecom enterprises and business process organizations that deal with large CSV files for
storing logs and other user information. They use AWK for cleaning and transforming the
structure of data from one form to another.

AWK one of the oldest and most powerful utilities that exists in all and Linux distributions.
It is used as a command-line utility for performing basic text processing operations and as a
programming language when dealing with complex text processing. The best thing about
AWK is that it is a data-driven language: you describe the data you wish to work with, and
the set of actions you want to perform in the case of a pattern match. This book will provide
you with a rundown, explaining the concepts to help you get started with AWK. We will
cover every element of functions, variables, and more.

This book will enable the user to perform text filtering, text cleaning, and parsing of input in
user-defined formats to create elegant reports. Our main focus throughout the book is on
learning AWK with examples and small scripts to quickly solve user problems. The mission
of this book is to make the reader comfortable and friendly with AWK.

Preface

[2]

Who this book is for
The book is written from the beginners' point of view. It covers the basic to intermediate
skills that are essential for text processing in a simple and effective manner. But at the same
time, there is good amount of stuff that a seasoned AWK user shall find interesting. It
covers a wide range of audience and shall be useful to the following people:

Data scientists who need to extract and clean data for analysis
Developers who perform parsing of flat text files, HTML files, XML files, or CSV
files
System administrators who parse log files for analysis
Any GNU/Linux hobbyist or enthusiast who likes to play with GNU/Linux filters
for data manipulation

It is written in such a manner that any user with a basic familiarity with the GNU/Linux
command line can start using it. The only requisite for it is to have a GNU/Linux box for
practicing the stuff covered. This book begins with the essentials of text processing, that is,
regular expressions (followed by the structure of the AWK program), variables, constants,
functions, arrays, printing options, control flow of the program, and use of different
operators to carry out various text processing and mining tasks.

For advanced users, Chapter 9, GNU's Implementation of AWK – GAWK (GNU AWK), covers
GAWK implementation in networking, inter-process communication, and debugging. It is
followed by practical examples for text processing and pattern matching. For system
administrators, we have covered quick one liners that they will find useful in their daily
operations. This book has got something for every learner who is working on GNU/Linux.

What this book covers
Chapter 1, Getting Started with AWK Programming, introduces AWK's essentials. In this
chapter, you will learn how to set up an AWK environment on a Linux machine. You will
run AWK programs in different ways with basic examples. This chapters lays the
foundation for other chapters.

Chapter 2, Working with Regular Expressions, introduces regular expressions and explains
how they are handled with AWK. You will get to know regular expressions with suitable
examples.

https://cdp.packtpub.com/learning_awk_programming/wp-admin/post.php?post=23&action=edit#post_104

Preface

[3]

Chapter 3, AWK Variables and Constants, focuses on the usage of AWK variables. You will
understand how to use built-in and user-defined variables while writing AWK programs
and command lines. You will also learn how string and numeric constants can be used to
process different fields in data files.

Chapter 4, Working with Arrays in AWK, focuses on associative arrays in AWK. You will
understand various features of associative arrays, such as these: indexes do not need to be
in order, one can use either a string or a number as an array index, and array size can
expand/shrink at runtime and is not statically defined.

Chapter 5, Printing Output in AWK, focuses on the print and printf functions and how
they can be used efficiently to produce formatted reports. You will also learn how to use
redirections in an AWK program.

Chapter 6, AWK Expressions, describes the expressions that build the core logic of a
program in any programming language. The reader will learn how to create and use
different types of expression in AWK language.

Chapter 7, AWK Control Flow Statements, covers the usage of different conditional
statements to control the flow of AWK programs, with examples.

Chapter 8, AWK Functions, covers the different types of built-in functions available in
AWK. In addition, you will learn the usage of user-defined functions to perform repetitive
tasks in AWK.

Chapter 9, GNU's Implementation of AWK – GAWK (GNU AWK), covers the advanced
features of GNU AWK, such as network communication, debugging, and inter-process
communication in GAWK. These are not present in AWK.

Chapter 10, Practical Implementation of AWK, illustrates various use cases of text processing.
You will learn how a system administrator can use the AWK command line and scripts to
automate repetitive tasks. Programmers and data scientists dealing with raw data in text
files will learn how to clean raw data and produce formatted reports.

To get the most out of this book
We have put our best efforts in to making this book's code and content relevant for the
larger audience working on GNU/Linux. All the examples covered in the book are based on
openSUSE Leap 42.3 Linux distribution with GAWK version 4.1.3 installed. You can use
any Linux distribution having GAWK version 4.1.3 or above installed to practice the
examples. GAWK is GNU’s open source implementation of AT&T's original AWK.

Preface

[4]

Only requirement for this book is the GAWK utility. Users can install the Windows variant
of GAWK on their system if they want to practice the examples, but we strongly
recommend using any Linux distribution for this purpose. For Windows and OS X, those
who would like to practice it on a virtual environment can use VMware of Virtualbox to set
up their favorite Linux distribution and then use AWK to execute the examples. For
beginners, we have covered the installation of AWK programs on popular GNU/Linux
distributions using package management and source code.

A basic understanding of GNU/Linux operating systems and familiarity with any text
editor such as emacs, vi or nano are required. An understanding of shell scripting will be an
added advantage to the reader.

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub
at https://github.com/PacktPublishing/Learning-AWK-Programming. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Learning-AWK-Programming
https://github.com/PacktPublishing/Learning-AWK-Programming
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[5]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, path names, dummy URLs, user input, and Twitter handles. Here is an
example: "We can check that using the which command, which will return the absolute
path of AWK on our system."

Any command-line input or output is written as follows:

[shiwang@linux ~] $ sudo apt-get update -y
[shiwang@linux ~] $ sudo apt-get install gawk -y

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example: "It
was updated and replaced in the mid-1980s with an enhanced version called New
AWK (NAWK)."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Preface

[6]

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

1
Getting Started with AWK

Programming
Welcome to your journey with AWK programming. We all interact with data in our daily
life in one way or another. Retrieving the desired, useful information from this data can
seem like a difficult task, however, if we have the correct tools and proper knowledge of
how to handle them, it's really not that difficult. This book will teach you how to efficiently
handle one of the best of these tools, known as AWK. It is a standard feature of a Unix-like
operating system to retrieve information from raw data. It will help you to understand
trivial data-processing concepts in a user-friendly way.

This chapter is designed to give you a kickstart for writing your own simple AWK
programs. Throughout the book, we will explain AWK, and work with useful and
interesting examples to develop your problem-solving skills in AWK.

In this chapter, we will cover the following:

An overview of the AWK programming language
Different installation methods of AWK on the Linux environment
Understanding the AWK workflow
Learning how to create and run basic AWK programs in multiple ways
Working with sample data files with a simple usage of AWK
Understanding different AWK options

Getting Started with AWK Programming Chapter 1

[8]

AWK programming language overview
In this section, we will explore the AWK philosophy and different types of AWK that exist
today, starting from its original implementation in 1977 at AT&T's Laboratories, Inc. We
will also look at the various implementation areas of AWK in data science today.

What is AWK?
AWK is an interpreted programming language designed for text processing and report
generation. It is typically used for data manipulation, such as searching for items within
data, performing arithmetic operations, and restructuring raw data for generating reports in
most Unix-like operating systems. Using AWK programs, one can handle repetitive text-
editing problems with very simple and short programs. AWK is a pattern-action language;
it searches for patterns in a given input and, when a match is found, it performs the
corresponding action. The pattern can be made of strings, regular expressions, comparison
operations on numbers, fields, variables, and so on. AWK reads the input files and splits
each input line of the file into fields automatically.

AWK has most of the well-designed features that every programming language should
contain. Its syntax particularly resembles that of the C programming language. It is named
after its original three authors:

Alfred V. Aho
Peter J. Weinberger
Brian W. Kernighan

AWK is a very powerful, elegant, and simple tool that every person dealing with text
processing should be familiar with.

Types of AWK
The AWK language was originally implemented as an AWK utility on Unix. Today, most
Linux distributions provide GNU implementation of AWK (GAWK), and a symlink for
AWK is created from the original GAWK binary. The AWK utility can be categorized into
the following three types, depending upon the type of interpreter it uses for executing AWK
programs:

Getting Started with AWK Programming Chapter 1

[9]

AWK: This is the original AWK interpreter available from AT&T Laboratories.
However, it is not used much nowadays and hence it might not be well-
maintained. Its limitation is that it splits a line into a maximum 99 fields. It was
updated and replaced in the mid-1980s with an enhanced version called New
AWK (NAWK).
NAWK: This is AT&T's latest development on the AWK interpreter. It is well-
maintained by one of the original authors of AWK - Dr. Brian W. Kernighan.
GAWK: This is the GNU project's implementation of the AWK programming
language. All GNU/Linux distributions are shipped with GAWK by default and
hence it is the most popular version of AWK. GAWK interpreter is fully
compatible with AWK and NAWK.

Beyond these, we also have other, less popular, AWK interpreters and
translators, mentioned as follows. These variants are useful in operations
when you want to translate your AWK program to C, C++, or Perl:

MAWK: Michael Brennan interpreter for AWK.
TAWK: Thompson Automation interpreter/compiler/Microsoft
Windows DLL for AWK.
MKSAWK: Mortice Kern Systems interpreter/compiler/for
AWK.
AWKCC: An AWK translator to C (might not be well-
maintained).
AWKC++: Brian Kernighan's AWK translator to C++
(experimental). It can be downloaded from: https:/ ​/​9p. ​io/​cm/
cs/ ​who/ ​bwk/ ​awkc++. ​ps.
AWK2C: An AWK translator to C. It uses GNU AWK libraries
extensively.
A2P: An AWK translator to Perl. It comes with Perl.
AWKA: Yet another AWK translator to C (comes with the
library), based on MAWK. It can be downloaded
from: http://awka.sourceforge.net/download.html.

https://9p.io/cm/cs/who/bwk/awkc++.ps
https://9p.io/cm/cs/who/bwk/awkc++.ps
https://9p.io/cm/cs/who/bwk/awkc++.ps
https://9p.io/cm/cs/who/bwk/awkc++.ps
https://9p.io/cm/cs/who/bwk/awkc++.ps
https://9p.io/cm/cs/who/bwk/awkc++.ps
https://9p.io/cm/cs/who/bwk/awkc++.ps
https://9p.io/cm/cs/who/bwk/awkc++.ps
https://9p.io/cm/cs/who/bwk/awkc++.ps
https://9p.io/cm/cs/who/bwk/awkc++.ps
https://9p.io/cm/cs/who/bwk/awkc++.ps
https://9p.io/cm/cs/who/bwk/awkc++.ps
https://9p.io/cm/cs/who/bwk/awkc++.ps
https://9p.io/cm/cs/who/bwk/awkc++.ps
https://9p.io/cm/cs/who/bwk/awkc++.ps
https://9p.io/cm/cs/who/bwk/awkc++.ps
https://9p.io/cm/cs/who/bwk/awkc++.ps
https://9p.io/cm/cs/who/bwk/awkc++.ps
http://awka.sourceforge.net//download.html

Getting Started with AWK Programming Chapter 1

[10]

When and where to use AWK
AWK is simpler than any other utility for text processing and is available as the default on
Unix-like operating systems. However, some people might say Perl is a superior choice for
text processing, as AWK is functionally a subset of Perl, but the learning curve for Perl is
steeper than that of AWK; AWK is simpler than Perl. AWK programs are smaller and hence
quicker to execute. Anybody who knows the Linux command line can start writing AWK
programs in no time. Here are a few use cases of AWK:

Text processing
Producing formatted text reports/labels
Performing arithmetic operations on fields of a file
Performing string operations on different fields of a file

Programs written in AWK are smaller than they would be in other higher-level languages
for similar text processing operations. AWK programs are interpreted on a GNU/Linux
Terminal and thus avoid the compiling, debugging phase of software development in other
languages.

Getting started with AWK
This section describes how to set up the AWK environment on your GNU/Linux system,
and we'll also discuss the workflow of AWK. Then, we'll look at different methods for
executing AWK programs.

Installation on Linux
All the examples in this book are covered using Linux distribution (openSUSE Leap 42.3). In
order to practice examples discussed in this book, you need GNU AWK version 4.1.3 or
above to be installed on your systems. Although there won't be drastic changes if you use
earlier versions, we still recommend you use the same version to get along.

Getting Started with AWK Programming Chapter 1

[11]

Generally, AWK is installed by default on most GNU/Linux distributions. Using
the which command, you can check whether it is installed on your system or not. In case
AWK is not installed on your system, you can do so in one of two ways:

Using the package manager of the corresponding GNU/Linux system
Compiling from the source code

Let's take a look at each method in detail in the following sections.

Using the package manager
Different flavors of GNU/Linux distribution have different package-management utilities. If
you are using a Debian-based GNU/Linux distribution, such as Ubuntu, Mint, or Debian,
then you can install it using the Advance Package Tool (APT) package manager, as follows:

[shiwang@linux ~] $ sudo apt-get update -y
[shiwang@linux ~] $ sudo apt-get install gawk -y

Similarly, to install AWK on an RPM-based GNU/Linux distribution, such as Fedora,
CentOS, or RHEL, you can use the Yellowdog Updator Modified (YUM) package manager,
as follows:

[root@linux ~] # yum update -y
[root@linux ~] # yum install gawk -y

For installation of AWK on openSUSE, you can use the zypper (zypper command line)
package-management utility, as follows:

[root@linux ~] # zypper update -y
[root@linux ~] # zypper install gawk -y

Once installation is finished, make sure AWK is accessible through the command line. We
can check that using the which command, which will return the absolute path of AWK on
our system:

[root@linux ~] # which awk
/usr/bin/awk

Getting Started with AWK Programming Chapter 1

[12]

You can also use awk --version to find the AWK version on our system:

 [root@linux ~] # awk --version

Compiling from the source code
Like every other open source utility, the GNU AWK source code is freely available for
download as part of the GNU project. Previously, you saw how to install AWK using the
package manager; now, you will see how to install AWK by compiling from its source code
on the GNU/Linux distribution. The following steps are applicable to most of the
GNU/Linux software for installation:

Download the source code from a GNU project ftp site. Here, we will use1.
the wget command line utility to download it, however you are free to choose
any other program, such as curl, you feel comfortable with:

[shiwang@linux ~] $ wget
http://ftp.gnu.org/gnu/gawk/gawk-4.1.3.tar.xz

Extract the downloaded source code:2.

[shiwang@linux ~] $ tar xvf gawk-4.1.3.tar.xz

Getting Started with AWK Programming Chapter 1

[13]

Change your working directory and execute the configure file to configure the3.
GAWK as per the working environment of your system:

[shiwang@linux ~] $ cd gawk-4.1.3 && ./configure

Once the configure command completes its execution successfully, it will4.
generate the make file. Now, compile the source code by executing the make
command:

[shiwang@linux ~] $ make

Type make install to install the programs and any data files and5.
documentation. When installing into a prefix owned by root, it is recommended
that the package be configured and built as a regular user, and only the make
install phase is executed with root privileges:

[shiwang@linux ~] $ sudo make install

Upon successful execution of these five steps, you have compiled and installed6.
AWK on your GNU/Linux distribution. You can verify this by executing
the which awk command in the Terminal or awk --version:

[root@linux ~] # which awk
/usr/bin/awk

Now you have a working AWK/GAWK installation and we are ready to begin AWK
programming, but before that, our next section describes the workflow of the AWK
interpreter.

If you are running on macOS X, AWK, and not GAWK, would be installed as
a default on it. For GAWK installation on macOS X, please refer to MacPorts
for GAWK.

Getting Started with AWK Programming Chapter 1

[14]

Workflow of AWK
Having a basic knowledge of the AWK interpreter workflow will help you to better
understand AWK and will result in more efficient AWK program development. Hence,
before getting your hands dirty with AWK programming, you need to understand its
internals. The AWK workflow can be summarized as shown in the following figure:

Figure 1.1: AWK workflow

Let's take a look at each operation:

READ OPERATION: AWK reads a line from the input stream (file, pipe, or
stdin) and stores it in memory. It works on text input, which can be a file, the
standard input stream, or from a pipe, which it further splits into records and
fields:

Records: An AWK record is a single, continuous data input
that AWK works on. Records are bounded by a record separator,
whose value is stored in the RS variable. The default value of RS is
set to a newline character. So, the lines of input are considered
records for the AWK interpreter. Records are read continuously
until the end of the input is reached. Figure 1.2 shows how input
data is broken into records and then goes further into how it is split
into fields:

Getting Started with AWK Programming Chapter 1

[15]

Figure 1.2: AWK input data is split into records with the record separator

Fields: Each record can further be broken down into individual
chunks called fields. Like records, fields are bounded. The default
field separator is any amount of whitespace, including tab and
space characters. So by default, lines of input are further broken
down into individual words separated by whitespace. You can
refer to the fields of a record by a field number, beginning with 1.
The last field in each record can be accessed by its number or with
the NF special variable, which contains the number of fields in the
current record, as shown in Figure 1.3:

Figure 1.3: Records are split into fields by a field separator

EXECUTE OPERATION: All AWK commands are applied sequentially on the
input (records and fields). By default, AWK executes commands on each
record/line. This behavior of AWK can be restricted by the use of patterns.
REPEAT OPERATION: The process of read and execute is repeated until the end
of the file is reached.

Getting Started with AWK Programming Chapter 1

[16]

The following flowchart depicts the workflow of the AWK interpreter:

Figure 1.4: Workflow of the AWK interpreter

Getting Started with AWK Programming Chapter 1

[17]

Action and pattern structure of AWK
AWK programs are sequences of one or more patterns followed by action statements. These
action-pattern statements are separated by newlines. Both actions (AWK commands) and
patterns (search patterns) are optional, hence we use { } to distinguish them:

/ search pattern / { action / awk-commands }/ search pattern / { action / awk-commands }

AWK reads each input line one after the other, and searches for matches of the given
pattern. If the current input line matches the given pattern, a corresponding action is taken.
Then, the next input line is read and the matching of patterns starts again. This process
continues until all input is read.

Throughout this book, we will be using the terms patterns or search patterns
and actions or AWK commands interchangeably.

In AWK syntax, we can omit either patterns or actions (but not both) in a single pattern-
action statement. Where a search pattern has no action statement (AWK command), each
line for which a pattern matches is printed to the output.

Each action statement can be single or multiple AWK commands.
Multiple AWK commands on a single line are seperated by a semicolon
(;).

A semicolon can be put at the end of any statement.

Example data file
Before proceeding, let's create a empinfo.txt file for practice. Each line in the file contains
the name of the employee, their phone number, email address, job profile, salary in USD,
and working days in a week:

Jack 9857532312 jack@gmail.com hr 2000 5
Jane 9837432312 jane@gmail.com hr 1800 5
Eva 8827232115 eva@gmail.com lgs 2100 6
amit 9911887766 amit@yahoo.com lgs 2350 6
Julie 8826234556 julie@yahoo.com hr 2500 5

Getting Started with AWK Programming Chapter 1

[18]

Pattern-only statements
The syntax of the awk command with a pattern only is as follows:

awk '/ pattern /' inputfilename

In the given example, all lines of the empinfo.txt file are processed, and those that contain
the Jane pattern are printed:

$ awk '/Jane/' empinfo.txt
Jane 9837432312 jane@gmail.com hr 1800 5

Action-only statements
The syntax of the awk command with an action only is as follows:

awk '{ action statements / awk-commands }' inputfilenames

If you omit the pattern and give the action statement (AWK commands), then the given
action is performed on all input lines, for example:

$ awk '{ print $1 }' empinfo.txt
Jack
Jane
Eva
amit
Julie

In the given example, all employee names are printed on the screen as $1, representing the
first field of each input line.

An empty pattern, that is / /, matches the null character and is equivalent
to giving no pattern at all. If we specify an empty pattern, it will print each
input record of the input file. An empty action, that is { }, specifies that
doing nothing will not print any input record of the input file.

Getting Started with AWK Programming Chapter 1

[19]

Printing each input line/record
We can print each input record of the input file in multiple ways, as shown in the following
example. All the given examples will produce the same result by printing all the input
records of the input file.

In our first example, we specify the empty pattern without any action statement to print
each input record of the input file, as follows:

$ awk '//' empinfo.txt

In this example, we specify the print action statement only, without giving any pattern for
matching, and print each input record of the input file, as follows:

$ awk '{ print }' empinfo.txt

In this example, we specify the $0 default variable, along with the print action statement, to
print each input record of the input file, as follows:

$ awk '{ print $0 }' empinfo.txt

In this example, we specify the empty expression along with the print action statement to
print each input record of the input file, as follows:

$ awk '//{ print }' empinfo.txt

All of the given examples perform the basic printing operation using AWK. On execution of
any of the preceding examples, we will get the following output:

Jack 9857532312 jack@gmail.com hr 2000 5
Jane 9837432312 jane@gmail.com hr 1800 5
Eva 8827232115 eva@gmail.com lgs 2100 6
amit 9911887766 amit@yahoo.com lgs 2350 6
Julie 8826234556 julie@yahoo.com hr 2500 5

Using the BEGIN and END blocks construct
AWK contains two special keywords, BEGIN and END, for patterns where an action is
required. Both of them are optional and are used without slashes. They don't match any
input lines.

Getting Started with AWK Programming Chapter 1

[20]

The BEGIN block
The BEGIN block is executed in the beginning, before the first input line of the first input
file is read. This block is executed once only when the AWK program is started. It is
frequently used to initialize the variables or to change the value of the AWK built-in
variables, such as FS. The syntax of the BEGIN block is as follows:

BEGIN { action / awk-commands }

The body block
It is the same pattern-action block that we discussed at the beginning of the chapter. The
syntax of the body block is as follows:

/ search pattern / { action / awk-commands }

In the body block, AWK commands are applied by default on each input line, however, we
can restrict this behavior with the help of patterns. There are no keywords for the body
block.

The END block
The END block is executed after the last input line of the last input file is read. This block is
executed at the end and is generally used for rendering totals, averages, and for processing
data and figures that were read in the various input records. The syntax of the END block is
as follows:

END { action / awk-commands }

We can have multiple BEGIN or END blocks in a program. The action in
that block will get executed as per the appearance of the block in that
program. It is not mandatory to have BEGIN first and END last. The BEGIN
and END blocks do not contain patterns, they contain action statements
only.

Getting Started with AWK Programming Chapter 1

[21]

Here is an example of the usage of the BEGIN and END blocks:

$ awk 'BEGIN { print "==Employee Info==" } # begin block
{ print } # body block
END { print "==ends here==" }' empinfo.txt # end block

On executing the code, we get the following result:

==Employee Info==
Jack 9857532312 jack@gmail.com hr 2000 5
Jane 9837432312 jane@gmail.com hr 1800 5
Eva 8827232115 eva@gmail.com lgs 2100 6
amit 9911887766 amit@yahoo.com lgs 2350 6
Julie 8826234556 julie@yahoo.com hr 2500 5
===ends here==

Patterns
In pattern-action statements, the pattern is something that determines when an action is to
be executed. We can summarize the usage of patterns as follows:

BEGIN { statements }: The statements are executed once before any input has
been read.
END { statements }: The statements are executed once after all input has been
read.
expression { statements }: The statements are executed at each input line where
the expression is true, that is, non-zero or non-null.
/ regular expression / { statements }: The statements are executed at each input
line that contains a string matched by the regular expression.
compound pattern { statements }: A compound pattern combines expressions
with && (AND), || (OR), ! (NOT), and parentheses; the statements are executed
at each input line where the compound pattern is true.
pattern 1, pattern 2 { statements }: A range pattern matches each input line from a
line matched by pattern 1 to the next line matched by pattern 2, inclusive; the
statements are executed at each matching line. Here, the pattern range could be of
regular expressions or addresses.

BEGIN and END do not combine with other patterns. A range pattern cannot be part of any
other pattern. BEGIN and END are the only patterns that require an action.

Getting Started with AWK Programming Chapter 1

[22]

Actions
In pattern-action statements, actions are single or multiple statements that are separated by
a newline or semicolon. The statements in actions can include the following:

Expression statements: These are made up of constants, variables, operators,
and function calls. For example, x = x+ 2 is an assignment expression.
Printing statements: These are print statements made with either print or
printf. For example, print "Welcome to awk programming ".
Control-flow statements: These consist of various decision-making statements
made with if...else and looping statements made with the while, for, and
do constructs. Apart from these, break, continue, next, and exit are used for
controlling the loop iterations. These are similar to C programming control-flow
constructs.
{ statements }: This format is used for grouping a block of different statements.

We will study these different types of action and pattern statements in detail in future
chapters.

Running AWK programs
There are different ways to run an AWK program. For a short program, we can directly
execute AWK commands on the Terminal, and for long AWK programs, we generally
create an AWK program script or source file. In this section, we will discuss different
methods of executing AWK programs.

AWK as a Unix command line
This is the most-used method of running AWK programs. In this method program, AWK
commands are given in single quotes as the first argument of the AWK command line, as
follows:

$ awk 'program' input file1 file2 file3fileN

Here, program refers to the sequence of pattern-action statements discussed earlier. In this
format, the AWK interpreter is invoked from the shell or Terminal to process the input line
of files. The quotes around program instruct the shell not to interpret the AWK character as
a special shell character and treat the entire argument as singular, for the AWK program not
for the shell. It also enables the program to continue on more than one line.

Getting Started with AWK Programming Chapter 1

[23]

The format used to call the AWK program from inside of a shell script is the same one we
used on the Unix/Linux command line. For example:

$ awk '{ print }' empinfo.txt /etc/passwd

The preceding command will print every line of the empinfo.txt file, followed by the
lines of the /etc/passwd file on your system, as follows:

Jack 9857532312 jack@gmail.com hr 2000 5
Jane 9837432312 jane@gmail.com hr 1800 5
Eva 8827232115 eva@gmail.com lgs 2100 6
amit 9911887766 amit@yahoo.com lgs 2350 6
Julie 8826234556 julie@yahoo.com hr 2500 5
at:x:25:25:Batch jobs daemon:/var/spool/atjobs:/bin/bash
avahi:x:481:480:User for Avahi:/run/avahi-daemon:/bin/false
avahi-autoipd:x:493:493:User for Avahi IPv4LL:/var/lib/avahi-
autoipd:/bin/false
bin:x:1:1:bin:/bin:/bin/bash
daemon:x:2:2:Daemon:/sbin:/bin/bash
games:x:12:100:Games account:/var/games:/bin/bash
man:x:13:62:Manual pages viewer:/var/cache/man:/bin/bash
messagebus:x:499:499:User for D-Bus:/run/dbus:/bin/false
......................
...................... till last line in /etc/passwd

AWK as a filter (reading input from the Terminal)
Filter commands can take their input from stdin instead of reading it from the file. We can
omit giving input filenames at the command line while executing the awk program, and
simply call it from the Terminal as:

$ awk 'program'

In the previous example, AWK applies the program to whatever you type on the standard
input, that is, the Terminal, until you type end-of-file by pressing Ctrl + D, for example:

$ awk '$2==50{ print }'
apple 50
apple 50
banana 60
litchi 50
litchi 50
mango 55
grapes 40
pineapple 60
........

Getting Started with AWK Programming Chapter 1

[24]

The line that contains 50 in the second field is printed, hence it's repeated twice on the
Terminal. This functionality of AWK can be used to experiment with AWK; all you need is
to type your AWK commands first, then type data, and see what happens next. The only
thing you have to take care of here is to enclose your AWK commands in single quotes on
the command line. This prevents the shell expansion of special characters, such as $, and
also allows your program to be longer than one line.

Here is one more example in which we take input from the pipe and process it with the
AWK command:

$ echo -e "jack \nsam \ntarly \njerry" | awk '/sam/{ print }'

On executing this code, you get the following result:

sam

We will be using examples of executing the AWK command line on the Terminal
throughout the book for explaining various topics. This type of operation is performed
when the program (AWK commands) is short (up to a few lines).

Running AWK programs from the source file
When AWK programs are long, it is more convenient to put them in a separate file. Putting
AWK programs in a file reduces errors and retyping. Its syntax is as follows:

$ awk -f source_file inputfile1 inputfile2inputfileN

The -f option tells the AWK utility to read the AWK commands from source_file. Any
filename can be used in place of source_file. For example, we can create a cmd.awk text
file containing the AWK commands, as follows:

$ vi cmd.awk
BEGIN { print "***Emp Info***" }
{ print }

Now, we instruct AWK to read the commands from the cmd.awk file and perform the given
actions:

$ awk -f cmd.awk empinfo.txt

On executing the preceding command, we get the following result:

Emp Info
Jack 9857532312 jack@gmail.com hr 2000 5
Jane 9837432312 jane@gmail.com hr 1800 5

Getting Started with AWK Programming Chapter 1

[25]

Eva 8827232115 eva@gmail.com lgs 2100 6
amit 9911887766 amit@yahoo.com lgs 2350 6
Julie 8826234556 julie@yahoo.com hr 2500 5

It does the same thing as this:

$ awk 'BEGIN { print "***Emp Info***" } { print }' empinfo.txt

We don't usually need to put the filename specified with -f in single
quotes, because filenames generally don't contain any shell special
characters. In the cmd.awk source file, we didn't put the AWK commands
in single quotes. The quotes are only needed when we execute the AWK
command from the command line. We added the .awk extension in the
filename to clearly identify the AWK program file; it doesn't affect the
execution of the AWK program and hence is not mandatory.

AWK programs as executable script files
We can write self-contained AWK scripts to execute AWK commands, like we have with
shell scripts to execute shell commands. We create the AWK script by using #!, followed
by the absolute path of the AWK interpreter and the -f optional argument. The line
beginning with #! tells the operating system to run the immediately-followed interpreter
with the given argument and the full argument list of the executed program. For example,
we can update the cmd.awk file to emp.awk, as follows:

$ vi emp.awk
#!/usr/bin/awk -f
BEGIN { print "***Emp Info***" }
{ print }

Give this file executable permissions (with the chmod utility), then simply run ./emp.awk
empinfo.txt at the shell and the system will run AWK as if you had typed awk -f
cmd.awk empinfo.txt:

$ chmod +x emp.awk
$./emp.awk empinfo.txt
Emp Info
Jack 9857532312 jack@gmail.com hr 2000 5
Jane 9837432312 jane@gmail.com hr 1800 5
Eva 8827232115 eva@gmail.com lgs 2100 6
amit 9911887766 amit@yahoo.com lgs 2350 6
Julie 8826234556 julie@yahoo.com hr 2500 5

Getting Started with AWK Programming Chapter 1

[26]

Self-contained executable AWK scripts are useful when you want to write AWK programs
that users can invoke without having to know it was written in AWK.

Extending the AWK command line on multiple lines
For short AWK programs, it is most convenient to execute them on the command line. This
is done by enclosing AWK commands in single quotes. Yet at times, the AWK commands
that you want to execute on the command line are longer than one line. In these situations,
you can extend the AWK commands to multiple lines using \ as the last element on each
line. It is also mandatory at that time to enclose AWK commands in single quotes. For
example:

$ awk 'BEGIN { print "***Emp Info***" } \
> { print } \
> END { print "***Ends Here***" } ' empinfo.txt

It is the same as if we have executed the AWK command on a single line, as follows:

$ awk 'BEGIN { print "***Emp Info***" } { print } END{ print "***Ends
Here***" }' empinfo.txt

The output of the previous executed AWK command is:

Emp Info
Jack 9857532312 jack@gmail.com hr 2000 5
Jane 9837432312 jane@gmail.com hr 1800 5
Eva 8827232115 eva@gmail.com lgs 2100 6
amit 9911887766 amit@yahoo.com lgs 2350 6
Julie 8826234556 julie@yahoo.com hr 2500 5
Ends Here

Comments in AWK
A comment is some text that is included in a program for documentation or human
information. It is not an executable part of the program. It explains what a program does
and how it does it. Almost every programming language has comments, as they make the
program construct understandable.

Getting Started with AWK Programming Chapter 1

[27]

In the AWK programming language, a comment begins with the hash symbol (#) and
continues till the end of the line. It is not mandatory to have # as the first character on the
line to mark it as a comment. Anything written after # is ignored by the AWK commands.
For example, we can put the following in emp.awk and update it as emp_comment.awk:

$ vi emp_comment.awk
#!/usr/bin/awk -f

Info : This program displays the employees information
Date : 09 Sept 2017
Version : 1.0
Author : Shiwang

Header part is defined in BEGIN block to display Company information

BEGIN { print "****Employee Information of HMT Corp.****" }
Body Block comment
{ print }
End Block comment
END { print "***Information Database ends here****" }

Now, give this program executable permission (using chmod) and execute it as follows:

$./emp_comment.awk empinfo.txt

Here is the output:

****Employee Information of HMT Corp.****
Jack 9857532312 jack@gmail.com hr 2000 5
Jane 9837432312 jane@gmail.com hr 1800 5
Eva 8827232115 eva@gmail.com lgs 2100 6
amit 9911887766 amit@yahoo.com lgs 2350 6
Julie 8826234556 julie@yahoo.com hr 2500 5
Information Database ends here*

Shell quotes with AWK
As you have seen, we will be using the command line for most of our short AWK programs.
The best way to use it is by enclosing the entire program in single quotes, as follows:

$ awk '/ search pattern / { awk commands }' inputfile1 inputfile2

Getting Started with AWK Programming Chapter 1

[28]

When you are working on a shell, it is good to have a basic understanding of shell quoting
rules. The following rules apply only to the POSIX-compliant, GNU Bourne Again Shell:

Quoted and non-quoted items can be concatenated together. The same is true for
quoted and non-quoted item concatenation. For example:

$ echo "Welcome to " Learning "awk"
>>>
Welcome to Learning awk

If you precede any character with a backslash (\) in double quotes, the shell
removes the backslash on execution and treats subsequent characters as literal
without having any special meaning:

$ echo "Apple are \$10 a dozen"
>>>
Apple are $10 a dozen

Single quotes prevent shell expansions of the command and variable. Anything
between the opening and closing quotes is not interpreted by the shell, it is
passed as such to the command with which it is used:

$ echo 'Apple are $10 a dozen'
>>>
Apple are $10 a dozen

It is impossible to embed a single quote inside single-quoted text.

Double quotes allow variable and command substitution. The $, ` , \, and
" characters have special meanings on the shell, and must be preceded by a
backslash within double quotes if they are to be passed on as literal to the
program:

$ echo "Hi, \" Jack \" "
>>>
Hi, "Jack"

Getting Started with AWK Programming Chapter 1

[29]

Here is an AWK example with single and double quotes:

$ awk 'BEGIN { print "Hello world" }'

It can be performed as follows:

$ awk "BEGIN { print \"Hello world \" }"

Both give the same output:

Hello world

Sometimes, dealing with single quotes or double quotes becomes confusing. In these
instances, you can use octal escape sequences. For example:

Printing single quotes within double quotes:

$ awk "BEGIN { print \"single quote' \" }"

Printing single quotes within single quotes:

$ awk 'BEGIN { print "single quote'\'' " }'

Printing single quotes within single quotes using the octal escape sequence:

$ awk 'BEGIN { print "single quote\47" }'

Printing single quotes using the command-line variable assignment:

$ awk -v q="'" 'BEGIN { print "single quote"q }'

All of the preceding AWK program executions give the following output:

single quote'

Data files used as examples in this book
Throughout the book, most of our examples will be taking their input from two sample data
files. The first one is emp.dat, which represents the sample employee information database.
It consists of the following columns from left to right, each separated by a single tab:

Employee's first name
Last name
Phone number

Getting Started with AWK Programming Chapter 1

[30]

Email address
Gender
Department
Salary in USD

Jack Singh 9857532312 jack@gmail.com M hr 2000
Jane Kaur 9837432312 jane@gmail.com F hr 1800
Eva Chabra 8827232115 eva@gmail.com F lgs 2100
Amit Sharma 9911887766 amit@yahoo.com M lgs 2350
Julie Kapur 8826234556 julie@yahoo.com F Ops 2500
Ana Khanna 9856422312 anak@hotmail.com F Ops 2700
Hari Singh 8827255666 hari@yahoo.com M Ops 2350
Victor Sharma 8826567898 vics@hotmail.com M Ops 2500
John Kapur 9911556789 john@gmail.com M hr 2200
Billy Chabra 9911664321 bily@yahoo.com M lgs 1900
Sam khanna 8856345512 sam@hotmail.com F lgs 2300
Ginny Singh 9857123466 ginny@yahoo.com F hr 2250
Emily Kaur 8826175812 emily@gmail.com F Ops 2100
Amy Sharma 9857536898 amys@hotmail.com F Ops 2500
Vina Singh 8811776612 vina@yahoo.com F lgs 2300

The second file used is cars.dat, which represents the sample car dealer database. It
consists of the following columns from left to right, each separated by a single tab.

Car's make
Model
Year of manufacture
Mileage in kilometers
Price in lakhs

The data from the file is illustrated as follows:

maruti swift 2007 50000 5
honda city 2005 60000 3
maruti dezire 2009 3100 6
chevy beat 2005 33000 2
honda city 2010 33000 6
chevy tavera 1999 10000 4
toyota corolla 1995 95000 2
maruti swift 2009 4100 5
maruti esteem 1997 98000 1
ford ikon 1995 80000 1
honda accord 2000 60000 2
fiat punto 2007 45000 3

Getting Started with AWK Programming Chapter 1

[31]

Any other sample file, if used, will be shared in the corresponding chapter before using it in
any example. Our next section demonstrates AWK command usages with examples.

Some simple examples with default usage
This section describes various useful AWK commands and their usage. We will be using the
two sample files, cars.dat and emp.dat, for illustrating various useful AWK examples to
kick-start your journey with AWK. Most of these examples will be short one-liners that you
can include in your daily task automation. You will get the most out of this section if you
practice the examples with us in your system while going through them.

Printing without pattern: The simplest AWK program can be as basic as the following:

awk { print } filename

This program consists of only one line, which is an action. In the absence of a pattern, all
input lines are printed on the stdout. Also, if you don't specify any field with the print
statement, it takes $0, so print $0 will do the same thing, as $0 represents the entire input
line:

$ awk '{ print }' cars.dat

This can also be performed as follows:

$ awk '{ print $0 }' cars.dat

This program is equivalent of the cat command implemented on Linux as cat cars.dat.
The output on execution of this code is as follows:

maruti swift 2007 50000 5
honda city 2005 60000 3
maruti dezire 2009 3100 6
chevy beat 2005 33000 2
honda city 2010 33000 6
chevy tavera 1999 10000 4
toyota corolla 1995 95000 2
maruti swift 2009 4100 5
maruti esteem 1997 98000 1
ford ikon 1995 80000 1
honda accord 2000 60000 2
fiat punto 2007 45000 3

Getting Started with AWK Programming Chapter 1

[32]

Printing without action statements: In this example, the program has a pattern, but we
don't specify any action statements. The pattern is given between forward slashes, which
indicates that it is a regular expression:

$ awk '/honda/' cars.dat

The output on execution of this code is as follows:

honda city 2005 60000 3
honda city 2010 33000 6
honda accord 2000 60000 2

In this case, AWK selects only those input lines that contain the honda pattern/string in
them. When we don't specify any action, AWK assumes the action is to print the whole line.

Printing columns or fields: In this section, we will print fields without patterns, with
patterns, in a different printing order, and with regular expression patterns:

Printing fields without specifying any pattern: In this example, we will not
include any pattern. The given AWK command prints the first field ($1) and
third field ($3) of each input line that is separated by a space (the output field
separator, indicated by a comma):

$ awk '{ print $1, $3 }' cars.dat

The output on execution of this code is as follows:

maruti 2007
honda 2005
maruti 2009
chevy 2005
honda 2010
chevy 1999
toyota 1995
maruti 2009
maruti 1997
ford 1995
honda 2000
fiat 2007

Getting Started with AWK Programming Chapter 1

[33]

Printing fields with matching patterns: In this example, we will include both
actions and patterns. The given AWK command prints the first field ($1)
separated by tab (specifying \t as the output separator) with the third field ($3)
of input lines, which contain the maruti string in them:

$ awk '/maruti/{ print $1 "\t" $3 }' cars.dat

The output on execution of this code is as follows:

maruti 2007
maruti 2009
maruti 2009
maruti 1997

Printing fields for matching regular expressions: In this example, AWK selects
the lines containing matches for the ith regular expression in them and prints the
first ($1), second ($2), and third ($3) field, separated by tab:

$ awk '/i/{ print $1 "\t" $2 "\t" $3 }' cars.dat

The output on execution of this code is as follows:

maruti swift 2007
honda city 2005
maruti dezire 2009
honda city 2010
maruti swift 2009
maruti esteem 1997
ford ikon 1995
fiat punto 2007

Printing fields in any order with custom text: In this example, we will print
fields in different orders. Here, in the action statement, we put the "Mileage in
kms is : " text before the $4 field and the " for car model -> " text before
the $1 field in the output:

$ awk '{ print "Mileage in kms is : " $4 ", for car model -> "
$1,$2 }' cars.dat

Getting Started with AWK Programming Chapter 1

[34]

The output on execution of this code is as follows:

Mileage in kms is : 50000, for car model -> maruti swift
Mileage in kms is : 60000, for car model -> honda city
Mileage in kms is : 3100, for car model -> maruti dezire
Mileage in kms is : 33000, for car model -> chevy beat
Mileage in kms is : 33000, for car model -> honda city
Mileage in kms is : 10000, for car model -> chevy tavera
Mileage in kms is : 95000, for car model -> toyota corolla
Mileage in kms is : 4100, for car model -> maruti swift
Mileage in kms is : 98000, for car model -> maruti esteem
Mileage in kms is : 80000, for car model -> ford ikon
Mileage in kms is : 60000, for car model -> honda accord
Mileage in kms is : 45000, for car model -> fiat punto

Printing the number of fields in a line: You can print any number of fields, such as
$1 and $2. In fact, you can use any expression after $ and the numeric outcome of the
expression will print the corresponding field. AWK has built-in variables to count and store
the number of fields in the current input line, for example, NF. So, in the given example, we
will print the number of the field for each input line, followed by the first field and the last
field (accessed using NF):

$ awk '{ print NF, $1, $NF }' cars.dat

The output on execution of this code is as follows:

5 maruti 5
5 honda 3
5 maruti 6
5 chevy 2
5 honda 6
5 chevy 4
5 toyota 2
5 maruti 5
5 maruti 1
5 ford 1
5 honda 2
5 fiat 3

Deleting empty lines using NF: We can print all the lines with at least 1 field using NF >
0. This is the easiest method to remove empty lines from the file using AWK:

$ awk 'NF > 0 { print }' /etc/hosts

Getting Started with AWK Programming Chapter 1

[35]

On execution of the preceding command, only non-empty lines from the /etc/hosts file
will be displayed on the Terminal as output:

#
hosts This file describes a number of hostname-to-address
mappings for the TCP/IP subsystem. It is mostly
used at boot time, when no name servers are running.
On small systems, this file can be used instead of a
"named" name server.
Syntax:
#
IP-Address Full-Qualified-Hostname Short-Hostname
#
127.0.0.1 localhost
special IPv6 addresses
::1 localhost ipv6-localhost ipv6-loopback
fe00::0 ipv6-localnet
ff00::0 ipv6-mcastprefix
ff02::1 ipv6-allnodes
ff02::2 ipv6-allrouters
ff02::3 ipv6-allhosts

Printing line numbers in the output: AWK has a built-in variable known as NR. It counts
the number of input lines read so far. We can use NR to prefix $0 in the print statement to
display the line numbers of each line that has been processed:

$ awk '{ print NR, $0 }' cars.dat

The output on execution of this code is as follows:

1 maruti swift 2007 50000 5
2 honda city 2005 60000 3
3 maruti dezire 2009 3100 6
4 chevy beat 2005 33000 2
5 honda city 2010 33000 6
6 chevy tavera 1999 10000 4
7 toyota corolla 1995 95000 2
8 maruti swift 2009 4100 5
9 maruti esteem 1997 98000 1
10 ford ikon 1995 80000 1
11 honda accord 2000 60000 2
12 fiat punto 2007 45000 3

Getting Started with AWK Programming Chapter 1

[36]

Count the numbers of lines in a file using NR: In our next example, we will count the
number of lines in a file using NR. As NR stores the current input line number, we need to
process all the lines in a file, so we will not specify any pattern. We also don't want to print
the line numbers for each line, as our requirement is to just fetch the total lines in a file.
Since the END block is executed after processing the input line is done, we will print NR in
the END block to print the total number of lines in the file:

$ awk ' END { print "The total number of lines in file are : " NR } '
cars.dat
>>>
The total number of lines in file are : 12

Printing numbered lines exclusively from the file: We know NR contains the line number
of the current input line. You can easily print any line selectively, by matching the line
number with the current input line number stored in NR, as follows:

$ awk 'NR==2 { print NR, $0 }' cars.dat
>>>
2 honda city 2005 60000 3

Printing the even-numbered lines in a file: Using NR, we can easily print even-numbered
files by specifying expressions (divide each line number by 2 and find the remainder) in
pattern space, as shown in the following example:

$ awk 'NR % 2 == 0 { print NR, $0 }' cars.dat

The output on execution of this code is as follows:

2 honda city 2005 60000 3
4 chevy beat 2005 33000 2
6 chevy tavera 1999 10000 4
8 maruti swift 2009 4100 5
10 ford ikon 1995 80000 1
12 fiat punto 2007 45000 3

Printing odd-numbered lines in a file: Similarly, we can print odd-numbered lines in a file
using NR, by performing basic arithmetic operations in the pattern space:

$ awk ' NR % 2 == 1 { print NR, $0 } ' cars.dat

Getting Started with AWK Programming Chapter 1

[37]

The output on execution of this code is as follows:

1 maruti swift 2007 50000 5
3 maruti dezire 2009 3100 6
5 honda city 2010 33000 6
7 toyota corolla 1995 95000 2
9 maruti esteem 1997 98000 1
11 honda accord 2000 60000 2

Printing a group of lines using the range operator (,) and NR: We can combine the range
operator (,) and NR to print a group of lines from a file based on their line numbers. The
next example displays the lines 4 to 6 from the cars.dat file:

$ awk ' NR==4, NR==6 { print NR, $0 }' cars.dat

The output on execution of this code is as follows :

4 chevy beat 2005 33000 2
5 honda city 2010 33000 6
6 chevy tavera 1999 10000 4

Printing a group of lines using the range operator and patterns: We can also combine the
range operator (,) and string in pattern space to print a group of lines in a file starting from
the first pattern, up to the second pattern. The following example displays the line starting
from the first appearance of the /ford/ pattern to the occurrence of the
second /fiat/ pattern in the cars.dat file:

$ awk ' /ford/,/fiat/ { print NR, $0 }' cars.dat

The output on execution of this code is as follows:

10 ford ikon 1995 80000 1
11 honda accord 2000 60000 2
12 fiat punto 2007 45000 3

Printing by selection: AWK patterns allows the selection of desired input lines for further
processing. As patterns without actions print all the matching lines, on most occasions,
AWK programs consist of a single pattern. The following are a few examples of useful
patterns:

Selection using the match operator (~): The match operator (~) is used for
matching a pattern in a specified field in the input line of a file. In the next
example, we will select and print all lines containing 'c' in the second field of
the input line, as follows:

$ awk ' $2 ~ /c/ { print NR, $0 } ' cars.dat

Getting Started with AWK Programming Chapter 1

[38]

The output on execution of this code is as follows:

2 honda city 2005 60000 3
5 honda city 2010 33000 6
7 toyota corolla 1995 95000 2
11 honda accord 2000 60000 2

Selection using the match operator (~) and anchor (^): The caret (^) in regular
expressions (also known as anchor) is used to match at the beginning of a line. In
the next example, we combine it with the match operator (~) to print all the lines
in which the second field begins with the 'c' character, as follows:

$ awk ' $2 ~ /^c/ { print NR, $0 } ' cars.dat

The output on execution of this code is as follows:

2 honda city 2005 60000 3
5 honda city 2010 33000 6
7 toyota corolla 1995 95000 2

Selection using the match operator (~) and character classes ([]): The character
classes, [], in regular expressions are used to match a single character out of
those specified within square brackets. Here, we combine the match operator (~)
with character classes (/^[cp]/) to print all the lines in which the second field
begins with the 'c' or 'p' character, as follows:

$ awk ' $2 ~ /^[cp]/ { print NR, $0 } ' cars.dat

The output on execution of this code is as follows:

2 honda city 2005 60000 3
5 honda city 2010 33000 6
7 toyota corolla 1995 95000 2
12 fiat punto 2007 45000 3

Selection using the match operator (~) and anchor ($): The dollar sign ($) in
regular expression (also known as anchor) is used to match at the end of a line. In
the next example, we combine it with the match operator (~) to print all the lines
in the second field end with the 'a' character, as follows:

$ awk ' $2 ~ /a$/ { print NR, $0 } ' cars.dat

Getting Started with AWK Programming Chapter 1

[39]

The output on execution of this code is as follows:

6 chevy tavera 1999 10000 4
7 toyota corolla 1995 95000 2

Selection by numeric comparison: You can use relation operators (==, =>, <=, >,
<, !=) for performing numeric comparison. Here, we perform a numeric match
(==) to print the lines that have the 2005 value in the third field, as follows:

$ awk ' $3 == 2005 { print NR, $0 } ' cars.dat

The output on execution of this code is as follows:

2 honda city 2005 60000 3
4 chevy beat 2005 33000 2

 Selection by text content/string matching in a field: Besides numeric matches,
we can use string matches to find the lines containing a particular string in a
field. String content for matches should be given in double quotes as a string. In
our next example, we print all the lines that contain "swift" in the second field
($2), as follows:

$ awk ' $2 == "swift" { print NR, $0 } ' cars.dat

The output on execution of this code is as follows:

1 maruti swift 2007 50000 5
8 maruti swift 2009 4100 5

Selection by combining patterns: You can combine patterns with parentheses
and logical operators, &&, ||, and !, which stand for AND, OR, and NOT. Here,
we print the lines containing a value greater than or equal to 2005 in the third
field and a value less than or equal to 2010 in the third field. This will print the
cars that were manufactured between 2005 and 2010 from the cars.dat file:

$ awk ' $3 >= 2005 && $3 <= 2010 { print NR, $0 } ' cars.dat

The output on execution of this code is as follows:

1 maruti swift 2007 50000 5
2 honda city 2005 60000 3
3 maruti dezire 2009 3100 6
4 chevy beat 2005 33000 2
5 honda city 2010 33000 6
8 maruti swift 2009 4100 5
12 fiat punto 2007 45000 3

Getting Started with AWK Programming Chapter 1

[40]

Data validation: Human error is difficult to eliminate from gathered data. In this situation,
AWK is a reliable tool for checking that data has reasonable values and is in the right
format. This process is generally known as data validation. Data validation is the reverse
process of printing the lines that have undesirable properties. In data validation, we print
the lines with errors or those that we suspect to have errors.

In the following example, we use the validation method while printing the selected
records. First, we check whether any of the records in the input file don't have 5 fields, that
is, a record with incomplete information, by using the AWK NF built-in variable. Then, we
find the cars whose manufacture year is older than 2000 and suffix these rows with
the car fitness expired text. Next, we print those records where the car's manufacture
year is newer than 2009, and suffix these rows with the Better car for resale text,
shown as follows :

$ vi validate.awk
NF !=5 { print $0, "number of fields is not equal to 5" }
$3 < 2000 { print $0, "car fitness expired" }
$3 > 2009 { print $0, "Better car for resale" }

$ awk -f validate.awk cars.dat

The output on execution of this code is as follows :

honda city 2010 33000 6 Better car for resale
chevy tavera 1999 10000 4 car fitness expired
toyota corolla 1995 95000 2 car fitness expired
maruti esteem 1997 98000 1 car fitness expired
ford ikon 1995 80000 1 car fitness expired

BEGIN and END pattern examples: BEGIN is a special pattern in which actions are
performed before the processing of the first line of the first input file. END is a pattern in
which actions are performed after the last line of the last file has been processed.

Using BEGIN to print headings: The BEGIN block can be used for printing headings,
initializing variables, performing calculations, or any other task that you want to be
executed before AWK starts processing the lines in the input file.

Getting Started with AWK Programming Chapter 1

[41]

In the following AWK program, BEGIN is used to print a heading for each column for
the cars.dat input file. Here, the first column contains the make of each car followed by
the model, year of manufacture, mileage in kilometers, and price. So, we print the heading
for the first field as Make, for the second field as Model, for the third field as Year, for the
fourth field as Kms, and for the fifth field as Price. The heading is separated from the body
by a blank line. The second action statement, { print }, has no pattern and displays all
lines from the input as follows:

$ vi header.awk
BEGIN { print "Make Model Year Kms Price" ; print "" }
{ print }

$ awk -f header.awk cars.dat

The output on execution of this code is as follows:

Make Model Year Kms Price

maruti swift 2007 50000 5
honda city 2005 60000 3
maruti dezire 2009 3100 6
chevy beat 2005 33000 2
honda city 2010 33000 6
chevy tavera 1999 10000 4
toyota corolla 1995 95000 2
maruti swift 2009 4100 5
maruti esteem 1997 98000 1
ford ikon 1995 80000 1
honda accord 2000 60000 2
fiat punto 2007 45000 3

In the preceding example, we have given multiple action statements on a single line by
separating them with a semicolon. The print " " prints a blank line; it is different from
plain print, which prints the current input line.

Using END to print the last input line: The END block is executed after the processing of
the last line of the last file is completed, and $0 stores the value of each input line processed,
but its value is not retained in the END block. The following is one way to print the last input
line:

$ awk '{ last = $0 } END { print last }' cars.dat

Getting Started with AWK Programming Chapter 1

[42]

The output on execution of this code is as follows:

fiat punto 2007 45000 3

And to print the total number of lines in a file we use NR, because it retains its value in
the END block, as follows:

$ awk 'END { print "Total no of lines in file : ", NR }' cars.dat

The output on execution of this code is as follows:

Total no of lines in file : 12

Length function: By default, the length function stores the count of the number of
characters in the input line. In the next example, we will prefix each line with the number of
characters in it using the length function, as follows:

$ awk '{ print length, $0 }' /etc/passwd

The output on execution of this code is as follows:

56 at:x:25:25:Batch jobs daemon:/var/spool/atjobs:/bin/bash
59 avahi:x:481:480:User for Avahi:/run/avahi-daemon:/bin/false
79 avahi-autoipd:x:493:493:User for Avahi IPv4LL:/var/lib/avahi-
autoipd:/bin/false
28 bin:x:1:1:bin:/bin:/bin/false
35 daemon:x:2:2:Daemon:/sbin:/bin/fale
53 dnsmasq:x:486:65534:dnsmasq:/var/lib/empty:/bin/false
42 ftp:x:40:49:FTP account:/srv/ftp:/bin/false
49 games:x:12:100:Games account:/var/games:/bin/false
49 lp:x:4:7:Printing daemon:/var/spool/lpd:/bin/false
60 mail:x:8:12:Mailer daemon:/var/spool/clientmqueue:/bin/false
56 man:x:13:62:Manual pages viewer:/var/cache/man:/bin/false
56 messagebus:x:499:499:User for D-Bus:/run/dbus:/bin/false
....................................
....................................

Changing the field separator using FS: The fields in the examples we have discussed so far
have been separated by space characters. The default behavior of FS is any number of space
or tab characters; we can change it to regular expressions or any single or multiple
characters using the FS variable or the -F option. The value of the field separator is
contained in the FS variable and it can be changed multiple times in an AWK program.
Generally, it is good to redefine FS in a BEGIN statement.

Getting Started with AWK Programming Chapter 1

[43]

In the following example, we demonstrate the use of FS. In this, we use the /etc/passwd
file of Linux, which delimits fields with colons (:). So, we change the input of FS to a colon
before reading any data from the file, and print the list of usernames, which is stored in the
first field of the file, as follows:

$ awk 'BEGIN { FS = ":"} { print $1 }' /etc/passwd

Alternatively, we could use the -F option:

$ awk -F: '{ print $1 }' /etc/passwd

The output on execution of the code is as follows:

at
avahi
avahi-autoipd
bin
daemon
dnsmasq
ftp
.........
.........

Control structures: AWK supports control (flow) statements, which can be used to change
the order of the execution of commands within an AWK program. Different constructs,
such as the if...else, while, and for control structures are supported by AWK. In
addition, the break and continue statements work in combination with the control
structures to modify the order of execution of commands. We will look at these in detail in
future chapters.

Let's try a basic example of a while loop to print a list of numbers under 10:

$ awk 'BEGIN{ n=1; while (n < 10){ print n; n++; } }'

Alternatively, we can create a script, such as the following:

$ vi while1.awk
BEGIN { n=1
while (n < 10)
 {
 print n;
 n++;
 }
}

$ awk -f while1.awk

Getting Started with AWK Programming Chapter 1

[44]

The output on execution of both of these commands is as follows:

1
2
3
4
5
6
7
8
9

Multiple rules with AWK
AWK can have multiple pattern-action statements. They are executed in the order in which
they appear in the AWK program. If one pattern-action rule matches the same line that was
matched with the previous rule, then it is printed twice. This continues until the program
reaches the end of the file. In the next example, we have an AWK program with two rules:

$ awk '/maruti/ { print NR, $0 }
/2007/ { print NR, $0 }' cars.dat

The output on execution of this code is as follows:

1 maruti swift 2007 50000 5
1 maruti swift 2007 50000 5
3 maruti dezire 2009 3100 6
8 maruti swift 2009 4100 5
9 maruti esteem 1997 98000 1
12 fiat punto 2007 45000 3

The record number 1 is printed twice because it matches both rule1 and rule2.

Using standard input with names in AWK
Sometimes, we may need to read input from standard input and from the pipe. The way to
name the standard input, with all versions of AWK, is by using a single minus or dash
sign, -. For example:

$ cat cars.dat | awk '{ print }' -

Getting Started with AWK Programming Chapter 1

[45]

This can also be performed as follows:

$ cat cars.dat | awk '{ print }' /dev/stdin (used with gawk only)

The output on execution of this code is as follows:

maruti swift 2007 50000 5
honda city 2005 60000 3
maruti dezire 2009 3100 6
chevy beat 2005 33000 2
honda city 2010 33000 6
chevy tavera 1999 10000 4
toyota corolla 1995 95000 2
maruti swift 2009 4100 5
maruti esteem 1997 98000 1
ford ikon 1995 80000 1
honda accord 2000 60000 2
fiat punto 2007 45000 3

We can also first read the input from one file, then read the standard input coming from
the pipe, and then read another file again. In that case, the first file's data, the data from
the pipe, and the other file's data, all become a single input. All of that data is read
consecutively. In the following example, the input from cars.dat is read first, then
the echo statement is taken as input, followed by the emp.dat file. Any pattern you
apply in this AWK program will be applied on the whole input and not each file, as follows:

$ echo "==" | \
awk '{ print NR , $0 }' cars.dat - emp.dat

The output on execution of this code is as follows:

1 maruti swift 2007 50000 5
2 honda city 2005 60000 3
3 maruti dezire 2009 3100 6
4 chevy beat 2005 33000 2
5 honda city 2010 33000 6
6 chevy tavera 1999 10000 4
7 toyota corolla 1995 95000 2
8 maruti swift 2009 4100 5
9 maruti esteem 1997 98000 1
10 ford ikon 1995 80000 1
11 honda accord 2000 60000 2
12 fiat punto 2007 45000 3
13 ==
14 Jack Singh 9857532312 jack@gmail.com M hr 2000
15 Jane Kaur 9837432312 jane@gmail.com F hr 1800
16 Eva Chabra 8827232115 eva@gmail.com F lgs 2100

Getting Started with AWK Programming Chapter 1

[46]

17 Amit Sharma 9911887766 amit@yahoo.com M lgs 2350
18 Julie Kapur 8826234556 julie@yahoo.com F Ops 2500
19 Ana Khanna 9856422312 anak@hotmail.com F Ops 2700
20 Hari Singh 8827255666 hari@yahoo.com M Ops 2350
21 Victor Sharma 8826567898 vics@hotmail.com M Ops 2500
22 John Kapur 9911556789 john@gmail.com M hr 2200
23 Billy Chabra 9911664321 bily@yahoo.com M lgs 1900
24 Sam khanna 8856345512 sam@hotmail.com F lgs 2300
25 Ginny Singh 9857123466 ginny@yahoo.com F hr 2250
26 Emily Kaur 8826175812 emily@gmail.com F Ops 2100
27 Amy Sharma 9857536898 amys@hotmail.com F Ops 2500
28 Vina Singh 8811776612 vina@yahoo.com F lgs 2300

Using command-line arguments: The AWK command line can have different forms, as
follows:

awk 'program' file1 file2, file3 ………….

 awk -f source_file file1 file2, file3 ………….

 awk -Fsep 'program' file1 file2, file3 ………….

 awk -Fsep -f source_file file1 file2, file3 ………….

In the given command lines, file1, file2, file3, and so on are command-line arguments
that generally represent filenames. The command-line arguments are accessed in the AWK
program with a built-in array called ARGV. The number of arguments in the AWK program
is stored in the ARGC built-in variable, its value is one more than the actual number of
arguments in the command line. For example:

$ awk -f source_file a b c

Here, ARGV is AWKs' built-in array variable that stores the value of command-line
arguments. We access the value stored in the ARGV array by suffixing it with an array index
in square brackets, as follows:

ARGV [0] contains awk
ARGV [1] contains a
ARGV [2] contains b
ARGV [3] contains c

Getting Started with AWK Programming Chapter 1

[47]

ARGC has the value of four, ARGC is one more than the number of arguments because in
AWK the name of the command is counted as argument zero, similar to C programs.

For example, the following program displays the number of arguments given to the AWK
command and displays their value:

$ vi displayargs.awk
echo - print command-line arguments
BEGIN {
 printf "No. of command line args is : %d\n", ARGC-1;
 for (i = 1; i < ARGC; i++)
 printf "ARG [%d] is : %s \n", i, ARGV[i]
}

Now, we call this AWK program with the hello how are you command line argument.
Here, hello is the first command line argument, how is the second, are is the third, and
you is the fourth:

$ awk -f displayargs.awk hello how are you

The output on execution of the preceding code is as follows:

No. of command line args is : 4
ARG[1] is : hello
ARG[2] is : how
ARG[3] is : are
ARG[4] is : you

The AWK commands, source filename, or other options, such as -f or -F followed by field
separator, are not treated as arguments. Let's try another useful example of a command-line
argument. In this program, we use command-line arguments to generate sequences of
integers, as follows:

$ vi seq.awk

Program to print sequences of integers
BEGIN {

If only one argument is given start from number 1
if (ARGC == 2)
 for (i = 1; i <= ARGV[1]; i++)
 print i

If 2 arguments are given start from first number upto second number
else if (ARGC == 3)
 for (i = ARGV[1]; i <= ARGV[2]; i++)
 print i

Getting Started with AWK Programming Chapter 1

[48]

If 3 arguments are given start from first number through second with a
stepping of third number
else if (ARGC == 4)
 for (i = ARGV[1]; i <= ARGV[2]; i += ARGV[3])
 print i
}

Now, let's execute the preceding script with three different parameters:

$ awk -f seq.awk 10
$ awk -f seq.awk 1 10
$ awk -f seq.awk 1 10 1

All the given commands will generate the integers one through ten. Without the second
argument, it begins printing the numbers from 1 to the first argument. If two arguments are
given, then it prints the number starting from the first argument to the second argument. In
the third case, if you specify three arguments, then it prints the numbers between the first
and second argument, leaving out the third argument. The output on execution of any of
these commands is as follows:

1
2
3
4
5
6
7
8
9
10

AWK standard options
In this section, we discuss the three standard options that are available with all versions of
AWK and other GAWK-supported options or GNU extensions. Each option in AWK begins
with a dash and consists of a single character. GNU-style long options are also supported,
which consist of two dashes (- -) followed by a keyword, which is the full form of an
abbreviated option to uniquely identify it. If the option takes an argument, it is either
immediately followed by the = sign and an argument value or a keyword, and the
argument's value separated by whitespace. If an option with a value is given more than
once, its last value is used.

Getting Started with AWK Programming Chapter 1

[49]

Standard command-line options
AWK supports the following standard options, which can be provided in a long or short
form interchangeably from the command line.

The -F option – field separator
By default, fields in the input record are separated by any number of spaces or tabs. This
behavior can be altered by using the -F option or the FS variable. The value of the field
separator can be either a single character or a regular expression. It controls the way AWK
splits an input record into fields:

-Ffs

--field-separator

In the next example, we illustrate the use of the -F option. Here we used the -F to print the
list of usernames that has been assigned to the bash shell from the /etc/passwd file. This
file contains userdetails separated by a colon (:):

$ awk -F: '/bash/ { print $1 }' /etc/passwd

This can also be performed as follows:

$ awk --field-separator=: '/bash/ { print $1 }' /etc/passwd

The output on execution of this code is as follows:

at
bin
daemon
ftp
games
lp
man
news
nobody
...................
...................

Getting Started with AWK Programming Chapter 1

[50]

The -f option (read source file)
This option is used to read the program source from the source file instead of in the first
non-option argument. If this option is given multiple times, the program consists of the
concatenation of the contents of each specified source file:

-f source-file

 --file=source-file

First, we will create 2 programs to print line number 2 and line number 4, respectively.
Then, we will use the -f option to source those files for execution with the interpreter, as
follows:

$ vi f1.awk
NR==2 { print NR, $0 }
$ vi f2.
NR==4 { print NR, $0 }

Now, first use only f1. for sourcing:

$ awk -f f1.awk cars.dat

This can also be performed as follows:

awk --file=f1.awk cars.dat

The output on execution of this code is as follows:

2 honda city 2005 60000 3

Now, we will source both the files together. AWK will concatenate the contents of the two
sourced files and execute them on the cars.dat filename, as follows:

$ awk -f f1.awk -f f2.awk cars.dat

This can also be performed as follows:

$ awk --file=f1.awk --file=f2.awk cars.dat

Getting Started with AWK Programming Chapter 1

[51]

The output on execution of this code is as follows:

2 honda city 2005 60000 3
4 chevy beat 2005 33000 2

The -v option (assigning variables)
This option assigns a value to a variable before the program executes. Such variable values
are available inside the BEGIN block. The -v option can only set one variable at a time, but it
can be used more than once, setting another variable each time:

-v var=val

--assign var=val

The following example describes the usage of the -v option:

$ awk -v name=Jagmohon 'BEGIN{ printf "Name = %s\n", name }'

This can also be performed as follows:

$ awk --assign=Jagmohan 'BEGIN{ printf "Name = %s\n", name }'

The output on execution of this code is as follows:

Name = Jagmohan

Here is a multiple-value assignment example:

$ awk -v name=Jagmohon -v age=42 'BEGIN{ printf "Name = %s\nAge = %s\n",
name, age }'

The output on execution of this code is:

Name = Jagmohan
Age = 42

GAWK-only options
Till now, we have discussed standard POSIX options. In the following section, we will
discuss some important GNU extension options of GAWK.

Getting Started with AWK Programming Chapter 1

[52]

The --dump-variables option (AWK global variables)
This option is used to print a sorted list of global variables, their types, and final values to
file. By default, it prints this list to a file named awkvars.out in the current directory. It is
good to have a list of all global variables to avoid errors that are created by using the same
name function in your programs. The following is the command to print the list in the
default file:

-d[file]
--dump-variables[=file]

$ awk --dump-variables ' '

This can also be performed as follows:

 $ awk -d ' '

 On execution of this command, we will have a file with the name awkvars.out in our
current working directory, which has the following contents:

$ cat awkvars.out
ARGC: 1
ARGIND: 0
ARGV: array, 1 elements
BINMODE: 0
CONVFMT: "%.6g"
ENVIRON: array, 99 elements
ERRNO: ""
FIELDWIDTHS: ""
FILENAME: ""
FNR: 0
FPAT: "[^[:space:]]+"
FS: " "
IGNORECASE: 0
LINT: 0
NF: 0
NR: 0
OFMT: "%.6g"
OFS: " "
ORS: "\n"
PREC: 53
PROCINFO: array, 15 elements
RLENGTH: 0
ROUNDMODE: "N"
RS: "\n"
RSTART: 0

Getting Started with AWK Programming Chapter 1

[53]

RT: ""
SUBSEP: "\034"
TEXTDOMAIN: "messages"

The --profile option (profiling)
This option enables the profiling of AWK programs, that is, it generates a pretty-printed
version of the program in a file. By default, the profile is created in a file
named awkprof.out. The optional file argument allows you to specify a different filename
for the profile file. No space is allowed between -p and the filename, if a filename is
supplied:

-p[file]
--profile[=file]

The profile file created contains execution counts for each statement in the program in the
left margin, and function call counts for each function. In the next example, we will create a
file with a name sample and redirect the output of the AWK command to /dev/null:

$ awk --profile=sample \
'BEGIN { print "**header**" }
{ print }
END{ print "**footer**" }' cars.dat > /dev/null

This same action can also be performed as follows:

$ awk -psample \
'BEGIN { print "**header**" }
{ print }
END{ print "**footer**" }' cars.dat > /dev/null

To view the content of profile, we execute the cat command, as follows:

$ cat sample
 # gawk profile, created Thu Sep 14 17:20:27 2017

 # BEGIN rule(s)

 BEGIN {
 1 print "**header**"
 }

 # Rule(s)

 12 {

Getting Started with AWK Programming Chapter 1

[54]

 12 print $0
 }

 # END rule(s)

 END {
 1 print "**footer**"
 }

The –pretty-print option: It is the same profiling option discussed in the preceding section:

-o[file]
--pretty-print[=file]

The --sandbox option
 This option disables the execution of the system() function, which can execute shell
commands supplied as an expression to AWK. It also disables the input redirections with
getline, output redirections with print and printf, and dynamic extensions. This is
very useful when you want to run AWK scripts from questionable/untrusted sources and
need to make sure the scripts can't access your system (other than the specified input data
file):

-S

--sandbox
In the following example, we first execute the echo command within the system function
without the --sandbox option, and then again with the --sandbox option to see the
difference:

$ awk 'BEGIN { system("echo hello") }'

The preceding AWK command executes the echo hello command using the system
function and returns a 0 value to the system upon successful execution. The output on
execution of the preceding command is:

hello

Getting Started with AWK Programming Chapter 1

[55]

Now, we use the --sandbox option with the AWK command to disable the execution of
the echo hello shell command using the system function of AWK. In the next example,
the system function will not execute as we have used the --sandbox option while
executing it:

$ awk --sandbox 'BEGIN{ system("echo hello")}'

The output on execution of the preceding command is:

awk: cmd. line:1: fatal: 'system' function not allowed in sandbox mode

The -i option (including other files in your program)
This option is equivalent to the @include directive, which is used to source a file in the
current AWK program. However, it is different from the -f option in two aspects. First,
when we use the -i option, the program sourced is not loaded if it has been previously
loaded, whereas -f always loads a file. The second difference is this after processing an -i
argument, GAWK still expects to find the main source code via the -f option or on the
command line:

-i source-file
--include source-file

In the next example, we will use the f1.awk and f2.awk files we created earlier to describe
how the -i option works:

$ awk -i f1.awk 'NR==5 { print NR, $0 }' cars.dat

The output on execution of the given code is:

2 honda city 2005 60000 3
5 honda city 2010 33000 6

Now, we are using the -i option to include the f1.awk file inside the -f option to execute
f2.awk, as follows:

$ awk -i f1.awk -f f2.awk cars.dat

The output on execution of the preceding code is:

2 honda city 2005 60000 3
4 chevy beat 2005 33000 2

Getting Started with AWK Programming Chapter 1

[56]

The next example shows it is mandatory to specify the AWK command or main source file
using the -f option for executing a program with the -i option:

$ awk -i f1.awk cars.dat

The output on execution of the code is:

awk: cmd. line:1: cars.dat
awk: cmd. line:1: ^ syntax error

Include other files in the GAWK program (using
@include)
This is a feature that is specific to GAWK. The @include keyword can be used to read
external AWK source files and load in your running program before execution. Using this
feature, we can split large AWK source files into smaller programs and also reuse common
AWK code from various AWK scripts. It is useful for grouping together various AWK
functions in a file and creating function libraries, using the @include keyword and
including it in your program. It is similar to the -i option, which we discussed earlier.

It is important to note that the filename needs to be a literal string constant
in double quotes.

The following example illustrates this. We'll create two AWK scripts, inc1 and inc2. Here
is the inc1 script:

$ vi inc1
BEGIN { print "This is inc1." }

And now we create inc2, which includes inc1, using the @include keyword:

$ vi inc2
@include "inc1"
BEGIN { print "This is inc2." }

$ gawk -f inc2

On executing GAWK with inc2, we get the following output:

This is inc1.
This is inc2.

Getting Started with AWK Programming Chapter 1

[57]

So, to include external AWK source files, we just use @include followed by the name of the
file to be included, enclosed in double quotes. The files to be included may be nested. For
example, create a third script, inc3, that will include inc2:

$ vi inc3
@include "inc2"
BEGIN { print "This is inc3." }

$ gawk -f inc3

On execution of GAWK with the inc3 script, we get the following results:

This is inc1.
This is inc2.
This is inc3.

The filename can be a relative path or an absolute path. For example:

@include "/home/usr/scripts/inc1"

This can also be performed as follows:

@include "../inc1"

Since AWK has the ability to specify multiple -f options on the command line, the
@include mechanism is not strictly necessary. However, the @include keyword can help
you in constructing self-contained GAWK programs, and eliminates the need to write
complex command lines repetitively.

The -V option
This option displays the version information for a running copy of GAWK as well as license
info. This allows you to determine whether your copy of GAWK is up to date with respect
to whatever the Free Software Foundation (FSF) is currently distributing. This can be done
as shown in the following code block:

$ awk -V

It can also be performed as follows:

$ awk --version

Getting Started with AWK Programming Chapter 1

[58]

The output on execution of the preceding code is:

Summary
In this chapter, we learned that the basic construct of the AWK program is pattern-action
pairs. We saw how it can be installed on the Linux system using different package
managers or by compiling from the source code. We learned AWK basic usage, such as how
to run AWK programs in different ways, as per the requirement. We looked at how to use
comments and quotes with AWK. We also learned the usage of the backslash for extending
our program across multiple lines. Finally, we covered three standard options for all
versions of AWK, which are -f, -F, and -v, as well as other GNU extensions of AWK
(GAWK) options, such as profiling, dumping variables, and including other files in your
program.

In next chapter, we will learn about regular expressions and how they are handled with
AWK.

2
Working with Regular

Expressions
AWK is a pattern-matching language. It searches for a pattern in a file and, upon finding
the corresponding match, it performs the file's action on the input line. This pattern could
consist of fixed strings or a pattern of text. This variable content or pattern is generally
searched for with the help of regular expressions. Hence, regular expressions form a very
important part of AWK programming language. In this chapter, we will look at regular
expressions and how they are handled with AWK.

In this chapter, we will cover the following:

Regular expressions and their usage in AWK
The basic regular expression construct
Understanding the metacharacters of regular expression
The precedence of regular expressions
GAWK-specific regular expressions
Case-sensitive matching
Escape sequences

Introduction to regular expressions
In this section, you will learn about regular expressions and why we use them. Then we will
discuss the usage of regular expressions in AWK.

Working with Regular Expressions Chapter 2

[60]

What is a regular expression?
A regular expression, or regexpr, is a set of characters used to describe a pattern. A regular
expression is generally used to match lines in a file that contain a particular pattern. Many
Unix utilities operate on plain text files line by line, such as grep, sed, and awk. Regular
expressions search for a pattern on a single line in a file.

A regular expression doesn't search for a pattern that begins on one line
and ends on another. Other programming languages may support this,
notably Perl.

Why use regular expressions?
Generally, all editors have the ability to perform search-and-replace operations. Some
editors can only search for patterns, others can also replace them, and others can also print
the line containing that pattern. A regular expression goes many steps beyond this simple
search, replace, and printing functionality, and hence it is more powerful and flexible. We
can search for a word of a certain size, such as a word that has four characters or numbers.
We can search for a word that ends with a particular character, let's say e. You can search
for phone numbers, email IDs, and so on, and can also perform validation using regular
expressions. They simplify complex pattern-matching tasks, and hence form an important
part of AWK programming. Other regular expression variations also exist, notably those for
Perl.

Using regular expressions with AWK
There are mainly two types of regular expressions in Linux:

Basic regular expressions that are used by vi, sed, grep, and so on
Extended regular expressions that are used by awk, nawk, gawk, and egrep

Here, we will refer to extended regular expressions as regular expressions in the context of
AWK.

In AWK, regular expressions are enclosed in forward slashes, '/', (forming the AWK
pattern) and match every input record whose text belongs to that set.

Working with Regular Expressions Chapter 2

[61]

The simplest regular expression is a string of letters, numbers, or both that matches itself.
For example, here we use the ly regular expression string to print all lines that contain
the ly pattern in them. We just need to enclose the regular expression in forward slashes in
AWK:

$ awk '/ly/' emp.dat

The output on execution of this code is as follows:

Billy Chabra 9911664321 bily@yahoo.com M lgs 1900
Emily Kaur 8826175812 emily@gmail.com F Ops 2100

In this example, the /ly/ pattern matches when the current input line contains the ly sub-
string, either as ly itself or as some part of a bigger word, such as Billy or Emily, and
prints the corresponding line.

Regular expressions as string-matching patterns with
AWK
Regular expressions are used as string-matching patterns with AWK in the following three
ways. We use the '~' and '! ~' match operators to perform regular expression
comparisons:

/regexpr/: This matches when the current input line contains a sub-string
matched by regexpr. It is the most basic regular expression, which matches itself
as a string or sub-string. For example, /mail/ matches only when the current
input line contains the mail string as a string, a sub-string, or both. So, we will
get lines with Gmail as well as Hotmail in the email ID field of the employee
database as follows:

$ awk '/mail/' emp.dat

The output on execution of this code is as follows:

Jack Singh 9857532312 jack@gmail.com M hr 2000
Jane Kaur 9837432312 jane@gmail.com F hr 1800
Eva Chabra 8827232115 eva@gmail.com F lgs 2100
Ana Khanna 9856422312 anak@hotmail.com F Ops 2700
Victor Sharma 8826567898 vics@hotmail.com M Ops 2500
John Kapur 9911556789 john@gmail.com M hr 2200
Sam khanna 8856345512 sam@hotmail.com F lgs 2300
Emily Kaur 8826175812 emily@gmail.com F Ops 2100
Amy Sharma 9857536898 amys@hotmail.com F Ops 2500

Working with Regular Expressions Chapter 2

[62]

In this example, we do not specify any expression, hence it automatically matches
a whole line, as follows:

$ awk '$0 ~ /mail/' emp.dat

The output on execution of this code is as follows:

Jack Singh 9857532312 jack@gmail.com M hr 2000
Jane Kaur 9837432312 jane@gmail.com F hr 1800
Eva Chabra 8827232115 eva@gmail.com F lgs 2100
Ana Khanna 9856422312 anak@hotmail.com F Ops 2700
Victor Sharma 8826567898 vics@hotmail.com M Ops 2500
John Kapur 9911556789 john@gmail.com M hr 2200
Sam khanna 8856345512 sam@hotmail.com F lgs 2300
Emily Kaur 8826175812 emily@gmail.com F Ops 2100
Amy Sharma 9857536898 amys@hotmail.com F Ops 2500

expression ~ /regexpr /: This matches if the string value of the expression
contains a sub-string matched by regexpr. Generally, this left-hand operand of
the matching operator is a field. For example, in the following command, we
print all the lines in which the value in the second field contains
a /Singh/ string:

$ awk '$2 ~ /Singh/{ print }' emp.dat

We can also use the expression as follows:

$ awk '{ if($2 ~ /Singh/) print}' emp.dat

The output on execution of the preceding code is as follows:

Jack Singh 9857532312 jack@gmail.com M hr 2000
Hari Singh 8827255666 hari@yahoo.com M Ops 2350
Ginny Singh 9857123466 ginny@yahoo.com F hr 2250
Vina Singh 8811776612 vina@yahoo.com F lgs 2300

expression !~ /regexpr /: This matches if the string value of the expression does
not contain a sub-string matched by regexpr. Generally, this expression is also a
field variable. For example, in the following example, we print all the lines that
don't contain the Singh sub-string in the second field, as follows:

$ awk '$2 !~ /Singh/{ print }' emp.dat

Working with Regular Expressions Chapter 2

[63]

The output on execution of the preceding code is as follows:

Jane Kaur 9837432312 jane@gmail.com F hr 1800
Eva Chabra 8827232115 eva@gmail.com F lgs 2100
Amit Sharma 9911887766 amit@yahoo.com M lgs 2350
Julie Kapur 8826234556 julie@yahoo.com F Ops 2500
Ana Khanna 9856422312 anak@hotmail.com F Ops 2700
Victor Sharma 8826567898 vics@hotmail.com M Ops 2500
John Kapur 9911556789 john@gmail.com M hr 2200
Billy Chabra 9911664321 bily@yahoo.com M lgs 1900
Sam khanna 8856345512 sam@hotmail.com F lgs 2300
Emily Kaur 8826175812 emily@gmail.com F Ops 2100
Amy Sharma 9857536898 amys@hotmail.com F Ops 2500

Any expression may be used in place of /regexpr/ in the context of ~; and !~. The
expression here could also be if, while, for, and do statements.

Basic regular expression construct
Regular expressions are made up of two types of characters: normal text characters, called
literals, and special characters, such as the asterisk (*, +, ?, .), called metacharacters. There
are times when you want to match a metacharacter as a literal character. In such cases, we
prefix that metacharacter with a backslash (\), which is called an escape sequence.

The basic regular expression construct can be summarized as follows:

Here is the list of metacharacters, also known as special characters, that are used in
building regular expressions:

\ ^ $. [] | () * + ?

The following table lists the remaining elements that are used in building a basic regular
expression, apart from the metacharacters mentioned before:

Literal A literal character (non-metacharacter), such as A, that
matches itself.

Escape sequence An escape sequence that matches a special symbol: for example
\t matches tab.

Quoted metacharacter
(\)

In quoted metacharacters, we prefix metacharacter with a
backslash, such as \$ that matches the metacharacter literally.

Working with Regular Expressions Chapter 2

[64]

Anchor (^) Matches the beginning of a string.

Anchor ($) Matches the end of a string.

Dot (.) Matches any single character.

Character classes (...)
A character class [ABC] matches any one of the A, B, or C
characters. Character classes may include abbreviations, such
as [A-Za-z]. They match any single letter.

Complemented character
classes

Complemented character classes [^0-9] match any character
except a digit.

These operators combine regular expressions into larger ones:

Alternation (|) A|B matches A or B.

Concatenation AB matches A immediately followed by B.

Closure (*) A* matches zero or more As.

Positive closure (+) A+ matches one or more As.

Zero or one (?) A? matches the null string or A.

Parentheses () Used for grouping regular expressions and back-referencing. Like
regular expressions, (r) can be accessed using \n digit in future.

In the next section, we will look at regular expression metacharacters and their examples in
AWK in more depth.

Understanding regular expression
metacharacters
When we use special characters in regular expressions, they are called metacharacters
because they have a special meaning. They enhance the flexibility, power, and usage of
regular expressions. Now, we will discuss the list of metacharacters in regular expressions.
All characters, that are not either metacharacters or escape sequences, match themselves in
regular expressions. Let's understand each of them in detail.

Working with Regular Expressions Chapter 2

[65]

Quoted metacharacter
A regular expression consisting of a literal or character (letter or digit) is a basic regular
expression that matches itself. Sometimes, if we need to use the literal meaning of a
metacharacter in a regular expression, we precede it with a backslash. If a character is
preceded by a single backslash, \, we say the character is quoted. Quoting suppresses the
special meaning of a character when matching. For example, if we want to match the dollar
sign, $, in a string, we need to quote it as follows:

$ echo -e "500$\n500INR" | awk '/\$/{ print }'

The output on execution of the preceding code is as follows:

500$

Anchors
Anchors do not match the characters at all. Anchors are used to match the characters at
certain positions, such as at the beginning or end of a line. If the anchors are not used in the
proper position, either at the beginning or end of a regular expression, they do not act as
anchors. The ^ and $ are two metacharacters that are known as anchors in regular
expressions.

Matching at the beginning of a string
The unquoted caret ^ matches the string at the beginning of line. The ^ is only the anchor if
it is the first character in the regular expression. For example, we use the /^J/ regular
expression to match all the lines that begin with J. It will print the employee information of
those whose first name begins with the J character in the employee database:

$ awk '/^J/{ print }' emp.dat

The output on execution of the preceding code is as follows:

Jack Singh 9857532312 jack@gmail.com M hr 2000
Jane Kaur 9837432312 jane@gmail.com F hr 1800
Julie Kapur 8826234556 julie@yahoo.com F Ops 2500
John Kapur 9911556789 john@gmail.com M hr 2200

Working with Regular Expressions Chapter 2

[66]

We can also use the anchor, ^ (caret), with the string match operator (~) to match the field
beginning with a specified character. In the following example, we print all the lines whose
second field begins with S. It will print employee information for those employees whose
last name begins with the S character, as follows:

$ awk '$2 ~ /^S/{ print }' emp.dat

The output on execution of the preceding code is as follows:

Jack Singh 9857532312 jack@gmail.com M hr 2000
Amit Sharma 9911887766 amit@yahoo.com M lgs 2350
Hari Singh 8827255666 hari@yahoo.com M Ops 2350
Victor Sharma 8826567898 vics@hotmail.com M Ops 2500
Ginny Singh 9857123466 ginny@yahoo.com F hr 2250
Amy Sharma 9857536898 amys@hotmail.com F Ops 2500
Vina Singh 8811776612 vina@yahoo.com F lgs 2300

Matching at the end of a string
The unquoted dollar, $, matches the string at the end of the line. The '$' is only the anchor
if it is the last character in the regular expression. For example, '0$' matches all the lines
that end with 0. It will print employee details of those whose salary ends with
the '0' character in the employee database:

$ awk '/0$/{ print }' emp.dat

The output on execution of this code is as follows:

Jack Singh 9857532312 jack@gmail.com M hr 2000
Jane Kaur 9837432312 jane@gmail.com F hr 1800
Eva Chabra 8827232115 eva@gmail.com F lgs 2100
Amit Sharma 9911887766 amit@yahoo.com M lgs 2350
Julie Kapur 8826234556 julie@yahoo.com F Ops 2500
Ana Khanna 9856422312 anak@hotmail.com F Ops 2700
Hari Singh 8827255666 hari@yahoo.com M Ops 2350
Victor Sharma 8826567898 vics@hotmail.com M Ops 2500
John Kapur 9911556789 john@gmail.com M hr 2200
Billy Chabra 9911664321 bily@yahoo.com M lgs 1900
Sam khanna 8856345512 sam@hotmail.com F lgs 2300
Ginny Singh 9857123466 ginny@yahoo.com F hr 2250
Emily Kaur 8826175812 emily@gmail.com F Ops 2100
Amy Sharma 9857536898 amys@hotmail.com F Ops 2500
Vina Singh 8811776612 vina@yahoo.com F lgs 2300

Working with Regular Expressions Chapter 2

[67]

Like ^, we can also use anchor, $ (dollar), with the string match operator (~) to match the
field ending with a specific character. In the following example, we print all the lines whose
second field ends with the 'a' letter, as follows:

$ awk '$2 ~ /a$/{ print }' emp.dat

The output on execution of this code is as follows:

Eva Chabra 8827232115 eva@gmail.com F lgs 2100
Amit Sharma 9911887766 amit@yahoo.com M lgs 2350
Ana Khanna 9856422312 anak@hotmail.com F Ops 2700
Victor Sharma 8826567898 vics@hotmail.com M Ops 2500
Billy Chabra 9911664321 bily@yahoo.com M lgs 1900
Sam khanna 8856345512 sam@hotmail.com F lgs 2300
Amy Sharma 9857536898 amys@hotmail.com F Ops 2500

A summary of the anchors is as follows:

Pattern Matches

^C Matches "C" at the beginning of a line

C$ Matches "C" at the end of a line

C^ Matches "C^" anywhere on a line

$C Matches "$C" anywhere on a line

^C$ Matches the string consisting of a single "C" character

^^ Matches "^" at the beginning of a line

$$ Matches "$" at the end of a line

^$ Matches an empty line (which begins and ends immediately)

Working with Regular Expressions Chapter 2

[68]

Dot
The "." character is one of those special metacharacters that matches any character, except
the end-of-line character. In the following example, we match a sequence of three characters
that begin with C and end with T, as follows:

$ echo -e "C1T\nCaT\nC@T\ncAT" | awk '/C.T/ { print }'

The output on execution of the preceding program is as follows:

C1T
CaT
C@T

Let's create one file for practicing dot regular expressions:

$ vi dot_regex.txt
Lets go for a walk
Singing is good hobby
We will talk on this matter
Ping me when you are free
(that is cool)
My son birthday is on 24/04/14
I will be going to Singapore on 24-04-14
(this)

Now, let's execute some regular expressions on the dot_regex.txt file:

Match all strings with any character preceded by 'ing', as follows:1.

$ awk '/.ing/{ print }' dot_regex.txt

The output on execution of this code is:

Singing is good hobby
Ping me when you are free
I will be going to Singapore on 24-04-14

Match all strings that contain a space, followed by a character, and further2.
followed by 'alk':

$ awk '/ .alk/{ print }' dot_regex.txt

Working with Regular Expressions Chapter 2

[69]

The output on execution of the preceding code is as follows:

Lets go for a walk
We will talk on this matter

Match the date with any separator, as follows:3.

$ awk '/24.04.14/{ print }' dot_regex.txt

The output on execution of the given code is as follows:

My son birthday is on 24/04/14
I will be going to Singapore on 24-04-14

A summary of dot/period is as follows:

Pattern Matches

. Matches any single character anywhere

.C Matches any single character followed by "C" anywhere on the line

A.C
Matches a sequence of three characters that begin with A and end with C
anywhere on the line

^.$ Matches any string containing exactly one character

... Matches any three consecutive characters anywhere on the line

\.$ Matches a period at the end of the line

Brackets expressions
If we want to match a specific character in a line, we enclose it in square brackets, such
regular expressions are generally called a bracket expression. It matches any one of the
characters that is within the square brackets. The order of the characters does not matter.
For example, '[APz]' will match any one of the 'A', 'P', or 'z' characters in a string.

Working with Regular Expressions Chapter 2

[70]

Character classes
Character classes, also known as a character set, is a regular expression consisting of a
group of characters enclosed in brackets. It matches any one of the enclosed characters,
irrespective of the order of occurrence of that character in the bracket. For example,
[abcdefgh] matches any of the a, b, c, d, e, f, g, or h characters.

In the following example, we print the employee information for those whose names begin
with any of the characters enclosed within brackets:

$ awk '/^[ABCDEFGHIJ]/{ print }' emp.dat

The output on execution of the given code is as follows:

Jack Singh 9857532312 jack@gmail.com M hr 2000
Jane Kaur 9837432312 jane@gmail.com F hr 1800
Eva Chabra 8827232115 eva@gmail.com F lgs 2100
Amit Sharma 9911887766 amit@yahoo.com M lgs 2350
Julie Kapur 8826234556 julie@yahoo.com F Ops 2500
Ana Khanna 9856422312 anak@hotmail.com F Ops 2700
Hari Singh 8827255666 hari@yahoo.com M Ops 2350
John Kapur 9911556789 john@gmail.com M hr 2200
Billy Chabra 9911664321 bily@yahoo.com M lgs 1900
Ginny Singh 9857123466 ginny@yahoo.com F hr 2250
Emily Kaur 8826175812 emily@gmail.com F Ops 2100
Amy Sharma 9857536898 amys@hotmail.com F Ops 2500

We can specify ranges of characters in abbreviated form by using a hyphen. The character
immediately to the left of the hyphen defines the beginning of the range and the character
immediately to the right defines the end. Thus, the preceding example can be rewritten
using a hyphen as follows:

$ awk '/^[A-J]/{ print }' emp.dat

The output on execution of the preceding code is as follows:

Jack Singh 9857532312 jack@gmail.com M hr 2000
Jane Kaur 9837432312 jane@gmail.com F hr 1800
Eva Chabra 8827232115 eva@gmail.com F lgs 2100
Amit Sharma 9911887766 amit@yahoo.com M lgs 2350
Julie Kapur 8826234556 julie@yahoo.com F Ops 2500
Ana Khanna 9856422312 anak@hotmail.com F Ops 2700
Hari Singh 8827255666 hari@yahoo.com M Ops 2350
John Kapur 9911556789 john@gmail.com M hr 2200
Billy Chabra 9911664321 bily@yahoo.com M lgs 1900

Working with Regular Expressions Chapter 2

[71]

Ginny Singh 9857123466 ginny@yahoo.com F hr 2250
Emily Kaur 8826175812 emily@gmail.com F Ops 2100
Amy Sharma 9857536898 amys@hotmail.com F Ops 2500

We can print the info of employees whose names begin with 'Ja' and are followed by any
two characters, as follows:

$ awk '/Ja[a-z][a-z]/{ print }' emp.dat

The output on execution of this code is as follows:

Jack Singh 9857532312 jack@gmail.com M hr 2000
Jane Kaur 9837432312 jane@gmail.com F hr 1800

Similarly, you can print the info of employees whose salary is either 2300 or 2500, as
follows:

$ awk '/2[35]00/{ print }' emp.dat

The output on execution of the preceding code is as follows:

Julie Kapur 8826234556 julie@yahoo.com F Ops 2500
Victor Sharma 8826567898 vics@hotmail.com M Ops 2500
Sam khanna 8856345512 sam@hotmail.com F lgs 2300
Amy Sharma 9857536898 amys@hotmail.com F Ops 2500
Vina Singh 8811776612 vina@yahoo.com F lgs 2300

Without both left- and right-range characters, a hyphen in a character class denotes itself,
hence the [-] character classes match -:

$ echo -e "-\n
+\n
a\n
b" | awk '/[-]/'

The output on execution of this code is as follows:

-

We can also put a hyphen at the beginning or end of a range-specified character class to
match the hyphen itself, as shown here:

$ echo -e "-\n
+\n
a\n
b" | awk '/[a-z-]/'

Working with Regular Expressions Chapter 2

[72]

This can also be performed as follows:

$ echo -e "-\n
+\n
a\n
b" | awk '/[-a-z]/'

The output on execution of the preceding code is as follows:

-
a
b

The only metacharacters valid inside the bracket expression are '\', ']', '-', or '^'. We
have to put a '\' in front of them to use them inside character classes.

As in the case of anchors, if they are not placed at the appropriate position in regular
expressions they lose their meaning, the same is true for the hyphen, '-', and also ']'. For
example:

$ echo -e "-\n
+\n
a\n
b\n
]\n
\\" | awk '/[\^ab\-\]\\]/'

The output on execution of this code is as follows:

-
a
b
]
\

A summary of the character classes is as follows:

Pattern Matches

[f-k] Matches any single character between [fghijk]

[0-9] Matches any single digit between [0123456789]

[-] Matches a hyphen

[0-9-] Matches any number or a hyphen

[-0-9] Matches any number or a hyphen

Working with Regular Expressions Chapter 2

[73]

[]0-9] Matches any number or a]

[0-9]] Matches any number followed by]

[0-9\-\]] Matches any number, a hyphen, or]

[0-9\\] Matches any number or backslash, "\"

[\^0-9] Matches any number or caret, "^"

[a-z] Matches any small letter

[A-Z] Matches any capital letter

[a-zA-Z] Matches any alphabet

[a-zA-Z0-9] Matches any alphanumeric character

[5-9G-Lr-z] Matches any single character among [56789GHIJKLrstuvwxyz]

[a-zA-Z][0-9] Matches a letter followed by a digit

[a-zA-Z-]+ Matches a letter that includes a hyphen

Named character classes (POSIX standard)
Named character classes is a feature introduced in the POSIX standard. A named character
class is a special notation that describes the lists of characters that have a specific attribute,
but the actual characters can vary from country to country or from one character set to
another. For example, the alphabetic character set can differ between India and China.

A named character class is valid in a regexp, when it is given inside the brackets of a bracket
expression. The named character class is enclosed between '[:' and ':]'.

For example, if you want to search for lines having alphabets (uppercase and lowercase
both), we can write it as follows:

$ awk '/[[:alpha:]]/' dot_regex.txt

Working with Regular Expressions Chapter 2

[74]

The output on execution of the preceding code is as follows:

Let's go for a walk
Singing is a good hobby
We will talk on this matter
Ping me when you are free
(that is cool)
My son's birthday is on 24/04/14
I will be going to Singapore on 24-04-14
(this)

The preceding regex prints all the lines of the file because each line contains alphabets.

Now, let's use the [:digit:] named character class to print the lines with digits in them:

$ awk '/[[:digit:]]/' dot_regex.txt

The output on execution of the given code is as follows:

My son birthday is on 24/04/14
I will be going to Singapore on 24-04-14

A summary of the character classes defined by the POSIX standard is as follows:

Class Meaning

[:digit:] Numeric characters

[:alpha:] Alphabetic characters

[:alnum:] Alphanumeric characters

[:lower:] Lowercase alphabetic characters

[:upper:] Uppercase alphabetic characters

[:blank:] Blank characters space and tab

[:space:]
Space characters tab, newline, vertical tab, form feed, carriage return, and
space

[:cntrl:] Control characters have octal codes 000 to 037 and 177

[:xdigit:] Characters that are hexadecimal digits

[:graph:]
Characters that are both printable and visible, '[:alnum:]' and
'[:punct:]' (a space is printable but not visible, whereas an 'a' is both)

[:print:] Printable characters (characters that are not control characters)

Working with Regular Expressions Chapter 2

[75]

[:punct:]

Punctuation characters (characters that are not letters, digits, control
characters, or space characters),
! " # $ % & ' () * + , - . / : ; < = > ? @ [\] ^ _ ` { |
} ~

Here is a summary table for named character classes and equivalent character classes:

Named character class Character classes

[:digit:] [0-9]

[:alpha:] [a-zA-Z]

[:alnum:] [a-zA-Z0-9]

[:lower:] [a-z]

[:upper:] [A-Z]

[:blank:] Blank characters are space and tab

[:space:]
Space characters are tab, newline, vertical tab, form feed, carriage
return, and space

[:cntrl:] Control characters: have octal codes 000 to 037 and 177

[:xdigit:]
Hexadecimal digits are 0 1 2 3 4 5 6 7 8 9 A B C D E F
a b c d e f

[:graph:]

Characters that are both printable and visible: '[:alnum:]' and
'[:punct:]' (a space is printable but not visible, whereas an
'a' is both)

[:print:] Printable characters (characters that are not control characters)

[:punct:]

Punctuation characters (characters that are not letters, digits,
control characters, or space characters),
! " # $ % & ' () * + , - . / : ; < = > ? @ [\] ^
_ ` { | } ~

Working with Regular Expressions Chapter 2

[76]

Complemented bracket expressions
A complemented bracket expression is one in which the first character after the [must be
caret, ^. This character class matches any character except those in the square brackets. For
example, [^abc] will match any character but not 'a', 'b', or 'c'. Similarly, [^0-9]
matches any character except a digit.

Complemented character classes
In a complementary character set, the first character after [is caret, ^, and it negates the set
of characters in the square brackets. For example, to match any character except a vowel, we
can use the following regular expression:

$ echo -e "a\nb\nc\nd\ne" | awk '/[^aeiou]/{ print }'

The output on execution of the preceding code is as follows:

b
c
d

Similarly, in the employee database (emp.dat), if we want to print information for all those
employees whose email ID doesn't begin with either 'j' or 'v', that is, [^jv], we can use
the following expression:

$ awk '$4 ~ /^[^jv]/{ print $4 }' emp.dat

The output on execution of the given code is as follows:

eva@gmail.com
amit@yahoo.com
anak@hotmail.com
hari@yahoo.com
bily@yahoo.com
sam@hotmail.com
ginny@yahoo.com
emily@gmail.com
amys@hotmail.com

Working with Regular Expressions Chapter 2

[77]

Some examples of complemented character classes are given as follows:

Named character class Matches

[^a-z] Matches any character except a lowercase letter

[^A-Z] Matches any character except an uppercase letter

[^a-zA-Z] Matches any character except an alphabet character

[^a-zA-Z0-9] Matches any character except an alphanumeric character

[^5-9G-Lr-z]
Matches any single character except among
[56789GHIJKLrstuvwxyz]

[^0-9] Matches any character except any digit

^[^ABC] Matches any character at the beginning of a string except ABC

^[ABC] Matches ABC at the beginning of a string

^[^a-z]$ Matches any single-character except a lowercase letter

^[^^] Matches any character except ^ at the beginning

Complemented named character classes
In complemented named character classes, the first character after [is caret, ^, and it is
followed by the named character class, which is enclosed in '[:' and ':]'. For example, if
you want to search for a line without letters (lowercase), we can write it as follows:

$ echo -e "a
\nb
\nc
\n1
\n2
\nd
\n3" | awk '/[^[:lower:]]/'

The output on execution of the preceding code is as follows:

1
2
3

Working with Regular Expressions Chapter 2

[78]

We can mix the old and new POSIX styles, for example, to any number between 1-5 or any
lowercase letter. For this, we can use the following:

$ echo -e "a\n1\ne\n5\nz\n8" | awk '/[1-5[:lower:]]/'

The output on execution of the preceding code is as follows:

a
1
e
5
z

Alternation operator
The alternation operator is used to specify alternatives. The alternation operator is a vertical
bar or pipe symbol, it matches one regular expression out of several regular expressions.
The '|' alternation operator has the lowest precedence among all the regular expression
operators. For example, in the employee database, if we want to print the lines that have
first name of the employee as Emily, Jack, or Ana, we can write the following regular
expression:

$ awk '/Emily|Jack|Ana/' emp.dat

In AWK, it is generally used with the () grouping operator, as follows:

$ awk '/(Emily|Jack|Ana)/' emp.dat

The output on execution of the given code is as follows:

Jack Singh 9857532312 jack@gmail.com M hr 2000
Ana Khanna 9856422312 anak@hotmail.com F Ops 2700
Emily Kaur 8826175812 emily@gmail.com F Ops 2100

With the alternation operator, we can combine multiple regular expressions together, as
follows:

$ awk '/^J|^V/' emp.dat

Working with Regular Expressions Chapter 2

[79]

The output on execution of the preceding code is as follows:

Jack Singh 9857532312 jack@gmail.com M hr 2000
Jane Kaur 9837432312 jane@gmail.com F hr 1800
Julie Kapur 8826234556 julie@yahoo.com F Ops 2500
Victor Sharma 8826567898 vics@hotmail.com M Ops 2500
John Kapur 9911556789 john@gmail.com M hr 2200
Vina Singh 8811776612 vina@yahoo.com F lgs 2300

So, in the previous example, we could print the employee details for those whose first name
begins with J or V.

The alternation applies to the largest possible regular expressions on either side. For
example, if we want to print the lines that begin with either J or V, or the email ID of users
beginning with v, as follows:

$ awk '/(^J|^V)|($4 ~ ^v)/' emp.dat

The output on execution of the preceding code is as follows:

Jack Singh 9857532312 jack@gmail.com M hr 2000
Jane Kaur 9837432312 jane@gmail.com F hr 1800
Julie Kapur 8826234556 julie@yahoo.com F Ops 2500
Victor Sharma 8826567898 vics@hotmail.com M Ops 2500
John Kapur 9911556789 john@gmail.com M hr 2200
Vina Singh 8811776612 vina@yahoo.com F lgs 2300

Unary operator for repetition
The *, +, and ? symbols are known as unary operators, which are used to specify repetitions
in regular expressions. They are also known as modifiers. For example, we can use the
unary operator for repeating character classes. However, the important thing is it repeats
entire character class and not just the character it matched. The [0-9]+ regular expression
can match one or more digits; it can be 987654321, or 222, or 333, and so on.

Working with Regular Expressions Chapter 2

[80]

Closure
The closure, or asterisk or star, means that the item immediately preceded by * is matched
zero or more times. For example, in the given expression, we match a letter, immediately
followed by a lowercase letter or digit. The first character class matches a letter. The second
character class matches a letter or digit. The star repeats the second character class:

$ echo -e "ca\n
c\n
c1\n
1\n
;\n
c;\n
cc" | awk '/[a-z][a-z0-9]*/'

The output on execution of this code is as follows:

ca
c
c1
c;
cc

Let's have another example to explain it. In this example, we print all the lines that contain
the ca string and it is followed by zero or more occurrences of t:

$ echo -e "ca\n
cat\n
catt\n
c\n
catterpillar" | awk '/cat*/'

The output on execution of this code is as follows:

ca
cat
catt
catterpillar

To match as long a string as possible between (and), we can use closure as follows:

$ awk '/\(.*\)/' dot_regex.txt

Working with Regular Expressions Chapter 2

[81]

The output on execution of the preceding program is as follows:

(that is cool)
(this)

A summary of closure operations is as follows:

Pattern Matches

A* Matches the null string, A, or AA, and so on

AB*C Matches AC, ABC, or ABBC, and so on

AB.*C
Matches AB followed by zero or more other characters followed by C as
ABC, ABBC, or XAB78478XC, and so on

[0-9]* Matches zero or more numbers

[0-9][0-9]* Matches one or more numbers

^A* Matches any line

^A* Matches any line starting with A*

^AA* Matches any line starting with one A as A, AA, or AAA, and so on

Positive closure
The positive closure or plus (+) means that the item immediately preceded by + is matched
one or more times. For example, the ca+t would match cat and caat, whereas ca*t
would match all three, as follows:

$ echo -e "cat\n
ct\n
caat\n
cbt" | awk '/ca+t/'

The output on execution of the preceding code is as follows:

cat
caat

Working with Regular Expressions Chapter 2

[82]

A summary of positive closure (+) is as follows:

Pattern Matches

A+ Matches the single A, AA, or AAA, and so on

AB+C Matches ABC, ABBC, or ABBBC, and so on

[0-9]+ Matches one or more numbers

[0-9][0-9]+ Matches two or more numbers

^A+ Matches any line beginning with one or more A letters

^A\+ Matches any line starting with A+

^AA+ Matches any line starting with two AA as AA or AAA, and so on

AB+C Matches ABC, ABBC, or ABBBC, and so on

(AB)+C Matches ABC, ABABC, ABABABC, and so on

[A-Z]+ Matches any string of one or more uppercase letters

Zero or one
The zero or one operator (?) matches occurrences of the preceding character zero or one
time. For example, we use ? to mark the e as an optional character to match the Jean or
Jan string, as follows:

$ echo -e "Jean\nJan\nJeean" | awk '/Je?an/'

The output on execution of the preceding code is as follows:

Jean
Jan

A summary of the unary operator for repetition is as follows:

Pattern Matches

A? Matches the single A or null string

AB?C Matches AC or ABC

Working with Regular Expressions Chapter 2

[83]

Repetition ranges with interval expressions
We can use interval expressions to specify a minimum, maximum, or exact number of
occurrences to match the preceding regular expression. The unary operator for repetition
can specify a minimum number of occurrences, but we cannot specify the maximum
number of occurrences of the preceding expression with them.

Interval expressions were not originally available in AWK. They were added as part of the
POSIX standard to make AWK and egrep consistent with each other. In GAWK, they are
available with version 4.0 and above.

Let's create a file to illustrate the interval expression:

vi interval_regex.txt
a1b
a12b
a123b
a1234b
a12345b
a1233456b
a111b
a111111b
cababababt
cababt

A single number in brackets
A single number in brackets, {n}, matches exactly n occurrence of the preceding expression.
For example, the following regular expression matches the line consisting of exactly 5 digits
between a and b:

$ awk '/a[0-9]{5}b/' interval_regex.txt

The output on execution of the preceding code is as follows:

a12345b

If from the emp.dat file, you want to print all the lines in which an employee's phone
number had the 9 repeated twice, we can write the regular expression as follows:

$ awk '/[9]{2}/' emp.dat

Working with Regular Expressions Chapter 2

[84]

The output on execution of the preceding code is as follows:

Amit Sharma 9911887766 amit@yahoo.com M lgs 2350
John Kapur 9911556789 john@gmail.com M hr 2200
Billy Chabra 9911664321 bily@yahoo.com M lgs 1900

A single number followed by a comma in brackets
A single number followed by a comma in brackets, {n,}, means that the preceded regular
expression is repeated at least n number of times. For example, to match the occurrence of
the minimum 3 numbers between a and b in a line, we can use the following:

$ awk '/a[0-9]{3,}b/' interval_regex.txt

The output on execution of the preceding code is as follows:

a123b
a1234b
a12345b
a1233456b
a111b
a111111b

Two numbers in brackets
If there are two numbers, n and m, in brackets, then it means that the preceded item must be
matched at least n times but not more than m times. The values of n and m must be non-
negative and smaller than 255. For example, to match the occurrence of a minimum of 2
numbers and a maximum of 6 numbers between a and b in a line, we can use the following
regular expression:

$ awk '/a[0-9]{2,6}b/' interval_regex.txt

The output on execution of the preceding code is as follows:

a12b
a123b
a1234b
a12345b
a111b
a111111b

Working with Regular Expressions Chapter 2

[85]

In interval expression, the preceding regular expression should be a single-character regular
expression, or if it is a string, it must be enclosed in a bracketed regular expression. For
example:

$ awk '/(ab){2,3}/' interval_regex.txt

The output on execution of the preceding code is as follows:

cababababt
cababt

A summary of interval expressions is as follows:

Pattern Matches

A{3}B Matches the line with AAAB

A{3,}B Matches AAAB, AAAAB,or AAAAAB, and so on

A{3,5}B Matches AAAB, AAAAB, or AAAAAB

{4,8} Matches any line with {4,8}

X(ab){2}Z Matches any XababZ

Grouping using parentheses
This is also known as creating sub-expressions. Single-letter repetition can be easily
controlled with unary operators or interval expressions, however, if we need to match the
repetition of a word or group of characters, then we have to group that regular expression
together inside parentheses. It is quite similar to the grouping of expressions as done in
math. Parentheses or grouping is used for two operations, that is, concatenation and back-
referencing.

Working with Regular Expressions Chapter 2

[86]

Concatenation using alternation operator within
parentheses
Parentheses can be used to concatenate regular expressions using the '|' alternation
operator. In this, we simply place two or more regular expressions separated using the
alternation operator pipe, '|', within parentheses to match any of them. For example, in
the given example we print lines with the Jane, Emily, Ana, or Victor employee name
from the emp.dat file, as follows:

$ awk '/(Jane|Emily|Ana|Victor)/{ print }' emp.dat

The output on execution of the preceding code is as follows:

Jane Kaur 9837432312 jane@gmail.com F hr 1800
Ana Khanna 9856422312 anak@hotmail.com F Ops 2700
Victor Sharma 8826567898 vics@hotmail.com M Ops 2500
Emily Kaur 8826175812 emily@gmail.com F Ops 2100

Backreferencing in regular expressions – sed and grep
If we group the regular expressions with more than one character and place it inside
parentheses, it becomes a sub-expression. This sub-expression is matched and the output of
the match is remembered and can be recalled if you find the same pattern occurrence again
during the subsequent match operation.

We can recall the remembered pattern with \ followed by a single digit. We can have a
maximum of nine different remembered patterns. Each occurrence of (starts a new pattern
of a sub-expression. This process of recalling remembered patterns is called
the backreferencing of sub-expressions.

Sub-expressions are represented by enclosing a regex between parentheses: → \(regex\)

A backreference is represented by a backslash followed by a digit, where the digit is the
sub-expression reference number:→ \digit

back-references don't work with AWK or GAWK. GAWK uses
the gensub() function for backreferencing. However, backreferencing is a
quite useful feature of regular expressions and is frequently used with
the grep and sed utilities of Linux, so we'll discuss them in this chapter.

Working with Regular Expressions Chapter 2

[87]

Now, we create a file for practicing back-references, as follows:

vi backreference.txt
cat
first example of back-referencing
catcat
example of palindrome
xabax

In first example, we will print the line containing the cat string followed by the cat string
again. So, to match the second reference of cat, we use \1, as follows:

$ grep '\(cat\)\1' backreference.txt --color

The output on execution of the preceding command is as follows:

catcat

To match the five-letter palindrome string in the backreference.txt file, we can use the
following regular expression:

$ grep '\([a-z]\)\([a-z]\)[a-z]\2\1' backreference.txt --color

The output on execution of the preceding code is as follows:

first example of backreferencing
xabax

Precedence in regular expressions
In regular expressions, the '|' alternation operator has the lowest precedence, then
concatenation, followed by the +, *, and ? repetition operations as well as brackets, '{' and
'}'. As in arithmetic expressions, operators of higher precedence are done before lower
ones. Also, parentheses can change how operators are grouped. Due to these conventions,
parentheses are often omitted, as follows:

$ awk '/Jane|Emily/' emp.dat is same as
$ awk '/(Jane)|(Emily)/' emp.dat

The output on execution of the preceding code is as follows:

Jane Kaur 9837432312 jane@gmail.com F hr 1800
Emily Kaur 8826175812 emily@gmail.com F Ops 2100

Working with Regular Expressions Chapter 2

[88]

In POSIX, AWK, and GAWK, the '*', '+', and '?' operators stand for themselves when
there is nothing in the regular expression that precedes them. For example, /+/ matches a
literal plus sign:

$ echo -e "This is new line
one + one is two
posix regular expression" | awk '/+/{ print }'

The output on execution of the preceding code is as follows:

one + one is two

GAWK-specific regular expression operators
GAWK has some more regular expression operators, in addition to those we've already
discussed. The operators described in this section are specific to GAWK and are not
available in other AWK implementations. These are basically shorthand character classes
that are frequently used, and most of them deal with word matching (here, word refers to a
sequence of one or more letters, digits, or underscores). We access them by using the escape
character, '\', followed by a letter (here, the escape character adds special meaning to them
instead of taking it away).

Let's create a file to practice GAWK-only operators:

vi gopr.txt
start
bigstarting
starting
start end
white space example
e d
end
e_d
e1d
e;d
eNd
white space example with tab
e d

Working with Regular Expressions Chapter 2

[89]

Matching whitespaces
Whitespaces matches anything that is considered a whitespace character. It is equivalent
to '[[:space:]]'.

For example, in the gopr.txt file, we match all the lines that contain 'e' followed by
whitespace and 'd' using the '\s' operator. It will print all the lines in which there is a
space or tab between 'e' and 'd', as follows:

$ awk '/e\sd/' gopr.txt

The output on execution of the preceding code is as follows:

e d
e d

Matching not whitespaces
Matches the opposite of \s, that is, anything that is not considered whitespace. It is the
equivalent of [^[:space:]]. For example, if we want to print all the lines that don't
contain any whitespace between e and d, then we can use the \S shorthand, as follows:

$ awk '/e\Sd/' gopr.txt

The output on execution of the preceding code is as follows:

start end
end
e_d
e1d
e;d
eNd

Matching words (\w)
Matching everything that is considered a word character, this can be done using \w. It is the
equivalent of any letter, digit, or underscore as [[:alnum:]_]. Here, the underscore is
included because in many programming languages, the underscore is used as a variable or
function name. For example:

$ awk '/e\wd/' gopr.txt

Working with Regular Expressions Chapter 2

[90]

The output on execution of the preceding code is as follows:

start end
end
e_d
e1d
eNd

Matching non-words
Matches any character that is not considered a word, character, or underscore. It is the
opposite of \W and the equivalent of [^[:alum:]_]. For example:

$ awk '/e\Wd/' gopr.txt

The output on execution of the preceding code is as follows:

e d
e;d
e d

Matching word boundaries
Word boundaries are the beginning or end of a word. Here, it also word includes a letter,
digit, or underscore.

Matching at the beginning of a word
It matches the beginning of a word. The string followed by \< should be the beginning of
the string. It should not be preceded by other characters. For example, \<start will match
starting, start, or started, but not restart, as shown here:

$ awk '/\<start/' gopr.txt

The output on execution of the given code is as follows:

start
starting
start end

Working with Regular Expressions Chapter 2

[91]

Matching at the end of a word
Matches a string at the end of a word. The string preceded by '\>' should mark the end of
the word. It should not be followed by any character. For example, 'start\>' will match
restart or bigstart, but not starting or started, as follows:

$ awk '/start\>/' gopr.txt

The output on execution of the preceding code is as follows:

start
start end

Matching not as a sub-string using
The string enclosed between \y and \y should not occur as a sub-string of a word in a line.
If \y is used at the beginning, it matches the empty string at the beginning. If \y used at the
end, it matches the empty string at the end. For example:

$ awk '/\ystart\y/' gopr.txt

The output on execution of the preceding code is as follows:

start
start end

Matching a string as sub-string only using
This matches the string enclosed between \B and \B as a sub-string. It is the opposite of \y.
For example, \Bstart\B will match bigstarting, but not start or starting, as follows:

$ awk '/\Bstart\B/' gopr.txt

The output on execution of the preceding code is as follows:

bigstarting

Working with Regular Expressions Chapter 2

[92]

Case-sensitive matching
In bracket expressions, we can use both lowercase and uppercase characters to match the
characters for case-insensitive results, but the same is not true for other regular expressions.
However, this becomes difficult if you have to match to many characters. Here comes the
two built-in string functions of AWK, tolower() and toupper(). Using these two
functions, we can perform case-insensitive match operations.

For example, to match the first name 'John' of an employee in the emp.dat file, we can
perform a case-insensitive match using the tolower() function, as follows:

$ awk 'tolower($1) ~ /john/' emp.dat

The output on execution of this code is as follows:

John Kapur 9911556789 john@gmail.com M hr 2200

Another way to perform a case-insensitive match operation is by setting
the IGNORECASE bash variable value to TRUE.

Escape sequences
When using regular expressions and strings, certain characters cannot be included literally
in string constants ("hello") or regular expression constants (/hello/). To specify the
characters for which there may not be other notations, they are represented as escape
sequences. Escape sequences begin with a backslash ('\'). For example, it can represent
that an \n newline character is used, which otherwise cannot be represented in strings or
regular expressions. Similarly, \b stands for backspace, \t stands for tab, and \/ represents
a forward slash. They are quite useful in generating formatted output.

For example, to insert a new line after each line of the emp.dat file, we can use the \n
escape sequence, as follows:

$ awk '{ print $0"\n" }' emp.dat

The output on execution of the given code is as follows:

Jack Singh 9857532312 jack@gmail.com M hr 2000

Jane Kaur 9837432312 jane@gmail.com F hr 1800

Eva Chabra 8827232115 eva@gmail.com F lgs 2100

Working with Regular Expressions Chapter 2

[93]

Amit Sharma 9911887766 amit@yahoo.com M lgs 2350

Julie Kapur 8826234556 julie@yahoo.com F Ops 2500

Ana Khanna 9856422312 anak@hotmail.com F Ops 2700

Hari Singh 8827255666 hari@yahoo.com M Ops 2350

Victor Sharma 8826567898 vics@hotmail.com M Ops 2500

John Kapur 9911556789 john@gmail.com M hr 2200

Billy Chabra 9911664321 bily@yahoo.com M lgs 1900

Sam khanna 8856345512 sam@hotmail.com F lgs 2300

Ginny Singh 9857123466 ginny@yahoo.com F hr 2250

Emily Kaur 8826175812 emily@gmail.com F Ops 2100

Amy Sharma 9857536898 amys@hotmail.com F Ops 2500

Vina Singh 8811776612 vina@yahoo.com F lgs 2300

The following table summarizes the most-used escape sequences:

Escape sequence Meaning

\\ Insert a literal backslash, \

\/ Insert a literal forward slash, /

\" Insert a double quote, "

\a Matches alert character (this produces a bell sound)

\b Insert a backspace

\f Insert a form feed

\n Insert a new line

\r Insert a carriage return

\t Insert a horizontal tab

\v Insert a vertical tab

\ddd Octal value ddd, where ddd stands for 1 to 3 digits between 0 and 7

Working with Regular Expressions Chapter 2

[94]

Finally, we can summarize the regular expressions with the help of the following table:

Regular
expression Meaning

. Any single character except a new line

^ Beginning of a line

$ End of a line

[…] Range of characters given within the square brackets

[^..] A character that is not one of those within the square brackets

* Match zero or more preceding items

+ Match one or more preceding items

? Match zero or one preceding items

{n} Match the preceding item exactly n times

{n,} Match the preceding item n or more times

{n,m} Match the preceding item a minimum of n and a maximum of m times

\
Remove the special meaning of the next character (quoted
metacharacter)

\(..\) Back-reference, remembers pattern

\1 … \9 Back-reference, recalls pattern

() Group a part of regular expressions into a sub-expression

(...|…)
Alternation operator, match what is on either the left or right of the
pipe symbol

\s Match any character considered whitespace

\S Match any character not considered whitespace

\w Match any character that is a word character (a-zA-Z0-9_)

\W Match any character that is not a word character

\< Matches the beginning of a word

\> Matches the end of a word

Working with Regular Expressions Chapter 2

[95]

Summary
In this chapter, we learned about regular expressions. We learned the regular expression
construct using literals and metacharacters. Then, we learned the usage of various different
regular expression metacharacters, which are also known as regular expression operators.
Finally, we covered some GAWK-specific regular expression metacharacter usage and
understood escape sequences and their role in regular expressions.

In the next chapter, we will learn about handling AWK variables and constants while
writing AWK programs.

3
AWK Variables and Constants

This chapter will focus on the usage of AWK variables. By the end of the chapter, the reader
will understand how to use built-in and user-defined variables while writing AWK
programs and command lines. Almost all expressions contain variables. Some of the
variables are user-defined, while some are built-in, and others are fields. A variable is a
named location that is either a string or a number, or both. User-defined variables in AWK
consist of sequences of alphanumeric characters and underscores, with the exception that
they do not begin with a digit. All built-in variables have uppercase names. The AWK
variable type is not declared, but automatically infers the type from the context. When
required, AWK converts a string value to a numeric value and vice versa. This chapter will
give you a deep insight into different built-in and environment variables in AWK. We will
also see how string and numeric constants can be used to process different fields in data
files.

In this chapter, we will cover the following:

Predefined variables in AWK
Environment variables in AWK and GAWK
String and numeric constants
Conversion between strings and numbers

AWK Variables and Constants Chapter 3

[97]

Built-in variables in AWK
Variables play an important role when creating AWK scripts and programs. They modify
the behavior of AWK commands. AWK built-in variables have uppercase names. These
built-in variables can be used in all expressions, and can be reset by the user. They are set
automatically. The following sections discuss the different built-in variables in AWK.

Field separator
The field separator (FS) is either a single character or a regular expression. It decides the
way AWK splits an input record into fields. The FS is represented by the built-in variable
FS, and its default value is a single space. It tells AWK to separate fields across any number
of spaces and/or tabs.

Using a single character or simple string as a value of
the FS
Fields are normally separated by whitespace sequences (spaces, tabs, and newlines). In this
case, leading and trailing whitespaces (spaces or tabs) are stripped from the current input
line, and fields are separated by a space or a tab. The AWK default value of the FS is a
single space, and AWK normally splits the record into fields in this way.

Like other AWK variables, its value can be changed at any time in a program with the
assignment operator =. Usually, the correct time to do this is before any input line has been
read, hence it is generally defined in the BEGIN block, although we can define these
variables anywhere in the script. When the FS is set to any single character other than blank,
then that character becomes the FS.

For example, we know that the /etc/passwd file in Linux stores users' details in seven
fields separated by six colon signs (:). If we need to print only usernames from our system,
we can use AWK variables as follows:

$ awk 'BEGIN { FS=":" } ; {print $1}' /etc/passwd

AWK Variables and Constants Chapter 3

[98]

The output of the execution of the preceding code is as follows:

root
daemon
bin
sys
sync
games
man
mail
news
uucp
proxy
irc
gnats
nobody
mysql
...........

An example of using a string as the FS is as follows:

$ echo "Linux is awesome..!" | awk 'BEGIN {FS="is"};{print $2}'

The output of the execution of this code is as follows:

awesome..!

Note that we can set FS = ":" to any single character or string, but to set
a single character or a special character, we specify it within square
brackets as FS = "[]" (for a single space).

Using regular expressions as values of the FS
If a string is longer than a single character, it is considered as a regular expression while
setting the FS. The FS can have any string containing any regular expression. Whenever the
match is found for the regular expression, it separates the fields. Multiple FS can be
specified within square brackets, as shown in the following example:

$ echo "a:b;c,d" | awk 'BEGIN { FS = "[:;,]"} ; {print $1, $2, $3, $4 }'

AWK Variables and Constants Chapter 3

[99]

In the preceding example, we specify multiple FS as :, ;, and ,.

The output of the execution of this code is as follows:

a b c d

In our next example, the FS matches the hello phrase:

$ echo -e "Hey...! Hello Good Morning\nHey..! hello good morning" | awk
'BEGIN {FS="[Hh]ello"}{print $1}'

The output of the execution of this command is as follows:

Hey...!
Hey..!

The FS retains its value until it is explicitly allotted a new value. We can change the FS
value as many times as we want while reading a file. Let us create a file that contains mixed
data in which lines four to six have colon-separated fields, while others are separated by
spaces, as follows:

$ vi ch3_1.dat
sam 8800554422
#entry
jack:9900334433
vij:7788991122
#exit
ralph 8822334411

Now, to switch between two different FS, we can perform the following:

$ vi fs1.awk
{
if ($1 == "#entry")
{ FS=":"; }
else if ($1 == "#exit")
{ FS=" "; }
else
{ print $2 }
}

$ awk -f fs1.awk ch3_1.dat

AWK Variables and Constants Chapter 3

[100]

The output of the execution of the preceding code is as follows:

8800554422
9900334433
7788991122
8822334411

The same logic can also be applied in another way, as follows:

$ vi fs2.awk

{
 if ($0 ~ /:/)
 { FS=":";}
 else
 { FS=" ";}
 print $2
}

$ awk -f fs2.awk ch3_1.dat

The output of the execution of the preceding code is as follows:

8800554422

7788991122

8822334411

We can define the FS either before or after reading the current line. It has no effect on the
current input line. Once the defined value is read in the variable, it does not change until we
change it ourselves.

Using each character as a separate field
If you want to print or examine each character of a line separately, then you can do this by
defining a null string as an FS. In that case, each character in that line will become a
separate field, as shown in the following example:

$ echo "hello good morning" |awk 'BEGIN {FS =""};{print
$1,$2,$3,$4,$5,$NF}'

The output of the execution of the preceding code is as follows:

h e l l o g

AWK Variables and Constants Chapter 3

[101]

Using the command line to set the FS as -F
We can also define the FS on the command line using option -F. For example:

$ awk -F":" '{print $1}' /etc/passwd

The output of the execution of this command is as follows:

root
daemon
bin
sys
sync
games
man
lp
mail
news
uucp
nobody
.........

Output field separator
The default value of the output field separator (OFS) is space. It is the output equivalent of
the FS. We can set any string of characters to be used as the OFS by setting the predefined
variable to OFS. The OFS is generated when we put a comma in the print statement to
separate the arguments. For example, when we print the field without using a comma, then
each of the field values are written contiguously in the output, as follows:

$ awk '{print NR"." $1 $3 $4}' emp.dat

The output of the execution of this code is as follows:

1.Jack9857532312jack@gmail.com
2.Jane9837432312jane@gmail.com
3.Eva8827232115eva@gmail.com
4.Amit9911887766amit@yahoo.com
5.Julie8826234556julie@yahoo.com
6.Ana9856422312anak@hotmail.com
7.Hari8827255666hari@yahoo.com
8.Victor8826567898vics@hotmail.com
9.John9911556789john@gmail.com
10.Billy9911664321bily@yahoo.com
11.Sam8856345512sam@hotmail.com

AWK Variables and Constants Chapter 3

[102]

12.Ginny9857123466ginny@yahoo.com
13.Emily8826175812emily@gmail.com
14.Amy9857536898amys@hotmail.com
15.Vina8811776612vina@yahoo.com

On the other hand, when we use comma to separate fields in the output, each field value is
separated by a single space, as follows:

$ awk '{print NR"." $1,$3,$4}' emp.dat

The output of the execution of the preceding code is as follows:

1.Jack 9857532312 jack@gmail.com
2.Jane 9837432312 jane@gmail.com
3.Eva 8827232115 eva@gmail.com
4.Amit 9911887766 amit@yahoo.com
5.Julie 8826234556 julie@yahoo.com
6.Ana 9856422312 anak@hotmail.com
7.Hari 8827255666 hari@yahoo.com
8.Victor 8826567898 vics@hotmail.com
9.John 9911556789 john@gmail.com
10.Billy 9911664321 bily@yahoo.com
11.Sam 8856345512 sam@hotmail.com
12.Ginny 9857123466 ginny@yahoo.com
13.Emily 8826175812 emily@gmail.com
14.Amy 9857536898 amys@hotmail.com
15.Vina 8811776612 vina@yahoo.com

We can set the OFS for any single character or any number of characters. Now we will set
the value of the OFS as \t: in the BEGIN block; then each field value is separated by a tab
and a colon, as follows:

$ vi setofs.awk

#!/usr/bin/awk -f
BEGIN { OFS = "\t:" }
{print $1,$3,$4}

$ awk -f setofs.awk emp.dat

The output of the execution of the preceding code is as follows:

Jack :9857532312 :jack@gmail.com
Jane :9837432312 :jane@gmail.com
Eva :8827232115 :eva@gmail.com
Amit :9911887766 :amit@yahoo.com
Julie :8826234556 :julie@yahoo.com
Ana :9856422312 :anak@hotmail.com

AWK Variables and Constants Chapter 3

[103]

Hari :8827255666 :hari@yahoo.com
Victor :8826567898 :vics@hotmail.com
John :9911556789 :john@gmail.com
Billy :9911664321 :bily@yahoo.com
Sam :8856345512 :sam@hotmail.com
Ginny :9857123466 :ginny@yahoo.com
Emily :8826175812 :emily@gmail.com
Amy :9857536898 :amys@hotmail.com
Vina :8811776612 :vina@yahoo.com

Now we will set the OFS as an ABC string, as follows:

$ awk 'BEGIN { OFS="ABC"}{print $1, $2 }' emp.dat

The output of the execution of this code is as follows:

JackABCSingh
JaneABCKaur
EvaABCChabra
AmitABCSharma
JulieABCKapur
AnaABCKhanna
HariABCSingh
VictorABCSharma
JohnABCKapur
BillyABCChabra
SamABCkhanna
GinnyABCSingh
EmilyABCKaur
AmyABCSharma
VinaABCSingh

Similarly, we can use AWK to generate a CSV file, which is a primitive method of creating a
flat file database out of a text file. Let us create an AWK file to convert our cars.dat file,
which contain five fields, as follows:

$ vi txt2csv.awk

BEGIN {
 IFS="\t"
 OFS=","
 }
{ print $1, $2, $3, $4, $5 }

$ awk -f txt2csv.awk cars.dat > cars.csv

AWK Variables and Constants Chapter 3

[104]

On execution of this command, it will create a cars.csv file in the same directory. The
contents of cars.csv are as follows:

$ cat cars.csv
maruti,swift,2007,50000,5
honda,city,2005,60000,3
maruti,dezire,2009,3100,6
chevy,beat,2005,33000,2
honda,city,2010,33000,6
chevy,tavera,1999,10000,4
toyota,corolla,1995,95000,2
maruti,swift,2009,4100,5
maruti,esteem,1997,98000,1
ford,ikon,1995,80000,1
honda,accord,2000,60000,2
fiat,punto,2007,45000,3

This is mainly useful when we want to generate a formatted report. We can set the OFS as a
sequence of characters, such as a comma followed by a space and so on.

Record separator
The record separator (RS) defines the input RS for AWK and its default value is set as a
single new line. As with other AWK variables, we can redefine the RS as a new value.
While defining the new input RS, it needs to be enclosed in quotation marks as a string
constant in the BEGIN block. For example, let us set the new input record separator as a
single dot (.) for the employee database emp.dat file as follows:

$ awk 'BEGIN { RS="."}{ print}' emp.dat

The output of the execution of this code is as follows:

Jack Singh 9857532312 jack@gmail
com M hr 2000
Jane Kaur 9837432312 jane@gmail
com F hr 1800
Eva Chabra 8827232115 eva@gmail
com F lgs 2100
Amit Sharma 9911887766 amit@yahoo
com M lgs 2350
Julie Kapur 8826234556 julie@yahoo
com F Ops 2500
Ana Khanna 9856422312 anak@hotmail
com F Ops 2700
Hari Singh 8827255666 hari@yahoo

AWK Variables and Constants Chapter 3

[105]

com M Ops 2350
Victor Sharma 8826567898 vics@hotmail
com M Ops 2500
John Kapur 9911556789 john@gmail
com M hr 2200
............
............

RS, when assigned a null value, matches an empty line to separate multiline records in a
file. Now let us create a file that contains the following information so that we can look at
how the RS works when it is set to null—that is, RS=" ":

$ vi label.dat

Jack
9988776655
jack@gmail.com
Sam
8855991122
sam@gmail.com

$ vi rs1.awk
#!/usr/bin/awk -f

BEGIN { RS=""; OFS="\t" }
{print $1,$2,$3 }

$ awk -f rs1.awk label.dat

The output of the execution of the preceding code is as follows:

Jack 9988776655 jack@gmail.com
Sam 8855991122 sam@gmail.com

It is important to note that you can arrange for whole files to be treated as
a single record by setting the RS to a value that you know will not occur in
the input file. So, most of the time we can set a null character as the
separator (RS = "\0") as shown in the following example:
$ awk 'BEGIN { RS="\0" }{print $8}' emp.dat

AWK Variables and Constants Chapter 3

[106]

Outputting the record separator
The default value of the output record separator (ORS) is a single newline by default. We
assign new values to the variable ORS to change how records are separated. It is also used to
create a formatted output. Let us say that we want to print each line separated by a
sequence of special character asterisks, as follows:

$ vi ors.awk

#!/usr/bin/awk -f
BEGIN {
ORS="\n**\n"
}
{ print $0 }

$ awk -f ors.awk emp.dat

The output of the execution of the preceding code is as follows:

Jack Singh 9857532312 jack@gmail.com M hr 2000
**
Jane Kaur 9837432312 jane@gmail.com F hr 1800
**
Eva Chabra 8827232115 eva@gmail.com F lgs 2100
**
Amit Sharma 9911887766 amit@yahoo.com M lgs 2350
**
Julie Kapur 8826234556 julie@yahoo.com F Ops 2500
**
Ana Khanna 9856422312 anak@hotmail.com F Ops 2700
**
.........
.........

To separate each record in a file by two newlines, we can set ORS to "\n\n". For example:

$ awk 'BEGIN { ORS="\n\n" } {print}' emp.dat

The output of the execution of this code is as follows:

Jack Singh 9857532312 jack@gmail.com M hr 2000

Jane Kaur 9837432312 jane@gmail.com F hr 1800

Eva Chabra 8827232115 eva@gmail.com F lgs 2100

Amit Sharma 9911887766 amit@yahoo.com M lgs 2350

AWK Variables and Constants Chapter 3

[107]

Julie Kapur 8826234556 julie@yahoo.com F Ops 2500

Ana Khanna 9856422312 anak@hotmail.com F Ops 2700

Hari Singh 8827255666 hari@yahoo.com M Ops 2350

...........

...........

If we set ORS to an empty string, then the output records are not separated at all. Take the
following example:

$ awk 'BEGIN { ORS="" } {print}' emp.dat

The output of the execution of this code is as follows:

Jack Singh 9857532312 jack@gmail.com M hr 2000Jane Kaur 9837432312
jane@gmail.com F hr 1800Eva Chabra 8827232115 eva@gmail.com F lgs 2100Amit
Sharma 9911887766 amit@yahoo.com M lgs 2350Julie Kapur 8826234556
julie@yahoo.com F Ops 2500Ana Khanna 9856422312 anak@hotmail.com F Ops
2700Hari Singh 8827255666 hari@yahoo.com M Ops 2350Victor Sharma 8826567898
vics@hotmail.com M Ops 2500John Kapur 9911556789 john@gmail.com M hr
2200Billy Chabra 9911664321 bily@yahoo.com M lgs 1900Sam khanna 8856345512
sam@hotmail.com F lgs 2300Ginny Singh 9857123466 ginny@yahoo.com F hr
2250Emily Kaur 8826175812 emily@gmail.com F Ops 2100Amy Sharma 9857536898
amys@hotmail.com F Ops 2500Vina Singh 8811776612 vina@yahoo.com F lgs 2300

NR and NF
NR and NF are set each time a new record is read.

AWK sets the variable NR whenever a new record from input file is read. It's value
represent the number of current input record being processed by AWK. It is generally used
to number the records in a file. For example, to print the number of records with each
record in the output from the emp.dat file, we can use it as follows:

$ awk '{ print NR "." $0 }' emp.dat

The output of the execution of the preceding code is as follows:

1.Jack Singh 9857532312 jack@gmail.com M hr 2000
2.Jane Kaur 9837432312 jane@gmail.com F hr 1800
3.Eva Chabra 8827232115 eva@gmail.com F lgs 2100
4.Amit Sharma 9911887766 amit@yahoo.com M lgs 2350
5.Julie Kapur 8826234556 julie@yahoo.com F Ops 2500
6.Ana Khanna 9856422312 anak@hotmail.com F Ops 2700

AWK Variables and Constants Chapter 3

[108]

7.Hari Singh 8827255666 hari@yahoo.com M Ops 2350
8.Victor Sharma 8826567898 vics@hotmail.com M Ops 2500
9.John Kapur 9911556789 john@gmail.com M hr 2200
............................
............................

After the last input line is read, NR will contain the number of input records read until that
time. Thus, it can be used to print the total number of records processed in the END block to
provide a summary. So, we can print the name and phone number of employees in
emp.dat as follows:

$ vi phonelist.awk

#!/usr/bin/awk -f

{ print $1, "\t:" $3 }
END {
 print ""
 print "Total no. of records processed : ", NR
 }

$ awk -f phonelist.awk emp.dat

The output of the execution of the preceding code is as follows:

Jack :9857532312
Jane :9837432312
Eva :8827232115
Amit :9911887766
Julie :8826234556
Ana :9856422312
Hari :8827255666
Victor :8826567898
John :9911556789
Billy :9911664321
Sam :8856345512
Ginny :9857123466
Emily :8826175812
Amy :9857536898
Vina :8811776612

Total no. of records processed : 15

AWK Variables and Constants Chapter 3

[109]

We can use NR to make AWK examine only a certain number of lines. For example, to print
the lines after the first five lines in the emp.dat file, we can use NR as follows:

$ vi read_line_after_5.awk

#!/usr/bin/awk -f

{
if (NR > 5)
{ print NR, $0 }
}

$ awk -f read_line_after_5.awk emp.dat

The output of the execution of the preceding code is as follows:

6 Ana Khanna 9856422312 anak@hotmail.com F Ops 2700
7 Hari Singh 8827255666 hari@yahoo.com M Ops 2350
8 Victor Sharma 8826567898 vics@hotmail.com M Ops 2500
9 John Kapur 9911556789 john@gmail.com M hr 2200
10 Billy Chabra 9911664321 bily@yahoo.com M lgs 1900
11 Sam khanna 8856345512 sam@hotmail.com F lgs 2300
12 Ginny Singh 9857123466 ginny@yahoo.com F hr 2250
13 Emily Kaur 8826175812 emily@gmail.com F Ops 2100
14 Amy Sharma 9857536898 amys@hotmail.com F Ops 2500
15 Vina Singh 8811776612 vina@yahoo.com F lgs 2300

We can also print lines selectively using NR. In the following example we print the record
number 2 and the record number 4 selectively, as follows:

$ awk 'NR==2||NR==4{print NR, $0 }' emp.dat

The output of the execution of this code is as follows:

2 Jane Kaur 9837432312 jane@gmail.com F hr 1800
4 Amit Sharma 9911887766 amit@yahoo.com M lgs 2350

We can also print a range of line numbers with NR by specifying the first record number,
followed by a comma, followed by the last record number that you want to process, as
follows:

$ awk 'NR==5,NR==10{print NR, $0 }' emp.dat

AWK Variables and Constants Chapter 3

[110]

The output of the execution of this code is as follows:

5 Julie Kapur 8826234556 julie@yahoo.com F Ops 2500
6 Ana Khanna 9856422312 anak@hotmail.com F Ops 2700
7 Hari Singh 8827255666 hari@yahoo.com M Ops 2350
8 Victor Sharma 8826567898 vics@hotmail.com M Ops 2500
9 John Kapur 9911556789 john@gmail.com M hr 2200
10 Billy Chabra 9911664321 bily@yahoo.com M lgs 1900

NF is reset when $0 changes or when a new field is created. The NF variable defines the
number of fields for the current input line. We can use NF to check whether the record has
the number of fields that we expect or not. We can also use NF to refer to fields by prefixing
it with the $ field operator so that $NF will always print the last field of the current input
record. $(NF -1) will access the second to last field of each record, and so on. For example,
the employee database file emp.dat contains the salaries of employees in USD; we can
print that value using NF as follows:

$ vi nf1.awk

#!/usr/bin/awk -f

{ print "No. of fields : ", NF," and last field :",$(NF) }

$ awk -f nf1.awk emp.dat

The output of the execution of the preceding code is as follows:

No. of fields : 7 and last field : 2000
No. of fields : 7 and last field : 1800
No. of fields : 7 and last field : 2100
No. of fields : 7 and last field : 2350
No. of fields : 7 and last field : 2500
No. of fields : 7 and last field : 2700
No. of fields : 7 and last field : 2350
No. of fields : 7 and last field : 2500
No. of fields : 7 and last field : 2200
No. of fields : 7 and last field : 1900
No. of fields : 7 and last field : 2300
No. of fields : 7 and last field : 2250
No. of fields : 7 and last field : 2100
No. of fields : 7 and last field : 2500
No. of fields : 7 and last field : 2300

AWK Variables and Constants Chapter 3

[111]

Sometimes, it is useful to know how many fields there are in a line. We can modify the
script operation on a number of fields. Let us create a file that contains a different number
of fields in multiple lines, as follows:

$ vi varying_fields.dat

Jack Singh 9857532312 jack@gmail.com M hr 2000
Jane 9837432312 jane@gmail.com F hr 1800
Eva Chabra 8827232115 eva@gmail.com F lgs 2100
Amit 9911887766 amit@yahoo.com M lgs 2350
Julie Kapur 8826234556 julie@yahoo.com F Ops 2500
Ana 9856422312 anak@hotmail.com F Ops 2700

Say that we want to print the username and phone number for each employee. To do this,
we can print the field number 1 and field number 3 for the record that has a total number of
seven fields. For the records with six fields, we can print the field number 1 and field
number 2 as follows:

$ vi nf2.awk

#!/usr/bin/awk -f

{
if (NF == 7)
{
 print $1, $3;
}
else if (NF == 6)
{
 print $1, $2;
}
}

$ awk -f nf2.awk varying_fields.dat

The output of the execution of the preceding code is as follows:

Jack 9857532312
Jane 9837432312
Eva 8827232115
Amit 9911887766
Julie 8826234556
Ana 9856422312

There is a limit of 99 fields in a single line in AWK.

AWK Variables and Constants Chapter 3

[112]

FILENAME
FILENAME is set each time a new file is read. It stores the name of the current input file
being read. This can be used when multiple files need to be parsed by AWK. When no data
files are given on the command line, AWK reads from stdin and FILENAME is set to "-". In
that case, you have to enter records in standard input, and once you are done, press Ctrl +
C to stop reading from stdin. Let us begin with a very basic example:

$ awk 'END{print FILENAME}' cars.dat

The output of the execution of this command is as follows:

cars.dat

Now we will process the two files, cars.dat and emp.dat, and print some data from these
files, as follows:

$ vi filename.awk

#!/usr/bin/awk -f

BEGIN { f1="";
 f2="";
 }
{
if (FILENAME == "cars.dat")
{
print NR, $1,"\t", $2 ;
f1=FILENAME;
}
else
{
print;
f2=FILENAME;
}
}
END {
print "First file processed is ", f1;
print "Second file processed is ", f2;
}

$ awk -f filename.awk cars.dat emp.dat

AWK Variables and Constants Chapter 3

[113]

The output of the execution of the preceding code is as follows:

1 maruti swift
2 honda city
3 maruti dezire
4 chevy beat
5 honda city
6 chevy tavera
7 toyota corolla
8 maruti swift
9 maruti esteem
10 ford ikon
11 honda accord
12 fiat punto
Jack Singh 9857532312 jack@gmail.com M hr 2000
Jane Kaur 9837432312 jane@gmail.com F hr 1800
Eva Chabra 8827232115 eva@gmail.com F lgs 2100
Amit Sharma 9911887766 amit@yahoo.com M lgs 2350
Julie Kapur 8826234556 julie@yahoo.com F Ops 2500
Ana Khanna 9856422312 anak@hotmail.com F Ops 2700
Hari Singh 8827255666 hari@yahoo.com M Ops 2350
Victor Sharma 8826567898 vics@hotmail.com M Ops 2500
John Kapur 9911556789 john@gmail.com M hr 2200
Billy Chabra 9911664321 bily@yahoo.com M lgs 1900
Sam khanna 8856345512 sam@hotmail.com F lgs 2300
Ginny Singh 9857123466 ginny@yahoo.com F hr 2250
Emily Kaur 8826175812 emily@gmail.com F Ops 2100
Amy Sharma 9857536898 amys@hotmail.com F Ops 2500
Vina Singh 8811776612 vina@yahoo.com F lgs 2300
First file processed is cars.dat
Second file processed is emp.dat

Environment variables in AWK
Like other programming environments, AWK also has environment variables. In this
section, we will discuss the different environment variables available to users in the AWK
programming language.

ARGC and ARGV
The ARGC and ARGV variables are used to pass arguments to the AWK script from the
command line.

AWK Variables and Constants Chapter 3

[114]

ARGC specifies the total number of arguments passed to the AWK script on the command
line. It always has a value of 1 or more, as it counts the program name as the first argument.

The AWK script filename specified using the -f option is not counted as an argument. If we
declare any variable on the command line, it is counted as an argument in GAWK:

$ awk 'BEGIN { print "No of arguments =", ARGC }' one two three four

The output of the execution of the preceding command is as follows:

No of arguments = 5

ARGV is an array that stores all the arguments passed to the AWK command, starting from
index 0 through to ARGC. ARGV[0] always contains AWK.

In the following example, we show how ARGV and ARGC work. Here, ARGV[0] will store the
AWK:

$ vi arguments.awk

BEGIN {
 print "Total no. of arguments =", ARGC
 for (i=0; i<ARGC; i++)
 printf "ARGV[%d] = %s\n", i, ARGV[i]
}

$ awk -f arguments.awk a1 a2 a3 a4

The output of the execution of the preceding code is as follows:

Total no. of arguments = 5
ARGV[0] = awk
ARGV[1] = a1
ARGV[2] = a2
ARGV[3] = a3
ARGV[4] = a4

The variable assignment using the -v option is also not counted in the command-line
argument; however, normal variable assignment is counted in the command-line argument,
and is accessible through ARGV. For example:

$ awk -v A=10 -f arguments.awk B=20 one two three

AWK Variables and Constants Chapter 3

[115]

The output of the execution of this code is as follows:

Total no. of arguments = 5
ARGV[0] = awk
ARGV[1] = B=20
ARGV[2] = one
ARGV[3] = two
ARGV[4] = three

In the next example, we pass arguments to the script in the format - - argument_name
argument_value. The AWK script will accept the employee's first name, empfname, and
salary, empsal, as arguments. If we use - - name Amit 4000 as an argument for the
AWK script, it will set the salary as 4000 for the employee name Amit as follows:

$ vi argc_argv.awk

BEGIN {
 OFS="\t"
 for (i=0; i<ARGC; i++)
 {
 if (ARGV[i]=="--name")
 {
 empfname=ARGV[i+1];
 empsal=ARGV[i+2];
 delete ARGV[i]
 delete ARGV[i+1]
 delete ARGV[i+2]
 }
 }
}
{
if ($1==empfname)
 print $1,$2,$3,$4,$5,$6,empsal
else
 print $0;
}

$ awk -f argc_argv.awk --name Amit 4000 emp.dat

The output of the execution of the preceding code is as follows:

Jack Singh 9857532312 jack@gmail.com M hr 2000
Jane Kaur 9837432312 jane@gmail.com F hr 1800
Eva Chabra 8827232115 eva@gmail.com F lgs 2100
Amit Sharma 9911887766 amit@yahoo.com M lgs 4000
Julie Kapur 8826234556 julie@yahoo.com F Ops 2500
Ana Khanna 9856422312 anak@hotmail.com F Ops 2700

AWK Variables and Constants Chapter 3

[116]

Hari Singh 8827255666 hari@yahoo.com M Ops 2350
Victor Sharma 8826567898 vics@hotmail.com M Ops 2500
John Kapur 9911556789 john@gmail.com M hr 2200
Billy Chabra 9911664321 bily@yahoo.com M lgs 1900
Sam khanna 8856345512 sam@hotmail.com F lgs 2300
Ginny Singh 9857123466 ginny@yahoo.com F hr 2250
Emily Kaur 8826175812 emily@gmail.com F Ops 2100
Amy Sharma 9857536898 amys@hotmail.com F Ops 2500
Vina Singh 8811776612 vina@yahoo.com F lgs 230

CONVFMT and OFMT
CONVFMT is used to control number-to-string conversion—that is, when a number is
converted to a string, AWK will use the CONVFMT format to decide how to print the values.
CONVFMT has its default value set as %.6g, which implies a total of six characters, including
both sides of a dot in a number. This variable was added in POSIX-compliant AWK. We can
print the value contained in the format specifier CONVFMT variable with the help of the
following command:

$ awk 'BEGIN { print "Conversion Format =", CONVFMT}'

The output of the execution of this command is as follows:

Conversion Format = %.6g

When we use g as the format specifier, it counts all the characters on both sides of the dot.
For example, %.4g means a total of 4 characters will be printed, including characters on
both sides of the dot.

When we use f as the format specifier, it counts only the characters on the right side of the
dot. For example, %.4f means 4 characters will be printed on the right side of the dot. The
total number of characters on the left side of the dot does not matter.

When we use d as the format specifier, it converts the characters into an integer format. For
example, %d means the all the characters before the dot will be printed and no character on
the right side of the dot will be printed. This converts all numbers to strings in an integer
format.

The following example AWK script convfmt.awk explains how the output can be
formatted when using various CONVFMT values (for g, f, and d as format specifiers):

$ vi convfmt.awk

AWK Variables and Constants Chapter 3

[117]

BEGIN {
 A=123.123456789
 print "---Default CONVFMT---";
 printf "%s\n", A;
 print "=====================";
 CONVFMT="%.4g";
 print "---%.4g as CONVFMT---";
 printf "%s\n", A;
 print "=====================";

 CONVFMT="%.8g";
 print "---%.8g as CONVFMT---";
 printf "%s\n", A;
 print "=====================";
 CONVFMT="%2.2f";
 print "---%.2.2f as CONVFMT---";
 printf "%s\n", A;
 print "=====================";
 CONVFMT="%d";
 print "---%d as CONVFMT---";
 printf "%s\n", A;
 print "=====================";
 }

$ awk -f convfmt.awk

The output of the execution of the preceding code is as follows:

---Default CONVFMT---
123.123
=====================
---%.4g as CONVFMT---
123.1
=====================
---%.8g as CONVFMT---
123.12346
=====================
---%.2.2f as CONVFMT---
123.12
=====================
---%d as CONVFMT---
123
=====================

AWK Variables and Constants Chapter 3

[118]

With CONVFMT, we use the printf command for printing the output, as
we did in the previous example. However, if you want to use a print
statement, then first you have to force it to be converted into numbers by
adding zero and then suffix it with an empty string " " to force it to
convert into a string before printing the same output as print A+0" ".

Before CONVFMT was introduced by POSIX, OFMT was used to serve the purpose of string-to-
number conversion. It uses the print statement to perform the same job of controlling the
conversion of numeric values to a strings.

The following example explains the same use of format specifiers %f, %g, and %d with
the OFMT command:

$ vi ofmt.awk

BEGIN {
 A=123.123456789
 print "---Default OFMT---";
 print A;
 print "=====================";

 OFMT="%.4g";
 print "---%.4g as OFMT---";
 print A;
 print "=====================";

 OFMT="%.8g";
 print "---%.8g as OFMT---";
 print A;
 print "=====================";

 OFMT="%2.2f";
 print "---%.2.2f as OFMT---";
 print A;
 print "=====================";

 OFMT="%d";
 print "---%d as OFMT---";
 print A;
 print "=====================";
 }

$ awk -f ofmt.awk

AWK Variables and Constants Chapter 3

[119]

The output of the execution of the preceding command is as follows:

---Default OFMT---
123.123
=====================
---%.4g as OFMT---
123.1
=====================
---%.8g as OFMT---
123.12346
=====================
---%.2.2f as OFMT---
123.12
=====================
---%d as OFMT---
123
=====================

It is important to note that the numbers that are integers are always converted to strings
that are integers, irrespective of the set values of CONVFMT and OFMT.

RLENGTH and RSTART
The match function searches for a given string/pattern/regular expression in the input
string and returns a positive value when a successful match occurs. It sets the two special
variables, RSTART and RLENGTH, that indicate where a regular expression begins and ends:

RSTART: This stores the starting location of the search string/pattern
RLENGTH: This stores the length of the search string/pattern

The contents of the RLENGTH or RSTART variable are set/changed when the match function
is invoked.

In the following example, we use the match function to search for a pattern and print all
that is present before and after the pattern—as well as the pattern itself, separately—as
follows:

$ vi match.awk

BEGIN {
 regex="Singh";
 }
{

AWK Variables and Constants Chapter 3

[120]

 if (match($0,regex))
 {
 before=substr($0,1,RSTART-1);
 pattern=substr($0,RSTART,RLENGTH);
 after=substr($0,RSTART+RLENGTH);
 printf("BEFORE : %s, PATTERN : %s, AFTER : %s\n",before,pattern,
after);
 }
}

$ awk -f match.awk emp.dat

The output of the execution of the preceding code is as follows:

BEFORE : Jack , PATTERN : Singh, AFTER : 9857532312 jack@gmail.com
M hr 2000
BEFORE : Hari , PATTERN : Singh, AFTER : 8827255666 hari@yahoo.com
M Ops 2350
BEFORE : Ginny , PATTERN : Singh, AFTER : 9857123466 ginny@yahoo.com
F hr 2250
BEFORE : Vina , PATTERN : Singh, AFTER : 8811776612 vina@yahoo.com
F lgs 2300

FNR
The FNR is set each time a new record is read. It useful when dealing with multiple input
files. It provides the access to the number of current input records relevant to the current
input file. Whereas NR continues to grow between multiple files, it continues to
incrementally grow from the last NR number value of the previous file until the last record
of the last file is processed.

In the following example, we print the NR and FNR values while processing two files
consecutively, as follows:

$ vi fnr.awk

BEGIN {
 print "Example to show both NR and FNR difference..!"
 }
{
 printf "FILENAME=%s NR=%s FNR=%s\n", FILENAME, NR, FNR;
}
END {
 printf "END Block: NR=%s FNR=%s\n", NR, FNR

AWK Variables and Constants Chapter 3

[121]

}

$ awk -f fnr.awk label.dat cars.dat

The output of the execution of the preceding code is as follows:

Example to show both NR and FNR difference..!
FILENAME=label.dat NR=1 FNR=1
FILENAME=label.dat NR=2 FNR=2
FILENAME=label.dat NR=3 FNR=3
FILENAME=label.dat NR=4 FNR=4
FILENAME=label.dat NR=5 FNR=5
FILENAME=label.dat NR=6 FNR=6
FILENAME=label.dat NR=7 FNR=7
FILENAME=cars.dat NR=8 FNR=1
FILENAME=cars.dat NR=9 FNR=2
FILENAME=cars.dat NR=10 FNR=3
FILENAME=cars.dat NR=11 FNR=4
FILENAME=cars.dat NR=12 FNR=5
FILENAME=cars.dat NR=13 FNR=6
FILENAME=cars.dat NR=14 FNR=7
FILENAME=cars.dat NR=15 FNR=8
FILENAME=cars.dat NR=16 FNR=9
FILENAME=cars.dat NR=17 FNR=10
FILENAME=cars.dat NR=18 FNR=11
FILENAME=cars.dat NR=19 FNR=12
END Block: NR=19 FNR=12

ENVIRON and SUBSET
The environment variable is an associative array containing the values of environment
variables for the current process. The index of the array stores the environment variable
name, and the elements are the values of particular environment variables. It is also helpful
when we want to access the shell environment variable in our AWK script.

For example, the array element ENVIRON["HOME"] will contain the value of the HOME
environment variable, ENVIRON["PATH"] will contain the value of the PATH environment
variable, and so on. In the following example, we print all the available environment
variables and their values:

$ vi environ.awk

BEGIN {
 OFS="="
 for(v in ENVIRON)

AWK Variables and Constants Chapter 3

[122]

 print v, ENVIRON[v];
 }

$ awk -f envion.awk

The output of the execution of this code is as follows:

DBUS_SESSION_BUS_ADDRESS=unix:path=/run/user/1000/bus,guid=4a2603b5563ee1ba
fd07d8135a7469af
SHLVL=1
SYSTEMD_NSS_BYPASS_BUS=1
GNOME_DESKTOP_SESSION_ID=this-is-deprecated
PWD=/home/shiwang/Desktop/AWK-BOOK-PAKT/WORK-DONE/CHAPTER3
GDMSESSION=default
QT_QPA_PLATFORMTHEME=qgnomeplatform
XDG_CURRENT_DESKTOP=GNOME
JOURNAL_STREAM=8:23337
XDG_DATA_DIRS=/usr/share/gnome:/usr/local/share/:/usr/share/
SHELL=/bin/bash
GDM_LANG=en_US.UTF-8
QT_LINUX_ACCESSIBILITY_ALWAYS_ON=1
COLORTERM=truecolor
PATH=/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games
XDG_SESSION_ID=2
XDG_MENU_PREFIX=gnome-
GPG_AGENT_INFO=/run/user/1000/gnupg/S.gpg-agent:0:1
INVOCATION_ID=35b0bb46651e4656a87f4117d7526ff4
LS_COLORS=rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;
01:cd=40;33;01:or=40;31;01:mi=00:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;
42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=
01;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01
;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz
=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.zst=01;31:*.tzst=01;
31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*
.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;DESKTOP
_SESSION=default
DBUS_STARTER_BUS_TYPE=session
SSH_AGENT_PID=969
SSH_AUTH_SOCK=/tmp/ssh-sGgTcGoku7YG/agent.916
GTK_MODULES=gail:atk-bridge
QT_ACCESSIBILITY=1
HOME=/home/shiwang
TERM=xterm-256color
AWKLIBPATH=/usr/lib/x86_64-linux-gnu/gawk
SESSION_MANAGER=local/debian:@/tmp/.ICE-unix/916,unix/debian:/tmp/.ICE-
unix/916
USERNAME=shiwang
LANG=en_US.UTF-8

AWK Variables and Constants Chapter 3

[123]

XDG_RUNTIME_DIR=/run/user/1000
LOGNAME=shiwang
XDG_SESSION_TYPE=x11
XDG_VTNR=2
XDG_SESSION_DESKTOP=default
VTE_VERSION=4601
DBUS_STARTER_ADDRESS=unix:path=/run/user/1000/bus,guid=4a2603b5563ee1bafd07
d8135a7469af
WINDOWPATH=2
_=/usr/bin/awk
USER=shiwang
DISPLAY=:0
AWKPATH=.:/usr/share/awk
XAUTHORITY=/run/user/1000/gdm/Xauthority
XDG_SEAT=seat0
WINDOWID=20971526
MANAGERPID=901

SUBSEP is known as a subscript separator, and is used to separate the indices of a
multidimensional array. It has the default value of \034, which is a nonprinting character.
You can control this character value by using the SUBSEP variable.

In the following example, we change the value of the SUBSEP variable to : to separate the
indices of the multidimensional array as follows:

$ vi subsep.awk

BEGIN {
SUBSEP=":";
item[1,1]=100;
item[1,2]=200;
item[2,1]=300;
item[2,2]=400;
for (x in item)
print "Index",x,"contains",item[x];
}

$ awk -f subsep.awk

The output of the execution of the preceding code is as follows:

Index 1:1 contains 100
Index 1:2 contains 200
Index 2:1 contains 300
Index 2:2 contains 400

AWK Variables and Constants Chapter 3

[124]

Do not enclose any index within quotes or the SUBSEP variable will not work. For example,
say that we slightly modify the previous example and place the index within double quotes,
as follows:

$ vi mod_subsep.awk

BEGIN {
SUBSEP=":";
item["1,1"]=100;
item["1,2"]=200;
item[2,1]=300;
item[2,2]=400;
for (x in item)
print "Index",x,"contains",item[x];
}

$ awk -f mod_subsep.awk

The output of the execution of the preceding code is as follows:

Index 1:1 contains 100
Index 1:2 contains 200
Index 2:1 contains 300
Index 2:2 contains 400

FIELD (POSITIONAL) VARIABLE ($0 and $n)
The fields of the current input line are called $1 and $2, through $NF. $0 represents the
whole newline. Fields share the properties of other variables. These field variables can be
used in arithmetic or string operations and can also be used for assignment. For example, to
display the content of the cars.dat file line by line, we can use the following command:

$ awk '{print $0}' cars.dat

This can also be performed as follows:

$ awk '{print $1, $2,$3,$4,$5 }' cars.dat

The second command will change the spacing between the fields to a single space,
otherwise the result remains the same.

AWK Variables and Constants Chapter 3

[125]

We can modify the field value for each line using these positional parameters. For example,
if we want to put DEZIRE for each row in the second column and delete the third row, we
put it as follows:

$ awk '{$2="DEZIRE";$3="";print}' cars.dat

The output of the execution of the preceding code is as follows:

maruti DEZIRE 50000 5
honda DEZIRE 60000 3
maruti DEZIRE 3100 6
chevy DEZIRE 33000 2
honda DEZIRE 33000 6
chevy DEZIRE 10000 4
toyota DEZIRE 95000 2
maruti DEZIRE 4100 5
maruti DEZIRE 98000 1
ford DEZIRE 80000 1
honda DEZIRE 60000 2
fiat DEZIRE 45000 3

Environment variables in GAWK
In this section, we discuss the various GAWK-specific variables. They are not available in
the original AWK distribution. However, on modern Linux systems, generally these options
will work because AWK is set as a symbolic link to the GAWK executable.

ARGIND
ARGIND represents the index in the ARGV array to retrieve the current file being processed.
When we operate with one file in AWK script, the ARGIND will be 1, and ARGV[ARGIND]
will return the filename that is currently being processed.

In the following example, we print the value of ARGIND and the current filename using
ARGV[ARGIND] as follows:

$ vi argind.awk

END {
 print "ARGIND : ", ARGIND;
 print "Current Filename : ", ARGV[ARGIND];

AWK Variables and Constants Chapter 3

[126]

}

$ awk -f argind.awk

The output of the execution of the preceding code is as follows:

ARGIND : 1
Current Filename : cars.dat

We have printed the value stored in ARGIND in the END block here so that it is not printed in
a loop when each line of cars.dat is processed. So, we can say that the value stored in
the FILENAME variable is always equal to ARGV[ARGIND].

ERRNO
The ERRNO variable stores the error message as a string if the redirection (I/O) operation
fails while using the getline command. These errors happen mostly while performing
read operations or during a close operation. GAWK clears the ERRNO before opening each
command-line input file.

We will be using AWK's built-in getline command to read the input from the file to
understand how the ERRNO variable works. The getline command returns 1 if it finds a
record and 0 if it encounters the end of file. If an error occurs when it is getting the record,
for example if the file could not be read or found, then it returns -1. In this scenario, GAWK
will set ERRNO to a string explaining the error.

For example, let's create the following AWK script to check whether the employee's first
name is Eva, and to make getline read from dummy-file.txt if the employee with this
first name is found. As, there is no such file, ERRNO will store the error message, which is
displayed using a print statement, as follows:

$ vi erro.awk

{
x=getline < "dummy-file.txt"
if ($1 == "Eva")
{
 print "Trying to read from file : dummy-file.txt"
 if (x == -1)
 print ERRNO
 else
 print $0;

AWK Variables and Constants Chapter 3

[127]

}
}

$ awk -f err.awk emp.dat

The output of the execution of the preceding code is as follows:

Trying to read from file : dummy-file.txt
No such file or directory

FIELDWIDTHS
The FIELDWIDTHS variable is used to process fixed-width columns in the input. It takes a
space-separated list of columns to tell GAWK how to split the input with fixed column
boundaries. If we use FIELDWIDTH in our AWK program, it overrides the value of FS and
FPAT for field splitting.

For example, let us take the sample cars database file cars.dat. It has five columns of data.
The first column is 16 characters wide, the second is 12, the third and fourth columns are
also 12 characters wide, and the last column is a single character wide. So, we can use
the FIELDWIDTHS variable to print the fields, as follows:

$ awk 'BEGIN { FIELDWIDTHS="16 12 12 12 1"}{print $1 $2 $3 $4 $5}' cars.dat

The output of the execution of the preceding code is as follows:

maruti swift 2007 50000 5
honda city 2005 60000 3
maruti dezire 2009 3100 6
chevy beat 2005 33000 2
honda city 2010 33000 6
chevy tavera 1999 10000 4
toyota corolla 1995 95000 2
maruti swift 2009 4100 5
maruti esteem 1997 98000 1
ford ikon 1995 80000 1
honda accord 2000 60000 2
fiat punto 2007 45000 3

AWK Variables and Constants Chapter 3

[128]

The preceding AWK command is the equivalent of printing the whole line using $0. Now,
let us apply this FIELDWIDTHS variable to the output of the Linux/Unix w utility. In this
example, we will take the input from the w command and convert the fourth field values,
which represent the CPU idle time in seconds. Finally, we will print the first two fields and
the calculated idle time as follows:

$ vi fieldwidth.awk

BEGIN { FIELDWIDTHS = "9 6 10 6 7 7 35" }
NR > 2 {
 idle = $4
 sub(/^ +/, "", idle) # strip leading spaces
 if (idle == "")
 idle = 0
 if (idle ~ /:/) { # hh:mm
 split(idle, t, ":")
 idle = t[1] * 60 + t[2]
 }
 if (idle ~ /days/)
 idle *= 24 * 60 * 60

 print $1, $2, idle
}

$ w | awk -f fieldwidth.awk

The output of the execution of the preceding command is as follows:

shiwang tty2 0

IGNORECASE
The IGNORECASE variable is used to make the GAWK program case-insensitive or case-
sensitive. By default, IGNORECASE is set to 0, making the GAWK program case-sensitive.
When we set IGNORECASE to 1, the GAWK program becomes case-insensitive. This has a
major affect on regular expression and string comparisons.

In the following example, we are looking for the records containing the string chabra, with
a lowercase c in the employee database file emp.dat. However, the last name begins with a
capital letter, and hence only chabra is there:

$ awk '/chabra/{print}' emp.dat

AWK Variables and Constants Chapter 3

[129]

Upon the execution of the preceding code, we will not get any output. Now, we set
IGNORECASE to 1, and again print the records containing chabra. It will do a case-
insensitive pattern match as follows:

$ awk 'BEGIN{IGNORECASE=1}/chabra/ {print}' emp.dat

The output of the execution of the preceding code is as follows:

Eva Chabra 8827232115 eva@gmail.com F lgs 2100
Billy Chabra 9911664321 bily@yahoo.com M lgs 1900

In the next example, we will demonstrate how the IGNORECASE value works for both
strings and for regular expressions. Let us create a script to print the details of those
employees whose first names begin with Ja or whose last names are kapur in the employee
database file emp.dat:

$ vi ignorecase.awk

BEGIN {
 IGNORECASE=1;
 }
{
 if ($2 == "kapur") print $0;
 if ($1 ~ "ja") print $0;
}

$ awk -f ignorecase.awk emp.dat

The output of the execution of the preceding code is as follows:

Jack Singh 9857532312 jack@gmail.com M hr 2000
Jane Kaur 9837432312 jane@gmail.com F hr 1800
Julie Kapur 8826234556 julie@yahoo.com F Ops 2500
John Kapur 9911556789 john@gmail.com M hr 2200

PROCINFO
The PROCINFO variable is an associative array containing information about the process,
such as the process ID number, error number, group ID, real and effective UID numbers,
and so on.

AWK Variables and Constants Chapter 3

[130]

For example, if we set the FIELDWIDTHS to a certain value, then the FS will be
FIELDWIDTHS. Using PROCINFO, we can print many details of the current instance of AWK
program as follows:

$ vi procinfo.awk

BEGIN { FIELDWIDTHS = "16"}
END {
printf "Process id of awk program is : %s\n", PROCINFO["pid"];
printf "User ID of user running awk is : %s\n", PROCINFO["uid"];
printf "Group ID of awk program is : %s\n", PROCINFO["gid"];
printf "Field Splitter set of awk is : %s\n", PROCINFO["FS"];
printf "Version no. of awk program is : %s\n", PROCINFO["version"];
}

$ awk -f procinfo.awk cars.dat

The output of the execution of the preceding code is as follows:

Process id of awk program is : 4316
User ID of user running awk is : 1000
Group ID of awk program is : 1000
Field Splitter set of awk is : FIELDWIDTHS
Version no. of awk program is : 4.1.4

These were the main environment variables used in AWK and GAWK. There are other
environment variables, but they are not in our current scope of learning.

String constants
A string constant is a sequence of zero or more characters enclosed in double quotation
marks. A string constant can be of any length, and they can have any of the possible 8-bit
ASCII characters. These string constants can be stored in variables or appear literally as
string constants, such as "River" or " ".

For example, if we want to print those records from cars.dat that contain the maruti
string in the first field, we have to enclose the maruti string in double quotes while
performing the match as follows:

$ awk '$1 == "maruti" {print}' cars.dat

AWK Variables and Constants Chapter 3

[131]

The output of the execution of the preceding code is as follows:

maruti swift 2007 50000 5
maruti dezire 2009 3100 6
maruti swift 2009 4100 5
maruti esteem 1997 98000 1

Null string: The string that contains no character is known as a null string, such
as "".
Substring: The contiguous sequence of zero or more characters within a string is
known as a substring. Hence, every string contains a null string.

Any nonempty string value in AWK is true in the case of expression evaluation, and the
null string is false. For example:

$ vi strings.awk

BEGIN {

if ("0")
 print "string 0";
if ("one")
 print "string one"
if ("")
 print "empty string"
}

$ awk -f strings.awk

The output of the execution of the preceding code is as follows:

string 0
string one

AWK Variables and Constants Chapter 3

[132]

Numeric constants
A numeric constant stands for a number. It can be an integer, a decimal fraction, or a
number in an exponential notation. Some examples of numeric constant values are as
follows:

100
1.10
1.05e+2
1.05e-1

Any nonzero numeric value in AWK is true in the case of expression evaluation, and zero is
false. For example:

$ vi numeric.awk

BEGIN{
if (1)
 print "numeric 1 "
if (1.234)
 print "numeric 1.234"
if (1.234e)
 print "numeric 1.234e"
if (0)
 print "false"
}

$ awk -f numeric.awk

The output of the execution of the preceding code is as follows:

numeric 1
numeric 1.234
numeric 1.234e

Conversion between strings and numbers
The conversion to string and numeric values occurs automatically in AWK as per demand.
When any expression is built using any operator and operand, if the expression has a
numeric value but the operator demands a string value, then the numeric value is
automatically converted into a string and vice versa. If a numeric value appears in a string
concatenation, it is converted to a string.

AWK Variables and Constants Chapter 3

[133]

For example, in the following example, variables a and b are converted to strings first and
then concatenated together. The resulting string is again converted back to number 45, in
which 4 is further added, and we get the output of the number 49:

$ vi str2num.awk

BEGIN {
 a=4; b=5;
 print (a b) + 4 ;
 }

$ awk -f str2num.awk

The output of the execution of the preceding code is as follows:

49

Any string can be forcefully converted to a number by adding a 0 to it, as follow:

$ awk 'BEGIN{a="hello";print a+0 }'

The output of the execution of this code is as follows :

0

Any number can be forcefully converted to a string by adding "" (an empty string) to it as
follows:

$ awk 'BEGIN{a=5; print a+"" }'

The output of the execution of this command will be like this:

5

Summary
In this chapter, we learned about the different types of variables that are available in AWK.
We learned how to use built-in variables and environment variables in AWK programs.
Then we learned about the usage of environment variables specific to GAWK. Finally, we
looked at the string constants and numeric constants from an AWK perspective, and at how
the conversion of string to numeric values, and numeric to string values, takes place in
AWK.

In our next chapter, we will learn about how to handle arrays in AWK programs.

4
Working with Arrays in AWK

An array is a variable that is used to store a set of values (strings or numbers). These values,
or independent elements, are accessed by their index in the array. Indexes are stored in
square brackets and may be either numbers or strings. This chapter focuses on how arrays
are implemented in AWK.

In this chapter, we will cover the following topics:

One-dimensional arrays in AWK
Assigning and accessing elements in arrays
Referring to array elements
Processing arrays using loops
Creating an array using a split function
Delete operations in arrays
Multidimensional array implementation in AWK

One-dimensional arrays
The AWK language provides one-dimensional arrays for storing strings and numbers. An
array name could be any valid variable name. One variable name cannot be used as both an
array and a variable at the same time in the same program.

Working with Arrays in AWK Chapter 4

[135]

Arrays in AWK are extremely powerful in comparison to traditional arrays that we use in
other programming languages. Arrays in AWK are associative—that is, each array is a
collection of a pair: an index and its corresponding array element value. In associative
arrays, indexes are not essentially required to be in order, one can use either a string or a
number as an array index. An array size can expand or shrink at runtime and is not
statically defined.

Its syntax is as follows:

arr[index] = value

The different elements of the array syntax used here are explained in the following list:

arr: This is the name of the array
index: This is the index of the array
value: This is any value assigned to the element of the array

The following are some examples of associative arrays in AWK:

arr["apple"] = red
arr["grape"] = green
arr["lemon"] = yellow
arr[10] = number
arr[pineapple] = fruit

In the preceding declaration, index 10 is automatically converted to a string and the order
of assigning elements to the array is also independent. Those indexes that are not double
quoted, such as pineapple, are automatically converted to string values.

Assignment in arrays
Array elements can be assigned values like any other AWK variables, as follows:

arr[index] = value

Working with Arrays in AWK Chapter 4

[136]

In the following example, we take the cars database file cars.dat. Here, we make the
record number the index to the array and store each record as a value to the corresponding
array element. The system variable NR is used as the index for the array as it gets
incremented for each record. In the end, we print the array elements using a for loop as
follows:

$ vi basic_array.awk

{
arr[NR] = $0
}
END{
 for (x=1; x<= NR; x++)
 print "index : "x, "value :"arr[x]
}

$ awk -f basic_array.awk cars.dat

The output of the execution of the preceding code is as follows:

index : 1 value :maruti swift 2007 50000 5
index : 2 value :honda city 2005 60000 3
index : 3 value :maruti dezire 2009 3100 6
index : 4 value :chevy beat 2005 33000 2
index : 5 value :honda city 2010 33000 6
index : 6 value :chevy tavera 1999 10000 4
index : 7 value :toyota corolla 1995 95000 2
index : 8 value :maruti swift 2009 4100 5
index : 9 value :maruti esteem 1997 98000 1
index : 10 value :ford ikon 1995 80000 1
index : 11 value :honda accord 2000 60000 2
index : 12 value :fiat punto 2007 45000 3

Let us create a sample database file, marks.dat, that contains the marks of students in a
class as follows:

$ vi marks.txt

ram 80 78 60 85 72
amit 64 67 69 61 62
vijay 90 98 92 96 97
satvik 81 74 72 79 80
akshat 67 80 74 60 72
rishi 85 80 82 76 84
tushar 70 82 68 79 6

Working with Arrays in AWK Chapter 4

[137]

Now, we will use this database to calculate the average mark of each student and the
assignment of grades. We will also calculate the average scoring of the whole class:

 $ vi marks_summary.awk

BEGIN { OFS = "\t"
 print "====================";
 printf "Name\tAvg\tGrade\n";
 print "====================";
}
{
 student_total = 0
 for (x=2; x <=NF; x++)
 student_total += $x
calculate average
 avg = student_total / (NF -1)
 student_avg[NR] = avg
determine grade of student
 if (avg >= 90) grade = "Excellent"
 else if (avg >=80) grade = "Very Good"
 else if (avg >=70) grade = "Good"
 else if (avg >=60) grade = "Satisfactory"
 else grade = "Fail"
 print $1, avg, grade
}
END {
calculate the average of marks scored by whole class
 for (x =1; x <= NR; x++)
 class_avg_total += student_avg[x]
 class_avg = class_avg_total / NR
 print "====================";
 print "Class Average: ", class_avg
}

$ awk -f marks_summary.awk marks.txt

The output of the execution of the preceding code is as follows:

====================
Name Avg Grade
====================
ram 75 Good
amit 64.6 Satisfactory
vijay 94.6 Excellent
satvik 77.2 Good
akshat 70.6 Good

Working with Arrays in AWK Chapter 4

[138]

rishi 81.4 Very Good
tushar 71.8 Good
====================
Class Average: 76.4571

Accessing elements in arrays
The ideal way to access an array element is to refer to that element via its index, as follows:

arr[index]

Here, arr is the name of an array, and index is the index of the desired element of the
array that we want to access.

The following is a simple example of assigning and accessing AWK arrays:

$ vi arr_access.awk

BEGIN {
 arr[30] = "volvo"
 arr[10] = "bmw"
 arr[20] = "audi"
 arr[50] = "toyota"
 arr["car"] = "ferrari"
 arr[70] = "renault"
 arr[40] = "ford"
 arr[80] = "porsche"
 arr[60] = "jeep"
 print "arr[10] : ", arr["10"]
 print "arr[car] : ", arr["car"]
 print "arr[80] : ", arr["80"]
 print "arr[30] : ", arr["30"]
}

$ awk -f arr_access.awk

The output of the execution of the preceding code is as follows:

arr[10] : bmw
arr[car] : ferrari
arr[80] : porsche
arr[30] : volvo

Working with Arrays in AWK Chapter 4

[139]

In the preceding example, we can see that the array indexes are not in sequence. They don't
begin with zero or one array indexes can be string also, as we have used car as index. We
don't initialize or even define the array in AWK. We don't need to specify the total size
before using it. The naming convention is similar to that of an AWK variable.

If a referenced array element has no stored value, or it has not been assigned any value yet,
it will give a null string (" ") as output. The same is true if we try to access a deleted
element of an array—it will be assigned a null string value.

If we refer to an array element that does not exist, then AWK automatically creates that
array element with the given index and assigns a null string as its value. So, we should
never check whether an element exists in an AWK associative array by checking whether
the value is empty, because it will automatically create the array element as a null string
value at the time of checking itself. For example:

$ vi check_arry.awk

BEGIN {
 if (a["apple"] != "")
 print "a[apple] has some value : " a["apple"];
 else
 print "a[apple] is empty"
 }

$ awk -f check_arry.awk

The output of the execution of the preceding code is as follows:

a[apple] is empty

Referring to members in arrays
We can directly display the value stored in an array element using the print command, or
we can assign it to another variable for further processing inside a AWK program as
follows:

$ vi arr_var_assign.awk

BEGIN {
 arr[10] = "maruti"
 arr[20] = "audi"
 print "arr[10] : " arr[10]
 x=arr[20]

Working with Arrays in AWK Chapter 4

[140]

 print "x : " x
 }

$ awk -f arr_var_assign.awk

The output of the execution of the preceding code is as follows:

arr[10] : maruti
x : audi

To check whether a particular index exists in an array, we use the if condition within the
operator to build the conditional expression syntax, as shown in the following syntactical
phrase. It will return true (1), if the index exists in the array; otherwise, it will return false
(0):

if(index in array)

In the following example, we show you how the if condition works when checking for the
existence of an array's index. Here, we declare an array, arr, of five elements, with the
index as 10, 20, 30, 40, and 50, respectively. Then, we check for the existence of the index
value 60 in the arr[60] array using the keyword in. If the index value is found, it prints
its corresponding element; otherwise, it prints that the index is not found, as follows:

$ vi arr_member_check.awk

BEGIN {
 arr[10] = "bmw"
 arr[20] = "audi"
 arr[30] = "volvo"
 arr[40] = "ford"
 arr[50] = "toyota"

 if (60 in arr)
 print "arr index 60 contains : ", arr[60];
 else
 print "arr index 60 not found";
 if (50 in arr)
 print "arr index 50 contains : ", arr[50];
 else
 print "arr index 50 not found";
 }

$ awk -f arr_member_check.awk

Working with Arrays in AWK Chapter 4

[141]

The output of the execution of the preceding code is as follows:

arr index 60 not found
arr index 50 contains : toyota

Processing arrays using loops
If we have to access all the array elements, we can use a loop that executes once for each
element of the array. In other programming languages, where indexes are sequentially
numbered, a simple for loop construct is used to access the elements of array. Here, AWK
has an associative array, so we use a special type of for loop to go through all the indexes
of an array. Its syntax is as follows, followed by a listed explanation of the elements
involved:

for (var in array)

body of loop

var: This is any variable name, which is set to the index of the corresponding
array element.
in: This is a keyword.
array: This is an array name.
body of loop: This is a list of AWK statements that are to be executed. If you
want to execute more than one action, it needs to be enclosed within braces. The
loop will execute until there is an index element in the array.

For example, let's consider this simple loop example that iterates through all the elements in
the arr array and prints them as follows:

$ vi arr_forloop.awk

BEGIN {
 arr[10] = "bmw"
 arr[20] = "audi"
 arr[30] = "volvo"
 arr[40] = "ford"
 arr[50] = "toyota"
 arr[60] = "jeep"
 arr[70] = "renault"
 arr[80] = "porsche"
 for (v in arr)

Working with Arrays in AWK Chapter 4

[142]

 print v, arr[v];
 }

$ awk -f arr_forloop.awk

The output on the execution of the preceding code is as follows:

10 bmw
20 audi
30 volvo
40 ford
50 toyota
60 jeep
70 renault
80 porsche

In the following example, we take the cars database file cars.dat. Here, we make the
record number the index to the array and store each record as the value of the
corresponding array element. The system variable NR is used as the index for the array as it
gets incremented for each record. In the end, we print the array elements using this special
for loop where we don't have to take care of the index element, as follows:

$ vi arr_forloop2.awk

{
arr[NR] = $0;
}
END {
for (v in arr)
 print "arr["v"] : ",arr[v]
}

$ awk -f arr_forloop2.awk cars.dat

 The output of the execution of the preceding code is as follows:

arr[1] : maruti swift 2007 50000 5
arr[2] : honda city 2005 60000 3
arr[3] : maruti dezire 2009 3100 6
arr[4] : chevy beat 2005 33000 2
arr[5] : honda city 2010 33000 6
arr[6] : chevy tavera 1999 10000 4
arr[7] : toyota corolla 1995 95000 2
arr[8] : maruti swift 2009 4100 5
arr[9] : maruti esteem 1997 98000 1

Working with Arrays in AWK Chapter 4

[143]

arr[10] : ford ikon 1995 80000 1
arr[11] : honda accord 2000 60000 2
arr[12] : fiat punto 2007 45000 3

Using the split() function to create arrays
The built-in split() function can parse any string into elements of an array. The
split(string, arr, fs) function splits the string value of str into fields and stores
them in the arr array. The number of fields produced is returned as the value of the split
function. The string value of the third argument, fs, determines the field separator. The
syntax of split() functions is as follows, followed by a listed explanation of the elements
involved:

n = split (str, arr, fs)

str: This is the input string to be parsed into the elements of the named arr.
arr: This is the name of the array.
fs: This is the separator character based on which the array elements are split. If
the separator is not given, the elements are split based on the fs as the separator.
The separator can be a single character of the regular expression.
n: This is the index of the array, starting at 1 and going up to n.

The following example illustrates the basic usage of split to create an array:

$ vi arr_basic_split.awk

BEGIN {
 z= split("10/20/30/40", arr, "/")
 for (i in arr)
 print "arr["i"] : ",arr[i]
 }

$ awk -f arr_basic_split.awk

The output of the execution of the preceding code is as follows:

arr[1] : 10
arr[2] : 20
arr[3] : 30
arr[4] : 40

Working with Arrays in AWK Chapter 4

[144]

In the following example, we break a single record using a space as a separator. Z will
contain the number of elements in the array. Using the value returned by the split()
function, we write a loop to read all the elements of this arr array as follows:

$ vi arr_using_split.awk

BEGIN {
 name = "Ranvijay Singh is a good boy"
 z= split(name, arr, " ")
 for (i in arr)
 print i, arr[i]
 }

$ awk -f arr_using_split.awk

The output of the execution of the preceding code is as follows:

1 Ranvijay
2 Singh
3 is
4 a
5 good
6 boy

The split() function can also be used to clear the array as follows:

split ("", array)

In the preceding example, split call there is no data to split out, and the function simply
clears the array and then returns.

Delete operation in arrays
The delete command is used to remove the individual element from an array. Once an
element from an AWK array is deleted, we cannot obtain its value any longer. The syntax of
the delete statement is as follows:

delete arr[index];

Working with Arrays in AWK Chapter 4

[145]

In the following example, we delete the array element with the car index and print all the
remaining elements using the for loop, as follows:

$ vi arr_delete.awk

BEGIN {
 arr[10] = "maruti"
 arr[20] = "audi"
 arr["car"] = "ford"
 arr[30] = "ferrari"
 arr[40] = "porsche"
 delete arr["car"]
 for (v in arr)
 print v,arr[v]
}

$ awk -f arr_delete.awk

The output of the execution of the preceding code is as follows:

10 maruti
20 audi
30 ferrari
40 porsche

The following for loop command removes all elements from an arr array:

for (v in arr)
 delete arr[v]

Now, we delete all the elements of the array using the loop and print the array elements
again. It will not display anything as all elements in the array are deleted, as follows:

$ vi arr_del_forloop.awk

BEGIN {
 arr[10] = "maruti"
 arr[20] = "audi"
 arr["car"] = "ford"
 arr[30] = "ferrari"
 arr[40] = "porsche"
 for (v in arr)
 delete arr[v]
 for (v in arr)

Working with Arrays in AWK Chapter 4

[146]

 print arr[v]
}

$ awk -f arr_del_forloop.awk

It will not give any output of the execution of the preceding code, since all elements of the
arrays are deleted and the arr array is now empty.

Once an element is deleted, a subsequent loop iteration used to scan the array will not
report that element, and using the in operator to check for the existence of that element will
return zero—that is, false. For example, in the following code, we delete an array element
and then use the if conditional statement to check for its existence:

delete arr[20]
if (20 in arr)
 print "index 20 found"
else
 print "20 not found"

 Deleting an element is not the same as assigning it a null value string (the empty string "
"). For example:

arr[20] = " "
if (20 in arr)
print "20 is array, although arr[20] is empty"

Also, if we try to delete an element that does not exist, it is not treated as an error.
Furthermore, if you want to delete all the elements of the array in a single command, we
can use the delete command without any subscripts, as follows:

$ vi arr_delall.awk

BEGIN {
 arr[10] = "maruti"
 arr[20] = "audi"
 arr["car"] = "ford"
 arr[30] = "ferrari"
 arr[40] = "porsche"
 delete arr
 print "List of elements in array is : "
 for (v in arr)
 print arr[v]
}

$ awk -f arr_delall.awk

Working with Arrays in AWK Chapter 4

[147]

The output of the execution of the preceding code is as follows:

List of elements in array is :

Hence, if you want to delete all the elements of an array, using the delete statement alone
is much more efficient than using an equivalent loop to delete each element one at a time.
This form of delete statement is also supported by most types of implementation of AWK,
such as MAWK, NAWK, and so on.

Deleting all elements from an array does not change its type and make it available for use as
a regular variable. For example, the following code will throw the error and not work:

$ vi arr_delete_error.awk

BEGIN {
 arr[10] = "audi";
 delete arr;
 arr = "bmw";
 print arr;
 }

$ awk -f arr_delete_error.awk

The output of the execution of the preceding code is as follows:

awk: arr_delete_err.awk:4: fatal: attempt to use array `arr' in a scalar
context

Multidimensional arrays
AWK supports one-dimensional arrays only. However, we can simulate multidimensional
arrays using one-dimensional arrays. Let us create a multidimensional array as follows:

$ vi multi_arr1.awk

BEGIN{
 arr["1,1"] = 10
 arr["1,2"] = 20
 arr["2,1"] = 30
 arr["2,2"] = 40
 arr["3,1"] = 50
 arr["3,2"] = 60
 for (v in arr)

Working with Arrays in AWK Chapter 4

[148]

 print "Index ",v, " contains "arr[v]
}

$ awk -f multi_arr1.awk

The output of the execution of the preceding code is as follows:

Index 1,1 contains 10
Index 1,2 contains 20
Index 2,1 contains 30
Index 2,2 contains 40
Index 3,1 contains 50
Index 3,2 contains 60

In the preceding example, we have given the arr["1,1"] array as the index. It is not two
indexes, as would be the case in a true multidimensional array in other programming
languages. It is just one index with the "1,1" string. So, AWK concatenates the index value
and makes them a single string index in the case of multidimensional arrays as well. Hence,
we are actually storing the value 10 at a single-dimensional array with the 1,1 index.

If we have not used double quotes to enclose indexes of the array, then the indexes are
separated by the AWK variable SUBSEP, which has the default value of the nonprintable
character \034. We can set this value of SUBSEP to any character of our choice, which will
be output when we print array indexes. In the following example, we set SUBSEP to : to
separate the indexes of the array, as follows:

$ vi multi_arr2.awk

BEGIN{
 SUBSEP = ":"
 arr["1,1"] = 10
 arr["1,2"] = 20
 arr["2,1"] = 30
 arr["2,2"] = 40
 arr[3,1] = 50
 arr[3,2] = 60
 for (v in arr)
 print "Index ",v, " contains "arr[v]
}

$ awk -f multi_arr2.awk

Working with Arrays in AWK Chapter 4

[149]

The output of the execution of the preceding code is as follows:

Index 1,1 contains 10
Index 1,2 contains 20
Index 2,1 contains 30
Index 2,2 contains 40
Index 3:1 contains 50
Index 3:2 contains 60

So, for a multidimensional array, the best practice is to put the indexes in double quotes or
to use the SUBSEP variable without enclosing them in double quotes, but not both together
in the same AWK program.

In the preceding example, we have used the same for loop to print the multidimensional
arrays because, in reality, AWK does not have multidimensional arrays or elements—it is
just a multidimensional way of accessing a single-dimensional array. Hence, looping over a
multidimensional array is the same process as would be used with one-dimensional arrays:

for (v in arr)

print v, arr[v]

The multidimensional array syntax also supports the testing for array membership using
the "in" operator with if expression. The only thing that needs to be taken care of here is
that the subscripts should be placed inside the parentheses. In the following example, we
put the subscripts within parentheses to check for the existence of the index inside the
array. This actually tests whether the "2 SUBSEP 1" subscript exists in the specified array:

$ vi multi_arr3.awk

BEGIN{
 SUBSEP = ":"
 arr[1,1] = 10
 arr[1,2] = 20
 arr[2,1] = 30
 arr[2,2] = 40
 arr[3,1] = 50
 arr[3,2] = 60
 if ((2 SUBSEP 1) in arr)
 print "arr[2,1] is : " arr[2,1]
 else
 print "index not found"
}

$ awk -f multi_arr3.awk

Working with Arrays in AWK Chapter 4

[150]

The output of the execution of the preceding code is as follows:

arr[2,1] is : 30

The delete operation in a multidimensional array is the same as in a single-dimensional
array. For example:

$ vi muti_arr4.awk

BEGIN{
 SUBSEP = ":"
 arr[1,1] = 10
 arr[1,2] = 20
 arr[2,1] = 30
 arr[2,2] = 40
 arr[3,1] = 50
 arr[3,2] = 60
 delete arr # delete arrays using single delete command
 print "Now printing array if exists...!"
 for (v in arr)
 print arr[v]

 arr[i,j] = 100
 print arr[i,j]
 delete arr[i,j] # delete arrays using indexes
}

$ awk -f multi_arr4.awk

The output of the execution of the preceding code is as follows:

Now printing array if exists...!
100

Working with Arrays in AWK Chapter 4

[151]

Summary
In this chapter, we learned about arrays. We learned that AWK provides one-dimensional
associative arrays (arrays indexed by string values). We also learned how array elements
are referenced using arr[index], and that it creates the element if it does not exist. Then
we used the for loop to scan through all the individual elements of an array, and tested the
array membership using the in operator with the if expression. We used the split
function to create an array. We also learned how to delete an individual element or a whole
array using the delete command. Finally, we covered how AWK simulates
multidimensional arrays by separating subscript values with commas. In this index, values
are concatenated into a single string, separated by the value of SUBSEP.

In the next chapter, we will learn about how to do pretty printing in AWK using formatted
reports, and we will learn how to create one ourselves. We will also look at how to use
redirection in AWK.

5
Printing Output in AWK

In most programming languages, the most common task is to display or print the output
after processing the input. Inside AWK, we have two statements, print and printf, to
accomplish the task of generating output. The print statement generates a simple output,
while printf is used to generate formatted output or reports. These statements can be used
together; the output comes in the order that they were used. In this chapter, we focus on
basic and formatted printing (pretty printing). In the end, we will also cover I/O
redirections to files instead of printing the output on screen.

In this chapter, we will cover the following topics:

Basic printing using the print statement
Using an output separator with the print statement
Pretty printing with printf
Using escape sequences
Printing with a format specifier
Printing with optional parameters
Redirecting output to a file

Printing Output in AWK Chapter 5

[153]

The print statement
So far, we have been using print statements mainly to produce simple yet standardized
output. With a print statement, we specify the expressions to print as a list separated by
commas. The output is separated by single spaces, followed by a newline. The print
statement has two forms:

print expr1, expr2, ……, exprn
print (expr1, expr2, ………, exprn)

Both print the string value of each expression separated by the Output Field Separator
(OFS); the default is a single space followed by the Output Record Separator (ORS); the
default is newline. Using parentheses is necessary if an expression uses the > relational
operator to mark its differentiation from redirection operator. Here expression could be any
AWK expression or any constant string, or number, or field of current input record (like $1,
$2, ... and so on). Numeric values are automatically converted to string, and then printed.
For example, if we want to print the first two fields from the car database using a simple
print statement, we can print as follows:

$ awk '{ print $1 $2 }' cars.dat

The output on execution of the preceding code is as follows:

marutiswift
hondacity
marutidezire
chevybeat
hondacity
chevytavera
toyotacorolla
marutiswift
marutiesteem
fordikon
hondaaccord
fiatpunto

In the preceding example output, you will find the field one is immediately printed after
print two without any space in between because we didn't use the comma there. To print
the field values separated by space we have to use the comma as follows:

$ awk '{ print $1, $ 2 }' cars.dat

Printing Output in AWK Chapter 5

[154]

The output on execution of the preceding code is as follows:

maruti swift
honda city
maruti dezire
chevy beat
honda city
chevy tavera
toyota corolla
maruti swift
maruti esteem
ford ikon
honda accord
fiat punto

The simple print statement is an abbreviation for print $0. It prints the current input
record as show in the following example:

$ awk '{ print }' cars.dat

Or it can be represented in different way:

$ awk '{ print $0 }' cars.dat

The output on execution of the preceding code is as follows:

maruti swift 2007 50000 5
honda city 2005 60000 3
maruti dezire 2009 3100 6
chevy beat 2005 33000 2
honda city 2010 33000 6
chevy tavera 1999 10000 4
toyota corolla 1995 95000 2
maruti swift 2009 4100 5
maruti esteem 1997 98000 1
ford ikon 1995 80000 1
honda accord 2000 60000 2
fiat punto 2007 45000 3

To print a blank line, that is, an empty line with newline only, we use the following:

$ awk '{print $0;print " "}' cars.dat

Printing Output in AWK Chapter 5

[155]

The output on execution of the preceding code is as follows:

maruti swift 2007 50000 5

honda city 2005 60000 3

maruti dezire 2009 3100 6

chevy beat 2005 33000 2

honda city 2010 33000 6

chevy tavera 1999 10000 4

toyota corolla 1995 95000 2

maruti swift 2009 4100 5

maruti esteem 1997 98000 1

ford ikon 1995 80000 1

honda accord 2000 60000 2

fiat punto 2007 45000 3

To print a fixed string, we enclose it in double quotes as follows:

$ awk '{print $1 ":" $2}' cars.dat

The output on execution of the preceding code is as follows:

maruti:swift
honda:city
maruti:dezire
chevy:beat
honda:city
chevy:tavera
toyota:corolla
maruti:swift
maruti:esteem
ford:ikon
honda:accord
fiat:punto

Printing Output in AWK Chapter 5

[156]

Role of output separator in print statement
When we print multiple fields separated by comma using print command, it uses OFS and
ORS built-in variable values to decide how to print the fields and rows. Output field
separator is stored in the OFS variable and output record separator is stored in the ORS
variable. By default OFS is set to single space and ORS is set to a single newline. We can
change these values anytime as required, but the usually best place to assign new values to
OFS and ORS is in the BEGIN statement. For example, in the following example we print all
the fields of car database with a colon between them as separator, and the two newlines
after each processing record as follows:

$ vi output_separator.awk

BEGIN { OFS = ":"
 ORS = "\n\n"
 }
{ print $1,$2,$3,$4,$5 }

$ awk -f output_separator.awk cars.dat

The output on execution of the preceding code is as follows:

maruti:swift:2007:50000:5

honda:city:2005:60000:3

maruti:dezire:2009:3100:6

chevy:beat:2005:33000:2

honda:city:2010:33000:6

chevy:tavera:1999:10000:4

toyota:corolla:1995:95000:2

maruti:swift:2009:4100:5

maruti:esteem:1997:98000:1

ford:ikon:1995:80000:1

honda:accord:2000:60000:2

fiat:punto:2007:45000:3

Printing Output in AWK Chapter 5

[157]

We can also modify the values of OFS and ORS using the -v command-line option before the
names of input files in the awk command. For example, we achieve the same output as in
the previous example using the -v command-line option for setting OFS to colon and ORS to
double newlines:

$ awk -v OFS=":" -v ORS="\n\n" '{print $1,$2,$3}' cars.dat

The output on execution of the preceding code is as follows:

maruti:swift:2007

honda:city:2005

maruti:dezire:2009

chevy:beat:2005

honda:city:2010

chevy:tavera:1999

toyota:corolla:1995

maruti:swift:2009

maruti:esteem:1997

ford:ikon:1995

honda:accord:2000

fiat:punto:2007

printf doesn't use the OFS and ORS variables. It uses only the specified
format specifier to print the field values and to separate them; we have to
use escape sequences to format the output as desired.

Printing Output in AWK Chapter 5

[158]

Pretty printing with the printf statement
Most of the programs we have written so far have used the print command to display the
output. Sometimes, the columns don't line up properly with the print statement. So, to
have more control over output formatting we have to use a printf statement. It is very
flexible and is used to generate formatted output. It is similar to the C language's printf
statement, with only one exception: the absence of a * format specifier. Like the print
statement, it can be used with parentheses or without parentheses, as follows:

printf format, expr1, expr2, expr3 ……… exprn
printf (format, expr1, expr2, expr3 ……… exprn)

The main difference between print and printf is the format argument. It is an expression
whose value is taken as a string; it specifies how to output each of the other arguments. It is
also known as format string. The format string consists of a percentage sign (%) followed by
a format specifier.

It does not automatically append a newline in its output. To add a newline, we have to add
an escape sequence \n in the format string. This format string consists of the format
specifier, some string, and some special characters. We will be discussing these special
characters and format control characters in the coming section in detail. The argument
(expressions) lists are outputted as per the given format specifier. The two most common
format specifiers used are s for strings and d for decimal numbers.

In the following example, we print the header inside the BEGIN statement using the printf
command, followed by the first and third field of each processed record. Here we have
used the \n character to add a new line and \t for a tab between fields, as follows:

$ vi printf_example.awk

BEGIN { printf "FNAME EMAIL_ID\n"
 printf "================\n"
 }
{
 printf "%s\t%s\n", $1, $4
}

END { printf "================\n" }
$ awk -f printf_example.awk emp.dat

Printing Output in AWK Chapter 5

[159]

The output on execution of the preceding code is:

FNAME EMAIL_ID
================
Jack jack@gmail.com
Jane jane@gmail.com
Eva eva@gmail.com
Amit amit@yahoo.com
Julie julie@yahoo.com
Ana anak@hotmail.com
Hari hari@yahoo.com
Victor vics@hotmail.com
John john@gmail.com
Billy bily@yahoo.com
Sam sam@hotmail.com
Ginny ginny@yahoo.com
Emily emily@gmail.com
Amy amys@hotmail.com
Vina vina@yahoo.com
================

Escape sequences for special character
printing
As we use a simple string with printf, we can use any escape sequences to print control
characters that are difficult to represent. These are special characters that do not represent
their literal meaning when used inside a string; instead they represent something special
that would otherwise be difficult to represent as such. Most of the escape sequences consist
of at least two characters, the first of which is a backslash character \, which is used to
escape or mark a special character.

The following table lists the special characters that form the escape sequences with special
meanings inside printf:

Special character Description

\n Newline

\t Tab

\v Vertical tab

\b Backspace

Printing Output in AWK Chapter 5

[160]

\r Carriage return

\f Form feed

\<any character> That character

\' Single quotation

\" Double quotation

\\ Backslash character

The following are a few more special characters:

Horizontal tab: In the following example, we use \t to put a horizontal tab
between the fields of the employee database in the output. Here, it does not
represent backslash followed by t; instead, it represents a special meaning of the
horizontal tab. It will print the employee's first name, followed by a horizontal
tab, and then the employee's phone number:

$ awk '{ printf "%s\t%s", $1,$3 }' emp.dat

The output of the preceding code is as follows:

Jack 9857532312Jane 9837432312Eva 8827232115Amit
9911887766Julie 8826234556Ana 9856422312Hari
8827255666Victor 8826567898John 9911556789Billy
9911664321Sam 8856345512Ginny 9857123466Emily
8826175812Amy 9857536898Vina 881177661

Newline: In the previous example, we used a horizontal tab (\t) as the field
delimiter; however, after processing one record, the subsequent record is printed
without giving any newline character. It instructs the awk program to print each
record in a newline. To insert the newline character after each record, we have to
use \n, as shown in the following example:

$ awk '{ printf "%s\t%s\n", $1,$3 }' emp.dat

The output on execution of the preceding code is as follows:

Jack 9857532312
Jane 9837432312
Eva 8827232115
Amit 9911887766
Julie 8826234556
Ana 9856422312

Printing Output in AWK Chapter 5

[161]

Hari 8827255666
Victor 8826567898
John 9911556789
Billy 9911664321
Sam 8856345512
Ginny 9857123466
Emily 8826175812
Amy 9857536898
Vina 8811776612

Vertical tab: The vertical tab was used to speed up the printer's vertical
movement in olden times. Some printers used these special tab belts with various
tab spots to align the content on paper. Although nowadays it is not used, it still
exists in many programming languages. In the next example, we use a vertical
tab after each field to print the first field of each record on the employee database,
as follows:

$ awk '{printf "%s\v", $1}' emp.dat

The output on execution of the preceding code is:

Jack
 Jane
 Eva
 Amit
 Julie
 Ana
 Hari
 Victor
 John
 Billy
 Sam
 Ginny
 Emily
 Amy
 Vina

Backspace: The backspace special character erases the last character of the
previous string. In the following example, we print four strings and delete the
last character from each string except the last string. In the last string, in place of
the backspace escape sequence, we have put a newline \n escape sequence, as
follows:

$ awk 'BEGIN{ printf "TEST 1\bTEST 2\bTEST 3\bTEST 4\n"}'

Printing Output in AWK Chapter 5

[162]

The output of the preceding code is as follows:

TEST TEST TEST TEST 4

Carriage return: Carriage return means returning to the start of the current line
without advancing downward. Its name is adopted from the printer's carriage. In
the following example, after printing every string , we do a carriage return using
the \r escape sequence. This prints the next value on top of the current printed
value. This means that in the final output we get the last string only, as it was the
last thing to be printed on top of all the previous strings:

$ awk 'BEGIN{ printf "TEST 1\rTEST 2\rTEST 3\rTEST 4\n"}'

The output on execution of the preceding code is as follows:

TEST 4

Form feed: Form feed, in the good old days, was used to advance downward to
the next page. It was used as a page separator, but now it is also used to separate
two sections. Text editors such as MS Word use it to insert a page break. It is
represented by a backslash followed by f (as \f), as shown in the following
example:

$ awk '{printf "%s\f", $1}' emp.dat

The output of the preceding code is as follows:

Jack
 Jane
 Eva
 Amit
 Julie
 Ana
 Hari
 Victor
 John
 Billy
 Sam
 Ginny
 Emily
 Amy
 Vina

Printing Output in AWK Chapter 5

[163]

Different format control characters in the
format specifier
Format specifiers begin with a percentage character (%) and end with a format control
character. It tells the printf statement how to output an item. The format control character
decides what kind of value to print. The rest of the format specifier is made up of optional
modifiers that control field width. The following are the format control characters used in
format specifiers with printf in AWK:

%c: It prints a single character. If the argument is a number, then its
corresponding ASCII character is printed. If a string is given as the argument,
then only the first character of that string is printed. For example, if we give 65 to
printf for printing, it outputs the letter A, which is the ASCII equivalent of 65:

$ awk 'BEGIN { printf "ASCII representation of 65 = character
%c\n", 65 }'

The output on execution of the preceding code is as follows:

ASCII representation of 65 = character A

%d and %i: They print only the integer part of a decimal number. Both control
letters are equivalent. For example, on giving 21.33 as the argument and format
control character as %d or %i, only the integer part (21) of the decimal number is
printed:

$ awk 'BEGIN { printf "Integer part of 21.33 = %d\n", 21.33 }'

Or it can be written as:

$ awk 'BEGIN { printf "Integer part of 21.33 = %i\n", 21.33 }'

The output is as follows:

Integer part of 21.33 = 21

%e and %E: This format control character prints a number in scientific
(exponential) notation. The exponential form represented here is [-]d.dddddde[+-
]dd. For example, the same number 21.33 with total four significant figures,
three of which follow the decimal point, is represented using %4.3e as follows:

$ awk 'BEGIN { printf "21.33 = %4.3e\n", 21.33 }'

Printing Output in AWK Chapter 5

[164]

The output on execution of the preceding code is:

21.33 = 2.133e+01

And if we use E in place of e:

$ awk 'BEGIN { printf "21.33 = %4.3E\n", 21.33 }'

The output will be as follows:

21.33 = 2.133E+01

%f: Prints a number in floating-point notation. The floating form represented here
prints up to six decimal places by default, in the form dddd.dddddd. For example,
the same 21.33 number in floating-point representation is written as:

$ awk 'BEGIN { printf "21.33 = %f\n", 21.33 }'

The output on execution of the preceding code is as follows:

21.33 = 21.330000

%g and %G: Prints the number in floating point notation or scientific notation,
whichever is shortest. If the result is printed in scientific notation, it uses E and
not e. It suppresses non-significant zeros. For example, 21.33 when using %g and
%G is printed as follows:

$ awk 'BEGIN { printf "21.33 = %g\n", 21.33 }

Or it can be written as:

$ awk 'BEGIN { printf "21.33 = %G\n", 21.33 }'

The output on execution of the preceding code is as follows:

21.33 = 21.33

%o: It prints an unsigned octal number. For example, the octal representation
of 21 is printed as:

$ awk 'BEGIN { printf "Octal representation of 21 = %o\n", 21 }'

Printing Output in AWK Chapter 5

[165]

The output on execution of the preceding code is as follows:

Octal representation of 21 = 25

%u: It prints an unsigned decimal integer. For example, we can print 21.33 in
unsigned decimal integer notation as follows:

$ awk 'BEGIN { printf "Unsigned decimal representation of 21.33 =
%u\n", 21.33 }'

The output on execution of the preceding code is:

Unsigned decimal representation of 21.33 = 21

%s: It prints a string. Any literal passed as argument is printed as such. For
example:

$ awk 'BEGIN { printf "%s\n", "0800 AM, What a beautiful
morning..?" }'

The output on execution of the preceding code is as follows:

0800 AM, What a beautiful morning..?

%x and %X: Prints an unsigned hexadecimal integer. %x prints the lowercase
letters a through f, and %X prints uppercase A through F. For example, we
can get hexadecimal characters in lowercase using small x and hexadecimal
characters in uppercase using capital X as follows:

$ vi printf_hex.awk

BEGIN {
 printf "Lower Case Letters using: x\n"
 for (i = 1 ; i <= 15; ++i)
 printf "%x ", i
 printf "\nUpper Case Letters using: X\n"
 for (i = 1 ; i <= 15; ++i)
 printf "%X ", i
 printf "\n"
 }

$ awk -f printf_hex.awk

Printing Output in AWK Chapter 5

[166]

The output on execution of the preceding code is as follows:

Lower Case Letters using: x
1 2 3 4 5 6 7 8 9 a b c d e f
Upper Case Letters using: X
1 2 3 4 5 6 7 8 9 A B C D E F

%%: This prints a single percentage character (%) and no argument is required for
it to function. For example, if want to put a percentage symbol anywhere with
the printf statement, we can put it as follows:

$ awk 'BEGIN { printf "Percentage = 21.33 %%\n"}'

The output of the preceding code is:

Percentage = 21.33 %

The following table summarizes the use of different control characters in format specifiers:

Character Description

%c Prints the ASCII character.

%d Prints the decimal integer.

%i Prints the decimal integer (Added in POSIX).

%e Prints a number in exponential floating-point (scientific) notation format.

%f Prints a number in fixed floating-point format.

%g
Prints a number in either scientific notation or floating-point notation,
whichever is shorter, with trailing zeros removed.

%o Prints an unsigned octal value.

%u Prints an unsigned decimal integer.

%s Prints a string.

%x Prints an unsigned hexadecimal number. Uses a-f for 10 to 15.

%X Prints an unsigned hexadecimal number. Uses A-F for 10 to 15.

%% Prints a single percentage symbol (%).

Printing Output in AWK Chapter 5

[167]

Format specification modifiers
Each format specification begins with a % and ends with a character that determines the
conversion, known as format control letter. In between, it may contain optional
modifiers that control how much of the item's value is printed or how much of total space it
gets. The following are the possible modifiers that may appear in a printf format specifier.

Printing with fixed column width
To create a fixed-column-width report, we have to specify a number immediately after the %
in the format specifier. This number shows the minimum number of characters to be
printed. This is the width (minimum size) of the field. If the input in the field becomes large,
it automatically grows to prevent information loss. If the input string is smaller than the
specified number, spaces are added to the left.

The following example displays the basic use of printf with fixed column width using the
number specified immediately after the %. We have added headers inside the BEGIN
statement to make the output more readable, as follows:

$ vi printf_width.awk

BEGIN {
 printf "%6s\t%6s\t%10s\t%17s\t%3s\t%3s\t%6s\n",
 "FName","LName","ContactNo.","EmailId","Sex","Dpt","Salary"
 printf "---
---------------\n"
 }
{
 printf "%6s\t%6s\t%10d\t%17s\t%3s\t%3s\t%4d\n", $1,$2,$3,$4,$5,$6,$7
}

$ awk -f printf_width.awk emp.dat

The output on execution of the preceding code is as follows:

 FName LName ContactNo. EmailId Sex Dpt Salary

 Jack Singh 9857532312 jack@gmail.com M hr 2000
 Jane Kaur 9837432312 jane@gmail.com F hr 1800
 Eva Chabra 8827232115 eva@gmail.com F lgs 2100
 Amit Sharma 9911887766 amit@yahoo.com M lgs 2350
 Julie Kapur 8826234556 julie@yahoo.com F Ops 2500
 Ana Khanna 9856422312 anak@hotmail.com F Ops 2700

Printing Output in AWK Chapter 5

[168]

 Hari Singh 8827255666 hari@yahoo.com M Ops 2350
Victor Sharma 8826567898 vics@hotmail.com M Ops 2500
 John Kapur 9911556789 john@gmail.com M hr 2200
 Billy Chabra 9911664321 bily@yahoo.com M lgs 1900
 Sam khanna 8856345512 sam@hotmail.com F lgs 2300
 Ginny Singh 9857123466 ginny@yahoo.com F hr 2250
 Emily Kaur 8826175812 emily@gmail.com F Ops 2100
 Amy Sharma 9857536898 amys@hotmail.com F Ops 2500
 Vina Singh 8811776612 vina@yahoo.com F lgs 2300

If the input string has more characters than what we've specified as the exact width, the
whole string will be printed; the output will be zigzag and not what we applied. So, we
have to put exactly as many characters as we want to print.

Space is added to the left. Let us say we print hello as an eight-character string. Then three
spaces will be added on the left, as follows:

$ awk 'BEGIN{printf "%8s", "hello\n"}'

The output on execution of the preceding code is:

hello

The whole string is printed even if we specify a smaller character width. For example, now
we extend the hello string used in the previous example to hello world, as follows:

$ awk 'BEGIN{printf "%8s", "hello world\n"}'

The output on execution of the preceding code is as follows:

hello world

To align the header and other multiple printf statements, sometimes we need to go
through several rounds of trial and error.

Using the minus modifier (-) for left justification
In previous examples, the empty spaces were added on the left of the input string.
However, this not the general output we use. To add the spaces to the right of the string, we
have to make the string left justified. If the input string is less than the number of characters
specified, we put a minus symbol (-) immediately after the %. This will print characters to
the left and spaces will be added to the right.

Printing Output in AWK Chapter 5

[169]

For example, in the employee database emp.dat, we print the first name of the employee
using a left-justified expression in printf, with a minus symbol immediately followed by a
percentage % sign. To print each processed record in separate line, we append backslash n:

$ awk '{printf "|%-10s|\n", $1 }' emp.dat

The output is as follows:

|Jack |
|Jane |
|Eva |
|Amit |
|Julie |
|Ana |
|Hari |
|Victor |
|John |
|Billy |
|Sam |
|Ginny |
|Emily |
|Amy |
|Vina |

Printing with fixed width – right justified
As we have seen in the previous example, to add an empty space on the right side, we used
a minus symbol (-) immediately after %. If we do not put any symbol after %, it makes the
string right justified. The empty spaces are kept on the left side instead of the right.

For example, in the employee database emp.dat we print the first name of the employee
again but this time using the right justified expression in printf with no symbol following
the percentage % sign, as follows:

$ awk '{printf "|%10s|\n", $1 }' emp.dat

The output on execution of the preceding code is as follows:

| Jack|
| Jane|
| Eva|
| Amit|
| Julie|
| Ana|
| Hari|

Printing Output in AWK Chapter 5

[170]

| Victor|
| John|
| Billy|
| Sam|
| Ginny|
| Emily|
| Amy|
| Vina|

Using hash modifier (#)
This works with format control letters. For %o octal notation it adds a leading zero in the
output. For %x and %X hexadecimal format control characters it adds a leading 0x or 0X,
respectively for a nonzero result. For %e, %E, %f, and %F, the result always contains a
decimal point. For %g and %G, trailing zeros are not removed from the result. The following
example illustrates the workings of a hash (#) modifier:

$ vi printf_hash_modifier.awk

BEGIN {
 printf "Octal representation = %#o\n", 10
 printf "Hexadecimal representation = %#X\n", 10
 printf "Trailing zeros in %% g = %#g\n", 10
}

$ awk -f printf_hash_modifier.awk

The output on execution of the preceding code is as follows:

Octal representation = 012
Hexadecimal representation = 0XA
Trailing zeros in % g = 10.0000

Using plus modifier (+) for prefixing with
sign/symbol
If we want to prefix all the numeric values, whether they are positive or negative, rather
then an optional modifier we put a plus (+) symbol after percentage (%) symbol instead.
Positive values will have a plus (+) prefix in output, and negative values will have (-) prefix
in output.

Printing Output in AWK Chapter 5

[171]

For example, we can prefix the salary of all employees in the employee database
emp.dat using the plus (+) symbol as follows:

$ awk '{ printf "%s\t%+d\n", $1, $7}' emp.dat

The output on execution of the preceding code is as follows:

Jack +2000
Jane +1800
Eva +2100
Amit +2350
Julie +2500
Ana +2700
Hari +2350
Victor +2500
John +2200
Billy +1900
Sam +2300
Ginny +2250
Emily +2100
Amy +2500
Vina +2300

Printing with leading zeros as modifier:

Till now, we have seen that default values are right justified with space added to the left.
For right justified with spaces, we added - immediately after the percentage % sign.

If we want to prefix the output with 0's in front of the number instead of space, add a zero
(0) before the number. For example, if we want to print the leading zeros in the salary field
of the employee database, we put 0 in front of percentage % sign (format identifier) as
follows:

$ vi printf_leading_zero.awk

BEGIN {
 printf "|%-.4s|%-.2s|\n", "FNAME", "SALARY"
 printf "|=====|=====|\n"
 }
 {
 printf "|%-.4s|%-.3d|\n", $1, $7
 }

$ awk -f printf_leading_zero.awk emp.dat

Printing Output in AWK Chapter 5

[172]

The output on execution of the preceding code is as follows:

FNAM	SA
=====	=====
Jack	2000
Jane	1800
Eva	2100
Amit	2350
Juli	2500
Ana	2700
Hari	2350
Vict	2500
John	2200
Bill	1900
Sam	2300
Ginn	2250
Emil	2100
Amy	2500
Vina	2300

Printing with prefix sign/symbol
To add any symbol or special character as prefix before the field value, we had to add that
symbol before a percentage sign. This will make the prefix to be added to all the values of
that corresponding field. In the following example, we use employee database file emp.dat
and put the dollar ($) symbol before the last field, which contains the salary of users in
USD, as follows:

$ vi printf_symbol.awk

BEGIN {
 printf "|%-10s|%-8s|\n", "FNAME","SALARY"
 printf "|==========|========|\n"
 }
 {
 printf "|%-10s|$%-7d|\n", $1,$7
 }

$ awk -f printf_symbol.awk emp.dat

Printing Output in AWK Chapter 5

[173]

The output on execution of the preceding code is as follows:

FNAME	SALARY
==========	========
Jack	$2000
Jane	$1800
Eva	$2100
Amit	$2350
Julie	$2500
Ana	$2700
Hari	$2350
Victor	$2500
John	$2200
Billy	$1900
Sam	$2300
Ginny	$2250
Emily	$2100
Amy	$2500
Vina	$2300

Dot precision as modifier
A dot/period followed by an integer indicates the precision to use when printing. The
meaning of precision differs by control letter:

%d, %i, %o, %u, %x, and %X: Minimum number of digits to print in output
%e, %E, %f, and %F: Number of digits to print on the right of the decimal point in
output
%g and %G: Prints the maximum number of significant digits in output
%s: Prints maximum number of characters from the string that should print

The following example shows how a dot is used as modifier for format control character.
We will use a number 201.33 and print it using .1 and .4 dot precision with different
format control characters as follows:

$ vi printf_precision.awk

BEGIN {
 print "====Using .1 precision===="
 printf ".1d -> %.1d\n", 201.33
 printf ".1e -> %.1e\n", 201.33
 printf ".1f -> %.1f\n", 201.33
 printf ".1g -> %.1g\n", 201.33
 print "====Using .4 precision===="

Printing Output in AWK Chapter 5

[174]

 printf ".4d -> %.4d\n", 201.33
 printf ".4e -> %.4e\n", 201.33
 printf ".4f -> %.4f\n", 201.33
 printf ".4g -> %.4g\n", 201.33
 }

$ awk -f printf_precison.awk

The output on execution of the preceding code is as follows:

====Using .1 precision====
.1d -> 201
.1e -> 2.0e+02
.1f -> 201.3
.1g -> 2e+02
====Using .4 precision====
.4d -> 0201
.4e -> 2.0133e+02
.4f -> 201.3300
.4g -> 201.3

Positional modifier using integer constant
followed by $ (N$):
First we specify percentage (%) sign, then an integer constant followed by $ is a positional
specifier and finally format control character. By using positional specifier, we can apply the
format specification to the specific argument, otherwise by default format specification is
applied to arguments in the order given in format string.

For example, lets print the following message Hello World, first without any positional
specifier, as follows:

$ awk 'BEGIN { printf "%s %s\n", "Hello", "World"}'

The output on execution of the preceding code is as follows:

Hello World

Now we print the same message with positional modifier. This time, we make the first
format specifier application to the second argument, and the second format specifier
application to the first argument, as follows:

$ awk 'BEGIN { printf "%2$s %1$s\n", "Hello", "World"}'

Printing Output in AWK Chapter 5

[175]

The output on execution of the preceding code is as follows:

World Hello

Redirecting output to file
Till now we have been sending the output of print and printf commands to stdout, that
is, the screen. However, we can also redirect the output to files by using the redirection
operator. Redirection is done after the print command. It is the same as we do in shell
commands using redirection operator.

There are three forms of output redirection:

Output to file
Output appended to a file
Output through a pipe to another command

Redirecting output to a file (>)
This redirection operator (>) prints the items into the output file. Its syntax is as follows:

print items > demo

In this type of redirection, if the output file named demo exists, then it is erased before the
first output is written to it. Subsequent write operations to the same file within the same
AWK command do not overwrite the content, but append to it. If the output file does not it
creates it. For example, with the employee database file, emp.dat, we generate a report
with headers columns, as follows:

$ vi printf_redirection1.awk

BEGIN {
 printf "---
-----------------\n"> "emp_report"
 printf "|%-6s\t|%-6s\t|%-10s\t|%-17s\t|%-3s\t|%-3s\t|%-6s|\n",
 "FName","LName","ContactNo.","EmailId","Sex","Dpt","Salary" >
"emp_report"
 printf "---
-----------------\n"> "emp_report"
 }
{

Printing Output in AWK Chapter 5

[176]

 printf "|%-6s\t|%-6s\t|%-10d\t|%-17s\t|%-3s\t|%-3s\t|%-6d|\n",
$1,$2,$3,$4,$5,$6,$7> "emp_report"
}
END {
 printf "---
-----------------\n"> "emp_report"
 }

$ awk -f printf_redirection1.awk emp.dat

On execution of preceding code, a file with the name emp_report will get created in the
same directory containing the AWK program script. We can view the content of report
generated as follows:

$ cat emp_report

|FName |LName |ContactNo. |EmailId |Sex |Dpt
Salary

|Jack |Singh |9857532312 |jack@gmail.com |M |hr
|2000 |
|Jane |Kaur |9837432312 |jane@gmail.com |F |hr
|1800 |
|Eva |Chabra |8827232115 |eva@gmail.com |F |lgs
|2100 |
|Amit |Sharma |9911887766 |amit@yahoo.com |M |lgs
|2350 |
|Julie |Kapur |8826234556 |julie@yahoo.com |F |Ops
|2500 |
|Ana |Khanna |9856422312 |anak@hotmail.com |F |Ops
|2700 |
|Hari |Singh |8827255666 |hari@yahoo.com |M |Ops
|2350 |
|Victor |Sharma |8826567898 |vics@hotmail.com |M |Ops
|2500 |
|John |Kapur |9911556789 |john@gmail.com |M |hr
|2200 |
|Billy |Chabra |9911664321 |bily@yahoo.com |M |lgs
|1900 |
|Sam |khanna |8856345512 |sam@hotmail.com |F |lgs
|2300 |
|Ginny |Singh |9857123466 |ginny@yahoo.com |F |hr
|2250 |
|Emily |Kaur |8826175812 |emily@gmail.com |F |Ops

Printing Output in AWK Chapter 5

[177]

|2100 |
|Amy |Sharma |9857536898 |amys@hotmail.com |F |Ops
|2500 |
|Vina |Singh |8811776612 |vina@yahoo.com |F |lgs
2300

The following program puts the details of cars from the cars.dat database into two files:
expensive_cars if the price of cars is greater than 3 lakh, and budget_cars if price of
cars is less than 3 lakh:

$ awk '$5 > 3 {print $0 > "expensive_cars"}' cars.dat

$ awk '$5 <= 3 {print $0 > "budget_cars"}' cars.dat

Filenames can be variables or expressions, as shown in the following example:

$ awk '{ print($0) > ($5 >3 ? "expensive_cars" : "budget_cars")}'
cars.dat

The filenames have to be enclosed in double quotes, otherwise AWK treats
them as uninitialized variables.

Appending output to a file (>>)
This redirection operator appends the output to file. It's syntax is as follows:

print items >> demo

In this type of redirection, items are appended into the preexisting output file named demo.
Here, while performing the redirection the output file is not erased. If the output file does
not exist, then it is created. For example, now we append the content at the end of the file
(emp_report) created using the printf_rediection1.awk using redirection operator
(>>), as follows:

$ vi printf_append.awk

BEGIN {
 printf "=========employee database ends here=============\n"
>>"emp_report"

Printing Output in AWK Chapter 5

[178]

 }

$ awk -f printf_append.awk

On execution of preceding code, it will append the line in the existing file, emp_report,
which was created in the previous example.

Sending output on other commands using pipe (|)
We can send the output of print command to another program using pipe instead of
sending it to a file. For example, we can sort the first name of employees from the emp.dat
file by piping the output of the first column to the sort command, and then storing it in a
file. We will first display the names in alphabetical order, and in the next example we will
store them in a file instead of printing on screen, as follows:

$ awk '{ printf "%s\n", $1 | "sort" }' emp.dat

The output on execution of the preceding code is as follows:

Amit
Amy
Ana
Billy
Emily
Eva
Ginny
Hari
Jack
Jane
John
Julie
Sam
Victor
Vina

The following stores the result in file names.sorted instead of displaying on screen, as
follows:

$ awk '{ printf "%s\n", $1 | "sort > names.sorted" }' emp.dat

On execution of the preceding code a file called names.sorted in same directory, which
contains the AWK script.

Printing Output in AWK Chapter 5

[179]

Special file for redirecting output (/dev/null,
stderr)
Linux/Unix programs use three streams available to them for reading input and writing
output, named standard input, standard output, and standard error. These open streams
(open files or pipes) are known as file descriptors. By default, these streams are connected
to a keyboard for input and a screen for output. There are the two different ways of writing
an error message to standard error in AWK programs.

In the following example, error message is first send to another shell process cat using pipe,
which further send it to standard error stream using file descriptors (1 and 2) as follows :

$ awk 'BEGIN{ print "Error message!" | "cat 1>&2" }'

The output on execution of the preceding code is as follows:

Error message!

The following example illustrates another method of writing an error message to standard
error in AWK programs. Here, the error message is redirected to special device file
"/dev/stderr" as follows :

$ awk 'BEGIN{ print "Error message!" > "/dev/stderr" }'

Output on execution of preceding command is as follows:

Error message!

Closing files and pipes
If the same filename or the same shell command is used more than once during AWK
program execution, the file is opened for the first time only. The file is opened and the first
record is read from that file, subsequently if the same file is used then another record is read
from it and so on.

So, in order to re-read that file from the beginning, it becomes necessary to close that file
first. The close() function makes this possible .The close(expr) function is used to close
a file or pipe referenced using expr. The string value of expr should be the same as the
string used to create/open the file or pipe used. Closing of files is necessary if we want to
write a file and use it later in the same program. The operating system also defines a limit
on the number of files and pipes that can be opened at the same time. This close()
function returns value zero if close succeeds, or -1 if it fails.

Printing Output in AWK Chapter 5

[180]

The following is an example of opening and closing a file. Here we first create a file to store
the output of print command, and then we subsequently close the file using close
command, as follows:

$ awk 'BEGIN{print "Error message!" > "temp" ; close("temp")}

In our next example, we use the close() function to a command instead of a file. Here, we
first store the date command in a variable named cmd to avoid any typing errors while
closing the command. The same variable name is used again to store another shell
command sort. Here, sort command output is given to getline command using co-process
operator, which is then displayed on our screen line by line using print $0 statement. Then,
this sort command is also closed using the close() function after processing
the cars.dat file, as shown in the following code:

$ vi close.awk

BEGIN {
 cmd = "date"
 cmd |& getline
 print "DATE: ", $0
 close(cmd)
 cmd = "sort cars.dat"
 while ((cmd |& getline) > 0)
 print $0
 close(cmd);
 print "End of File..!"
}

$ awk -f close.awk

The output on execution of the preceding code is as follows:

DATE: Sat Mar 10 00:17:08 IST 2018
chevy beat 2005 33000 2
chevy tavera 1999 10000 4
fiat punto 2007 45000 3
ford ikon 1995 80000 1
honda accord 2000 60000 2
honda city 2005 60000 3
honda city 2010 33000 6
maruti dezire 2009 3100 6
maruti esteem 1997 98000 1
maruti swift 2007 50000 5
maruti swift 2009 4100 5
toyota corolla 1995 95000 2
End of File..!

Printing Output in AWK Chapter 5

[181]

Summary
In this chapter, we learned to use print() and printf() for finer control over output. We
began with OFS and ORS for formatting the output, which was followed by introduction to
escape sequences in printf for printing special characters. Then we learned how AWK
uses format-control characters for different data types, and optional modifiers for
modifying the behavior of format control characters. Finally, we covered how the output
from both print and printf can be redirected to files and pipes. In the end, we learned the
importance of the close() function to close open files and pipes.

In the next chapter, we will learn about different types of expressions in AWK
programming language and how they form the core logic of a program.

6
AWK Expressions

Expressions are the basic building blocks of any programming language. They form its core
logic. Expressions evaluate to a value that we can test, print, or pass to any function. They
are also used to assign a new value to a variable. AWK expressions are made up of
operators and operands, which consist of constants, variables, regular expressions, and
function calls.

In this chapter, we will cover the following topics:

AWK variables and constants
Expressions using binary arithmetic operators
Expressions using assignment operations
Expressions using increment and decrement operators
Expressions using relational operators
Expressions using logical operators
Expressions using ternary operators
Unary arithmetic expressions
Exponential expressions
String concatenation
Regular expression operators

AWK variables and constants
This sections describes the different types of AWK variables and constants available in the
AWK programming language.

AWK Expressions Chapter 6

[183]

AWK variables give names to values for use or reference later in another part of the
program. AWK variables are case sensitive. The AWK variable name should begin with an
alphabet and the rest of the characters can be numbers, letters, or underscore. AWK
keywords cannot be used as variable names. Variables are assigned new values using
assignment operators, increment operators, and decrement operators. AWK also has some
built-in variables, which have special meaning; however, they can be used and assigned like
other variables. All built-in variables of AWK are named in uppercase.

Inside AWK, we don't have to declare a variable to use it. Also, there is no need to initialize
an AWK variable explicitly. Variables are automatically initialized to empty strings; if the
variable is a number, it is initialized to zero upon conversion. And if we wish to initialize an
AWK variable, then the best place to do it is in the BEGIN section, which is executed only
once.

An AWK constant is the simplest type of expression, which always has the same value.
There are three types of constants, namely string, numeric, and regexp constants. Numeric
constants represent numbers; this can be an integer, a decimal fraction, or an exponential
notation. In AWK, all numbers are in decimal representation (base 10) by default. String
constants represent a sequence of characters enclosed in double quotes. Strings in AWK can
be of any length and they can have any of the possible 8-bit ASCII characters. A regular
expression constant is a regex expression enclosed in forward slashes. Most regular
expressions in AWK are built using constants but sometimes they can be built using
expressions.

Now we will study operators that make use of the values provided by constants and
variables in building expressions.

Arithmetic expressions using binary
operators
AWK supports almost all basic arithmetic operators for building arithmetic expressions.
These operators are binary operators; that is, they operate on two variables and are very
similar to C language expressions. All these arithmetic operators follow the normal
precedence rule. AWK supports the following arithmetic operators.

Addition (p + q):

AWK Expressions Chapter 6

[184]

This is represented by a plus (+) symbol, which adds two or more numbers. These numbers
could be variables or constants. For example, we can add two numbers after assigning them
to two variables as follows:

$ awk 'BEGIN{ p = 20; q = 30; print "(p + q) = ",(p + q)}'

The output on execution of this code is as follows:

(p + q) = 50

Now, we will use the marks.txt sample file to calculate the sum of marks obtained by a
student using the arithmetic operator, as follows:

$ vi sum.awk

BEGIN {
 printf "%-6s\t%-7s\t%-7s\t%-7s\t%-7s\t%-7s\t%-5s\n", "Name",
"Eng","Hindi","Maths","Science","Arts","Total"
 }
 {
 sum = $2+$3+$4+$5+$6;
 printf "%-6s\t%-7d\t%-7d\t%-7d\t%-7d\t%-7d\t%-5d\n",
$1,$2,$3,$4,$5,$6,sum
 }

$ awk -f sum.awk marks.txt

Output:

Name Eng Hindi Maths Science Arts Total
ram 80 78 60 85 72 375
amit 64 67 69 61 62 323
vijay 90 98 92 96 97 473
satvik 81 74 72 79 80 386
akshat 67 80 74 60 72 353
rishi 85 80 82 76 84 407
tushar 70 82 68 79 60 359

Subtraction (p – q):

This is represented by a minus (-) symbol, which subtracts two or more numbers. These
number also could be variables or constants. For example, we can subtract two numbers
after assigning them to two variables as follows:

$ awk 'BEGIN{ p = 20; q = 30; print "(p - q) = ",(p - q)}'

AWK Expressions Chapter 6

[185]

The output on execution of this code is as follows :

(p - q) = -10

Multiplication (p * q):

This is represented by an asterisk (*) symbol, which multiplies two or more numbers. These
numbers could be variables or constants. For example, we can multiply two numbers after
assigning them to two variables:

$ awk 'BEGIN{ p = 20; q = 30; print "(p * q) = ",(p * q)}'

Output:

(p * q) = 600

Division (p / q):

This is represented by a forward slash (/) symbol, which divides two or more numbers.
These numbers can also be variables or constants. For example, we can divide two numbers
after assigning them to two variables as follows:

$ awk 'BEGIN{ p = 20; q = 30; print "(p / q) = ",(p / q)}'

The output is as follows:

(p / q) = 0.666667

Modulus (p % q):

This is represented by the percentage (%) symbol, which gives the remainder after division
of one number by another number. When computing the remainder of p % q, the quotient
is rounded toward zero to an integer. These numbers can be variables or constants. For
example, we can find the modulo of two numbers after assigning them to two variables as
follows:

$ awk 'BEGIN{ p = 20; q = 30; print "(p % q) = ",(p % q)}'

Output:

(p % q) = 20

AWK Expressions Chapter 6

[186]

Using the marks.txt file, we can find the average number of marks scored by students in a
class as follows:

$ vi average.awk

BEGIN {
 printf "%-6s\t%-7s\t%-7s\t%-7s\t%-7s\t%-7s\t%-5s\t%-4s\n", "Name",
"Eng","Hindi","Maths","Science","Arts","Total","avg"
 }
 {
 sum = $2+$3+$4+$5+$6;
 avg = sum/5
 printf "%-6s\t%-7d\t%-7d\t%-7d\t%-7d\t%-7d\t%-5d\t%-4d\n",
$1,$2,$3,$4,$5,$6,sum,avg
 }

$ awk -f average.awk marks.txt

The output on execution of the preceding code is:

Name Eng Hindi Maths Science Arts Total avg
ram 80 78 60 85 72 375 75
amit 64 67 69 61 62 323 64
vijay 90 98 92 96 97 473 94
satvik 81 74 72 79 80 386 77
akshat 67 80 74 60 72 353 70
rishi 85 80 82 76 84 407 81
tushar 70 82 68 79 60 359 71

The print command outputs a floating-point number on divide and an integer for the rest.
Numbers are automatically converted into strings when needed. Unlike other programming
languages, AWK does not support types for variables.

The following table summarizes binary arithmetic operators:

Operator Meaning Expression Result

+ Addition 12+5 17

- Subtraction 12-5 7

* Multiplication 12*5 60

/ Division 12/5 2.4

% Modulo 12%5 2

AWK Expressions Chapter 6

[187]

Assignment expressions
An assignment is an expression that stores a value in a variable. The simplest assignment
operator is =, the equals sign. It stores the value of the right-hand-side operand as such. The
assignment statement syntax is as follows:

<variable> or <field> or <array> = <constant> or <expression> or

The basic variable assignment is represented by the equals sign, =. Whatever value was
assigned earlier is forgotten and the new value is assigned. For example, we assign a value
to variable x=10 as follows:

$ awk 'BEGIN{ x=10; print "Number x is : ", x}'

The output on execution of the preceding code is as follows:

Number x is : 10

Assignment can store string values as well. For example, now we declare a variable
message and store the string Welcome to Awk Programming. To store this string, we use
two more variables and then concatenate them as follows:

$ vi assign.awk

BEGIN {
 greet = "Welcome " ;
 lang = "Awk Programming";
 message = greet "to " lang;
 print message
 }

$ awk -f assign.awk

The output on execution of the preceding code is as follows:

Welcome to Awk Programming

Variables do not have any permanent types. A variable's type is whatever value we have
assigned to it on the right-hand side. In the following program, the demo variable is
assigned a numeric value at first and then it is reassigned a string value, as follows:

$ vi reassign.awk

BEGIN {
 demo = 10;

AWK Expressions Chapter 6

[188]

 print demo;
 demo = "Hello";
 print demo;
 }

$ awk -f reassign.awk

The output on execution of the preceding code is as follows:

10
Hello

We can write multiple assignments together in AWK. In the following example, we store
the value 10 in three variables—x, y, and z—together x = 10, y = 10, z = 10:

$ awk 'BEGIN{x=y=z=10; printf "x = %d, y = %d, z = %d \n" ,x ,y ,z}'

The output on execution of the preceding code is as follows:

x = 10, y = 10, z = 10

Besides simple assignment operations, we can use = with some arithmetic operators as well,
to perform both the assignment and arithmetic operations one after another using
shorthand notation. We will discuss this in the following section.

Shorthand addition (+=):

It is represented by +=. The following example illustrates this:

$ awk 'BEGIN { count = 100; count += 5; print "Counter = ", count}'

The output on execution of the preceding code is as follows:

Counter = 105

Shorthand subtraction (-=):

It is represented by -=. The following example illustrates this:

$ awk 'BEGIN { count = 100; count -= 5; print "Counter = ", count}'

The output on execution of the preceding code is as follows:

Counter = 95

AWK Expressions Chapter 6

[189]

Shorthand multiplication (*=):

Represented by *=. The following example illustrates this:

$ awk 'BEGIN { count = 100; count *= 5; print "Counter = ", count}'

The output is as follows:

Counter = 500

Shorthand division (/=):

It is represented by /=. The following example illustrates this:

$ awk 'BEGIN { count = 100; count /= 5; print "Counter = ", count}'

The output is:

Counter = 20

Shorthand modulo (%=):

It is represented by %=. The following example illustrates it:

$ awk 'BEGIN { count = 100; count %= 5; print "Counter = ", count}'

The output on execution of the preceding code is as follows:

Counter = 0

Shorthand exponential (^=):

This is represented by ^=:

$ awk 'BEGIN { count = 2; count -= 5; print "Counter = ", count}'

The output on execution of the preceding code is as follows:

Counter = -3

Shorthand exponential (**=):

It is represented by **=. The following example illustrates this:

$ awk 'BEGIN { count = 100; count **= 5; print "Counter = ", count}'

The output on execution is as follows:

Counter = 10000000000

AWK Expressions Chapter 6

[190]

AWK assignment operators summary table:

Operator Meaning

Variable += increment Add increment to variable

Variable -= decrement Subtract decrement from variable

Variable *= coefficient Multiply variable by coefficient

Variable /= divisor Divide variable by divisor

Variable %= modulus Set the variable to its remainder by modulus

Variable ^= power
Raise the variable to the power specified (POSIX-
compliant)

Variable **= power Raise the variable to the power specified

Increment and decrement expressions
AWK also supports the increment ++ and decrement -- operators; they increase or decrease
the value of a variable by one. Both operators are similar to the operators in C. These
operators can only be used with a single variable and, thus, only before or after the variable.
They are the short forms of some common operations of adding and subtracting.

Pre-increment:

It is represented by the plus plus (++) symbol prefixed to the variable. It increments the
value of an operand by one. Let's say we have a variable, var; to pre-increment its value,
we write ++var. It first increments the value of operand and then returns the incremented
value. In the following example, we use two variables, p =5 and q = ++p. Here, first the
value is incremented and then it is assigned. So, the pre-increment sets both the operands p
and q to 6. It is equivalent to p=p+1 and then q=p, as follows:

$ vi pre-increment.awk

BEGIN {
 p = 5;
 q = ++p;
 printf "p = %d, q = %d\n", p,q
 }

$ awk -f pre-increment.awk

AWK Expressions Chapter 6

[191]

The output on execution of the preceding code is as follows:

p = 6, q = 6

Post-increment:

This one is represented by plus plus (++) symbol postfixed to the variable. It also increments
the value of an operand by one. Let's say we have a variable, var; to post-increment its
value, we write var++. It first returns the value of the operand and then increments its
value. In the following example, we use two variables, p =5 and q = p++, for assignment.
Here, first the assignment takes place and then the value is incremented. So, post-increment
sets p to 6 and q to 5. It is equivalent to q=p and then p=p+1, as follows:

$ vi post-increment.awk

BEGIN {
 p = 5;
 q = p++;
 printf "p = %d, q = %d\n", p,q
 }

$ awk -f post-increment .awk

The output on execution of the preceding code is as follows:

p = 6, q = 5

Pre-decrement:

It is represented by the minus minus (--) symbol prefixed to the variable. It decrements the
value of an operand by 1. Let's say we have a variable, var; to pre-decrement its value, we
write --var. It first decrements the value of the operand and then returns the decremented
value. In the following example, we use two variables, p =5 and q = --p. The value
is first decremented and then assigned. So , pre-decrement sets both the operands p and q to
4. It is equivalent to p=p-1 and then q=p:

$ vi pre-decrement.awk

BEGIN {
 p = 5;
 q = --p;
 printf "p = %d, q = %d\n", p,q
 }

$ awk -f pre-decrement.awk

AWK Expressions Chapter 6

[192]

The output is as follows:

p = 4, q = 4

Post-decrement:

This too is represented by minus minus (- -) symbol postfixed to the variable. It
decrements the value of an operand by one. Let's say we have a variable, var; to post-
decrement its value, we write var- -. It first returns the value of the operand and then it
decrements its value. In the following example, we use two variables, p =5 and q = p--
, for assignment. Here, first the assignment takes place and then the value is decremented.
So, post-decrement sets p to 4 and q to 5. It is equivalent to q=p and then p=p-1, as follows:

$ vi post-decrement.awk

BEGIN {
 p = 5;
 q = p--;
 printf "p = %d, q = %d\n", p,q
 }

$ awk -f post-decrement.awk

The output on execution of the preceding code is as follows:

p = 4, q = 5

Example to display users with login shells (who can log in to the system):

Here we use the post-increment unary operator to count the number of login shells in the
body block and print its result inside the END block. The body block of this script includes a
pattern match, so the code is executed only if the last field of the line contains the pattern
/bin/bash, as follows:

$ vi count_login_users.awk

BEGIN {
 FS=":"
 }
 $NF ~ /bash/{ n++ }
END {
 print n
 }

$ awk -f count_login_users.awk /etc/passwd

AWK Expressions Chapter 6

[193]

The output on execution of the preceding code is as follows:

2

Relational expressions
Relational expressions are built using relational operators, also known as conditional or
comparison operators. These operators are used to test conditions, like if or while.
Relational expressions compare strings or numbers for relationships such as equality,
greater than , less than, and so on.

These expressions return 1 if the condition evaluates to true and 0 if false. When comparing
operands of different types, numeric operands are converted to strings using a built-in
variable (using CONVFMT). Strings are compared character to character.

Equal to (==):

This relational operator is represented by the equals symbol repeated twice (==). It returns
true if both operands are equal; otherwise it returns false. Here, we have to make sure
not to mistype the == operator by forgetting to put one = character. In this case, the AWK
code still remains valid but the program does not do what it was intended to do, resulting
in a semantic error. Syntactically, the program will be correct, though.

In this example, we use the equal to (==) condition to print info of all employees from
the emp.dat database who belong to the logistics department:

$ awk 'BEGIN{ OFS="\t"} $6 == "lgs" {print $0}' emp.dat

The output on execution of the preceding code is as follows:

Eva Chabra 8827232115 eva@gmail.com F lgs 2100
Amit Sharma 9911887766 amit@yahoo.com M lgs 2350
Billy Chabra 9911664321 bily@yahoo.com M lgs 1900
Sam khanna 8856345512 sam@hotmail.com F lgs 2300
Vina Singh 8811776612 vina@yahoo.com F lgs 2300

In the following example, we use the equal to (==) condition to print all lines from
the /etc/passwd file that have the same USER ID and GROUP ID. This AWK script prints
the line only if $3(USER ID) and $4(GROUP ID) are equal:

$ awk -F: '$3==$4{ print }' /etc/passwd

AWK Expressions Chapter 6

[194]

The output on execution of the preceding code is:

root:x:0:0:root:/root:/usr/bin/zsh
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
lp:x:7:7:lp:/var/spool/lpd:/usr/sbin/nologin
mail:x:8:8:mail:/var/mail:/usr/sbin/nologin
news:x:9:9:news:/var/spool/news:/usr/sbin/nologin
uucp:x:10:10:uucp:/var/spool/uucp:/usr/sbin/nologin
proxy:x:13:13:proxy:/bin:/usr/sbin/nologin
www-data:x:33:33:www-data:/var/www:/usr/sbin/nologin

In this example, we use the equal to (==) condition to print information about all those
users without a comment field (field number 5) in the /etc/passwd file:

$ awk -F":" '$5 == "" { print }' /etc/passwd

The output on execution of the preceding code is as follows:

Debian-exim:x:107:111::/var/spool/exim4:/bin/false
uuidd:x:108:113::/run/uuidd:/bin/false
ntp:x:112:114::/home/ntp:/bin/false
messagebus:x:118:120::/var/run/dbus:/bin/false
Debian-snmp:x:121:125::/var/lib/snmp:/bin/false
sshd:x:126:65534::/var/run/sshd:/usr/sbin/nologin
chromeuser:x:1000:1000::/home/chromeuser:/sbin/nologin

Not equal to (!=):

This relational operator is represented by an exclamation symbol followed by an equals
symbol (!=). It returns true if both operands are unequal; otherwise it returns false. In the
following example we use the not equal to (!=) conditions to print info of all employees
from the emp.dat database who do not belong to logistic department, as follows:

$ awk 'BEGIN{ OFS="\t"} $6 != "lgs" {print $0}' emp.dat

The output is as follows:

Jack Singh 9857532312 jack@gmail.com M hr 2000
Jane Kaur 9837432312 jane@gmail.com F hr 1800
Julie Kapur 8826234556 julie@yahoo.com F Ops 2500
Ana Khanna 9856422312 anak@hotmail.com F Ops 2700
Hari Singh 8827255666 hari@yahoo.com M Ops 2350
Victor Sharma 8826567898 vics@hotmail.com M Ops 2500
John Kapur 9911556789 john@gmail.com M hr 2200
Ginny Singh 9857123466 ginny@yahoo.com F hr 2250

AWK Expressions Chapter 6

[195]

Emily Kaur 8826175812 emily@gmail.com F Ops 2100
Amy Sharma 9857536898 amys@hotmail.com F Ops 2500

In the following example, we declare two variables, a and b, and then check them for
equality using the not equal comparison operator:

$ awk 'BEGIN{ a=5; b =6 ; if (a != b) print "true" }'

The output on execution of the preceding code is as follows:

true

Less than (<):

This relational operator is represented by < symbol. It returns true if the operand on left-
hand side is less than the operand on right-hand side; otherwise it returns false. For strings
it compares them character by character; that is, the first character on the left-hand-side
string is compared with the first character on the right-hand-side string, and so on. For
example, string 10 is less than 9. If a string is sub-string of another, then it is smaller than
the longer string:

$ awk 'BEGIN{ a="10"; b = "9" ; if (a < b) print "true" }'

The output on execution of the preceding code is :

true

In the following example, again the value stored inside the variable "a" is compared to the
value stored inside variable "b", character by character as follows :

$ awk 'BEGIN{ a="tall"; b = "taller" ; if (a < b) print "true" }'

The output on execution of the preceding code is as follows:

true

In the following AWK command also compares the value stored between two variables "a"
and "b", however it will not give any output because if the condition is false, it does not
print anything.

$ awk 'BEGIN{ a="xabc"; b = "abc" ; if (a < b) print "true" }'

AWK Expressions Chapter 6

[196]

In the following example, we use < condition to print the details of employees from
the emp.dat database whose salary is less than 2000 dollars:

$ awk '$7 < 2000 { print }' emp.dat

The output on execution of the preceding code is as follows:

Jane Kaur 9837432312 jane@gmail.com F hr 1800
Billy Chabra 9911664321 bily@yahoo.com M lgs 1900

Less than or equal to (<=):

This relational operator is represented by the <= symbol. It returns true if the left-hand-side
operand is less than or equal to the right-hand-side operand; otherwise it returns false.

In the following example, we use <= condition to print the details of employees from
emp.dat database whose salary is less than or equal to 2000 dollars:

$ awk '$7 <= 2000 { print }' emp.dat

The output on execution of the preceding code is as follows:

Jack Singh 9857532312 jack@gmail.com M hr 2000
Jane Kaur 9837432312 jane@gmail.com F hr 1800
Billy Chabra 9911664321 bily@yahoo.com M lgs 1900

Greater than (>):

This relational operator is represented by >. It returns)">true if the left operand is greater
than or equal to the right operand; otherwise it returns false.

In the following example, we use the > condition to print the details of employees from
emp.dat whose salary is more than 2000 dollars:

$ awk '$7 > 2000 { print }' emp.dat

The output is as follows:

Eva Chabra 8827232115 eva@gmail.com F lgs 2100
Amit Sharma 9911887766 amit@yahoo.com M lgs 2350
Julie Kapur 8826234556 julie@yahoo.com F Ops 2500
Ana Khanna 9856422312 anak@hotmail.com F Ops 2700
Hari Singh 8827255666 hari@yahoo.com M Ops 2350
Victor Sharma 8826567898 vics@hotmail.com M Ops 2500
John Kapur 9911556789 john@gmail.com M hr 2200
Sam khanna 8856345512 sam@hotmail.com F lgs 2300
Ginny Singh 9857123466 ginny@yahoo.com F hr 2250

AWK Expressions Chapter 6

[197]

Emily Kaur 8826175812 emily@gmail.com F Ops 2100
Amy Sharma 9857536898 amys@hotmail.com F Ops 2500
Vina Singh 8811776612 vina@yahoo.com F lgs 2300

In the following example, we use the > condition to display the uid (and complete record)
from the /etc/passwd file that has the highest value in the USER ID field. Here, we declare
a variable maxuid to store the largest number from field three and corresponding user
details in variable userinfo. In the end, we print the value stored in the maxid and
userinfo variables:

$ vi maxuid.awk

BEGIN {
 FS = ":"
 }
$3 > maxuid { maxuid=$3; userinfo=$0 };
END {
 print maxuid, userinfo
 }

$ awk -f maxuid.awk /etc/passwd

The output on execution of the preceding code is as follows:

65534 nobody:x:65534:65534:nobody:/nonexistent:/usr/sbin/nologin

Greater than or equal to (>=):

This relational operator is represented by >=. It returns =)">true if the left-hand-side
operand is greater than or equal to the right-hand-side operand; otherwise it returns false.

In the following example, we use >= to print the details of employees from emp.dat whose
salary is greater than or equal to 2000 dollars:

$ awk '$7 >= 2000 { print }' emp.dat

The output on execution of the preceding code is as follows:

Jack Singh 9857532312 jack@gmail.com M hr 2000
Eva Chabra 8827232115 eva@gmail.com F lgs 2100
Amit Sharma 9911887766 amit@yahoo.com M lgs 2350
Julie Kapur 8826234556 julie@yahoo.com F Ops 2500
Ana Khanna 9856422312 anak@hotmail.com F Ops 2700
Hari Singh 8827255666 hari@yahoo.com M Ops 2350
Victor Sharma 8826567898 vics@hotmail.com M Ops 2500
John Kapur 9911556789 john@gmail.com M hr 2200
Sam khanna 8856345512 sam@hotmail.com F lgs 2300

AWK Expressions Chapter 6

[198]

Ginny Singh 9857123466 ginny@yahoo.com F hr 2250
Emily Kaur 8826175812 emily@gmail.com F Ops 2100
Amy Sharma 9857536898 amys@hotmail.com F Ops 2500
Vina Singh 8811776612 vina@yahoo.com F lgs 2300

AWK table for string comparison:

Expression Result

"abc" >= "xyz" False

1.8 != "+2" True

"2e1" < "3" True

a=2;b="2" a == b True

AWK table for relational operators:

Operator Description Expression Result

== Is equal to p==q True if p is equal to q

!= Is not equal to p!=q True if p is not equal to q

> Is greater than p>q True if p is greater than q

< Is less than p<q True if p is less than q

>= Is greater than or equal to p>=q True if p is greater than or equal to q

<= Is less than or equal to p<=q True if p is less than or equal to q

Logical or Boolean expressions
Boolean expressions are also known as logical expressions. It is a combination of
comparison expressions or matching expressions, using the Boolean operators together with
parentheses to control nesting. There are three Boolean operators, namely or (||) , and (&&),
and not (!). The truth value of Boolean expression is calculated by combining the truth
values of the component expressions.

Boolean expressions are used to combine two or more conditional expressions. They return
numeric value 1 if true and 0 if false.

AWK Expressions Chapter 6

[199]

Logical AND (&&): This operator is represented by the && symbol. Its syntax is:

expr1 && expr2

It evaluates to true if both expressions expr1 and expr2 evaluate to true; otherwise it returns
false. Also expr2 is evaluated if and only if expr1 evaluates to true. For example, we print
those records from the employee database emp.dat whose salary is greater than 2500 and
gender is female:

$ awk '$5 == "F" && $7 > 2500 { print }awk' emp.dat

The output on execution of the preceding code is as follows:

Ana Khanna 9856422312 anak@hotmail.com F Ops 2700

Similarly, if you want to check whether a number is octal or not, you can use the logical
AND (&&) operator as follows:

$ vi octalcheck.awk

BEGIN {
 num = 4;
 if (num >= 0 && num <= 7)
 printf "%o is an octal number\n", num
 }

$ awk -f octalcheck.awk

The output on execution of the preceding code is:

4 is an octal number

In the following example, we use >= and && conditions to print those user details from
/etc/passwd file where USER ID >= 100 and the user's shell is /bin/bash:

$ awk -F ":" '$3 >=100 && $NF == "/bin/bash" ' /etc/passwd

The output on execution of the preceding code is as follows:

postgres:x:116:119:PostgreSQL
administrator,,,:/var/lib/postgresql:/bin/bash
couchdb:x:124:129:CouchDB Administrator,,,:/var/lib/couchdb:/bin/bash
practice:x:1001:1001:,,,:/home/practice:/bin/bash

AWK Expressions Chapter 6

[200]

Logical OR (| |):

This operator is represented by the | | symbol. Its syntax is:

expr1 | | expr2

It evaluates to true if either of the expressions expr1 or expr2 evaluates to true (nonzero or
non-empty); else it returns false. Also, expr2 is evaluated if and only if expr1 evaluates to
false. For example, we print those records from emp.dat whose gender is female or salary
is greater than or equal to 2500 USD:

$ awk '$5 == "F" || $7 >= 2500 { print }' emp.dat

The output on execution of the preceding code is as follows:

Jane Kaur 9837432312 jane@gmail.com F hr 1800
Eva Chabra 8827232115 eva@gmail.com F lgs 2100
Julie Kapur 8826234556 julie@yahoo.com F Ops 2500
Ana Khanna 9856422312 anak@hotmail.com F Ops 2700
Victor Sharma 8826567898 vics@hotmail.com M Ops 2500
Sam khanna 8856345512 sam@hotmail.com F lgs 2300
Ginny Singh 9857123466 ginny@yahoo.com F hr 2250
Emily Kaur 8826175812 emily@gmail.com F Ops 2100
Amy Sharma 9857536898 amys@hotmail.com F Ops 2500
Vina Singh 8811776612 vina@yahoo.com F lgs 2300

Similarly, if we want to check for the existence of whitespace character anywhere, we use
the logical OR (||) operator:

$ vi whitespacecheck.awk

BEGIN {
 char = "\n"
 if (char == " " || char == "\n" || char == "\t")
 print "Character is whitespace"
 }

$ awk -f whitespacecheck.awk

The output on execution of the preceding code is as follows:

Character is whitespace

AWK Expressions Chapter 6

[201]

Logical NOT (!):

This operator is represented by the ! symbol. Its syntax is:

! expr1

It returns the logical compliment of expr1. If expr1 evaluates to true, it returns zero; else it
returns one. For example, we print the records from emp.dat whose gender is not female,
as follows:

$ awk '! ($5 == "F"){print} ' emp.dat

The output on execution of the preceding code is:

Jack Singh 9857532312 jack@gmail.com M hr 2000
Amit Sharma 9911887766 amit@yahoo.com M lgs 2350
Hari Singh 8827255666 hari@yahoo.com M Ops 2350
Victor Sharma 8826567898 vics@hotmail.com M Ops 2500
John Kapur 9911556789 john@gmail.com M hr 2200
Billy Chabra 9911664321 bily@yahoo.com M lgs 1900

Similarly, if want to check whether a string is empty or not, we can use a logical NOT
operator as follows:

vi emptystring_check.awk

BEGIN {
 str ="";
 if (! length(str))
 print "String is empty"
 }

$ awk -f emptystring_check.awk

The output on execution of the preceding code is as follows:

String is empty

In the following example, we print only the first line of any file. It emulates the Linux
command head -1. Here, we use negation with the NR built-in variable to print the line as
follows:

$ awk '!(NR >1)' emp.dat

The output is:

Jack Singh 9857532312 jack@gmail.com M hr 2000

AWK Expressions Chapter 6

[202]

Ternary expressions
Ternary expressions are also known as conditional expressions. They are a special kind of
expression that has three operands. In this expression, we use one expression's value to
select one of two other expressions. It works the same way as in C language. Its syntax is as
follows:

conditional exp1 ? Statement 1 : statement 2

If conditional expression exp1 returns true, then Statement1 gets executed; otherwise,
statement2 gets executed. For example, here we use two variables and find largest number
from two given numbers as follows:

$ vi ternary.awk

BEGIN {
 p = 10; q=20
 (p > q)? max=p: max =q
 print max
 }

$ awk -f ternary.awk

The output on execution of the preceding code is as follows:

20

In the following example, we prefix each line with a number, but we only print the numbers
if the line is not blank. We use the NF built-in variable to find out whether the line in the file
is empty or not, and then use the ternary expression to print the line number followed by
the line itself, as follows:

$ awk '{print (NF? ++a " : " $0 :"")}' emp.dat

The output on execution of the preceding code is:

1 : Jack Singh 9857532312 jack@gmail.com M hr 2000
2 : Jane Kaur 9837432312 jane@gmail.com F hr 1800
3 : Eva Chabra 8827232115 eva@gmail.com F lgs 2100
4 : Amit Sharma 9911887766 amit@yahoo.com M lgs 2350
5 : Julie Kapur 8826234556 julie@yahoo.com F Ops 2500
6 : Ana Khanna 9856422312 anak@hotmail.com F Ops 2700
7 : Hari Singh 8827255666 hari@yahoo.com M Ops 2350
8 : Victor Sharma 8826567898 vics@hotmail.com M Ops 2500
9 : John Kapur 9911556789 john@gmail.com M hr 2200

AWK Expressions Chapter 6

[203]

10 : Billy Chabra 9911664321 bily@yahoo.com M lgs 1900
11 : Sam khanna 8856345512 sam@hotmail.com F lgs 2300
12 : Ginny Singh 9857123466 ginny@yahoo.com F hr 2250
13 : Emily Kaur 8826175812 emily@gmail.com F Ops 2100
14 : Amy Sharma 9857536898 amys@hotmail.com F Ops 2500
15 : Vina Singh 8811776612 vina@yahoo.com F lgs 2300

Unary expressions
An operator that accepts a single operand is called a unary operator, and expressions built
using unary operator are called unary expressions. Increment and decrement operators also
fall under this category.

Unary plus:

It is represented by a single plus (+) symbol. It multiplies a single operand by +1. In the
following example, we assign a variable p with value -5. On applying the unary plus
operator to the variable, it multiplies the variable p with +1 and again stores the result
inside p, as follows:

$ awk 'BEGIN{ p = -5; p = +p; print "p = ",p }'

The output on execution of the preceding code is as follows:

p = -5

Unary minus:

It is represented by a single minus (-) symbol. It multiplies a single operand by -1. In the
following example, we assign a variable p with value -5. On applying the unary minus
operator, it multiplies the variable p by -1 and again stores the result inside p:

$ awk 'BEGIN{ p = -5; p = -p; print "p = ",p }'

The output on execution of the preceding code is as follows:

p = 5

Let us apply the unary minus operator on the salary column of emp.dat and see how it
negates the values stored in that column:

$ awk '{print -$7}' emp.dat

AWK Expressions Chapter 6

[204]

The output on execution of the preceding code is as follows:

-2000
-1800
-2100
-2350
-2500
-2700
-2350
-2500
-2200
-1900
-2300
-2250
-2100
-2500
-2300

Summary table for unary and post/pre-increment operators

Operator Description Number (p=-5) Result

+ Multiplies the number by +1 +p -5

- Multiplies the number by -1 -p 5

v++ Post-increment p++ -5

++v Pre-increment ++p -4

v-- Post-decrement p-- -5

--v Pre-decrement --p -6

Exponential expressions
There are two formats of exponential operators:

Exponential format 1 (^):

This is an exponential operator that raises the value of an operand. For example, the
following example raises the value of 5 by the power of 3:

$ awk 'BEGIN { a = 5; a = a ^ 3; print "a ^ 3 =",a }'

AWK Expressions Chapter 6

[205]

The output on execution of the preceding code is as follows:

a ^ 3 = 125

Exponential format 2 (**):

This also raises the value of an operand. For example, the following example raises the
value of 5 by the power of 3:

$ awk 'BEGIN { a = 5; a = a ** 3; print "a ** 3 =",a }'

The output on execution of the preceding code is as follows:

a ** 3 = 125

String concatenation
There is no specific operation to represent string concatenation. Space is a string
concatenation operator that is used to merge two strings.

In the following example, we create three string variables to perform concatenation at
different locations. In the statement, str3 contains the concatenated value of str1 and
str2. Each print statement performs string concatenation with a static string value and
AWK variable:

$ vi string.awk

BEGIN {
 OFS=","
 str1 = "Good"
 str2 = "Morning"
 num1 = "10"
 str3 = str1 " " str2;
 print "Concatenated string is : " str3
 num1 = num1+1
 print "string to number conversion on addition : " num1
 }

$ awk -f string.awk

The output on execution of the preceding code is as follows :

Concatenated string is : Good Morning
string to number conversion on addition : 11

AWK Expressions Chapter 6

[206]

Since string concatenation does not have a special operator, it is essential to ensure that it
happens at the right time with the right string by enclosing the string to concatenate in
parentheses. For example, here we create a file using redirection. The filename is given by
concatenating two strings. Although in GAWK, there is no need to enclose the string in
parentheses for concatenation, in some versions of AWK, it might give some errors if
parentheses are absent. So, it is always a good practice to enclose the filename within
parentheses, as shown in this example:

$ vi str_fname_concatenate.awk

BEGIN {
 f1="sample"
 f2=".txt"
 print "this is string concatenation example" >(f1 f2)
 }

$ awk -f str_fname_concatenate.awk

On execution of this code, a file by name sample.txt will be created in the same directory
containing the AWK program str_fname_concatenate.awk.

Regular expression operators
When we use the == condition, AWK looks for an exact match. However, when we use the
match operator (~), AWK looks for a partial match. Here, ~ means contains. To match a
specific pattern using regular expression, ~ and !~ are used. Regular expression
comparisons are performed using a matching expression built with either of these two
operators. The right-hand side of the ~ or !~ operator could be a regular expression or
string enclosed between forward slashes (/…/).

Match operator (~):

It is represented as a tilde (~) symbol. It matches a pattern in a specific field. Its syntax is as
follows:

expression ~ /regexpr/

It matches if the string value of the expression contains a sub-string matched by regular
expression regexpr.

AWK Expressions Chapter 6

[207]

For example, if you want to print the records containing Singh or Kapur in last name field
from the employees database emp.dat, use the ~ operator as follows:

$ awk '$2 ~ /(Singh|Kapur)/ { print }' emp.dat

The output on execution of the preceding code is as follows:

Jack Singh 9857532312 jack@gmail.com M hr 2000
Julie Kapur 8826234556 julie@yahoo.com F Ops 2500
Hari Singh 8827255666 hari@yahoo.com M Ops 2350
John Kapur 9911556789 john@gmail.com M hr 2200
Ginny Singh 9857123466 ginny@yahoo.com F hr 2250
Vina Singh 8811776612 vina@yahoo.com F lgs 2300

In the following example, we print the total number of users who have bash as their default
login shell. In this AWK command, if the last field of a line contains the pattern bash, the
AWK variable n gets incremented by one:

$ awk -F ':' '$NF ~ /bash/{n++};END { print n}' /etc/passwd

The output on execution of the preceding code is:

2

Not match operator (!~):

It is represented by !~. It is the opposite of the ~ operator. It matches the fields that do not
contain the specified pattern. Its syntax is as follows:

expression !~ /regexpr/

It matches if the string value of the expression does not contain a sub-string matched by
regular expression regexpr.

For example, if you want to print the records not containing Singh or Kapur in the last
name field from the employees database emp.dat, use !~ as follows:

$ awk '$2 !~ /(Singh|Kapur)/ { print }' emp.dat

The output on execution of the preceding code is as follows:

Jane Kaur 9837432312 jane@gmail.com F hr 1800
Eva Chabra 8827232115 eva@gmail.com F lgs 2100
Amit Sharma 9911887766 amit@yahoo.com M lgs 2350
Ana Khanna 9856422312 anak@hotmail.com F Ops 2700
Victor Sharma 8826567898 vics@hotmail.com M Ops 2500

AWK Expressions Chapter 6

[208]

Billy Chabra 9911664321 bily@yahoo.com M lgs 1900
Sam khanna 8856345512 sam@hotmail.com F lgs 2300
Emily Kaur 8826175812 emily@gmail.com F Ops 2100
Amy Sharma 9857536898 amys@hotmail.com F Ops 2500

Regular expression operators:

Operator Description

~ Match operator

!~ No match operator

Operators' Precedence
It determines how operators are grouped when different operators appear in a single
expression. For example, * has higher precedence than +. So, if we have a + b * c ;it
means multiply b and c and then add a to the result. Precedence of operators can be
overridden by using parentheses.

This is table of AWK's operator precedence order from highest to lowest:

Operator Description

(…) Grouping

$ Field reference

++ or - - Increment, decrement

^ or ** Exponentiation

+, -, ! Unary plus, minus, logical not

*, /, % Multiplication, division or remainder

+, - Addition, subtraction

Space String concatenation

< <= == != > >= >> Relational operators

~ !~ Match and no match operator

in Array membership

AWK Expressions Chapter 6

[209]

&& Logical and

|| Logical or

?: Ternary operator

= += -= *= /= %= ^= **= Assignment operators group right to left

Let us take a look at the following table to summarize the meaning of expression operators:

Operation Operators Example Explanation of example

Assignment = += -= *=
/= %= ^=

p += 2 p = p + 2

Ternary ?: p ? q : r If p is true then p else q

Logical OR || p || q 1 if p or q is true, else 0

Logical AND && p && q 1 if p and q are true else 0

Logical NOT ! ! p 1 if p is zero or null else 0

Match ~ $1 ~ /regex/
1 if first field contains regex
else 0

No match !~
$1 !~
/regex/

1 if first field do not contain
regex else 0

Relational < <=
== != >= >

p == q 1 if p is equal to q else 0

Concatenation Space "p" "qr" "pqr", space merges 2 strings

Arithmetic + - * / % p + q Sum of p and q

Unary plus and minus + - -p Negative value of p

Exponentiation ^ or ** 2 ^ 3 8

Increment, decrement ++ – ++p , p++ Add 1 to p

Grouping () ($i)++ Add 1 to the value of ith field

AWK Expressions Chapter 6

[210]

Summary
In this chapter we learned about different types elements of computation, that is,
expressions in AWK. We learned how they are made up of different types of constants and
variables. Then we learned about building different types of expressions using unary,
binary, assignment, arithmetic, and Relational operators. Then we covered the ternary
operator and string concatenation. Finally, we understood regular expression operators and
their usage, followed by operator precedence.

In the next chapter, we will learn about the usage of different control flow statements in
AWK programs.

7
AWK Control Flow Statements

This chapter covers the control structures of the AWK programming language. This
includes the different types of conditional and looping statements, such as if...else,
do...while, switch...case, and so on available in AWK . The syntax for conditional
and looping constructs is very similar to that of C programming language. If you are
already familiar with C, then you will find it quite easy, and those who are new to
programming will also find it simple and easy to understand.

In this chapter, we will cover the following topics:

Different conditional constructs
if statement usage
switch statement usage
The while loop construct
The for loop construct
Different statements affecting flow controls
Break usage
Next usage
The exit statement

AWK Control Flow Statements Chapter 7

[212]

Conditional statements
Conditional statements such as if and switch are used to test expressions and control the
flow of execution in AWK programs. All control statements start with special keywords
such as if and switch to differentiate them from simple expressions. Within one
conditional statement block, we can have other multiple statements separated by braces,
newlines, or semicolons. Such conditional statements are known as compound statements.

The if statement
if is a conditional statement used to control the flow of a program. AWK supports three
types of if statements:

if

if...else

if...elseif...elseif...

if
This is a single and simple if statement used to test a condition/expression. It executes the
actions given in the body part only if the conditional expression is evaluated as true. Its
syntax is as follows:

if (conditional-expression)

action

if: The keyword
conditional-expression: This represents the condition to be tested
action: An AWK statement for execution

AWK Control Flow Statements Chapter 7

[213]

If two or more actions need to be executed when the condition is true, then those actions
should be enclosed in curly braces. The individual AWK action statements should be
separated by newlines or semicolons as shown here:

if (conditional-expression)

{ action1;

action2;

……… }

If the conditional expression is true, then all the actions enclosed in the braces are executed
in the given order. After the execution of the if block, AWK continues to execute the next
statement, as shown in the following figure:

Figure 7.1: An if statement flowchart

AWK Control Flow Statements Chapter 7

[214]

Let's understand the working of the if statement with some examples. The simplest
conditional expression to test is whether a variable is zero or nonzero:

$ awk 'BEGIN{ x=0; if (x) print x}'

On execution of the preceding code, the print statement will not be executed, as x is zero:

$ awk 'BEGIN{ x=10; if (x) print x}'

On execution of the preceding code, the value stored inside variable x will be printed as, in
the conditional expression, x is nonzero. So, the output is as follows:

10

We can find out whether a number is even or not using an if conditional statement and
print the result, as follows:

$ awk 'BEGIN{ x=4; if (x % 2 == 0) print x " is even number" }'

The output on execution of the preceding code is:

4 is even number

In the following example, we will print details of all cars from the cars.dat database
whose year of manufacturing is 2005 and earlier:

$ awk '{ if ($3 < 2005)print }' cars.dat

The output on execution of the preceding code is as follows:

chevy tavera 1999 10000 4
toyota corolla 1995 95000 2
maruti esteem 1997 98000 1
ford ikon 1995 80000 1
honda accord 2000 60000 2

We can have multiple conditional operators in an if statement, as well. In the following
example, we will print the details of all the cars that were manufactured is between 2000
and 2007 and have a mileage of less than 40000 kilometers:

$ awk '{ if (($3 >= 2000 && $3 < 2007) && ($4 < 40000))print }'
cars.dat

The output on execution of the preceding code is as follows:

chevy beat 2005 33000 2

AWK Control Flow Statements Chapter 7

[215]

If...else
In an if...else statement, we can specify a list of actions to be performed if the
conditional expression becomes false. The syntax of if...else is as follows:

if (conditional-expression)

action1

else

action2

If conditional-expression evaluates to true (nonzero), then action1 is performed, and if
conditional-expression evaluates to false (zero), then action2 is performed, as shown in the
following figure:

Figure 7.2: An if...else statement flowchart

AWK Control Flow Statements Chapter 7

[216]

AWK also has a conditional ternary operator (? :); it is equivalent to the one in C language.
It is the same as an if...else statement. The syntax of the ternary operator is as follows:

conditional-expression ? action1 : action2 ;

Let's understand the working of if...else with some examples. The simplest of all
conditional expressions to test is whether a variable is zero or nonzero:

$ vi check_zero.awk

BEGIN {
 x = 0;
 if (x)
 print "x is non-zero"
 else
 print "x is 0"
 }

$ awk -f check_zero.awk

On execution of the preceding code, the print statement given in the else block will be
executed:

x is 0

We can find out whether a number is even or not by using an if conditional statement and
print the result as follows:

$ vi check_even_odd.awk

BEGIN {
 x = 5;
 if (x % 2 == 0)
 printf("%d is even number\n", x)
 else
 printf("%d is odd number\n", x)
 }

$ awk -f check_even_odd.awk

The output on execution of the preceding code is as follows:

5 is odd number

AWK Control Flow Statements Chapter 7

[217]

In the following example, we will print the details of all cars from cars.dat with the suffix
as OLD MODEL and the suffix NEW MODEL for all others:

$ vi car_old_new.awk

{
if ($3 < 2005)
 print $0, "\t", "**OLD MODEL**"
else
 print $0, "\t", "NEW MODEL"
}

$ awk -f car_old_new.awk cars.dat

The output on execution of the preceding code is as follows:

maruti swift 2007 50000 5 NEW MODEL
honda city 2005 60000 3 NEW MODEL
maruti dezire 2009 3100 6 NEW MODEL
chevy beat 2005 33000 2 NEW MODEL
honda city 2010 33000 6 NEW MODEL
chevy tavera 1999 10000 4 **OLD MODEL**
toyota corolla 1995 95000 2 **OLD MODEL**
maruti swift 2009 4100 5 NEW MODEL
maruti esteem 1997 98000 1 **OLD MODEL**
ford ikon 1995 80000 1 **OLD MODEL**
honda accord 2000 60000 2 **OLD MODEL**
fiat punto 2007 45000 3 NEW MODEL

We can print even records with the output field separator set as "=" and odd records
the OFS set as "||", as follows:

$ vi ifelse1.awk

{
if (NR%2)
{
 OFS="=";
 print NR,$1,$2,$3,$4,$5,$6,$7;
}
else
{
 OFS="||";
 print NR,$1,$2,$3,$4,$5,$6,$7;
}

AWK Control Flow Statements Chapter 7

[218]

}

$ awk -f ifelse1.awk emp.dat

The output on execution of the preceding code is as follows:

1=Jack=Singh=9857532312=jack@gmail.com=M=hr=2000
2||Jane||Kaur||9837432312||jane@gmail.com||F||hr||1800
3=Eva=Chabra=8827232115=eva@gmail.com=F=lgs=2100
4||Amit||Sharma||9911887766||amit@yahoo.com||M||lgs||2350
5=Julie=Kapur=8826234556=julie@yahoo.com=F=Ops=2500
6||Ana||Khanna||9856422312||anak@hotmail.com||F||Ops||2700
7=Hari=Singh=8827255666=hari@yahoo.com=M=Ops=2350
8||Victor||Sharma||8826567898||vics@hotmail.com||M||Ops||2500
9=John=Kapur=9911556789=john@gmail.com=M=hr=2200
10||Billy||Chabra||9911664321||bily@yahoo.com||M||lgs||1900
11=Sam=khanna=8856345512=sam@hotmail.com=F=lgs=2300
12||Ginny||Singh||9857123466||ginny@yahoo.com||F||hr||2250
13=Emily=Kaur=8826175812=emily@gmail.com=F=Ops=2100
14||Amy||Sharma||9857536898||amys@hotmail.com||F||Ops||2500
15=Vina=Singh=8811776612=vina@yahoo.com=F=lgs=2300

The if...else...if statement
We can also create a multilevel if...else...if statement using multiple if...else
statements. Its syntax is as follows:

if (conditional-expression)

action1

else if (conditional-expression)

action2

else if (conditional-expression)

action3

In multilevel if...else...if statement, multiple conditional expressions are used to test
whether one of several possible expression is true or not as shown in Figure 7.3.

AWK Control Flow Statements Chapter 7

[219]

Figure 7.3: An if...else...if statement flowchart

Let's understand the working of if...else...if with some examples. Simplest of all
conditional expression to test is if a value is equal to the value stored in a variable use:

$ vi if_else_if1.awk

BEGIN {
 p = 20;
 if (p == 10)
 print "p = 10"
 else if (p == 20)
 print "p = 20"
 else if (p == 30)
 print "p = 30"
 }

$ awk -f if_else_if1.awk

AWK Control Flow Statements Chapter 7

[220]

The output on execution of the preceding code is as follows:

p = 20

In the following example, we will use the employee database file emp.dat and print
segregates the email IDs of the same domain. First, we use the if conditional expression to
identify the email ID of a particular domain using a regular expression match; then, we use
a redirection operator to create three separate files of those domains containing the same
domain email _id, as follows:

$ vi if_else_if2.awk

{
 if ($4 ~ /gmail/)
 print $4 > "gmail.txt"
 else if ($4 ~ /yahoo/)
 print $4 > "yahoo.txt"
 else if ($4 ~ /hotmail/)
 print $4 > "hotmail.txt"
}

$ awk -f if_else_if2.awk emp.dat

You will get three files in the output on execution of the preceding code in the same
directory containing the AWK program if_else_if2.awk.

The switch statement (a GAWK-specific feature)
The switch statement is a GAWK specific feature which is not available in the default
AWK program. It allows the evaluation of an expression and the execution of statements if
case match. The case statements are checked for a match in the order they are specified. If
none of the preceding given case statement match is found, then the default section is
executed.

AWK Control Flow Statements Chapter 7

[221]

The first switch expression is evaluated and then the output of expression the is compared
with the value given with the case statement. Each case statement contains a value that
could be a numeric, string, or regular expression. The type of constant determines the
comparison with switch expression result. Type of comparison performed (numeric or
string or regular expression) is automatically chosen based on the value used with the case
statement.

Inside each case statement we use break statement to stop execution of switch...case
statement further, otherwise it will go through all the cases till it completes the execution of
the default block as illustrated in Figure 7.4. It's syntax is as follows:

switch (conditional-expression) {

case value or regex :

action1

break

case value or regex :

action2

break

default :

action2

break

}

AWK Control Flow Statements Chapter 7

[222]

Figure 7.4: switch...case statement flowchart

AWK Control Flow Statements Chapter 7

[223]

Let's understand the working of the switch...case statement with some examples. The
simplest conditional expression to test is if a value is equal to the value stored in a variable
use:

$ vi switch1.awk

BEGIN {
 p = "10";
 switch (p) {
 case "a" :
 print "p = a"
 break
 case "20" :
 print "p = 20"
 break
 case "10" :
 print "p = 10"
 break
 default :
 print "No match"
 break
 }
 }

$ awk -f switch1.awk

The output on execution of the preceding code is as follows:

$ p = 10

In the following example, we will use the employee database file emp.dat and print
segregates the email ID of the same domain. First, we use the switch if conditional-
expression to identify the email ID of a particular domain, using a regular expression
match, and then we use a redirection operator to create three separate files of the domains
containing the same domain email _id, as follows:

$ vi switch2.awk

{
 switch ($4) {
 case /gmail/ :
 print $4 > "gmail.txt"
 break
 case /yahoo/ :
 print $4 > "yahoo.txt"
 break
 case /hotmail/ :

AWK Control Flow Statements Chapter 7

[224]

 print $4 > "hotmail.txt"
 break
 default :
 print $4 > "misc_id.txt"
 break
 }
 }

$ awk -f switch2.awk emp.dat

You will get three files in the output on execution of the preceding code in the same
directory containing the AWK program switch2.awk.

Looping statement
A loop is a conditional construct that allows us to perform one or more actions again and
again till the condition is true as specified in expression. In AWK we can specify a loop
using a while, do or for statement.

The while loop
The while is the simplest looping statement in AWK. A while statement has a condition
and a body. The body contains the action statements that are executed till the condition is
true. The condition could be a logical condition or conditional-expression that evaluates to
true. First while statement tests the condition; if the condition evaluates to true, then it
executes the statements specified in the body. Once all the statements specified in the body
have been executed, the condition is again tested and, if it is still true, statements in body
executes again. This process is repeated as long as the condition is true. If the condition
returns false before the first iteration of the loop, the body of the loop never executes and
AWK continues with the statements given after the loop, as illustrated in Figure 7.5. Its
syntax is as follows:

while (condition)

action statement

AWK Control Flow Statements Chapter 7

[225]

The description of different keywords and statement used in while loop syntax above, is as
follows :

while: This is AWK keyword.
condition: This is the conditional expression of logical conditional.
action statement: This is body of while loop. If there is more than one action
statement, then actions must be enclosed within curly braces.

The newline is optional after the right parenthesis:

Figure 7.5: A While statement flowchart

Let's understand the working of while loop with some examples. In the following example
we print the numbers from 1 to 10 number. First, we initialize the counter i to 1, then in
while statement we put the condition if the counter is less than or equal to 10. If the
condition is true, statements given in the body block are executed.

AWK Control Flow Statements Chapter 7

[226]

Here, we print the counter value and then increment the counter. When all statements in the
body block are executed, the condition is again evaluated, and if it is true, the body block is
again executed:

$ vi while1.awk

BEGIN {
 i = 1
 while (i <=10)
 {
 print i
 i++
 }
}

$ awk -f while1.awk

The output on execution of the preceding code is as follows:

1
2
3
4
5
6
7
8
9
10

In the following example, we will print four fields of each record, one field per line, from
the employee database emp.dat to generate labels for employees. The body of the loop is a
compound statement containing an action statement and other conditional
if...else...if statements. First, the value of i is initialized to 1. Then the while
statement tests whether i is less than or equal to 4. If this is true, the statements given
inside the while body are executed.

Then, as the last action statement in the while body, i is incremented using i++ and the
loop repeats. The loop terminates when i attains the value of 5:

$ vi while2.awk

{
 i=1
 while (i<=4)
 {

AWK Control Flow Statements Chapter 7

[227]

 if (i == 1)
 { printf "First Name \t: %s\n", $i }
 else if (i == 2)
 { printf "Last Name \t: %s\n", $i }
 else if (i == 3)
 { printf "Phone number \t: %s\n", $i }
 else if (i == 4)
 { printf "Email id \t: %s\n", $i
 printf "************************************\n"
 }
 i++
 }
}

$ awk -f while2.awk emp.dat

The output on execution of the preceding code is as follows:

First Name : Jack
Last Name : Singh
Phone number : 9857532312
Email id : jack@gmail.com

First Name : Jane
Last Name : Kaur
Phone number : 9837432312
Email id : jane@gmail.com

First Name : Eva
Last Name : Chabra
Phone number : 8827232115
Email id : eva@gmail.com

First Name : Amit
Last Name : Sharma
Phone number : 9911887766
Email id : amit@yahoo.com

First Name : Julie
Last Name : Kapur
Phone number : 8826234556
Email id : julie@yahoo.com

First Name : Ana
Last Name : Khanna
Phone number : 9856422312
Email id : anak@hotmail.com

AWK Control Flow Statements Chapter 7

[228]

..........................

..........................

In the next example, we will use the marks.txt sample file to calculate the total of marks
obtained by the student in different subjects. For each line, the program has to add the
values of field 2 through to the last field. So, we first initialize i=2 before entering the loop
and test using conditional-expression if it has reached the last field in the record (I <= NF).
NF represents the total number of fields in each record, as follows:

$ vi while3.awk

{
 i=2; total=0;
 while (i <=NF)
 {
 total = total +$i;
 i++;
 }
 print "Student Name : ",$1, "\t", "Total Marks : ", total;
}

$ awk -f while3.awk marks.txt

The output on execution of the preceding code is as follows:

Student Name : ram Total Marks : 375
Student Name : amit Total Marks : 323
Student Name : vijay Total Marks : 473
Student Name : satvik Total Marks : 386
Student Name : akshat Total Marks : 353
Student Name : rishi Total Marks : 407
Student Name : tushar Total Marks : 359

do...while loop statement
In the AWK while loop, the condition is checked at entry, so it is called an entry-controlled
loop. The do...while loop is an exit-controlled loop; the condition is checked at exit time.
The do...while loop always executes the body at least once and then repeats the body as
long as the condition is true.

AWK Control Flow Statements Chapter 7

[229]

It differs from the while and for in a way; it tests the conditional-expressions at the bottom
instead of the top, so it will always execute the body once, even if the condition evaluates to
false as illustrated in Figure 7.6. Its syntax is as follows:

do

action statements

while (conditional-expression)

Following figure 7.6 illustrates the working of a do-while loop statement in AWK
programming:

Figure 7.6: A do...while statement flowchart

AWK Control Flow Statements Chapter 7

[230]

Here also, newlines are optional after the keyword do and after action statements. If while
appears on the same line as statement, then the only statement should be terminated by a
semicolon.

Let's understand the working of the while loop with some examples. In the following
example the print statement is executed only once because we ensure that the conditional-
expression evaluates to false. If this were a while statement, with the same initialization of
counter to 1 and conditional-expression, the body of the loop containing action statements
would not be executed once:

$ vi dowhile1.awk

BEGIN {
 counter = 1;
 do
 print "Print this line one time"
 while (counter != 1)
}

$ awk -f dowhile1.awk

The output on execution of the preceding code is as follows:

Print this line one time

In the following example, we will use the marks.txt sample file to calculate the total of
marks obtained by the student in different subjects. For each line, the program has to add
the values of field 2 through the to last field. So, we first initialize i=2 before entering the
loop. Then it execute the loop body followed by a test using conditional-expression if it has
reached last field in record (I <= NF). NF represents the total number of fields in each
record. The output of this program is the same as the while3.awk program, but it uses
the do...while loop construct as follows:

$ vi dowhile2.awk

{
 i=2; total=0;
 do
 {
 total = total + $i;
 i++;
 }
 while (i <= NF)
 print "Student Name : ", $1, "\t", "Total Marks :", total;

AWK Control Flow Statements Chapter 7

[231]

}

$ awk -f dowhile2.awk marks.txt

The output on execution of the preceding code is as follows:

Student Name : ram Total Marks : 375
Student Name : amit Total Marks : 323
Student Name : vijay Total Marks : 473
Student Name : satvik Total Marks : 386
Student Name : akshat Total Marks : 353
Student Name : rishi Total Marks : 407
Student Name : tushar Total Marks : 359

In the following example, we will print four fields of each record, one field per line from
/etc/passwd file to user info from the user database. The body of the loop is a compound
statement containing an action statement and the other conditional if...else...if
statement. First, the value of i is initialized to 1. Then the while statement tests whether i
is less than or equal to 7. If this is true, statements given inside the while body are
executed. Then as last action statement in the while body, i is incremented using i++ and
the loop repeats. The loop terminates when i attains the value of 8:

$ vi dowhile3.awk

BEGIN {
 FS=":"
 }
{
 i=1
 while (i<=7)
 {
 if (i == 1)
 { printf "User Name \t: %s\n", $i }
 else if (i == 3)
 { printf "UID \t\t: %s\n", $i }
 else if (i == 6)
 { printf "Home Directory \t: %s\n", $i }
 else if (i == 7)
 { printf "Default Shell \t: %s\n", $i
 printf "************************************\n"
 }
 i++
 }

AWK Control Flow Statements Chapter 7

[232]

}

$ awk -f dowhile3.awk /etc/passwd

The output on execution of the preceding code is as follows:

User Name : root
UID : 0
Home Directory : /root
Default Shell : /usr/bin/zsh

User Name : daemon
UID : 1
Home Directory : /usr/sbin
Default Shell : /usr/sbin/nologin

User Name : bin
UID : 2
Home Directory : /bin
Default Shell : /usr/sbin/nologin

User Name : sys
UID : 3
Home Directory : /dev
Default Shell : /usr/sbin/nologin

User Name : sync
UID : 4
Home Directory : /bin
Default Shell : /bin/sync

User Name : games
UID : 5
Home Directory : /usr/games
Default Shell : /usr/sbin/nologin

User Name : man
UID : 6
Home Directory : /var/cache/man
Default Shell : /usr/sbin/nologin

..........
..........
..........

AWK Control Flow Statements Chapter 7

[233]

User Name : practice
UID : 1001
Home Directory : /home/practice
Default Shell : /bin/bash

The for loop statement
The AWK for statement functionally works the same as the AWK while loop; however,
the for statement syntax is much easier to use. Its syntax is as follows:

for (initialization; conditional-expression; increment / decrement)

action statements

The description of different keywords and statement used in for loop syntax above is as
follows:

initialization: Sets the initial value for the counter variable
conditional-expression: States a condition that is tested at the top of the loop
increment/decrement: Increment/decrement the counter each time at the bottom of
the loop, just before testing the conditional-expression again

For statement starts by performing initialization action, then it checks the conditional-
expression. If the conditional-expression evaluates to true, it executes the action statements
specified in body part. Thereafter, it performs increment or decrement operation. Then it
checks the conditional-expression, if it is true then AWK again executes the action statement
and the increment/decrement.

AWK Control Flow Statements Chapter 7

[234]

The loop executes as long as the conditional-expression evaluates to true as illustrated in
Figure 7.7:

Figure 7.7: A for loop statement flowchart

Let's understand the working of for loop with some examples. In the following example,
we will print the numbers from 1 to 10. First, we initialize the counter i to 1, then,
in the conditional-expression, we put the condition if the counter is less than or equal to 10.
If the condition is true, the statements given in the body block are executed.

AWK Control Flow Statements Chapter 7

[235]

Here, we print the counter value and then increment the counter. When all statements in the
body block are executed, the condition is again evaluated, and, if it is true, the body block is
again executed:

$ vi for1.awk

BEGIN {
 for (i = 1; i <=10; i++)
 print i
 }

$ awk -f for1.awk

The output on execution of the preceding code is as follows:

1
2
3
4
5
6
7
8
9
10

In the following example, we will print four fields of each record, one field per line, from
the employee database emp.dat to generate labels for employees. The body of the for loop
is a compound statement containing the action statement and other conditional
if...else...if statements. First, the value of i is initialized to 1. Then the for statement
tests whether i is less than or equal to 4. If this is true, the action statements given inside
the for body are executed. Then, as the last action statement, i is incremented using i++
and the loop repeats. The loop terminates when i attains the value of 5:

$ vi for2.awk

{
 for (i =1; i <10 ; i++)
 {
 if (i == 1)
 { printf "First Name \t: %s\n", $i }
 else if (i == 2)
 { printf "Last Name \t: %s\n", $i }
 else if (i == 3)
 { printf "Phone number \t: %s\n", $i }
 else if (i == 4)

AWK Control Flow Statements Chapter 7

[236]

 { printf "Email id \t: %s\n", $i
 printf "************************************\n"
 }
 }
}

$ awk -f for2.awk emp.dat

The output on execution of the preceding code is as follows:

First Name : Jack
Last Name : Singh
Phone number : 9857532312
Email id : jack@gmail.com

First Name : Jane
Last Name : Kaur
Phone number : 9837432312
Email id : jane@gmail.com

First Name : Eva
Last Name : Chabra
Phone number : 8827232115
Email id : eva@gmail.com

First Name : Amit
Last Name : Sharma
Phone number : 9911887766
Email id : amit@yahoo.com

First Name : Julie
Last Name : Kapur
Phone number : 8826234556
Email id : julie@yahoo.com

..........
..........

In the next example, we will use the marks.txt sample file to do the total of marks
obtained by the student in different subjects. For each line, the program has to add the
values of field 2 through to the last field. So, we first initialize i=2 before entering the loop
and test using conditional-expression if it has reached the last field in the record (i <= NF).
NF represents the total number of fields in each record, as follows:

$ vi for3.awk

{

AWK Control Flow Statements Chapter 7

[237]

 total=0;
 for (i=2; i <=NF; i++)
 {
 total = total + $i;
 }
 print "Student Name : ",$1, "\t", "Total Marks : ", total;
}

$ awk -f for3.awk marks.txt

The output on execution of the preceding code is as follows:

Student Name : ram Total Marks : 375
Student Name : amit Total Marks : 323
Student Name : vijay Total Marks : 473
Student Name : satvik Total Marks : 386
Student Name : akshat Total Marks : 353
Student Name : rishi Total Marks : 407
Student Name : tushar Total Marks : 359

For each loop statement
This is a special loop which is used for processing arrays only. Other variables, constants
and functions cannot to be used with this type of loop. (Refer Chapter 4, Working with
Arrays in AWK).

Statements affecting flow control
Till now we have seen different conditional constructs and loop construct such
as if...else, while, for, switch and do statements. Now, we will study break,
continue and exit statements which are used to alter the normal flow of program. A loop
performs a set of repetitive tasks until the conditional-expression becomes false, but
sometimes it is desirable to skip some action statements inside the loop or terminate the
loop immediately without checking the conditional-expression. In such cases, break and
continue statements are used.

AWK Control Flow Statements Chapter 7

[238]

Break usage
The break statement is used to terminate the innermost while, do...while, or for loop
that encloses it. The break statement is also used to break out of switch statement. It is
meaningful if used inside a loop or with a switch statement because, outside the body of a
loop or switch, it has no meaning. All loop constructs have their termination conditional-
expression, however sometimes it is possible that you achieve your goal before all iterations
have been executed. In such cases break statement is used. Use of the break statement
with while loop is illustrated in Figure 7.8:

Figure 7.8: A while loop flowchart with break statement

AWK Control Flow Statements Chapter 7

[239]

Let's understand the working of the break statement with some examples. In the following
example, we use car database file cars.dat to print records that contains 1995 in any
field, using while loop and break statement. Here loop is set to iterate for each field of
current input record. Each time through the loop, the value 1995 is compared with the
value of the field referenced as $i. If the result is true, we print the record followed by
string OLD MODEL and then do break from the loop. With the use of break, we make sure
that with the first match of 1995 in the line, we print the comment OLD MODEL and don't
iterate through the remaining fields:

$ vi break1.awk

{
 i=1;
 while (i <= NF)
 {
 if ($i == 1995)
 {
 print $0,"OLD MODEL"
 break;
 }
 i++
 }
}

$ awk -f break1.awk cars.dat

The output on execution of the preceding code is as follows:

toyota corolla 1995 95000 2 OLD MODEL
ford ikon 1995 80000 1 OLD MODEL

In the next example, we will create an infinite loop by passing a conditional expression set
as 1. To break the loop, we have to press Ctrl + C:

$ vi break2.awk

BEGIN {
 while (1)
 print "infinite loop"
 }

$ awk -f break2.awk

AWK Control Flow Statements Chapter 7

[240]

The preceding loop prints the infinite loop string forever because the conditional-
expression is always true. So, we modify the loop to execute exactly 10 times only,
using the break statement inside the loop. Here, break causes the loop to terminate
immediately and continue the execution at the line after the loop's code block:

$ vi break3.awk

BEGIN {
 x=1
 while(1)
 {
 print x,"iteration"
 if (x == 10)
 {
 break
 }
 x++
 }
 print "This statement is outside while loop..!"
}

$ awk -f break3.awk

The output on execution of the preceding code is as follows:

1 iteration
2 iteration
3 iteration
4 iteration
5 iteration
6 iteration
7 iteration
8 iteration
9 iteration
10 iteration
This statement is outside while loop..!

Usage of continue
Like break, the continue statement is also used only inside do, while, and for loops. It is
used to skip the statements given after the continue keyword inside the loop body and
execute the next iteration of the loop. It is useful when we want to skip a statement from
getting executed but don't want to break the loop. The usage of the continue statement
with a while loop is illustrated in Figure 7.9:

AWK Control Flow Statements Chapter 7

[241]

Figure 7.9: A while flowchart with continue statement

The continue statement does not have any special meaning with the switch...case
statement and also no meaning if used outside the loop.

AWK Control Flow Statements Chapter 7

[242]

Let's understand the working of the continue statement with some examples. In the
following example, we print the even numbers between 1 to 20 as follows:

$ vi continue1.awk

BEGIN {
 i=0
 while (i <= 20)
 {
 i++
 if (i%2 == 0)
 print i
 else
 continue
 }
}

$ awk -f continue1.awk

The output on execution of the preceding code is as follows:

2
4
6
8
10
12
14
16
18
20

In the next example, we will print information of employee database, field by field, for each
record in the database emp.dat, except the field 2, field 5 or field 6 or field 7. The if
conditional statement inside loop tests the field number, and if it is 2, 5, 6, or 7, then the
continue statement is executed and it skips the remaining statement inside the for loop
and begins the next iteration, as follows:

$ vi continue2.awk

{
for (x=1; x <=NF; x++)
 {
 if (x == 2 || x == 5 || x == 6 || x == 7)
 continue
 printf("%s\t", $x)
 }

AWK Control Flow Statements Chapter 7

[243]

 printf("\n")
}

$ awk -f continue2.awk emp.dat

The output on execution of the preceding code is as follows:

Jack 9857532312 jack@gmail.com
Jane 9837432312 jane@gmail.com
Eva 8827232115 eva@gmail.com
Amit 9911887766 amit@yahoo.com
Julie 8826234556 julie@yahoo.com
Ana 9856422312 anak@hotmail.com
Hari 8827255666 hari@yahoo.com
Victor 8826567898 vics@hotmail.com
John 9911556789 john@gmail.com
Billy 9911664321 bily@yahoo.com
Sam 8856345512 sam@hotmail.com
Ginny 9857123466 ginny@yahoo.com
Emily 8826175812 emily@gmail.com
Amy 9857536898 amys@hotmail.com
Vina 8811776612 vina@yahoo.com

Exit usage
As the name suggests, the exit statement is used to immediately stop the execution of
AWK script. On getting the exit statement at any place in AWK script, AWK stops
executing current rule and current processing of input. Any remaining input if any is
ignored. The syntax of the exit statement is as follows :

exit [return status]

It accepts an integer value as an argument to set the exit/return status of the AWK
process. Supplying of a return status as an argument is optional. If no argument is given to
the exit statement, it returns the exit status as zero.

If an exit statement is executed from the BEGIN statement, the program stops processing
everything immediately and no input records are read. And if an END statement is present,
after the execution of the exit statement, the END statement is executed:

$ vi exit1.awk

BEGIN {
 x=1

AWK Control Flow Statements Chapter 7

[244]

 while(1)
 {
 print x,"iteration"
 if (x == 10)
 {
 exit(5)
 }
 x++
 }
 print "This statement is outside while loop..!"
}
END { print "Inside exit statement" }

$ awk -f exit1.awk

The output on execution of the preceding code is as follows:

1 iteration
2 iteration
3 iteration
4 iteration
5 iteration
6 iteration
7 iteration
8 iteration
9 iteration
10 iteration
Inside exit statement

To view the exit status (return status) of the AWK program, execute the following
command:

$ echo $?

The output on execution of the preceding code is as follows:

5

In the following program, we use the exit statement to exit the AWK program with
different exit codes for different conditions. Here, if the length of line in the file is greater
then 60 characters, the program exits with exit status 2, and if number of lines in the file is
less than 60 characters, it exits with exit status 1, as follows:

$ vi exit2.awk

{
 if (length($0) > 60)

AWK Control Flow Statements Chapter 7

[245]

 {
 exit 2
 }
 else if (length($0) < 60)
 {
 exit 1
 }
 print
}

$ awk -f exit2.awk emp.dat

$ echo $?

The output on execution of the preceding code is as follows:

2

Next usage
The next command is also used to change the flow of an AWK program. It causes the AWK
to stop processing the current input record or pattern space and go on to next record. The
program reads the next line and starts executing the commands again with the newline.

If we consider the analogy of AWK program execution with a loop that reads an input
record and then performs the pattern matching against it, then the next statement is
equivalent to the continue statement. It skips to the end of the body of the loop and begins
the next iteration. Similarly, on getting next statement execution, the remaining AWK
commands are not processed for current input record. The next input record is read and the
execution of the AWK command in the given script begins from start.

In the following program, AWK processes the input record one by one and prints each field
separated by tab. On getting the field match to the string akshat, it skips the subsequent
printf commands and reads the next input record for processing, as follows:

$ vi next.awk

{
 for (i = 1; i <= NF; i++)
 {
 if ($i == "akshat")
 {
 next
 }

AWK Control Flow Statements Chapter 7

[246]

 printf ("%s\t", $i)
}
 printf ("\n")
}

$ awk -f next.awk marks.txt

The output on execution of the preceding code is as follows:

ram 80 78 60 85 72
amit 64 67 69 61 62
vijay 90 98 92 96 97
satvik 81 74 72 79 80
rishi 85 80 82 76 84
tushar 70 82 68 79 60

Following is a summary of control flow statement:

Construct Explanation

{ statements } Grouping of statements

If (conditional-expression) action
statement

If the expression is true, execute the action
statements

If (conditional-expression) action1 else
action2

If the expression is true, execute action1, else
action2

Switch (expr) case1 (match) action1
case2(match) action2..

If case1 matches expr, execute action1; if case2
matches expr, execute action2, and so on

While (conditional-expression) action If the expression is true, execute the action
statements

Do actions while (conditional-expression) Execute the action statement, if the expression is
true, repeat

For (exp1 ; exp2; exp3) action statement First initialize with exp1, then if exp2 is true,
execute action statements, then execute exp3

For (var in array) action statement Execute statement with var set to each subscript
in array in each turn

Break Immediately exit innermost loop (while, do and
for)

Continue Start next iteration of innermost loop (while, do
and for)

AWK Control Flow Statements Chapter 7

[247]

Next Start next iteration of main input loop

Exit return status Exit AWK script, setting return status

Summary
In this chapter, we learned about the different types of control structures that are used in
the AWK programming language. We learned types of conditional statements such as if,
if...else, if...else...if, and switch...case. Then we learned about different
looping constructs like while, do...while, and for loops. Finally, we saw the usage of
different flow control statements such as break, continue, exit, and next.

In next chapter, we will learn about the different types of built-in and user-defined
functions available in AWK.

8
AWK Functions

A function, also known as a named procedure, is a set of instructions that is used by
programming languages to return a single result or a set of results. The statement that
requests the function is called a function call. The functions extend the usefulness and
functionality of AWK. This chapter covers the different types of built-in functions that are
available in AWK. The built-in functions of AWK are generally divided into three
categories, namely numeric, string, and I/O. Apart from these, we will cover the additional
functions provided by GAWK to represent time, to provide type information, and to enable
bit manipulation. Then, we will discuss how AWK is used for writing user-defined
functions for use in the rest of the program.

In this chapter, we will cover the following topics:

Arithmetic functions
String functions
Input/output functions
Time functions
Bit-manipulating functions
User-defined functions

Built-in functions
Built-in functions are always available to the programmer for use in the program. This
section covers the built-in functions in AWK. These functions generally accept arguments as
input and return a value. Whitespace is ignored between the built-in function name and the
opening parenthesis; however, we should avoid using whitespace in this way as user-
defined functions do not permit whitespace.

AWK Functions Chapter 8

[249]

If an expression is given as an argument to the function, the expression is evaluated before
the call is made to the function. For example:

In the preceding case, p is incremented to the value of 6 before the sqrt function is called. It
is good practice to evaluate the expression first and then pass the argument to the function.

Arithmetic functions
Arithmetic functions are those built-in functions that deal with numbers. The optional
argument is enclosed in square brackets ([]).

The sin (expr) function
The sin(expr) function returns the sine of the expression expr, where expr is expressed
in radians. The following code block shows an example of a sine function:

$ vi sinefunc.awk

BEGIN {
 print "sin(90) = ", sin(90);
 print "sin(45) = ", sin(45);
 }

$ awk -f sinefunc.awk

The output of the execution of the previous code is as follows:

sin(90) = 0.893997
sin(45) = 0.850904

The cos (expr) function
The cos (expr) function returns the cosine of the expression expr, where expr is
expressed in radians. The following code block shows an example of a cosine function:

$ vi cosfunc.awk

BEGIN {
 print "cos(90) = ", cos(90);

AWK Functions Chapter 8

[250]

 print "cos(45) = ", cos(45);
 }

$ awk -f cosfunc.awk

The output of the execution of the previous code is as follows:

cos(90) = -0.448074
cos(45) = 0.525322

The remaining trigonometric functions, such as sec(), cosec(), tan(), and cot(), are
measured in radians, and can be obtained with the use of the sin() and cos() functions.

The atan2 (x, y) function
The atan2 (x,y) function returns the arc tangent of x/y in radians. It is similar to the arc
tangent, except that the signs of both arguments are used to determine the quadrant of the
result, which is expressed in radians. The following code block shows an example of
the atan2 function:

$ awk 'BEGIN { print "atan2(45,30) = ",atan2(45,30)}'

The output of the execution of the previous code is as follows:

atan2(45,30) = 0.982794

The int (expr) function
The int (expr) function returns the truncated numeric value by removing the digits to
the right of the decimal point for the given argument that is the lowest integer of the given
number that is returned. If a whole number is given as an argument, it is returned as such,
whereas if a floating point number is given as an argument, it returns an integer value
truncated towards zero. It does not round the argument value up or down. The following
code block shows an example of an integer function:

$ vi intfunc.awk

BEGIN {
 print "int(3.5678) = ", int(3.5678);
 print "int(5.9876) = ", int(5.9876);
 print "int(4) = ", int(4);
 print "int(-3.1234)= ", int(-3.1234);
 print "int(-4) = ", int(-4);

AWK Functions Chapter 8

[251]

 }

$ awk -f intfunc.awk

The output of the execution of the previous code is as follows :

int(3.5678) = 3
int(5.9876) = 5
int(4) = 4
int(-3.1234)= -3
int(-4) = -4

The exp (expr) function
The exp(expr) function returns the natural exponential (e^x) of an expression given as an
argument. It is also known as base-e exponentiation. The exp (expr) function reports an
error if the expression is out of range. The maximum value of the argument supplied to the
exp (expr) depends on the computer system's floating-point representation. The
following code block shows an example of an exp(expr) function:

$ vi expfunc.awk

BEGIN {
 print "exp(1) = ", exp(1);
 print "exp(0) = ", exp(0);
 print "exp(-12) = ", exp(-12);
}

$ awk -f expfunc.awk

The output of the execution of the previous code is as follows :

exp(1) = 2.71828
exp(0) = 1
exp(-12) = 6.14421e-06

The log (expr) function
The log (expr) function is the inverse of the exp(expr) function. The log (expr)
function returns the natural logarithm of the expression given as an argument. The
expression used as an argument must evaluate to a positive number or an error message
NaN (not a number) will be thrown by the function.

AWK Functions Chapter 8

[252]

In addition to the error message, it will print a warning message if a negative number is
used as an argument to the log() function. The following code block shows an example of
a log(expr) function:

$ vi logfunc.awk

BEGIN {
 print "log(5) = ", log(5);
 print "log(0) = ", log(0);
 print "log(-1) = ", log(-1);
}

$ awk -f logfunc.awk

The output of the execution of the previous code is as follows :

log(5) = 1.60944
log(0) = -inf
awk: logfunc.awk:4: warning: log: received negative argument -1
log(-1) = nan

The sqrt (expr) function
The sqrt(expr) function returns the positive square root for the given integer evaluated
from the expr expression. This function also requires a positive number as an argument;
otherwise, it returns an error message NaN for a negative number. It also prints a warning
message if a negative number is used as an argument. The following code block shows an
example of a sqrt (expr) function:

$ vi sqrtfunc.awk

BEGIN {
 print "sqrt(5) = ", sqrt(5);
 print "sqrt(0) = ", sqrt(0);
 print "sqrt(-5) = ", sqrt(-5);
 }

$ awk -f sqrtfunc.awk

The output of the execution of the previous code is as follows:

sqrt(5) = 2.23607
sqrt(0) = 0
awk: sqrtfunc.awk:4: warning: sqrt: called with negative argument -5
sqrt(-5) = -nan

AWK Functions Chapter 8

[253]

The rand() function
The rand() function returns a random number x, between 0 and 1, such that 0 <= x <1. The
value returned by the random function could be zero but it is never returned as zero. In
AWK, rand() starts generating numbers from the same starting number (also known as the
seed) on each run. The algorithm used to generate the random numbers is fixed, so
the numbers are repeatable. Numbers are random within one AWK run, but they are
predictable from run to run. To generate different numbers in each run, you must change
the seed value for each run. This is generally done using srand(). The following code
block shows an example of a rand(expr) function:

$ vi rand1.awk

BEGIN {
 print "Random num1 = ", rand()
 print "Random num2 = ", rand()
 print "Random num3 = ", rand()
 }

$ awk -f rand1.awk

The output of the execution of the previous code is as follows:

Random num1 = 0.237788
Random num2 = 0.291066
Random num3 = 0.845814

Upon executing the previous code multiple times, it will generate the same numbers in the
output. Often, random numbers are required to be integers. The
following example generates 10 random repeatable numbers between 0 and 100 and
displays each number generated, as follows:

$ vi rand2.awk

BEGIN {
 i=0;
 while(i <= 10)
 {
 n=int(rand()*100);
 rand_num[i]=n;
 i++;
 }
 for (i=0; i<=10; i++)
 {
 print "Random number is : ", rand_num[i] ;
 }

AWK Functions Chapter 8

[254]

}

$ awk -f rand2.awk

The output of the execution of the previous code is as follows:

Random num1 = 0.237788
Random num2 = 0.291066
Random num3 = 0.845814

The srand ([expr]) function
The srand([expr]) function generates the random number with the given argument
integer set as the seed value. Whenever the program execution starts, AWK generates its
random number from the seed value that is given as the argument. If no argument is given,
AWK uses the time of day to generate the seed, and thus, without an argument, it always
generates different random numbers.

Generally, the srand ([expr]) function is used to set the seed value for the rand function
and then the rand() function is used for random value creation. The following code block
shows an example of a srand ([expr]) function:

$ vi srand1.awk

BEGIN {
 print "Random num1 = ", srand()
 print "Random num2 = ", srand()
}

$ awk -f srand1.awk

The output of the execution of the previous code is as follows:

Random num1 = 1
Random num2 = 1517928812

Let's generate random numbers using the srand() function. To do this, we initialize and
set the seed value to 5, using the srand() function. Then, the rand() function is used to
generate a random number that is multiplied with the desired value to generate numbers
less than 50. This time, we check whether the generated random number already exists in
the array. If the number exists, it increments the index and loop count.

AWK Functions Chapter 8

[255]

This program will generate five numbers using this process. Finally, it prints the value from
the minimum to the maximum value:

$ vi srand2.awk

BEGIN {
 srand(5);
 total_num=5;
 count=0;
 while(count < total_num)
 {
 n=int(rand()*50);
 rand_num[count]=n;
 count++;
 }
 asort(rand_num)
 for (i in rand_num)
 {
 print rand_num[i]
 }
}

$ awk -f srand2.awk

The output of the execution of the previous code is as follows:

14
16
23
33
35

Different versions of AWK generate different random numbers.

AWK Functions Chapter 8

[256]

Summary table of built-in arithmetic functions
The following table summarizes the different built-in arithmetic functions available in
AWK:

Function Value returned

sin(x) Returns the sine of x, with x in radians

cos(x) Returns the cosine of x, with x in radians

atan2(x,y) Returns the arc tangent of x/y in the range of -22/7 to +22/7

int(x) Returns the integer part of x, truncated towards 0

log(x) Returns the natural (base-e) logarithm of x

exp(x) Returns e to the power of x , e^x

sqrt(x) Returns the square root of x

rand() Generates the random number x, where 0 <= x < 1

srand() X is the new seed value for rand()

String functions
The built-in string functions are much more significant as AWK is primarily designed as a
string-processing language. These functions enhance AWK's power and functionality. In
this section, we will discuss the following functions in detail:

index (str, sub)

length (string)

split (str, arr, regex)

substr (str, start, [length])

sub (regex, replacement, string)

gsub (regex, replacement, string)

gensub (regex, replacement, occurrence, [string])

match (string, regex)

tolower (string)

toupper (string)

sprintf (format, expression)

strtonum (string)

AWK Functions Chapter 8

[257]

The index (str, sub) function
The index (str,sub) function is used to get the index (location) of the given substring (or
character) in an input string. On a success, it returns the position where the
substring started; otherwise, it returns 0. The first character of the input str string is at
position 1. If the substring consists of two or more characters, all of those characters should
match in the same order for a nonzero return value. This function is useful for checking
proper input conditions. The following is an example of the index (str, sub) function:

$ vi index.awk

BEGIN {
 str = "Awk is a powerful utility. Unix is awesome."
 search = "power"
 location = index(str, search)
 printf("Substring \"%s\" found at location : %d\n", search,
location)

 if (index(str, ",") == 0)
 {
 print "Comma (,) not found in sentence"
 }
}

$ awk -f index.awk

The output of the execution of the previous code is as follows:

Substring "power" found at location : 10
Comma (,) not found in sentence

The length (string) function
The length (string) function is used to calculate the length of a string. If the string is a
number, the length of the digits in the string representing the number is returned—for
example:

$ vi length1.awk

BEGIN {
 print "Example of length calculation of string"
 print "length(hello..!) : " length("hello..!")
 print "Example of length calculation of number"
 print "length(10*20) : " length(10*20)

AWK Functions Chapter 8

[258]

}

$ awk -f length1.awk

The output of the execution of the previous code is as follows:

Example of length calculation of string
length(hello..!) : 8
Example of length calculation of number
length(10*20) : 3

If no argument is given to the length function, then it returns the length of $0. For example,
we can use the length function to ignore empty lines by checking the length of each line
before processing it. In the next example, we use the length function to print all lines
shorter than 80 characters in the center of the screen, as follows:

$ vi length2.awk

{
 if (length($0) < 80)
 {
 prefix = "";
 for (i = 1; i < (80-length($0)) / 2 ;i++)
 prefix = prefix " ";
 print prefix $0;
 }
 else
 {
 print;
 }
}

$ awk -f length2.awk

The output of the execution of the previous code is as follows:

 maruti swift 2007 50000 5
 honda city 2005 60000 3
 maruti dezire 2009 3100 6
 chevy beat 2005 33000 2
 honda city 2010 33000 6
 chevy tavera 1999 10000 4
 toyota corolla 1995 95000 2
 maruti swift 2009 4100 5
 maruti esteem 1997 98000 1

AWK Functions Chapter 8

[259]

 ford ikon 1995 80000 1
 honda accord 2000 60000 2
 fiat punto 2007 45000 3

The split (str, arr, regex) function
The split function splits the str string using a field separator specified using regex and
stores it into the arr array. It returns the number of array elements created on splitting the
string. If no separator is specified, then the string is split using the current field separator
(FS) value. The following example illustrates the usage of the split function:

$ vi split1.awk

BEGIN {
 string = "one-two-three-four"
 regex = "-"
 n = split (string, arr, regex)
 print "Array contains the following values: "
 for (i=1; i<=n; i++)
 {
 printf("arr[%d] : %s\n", i, arr[i])
 }
}

$ awk -f split1.awk

The output of the execution of the previous code is as follows:

Array contains the following values:
arr[1] : one
arr[2] : two
arr[3] : three
arr[4] : four

We can specify multiple separators using a regular expression, as shown in the following
example:

$ vi split2.awk

BEGIN {
 string = "one:two+three=four"
 regex = "[:,+,=]"
 n = split (string, arr, regex)
 print "Array contains the following values: "
 for (i=1; i<=n; i++)
 {

AWK Functions Chapter 8

[260]

 printf("arr[%d] : %s\n", i, arr[i])
 }
}

$ awk -f split2.awk

The output of the execution of the previous code is as follows:

Array contains the following values:
arr[1] : one
arr[2] : two
arr[3] : three
arr[4] : four

The substr (str, start, [length]) function
The substr (str,start, [length]) function is used to extract a portion of a string.
It returns the substring from the str string, starting from the character number's start, and
its length is the number of characters to extract. If the length is not given as an argument to
the function, then the remaining string from the starting position to the end of the string is
extracted. If the starting position is less than 1, then it is treated as if it were one. If the
starting position is greater than the number of characters in the string, it returns the null
string. If the length is present but less than or equal to zero, it returns the null string. The
first character of the string is character number one. The following is an example of the
substring function:

$ vi substr1.awk

BEGIN {
 str = "Winter is coming.!"
 print "STRING IS : ", str
 # substr function with start position and length
 printf("substr(str, 5, 5) : %s\n", substr(str, 5, 5));
 # substr function with start position only
 printf("substr(str, 5) : %s\n", substr(str, 5));
 # substr function with less than 1 as start position is treated as 1
 printf("substr(str, -1, 5) : %s\n", substr(str, -1, 5));
 # substr function with start position more than number of char in
string returns null string
 printf("substr(str, 25, 5) : %s\n", substr(str, 25, 5));
}

$ awk -f substr1.awk

AWK Functions Chapter 8

[261]

The output of the execution of the previous code is as follows:

STRING IS : Winter is coming.!
substr(str, 5, 5) : er is
substr(str, 5) : er is coming.!
substr(str, -1, 5) : Winte
substr(str, 25, 5) :

In the next example, we specify the third field from the employee database file emp.dat to
print the first five characters from that field, as follows:

$ awk '{ print substr($3,1,5)}' emp.dat

The output of the execution of the previous code is as follows:

98575
98374
88272
99118
88262
98564
88272
88265
99115
99116
88563
98571
88261
98575
88117

So we can say that the substring function has two use cases, one with length and one
without length in the function argument.

The sub (regex, replacement, string) function
GAWK and NAWK have seed-like string substitution functions, such as sub, gsub, match,
and gensub. The sub function is used to substitute an original substring with a new
substring from the given string. The original substring can be a regular expression. If the
string in which the substitution is to be performed is not given, then $0 is assumed to be the
searched string.

AWK Functions Chapter 8

[262]

The sub() function only changes the first occurrence of the matched substring with the
replacement substring once in a line. If the regular expression is not enclosed in forward
slashes in the first argument of the sub function, then it is treated as a variable containing a
regular expression. If the special character & is used as the replacement of the string, it
represents the substring that was matched by the regular expression.

The following example illustrates how the sub function works:

$ vi sub1.awk

BEGIN {
 str = "Unix is Beautiful"
 original_substring = "Unix"
 replacement_substring = "Awk"
 print "String before replacemnt = " str
 sub(original_substring, replacement_substring, str)
 print "String after replacement = " str
}

$ awk -f sub1.awk

The output of the execution of the previous code is as follows:

String before replacemnt = Unix is Beautiful
String after replacement = Awk is Beautiful

Now, in our next example, we put multiple occurrences of Unix in a single string. With
the sub function, we can substitute only the first occurrence of a string in a single sentence,
as seen in the following code block:

$ vi sub2.awk

BEGIN {
 str = "Linux is derived from Unix. Unix is oldest OS."
 sub("Unix", "YOONIX", str);
 print str;
}

$ awk -f sub2.awk

The output of the execution of the previous code is as follows:

Linux is derived from YOONIX. Unix is oldest OS.

AWK Functions Chapter 8

[263]

If the third argument is not given, $0 is taken to be the string in the search, as shown in
following example:

$ awk '{sub("maruti","MARUTI");print $0}' cars.dat

The output of the execution of the previous code is as follows:

MARUTI swift 2007 50000 5
honda city 2005 60000 3
MARUTI dezire 2009 3100 6
chevy beat 2005 33000 2
honda city 2010 33000 6
chevy tavera 1999 10000 4
toyota corolla 1995 95000 2
MARUTI swift 2009 4100 5
MARUTI esteem 1997 98000 1
ford ikon 1995 80000 1
honda accord 2000 60000 2
fiat punto 2007 45000 3

The function returns 1 if a substitution occurs successfully and 0 if it does not. The
following example illustrates this functionality of the sub function:

$ awk '{ if (sub("maruti","MARUTI SUZUKI"))print $0}' cars.dat

The output of the execution of the previous code is as follows:

MARUTI SUZUKI swift 2007 50000 5
MARUTI SUZUKI dezire 2009 3100 6
MARUTI SUZUKI swift 2009 4100 5
MARUTI SUZUKI esteem 1997 98000 1

In the following example, we use the regular expression for substituting the J with j in the
employee database if it is the first character on the line:

$ awk '{if (sub(/^J/, "j"))print}' emp.dat

The output of the execution of the previous code is as follows:

jack Singh 9857532312 jack@gmail.com M hr 2000
jane Kaur 9837432312 jane@gmail.com F hr 1800
julie Kapur 8826234556 julie@yahoo.com F Ops 2500
john Kapur 9911556789 john@gmail.com M hr 2200

AWK Functions Chapter 8

[264]

In the following example, we illustrate the use of & in a replacement string to represent the
string matched in the original string. In this example, we search for the lines that begin with
the maruti string and replace that string with & Suzuki. Here, & represents the original
string match, maruti, so the new replacement string becomes maruti Suzuki, as follows:

$ awk '{if (sub(/^maruti/, "& Suzuki"))print}' cars.dat

The output of the execution of the previous code is as follows:

maruti Suzuki swift 2007 50000 5
maruti Suzuki dezire 2009 3100 6
maruti Suzuki swift 2009 4100 5
maruti Suzuki esteem 1997 98000 1

The gsub (regex, replacement, string) function
gsub stands for global substitution (replace everywhere). It replaces every occurrence of a
regular expression (original string) with the replacement string in the given string. The
third argument is optional. If it is not specified, then $0 is used.

The gsub() function returns the number of substitutions made. The special character &
works the same way as it worked in the sub() function earlier. It is similar to the g option
used in sed, for converting all the occurrences apart from the first. So, if a pattern occurs
more than once per line or string, the substitution will be performed for each pattern. The
following example illustrates how the gsub() function works.

In this example, we have multiple occurrences of Unix in a single string. With the gsub
function, we substitute all the occurrences of a string in a single sentence, as opposed to the
sub function where we could convert only the first occurrence:

$ vi gsub1.awk

BEGIN {
 str = "Linux is derived from Unix. Unix is oldest OS."
 gsub("Unix", "YOONIX", str);
 print str;
}

$ awk -f gsub1.awk

AWK Functions Chapter 8

[265]

The output of the execution of the previous code is as follows:

Linux is derived from YOONIX. YOONIX is oldest OS.

As it was with the sub() function, if the third argument is not given, $0 is taken to be the
string for the search, as shown in the following example:

$ awk '{gsub("maruti","MARUTI");print $0}' cars.dat

The output of the execution of the previous code is as follows:

MARUTI swift 2007 50000 5
honda city 2005 60000 3
MARUTI dezire 2009 3100 6
chevy beat 2005 33000 2
honda city 2010 33000 6
chevy tavera 1999 10000 4
toyota corolla 1995 95000 2
MARUTI swift 2009 4100 5
MARUTI esteem 1997 98000 1
ford ikon 1995 80000 1
honda accord 2000 60000 2
fiat punto 2007 45000 3

The gsub function can be used with the if condition only if there is one substitution of a
string in the single line because it returns the number of the string substitution.

The gensub (regex, replacement, occurrence, [string])
function
gensub stands for general substitution. It adds more features that are not available in
the sub() and gsub() functions. With gensub(), we can specify the number
of occurrences of the matched regular expression that is to be replaced. It returns the
modified string as the result of executing the function, and the original string is not
changed. Its syntax is as follows:

gensub (regex for original-string, replacement-string, occurrence-number,
[string])

regex for original-string: This is the original string that needs to be
replaced. This can also be a regular expression.
replacement-string: This is the new string that is to be used for substitution.

AWK Functions Chapter 8

[266]

Occurrence-number: This is the number of occurrences of the matched regex
that is to be substituted. If g or G is used, then it means that all occurrences of the
match are to be substituted.
String: This is an input string variable whose contents will get modified upon
the execution of the function. This option is optional. If it is not specified, then the
current input record ($0) is used.

The special character & works the same way as it worked in the sub() and gsub()
functions earlier. The following example illustrates how the gensub() function works:

$ vi gensub1.awk

BEGIN {
 str = "Linux is derived from Unix. Unix is oldest OS."
 newstr = gensub(/Unix/, "YOONIX", "g", str)
 print "NEW STRING : "newstr;
 print "OLD STRING : "str;
}

$ awk -f gensub1.awk

The output of the execution of the previous code is as follows:

NEW STRING : Linux is derived from YOONIX. YOONIX is oldest OS.
OLD STRING : Linux is derived from Unix. Unix is oldest OS.

In this example, we use the third argument to control the substitution by specifying the
number of regular expressions that should be changed. Here we use the same string used in
the previous example to change the second occurrence of Unix and not the first, as follows:

$ vi gensub2.awk

BEGIN {
 str = "Linux is derived from Unix. Unix is oldest OS."
 newstr = gensub("Unix", "YOONIX", 2, str);
 print newstr;
}

$ awk -f gensub2.awk

The output of the execution of the previous code is as follows:

Linux is derived from Unix. YOONIX is oldest OS.

AWK Functions Chapter 8

[267]

The gensub() function also provides an additional feature that is not available in sub()
and gsub(). It modifies the specific components of a regular expression in the replacement
string (this is also known as backreferencing in regular expressions). This is achieved using
\N in the replacement string, where the value of N varies from 1 to 9. The following example
illustrates how it works:

$ vi gensub3.awk

BEGIN {
 str = "hello:world"
 newstr = gensub(/(.+):(.+)/, "\\2:\\1", "g", str)
 print "OLD STRING : ", str
 print "NEW STRING : ", newstr
}

$ awk -f gensub3.awk

The output of the execution of the previous code is as follows:

OLD STRING : hello:world
NEW STRING : world:hello

The match (string, regex) function
The match function searches for a string/regular expression in the specified string. Here, the
string in which the match will search is given as the first argument and the regular
expression to be matched is given as the second argument. The match function returns the
starting position of the substring (the longest match string) that was matched by the regular
expression.

This function also sets the following two AWK variables in the following ways:

RSTART: This is set up to contain the starting value returned by the function that
is the starting position of the substring. If the pattern does not match, RSTART is
set to 0.
RLENGTH: This is set up to contain the length of the search string. It is set to -1 if a
match is not found.

AWK Functions Chapter 8

[268]

The following example will illustrate how the match() function works:

$ vi match1.awk

BEGIN {
 str = "linux is derived from UNIX. UNIX is oldest OS."
 position = match(str, /derived/)
 print "String : ",str
 print "Starting Position of matched string : ",position
 print "RSTART : ", RSTART
 print "RLENGTH : ", RLENGTH
}

$ awk -f match1.awk

The output of the execution of the previous code is as follows:

String : linux is derived from UNIX. UNIX is oldest OS.
Starting Position of matched string : 10
RSTART : 10
RLENGTH : 7

We can use the input record read from the file as the string to search for the match. For
example, in the next example we have used the match function to print those records from
the cars database file cars.dat that contain the maruti string in them, as follows:

$ vi match2.awk

{
 if (match($0, /maruti/))
 print
}

$ awk -f match2.awk cars.dat

The output of the execution of the previous code is as follows:

maruti swift 2007 50000 5
maruti dezire 2009 3100 6
maruti swift 2009 4100 5
maruti esteem 1997 98000 1

AWK Functions Chapter 8

[269]

The tolower (string) function
AWK has two functions for converting the case of the characters of a string. These functions
are called tolower() and toupper(). The tolower() function takes a single string as an
argument and returns a copy of that string, with all the uppercase characters converted to
lowercase. The nonalphabetic characters are left unchanged. The following example
illustrates the usage of the tolower() function:

$ vi tolower1.awk

BEGIN {
 str = "Linux is derived from Unix. Unix is oldest OS."
 lower_case_str = tolower(str)
 print "Original String : ", str
 print "Lowercase String : ", lower_case_str
}

$ awk -f tolower1.awk

The output of the execution of the previous code is as follows:

Original String : Linux is derived from Unix. Unix is oldest OS.
Lowercase String : linux is derived from unix. unix is oldest os.

Similarly, in our next example, we convert the contents of our emp.dat employee database
file to lowercase using the tolower() function, as follows:

$ awk '{ printf("%s\n", tolower($0)) }' emp.dat

The output of the execution of the previous code is as follows:

jack singh 9857532312 jack@gmail.com m hr 2000
jane kaur 9837432312 jane@gmail.com f hr 1800
eva chabra 8827232115 eva@gmail.com f lgs 2100
amit sharma 9911887766 amit@yahoo.com m lgs 2350
julie kapur 8826234556 julie@yahoo.com f ops 2500
ana khanna 9856422312 anak@hotmail.com f ops 2700
hari singh 8827255666 hari@yahoo.com m ops 2350
victor sharma 8826567898 vics@hotmail.com m ops 2500
john kapur 9911556789 john@gmail.com m hr 2200
billy chabra 9911664321 bily@yahoo.com m lgs 1900
sam khanna 8856345512 sam@hotmail.com f lgs 2300
ginny singh 9857123466 ginny@yahoo.com f hr 2250
emily kaur 8826175812 emily@gmail.com f ops 2100
amy sharma 9857536898 amys@hotmail.com f ops 2500
vina singh 8811776612 vina@yahoo.com f lgs 2300

AWK Functions Chapter 8

[270]

The toupper (string) function
The toupper() function takes a single string as an argument and returns a copy of that
string, with all the lowercase characters converted to uppercase. The nonalphabetic
characters are left unchanged. The following example illustrates the usage of the
toupper() function:

$ vi toupper1.awk

BEGIN {
 str = "Linux is derived from Unix. Unix is oldest OS."
 upper_case_str = toupper(str)
 print "Original String : ", str
 print "Uppercase String : ", upper_case_str
}

$ awk -f toupper1.awk

The output of the execution of the previous code is as follows:

Original String : Linux is derived from Unix. Unix is oldest OS.
Uppercase String : LINUX IS DERIVED FROM UNIX. UNIX IS OLDEST OS.

Similarly, in our next example, we convert the contents of our emp.dat employee database
file to uppercase using the toupper() function, as follows:

$ awk '{ printf("%s\n", toupper($0)) }' emp.dat

The output of the execution of the previous code is as follows:

JACK SINGH 9857532312 JACK@GMAIL.COM M HR 2000
JANE KAUR 9837432312 JANE@GMAIL.COM F HR 1800
EVA CHABRA 8827232115 EVA@GMAIL.COM F LGS 2100
AMIT SHARMA 9911887766 AMIT@YAHOO.COM M LGS 2350
JULIE KAPUR 8826234556 JULIE@YAHOO.COM F OPS 2500
ANA KHANNA 9856422312 ANAK@HOTMAIL.COM F OPS 2700
HARI SINGH 8827255666 HARI@YAHOO.COM M OPS 2350
VICTOR SHARMA 8826567898 VICS@HOTMAIL.COM M OPS 2500
JOHN KAPUR 9911556789 JOHN@GMAIL.COM M HR 2200
BILLY CHABRA 9911664321 BILY@YAHOO.COM M LGS 1900
SAM KHANNA 8856345512 SAM@HOTMAIL.COM F LGS 2300
GINNY SINGH 9857123466 GINNY@YAHOO.COM F HR 2250
EMILY KAUR 8826175812 EMILY@GMAIL.COM F OPS 2100
AMY SHARMA 9857536898 AMYS@HOTMAIL.COM F OPS 2500
VINA SINGH 8811776612 VINA@YAHOO.COM F LGS 2300

AWK Functions Chapter 8

[271]

The sprintf (format, expression) function
The sprintf() function is similar to the printf() function and uses the same format
specifications as printf(), with the only difference being that instead of printing the
output on the screen, it returns a string that can be assigned to a variable. The following
example illustrates the usage of the sprintf() function:

$ vi sprintf.awk

BEGIN {
 for (i = 97; i <= 122; i++)
 {
 char = sprintf("%c", i);
 printf("%s ", char)
 }
 print
}

$ awk -f sprintf.awk

The output of the execution of the previous code is as follows:

a b c d e f g h i j k l m n o p q r s t u v w x y z

The strtonum (string) function
This function is used to examine an argument supplied as a string and returns its numeric
value. If the string supplied begins with a leading 0, it is treated as an octal number. If the
string begins with a leading 0x, it is treated as a hexadecimal number. The following
example illustrates the working strtonum() function:

$ vi strtonum.awk

BEGIN {
 print "Decimal num strtonum(123) : ", strtonum(123)
 print "Octal num strtonum(0123) : ", strtonum(0123)
 print "Hexadecimal num strtonum(0x123) : ", strtonum(0x123)
}

$ awk -f strtonum.awk

AWK Functions Chapter 8

[272]

The output of the execution of the previous code is as follows:

Decimal num strtonum(123) : 123
Octal num strtonum(0123) : 83
Hexadecimal num strtonum(0x123) : 291

Apart from the preceding function, we have asort (sring,[a]) and asorti(string,
[a]), which are available only in GAWK and which we will ;discuss in Chapter 9, GNU's
Implementation of AWK - GAWK (GNU AWK).

Summary table of built-in string functions
The following table gives us a short description of the built-in string functions in AWK:

Function Description

index(str, sub)
Returns the position of the sub substring in
the str string . Returns 0 if it is not present.

length(string)
Returns the length of the str string or the length
of $0 if no string is supplied.

substr(str, pos)
Returns the substring of the str string, beginning
at the pos position and the remaining string.

substr(str, pos, num)
Returns the substring of the str string, beginning
at the pos position up to the length of num.

sub(regex, replacement)
Substitutes a replacement string matched with the
regex / string in $0 and returns the number of
substitutions made.

sub(regex, replacement,str)
Substitutes a replacement string matched with the
regex / string in str and returns the number
of substitutions made.

gsub(regex, replacement)
Substitutes regex for a replacement string globally
in $0 and returns the number of substitutions
made.

gsub(regex, replacement, str)
Substitutes regex for a replacement string globally
in the str string and returns the number of
substitutions made.

AWK Functions Chapter 8

[273]

gensub(regex, replacement,
occ)

Returns the substituted regex for the replacement
string for the number of occurrences occ specified
in $0.

gensub(regex,replacement,
occ, str)

Returns the substituted regex for the replacement
string for the number of occurrences occ specified
in the str string.

match(str, regex)

Tests whether the str string contains the substring
matched by regex and returns index or 0 if it is
not found. Also sets RSTART and RLENGTH.

split(str, arr)
Splits the str string into the arr array based on
fs and returns the number of elements in the
array.

split(str,arr, fs)
Splits the str string into the arr array based on
the fs field separator and returns the number of
elements in the array.

sprintf(fmt, expression)
Returns the formatted expression according to
the fmt format string.

tolower(str) Returns the str string converted into lowercase.

toupper(str) Returns the str string converted into uppercase.

strtonum(str)

Returns the numeric value of the str string .
Returns an octal number if the string begins with 0
and returns a hexadecimal number if the string
begins with 0x.

asort(arr)
Sorts the contents of the arr array and the index
sequentially, starting with 1.

assorti(arr)
Sorts the arr array as per the indexes and returns
the new array with array elements containing the
previous arr array's indexes.

Input/output functions
The following functions are used to perform input/output (I/O) tasks. Optional parameters
are given in square brackets ([]).

AWK Functions Chapter 8

[274]

The close (filename [to/from]) function
The close function is used to close the file. The argument to close could also be a shell
command used for creating coprocesses, or for redirecting to or from a pipe, or it could be a
coprocess or pipe that is used to close a file. The second argument to the close() function
is the GAWK extension. The following example illustrates how the close() function
works:

$ vi close1.awk

BEGIN {
 cmd = "wc"
 print "Linux is derived from Unix. Unix is oldest OS." |& cmd
 close(cmd, "to")
 cmd |& getline var
 print var
 close(cmd);
}

$ awk -f close1.awk

The output of the execution of the previous code is as follows:

 1 9 47

In the previous example, the print command provides the input to the wc command. The
|& indicates two-way communication in the coprocess, and it is also known as the coprocess
operator. The close(cmd, "to") used here closes the sending end of the coprocess. It is
essential to use the wc command because otherwise our command will not get the end of
the file and so will not give the output. The next command, cmd|& getline var, stores
the output of the coprocess wc in the var variable, and then we print the output. Finally, the
close function is again used to close the command pipe (both to and from) of the wc shell
command.

The fflush ([filename]) function
The fflush function flushes any buffers associated with an open output file or pipe. Many
Linux utilities buffer their output (they save information to be written on a disk file or to be
output to the screen in their memory until there is enough worthwhile info to share). This
buffering saves many I/O operations on disk. If sometimes you need to flush the buffers
forcefully, even when the buffer is not full, then you can uses the fflush() function. This
forcefully empties the buffers and flushes any buffered info. If no argument is given to
the fflush function, then it flushes all open output files and pipes.

AWK Functions Chapter 8

[275]

The system (command) function
The system function is used to execute any operating system command and then return
back to the AWK program. It returns the exit status of the program. If the command is
executed successfully, we get the return value of 0. If a nonzero value is returned, this
indicates the failure of the command execution. Using the system command, we can pass
any shell command as an argument, and it will get executed exactly as given on the
command line and the output will be returned on screen.

The following example illustrates how the system function works:

$ awk 'BEGIN { system("pwd")}'

The output of the execution of the previous code is as follows:

/home/shiwang/Desktop/

In the next example, we print the system date with the system() function:

$ awk 'BEGIN { system("date")}'

The output of the execution of the previous code is as follows:

Wed Feb 7 20:21:12 IST 2018

In the following example, we create an array of system commands to be executed. After
each command execution with the system function, we store the return status of the system
command in a variable as follows:

$ vi system.awk

BEGIN {
 arr[1] = "ls"
 arr[2] = "pwd"
 arr[3] = "uptime"
 for (v in arr)
 {
 print "Executing the Shell command : " arr[v]
 ret=system(arr[v])
 print "Return status of command : " ret
 print "==============================="
 }
}

$ awk -f system.awk

AWK Functions Chapter 8

[276]

The output of the execution of the previous code is as follows:

Executing the Shell command : ls
and.awk gensub1.awk gsub1.awk or.awk
strftime.awk
cars.dat gensub2.awk index.awk rand1.awk
strtonum.awk
func1.awk getline_var.awk marks.txt sqrtfunc.awk
tolower1.awk
func2.awk getline_var_coprocess.awk match1.awk srand1.awk
toupper1.awk
func3.awk getline_var_file.awk match2.awk srand2.awk
xor.awk
func4.awk getline_var_pipe.awk mktime.awk strftime1.awk
Return status of command : 0
===============================
Executing the Shell command : pwd
/home/shiwang/Desktop/CHAPTER8
Return status of command : 0
===============================
Executing the Shell command : uptime
 20:22:23 up 1:41, 1 user, load average: 0.28, 0.28, 0.28
Return status of command : 0
===============================

If the AWK program is run with the --sandbox option, the system function will not work.
If this is the case, it is disabled.

The getline command
The default behavior of the AWK program is to automatically get input data for processing
from a file or standard input device. To do this, AWK has the getline
command, which enables the user to control the reading of the input from the current file or
from another file. Whenever getline is executed, AWK sets the value of the NF, NR, FNR,
and $0 built-in variables accordingly.

The getline command returns 1 if it finds the record and 0 if it gets to the end of the file
without finding the record. If for any reason getline is unable to fetch the input record, it
returns -1. The different ways in which we can use the getline command in AWK
programs are discussed in the following sections.

AWK Functions Chapter 8

[277]

Simple getline
This is the simplest way to use the getline command. In this method, we specify
the getline command without any arguments in the body block to read the next input line
from the current input file. It reads the next input record and splits it into fields. The
following example illustrates how the simple getline command works:

$ awk '{getline; print NR,$0;}' cars.dat

Here, at the beginning of body block, before executing any statement, AWK reads the first
line from the current input file and stores it in $0. The getline command is the
first statement in the body block, and makes AWK read the next line from the current input
file and store it in the $0 variable. Thus, on execution of the $0 print command, it prints the
second line and not the first line. The body block continues in the same manner for the
rest of the current input file's lines and prints only even-numbered lines.

The output of the execution of the previous code is as follows:

2 honda city 2005 60000 3
4 chevy beat 2005 33000 2
6 chevy tavera 1999 10000 4
8 maruti swift 2009 4100 5
10 ford ikon 1995 80000 1
12 fiat punto 2007 45000 3

Getline into a variable
In this method, we fetch the next input line of the current file into a variable instead of
storing it in $0. Its syntax is getline var. The following example illustrates how this
method works:

$ vi getline_var.awk

{
 print "$0 -> : ",NR, $0
 getline tmp;
 print "tmp -> : ",NR, tmp;
}

$ awk -f getline_var.awk cars.dat

The output of the execution of the previous code is as follows:

$0 -> : 1 maruti swift 2007 50000 5
tmp -> : 2 honda city 2005 60000 3
$0 -> : 3 maruti dezire 2009 3100 6

AWK Functions Chapter 8

[278]

tmp -> : 4 chevy beat 2005 33000 2
$0 -> : 5 honda city 2010 33000 6
tmp -> : 6 chevy tavera 1999 10000 4
$0 -> : 7 toyota corolla 1995 95000 2
tmp -> : 8 maruti swift 2009 4100 5
$0 -> : 9 maruti esteem 1997 98000 1
tmp -> : 10 ford ikon 1995 80000 1
$0 -> : 11 honda accord 2000 60000 2
tmp -> : 12 fiat punto 2007 45000 3

In the previous example, at the beginning of the body block, before executing any
statement, AWK reads the first line from the current input file and stores it in $0. The
print statement prints the first line from the current input file. Using the getline
command, we force the AWK to read the next line from the current input file and store it in
the tmp variable. Then we print the second line stored in the tmp variable. This body block
continues to work in the same manner for the rest of the current input file's lines. The $0
will print the odd-numbered line and the tmp variable will print the even-numbered lines of
the input file.

Getline from a file
In this method, we use the getline command to read the next line from a file other than
the current input file. Here, the filename is called using the < "filename" redirection
operator and is enclosed between double quotes. In this case, the values of NR and FNR are
not changed. However, the value of NF is changed; its syntax is getline <
"filename". The following examples illustrate how this method works:

$ vi getline_file.awk

{
 print "cars.dat : ",NR,$0;
 getline < "emp.dat"
 print "emp.dat : ",NR,$0;
}

$ awk -f getline_file.awk cars.dat

The output of the execution of the previous code is as follows:

cars.dat : 1 maruti swift 2007 50000 5
emp.dat : 1 Jack Singh 9857532312 jack@gmail.com M hr
2000
cars.dat : 2 honda city 2005 60000 3
emp.dat : 2 Jane Kaur 9837432312 jane@gmail.com F hr
1800

AWK Functions Chapter 8

[279]

cars.dat : 3 maruti dezire 2009 3100 6
emp.dat : 3 Eva Chabra 8827232115 eva@gmail.com F lgs
2100
cars.dat : 4 chevy beat 2005 33000 2
emp.dat : 4 Amit Sharma 9911887766 amit@yahoo.com M lgs
2350
cars.dat : 5 honda city 2010 33000 6
emp.dat : 5 Julie Kapur 8826234556 julie@yahoo.com F Ops
2500
cars.dat : 6 chevy tavera 1999 10000 4
emp.dat : 6 Ana Khanna 9856422312 anak@hotmail.com F Ops
2700
cars.dat : 7 toyota corolla 1995 95000 2
emp.dat : 7 Hari Singh 8827255666 hari@yahoo.com M Ops
2350
cars.dat : 8 maruti swift 2009 4100 5
emp.dat : 8 Victor Sharma 8826567898 vics@hotmail.com M Ops
2500
cars.dat : 9 maruti esteem 1997 98000 1
emp.dat : 9 John Kapur 9911556789 john@gmail.com M hr
2200
cars.dat : 10 ford ikon 1995 80000 1
emp.dat : 10 Billy Chabra 9911664321 bily@yahoo.com M lgs
1900
cars.dat : 11 honda accord 2000 60000 2
emp.dat : 11 Sam khanna 8856345512 sam@hotmail.com F lgs
2300
cars.dat : 12 fiat punto 2007 45000 3
emp.dat : 12 Ginny Singh 9857123466 ginny@yahoo.com F hr
2250

In the previous example, at the beginning of the body block, before executing any
statement, AWK reads the first line from the current input file and stores it in $0. The print
statement prints the first line from the current input file. Using the getline command, we
force AWK to read the next line from the emp.dat input file and store it in $0. Then we
print the first line from emp.dat, stored in the $0 variable. This body block continues to
work in the same manner for the rest of the current input file's lines and the employee
database emp.dat.

The getline command can also be used to read the input from the
standard input, in place of a file, by using a special minus symbol -. It
represents the standard input file here.

AWK Functions Chapter 8

[280]

The following example illustrates how the standard input and getline command work:

$ vi getline_user.awk

BEGIN {
 printf "Enter your name : "
 getline < "-"
 print "Welcome to awk programming : ",$0
}

$ awk -f getline_user.awk

The output of the execution of the previous code is as follows:

Enter your name : jack
Welcome to awk programming : jack

This simple program prompts the user to Enter your name : and then calls the getline
command to store the user response in the $0 variable. The print statement outputs the user
message stored in $0.

Using getline to get a variable from a file
Instead of reading both files' current input lines into $0, we can use the getline var
format to read lines from a different file into a variable. In this method, none of the
predefined variables are changed except the var variable. Its syntax is getline var <
"filename". The following examples illustrate how this method works:

$ vi getline_var_file.awk

{
 print "cars.dat($0) : ",NR,$0;
 getline tmp < "emp.dat"
 print "emp.dat(tmp) : ",NR,tmp;
}

$ awk -f getline_var_file.awk

The output of the execution of the previous code is as follows:

cars.dat($0) : 1 maruti swift 2007 50000 5
emp.dat(tmp) : 1 Jack Singh 9857532312 jack@gmail.com M hr
2000
cars.dat($0) : 2 honda city 2005 60000 3
emp.dat(tmp) : 2 Jane Kaur 9837432312 jane@gmail.com F hr
1800

AWK Functions Chapter 8

[281]

cars.dat($0) : 3 maruti dezire 2009 3100 6
emp.dat(tmp) : 3 Eva Chabra 8827232115 eva@gmail.com F lgs
2100
cars.dat($0) : 4 chevy beat 2005 33000 2
emp.dat(tmp) : 4 Amit Sharma 9911887766 amit@yahoo.com M lgs
2350
cars.dat($0) : 5 honda city 2010 33000 6
emp.dat(tmp) : 5 Julie Kapur 8826234556 julie@yahoo.com F Ops
2500
cars.dat($0) : 6 chevy tavera 1999 10000 4
emp.dat(tmp) : 6 Ana Khanna 9856422312 anak@hotmail.com F Ops
2700
cars.dat($0) : 7 toyota corolla 1995 95000 2
emp.dat(tmp) : 7 Hari Singh 8827255666 hari@yahoo.com M Ops
2350
cars.dat($0) : 8 maruti swift 2009 4100 5
emp.dat(tmp) : 8 Victor Sharma 8826567898 vics@hotmail.com M Ops
2500
cars.dat($0) : 9 maruti esteem 1997 98000 1
emp.dat(tmp) : 9 John Kapur 9911556789 john@gmail.com M hr
2200
cars.dat($0) : 10 ford ikon 1995 80000 1
emp.dat(tmp) : 10 Billy Chabra 9911664321 bily@yahoo.com M
lgs 1900
cars.dat($0) : 11 honda accord 2000 60000 2
emp.dat(tmp) : 11 Sam khanna 8856345512 sam@hotmail.com F
lgs 2300
cars.dat($0) : 12 fiat punto 2007 45000 3
emp.dat(tmp) : 12 Ginny Singh 9857123466 ginny@yahoo.com F hr
2250

In the previous example at the beginning of the body block, before executing any statement,
AWK reads the first line from the current input file and stores it in $0. The print statement
prints the first line from current input file. Using the getline command, we force the AWK
to read the next line from the emp.dat input file and store it in the tmp variable this time.
Then we print the first line from emp.dat, stored in the tmp variable. This body block
continues to work in the same manner for the rest of the lines of the current input file and
the employee database emp.dat.

AWK Functions Chapter 8

[282]

In our next example, we use the getline command to read the input from the standard
input into a variable instead of the file by using the special minus symbol -. This simple
program prompts the user to Enter your name: and then calls the getline command to
store the user response in the uname variable. The print statement outputs the user
message stored in the uname variable as follows:

$ vi getline_user_var.awk

BEGIN {
 printf "Enter your name : "
 getline uname < "-"
 print "Welcome to awk programming : ", uname
}

$ awk -f getline_user_var.awk

The output of the execution of the previous code is as follows:

Enter your name : jack
Welcome to awk programming : jack

Using getline to output into a pipe
In this method, the output of a shell command can be piped into the getline using
"command" | getline, which can be further used to generate output. The following
examples illustrate how this method works:

$ vi getline_pipe.awk

BEGIN {

 "date" | getline
 print "Date is : ", $0
 close("date")
 print "====================="
 print "DISK FREE SPACE INFO"
 print "====================="

 # using loop to print multiple lines
 while (("df -h" | getline) > 0)
 print "Disk info : ", $0
 close("df -h")
}

$ awk -f getline_pipe.awk

AWK Functions Chapter 8

[283]

The output of the execution of the preceding code is as follows:

Date is : Wed Mar 7 00:13:17 IST 2018
=====================
DISK FREE SPACE INFO
=====================
Disk info : Filesystem Size Used Avail Use% Mounted on
Disk info : udev 5.9G 0 5.9G 0% /dev
Disk info : tmpfs 1.2G 18M 1.2G 2% /run
Disk info : /dev/sda3 100G 65G 30G 69% /
Disk info : tmpfs 5.9G 12M 5.9G 1% /dev/shm
Disk info : tmpfs 5.0M 4.0K 5.0M 1% /run/lock
Disk info : tmpfs 5.9G 0 5.9G 0% /sys/fs/cgroup
Disk info : /dev/sda1 453M 36M 390M 9% /boot
Disk info : tmpfs 1.2G 16K 1.2G 1% /run/user/118
Disk info : tmpfs 1.2G 48K 1.2G 1% /run/user/1000
Disk info : /dev/sda6 550G 494G 29G 95% /mnt/WIP

In the previous example output, the date command is given as input to the awk command
getline, which stores it in $0. Then we use the print command to print the output stored
in $0. After, we used the close() function to close the command. We use the while loop
if the output of the shell command is given as input to the getline command and is more
than one line. The getline command reads one record at a time from the pipe. Once all the
lines are output, we use the close() function to close the command.

If the expression is used instead of the command to give the input to getline using a pipe,
then the expression is enclosed in parentheses, as shown in the following example:

$ vi getline_pipe2.awk

BEGIN {

 ("echo " "Hello World..!") | getline
 print "Msg : ", $0
 close("echo " "Hello World..!")
}

$ awk -f getline_pipe2.awk

The output of the execution of the previous code is as follows:

Msg : Hello World..!

AWK Functions Chapter 8

[284]

Using getline to change the output into a variable from a pipe
In this method, we store the output of a command sent through a pipe to getline as a
variable instead of storing it in $0. Its syntax is command | getline var. The following
example shows how this method works:

$ vi getline_var_pipe.awk

BEGIN {

 "date" | getline current_time
 print "Date is : ", current_time
 close("current_time")
}

$ awk -f getline_var_pipe.awk

The output of the execution of the previous code is as follows:

Date is : Wed Feb 7 23:31:01 IST 2018

Using getline to change the output into a variable from a coprocess
Reading input into the getline command through a pipe is one-way communication. The
command output is only sent to the AWK program through the pipe in one direction. If we
need to send and receive the data from a program in AWK, then we have to use two-way
communication using the |& operator. The data from the process is received generally with
the help of getline using this process. The following example illustrates how this method
works:

$ vi getline_var_coprocess.awk

BEGIN {
 cmd = "tr [a-z] [A-Z]"
 print "Linux is derived from Unix. Unix is oldest OS" |& cmd
 close(cmd, "to")
 cmd |& getline
 print $0
 close(cmd)
}

$ awk -f getline_var_coprocess.awk

AWK Functions Chapter 8

[285]

The output of the execution of the previous code is as follows:

LINUX IS DERIVED FROM UNIX. UNIX IS OLDEST OS

If we use a variable name in front of the getline command in the previous case, the output
of the shell command will be stored in the variable name in place of $0. We can use that
variable to print the output or perform any other task.

The nextfile() function
The nextfile() function is similar to the next statement function in the sense that it
instructs AWK to stop processing the current input file. Upon execution of the nextfile
statement, the filename built-in variable is updated and FNR is reset. The processing
restarts with the first rule in the program, except in the case of nextfile being invoked in
END rule.

This is useful when we have multiple files to process, but you don't have to process each
record of every file. Without the nextfile statement to move from one file to another, a
program would have to go through all the records of the current input file. The following
example illustrates how the nextfile statement works:

$ awk '{ if ($1 ~/Eva/) nextfile; print $0}' emp.dat cars.dat

The output of the execution of the previous code is as follows:

Jack Singh 9857532312 jack@gmail.com M hr 2000
Jane Kaur 9837432312 jane@gmail.com F hr 1800
maruti swift 2007 50000 5
honda city 2005 60000 3
maruti dezire 2009 3100 6
chevy beat 2005 33000 2
honda city 2010 33000 6
chevy tavera 1999 10000 4
toyota corolla 1995 95000 2
maruti swift 2009 4100 5
maruti esteem 1997 98000 1
ford ikon 1995 80000 1
honda accord 2000 60000 2
fiat punto 2007 45000 3

AWK Functions Chapter 8

[286]

The time function
This section discusses the built-in time functions available in AWK. There are three
functions that come under the category of time function, named systime(),
mktime(datespec), and strftime(format,timestamp). With the help of these AWK
functions, we can produce useful reports with timestamps. On POSIX-compliant
Unix/Linux systems, the time() system call is generally used, which returns the number of
seconds since the epoch (1970-01-01 00:00:00 UTC).

The systime() function
The systime() function returns the current time of day as the number of seconds elapsed
since midnight, January 1 1970, not counting leap seconds. This allows you to create a log
file containing a timestamp using a seconds since the epoch format. This function can
also be used to compare the timestamp with a file with the current time of day and for
measuring how long a GAWK program takes to execute. The following example shows how
the systime() function works:

$ vi systime.awk

BEGIN {
 print "Timestamp of program run : ", systime()
 LOOPS=10000000;
 start=systime();
 print start;
 for (i=0;i<LOOPS;i++) {
 }
 end = systime();
 print end;
 totaltime = (end -start)
 print ("totaltime : ", totaltime)
}

$ awk -f systime.awk

The output of the execution of the previous code is as follows:

Timestamp of program run : 1518026994
1518026994
1518026994
totaltime : 0

AWK Functions Chapter 8

[287]

The mktime (datespec) function
The mktime function converts the datespec string into a timestamp of the same format as
returned by the systime() function, the number of seconds elapsed since the epoch. The
datespec is a string of the YYYY MM DD HH MM SS format :

$ vi mktime.awk

BEGIN {
 print "Number of seconds since the Epoch"
 print "mktime(\"2018 01 15 20 20 10\") : " mktime("2014 12 14 30 20
10")}

$ awk -f mktime.awk

The output of the execution of the previous code is as follows:

Number of seconds since the Epoch
mktime("2018 01 15 20 20 10") : 1418604610

The strftime (format, timestamp) function
The strftime() function is used to create a human-readable time string based on the
current time. It is quite similar to the shell command date. It returns the current date in
seconds by default; however, we can use this to create a string based on the time. The first
argument to the strftime function takes a string to specify the format of the output date.
The second argument is a timestamp in the same format as the value returned by
the systime function. If the second argument is not specified, then GAWK uses the current
time of day as the timestamp. The following example shows how the strftime() function
works:

$ vi strftime.awk

BEGIN {
 format = "Todays date is : %d-%m-%Y %H:%M:%S"

 print strftime(format, systime())
}

$ awk -f strftime.awk

The output of the execution of the previous code is as follows:

Todays date is : 08-02-2018 08:17:44

AWK Functions Chapter 8

[288]

In our next example, we use the strftime() function to calculate a future time by
providing a timestamp in place of the current system time as the second argument, as
follows:

$ vi strftime1.awk

BEGIN {
 current_time = systime();
 timestamp = (7*24*60*60) + current_time
 format = "%d-%m-%Y %H:%M:%S"
 present_time = strftime (format, current_time)
 new_time = strftime(format, timestamp)
 print "Current Time : ", present_time
 print "Next Week : ", new_time
 }

$ awk -f strftime1.awk

The output of the execution of the previous code is as follows:

Current Time : 08-02-2018 08:18:17
Next Week : 15-02-2018 08:18:17

The following table lists the strftime format specifications, beginning with %:

Format Description

%a The locale's abbreviated weekday name

%A The locale's full weekday name

%b The locale's abbreviated month name

%B The locale's full month name

%c The locale's appropriate date and time representation

%C The century, as a number between 00 and 99

%d The day of the month as a decimal number (0-31)

%D Equivalent to specifying %m/%d/%y

%e The day of the month, padded with a blank if it is only one digit

%h Equivalent to %b, as previously defined

%H The hour (24 hr clock) as a decimal number (00-23)

AWK Functions Chapter 8

[289]

%I The hour (12 hr clock) as a decimal number (01-12)

%j The day of the year as a decimal number (001-366)

%k The hour as a decimal number (0-23)

%l The hour (12-hour clock) as a decimal number (1-12)

%m The month as a decimal number (01–12)

%M The minute as a decimal number (00–59)

%n A newline character

%p The locale's equivalent of AM/PM

%r Equivalent to specifying %I:%M:%S %p

%R Equivalent to specifying %H:%M

%S The second as a decimal number (00–61)

%t A tab character

%T Equivalent to specifying %H:%M:%S

%u Replaced by the weekday as a decimal number [Monday == 1]

%U The week number of the year (Sunday is the first day of the week)

%v The date in VMS format (for example, 20-JUN-1991)

%V Replaced by the week number of the year (using ISO 8601)

%w The weekday as a decimal number (0–6). Sunday is day 0

%W The week number of the year (Monday is the first day of the week)

%x The locale's appropriate date representation

%X The locale's appropriate time representation

%y The year (not including the century) as a decimal number (00-99)

%Y The year (including the century) as a decimal number

%Z The time zone name or abbreviation

%% A literal%

AWK Functions Chapter 8

[290]

Bit-manipulating functions
AWK has C-like bit-manipulating functions. Although they are not used much in day-to-
day AWK programming, as it is primarily used for text manipulation and extraction, this a
feature can nevertheless be handy for someone dealing with statistics or numbers.

The following table shows a list of single-digit decimal numbers and their binary
equivalent:

Decimal Binary

2 10

3 11

4 100

5 101

6 110

7 111

8 1000

9 1001

The and (num1, num2) function
This function returns the result of a bitwise AND operation on arguments. There must be at
least two arguments. Its syntax is as follows:

and(num1, num2 [, …])

In the and operation, for the output to be 1, both the bits that are given as input should be 1
and not 0. The following truth table summarizes how the and operation works when
processing two bits:

0 and 0 = 0

0 and 1 = 0

1 and 0 = 0

1 and 1 = 1

AWK Functions Chapter 8

[291]

The following shows how the and operation works when processing the decimal 5, and 6
illustrates the working of and() function:

5 = 101

6 = 110

5 and 6 = 100 which is decimal 4

The following example shows how the and(num1, num2) functions work:

$ vi and.awk

BEGIN {
 num1 = 5
 num2 = 6
 result = and(num1,num2)
 printf "(%d AND %d) = %d\n", num1, num2, result
}

$ awk -f and.awk

The output of the execution of the previous code is as follows:

(5 AND 6) = 4

The or (num1, num2) function
This function return the result of a bitwise OR operation on arguments. There must be at
least two arguments. Its syntax is as follows:

or (num1, num2 [, ...])

With the or operation, for the output to be 1, either of the bits given as input should be 1.
The following truth table summarizes the or operation's working when processing two bits:

0 or 0 = 0

0 or 1 = 1

1 or 0 = 1

1 or 1 = 1

AWK Functions Chapter 8

[292]

The following or operation on the decimal 5 and 6 illustrate the working of or() function:

5 = 101

6 = 110

5 or 6 = 111 which is decimal 7

The following example shows how the or() functions work:

$ vi or.awk

BEGIN {
 num1 = 5
 num2 = 6
 result = or(num1,num2)
 printf "(%d OR %d) = %d\n", num1, num2, result
}

$ awk -f or.awk

The output of the execution of the previous code is as follows:

(5 OR 6) = 7

The xor (num1, num2) function
This function returns the result of a bitwise XOR operation on arguments. There must be at
least two arguments. Its syntax is as follows:

xor(num1, num2, [, ...])

In the XOR operation, for the output to be 1, both of the input bits should be different—that
is, one of the bits should be 1. When both bits are the same, XOR returns 0. The following
truth table summarizes how the XOR operation works when processing two bits:

0 xor 0 = 0

0 xor 1 = 1

1 xor 0 = 1

1 xor 1 = 0

AWK Functions Chapter 8

[293]

The following XOR operation on decimal 5 and 6 illustrates the working of the xor()
function.

5 = 101

6 = 110

5 and 6 = 011 which is decimal 3

The following example shows how the xor() functions work:

$ vi xor.awk

BEGIN {
 num1 = 5
 num2 = 6
 result = xor(num1,num2)
 printf "(%d XOR %d) = %d\n", num1, num2, result
}

$ awk -f xor.awk

The output of the execution of the previous code is as follows:

(5 XOR 6) = 3

The lshift (val, count) function
The Ishift function returns the value of val, shifted to the left side by the count number
of bits specified in the argument. 0s are shifted in from the right side. For example, let us
left shift, or lshift, the decimal 5 once to illustrate how the lshift() function works:

5 = 101

lshift once = 1010, which is decimal 10

The following example shows how the lshift() functions work:

$ vi lshift.awk

BEGIN {
 num1 = 5
 count =1
 result = lshift(num1,count)
 printf "lshift(%d,%d) = %d\n", num1, count, result

AWK Functions Chapter 8

[294]

}

$ awk -f lshift.awk

The output of the execution of the previous code is as follows:

lshift(5,1) = 10

The rshift (val, count) function
This function returns the value of val, shifted to the right side by the count number of bits
specified in the argument. 0s are shifted in from the left side. For example, let us right shift
the decimal 5 once time to show how the rshift() function works:

5 = 101

rshift once = 010 which is decimal 2

The following example shows how the rshift() functions work:

$ vi rshift.awk

BEGIN {
 num1 = 5
 count =1
 result = rshift(num1,count)
 printf "rshift(%d,%d) = %d\n", num1, count, result
}

$ awk -f rshift.awk

The output of the execution of the previous code is as follows:

rshift(5,1) = 2

The compl (num) function
The compl function returns the bitwise complement of numbers specified as an
argument. In the complement operation, it converts 0 to 1 and 1 to 0:

0 complement = 1

1 complement = 0

AWK Functions Chapter 8

[295]

The following complement operation on decimal 5 shows how the compl() function
works:

5 = 101

5's complement = 010 which is decimal 2

The usage of a negative argument in any bit-manipulating function is not
allowed.

User-defined functions
AWK allows us to define user-defined functions. A large complex can be divided into
functions where each function performs a specific task. These functions can be written and
tested independently. This functionality means that we can reuse code.

Function definition and syntax
The definition of functions can be given anywhere between the rules of an AWK program.
It is not mandatory in AWK to define a function before calling it because AWK first reads
the entire program before it starts to execute it. The general syntax for defining a user-
defined function is as follows:

function function_name(argument1, argument2, …local variable.) {
 body-of-function
 }

function_name: This is the name of the function to be defined. A valid function
name could consist of letters, digits, and underscores, but doesn't start with a
digit and could be 52 letters in length. In a single AWK program, a variable name,
array, or function should be unique. AWK keywords cannot be used as function
names.
argument: An argument is an optional list consisting of arguments or local
variable names separated by commas. A function cannot have argument names
that are the same as a function name.

AWK Functions Chapter 8

[296]

body-of-function: The body-of-function consists of AWK statements. It is
the main part of function definition. The body of the function can consist of local
variables, arguments, calls to another function or the same function (a recursive
call), and other AWK statements.

Like built-in functions, user-defined functions can also return a value to their caller function
using the return statement.

The following is an example of function definition. In this AWK program, we create a total
of four functions, three of which are used for performing mathematical calculations on the
supplied function arguments and the fourth of which reads the input from the user and
passes that input as the function argument to the other three functions while making the
function call:

$ vi func1.awk

function find_add(num1, num2){
 result = num1 + num2
 printf ("Addition of %d + %d : %d\n", num1,num2,result)
}

function find_sub(num1, num2){
 result = num1 - num2
 printf ("Subtraction of %d - %d : %d\n", num1,num2,result)
}

function find_mul(num1, num2){
 result = num1 * num2
 printf ("Multiplication of %d * %d : %d\n", num1,num2,result)
}

Main function
function main(){
 printf "Enter first number : "
 getline num1 < "-"
 printf "Enter second number : "
 getline num2 < "-"
 find_add(num1,num2)
 find_sub(num1,num2)
 find_mul(num1,num2)
}

BEGIN {

main()

AWK Functions Chapter 8

[297]

}

$ awk -f func1.awk

The output of the execution of the previous code is as follows:

Enter first number : 10
Enter second number : 5
Addition of 10 + 5 : 15
Subtraction of 10 - 5 : 5
Multiplication of 10 * 5 : 50

Calling user-defined functions
A function call consists of the function name followed by the arguments of the function in
parentheses. Whitespace characters (spaces and tabs) are not allowed between the function
name and opening parenthesis of the argument list.

In the previous function example, the func1.awk main function is called inside the BEGIN
block by simply putting main(). The main function, in turn, has other function calls with
their arguments, such as fund_add(num1,num2), find_sub(num1,num2), and
find_mul(num1,num2).

Controlling variable scope
All variables in AWK are global, except when we make variables local to function. To make
a variable local to a function, we simply declare the variable as an argument after the other
function arguments.

The following example explains the scope of a variable. Here, q is a global variable declared
in the BEGIN block and p is local variable of the one() function, where and is passed to the
function as a parameter list:

$ vi func2.awk

function one(p)
{
 result = p + q
 print "p + q : ", result
 print "local variable \"p\" : ", p
 print "global variable \"q\" : ", q
}

AWK Functions Chapter 8

[298]

BEGIN {
 q = 10
 one(5)
 print "value of p : ", p
 print "value of q : ", q
}

$ awk -f func2.awk

The output of the execution of the previous code is as follows:

p + q : 15
local variable "p" : 5
global variable "q" : 10
value of p :
value of q : 10

Return statement
The body of the user-defined function can also contain a return statement, similar to
return statements found in other programming languages. The statement returns control to
the calling part of the AWK program. Its syntax is as follows:

return [expression]

In the following example, the func_add(), func_sub(), and func_mul() functions return
the addition, subtraction, and multiplication of the numbers passed as arguments to them:

$ vi func3.awk

function find_add(num1, num2){
 result = num1 + num2
 return result
}

function find_sub(num1, num2){
 result = num1 - num2
 return result
}

function find_mul(num1, num2){
 result = num1 * num2
 return result
}

Main function

AWK Functions Chapter 8

[299]

function main(){
 printf "Enter first number : "
 getline num1 < "-"
 printf "Enter second number : "
 getline num2 < "-"
 add = find_add(num1,num2)
 print "Addition of above num : ", add
 subtraction = find_sub(num1,num2)
 print "Subtraction of above num : ", subtraction
 mult = find_mul(num1,num2)
 print "Multiplication of above num : ", mult
}

BEGIN {

main()
}

$ awk -f func3.awk

The output of the execution of the previous code is as follows:

Enter first number : 20
Enter second number : 10
Addition of above num : 30
Subtraction of above num : 10
Multiplication of above num : 200

Making indirect function calls
Using indirect function calls, we can specify the name of the function to be called as a string
to a variable and then call the function with the new variable. In indirect function calls, we
tell GAWK to use the value of the variable as the name of the function to be called. The
indirect function is called by prefixing the @ character with the variable name that has been
assigned the function as a string. The following example shows how indirect function calls
work:

$ vi func4.awk

function demo(){
 abc = "Welcome to awk"
 return abc
}

AWK Functions Chapter 8

[300]

BEGIN {
 myfunc = "demo"
 print @myfunc()
}

$ awk -f func4.awk

The output of the execution of the previous code is as follows:

Welcome to awk

In the previous example, we assign the demo() function as a string to the
myfunc variable. Now, to call the demo() function, we can prefix @ with the myfunc
variable to make an indirect call to the demo() function.

Summary
In this chapter, we learned about different types of built-in and user-defined functions that
accept zero or more arguments and return a value. Function arguments can be made up of
expressions that are evaluated before calling a function. We began by looking at built-in
functions such as arithmetic functions, which are used for numeric processing. We followed
this up by looking at string functions that are used for string manipulations and for
matching the occurrences of a pattern in a string. Then, we looked at various input/output
functions, such as the close() function for closing files and pipes. After this, we looked at
the time functions, which can be quite useful when it comes to timestamping or creating log
files. We followed this by bit-manipulation functions, which perform bitwise operations on
two or more integers. Finally, we looked at how to define and call user-defined functions
for solving complex problems using our own functions.

In our next chapter, we will learn about the features that are exclusively available in GAWK
and not in AWK.

9
GNU's Implementation of AWK

– GAWK (GNU AWK)
This chapter covers the features of GNU AWK (GAWK) that are not available in primitive
AWK. These features are not connected to each other, but are quite useful when used in the
appropriate scenarios. Features such as reading non-decimal input, arbitrary precision
arithmetic, array sorting, and some advance features such as network communication,
debugging, and inter-process communication, are explained in this chapter using simple
example programs. Some of these features are quite advanced, in the sense that their
explanation requires a separate chapter devoted to them. However, we will discuss the
main details of these features, so that we are able to use them when the situation arises.
These features enhance the power of AWK and make it more productive.

In this chapter, we will cover the following :

Reading non-decimal input
Using the GAWK built-in command line debugger
Sorting arrays
Two-way interprocess communication
Network programming using AWK
Profiling using AWK

GNU's Implementation of AWK – GAWK (GNU AWK) Chapter 9

[302]

Things you don't know about GAWK
All features which are there in AWK are available as default in GAWK. In addition to these
features, there are some other features of GAWK that essentially require a mention—they
are covered in this section. These are not interrelated, so moving from one feature to
another will be like picking up a random tool from a box filled with essential utilities.

Reading non-decimal input
The non-decimal values are like octal numbers or hexadecimal numbers. We cannot use
these values to print their decimal equivalent with AWK; GAWK provides the option, --
non-decimal-data, to print non-decimal values in the output. Octal values need to be
prefixed with 0 and hexadecimal values need to be prefixed with 0x for reading in GAWK.
For example, the following gawk command can be used to convert hexadecimal input to the
corresponding decimal output, as follows:

$ echo 088 | gawk --non-decimal-data '{ printf "Decimal equivalent of octal
%s is : %d \n", $1, $1 }'

The output of the previous code is as follows:

Decimal equivalent of octal 088 is : 88

Simply using print will treat the expression as a string. Although we have input a number,
it gets converted to a string automatically, as follows:

$ echo 0123| gawk --non-decimal-data '{ print "Decimal value of argument is
:" $1 }'

The output of the previous code is as follows:

Decimal value of argument is :0123

We need to add a zero to a field to force it to be treated as numeric and not a string, as
follows:

$ echo 0123| gawk --non-decimal-data '{ print "Decimal value of argument is
:" $1+0 }'

The output of the previous code is as follows:

Decimal value of argument is :83

GNU's Implementation of AWK – GAWK (GNU AWK) Chapter 9

[303]

In the next example, we will use a file, num.txt, that contains the octal and hexadecimal
numbers from 50 to 1 in descending order. The first column contains the decimal number,
the second column contains the hexadecimal number prefixed with 0x, and the third
column contains the octal number prefixed with 0:

Contents of file num.txt are :
50 0x32 062
49 0x31 061
48 0x30 060
47 0x2F 057
46 0x2E 056
45 0x2D 055
44 0x2C 054
43 0x2B 053
……..……………..

We use the -–non-decimal-data command line option of GAWK to convert the numbers
in a given file to decimal, as follows:

$ vi nondecimal.awk

BEGIN {
 printf "deci\thex\toct\n"
 }
 {
 printf "%d\t%d\t%d\t\n", $1,$2,$3
 }

$ gawk --non-decimal-data -f nondecimal.awk num.txt

The output of the previous code is as follows:

deci hex oct
50 50 50
49 49 49
48 48 48
47 47 47
46 46 46
45 45 45
44 44 44
43 43 43
42 42 42
41 41 41
40 40 40
39 39 39
39 39 39
38 38 38

GNU's Implementation of AWK – GAWK (GNU AWK) Chapter 9

[304]

37 37 37
36 36 36
35 35 35
34 34 34
33 33 33
32 32 32
31 31 31
30 30 30
29 29 29
28 28 28
27 27 27
26 26 26
25 25 25
24 24 24
23 23 23
22 22 22
.............
.............

3 3 3
2 2 2
1 1 1
0 0 0

The print statement always treats its expression as a string, irrespective of the value stored
in the field. Sometimes, we need to treat the value stored in the field as a numeric and not a
string. If we want to use the print statement instead of printf for printing the number,
then we have to add zero to the field variable so it is treated as a number, not a string.

The following example illustrates the treatment of the field value as a numeric instead of as
a string in print statement:

$ echo 0123 | gawk --non-decimal-data '{ print $1 ; print $1 + 0 }'

The GAWK user guide and manual do not recommend use of this option as it can break old
programs very badly; use the strtonum()function to convert your data instead.

GAWK's built-in command line debugger
Debugging is the process of finding and resolving errors or abnormalities in the program
that prevent its correct operation. Like most programming languages, GAWK has a built-in
interactive debugger that is modeled after GNU Debugger (GDB).

GNU's Implementation of AWK – GAWK (GNU AWK) Chapter 9

[305]

What is debugging?
Debugging is the art of removing the bugs or errors from a program, with the help of
debugging tools, so that the program functions as intended. Debugging enables the
programmer to watch a program execute its instructions one by one, thus giving the
programmer enough time to understand what is happening when the code is being
executed.

It also gives the programmer the opportunity to control and change the path of execution of
a program without making changes to its source file.

Debugging enables the programmer to see the values stored in variables and arguments, at
any point in the execution of a program, and also gives them the ability to change those
values at runtime, if required.

All these features enable a programmer to discover what went wrong in a program, using
his/her own skills.

Debugger concepts
The following terms are used while discussing debugging and they are standard across all
debuggers:

Breakpoint: This is one of the most important and coolest feature of debuggers.
Breakpoint is an intentional stopping place in a program, inserted via the
debugger for debugging purposes. Generally, during this interruption, the
programmer inspects the various environment variables, arguments, functions,
files, logs, memory, and so on, to find out if the program is working as expected.
It is the point up to which a program runs directly and then, from here on, it
continues its execution one statement (instruction) at a time. So, a breakpoint is
where the execution of a program stops and the debugger takes control of it's
execution. We can add and remove one or more breakpoints in a program, as per
our requirements.
Watchpoint: Functionality wise, a watchpoint is similar to a breakpoint. The
difference between a breakpoint and a watchpoint lies in the fact that breakpoints
are code oriented, which means that they stop when a certain point in the code is
reached. Watchpoints are centered around data, which means that they specify
that program execution should stop when a data value is changed. They are
helpful in tracking down if the program has received an incorrect value, which is
difficult to find out by looking at the code.

GNU's Implementation of AWK – GAWK (GNU AWK) Chapter 9

[306]

Stackframe: A program generally contains one or more functions that are called
when a program executes. One function can call another, and that function can
call itself or another function, and so on. This stack of executing functions is
called a call stack and can be viewed during runtime with the help of a
debugger. The data area reserved by the system that contains the functions
parameter, local variables, and return values for each function on the call stack is
known as the stack frame.

Using GAWK as a debugger
In this section, we will illustrate the use of GAWK as a debugger with the help of a sample
program which contains certain functions and variables. The program used for the
implementation is called calc.awk because it performs certain basic mathematical
operations. Let's create the program first, as follows:

$ vi calc.awk

function find_add(num1, num2){
 result = num1 + num2
 printf ("Addition of %d + %d : %d\n", num1,num2,result)
}

function find_sub(num1, num2){
 result = num1 - num2
 printf ("Subtraction of %d - %d : %d\n", num1,num2,result)
}

function find_mul(num1, num2){
 result = num1 * num2
 printf ("Multiplication of %d * %d : %d\n", num1,num2,result)
}

Main function
function calc(){
 find_add(30,10)
 find_sub(40,10)
 find_mul(5,6)
}

BEGIN {

GNU's Implementation of AWK – GAWK (GNU AWK) Chapter 9

[307]

calc()
}

$ gawk -f calc.awk

The output of the previous code is as follows :

Addition of 30 + 10 : 40
Subtraction of 40 - 10 : 30
Multiplication of 5 * 6 : 30

Starting the debugger
We have to pass the option --debug or -D, in addition to the -f option used to supply the
AWK script on the command line. We cannot use GAWK debug for command line
programs. It is essential to run awk commands from files with the -f option to launch the
GAWK debugger as follows:

$ gawk -D -f calc.awk

Now, instead of immediately executing the program from calc.awk and returning the
output on screen, this time GAWK loads the program source files, compiles them and gives
us a prompt, as follows:

gawk>

From this prompt, we can issue commands to the debugger. At this point, no code has been
executed.

Set breakpoint
The first thing we should do while running a debugger to investigate a problem, is to put in
a breakpoint otherwise the program will run as if it was not under the debugger. The break
command or its shortcut, b is used to set the breakpoint with any of the following
arguments:

break function_ name: Sets the breakpoint at the entry to the first instruction of
the function
break line-number (n): Sets the breakpoint at the line number n in the current
source file
break filename:n: Sets the breakpoint at the line number n in the specified source
filename

GNU's Implementation of AWK – GAWK (GNU AWK) Chapter 9

[308]

Each breakpoint is designated a number that can be used to delete it from the breakpoint
list, using the delete command.

In our example, the file calc.awk has four functions. We set a breakpoint on these three
functions, find_add(), find_sub(), and find_mul(), which are invoked from the main
function, calc(), as shown:

gawk> break find_add
Breakpoint 1 set at file `calc.awk', line 2
gawk>

gawk> break find_sub
Breakpoint 2 set at file `calc.awk', line 7
gawk>

gawk> b find_mul
Breakpoint 3 set at file `calc.awk', line 12
gawk>

The debugger tells the filename and line number of the breakpoint.

Removing the breakpoint
The clear and delete command are used to delete the breakpoints. The clear command
accepts the following arguments to delete the breakpoint:

clear function_name: Deletes the breakpoint set at the entry of the function
clear line-number (n): Deletes the breakpoint set at the line number n in the
current source file
clear filename: Deletes the breakpoint set at the line number n in the specified
source filename

Now, we remove the breakpoint using the clear command as follows:

gawk> clear find_add
Deleted breakpoint 1
gawk> clear 12
Deleted breakpoint 3
gawk>

GNU's Implementation of AWK – GAWK (GNU AWK) Chapter 9

[309]

Deleting the breakpoint using a line number is done as follows:

gawk> clear calc.awk:7
Deleted breakpoint 2

The Delete command requires the breakpoint number as an argument to delete the
breakpoint, as shown in this example which deletes breakpoint number 2:

gawk> delete 2

Running the program
The run or r command is used to start/restart the execution of the program. If the run
command is used to restart the program execution, the debugger retains the current
breakpoints, watchpoints, command history, and debugger options.

Now, we run the program after again putting in the earlier set three breakpoints. To run,
type r or run and the program runs until it hits the first breakpoint:

gawk> run
Starting program:
Stopping in BEGIN …
Breakpoint 1, find_add(num1, num2) at `calc.awk':2
2 result = num1 + num2
gawk>

Looking inside the program
When we run a program that contains a function call, GAWK maintains a stack of all
function calls to lead you up to where you are executing. We can see how we got there,
where we are and also move inside the stack with the help of the backtrace command or
bt or the alias where. Any of these three commands can be used to print the backtrace of
function calls (stack frames).

Here, frame 0 is the currently executing innermost frame (function call). Frame 1 is the
frame that called the innermost frame 0 and the highest-numbered frame represents the
main program:

gawk> backtrace
#0 find_add(num1, num2) at `calc.awk':2
#1 in calc() at `calc.awk':18
#2 in main() at `calc.awk':26
gawk>

GNU's Implementation of AWK – GAWK (GNU AWK) Chapter 9

[310]

The output contains the frame number, function and argument names, source file, and the
source line. This tells us the find_add() function was called by the calc() function at line
number 18.

You can switch between different frames using the up command to go to the outer frame
and the down command to come to the inner frame. You can selectively print a stack frame
by using the command frame n, where n is the frame number to be printed.

Displaying some variables and data
Now, we will look at the values stored in variables or fields using the print command. Its
syntax is very simple, print var1, var2,…. Here, var1 and var2 are the variable or
field names. A variable can also be an array element. To print the contents of an array,
prefix the name of the array with the @ symbol, as follows:

print $3: Prints the value stored in field $3
print @arrayname: Prints the contents of array arrayname
print n1, n2, n3: Prints the value stored in variable n1, n2, and n3

Let's print the value of variables num1, num2 and result in our running program, as
follows:

gawk> print num1, num2, result
num1 = 30
num2 = 10
result = untyped variable

Here, the result is still not assigned any value, so it is an untyped variable.

Setting watch and unwatch
We can add a watchpoint for a variable or a field so that whenever its value changes, the
debugger stops. Each watch item is assigned a number that can be used to delete it from the
watch list, using the unwatch command:

watch var: Sets watchpoint for variable var
unwatch [n]: Unsets the watchpoint specified with number n

GNU's Implementation of AWK – GAWK (GNU AWK) Chapter 9

[311]

Let's set the watchpoint for the variable result in our program calc.awk, which is being
debugged, as follows:

gawk> watch result
Watchpoint 4: result

Here, we have set the watchpoint for the variable result, so during execution, whenever its
value changes, the debugger will give a notification and stop there.

Controlling the execution
To execute the program further, we have to step through the lines. For controlling
execution, we have different commands. We will discuss some essential and basic ones in
this section:

next [count]: This is used to continue execution to the next source line,
stepping over function calls. The count argument controls how many times it
repeats this action.
return [value]: This cancels the execution of the current function call (frame).
If any current function contains any inner frames, they are discarded as well. If
the value (string or number) is specified, it is used as a function return value.
finish: Execute until the selected stack frame returns and print the returned
value.
Continue: Resume the program execution till next breakpoint.
stepi or si [count]: Execute one (or count) instructions, stepping inside
function calls.

Let's execute the next instruction using the next command in our running
program, calc.awk, as follows:

gawk> next
Watchpoint 4: result
Old value: untyped variable
New value: 40
find_add(num1, num2) at `calc.awk':3
3 printf ("Addition of %d + %d : %d\n", num1,num2,result)

On execution of the next command, watchpoint 4, which was set earlier—is reached, that
is, the value stored in the result variable is modified. So it outputs both the old value and
the new value, and the next command displays the next instruction execution.

GNU's Implementation of AWK – GAWK (GNU AWK) Chapter 9

[312]

If we again select the next command, we step through one more instruction, as follows:

gawk> next
Addition of 30 + 10 : 40
calc() at `calc.awk':19
19 find_sub(40,10)

Viewing environment information
The info command or i, can be used to view the state of our program and the debugging
environment itself. It is used with one of the following argument options to view
corresponding information. Its usage syntax is as follows :

info <argument name>

Or we can also use the following abbreviated form:

i <argument name>

The following is list of argument options which can be used with the info command to
display different information while debugging:

info break: List all currently set breakpoints
info display: List all items in an automatic display list
info frame: Give a description of the selected stack frame
info args: List arguments of the selected frame
info functions: List all functions' definitions, including source filenames and line
numbers of functions
info locals: List the local variables of the selected frame
info source: List the name of the current source filename
info sources: List all program sources
list variables: List all global variables
list watch: List all items in the watch list

Now, we display certain debugging environment information using the info command
with different arguments for our running program, calc.awk, as follows:

This is an example to display set breakpoints:

gawk> info break
Number Disp Enabled Location
1 keep yes file calc.awk, line #2

GNU's Implementation of AWK – GAWK (GNU AWK) Chapter 9

[313]

no of hits = 1
2 keep yes file calc.awk, line #7
3 keep yes file calc.awk, line #12
gawk>

This example prints a description of the selected frame:

gawk> info frame
Current frame: #0 calc() at `calc.awk':19
Called by frame: #1 in main() at `calc.awk':26
gawk>

This example displays the arguments set for the selected frame after stepping
through once, using the next command:

gawk> info args
num1 = 40
num2 = 10

The following example displays a list of global variables set in our program:

gawk> info variables
All defined variables:
ARGC: 1
ARGIND: 0
ARGV: array, 1 elements
BINMODE: 0
CONVFMT: "%.6g"
ENVIRON: array, 48 elements
ERRNO: ""
FIELDWIDTHS: ""
FILENAME: ""
FNR: 0
FPAT: "[^[:space:]]+"
FS: " "
FUNCTAB: array, 45 elements
IGNORECASE: 0
LINT: 0
NF: 0
NR: 0
OFMT: "%.6g"
OFS: " "
ORS: "\n"
PREC: 53
PROCINFO: array, 30 elements
RLENGTH: 0
ROUNDMODE: "N"

GNU's Implementation of AWK – GAWK (GNU AWK) Chapter 9

[314]

RS: "\n"
RSTART: 0
RT: ""
SUBSEP: "\034"
SYMTAB: array, 29 elements
TEXTDOMAIN: "messages"
result: 40
gawk>

This example displays a list of defined functions in our program:

gawk> info functions
All defined functions:

calc() in file `calc.awk', line 17
find_add(num1, num2) in file `calc.awk', line 1
find_mul(num1, num2) in file `calc.awk', line 11
find_sub(num1, num2) in file `calc.awk', line 6
gawk>

This example displays watchpoints set using a variable:

gawk> info watch
Watch variables:

4: result

This example displays a list of source program filenames:

gawk> info source
Current source file: calc.awk
Number of lines: 27
gawk> info sources
Source file (lines): calc.awk (27)
gawk>

Saving the commands in file
We can save the commands from the current session to the specified filename, to replay
them again in future using source commands:

save filename: It saves the current session commands in the specified filename as
shown in the following example :

gawk> save debug_commands.txt

GNU's Implementation of AWK – GAWK (GNU AWK) Chapter 9

[315]

The preceding command will save the commands of current session in the file
debug_commands.txt for future reference or to replay them again using source
 command.

Exiting the debugger
We can exit from the debugger anytime by typing the exit or quit or q command. The
debugger will give the warning that you are running a program and to press y if you really
want to quit. The following is the list of options used for exiting from the debugger:

exit

quit

q

Let's quit from our running debugger session of the calc.awk program using the exit
command as follows:

gawk> quit
The program is running. Exit anyway (y/n)? y

We can print a list of all of the GAWK debugger commands with a brief description of their
usage using the help or h command.

Array sorting
GAWK enables us to control the order in which a for (index in array) loop traverses an
array. GAWK provides two built-in functions, asort() and asorti(), to sort arrays based
on the array values and indexes, respectively. Using these two functions, we can control the
criteria used to order the array elements during sorting.

Sort array by values using asort()
GAWK provides a built-in function, asort(), to sort the array on values. Numeric values
come before string values in the sorting order. The following is the syntax for sorting the
array:

Gn = asort(arr)

GNU's Implementation of AWK – GAWK (GNU AWK) Chapter 9

[316]

In the following example, we will use the asort() function to sort the array elements, as
per the values assigned to them. The only side effect of using the asort() function with
default parameters is that the array's original indexes will be lost and the new array is
assigned an index from 1 to n as follows:

$ vi asort_arr.awk

BEGIN {
 arr[30] = "volvo"
 arr[10] = "bmw"
 arr[20] = "audi"
 arr[50] = "toyota"
 arr["car"] = "ferrari"
 arr[70] = "renault"
 arr[110] = 20
 arr[40] = "ford"
 arr["num"] = 10
 arr[80] = "porsche"
 arr[60] = "jeep"

 n = asort(arr)
 for (v in arr)
 print v, arr[v]
}

$ awk -f asort_arr.awk

The output of the previous code is as follows:

1 10
2 20
3 audi
4 bmw
5 ferrari
6 ford
7 jeep
8 porsche
9 renault
10 toyota
11 volvo

GNU's Implementation of AWK – GAWK (GNU AWK) Chapter 9

[317]

To preserve the original array with its indexes, we can pass another argument to
the asort() function which is the new array to be used for sorting. In this case, GAWK
copies the source array into the destination and then sorts the destination array, allotting it
new indexes. However, the source array or original array remains unaffected, as shown
here:

n = asort (source, destination)

In the next example, we will pass two arguments to the asort function: first the original
source array, arr, and second, the new destination array, newarr, to preserve the original
array as such. In this case, GAWK copies the source array, arr, into the destination array
newarr. The original source array's index and values are not affected:

$ vi asort_newarr.awk

BEGIN {
 arr[30] = "volvo"
 arr[10] = "bmw"
 arr[20] = "audi"
 arr[50] = "toyota"
 arr["car"] = "ferrari"
 arr[70] = "renault"
 arr[110] = 20
 arr[40] = "ford"
 arr["num"] = 10
 arr[80] = "porsche"
 arr[60] = "jeep"

 n = asort(arr, newarr)
 print "=="
 print "SORTED ARRAY STORED IN NEW ARRAY VARIABLE..."
 print "=="
 for (x in newarr)
 print "Index : ", x, "\tValue :", newarr[x]

 print "=="
 print "ORIGINAL ARRAY...."
 print "=="
 for (v in arr)
 print "Index : ", v, "\tValue :", arr[v]
}

$ awk -f asort_newarr.awk

GNU's Implementation of AWK – GAWK (GNU AWK) Chapter 9

[318]

The output of the previous code is as follows:

==
SORTED ARRAY STORED IN NEW ARRAY VARIABLE...
==
Index : 1 Value : 10
Index : 2 Value : 20
Index : 3 Value : audi
Index : 4 Value : bmw
Index : 5 Value : ferrari
Index : 6 Value : ford
Index : 7 Value : jeep
Index : 8 Value : porsche
Index : 9 Value : renault
Index : 10 Value : toyota
Index : 11 Value : volvo
==
ORIGINAL ARRAY....
==
Index : car Value : ferrari
Index : num Value : 10
Index : 10 Value : bmw
Index : 20 Value : audi
Index : 30 Value : volvo
Index : 40 Value : ford
Index : 50 Value : toyota
Index : 60 Value : jeep
Index : 70 Value : renault
Index : 80 Value : porsche
Index : 110 Value : 20

Sort array indexes using asorti()
The asorti() function takes all the array indexes, sorts them and stores them in a new
array, as array values for the new array with an index starting from 1 to n. Numeric values
come before string values in the sorting order. The following is the syntax for sorting the
array index using the asorti() function:

n = asorti (arr)

GNU's Implementation of AWK – GAWK (GNU AWK) Chapter 9

[319]

Let's understand the working of the asorti() function using examples. In the following
example, we will use the asorti() function to sort the array indexes as per their values.
The only side effect of using the asorti() function with default parameters is that the
array's original index will be lost and the new array is assigned indexes from 1 to n, and
now the new array elements will be the previous array's indexes:

$ vi asorti_1.awk

BEGIN {
 arr[30] = "volvo"
 arr[10] = "bmw"
 arr[20] = "audi"
 arr[50] = "toyota"
 arr["car"] = "ferrari"
 arr[70] = "renault"
 arr[110] = 20
 arr[40] = "ford"
 arr["num"] = 10
 arr[80] = "porsche"
 arr[60] = "jeep"

 n = asorti(arr)
 for (v in arr)
 print v, arr[v]
}

$ awk -f asorti_1.awk

The output of the previous code is as follows:

1 10
2 110
3 20
4 30
5 40
6 50
7 60
8 70
9 80
10 car
11 num

GNU's Implementation of AWK – GAWK (GNU AWK) Chapter 9

[320]

To preserve the original array with its indexes, we can pass another argument to the
asorti() function, which is the new array to be used for sorting the indexes this time. In
this case, GAWK copies the source array indexes into the destination array as values and
then sorts the destination array, allotting it new indexes. However, the source array or
original array remains unaffected, as shown in the following code:

n = asorti (source, destination)

In this example, we will pass two arguments to the asorti() function: first, the original
source array, arr, and second, the new destination array newarr, to preserve the original
array, as such. In this case, GAWK copies the indexes of the source array, arr, into the
values of the destination array, newarr . The original source arrary's index and values are
not affected:

$ vi asorti_2.awk

BEGIN {
 arr[30] = "volvo"
 arr[10] = "bmw"
 arr[20] = "audi"
 arr[50] = "toyota"
 arr["car"] = "ferrari"
 arr[70] = "renault"
 arr[110] = 20
 arr[40] = "ford"
 arr["num"] = 10
 arr[80] = "porsche"
 arr[60] = "jeep"

 n = asorti(arr, newarr)
 print "=="
 print "SORTED ARRAY INDEXES STORED AS ELEMENTS ..."
 print "=="
 for (x in newarr)
 print "Index : ", x, "\tValue :", newarr[x]

 print "=="
 print "ORIGINAL ARRAY...."
 print "=="
 for (v in arr)
 print "Index : ", v, "\tValue :", arr[v]
}

$ awk -f asorti_2.awk

GNU's Implementation of AWK – GAWK (GNU AWK) Chapter 9

[321]

The output of the previous code is as follows:

==
SORTED ARRAY INDEXES STORED AS ELEMENTS ...
==
Index : 1 Value : 10
Index : 2 Value : 110
Index : 3 Value : 20
Index : 4 Value : 30
Index : 5 Value : 40
Index : 6 Value : 50
Index : 7 Value : 60
Index : 8 Value : 70
Index : 9 Value : 80
Index : 10 Value : car
Index : 11 Value : num
==
ORIGINAL ARRAY....
==
Index : car Value : ferrari
Index : num Value : 10
Index : 10 Value : bmw
Index : 20 Value : audi
Index : 30 Value : volvo
Index : 40 Value : ford
Index : 50 Value : toyota
Index : 60 Value : jeep
Index : 70 Value : renault
Index : 80 Value : porsche
Index : 110 Value : 20

Two-way inter-process communication
In Chapter 5, Printing Output in Awk, we have seen how redirection can be used to store
output to a file in AWK. We also saw how a pipe is used for redirecting the output of one
command to another command in AWK. Pipes use one-way communication only; they
receive the output from one process and give it as input to another.

GNU's Implementation of AWK – GAWK (GNU AWK) Chapter 9

[322]

However, with GAWK, we can have two-way communication with another process. The
second process here is known as a coprocess and it runs parallel to the GAWK process. The
two-way communication is created using the |& operator (this operator is a borrowed
feature from Korn shell (ksh)). The following is the process for creating a two-way I/O
operation between processes:

{ print "data to be shared with coprocess" |& "subprogram"
 "subprogram" |& getline result
 close ("subprogram", "to")
 print result
 close ("subprogram") }

The following is a description of the various action statements used in the previous
program:

subprogram: This is the second shell program or command to be used for
communication with GAWK, known here as a coprocess.
|&: The I/O operation when executed using the |& operator the first time, GAWK
creates the two-way pipeline to the child process that runs the other program
(subprogram).
print: The print or printf command is used to give standard input to the
subprogram.
getline: The standard output from the subprogram is read using a getline
statement
close (command): The close() function is used to close the pipeline opened
by the exact command used earlier in the subprogram with |& for the opening of
the pipeline.
close (subprogram, to): It is possible to close just one end of the two-way
pipe to a coprocess, by supplying a second argument to the close() function, as
either to or from. The to string tells GAWK to close the sending end of the pipe
and the from string tells GAWK to close the receiving end of pipe.

It is essential when using shell commands, such as sort, wc, or tr and other filter utilities,
as a coprocess (subprogram) to use the to argument with the close() function. For a sort
or tr -like program requires all of its input data be read before it can produce any output.
The sort or tr program does not receive an end of file indication until GAWK closes the
write end of the pipe by using the to argument with the close() function.

GNU's Implementation of AWK – GAWK (GNU AWK) Chapter 9

[323]

In the following example, we will use tr as a coprocess for translating a lowercase
string, hello world, given as input with the print command, into capital letters. Once
we finish sending/writing data to the tr utility, we can close the to end of the pipe and
then start reading the translated string via the getline statement as follows:

$ vi 2wayio.awk

BEGIN {
 cmd = "tr [a-z] [A-Z]"
 print "hello, world !!!" |& cmd
 close(cmd,"to")
 cmd |& getline
 print $0
 close(cmd);
}

$ awk -f 2wayio.awk

The output of the previous code is as follows:

HELLO, WORLD !!!

In the next example, we convert the contents of emp.dat from lowercase to capital letters as
follows:

$ vi small2capital.awk

{
 cmd = "tr [a-z] [A-Z]"
 print $0 |& cmd
 close(cmd,"to")
 cmd |& getline
 print $0
 close(cmd);
}

$ awk -f small2capital.awk cars.dat

The output of the previous code is as follows:

MARUTI SWIFT 2007 50000 5
HONDA CITY 2005 60000 3
MARUTI DEZIRE 2009 3100 6
CHEVY BEAT 2005 33000 2
HONDA CITY 2010 33000 6
CHEVY TAVERA 1999 10000 4
TOYOTA COROLLA 1995 95000 2

GNU's Implementation of AWK – GAWK (GNU AWK) Chapter 9

[324]

MARUTI SWIFT 2009 4100 5
MARUTI ESTEEM 1997 98000 1
FORD IKON 1995 80000 1
HONDA ACCORD 2000 60000 2
FIAT PUNTO 2007 45000 3

Using GAWK for network programming
The networking feature in GAWK was added from version 3.1 onwards after the addition
of a two-way pipeline to a coprocess on the same system. Networking is more of a two-way
connection to a process on another system, using TCP/IP connections. Before we move
ahead in networking with GAWK, we must understand the fundamental construct of
network communication. In a network communication model, one system acts as a client
and another as a server.

The server is the system that provides the service, such as a web server or email server. It is
the system to which the connection is made. The server keeps waiting in a listening state to
receive requests for connections.

The client is the system which makes a request for service. It is the system which initiates
the connection request. In the TCP/IP model, each connection consists of an IP address and
port pair. Until the connection is in place, the ports used at each end are unique and cannot
be used by other processes on the same system at the same time.

The AWK programming language was developed as a pattern-matching language for text
manipulation; however, GAWK has advanced features, such as file-like handling of
network connections. We can perform simple TCP/IP connection handling in GAWK with
the help of special filenames. GAWK extends the two-way I/O mechanism used with the |&
operator to simple networking using these special filenames that hide the complex details of
socket programming to the programmer.

The special filename for network communication is made up of multiple fields, all of which
are mandatory. The following is the syntax of creating a filename for network
communication:

/net-type/protocol/local-port/remote-host/remote-port

GNU's Implementation of AWK – GAWK (GNU AWK) Chapter 9

[325]

Each field is separated from another with a forward slash. Specifying all of the fields is
mandatory. If any of the field is not valid for any protocol or you want the system to pick a
default value for that field, it is set as 0. The following list illustrates the meaning of
different fields used in creating the file for network communication:

net-type: Its value is inet4 for IPv4, inet6 for IPv6, or inet to use the system
default (which is generally IPv4).
protocol: It is either tcp or udp for a TCP or UDP IP connection. It is advised
you use the TCP protocol for networking. UDP is used when low overhead is a
priority.
local-port: Its value decides which port on the local machine is used for
communication with the remote system. On the client side, its value is generally
set to 0 to indicate any free port to be picked up by the system itself. On the
server side, its value is other than 0 because the service is provided to a specific
publicly known port number or service name, such as http, smtp, and so on.
remote-host: It is the remote hostname which is to be at the other end of the
connection. For the server side, its value is set to 0 to indicate the server is open
for all other hosts for connection. For the client side, its value is fixed to one
remote host and hence, it is always different from 0. This name can either be
represented through symbols, such as www.google.com, or
numbers, 123.45.67.89.

remote-port: It is the port on which the remote machine will communicate
across the network. For clients, its value is other than 0, to indicate to which port
they are connecting to the remote machine. For servers, its value is the port on
which they want connection from the client to be established. We can use a
service name here such as ftp, http, or a port number such as 80, 21, and so on.

TCP client and server (/inet/tcp)
TCP gaurantees that data is received at the other end and in the same order as it was
transmitted, so always use TCP.

In the following example, we will create a tcp-server (sender) to send the current date time
of the server to the client. The server uses the strftime() function with the coprocess
operator to send to the GAWK server, listening on the 8080 port. The remote host and
remote port could be any client, so its value is kept as 0.

http://www.google.com/

GNU's Implementation of AWK – GAWK (GNU AWK) Chapter 9

[326]

The server connection is closed by passing the special filename to the close() function for
closing the file as follows:

$ vi tcpserver.awk

#TCP-Server
BEGIN {
 print strftime() |& "/inet/tcp/8080/0/0"
 close("/inet/tcp/8080/0/0")
 }

Now, open one Terminal and run this program before running the client program as
follows:

$ awk -f tcpserver.awk

Next, we create the tcpclient (receiver) to receive the data sent by the tcpserver. Here,
we first create the client connection and pass the received data to the getline() using the
coprocess operator. Here the local-port value is set to 0 to be automatically chosen by the
system, the remote-host is set to the localhost, and the remote-port is set to the tcp-server
port, 8080. After that, the received message is printed, using the print $0 command, and
finally, the client connection is closed using the close command, as follows:

$ vi tcpclient.awk

#TCP-client
BEGIN {
 "/inet/tcp/0/localhost/8080" |& getline
 print $0
 close("/inet/tcp/0/localhost/8080")
 }

Now, execute the tcpclient program in another Terminal as follows :

$ awk -f tcpclient.awk

The output of the previous code is as follows :

Fri Feb 9 09:42:22 IST 2018

GNU's Implementation of AWK – GAWK (GNU AWK) Chapter 9

[327]

UDP client and server (/inet/udp)
The server and client program that use the UDP protocol for communication are almost
identical to their TCP counterparts, with the only difference being that the protocol is
changed to udp from tcp. So, the UDP-server and UDP-client program can be written as
follows:

$ vi udpserver.awk

#UDP-Server
BEGIN {
 print strftime() |& "/inet/udp/8080/0/0"
 "/inet/udp/8080/0/0" |& getline
 print $0
 close("/inet/udp/8080/0/0")
 }

$ awk -f udpserver.awk

Here, only one addition has been made to the client program. In the client, we send the
message hello from client ! to the server. So when we execute this program on the
receiving Terminal, where the udpclient.awk program is run, we get the remote system
date time. And on the Terminal where the udpserver.awk program is run, we get the hello
message from the client:

$ vi udpclient.awk

#UDP-client
BEGIN {
 print "hello from client!" |& "/inet/udp/0/localhost/8080"
 "/inet/udp/0/localhost/8080" |& getline
 print $0
 close("/inet/udp/0/localhost/8080")
 }

$ awk -f udpclient.awk

GAWK can be used to open direct sockets only. Currently, there is no way
to access services available over an SSL connection such as https, smtps,
pop3s, imaps, and so on.

GNU's Implementation of AWK – GAWK (GNU AWK) Chapter 9

[328]

Reading a web page using HttpService
To read a web page, we use the Hypertext Transfer Protocol (HTTP) service which runs on
port number 80. First, we redefine the record separators RS and ORS because
HTTP requires CR-LF to separate lines. The program requests to the IP address
35.164.82.168 (www.grymoire.com) of a static website which, in turn, makes a GET
request to the web page: http:/ ​/​35. ​164. ​82.​168/ ​Unix/ ​donate. ​html . HTTP calls the GET
request, a method which tells the web server to transmit the web page donate.html. The
output is stored in the getline function using the co-process operator and printed on the
screen, line by line, using the while loop. Finally, we close the http service connection. The
following is the program to retrieve the web page:

$ vi view_webpage.awk

BEGIN {
RS=ORS="\r\n"
http = "/inet/tcp/0/35.164.82.168/80"
print "GET http://35.164.82.168/Unix/donate.html" |& http
while ((http |& getline) > 0)
 print $0
close(http)
}

$ awk -f view_webpage.awk

Upon executing the program, it fills the screen with the source code of the page on the
screen as follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML lang="en-US">
<HEAD>
 <TITLE> Welcome to The UNIX Grymoire!</TITLE>
<meta name="keywords" content="grymoire, donate, unix, tutorials, sed,
awk">
<META NAME="Description" CONTENT="Please donate to the Unix Grymoire" >
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="myCSS.css" rel="stylesheet" type="text/css">
<!-- Place this tag in your head or just before your close body tag -->
<script type="text/javascript"
src="https://apis.google.com/js/plusone.js"></script>
<link rel="canonical" href="http://www.grymoire.com/Unix/donate.html">
<link href="myCSS.css" rel="stylesheet" type="text/css">
........
........

http://www.grymoire.com/
http://35.164.82.168/Unix/donate.html
http://35.164.82.168/Unix/donate.html
http://35.164.82.168/Unix/donate.html
http://35.164.82.168/Unix/donate.html
http://35.164.82.168/Unix/donate.html
http://35.164.82.168/Unix/donate.html
http://35.164.82.168/Unix/donate.html
http://35.164.82.168/Unix/donate.html
http://35.164.82.168/Unix/donate.html
http://35.164.82.168/Unix/donate.html
http://35.164.82.168/Unix/donate.html
http://35.164.82.168/Unix/donate.html
http://35.164.82.168/Unix/donate.html
http://35.164.82.168/Unix/donate.html
http://35.164.82.168/Unix/donate.html
http://35.164.82.168/Unix/donate.html
http://35.164.82.168/Unix/donate.html

GNU's Implementation of AWK – GAWK (GNU AWK) Chapter 9

[329]

Profiling
Profiling of code is done for code optimization. In GAWK, we can do profiling by supplying
a profile option to GAWK while running the GAWK program. On execution of the GAWK
program with that option, it creates a file with the name awkprof.out. Since GAWK is
performing profiling of the code, the program execution is up to 45% slower than the speed
at which GAWK normally executes.

Let's understand profiling by looking at some examples. In the following example, we
create a program that has four functions; two arithmetic functions, one function prints an
array, and one function calls all of them. Our program also contains two BEGIN and
two END statements. First, the BEGIN and END statement and then it contains a pattern action
rule, then the second BEGIN and END statement, as follows:

$ vi codeprof.awk

func z_array(){

 arr[30] = "volvo"
 arr[10] = "bmw"
 arr[20] = "audi"
 arr[50] = "toyota"
 arr["car"] = "ferrari"

 n = asort(arr)
 print "Array begins...!"
 print "====================="
 for (v in arr)
 print v, arr[v]
 print "Array Ends...!"
 print "====================="
}

function mul(num1, num2){
 result = num1 * num2
 printf ("Multiplication of %d * %d : %d\n", num1,num2,result)
}

function all(){
 add(30,10)
 mul(5,6)
 z_array()
}

BEGIN { print "First BEGIN statement"

GNU's Implementation of AWK – GAWK (GNU AWK) Chapter 9

[330]

 print "====================="
 }
END { print "First END statement "
 print "====================="
 }

/maruti/{print $0 }

BEGIN {
 print "Second BEGIN statement"
 print "====================="
 all()
}
END { print "Second END statement"
 print "====================="
 }

function add(num1, num2){
 result = num1 + num2
 printf ("Addition of %d + %d : %d\n", num1,num2,result)
}

$ awk -- prof -f codeprof.awk cars.dat

The output of the previous code is as follows:

First BEGIN statement
=====================
Second BEGIN statement
=====================
Addition of 30 + 10 : 40
Multiplication of 5 * 6 : 30
Array begins...!
=====================
1 audi
2 bmw
3 ferrari
4 toyota
5 volvo
Array Ends...!
=====================
maruti swift 2007 50000 5
maruti dezire 2009 3100 6
maruti swift 2009 4100 5
maruti esteem 1997 98000 1
First END statement
=====================

GNU's Implementation of AWK – GAWK (GNU AWK) Chapter 9

[331]

Second END statement
=====================

Execution of the previous program also creates a file with the name awkprof.out. If we
want to create this profile file with a custom name, then we can specify the filename as an
argument to the --profile option as follows:

$ awk --prof=codeprof.prof -f codeprof.awk cars.dat

Now, upon execution of the preceding code we get a new file with the name
codeprof.prof. Let's try to understand the contents of the file codeprof.prof created by
the profiles as follows:

 # gawk profile, created Fri Feb 9 11:01:41 2018

 # BEGIN rule(s)

 BEGIN {
 1 print "First BEGIN statement"
 1 print "====================="
 }

 BEGIN {
 1 print "Second BEGIN statement"
 1 print "====================="
 1 all()
 }

 # Rule(s)

 12 /maruti/ { # 4
 4 print $0
 }

 # END rule(s)

 END {
 1 print "First END statement "
 1 print "====================="
 }

 END {
 1 print "Second END statement"
 1 print "====================="
 }

GNU's Implementation of AWK – GAWK (GNU AWK) Chapter 9

[332]

 # Functions, listed alphabetically

 1 function add(num1, num2)
 {
 1 result = num1 + num2
 1 printf "Addition of %d + %d : %d\n", num1, num2, result
 }

 1 function all()
 {
 1 add(30, 10)
 1 mul(5, 6)
 1 z_array()
 }

 1 function mul(num1, num2)
 {
 1 result = num1 * num2
 1 printf "Multiplication of %d * %d : %d\n", num1, num2, result
 }

 1 function z_array()
 {
 1 arr[30] = "volvo"
 1 arr[10] = "bmw"
 1 arr[20] = "audi"
 1 arr[50] = "toyota"
 1 arr["car"] = "ferrari"
 1 n = asort(arr)
 1 print "Array begins...!"
 1 print "====================="
 5 for (v in arr) {
 5 print v, arr[v]
 }
 1 print "Array Ends...!"
 1 print "====================="
 }

GNU's Implementation of AWK – GAWK (GNU AWK) Chapter 9

[333]

This profiling example explains the various basic features of profiling in GAWK. They are
as follows:

The first look at the file from top to bottom explains the order of the program in
which various rules are executed. First, the BEGIN rules are listed followed by
the BEGINFILE rule, if any. Then pattern-action rules are listed.
Thereafter, ENDFILE rules and END rules are printed. Finally, functions are listed
in alphabetical order. Multiple BEGIN and END rules retain their places as
separate identities. The same is also true for the BEGINFILE and ENDFILE rules.
The pattern-action rules have two counts. The first number, to the left of the rule,
tells how many times the rule's pattern was tested for the input file/record. The
second number, to the right of the rule's opening left brace, with a comment,
shows how many times the rule's action was executed when the rule evaluated to
true. The difference between the two indicates how many times the rules pattern
evaluated to false.
If there is an if-else statement then the number shows how many times the
condition was tested. At the right of the opening left brace for its body is a count
showing how many times the condition was true. The count for the else
statement tells how many times the test failed.
 The count at the beginning of a loop header (for or while loop) shows how
many times the loop conditional-expression was executed.
In user-defined functions, the count before the function keyword tells how many
times the function was called. The counts next to the statements in the body show
how many times those statements were executed.
The layout of each block uses C-style tabs for code alignment. Braces are used to
mark the opening and closing of a code block, similar to C-style.
Parentheses are used as per the precedence rule and the structure of the program,
but only when needed.
Printf or print statement arguments are enclosed in parentheses, only if the
statement is followed by redirection.
GAWK also gives leading comments before rules, such as before BEGIN and END
rules, BEGINFILE and ENDFILE rules, and pattern-action rules and before
functions.

GNU's Implementation of AWK – GAWK (GNU AWK) Chapter 9

[334]

GAWK provides standard representation in a profiled version of the program. GAWK also
accepts another option, --pretty-print. The following is an example of a pretty-printing
AWK program:

$ awk --pretty-print -f codeprof.awk cars.dat

When GAWK is called with pretty-print, the program generates awkprof.out, but this
time without any execution counts in the output. Pretty-print output also preserves any
original comments if they are given in a program while the profile option omits the original
program’s comments. The file created on execution of the program with --pretty-print
option is as follows:

 # gawk profile, created Fri Feb 9 11:04:19 2018

 # BEGIN rule(s)

 BEGIN {
 print "First BEGIN statement"
 print "====================="
 }

 BEGIN {
 print "Second BEGIN statement"
 print "====================="
 all()
 }

 # Rule(s)

 /maruti/ {
 print $0
 }

 # END rule(s)

 END {
 print "First END statement "
 print "====================="
 }

 END {
 print "Second END statement"
 print "====================="
 }

GNU's Implementation of AWK – GAWK (GNU AWK) Chapter 9

[335]

 # Functions, listed alphabetically

 function add(num1, num2)
 {
 result = num1 + num2
 printf "Addition of %d + %d : %d\n", num1, num2, result
 }

 function all()
 {
 add(30, 10)
 mul(5, 6)
 z_array()
 }

 function mul(num1, num2)
 {
 result = num1 * num2
 printf "Multiplication of %d * %d : %d\n", num1, num2, result
 }

 function z_array()
 {
 arr[30] = "volvo"
 arr[10] = "bmw"
 arr[20] = "audi"
 arr[50] = "toyota"
 arr["car"] = "ferrari"
 n = asort(arr)
 print "Array begins...!"
 print "====================="
 for (v in arr) {
 print v, arr[v]
 }
 print "Array Ends...!"
 print "====================="
 }

GNU's Implementation of AWK – GAWK (GNU AWK) Chapter 9

[336]

Summary
In this chapter, we learned about the features which are available in GAWK but not in
AWK. We began with features such as handling non-decimal input, two-way inter-process
communication, sorting of arrays, network programming and the GAWK built-in command
line debugger. Finally, we learned about profiling using GAWK, for optimizing GAWK
programs.

In our next chapter, we will cover some use case examples of text-processing using AWK
for system administrators and programmers.

10
Practical Implementation of

AWK
This chapter covers different use case examples of text processing and pattern matching
with AWK. These examples include some quick one-liner collections for system
administrators, that can be directly used inside shell scripts, while performing automation.
Some examples are written from the programmers' and data scientists' perspective for
dealing with raw data cleaning and reformatting. These sample programs and one-liners
are aimed at saving time while carrying out automation, and making AWK programs, clean
and more productive.

In this chapter, we will cover the following:

One-liner collections for text processing and pattern matching with AWK
Use case examples of pattern matching using AWK

Working with one-liners for text processing
and pattern matching with AWK
AWK is the best tool for breaking data into smaller chunks to make it suitable for input to
other applications, or for manipulation. We can write complex scripts using AWK that can
run into 100s or even 1,000s of lines, but for system administrators, most of the time, use of
AWK is limited to relatively short scripts, and one-liners are best suited to the command
line to give the desired output.

Practical Implementation of AWK Chapter 10

[338]

A one-liner is an AWK program consisting of a sequence of pattern-action statements in a
single line. They are very useful in performing day-to-day file processing. They help in
breaking down large files into chunks of information. These one-liners are often combined
with a bash shell script for automation of sysadmin tasks.

Selective printing of lines with AWK
In this section, we look at various one liners used for printing lines of a file selectively with
AWK:

Printing the top 10 lines of a file (similar to the head 10 shell command): In this
example, we use a built-in AWK variable called NR with an input of record
number/line number. After reading each line, AWK increments this variable
value by one. An AWK action statement gets executed for each pattern match. In
this example, we do not specify any action statements. In the absence of any
action statement, the default operation is print. So, it will print the line, if the line
number is less than 11, as follows:

$ awk 'NR < 11' cars.dat

The previous command processes all the lines in a file, although in the output it
prints only the first 10 files:

$ awk '{print};NR == 10{ exit }' cars.dat

Or this can be written as:

$ awk '1;NR == 10{ exit }' cars.dat

Print the first line of a file only (similar to the head 1 shell command): In this
example, we again use the built-in variable NR. Here, we give the condition to
first check if the input record number is greater than one. If it is true, then exit;
otherwise, execute the next action statement of print. Hence, it prints the first
line only when NR is equal to 1:

$ awk 'NR > 1{ exit }; { print }' cars.dat

Practical Implementation of AWK Chapter 10

[339]

Print last line of a file only (similar to the tail 1 shell command): In this
example, AWK processes the whole file but prints only the last line, as we have
used the print statement in the END block as follows:

$ awk 'END { print }' cars.dat

Or this can be written as:

$ awk '{ line=$0 }END { print line }' cars.dat

This way of printing the last line using AWK is more CPU intensive than the
tail -1 command.

Print last two lines of a file (similar to tail -2 shell command): In this example,
we store the two lines in one variable (here, variable is y). Both lines are
separated by a linefeed character \n. The first line is stored in variable x and the
second in $0. Later, both x and $0 are assigned to y. So, if we have N no of lines,
then x stores line number N-1 and $0 will store line number N, as follows:

$ awk '{ y=x "\n" $0; x=$0 }; END { print y }' cars.dat

Print those lines that match a regular expression /regex/ (similar to the grep
shell command): In this example, we specify the pattern as a regular
expression, /regex/. If the current line matches the regex, AWK prints the
whole line; otherwise, it prints nothing:

$ awk '/regex/' <FILENAME>

Or this can be written as:

$ awk '{ if($0 ~ /ikon/) print $0}' cars.dat

Or:

$ awk '$0 ~/ikon/{print $0}' cars.dat

 Or:

$ awk '/ikon/{print $0}' cars.dat

Or:

$ awk '/ikon/{print}' cars.dat

Practical Implementation of AWK Chapter 10

[340]

Or:

$ awk '/ikon/' cars.dat

Print those lines that do not match the given regular expression /regex/ (similar
to the grep -v shell command): In this example, we negate the specified regular
expression /regex/. If the current line does not match the regex, AWK prints
the whole line; otherwise, it prints nothing:

$ awk '!/regex/' <FILENAME>

 Or:

$ awk '!/ikon/' cars.dat

Print those lines that match a regular expression /regex/ and ignore case
(similar to the grep -i shell command): In this example, we set the AWK built-in
variable IGNORECASE to true inside the BEGIN block and specify as a regular
expression /regex/. If the current line matches the regex, AWK prints the
whole line; otherwise, it prints nothing:

$ awk 'BEGIN { IGNORECASE=1 };/regex/' <FILENAME>

Or:

$ awk 'BEGIN { IGNORECASE=1 };{ if($0 ~ /IKON/) print $0}'
cars.dat

 Or:

$ awk 'BEGIN { IGNORECASE=1 };$0 ~/IKON/{print $0}' cars.dat

 Or:

$ awk 'BEGIN { IGNORECASE=1 };/IKON/{print $0}' cars.dat

 Or:

$ awk 'BEGIN { IGNORECASE=1 };/IKON/{print}' cars.dat

 Or:

$ awk 'BEGIN { IGNORECASE=1 };/Ikon/' cars.dat

Practical Implementation of AWK Chapter 10

[341]

Printing a line immediately before a line that matches /regex/ (but not the line
with the regex itself): In this example, we store the current line in a variable (here
the x variable is used). When the next line is read, the previous line is still
available in variable x, and if the current line matches /regex/, the variable x is
printed containing the previous line, as follows:

$ awk '/regex/{ print x }; { x=$0 }' <FILENAME>

 Or:

$ awk '/ford/{ print x }; { x=$0 }' cars.dat

If regex is found on the first line, then it prints an empty line; so to make it
more meaningful, we can modify the preceding one-liner as follows:

$ awk '/regex/{ print (x == "" ? "match found on line 1" : x) };
{ x=$0 }'

Printing the line immediately after the line that matches /regex/ (but not the
line that has the regex itself): In this example, we use the getline function in
the action statement. If a regex match is found on a line, the getline function is
used to fetch the next line in $0 and then prints it with the print statement:

$ awk '/regex/{ getline; print }' <FILENAME>

 Or:

$ awk '/ford/{ getline; print }' cars.dat

Print the lines that match one of three given regular expressions, AAA or BBB
or CCC: In this example, we use an extended regular expression alternation meta-
character |. It separates each regex and prints the lines matching them
separately on each line. The ones containing one or more matches get printed as
follows:

$ awk '/AAA|BBB|CCC/' <FILENAME>

 Or:

$ awk '/AAA|BBB|CCC/' cars.dat

 Or:

$ awk '/ford|punto|1999/' cars.dat

Practical Implementation of AWK Chapter 10

[342]

Print lines that contain multiple regular expressions AAA and BBB and CCC in
a given order in a line: In this example, we use the regular expression meta-char
dot (.) and asterisk (*). We build a regex as AAA.*BBB.*CCC to match the lines
containing AAA followed by any text, followed by BBB, followed by any text,
followed by CCC in that order and print it if a match is found, as follows:

$ awk '/AAA.*BBB.*CCC/' <FILENAME>

 Or:

$ awk '/maruti.*swift.*2007/' cars.dat

Print the length of characters in a line followed by the line itself: In this
example, we use the built-in length function (length [str]), to prefix the line
with the number of characters in each line, as follows:

$ awk '{print length " : " $0}' <FILENAME>

 Or:

$ awk '{print length " : " $0}' label.dat

Print only the lines that are a specified number of characters in length or more:
In this example, we use the length function again to print only those lines that
contain at least a specific numbers of characters each line, as follows:

$ awk 'length >= 10' <FILENAME>

 Or:

$ awk 'length >= 10' label.dat

Print only the lines that have a specified number of characters or less: In this
example, we use the length function with the relational operators less than and
equal to, for printing the lines, as follows:

$ awk 'length <= 10' <FILENAME>

 Or:

$ awk 'length <= 10' label.dat

Practical Implementation of AWK Chapter 10

[343]

Print a range of lines (section of file) from regular expression to end of file: In
this example, we specify the first range pattern in the format /pattern1/,
/pattern2/. If in place of pattern2, we put 0, then it will print all the lines up
to the end of file. 0 represents false, so all lines starting from pattern1 to the end
of the file:

$ awk '/regex/,0' cars.dat

 Or:

$ awk '/beat/,0' cars.dat

Print a range of lines (section of file) specified between two patterns: In this
example, we print a range of lines by specifying two patterns, /pattern1/,
/pattern2/, as follows:

$ awk '/regex/,/regex/' cars.dat

 Or:

$awk '/beat/,/ikon/' cars.dat

Print a range of lines specified by line number (4 to 8 in our example scenario):
In this example, we use NR, input a record number and specify the range of lines
to be printed as pattern1, pattern2. Here, pattern1 is NR==4 and pattern2
is NR==8 as follows:

$ awk 'NR==4,NR==8' <FILENAME>

 Or:

$ awk 'NR==4,NR==8' cars.dat

Print a specified line number: In this example, we use NR to print a specified line
number. If say NR==4 is specified, so when an input record number is equal to 4,
AWK prints the line as follows:

$ awk 'NR==4' <FILENAME>

 Or:

$ awk 'NR==4' cars.dat

Practical Implementation of AWK Chapter 10

[344]

A more appropriate way of printing a specified line number would be to stop
processing after printing the matching line, as follows:

$ awk 'NR==4 { print; exit }' cars.dat

Print all lines where a particular field is equal to a specified string: In this
example, we use the relational operator equal to (==) to match the value
contained in a field with the string specified. Here, we will match the second field
with a string, swift, and print the lines, as follows:

$ awk '<field number> == <string>' <FILENAME>

 Or:

$ awk '$2 == "swift"' cars.dat

 Or:

$ awk '$2 == "swift"{ print }' cars.dat

 Or:

$ awk '{ if ($2 == "swift") { print $0 } }' cars.dat

Print any line but the one containing a specified string in a specified field: In
this example, we use the negation relational operator to print those lines which
do not contain the specified string in the specified field of a file. Here, we print
those lines that do not contain the string swift in the second field, as follows:

$ awk '<FIELD NUMBER> != <STRING>' <FILENAME>

 Or:

$ awk '$2 != "swift"' cars.dat

 Or:

$ awk '$2 != "swift"{ print }' cars.dat

 Or:

$ awk '{ if ($2 != "swift") { print $0 } }' cars.dat

Practical Implementation of AWK Chapter 10

[345]

Print those lines whose specified field matches a given regular expression: In
this example, we use the match operator ~ to test if a field matches a specified
regular expression. Here, we will print all those lines whose second field matches
a regular expression [^a-j]. This regular expression means all those lines whose
second field begins with a lowercase letter a, b, c, d, e, f, g, h, i, or j will be
printed:

$ awk '<FIELNAME> ~ /<REGEX>/' <FILENAME>

 Or:

$ awk '$2 ~ /^[a-j]/' cars.dat

Print those lines whose specified field does not match a given regular
expression: In this example, we use the not match operator ! ~ to test if a field
does not match a specified regular expression.

Here, we will print all those lines whose second field does not match a
regular expression [^a-j]. This regular expression means all those lines
whose second field begins with a lowercase letter a, b, c, d, e, f, g, h, i, or j
will be printed:

 $ awk '<FIELNAME> ~ /<REGEX>/' <FILENAME>

 Or:

 $ awk '$2 !~ /^[a-j]/' cars.dat

Print each line with specified field deleted: In the following example, we set the
specified field value to null for each line and then print it as follows:

$ awk '{ <FIELD> =""; print }' <FILENAME>

 Or:

$ awk '{ $2 =""; print }' cars.dat

Practical Implementation of AWK Chapter 10

[346]

Print all lines of a file (similar to "cat filename" shell command): In the
following example, we print all the input records of files processed by AWK. In
this, we use a universal true condition such as 1 and string a as an argument to
AWK. Since the pattern specified is always true, AWK will print the current input
line being processed, as follows:

$ awk 1 <FILENAME>

 Or:

$ awk ' "a" ' <FILENAME>

 Or:

$ awk '{print}' <FILENAME>

 Or:

$ awk '/.*/' <FILENAME>

 Or:

$ awk '$0' <FILENAME>

The previous syntax, awk 1 <filename>, is generally used in combination
with other AWK statements. For example, we operate on some input records
but we also want to print all records, whether they were affected by the other
operation or not, as given in the following example:

$ awk '{sub(/maruti/,"XYZ")}1' cars.dat

 Or:

$ awk '{sub(/maruti/,"XYZ")}{print}' cars.dat

Print the fields of every line in reverse order: In this example, we use NF, the
number of fields built-in variable. Here, we begin printing with the last field in
each line until the first field in the line is printed. Then, we give the linefeed
before printing the next line, as follows:

$ awk '{ for(i=NF; i>0; i--) printf("%s\t", $i); printf("\n")
}' cars.dat

Practical Implementation of AWK Chapter 10

[347]

Joining the two lines if first line ends with matching string: In the following
example, we use a ternary operator. The string that ends the line to be joined with
the next line is specified as a conditional expression; if the string match is found
at the end of line, the ORS value is set to FS (space); otherwise, ORS is set as RS
(newline), as follows:

$ awk 'ORS=/regex$/ ? FS : RS' <FILENAME>

 Or:

$ awk 'ORS=/Jack$/ ? FS : RS' label.dat

Modifying line spacing in a file with AWK
In this section, we look at various one-liners used for modifying the spacing between lines
in a file, using AWK.

Double-space a file: In the following example, we first use the print statement
with $0 to hold an entire line, followed by the second print statement to print
nothing. In this, each print statement is followed by ORS, which prints a
newline. Thus, each line gets double-spaced, as follows:

$ awk '{print $0 }{print ""}' label.dat

 Or:

$ awk '{print}{print ""}' label.dat

 Or:

$ awk '1{print}{print ""}' label.dat

 Or:

$ awk '1;{print ""}' label.dat

 Or:

$ awk '{print $0 "\n"}' label.dat

Practical Implementation of AWK Chapter 10

[348]

We can also double-space a file by setting the ORS variable value to 2
newlines instead of the default value of 1, as follows:

$ awk 'BEGIN{ORS="\n\n"};{print}' label.dat

 Or:

$ awk 'BEGIN{ORS="\n\n"};1' label.dat

Double-space a file so that only one empty line appears between lines of text:
In this case, we use NF, the number of fields built-in variable of AWK, as the
pattern. If a line is empty, the value of NF is 0 for that and it will skip the action
part for those lines where NF is set as 0; otherwise, it will execute the action part
of the AWK statement, as follows:

$ awk 'NF{print $0 "\n"}' label.dat

 Or:

$ awk 'BEGIN{ORS="\n\n"} NF{print $0}' label.dat

Triple-spacing a file: In this case, instead of a two-line feed, we specify a three-
line feed in the AWK program, used earlier for double-spacing, as follows:

$ awk '1;{print "\n"}' label.dat

 Or:

$ awk '{print ; print "\n"}' label.dat

 Or:

$ awk '{print $0 "\n\n"}' label.dat

 Or:

$ awk 'BEGIN{ORS="\n\n\n"}{print $0}' label.dat

Practical Implementation of AWK Chapter 10

[349]

Numbering and calculations with AWK
In this section, we look at the working of one-liners for the numbering of lines in a file, and
performing calculations on fields and line numbers:

Numbering lines in multiple files separately: The following example uses FNR –
the file line number AWK built-in variable before each line to print the current
line number for each file, separately. If we use this one-liner with 2 files, named
cars.dat containing 12 lines and the second file, label.dat containing 7 lines,
it will print the first line number from 1 to 12, and then 1 to 7 for 2 files,
respectively. The FNR value is reset for each file:

$ awk '{ print FNR "\t" $0 }' cars.dat label.dat

Numbering all lines for multiple files together: In this example, we use NR – the
line number built-in variable to print the line number. The NR variable value does
not get reset from file to file. It counts the input line for each input record. Hence,
if we replace FNR with NR in the previous example, we will get line numbers from
1 to 19:

$ awk '{ print NR "\t" $0 }' cars.dat label.dat

 Or:

$ awk '$0 = NR " " $0' cars.dat label.dat

Using printf to prefix line number in a fancy manner: In this example, we use
the printf() function to number lines in a custom format, to print numbers
right aligned followed by a space and a colon and the current input line:

$ awk '{ printf("%3d : %s\n", NR, $0) }' cars.dat label.dat

Number and print only non-blank lines in a file: In the following example, we
use variable a to store the line number. Its value is incremented each time when
the line is non-empty, and then we append the colon symbol followed by the
current input line. This whole new string value is assigned to $0 for printing, as
follows:

$ awk 'NF { print $0=++a " : " $0 }' label.dat

Practical Implementation of AWK Chapter 10

[350]

Number only non-blank lines but print all lines in a file: In the following
example, we use variable a to store the line number. Its value is incremented each
time when the line is non-empty, and then we append the colon symbol followed
by the current input line. This whole new string value is assigned to $0. Then, we
use the print statement for printing whatever is stored in the $0 variable for
each input line, as follows :

$ awk 'NF{ $0=++a " : " $0};{print}' label.dat

 Or:

$ awk 'NF{ $0=++a " : " $0};1' label.dat

 Or:

$ awk '/^..*$/{ $0=++a " : " $0};1' label.dat

The example of using a ternary operator to print lines having NF not equal to
0:

$ awk '{print (NF ? ++a " : " : "") $0}' label.dat

Counting number of lines in a file (similar to wc -l): In this example, we use NR
– the line number built-in variable and END input block to print the total number
of input lines:

$ awk 'END{print "Total lines in file : ",NR}' label.dat

Print the sum of the fields of every line: In this example, we use the for loop,
similar to the C-language for loop construct. This one-liner loops over all the
fields in the current input line (NF represents the number of fields in line) and
adds the result to the variable sum. Then, it prints the total of fields stored in the
variable sum before processing the next line, as follows:

$ awk '{ sum=0; for (i=1; i<=NF; i++) sum=sum+$i; print sum}'
marks.txt

Practical Implementation of AWK Chapter 10

[351]

Print the sum of all fields in all lines: In this example, the variable sum is not
initialized to 0 for each line, hence the value for all fields for each line gets stored
in it. Then, we use the END block to print the last value stored in the sum variable,
as follows:

$ awk '{ for (i=1; i<=NF; i++) sum=sum+$i}END {print "SUM OF
ALL FIELDS : " sum+0 }' marks.txt

Replace every field with its absolute value: In this example, we use the for loop
over the field for each input line followed by the if conditional statement to
check whether the value of the field is less than 0. If any of the fields have a value
less than 0, then its value is negated to make it positive:

$ echo -2 | awk '{ for (i=1; i<=NF; i++) if ($i< 0) $i= -$i;
print}'

 Or:

$ echo -2 | awk '{for (i=1; i<=NF; i++) $i = ($i < 0) ? -$i :
$i ; print }'

Count and print total number of fields (words) in a file: In this example, we
keep adding the number of fields in each line in a variable total. Once all the lines
of the file are processed, the output is printed in the END block. We have also
added 0 in the string variable total in the case of the file being empty, that is the
number of fields is 0:

$ awk '{ total = total + NF }; END { print "Total Words : "
total+0 }'

Printing total number of lines containing a regular expression: In this example,
we specify the pattern between two forwardslashes and then store the count of
the number of lines containing the pattern in a variable. Finally, we print the
value stored in the variable in the END block:

$ awk '/maruti/{ n++ };END{ print n+0 }' cars.dat

Prefix each line by number of fields in it: In this example, we use NF- the
number of fields built-in variable followed by a colon and the line itself, as
follows:

$ awk '{ print NF ":" $0 }' label.dat

Practical Implementation of AWK Chapter 10

[352]

Print last field of last line: In this example, we store the value of the last field in a
variable, var. Once it has processed all the lines, the last field value is stored in
the variable var and then we use the END block to print the value stored in it, as
follows:

$ awk '{ var=$NF }END{ print var }' label.dat

 Or:

$ awk 'END{ print $NF }' label.dat

Print lines having more than four fields: In this example, we use NF – the
number of fields to print lines with more than four fields, giving the action part is
not essential here:

$ awk 'NF > 4' cars.dat

Print lines having value of last field greater than 4: In this example, we use $NF
– value stored in fields, to print the lines having a value greater than 4, as follows:

$ awk '$NF > 4' cars.dat

Selective deletion of certain lines in a file with
AWK
In this section, we look at the working of one-liners for the selective deletion of lines and
fields in a file:

Delete all blank lines from a file (similar to grep): In this example, we use NF–
the number of fields built-in variable in each line. For empty lines, NF evaluates to
0, that is, false. Since it is a false statement, the does not get printed; we get only
non-empty lines in our output, as follows:

$ awk NF <FILENAME>

 Or:

$ awk '/./' label.dat

Practical Implementation of AWK Chapter 10

[353]

 Or:

$ awk '!/^$/' label.dat

 Or:

$ awk NF label.dat

Deleting consecutive duplicate lines from a file: In this example, we use a
variable (here a) to store the current input line. The value stored in variable a is
matched using the string match operator (~) with the value in the current input
line next input line processed as follows:

$ awk 'a !~ $0 ; {a=$0}' <FILENAME>

Deleting non-consecutive duplicate lines from a file: In this example, we use an
array variable (here a) to store the current input line. Then, we check if the
current input line is stored in the array element. If it is not stored in the array
element, then it is added in array a and printed as follows:

$ awk '!($0 in a){ a[$0] ; print}' <FILENAME>

 Or:

$ awk '!($0 in a){ a[$0] ; print}' cars.dat

String operation on selected lines with AWK
In this section, we understand the workings of one-liners for various string operations on
lines of a file with AWK:

Append the text in the matching line: In this example, we match the specified
regular expression in the current input line. If a match is found, we append the
desired text in the $0 variable and print; otherwise, we print the current input
line only. On finding a match after printing a line with appended text, we use
the next statement to start processing the next input line and skip the subsequent
statement, as follows:

$ awk '/regex/{print $0 " **ADDITIONAL TEXT **";next}{print}'
<FILENAME>

Practical Implementation of AWK Chapter 10

[354]

 Or:

$ awk '/maruti/{print $0 " **ADDITIONAL TEXT **";next}{print}'
cars.dat

Insert a new line after the matching line: In this example, we first match the
specified regular expression pattern in the current input line. If a match is found,
then we print the specified text in a new line, and it is followed by the next
statement, otherwise we print the current input line, as follows:

$ awk '/regex/{print $0; print " **ADDITIONAL LINE
**";next}{print}' <FILENAME>

 Or:

$ awk '/maruti/{print $0; print " **ADDITIONAL LINE
**";next}{print}' cars.dat

Create a string of a specific length (generate a string of xs of length 50): In this
example, we use the BEGIN{} block to create the string. In this block, a while
loop is used to append a character to the variable str 50 times. On completion of
the loop, the value stored inside that variable is printed as follows:

$ awk 'BEGIN { while (a++<50) str=str "x" ; print str }'

Insert a string at a certain character position: In this example, we use the
subfunction to insert a string in each line after a specified character position. We
declare the string in the BEGIN block and then use it in the body block of AWK, as
follows:

$ awk 'BEGIN{ str="**NEWSTRING**"};{sub(/^....../,"&" str)};1'
label.dat

Practical Implementation of AWK Chapter 10

[355]

Array creation with AWK one-liner
In this section, we understand the workings of one-liners in creating arrays with AWK:

Creating an array from string: In this example, we use split functions to create an
array. A split function accepts three arguments, the first argument is a string
which we want to split into an array. The second argument is the array name, and
the third argument is the regular expression which is to be used for creating the
splitting of the string into fields to create the array elements, as follows:

$ awk 'BEGIN{ split("orange red green", trafficlight, " ")}'

If we want to print the array, after creating it we can proceed as follows :

$ awk 'BEGIN{ split("orange red green", arr, " "); for(v in
arr) print arr[v]}'

Text conversion and substitution in files with
AWK
In this section, we look at the working of one-liners in text conversion and substitution in
files with AWK.

Let's create a sample file for practicing substitutions and conversions:

$ vi sample.txt

 foo baz ruby
baz foo foo foo
foo gold\
silver foo
silver foo
baz foo foo foo
 foo baz ruby

Practical Implementation of AWK Chapter 10

[356]

Convert Windows/DOS newlines (CRLF) to Unix newlines (LF) using AWK: In
this example, we use the sub(regex, replacement, [string]) function.
Here, we replace the \r (CR) character at the end of the line with nothing; we
erase CR at the end. The print statement prints out the line and appends the ORS
variable, which is \n by default. So, a line that ends with CRLF is converted into a
line that ends with LF:

$ awk '{ sub(/\r$/ , ""); print}' <FILENAME>

Or:

$ awk '{ sub(/\r$/ , "")};1' <FILENAME>

Convert Unix newlines (LF) to Windows/DOS newlines (CRLF) using AWK: In
this example, we again use the sub() function. This time, it replaces the end of
the line ($) with a \r (CR). This adds the carriage return at the end of the line.
After that, AWK prints the line and appends ORS, making the line terminate with
CRLF:

$ awk '{ sub(/$/ , "\r"); print}' <FILENAME>

$ awk '{ sub(/$/ , "\r")};1' <FILENAME>

Deleting leading whitespace (spaces and tabs) at the beginning of each line: In
this example, we use the sub() function to delete the whitespaces. The regular
expression for whitespace is ^[\t]+ . Here, ^ means at the beginning of the line,
\t means tab, and '''' means space, and the plus + symbol here represents one
or more match:

$ awk '{ sub (/^[\t]+/, ""); print }' <FILENAME>

 Or:

$ awk '{ sub (/^[\t]+/, "")};1' <FILENAME>

 Or:

$ awk '{ sub (/^[\t]+/, ""); print }' sample.txt

Practical Implementation of AWK Chapter 10

[357]

Deleting trailing whitespace (spaces and tabs) at the end of a line: In this
example, we again use the same sub() function to delete trailing whitespaces.
The regular expression used here is very similar to the previous one, except the
anchor used here is $ to match the whitespace [\t]+$ at the end of line, as
follows:

$ awk '{ sub(/[\t]+$/ , ""); print}' <FILENAME>

 Or:

$ awk '{ sub(/[\t]+$/ , "")};1' <FILENAME>

 Or:

$ awk '{ sub(/[\t]+$/ , ""); print}' sample.txt

Deleting both leading and trailing whitespaces from a line: In this example, we
use the gsub() function. The Gsub() function is similar to the sub() function,
except it performs the multiple substitutions in the same line. Gsub() stands for
global substitution. Here, we combine both the regular expressions, to delete the
leading whitespace ^[\t]+ and the trailing whitespace [\t]+$, to substitute
with nothing, as follows:

$ awk '{ gsub(/^[\t]+|[\t]+$/ , ""); print}' <FILENAME>

 Or:

$ awk '{ gsub(/^[\t]+|[\t]+$/ , "")};1' <FILENAME>

 Or:

$ awk '{ gsub(/^[\t]+|[\t]+$/ , ""); print}' sample.txt

We can remove multiple whitespaces between fields, using the following:

$ awk '{ $1=$1;print}' <FILENAME>

 Or:

$ awk '{ $1=$1};1' cars.dat

Practical Implementation of AWK Chapter 10

[358]

Add some characters/tab/spaces at the beginning of each line: In this example,
we use the sub() function with the regular expression anchor (^) to insert at the
beginning of each line. In the replacement part of the sub() function, we can put
the desired string, tab, or spaces we want to be at the beginning of each line, as
follows :

$ awk '{ sub(/^/, "***"); print }' <FILENAME>

 Or:

$ awk '{ sub(/^/, "***"); print }' cars.dat

 Or:

$ awk '{ sub(/^/, "\t"); print }' cars.dat

 Or:

$ awk '{ sub(/^/, " "); print }' cars.dat

Add some characters/tab/spaces at the end of each line: In this example, we use
the sub() function with the regular expression anchor ($) to insert at the end of
each line. In the replacement part of the sub() function, we can put the desired
string, tab, or spaces which we want to be at the end of each line, as follows:

$ awk '{ sub(/$/, "***"); print }' <FILENAME>

 Or:

$ awk '{ sub(/$/, "***"); print }' cars.dat

 Or:

$ awk '{ sub(/$/, "\t"); print }' cars.dat

 Or:

$ awk '{ sub(/^/, " "); print }' cars.dat

Practical Implementation of AWK Chapter 10

[359]

Centrally align all lines of a file to the specified width: In this example, we use
the length function to calculate the length of each line. Then, the number of
whitespaces to be padded at the beginning of the line is stored in a variable, say
s. In the end, we use pretty printing with printf() to print the exact number of
whitespaces followed by the line, as follows:

$ awk '{ l=length(); s=int((80/2)); printf("%"(s+l)"s\n",$0)}'
<FILENAME>

 Or:

$ awk '{ l=length(); s=int((80/2)); printf("%"(s+l)"s\n",$0)}'
cars.dat

Substitute (find and replace) a given string with a replacement string on each
line: In this example, we use the sub(), gsub(), and gensub() functions for
performing the substitution of pattern1 with pattern2 in each line. In this one-
liner, we use the sub() function to replace foo with bar. The sub() function
substitutes only the first match in each line, as follows:

$ awk '{ sub(/foo/,"bar"); print }' sample.txt

In our next example, we use the gsub() function to globally substitute the
match of the foo string with bar. It substitutes the multiple occurrences of
foo with bar, as follows:

$ awk '{ gsub(/foo/,"bar"); print }' sample.txt

In our next example, we use the gensub() function to globally substitute the
match, a particular numbered occurrence can also be replaced. It has one
difference from the sub() and gsub() function in that it returns the
modified string, as compared to the sub() and gsub() function which
modify the string in place:

$ awk '{ $0 = gensub(/foo/,"bar",2); print }' sample.txt

Substitute the text with a replacement string only if the given line contains the
specified string: In the following example, we use the gsub() function prefixed
with a specified pattern to perform substitution in matching lines only, as
follows:

$ awk '/baz/{ gsub(/foo/,"bar"); print }' sample.txt

Practical Implementation of AWK Chapter 10

[360]

Substitute the text with a replacement string only if the given line do not
contain the specified string: In the following example, we use the gsub()
function prefixed with a specified pattern to perform substitution in lines that do
not match, as follows:

$ awk '!/baz/{ gsub(/foo/,"bar"); print }' sample.txt

Substitute the text with replacement string only if the given line contains any
of the multiple strings specified: In the following example, we use the gsub()
function with the extended regular expression alternation operator | (pipe), as
follows:

$ awk '{ gsub(/gold|silver|ruby/, "DIAMOND"); print}'
sample.txt

Substitute text if a match is found and print each line: In the following example,
we use the gsub() function to perform a substitution on the current input line, if
a match is found. If a match is not found, then print the current input line
without substitution, as follows:

$ awk '/regex/{execute A; next}{execute B}' <FILENAME>

 Or:

$ awk '/maruti/{gsub(/swift/,"SWIFT");print; next}' cars.dat

Print lines of a file in reverse order (bottom to top, similar to the tac shell
command): In this example, we first store all the lines of the file in an array, a.
Then, we use the for loop inside the END block to print the lines in reverse order,
as follows:

$ awk '{ a[i++] = $0 } END { for (j=i-1; j>=0;) print a[j--]
}' <FILENAME>

 Or:

$ awk '{ a[i++] = $0 } END { for (j=i-1; j>=0;) print a[j--] }'
label.dat

Practical Implementation of AWK Chapter 10

[361]

Join a line that ends with a backslash to the next line in the file: In the example,
we use the sub() function to search for lines ending with a backslash, using a
regular expression. Then, we substitute the backslash in a matching line with
newline and use the getline method to fetch the subsequent line in a
variable. Then, both the current line and next line stored in a variable using
the getline method is printed on the screen, as follows:

$ awk '/\\$/ { sub(/\\$/,"**newline**"); getline t; print $0 t;
next }; 1' sample.txt

Printing the first two fields in reverse order on each line: In this example, we
reverse the order of fields, $1 and $2, as follows:

awk '{ print $2, $1 }' cars.dat

Printing fields by changing the delimiter: In this example, we specify a single
delimiter using the command line option -F to change the value of the delimiter.
Here, we change the default delimiter from the space or tab to pipe, using the -F
option, as follows:

$ echo "a|b|c|d" | awk -F"|" '{print $3}'

 Or:

$ echo "a|b|c|d" | awk -F'|' '{print $3}'

 Or:

$ echo "a|b|c|d" | awk -F\| '{print $3}'

 Or:

$ echo "a|b|c|d" | awk 'BEGIN{FS="|"}{print $3}'

Printing fields by setting multiple values for the delimiter: In this example, we
again change the default value of the field delimiter and specify multiple values
for the delimiter, using a regular expression as follows:

$ echo "a:b=c|d" | awk 'BEGIN{FS="[|=:]"}{print $3}'

 Or:

$ echo "a:b=c|d" | awk -F'[:=|]' '{print $3}'

Practical Implementation of AWK Chapter 10

[362]

One-liners for system administrators
In this section, we look at the workings of various one-liners used for the automation of
system administration tasks in shell scripts and day-to-day admin tasks.

Print and sort the login name of all users on Linux OS:

$ awk -F ":" '{ print $1 | "sort" }' /etc/passwd

List all filenames whose size is greater than zero:

$ ls -al | awk '$5 > 0{ print $9} '

Print all lines of a file prefixed with a line number:

$ awk '{print NR, $0}' <FILENAME>

Calculate and print the total size of a directory in Mb:

$ ls -al | awk '{total +=$5};END {print "Total size: "
total/1024/1024 " Mb"}'

Calculate and print the total size of a directory, including sub directories, in Mb:

$ ls -lR |awk '{total +=$5};END {print "Total size: "
total/1024/1024 " Mb"}'

Find the largest file and its size in a directory, including subdirectories:

$ ls -lR |awk '{print $5 "\t" $9}' |sort -n |tail -1

Print the number of hits to a website from a unique host IP address from an
Apache access log file (the first field stores the IP address of the client making the
request):

$ awk '{print $1}' | sort | uniq -c | sort -rn
/var/www/html/access_log

Practical Implementation of AWK Chapter 10

[363]

Print all lines from the Apache log file, if the HTTP error code is 500 (the ninth
field stores the status error code for each HTTP request):

$ awk ' $9 == 500 {print $0 }' /var/log/httpd/access_log

 Or:

$ awk ' $9 == 500 {print }' /var/log/httpd/access_log

 Or:

$ awk ' $9 == 500 ' /var/log/httpd/access_log

Print the lines with specific usernames:

$ awk '/sanjay/rahul/jack ' /etc/passwd

Print the first line from a file:

$ awk 'NR==1{print;exit}' /etc/resolv.conf

List your top 10 favorite commands using AWK:

$ history | awk '{print $2}' | sort | uniq -c | sort -rn | awk
"NR<11"

Print the total number of active TCP connections and their state, using AWK:

$ netstat -tn | awk '/tcp/{print $6}' | sort | uniq -c

List your assigned IP addresses in your system:

$ ifconfig | awk '/inet / {print $2}'

Back up all shell script files with a .sh extension with .bak extension:

$ ls *.sh | awk '{print "cp "$0" "$0".bak"}' | bash

Practical Implementation of AWK Chapter 10

[364]

Use case examples of pattern matching
using AWK
In this section, we illustrate the workings of AWK using some practical examples such as
the parsing of web server log files, transposing the contents of files, and processing multiple
files.

Parsing web server (Apache/Nginx) log files
In this section, we will see how AWK can be used for generating reports from log files.
Using AWK, we can segregate the different portions of log files to find the bottleneck of
different issues that are creating extensive memory usage, CPU usage, or I/O on servers.

We will use a sample log file named apache_logs.txt for performing the practice here.

Understanding the Apache combined log format
Before analyzing the log file of web servers, let's look at the log file format. A standard log
file entry contains the following information:

%h %l %u %t “%r” %>s %b “%{Referer}i” “%{User-agent}i

Here is a description of the different fields used in the combined log format:

%h: IP address of the client (remote host) making the request to our site.
%l: RFC 1413 identity of the client (hyphen – here indicates the requested piece
of information is not available).
%u: User ID of the person requesting the document.
%t: Time when server finished processing the request. Its format is
[day/month/year:hour:minute:second zone].
%r: Request line for the client in double quotes.

Practical Implementation of AWK Chapter 10

[365]

%>s: Status Code that the server sends back to the client. Various status codes are
used:

A successful response begins with - 2
A redirection begins with - 3
An error caused by a client begins with - 4
An error in a server begins with - 5

%b: Size of object returned to the client.
%{Referer}i: It is an HTTP request header, the URL which linked the user to
your site.
%{User-agent}i: It is a user-agent HTTP request header used by the client
browser for making the request.

The following is a sample log entry:

83.149.9.216 - - [17/Feb/2018:10:05:03 +0000] "GET
/presentations/images/search.png HTTP/1.1" 200 203023
"http://semicomplete.com/presentations/2013/" "Mozilla/5.0 (Macintosh;
Intel Mac OS X 10_9_1) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/32.0.1700.77 Safari/537.36"

Description of fields:

Field 1 (%h): 83.149.9.216
Field 2 (%l): Indicates information not available
Field 3 (%u): Indicates information not available
Field 4 (%t): [17/Feb/2018:10:05:03] (date/time)
Field 5 (%t): +0000 (GMT offset)
Field 6 (%r): GET /presentations/images/search.png HTTP/1.1
Field 7 (%>s): 200
Field 8 (%b): 203023
Field 9 (%{Referer}): http://semicomplete.com/presentations/2013/
Field 10(%{User-agent}): Mozilla/5.0 (Macintosh; Intel macOS)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/32.0.1700.77 Safari/537.36

Practical Implementation of AWK Chapter 10

[366]

Using AWK for processing different log fields
AWK is used here to split the lines of the log file into fields or columns, using a default
separator. Since each line in an Apache log file follows a standard format, we can process it
easily with AWK. We will be using a default separator (spaces or tabs) to parse the log file
sample line used previously, as follows:

$ vi sample.txt

83.149.9.216 - - [17/Feb/2018:10:05:03 +0000] "GET
/presentations/images/search.png HTTP/1.1" 200 203023
"http://semicomplete.com/presentations/2013/" "Mozilla/5.0 (Macintosh;
Intel Mac OS X 10_9_1) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/32.0.1700.77 Safari/537.36"

Print IP address (%h):

$ awk '{print $1}' sample.txt

Print RFC 1413 identity (%l):

$ awk '{print $2}' sample.txt

Print user ID (%u):

$ awk '{print $3}' sample.txt

Print date/time (%t):

$ awk '{print $4,$5}' sample.txt

Print status code (%>s):

$ awk '{print $9}' sample.txt

Print size (%b):

$ awk '{print $10}' sample.txt

For printing the request line (%r), referer, and user agent, we have to change the
field separator to double quotes (") as follows:

Print request line (%r):

$ awk -F\" '{print $2}' sample.txt

Practical Implementation of AWK Chapter 10

[367]

Print referer:

$ awk -F\" '{print $4}' sample.txt

Print user agent:

$ awk -F\" '{print $6}' sample.txt

These are the fundamental examples for breaking down the Apache combined log format
and processing information from it. Now, we will further process the logs using AWK to
produce more meaningful information, as follows:

List all user agents ordered by the number of times they appear in the log file
in ascending order: In this example, we first extract the user-agent field from the
log file and then pipe it through some commands to get the desired result. The
first sort command is used for making the unique to count the unique user-agents
properly. The last sort -g is used to arrange the result in a general numeric
number sorted standard in ascending order, as follows:

$ awk -F\" '{print $6}' apache_logs.txt | sort | uniq -c |sort -g

Or we can print the top 10 user-agent requests in descending order as
follows:

$ awk -F\" '{freq[$6]++} END {for (x in freq) {print freq[x], x}}'
apache_logs.txt | sort -rn | head

Identify and print the pages Google has been requesting from your site: In this
example, we narrow down our search and print the request line (stored in field 2)
for those user-agents whose value is set as Googlebot (field 6), as follows:

 $ awk -F\" '($6 ~ /Googlebot/){print $2}' apache_logs.txt | sort
| uniq -c
 |sort -nr

 Or:

 $ awk -F\" '($6 ~ /Googlebot/){freq[$2]++} END {for (x in freq)
 {print freq[x], x}}' apache_logs.txt | sort -nr

Practical Implementation of AWK Chapter 10

[368]

Next, we print the user-agent information, which requests the gnome-2.png file,
as follows:

 $ awk -F\" '($2 ~ /gnome-2.png/){print $6}' apache_logs.txt

 Or:

 $ awk -F\" '($2 ~ /gnome-2.png/){freq[$6]++}END{for(x in freq)
 {print freq[x], x}}' apache_logs.txt

Identifying problems with the running website
Now, we use AWK to identify the problems with our website, by finding out the different
server responses and requests that caused them. The following is a list of the most common
HTTP server status codes, helpful in identifying problems:

Status code Meaning

200 OK

206 Partial content

301 Moved permanently

302 Found

304 Not modified

401 Unauthorized (password required)

403 Forbidden

404 Not found

503 Server is currently unavailable (down due to maintenance or overloaded)

A lot of 301 or 302 code means that the request has been redirected.

A lot of 304 code means the file didn't have to be delivered because the server already had a
cached version.

Practical Implementation of AWK Chapter 10

[369]

A lot of 404 means you might be having the problem of a broken link or someone has
linked that page, but it no longer exists on our website.

Count and print the different types of status code returned by the server: In this
example, we first extract the status code of the request from field 9 and then pipe
it through some commands to get the desired result, as follows:

 $ awk '{print $9}' apache_logs.txt | sort | uniq -c |sort -nr

 Or:

 $ awk '{freq[$9]++} END {for (x in freq) {print freq[x],"\t",
x}}'
 apache_logs.txt |sort -nr

List all 404 requests:

 $ awk '($9 ~ /404/)' apache_logs.txt

Summarize 404 requests:

 $ awk '($9 ~ /404/)' apache_logs.txt | awk '{print $9,$7}'
 | sort | uniq -c | sort -g

 Or:

 $ awk '($9 ~ /404/)' apache_logs.txt | awk '{freq[$9" "$7]++}
END
 {for (x in freq) {print freq[x], x}}' | sort -nr

Printing the user-agent and referer for requests generating the most 404 status
codes: In this example, first we use the previous command to summarize 404
requests to find out the link that is generating most of the 404 errors. Then we
print fields 4 and 6 to identify the referer and user-agent of the request:

$ awk -F\" '($2 ~ "/files/logstash/logstash-1.3.2-
monolithic.jar") {print $6}' apache_logs.txt

In the previous example, either we should use the Apache mod_rewrite
module to resolve the issue of broken links or redirect them to the correct
page on our site.

Practical Implementation of AWK Chapter 10

[370]

Printing requests that didn’t return 200 (OK): In this example, we used no match
operator of strings to summarize the requests that did not return status code 200:

$ awk '($9 !~ /200/)' apache_logs.txt | awk '{print $9,$7}' |
sort | uniq -c | sort -nr

Or:

$ awk '($9 !~ /200/)' apache_logs.txt | awk '{freq[$9" "$7]++}
END {for (x in freq) {print freq[x], x}}' | sort -nr

Identifying the blank user agents and list their IP addresses: In our next
example, we identify the blank user-agents request. A blank user-agent is an
indication that the request is from an automated script or someone hiding their
user-agent to increase their privacy. The following command gives us a list of
those IP addresses which have blank user-agents and we can take our decision to
block them or not:

$ awk -F\" '($6 ~ /^-?$/)' apache_logs.txt | awk '{print $1}'|
sort |uniq

Or:

$ awk -F\" '($6 ~ /^-?$/)' apache_logs.txt | awk '{freq[$1]++}
END {for (x in freq) {print x}}'

Here, we look for the hyphen symbol (-) in the field number 6 when the
field separator is set as double quotes.

Printing requests which are generated within a particular time range: In this
example, we specify the start and end range to ignore other lines and print only
those lines that lie between the first pattern and the second pattern, as follows:

$ awk '/10:05:/,/12:05:/' apache_logs.txt

Now, we further narrow down our processing by specifying the pattern to
print only those lines that were generated within a particular time range with
a matching pattern, as follows:

$ awk '/10:05:/,/12:05:/{ if (/POST/) print}' apache_logs.txt

This matching may not give us a result if we have a low-traffic site that is not
getting hits regularly. In that case, we have to modify our pattern accordingly
to match and generate the report.

Practical Implementation of AWK Chapter 10

[371]

Sort access logs by response size in increasing order: In this example, we use the
field 10 value and prefix it in each line and then pipe the output to the sort
command to display the output in a general numeric sort format as follows:

$ awk '$10 > 0 {print $10, $0 }' apache_logs.txt | sort -g

Printing the top 10 IP addresses that made requests to our website: In this
example, we print field 1, which contains the IP address information and then
pipe the output to the shell commands sort and uniq, followed by the head
command to print the top 10 lines of our output, as follows:

$ awk '{ print $1}' apache_logs.txt | sort| uniq -c | sort -rn
| head

 Or:

$ awk '{freq[$1]++} END {for (x in freq) {print freq[x], x}}'
apache_logs.txt | sort -rn | head

Printing the top 10 request IP addresses with their
GeoIP information
In this example, we first find the top 10 IP addresses which made requests to our website
based on their request count, as shown in previous example. Then, we further use the
system command to run the GeoIP package to print the geographical information of
requesting IP address. The GeoIP package is freely available in the debian repository and
the EPEL repository for rpm-based operating systems:

$ awk '{ print $1}' apache_logs.txt | sort| uniq -c | sort -rn | head | awk
'{ print $2 };{print "================="};system("geoiplookup " $2);{print
"================="}'

 Or:

$ awk '{freq[$1]++} END {for (x in freq) {print freq[x], x}}'
apache_logs.txt | sort -rn | head | awk '{ print $2 };{print
"================="};system("geoiplookup " $2);{print "================="}'

Practical Implementation of AWK Chapter 10

[372]

Counting and printing unique visits to a website
Print the total number or unique visitors: In this example, we again fetch the IP
address information from field 1 and then pipe it to the shell commands to fetch
the total number of unique visitors to our website as follows:

 $ awk '{ print $1 }' apache_logs.txt | sort | uniq -c| wc -l

 Or:

$ cat apache_logs.txt | awk '{ print $1 }' apache_logs.txt | sort |
uniq -c| wc -l

 Or:

$ awk '{ freq[$1]++} END {for (x in freq) {print freq[x], x} }'
apache_logs.txt | wc -l

Print the total number of unique visitors today:

$ cat apache_logs.txt | grep `date '+%e/%b/%G'`| awk '{ print $1
}'| sort | uniq -c| wc -l

Or:

$ cat apache_logs.txt | grep `date '+%e/%b/%G'`| awk '{ freq[$1]++}
END {for (x in freq) {print freq[x], x} }' | wc -l

Print the total number of unique visitors this month:

$ cat apache_logs.txt | grep `date '+%b/%G'`| awk '{ print $1 }'|
sort | uniq -c| wc -l

 Or:

$ cat apache_logs.txt | grep `date '+%b/%G'`| awk '{ freq[$1]++}
END {for (x in freq) {print freq[x], x} }' | wc -l

Print the total number of unique visitors on a specified date:

$ cat apache_logs.txt | grep 19/Feb/2018 | awk '{ print $1 }'| sort
| uniq -c| wc -l

Practical Implementation of AWK Chapter 10

[373]

 Or:

$ cat apache_logs.txt | grep 19/Feb/2018 | awk '{ freq[$1]++} END
{for (x in freq) {print freq[x], x} }' | wc -l

 Or:

$ cat apache_logs.txt | grep Feb/2018 | awk '{ print $1 }'| sort |
uniq -c| wc -l

 Or:

$ cat apache_logs.txt | grep Feb/2018 | awk '{ freq[$1]++} END {for
(x in freq) {print freq[x], x} }' | wc -l

Ranking of different status codes/response codes: In this example, we fetch the
different status codes returned by the server in field number 9, and then pass the
result to the pipe command for printing them in descending order of their
occurrence, as follows:

$ awk '{ print $9 }' apache_logs.txt | sort | uniq -c | sort -rn

 Or:

$ awk '{ freq[$9]++} END {for (x in freq) {print freq[x],"\t", x}
}' apache_logs.txt | sort -rn

Print top 10 most popular URLs of website: This helps in analytics and
summarizing the popularity of different pages on our website, and identifying
the most popular URLs as follows:

$ awk -F\" '{ print $2 }' apache_logs.txt | sort | uniq -c | sort -
rn | head

 Or:

$ awk -F\" '{ freq[$2]++} END {for (x in freq) {print freq[x], x}
}' apache_logs.txt | sort -rn | head

Print the amount of data, in MB, transferred in the last 2,000 requests: This also
helps in analyzing the data bandwidth consumption on the website:

$ tail -2000 apache_logs.txt | awk '{sum+=$10} END { print
sum/1048576 " MB" }'

Practical Implementation of AWK Chapter 10

[374]

Real-time IP address lookup for requests
In the following example, we make use of tail -f to keep reading the new entries of log files
and pass them to the AWK command for processing. Here also, we use the geoiplookup
command to fetch the IP address information and print it on screen, as follows:

$ tail -f apache_logs.txt |awk '{print "IPADDRESS : " $1};{
system("geoiplookup " $1)};{print "REQUEST LINE :"$6,$7,"\n""STATUS CODE :
"$9}'

We can also print other information such as the user agent in a desired format in output by
setting the field separator to double quotes (") and splitting the first and third field into an
array to fetch the information, as follows:

$tail -f apache_logs.txt | awk -F"\"" 'split($1,a," "){print "IPADDRESS : "
a[1]};{ system("geoiplookup " a[1])};split($3,b," "){print "REQUEST LINE
:"$2 "\n""STATUS CODE : "b[1]"\n" "USERAGENT : " $6,"\n=============="}'

Now, we can use various fields of the log file to create an AWK script for processing the
web server logs and displaying the report, as follows:

$ vi http_report.awk

#Web server log file analysis & filtering

BEGIN{
 FS="\""
}

{
split($1, a, " ")
ip=a[1]
if($2!="")
{
 datetime=a[4]" "a[5]
 request=$2
 referer=$4
 useragent=$6
 split($3, c, " ")
 code=c[1]
 size=c[2]
}
else
{
 split($3, b, " ")
 datetime=b[2]" "b[3]
 request=$4

Practical Implementation of AWK Chapter 10

[375]

 referer=$6
 useragent=$8
 split($5, c, " ")
 code=c[1]
 size=c[2]
}
total=NR
if(match(code, /^[0-9]+$/)==0)
{
 code="UNKNOWN"
}
statuses[code]++

Analyze the request
n=split(request, detail, " ")
method=detail[1]
if(match(method, /^[A-Z]+$/)==0)
{
 method="UNKNOWN"
}
methods[method]++

url=""
for(i=2; i<n; i++)
{
 url=(url" "detail[i])
}
url=substr(url, 2)

}

END{
 print ("**")
 printf "\t%d \tRequests Filtered\n", total
 print ("**")
 printf "%-8s\t%11s\t%8s\n","STATUS", "OCCURENCES", "% OUTPUT"
 print ("**")
 for(code in statuses)
 {
 printf "%-8d\t%11d\t%6.2f\n",code, statuses[code],
(100*statuses[code]/total)
 }
 print ("**")
 printf "%-8s\t%11s\t%8s\n","METHOD", "OCCURENCES", "% OUTPUT"
 print ("**")
 for(method in methods)
 {
 printf "%-8s\t%11d\t%6.2f\n",method, methods[method],

Practical Implementation of AWK Chapter 10

[376]

(100*methods[method]/total)
 }
 printf "\n"
}

$ awk -f http_report.awk apache_logs.txt

The output on execution of the previous command is as follows :

**
 10000 Requests Filtered
**
STATUS OCCURENCES % OUTPUT
**
200 9126 91.26
206 45 0.45
301 164 1.64
304 445 4.45
403 2 0.02
404 213 2.13
416 2 0.02
500 3 0.03
**
METHOD OCCURENCES % OUTPUT
**
GET 9952 99.52
OPTIONS 1 0.01
POST 5 0.05
HEAD 42 0.42

Converting text to HTML table
In this example, we use FS – the field separator to set it to the desired delimiter for splitting
the line of files into fields. Then, we create the heading of the HTML table in the BEGIN
block by fetching the elements of the first record, by checking whether NR==1. Then, the
body of the table is created using NR >1, until the last line of the file is read. The following
is a sample file named table.txt used here to illustrate the text-to-HTML table
conversion, as follows:

$ vi table.txt

NAME:ENGLISH:MATHS:SOCIAL SCIENCE:MUSIC
Sanjay:70:80:65:95
Hitesh:55:72:82:64
Rahul:80:83:65:70

Practical Implementation of AWK Chapter 10

[377]

Dhirendra:81:82:83:84

$ vi array2html.awk

BEGIN {
 FS =":";
 printf "%s%s%s",
 "<TABLE cellpadding=\"1pt\" BORDER=\"2pt\" ",
 "CELLSPACING=\"0pt\" bgcolor=\"\#ffffff\" ",
 "bordercolor=\"\#000000\">\n";

}

(NR==1){
 printf " <TR bgcolor=\"\#dfdfdf\">\n"
 for(i=1; i<=NF; i++)
 {
 printf " <TD><center>%s</center></TD>\n", $i;
 }
 printf " </TR>\n"
}

(NF>0 && NR>1){

 printf " <TR>\n"
 for(i=1; i<=NF; i++)
 {
 if (i==1) {
 printf " <TD align=left>%s</TD>\n", $i;
 } else {
 printf " <TD align=right>%s</TD>\n", $i;
 }
 }
 printf " </TR>\n"
}

END {
 printf "</TABLE>\n";
}

$ awk -f array2html.awk table.txt > output.html

On execution of the previous code, a file named output.html will be created in the current
directory. Open that file in the browser to view the HTML file content.

Practical Implementation of AWK Chapter 10

[378]

Converting decimal to binary
In the following example, we give a list of decimal numbers as input to the AWK program,
which returns the binary equivalent output on screen. This program reads the decimal
number then finds the remainder of that number on division by 2, using the modulus
operator. The remainder is stored in a string until the division of the number by 2, returns
the 0 as follows:

$ vi list.txt
10
20
15
40

$ vi dec2bin.awk

BEGIN {
 Print "\tDisplay Binary equivalent of Decimal number "
 }

func getnumber(decimal,temp, binary)
{
 binary = "";
 temp=decimal;
 while(temp)
 {
 if (temp%2==0)
 {
 binary = "0" binary;
 }
 else
 {
 binary = "1" binary;
 }
 temp = int(temp/2);
 }
 return binary;
}
{
 binval=getnumber($1);
 print $1, " --> ", binval
}

$ awk -f dec2bin.awk list.txt

Practical Implementation of AWK Chapter 10

[379]

The output on execution of the previous AWK program is as follows :

10 --> 1010
20 --> 10100
15 --> 1111
40 --> 101000

Renaming files in a directory with AWK
We can use AWK to create and execute shell commands, such as the mv command for
renaming, by piping them to shell sh for executing them. We should always check a
command by printing the output before piping it to sh to avoid any typo errors, as follows :

First, we will just use the print statement to display the command result and not execute it
on the command prompt, as follows :

$ ls | awk '{ printf("mv \"%s\" \"%s\"\n", $0, toupper($0)) }'

If we confirm the command line built using AWK, then we can execute it by piping the
AWK output to the sh command, as follows:

$ ls | awk '{ printf("mv \"%s\" \"%s\"\n", $0, toupper($0)) }' | sh

In out next rename examples, we substitute the occurrence of spaces in the filename with
the min minus symbol - as follows:

$ ls | awk '{ printf("mv \"%s\" \"%s\"\n", $0, gensub(/ +/,"-","g")) }'

And to execute the command line built using AWK, we pipe the AWK output to sh as
follows:

$ ls | awk '{ printf("mv \"%s\" \"%s\"\n", $0, gensub(/ +/,"-","g")) }' |
sh

Practical Implementation of AWK Chapter 10

[380]

Printing a generated sequence of numbers in a
specified columnate format
In this example, first we generate a sequence of numbers with the shell command seq
<start_number> <end_number> (here 1 to 50). Then we use ORS, the output record
separator, FS – the field separator and RS – the record separator AWK built-in variables
with a ternary operator. The ORS ,as the name suggests, contains the separator to append to
the line. By default, ORS is set as \n. Here, we explicitly set the value of ORS depending on
the outcome of the ternary operator. If NR%5 is zero, that is, we are at line 5, 10, 15, 20 and so
on, is true then ORS gets the value of RS which by default is \n, otherwise ORS gets the value
of FS (default value of FS is space):

$ seq 1 50 | awk 'ORS = NR%5 ? FS : RS'

The output on execution of the previous code is as follows:

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30
31 32 33 34 35
36 37 38 39 40
41 42 43 44 45
46 47 48 49 50

We can set the value of ORS to space and \n in the ternary operator to get the same result,
as follows:

$ seq 1 50 | awk 'ORS = NR%5 ? " " : "\n"'

The output on execution of the previous code is the same as it was in the previous one.

Practical Implementation of AWK Chapter 10

[381]

Transposing a matrix
Transposing a matrix is basically interchanging its rows with columns. In this example, we
build a string using a separator. Here, we use the fact that AWK variables are dynamic. We
use a variable sep, which is empty initially on first execution, and then it is set to a
semicolon. It will have that value from the second time the code executes onwards. The
result is that at the end of the string, we will have a clean list of values with a semicolon at
the desired place:

$ vi matrix.txt

a1;a2;a3;a4
b1;b2;b3;b4
c1;c2;c3;c4
d1;d2;d3;d4

$ vi transpose_matrix.awk

BEGIN {
 FS = ";"
 }
{
 for(i=1; i<=NF; i++)
 r[i]=r[i] sep $i
 sep=FS
}

END {
 for(i=1; i<=NF; i++)
 {
 print r[i]
 }
}

$ awk -f transpose_matrix.awk matrix.txt

The output on execution of the previous code is as follows :

a1;b1;c1;d1
a2;b2;c2;d2
a3;b3;c3;d3
a4;b4;c4;d4

Practical Implementation of AWK Chapter 10

[382]

We can use one more method for transposing the elements of the matrix, as follows:

$ vi transpose2.awk

BEGIN {
 FS = ";";
 max_x =0;
 max_y =0;
}

{
 max_y++;
 for(i=1; i<=NF; i++)
 {
 if (i>max_x) max_x=i;
 A[i,max_y] = $i;
 }
}

END {
 for (x=1; x<=max_x; x++)
 {
 for (y=1; y<=max_y; y++)
 {
 if ((x,y) in A) printf "%s",A[x,y];
 if (y!=max_y) printf ";";
 }
 printf "\n";
 }
}

$ awk -f transpose2.awk matrix.txt

The output on execution of the previous code, is as follows :

a1;b1;c1;d1
a2;b2;c2;d2
a3;b3;c3;d3
a4;b4;c4;d4

Practical Implementation of AWK Chapter 10

[383]

Processing multiple files using AWK
In this example, we use the NR, FNR built-in variables and the next statement for processing
multiple files. The following is a construct used for two file processing using AWK:

$ awk 'NR == FNR { # file1 actions; next} # file1 condition {# file2
actions}' file1.txt file2.txt

The previous construct is used for processing two files. When processing more than one file,
AWK reads each file sequentially in the order they are specified on the command line. The
built-in variable NR stores the total number of input records processed till now, regardless
of the number of files read. The value of NR starts at 1 and always increases until the
program finishes. Another built-in variable FNR, stores the number of records read from the
current file being processed. The value of FNR starts at 1 and increases until the end of the
current file is reached. It is again set to 1, as soon as the first line of the next file is read, and
so on.

Hence, the condition NR == FNR will be true only when AWK is reading the first file. Thus,
in the preceding AWK program, the actions indicated by #file1 actions are executed only
when AWK is reading the first file. The actions indicated by #file2 actions are executed
when processing the second file, if the #file1 condition is met. The next statement at the
end of the first action block is used to prevent the condition in #file1 condition from being
evaluated and #file2 actions from being executed, while processing first file.

The following example illustrates the usage of this AWK construct. The following example
is used to print those lines that are both in file1.txt and file2.txt, as follows:

$ awk 'NR == FNR{a[$0];next} $0 in a' file1.txt file2.txt

$ vi emp2.dat

Jack Singh 9857532312 jack@gmail.com M hr 2000
Eva Chabra 8827232115 eva@gmail.com F lgs 2100
new line one
Amit Sharma 9911887766 amit@yahoo.com M lgs 2350
Victor Sharma 8826567898 vics@hotmail.com M Ops 2500
new line two
Billy Chabra 9911664321 bily@yahoo.com M lgs 1900
Ginny Singh 9857123466 ginny@yahoo.com F hr 2250
Amy Sharma 9857536898 amys@hotmail.com F Ops 2500

$ awk 'NR == FNR{a[$0];next} $0 in a' emp.dat emp2.dat

Practical Implementation of AWK Chapter 10

[384]

The output on execution of the previous code, is as follows :

Jack Singh 9857532312 jack@gmail.com M hr 2000
Eva Chabra 8827232115 eva@gmail.com F lgs 2100
Amit Sharma 9911887766 amit@yahoo.com M lgs 2350
Victor Sharma 8826567898 vics@hotmail.com M Ops 2500
Billy Chabra 9911664321 bily@yahoo.com M lgs 1900
Ginny Singh 9857123466 ginny@yahoo.com F hr 2250
Amy Sharma 9857536898 amys@hotmail.com F Ops 2500

In the previous example, all the lines in the first file emp.dat are stored in array a[]. When
the system starts processing the second file, it checks if the current line being read is stored
in array a ($0 in a). If the condition evaluates to true, the current input line from emp2.dat
is printed; otherwise, AWK starts processing the second line.

In our next example, we print only those lines which are there in file2.txt and not in
file1.txt:

$ awk 'NR == FNR{a[$0];next} ! ($0 in a)' file1.txt file2.txt

Or:

$ awk 'NR == FNR{a[$0];next} ! ($0 in a)' emp.dat emp2.dat

To print the lines that are only in emp.dat and not in emp2.dat, we just have to reverse
the order of the arguments.

All AWK programs that use two input files will work correctly if the first
file is not empty. If the first input file is empty, then AWK will execute the
statement meant for file1 on file2.

To make it work in that case, we can check that FILENAME matches ARGV[1] while
processing file1.

Summary
In this chapter, we learned about the workings and usefulness of AWK in one-liners. We
looked at various one-liners from a data scientist and system administrator perspective.
Finally, we covered some use case examples of the AWK-like parsing of web server logs,
using AWK. This chapter is ready reference of various AWK examples for practical
implementation in day-to-day life.

Practical Implementation of AWK Chapter 10

[385]

With this, our journey into learning AWK programming comes to an end. I hope you
enjoyed reading and working with the examples of AWK programming covered in this
book. If you have any questions or comments that would help me make this book better, I'd
love to hear from you.

My email address is shiwangkalkhanda@outlook.com

Further reading
In this book, we have covered AWK programming concepts in a user friendly and practical
way. Once you have read this book, here are few extra resources where you can find more
about AWK and related topics :

For updated documentation of the GNU implementation of AWK refer to the
following URL:
https:/​/ ​www. ​gnu. ​org/ ​software/ ​gawk/ ​manual/ ​gawk. ​html

For Regular expression reference, you can refer to following URL:
https:/​/ ​www. ​regular- ​expressions. ​info/ ​reference. ​html

The AWK programming language, written by its creators Aho, Weinberger and
Kernighan is really a must read.

https://www.gnu.org/software/gawk/manual/gawk.html
https://www.gnu.org/software/gawk/manual/gawk.html
https://www.gnu.org/software/gawk/manual/gawk.html
https://www.gnu.org/software/gawk/manual/gawk.html
https://www.gnu.org/software/gawk/manual/gawk.html
https://www.gnu.org/software/gawk/manual/gawk.html
https://www.gnu.org/software/gawk/manual/gawk.html
https://www.gnu.org/software/gawk/manual/gawk.html
https://www.gnu.org/software/gawk/manual/gawk.html
https://www.gnu.org/software/gawk/manual/gawk.html
https://www.gnu.org/software/gawk/manual/gawk.html
https://www.gnu.org/software/gawk/manual/gawk.html
https://www.gnu.org/software/gawk/manual/gawk.html
https://www.gnu.org/software/gawk/manual/gawk.html
https://www.gnu.org/software/gawk/manual/gawk.html
https://www.gnu.org/software/gawk/manual/gawk.html
https://www.gnu.org/software/gawk/manual/gawk.html
https://www.gnu.org/software/gawk/manual/gawk.html
https://www.gnu.org/software/gawk/manual/gawk.html
https://www.regular-expressions.info/reference.html
https://www.regular-expressions.info/reference.html
https://www.regular-expressions.info/reference.html
https://www.regular-expressions.info/reference.html
https://www.regular-expressions.info/reference.html
https://www.regular-expressions.info/reference.html
https://www.regular-expressions.info/reference.html
https://www.regular-expressions.info/reference.html
https://www.regular-expressions.info/reference.html
https://www.regular-expressions.info/reference.html
https://www.regular-expressions.info/reference.html
https://www.regular-expressions.info/reference.html
https://www.regular-expressions.info/reference.html
https://www.regular-expressions.info/reference.html
https://www.regular-expressions.info/reference.html

Index

A
Advance Package Tool (APT) 11
anchors
 used, for matching at beginning of string 65
 used, for matching at end of string 66
 using 65
arithmetic expressions
 building, binary operators used 183, 186
arithmetic functions
 about 256
 atan2 (x, y) function 250
 cos (expr) function 249
 exp (expr) function 251
 int (expr) function 250
 log (expr) function 251
 rand() function 253
 sin (expr) function 249
 sqrt (expr) function 252
 srand ([expr]) function 254
arrays
 array indexes, asorti() used 318
 assignment 135
 creating, split() function used 143
 delete operation 144
 elements, accessing 138
 members, referring 139
 processing, loops used 141
 sorting 315
 sorting, by values with asort() 315
assignment expressions
 about 187
 shorthand addition (+=) 188
 shorthand division (/=) 189
 shorthand exponential (**=) 189
 shorthand exponential (^=) 189
 shorthand modulo (%=) 189

 shorthand Multiplication (*=) 189
 shorthand subtraction (-=) 188
AWK programming language
 about 8
 action 17
 action-only statements 18
 BEGIN and END blocks construct, using 19
 BEGIN block 20
 body block 20
 constants 183
 END block 20
 example data file 17
 EXECUTE OPERATION 15
 input line/record, printing 19
 installation, on Linux 10
 overview 8
 pattern structure 17
 pattern-only statements 18
 READ OPERATION 14
 REPEAT OPERATION 15
 standard options 48
 types 8
 using 10
 variable 182
 workflow 14
AWK programs
 as executable script files 25
 command line, executing on multiple lines 26
 comments 27
 data files 29
 examples 31, 35, 40, 43
 executing 22
 executing, from source file 24
 multiple rules 44
 shell quotes 27
 standard input names, using with names 44, 48
 using, as filter 23

[387]

 using, as Unix command line 22
AWK standard options
 GAWK-only options 51
 standard command-line options 49
AWKC++
 reference 9
AWS, installation on Linux
 compiling, from source code 12
 package manager, using 11

B
backreference 86
backreferencing of sub-expression 86
binary operators
 used, for building arithmetic expressions 183,

186

bit-manipulating function
 and (num1, num2) function 290
 compl (num) function 294
 lshift (val, count) function 293
 or (num1, num2) function 291
 rshift (val, count) function 294
 xor (num1, num2) function 292
Boolean expressions
 about 198
 Logical AND (&&) 199
 Logical NOT (!) 201
 Logical OR (| |) 200
bracket expression
 about 69
 character classes 70, 72
 named character classes (POSIX standard) 73
built-in command line debugger, GAWK
 about 304
 breakpoint 305
 debugging 305
 stackframe 306
 watchpoint 305
built-in functions
 about 248
 arithmetic functions 249
 bit-manipulating functions 290
 input/output (I/O) functions 273
 string functions 256
 time function 286

built-in variables
 about 97
 field separator (FS) 97
 FILENAME 112
 NF 107
 NR 107
 output field separator 101
 record separator (RS) 104
 record separator (RS), outputting 106

C
call stack 306
case-sensitive matching 92
complemented bracket expressions
 about 76
 complemented character classes 76
 complemented named character classes 77
compound statements 212
conditional expression 202
conditional or comparison operators 193
conditional statements
 about 212
 if statement 212
 switch statement 220

D
decrement expressions 190
do...while loop statement 229

E
elements
 accessing, in arrays 138
END block
 about 20
 actions 22
 patterns 21
entry-controlled loop 229
environment variables, AWK
 about 113
 ARGC 114
 ARGV 114
 CONVFMT 116
 ENVIRON 121
 FIELD (POSITIONAL) VARIABLE ($0 and $n)

[388]

124

 FNR 120
 OFMT 116
 RLENGTH 119
 RSTART 119
 SUBSET 121
environment variables, GAWK
 about 125
 ARGIND 125
 ERRNO 126
 FIELDWIDTHS 127
 IGNORECASE 128
 PROCINFO 129
escape sequences 63, 92, 94
exponential expressions
 about 204
 exponential format 1 (^) 204
 exponential format 2 (**) 205

F
field separator (FS)
 command line, used for setting FS as -F 101
 each character, using as separate field 100
 regular expressions, using as value of FS 98
 single character, using as value of FS 97
 split (str, arr, regex) function 259
flow control
 altering, with statements 237
for each loop statement 237
for loop statement 233
format specification modifiers
 about 167
 dot precision, using as modifier 173
 fixed width, printing with 169
 hash modifier (#), using 170
 minus modifier (-), using 169
 plus modifier (+), used for prefixing with

sign/symbol 170
 positional modifier, using integer constant 174
 prefix sign/symbol, used for printing 172
 printing, with fixed column width 167
format specifier
 format control characters 163, 166
format string 158
Free Software Foundation (FSF) 57

G
GAWK, using as debugger
 about 306
 breakpoint, removing 308
 commands, saving in file 314
 environment information, viewing 312
 execution, controlling 311
 exiting step 315
 program, executing 309
 program, exploring 309
 set breakpoint 307
 starting step 307
 unwatch, setting 310
 variables and data, displaying 310
 watch, setting 310
GAWK-only options
 --dump-variables option (AWK global variables)

52

 --profile option (profiling) 53
 --sandbox option 54
 -i option 55
 -V option 57
 @include option 56
 about 51
GAWK
 about 88, 302
 array sorting 315
 built-in command line debugger 304
 matching non-words 90
 matching not whitespaces 89
 matching whitespaces 89
 matching words (\w) 89
 matching, not as sub-string 91
 non-decimal input, reading 302, 304
 profiling 329, 334
 string, matching as sub-string 91
 two-way inter-process communication 321
 used, for network programming 324
 word boundaries, matching 90
getline command
 fetching, into variable 277
 simple way 277
 used, for changing output into variable from

coprocess 284

[389]

 used, for changing output into variable from pipe
284

 used, for obtaining variable from file 280
 used, for outputting into pipe 282
 used, for reading in file 278

H
Hypertext Transfer Protocol (HTTP) 328

I
if statement
 about 212
 if 212
 If...else 215
 if...else...if statement 218
increment expression 190
input/output (I/O) functions
 close (filename [to/from]) function 274
 fflush ([filename]) function 274
 getline command 276
 nextfile() function 285
 system (command) function 275

L
literals 63
logical expressions 198
looping statement
 about 224
 do...while loop statement 228, 231
 for each loop statement 237
 for loop statement 233, 235
 while loop 225, 226
loops
 used, for processing arrays 141

M
members
 referring, to arrays 140
metacharacters, regular expression
 about 64
 alternation operator 78
 anchors, using 65
 bracket expression 69
 complemented bracket expressions 76

 dot 68
 grouping, parentheses used 85
 quoted metacharacter 65
 repetition ranges, with interval expressions 83
 unary operator for repetition 79
multidimensional arrays 147, 150

N
network programming, with GAWK
 about 324
 HttpService, used for reading web page 328
 TCP Client & Server (/inet/tcp) 325
 UDP client and server (/inet/udp) 327
numbers
 conversion 132
numeric constants 132

O
one-dimensional arrays 134
one-liners
 for system administrators 362
 used, for creating arrays 355
 used, for modifying line spacing 347
 used, for numbering of lines 349
 used, for performing calculations 349
 used, for performing string operation on selected

line 353
 used, for printing of lines 338, 346
 used, for selective deletion of lines 352
 used, for text processing and pattern matching

338

 working, in text conversion and substitution in
files 355

operators' precedence 208
Output Field Separator (OFS) 153
Output Record Separator (ORS) 153
output separator
 in print statement 156
output
 appending, to file 177
 files, closing 180
 pipes, closing 180
 redirecting, to file 175
 redirecting, with special file 179

[390]

 sending, pipe (|) used 178

P
parentheses
 alternation operator, used for concatenation 86
 used, for grouping 85
pattern matching
 use case examples 364
print statement
 about 153, 155
 output separator 156
printf statement
 used, for printing 158

R
record separator (RS)
 about 104
 outputting 106
regular expression operators
 about 206
 match operator (~) 206
 not match operator (!~) 207
regular expressions
 about 60
 backreferencing 86
 basic construct 63
 precedence 87
 using 60
 using, as string-matching patterns with AWK 61
 using, with AWK 60
relational expression
 about 193
 equal to (==) 193
 less than (<) 195
 less than or equal to (< =) 196
 not equal to (!=) 194
repetition ranges, with interval expressions
 single number in bracket 83
 single number, followed by comma in bracket 84
 two numbers, in brackets 84

S
special characters
 backspace 161

 carriage return 162
 construct 63
 horizontal tab 160
 new line 160
 printing, with escape sequences 159
 vertical tab 161
split() function
 used, for creating arrays 143
stack frame 306
standard command-line options
 -F option 49
 -f option (read source file) 50
 -v option (assigning variables) 51
statements, used for altering flow control
 break statement, using 238
 continue statement, using 240, 243
 exit statement, using 243
 next command, using 245
string concatenation 205
string constants 130
string functions
 about 256, 272
 gensub (regex, replacement, occurrence, [string

]) function 265
 gsub (regex, replacement, string) function 264
 index (str, sub) function 257
 length (string) function 257
 match (string, regex) function 267
 sprintf (format, expression) function 271
 ssplit (str, arr, regex) function 259
 strtonum (string) function 271
 sub (regex, replacement, string) function 261
 substr (str, start, [length]) function 260
 tolower (string) function 269
 toupper (string) function 270
strings
 conversion 132
sub-expression 86
switch statement 221, 224

T
ternary expressions 202
text processing and pattern matching
 one-liners, working with 337
time function

 about 286
 mktime (datespec) function 287
 strftime (format, timestamp) function 287
 systime() function 286
types, AWK
 about 9
 GAWK 9
 NAWK 9

U
unary expressions
 about 203
 unary minus 203
 unary plus 203
unary operators
 closures 80
 for repetition 79
 positive closure 81
 zero or one operator (?) 82
use case examples, for pattern matching
 decimal, converting to binary 378
 files, renaming in directory 379
 generated sequence of numbers, printing 380
 matrix, transposing 381
 multiple files, processing 383
 Real-Time IP address lookup, for requests 374
 text, converting to HTML table 376
 top 10 request IP addresses, printing with GeoIP

information 371
 web server (Apache/Nginx) log files, parsing 364
 website unique visits, counting 372
 website unique visits, printing 372
user-defined functions
 about 295
 function definition and syntax 295
 indirect function calls, making 299
 return statement 298
 user-defined functions, calling 297
 variable scope, controlling 297

V
variables 183

W
web server (Apache/Nginx) log files
 Apache combined log format 364
 different log fields , processing with AWK 366
 running website issues, identifying 368
while loop 225
word boundaries
 matching, at beginning 90
 matching, at end of word 91

Y
Yellowdog Updator Modified (YUM) 11

	Cover

	Title Page
	Copyright and Credits
	Dedication
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Getting Started with AWK Programming

	AWK programming language overview
	What is AWK?
	Types of AWK
	When and where to use AWK

	Getting started with AWK
	Installation on Linux
	Using the package manager
	Compiling from the source code

	Workflow of AWK
	Action and pattern structure of AWK
	Example data file
	Pattern-only statements
	Action-only statements
	Printing each input line/record
	Using the BEGIN and END blocks construct
	The BEGIN block
	The body block
	The END block
	Patterns
	Actions

	Running AWK programs
	AWK as a Unix command line
	AWK as a filter (reading input from the Terminal)
	Running AWK programs from the source file
	AWK programs as executable script files
	Extending the AWK command line on multiple lines
	Comments in AWK
	Shell quotes with AWK

	Data files used as examples in this book
	Some simple examples with default usage
	Multiple rules with AWK
	Using standard input with names in AWK

	AWK standard options
	Standard command-line options
	The -F option – field separator
	The -f option (read source file)
	The -v option (assigning variables)

	GAWK-only options
	The --dump-variables option (AWK global variables)
	The --profile option (profiling)
	The --sandbox option
	The -i option (including other files in your program)
	Include other files in the GAWK program (using @include)
	The -V option

	Summary

	Chapter 2: Working with Regular Expressions

	Introduction to regular expressions
	What is a regular expression?
	Why use regular expressions?
	Using regular expressions with AWK
	Regular expressions as string-matching patterns with AWK

	Basic regular expression construct
	Understanding regular expression metacharacters
	Quoted metacharacter
	Anchors
	Matching at the beginning of a string
	Matching at the end of a string

	Dot
	Brackets expressions
	Character classes
	Named character classes (POSIX standard)

	Complemented bracket expressions
	Complemented character classes
	Complemented named character classes

	Alternation operator
	Unary operator for repetition
	Closure
	Positive closure
	Zero or one

	Repetition ranges with interval expressions
	A single number in brackets
	A single number followed by a comma in brackets
	Two numbers in brackets

	Grouping using parentheses
	Concatenation using alternation operator within parentheses
	Backreferencing in regular expressions – sed and grep

	Precedence in regular expressions
	GAWK-specific regular expression operators
	Matching whitespaces
	Matching not whitespaces
	Matching words (\w)
	Matching non-words
	Matching word boundaries
	Matching at the beginning of a word
	Matching at the end of a word

	Matching not as a sub-string using
	Matching a string as sub-string only using

	Case-sensitive matching
	Escape sequences
	Summary

	Chapter 3: AWK Variables and Constants

	Built-in variables in AWK
	Field separator
	Using a single character or simple string as a value of the FS
	Using regular expressions as values of the FS
	Using each character as a separate field
	Using the command line to set the FS as -F

	Output field separator
	Record separator
	Outputting the record separator
	NR and NF
	FILENAME

	Environment variables in AWK
	ARGC and ARGV
	CONVFMT and OFMT
	RLENGTH and RSTART
	FNR
	ENVIRON and SUBSET
	FIELD (POSITIONAL) VARIABLE ($0 and $n)

	Environment variables in GAWK
	ARGIND
	ERRNO
	FIELDWIDTHS
	IGNORECASE
	PROCINFO

	String constants
	Numeric constants
	Conversion between strings and numbers
	Summary

	Chapter 4: Working with Arrays in AWK

	One-dimensional arrays
	Assignment in arrays
	Accessing elements in arrays
	Referring to members in arrays
	Processing arrays using loops
	Using the split() function to create arrays
	Delete operation in arrays
	Multidimensional arrays
	Summary

	Chapter 5: Printing Output in AWK

	The print statement
	Role of output separator in print statement
	Pretty printing with the printf statement
	Escape sequences for special character printing
	Different format control characters in the format specifier
	Format specification modifiers
	Printing with fixed column width
	Using the minus modifier (-) for left justification
	Printing with fixed width – right justified
	Using hash modifier (#)
	Using plus modifier (+) for prefixing with sign/symbol
	Printing with prefix sign/symbol
	Dot precision as modifier
	Positional modifier using integer constant followed by $ (N$):

	Redirecting output to file
	Redirecting output to a file (>)
	Appending output to a file (>>)
	Sending output on other commands using pipe (|)
	Special file for redirecting output (/dev/null, stderr)
	Closing files and pipes

	Summary

	Chapter 6: AWK Expressions

	AWK variables and constants
	Arithmetic expressions using binary operators
	Assignment expressions
	Increment and decrement expressions
	Relational expressions
	Logical or Boolean expressions
	Ternary expressions
	Unary expressions
	Exponential expressions
	String concatenation
	Regular expression operators
	Operators' Precedence
	Summary

	Chapter 7: AWK Control Flow Statements

	Conditional statements
	The if statement
	if
	If...else
	The if...else...if statement

	The switch statement (a GAWK-specific feature)

	Looping statement
	The while loop
	do...while loop statement
	The for loop statement
	For each loop statement

	Statements affecting flow control
	Break usage
	Usage of continue
	Exit usage
	Next usage

	Summary

	Chapter 8: AWK Functions

	Built-in functions
	Arithmetic functions
	The sin (expr) function
	The cos (expr) function
	The atan2 (x, y) function
	The int (expr) function
	The exp (expr) function
	The log (expr) function
	The sqrt (expr) function
	The rand() function
	The srand ([expr]) function
	Summary table of built-in arithmetic functions

	String functions
	The index (str, sub) function
	The length (string) function
	The split (str, arr, regex) function
	The substr (str, start, [length]) function
	The sub (regex, replacement, string) function
	The gsub (regex, replacement, string) function
	The gensub (regex, replacement, occurrence, [string]) function
	The match (string, regex) function
	The tolower (string) function
	The toupper (string) function
	The sprintf (format, expression) function
	The strtonum (string) function
	Summary table of built-in string functions

	Input/output functions
	The close (filename [to/from]) function
	The fflush ([filename]) function
	The system (command) function
	The getline command
	Simple getline
	Getline into a variable
	Getline from a file
	Using getline to get a variable from a file
	Using getline to output into a pipe
	Using getline to change the output into a variable from a pipe
	Using getline to change the output into a variable from a coprocess

	The nextfile() function

	The time function
	The systime() function
	The mktime (datespec) function
	The strftime (format, timestamp) function

	Bit-manipulating functions
	The and (num1, num2) function
	The or (num1, num2) function
	The xor (num1, num2) function
	The lshift (val, count) function
	The rshift (val, count) function
	The compl (num) function

	User-defined functions
	Function definition and syntax
	Calling user-defined functions
	Controlling variable scope
	Return statement
	Making indirect function calls

	Summary

	Chapter 9: GNU's Implementation of AWK – GAWK (GNU AWK)

	Things you don't know about GAWK
	Reading non-decimal input
	GAWK's built-in command line debugger
	What is debugging?
	Debugger concepts
	Using GAWK as a debugger
	Starting the debugger
	Set breakpoint
	Removing the breakpoint
	Running the program
	Looking inside the program
	Displaying some variables and data
	Setting watch and unwatch
	Controlling the execution
	Viewing environment information
	Saving the commands in file
	Exiting the debugger

	Array sorting
	Sort array by values using asort()
	Sort array indexes using asorti()

	Two-way inter-process communication
	Using GAWK for network programming
	TCP client and server (/inet/tcp)
	UDP client and server (/inet/udp)
	Reading a web page using HttpService

	Profiling

	Summary

	Chapter 10: Practical Implementation of AWK

	Working with one-liners for text processing and pattern matching with AWK
	Selective printing of lines with AWK
	Modifying line spacing in a file with AWK
	Numbering and calculations with AWK
	Selective deletion of certain lines in a file with AWK
	String operation on selected lines with AWK
	Array creation with AWK one-liner
	Text conversion and substitution in files with AWK
	One-liners for system administrators

	Use case examples of pattern matching using AWK
	Parsing web server (Apache/Nginx) log files
	Understanding the Apache combined log format
	Using AWK for processing different log fields
	Identifying problems with the running website
	Printing the top 10 request IP addresses with their GeoIP information
	Counting and printing unique visits to a website
	Real-time IP address lookup for requests

	Converting text to HTML table
	Converting decimal to binary
	Renaming files in a directory with AWK
	Printing a generated sequence of numbers in a specified columnate format
	Transposing a matrix
	Processing multiple files using AWK

	Summary
	Further reading

	Index

