

Spring 5.0 Cookbook

Recipes to build, test, and run Spring applications efficiently

Sherwin John Calleja Tragura

BIRMINGHAM - MUMBAI

Spring 5.0 Cookbook
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2017

Production reference: 1250917

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78712-831-6

www.packtpub.com

http://www.packtpub.com

Credits

Author
Sherwin John Calleja Tragura

Copy Editor
Safis Editing

Reviewer
Glenn Base De Paula

Project Coordinator
Vaidehi Sawant

Commissioning Editor
Aaron Lazar

Proofreader
Safis Editing

Acquisition Editor
Sandeep Mishra

Indexer
Francy Puthiry

Content Development Editor
Zeeyan Pinheiro

Graphics
Abhinash Sahu

Technical Editor
Ketan Kamble

Production Coordinator
Nilesh Mohite

About the Author
Sherwin John Calleja Tragura started his career as a student assistant and a mathematics
tutor during his college years at the University of the Philippines Los Baños, Laguna,
Philippines. With meager resources, he graduated as a Department of Science and
Technology (DOST) R.A. 7687 scholar under the Bachelor Of Computer Science degree.
Immediately after graduation, he took up the offer to teach CMSC 150 (numerical and
symbolic computation) at the Institute of Computer Science and completed his master's
degree in computer science simultaneously. He became part of the International Rice
Research Institute (IRRI) software team, which gave him the opportunity to use Struts,
Spring, and RCP frameworks in many of its software projects.

Based on his experience at IRRI, he was given an opportunity to work as a Java analyst in
various companies in Manila, such as ABSI, PHILAM- AIG, and Ayala Systems and
Technology Inc. (ASTI). These companies have strengthened his skill set through training in
Java and Java Enterprise platforms and some popular tools such as EMC Documentum,
Alfresco Document, and Records Management System. He got his first career certification in
the EMC Documentum Proven Associate course (E20-120).

After a few years, he decided to become an independent consultant and trainer, providing
services mostly for Java-based projects, Alfresco, and Apache OFBiz requirements. He
started his venture as a Java-JEE Bootcamp with 77Global and is currently a trainer at
Software Laboratory Inc. (SLI), Alibata Business and Technology Services Inc. and Nityo
Infotech, Philippines. He also conducts training and talks around the Philippines, for
instance, in Cebu City and Tacloban City.

Sherwin has contributed as a technical reviewer to various books by Packt Publishing,
including Delphi Cookbook, Alfresco 3 Records Management, Alfresco Share, and Mastering
Hibernate. He owes everything to Packt Publishing with the unforgettable experience in the
technical reviewing tasks, which have been an essential part of his career.

As an Oracle Certified Associate and Java SE 7 Programmer (1Z0-803), Sherwin will
continue his mandate as a technical trainer, developer, architect, and designer to help the
industry improve its standards in information technology. He will always be an epitome of
honor, excellence, and service when it comes to software development and business
intelligence.

About the Reviewer
Glenn De Paula is a product of the University of the Philippines Integrated School and is a
computer science graduate of the country’s most prestigious University of the Philippines.
He has 12 years of industry experience, most of which he got working for the government’s
ICT institute and recently in the banking industry.

He uses Spring, Grails, and Javascript for his day-to-day activities. He has developed
numerous Java web applications for the government and has also been the technical team
lead for several projects. He currently manages Java developers assigned to different
projects in one of the country’s most reputable banks.

He is consistently involved in systems analysis and design, source code review, testing,
implementation, training, and mentoring. He is currently learning NodeJS and Blockchain
technologies in his free time.

I would like to thank the author of this book, the editors, and Packt Publishing for giving
me the opportunity to review this great informative book.

I would also like to thank my managers and supervisors for mentoring me and trusting me
with projects that helped improve my career.

Thank you very much to my family and friends for all their support. Especially, I thank my
wife, Elaine, for all the love and patience.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1787128318.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1787128318
https://www.amazon.com/dp/1787128318
https://www.amazon.com/dp/1787128318
https://www.amazon.com/dp/1787128318
https://www.amazon.com/dp/1787128318
https://www.amazon.com/dp/1787128318
https://www.amazon.com/dp/1787128318
https://www.amazon.com/dp/1787128318
https://www.amazon.com/dp/1787128318
https://www.amazon.com/dp/1787128318
https://www.amazon.com/dp/1787128318
https://www.amazon.com/dp/1787128318
https://www.amazon.com/dp/1787128318
https://www.amazon.com/dp/1786467356

Table of Contents
Preface 1

Chapter 1: Getting Started with Spring 9

Installing Java Development Kit 1.8 10
Getting started 10
How to do it... 10
How it works... 12

Installing Tomcat 9 and configuring HTTP/2 12
Getting started 12
How to do it... 13
How it works... 16

Installing STS Eclipse 3.8 IDE 17
Getting started 17
How to do it... 17
How it works... 18

Creating Eclipse projects using Maven 19
Getting started 20
How to do it... 20
How it works... 23

Creating Spring STS Eclipse projects using Gradle 23
Getting started 24
How to do it... 26
How it works... 28

Deploying Spring projects using Maven 29
Getting started 29
How to do it... 29
How it works... 31

Deploying Spring projects using Gradle 31
Getting started 31
How to do it... 32
How it works... 33

Installing the MySQL 5.7 database server 34
Getting started 34
How to do it... 35
How it works... 36

[ii]

Installing the MongoDB 3.2 database server 36
Getting started 37
How to do it... 37
How it works... 38

Chapter 2: Learning Dependency Injection (DI) 40

Implementing a Spring container using XML 41
Getting started 41
How to do it... 41
How it works... 43

Implementing a Spring container using JavaConfig 44
Getting started 45
How to do it... 45
How it works... 46

Managing beans in an XML-based container 47
Getting started 48
How to do it... 48
How it works... 52

Managing beans in the JavaConfig container 53
Getting started 53
How to do it... 54
How it works... 56

Creating Singleton and Prototype beans 57
Getting started 57
How to do it... 57
How it works... 59

Defining eager and lazy spring beans 60
Getting started 60
How to do it... 60
How it works... 62

Creating an inner bean 63
Getting started 64
How to do it... 64
How it works... 66

Injecting Collections and Properties 66
Getting started 66
How to do it... 67
How it works... 71

Creating a Spring MVC using an XML-based approach 71
Getting started 71

[iii]

How to do it... 72
How it works... 77

Creating a Spring MVC using the JavaConfig approach 78
Getting started 78
How to do it... 79
How it works... 81

Generating multiple ApplicationContexts 82
Getting started 82
How to do it... 83
How it works... 87

Using ResourceBundleMessageSource for Views 89
Getting started 89
How to do it... 89
How it works... 92

Chapter 3: Implementing MVC Design Patterns 93

Creating the simple @Controller 94
Getting started 94
How to do it... 94
How it works... 99

Creating a simple @Controller with method-level URL mapping 100
Getting started 100
How to do it... 100
How it works... 107

Designing a simple form @Controller 109
Getting started 110
How to do it... 110
How it works... 113

Creating a multi-action @Controller 114
Getting started 114
How to do it... 114
How it works... 116

Form validation and parameter type conversion 116
Getting started 116
How to do it... 117
How it works... 127

Creating request- and session-scoped beans 129
Getting started 129
How to do it... 130
How it works... 134

[iv]

Implementing page redirection and Flash-scoped beans 135
Getting started 135
How to do it... 135
How it works... 139

Creating database connection pooling 140
Getting started 140
How to do it... 140
How it works... 147

Implementing the DAO layer using the Spring JDBC Framework 149
Getting Started 150
How to do it... 150
How it works... 154

Creating a service layer in an MVC application 156
Getting started 156
How to do it... 156
How it works... 159

Chapter 4: Securing Spring MVC Applications 160

Configuring Spring Security 4.2.2 161
Getting started 161
How to do it... 161
How it works... 171

Mapping sessions to channels and ports 172
Getting started 172
How to do it... 173
How it works... 174

Customizing the authentication process 176
Getting started 176
How to do it... 176
How it works... 183

Implementing authentication filters, login success, and failure
handlers 185

Getting started 185
How to do it... 185
How it works... 195

Creating user details 197
Getting started 197
How to do it... 197
How it works... 201

Generating encrypted passwords 201

[v]

Getting started 201
How to do it... 202
How it works... 205

Applying Security to MVC methods 205
Getting started 205
How to do it... 205
How it works... 209

Creating roles and permissions from the database 210
Getting started 210
How to do it... 210
How it works... 215

Managing and storing sessions 215
Getting started 215
How to do it... 215
How it works... 219

Solving Cross-Site Request Forgery (CSRF) and session fixation
attacks 220

Getting started 220
How to do it... 221
How it works... 222

Solving Cross-Site Scripting (XSS) and clickjacking attacks 224
Getting started 224
How to do it... 224
How it works... 225

Creating interceptors for login data validation 226
Getting started 226
How to do it... 227
How it works... 229

Chapter 5: Cross-Cutting the MVC 230

Logging and auditing service methods 231
Getting started 231
How to do it... 231
How it works... 235

Managing DAO transactions 237
Getting started 237
How to do it... 237
How it works... 238

Monitoring services and request handlers 239
Getting started 239

[vi]

How to do it... 240
How it works... 243

Validating parameters and arguments 243
Getting started 243
How to do it... 244
How it works... 245

Managing exceptions 245
Getting started 245
How to do it... 246
How it works... 247

Implementing the caching mechanism 247
Getting started 247
How to do it... 248
How it works... 251

Intercepting request transactions 251
Getting started 251
How to do it... 252
How it works... 254

Implementing user authentication 255
Getting started 255
How to do it... 255
How it works... 258

Accessing with restrictions 258
Getting started 258
How to do it... 259
How it works... 261

Controlling concurrent user access 261
Getting started 261
How to do it... 262
How it works... 263

Implementing a mini-workflow using AOP 264
Getting started 264
How to do it... 265
How it works... 269

Chapter 6: Functional Programming 270

Implementing lambda expressions using anonymous inner classes 271
Getting started 271
How to do it... 271
How it works... 272

[vii]

Implementing lambda expression using @FunctionInterface 273
Getting started 273
How to do it... 274
How it works... 275

Applying the built-in functional interfaces 276
Getting started 276
How to do it... 277
How it works... 279

Applying method and constructor references 280
Getting started 281
How to do it... 281
How it works... 283

Using the Stream API 284
Getting started 284
How to do it... 284
How it works... 285

Applying streams to collections 286
Getting started 287
How to do it... 287
How it works... 293

Applying streams to NIO 2.0 294
Getting started 294
How to do it... 295
How it works... 297

Using parallel streams 297
Getting started 297
How to do it... 298
How it works... 301

Chapter 7: Reactive Programming 302

Applying the observer design pattern using Reactive Streams 303
Getting started 304
How to do it... 304
How it works... 310

Creating Mono<T> and Flux<T> publishers 312
Getting started 312
How to do it... 313
How it works... 315

Implementing the Subscriber<T> interface 317
Getting ready 317

[viii]

How to do it... 318
How it works... 320

Applying backpressure to Mono<T> and Flux<T> 321
Getting ready 321
How to do it... 321
How it works... 326

Managing task executions using Schedulers 326
Getting ready 327
How to do it... 327
How it works... 332

Creating concurrent and parallel emissions 333
Getting ready 334
How to do it... 334
How it works... 336

Managing continuous data emission 337
Getting ready 337
How to do it... 337
How it works... 343

Implementing Stream manipulation and transformation 344
Getting ready 344
How to do it... 344
How it works... 349

Testing Reactive data transactions 350
Getting ready 351
How to do it... 351
How it works... 353

Implementing Reactive events using RxJava 2.x 354
Getting ready 354
How to do it... 354
How it works... 359

Chapter 8: Reactive Web Applications 361

Configuring the TaskExecutor 362
Getting started 362
How to do it... 362
How it works... 366

SimpleAsyncTaskExecutor 366
ThreadPoolTaskExecutor 366
ConcurrentTaskExecutor 366

Implementing @Async services 367

[ix]

Getting started 367
How to do it... 367
How it works... 374

Creating asynchronous controllers 374
Getting started 375
How to do it... 375
How it works... 377

Creating @Scheduled services 378
Getting started 379
How to do it... 379
How it works... 381

Using Future<T> and CallableFuture<T> 381
Getting started 382
How to do it... 382
How it works... 386

Using Mono<T> and Flux<T> publishers for services 387
Getting started 387
How to do it... 388
How it works... 391

Creating Mono<T> and Flux<T> HTTP response 391
Getting started 391
How to do it... 391
How it works... 393

Integrating RxJava 2.0 393
Getting started 393
How to do it... 393
How it works... 395

Using FreeMarker to render Publisher<T> stream 396
Getting started 396
How to do it... 396
How it works... 399

Using Thymeleaf to render a Publisher<T> stream 399
Getting started 400
How to do it... 400
How it works... 402

Applying security on TaskExecutors 402
Getting started 403
How to do it... 403
How it works... 409

[x]

Chapter 9: Spring Boot 2.0 410

Building a non-reactive Spring MVC application 411
Getting started 411
How to do it... 411
How it works... 421

Configuring Logging 422
Getting started 422
How to do it... 422
How it works... 425

Adding JDBC Connectivity 425
Getting started 425
How to do it... 425
How it works... 427

Building a reactive Spring MVC application 427
Getting started 427
How to do it... 428
How it works... 430

Configuring Spring Security 5.x 431
Getting started 431
How to do it... 432
How it works... 433

Using reactive view resolvers 433
Getting started 433
How to do it... 434
How it works... 437

Using RouterFunction and HandlerFunction 438
Getting started 438
How to do it... 438
How it works... 442

Implementing Spring Data with JPA 443
Getting started 443
How to do it... 443
How it works... 447

Implementing REST services using @RestController and Spring REST 448
Getting started 448
How to do it... 448
How it works... 451

Applying Spring Cache 451
Getting started 451

[xi]

How to do it... 451
How it works... 454

Chapter 10: The Microservices 455

Exposing RESTful services in Spring 5 456
Getting started 456
How to do it... 457
How it works... 468

Using the actuator REST endpoints 469
Getting started 469
How to do it... 470
How it works... 471

Building a client-side application with RestTemplate,
AsyncRestTemplate and, WebClient 473

Getting started 473
How to do it... 473
How it works... 479

Configuring the Eureka server for service registration 480
Getting started 480
How to do it... 480
How it works... 485

Implementing the Eureka service discovery and client-side load
balancing 487

Getting started 487
How to do it... 487
How it works... 491

Applying resiliency to client applications 492
Getting started 492
How to do it... 492
How it works... 496

Consuming endpoints using a declarative method 497
Getting started 497
How to do it... 497
How it works... 499

Using Docker for deployment 499
Getting started 499
How to do it... 500
How it works... 504

Chapter 11: Batch and Message-Driven Processes 505

[xii]

Building synchronous batch processes 506
Getting started 506
How to do it... 506
How it works... 516

Implementing batch processes with a database 518
Getting started 518
How to do it... 518
How it works... 524

Constructing asynchronous batch processes 525
Getting started 525
How to do it... 525
How it works... 527

Building synchronous interprocess communication using AMQP 527
Getting started 527
How to do it... 528
How it works... 533

Creating asynchronous send-receive communication 534
Getting started 534
How to do it... 534
How it works... 538

Creating an event-driven asynchronous communication using AMQP 539
Getting started 539
How to do it... 539
How it works... 543

Creating stream communication with Spring Cloud Stream 543
Getting started 543
How to do it... 544
How it works... 551

Implementing batch processes using Spring Cloud Task 552
Getting started 553
How to do it... 553
How it works... 554

Chapter 12: Other Spring 5 Features 555

Using Hibernate 5 object-relational mapping 556
Getting ready 556
How to do it... 556
How it works... 562

Applying Hazelcast distributed caching 563
Getting ready 563

[xiii]

How to do it... 563
How it works... 567

Building client-server communications with WebSocket 567
Getting ready 568
How to do it... 568
How it works... 573

Implementing Reactive WebSocket communication 574
Getting ready 574
How to do it... 574
How it works... 580

Implementing asynchronous Spring Data JPA properties 581
Getting ready 581
How to do it... 581
How it works... 586

Implementing Reactive Spring Data JPA repositories 586
Getting ready 586
How to do it... 587
How it works... 591

Using Spring Data MongoDB 591
Getting ready 591
How to do it... 592
How it works... 594

Building applications for big data storage 595
Getting ready 595
How to do it... 596
How it works... 600

Building a Spring 5 application using Kotlin 601
Getting ready 601
How to do it... 601
How it works... 605

Chapter 13: Testing Spring 5 Components 606

Creating tests for Spring MVC components 607
Getting ready 607
How to do it... 607
How it works... 611

Building standalone controller tests 612
Getting ready 612
How to do it... 612
How it works... 613

[xiv]

Creating tests for DAO and service layers 614
Getting ready 614
How to do it... 614
How it works... 616

Creating tests on secured applications 616
Getting ready 616
How to do it... 617
How it works... 620

Creating tests using Spring Boot 2.0 620
Getting ready 620
How to do it... 620
How it works... 622

Creating tests for Spring Data JPA 622
Getting ready 623
How to do it... 623
How it works... 624

Building tests for blocking, asynchronous and reactive RESTful
services 624

Getting ready 624
How to do it... 624
How it works... 628

Building tests for Kotlin components 628
Getting ready 628
How to do it... 629
How it works... 630

Index 631

Preface
A cookbook is a definitive reference material that consists of several essential recipes on
computer programming used for academic, professional, or personal workshops. This book
is a large reference database of programming concepts, which aims to describe, highlight,
and identify the general features of Spring Framework 5 and also its distinctive features and
characteristics as the newest installment of Spring platforms.

The book is written for users who wants to build Spring 5 applications using its core Maven
dependencies and for those who prefer to use Spring Boot as the mechanism for web
development. It is divided into disciplines that are considered strengths of Spring 5 in
which some are familiar concepts such as bean scopes, Model-View-Controller, aspect-
object programming, @Async transactions, and Spring security concepts. There are also new
theoretical frameworks that can only be found in this Spring version such as Reactor Core,
WebFlux, cold and hot streams, and reactive web programming.

You will be guided on how to install the appropriate tools and plug-ins for Spring 5 to work
properly. For those who are new to Spring framework, you will also be given a short
discussion on its core principles through recipes that handle Dependency Injection and
Inversion of Control and implementation of the ApplicationContext container. For
experts, this book offers some recipes that illustrate how to implement reactive components
such as reactive JPA, service layers, message-driven transactions, and WebSocket
implementation.

When it comes to difficulty levels, there are parts that are for beginners and enthusiasts who
want to learn Spring web development. But most chapters are intended for experienced
Spring users who want to learn functional and reactive programming components of this
newest Spring installment. This will provide a new paradigm to those who are seeking
optimal and faster software performance with the help of the Stream API, Publisher<T>,
Flux<T>, @Async, Callable<T>, and HandlerFunction<T>. These are just few concepts
that this book will emphasize and expound through some robust and practical set of
recipes.

Preface

[2]

What this book covers
Chapter 1, Getting Started with Spring, is the installation and configuration section of the
book. It consists of recipes that enumerate the steps on how to install Java 1.8, Tomcat 9
with TLS, Eclipse STS 8.3, MySQL 5.7, and MongoDB 3.2. This will also provide a procedure
on how to build a Maven project with Spring 5 dependencies and deploy it using the
Tomcat Maven plugin.

Chapter 2, Learning Dependency Injection (DI), covers the core concepts of Inversion of
Control (IoC) design pattern. This chapter provides recipes on how to build
ApplicationContext through XML-based configurations and the JavaConfig
specification. You will also be guided on how to perform a @Bean injection and autowiring.
Most importantly, this chapter will highlight the role of IoC in building Spring MVC web
applications.

Chapter 3, Implementing MVC Design Pattern, highlights the construction of Spring 5 web
applications based on its Spring WebMvc module. This will provide recipes that aim to
implement the controller, service, and DAO layers with some supporting features such as
view resolvers, message bundles, and JDBC connectivity.

Chapter 4, Securing Spring MVC Application, is all about Spring Security integration with
Spring 5. The chapters that use Spring MVC will be applying Spring Security 4, while those
that implement th Spring WebFlux module will be using Spring Security 5 with
asynchronous and reactive transactions. Advance topics such as protection against Cross-
Site Request Forgery (CSRF), session fixation, and cross-site scripting (XSS) and
Clickjacking will also be covered in some recipes.

Chapter 5, Cross-Cutting the MVC, contains recipes that discuss implement aspects, advices,
and pointcuts. The aspect-object programming paradigm will be thoroughly discussed,
focusing on how it will be used across the Spring 5 platform. Concepts such as improvised
security, validating method parameters, monitoring @Controller request transactions,
and interception will also be included in the recipes.

Chapter 6, Functional Programming, contains recipes that will layout the foundation of
functional programming paradigm in Spring 5. This will showcase the Stream API of Java
1.8 and its threaded operations being applied to the service layer of the platform. Topics
such as sequential and parallel streams will be covered here.

Preface

[3]

Chapter 7, Reactive Programming, focuses on Spring 5 integration with the Reactor Core
module. The recipes of this chapter will apply Publisher<T> and Subscriber<T> from
the reactive stream specification in order to generate reactive data streams with short-lived
and continuous stream flows. Also included are implementations of asynchronous
transactions using @Async, Callable<T>, and DeferredResult<T>. Apart from Reactor
Core, this chapter will also include other reactive libraries such as RxJava 2.0 used in
building the reactive service layer of Spring 5.

Chapter 8, Reactive Web Applications, is where we start using Reactor Core in building
reactive web applications. This includes recipes that use Publisher<T>, Flux<T>, and
Mono<T> in building the service and the @Controller layer. Some recipes also discuss how
to implement Callable<T> and DeferredResult<T> response transactions. In this
chapter, some view resolvers will be introduced to recognize reactive streams.

Chapter 9, Spring Boot 2.0, discusses how to build and deploy Spring MVC and Spring
WebFlux projects using Spring Boot 2.0. It is only in this chapter that the functional and
reactive web framework of Spring 5 will be completely implemented using the
HandlerFunction<T> and RouterFunction<T> reactive components executed by the
Reactor Netty server.

Chapter 10, The Microservices, applies the concept of functional and reactive web
framework to microservices. This provides a set of recipes that will showcase the strength of
Spring Boot 2.0 in building and consuming synchronous, asynchronous, and reactive
services in a microservice. In the chapter, we will cover the procedure to implement a
loosely-coupled microservices setup through the Eureka server or Docker.

Chapter 11, Batch and Message-Driven Processes, talks about how to implement a totally
loosely-coupled microservices through message-driven transactions. There are also recipes
that will discuss on how to implement background batch processes using Spring Batch and
Spring Cloud Task.

Chapter 12, Other Spring 5 Features, is one of the most important chapters in this book
because it showcases other reactive and non-reactive components of Spring 5 that are not
mentioned in the previous chapter but are useful to professionals. In this chapter, there are
recipes dedicated to how to enable Hibernate 5, WebSocket, and HazelCast caching. Also,
there are others written to showcase the reactive features of Spring 5 such as Spring Data
JPA, Spring Data MongoDB, and Kotlin.

Chapter 13, Testing Spring 5 Components, highlights the Spring TestContext framework and
how it is utilized in testing synchronous, asynchronous, and reactive Spring components
such as native and REST services, repositories, JPA transactions, controllers, and views.

Preface

[4]

What you need for this book
Firstly, this book is intended for readers who have a background at least in Java SDK
programming. This book does not cover anything about how to start dealing with Java as a
language. Secondly, each chapter contains recipes that can be developed using STS Eclipse
3.8 and can be executed using Apache Tomcat 9.x and the Reactor Netty server. The
following are the required tools and libraries needed to perform the recipes in this book:

Any machine with at least 4 GB of RAM
Java 1.8
STS Eclipse 3.8
Apache Tomcat 9.x
OpenSSL for Windows
MySQL 5.7
MongoDB 3.2
RabbitMQ 3.6
Erlang 9.0
Apache Couchdb 2.1.0
Docker Toolbox for Windows
Google Chrome or Mozilla Firefox browser

Other versions of these requirements will not be covered in this book.

Who this book is for
This book is composed of two menus: core concepts and advance concepts. The core
concepts found in the recipes of chapters 1 to 3 are recommended to Java programmers who
have no background in Spring Framework but are willing to start their career with the
Spring 5 platform. Also, enthusiasts who know OOP and MVC concepts can also deal with
the first three chapters since these are just the same ideas and principles being implemented
in Spring 4 and below.

Preface

[5]

The recipes covered in chapters 4 to 13 are for experienced Spring developers who want to
learn how to integrate modules such as Spring Security, Spring WebFlux, Reactor Core,
Spring Batch, Spring Cloud, and advance related libraries. Aspects, advices, pointcuts, and
interceptors, for instance, can only be understood by readers who know where in the Spring
platform to apply the cross-cutting procedure. It also takes a deep knowledge of Spring
when it comes to implementing REST web services and how to consume them using client
APIs. Since this book is more inclined to asynchronous and reactive programming concepts,
this book will be challenging for someone who knows Spring Framework very well.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to
do it, How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Preface

[6]

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

All recipes codes are written inside a numbered bullet and follow the following style:

public Set<String> getDistinctNames(){
 Function<Employee,String> allNames = (e) -> e.getFirstName();
 Set<String> setNames = employeeDaoImpl.getEmployees()
 .stream()
 .filter((a) -> a.getAge() > 25)
 .map(allNames)
 .collect(Collectors.toCollection(HashSet::new));
 return setNames;
}

Code words in text, HTML tags, database table names, folder names, filenames, file
extensions, and pathnames are shown as follows: "Import socketapps.js inside
hotline.html using the <script> tag"

A URL is written as follows: "Visit the site
https://www.mongodb.com/download-center#community to download MongoDB under
different operating system platforms. It also comes with SSL and no-SSL support."

Acronyms and module names may be shown in bold: "The Hibernate 5 has no dedicated
starter POM in Spring Boot 2.0, but it is by default contained in the Spring Data JPA starter
POM."

Any command-line input or output is written as follows:

keytool -import -alias spring5server -file spring5packt.crt -keystore
"<Java1.8_folder>\Java1.8.112\jre\lib\security\cacerts" -storepass changeit

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "On the dashboard, look for
IDE EXTENSIONS and click that button".

Important phrases, terminology, ideas, and concepts are written in this style: "MongoDB is an
unstructured database so it has no concept of relational models such as database and table
schema".

https://www.mongodb.com/download-center#community

Preface

[7]

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-mail
feedback@packtpub.com, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Downloading the example code
You can download the example code files for this book from your account at http:/ /www.
packtpub.com. If you purchased this book elsewhere, you can visit http:/ /www. packtpub.
com/support and register to have the files e-mailed directly to you. You can download the
code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[8]

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Spring- 5.0- Cookbook. We also have other code bundles from our rich
catalog of books and videos available at https:/ /github. com/ PacktPublishing/ . Check
them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from http:/ /www.packtpub. com/ sites/ default/ files/
downloads/Spring5Cookbook. pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http:/ /www. packtpub. com/ submit- errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title. To view the previously submitted errata, go to https:/ /www. packtpub. com/
books/content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at copyright@packtpub.com with a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://github.com/PacktPublishing/Spring-5.0-Cookbook
https://github.com/PacktPublishing/Spring-5.0-Cookbook
https://github.com/PacktPublishing/Spring-5.0-Cookbook
https://github.com/PacktPublishing/Spring-5.0-Cookbook
https://github.com/PacktPublishing/Spring-5.0-Cookbook
https://github.com/PacktPublishing/Spring-5.0-Cookbook
https://github.com/PacktPublishing/Spring-5.0-Cookbook
https://github.com/PacktPublishing/Spring-5.0-Cookbook
https://github.com/PacktPublishing/Spring-5.0-Cookbook
https://github.com/PacktPublishing/Spring-5.0-Cookbook
https://github.com/PacktPublishing/Spring-5.0-Cookbook
https://github.com/PacktPublishing/Spring-5.0-Cookbook
https://github.com/PacktPublishing/Spring-5.0-Cookbook
https://github.com/PacktPublishing/Spring-5.0-Cookbook
https://github.com/PacktPublishing/Spring-5.0-Cookbook
https://github.com/PacktPublishing/Spring-5.0-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/Spring5Cookbook.pdf
http://www.packtpub.com/sites/default/files/downloads/Spring5Cookbook.pdf
http://www.packtpub.com/sites/default/files/downloads/Spring5Cookbook.pdf
http://www.packtpub.com/sites/default/files/downloads/Spring5Cookbook.pdf
http://www.packtpub.com/sites/default/files/downloads/Spring5Cookbook.pdf
http://www.packtpub.com/sites/default/files/downloads/Spring5Cookbook.pdf
http://www.packtpub.com/sites/default/files/downloads/Spring5Cookbook.pdf
http://www.packtpub.com/sites/default/files/downloads/Spring5Cookbook.pdf
http://www.packtpub.com/sites/default/files/downloads/Spring5Cookbook.pdf
http://www.packtpub.com/sites/default/files/downloads/Spring5Cookbook.pdf
http://www.packtpub.com/sites/default/files/downloads/Spring5Cookbook.pdf
http://www.packtpub.com/sites/default/files/downloads/Spring5Cookbook.pdf
http://www.packtpub.com/sites/default/files/downloads/Spring5Cookbook.pdf
http://www.packtpub.com/sites/default/files/downloads/Spring5Cookbook.pdf
http://www.packtpub.com/sites/default/files/downloads/Spring5Cookbook.pdf
http://www.packtpub.com/sites/default/files/downloads/Spring5Cookbook.pdf
http://www.packtpub.com/sites/default/files/downloads/Spring5Cookbook.pdf
http://www.packtpub.com/sites/default/files/downloads/Spring5Cookbook.pdf
http://www.packtpub.com/sites/default/files/downloads/Spring5Cookbook.pdf
http://www.packtpub.com/sites/default/files/downloads/Spring5Cookbook.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Getting Started with Spring

Spring 5.0 is the latest Spring Framework release that highlights Functional Web
Framework and Reactive Programming. In this version, all the codes comply with the latest
Java 1.8 syntax but the whole framework is designed to support the Java 1.9 Java
Development Kit (JDK) in the near future. On the enterprise platform, the framework is
supposed to use servlet 3.1 and 4.0 specifications and utilize HTTP/2 to run its applications.

This book will start with how to set up and configure the development environment given
the necessary tools and plugins to run Spring 5.0 applications.

In this chapter, you will learn about the following:

Installing Java Development Kit 1.8
Installing Tomcat 9 and configuring HTTP/2
Installing STS Eclipse 3.8 IDE
Creating Eclipse projects using Maven
Creating Spring STS Eclipse projects using Gradle
Deploying Spring projects using Maven
Deploying Spring projects using Gradle
Installing the MySQL 5.7 database server
Installing the MongoDB 3.2 database server

Getting Started with Spring

[10]

Installing Java Development Kit 1.8
The book will be using JDK 1.8, which has the support to run Spring 5.0. This version of
Java supports @FunctionalInterface and lambda expressions, which are necessary
concepts being showcased in this framework. A @FunctionalInterface is an interface
with exactly one abstract method that may lead to its instantiation through lambda
expressions. Lambda expressions are used to implement anonymous inner classes, avoiding
too much bulk in the codes.

Moreover, JDK 1.8 has java.util.stream APIs that can work with collections and NIO
2.0, using stream operations such as filter, map, and reduce. These stream APIs work in
sequential and parallel executions. In the area of concurrency, this JDK provides some very
essential enhancements on ConcurrentHashMap for its forEach, forEachEntry,
forEachKey, forEachValue, compute, merge, reduce, and search methods. Also some
changes were done on the object creation of CompletableFuture and Executors.

Getting started
All Java JDK installers are downloaded from Oracle's site at
http://www.oracle.com/technetwork/java/javase/downloads/index.html.

How to do it...
To download JDK 1.8, perform the following steps:

Visit the preceding Oracle's page for downloads.1.
On that page, click the JDK Download link. After the click, you will see the2.
content page for JDK 1.8 installers as shown in the following image:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Getting Started with Spring

[11]

Select Accept License Agreement by clicking its radio button.3.
Start downloading the JDK depending on the operating system and architecture4.
of your development machine. In the case of this book, we will be choosing the
option jdk-8u112-windows-x64 since the operating system used by this book
will be 64-bit.
After saving the installer into the filesystem, run the installer and proceed with a5.
series of installation wizards for JDK configuration with the inclusion of some
JRE installation to your system.
This is optional but it is recommended you create an environment variable6.
JAVA_HOME for your newly installed JDK 1.8.112. On Windows operating
systems:

Open the System section of the Control Panel.1.
Select the Advanced System Settings link. Windows 10 will prompt2.
you with a User Account Control dialog box if you are not an
administrator.
Create a system variable JAVA_HOME and assign the location of the JDK3.
directory to it.

Getting Started with Spring

[12]

Look for the path system variable and append the following line:4.
%JAVA_HOME\%bin.

Verify if all classpath settings are created correctly. On Windows, open a new7.
command terminal and run the javac -version command. This command
must be recognized as a valid command; otherwise, check your configuration
details again.

How it works...
The installed JDK will be the core language interpreter of Spring 5.0 projects, whether or not
they are deployed to a Tomcat 9.x application server through Maven or Gradle. To read
more about JDK 1.8, the reference
http://www.oracle.com/technetwork/java/javase/8-whats-new-2157071.html will
provide you with some information about its highlights and will explain why it is popular
nowadays in functional and reactive programming. More detailed concepts on functional
programming will be discussed in Chapter 6, Functional Programming.

Installing Tomcat 9 and configuring HTTP/2
Since the focus of request and response connections in Spring 5.0 will be HTTP/2, this book
will feature the use of HTTP/2 as the protocol for web communications. In HTTP1.1, each
request sent to a server resource corresponds to only one response. If the server resources
generated a longer processing time, then all other incoming requests are blocked. Unlike in
HTTP/2, a single request-response transaction can contain multiple concurrently open
streams to avoid starvation or deadlocks. On the other hand, HTTP/2 has superb
performance when it comes to web browsing experience, notwithstanding the security it
provides to the simple web applications and complex portals using SSL certificates. But
what is appreciated in HTTP/2 is its backwards compatibility with HTTP/1.1, thus HTTP
methods, status codes, and header fields can still be managed by HttpServletRequest
and HttpServletResponse without any changes.

Getting started
Visit the download page of Apache Tomcat application server
https://tomcat.apache.org/download-native.cgi and click the Tomcat 9 link that will
lead you to the download page.

http://www.oracle.com/technetwork/java/javase/8-whats-new-2157071.html
https://tomcat.apache.org/download-native.cgi

Getting Started with Spring

[13]

How to do it...
The book will utilize Tomcat 9, which is the only Tomcat distribution that fully supports
HTTP/2 without installing lots of third-party tools and modules. The following are the step-
by-step details in setting up HTTP/2 in Tomcat 9:

Check if you have installed JDK 1.8 in your system. Tomcat 9 only runs with the1.
latest JDK 1.8 without error logs.
If you have downloaded the zipped version, unzip the folder to the filesystem of2.
the development machine. If you have the EXE or MSI version, double-click the
installer and follow the installation wizards. The following details must be taken
into consideration:

You can retain the default server startup port (8005), HTTP connector1.
port (8080), and AJP port (8009) or configure according to your own
settings.
Provide the manager-gui with the username as packt and its2.
password as packt.

After the installation process, start the server and check whether the main page is3.
loaded using the URL http://localhost:8080/.
If Tomcat 9 is running without errors, it is now time to configure HTTP/24.
protocol. Since HTTP/2 uses clear-text type request transactions, it is required
that we configure Transport Layer Security (TLS) to use HTTP/2 since many
browsers such as Firefox and Chrome do not support clear text. For TLS to work,
we need a certificate from OpenSSL. For Windows machines, you can get it from
https://slproweb.com/products/Win32OpenSSL.html.
Install the OpenSSL (for example, Win64OpenSSL-1_1_0c.exe) by following the5.
installation wizards. This will be used to generate our certificate signing request
(CSR), SSL certificates, and private keys.
Create an environment variable OPENSSL_HOME for your operating system.6.
Register it into the $PATH the %OPENSSL_HOME%/bin.
Generate your private key and SSL certificate by running the following7.
command: openssl req -newkey rsa:2048 -nodes -keyout
spring5packt.key -x509 -days 3650 -out spring5packt.crt.
In our setup, the file spring5packt.key is the private key and must be strictly8.
unreachable to clients, but by the server only. The other file, spring5packt.crt,
is the SSL certificate that we will be registering both in the server keystore and
JRE keystore. This certificate is only valid for 10 years (3,650 days).

https://slproweb.com/products/Win32OpenSSL.html

Getting Started with Spring

[14]

In Step 8, you will be asked to enter CSR information such as:9.

Country name (two-letter code) [AU]:PH
State or province name (full name) [Some-State]: Metro Manila
Locality name (for example, city):Makati City
Organization name (for example, company) [Internet Widgits
Pty Ltd]:Packt Publishing
Organizational unit name (for example, section): Spring 5.0
Cookbook
Common name (for example, server FQDN or your name):
Alibata Business Solutions and Training Services
E-mail address: sherwin.tragura@alibatabusiness.com

Generate a keystore that will be validated, both by your applications and server.10.
JDK 1.8.112 provides keytool.exe that will be run to create keystores. Using the
files in Step 8, run the following command:

keytool -import -alias spring5server -file spring5packt.crt -
keystore spring5server.keystore

If this is your first time, you will be asked to create a password of no less than six11.
letters. Otherwise, you will be asked to enter your password. You will be asked if
you want to trust the certificate. The message Certificate reply was installed in
keystore means you have successfully done the process.
Java JRE must know the certificate in order to allow all the execution of your12.
deployed Spring 5 applications. To register the created certificate into the JRE
cacerts, run the following command:

keytool -import -alias spring5server -file spring5packt.crt -
keystore
"<Java1.8_folder>\Java1.8.112\jre\lib\security\cacerts" -
storepass changeit

The default password is changeit. You will be asked to confirm if the certificate13.
is trusted and you just type Y or yes. The message Certificate reply was
installed in keystore means you have successfully finished the process.
Copy the three files, namely spring5packt.crt, spring5packt.key, and14.
spring5server.keystore to Tomcat's conf folder and JRE's security folder
(<installation_folder>\Java1.8.112\jre\lib\security).
Open Tomcat's conf\server.xml and uncomment the <Connector> with port15.
8443. Its final configuration must be:

<Connector port="8443"
protocol="org.apache.coyote.http11.Http11AprProtocol"

Getting Started with Spring

[15]

maxThreads="150" SSLEnabled="true">
 <UpgradeProtocol
 className="org.apache.coyote.http2.Http2Protocol"/>
 <SSLHostConfig honorCipherOrder="false">
 <Certificate certificateKeyFile="conf/spring5packt.key"
 certificateFile="conf/spring5packt.crt"
 keyAlias="spring5server" type="RSA" />
 </SSLHostConfig>
</Connector>

Save the server.xml.16.

Open C:\Windows\System32\drivers\etc\hosts file and add the following17.
line at the end:

 127.0.0.1 spring5server

Restart the server. Validate the setup through running18.
https://localhost:8443. At first your browser must fire a message; Your
connection is not secure. Just click Advanced and accept the certificate:

You will now be running HTTP/2.19.

Getting Started with Spring

[16]

How it works...
Java 1.8 and Java 1.9 together with Spring 5.0 support HTTP/2 for the advancement of the
JEE servlet container. This improvement is part of their JSR 369 specification which
highlights the Servlet 4.0 specification. This Spring version is after Java 1.8's advance
concurrency and stream support to run its functional and reactive modules. And since the
core platform of Spring 5 is reactive, non-blocking and asynchronous, it needs NIO 2.0
threads of Tomcat 9.x's HTTP/2 for its project execution.

Since enabling HTTP/2 requires configuring TLS, browsers such as Firefox and Chrome will
be restricted a bit by this TLS when it comes to running applications. These client browsers
do not support clear text TCP; thus there is a need for secured HTTP (or HTTPS) which is
the only way these browsers can utilize HTTP/2. And since TLS is enabled, there is a need
for a keystore certificate that must be recognized by the application servers and accepted by
the browsers in order to execute the request URLs.

OpenSSL for Windows is chosen as our certificate generator in creating TLS certificates.
The book will use a self-signed certificate only, which is the easiest and most appropriate
method so far in order to secure Apache Tomcat 9. This method no longer needs the
certificate to be signed by a Certificate Authority (CA).

After generating the certificate, the certificate must be registered to both the keystore of the
JRE and the custom keystore (for example, spring5keystore.keystore) of the
application server. Keystores are used in the context of setting up the SSL connection in Java
applications between client and server. They provide credentials, store private keys and
certificates corresponding to the public keys of the applications and browsers. They are also
required to access the secured server which usually triggers client authentication. The
installed Java has its own keystore, which is
<installation_folder>\Java1.8.112\jre\lib\security\cacerts. Always provide
the official passwords in adding your certificates to these keystores. JRE has a default
changeit password for its keystore.

The advantage of the TLS-enabled Tomcat 9 server is its support to JSR-369, which is the
implementation of the Servlet 4.0 container. Moreover, the virtual hosting and multiple
certificates are supported for a single connector, with each virtual host able to support
multiple certificates. When the request-response transaction happens with HTTP/2, a
session with multiple streams or threads of connections is created, as shown in the
following code:

MetaData.Request metaData = new MetaData.Request("GET",
HttpScheme.HTTP, new HostPortHttpField("spring5server: 8443" +
server.getLocalport()), "/", HttpVersion.HTTP_2, new
HttpFields());

Getting Started with Spring

[17]

HeadersFrame headersFrame = new HeadersFrame(1, metaData, null,
true);
session.newStream(headersFrame, new Promise.Adapter<Stream>(),
new PrintingFramesHandler());
session.newStream(headersFrame, new Promise.Adapter<Stream>(),
new PrintingFramesHandler());
session.newStream(headersFrame, new Promise.Adapter<Stream>(),
new PrintingFramesHandler());

The whole concept of HTTP/2 transporting requests from client to server and responding
back to its clients is depicted with the conceptual model as follows:

Installing STS Eclipse 3.8 IDE
All the recipes will be implemented using Spring Tool Suite (STS) Eclipse 3.8 which has
the latest features that support JDK 1.8.

Getting started
Visit the site https://spring.io/tools/sts/all and download the STS 3.8 release for
Windows, Linux, or macOS. In our case, we will be opting for the Windows version. It is
also available in 32-bit or 64-bit operating systems.

How to do it...
To get STS Eclipse 3.8, perform the following steps:

After the download, unzip the file using WinZip or 7ZIP to your filesystem.1.

https://spring.io/tools/sts/all

Getting Started with Spring

[18]

Update its VM usage to enhance performance through making the heap grow to a2.
larger amount by adding the -vmargs command to the eclipse.ini file inside
the installation folder, or by appending to the Eclipse shortcut's target property.
Following the command are the following Java heap memory configurations:

-Xms512m
-Xmx1024m

Go to the installation folder <installation_folder>\sts-3.
bundle\sts-3.8.3.RELEASE and run STS.exe.
Running STS.exe will result in launching your workspace launcher. Create an4.
Eclipse workspace as shown as follows:

Then, you are now ready to create code snippets.5.

How it works...
STS Eclipse 3.8 is a customized all-in-one Eclipse-based distribution that provides support
for Spring technologies such as Pivotal Cloud Foundry, Gradle, and Pivotal Server.
Moreover, it is plugin-ready and contains language support, framework support, and
runtime support for Java JDK 1.8 and Java EE 7.

Getting Started with Spring

[19]

The IDE has the following parts: views, perspectives, and the option menus. The view is the
IDE's way of projecting its metadata or components graphically. Some views are console,
debug, and task list, and data management views. The styling and the presence of the
needed views depend on the type of perspective required for a particular project. A
perspective is the logical arrangement of all these views. In our case, we have to choose a JEE
perspective from the Window | Perspective | Open Perspective menu option to proceed
with our programming.

But before we create our first project, always set the Java Runtime Environment to JDK's
JRE. The JRE setting is located at Windows | Preferences and you need to Add... and
choose the JDK's JRE as shown as follows:

You are now ready to create your Maven and Gradle project for our recipes in the next
chapters.

Creating Eclipse projects using Maven
One option for creating our Spring 5.0 projects is through Maven. The STS Eclipse 3.8 has
built-in Maven plugins that will create Maven-ready Eclipse projects easily.

Getting Started with Spring

[20]

Getting started
Before creating the first Maven project, check first the JRE workspace configuration of your
IDE. As noted in the previous recipe, the JRE of your Eclipse must be set to the JDK's JRE.
Moreover, check the embedded version of Maven installed in STS Eclipse 3.8 through the
Windows | Preferences panel. STS 3.8 will be using its embedded Maven 3.0 for the
deployment operations. The list of Maven versions is available at https:/ /maven. apache.
org/.

How to do it...
Follow the steps to create Maven Projects for our succeeding code snippets as follows:

There are two ways that we can create a Maven project from scratch in STS. One1.
option is to right-click the Project Explorer of the IDE in order to choose New |
Other... from the pop-up window (or Ctrl-N). The other option is to click the File
menu option then choose the New | Other... . Both of these operations will lead
us to our New project wizard as shown as follows:

https://maven.apache.org/
https://maven.apache.org/
https://maven.apache.org/
https://maven.apache.org/
https://maven.apache.org/
https://maven.apache.org/
https://maven.apache.org/
https://maven.apache.org/
https://maven.apache.org/

Getting Started with Spring

[21]

On the menu wizard, click the Maven Module and then the Maven Project2.
option. The New Maven project wizard will pop-up anew. Just click Create
Simple Project (skip archetype selection) to create a clean project from scratch:

Afterwards, the next wizard will require you to fill out the necessary Group Id3.
and Artifact Id for your project. In the following example, the Group ID is
org.packt.recipe.core and the Artifact Id is, let us say, ch01. The next
important field that needs to be filled is Packaging and it must be set to war in
our case:

Getting Started with Spring

[22]

Click Finish. Look for the file pom.xml and insert below it the following lines to4.
correct some Maven bugs:

<build>
 <finalName>ch01-spring5-cookbook</finalName>
 <plugins>
 <plugin>
 <artifactId>maven-war-plugin</artifactId>
 <version>2.3</version>
 <configuration>
 <failOnMissingWebXml>false</failOnMissingWebXml>
 </configuration>
 </plugin>
 </plugins>
</build>

Finally, you must have the directory structure as follows in your own project5.
explorer:

Getting Started with Spring

[23]

How it works...
Apache Maven is already a built-in plugin in Eclipse and helps developers manage projects
and use some build tools to clean, install, and deploy Eclipse projects. It has the main
configuration file which is called the Project Object Model (POM) file.

POM is the fundamental unit of work in Maven that contains information and configuration
details about the project. Some core information in POM is <modelVersion>, which
currently must be set to 4.0.0, <groupId>, that identifies the project uniquely together
with <projectId> and <versionId> across all projects in the Maven repository,
<artifactId>, which is the name of the WAR file without the version, and <packaging>,
which is WAR.

Later in this book, we will be adding <properties> and <dependencies> and
<plugins> for our Spring 5.0 code recipes in our pom.xml file.

Creating Spring STS Eclipse projects using
Gradle
Another option in building Spring 5.0 projects is through the use of Gradle. STS Eclipse
includes Gradle as one of its tooling and project management tools. In our case, we will be
installing an STS Eclipse module extension in the easiest way in order to fully use Gradle.

Getting Started with Spring

[24]

Getting started
Install the Gradle module extension in our STS Eclipse 3.8 in order to clean, build, and
deploy projects in Gradle. Perform the following steps:

Click the Dashboard toolbar option of your Eclipse. After clicking, you will be1.
opening the main dashboard of the IDE:

On the dashboard, look for IDE EXTENSIONS and click that button. A new2.
window showing all the available Eclipse STS extensions will pop up. Click on
Gradle (STS Legacy) Support and install it:

Getting Started with Spring

[25]

The next steps will just be similar to installing new Eclipse plugins. Just click the3.
Install button and follow the installation wizard. Eclipse needs to be restarted
after a successful installation.

Getting Started with Spring

[26]

If you want to change the Gradle distribution, you can replace the Eclipse4.
embedded Gradle installation with some new version at https:/ /gradle. org/
gradle-download/ . Or you can shift to Eclipse Buildship with Gradle Plugin if
some of the files are not supported by the installed Gradle plugin:

How to do it...
After installing the Gradle STS extension, perform the following steps to install the Spring
Gradle project:

After installing, you are ready to create a Gradle project for Spring development.1.
Go to the New project wizard (Ctrl-N) of STS Eclipse and create a Gradle project.

On the Gradle Project wizard, assign a name for your project and choose Java2.
Quickstart for the Sample project option. Click Finish and it will take a while to
create, build, clean, and install your Gradle STS project.
Delete unnecessary project files. Right-click on the project and click on Gradle3.
(STS) | Refresh all.

https://gradle.org/gradle-download/
https://gradle.org/gradle-download/
https://gradle.org/gradle-download/
https://gradle.org/gradle-download/
https://gradle.org/gradle-download/
https://gradle.org/gradle-download/
https://gradle.org/gradle-download/
https://gradle.org/gradle-download/
https://gradle.org/gradle-download/
https://gradle.org/gradle-download/
https://gradle.org/gradle-download/

Getting Started with Spring

[27]

Open the build.gradle and overwrite the existing configuration with this:4.

apply plugin: 'eclipse'
apply plugin: "war"

sourceCompatibility = 1.8
version = '1.0'

war {
 baseName = 'ch02-gradle'
 version = '1.0'
}

sourceCompatibility = 1.8

repositories {
 mavenCentral()
 jcenter()
}

Right-click on the project and click Gradle (STS) | Tasks Quick Launcher to run5.
the Gradle Task Launcher. Using the launcher, clean and build the project for
the first time:

Getting Started with Spring

[28]

Finally, at this point, you have created your Spring Gradle project which will look6.
like this:

How it works...
The most important configuration file in a Gradle project is the build.gradle. First, we
have to add apply plugin: 'java' to tell Gradle that Java is the core language in
building the scripts, testing the codes, executing compiled objects, creating Javadoc, and
deploying JAR or WAR files. Since all project management and tooling depends on STS
Eclipse, there is a need to add apply plugin: 'eclipse' in order to tell Gradle that all
descriptors are Eclipse-specific and can be integrated and executed with Eclipse core and
extension plugins. A by-product of its project installation and execution are the Eclipse
folders such as .project, and .classpath. And since this is a web development project,
we need to apply plugin: 'war' to indicate that the deployment is at WAR mode. Later
on we will be adding some plugins needed in the development of our recipes.

In the properties section, the configuration must tell Gradle the version of the JDK through
the sourceCompatibility property. Another property is the version of the WAR or
project deployment, which is at first set to 1.0. Since the mode of deployment is the web,
Java must know the name and the version of the WAR file to be generated.

On the repositories section, the configuration must define where to find the dependencies,
which are at JCenter and MavenCentral.

Getting Started with Spring

[29]

Deploying Spring projects using Maven
Our application server is Tomcat 9 and we will be using HTTP/2 to execute all Spring 5.0
projects at port 8443 with some certificates stored in the server's keystore.

Getting started
At this point, the Tomcat 9 server must be running at https://localhost:8843/ in all
browsers. Using OpenSSL, certificates are already installed in JRE's keystore and our
server's keystore. Moreover, you have already successfully created your STS Maven project
in order for us to configure your POM file.

How to do it...
Open the POM file of your Maven project and add the following details:

There is no available working Maven plugin for Tomcat 9 so we need to use the1.
latest stable version, which is tomcat7-maven-plugin. Add the following
Maven plugin details for Tomcat 7 deployment under the <plugins> section of
the <build>:

<plugin>
 <groupId>org.apache.tomcat.maven</groupId>
 <artifactId>tomcat7-maven-plugin</artifactId>
 <version>2.2</version>
 <configuration>
 <url>https://spring5server:8443/manager/text</url>
 <path>/ch01</path>
 <keystoreFile>C:MyFilesDevelopmentServersTomcat9.0
 confspring5server.keystore</keystoreFile>
 <keystorePass>packt@@</keystorePass>
 <update>true</update>
 <username>packt</username>
 <password>packt</password>
 </configuration>
</plugin>

Getting Started with Spring

[30]

Right-click on the project and click on Run As | Maven Build... and execute the2.
following goal: clean install tomcat7:deploy

Everything is successful if the console outputs this Maven log:3.

Getting Started with Spring

[31]

How it works...
The configuration detail starts with the <url> that sets Tomcat's plain-text-based
administration interface used by Maven to invoke commands of the server. Maven needs to
access the administration panel to allow the copy of the WAR file to the webapps. Since we
will be using the TLS-enabled connector, we will be using the secured-HTTP together with
the registered hostname in the keystore which is spring5server.

The tag <path> sets the context root of the project and must have a forward slash while the
<username> and <password> refer to the credentials of the administrator having the roles
manager-gui and manager-script.

The most important configuration details are <keystoreFile> and <keystorePass>.
<keystoreFile> makes reference to the keystore of Tomcat that contains the TLS
certificate. <keystorePass> provides the password used by <keystoreFile> in
registering certificates. Together with these credentials, we have to be sure that the
certificate has been added to the JRE's keystore which is
<installation_folder>\Java1.8.112\jre\lib\security\cacerts.

<update> is required to undeploy all existing WAR files that already exist in the webapps.
Sometimes the deployment does not work without this forced update.

Deploying Spring projects using Gradle
If the project is written in Gradle, there will be some modification to be done in our
gradle.build configuration details.

Getting started
Validate that your Tomcat with TLS-enabled connection is working by running
https://localhost:8080/ on any browser. Also, check if your STS Gradle project is
clean and updated.

Getting Started with Spring

[32]

How to do it...
Open the gradle.build file and add the buildScript() function that accepts1.
a closure containing all libraries needed to be referenced in classpath. At this
step, we need to import gradle-tomcat-plugin under the group
com.bmuschko:

buildscript {
 repositories {
 jcenter()
 }
 dependencies {
 classpath 'com.bmuschko:gradle-tomcat-plugin:2.0'
 }
}

Add the following libraries to the classpath:2.

apply plugin: 'com.bmuschko.tomcat'
apply plugin: 'com.bmuschko.tomcat-base'

(Optional) Add the following Tomcat 9.0 libraries that enable Gradle to run3.
embedded Tomcat through the tomcatRun() and tomatRunWar() functions:

dependencies {
 def tomcatVersion = '9.0.0.M9'
 tomcat "org.apache.tomcat.embed:tomcat-embed
 core:${tomcatVersion}",
 "org.apache.tomcat.embed:tomcat-embed-logging-
 juli:${tomcatVersion}"
 tomcat("org.apache.tomcat.embed:tomcat-embed-
 jasper:${tomcatVersion}") {
 exclude group: 'org.eclipse.jdt.core.compiler',
 module: 'ecj'
 }
}

(Optional) Configure Tomcat 9 details through the tomcat() function:4.

tomcat {
 httpsPort = 8443
 enableSSL = true
 users {
 user {
 username = 'packt'
 password = 'packt'

Getting Started with Spring

[33]

 roles = ['manager-gui', 'manager-script']
 }
 }
}

To deploy the project into the installed Tomcat 9, create a Gradle task deploy5.
that copies the WAR file to the /webapp folder:

task deploy (dependsOn: war){
 copy {
 from "build/libs"
 into
 "C:\MyFiles\Development\Servers\Tomcat9.0\webapps"
 include "*.war"
 }
}

You can now run deploy in the Gradle Task Launcher.6.

How it works...
When it comes to building projects with conflicting versions of libraries, Gradle is one of
those build tools that can satisfy any structure and state of project deployment and
management. Since it is not written in XML, Gradle can provide logic in building
classpath and project dependencies.

Getting Started with Spring

[34]

Gradle is efficient when it comes to incremental builds where the current and previous
changes in deployment files are monitored. And when it comes to different repositories,
Gradle can monitor changes of artifacts through effective repository-aware caches. In
general, Gradle is advanced when it comes to repository management and project
deployment than Maven.

Gradle is written in Groovy; thus, the build scripts are declarative, readable, and
straightforward and can provide developers with easier conventions and philosophy of
deployment.

First, Gradle must build the needed classpath libraries that are the main dependencies to
the deployment, which happen to be com.bmuschko:gradle-tomcat-plugin:2.0. After
building the external library, import the following plugins: com.bmuschko.tomcat and
com.bmuschko.tomcat-base. Inject a closure to the tomcat() function that details all the
needed configuration before the deployment. The custom Gradle task deploy takes all the
configuration loaded by the tomcat() and war() functions. Running deploy in Gradle
(STS) | Gradle Task Launcher will copy the WAR file found in build/libs to the Tomcat
instance.

Installing the MySQL 5.7 database server
The book will be covering some concepts on how Spring 5.0 handles data persistence
involving relational database management systems. MySQL 5.7 will be the database server
that will be used to create, store, update, and delete records of data.

Getting started
Visit the site http://dev.mysql.com/downloads/mysql/ to download the preferred
community server for your projects. MySQL server is available in any operating system
platform.

http://dev.mysql.com/downloads/mysql/

Getting Started with Spring

[35]

How to do it...
On the download page, choose the General Available (GA) Releases tab.1.
Choose the desired platform through the Select Platform dropdown. The book2.
will be using the MySQL server for Windows.
Once the Windows platform is chosen, there are other options available for3.
download under the Other Downloads link. Choose the Windows (x86, 32-bit)
Windows MSI installer for easy installation.
Afterwards, just click No thanks, just start my downloads! to download the4.
installer immediately.
After downloading the installer (for example, mysql-installer-5.
community-5.7.17.0.msi), click the file and start the following wizards.
Choose Developer Default as our server type.6.
Install all the connectors.7.
Use port 3306 and set the password to packt.8.
After installing the MySQL server, proceed with installing the Samples and9.
Examples scripts.
After finishing the installation, create MySQL_HOME in your classpath and10.
expose <installation_folder>MySQLMySQL Server 5.7bin commands.
At this point, you are now ready to install the server for database transactions.11.

Getting Started with Spring

[36]

How it works...
To deal with SQL transactions, we can us the CLI of MySQL or the given GUI-based
MySQL Workbench:

Installing the MongoDB 3.2 database server
Spring 5.0 has the capability to perform data transactions with NoSQL databases where
schema design is not fixed and the data involved is so complex wherein its read-write
operations are defined by graph theory. The MongoDB 3.2 server will highlight some
NoSQL and document-based data transactions with Spring 5.0 using the raw
implementation and its Spring Data module.

Getting Started with Spring

[37]

Getting started
Visit the site https://www.mongodb.com/download-center#community to download
MongoDB under different operating system platforms. It also comes with SSL and no-SSL
support.

How to do it...
After downloading the installer (for example, mongodb-win32-1.
x86_64-2008plus-ssl-3.2.0-signed.msi), follow the installation wizards:

https://www.mongodb.com/download-center#community

Getting Started with Spring

[38]

After the installation, create the MONGODB_HOME system variable in your2.
classpath and expose the <installation_folder>MongoDbServer3.2bin
commands.
Since MongoDB requires a data directory to store all data, create a default data3.
directory path, /data/db, at the root level (for example, C:datadb).
You are now ready to start the MongoDb server.4.

How it works...
The MongoDB server will be running with the default port 27017. In order to run the
server, we type the mongod command using the command-line terminal:

Getting Started with Spring

[39]

And then we open another terminal to open the server for the no-SQL transactions through
the mongo command:

2
Learning Dependency Injection

(DI)
After a series of installations and configurations, this chapter will begin the discussion on
how Spring Framework 5.0 works from its core. The recipes here will define the
characteristics of Spring 5.0 as a framework. We will connect the dots starting from where
the objects are created up to the layers where the series of data transactions, services and
controllers are interconnected.

In this chapter, you will learn about the following:

Implementing a Spring container using XML
Implementing a Spring container using JavaConfig
Managing beans in an XML-based container
Managing the beans in a JavaConfig container
Creating Singleton and Prototype beans
Defining eager and lazy spring beans
Creating an inner bean
Injecting Collections and Properties
Creating a Spring MVC using an XML-based approach
Creating a Spring MVC using the JavaConfig approach
Generating multiple ApplicationContexts
Using ResourceBundleMessageSource for Views

Learning Dependency Injection (DI)

[41]

Implementing a Spring container using XML
Let us begin with the creation of the Spring Web Project using the Maven plugin of our STS
Eclipse 8.3. This web project will be implementing our first Spring 5.0 container using the
XML-based technique. This is the most conventional but robust way of creating a Spring
container.

The container is where the objects are created, managed, wired together with their
dependencies, and monitored from their initialization up to their destruction. This recipe
will mainly highlight how to create an XML-based Spring container.

Getting started
Create a Maven project ready for development using the STS Eclipse 8.3. Be sure you have
installed the correct JRE. Let us name the project ch02-xml.

How to do it...
After creating the project, certain Maven errors will be encountered just like in Chapter 1,
Getting Started with Spring. Bug-fix the Maven issues in our ch02-xml project in order to use
the XML-based Spring 5.0 container by performing the following steps:

Open pom.xml for the project and add the following properties, which contain1.
the Spring build version and servlet container to utilize.

<properties>
 <spring.version>5.0.0.BUILD-SNAPSHOT</spring.version>
 <servlet.api.version>3.1.0</servlet.api.version>
</properties>

Add also the following Spring 5 dependencies in pom.xml, which are essential in2.
providing us with the interfaces and classes to build our Spring container:

<dependencies>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>${spring.version}</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-core</artifactId>

Learning Dependency Injection (DI)

[42]

 <version>${spring.version}</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-beans</artifactId>
 <version>${spring.version}</version>
 </dependency>
</dependencies>

It is required to add the following repositories in pom.xml where all the Spring3.
5.0 dependencies in Step 2 will be downloaded through Maven:

<repositories>
 <repository>
 <id>spring-snapshots</id>
 <name>Spring Snapshots</name>
 <url>https://repo.spring.io/libs-snapshot</url>
 <snapshots><enabled>true</enabled></snapshots>
 </repository>
</repositories>

Then add the Maven plugin for deployment in pom.xml but be sure to recognize4.
web.xml as the deployment descriptor. This can be done by enabling
<failOnMissingWebXml> or just deleting the <configuration> tag as follows:

<plugin>
 <artifactId>maven-war-plugin</artifactId>
 <version>2.3</version>
 </plugin>
<plugin>

Add the rest of the Tomcat Maven plugin for deployment in pom.xml, as5.
explained in Chapter 1, Getting Started with Spring.
After the Maven configuration details, check if there is a WEB-INF folder inside6.
src\main\webapp. If there isn't, create one. This is mandatory for this project
since we will be using a deployment descriptor (or web.xml).
Inside the WEB-INF folder, create a deployment descriptor or drop a web.xml7.
template inside the src\main\webapp\WEB-INF directory.

Learning Dependency Injection (DI)

[43]

Then create an XML-based Spring container named ch02-beans.xml inside the8.
ch02-xml\src\main\java\ directory. The configuration file must contain the
following namespaces and tags:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xs
d">
</beans>

You can generate this file using the STS Eclipse Wizard (Ctrl-N) and under
the module SpringàSpring Bean Configuration File option.

Save all the files. Then clean and build the Maven project. Do not deploy yet9.
because this is just a standalone project at the moment.

How it works...
This project just imported three major Spring 5.0 libraries, Spring-Core, Spring-Beans, and
Spring-Context, because the major classes and interfaces for creating the container are
found in these libraries. This shows that Spring, unlike other frameworks, does not need the
entire load of libraries just to set up the initial platform. Spring can be perceived as a huge
enterprise framework nowadays but internally it is still lightweight.

The basic container that manages objects in Spring is provided by the
org.springframework.beans.factory.BeanFactory interface and can only be found
in the Spring-Beans module. Once additional features are needed such as message resource
handling, AOP capabilities, application-specific contexts, and the listener implementation,
the sub-interface of BeanFactory, namely the
org.springframework.context.ApplicationContext interface, is then used. This
ApplicationContext, found in Spring-Context modules, is the one that provides an
enterprise-specific container for all its applications because it encompasses a larger scope of
Spring components than its BeanFactory interface.

Learning Dependency Injection (DI)

[44]

The container created, ch02-beans.xml, an ApplicationContext, is an XML-based
configuration that contains XSD schemas from the three main libraries imported. These
schemas have tag libraries and bean properties, which are essential in managing the whole
framework. But beware of runtime errors once libraries are removed from the dependencies
because using these tags is equivalent to using the APIs.

The final Spring Maven project directory structure should look like this:

Implementing a Spring container using
JavaConfig
Another option for implementing the Spring 5.0 container is through the use of Spring
JavaConfig. This is a technique that uses pure Java classes in configuring the framework's
container. This solution eliminates the use of bulky and tedious XML metadata and also
provides a type-safe and refactoring-free approach in configuring entities or collections of
objects into the container. This recipe will showcase how to create the container using
JavaConfig in a web.xml-less approach.

Learning Dependency Injection (DI)

[45]

Getting started
Create another Maven project using the methodology in Chapter 1, Getting Started with
Spring, and name the project ch02-xml. This STS Eclipse project will be using a Java class
approach including its deployment descriptor.

How to do it...
Let us now apply the JavaConfig specification in building the Spring context definition:

To get rid of the usual Maven bugs, immediately open the pom.xml of ch02-jc1.
and add <properties>, <dependencies>, and <repositories>, equivalent to
what was added in the Implementing the Spring Container using XML recipe.
Since the time Servlet 3.0 specification was implemented, servlet containers can2.
now support projects without using web.xml. This is done by implementing the
handler abstract class called
org.springframework.web.WebApplicationInitializer to
programmatically configure ServletContext. Create a
SpringWebInitializer class and override its onStartup() method without
any implementation yet:

public class SpringWebInitializer implements
 WebApplicationInitializer {
 @Override
 public void onStartup(ServletContext container) throws
 ServletException {
 }
}

The lines in Step 2 will generate some runtime errors until you add the following3.
Maven dependency:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-web</artifactId>
 <version>${spring.version}</version>
</dependency>

Learning Dependency Injection (DI)

[46]

In pom.xml, disable the <failOnMissingWebXml> and add the same Tomcat4.
Maven plugin for the deployment used in Chapter 1, Getting Started with Spring.

Now, create a class named BeanConfig, the ApplicationContext definition,5.
with a class-level annotation @Configuration. The class must be inside the
org.packt.starter.ioc.context package and must be an empty class at the
moment:

@Configuration
public class BeanConfig { }

Save all the files and clean and build the Maven project.6.

How it works...
The Maven project ch02-xml makes use of both JavaConfig and
ServletContainerInitializer, meaning there will be no XML configuration from
servlet to Spring 5.0 containers. The BeanConfig class is the ApplicationContext of the
project and has an annotation @Configuration, indicating that the class is used by
JavaConfig as a source of bean definitions. This is handy when creating an XML-based
configuration with lots of metadata.

The project ch02-xml introduces the API
org.springframework.web.WebApplicationInitializer, which serves as a handler
of org.springframework.web.SpringServletContainerInitializer, the
framework's implementation class to the servlet's ServletContainerInitializer. The
class SpringServletContainerInitializer is designed to receive notification from
WebApplicationInitializer through its method startup(ServletContext). The
class ServletContext is a JEE container that manages filters, servlets, and listeners. Once
this servlet container acknowledges the no-web.xml status provided by
SpringServletContainerInitialize, an option not to use web.xml is acceptable.

On Maven's part, the plugin for deployment must be notified that the project will not use
web.xml. This is done through setting the <failOnMissingWebXml> to false inside its
<configuration> tag.

https://cdp.packtpub.com/spring_5_0_recipes/wp-admin/post.php?post=262&action=edit#post_129

Learning Dependency Injection (DI)

[47]

The final Spring Web Project directory structure must look like the following structure:

Managing beans in an XML-based container
Frameworks become a popular because of the principle behind the architecture they built
from. Each framework is built from different design patterns that manage the creation and
behavior of the objects they manage. This recipe will detail how Spring 5.0 manages objects
of the applications and how it shares a set of methods and functions across the platform.

Learning Dependency Injection (DI)

[48]

Getting started
The two Maven projects previously created will be utilized to illustrate how Spring 5.0
loads objects into the heap. We will also be utilizing the ApplicationContext rather than
the BeanFactory container in preparation for the next recipes involving more Spring
components.

How to do it...
With ch02-xml, let us demonstrate how Spring loads objects using the XML-based
ApplicationContext container:

Create a package org.packt.starter.ioc.model, where our model classes1.
will be placed. Our model classes will be typical Plain Old Java Objects (POJO),
for which the Spring 5.0 architecture is known.
Inside the newly created package, create the classes Employee and Department,2.
which contain the following blueprints:

public class Employee {
 private String firstName;
 private String lastName;
 private Date birthdate;
 private Integer age;
 private Double salary;
 private String position;
 private Department dept;
 public Employee(){
 System.out.println(" an employee is created.");
 }

 public Employee(String firstName, String lastName, Date
 birthdate, Integer age, Double salary, String
position,
 Department dept) {
 his.firstName = firstName;
 his.lastName = lastName;
 his.birthdate = birthdate;
 his.age = age;
 his.salary = salary;
 his.position = position;
 his.dept = dept;
 System.out.println(" an employee is created.");
 }
 // getters and setters

Learning Dependency Injection (DI)

[49]

 }

public class Department {
 private Integer deptNo;
 private String deptName;
 public Department() {
 System.out.println("a department is created.");
 }
 // getters and setters
}

Afterwards, open the ApplicationContext implemented as ch02-beans.xml.3.
Register using the <bean> tag our first set of Employee and Department objects
as follows:

<bean id="empRec1" class="org.packt.starter.ioc.model.Employee"
/>
<bean id="dept1" class="org.packt.starter.ioc.model.Department"
/>

The beans in Step 3 contain private instance variables that have zeroes and null4.
default values. To update them, our classes have mutators or setter methods that
can be used to avoid the NullPointerException that is always encountered
whenever empty objects undergo transactions. In Spring, calling these setters is
tantamount to injecting data into the <bean>, similarly to how the following
objects are created:

<bean id="empRec2"
class="org.packt.starter.ioc.model.Employee">
 <property name="firstName"><value>Juan</value></property>
 <property name="lastName"><value>Luna</value></property>
 <property name="age"><value>70</value></property>
 <property name="birthdate">
 <value>October 28, 1945</value>
 </property>
 <property name="position">
 <value>historian</value>
 </property>
 <property name="salary"><value>150000</value></property>
 <property name="dept"><ref bean="dept2"/></property>
</bean>
<bean id="dept2"
class="org.packt.starter.ioc.model.Department">
 <property name="deptNo"><value>13456</value></property>
 <property name="deptName">
 <value>History Department</value>

Learning Dependency Injection (DI)

[50]

 </property>
</bean>

A <property> tag is equivalent to a setter definition accepting an actual value or5.
an object reference. The name attribute defines the name of the setter minus the
prefix set with the conversion to its camel-case notation. The value attribute or
the <value> tag both pertain to supported Spring-type values (for example, int,
double, float, Boolean, Spring). The ref attribute or <ref> provides a
reference to another loaded <bean> in the container. Another way of writing the
bean object empRec2 is through the use of ref and value attributes such as the
following:

<bean id="empRec3"
class="org.packt.starter.ioc.model.Employee">
 <property name="firstName" value="Jose"/>
 <property name="lastName" value="Rizal"/>
 <property name="age" value="101"/>
 <property name="birthdate" value="June 19, 1950"/>
 <property name="position" value="scriber"/>
 <property name="salary" value="90000"/>
 <property name="dept" ref="dept3"/>
</bean>
<bean id="dept3"
class="org.packt.starter.ioc.model.Department">
 <property name="deptNo" value="56748"/>
 <property name="deptName" value="Communication Department" />
</bean>

Another way of updating the private instance variables of model objects is to6.
make use of constructors. Actual Spring data and object references can be
inserted to the <bean> through the <contructor-arg> metadata:

<bean id="empRec5"
class="org.packt.starter.ioc.model.Employee">
 <constructor-arg><value>Poly</value></constructor-arg>
 <constructor-arg><value>Mabini</value></constructor-arg>
 <constructor-arg><value>August 10, 1948</value></constructor-
arg>
 <constructor-arg><value>67</value></constructor-arg>
 <constructor-arg><value>45000</value></constructor-arg>
 <constructor-arg><value>Linguist</value></constructor-arg>
 <constructor-arg><ref bean="dept3"></ref></constructor-arg>
</bean>

Learning Dependency Injection (DI)

[51]

After all the modifications, save ch02-beans.xml. Create a TestBeans class7.
inside org.packt.starter.ioc.model.test of the src\test\java
directory. This class will load the XML configuration resource to the
ApplicationContext container through
org.springframework.context.support.ClassPathXmlApplicationCont

ext and will fetch all the objects created through its getBean() method:

public class TestBeans {
 public static void main(String args[]){
 ApplicationContext context = new
 ClassPathXmlApplicationContext("ch02-beans.xml");
 System.out.println("application context loaded.");
 System.out.println("****The empRec1 bean****");
 Employee empRec1 = (Employee)
context.getBean("empRec1");
 System.out.println("****The empRec2*****");
 Employee empRec2 = (Employee)
context.getBean("empRec2");
 Department dept2 = empRec2.getDept();
 System.out.println("First Name: " +
 empRec2.getFirstName());
 System.out.println("Last Name: " +
empRec2.getLastName());
 System.out.println("Birthdate: " +
 empRec2.getBirthdate());
 System.out.println("Salary: " + empRec2.getSalary());
 System.out.println("Dept. Name: " +
dept2.getDeptName());
 System.out.println("****The empRec5 bean****");
 Employee empRec5 = context.getBean("empRec5",
 Employee.class);
 Department dept3 = empRec5.getDept();
 System.out.println("First Name: " +
 empRec5.getFirstName());
 System.out.println("Last Name: " +
empRec5.getLastName());
 System.out.println("Dept. Name: " +
dept3.getDeptName());
 }
}

The expected output after running the main() thread will be:8.

an employee is created.
an employee is created.
a department is created.
an employee is created.

Learning Dependency Injection (DI)

[52]

a department is created.
an employee is created.
a department is created.
application context loaded.
*********The empRec1 bean ***************
*********The empRec2 bean ***************
First Name: Juan
Last Name: Luna
Birthdate: Sun Oct 28 00:00:00 CST 1945
Salary: 150000.0
Dept. Name: History Department
*********The empRec5 bean ***************
First Name: Poly
Last Name: Mabini
Dept. Name: Communication Department

How it works...
The principle behind creating <bean> objects in the container is called the Inversion of
Control design pattern. In order to use objects, their dependencies and also their behaviors,
these must be placed within the framework per se. After registering them in the container,
Spring will just take care of their instantiation and their availability to other objects.
Developer can just fetch them if they want to include them in their software modules, as
shown in the following diagram:

Learning Dependency Injection (DI)

[53]

The IoC design pattern can be synonymous with the Hollywood Principle (Don't call us,
we'll call you!), which is a popular line in most object-oriented programming languages. The
framework does not care whether the developer needs the objects or not because the
lifespan of the objects lies on the framework's rules.

In the case of setting new values or updating values of an object's private variables, IoC has
an implementation that can be used for "injecting" new actual values or object references to
<bean> and it is popularly known as the Dependency Injection (DI) design pattern. This
principle exposes all the <bean> to the public through its setter methods or the
constructors. Injecting Spring values and object references to the method signature using
the <property> tag without knowing its implementation is called the Method Injection
type of DI. On the other hand, if we create the bean with initialized values injected to its
constructor through <constructor-arg>, it is known as Constructor Injection.

To create the ApplicationContext container, we need to instantiate
ClassPathXmlApplicationContext or FileSystemApplicationContext, depending
on the location of the XML definition file. Since the file is found in ch02-
xml\src\main\java\, ClassPathXmlApplicationContext implementation is the best
option because everything in src is compiled and deployed to the classes folder of the
web project ch02-xml\WEB-INF. This proves that the ApplicationContext is an object
too, bearing all those XML metadata. It has several overloaded getBean() methods used to
fetch all the objects loaded with it.

Managing beans in the JavaConfig container
The JavaConfig approach provides an easier, straightforward and programmatical way of
loading beans to the container. This approach uses annotations and classes to manage the
lifespan of the objects, the dependencies, and the injection of values and objects to setters
and constructors. The next recipe showcases how to construct and utilize a Java-based
ApplicationContext container.

Getting started
Let us create and use the ch02-jc project to create our first annotation-based
ApplicationContext container. We will be using the same model classes presented in the
recent recipe.

Learning Dependency Injection (DI)

[54]

How to do it...
Let us create beans inside a JavaConfig's context definition class:

Inside the ch02-jc\src\main\java directory, create a package:1.
org.packt.starter.ioc.model. Implement the same Employee and
Department model classes as in the previous recipe, Managing the beans in a
XML-based container recipe. Open BeanConfig context definition class and inject
these newly created Employee and Department beans in the container:

@Configuration
public class BeanConfig {
 @Bean(name="empRec1")
 public Employee getEmpRecord1(){
 Employee empRec1 = new Employee();
 return empRec1;
 }

 @Bean(name="dept1")
 public Department getDept1(){
 Department dept1 = new Department();
 return dept1;
 }
}

To pass actual values and object references to the beans, we programmatically2.
use the setters as one of the approaches for dependency injection. Add the
following modifications to BeanConfig:

@Bean(name="empRec2")
public Employee getEmpRecord2(){
 Employee empRec2 = new Employee();
 empRec2.setFirstName("Juan");
 empRec2.setLastName("Luna");
 empRec2.setAge(50);
 empRec2.setBirthdate(new Date(45,9,30));
 empRec2.setPosition("historian");
 empRec2.setSalary(100000.00);
 empRec2.setDept(getDept2());
 return empRec2;
}

@Bean(name="dept2")
public Department getDept2(){
 Department dept2 = new Department();
 dept2.setDeptNo(13456);

Learning Dependency Injection (DI)

[55]

 dept2.setDeptName("History Department");
 return dept2;
}

Another approach is to use the overloaded constructor for the dependency3.
injection. Add the following modifications to BeanConfig:

@Bean(name="empRec3")
public Employee getEmpRecord3(Department dept2){
 Employee empRec1 = new Employee("Jose","Rizal",
 new Date(50,5, 19), 101, 90000.00, "scriber", getDept3());
 return empRec1;
}

@Bean(name="dept3")
public Department getDept3(){
 Department dept3 = new Department(56748,
"Communication Department");
 return dept3;
}

Inside the package org.packt.starter.ioc.model.test in src\test\java,4.
create a TestBeans class that will instantiate the ApplicationContext
container using
org.springframework.context.annotation.AnnotationConfigApplicat

ionContext and will fetch all the beans using the familiar method getBean():

public class TestBeans {
 public static void main(String[] args) {
 AnnotationConfigApplicationContext context =
 new AnnotationConfigApplicationContext();
 context.register(BeanConfig.class);
 System.out.println("--Result by
 Setter based Dependency Injection--");
 context.refresh();
 Employee empRec1 = (Employee)
 context.getBean("empRec1");
 //refer to sources
 context.registerShutdownHook();
 }
}

Learning Dependency Injection (DI)

[56]

Before invoking the getBean() overloads, pass the first BeanConfig
definition to AnnotationConfigApplicationContext through
context.register(). Then call context.refresh() to load all the
registered beans to the container since we do not have the
ApplicationServer yet to trigger the container loading. Finally, all
objects are ready to be fetched. After all the method invocation, manually
close the container through registerShutdownHook().

How it works...
The @Bean annotation is equivalent to <bean/> in the XML-based ApplicationContext
definition. It is method-level and must be attached to functions inside @Configuration
classes. Without it, the method will be considered as a typical function and might give some
container errors.

The recipe advices developers to use the name attribute of @Bean in order to monitor and
specify the bean id of the containers without compromising the Java coding standard for
the function signature. Without this attribute, the container will consider the method name
as the bean id just as shown in the following example:

@Bean
public Employee empRec4(){
 Employee empRec4 = new Employee("Diego","Silang",
 new Date(65,11, 15), 55, 85000.00, "guitarist", dept4());
 return empRec4;
}
@Bean
public Department dept4(){
 Department dept4 = new Department(11223, "Music Department");
 return dept4;
}

With effect from Spring 3.0, the ApplicationContext can be instantiated through
AnnotationConfigApplicationContext when the JavaConfig approach is used. It is
XML-free since it only accepts classes that are annotated with @Configuration,
@Component, and JSR-330 annotations such as @Inject, @Named, and @Singleton. The
class is very versatile in that it also recognizes DI metadata such as @Autowired,
@Resource, or @Inject and considers them as part of the ApplicationContext
definition.

Learning Dependency Injection (DI)

[57]

Creating Singleton and Prototype beans
Creating beans to the containers is not enough for any project specification using the Spring
framework. It is always necessary to determine the lifespan of the beans through bean
scopes. The following recipe will determine how to optimize a container by creating
Singleton and Prototypes beans.

Getting started
The scope of the beans characterizes how many of their instances will be used by the
application. It categorizes also the purpose of each bean as to why it is loaded to the Spring
container. There are four scopes that can be associated with Spring beans but only two of
them will be discussed in this chapter as part of the core platform.

How to do it...
This recipe will be using both ch02-xml and the ch02-jc project in declaring which beans
are considered Singleton and Prototype. We will explore and identify the effects of applying
either of the two scopes to the container:

Open the project ch02-xml and locate the XML definition file in the ch02-1.
xml\src\main\java directory. Let us convert empRec1 to a Singleton bean by
setting the value of its scope attribute to Singleton:

<bean id="empRec1" class="org.packt.starter.ioc.model.Employee"
 scope="Singleton" />

By default, all loaded beans in the container are Singleton.

Convert the bean empRec2 to a Prototype one with its scope attribute set to2.
Prototype:

<bean id="empRec2" class="org.packt.starter.ioc.model.Employee"
 scope="Prototype">
 // refer to sources
</bean>

Learning Dependency Injection (DI)

[58]

Let us focus now on project ch02-jc and open its context BeanConfig3.
definition. Convert the scope of empRec1 to a Singleton bean by applying the
Spring-based annotation @Scope with a value Singleton:

@Bean(name="empRec1")
@Scope("Singleton")
public Employee getEmpRecord1(){
 Employee empRec1 = new Employee();
 return empRec1;
}

By default, all loaded beans, even without the @Scope annotation, are
Singleton.

Make the scope of empRec2 a Prototype by applying the same annotation @Scope4.
with the value Prototype:

@Bean(name="empRec2")
@Scope("Prototype")
public Employee getEmpRecord2(){
 // refer to sources
 return empRec2;
}

Lastly, create a test class TestScopes for each project that will be used to fetch5.
the preceding objects many times. Observe the number of instances the container
creates per scoped bean. Use the object's hashCode() method to determine the
identity of each instance:

public class TestScopes {

 public static void main(String[] args) {
 AnnotationConfigApplicationContext context =
new AnnotationConfigApplicationContext();
 context.register(BeanConfig.class);
 System.out.println("application context loaded.");
 context.refresh();
 System.out.println("*********The empRec1 bean ******");
 Employee empRec1A = (Employee)
context.getBean("empRec1");
 System.out.println("instance A: " +
empRec1A.hashCode());
 Employee empRec1B = (Employee)
context.getBean("empRec1");

Learning Dependency Injection (DI)

[59]

 System.out.println("instance B: " +empRec1B.hashCode());
 System.out.println("*********The empRec2 bean
**********");
 Employee empRec2A = (Employee)
context.getBean("empRec2");
 System.out.println("instance A: " +
empRec2A.hashCode());
 Employee empRec2B = (Employee)
context.getBean("empRec2");
 System.out.println("instance B: " +
empRec2B.hashCode());
 context.registerShutdownHook();
 }
}

Running the test class will give us a result that will prove that a Singleton bean is6.
only created once in its lifetime during the entire application execution while
Prototype beans are always instantiated every time the application fetches them
from the container:

*********The empRec1 bean ***************
instance A: 1691875296
instance B: 1691875296
*********The empRec2 bean ***************
instance A: 667346055
instance B: 1225197672

How it works...
Most of the time, developers prefer to load Singleton objects because they consume memory
efficiently rather than having several Prototype objects across the platform.

When it comes to the post-processing clean up, Spring will not have a hard time managing
the resources used by Singleton since the entire application uses only one bean object during
its request-response transactions. In the case of Prototype beans, the container must
implement a post-processor that will clean up all the garbage and some bulk of resources
consumed by the series of instantiations every fetch.

Learning Dependency Injection (DI)

[60]

Defining eager and lazy spring beans
At this point, it is clear already how beans are instantiated inside Spring 5.0 containers. The
practical definition of Inversion of Control and Dependency Injection design patterns has been
established too. Two approaches to implementing a container have been illustrated with the
previous recipes. This time we will provide a recipe on how to decide what form of
instantiation the beans must undergo in a container.

Getting started
We need both ch02-xml and ch02-jc in this recipe since the bean loading strategy
depends on what type of ApplicationContext container is being used. There are two
bean loading strategies in the Spring 5.0 framework namely eager and lazy loading.

How to do it...
Let us illustrate the eager and lazy loading of beans in a context definition using these steps:

In the case of the XML-based ApplicationContext, eager loading means all the1.
beans in the definition will be loaded and initialized aggressively in the heap
memory during start-up (for example, pre-instantiating). To opt for this type of
initialization, each <bean> has an attribute lazy-init, which must be set to
false. Open ch02-beans.xml in the project ch02-xml and add the following
bean:

<bean id="empRec6" class="org.packt.starter.ioc.model.Employee"
 lazy-init="false">
 <constructor-arg><value>Diego</value></constructor-arg>
 <constructor-arg><value>Silang</value></constructor-arg>
 <constructor-arg>
 <value>December 16, 1965</value>
 </constructor-arg>
 <constructor-arg><value>55</value></constructor-arg>
 <constructor-arg><value>87000</value></constructor-arg>
 <constructor-arg><value>Guitarist</value></constructor-arg>
 <constructor-arg><ref bean="dept4"></ref></constructor-arg>
</bean>

Learning Dependency Injection (DI)

[61]

By default, all Spring beans load in eager mode since lazy-init="auto"
also means lazy-init="false". Also, all Singleton beans use eager
loading automatically.

In the case of the JavaConfig approach, by default @Bean loads aggressively2.
and we do not have a special annotation or metadata for eager initialization.
The other option of bean loading happens only during the fetching stage (for3.
example, the use of the getBean() method) and this is called lazy loading. In the
XML-based container, we set the lazy-init attribute of a <bean> to true to
implement lazy bean loading. Using the same class models in Step 1, apply the
necessary changes as follows:

<bean id="empRec6" class="org.packt.starter.ioc.model.Employee"
 lazy-init="true">
 // refer to sources
</bean>

All Prototype beans use the lazy loading mode.

For JavaConfig, Spring has a method-level annotation @Lazy, which can be4.
applied to @Bean objects to perform lazy loading:

@Lazy
@Bean
public Employee empRec4(Department dept2){
 Employee empRec4 = new Employee("Diego","Silang",
new Date(65,11, 15), 55, 85000.00, "guitarist", dept4());
 return empRec4;
}

Setting @Lazy(value=false) makes the loading mode eager.

Learning Dependency Injection (DI)

[62]

How it works...
Consider running the TestBeans for either of the ch02-xml or ch02-jc projects. When all
beans load eagerly, the result of the execution looks like this:

 an employee is created.
 an employee is created.
 a department is created.
 a department is created.
 an employee is created.
 a department is created.
 an employee is created.
 a department is created.
 *********The empRec1 bean ***************
 *********The empRec2 bean ***************
 First Name: Juan
 Last Name: Luna
 Birthdate: Tue Oct 30 00:00:00 CST 1945
 Salary: 100000.0
 Dept. Name: History Department
 *********The empRec3 bean ***************
 First Name: Jose
 Last Name: Rizal
 Birthdate: Mon Jun 19 00:00:00 CDT 1950
 Salary: 90000.0
 Dept. Name: Communication Department
 *********The empRec4 bean ***************
 First Name: Diego
 Last Name: Silang
 Birthdate: Wed Dec 15 00:00:00 CST 1965
 Salary: 85000.0
 Dept. Name: Music Department

The preceding result shows us that all Employee and Department objects are created prior
to their fetching stage. But once @Lazy or lazy-init="true" is applied to empRec4, for
instance, there will be a change in the result:

 an employee is created.
 an employee is created.
 a department is created.
 a department is created.
 an employee is created.
 a department is created.
 a department is created.
 *********The empRec1 bean ***************
 *********The empRec2 bean ***************
 First Name: Juan

Learning Dependency Injection (DI)

[63]

 Last Name: Luna
 Birthdate: Tue Oct 30 00:00:00 CST 1945
 Salary: 100000.0
 Dept. Name: History Department
 *********The empRec3 bean ***************
 First Name: Jose
 Last Name: Rizal
 Birthdate: Mon Jun 19 00:00:00 CDT 1950
 Salary: 90000.0
 Dept. Name: Communication Department
 *********The empRec4 bean ***************
 an employee is created.
 First Name: Diego
 Last Name: Silang
 Birthdate: Wed Dec 15 00:00:00 CST 1965
 Salary: 85000.0
 Dept. Name: Music Department

The bean empRec4 was not pre-instantiated, rather its ApplicationContext loads and
instantiates the object right after the getBean() method is invoked.

Whether to apply the eager or lazy mode on beans depends on the project requirement or
specification. Usually, the eager bean loading method is applied to objects that need to be
loaded at start-up due to faster request demands from its client applications. Or, some
beans do not really consume more JVM space; thus, loading them at the container level will
not compromise the project performance. There are also objects that are tightly wired to
some other objects in the container and loading in lazy mode will cause a series of
dependency errors and runtime exceptions.

On bean objects that consume many resources, which may cause performance issues during
application start-up, it is advisable to apply the lazy loading method.

Creating an inner bean
When there are beans that can only be called once by some certain top-level beans, it will be
easier to manage the ApplicationContext definition if we allow these objects to be inner
beans. This recipe will show you how to create inner beans to some objects that exclusively
use them.

Learning Dependency Injection (DI)

[64]

Getting started
Both the ch02-xml and ch02-xml projects can be utilized separately on this recipe since
each container creates inner beans differently.

How to do it...
Perform the following to create inner beans:

In the ch02-xml, inject an Employee object, applying method injection for the1.
actual values:

<bean id="empRec4"
class="org.packt.starter.ioc.model.Employee">
 <property name="firstName" value="Gabriela"/>
 <property name="lastName" value="Silang"/>
 <property name="age" value="67"/>
 <property name="birthdate" value="June 19, 1950"/>
 <property name="position" value="writer"/>
 <property name="salary" value="897000"/>
</bean>

Let us wire a Department object to the empRec4 object. Instead of using <ref/>2.
to wire any Department object in the container, one option is to use a feature
similar to an anonymous inner class and that is inner beans. The usual <bean>
metadata is still used to create inner beans but without the id and class
attributes. Also, an inner bean does not need a scope attribute because it is
bounded within the scope of its top-level object. The following is the full-blown
empRec4 bean with a Department object created as an inner bean:

<bean id="empRec4"
class="org.packt.starter.ioc.model.Employee">
 <property name="firstName" value="Gabriela"/>
 <property name="lastName" value="Silang"/>
 <property name="age" value="67"/>
 <property name="birthdate" value="June 19, 1950"/>
 <property name="position" value="writer"/>
 <property name="salary" value="897000"/>
 <property name="dept">
 <bean class="org.packt.starter.ioc.model.Department"
 scope="Prototype">
 <property name="deptNo" value="48574"/>
 <property name="deptName" value="Humanities Department"/>
 </bean>

Learning Dependency Injection (DI)

[65]

 </property>
</bean>

In the case of the ch02-jc project, the JavaConfig approach allows the creation3.
of an anonymous inner class at the argument body of the setter method. To create
an Employee bean with an inner bean Department, add the following snippet in
the BeanConfig definition:

@Bean(name="empRec5")
public Employee getEmpRecord5(){
 Employee empRec5 = new Employee();
 empRec5.setFirstName("Gabriela");
 empRec5.setLastName("Silang");
 empRec5.setAge(67);
 empRec5.setBirthdate(new Date(50,5,19));
 empRec5.setPosition("writer");
 empRec5.setSalary(89700.00);
 empRec5.setDept(new Department(){
 String deptName = "Communication Department";
 Integer deptNo = 232456;
 @Override
 public String getDeptName() {
 // TODO Auto-generated method stub
 return deptName;
 }
 @Override
 public Integer getDeptNo() {
 // TODO Auto-generated method stub
 return deptNo;
 }
 @Override
 public void setDeptName(String deptName) {
 his.deptName = deptName;
 }
 @Override
 public void setDeptNo(Integer deptNo) {
 his.deptNo = deptNo;
 }
 });
 return empRec5;
}

Learning Dependency Injection (DI)

[66]

How it works...
The Spring IoC design pattern permits the creation of beans that look similar to anonymous
beans for the purpose of injecting a lone bean object to a top-level one. Since inner beans are
bounded within the scope of the top-level objects, their id and scope are no longer
accessible outside the enclosing bean, generally anywhere in the container; thus, they are
not considered mandatory <bean> attributes at this point.

The scope of an inner bean is by default Prototype. Changing it will be ignored by the
container.

In JavaConfig containers, implementing inner beans is typically similar to creating an
anonymous inner class instance at the method call level. But creating inner beans in Spring,
generally, does not imply that the classes involved should be anonymous inner classes by
specification. The Department classes are still loaded and initialized in some area of the
container as top-level beans. Since the empRec5 object has exclusive access to a certain
"Communication Department", the instance of the Department object per se was created
immediately as an inner bean component of empRec5.

Injecting Collections and Properties
Spring containers allow injection of List, Set, Map, or Properties objects to other Spring-
defined beans through <property> tags. The following recipe will distinguish between
XML-based and JavaConfig context definitions when it comes to implementing type-safe
injection.

Getting started
Reopen ch02-xml and ch02-jc for this recipe. We will be injecting a few POJO objects to
both of the containers in our projects.

Learning Dependency Injection (DI)

[67]

How to do it...
Perform the following steps to auto-wire Collections and Properties components:

For both of the projects involved in the preceding recipes, create the following1.
model classes inside their own package org.packt.starter.ioc.model:

public class ListEmployees {
 private List<Employee> listEmps;
 private List<String> listEmpNames;

// getters and setters
}
public class SetDepartments {
 private Set<Department> setDepts;
 private Set<String> deptNames;

// getters and setters
}
public class MapEmpTasks {
 private Map<String, Employee> mapEmpTask;
private Map<String,String> mapEmpMgr;

// getters and setters
}

public class PropertiesAudition {
 private Properties auditionAddress;
private Properties auditonRequirement;

// getters and setters
}

Each model class must contain Collections and Properties instance objects2.
with their respective setter methods to be used later for method dependency injection.
In ch02-xml, use the <list> tag to inject required object references and actual3.
values to setListEmps() and setListEmpNames().Within the <list> tag is a
series of <value> and <ref> metadata, where <value> holds the typical Spring-
supported types such as string, int, double and other primitive types while
<ref> holds references to other beans:

<bean id="listEmployees"
 class="org.packt.starter.ioc.model.ListEmployees">
 <property name="listEmps">
 <list>
 <ref bean="empRec2"/>

Learning Dependency Injection (DI)

[68]

 <ref bean="empRec3"/>
 <ref bean="empRec4"/>
 </list>
 </property>
 <property name="listEmpNames">
 <list>
 <value>Juan</value>
 <value>Jose</value>
 </list>
 </property>
</bean>

Let us use the <set> tag to inject Department objects to setDepts() and4.
department names to deptNames() for the SetDepartments bean. Just like
<list>, the <set> metadata contains a number of <value> or <ref> tags:

<bean id="setDepartments"
 class="org.packt.starter.ioc.model.SetDepartments">
 <property name="setDepts">
 <set>
 <ref bean="dept2"/>
 <ref bean="dept3"/>
 <ref bean="dept4"/>
 </set>
 </property>
 <property name="deptNames">
 <set>
 <value>Music</value>
 <value>Arts</value>
 </set>
 </property>
</bean>

Inject Map objects to any bean properties in the Spring container using the <map>5.
tag and add within it a series of <entry> metadata containing the key and value
of an Entry. The following code injects tasks (key) to Employee records (Object
value) and managers (String value):

<bean id="mapEmpTasks"
 class="org.packt.starter.ioc.model.MapEmpTasks">
 <property name="mapEmpTask">
 <map>
 <entry key="expository">
 <ref bean="empRec2"/>
 </entry>
 <entry key="feature" value-ref="empRec3"/>
 </map>

Learning Dependency Injection (DI)

[69]

 </property>
 <property name="mapEmpMgr">
 <map>
 <entry key="expository">
 <value>Joan Arkos</value>
 </entry>
 <entry key="feature" value="Billy Jean"/>
 </map>
 </property>
</bean>

Properties objects are used to store configuration details and information for6.
initialization instance and class variables, database connections, or e-mail
transactions. This recipe has a custom model, PropertiesAudition, which
simply provides information for an audition request. To inject a Properties
object to the Spring container, we use the <props> tag with a series of <value>
or <prop> metadata that holds the key and value of a property. Add the following
code, which injects entries to the properties of PropertiesAudition:

<bean id="auditionInfo"
 class="org.packt.starter.ioc.model.PropertiesAudition">
 <property name="auditionAddress">
 <value>
 country=Philippines
 city=Makati
 building=Rufino Tower 2
 zipcode=1233
 </value>
 </property>
 <property name="auditionRequirement">
 <props>
 <prop key="document">curriculum vitae</prop>
 <prop key="picture">2x2 recent picture</prop>
 <prop key="time">8:00 AM</prop>
 </props>
 </property>
</bean>

In our ch02-jc project, use the simple and straightforward JavaConfig way of7.
using the @Bean annotation as shown by the following injection:

@Bean
public ListEmployees listEmployees(){
 ListEmployees listEmps = new ListEmployees();
 List<Employee> empRecs = new ArrayList<>();
 // refer to sources

Learning Dependency Injection (DI)

[70]

 listEmps.setListEmps(empRecs);
 List<String> empNames = new ArrayList<>();
 // refer to sources
 listEmps.setListEmpNames(empNames);
 return listEmps;
}
@Bean
public SetDepartments setDepartments(){
 SetDepartments setDepts = new SetDepartments();
 Set<Department> deptRecs = new HashSet<>();
 // refer to sources
 setDepts.setSetDepts(deptRecs);
 Set<String> deptNames = new HashSet<>();
 // refer to sources
 setDepts.setDeptNames(deptNames);
 return setDepts;
}
@Bean
public MapEmpTasks mapEmpTasks(){
 MapEmpTasks mapTasks = new MapEmpTasks();
 Map<String,Employee> empTasks = new HashMap<>();
 // refer to sources
 mapTasks.setMapEmpTask(empTasks);
 Map<String, String> mgrTasks = new HashMap<>();
 // refer to sources
 mapTasks.setMapEmpMgr(mgrTasks);
 return mapTasks;
}
@Bean
public PropertiesAudition auditionInfo(){
 PropertiesAudition auditionInfo = new PropertiesAudition();
 Properties addressProps = new Properties();
 // refer to sources
 auditionInfo.setAuditionAddress(addressProps);
 Properties reqtProps = new Properties();
 // refer to sources
 auditionInfo.setAuditionRequirement(reqtProps);
 return auditionInfo;
}

Create a test class, TestInjectData, which retrieves all the bean models with8.
the data injected using the getBean() method.

Learning Dependency Injection (DI)

[71]

How it works...
Injecting Collections and Properties data to either of the container types is pretty
straightforward. For the XML-based ApplicationContext, developers must be cautious
with the use of generics. If the Collections of data is needed to be type-specific, injection is
streamlined to use only one type throughout the process either setting <value> as the
wrapper or string object type or listing all <ref> object references to one type. Mixing
both metadata requires us to drop Generics on our model classes; otherwise a
ClassCastException will be thrown, which will cause a container loading error. The
same exception is also encountered when the model class requires the collection of
employee objects in one of its setters but then accidentally a lone department bean has
been <ref> mapped to it.

In general, XML-based ApplicationContext is not type-safe and type-sensitive as to what
types of collection the model classes need. Unlike in JavaConfig, the @Bean objects are
created programmatically; the needed Generic types are recognized by the container during
bean creation and initialization.

Creating a Spring MVC using an XML-based
approach
It is now time to apply all the previous recipes to create a working Spring MVC setup.
Applying Inversion of Control and Dependency Injection, our main goal now is to build a
working baseline project with an XML-based container running on top of the Servlet
container of our Tomcat 9 application server. This recipe will feature MVC components of
Spring 5.0 and explain how this MVC works together with the servlet components.

Getting started
Create a new project ch02-web.xml using STS Eclipse 8.3. Configure the Maven and
deployment descriptor as per the recipe, Implementing the Spring Container using XML. Once
all configuration errors are bug-fixed, perform the following steps to create a Spring MVC
backbone.

Learning Dependency Injection (DI)

[72]

How to do it...
Let us build a simple web application using the Spring MVC concept:

Open web.xml and register the main servlet handler of our Spring MVC1.
application, which is
org.springframework.web.servlet.DispatcherServlet.

<servlet>
 <servlet-name>ch02</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
 <servlet-name>ch02</servlet-name>
 <url-pattern>*.html</url-pattern>
</servlet-mapping>

Be cautious with the <url-pattern> in web.xml because it is where
DispatcherServlet picks the correct format for its request URLs. The
pattern *.html means the main servlet will recognize all URL paths with
a view extension of .html.

In the previous recipes, the XML bean definition file was created on the Classpath2.
level. It is an option to import this file or just move the file to WEB-INF and name
it ch02-servlet.xml. Additional modules such as Spring Web, Spring WebMvc,
Spring Tx, and Spring AOP must be included with their dependencies:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
 xmlns:mvc="http://www.springframework.org/schema/mvc"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context
/spring-context.xsd
 http://www.springframework.org/schema/mvc
 http://www.springframework.org/schema/mvc/spring-mvc.xsd">
</beans>

Learning Dependency Injection (DI)

[73]

This ch02-servlet.xml file will be the first servlet-specific context or root context3.
definition of the DispatchServlet. This servlet needs this context to instantiate
WebApplicationContext, which is Spring's root ApplicationContext, which
manages controllers, view resolvers, resource bundle message configurators, and other
MVC-specific requirements. To successfully create WebApplicationContext,
the DispatcherServlet must first specify the location of the XML file through
its contextConfigLocation parameter:

<servlet>
 <servlet-name>ch02</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <init-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/ch02-servlet.xml</param-value>
 </init-param>
</servlet>
<servlet-mapping>
 <servlet-name>ch02</servlet-name>
 <url-pattern>*.html</url-pattern>
</servlet-mapping>

If the XML is named using the pattern <servlet-name>-servlet.xml,
there is no need to configure contextConfigLocation, thus, Step 1 is
enough.

Save all files. Deploy the project using the Maven goals presented in Chapter 1,4.
Getting Started with Spring. Observe if there are any container errors. If none, let
us proceed with building the view layer of the application using the
WebApplicationContext. First, inject the two most popular view resolvers of
the MVC application, namely the
org.springframework.web.servlet.view.InternalResourceViewResolv

er and
org.springframework.web.servlet.view.ResourceBundleViewResolver

. Open the ch02-servlet.xml and add the following details:

<bean id="viewResolverA" class="org.springframework.web.servlet
.view.InternalResourceViewResolver">
 <property name="prefix" value="/WEB-INF/jsp/"/>
 <property name="suffix" value=".jsp"/>
 <property name="order" value="1"/>
</bean>

https://cdp.packtpub.com/spring_5_0_recipes/wp-admin/post.php?post=262&action=edit#post_129

Learning Dependency Injection (DI)

[74]

<bean id="viewResolverB" class="org.springframework.web.servlet
.view.ResourceBundleViewResolver">
 <property name="basename" value="config.views"/>
 <property name="order" value="0"/>
</bean>

In order for InternalResourceViewResolver to work, create its lookup5.
WEB_INF\jsp directory, which is the static location of all its JSP pages.
For ResourceBundleViewResolver to function, create its view.properties6.
inside the src\main\resources\config directory. All view names are
required to be declared here and each must have two specific configuration
details, which are the <view-name>.(class) and <view-name>.url. The
<view-name>.(class) refers to the view type (for example, JSP, Tiles, JSON) of
the rendition page while the <view-name>.url contains the context root path of
the physical view page. Leave the file empty.
The views, models, and transactions will be nothing without the @Controller.7.
Create the first controller, MainController, inside the package
org.packt.starter.ioc.controller. The class must contain a set of handler
methods that directly deals with the request and response of the client. Each
method has URL mapping through the method-level @RequestMapping
annotation. Let us create a handler that outputs page-generated content (in the
String type) on the page using @ResponseBody:

@Controller
public class MainController {
 @ResponseBody
 @RequestMapping("/main.html")
 public String pageGenerate(){
 String content = "<html>"
 + "" + "<head><title>Ch02 MVC Web</title></head>"
 + "" + "<body>This is Spring MVC Web!</body>"
 + "" + "</html>"
 + "";
 return content;
}
}

In order for the DispatcherServlet to recognize all the MVC components and8.
annotations of the project, add the following important lines in the root context
ch02-servlet.xml:

<context:component-scan base-package="org.packt.starter.ioc"/>
<mvc:annotation-driven />

Learning Dependency Injection (DI)

[75]

The chosen root or core directory of the Classpath is org.packt.starter.ioc9.
where all other sub-directories contain the MVC layers and components such as
the controllers, services, repository, and model classes. Save all the files. Deploy
the project. If there are no errors, open any browser and run
https://localhost:8443/ch02/main.html. The output must be similar to
the following:

Let us add more handlers by adding the following methods to our10.
MainController:

@RequestMapping("/intro.html")
public String introPage(){
 return "intro";
}
@RequestMapping("/welcome.html")
public String welcomePage(){
 return "welcome";
}

The welcomePage() request handler requires a view name welcome from11.
InternalResourceViewResolver. Add a JSP file named welcome.jsp in the
WEB-INF\jsp directory:

<%@ page language="java" contentType="text/html;
charset=ISO-8859-1" pageEncoding="ISO-8859-1"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=ISO-8859-1">
<title>Insert title here</title>
</head>
<body>
 <h1>Welcome!</h1>
 -- from InternalResourceViewResolver
</body>
</html>

Learning Dependency Injection (DI)

[76]

The other handler, introPage(), calls a view name intro from12.
ResourceBundleViewResolver. Add a JSP file named intro_page.jsp in the
WEB-INF\page directory. The page must contain the following content:

<%@ page language="java" contentType="text/html;
charset=ISO-8859-1" pageEncoding="ISO-8859-1"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=ISO-8859-1">
<title>Insert title here</title>
</head>
<body>
 <h1>Introduction to Spring MVC Web</h1>
 -- from ResourceBundleViewResolver
</body>
</html>

To recognize the logical view names, open views.properties and add the13.
following details of the view name intro:

intro.(class)=org.springframework.web.servlet.view.JstlView
intro.url=/page/intro_page.jsp

Save all the files. Deploy the project and check the Maven console to see whether 14.
there are errors. If there are none, open any browser and run
https://localhost:8443/ch02/welcome.html and expect a result like this:

Learning Dependency Injection (DI)

[77]

Run https://localhost:8443/ch02/intro.html seperately and expect the 15.
following result:

How it works...
The DispatcherServlet is always declared as a typical <servlet> in any Tomcat servlet
container. But more than a servlet, DispatcherServlet is the core servlet handler of any
Spring MVC application which controls request dispatch processing and responses for each
web transaction. It has a WebApplicationContext that manages @Controllers,
@RequestMapping, and view resolvers for every HTTP/2 transaction.

To enable WebApplicationContext, DispatcherServlet must have a lookup
configuration document known as the XML-based Spring definition file, which needs to be
loaded to the servlet container also. In this project, ch02-servlet.xml serves as the root
context definition file, which is just a typical ApplicationContext definition from our
previous recipes.

As the project progresses, many custom and extension servlets (for example, WSServlet,
ServletContainer) will be added to Tomcat's servlet container. In order to initially load
DispatcherServlet among all the others, we indicate <load-on-startup> to have a
value of the rest of the servlets; they must have values greater than 1 to prioritize the
loading of our main servlet.

Learning Dependency Injection (DI)

[78]

The next step in the configuration is the creation of the view resolver beans. The
InternalResourceViewResolver is the easiest to set up but the most unreliable to use. It
requires physical view pages to be compiled inside WEB-INF and must only use one
technology, JSP. Also, it requires that the filenames of the JSP pages should be the same
with the view name redirected by the @Controller. And whenever you inject more than
one view resolver, InternalResourceViewResolver is always called first because it is
one of the default configurations of DispatcherServlet. Since we have injected
MessageResourceViewResolver also, the former must be executed last by setting its
priority <order> property to 1 while MessageResourceViewResolver must have 0, the
highest priority order level. The MessageResourceViewResolver needs the
views.properties configuration to work.

After the view layer, @Controllers and its @RequestMapping handlers must be created to
manage the request and response transactions. Avoid duplicate URL path names and view
names must be valid ones.

To enable the use of annotations inside classes, <mvc:annotation-driven /> must
appear in the context definition. It tells WebApplicationContext that there are classes that
utilize both Spring-proprietary and JSR-330 annotations essential for the application. Lastly,
to tell WebApplicationContext what classes use these annotated features on object auto-
wiring, the Classpath root package must be declared in <context:component-scan
base-package="org.packt.starter.ioc"/> metadata.

Creating a Spring MVC using the JavaConfig
approach
After creating the Spring MVC backbone using the XML-based ApplicationContext, this
recipe will highlight the JavaConfig equivalent of the same baseline project.

Getting started
Create a web.xml-less Spring web project using the processes established in the
Implementing a Spring container recipe using JavaConfig. Configure appropriately and correctly
the pom.xml file so that the project will no longer use web.xml. Deploy the blank project
first and verify if there are errors before doing this recipe.

Learning Dependency Injection (DI)

[79]

How to do it...
Perform the following to build a simple Spring MVC project using the JavaConfig
specification:

Create the JavaConfig root context through implementing the abstract class1.
org.springframework.web.servlet.config.annotation.WebMvcConfigu

rerAdapter. It has the @Configuration annotation and contains methods that
can be overridden to manage validators, view resolvers, controllers, interceptors,
and other MVC-specific components needed to be injected to the container. Let us
name the implementation class SpringDispatcherConfig and place it inside
the org.packt.starter.ioc.dispatcher package:

@Configuration
public class SpringDispatcherConfig extends
 WebMvcConfigurerAdapter{ }

Let us now configure the DispatcherServlet. The implementation of2.
WebApplicationInitializer permits us to programmatically create,
configure, and register the DispatcherServlet to the servlet container through
org.springframework.web.context.support.AnnotationConfigWebAppl

icationContext. It only needs the root context to successfully register it to the
ServletContext. Modify our SpringWebInitializer by overriding the
onStartup() method where ServletContext is available for programmatical
servlet registration:

@Configuration
public class SpringWebinitializer implements
 WebApplicationInitializer {
 @Override
 public void onStartup(ServletContext container)
throws ServletException {
 addDispatcherContext(container);
 }
 private void addDispatcherContext(ServletContext
container) {
 // Create the dispatcher servlet's ROOT context
 AnnotationConfigWebApplicationContext dispatcherContext
=
 new AnnotationConfigWebApplicationContext();
dispatcherContext.register(SpringDispatcherConfig.class);
 // Declare <servlet> and <servlet-mapping> for the
 // DispatcherServlet
 ServletRegistration.Dynamic dispatcher =
 container.addServlet("ch02-servlet",

Learning Dependency Injection (DI)

[80]

 new DispatcherServlet(dispatcherContext));
 dispatcher.addMapping("*.html");
 dispatcher.setLoadOnStartup(1);
 }
}

Save all the files. Then build and deploy the project and verify if errors are3.
encountered. If none, add the following view resolvers to our root context
SpringDispatcherConfig to manage our views later:

@Bean
 public InternalResourceViewResolver jspViewResolver() {
 InternalResourceViewResolver viewResolverA =
new InternalResourceViewResolver();
 viewResolverA.setPrefix("/WEB-INF/jsp/");
 viewResolverA.setSuffix(".jsp");
 viewResolverA.setOrder(1);
 return viewResolverA;
 }
 @Bean
 public ResourceBundleViewResolver bundleViewResolver(){
 ResourceBundleViewResolver viewResolverB =
new ResourceBundleViewResolver();
 viewResolverB.setBasename("config.views");
 viewResolverB.setOrder(0);
 return viewResolverB;
}

Create the same views.properties, JSP pages, and just as we did in the4.
previous recipe:

Learning Dependency Injection (DI)

[81]

To close this JavaConfig project setup, apply class-level annotations5.
@EnableWebMvc and @ComponentScan to our SpringDispatcherConfig root
context definition class to finally recognize all the classes and interfaces in each
package as a valid Spring @Component ready for auto-wiring:

@EnableWebMvc
@ComponentScan(basePackages="org.packt.starter.ioc")
@Configuration
public class SpringDispatcherConfig extends
 WebMvcConfigurerAdapter{
 @Bean
 public InternalResourceViewResolver jspViewResolver() {
 InternalResourceViewResolver viewResolverA =
new InternalResourceViewResolver();
 viewResolverA.setPrefix("/WEB-INF/jsp/");
 viewResolverA.setSuffix(".jsp");
 viewResolverA.setOrder(1);
 return viewResolverA;
 }
 @Bean
 public ResourceBundleViewResolver bundleViewResolver(){
 ResourceBundleViewResolver viewResolverB =
new ResourceBundleViewResolver();
 viewResolverB.setBasename("config.views");
 viewResolverB.setOrder(0);
 return viewResolverB;
 }
}

Save all files. Then build and deploy the project.6.

How it works...
The overall flow of the project setup is similar to what has been done in the XML-based
Spring MVC project configuration. The only difference is the presence of several
configuration classes that can be categorized according to the set of beans they manage and
inject. The core configuration class is always given to the root context class, such as the
SpringDispatcherConfig, because of its role to register the DispatcherServlet to the
servlet container.

Learning Dependency Injection (DI)

[82]

The JavaConfig specification has provided the @Configuration annotation to all context
definition classes to establish the MVC backbone of the application, which makes it easier
than implementing
org.springframework.web.servlet.config.annotation.WebMvcConfigurationSu

pport.

On the other hand, the setLoadOnStartup() method tells the servlet container about the
loading time of the DispatcherServlet, which is by convention set to 1, meaning it must
be loaded first.

After a successful DispatcherServlet registration, a WebApplicationContext object is
created, waiting for a bean injection from the view resolvers and other MVC-specific
components.

On the InternalResourceViewResolver and MessageResourceViewResolver
configuration, the JavaConfig approach only requires these beans to use the @Bean
annotation during its injections. The rest of the rules on creating physical view pages with
their corresponding logical view names are just the same as with the XML-based approach.

In order for the MVC application to finally work, the root context class
SpringDispatcherConfig must recognize all these JavaConfig components and
JSR-330 annotations through the use of the @EnableWebMvc annotation. And to recognize
all MVC components, SpringDispatcherConfig must declare the @ComponentScan
annotation with the list of packages including the main root package of the application.

Generating multiple ApplicationContexts
The root ApplicationContext is only used for Spring-specific dependency injection such
as creating and loading interceptors, message handling resources, and view resolvers. It is
not recommended to contain middle-tier models, services, data sources, and web services
configuration because it might affect the runtime performance of the DispatcherServlet
registration and loading. This recipe will provide a solution on how to organize beans per
layer or module to avoid a convoluted bean injection setup.

Getting started
This recipe needs both the ch02-web-xml and ch02-web-jc projects to illustrate how to
provide additional definition files so that the first root context will not get bloated with non-
Spring beans.

Learning Dependency Injection (DI)

[83]

How to do it...
Adding more ApplicationContext definition files might require some changes to be
made on the servlet and Spring containers. Follow the given steps:

In the ch02-web-xml project, it is recommended to create another XML1.
definition file for application-related model objects such as Employee and
Department. Using STS Eclipse or a template, define beans-context.xml and
save the file in the directory where the root context is located:

Open beans-context.xml, together with the required XSD schemas and2.
metadata including all the Employee- and Department-related bean objects
created in the previous recipes:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
 xmlns:mvc="http://www.springframework.org/schema/mvc"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/
spring-context.xsd
http://www.springframework.org/schema/mvc
 http://www.springframework.org/schema/mvc/spring-mvc.xsd">

 <bean id="empRec1"
 class="org.packt.starter.ioc.model.Employee" />
 <bean id="empRec2"
 class="org.packt.starter.ioc.model.Employee">
 // refer to sources
 </bean>

Learning Dependency Injection (DI)

[84]

 <bean id="empRec3"
 class="org.packt.starter.ioc.model.Employee">
 // refer to sources
 </bean>
 // refer to sources
 </beans>

All ApplicationsContexts are considered child-contexts of3.
WebApplicationContext. The listener
org.springframework.web.context.ContextLoaderListener is
responsible for the initialization of both root and child Spring containers with the
help of the DispatcherServlet. Thus, register ContextLoaderListener
together with the ApplicationContext beans-context.xml in the
ServletContext by adding the following configuration in web.xml:

<context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/beans-context.xml</param-value>
</context-param>
<listener>
 <listener-class>
org.springframework.web.context.ContextLoaderListener
</listener-class>
</listener>

The context parameter contextConfigLocation may look familiar and it is still4.
the placeholder for all the context files needed to be loaded to the servlet
container. If there are other context files, we can accommodate them in
contextConfigLocation as:

<context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/beans-context.xml
 /WEB-INF/xxx-context.xml
 /WEB-INF/yyy-context.xml
</param-value>
</context-param>

The next changes must be reflected inside the root definition file. Since5.
WebApplicationContext is the parent of ApplicationContextbeans-
context.xml, it recognize all the loaded beans of its child. We attach the
ApplicationContext definition to the root context ch02-servlet.xml
through <import> metadata invoked by the root context itself:

<import resource="beans-context.xml"/>

Learning Dependency Injection (DI)

[85]

To test whether beans-context.xml is considered a valid child6.
ApplicationContext, create a BeanController and fetch all objects through
@Autowired, @Inject, and @Resource as follows:

@Controller
public class BeanController {

@Autowired
@Qualifier(value="empRec2")
private Employee empRecs;

@Inject
private Department dept2;

@Resource(name="listEmployees")
private ListEmployees listEmps;

}

For @Inject to work properly, attach the following Maven dependencies for7.
JSR-330 to pom.xml:

<dependency>
 <groupId>javax.inject</groupId>
 <artifactId>javax.inject</artifactId>
 <version>1</version>
</dependency>

To further validate the correctness of our context configuration, create a8.
@Component class DataService in the org.packt.starter.ioc.model
package:

@Component
public class DataService {
 public String getTitle(){
 return "Spring 5.0 Cookbook";
 }
}

Let us @Autowire the DataService in BeanController. If the controller can9.
successfully fetch DataService then we can say that our
WebApplicationContext is still functional after the configuration:

@Autowired
private DataService dataService;

Learning Dependency Injection (DI)

[86]

At this point, we introduce org.springframework.ui.Model and10.
org.springframework.ui.ModelMap, which are both responsible for
transporting our model objects to different views for rendering. Add the
following handler methods to our BeanController to complete our MVC code
snippet:

@RequestMapping("/list_emps.html")
 public String showEmployee(ModelMap model){
 model.addAttribute("firstName", empRecs.getFirstName());
 model.addAttribute("title", dataService.getTitle());
 return "list-employees";
 }
 @RequestMapping("/show_dept.html")
 public String showDepartment(Model model){
 model.addAttribute("deptNo", dept2.getDeptNo());
 return "show-dept";
 }
 @RequestMapping("/view_emps.html")
 public String viewEmps(Model model){
 model.addAttribute("empList", listEmps.getListEmps());
 return "view-emps";
 }

In ch02-web-jc, not many changes need to be done because the only way to add11.
a child ApplicationContext is to create a definition similar to our
SpringDispatcherConfig, only with a different component package to scan.
Create the child context class SpringContextConfig with the inclusion of all
the @Beans created previously:

@Configuration
@EnableWebMvc
@ComponentScan(basePackages = "org.packt.starter.ioc.model")
public class SpringContextConfig {
 @Bean(name="empRec1")
 public Employee getEmpRecord1(){
 Employee empRec1 = new Employee();
 return empRec1;
 }

 @Bean(name="empRec2")
 public Employee getEmpRecord2(){
 // refer to sources
 return empRec2;
 }
 @Bean(name="empRec3")
 public Employee getEmpRecord3(){

Learning Dependency Injection (DI)

[87]

 // refer to sources
 return empRec3;
 }
 @Lazy
 @Bean
 public Employee empRec4(){
 // refer to sources
 return empRec4;
 }
}

Perform Steps 4 to 7 for the rest of the JavaConfig project.12.
Build and deploy both the projects. Test both the projects and run all the URLs.13.

How it works...
WebApplicationContext (ch02-servlet.xml) and ApplicationContext (beans-
context.xml) have the same XML definition components. They exhibit the same principle
of bean injection and also implement the same bean initialization and loading. The only
difference is that the root context is needed by DispatcherServlet during its creation
while the child contexts are optionally created once additional application layers are added
to the MVC application.

Loaded beans in ApplicationContext containers are fetched by MVC components such
as controllers and services using the @Autowired, @Inject, or @Resource annotations.
Among the three, @Autowired is the only Spring-based annotation used to fetch and inject
the bean objects of our container to any Spring component. The injected variable type and
name must be coherent with the loaded bean id and class type. If we declare the bean as
<bean id="empRec1" class="org.packt.starter.ioc.model.Employee" />, we
inject this bean to a controller or service as:

@Autowired
private Employee empRec1;

And if there is a need to change the variable name against the bean id, we use the
@Qualifier annotation to fix the ambiguities:

@Autowired
@Qualifier(value="empRec1")
private Employee employee;

Learning Dependency Injection (DI)

[88]

The @Qualifer(value="") is a Spring-proprietary annotation used to resolve conflicts
and ambiguities on variable and bean naming syntax. What is unique about @Autowired is
its non-strictness side when it comes to injection. Once @Autowired(required=false) is
set, there will be no
org.springframework.beans.factory.NoSuchBeanDefinitionException when
ambiguities happen. Rather, it will just map the injected variable to the null value.

On the other hand, the non-Spring annotations @Inject and @Resource can also be used
to resolve dependency injection. If the developer wants a strict approach in injecting beans
to a component, @Inject is the best choice since it will throw an
org.springframework.beans.factory.NoSuchBeanDefinitionException when the
beans do not exist in the container. To resolve the variable name and bean id ambiguities, it
is paired with another JSR-330 annotation, @Named(value=""), which works similar to
@Qualifier.

On the other hand, @Resource is the oldest annotation among the three and is part of
JSR-250, which is part of the standard annotations for Java and JEE. It has its own way of
searching and fetching the object from the container. Using @Resource, the search starts by
checking the injected variable name against all bean ids, followed by their types and their
@Qualifier if and only if the search by name failed. Both @Autowired and @Inject
search all beans by first checking the injected variable type against the bean types,
@Qualifier against the bean id, and finally, by its name with the bean id.

In addition to auto-wiring, Spring uses its @Component annotation to create Spring-
managed beans without the need for XML for registering. We can inject these beans to any
component using the preceding three annotations.

One of the most important parts of this recipe is the introduction of the model layer, which
transports our injected beans from the @Controller to their respective views. There are
three known Spring APIs that are used widely on this layer and these are ModelAndView,
ModelMap, and Model. The recipe only highlighted the current classes, ModelMap and
Model. The only difference between the two is the number of helper methods they contain.
Model is an interface with only four addAttribute(...) methods and a
mergeAttribute()while ModelMap is an implementation of ModelMap with some
additional Map-related methods. ModelAndView is been in the Spring framework for a long
time and is used to contain both a ModelMap and its view object. When to use any of these
three depends on the requirement of the response. If the response needs to perform
redirection using the RedirectView API, the ModelAndView is appropriate to use.

Learning Dependency Injection (DI)

[89]

Using ResourceBundleMessageSource for
Views
As far as possible, all @Bean of a Spring MVC project must be managed by its context
definition classes. The labels, content headings, and tab title of the view pages, which the
majority of developers take for granted, must not be hardcoded but declared also as Spring-
managed components.

Getting started
This recipe will manage lighter features of an application such as error names, labels,
header names, and titles using the ApplicationContext.

How to do it...
Let us add view labels and titles to the previous projects ch02-web-xml and ch02-web-jc,
through the following steps:

In ch02-web-xml, create a messages_en_US.properties file in the1.
src\main\resources\config directory.
A configuration file is composed of a code and message pair. The key is called the2.
lookup of the message and also called the code of the message. Open
messages_en_US.properties and add the following label to be used later in
our title bar:

title=Creating View Titles

Add another message, but this time it needs arguments at runtime. This resulting3.
label will be used as a content page header:

content_header=Goodbye! {0}. Last of Chapter {1}.

Learning Dependency Injection (DI)

[90]

Declare the4.
org.springframework.context.support.ReloadableResourceBundleMes

sageSource API, which is responsible for loading, reading, and caching
messages to the container. This object must be loaded by
WebApplicationContext, containing the location of
messages_en_US.properties, the encoding type of the messages, the
compliance of the key lookup mechanism to its message values, and the number
of seconds it loads and caches the bundle of String messages to the container:

<bean id="messageSource"
 class="org.springframework.context.support
.ReloadableResourceBundleMessageSource">
 <property name="basename"
 value="classpath:config/messages_en_US"/>
 <property name="defaultEncoding" value="UTF-8" />
 <property name="useCodeAsDefaultMessage" value="true"/>
 <property name="cacheSeconds" value="1"/>
</bean>

Open any view pages, let us say the view_emps.jsp, and add the Spring Taglib5.
directive <%@ taglib prefix="spring"
uri="http://www.springframework.org/tags"%>. We need this Taglib to
read all the messages from the properties file.
Using the Spring Taglib, we use the <spring:message> tag to access the keys of6.
all the needed labels and titles from messages_en_US.properties. To retrieve
the title message and content header, use the following:

<head>
<meta http-equiv="Content-Type" content="text/html;
charset=ISO-8859-1">
<title><spring:message code="title" /></title>
</head>
<h1>
<spring:message code="content_header" arguments="Spring
Fanatics,2" />
</h1>

Learning Dependency Injection (DI)

[91]

In ch02-web-jc, create the same messages_en_US.properties in its own7.
src\main\resources\config directory. The bundle contains the same title
and content_header codes with their values. The same Spring Taglib is
declared in show_emps.jsp and the same <spring:bind> techniques are used
for reading both keys. The only difference is its JavaConfig way of loading the
ReloadableResourceBundleMessageSource bean to
SpringDispatcherConfig:

@Bean
public MessageSource messageSource() {
 ReloadableResourceBundleMessageSource messageSource =
new ReloadableResourceBundleMessageSource();
 messageSource.setBasenames("classpath:config/messages_en_US");
 messageSource.setUseCodeAsDefaultMessage(true);
 messageSource.setDefaultEncoding("UTF");
 messageSource.setCacheSeconds(1);
 return messageSource;
}

Build and deploy both projects. Open a browser and run8.
https://localhost:8443/ch02/view_emps.html and
https://localhost:8443/ch02jc/view_emps.html one at a time.

Learning Dependency Injection (DI)

[92]

How it works...
WebApplicationContext can also be used to load specific String messages for rendering
purposes, Internationalization (i18N), and error messages. There are two types of Spring
component responsible for loading message bundles to the container and these are
ResourceBundleMessageSource and ReloadableResourceBundleMessageSource.
The former, one of the oldest Spring APIs, contains synchronized helper methods while the
latter is the current implementation that contains advanced features such as caching.

Just like InternalResourceViewResolver, MessageSource beans are automatically
defined by DispatcherServlet searching it through the bean id messageSource. So if
the bean id is different, the message bundle will never be retrieved by <spring:bind>,
which will give you an error:

javax.servlet.jsp.JspTagException: No message found under code 'title' for
locale 'en_US'

The entire message bundle is stored in a property file and each entry is a code/message pair
where the code is the typical key used to fetch its corresponding message. Some message
values are simple String but some might look like our content_header:

content_header=Goodbye! {0}. Last of Chapter {1}

Here {0} and {1} are called placeholders. Placeholders are expressions that wait for an
argument at runtime through the argument attribute of <spring:bind>.

3
Implementing MVC Design

Patterns
A rigorous set of recipes on how to kick off Spring 5.0 projects verified that the core
platform is still composed of almost the same APIs found in its previous version. Even
though Spring 5.0 promotes the new functional and reactive web framework, it still upholds
the traditional annotations and web APIs such as @Controller, @RequestMapping,
@Bean, the ApplicationContext interface, and many other old features such JSR-330
annotations.

Now, we focus on how the basic MVC components are written if Spring 5.0 is used. We will
observe the differences and similarities between Spring 5.0 and the other versions especially
when creating data sources, the Data Access Object (DAO) layer, service layers, validation,
and other types of request handling.

In this chapter, you will learn the following:

Creating a simple @Controller
Creating a simple @Controller with method-level URL mapping
Designing a simple form @Controller
Creating a multi-action @Controller
Form validation and parameter type conversion
Creating request- and session-scoped beans
Implementing page redirection and Flash-scoped beans
Creating database connection pooling
Implementing the DAO layer using the Spring JDBC Framework
Creating a service layer in an MVC application

Implementing MVC Design Patterns

[94]

Creating the simple @Controller
Let us start with a recipe that will provide us with different strategies for how to implement
Spring 5.0 @Controller classes. These are just typical non-reactive and non-functional
features of Spring 5.0, which can be useful in the later chapters.

Getting started
Using the recipes in Chapter 1, Getting Started with Spring and Chapter 2, Learning
Dependency Injection (DI), create and set up another Maven project for Spring web
development and name it ch03. The project will be using the JavaConfig specification in
generating the ApplicationContext. Also, this web.xml-less project will demonstrate
how to optimize @Controller classes based on the number of request handlers needed
and the nature of the request and response transactions.

How to do it...
In order to create our first controllers, do the following steps:

Locate pom.xml inside the ch03 folder and configure it to include the entire1.
Spring 5.0 core, Spring Web MVC module, servlet and JSP APIs, JTSL, and
standard taglib dependencies:

<properties>
 <spring.version>5.0.0.BUILD-SNAPSHOT</spring.version>
 <servlet.api.version>3.1.0</servlet.api.version>
</properties>
<dependencies>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>${spring.version}</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-core</artifactId>
 <version>${spring.version}</version>
 </dependency>

 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-beans</artifactId>

Implementing MVC Design Patterns

[95]

 <version>${spring.version}</version>
 </dependency>

 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-web</artifactId>
 <version>${spring.version}</version>
 </dependency>

 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-webmvc</artifactId>
 <version>${spring.version}</version>
 </dependency>
 <dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>javax.servlet-api</artifactId>
 <version>${servlet.api.version}</version>
 <scope>provided</scope>
 </dependency>

 <dependency>
 <groupId>javax.servlet.jsp</groupId>
 <artifactId>javax.servlet.jsp-api</artifactId>
 <version>2.3.1</version>
 <scope>provided</scope>
 </dependency>

 <dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>jstl</artifactId>
 <version>1.2</version>
 </dependency>
 <dependency>
 <groupId>taglibs</groupId>
 <artifactId>standard</artifactId>
 <version>1.1.2</version>
 </dependency>

 // refer to sources

</dependencies>

Implementing MVC Design Patterns

[96]

Since this project complies with the JavaConfig specification, create the usual2.
SpringWebInitializer to enable MVC configuration and auto-detect all the
annotations used by the internal components. Configure @ComponentScan to
recognize the base-package org.packt.dissect.mvc.

Configure also the root ApplicationContext and the3.
SpringDispatcherConfig to auto-detect the @Controller annotations
contained in the package org.packt.dissect.mvc.controller through the
@ComponentScan.
Now, create the first type of controller, which is the SimpleController. A4.
simple controller is used to take control of every incoming request using only one
URL. The centralized top-level URL setting filters the incoming request and easily
identifies the type of HTTP method and headers essential in managing those
requests. Let us name this controller SimpleController, having this
implementation:

@Controller
@RequestMapping("/simple.html")
public class SimpleController {
 @RequestMapping(method=RequestMethod.GET)
 public String processGetReq(Model model){
 String transactionType = "Simple GET Transaction";
 model.addAttribute("transactionType", transactionType);
 return "get";
 }
 @RequestMapping(method=RequestMethod.POST)
 public String processPostReq(Model model){
 String transactionType = "Simple POST Transaction";
 model.addAttribute("transactionType", transactionType);
 return "post";
 }
}

On the other hand, this SimpleController illustrates how to call two handler
methods sharing only one URL, but of different HTTP methods.

From the preceding code, create the views get and post using5.
ResourceBundleViewResolver. Create and open
src\main\resources\config\views.properties and add the following
mappings:

post.(class)=org.springframework.web.servlet.view.JstlView
post.url=/page/post_view.jsp

Implementing MVC Design Patterns

[97]

get.(class)=org.springframework.web.servlet.view.JstlView
get.url=/page/get_view.jsp

Using ReloadableResourceBundleMessageSource, create and open6.
src\main\resources\config\messages_en_US.properties and add the
following label mappings:

#Title Labels
post_title=POST VIEW
get_title=GET VIEW

After changing the properties file, create the physical view7.
src\main\webapp\page\post_view.jsp for the POST transaction using the
following template:

<%@ page language="java" contentType="text/html;
charset=ISO-8859-1" pageEncoding="ISO-8859-1"%>
<%@ taglib prefix="spring"
uri="http://www.springframework.org/tags" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=ISO-8859-1">
<title><spring:message code="post_title" /></title>
</head>
<body>
 <h1>${ transactionType }</h1>
</body>
</html>

For the GET transaction, create src\main\webapp\page\get_view.jsp, having8.
the following script:

<%@ page language="java" contentType="text/html;
charset=ISO-8859-1" pageEncoding="ISO-8859-1"%>
<%@ taglib prefix="spring"
uri="http://www.springframework.org/tags" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=ISO-8859-1">
<title><spring:message code="get_title" /></title>
</head>

Implementing MVC Design Patterns

[98]

<body>
 <h1>${ transactionType }</h1>
</body>
</html>

To execute the handler methods, create a facade controller like this9.
SimpleTestController, as shown here:

@Controller
@RequestMapping("/simplecontroller.html")
public class SimpleTestController {
 @RequestMapping(method=RequestMethod.GET)
 public String viewTransactions(){
 return "simple_list";
 }
}

Implement a physical page for the simple_list view of the previous controller.10.
Name it as src\main\webapp\page\get_view.jsp, with the following script:

<%@ page language="java" contentType="text/html;
charset=ISO-8859-1" pageEncoding="ISO-8859-1"%>
<%@ taglib prefix="spring"
 uri="http://www.springframework.org/tags" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=ISO-8859-1">
<title><spring:message code="simple_facade" /></title>
</head>
<body>

 GET Transaction

<form action="${pageContext.request.contextPath}
 /simple.html" method="post" >
<input type="submit" value="POST Transaction" />
</form>
</body>
</html>

Implementing MVC Design Patterns

[99]

The ${pageContext.request.contextPath} is an EL expression that
retrieves the context path of the deployed web application. This is
recommended instead of hardcoding the context.

Configure the messageSource and viewResolver to include the preceding 11.
added components.
Save all files. clean, build, and deploy the project to your Tomcat 9 application12.
server using our Maven deployment library. Open a browser and run
https://localhost:8443/ch03/simplecontroller.html:

How it works...
Because of the @ComponentScan of the WebApplicationContext, all classes having
@Controller will be detected by DispatcherServlet and recognized as controllers
during bootstrap. Afterwards, the servlet will search for the controller's URL through the
@RequestMapping annotations. In the implementation of our simple controller, the
mapping of the URL is done only at the class level. This URL will be invoked by user
requests and will eventually tell the servlet what controller to execute. Since there is no
other URL mapping in the controller's blueprint, the DispatcherServlet will stop the
search and continue identifying the HTTP methods sent by the request to each request
handler's @RequestMapping attribute method.

When the client invoked https://localhost:8443/ch03/simple.html through a GET
transaction (that is, the hyperlink triggers a GET request), the handler method
processGetReq() will be executed by the servlet since it is mapped to
RequestMethod.GET. But when a POST form transaction is invoked, the
processPostReq() method will be chosen by the DispatcherServlet because it is
mapped to the POST method.

Implementing MVC Design Patterns

[100]

Creating a simple @Controller with method-
level URL mapping
The previous recipe centralizes on the URL mapping by having a class-level
@RequestMapping annotation. This time the goal is to illustrate how a simple
@Controller manages handler methods with each having both the HTTP method and
request URL settings.

Getting started
Utilize the same Eclipse STS project ch03 to implement our @Controller and its
components. This recipe focuses on other ways of dealing with @Controller and
@RequestMapping with the inclusion of using other HTTP methods such as DELETE and
PUT. In relation to the PUT method, the recipe will discuss file uploading at the side.

How to do it...
To perform different ways of URL mapping to types of HTTP request handlers, follow these
steps:

Since ch03 is a working project already, let us add a simple controller,1.
SimplePatternsController, with three handler methods handling GET and
POST transactions inside the org.packt.dissect.mvc.controller package.
This simple controller has both the class-level and method-level
@RequestMapping annotations, through which the request URLs will be
determined based on the class level going down to the URL of its respective
handler methods:

@Controller
@RequestMapping("/simple")
public class SimplePatternsController {

 @RequestMapping(value="/form_upload_get.html",
 method=RequestMethod.GET)
 public String uploadFileFormGet(Model model) {
 FileUploadForm fileUploadForm = new FileUploadForm();
 model.addAttribute("fileUploadForm", fileUploadForm);
 return "put_form";
 }
 @RequestMapping(value="/form_upload_post.html",

Implementing MVC Design Patterns

[101]

 method=RequestMethod.POST)
 public String uploadFileFormPost(Model model) {
 FileUploadForm fileUploadForm = new FileUploadForm();
 model.addAttribute("fileUploadForm", fileUploadForm);
 return "put_form";
 }
 @RequestMapping(value="/patterns.html",
 method=RequestMethod.GET)
 public String uploadFileForm() {
 return "simple_patterns";
 }
}

The handler method uploadFileFormGet() calls the form view for file
uploading with the GET transaction mode, while uploadFileFormPost() calls
the same form component using the POST method. On the other hand, the method
uploadFileForm() is mapped to /patterns.html to serve as the entry point or
facade of the application.

The facade page will simply consist of a typical form for the POST method option2.
and hyperlink for the GET method preference. The user can click either of the
components to call the upload page:

<%@ page language="java" contentType="text/html;
charset=ISO-8859-1"
 pageEncoding="ISO-8859-1"%>
<%@ taglib prefix="spring"
 uri="http://www.springframework.org/tags"%>
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=ISO-8859-1">
<title><spring:message code="simple_patterns_facade" />
</title>
</head>
<body>
 <a href="${pageContext.request.contextPath}/simple/
 form_upload_get.html">GET Transaction

 <form action="${pageContext.request.contextPath}/simple/
 form_upload_post.html" method="post">
 <input type="submit" value="POST Transaction" />
 </form>
</body>
</html>

Implementing MVC Design Patterns

[102]

The put_form view, called by either the POST or GET options of the facade page,3.
serves as the form page where the user is asked to upload a file. Clicking its
submit button will generate a PUT request:

<%@ page language="java" contentType="text/html;
charset=ISO-8859-1" pageEncoding="ISO-8859-1"%>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>
<%@ taglib prefix="spring"
uri="http://www.springframework.org/tags" %>
<%@ taglib prefix="form"
uri="http://www.springframework.org/tags/form"%>
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=ISO-8859-1">
<title><spring:message code="put_title" /></title>
</head>
<body>
<form:form modelAttribute="uploadFileForm"
 action="${pageContext.request.contextPath}
 /simple/upload.html" enctype="multipart/form-data"
 method="PUT">
 <input type="file" name="file"/>
 <input type="submit" value="Submit"/>
</form:form>
</body>
</html>

The Spring Form tag library will be used to introduce data binding-aware tags4.
and model form objects to the MVC application and, most of all, will give
support and fast delegation to the PUT transactions. After clicking the submit
button, the put_form request will be redirected to the method
SimplePatternsController, mapped to RequestMethod.PUT. Implement
this method as uploadFileSubmit():

@RequestMapping(value="/upload.html",
method={RequestMethod.PUT, RequestMethod.POST})
public String uploadFileSubmit(Model model,
 @ModelAttribute("fileUploadForm") FileUploadForm
 fileUploadForm, HttpServletRequest req) {
 String fileName =
 fileUploadForm.getFile().getOriginalFilename();
 model.addAttribute("transactionType", transactionType);
 model.addAttribute("fileName", fileName);
 return "put_result";

Implementing MVC Design Patterns

[103]

}

In order for the PUT transaction to be successfully recognized by the
DispatcherServlet, RequesMethod. POST must also be included in
@RequestMapping.

The put_result view is implemented by the JSP page below.5.

<%@ page language="java" contentType="text/html;
charset=ISO-8859-1" pageEncoding="ISO-8859-1"%>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>
<%@ taglib prefix="spring"
uri="http://www.springframework.org/tags" %>
<!DOCTYPE >
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=ISO-8859-1">
<title><spring:message code="put_title" /></title>
</head>
 <body>
 <h1>${ transactionType }</h1>
 ${ fileName }
 </body>
</html>

Now, create another handler method, invoking the DELETE request transaction:6.

@RequestMapping(value="/delete.html",
 method={RequestMethod.DELETE, RequestMethod.GET})
public String deleteEvent(Model model){
 String transactionType = "Simple DELETE Transaction";
 model.addAttribute("transactionType", transactionType);
 return "delete";
}

In order for the DELETE transaction to pass through the
DispatcherServlet, RequesMethod. GET must also be included in
@RequestMapping.

Implementing MVC Design Patterns

[104]

Configuring PUT and DELETE transactions to work in Tomcat 9 is not as easy as7.
their implementation because almost all of the browsers only support POST, GET,
and HEAD methods. Using methods other than these will result in HTTP status
405 Request method not supported. There are few solutions which can be
helpful in fixing this problem, and these are:

Using the framework's
org.springframework.web.filter.HiddenHttpMethodFilter, which can
auto-generate a _method hidden parameter needed by the framework in the
conversion and recognition of PUT and DELETE request modes as valid HTTP
methods. We have to add HiddenHttpMethodFilter into our
SpringWebInitializer and utilize the Spring Form tag library. This filter will
not work without the <form:form> tag component. The following is the
FilerRegistration for the HiddenHttpMethodFilter:

@EnableWebMvc
@ComponentScan(basePackages="org.packt.dissect.mvc")
@Configuration
public class SpringWebInitializer implements
 WebApplicationInitializer {

 // refer to sources

 private void addDispatcherContext(ServletContext
container) {
 // refer to sources
 FilterRegistration.Dynamic filter =
 container.addFilter("hiddenmethodfilter",
new HiddenHttpMethodFilter());
 filter.addMappingForServletNames(null,
true, "/*");
 }
 }

Implementing MVC Design Patterns

[105]

Customize the org.apache.catalina.filters.CorsFilter and override its
cors.allowed.methods property. Most application servers do not support
other HTTP methods except GET, POST, HEAD, and OPTIONS. In Tomcat 9, an
appropriate solution is to add the CorsFilter into the servlet container
SpringWebInitializer, with the addition of PUT and DELETE on its
cors.allowed.methods:

private void addDispatcherContext(ServletContext container) {
 // refer to sources

 FilterRegistration.Dynamic corsFilter =
 container.addFilter("corsFilter", new CorsFilter());
 corsFilter.setInitParameter(
 "cors.allowed.methods","GET, POST, HEAD,
 OPTIONS, PUT, DELETE");
 corsFilter.addMappingForUrlPatterns(null,
 true, "/*");
}

CorsFilter is not inherent to Spring APIs but to Tomcat 9 libraries; thus, we
need to include the following Maven dependency, given the provided scope:

<dependency>
 <groupId>org.apache.tomcat</groupId>
 <artifactId>tomcat-catalina</artifactId>
 <version>9.0.0.M15</version>
 <scope>provided</scope>
</dependency>

The provided scope means that the JAR files from tomcat-catalina are
needed for compilation but not for packaging because of the assumption
that it is already provided by the environment.

On the file uploading transaction, the put_form in Step 3 uses the Spring Form8.
tag library to map all request data to a modelAttribute named
fileUploadForm. This modelAttribute refers to a form model object or a form
backing object that persists all request data for every user transaction. The
fileUploadForm is typically a POJO and is written as:

public class FileUploadForm {
 private MultipartFile file;
 // getter and setter
}

Implementing MVC Design Patterns

[106]

In Spring, the uploaded file must be wrapped by an object called
org.springframework.web.multipart.MultipartFile, given that
the request comes from multipart/form-data. The MultipartFile wraps
file contents that come either from memory or temporary disks.

For the PUT transaction to work, the multipart request needs to inject9.
org.springframework.web.multipart.commons.CommonsMultipartResol

ver to the WebApplicationContext and add
org.springframework.web.multipart.support.MultipartFilter to the
servlet container. Open the root context definition SpringDispatcherConfig
and add the following snippet to the CommonsMultipartResolver settings:

@Bean(name = "multipartResolver")
public CommonsMultipartResolver getResolver() throws
IOException{
 CommonsMultipartResolver resolver =
 new CommonsMultipartResolver();
 resolver.setMaxUploadSizePerFile(5242880);
 resolver.setMaxUploadSize(52428807);
 resolver.setDefaultEncoding("UTF-8");
 return resolver;
}

Given the preceding details, the CommonsMultipartResolver only accepts files
with UTF-8 content-encoding of size 52428807 KB or 5 MB of either single or
multiple file uploads. The bean name must be multipartResolver.

For the filter, open SpringWebInitializer and register the MultipartFilter10.
snippet in the addDispatcherContext() method:

FilterRegistration.Dynamic multipartFilter =
container.addFilter("multipartFilter", new MultipartFilter());
multipartFilter.addMappingForUrlPatterns(null, true, "/*");

To wrap up, add the following dependencies for the file uploading PUT request11.
transaction:

<dependency>
 <groupId>commons-net</groupId>
 <artifactId>commons-net</artifactId>
 <version>3.3</version>
</dependency>
<dependency>
 <groupId>commons-fileupload</groupId>
 <artifactId>commons-fileupload</artifactId>

Implementing MVC Design Patterns

[107]

 <version>1.3.1</version>
</dependency>
<dependency>
 <groupId>commons-io</groupId>
 <artifactId>commons-io</artifactId>
 <version>2.2</version>
</dependency>

Save all files. clean, build, and deploy ch03. Run the facade handler12.
uploadFileForm() by calling the class-level URL first (/simple) and then
append it to its own URL (/patterns.html). This rule is also true when
executing the rest of the handler methods.

How it works...
The main target of this recipe is how to create a simple controller with @RequestMapping
used to assign URLs to both the controller and its request handlers. Then, it is followed by
topics on how to the use of RequestMethod.PUT and RequestMethod.DELETE with topics
on file uploading as a PUT request transaction.

To start, the use of @RequestMapping is not limited to the @Controller level when we
deal with URL mapping. The annotation @RequestMapping("/simple"), for instance, is
attached on top of the @Controller declaration, which means that all the handling
methods are called relative to the given path /simple. The other
@RequestMapping("/upload.html") found on the method uploadFileSubmit()
indicates that this request transaction is executed whenever the end of the URL matches

/upload.html or /ch03/simple/upload.html.

Implementing MVC Design Patterns

[108]

In the other part of the recipe, the use of HTTP methods other than GET and POST are
always given in any application server, especially if the specification does not fit with GET
or POST alone. Spring 5.0 supports HEAD, GET, POST, DELETE, PATCH, TRACE, and OPTIONS
request methods that can be used anytime depending on the nature of the transaction. As
with file uploading, the PUT transaction is always associated with file processing, such as
sending and updating files to the file storage. Likewise, the PUT method can also be used in
handlers that update database records. There is also the inclusion of the DELETE transaction
in our controller, which may be used to focus on database record deletion or file removal
from a repository. In cases like REST services, the DELETE transaction may require a URL
request parameter which indicates which component will be deleted. Using the DELETE
method in form handling has one problem and that is HTML forms support only GET, POST,
or HEAD, which makes this <form> snippet:

<form action="${pageContext.request.contextPath}/simple/
 upload.html"
 enctype="multipart/form-data" method="PUT">
 <input type="file"name="file"/>
 <input type="submit" value="Submit"/>
</form>

This is capable of triggering HTTP Status 405:

To fix this problem, we need the Spring Form tag library to bind the <form> to the Spring
framework, and an inclusion of HiddenHttpMethodFilter in our servlet container:

<form:form modelAttribute="uploadFileForm"
 action="/ch03/simple/upload.html" enctype="multipart/form-data"
 method="PUT">
 <input type="file"name="file"/>
 <input type="submit" value="Submit"/>
</form:form>

Implementing MVC Design Patterns

[109]

The preceding resulting component, <form:form>, will give us auto-generated HTML with
a _method parameter having PUT as a value:

<form id="uploadFileForm" action="/ch03/simple/upload.html"
 method="post" enctype="multipart/form-data">
 <input type="hidden" name="_method" value="PUT"/>
 <input type="file" name="file"/>
 <input type="submit" value="Submit"/>
</form>

But examining the preceding code, there is only one unexpected <form> attribute that
showed up, and that is the method="POST". This means that the filter
HiddenHttpMethodFilter forwards the request to the DispatcherServlet as a POST
transaction first before it reaches the method handler bearing the PUT method. Because of
this internal filter processing, the handler method, uploadFileSubmit(), must not only
map to the PUT request method type but also to POST:

@RequestMapping(value="/upload.html",
method={RequestMethod.PUT, RequestMethod.POST})
public String uploadFileSubmit(Model model,
 @ModelAttribute("fileUploadForm") FileUploadForm
 fileUploadForm, HttpServletRequest req) { }

Otherwise, it will give you the same HTTP Status 405 error. On the other hand, the DELETE
request is forwarded as GET first to the DispatcherServlet before it reaches the controller
as a DELETE transaction.

Another solution that can be useful in recognizing PUT and DELETE is to configure the
CorsFilter of Apache Tomcat 9 by overriding its cors.allowed.methods property,
which is a comma-separated list of HTTP methods, which, by default, only includes GET,
POST, HEAD, and OPTIONS.

Designing a simple form @Controller
This concept is related to the creation of the file uploading transaction in the previous
recipe, but the concept here is leaning towards general form handling transactions.

Implementing MVC Design Patterns

[110]

Getting started
The same ch03 project will be used to implement a simple form controller. The recipe will
still revolve around controllers and request handlers, with emphasis on creating form
backing objects and Spring Form tag libraries.

How to do it...
To implement form handling using Spring 5, perform the following steps:

Let us first implement the model object that will contain all request data during1.
form transactions. The form_page handles all the HTML components that will
receive all request parameters from the client. To organize these numerous
parameters during the request dispatch, it will be ideal if we create a form model
or form backing object to persist all this data. This strategy can avoid a
convoluted declaration of request parameters at the @Controller level. So,
before creating the physical view and the @Controller, write this POJO first,
containing all the data and its properties:

public class EmployeeForm {
 private String firstName;
 private String lastName;
 private String position;

 // getters and setters
}

Then, create a @Controller named FormController inside the2.
org.packt.dissect.mvc.controller package. A form controller is similar to
a simple one because of its use of class-level @RequestMapping configuration for
the URL. The only difference is that a form controller must only contain two
methods: the GET handler, to serve the form views, and the POST handler to
perform the operations after the form submission. Both of these handlers must
not have URL mapping. The following is our FormController:

@Controller
@RequestMapping("/employee_form.html")
public class FormController {
 @RequestMapping(method=RequestMethod.GET)
 public String initForm(Model model){
 EmployeeForm employeeForm = new EmployeeForm();
 model.addAttribute("employeeForm", employeeForm);
 return "form_page";

Implementing MVC Design Patterns

[111]

 }
 @RequestMapping(method=RequestMethod.POST)
 public String submitForm(Model model,
 @ModelAttribute("employeeForm") EmployeeForm
 employeeForm){
 model.addAttribute("employeeForm", employeeForm);
 return "success_page";
 }
}

The initForm() loads the form_page view and initializes the EmployeeForm
form backing object for the form's modelAttribute mapping. The
submitForm() is executed after the form submission receives the form backing
object that is persisted with the form data. Moreover, this method is implemented
to pass the unaltered form object as a request attribute to the success_page view
using the Model interface.

Next, create the form_page as src/main/webapp/page/employee_form.jsp,3.
which will contain the binding of the EmployeeForm form model to the HTML
form components. This binding mechanism requires the use of the Spring Form
tag library, again declared at the directive level of our JSP page together with the
core Spring tag library for static texts and labels, and JSTL for common JSP
supplementary support:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>
<%@ taglib prefix="spring"
uri="http://www.springframework.org/tags" %>
<%@ taglib prefix="form"
uri="http://www.springframework.org/tags/form"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title><spring:message code="employee_form" /></title>
</head>
<body>
 <h1><spring:message code="employee_form" /></h1>
 <form:form modelAttribute="employeeForm" method="post">
 <spring:message code="fnameLbl" />
 <form:input path="firstName"/>

 <spring:message code="lnameLbl" />
 <form:input path="lastName"/>

 <spring:message code="posLbl" />
 <form:input path="position"/>

 <input type="submit" value="Add Employee"/>
 </form:form>

Implementing MVC Design Patterns

[112]

</body>
</html>

To use the Spring Form tag library, we use the prefix form to access all its data
binding-aware tags, to be used for accessing the setters of each component of the
model attribute EmployeeForm. The first tag, <form:form>, renders the HTML
<form> and enables the binding of request parameters to its inner tags. The
<form:input> tag renders the HTML <input> tag with access to the model
attributes with a default empty value. The <spring:message> just accesses the
labels and header titles from the message bundle.

The last view to create is the4.
success_pagesrc/main/webapp/page/employee_profile.jsp, which
contains the rendition of all the properties of the modelAttribute using the
JSP's expression language and JSTL:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>
<%@ taglib prefix="spring"
uri="http://www.springframework.org/tags" %>
<%@ taglib prefix="form"
uri="http://www.springframework.org/tags/form"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title><spring:message code="employee_profile" /></title>
</head>
<body>
 <h1><spring:message code="employee_profile" /></h1>
 <table>
 <tr>
 <th>First Name</th>
 <th>Last Name</th>
 <th>Position</th>
 </tr>
 <tr>
 <td><c:out value='${ employeeForm.firstName }'/></td>
 <td><c:out value='${ employeeForm.lastName }' /></td>
 <td><c:out value='${ employeeForm.position }' /></td>
 </tr>
 </table>
</body>
</html>

Implementing MVC Design Patterns

[113]

Update the views.properties by adding the following mappings:5.

form_page.(class)=org.springframework.web.servlet.view.JstlView
form_page.url=/page/employee_form.jsp

success_page.(class)=org.springframework.web.servlet.view.JstlV
iew
success_page.url=/page/employee_profile.jsp

Also, update the message bundle to have proper header titles and labels.6.
Save all files. clean, install, and deploy the project. Open a browser and run7.
https://localhost:8443/ch03/employee_form.html:

How it works...
The simple form controller contains only one URL mapping and it is confined at the class-
level @RequestMapping annotation. It only consists of two handler methods: the
initForm(), which is the GET handler method, and the submitForm(), the POST handler.
Request handlers such as initForm() prepare the form view for form loading, while the
submitForm() processes all the incoming request data, validates them against form rules,
and generates the needed response by forwarding all results to the success view.

Implementing MVC Design Patterns

[114]

The usual way of retrieving request parameters is to use the getParameter() method of
HttpServletRequest, but the only problem here is when the number of request data
increases, which makes validation and type-checking difficult to manage. Spring devised an
organized way of managing request data and that is to store it in a model object such as the
EmployeeForm. Using the Spring Form tag library, we bind all the parameter data to the
properties of the POJO model through the modelAttribute of the <form:form> tag. After
clicking the submit button, this model object is passed on to the submitForm() in the form
of an object parameter using the @ModelAttribute annotation. These model objects are
synonymous to the term form backing objects. Depending on the intention, the
submitForm() either calls its own success_page or just redirects to the form_page,
especially when form validation is implemented to avoid SQL injection and Denial of
Attack (DoA) problems.

Creating a multi-action @Controller
The implementation of the multi-action controller has evolved from extending the class
org.springframework.web.servlet.mvc.multiaction.MultiActionController

up to the modern day use of the @Controller annotation. This recipe will show you how
to easily create a multi-action controller using JavaConfig.

Getting started
We will be adding a multi-action controller to the same project, ch03. This is another option
to manage all the request handlers.

How to do it...
To create a multi-action controller in the Spring 5.0 platform, follow these steps:

Let us start this recipe with a multi-action controller named1.
MultiActionController with all its handler methods mapped to their
respective URLs, similar to a hub of independent services:

@Controller
public class MultiActionController {

 @RequestMapping(value={"/send/*", "/list/*"},
 method=RequestMethod.GET)
 public String defaultMethod(){

Implementing MVC Design Patterns

[115]

 return "default_msg";
 }
 @RequestMapping(value="/send/message_get.html",
 method=RequestMethod.GET)
 public String sendGetMessage(Model model){
 String message = "Multi-action GET URL Mapping";
 model.addAttribute("message", message);
 return "get_msg";
 }
 @RequestMapping(value="/send/message_post.html",
 method=RequestMethod.POST)
 public String sendPostMessage(Model model){
 String message = "Multi-action Post URL Mapping";
 model.addAttribute("message", message);
 return "post_msg";
 }
 @RequestMapping(value="/list/multilist.html",
 method=RequestMethod.GET)
 public String viewTransactions(){
 return "multi_list";
 }
}

The preceding three handler methods are typical request transactions mapped to2.
their respective URL and HTTP methods. The handler defaultMethod() is
quite unique because its action will be triggered whenever a request URL that
starts with a context path /send or /list has been executed but happens to be
non-existent. This method serves as the callback feature of the multi-action
controller whenever the URL invoked does not exist.
Next, create the simple views default_msg, get_msg and post_msg, all having3.
their own set of message bundle labels and JSTL tags for rendering.
Moreover, create a multi_list page that will serve as a facade for GET and POST4.
transactions:

<%@ taglib prefix="spring"
uri="http://www.springframework.org/tags" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
 charset=ISO-8859-1">
<title><spring:message code="multi_facade" /></title>
</head>
<body>
 GET Transaction

Implementing MVC Design Patterns

[116]

 <form action="/ch03/send/message_post.html" method="post"
>
 <input type="submit" value="POST Transaction" />
 </form>
</body>
</html>

Update both views.properties and messages_en_US.properties for the5.
changes in the view configuration and resource bundle messages, respectively.
Then clean, build, and deploy the project. Call each request handler6.
independently.

How it works...
Creating a multi-action controller is quite easy and simple because each handler method has
its own @RequestMapping setup. Each method can be mapped to any HTTP method
without having conflict with the others. The only problem is the high possibility of creating
ambiguous URL mappings once the list of handlers increases in number. To solve this case,
it is mandatory to create a default method such as defaultMethod() to filter an
ambiguous and erroneous URL of the @Controller. The asterisk (*) means all the possible
patterns of the path excluding those URLs declared. Just be cautious with the use of
@RequestMapping("/*") since it will filter all possible URLs of the
WebApplicationContext.

Form validation and parameter type
conversion
The advantage of using form backing objects in implementing request parameter handling
is attributed to the ease of applying form input rules and validation to the incoming request
data. Moreover, type conversion of some request parameters that are non-string can be
done using property editors included in the framework.

Getting started
Open again the Eclipse STS ch03 project and perform the following steps for implementing
the validator and input type conversion mechanism on simple form controllers without
using any client-side scripts and services.

Implementing MVC Design Patterns

[117]

How to do it...
To apply form validation and input type conversion, do the following procedures:

The validation process will progress after modifying the EmployeeForm form1.
model of the previous recipe to contain three more request data, namely the
email, age, and birthday of the employee:

public class EmployeeForm {
 private String firstName;
 private String lastName;
 private String position;

 // additional information
 private Integer age;
 private Date birthday;
 private String email;

 // getters and setters
}

Primitive types are not recommended in declaring form model properties
because form validation and type conversion works easily with object
types. Thus, wrapper classes must be used instead of their primitive
counterparts.

The most straightforward and easiest way to apply the validator is to use the2.
JSR-303/349 and Hibernate Validator annotations. These are two different
external libraries which need to be included in our pom.xml. To access the
JSR-303/349 bean annotations, this Maven library must be listed:

<dependency>
 <groupId>javax.validation</groupId>
 <artifactId>validation-api</artifactId>
 <version>1.1.0.Final</version>
</dependency>

Whereas, to utilize some Hibernate 5.x annotations for form model validation, we
need this Maven dependency:

<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-validator</artifactId>
 <version>5.0.1.Final</version>
</dependency>

Implementing MVC Design Patterns

[118]

Spring MVC projects must only choose either of the two libraries, but not
both, to avoid confusion. But for the sake of this recipe, ch03 will be
mixing annotations from both.

To apply the two rules, modify EmployeeForm by adding the following3.
annotations:

public class EmployeeForm {
 @Size(min=2, max=30)
 private String firstName;
 @Size(min=2, max=30)
 private String lastName;
 @NotNull
 @Size(min=5, max=100)
 private String position;
 @NotNull
 @Min(0) @Max(100)
 private Integer age;
 @NotNull
 @Past
 private Date birthday;
 @Email(message="Must be email formatted.")
 @NotEmpty
 private String email;

 // getters and setters
}

@Size, @NotNull, @Min, @Max, and @Past are rule-defining annotations of
JSR-303/349, while @NotEmpty and @Email are both under the Hibernate
Validation annotation group.

Next, create a bundle of error messages that will be displayed every time a4.
violation on the rules is encountered. There are three ways to link an error
message to each data rule:

By creating an errors.properties file to be referenced by our
ReloadableResourceBundleMessageSource. This file contains a list of
code/message pairs wherein the code part is written using the {annotation-
name}.{modelAttribute}.{property-name} pattern. In the case of
firstName, the entry for its error message must be:

Size.employeeForm.firstName=Employee First Name should be
between {2} and {1} characters long inclusive

Implementing MVC Design Patterns

[119]

In the preceding code {2} and {1} are placeholders for the maximum and
minimum range values, respectively.
By writing a code/message entry in errors.properties, where the message is
immediately mapped to the annotation name:

Past=Date should be Past
NotEmpty=Email Address must not be null

By assigning a hardcoded value to the message attribute of some annotations.
The preceding email property has an annotation @Email whose error message is
hardcoded within its bound:

@Email(message="Must be email formatted.")
@NotEmpty
private String email;

Before proceeding, modify the @Bean configuration of the
ReloadableResourceBundleMessage to include the errors.properties in
its reference. This is done by replacing the property basename with basenames:

@Bean
public MessageSource messageSource() {

 ReloadableResourceBundleMessageSource messageSource =
 new ReloadableResourceBundleMessageSource();
 messageSource.setBasenames(
 "classpath:config/messages_en_US",
 "classpath:config/errors");
 // refer to sources
 return messageSource;
}

Create an empty SpringContextConfig that will define some of the @Bean5.
needed for form validation and type checking. This definition class must scan
and recognize all these classes from their respective packages.

@Configuration
@EnableWebMvc
@ComponentScan(basePackages = "org.packt.dissect.mvc,
org.packt.dissect.mvc.controller,
org.packt.dissect.mvc.validator")
public class SpringContextConfig { }

Implementing MVC Design Patterns

[120]

In order for the ApplicationContext to recognize all these external6.
annotations, the
org.springframework.validation.beanvalidation.LocalValidatorFac

toryBean must be injected to the container. Once configured,
LocalValidatorFactoryBean, Spring's central API for JSR-303/349 support can
now explicitly validate any annotated form backing objects. Just add this @Bean
to our SpringContextConfig definition and the rest will be taken care of by the
@Controller:

@Bean
public LocalValidatorFactoryBean validator(){
 return new LocalValidatorFactoryBean();
}

After its injection, @Autowire the LocalValidatorFactoryBean into the7.
FormController to validate() the employeeForm parameter of
submitForm().To capture all the error messages encountered during validation,
add the BindingResult object in the parameter list. BindingResult has helper
methods such as hasErrors(), which are essential in detecting registered errors
during the validation process. Now, the new submitForm() must be written this
way:

@Controller
@RequestMapping("/employee_form.html")
public class FormController {
 @Autowired
 private LocalValidatorFactoryBean validator;
 @RequestMapping(method=RequestMethod.POST)
 public String submitForm(Model model,
 @ModelAttribute("employeeForm") EmployeeForm
 employeeForm, BindingResult result){

 model.addAttribute("employeeForm", employeeForm);
 validator.validate(employeeForm, result);
 if(result.hasErrors()){
 return "form_page";
 }
 return "success_page";
 }
}

Implementing MVC Design Patterns

[121]

In Spring 5.0, using @Valid of JSR-303/349 to auto-detect and execute bean
annotations does not work anymore, unlike in Spring 3.0 and lower. The
validate() method of LocalValidatorFactoryBean is the only
feasible way to explicitly read EmployeeForm, execute all the annotations,
validate all the request data that complies with the rules, and register all
errors in BindingResult.

Given the changes in submitForm(), it is designed, that when hashErrors()8.
encounters some non-compliance to the rules, it will re-load the form_page
displaying all the registered error messages. The Spring Form tag library has a
<form:errors> tag which displays all error messages linked to each property of
the modelAttribute. At this point, modify the form_page view to include the
<form:errors> tags:

<form:form modelAttribute="employeeForm" method="post">
 <spring:message code="fnameLbl" />
 <form:input path="firstName"/>
 <form:errors path="firstName"/>

 <spring:message code="lnameLbl" />
 <form:input path="lastName"/>
 <form:errors path="lastName"/>

 <spring:message code="posLbl" />
 <form:input path="position"/>
 <form:errors path="position"/>

 <hr/>
 Added Information

 <spring:message code="ageLbl" />
 <form:input path="age"/>
 <form:errors path="age"/>

 <spring:message code="bdayLbl" />
 <form:input path="birthday"/>
 <form:errors path="birthday"/>

 <spring:message code="emailLbl" />
 <form:input path="email"/>
 <form:errors path="email"/>

 <input type="submit" value="Add Employee"/>

</form:form>

Implementing MVC Design Patterns

[122]

Save all files. Then clean, install, and deploy ch03 into the Tomcat 99.
container. Execute and test
https://localhost:8443/ch03/employee_form.html to check if our
annotations are working appropriately:

There are data rules that are so complex to handle an annotation and can only be10.
implemented through programming. The Spring framework supports highly
customized validation through its
org.springframework.validation.Validator interface. Once implemented,
this validator requires two methods to implement, and these are supports()
and validate(). The supports() method checks and verifies the
@ModelAttribute to be validated, whereas validate() performs the custom
validation process. Create a new package,
org.packt.dissect.mvc.validator, to store our EmployeeValidator:

public class EmployeeValidator implements Validator{

 @Override
 public boolean supports(Class<?> clazz) {
 return clazz.equals(EmployeeForm.class);
 }

 @Override
 public void validate(Object model, Errors errors) {
 EmployeeForm empForm = (EmployeeForm) model;
 ValidationUtils.rejectIfEmptyOrWhitespace(errors,
 "firstName", "empty.firstName");
 ValidationUtils.rejectIfEmptyOrWhitespace(errors,

Implementing MVC Design Patterns

[123]

 "lastName", "empty.lastName");
 if(empForm.getAge() < 0) errors.rejectValue("age",
 "negative.age");
 if(empForm.getAge() > 65) errors.rejectValue("age",
 "retirable.age");
 if(empForm.getBirthday().before(new Date(50,0,1)))
 errors.rejectValue("birthday", "old.birthday");
 Date now = new Date();
 if(empForm.getBirthday().getYear() == now.getYear()
 || empForm.getBirthday().after(new Date(99,0,1)))
 errors.rejectValue("birthday", "underage.birthday");
 }
 }

Inject EmployeeValidator into the SpringContextConfig container using the11.
JavaConfig specification:

@Bean
public Validator employeeValidator(){
 return new EmployeeValidator();
}

The bean employeeValidator must be @Autowired into the FormController12.
to be registered in a @InitBinder method. The main purpose of the
initBinder() method is to bind the @ModelAttribute to validators through
the WebDataBinder object:

@Controller
@RequestMapping("/employee_form.html")
public class FormController {
 @Autowired
 private Validator employeeValidator;
 // refer to sources
 @InitBinder("employeeForm")
 public void initBinder(WebDataBinder binder){
 binder.setValidator(employeeValidator);
 }
}

Implementing MVC Design Patterns

[124]

To let the Spring framework know that the EmployeeForm can now be validated13.
using EmployeeValidator, the @Validated annotation of Spring must be
added before the employeeForm parameter of submitForm():

@RequestMapping(method=RequestMethod.POST)
public String submitForm(Model model,
 @ModelAttribute("employeeForm") @Validated EmployeeForm
 employeeForm, BindingResult result){

 model.addAttribute("employeeForm", employeeForm);
 validator.validate(employeeForm, result);
 if(result.hasErrors()){
 return "form_page";
 }
 return "success_page";
}

Save all files. Then clean, compile, and deploy the project. Run and test14.
https://localhost:8443/ch03/employee_form.html, again but focus on
the EmployeeValidator rules:

Implementing MVC Design Patterns

[125]

The whole recipe will not be complete without a type conversion mechanism for15.
incoming request data. Spring validation has a limitation and that is to convert
request parameters to their qualified modelAttribute types. Employee Form,
Age and Date of Birth are examples of data that will throw an exception once
saved into the database or processed in a mathematical formula, because they
remain as strings at this point. To fix the bug, create custom editors named
AgeEditor and DateEditor inside a new package,
org.packt.dissect.mvc.editor:

public class AgeEditor extends PropertyEditorSupport{
 @Override
 public void setAsText(String text) throws
 IllegalArgumentException {

 try{
 int age = Integer.parseInt(text);
 setValue(age);
 }catch(NumberFormatException e){
 setValue(0);
 }
 }
 @Override
 public String getAsText() {
 return "0";
 }
}

public class DateEditor extends PropertyEditorSupport{
 @Override
 public void setAsText(String text) throws
 IllegalArgumentException {

 SimpleDateFormat sdf =
 new SimpleDateFormat("MMMM dd, yyyy");
 try {
 Date dateParam = sdf.parse(text);
 setValue(dateParam);
 } catch (ParseException e) {
 setValue(new Date());
 }
 }
 @Override
 public String getAsText() {
 SimpleDateFormat sdf =
 new SimpleDateFormat("MMMM dd, yyyy");
 String bdayFmt = sdf.format(new Date());

Implementing MVC Design Patterns

[126]

 return bdayFmt;
 }
}

Just like validators, these custom editors must be added into the @InitBinder16.
through its WebDataBinder to serve the main objective, type conversion.
AgeEditor will convert the age parameter into Integer after clicking the submit
button, while DateEditor, on the other hand, will manage the conversion of all
request parameters to be saved as java.util.Date types. Modify the existing
initBinder() method to bind all these custom editors to employeeForm:

@InitBinder("employeeForm")
 public void initBinder(WebDataBinder binder){

 binder.setValidator(employeeValidator);
 binder.registerCustomEditor(Date.class, new DateEditor());
 binder.registerCustomEditor(Integer.class, "age",new
AgeEditor());
}

Update the success_page views to include all the changes in the17.
modelAttribute properties. This view will also introduce JSTL tags <fmt> for
formatting rendered data:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>
<%@ taglib prefix="spring"
uri="http://www.springframework.org/tags" %>
<%@ taglib prefix="form"
uri="http://www.springframework.org/tags/form"%>
<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt"
%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=ISO-8859-1">
<title><spring:message code="employee_profile" /></title>
</head>
<body>
 <h1><spring:message code="employee_profile" /></h1>
 <table>
 <tr>
 // refer to sources
 </tr>
 <tr>

Implementing MVC Design Patterns

[127]

 <td><c:out value='${ employeeForm.firstName }'/></td>
 <td><c:out value='${ employeeForm.lastName }' /></td>
 <td><c:out value='${ employeeForm.position }' /></td>
 <td><c:out value='${ employeeForm.age }' /></td>
 <td><fmt:formatDate value="${employeeForm.birthday}"
 type="date" /></td>
 <td><c:out value='${ employeeForm.email }' /></td>
 </tr>
 </table>
</body>
</html>

Save all files of ch03. Then clean, build, and deploy it.18.

How it works...
This recipe just elaborated on how to build two of the most important layers of Spring MVC
applications: the validator and type conversion engine components. Once installed and
properly configured, these two components are the first ones to intercept the incoming
request parameters, which are all strings by object type.

Implementing MVC Design Patterns

[128]

Before the modelAttribute reaches the controller, PropertyEditors, whether built-in or
custom, convert first the textual request data to their respective object types during
<form:form> binding. A PropertyEditor is a JavaBeans API, famous in the Spring
framework for converting modelAttribute property values to and from string values. Its
setAsText() converts the parameters to the desired type, while its getAsText() method
initializes the form through the modelAttribute once the form is loaded.

Each built-in PropertyEdior manages the conversion per valid Spring type, while
CustomPropertyEditor handles one or more conversions of complex or custom types.
Although there is a built-in PropertyEditor for Number (for example, Long, Short,
Integer), initializing the form components is always an exception. Thus, a custom
CustomPropertyEditor such as AgeEditor is implemented to initialize the
<form:input path="age"/> to zero after form loading to avoid @Controller exceptions
during data processing or service calls. Likewise, the DateEditor is implemented to
handle a successful conversion of any request parameters that are needed to be
java.util.Date type, such as the birthday property of EmployeeForm.

After the type conversion of all the request data, validators will come into the picture in the
form of JSR 303/349 and Hibernate Validation annotations, in Spring's Validator framework.
The JSR 303/349 Bean Validation offers some popular annotations that can be attached to
each modelAttribute property for the purpose of maintaining data integrity. The
following are the annotations applied to EmployeeForm:

JSR 303/349 Validation
Rules

Description

@Size Sets the minimum and maximum length of the String property.

@Max Sets the Integer property not greater than the specified value.

@Min Sets the Integer property not lower than the specified value.

@NotNull Sets the Object property not to be NULL.

@Past Sets the Date property not to be futuristic.

Hibernate 5.x also has validation constraints that can be applied to form backing objects
through its own set of annotations. EmployeeForm used @NotEmpty to apply a non-nullity
constraint to emails. Also, it has an annotation, @Email, which has a built-in regular
expression for correcting the email address format.

Implementing MVC Design Patterns

[129]

Most of the time, validation constraints are complex in nature and must be crafted through
logic. Spring has an org.springframework.validation.Validator interface that can
be implemented to apply form backing objects to custom integrity rules. The
implementation also carries with it the use of utility class
org.springframework.validation.ValidationUtils, which contains generic
constraints such as rejectIfEmpty() or rejectIfEmptyOrWhitespace. All violations
are monitored and registered by Spring in the BindingResult object. We enable
BindingResult in our submitForm() to check if there are validation errors encountered,
and this can be retrieved for display in some views.

The tandem of PropertyEditor and Validator will not work without the creation of the
@InitBinder method of the controller. The general role of @InitBinder is to alter the
normal course of parameter modelAttribute binding. It initializes the WebDataBinder
object so that it can use addValidators() or setValidator() to apply integrity rules on
the modelAttribute and registerCustomerEditor() methods to configure custom
PropertyEditors.

Creating request- and session-scoped beans
Chapter 2, Learning Dependency Injection (DI), discussed a recipe about configuring the
lifespan of a bean inside the ApplicationContext container based on fetching or
getBean(). These are the long-lived singleton and prototype beans. Now, we will discuss
configuring the lifespan or scope of some beans which are bounded within MVC web
transactions. This recipe will discuss creating short-lived beans that only last during request
dispatch and session handling.

Getting started
Open the same ch03 project we have created previously and perform the following steps.

Implementing MVC Design Patterns

[130]

How to do it...
To create and differentiate session- and request-based beans, follow these steps:

This recipe needs some custom models that can be injected into the container:1.
either request-scoped or session-scoped beans. First, let us create a model
SalaryGrade in the org.packt.dissect.mvc.model.data package. This
model must be injected as a @Bean into the ApplicationContext through the
annotation @Component:

@Scope(value=WebApplicationContext.SCOPE_REQUEST,
 proxyMode=ScopedProxyMode.TARGET_CLASS)
@Component
public class SalaryGrade {
 private String grade;
 private Double rate;
 private Date date;

 public SalaryGrade() {
 date = new Date();
 }
 // getters and setters
}

This bean is registered as a request-scoped bean, and since this type of bean is
short-lived and can only be used within a request dispatch process, we configure
it as a proxy object. Thus, the proxyMode=ScopedProxyMode.TARGET_CLASS is
found in @Scope.

Next, create another model object, Education, inside the same package. This2.
must also be injected as a @Bean component:

@Scope(value=WebApplicationContext.SCOPE_SESSION,
 proxyMode=ScopedProxyMode.TARGET_CLASS)
@Component
public class Education {
 private String degree;
 private String institution;
 private String major;
 private Date date;
 public Education() {
 date = new Date();
 }
 // getters and setters
}

Implementing MVC Design Patterns

[131]

This bean is registered as a session-scoped bean and since this type of bean is
short-lived and can only be used in session-based transactions, we configure it as
a web-aware or proxy object. Thus, the
proxyMode=ScopedProxyMode.TARGET_CLASS setting in @Scope.

Check if @ComponentScan of SpringContextConfig recognizes SalaryGrade3.
and Employee beans from the package in which they are placed. If these beans
are not properly injected into the container, an
org.springframework.beans.factory.NoSuchBeanDefinitionException

is encountered, creating a HTTP 404 error status.

Create a controller class named BeansScopeController that fetches Employee4.
and SalaryGrade beans from the container. This controller also populates both
objects and passes them through request dispatch and page redirection:

@Controller
public class BeanScopeController {
 @Autowired
 private SalaryGrade salaryGrade;
 @Autowired
 private Education education;
 @RequestMapping(value="/salgrade.html",
 method=RequestMethod.GET)
 public String processRequestBeans(Model model){
 salaryGrade.setGrade("SG-45");
 salaryGrade.setRate(50000.00);
 education.setDegree("BS Operations Research");
 education.setMajor("Linear Algebra");
 education.setInstitution("University of the Philippines
 Los Banos");
 model.addAttribute("salaryGrade", salaryGrade);
 model.addAttribute("education", education);
 return "req_beans";
 }
}

The preceding @Controller purposely included the Date property in the
@Bean to monitor the instantiation of the objects after a request dispatch
and session handling process.

Implementing MVC Design Patterns

[132]

Create another controller that will implement the page redirection once a5.
hyperlink is clicked at the view level:

@Controller
public class RedirectBeanController {
 @Autowired
 private SalaryGrade salaryGrade;
 @Autowired
 private Education education;
 @RequestMapping(value="/salgrade_proceed.html",
 method=RequestMethod.GET)
 public String processRequestBeansRedirect(Model model){

 model.addAttribute("salaryGrade", salaryGrade);
 model.addAttribute("education", education);
 return "req_proceed";
 }
}

Afterwards, create the views req_beans and req_proceed from the preceding6.
controllers. Just have a stub template to monitor the instance of the two objects
with different scopes:

<html>
<head>
</head>
<body>
 <h1>Request Object Created:
 ${salaryGrade.instantiatedDate }</h1>
 <h1>Object Id: ${ salGradeId }</h1>
 <table>
 <tr>
 <th>Grade Level </th>
 <th>Grade Rate</th>
 </tr>
 <tr>
 <td>${ salaryGrade.grade }</td>
 <td>${ salaryGrade.rate }</td>
 </tr>
 </table>

 <h1>Session Object Created:
 ${ education.instantiatedDate }</h1>
 <h1>Object Id: ${ educationId }</h1>
 <table>
 <tr>
 <th>Course </th>

Implementing MVC Design Patterns

[133]

 <th>Major</th>
 <th>University/College</th>
 </tr>
 <tr>
 <td>${ education.degree }</td>
 <td>${ education.major }</td>
 <td>${ education.institution }</td>
 </tr>
 </table>

</body>
</html>

Save all files. Then clean, build, and deploy the updated ch03 project.7.
Open a new browser and execute processRequestBeans() through the URL8.
https://localhost:8443/ch03/salgrade.html:

To check whether there are changes, click the hyperlink Proceed Salary Grade9.
Transactions:

Implementing MVC Design Patterns

[134]

How it works...
Session-scoped and request-scoped objects are only allowed by Spring to exist in a
web-aware Spring ApplicationContext container. If these objects are to be fetched in an
AnnotationConfigApplicationContext or ClassPathXmlApplicationContext
container, an IllegalStateException will be thrown.

In the case of a request-scoped bean, the validity of its life cycle depends on the duration of
each request dispatch. This mode of transaction starts when the client accesses the handler
method and ends when the views have received all transported objects from the request
handler. Once the HTTP request cycle is completed, all request-scoped beans are destroyed.

Session-scoped beans live longer than request-scoped beans because all their properties are
coterminous with a specific HTTP session in the application.

The SalaryGrade bean is injected as a WebApplicationContext.SCOPE_REQUEST bean
and must always be proxyMode=ScopedProxyMode.TARGET_CLASS to avoid
IllegalStateException. In XML-based containers, the injection can be done as:

<bean id="salaryGrade"
 class="org.packt.dissect.mvc.model.data.SalaryGrade"
 scope="request">
 <aop:scoped-proxy/>
</bean>

In the case of the Education bean, it is injected as
WebApplicationContext.SCOPE_SESSION with
proxyMode=ScopedProxyMode.TARGET_CLASS also. The XML equivalent of this injection
is:

<bean id="education"
 class=" org.packt.dissect.mvc.model.data.Education"
 scope="session">
 <aop:scoped-proxy/>
</bean>

These two beans will be searched and injected into the BeanScopeController through the
@Autowired annotation. This controller will first dispatch these objects to req_beans for
rendition. Now, a hyperlink in req_beans will redirect all these beans to a separate view
which is already the request dispatch transaction. From the image in Step 7, it is shown that
the request-scoped SalaryGrade was instantiated a few seconds after clicking the
hyperlink, whereas the session-scoped Education maintains its values and properties for
the entire process.

Implementing MVC Design Patterns

[135]

Note that in order to use the session scope, you have to be using a web-aware Spring
application context, such as WebApplicationContext. Otherwise, there's no way for the
scoped proxy to reference a current session.

Lastly, do not be confused between @SessionAttributes and session-scoped beans
because the former creates objects in the session, while the latter only uses the session as the
basis of its object life cycle and nothing else.

Implementing page redirection and Flash-
scoped beans
Creating lots of session-scoped beans causes some performance and security issues and is
not always recommended in small-scale and simple applications. Most often than not, using
request-scoped objects is still the best way to manage data among request transactions. But
as shown in the previous recipe, it would be a lot easier to share data if session-scoped
beans are used, especially when there are several redirections. Another solution to avoid
sessions sharing data among request handlers will be illustrated by this recipe.

Getting started
Open again ch03 for some additional features of @Controller when it comes to page
redirection. This recipe will focus on other methods of redirection than the usual HTML
<form> submission and <a> hyperlink page jump.

How to do it...
To implement page redirection with Flash-scoped objects, apply these steps:

To start our experiment on implementing page redirection, let us create a1.
controller that loads a login form, processes the username and password, and
then redirects to another form controller through Spring's old way of page
navigation, that is, through RedirectView:

@Controller
public class RedirectPageController {
 @RequestMapping(value="/login.html",
 method=RequestMethod.GET)
 public String login(){

Implementing MVC Design Patterns

[136]

 return "login";
 }
 @RequestMapping(value="/jump_page.html",
 method=RequestMethod.POST)
 public RedirectView sendRedirection(RedirectAttributes
 atts, @RequestParam("username") String username,
 @RequestParam("password") String password){

 atts.addFlashAttribute("username", username);
 atts.addFlashAttribute("password", password);
 atts.addAttribute("request", "loginForm");
 return new RedirectView("/redirectviewOld.html",true);
 }

@RequestMapping(value="/redirectviewOld.html",
 method=RequestMethod.GET)
public String resultPageOld(Model model){
 return "result_page";
 }
}

The handler method uses
org.springframework.web.servlet.mvc.support.RedirectAttributes

to convert username and password parameters to Flash-scoped objects. Flash-
scoped objects are capable of holding their values until the next redirected view is
processed. Likewise, they can also pass typical request-scoped objects to success
views.

Create the login form view with typical HTML textboxes and submit buttons:2.

<%@ page language="java" contentType="text/html;
charset=ISO-8859-1" pageEncoding="ISO-8859-1"%>
<%@ taglib prefix="spring"
uri="http://www.springframework.org/tags" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type"
content="text/html;charset=ISO-8859-1">
<title><spring:message code="login_title" /></title>
</head>
<body>
 <form action="/ch03/jump_page.html" method="POST">
 <spring:message code="userLbl" />
 <input type="text" name="username" />

 <spring:message code="passwordLbl" />

Implementing MVC Design Patterns

[137]

 <input type="text" name="password" />

 <input type="submit" value="Login" />
 </form>
</body>
</html>

Create the redirected page that will show on screen both the username and3.
password Flash-scoped objects and a request-scoped one:

<%@ page language="java"
contentType="text/html;charset=ISO-8859-1"
pageEncoding="ISO-8859-1"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=ISO-8859-1">
<title>Insert title here</title>
</head>
<body>
 User Name: ${ username }

 Password: ${ password }

 Requested by: ${ loginForm }
</body>
</html>

Update the views.properties and messages_en_US.properties for all the4.
updates on the views and the view's message bundles.
Save all files and deploy the project. Open a browser and execute5.
https://localhost:8443/ch03/login.html. Observe how the two Flash-
scoped and a request-scoped data behave when in this form:

Implementing MVC Design Patterns

[138]

This submits to another form controller using page redirection:6.

Add the following request handlers that use a modern technique of7.
implementing page redirection through the shorthand keyword redirect:

@RequestMapping(value="/new_jump.html",
method=RequestMethod.GET)
public ModelAndView sendRedirectionModel(ModelMap atts){
 atts.addAttribute("pageId_flash", "12345");
 return new ModelAndView(
 "redirect:/redirectviewNew.html",atts);
}
@RequestMapping(value="/redirectviewNew.html",
 method=RequestMethod.GET)
public String resultPageNew(Model model,
 @ModelAttribute("pageId_flash") String flash){
 model.addAttribute("pageId_flash", flash);
 return "new_result_page";
}

There are three conditions expected to be met when using the prefix redirect,
and one is the absence of RedirectAttributes for Flash-scoped object
generation. Also, this technique is best paired with ModelAndView with regard to
the transporting of objects to views. And lastly, the redirected handler method
must have @ModelAttribute to fetch all objects passed by the originator request
from which the redirection started.

Save all files. Then clean, build, and deploy the project. Run8.
https://localhost:8443/ch03 /new_jump.html on a browser and expect
this output:

Implementing MVC Design Patterns

[139]

How it works...
Redirection is essential in designing the navigation paths of a system. One page can jump
from another through form transactions and hyperlinks. Internally, Spring has two ways of
implementing redirection. The old way is to use RedirectView in a handler method. Once
a method returns RedirectView, it technically invokes
HttpServletResponse.sendRedirection(), which performs the actual navigation
process. The modern implementation is through the use of the redirect keyword, which
requires a handler to return only the ModelAndView object for passing request objects and
executing the views. In short, there is no longer a built-in Flash-scoped object but an
improvised one. Thus, it is a requirement that the redirected handler uses
@ModelAttribute to catch those improvised Flash-scoped objects.

There is always one problem when implementing navigation and that is the passing of
objects from the originator to the redirected page. Request-scoped objects will give us NULL
since they are non-existent already after the request dispatch. The redirection always
happens after the request dispatch; otherwise, if it interrupts the request-response
handshake, IllegalStateException will be thrown. Using RedirectView, we can use
RedirectAttributes to generate and store Flash-scoped objects which can persist during
navigations. The RedirectAttributes has an addFlashAttribute() method for Flash-
scoped objects and addAttribute() for the usual request-scoped attributes.

On the other hand, using the modern way of implementation requires us to use the
workaround of ModelAndView to pass all objects during redirection and
@ModelAttribute for the counterpart handler to fetch all this data.

Session handling is not the ultimate solution in sharing objects from one page to another.
Sessions can slow down runtime performance, especially if they are loaded with huge
objects such as collections of JDBC objects for their entire production. Creating or
simulating Flash-scoped is the recommended solution whenever there are navigations all
over the software specification.

Implementing MVC Design Patterns

[140]

Creating database connection pooling
We have created recipes that give us tips and tricks on how to construct and manage the
ApplicationContext containers with injected beans, implement and design HTTP request
transactions through different types of @Controllers, manage types of scoped-beans,
implement views for request dispatch and redirection, and apply the concept of Inverse of
Control and Dependency Injection principles. Now, it is time to introduce the integration of
the MVC application to some database vendors such as MySQL 5.7. Our main goal is to
define, identify, and create the necessary database connection pooling for a Spring MVC
project.

Getting started
Create a new Eclipse web project, ch03-jdbc, and configure its pom.xml to make the
project web.xml-less. Add the previous Maven dependencies and also implement the
same SpringWebInitializer and root context SpringDispatcherConfig for the
initialization of our ServletContext. Moreover, set up the same SpringContextConfig
for the application-related @Bean. Our package is still org.packt.dissect.mvc.context.

How to do it...
Using the MySQL server configured in Chapter 1, Getting Started with Spring, let us now
scrutinize some popular connection pool libraries that can be used to perform JDBC
transactions:

The first few steps will be devoted to the listing of needed Maven libraries for1.
Spring 5.0, especially Spring JDBC dependency and MySQL 5.7 connector. With
regard to its connection, add this current MySQL-Java connector to the Maven
dependencies:

<dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 <version>5.1.40</version>
</dependency>

Implementing MVC Design Patterns

[141]

Next, we will be doing some comparative analysis on which database JDBC2.
resource pooling best fits with our applications. Consider the following third-
party libraries to be included in our Maven repository:

<!-- Apache DBCP Connection Pooling -->
 <dependency>
 <groupId>org.apache.commons</groupId>
 <artifactId>commons-dbcp2</artifactId>
 <version>2.1.1</version>
 </dependency>
 <!-- C3P0 -->
 <dependency>
 <groupId>com.mchange</groupId>
 <artifactId>c3p0</artifactId>
 <version>0.9.5.2</version>
 </dependency>
 <!-- Tomcat JDBC Connection Pooling -->
 <dependency>
 <groupId>org.apache.tomcat</groupId>
 <artifactId>tomcat-jdbc</artifactId>
 <version>9.0.0.M15</version>
 </dependency>
 <!-- Hikari Connection Pooling -->
 <dependency>
 <groupId>com.zaxxer</groupId>
 <artifactId>HikariCP</artifactId>
 <version>2.5.1</version>
</dependency>

At this point, let us use the Spring Test Framework to validate the capability of3.
each JDBC resource pooling library by creating a test SQL script for MySQL's
world schema. To enable Spring Test, add the following Maven dependencies in
the test scope:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-test</artifactId>
 <version>${spring.version}</version>
 <scope>test</scope>
</dependency>
<dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.12</version>
 <scope>test</scope>
 <exclusions>
 <exclusion>

Implementing MVC Design Patterns

[142]

 <groupId>org.hamcrest</groupId>
 <artifactId>hamcrest-core</artifactId>
 </exclusion>
 </exclusions>
</dependency>
<dependency>
 <groupId>org.hamcrest</groupId>
 <artifactId>hamcrest-library</artifactId>
 <version>1.3</version>
 <scope>test</scope>
</dependency>

Create a property file, src\main\resources\config\jdbc.properties,4.
containing the necessary details for database connectivity:

jdbc.driverClassName=com.mysql.jdbc.Driver
jdbc.url=jdbc:mysql://localhost:3306/world?autoReconnect=true
&useSSL=true&serverSslCert=classpath:config/spring5packt.crt
jdbc.username=root
jdbc.password=spring5mysql

To avoid a warning such as WARNING: Establishing SSL connection
without server's identity verification is not recommended, we include
the spring5packt.crt to the URL connection detail of the MySQL
instance.

In order for Spring components to read all the properties in jdbc.properties,5.
inject into the web context root container the
org.springframework.context.support.PropertySourcesPlaceholderC

onfigurer class and make reference to jdbc.properties through
@PropertySource:

@EnableWebMvc
@ComponentScan(basePackages="org.packt.dissect.mvc")
@PropertySource("classpath:config/jdbc.properties")
@Configuration
public class SpringDispatcherConfig extends
 WebMvcConfigurerAdapter{

 // refer to sources
 @Bean
 public static PropertySourcesPlaceholderConfigurer
 propertyConfig() {
 return new PropertySourcesPlaceholderConfigurer();
 }
}

Implementing MVC Design Patterns

[143]

Include also all the JavaScript, CSS, images, and all other static resources inside6.
SpringDispatcherConfig by overriding its method
addResourceHandlers(). Also include some web-related configurations like
caching:

import
org.springframework.web.servlet.config.annotation.ResourceHandl
erRegistry;
// refer to sources
@Override
 public void addResourceHandlers(ResourceHandlerRegistry
registry) {
 registry
 .addResourceHandler("/css/**")
 .addResourceLocations("/js/**")
 .setCachePeriod(31556926);
 }

Now, create a new JavaConfig context named SpringDbConfig, which7.
contains all @Bean related to database connectivity. The first injection is the
creation of the java.sql.DataSource which implements the Connection
object per user access. The DataSource needs to retrieve the JDBC details in
@PropertySource("classpath:config/jdbc.properties") through the
Enviornment class, which throws PropertyVetoException when used:

@Configuration
@EnableWebMvc
@ComponentScan(basePackages =
 "org.packt.dissect.mvc.model.data")
public class SpringDbConfig {

 @Autowired
 private Environment environment;

 @Bean
 public DataSource dataSource() throws
 PropertyVetoException { }

Implement the first DataSource using Spring's built-in DataSource8.
implementation, the
org.springframework.jdbc.datasource.DriverManagerDataSource:

@Configuration
@EnableWebMvc
@ComponentScan(basePackages =

Implementing MVC Design Patterns

[144]

"org.packt.dissect.mvc.model.data")
public class SpringDbConfig {

 @Autowired
 private Environment environment;

 @Bean
 public DataSource dataSource() throws
 PropertyVetoException {
 DriverManagerDataSource dataSource =
 new DriverManagerDataSource();
 dataSource.setDriverClassName(environment
.getProperty("jdbc.driverClassName"));
 dataSource.setUrl(environment.getProperty("jdbc.url"));
 dataSource.setUsername(environment
.getProperty("jdbc.username"));
 dataSource.setPassword(environment
.getProperty("jdbc.password"));
 return dataSource;
}

To measure the performance of each JDBC connection pooling, let's use Metrics9.
API DropWizard to report the statistics of resource pooling running time, given
1,000 simulated users accessing the database. Add the following Maven
dependencies in order to use this library.

<dependency>
 <groupId>com.codahale.metrics</groupId>
 <artifactId>metrics-core</artifactId>
 <version>3.0.2</version>
</dependency>

Create a test class TestDbPool in src\test\java, with ConsoleReporter,10.
MetricRegsitry, and Timer for the performance testing:

@RunWith(SpringJUnit4ClassRunner.class)
@WebAppConfiguration
@ContextConfiguration(classes = {SpringDbConfig.class,
 SpringDispatcherConfig.class})
public class TestDbPool {
 @Autowired
 private DataSource dataSource;
 private static final int MAX_ITERATIONS = 1000;
 private ConsoleReporter logReporter;
 private Timer timer;
 @Before
 public void init() {

Implementing MVC Design Patterns

[145]

MetricRegistry metricRegistry = new MetricRegistry();
this.logReporter = ConsoleReporter

.forRegistry(metricRegistry)

.build();
logReporter.start(1, TimeUnit.MINUTES);
timer = metricRegistry.timer("connection");

 }
 @Test
 public void testOpenCloseConnections() throws

SQLException {

for (int i = 0; i < MAX_ITERATIONS; i++) {
Context context = timer.time();
Connection conn = dataSource.getConnection();
Statement stmt = conn.createStatement();
stmt.executeQuery("select * from city");
conn.close();
context.stop();

}
logReporter.report();

 }
}

The @ContextConfiguration(classes = {SpringDbConfig.class,
SpringDispatcherConfig.class}) indicates that all the @Bean will be
fetched during testing from the SpringDbConfig and
SpringDispatcherConfig containers.

Execute TestDbPool using the Eclipse STS JUnit plugin:11.

Implementing MVC Design Patterns

[146]

Check the statistics shown on the console view:12.

------ Timers -----------------connection
count = 1000
mean rate = 140.19 calls/second
1-minute rate = 128.20 calls/second
5-minute rate = 128.20 calls/second
15-minute rate = 128.20 calls/second
min = 5.36 milliseconds
max = 839.60 milliseconds
mean = 7.10 milliseconds
stddev = 26.44 milliseconds
median = 5.91 milliseconds
75% <= 6.24 milliseconds
95% <= 7.24 milliseconds
98% <= 8.81 milliseconds
99% <= 17.81 milliseconds
99.9% <= 838.81 milliseconds

Apply the test to the following third-party database connection pooling13.
implementations and examine the results:

/*
 BasicDataSource dataSource = new BasicDataSource();
 dataSource.setDriverClassName(environment
.getProperty("jdbc.driverClassName"));
 dataSource.setUrl(environment
.getProperty("jdbc.url"));
 dataSource.setUsername(environment
.getProperty("jdbc.username"));
 dataSource.setPassword(environment
.getProperty("jdbc.password"));
 dataSource.setMaxTotal(100);
 */
 /*
 ComboPooledDataSource dataSource =
 new ComboPooledDataSource();
 dataSource.setDriverClass(environment
.getProperty("jdbc.driverClassName"));
 dataSource.setJdbcUrl(environment
.getProperty("jdbc.url"));
 dataSource.setUser(environment
.getProperty("jdbc.username"));
 dataSource.setPassword(environment
.getProperty("jdbc.password"));
 dataSource.setMaxPoolSize(100);
 */
/*

Implementing MVC Design Patterns

[147]

 org.apache.tomcat.jdbc.pool.DataSource dataSource =
new org.apache.tomcat.jdbc.pool.DataSource();
 PoolProperties props = new PoolProperties();
 props.setUrl(environment.getProperty("jdbc.url"));
 props.setDriverClassName(environment
.getProperty("jdbc.driverClassName"));
 props.setUsername(environment
.getProperty("jdbc.username"));
 props.setPassword(environment
.getProperty("jdbc.password"));
 props.setMaxActive(100);
 dataSource.setPoolProperties(props);
 */
 HikariDataSource dataSource = new HikariDataSource();
 dataSource.setMaximumPoolSize(100);
 dataSource.setDriverClassName(environment
.getProperty("jdbc.driverClassName"));
 dataSource.setJdbcUrl(environment
.getProperty("jdbc.url"));
 dataSource.setUsername(environment
.getProperty("jdbc.username"));
 dataSource.setPassword(environment
.getProperty("jdbc.password"));
 dataSource.setMaximumPoolSize(100);

Uncomment only one data connection pooling before running the test
methods in step 9.

How it works...
Before a Spring MVC application implements Java database transactions, a DataSource
must be injected first into the ApplicationContext. This object creates a
java.sql.Connection object per user who wants to access a database instance, given the
username and password of the server, JDBC URL of the database schema, and the driver
class name of the JDBC connector for some database transactions.

Implementing MVC Design Patterns

[148]

The immediate way to implement DataSource is to instantiate the
DriverManagerDataSource of the Spring JDBC framework. The only problem with this
class is the absence of connection pooling capabilities which slows down the performance of
the applications once there is more than one user involved in accessing the database
schema. It may even cause an OutofMemoryError which causes the Tomcat server to crash:

This degradation is due to the fact that DriverManagerDataSource will create another
Connection object when another user is added. For the enterprise application, it is
recommended to use third-party JDBC connection pooling that provides a cached logical
connection pool rather than instantiating additional Connection objects for the additional
user connectivity:

Implementing MVC Design Patterns

[149]

Based on our unit testing using the Metrics API, HikariCP provides us the best case
performance, given 1,000 users. After executing the test cases, we will roughly arrive at the
following statistics:

Connection Pooling
Implementation

Mean call rate
(call/second)

Max time
elapsed
per call
(millisec)

Min time
elapsed
per call
(millisec)

Mean time
elapsed
per call
(millisec)

DriverManagerDataSource

(Spring)
140.19 839.60 5.36 7.10

BasicDataSource (DBCP2) 194.82 739.04 4.01 5.06

ComboPooledDataSource (C3P0) 208.28 547.79 3.92 4.78

Tomcat's DataSource 111.89 1847.79 3.92 8.92

HikariDataSource (HikariCP) 215.08 437.33 3.89 4.63

To wrap up this recipe, it is always a protocol not to hardcode the database details during
DataSource injection. Use the jdbc.properties file to store all the credentials in order to
avoid messing up once changes happens. Just declare
PropertySourcesPlaceholderConfigurer into the container and apply
@PropertySource to the context's @Configuration definition to make reference to the
jdbc.properties. Aside from establishing reference, the @PropertySource will classify
all details as Spring environment variables, thus
org.springframework.core.env.Environment can now be used to fetch the key values
of jdbc.properties. Before deploying to the production server, it is recommended to
configure JNDI or transaction listeners to register JDBC properties.

Implementing the DAO layer using the
Spring JDBC Framework
After identifying the appropriate DataSource implementation, we are now ready to
establish the database transactions in our Spring MVC application.

Implementing MVC Design Patterns

[150]

Getting Started
Open again the ch03-jdbc project and verify if MySQL 5.7 is updated and working fine.
Also, check again if the DataSource implementation is appropriate for your application.

How to do it...
It is always the best practice to design the database and table schemas using an ERD model.
After finalizing our schema designs, follow these steps to build our DAO layer:

Let us open a MySQL workbench or a command line terminal, log in using the1.
username root and password spring5mysql, and create the following schema
definition of the hrs database:

Since we will be dealing with database models, create a package,2.
org.packt.dissect.mvc.model.data, that will contain data models
representing the schema of the preceding tables. Given the two tables, create the
Employee and Department data models found here:

public class Department {

 private Integer id;
 private Integer deptId;
 private String name;

Implementing MVC Design Patterns

[151]

// getters and setters
}

public class Employee {

 private Integer id;
 private Integer empId;
 private String firstName;
 private String lastName;
 private Integer age;
 private String email;
 private Date birthday;
 private Integer deptId;

// getters and setters
}

Data models must be different from the form backing objects or form
models created in the previous recipe. Although it seems the two layers
are similar because both are POJOs, we do not allow misrepresentation of
data and data integrity errors during validation and type checking.

We need to update the URL details of our jdbc.properties since we will be3.
accessing our newly created schema, hrs:

jdbc.driverClassName=com.mysql.jdbc.Driver
jdbc.url=jdbc:mysql://localhost:3306/hrs?autoReconnect=true
&useSSL=true&serverSslCert=classpath:config/spring5packt.crt
jdbc.username=root
jdbc.password=spring5mysql

Now, inject org.springframework.jdbc.core.simple.SimpleJdbcInsert4.
in the SpringDbConfig context. This Spring JDBC API manages the JDBC
transactions:

@Bean
public SimpleJdbcInsert jdbcInsert()
 throws PropertyVetoException {
 return new SimpleJdbcInsert(dataSource());
}

Implementing MVC Design Patterns

[152]

This implementation for the data access template and callback fits with Spring 5.05.
because of its multithreading characteristics, while using the low-level
JdbcTemplate. SimpleJdbcInsert is easier to configure than JdbcTemplate
and can easily work with database configurations without so many unnecessary
metadata. Now, create the Data Access Object (DAO) layer, which uses the two
data models in exposing the database transactions. This layer is composed of
interfaces (such as DepartmentDao), which are used to fetch their
implementations (such as DepartmentDaoImpl) once needed by the
@Controller in saving, retrieving, updating, and deleting records. The
following is the Department interface and its implementation class
DepartmentDaoImpl:

package org.packt.dissect.mvc.dao;

public interface DepartmentDao {
 public List<Department> getDepartments();
 public Department getDepartmentData(Integer id);
 public void addDepartmentBySJI(Department dept);
 public void addDepartmentByJT(Department dept);
 public void updateDepartment(Department dept);
 public void delDepartment(Integer deptId);
}

package org.packt.dissect.mvc.dao.impl;

@Repository
public class DepartmentDaoImpl implements DepartmentDao{
 @Autowired
 private SimpleJdbcInsert jdbcInsert;

 @Override
 public List<Department> getDepartments() {
 String sql = "SELECT * FROM department";
 List<Department> depts =
 jdbcInsert.getJdbcTemplate().query(sql,
 new RowMapper<Department>() {

 @Override
 public Department mapRow(ResultSet rs,
 int rowNum) throws SQLException {

 Department dept = new Department();
 dept.setId(rs.getInt("id"));
 dept.setDeptId(rs.getInt("deptId"));
 dept.setName(rs.getString("name"));
 return dept;

Implementing MVC Design Patterns

[153]

 }
 });
 return depts;
 }
 // refer to sources
}

All DAO implementation classes must have a @Repository annotation which
tells Spring that these classes are valid @Bean and classified persistence layer
classes, triggering some special exceptions and code translators at runtime.

The DAO method addDepartmentBySJI() uses SimpleJdbcInsert to
add records to the table department, while addDepartmentByJT() does
the same but with JdbcInsert.

Create a TestDepartmentDao class in src\test\java to perform initial testing6.
without injecting them yet to the @Controller for request-response transactions:

@RunWith(SpringJUnit4ClassRunner.class)
@WebAppConfiguration
@ContextConfiguration(classes = { SpringDbConfig.class,
 SpringDispatcherConfig.class })
public class TestDepartmentDao {

 @Autowired
 private DepartmentDao departmentDaoImpl;
 @Test
 public void testDetachedDepartment(){
 Department rec = new Department();
 rec.setDeptId(9999);
 rec.setName("Security Department");
 departmentDaoImpl.addDepartmentBySJI(rec);
 }
 @Test
 public void testPopulateDepartment(){
 Department rec1 = new Department();
 rec1.setDeptId(1);
 rec1.setName("Engineering Department");
 Department rec2 = new Department();
 rec2.setDeptId(2);
 rec2.setName("Human Resources Department");
 // refer to sources
 departmentDaoImpl.addDepartmentByJT(rec1);
 departmentDaoImpl.addDepartmentByJT(rec2);

 // refer to sources

Implementing MVC Design Patterns

[154]

 }
// refer to sources
}

Repeat the preceding processes for EmployeeDao.7.

Save all files and be ready to connect our DAO layer to the @Controller.8.

How it works...
The DAO layer serves as the data persistency layer of the MVC application. All objects in
this layer must have @Repository applied since these objects are injected into the container
with a special translator and exception, such as DataAccessException:

After designing and constructing the database and tables schemas, Spring must ready its
data model objects, which are normally POJO, to hold property values during CRUD
transactions. To utilize these models, Spring has a built-in Spring JDBC module which is the
ultimate provider of APIs for data access templates actions and callback handlers.

Implementing MVC Design Patterns

[155]

This recipe introduces the multithreaded SimpleJdbcInsert to simplify the configuration
details needed in saving objects to the database. The rule is just to provide the table name
and a map containing the column names and the column values, to be inserted without
using too many placeholders (?) for mapping. The only problems is that you can only set its
table name once before every execute(), otherwise, this exception will be thrown:

In the background, this API still uses the low-level JdbcTemplate for its SQL executions;
thus, the performance of SimpleJdbcInsert must be almost the same as JdbcTemplate
when it comes to single-table record transactions. SimpleJdbcInsert can easily be fetched
from the container while JdbcTemplate can only be derived from SimpleJdbcInsert
through its factory method, or as an injected @Bean to be @Autowired by the DAO classes.

JdbcTemplate and SimpleJdbcInsert will not work without the implementation of the
java.sql.DataSource. There are five implementations featured in this recipe which are
popularly used nowadays, but each has its own disadvantages and advantages. The
DriverManagerDataSource has no database connection pooling, so every user access
corresponds to one instance of the Connection object. Connection pooling is very
important in an enterprise application because it gives a threshold whenever there is
connection traffic. It provides a set of logical connection objects that can be used to
virtualize the user connection instead of creating another set and separate instances of
Connection objects. Deciding on the appropriate DataSource implementation can help
the MVC application minimize the overhead caused by the DAO layer at runtime.

To successfully implement the JDBC connection to our MySQL 5.7 server, the MySQL
connector class named com.mysql.jdbc.Driver needs to be part of the Maven
dependencies of the project. This class will communicate with the DataSource and verifies
the username, password, and URL details of the database instance in order to successfully
establish a connection.

After implementing all the required DAO classes, inject them into SpringDbConfig
through the @Repository annotation to be @Autowired by services.

Implementing MVC Design Patterns

[156]

Creating a service layer in an MVC
application
If the DAO layer manages the persistence of data, given the data models and Spring JDBC's
JdbcTemplate and SimpleJdbcInsert, the service layer, on the other hand, exposes all
DAO transactions through its own set of interfaces and implementations. This recipe will
close the whole chapter regarding how to assemble a Spring MVC application.

Getting started
This last recipe requires us to use ch03-jdbc to implement a service layer which contains
native services for EmployeeDao and DepartmentDao transactions.

How to do it...
For @Controllers to execute some DAO transactions and business-related logic, add the
service layer by following these steps:

After ensuring that the DAO layer is ready for use, add two more packages to1.
contain our service interfaces and implementation. All interfaces must be in
org.packt.dissect.mvc.service and their implementation must be saved
inside org.packt.dissect.mvc.service.impl.
Create the following interfaces that will be used to fetch the service2.
implementations at the controller layer. These will just expose read and add
record transactions:

public interface DepartmentService {
 public List<Department> readDepartments();
 public void addDepartment(Department dept);
}

public interface EmployeeService {
 public List<Employee> readEmployees();
 public void addEmployeee(Employee emp);
}

Implementing MVC Design Patterns

[157]

Then, create the service implementations of the interfaces in Step 2. The other3.
purpose of these services is to add more logic on the records being retrieved, or
manipulate some details before adding, viewing, and deleting them as shown
here:

@Service
public class DepartmentServiceImpl implements
 DepartmentService {
 @Autowired
 private DepartmentDao departmentDaoImpl;

 @Override
 public List<Department> readDepartments() {
 return departmentDaoImpl.getDepartments();
 }

 @Override
 public void addDepartment(DepartmentForm dept) {

 Department deptData = new Department();
 deptData.setDeptId(dept.getDeptId());
 deptData.setName(dept.getName());
 departmentDaoImpl.addDepartmentBySJI(deptData);
 }
}

@Service
public class EmployeeServiceImpl implements
 EmployeeService {
 @Autowired
 private EmployeeDao employeeDaoImpl;

 @Override
 public List<Employee> readEmployees() {
 return employeeDaoImpl.getEmployees();
 }

 @Override
 public void addEmployeee(EmployeeForm empForm) {
 Employee emp = new Employee();
 emp.setDeptId(empForm.getEmpId());
 emp.setFirstName(empForm.getFirstName());
 emp.setLastName(empForm.getLastName());
 emp.setAge(empForm.getAge());
 emp.setBirthday(empForm.getBirthday());
 emp.setEmail(empForm.getEmail());
 emp.setDeptId(empForm.getDeptId());

Implementing MVC Design Patterns

[158]

 employeeDaoImpl.addEmployeeBySJI(emp);
 }
}

All service implementations must be injected into the container through the
annotation @Service. Although this annotation classifies a class to be a service, it
has no special background event yet when compared to @Repository.

The service layer manages the form models (such as EmployeeForm)
because there are model attributes containing all the request data after
form submission. DAO layer manages, on the other hand, the data models
(such as Employee) created by the service layer.

Afterwards, create a controller called DepartmentController that will4.
complete the whole MVC application with database connection in the
background. This controller will invoke a form asking for department
information needed to be saved into the hrs database schema, and from there
will generate a view for all the records:

@Controller
public class DepartmentController {
 @Autowired
 private DepartmentService departmentServiceImpl;
 @RequestMapping("/deptform.html")
 public String initForm(Model model){

 DepartmentForm departmentForm = new DepartmentForm();
 model.addAttribute("departmentForm", departmentForm);
 return "dept_form";
 }
 @RequestMapping(value="/deptform.html",
 method=RequestMethod.POST)
 public String submitForm(Model model,
 @ModelAttribute("departmentForm")
 DepartmentForm departmentForm){

 departmentServiceImpl.addDepartment(departmentForm);
 model.addAttribute("departments",
 departmentServiceImpl.readDepartments());
 return "dept_result";
 }
}

Implementing MVC Design Patterns

[159]

Create the views indicated by the @Controller and update the5.
views.properties and message_en_US.properties.
Save all files. Then clean, install, and deploy the project.6.

How it works...
To complete our dissection, the service layer must be at the scene to provide further
algorithms, manipulations, and operations on the data sent to and from the DAO and the
client. It is recommended that the DAO and service layer must work together to build a
loosely-coupled architecture:

Services usually handle form models to retrieve the necessary request data needed to
undergo database processing through the help of DAO classes, structured or unstructured
data conversion and file processing, FTP data transmission, and rendition for business
intelligence. All sorts of algorithms that help link DAO classes to the controllers are all
placed inside the service layer. Avoid implementing CRUD transactions in any service class
because these database-linked processes are placed in the DAO layer.

4
Securing Spring MVC

Applications
Securing the application is one of the most delicate procedures because of so many
vulnerabilities that need to be considered, such as poor user authentication, unreliable
authorization processes, lack of logging mechanisms, and fail-top-open error handling. At
the application level, Spring offers a configurable and customizable security framework that
can easily enable login authentication and authorization procedures for protection against
session fixation, cross-site scripting (XSS) attacks, clickjacking, denial of service attacks,
session fixation attacks, and cross-site request forgery (CSRF).

Spring Security 4.2.2 also provides an easy way to build Access Control List (ACL)
comprising of users, roles, and permissions that will be the basis of user authorization.
Users and roles have options to be created in-memory or through the database storage.
Their restrictions, which are based on roles, are applicable to request handlers, view pages,
and service methods, which shows how flexible and configurable its architecture is.

On the other hand, Spring Security has several ways to manage the user details for
screening and validation purposes. It also has wide support for password encryption with
or without salt or hash functions.

This chapter will provide a series of recipes related to how to install, configure, and extend
Spring Security 4.2.2 for Spring 5.0 MVC applications.

In this chapter, we will cover the following topics:

Configuring Spring Security 4.2.2
Mapping sessions to channels and ports
Customizing the authentication process
Implementing authentication filters, login success, and failure handlers

Securing Spring MVC Applications

[161]

Creating user details
Generating encrypted passwords
Applying Security to MVC methods
Creating roles and permissions from the database
Managing and storing sessions
Solving Cross-Site Request Forgery (CSRF) and session fixation attacks
Solving Cross-Site Scripting (XSS) and clickjacking attacks
Creating interceptors for login data validation

Configuring Spring Security 4.2.2
This chapter will start with a recipe that will integrate Spring Security 4.2.2 with Spring-
based applications. This recipe will enumerate all the steps needed to set up and configure
Spring Security 4.2.2 with Spring 5.0 MVC applications.

Getting started
Create an STS Eclipse Maven project, ch04, and make it a web.xml-less one. Update the
pom.xml by including the previous Maven WAR files, Maven Compiler, and Tomcat 7 Maven
Deployment plugins. Also, include the Spring 5.0, Servlet 3.1, JSP 2.3, JUnit 4.x, and other
dependencies needed to compile and run the application. The core package for this chapter
is org.packt.secured.mvc.

How to do it...
This recipe will provide proof that Spring 5 can work with the current Spring Security 4.2.2
without encountering any conflicts:

To integrate the Spring Security 4.2.2 framework, include the following Maven1.
dependencies into the Maven repository:

<dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-web</artifactId>
 <version>4.2.2.BUILD-SNAPSHOT</version>
</dependency>
<dependency>
 <groupId>org.springframework.security</groupId>

Securing Spring MVC Applications

[162]

 <artifactId>spring-security-config</artifactId>
 <version>4.2.2.BUILD-SNAPSHOT</version>
</dependency>
<dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-taglibs</artifactId>
 <version>4.2.2.BUILD-SNAPSHOT</version>
</dependency>

Reuse the SpringWebInitializer, SpringDispatcherConfig,2.
SpringDbConfig, and SpringContextConfig. Set their @ComponentScan base
packages to org.packt.secured.mvc. The following is the final directory
structure with these three main @Configuration files:

Be sure to have an empty SpringContextConfig context definition.

Securing Spring MVC Applications

[163]

Now, create another context definition which will implement the security model3.
consisting of the Spring Security 4.2.2 APIs. Let us start with the creation of
AppSecurityConfig inside org.packt.secured.mvc.core, which lists all the
basic security rules for our MVC application:

@Configuration
@EnableWebSecurity
public class AppSecurityConfig extends
 WebSecurityConfigurerAdapter {
 @Override
 protected void configure(AuthenticationManagerBuilder auth)
throws Exception {
 auth.inMemoryAuthentication()
 .withUser("sjctrags").password("sjctrags")
 .roles("USER");
 }
 @Override
 protected void configure(HttpSecurity http) throws Exception
{
 http
 .authorizeRequests()
 .antMatchers("/login*").permitAll()
 .anyRequest().authenticated()
 .and()
 .formLogin()
 .loginPage("/login.html")
 .defaultSuccessUrl("/deptform.html")
 .failureUrl("/login.html?error=true")
 .and().logout().logoutUrl("/logout.html")
 .logoutSuccessUrl("/after_logout.html");
 http.csrf().disable();
 }
 @Override
 public void configure(WebSecurity web) throws Exception
 {
 web
 .ignoring()
 .antMatchers("/resources/**")
 .antMatchers("/css/**")
 .antMatchers("/js/**")
 .antMatchers("/image/**");
 }
}

Securing Spring MVC Applications

[164]

The difference between the Spring MVC context definition and the Spring
Security one is the presence of @EnableWebSecurity in the latter. This
annotation enables security in the application through the creation of a servlet
named springSecurityFilterChain, which is responsible for all the core and
extra security features. To complete the @Configuration, the class must extend
org.springframework.security.config.annotation.web.configuratio

n.WebSecurityConfigurerAdapter to override the needed security-related
methods.

Do not use @EnableWebMVCSecurity anymore since it has been
considered as deprecated by Spring Security 4.x.

To apply AppSecurityConfig, import this context to our application context4.
SpringContextConfig through the @Import annotation:

@Import(value = { AppSecurityConfig.class })
@Configuration
@EnableWebMvc
@ComponentScan(basePackages = "org.packt.secured.mvc")
public class SpringContextConfig { }

This annotation is the same with the <import> tag used when
augmenting two or more XML-based definitions.

Then, create SpringSecurityInitializer inside the package5.
org.packt.secured.mvc.core that will register the
delegatingFilterproxy filter to be used by the
springSecurityFilterChain previously created. So far, this strategy is the
one working when compared to the direct Filter.Registration of the
ServletContext:

public class SpringSecurityInitializer extends
 AbstractSecurityWebApplicationInitializer { }

Leave this class empty.

Securing Spring MVC Applications

[165]

At this point, it is time to implement our MVC application starting with the6.
model objects. Reuse Department and Employee from the ch03-jdbc project.
Drop these files inside org.packt.secured.mvc.model.data.
Reuse also our form backing objects from ch03-jdbc, namely DepartmentForm7.
and EmployeeForm. Place them inside the package
org.packt.secured.mvc.model.data.form.
For the DAO layer, let us consider implementing a new DepartmentDao, which8.
contains the following method signatures:

public interface DepartmentDao {
 public List<Department> getDepartments();
 public Department getDepartmentData(Integer id);
 public void addDepartmentBySJI(Department dept);
 public void addDepartmentByJT(Department dept);
 public void updateDepartment(Department dept);
 public void delDepartment(Integer deptId);
}

Place this in the org.packt.secured.mvc.dao package.9.
Implement DepartmentDaoImpl by using SimpleJdbcInsert and10.
JdbcTemplate from ch03-jdbc, and place them in the
org.packt.secured.mvc.dao.impl package. Be cautious with the use of
SimpleJdbcInsert's addDepartmentBySJI(), which gives the HTTP status
500 during successive calls to the
jdbcInsert.withTableName("department") line.
Implement a new DepartmentController which contains create, delete, update11.
record, and query database transactions after a successful login:

@Controller
public class DepartmentController {
 @Autowired
 private DepartmentService departmentServiceImpl;
 @RequestMapping("/deptform.html")
 public String initForm(Model model){

 DepartmentForm departmentForm = new DepartmentForm();
 model.addAttribute("departmentForm", departmentForm);
 return "dept_form";
 }
 @RequestMapping(value={"/deptform.html"},
 method=RequestMethod.POST)
 public String submitForm(Model model,
 @ModelAttribute("departmentForm") DepartmentForm
 departmentForm){

Securing Spring MVC Applications

[166]

 departmentServiceImpl.addDepartment(departmentForm);
 model.addAttribute("departments",
 departmentServiceImpl.readDepartments());
 return "dept_result";
 }
 @RequestMapping("/deldept.html/{deptId}")
 public String deleteRecord(Model model,
 @PathVariable("deptId") Integer deptId){
 departmentServiceImpl.removeDepartment(deptId);
 model.addAttribute("departments",
 departmentServiceImpl.readDepartments());
 return "dept_result";
 }
 @RequestMapping("/updatedept.html/{id}")
 public String updateRecord(Model model,
 @PathVariable("id") Integer id){

 Department dept = departmentServiceImpl.getDeptId(id);
 DepartmentForm departmentForm = new DepartmentForm();
 departmentForm.setDeptId(dept.getDeptId());
 departmentForm.setName(dept.getName());
 model.addAttribute("departmentForm", departmentForm);
 return "dept_form";
 }
@RequestMapping(value=/updatedept.html/{id}",
 method=RequestMethod.POST)
public String updateRecordSubmit(Model model,
 @ModelAttribute("departmentForm") DepartmentForm
 departmentForm, @PathVariable("id") Integer id){

 departmentServiceImpl.updateDepartment(
 departmentForm, id);
 model.addAttribute("departments",
 departmentServiceImpl.readDepartments());
 return "dept_result";
}
 }

After a successful authentication, the AppSecurityConfig will redirect to
/deptform.html as the default success page.

Securing Spring MVC Applications

[167]

Create a LoginController that will provide all the handler methods of the12.
AppSecurityConfig:

@Controller
public class LoginController {

@RequestMapping(value="/login.html",
 method=RequestMethod.GET)
public String login(@RequestParam(name="error",
 required=false) String error, Model model) {

 try {
 if (error.equalsIgnoreCase("true")) {
 String errorMsg = "Login Error";
 model.addAttribute("errorMsg", errorMsg);
 }else{
 model.addAttribute("errorMsg", error);
 }
 } catch (NullPointerException e) {
 return "login_form";
 }
 return "login_form";
 }

 @RequestMapping("/logout.html")
 public String logout() {
 return "logout_form";
 }
 @RequestMapping("/after_logout.html")
 public String afterLogout() {
 return "after_logout_form";
 }

 @RequestMapping("logerr.html")
 public String logerr() {
 return "logerr_form";
}
}

The custom login page /login.html must be configured and recognized by the
org.springframework.security.config.annotation.web.builders.Htt

pSecurity API. Likewise, the /logout.html must be the
AppSecurityConfig's custom logout entry which will redirect to
/after_logout.html after a successful logout.

Securing Spring MVC Applications

[168]

Create the views for the /logout.html, /after_logout.html and13.
/login.html. The login transaction must be using the POST HTTP method:

<%@ page language="java" contentType="text/html;
charset=ISO-8859-1" pageEncoding="ISO-8859-1"%>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>
<%@ taglib prefix="spring"
uri="http://www.springframework.org/tags" %>
<%@ taglib prefix="form"
uri="http://www.springframework.org/tags/form"%>
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=ISO-8859-1">
<title><spring:message code="login_title" /></title>
</head>
<body>
 <c:if test="${ not empty errorMsg }">
 <c:out value='${ errorMsg }'/>

 </c:if>
 <form action="<c:url value='/login.html' />"
 method="POST">
 <spring:message code="user" />
<input type="text" name="username" />

 <spring:message code="password" />
<input type="text" name="password" />

 <input type="submit" value="Login" />
 </form>
</body>
</html>

Next, create the physical views for the DepartmentController's14.
/deptform.html form and the /dept_result.html result view pages. The
form view must be implemented this way:

<%@ page language="java" contentType="text/html;
charset=ISO-8859-1" pageEncoding="ISO-8859-1"%>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>
<%@ taglib prefix="spring"
uri="http://www.springframework.org/tags" %>
<%@ taglib prefix="form"
uri="http://www.springframework.org/tags/form"%>
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;

Securing Spring MVC Applications

[169]

charset=ISO-8859-1">
<title><spring:message code="dept_title" /></title>
</head>
<body>
 <c:if test="${ not empty username }">
 Username is <c:out value='${ username}'/>

 Password is <c:out value='${ password }'/>

 Role(s) is/are: <c:out value='userRole'/>

 </c:if>
 <form:form modelAttribute="departmentForm"
 method="POST">
 <spring:message code="dept_id" />
 <form:input path="deptId" />

 <spring:message code="dept_name" />
 <form:input path="name" />

 <input type="submit" value="Add Department" />
 </form:form>
</body>
</html>

While the result view looks like this snippet:

<%@ page language="java" contentType="text/html;
charset=ISO-8859-1" pageEncoding="ISO-8859-1"%>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>
<%@ taglib prefix="spring"
uri="http://www.springframework.org/tags" %>
<%@ taglib prefix="form"
uri="http://www.springframework.org/tags/form"%>
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=ISO-8859-1">
<title><spring:message code="dept_title" /></title>
</head>
<body>
 <h1><spring:message code="dept_list" /></h1>
 <table border="1">
 <c:forEach var="dept" items="${ departments }">
 <tr>
 <td>${ dept.deptId }</td>
 <td>${ dept.name }</td>
 <c:url var="delUrl"
 value="/deldept.html/${dept.deptId}" />

Securing Spring MVC Applications

[170]

 <td>
 <a href="<c:out
 value='${ delUrl }'/>">DELETE</td>
 <c:url var="updateUrl"
 value="/updatedept.html/${dept.id}" />
 <td><a href="<c:out
 value='${ updateUrl }'/>">UPDATE
 </td>
 </tr>
 </c:forEach>
 </table>

<a href="<c:url value='/deptform.html'/>">
 Add More Department

 This is for CSRF Logout
<c:url var="logoutUrl" value="/logout.html"/>
 <form action="${logoutUrl}" method="post">
 <input type="submit" value="Log out" />
 </form>
 </body>
</html>

Reuse and update the view.properties, messages_en_US.properties15.
configuration for the view mappings and view label bundles, respectively. Also,
reuse jdbc.properties for the MySQL connection details. Place all these files in
the src\main\resources\config folder.
clean, build, and deploy. Start the application through16.
https://localhost:8443/ch04/login.html. Using the user and password
registered in the
org.springframework.security.config.annotation.authentication.b

uilders.AuthenticationManagerBuilder of AppSecurityConfig context,
proceed adding a new department record and try viewing all the records stored.
After clicking logout, you will be redirected to the logout success page:

Securing Spring MVC Applications

[171]

After the logout success page, any controller-defined URL will always redirect17.
users to /login.html view; otherwise, a HTTP Status 404 will be issued.
Try running the application using HTTP at port 8080 and the security model will18.
always redirect it to /login.html, causing HTTP Status 404, because HTTP
and port 8080 is not yet mapped to HTTPS and port 8483.

How it works...
The authentication and authorization starts with extending the class
WebSecurityConfigurerAdapter. This class provides AppSecurityConfig the
inherited methods that are important in establishing the users, channels, and request
endpoints for the authentication and authorization rules.

First, it has HttpSecurity that applies web-based security rules for specific HTTP or
HTTPS requests. It has a built-in antMatchers() that will scrutinize which URL requests
will be covered by the authentication rules and which will not. This method can also
determine which HTTP methods are allowed to be authenticated or not. In the meantime,
HttpSecurity only allows /login.html, /login.html?error=true and
/after_logout.html to be executed without user authentication.

Moreover, the API has http.formLogin().loginPage(), which determines what view
page will be the entry point for authentication. Likewise, it also has the methods
http.formLogin().logoutUrl() and http.formLogin().logoutSuccessUrl() to
register views related to logout processing. In XML-based context definitions, this API class
is equivalent to the <http> element in Spring Security's namespace configuration.

Second, the configuration has the WebSecurity class that has the ignoring() method that
will identify which URL request will not be subject to security rules at the general level.
Restrictions through this class are often applied to static resources such as JavaScript, CSS,
and image paths.

Lastly, it provides AuthenticationManagerBuilder, which has methods such as
inMemoryAuthentication(), used in creating usernames, passwords, and roles. The
inMemoryAuthentication() is the most basic and internal way of setting up user details.
When it comes creating roles, it has the method roles() which asks for the role name
without the prefix "ROLE_". It is authorities() that has the expression format
"ROLE_XXX".

Securing Spring MVC Applications

[172]

After completing the security model AppSecurityConfig, we apply this to our
SpringContextConfig, not only to execute all the rules, but to create eventually the
springSecurityFilterChain, which is considered the core API repository of the Spring
Security architecture. In order for springSecurityFilterChain to be functional at
runtime, the delegatingFilterProxy filter class must be registered in ServletContext
by implementing AbstractSecurityWebApplicationInitializer. The filter rolls out
all the security rules imposed by AppSecurityConfig. In this recipe, using
Filter.Registration to add the filter to ServletContext gives us an exception:

SEVERE [localhost-startStop-1]
org.apache.catalina.core.StandardContext.filterStart Exception starting
filter delegatingFilterProxy
 org.springframework.beans.factory.NoSuchBeanDefinitionException: No bean
named 'delegatingFilterProxy' available

Once AppSecurityConfig is loaded, it imposes one entry point to the application through
the URL /login.html. This security model will just redirect the user from an
authentication error to the URL request /login.html?error=true. It requires the user to
log out properly to protect the application through /logout.html.

This recipe hasn't covered CSRF yet, use http.csrf().disable() for now. CSRF will be
discussed in a later recipe. At this point, Spring Security 4.2.2 has been set up over Spring
5.0 MVC.

Mapping sessions to channels and ports
In preparation for reactive and concurrent web programming in the later chapters, Tomcat
9.0 was installed in Chapter 1, Getting Started with Spring to use TLS to enable HTTPS. This
recipe will showcase how Spring Security 4.2.2 manages all URL requests to run on secured
HTTP protocols only.

Getting started
Open web project ch04 and create another security model restricting all URL requests to
execute on top of the secured HTTP at port 8443.

Securing Spring MVC Applications

[173]

How to do it...
After the initial setup and configuration, it is time to experiment with the Spring Security
4.2.2 module:

Let us now disable the previous AppSecurityConfig model by applying1.
comment symbols to its @Configuration and @EnableWebSecurity
annotations:

//@Configuration
//@EnableWebSecurity
public class AppSecurityConfig extends
 WebSecurityConfigurerAdapter {
 // refer to sources
}

The use of the @Order annotation can be another option instead of
manually commenting the annotations in AppSecurityConfig. This also
generates a precedence rule whenever we have a series of security models,
although there are slight inconsistencies when @Order is used after their
roll-out.

Create another security model named AppSecurityModelA with the same in-2.
memory user details and WebSecurity URL exemptions, but with some
highlights on the HttpSecurity configuration for HTTPS security rules:

@Configuration
@EnableWebSecurity
public class AppSecurityModelA extends
 WebSecurityConfigurerAdapter{
 @Override
 protected void configure(AuthenticationManagerBuilder auth)
throws Exception {
 // refer to sources
 }
 @Override
 protected void configure(HttpSecurity http) throws
 Exception {
 http
 .requiresChannel()
 .anyRequest().requiresSecure()
 .and().authorizeRequests()
 .antMatchers("/login**", "/after**").permitAll()
 .anyRequest().authenticated()
 .and().formLogin()
 .loginPage("/login.html")

Securing Spring MVC Applications

[174]

 .defaultSuccessUrl("/deptform.html", false)
 .failureUrl("/login.html?error=true")
 .and()
 .logout().logoutUrl("/logout.html")
 .logoutSuccessUrl("/after_logout.html");
 http
 .portMapper()
 .http(8080).mapsTo(8443);
 http.csrf().disable();
 }
 @Override
 public void configure(WebSecurity web) throws
 Exception {
 // refer to sources
 }
}

Update SpringContextConfig by importing AppSecurityModelA, replacing3.
the previous security context definition:

@Import(value = { AppSecurityModelA.class })
@Configuration
@EnableWebMvc
@ComponentScan(basePackages = "org.packt.secured.mvc")
public class SpringContextConfig { }

Save all files. Then clean, install, and deploy the project.4.

Shut down Tomcat 9 and remove the previously deployed ch04 project
and its WAR file for this recipe to work. Clear also all the browser
sessions.

How it works...
This recipe highlights how Spring MVC transactions will behave even when a wrong HTTP
and port channel is accidentally used in executing the request. In the previous recipe, the
login request was executed through http://localhost:8080/ch04/login.html and
the security model did not allow this execution even with the correct user credentials. Since
our Tomcat 9.0 is using HTTPS, we need to include a solution in our security model that
will force redirection of all URL request transactions from HTTP at port 8080 to HTTPS
using port 8443. The easiest solution is to configure the http.requiresChannel()
method, which can restrict any requests from running on HTTP but with HTTPS instead.

Securing Spring MVC Applications

[175]

The requiresChannel() method outputs a ChannelRequestMatchRegistry class that
lists all the URL requests that can be executed in HTTPS. Some applications consider
/login.html as a non-HTTP request, thus the line
http.requiresChannel().antMatcher ("/login.html").requiresInsecure() is
indicated in the model. But in this recipe, we will include all URLs as part of the HTTP
transactions, thus the line
http.requiresChannel().anyRequest().requiresSecure() in our
AppSecurityModelA context. In an XML-based context definition, this process is
equivalent to the metadata:

<intercept‐url pattern="/**" access="isAuthenticated()"
requires‐channel="http"/>

What follows after the HTTPS registration is the typical authorizeRequests() invocation
asking for the usual authentication and authorization rules.

With regard to port matching, HttpSecurity also has a portMapper() method, which
forces a port to be redirected to another port, just like in our case wherein running requests
on port 8080 will just be executed forcedly to port 8443. When using XML-based Spring
Security configuration, port mapping is done through:

 <security:port-mappings>
 <security:port-mapping http="8080" https="8443"/>
 </security:port-mappings>

To wrap up, using this security model on a non-TLS Tomcat installation will give you:

Securing Spring MVC Applications

[176]

Customizing the authentication process
Using Spring Security's /login by default will just provide us with the built-in user
authentication and authorization processes. This whole operation is being controlled by
springSecurityFilterChain's built-in AuthenticationManager class that matches the
user credentials declared as in-memory users and roles to the incoming login credentials.

But there are instances where login processing must be customized to cater for some special
validation procedures, such as explicitly banning some users or roles and sanitation of login
credentials. This recipe will show you how to override the internal /login processing.

Getting started
Use the same project, ch04, and create a new security model that will implement a chain of
authentication processing using providers and a custom authentication manager.

How to do it...
Let us now implement another security model that uses a custom authentication process
instead of the default:

First, create a new security context definition, AppSecurityModelB, which1.
presents the overriding of the http.formLogin().loginProcessingUrl()
and the customization of the authentication manager and its providers:

@Configuration
@EnableWebSecurity
public class AppSecurityModelB extends
 WebSecurityConfigurerAdapter{
 @Autowired
 private AuthenticationProvider appAdminProvider;
 @Autowired
 private AuthenticationProvider appHRProvider;
 @Autowired
 private AuthenticationManager appAuthenticationMgr;
 @Override
 protected void configure(AuthenticationManagerBuilder auth)
throws Exception { }

 @Override
 protected void configure(HttpSecurity http) throws Exception
{

Securing Spring MVC Applications

[177]

 http
 .authorizeRequests()
 .antMatchers("/login_form**","/after**")
 .permitAll()
 .anyRequest().fullyAuthenticated()
 .and()
 .formLogin()
 .loginPage("/login_form.html")
 .loginProcessingUrl("/login_process")
 .defaultSuccessUrl("/deptform.html")
 .failureUrl("/login_form.html?error=true")
 .and()
 .logout().logoutUrl("/logout.html")
 .logoutSuccessUrl("/after_logout_url.html");
 http.csrf().disable();
 }
 @Override
 public void configure(WebSecurity web) throws Exception {
 // refer to sources
 }
 @Override
 protected AuthenticationManager authenticationManager()
 throws Exception {
 return new ProviderManager(Arrays.asList(
 appAdminProvider, appHRProvider),
 appAuthenticationMgr);
 }
}

In the authenticationManager() method, observe the order of the injected
custom providers inside the
org.springframework.security.authentication.ProviderManager's
constructor. The order of execution starts from the leftmost provider up to the
parent authentication manager appAuthenticationMgr. Notice also that all the
user credentials and roles are not configured using
AuthenticationManagerBuilder anymore.

Be sure to save this class inside org.packt.secured.mvc.core.

Securing Spring MVC Applications

[178]

Implement the preceding two providers indicated, namely AppAdminProvider2.
and AppHRProvider, and save them in
org.packt.secured.mvc.core.manager. The first provider,
AppAdminProvider, just checks if the user is admin with a password of "admin".
If the credential is correct, it sets its ROLE_ADMIN and passes the authentication
chain its Authentication details; otherwise, it throws
BadCredentialsException:

@Component
public class AppAdminProvider implements AuthenticationProvider
{

 @Override
 public Authentication authenticate(Authentication
 authentication) throws AuthenticationException {
 String name = authentication.getName();
 String password =
 authentication.getCredentials().toString();
 if (name.equalsIgnoreCase("admin") &&
 password.equalsIgnoreCase("admin")) {
 Set<SimpleGrantedAuthority> authorities =
new HashSet<>();
 authorities.add(new
 SimpleGrantedAuthority("ROLE_ADMIN"));
 return new
 UsernamePasswordAuthenticationToken(name,
 password, authorities);
 } else {
 throw new BadCredentialsException("Invalid Admin
 User");
 }
 }

 @Override
 public boolean supports(Class<?> authentication) {
 return authentication.equals(
 UsernamePasswordAuthenticationToken.class);
 }
}

Securing Spring MVC Applications

[179]

The second, AppHRProvider, checks if the user is using the hradmin account,3.
builds its user roles, and returns its Authentication details. The same
BadCredentialsException is thrown if it is not the valid user:

@Component
public class AppHRProvider implements AuthenticationProvider {

 @Override
 public Authentication authenticate(Authentication
 authentication) throws AuthenticationException {

 // refer to sources
 if (name.equalsIgnoreCase("hradmin") &&
 password.equalsIgnoreCase("hradmin")) {
 Set<SimpleGrantedAuthority> authorities =
 new HashSet<>();
 authorities.add(
 new SimpleGrantedAuthority("ROLE_HR"));
 return new UsernamePasswordAuthenticationToken(name,
 password,authorities);
 } else {
 throw new BadCredentialsException("Invalid HR User");
 }
 }

 @Override
 public boolean supports(Class<?> authentication) {
 // refer to sources
 }
}

If a diamond operator (<>) that is used to simplify the instantiation of generic
classes does not work, configure Maven Compiler Plugin in pom.xml to contain:

<configuration>
 <source>1.8</source>
 <target>1.8</target>
</configuration>

Securing Spring MVC Applications

[180]

Or, add the following POM properties:

<properties>
 <maven.compiler.source>1.8</maven.compiler.source>
 <maven.compiler.target>1.8</maven.compiler.target>
</properties>

The security model will not be complete without the custom implementation of4.
the parent provider, the AppAuthenticationManager. This authentication
manager builds the whole user and their corresponding user account just as
AuthenticationManagerBuilder did previously, with the in-memory user
credentials:

@Component
public class AppAuthenticationMgr
 implements AuthenticationManager {
 @Override
 public Authentication authenticate(Authentication
 authentication) throws AuthenticationException {

 System.out.println(AppAuthenticationMgr.class);
 String name = authentication.getName();
 String password =
 authentication.getCredentials().toString();
 if (name.equalsIgnoreCase("sjctrags") &&
 password.equalsIgnoreCase("sjctrags")) {
 Set<SimpleGrantedAuthority> authorities =
 new HashSet<>();
 authorities.add(new
 SimpleGrantedAuthority("ROLE_USER"));
 return new UsernamePasswordAuthenticationToken(name,
 password, authorities);
 } else if (name.equalsIgnoreCase("admin") &&
 password.equalsIgnoreCase("admin")) {
 Set<SimpleGrantedAuthority> authorities =
 new HashSet<>();
 authorities.add(new
 SimpleGrantedAuthority("ROLE_ADMIN"));
 return new UsernamePasswordAuthenticationToken(name,
 password, authorities);
 } else if (name.equalsIgnoreCase("hradmin") &&
 password.equalsIgnoreCase("hradmin")) {
 Set<SimpleGrantedAuthority> authorities =
 new HashSet<>();
 authorities.add(new
 SimpleGrantedAuthority("ROLE_HR"));
 return new UsernamePasswordAuthenticationToken(name,

Securing Spring MVC Applications

[181]

 password, authorities);
 } else if(name.equalsIgnoreCase("guest")){
 Set<SimpleGrantedAuthority> authorities =
 new HashSet<>();
 authorities.add(new
 SimpleGrantedAuthority("ROLE_ANONYMOUS"));
 return new AnonymousAuthenticationToken(name,
 "ANONYMOUS", authorities);
 } else{
 throw new BadCredentialsException("Not Valid User");
 }
 }
}

The custom AuthenticationManager includes guest as its anonymous
user to be used, in the later recipes.

Update the SpringConfigContext to accommodate this security model. Also5.
add the package of the provider in its @ComponentScan annotation:

@Import(value = { AppSecurityModelB.class })
@Configuration
@EnableWebMvc
@ComponentScan(basePackages = {"org.packt.secured.mvc",
 "org.packt.secured.mvc.core.manager" }
public class SpringContextConfig { }

Comment on all the class-level annotations of the previous security model
classes to avoid conflict or use @Order to establish a series of security
model hierarchies.

Create a separate login view (/login_form.html) that will highlight the6.
overridden /login URL for login processing:

<%@ page language="java" contentType="text/html;
charset=ISO-8859-1" pageEncoding="ISO-8859-1"%>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>
<%@ taglib prefix="spring"
uri="http://www.springframework.org/tags" %>
<%@ taglib prefix="form"
uri="http://www.springframework.org/tags/form"%>
<!DOCTYPE html>
<html>

Securing Spring MVC Applications

[182]

<head>
<meta http-equiv="Content-Type" content="text/html;
charset=ISO-8859-1">
<title>Just Another Login Form</title>
</head>
<body>
 <c:if test="${ not empty errorMsg }">
 <c:out value='${ errorMsg }'/>

 </c:if>
 <form action="/ch04/login_process" method='POST'>
 <table>
 <tr>
 <td>User:</td>
 <td><input type='text' name='username' value=''>
 </td>
 </tr>
 <tr>
 <td>Password:</td>
 <td><input type='password' name='password' />
 </td>
 </tr>
 <tr>
 <td colspan='2'><input name="submit" type="submit"
 value="submit" />
 </td>
 </tr>
 <tr>
 <td colspan='2'><input name="reset" type="reset" />
 </td>
 </tr>
 </table>
 </form>
</body>
</html>

Save this file inside src/main/webapp/login_process.7.
Update the LoginController by implementing a GET request method for the8.
/login_form.html view page:

@RequestMapping(value = {"/login_form.html"},
 method = RequestMethod.GET)
public String login_form(@RequestParam(name="error",
 required=false) String error, Model model) {
 try {
 if (error.equalsIgnoreCase("true")) {
 String errorMsg = "Login Error";
 model.addAttribute("errorMsg", errorMsg);

Securing Spring MVC Applications

[183]

 }else{
 model.addAttribute("errorMsg", error);
 }
 } catch (NullPointerException e) {
 return "login_form_url";
 }
 return "login_form_url";
}

Create a separate after-logout view page9.
(src\main\webapp\login_process\after_logout_form.html) to redirect
the user to /login_form.html. Also, implement a typical @Controller of this
new view page. Make the previous controllers as reference.
Update views.properties and messages_en_US.properties for the new10.
view.
Save all files. clean, build, and deploy. Run11.
https://localhost:8443/ch04/login_form.html to test the custom
AuthenticationProvider and the overridden login-processing-url. Try
logging in using all the user credentials indicated in the
AuthenticationManagerBuilder and observe what happens.

How it works...
First, the recipe encourages developers to override the default URL /login, the default
login processing for Spring Security 4.x. To avoid conflicts with the previous configuration,
we must declare a new URL through the http.formLogin().loginProcessingUrl()
method, given that this URL is non-existent and non-controller-based. This new processing
URL must be executed using a POST request; otherwise, a HTTP status 405 will be
thrown.

Securing Spring MVC Applications

[184]

Second, the recipe highlights the customization of the whole authentication and
authorization process. The Spring Security architecture lies mainly with who will use the
MVC application and what access levels each user will have. To depend on the default
framework mechanism is not acceptable, especially in cases where the security requirement
becomes complex and unconditional. In order for the module to comply with the security
requirement, it is recommended to implement a customized version of the
AuthenticationManager. This class only requires one method to be overridden, and that
is authenticate(), which returns an Authentication object once the access is allowed,
throws AuthenticationException if the access is not allowed, or returns a null object for
certain conditions.

AuthenticationManager delegates the authentication process to a chain of providers,
which needs to be implemented to avoid a fat custom AuthenticationManager. To inject
the custom manager and its providers, WebSecurityConfigurerAdapter's
authenticationManager() must be overridden to establish the new authentication chain
comprised of the list of providers and the custom parent authentication manager.

This recipe is designed so that the first provider to be executed during /login_process is
the AppAdminProvider. This provider will redirect the user to /deptform.html once the
user credentials are considered valid; otherwise, the next provider, AppHRProvider, will be
next to run its authenticate() method. An exception must be thrown from
AppHRProvider to trigger the execution of AppAuthenticationManager, which gives us
the conclusion that the last to authenticate() is the parent authentication manager.
Returning null values will also trigger the authentication chain. The whole chaining
process is indicated in the following diagram:

The only problem with designing authentication chaining is when all the providers and
managers do not cooperate to achieve one security goal. The tasks of each node in the chain
must be mutually-exclusive and must not create inconsistencies and conflicts that can make the
login/logout mechanism out of control.

In this recipe, every AuthenticationException thrown by each provider or the parent
manager leads to the execution of the failureUrl(). This exception is not a normal
runtime exception and can only be caught inside the chain. Some implementations of
AuthenticationException that can be used to classify login credential-related exceptions
are AuthenticationServiceException, BadCredentialsException,
SessionAuthenticationException, and UsernameNotFoundException.

Securing Spring MVC Applications

[185]

Customizing the Spring Security authentication does not only involve the implementation
of the authentication chain but also the building of user credentials and their roles. This
recipe eliminated the creation of an in-memory user databank but instead created an
internal and programmatical way of building user credentials through the use of providers
and authentication managers.

Implementing authentication filters, login
success, and failure handlers
The previous recipe taught us how to create a custom authentication manager and a chain
of providers that can help control the different gateways of authentication and
authorization processes. Now, we will expand on customization, covering the setup of a
filter stack and its handlers.

Getting started
This recipe will create a security model out of Spring Security 4.2.2, where there is a filter
chain of security transactions which includes all the managers and providers of the
previous recipe, with the addition of security objects called handlers. This recipe is the most
important part of this chapter when it comes to stretching the flexibility of the security
architecture of the Spring Security framework.

How to do it...
Let us now add important supporting components to the authentication process established
by the previous recipe:

Create and apply two filters needed to establish a security filter chain in this new1.
security model. Implement our first filter interface,
org.springframework.security.web.authentication.UsernamePasswor

dAuthenticationFilter, which will intercept the authentication and
authorization process every time /login is called. Save this
AppAuthenticationFilter class in org.packt.secured.mvc.handler
package:

public class AppAuthenticationFilter extends
 UsernamePasswordAuthenticationFilter {

Securing Spring MVC Applications

[186]

 @Override
 protected void
 successfulAuthentication(HttpServletRequest
 request, HttpServletResponse response, FilterChain
 chain, Authentication authResult) throws IOException,
 ServletException {
 Collection<? extends GrantedAuthority> authorities =
 authResult.getAuthorities();
 List<String> roles = new ArrayList<String>();
 for (GrantedAuthority a : authorities) {
 roles.add(a.getAuthority());
 }
 String name = obtainPassword(request);
 String password = obtainUsername(request);
 UsernamePasswordAuthenticationToken userDetails =
 new UsernamePasswordAuthenticationToken(name, password,
 authorities);
 setDetails(request, userDetails);
 chain.doFilter(request, response);
 }

 @Override
 protected void
 unsuccessfulAuthentication(HttpServletRequest
 request, HttpServletResponse response,
 AuthenticationException failed) throws IOException,
 ServletException {

 response.sendRedirect("/ch04/login.html?error=true");
 }
 @Override
 public Authentication
 attemptAuthentication(HttpServletRequest
 request, HttpServletResponse response)
 throws AuthenticationException {
 String name = obtainPassword(request);
 String password = obtainUsername(request);
 SecurityContext context =
 SecurityContextHolder.getContext();
 Authentication auth = null;
 if(context.getAuthentication() == null){
 auth = new UsernamePasswordAuthenticationToken(
 name, password);
 setDetails(request,
 (UsernamePasswordAuthenticationToken) auth);
 }else{
 auth = (AnonymousAuthenticationToken)
 context.getAuthentication();

Securing Spring MVC Applications

[187]

 return auth;
 }
 return auth;
 }
}

This class has three overridden methods responsible for filtering incoming
authentication requests, namely attemptAuthentication(), which is executed
once an anonymous user attempts to access the /login,
successfulAuthentication(), which runs after an authentication has been
created either from an authenticated or valid anonymous user, and lastly,
unsuccessfulAuthentication(), which is responsible for global error page
redirection, equivalent to executing http.formLogin.failureUrl().
Authentication is classified into two types,
org.springframework.security.authentication.UsernamePasswordAut

henticationToken and
org.springframework.security.authentication.AnonymousAuthentica

tionToken.

Do not apply @Component on any filter implementation because it will
give you java.lang.IllegalArgumentException:
authenticationManager must be specified.

The next custom filter implementation in our filter stack is the2.
org.springframework.security.web.authentication.AnonymousAuthen

ticationFilter, which is responsible for managing anonymous user access.
Save this class AppAnonAuthFilter together with the previous filter:

public class AppAnonAuthFilter
 extends AnonymousAuthenticationFilter {
 private String principal;
 private String key;
 private List<GrantedAuthority> authorities;
 public AppAnonAuthFilter(String key) {
 super(key);
 this.key = key;
 }
 public AppAnonAuthFilter(String key, Object principal,
 List<GrantedAuthority> authorities) {
 super(key, principal, authorities);
 this.key = key;
 this.principal = principal.toString();
 this.authorities = authorities;
 }

Securing Spring MVC Applications

[188]

 @Override
 protected Authentication
 createAuthentication(HttpServletRequest request) {
 if(principal.equalsIgnoreCase(
 request.getParameter("username"))){
 AnonymousAuthenticationToken authTok =
 new AnonymousAuthenticationToken(key, principal,
 authorities);
 SecurityContext context =
 SecurityContextHolder.getContext();
 context.setAuthentication(authTok);
 return authTok;
 }
 return null;
 }
}

This class creates an Authentication object once an anonymous account guest
has been detected; otherwise, it just throws null to the Spring Security container.
This filter must be programmed not to create conflict with the processes of the
UsernamePasswordAuthenticationFilter class.

Do not apply @Component on any filter implementation because it will
give you a HTTP status 500.

As helper objects, handlers are triggered by security models every time an3.
Authentication object is thrown. A custom success authentication handler
assists filter chains in defining the different default success URLs after a
successful user authentication process. This class also overrides the
formLogin.defaultSuccessUrl() and gives the application several options of
default view pages depending on the roles of the users:

@Component
public class CustomSuccessHandler extends
 SimpleUrlAuthenticationSuccessHandler {
 private RedirectStrategy redirectStrategy =
new DefaultRedirectStrategy();
 @Override
 protected void handle(HttpServletRequest request,
 HttpServletResponse response, Authentication
 authentication) throws IOException {
 String targetUrl = targetUrl(authentication);
 if (response.isCommitted()) {
 System.out.println("Can't redirect");

Securing Spring MVC Applications

[189]

 return;
 }
 redirectStrategy.sendRedirect(request, response,
 targetUrl);
 }
 protected String targetUrl(Authentication
 authentication) {
 String url = "";
 Collection<? extends GrantedAuthority> authorities =
 authentication.getAuthorities();
 List<String> roles = new ArrayList<String>();
 for (GrantedAuthority a : authorities) {
 roles.add(a.getAuthority());
 }
 if (isUserRole(roles)) {
 // add user-related transactions here
url = "/deptform.html";
 } else if (isAdminRole(roles)){
 // add admin-related transactions here
 url = "/deptform.html";
 } else if (isHrAdminRole(roles)){
 // add admin-related transactions here
url = "/deptform.html";
 } else{
 url = "/deptform.html";
 }
 return url;
 }
 // refer to sources
}

Save this file in org.secured.mvc.core.handler.4.
Another handler called the logout handler must be custom implemented to5.
provide routes once /logout is triggered, depending on the roles of the users.
This class overrides formLogin.logoutSuccessUrl():

@Component
public class CustomLogoutHandler extends
 SimpleUrlLogoutSuccessHandler {
 private RedirectStrategy redirectStrategy =
new DefaultRedirectStrategy();
 @Override
 public void onLogoutSuccess(HttpServletRequest request,
 HttpServletResponse response, Authentication
 authentication) throws IOException, ServletException {
 String targetUrl = targetUrl(authentication);
 if (response.isCommitted()) {

Securing Spring MVC Applications

[190]

 System.out.println("Can't redirect");
 return;
 }
 redirectStrategy.sendRedirect(request, response,
 targetUrl);
 }
 protected String targetUrl(Authentication authentication) {
 String url = "";
 Collection<? extends GrantedAuthority> authorities =
 authentication.getAuthorities();
 List<String> roles = new ArrayList<String>();
 for (GrantedAuthority a : authorities) {
 roles.add(a.getAuthority());
 }

 if (isUser(roles)) {
 url = "/after_logout.html?message="
+ "Thank your, User!";
 } else if (isAdmin(roles)){
 url = "/after_logout.html?message="
+ "Thank you, Admin!";
 } else if (isHrAdmin(roles)){
 url = "/after_logout.html?message="
+ "Thank you, HR!";
 }
 return url;
 }
 // refer to sources
}

The last handler essential to this recipe is the handler that will be executed when6.
the user /login fails. Though this class has a limited scope of work, this can be
useful in scrutinizing error messages depending on the nature of the validation
error or the type of AuthenticationException:

@Component
public class CustomFailureHandler extends
 SimpleUrlAuthenticationFailureHandler {
 private RedirectStrategy redirectStrategy = new
 DefaultRedirectStrategy();
 @Override
 public void onAuthenticationFailure(HttpServletRequest
 request, HttpServletResponse response,
 AuthenticationException exception) throws IOException,
 ServletException {

 String targetUrl = "";

Securing Spring MVC Applications

[191]

 if(exception instanceof BadCredentialsException){
 targetUrl = "/login.html?error="
 + exception.getMessage();
 }
 else {
 targetUrl = "/login.html?error=true";
 }

 // refer to sources
 redirectStrategy.sendRedirect(request, response,
 targetUrl);
 }
}

Together with the previous custom authentication manager and providers,7.
construct the proper model that will highlight the whole custom security
architecture:

@Configuration
@EnableWebSecurity
public class AppSecurityModelC extends
 WebSecurityConfigurerAdapter {
 // refer to sources
 @Override
 protected void configure(AuthenticationManagerBuilder auth)
throws Exception { }
 @Override
 protected void configure(HttpSecurity http) throws Exception
{
 http
 .anonymous().authorities("ROLE_ANONYMOUS")
 .and()
 .authorizeRequests()
 .antMatchers("/login**", "/after**").permitAll()
 .antMatchers("/deptanon.html").anonymous()
 .anyRequest().authenticated()
 .and()
 .formLogin()
 .loginPage("/login.html")
 .defaultSuccessUrl("/deptform.html")
 .failureHandler(customFailureHandler)
 .successHandler(customSuccessHandler)
 .and()
 .addFilterBefore(appAnonAuthFilter(),
 UsernamePasswordAuthenticationFilter.class)
 .addFilter(appAuthenticationFilter(
authenticationManager()))
 .logout().logoutUrl("/logout.html")

Securing Spring MVC Applications

[192]

 .logoutSuccessHandler(customLogoutHandler)
 .and()
 .exceptionHandling().authenticationEntryPoint(
 setAuthPoint());
 http.csrf().disable();
 }
}

Implement the authentication filter that will assess all incoming valid users.8.
Include this inside the AppSecurityModelC context definition:

@Bean
public UsernamePasswordAuthenticationFilter
 appAuthenticationFilter(AuthenticationManager authMgr) {
 AppAuthenticationFilter filter =
 new AppAuthenticationFilter();
 filter.setRequiresAuthenticationRequestMatcher(
 new AntPathRequestMatcher("/login.html", "POST"));
 filter.setAuthenticationManager(authMgr);
 return filter;
}

Create another filter that will assess users that are not considered valid users and9.
will allow guest or anonymous access to the application:

@Bean
public AnonymousAuthenticationFilter
 appAnonAuthFilter(){
 List<GrantedAuthority> anonAuth = new ArrayList<>();
 anonAuth.add(new
 SimpleGrantedAuthority("ROLE_ANONYMOUS"));
 AppAnonAuthFilter anonFilter =
 new AppAnonAuthFilter("ANONYMOUS","guest",anonAuth);
 return anonFilter;
}

To register into Spring Security container the preceding filters, create an10.
authentication manager by overriding the authenticationManager() of the
WebSecurityConfigurerAdapter:

@Override
protected AuthenticationManager authenticationManager()
 throws Exception {
 // refer to sources
}

Securing Spring MVC Applications

[193]

Since we have bypassed the default filter configuration of the Spring Security11.
framework, it is mandatory to tell the security platform when to trigger either of
the filters implemented by injecting a new AuthenticationTrustResolver:

@Bean
public AuthenticationTrustResolver trustResolver() {
 return new AuthenticationTrustResolver() {

 @Override
 public boolean isRememberMe(final Authentication
authentication) {
 return true;
 }

 @Override
 public boolean isAnonymous(final Authentication
authentication) {
 Collection<? extends GrantedAuthority> auths =
 authentication.getAuthorities();
 List<String> roles = new ArrayList<String>();
 for (GrantedAuthority a : auths) {
 roles.add(a.getAuthority());
 }
 if(roles.contains("ROLE_ANONYMOUS") || roles.size() ==
0){
 return true;
 }
 else{
 return false;
 }
 }
 };
}

Together with AuthenticationTrustResolver, implementation is a new12.
AuthenticationEntryPoint to tell the platforms what URL to trigger with the
custom filters created in preceding steps.

@Bean
public AuthenticationEntryPoint setAuthPoint(){
 return new AppAuthPoint("/login.html");
}

Securing Spring MVC Applications

[194]

Create an additional @Controller for the request transactions of our13.
anonymous account guest:

@Controller
public class AnonymousController {
 @RequestMapping(value="/deptanon.html")
 public String anonPage(){
 return "dept_anon";
 }
}

Create the additional view page /deptanon.html for the default view page of14.
our anonymous account inside the src/main/webapp/anonymous_sites
directory:

<html><head>
<meta http-equiv="Content-Type" content="text/html;
charset=ISO-8859-1">
<title>Anonymous</title>
</head>
<body>
 <h1>Anonymous Account</h1>
 <p>This content is for our beloved guest wants to check
our DEPARTMENT database. Enjoy!
 <a href="<c:url value='/login.html'/>">You want some more
about us? Login!.
</body>
</html>

Update the views.properties for the added view details.15.
Be sure to update the SpringContextConfig by importing the new16.
AppSecurityModelC and including org.packt.secured.mvc.core.handler
in its @ComponentScan.
Save all files. Just like in the recent recipes, always clear the browser sessions and17.
remove the previously deployed ch04 project in the Tomcat 9 server. clean,
build, and deploy the Maven project.

Securing Spring MVC Applications

[195]

How it works...
The main idea is to create a customized filter chain that will manage the whole access to the
application. In this recipe, the authentication procedure for valid users and the anonymous
account has been overridden to accommodate some details not inherent to the framework.
For instance, the framework recognizes anonymous access, but it does not provide a set of
rules for it. The recipe creates an anonymous guest account whose access to the application
will be redirected by
org.springframework.security.web.AuthenticationEntryPoint to its own content
page, which is /deptanon.html. This conveys that the anonymous access is restricted
from accessing the /deptform.html, which is only for the authenticated users. The
assessment of any anonymous access is the major responsibility of
AnonymousAuthenticationFilter, with the intervention also of the
UsernamePasswordAuthenticationFilter. The former checks first if the authentication
request is a guest or is bearing an anonymous access key before the authentication process
creates the AnonymousAuthenticationToken. Otherwise, it throws null for the latter to
create a UsernamePassswordAuthenticationToken, indicating that the access is not
anonymous and must undergo the authentication process by the manager and its providers.
Thus, its configuration will not work without the injection of the custom
AuthenticationManager and AuthenticationProvider provided in the previous
recipe:

Securing Spring MVC Applications

[196]

The validation of whether the Authentication is anonymous or not is the ultimate job of
org.springframework.security.authentication.AuthenticationTrustResolver

, which completes the puzzle of why the filters and the authentication providers
communicate each other. The AuthenticationTrustResolver evaluates all the
Authentication objects thrown by filters and providers into the container at runtime. It is
also the exact object that helps the AuthenticationEntryPoint determine when to
redirect a user to an anonymous page.

Security filters must be implemented properly so as not to contradict each other or to
interfere with the results of some filter methods. To avoid unexpected results,
HttpSecurity has methods (custom filters) that can set the order of filter execution, and
these are:

addFilter: This adds a custom Spring Security filter anywhere in the filter chain
addFilterBefore: This adds a custom filter before an existing specified filter
class in the chain
addFilterAfter: This adds a custom filter after an existing specified filter class
in the chain
addFilterAt: This adds a custom filter at the location of an existing specified
filter class in the chain

On the other hand, the security chain will not be complete without the existence of the
custom handlers, such as CustomSuccessHandler, CustomFailureHandler, and
CustomLogoutHandler. Both CustomSucessHandler and CustomFailureHandler are
triggered to manage the different page redirections during the login processing while
CustomLogoutHandler provides different logout redirections once the /logout process is
executed. The framework's DefaultRedirectStrategy is used to manage the redirection
of each handler without specifying the context paths.

Because of Spring Security's flexibility, its filter chain may contain several custom chains as
needed by the application, and some of the widely used ones are LogoutFilter,
ConcurrentSessionFilter, X509AuthenticationFilter,
CasAuthenticationFilter, and JaasApiIntegrationFilter.

Securing Spring MVC Applications

[197]

These security filters can store specific user details and information to SecurityContext
and can be accessed by any of the components of the application. This object can only be
accessed through
org.springframework.security.core.context.SecurityContextHolder.

Creating user details
The previous recipes introduced us to how to store user details using in-memory and
providers and filters. This time the correct manner of storing user credentials and roles will
be showcased without bothering with the providers and filters.

Getting started
Use the Maven project ch04 again and create another security model imposing the use of
org.springframework.security.core.userdetails.UserDetails and
org.springframework.security.core.userdetails.UserDetailsService.

How to do it...
Instead of hardcoding the user details inside the security model, we will implement a
service layer that will programmatically generate a username and password for the
application:

Let us create the UserService interface, as follows that will generate hardcoded1.
data for the UserDetails:

public interface UserService {
 public String getUserCredentials(String username);
 public Set<String> getuserRoles(String username);
}

Save this file in our org.secured.mvc.service since this is just an application-2.
based native service.
Then, implement the interface through UserServiceImpl as follows:3.

@Service("userService")
public class UserServiceImpl implements UserService{

 @Override

Securing Spring MVC Applications

[198]

 public String getUserCredentials(String username) {
 Map<String, String> credentials = new HashMap<>();
 credentials.put("sjctrags", "sjctrags");
 credentials.put("admin", "admin");
 credentials.put("hradmin", "hradmin");
 return credentials.get(username);
 }

 @Override
 public Set<String> getuserRoles(String username) {
 Map<String, Set<String>> roles = new HashMap<>();
 Set<String> userA = new HashSet<>();
 Set<String> userB = new HashSet<>();
 Set<String> userC = new HashSet<>();
 userA.add("ROLE_USER");
 userB.add("ROLE_ADMIN");
 userB.add("ROLE_USER");
 userC.add("ROLE_HR");
 userC.add("ROLE_ADMIN");
 roles.put("sjctrags", userA);
 roles.put("admin", userB);
 roles.put("hradmin", userC);
 return roles.get(username);
 }
}

Now, create an implementation of UserDetailsService, which retrieves the4.
user information through its username and provides this corresponding
information to SecurityContext:

@Service("authUserService")
public class AuthUserService implements UserDetailsService {
 @Autowired
 private UserService userService;

 @Override
 public UserDetails loadUserByUsername(String username)
 throws UsernameNotFoundException {
 String password =
 userService.getUserCredentials(username);
 UserDetails user = new User(username, password, true,
 true,
 true, true, getAuthorities(username));
 return user;
 }
 private Set<GrantedAuthority> getAuthorities(String
username){
 Set<GrantedAuthority> authorities =

Securing Spring MVC Applications

[199]

 new HashSet<GrantedAuthority>();
 for(String role : userService.getuserRoles(username)) {
 GrantedAuthority grantedAuthority =
 new SimpleGrantedAuthority(role);
 authorities.add(grantedAuthority);
 }
 return authorities;
 }
}

Place this class inside the org.packt.secured.mvc.core.service package.5.
We will be injecting this class inside our Spring Security container.
Design now the AppSecurityModelD that will utilize UserDetails and6.
UserDetailsService for storing and retrieving user identification:

@Configuration
@EnableWebSecurity
public class AppSecurityModelD extends
 WebSecurityConfigurerAdapter {
 // refer to sources
@Autowired
@Qualifier("authUserService")
private UserDetailsService userDetailsService;
 @Override
 protected void configure(AuthenticationManagerBuilder auth)
throws Exception {
 auth.userDetailsService(userDetailsService);
 auth.eraseCredentials(false);
 }
 @Override
 protected void configure(HttpSecurity http) throws Exception
{
 http
 .authorizeRequests()
 .antMatchers("/login**", "/after**").permitAll()
 .anyRequest().authenticated()
 .and()
 .formLogin()
 .loginPage("/login.html")
 .defaultSuccessUrl("/deptform.html")
 .failureUrl("/login.html?error=true")
 .successHandler(customSuccessHandler)
 .and()
 .logout().logoutUrl("/logout.html")
 .logoutSuccessHandler(customLogoutHandler);
 http.csrf().disable();
 }

Securing Spring MVC Applications

[200]

 @Override
 public void configure(WebSecurity web) throws Exception {
 // refer to sources
 }
}

For evidence that UserDetails have been injected into SecurityContext,7.
utilize the CustomSuccessHandler and CustomLogoutHandler of the previous
recipe. Modify a little bit the CustomLogoutHandler to extract the user
credentials and roles using the java.security.Principal object:

@Component
public class CustomLogoutHandler extends
 SimpleUrlLogoutSuccessHandler {
 private RedirectStrategy redirectStrategy =
 new DefaultRedirectStrategy();
 @Override
 public void onLogoutSuccess(HttpServletRequest request,
 HttpServletResponse response, Authentication
 authentication) throws IOException, ServletException {
 String targetUrl = targetUrl(authentication);
 // refer to sources
 redirectStrategy.sendRedirect(request, response,
 targetUrl);
 }
 protected String targetUrl(Authentication authentication) {
 UserDetails p =
 (UserDetails)authentication.getPrincipal();
 String username = p.getUsername();
 String password = p.getPassword();
 String url = "";
 Collection<? extends GrantedAuthority> authorities =
 p.getAuthorities();
 List<String> roles = new ArrayList<String>();
 for (GrantedAuthority a : authorities) {
 roles.add(a.getAuthority());
 }
 if (isUser(roles)) {
 url = "/after_logout.html?message=" + " Thank
 your, " + username + " with password " + password
 +" and role(s):" + roles;
 }
 // refer to sources
 return url;
 }
 // refer to sources
}

Securing Spring MVC Applications

[201]

Be sure to update SpringContextConfig by importing the new8.
AppSecurityModelD and including the
org.packt.secured.mvc.core.service in its @ComponentScan.
Save all files. clean, build, and deploy the Maven project.9.

How it works...
This recipe opens other options of storing and managing user information and credentials
aside from the in-memory or hardcoding way. This is the most appropriate way to manage
user details and authorities through the use of the UserDetailsService interface, which
injects UserDetails into the SecurityContext. The UserDetailsService is an
interface used in building the user account through the user's username, password, and
GrantedAuthorities. It has a required loadUserByUsername() method which asks for
the username of the user to build and inject into the container an object called
UserDetails. This UserDetails is another interface that holds the user information,
which is later encapsulated into authentication objects found in filters, providers, and
handlers. A default implementation of this interface is
org.springframework.security.core.userdetails.User, which is capable of saving
the username, password, and granted authorities together with some toggle values as to
whether the object is lockable and/or within expiration.

Generating encrypted passwords
This recipe explains how to protect the plain text password using different hashing
algorithms with or without using salt.

Getting started
Use the same ch04 project, applying a different security model which focuses on how to
inject an encryption algorithm into the security container to enable password encoding and
matching during the authentication process.

Securing Spring MVC Applications

[202]

How to do it...
The following recipe shows how to create an encrypted password:

To implement an encrypted authentication, let us start with a custom class,1.
AppPasswordEncoder, that serves as a compendium of some popular
PasswordEncoder APIs:

public class AppPasswordEncoder {

 public String md5Encoder(String password, String salt) {
 Md5PasswordEncoder md5PasswordEncoder =
 new Md5PasswordEncoder();
 md5PasswordEncoder.setEncodeHashAsBase64(true);
 md5PasswordEncoder.setIterations(32);
 String encoded =
 md5PasswordEncoder.encodePassword(password,salt);
 return encoded;
 }
 public String bcryptEncoder(String password) {
 BCryptPasswordEncoder bCryptPasswordEncoder =
 new BCryptPasswordEncoder();
 String encoded =
 bCryptPasswordEncoder.encode(password);
 return encoded;
 }
 public String standardEncoder(String password) {
 StandardPasswordEncoder standardPasswordEncoder =
 new StandardPasswordEncoder();
 String encoded =
 standardPasswordEncoder.encode(password);
 return encoded;
 }
}

Among these three built-in common PasswordEncoder, it is only
Md5PasswordEncoder that has support for custom
org.springframework.security.authentication.dao.SaltSource. The
rest have a default internal salt generation. Save this file inside the
org.packt.secured.mvc.core.password package.

Securing Spring MVC Applications

[203]

Slightly modify the getUserCredentials() method of UserServiceImpl to2.
include the encoded password for each user. Md5PasswordEncoder is used for
this recipe:

@Service("userService")
public class UserServiceImpl implements UserService{

 @Override
 public String getUserCredentials(String username) {
 Map<String, String> credentials = new HashMap<>();
 AppPasswordEncoder encoder = new AppPasswordEncoder();
 // Without salt
 /*
 credentials.put("sjctrags",
encoder.md5Encoder("sjctrags", null));
 credentials.put("admin",
encoder.md5Encoder("admin", null));
 credentials.put("hradmin",
encoder.md5Encoder("hradmin", null));
 */
 // With Salt (username as salt)
 credentials.put("sjctrags",
encoder.md5Encoder("sjctrags", "sjctrags"));
 credentials.put("admin",
encoder.md5Encoder("admin", "admin"));
 credentials.put("hradmin",
encoder.md5Encoder("hradmin", "hradmin"));
 return credentials.get(username);
 }

 @Override
 public Set<String> getuserRoles(String username) {
 // refer to sources
 }
}

This recipe will be applying salt for every hashing procedure of
Md5PasswordEncoder to strengthen the randomness of the hash generation. To
disable salting, just set the second parameter of md5Encoder() to null.

Securing Spring MVC Applications

[204]

Now, create the security model AppSecurityModelE that will allow injection of3.
the Md5PasswordEncoder bean into the container in order to encode the
password of our UserDetails:

@Configuration
@EnableWebSecurity
public class AppSecurityModelE extends
 WebSecurityConfigurerAdapter{

 // refer to sources
 @Override
 protected void configure(AuthenticationManagerBuilder auth)
throws Exception {
 // Hashing without salt
 // auth.userDetailsService(userDetailsService)
 // .passwordEncoder(md5PasswordEncoder());

 // Hashing with salt
 auth.authenticationProvider(authProvider());
 auth.eraseCredentials(false);
 }
 @Override
 protected void configure(HttpSecurity http) throws Exception
{
 // refer to sources
 }
 @Override
 public void configure(WebSecurity web) throws Exception {
 // refer to sources
 }
 @Bean
 public Md5PasswordEncoder md5PasswordEncoder(){
 Md5PasswordEncoder md5 = new Md5PasswordEncoder();
 md5.setEncodeHashAsBase64(true);
 md5.setIterations(32);
 return md5;
 }
 @Bean
 public DaoAuthenticationProvider authProvider() {
 DaoAuthenticationProvider daoProvider =
 new DaoAuthenticationProvider();
 daoProvider.setPasswordEncoder(md5PasswordEncoder());
 daoProvider.setUserDetailsService(userDetailsService);
 ReflectionSaltSource saltHash =
 new ReflectionSaltSource();
 saltHash.setUserPropertyToUse("username");
 daoProvider.setSaltSource(saltHash);

Securing Spring MVC Applications

[205]

 return daoProvider;
 }
}

Since this recipe adds salt to hashing, the class
org.springframework.security.authentication.dao.DaoAuthenticati

onProvider will be used to configure the encoding of userDetailsService
using md5PasswordEncoder() with SaltSource.

Update SpringContextConfig to consider the new security model.4.
Save all files. build, install, and deploy the project.5.

How it works...
In any Spring MVC application, passwords must always be encoded using secured hashing
algorithms. Spring Security 4.2.2 still supports hashing algorithms combined with a proper
salt to generate strong hash values. Once a PasswordEncoder is injected into the container,
Spring Security executes password encoding and matches the result to the UserDetails
and password property. When encoding is configured, Spring Security will now recognize
the encrypted values instead of the default text value. Implementing this recipe is a two-
way process because the PasswordEncoder in the container will not give appropriate
matches if the passwords stored in UserDetails are not encoded by the same algorithm
using the same number of iterations, and the same salt property, if there is one. The hash
generated by the security model must match the same hash in UserDetails in order to
proceed with the authentication process.

Applying Security to MVC methods
From architectural-level authorization, we go down to the access levels of our service and
controller methods. This recipe will design a role-based authorization imposed on some
essential transactions of the MVC application.

Getting started
We will utilize the same ch04 project, but this time we will focus on role-based
authorization of the service and request methods.

Securing Spring MVC Applications

[206]

How to do it...
Before we apply Spring Security on some service methods, let us open the1.
UserServiceImpl class and add the following authorization: a super-user role
to hradmin by adding ROLE_USER to its existing set of authorities; ROLE_ADMIN
and ROLE_USER authorities to the "admin" account; and ROLE_USER
authorization to the "sjctrags" account:

@Service("userService")
public class UserServiceImpl implements UserService{

 // refer to sources
 @Override
 public Set<String> getuserRoles(String username) {
 Map<String, Set<String>> roles = new HashMap<>();
 Set<String> userA = new HashSet<>();
 Set<String> userB = new HashSet<>();
 Set<String> userC = new HashSet<>();
 userA.add("ROLE_USER");
 userB.add("ROLE_ADMIN");
 userB.add("ROLE_USER");
 userC.add("ROLE_HR");
 userC.add("ROLE_ADMIN");
 userC.add("ROLE_USER");
 roles.put("sjctrags", userA);
 roles.put("admin", userB);
 roles.put("hradmin", userC);
 return roles.get(username);
 }
}

Impose access restrictions to our DepartmentService interface by applying2.
role-based authorization using the Spring Security annotations @Secured,
@PreAuthorize, and @PostAuthorize:

public interface DepartmentService {
 @Secured("ROLE_USER")
 public List<Department> readDepartments();
 @Secured("ROLE_USER")
 public void addDepartment(DepartmentForm dept);
 @Secured("ROLE_ADMIN")
 public void removeDepartment(Integer deptId);
 @PreAuthorize("hasRole('USER') AND hasRole('HR')")
 public void updateDepartment(DepartmentForm dept, Integer
id);
 @PreAuthorize("hasRole('USER') AND hasRole('HR')")

Securing Spring MVC Applications

[207]

 public Department getDeptId(Integer id);
}

Do not apply these changes to the implementation class.

Create another @Controller that will contain restricted request methods. This3.
class, RestrictedController, has a GET method that exposes banned
departments once a ROLE_HR or ROLE_ADMIN accesses /deptbanned.html:

@Controller
public class RestrictedController {
 @PreAuthorize("hasRole('HR') OR hasRole('ADMIN')")
 @RequestMapping("/deptbanned.html")
 public String bannedDepts(){
 return "banned";
 }
}

Create a view page for /deptbanned.html, which lists all banned departments.4.
Update the views.properties and messages_en_US.properties for this
additional view.
Create a new security context, AppSecurityModelF, which contains the5.
complete configuration for this recipe:

@Configuration
@EnableWebSecurity
@EnableGlobalMethodSecurity(prePostEnabled = true,
 securedEnabled=true)
public class AppSecurityModelF extends
 WebSecurityConfigurerAdapter {
 // refer to sources

 @Override
 protected void configure(AuthenticationManagerBuilder auth)
throws Exception {
 auth.authenticationProvider(authProvider());
 auth.eraseCredentials(false);
 }
 @Override
 protected void configure(HttpSecurity http) throws Exception
{
 http
 .authorizeRequests()

Securing Spring MVC Applications

[208]

 .antMatchers("/login**","/after**")
 .permitAll()
 .anyRequest().authenticated()
 .and()
 .formLogin()
 .loginPage("/login.html")
 .defaultSuccessUrl("/deptform.html")
 .failureUrl("/login.html?error=true")
 .successHandler(customSuccessHandler)
 .and()
 .logout().logoutUrl("/logout.html")
 .logoutSuccessHandler(customLogoutHandler)
 .and()
 .exceptionHandling()
 .accessDeniedPage("/access_denied.html");
 http.csrf().disable();
}
 @Override
 public void configure(WebSecurity web) throws Exception {
 // refer to sources
 }
 @Bean
 public Md5PasswordEncoder md5PasswordEncoder(){
 // refer to sources
 }
 @Bean
 public DaoAuthenticationProvider authProvider() {
 // refer to sources
 }
}

In order for the @Secured, @PreAuthorize, and @PostAuthorize annotations6.
to be functional, the class-level annotation @EnableGlobalMethodSecurity
must be configured, setting prePostEnable and securedEnabled to true.
Lastly, create a view page /acces_denied.html, which is triggered if access to a7.
restricted transaction is detected.
Update SpringContextConfig to consider the new security model.8.
Save all files. clean, build, and deploy the project.9.

Securing Spring MVC Applications

[209]

How it works...
Spring Security has three annotations that can be applied to methods with restricted,
confidential, or exclusive access. The @Secured annotation is used when there is only one
authorized role allowed to execute a specific method based on the security policies. But if
there is more than one role allowed in the access, with some special and complicated
conditions, @PreAuthorize and @PostAuthorize must be used.

@PreAuthorize verifies the roles before executing the method, while @PostAuthorize
checks the roles after executing the restricted method. The latter works most often with
functions because its verification always includes returnObject together with the attached
roles. Both of the annotations use Spring Expression Language in establishing the access
control. It can restrict the access only to hasRole("ADMIN") AND hasRole("HR"), or to
users who are both hasRole("ADMIN") AND hasRole("USER"). @Secured does not
support expression-based access control.

These annotations will not serve their purpose if the @EnableGlobalMethodSecurity is
not configured at the class-level of the security context definition. This main annotation has
three properties to set:

prePostEnabled: This is a Boolean property that enables or disables the use of
@PreAuthorize and @PostAuthorize
secureEnabled: This is a Boolean property that enables or disables the use of
@Secured

jsr250Enabled: This is a Boolean property that enables or disables the use of
some JSR-250 annotations for restrictions

Lastly, method restrictions can be applied not only to service methods, but also to
@Controller request handlers, as shown by the RestrictedController.

Securing Spring MVC Applications

[210]

Creating roles and permissions from the
database
We have utilized UserDetailsService and UserDetails interfaces in handling user
credentials and information but the information, still came from HashMap with static
data. This recipe will show us how to archive all the user credentials and information to a
database to be fetched by a custom UserDetails class.

Getting started
Open the MySQL server to alter our hrs schema. Also, utilize the same project ch04 for this
recipe.

How to do it...
Before we start the main recipe, let us add the following tables in our hrs1.
schema:

The userdetails class will contain the usual general user information, while2.
logindetails contains the username, password, and encrypted password of
each user. On the other hand, role_permission contains all the roles and access
permissions of each user in logindetails. A Permission is defined as the
allowable CRUD transaction to be performed by a user, such as READ, WRITE,
VIEW, DELETE, and REPORT, which is different from the usual Role. A role ADMIN,
for instance, can have ADMIN_UPDATE and ADMIN_DELETE permissions.

Securing Spring MVC Applications

[211]

With the newly added tables, generate the model for each table and create a3.
typical DAO interface that will add, retrieve, update, and delete the records:

public interface LoginDao {
 public List<Role> getUserRoles();
 public Role getUserRole(int id);
 public List<Permission> getPermissions();
 public Permission getPermission(int id);
 public List<RolePermission>
 getUserGrantedAuthority(int userId);
 public List<AccountLogin> getUsers();
 public AccountLogin getUser(String username);
}

Implement a @Repository implementation of this interface using4.
SimpleJdbcInsert and JdbcTemplate.
Inside the package org.packt.secured.mvc.core.user, create custom5.
UserDetails that will store all logindetails with some additional
transactions, such as sorting the GrantedAuthority and username/password
validation:

public class AppUserDetails implements UserDetails {
 private String password;
 private final String username;
 private final Set<GrantedAuthority> authorities;
 private final boolean accountNonExpired;
 private final boolean accountNonLocked;
 private final boolean credentialsNonExpired;
 private final boolean enabled;
 @Override
 public Collection<? extends GrantedAuthority>
getAuthorities() {
 return authorities;
 }

 // refer to sources

 public AppUserDetails (String username, String
 password, boolean enabled, boolean accountNonExpired,
 boolean credentialsNonExpired,
 boolean accountNonLocked,
 Collection<? extends GrantedAuthority>
 authorities) {

 if (((username == null) || "".equals(username)) ||
 (password == null)) {

Securing Spring MVC Applications

[212]

 throw new IllegalArgumentException(
 "Empty values are not allowed");
 }

 this.username = username;
 this.password = password;
 // refer to sources
 }

 private static SortedSet<GrantedAuthority>
 sortAuthorities(Collection<? extends
 GrantedAuthority> authorities) {
 SortedSet<GrantedAuthority> sortedAuthorities =
 new TreeSet<GrantedAuthority>(
 new AuthorityComparator());
 for (GrantedAuthority grantedAuthority :
 authorities) {
 sortedAuthorities.add(grantedAuthority);
 }
 return sortedAuthorities;
 }

 private static class AuthorityComparator implements
 Comparator<GrantedAuthority>, Serializable {

 public int compare(GrantedAuthority g1,
GrantedAuthority g2) {
 // refer to sources
 return g1.getAuthority()
 .compareTo(g2.getAuthority());
 }
 }
}

Afterwards, create another UserDetailsService inject and use LoginDao to6.
retrieve the user details for the custom AppUserDetails:

@Service("authJdbcUserService")
public class AuthJdbcUserService implements
 UserDetailsService{
 @Autowired
 private LoginDao loginDaoImpl;

 @Override
 public UserDetails loadUserByUsername(String username)
throws UsernameNotFoundException {
 AccountLogin login = loginDaoImpl.getUser(username);

Securing Spring MVC Applications

[213]

 // refer to sources
 UserDetails user = new
 AppUserDetails(login.getUsername(),
 login.getEncPassword(),true, true, true, true,
 getAuthorities(username, login));
 return user;
 }
 private Set<GrantedAuthority> getAuthorities(String
 username, AccountLogin login){
 List<RolePermission> roleperms =
 loginDaoImpl.getUserGrantedAuthority(login.getId());
 // refer to sources
 return authorities;
}

Populate logindetails with the encoded password using the same injected7.
PasswordEncoder:

Securing Spring MVC Applications

[214]

Create AppSecurityModelE2, having authJdbcUserService injected as the8.
new UserDetailsService:

@Configuration
@EnableWebSecurity
public class AppSecurityModelE2 extends
 WebSecurityConfigurerAdapter{
 // refer to sources
 @Autowired
 @Qualifier("authJdbcUserService")
 private UserDetailsService userDetailsService;
 @Override
 protected void configure(AuthenticationManagerBuilder auth)
throws Exception {

 auth.authenticationProvider(authProvider());
 auth.eraseCredentials(false);
 }
// refer to sources
@Bean
public DaoAuthenticationProvider authProvider() {
 DaoAuthenticationProvider daoProvider =
 new DaoAuthenticationProvider();
 daoProvider.setPasswordEncoder(md5PasswordEncoder());
 daoProvider.setUserDetailsService(userDetailsService);
 ReflectionSaltSource saltHash =
 new ReflectionSaltSource();
 saltHash.setUserPropertyToUse("username");
 daoProvider.setSaltSource(saltHash);
 return daoProvider;
}
}

Update SpringContextConfig to consider the new security model.9.
Save all files. clean, build, and deploy the project.10.

Securing Spring MVC Applications

[215]

How it works...
For some specific scenarios, UserDetails can be customized in order to add some
validations and constraints needed to build complete user credentials. In this recipe, we
added a simple Comparator to arrange all the authorities alphabetically. There is also a
username and password validation to check whether the account is not null. Moreover,
all credentials must come from a custom UserDetailsService that injects LoginDao to
retrieve all logindetails that match the username. Instead of hardcoding the data in a
HashMap, the service will use a query transaction to supply all the needed credential to
AppUserDetails. It is recommended to use a separate @Service that will generate the
encoded password prior to the logindetails execution.

Managing and storing sessions
Spring Security does not only manage the user authentication and access authorization, but
also controls the sessions the application uses in its entire lifespan. This recipe will design a
security model that focuses on session management and controls.

Getting started
Open again the same ch04 project with another security model emphasizing session
management and control.

How to do it...
Simple session handling implementation starts with creating a session as Cookie,1.
which manages a maximum of one session per user access, deletes the session
after /logout, and redirects view pages once the session expires or is
compromised:

@Configuration
@EnableWebSecurity
@EnableGlobalMethodSecurity(prePostEnabled = true,
 securedEnabled=true)
public class AppSecurityModelG extends
 WebSecurityConfigurerAdapter {
 // refer to sources
 @Override

Securing Spring MVC Applications

[216]

 protected void configure(AuthenticationManagerBuilder auth)
throws Exception {
 auth.authenticationProvider(authProvider());
 auth.eraseCredentials(false);
 }

 @Override
 protected void configure(HttpSecurity http) throws Exception
{
 http
 .authorizeRequests()
 .antMatchers("/login**", "/after**").permitAll()
 .antMatchers("/session*").permitAll()
 .anyRequest().authenticated()
 .and()
 .formLogin()
 .loginPage("/login.html")
 .defaultSuccessUrl("/deptform.html")
 .failureUrl("/login.html?error=true")
 .successHandler(customSuccessHandler)
 .and()
 .logout().logoutUrl("/logout.html")
 .logoutSuccessHandler(customLogoutHandler)
 .invalidateHttpSession(true)
 .deleteCookies("JSESSIONID")
 .and()
 .exceptionHandling()
 .accessDeniedPage("/access_denied.html");
 http.sessionManagement()
 .sessionCreationPolicy(
SessionCreationPolicy.IF_REQUIRED)
 .maximumSessions(1)
 .expiredUrl("/session_expired.html")
 .and()
 .enableSessionUrlRewriting(true)
 .invalidSessionUrl("/session_invalid.html");
 http.csrf().disable();
 }
 @Override
 public void configure(WebSecurity web) throws Exception {
 // refer to sources
 }
 @Bean
 public Md5PasswordEncoder md5PasswordEncoder(){
 // refer to sources
 }
 @Bean
 public DaoAuthenticationProvider authProvider() {

Securing Spring MVC Applications

[217]

 // refer to sources
 }
}

For the concurrent session control, inject2.
org.springframework.security.web.session.HttpSessionEventPublis

her into the SpringContextConfig definition. Update also @Import to load
AppSecurityModelG:

@Import(value = { AppSecurityModelG.class })
@Configuration
@EnableWebMvc
@ComponentScan(basePackages = {"org.packt.secured.mvc",
 "org.packt.secured.mvc.core.manager",
 "org.packt.secured.mvc.core.handler",
 "org.packt.secured.mvc.core.service"})
public class SpringContextConfig {
 @Bean
 public HttpSessionEventPublisher
 httpSessionEventPublisher() {
 return new HttpSessionEventPublisher();
 }
}

Set the session expiry age by implementing HttpSessionListener. Save this3.
class together with the SpringWebInitializer:

public class AppSessionListener implements
 HttpSessionListener{

 @Override
 public void sessionCreated(HttpSessionEvent event) {
 System.out.println("app session created");
 event.getSession().setMaxInactiveInterval(10*60);
 }

 @Override
 public void sessionDestroyed(HttpSessionEvent event) {
 System.out.println("app session destroyed");
 }
}

Securing Spring MVC Applications

[218]

Register this listener at the ServletContext level of the application. Also 4.
configure in SpringWebInitializer the mode of storing the session, which is
done through Cookie:

@EnableWebMvc
@ComponentScan(basePackages = "org.packt.secured.mvc")
@Configuration
public class SpringWebInitializer implements
 WebApplicationInitializer {
 @Override
 public void onStartup(ServletContext container)
 throws ServletException {
 // refer to sources
 }

 private void addRootContext(ServletContext container) {
 // Create the application context
 AnnotationConfigWebApplicationContext rootContext =
 new AnnotationConfigWebApplicationContext();
 rootContext.register(SpringContextConfig.class);
 // Register application context with
 //ContextLoaderListener
 container.addListener(
 new ContextLoaderListener(rootContext));
 container.addListener(new AppSessionListener());
 container.setInitParameter("contextConfigLocation",
 "org.packt.secured.mvc.core");
 container.setSessionTrackingModes(
 EnumSet.of(SessionTrackingMode.COOKIE));
 // if URL, enable sessionManagement URL rewriting
 }
 private void addDispatcherContext(ServletContext
container) {
 // refer to sources
 }
}

Sessions can be stored in the browser as SessionTrackingMode.COOKIE,
SessionTrackingMode.URL, or SessionTrackingMode.SSL.

Securing Spring MVC Applications

[219]

Save all files. clean, build, and deploy the new project.5.
Open the Chrome browser and run our application. Log in using the sjctrags6.
account.

Then, open the Firefox browser and run the same URL, and log in using the same7.
sjctrags account. Since the security model limits the maximum session to 1, the
/session_expired.html is executed.

How it works...
The first configuration detail that needs to be decided is when the session will be created.
Spring Security 4.2.2 supports multiple ways of creating sessions:

Always during transactions without any constraints
(SessionCreationPolicy.ALWAYS)
Only when required by the application
(SessionCreationPolicy.IF_REQUIRED)
Stop creating any but use existing sessions (SessionCreationPolicy.NEVER)
Stop creating nor use sessions during the entire lifespan of the application
(SessionCreationPolicy.STATELESS)

Among these four types, the SessionCreationPolicy.IF_REQUIRED fits with login-
based applications.

Securing Spring MVC Applications

[220]

The next decision is how to control the concurrent access to the application. With the help of
HttpSessionEventPublisher, the architecture offers developers control through
http.sessionManagement().maximumSession(). Once a user reaches this limit,
HttpSecurity has the option to offer
http.sessionManagement().maxSessionsPreventsLogin(true) to the user or not
but, either of the options can lead to /session_expired.html.

On the other hand, it is always recommended to enable URL rewriting in any MVC
application for cases in which the browser is restricted to run cookies. Whether
ServletContext stores the session as Cookie in the browser, or as a request parameter in
a URL, it is always advisable to use
http.sessionManagement().enableSessionUrlRewriting(true) to avoid possible
runtime exceptions when the browser's cookies support is disabled.

Lastly, it is important that after /logout, all sessions must be invalidated or killed for
security reasons. http.logout().invalidateHttpSession(true) is applicable to
deleting all types of sessions, while http.logout().deleteCookies("JSESSIONID")
only applies once the application is in SessionTrackingMode.COOKIE mode.

Solving Cross-Site Request Forgery (CSRF)
and session fixation attacks
CSRF occurs when a user who is currently logged in has accidentally processed an
unknown link or event which tries to execute a valid transaction using suspicious request
parameters, which may lead to some disastrous and catastrophic effects to the database,
network, or even to the system infrastructure. On the other hand, session fixation happens
when a user accidentally leaves his session open after logging out, and through this idle
session an exploit happens because someone maliciously uses the existing session ID and
variables to execute unwanted transactions. Invalidating sessions does not guarantee a
solution to session fixation attacks; thus, this recipe will explain how Spring Security can
protect Spring MVC applications from these two vulnerabilities.

Getting started
The same ch04 project will be used to execute a security model which gives us the best and
immediate solutions for preventing CSRF and session fixation attacks from happening.

Securing Spring MVC Applications

[221]

How to do it...
To avoid confusion and conflict with the rules established in the other security context
models:

Let us create a separate security model, AppSecurityModelH, that enables CSRF 1.
support and invalidates previous sessions and session attributes after creating a
new one:

@Configuration
@EnableWebSecurity
public class AppSecurityModelH extends
 WebSecurityConfigurerAdapter{
 @Override
 protected void configure(AuthenticationManagerBuilder auth)
throws Exception {
 auth.inMemoryAuthentication()
 .withUser("sjctrags")
 .password("sjctrags").roles("USER");
 }
 @Override
 protected void configure(HttpSecurity http) throws Exception
{
 http
 .authorizeRequests()
 .antMatchers("/login*").permitAll()
 .anyRequest().authenticated()
 .and()
 .formLogin()
 .antMatchers("/login*", "/after**").permitAll()
 .defaultSuccessUrl("/deptform.html")
 .failureUrl("/login.html?error=true")
 .and().logout().logoutUrl("/logout.html")
 .logoutSuccessUrl("/after_logout.html");
 http.csrf().csrfTokenRepository(
 CookieCsrfTokenRepository.withHttpOnlyFalse());
 http.sessionManagement().sessionFixation()
 .newSession();
 }
 @Override
 public void configure(WebSecurity web) throws Exception {
 // refer to sources
 }
}

Securing Spring MVC Applications

[222]

For CSRF support to work properly inside a session, all navigations must be2.
driven by a POST method. Also, use the Spring Form tag library <form:form> to
generate form components, because CSRF tokens are automatically generated
inside the <form:form> tag.
Save all files. clean, build, and deploy the ch04 project.3.

How it works...
This recipe tackles two issues, namely the prevention of CSRF and session fixation, in
Spring MVC applications. When it comes to session fixation, Spring Security provides
default protection which invalidates the previous sessions but copies all session attributes
to the newly created one. This mechanism is called the
http.sessionManagement().sessionFixation().migrateSession() type of
preventing session fixation attacks. But there are two more options developers can use, and
these are newSession() and none(). newSession() is preferred for this recipe because it
deletes the entire past sessions, including session data, which gives confidence that no
exploits can penetrate through older sessions or use the session data. The method none() is
the scariest because it does not delete any previous sessions.

On the other hand, deleting http.csrf().disable() means the security model enables
CSRF support for the application. Enabling CRSF support means injecting or customizing
the CsrfTokenRepository interface that will generate tokens to be stored in every specific
session created by Spring Security. The default repository is session-based and is derived
from the HttpSessionCsrfTokenRepository class, but another solution is to implement
OncePerRequestFilter to generate and store tokens without using any sessions.
Customizing filters such as OncePerRequestFilter opens solutions for AJAX or plain
JavaScript to interact with the tokenization processes through the retrieval of the two
generated tokens, XSRF-TOKEN and X-XSRF-TOKEN.

This recipe uses
org.springframework.security.web.csrf.CookieCsrfTokenRepository, which
generates and stores the XSRF-TOKEN as cookie data:

Securing Spring MVC Applications

[223]

In order for CSRF support to work with sessions, all form transactions and navigations
must be in POST request transactions, with the use of the Spring Form tag library
<form:form> to spare us from creating AJAX to manually generate and attach the token
per view page. Any access to authenticated pages without the specified token will give
users the HTTP status 404, which indicates that the application is sensitive to CSRF.

Anonymous pages are not included in the CSRF tokenization process, so hyperlinks and
typical HTML forms can be used on these pages.

Securing Spring MVC Applications

[224]

Solving Cross-Site Scripting (XSS) and
clickjacking attacks
The difference between cross-site scripting attacks and CRSF or session fixation is the
presence of an injected third-party JavaScript or malicious script in XSS, whose objective is
to sniff form transactions and perform exploits. Clickjacking is another attack which uses
X-Frame-Options to inject exploits on a specific part of a page through frames.

Aside from properly escaping or encoding HTML properties, outgoing header variables
must be sanitized to avoid XSS and clickjacking attacks. This recipe will highlight how
Spring Security 4.2.2 can help shield all the outgoing headers from malicious attacks.

Getting started
Using the same ch04, this recipe will highlight how to control response headers to avoid
XSS attacks during form transactions.

How to do it...
To prevent XSS attacks in our form transactions:

Let's create a new security model that enables header filtering or sanitation, which is1.
inherent to the Spring Security 4.2.2 framework:

@Configuration
@EnableWebSecurity
public class AppSecurityModelI extends
 WebSecurityConfigurerAdapter{
 @Override
 protected void configure(AuthenticationManagerBuilder auth)
throws Exception {
 // refer to sources
 }
 @Override
 protected void configure(HttpSecurity http) throws Exception
{
 // refer to sources
 http.csrf().disable();

 http.headers().defaultsDisabled().cacheControl()
 .and().headers().httpStrictTransportSecurity()

Securing Spring MVC Applications

[225]

 .and().contentTypeOptions().disable()
 .frameOptions().deny()
 .and().addHeaderWriter(
 new StaticHeadersWriter(
 "X-Content-Security-Policy",
 "default-src 'auth'"));
 }
 @Override
 public void configure(WebSecurity web) throws Exception {
 // refer to sources
 }
}

Save all files. clean, compile, and deploy the ch04 project.2.

How it works...
Response headers must also be protected from exploitation by adding security headers or
by filtering the default outgoing header information of the application. Preferably,
applications must attain the following headers related to the caching browser history:

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0

HttpSecurity has headers().defaultsDisabled().cacheControl(), which disables
caching information in the browser history.

To avoid content sniffing and illegal injection of scripts, HttpSecurity has the ability to
disable content type options through the method
headers().contentTypeOptions().disable(). The execution of this method results in
a security header:

X-Content-Type-Options: nosniff

Since the recipe uses HTTPS, it is advisable to use HTTP Strict Transport Security (HSTS)
in order to avoid illegal interception during redirection. Interception happens when there is
an erroneous shift from HTTPS to HTTP transactions, wherein the response headers and
credentials are accidentally exposed outside of the security. HTTPS can avoid the leak by
managing any request to proceed always with HTTPS mode consistently during any
accidental sideshifting of protocols. Executing the http.
headers().httpStrictTransportSecurity() method enables HTTPS, but use this
only in secured HTTP mode.

Securing Spring MVC Applications

[226]

On the other hand, clickjacking can be avoided by setting X-FRAME-OPTIONS to:

X-Frame-Options: DENY

This is done through the http.headers().frameOptions().deny() method. Moreover,
to protect the application from all direct XSS attacks, we need to add the security header

X-XSS-Protection: 1; mode=block

by executing http.headers().xssProtection().block(true).

Lastly, for the browser to know from what static location these CSS, JS, and images will be
loaded, the Content-Security-Policy header must be configured to indicate the
location of these resources for the browser to recognize. The method
http.headers().addHeaderWriter(new StaticHeadersWriter("X-Content-

Security-Policy","default-src 'self'")) tells the browser that all resources
should be coming from the context root of the page.

Creating interceptors for login data
validation
Interceptors of Spring 5.0 can still be used to implement audit trails, transaction monitoring,
session tracking, and additional request functionalities. These components filter and
evaluate all incoming requests before they reach the @Controller. This recipe will show
how interceptors can be a great help for the authentication process and session
management.

Getting started
This last recipe is an add-on to the Spring Security framework. Although interceptors are
Spring MVC components, these support classes can help manage some parts of the security
chain. This recipe will utilize ch04 and will update some of our context definition classes.

Securing Spring MVC Applications

[227]

How to do it...
To apply an interceptor that will monitor and evaluate the /login.html request:

Let us create a class of HandlerInterceptor type that keeps track of the access1.
time of each user:

public class LoginInterceptor implements
 HandlerInterceptor{

@Override
public void afterCompletion(HttpServletRequest request,
 HttpServletResponse response, Object handler,
Exception ex) throws Exception {
 System.out.println("INFO LOG
 Fully Done login transaction.....");
}

@Override
public boolean preHandle(HttpServletRequest request,
 HttpServletResponse response, Object handler)
 throws Exception {
System.out.println("INFO LOG
Beginning login transaction.....");
Long startLog = System.currentTimeMillis();
Cookie startTime = new Cookie("startLog",
 startLog.toString());
response.addCookie(startTime);
System.out.println("INFO LOG
Done Computing Start Time.....");
return true;
}

@Override
public void postHandle(HttpServletRequest request,
 HttpServletResponse response, Object handler,
ModelAndView modelAndView) throws Exception {
System.out.println("INFO LOG
 User Successfuly logged in.....");
 }
}

The interface org.springframework.web.servlet.HandlerInterceptor has
been used to implement the three helper methods, namely preHandle(),
postHandle(), and afterCompletion().

Securing Spring MVC Applications

[228]

Implement another interceptor using the class2.
org.springframework.web.servlet.handler.HandlerInterceptorAdapt

er, whose task is to audit the time duration the user has spent with the
application. This component also logs the end of the whole MVC transactions:

public class AfterLogoutInterceptor extends
 HandlerInterceptorAdapter{
 @Override
 public boolean preHandle(HttpServletRequest request,
 HttpServletResponse response, Object handler)
 throws Exception {
System.out.println("INFO LOG
Entering After Logout transaction.....");
 Long startLog = null;
 Cookie[] allCookies = request.getCookies();
 for(Cookie c : allCookies){
 if(c.getName().equalsIgnoreCase("startLog")){
 startLog = Long.parseLong(c.getValue());
 System.out.println(c.getValue());
 break;
 }
 }
 long elapsed = System.currentTimeMillis() -
 startLog.longValue();
 System.out.println("----------Time Elapsed: " +
 (elapsed/1000) + " sec ---------------");
 return true;
 }
 @Override
 public void afterCompletion(HttpServletRequest request,
 HttpServletResponse response, Object handler,
 Exception ex) throws Exception {
 System.out.println("INFO LOG
 Fully Done Logout transaction.....");
 }
}

To make the interceptors work, open the root context3.
SpringDispatcherConfig and override the addInterceptors() to register
the two custom interceptors, LoginInterceptor and
AfterLogoutInterceptor:

@Override
public void addInterceptors(InterceptorRegistry registry) {
 registry.addInterceptor(
new LoginInterceptor()).addPathPatterns("/login.html");
 registry.addInterceptor(

Securing Spring MVC Applications

[229]

new AfterLogoutInterceptor())
.addPathPatterns("/after_logout.html*");
}

Save all files. Clean, build, and deploy the ch04 project.4.

How it works...
This recipe simply adds an additional Spring MVC component that can listen to and handle
support for any request transactions involved in the authentication and authorization
process. HandlerInterceptor and HandlerInterceptorAdapter work like filters, but
the filter is more powerful and general when it comes to the scope of work. Filters are
configured in ServletContext, while interceptors are injected in the Spring context
definition through the addInterceptors() method of InterceptorRegistry. When it
comes to scope, interceptors are convenient to use when the Spring platform is used, rather
than implementing Filter. Creating interceptors is appropriate for applying DRY coding
principles wherein code blocks are written repeatedly across the platform. Additionally,
they can help the framework with logging, profiling, authorization-related validation, and
minimal filtering tasks.

All interceptors contain three methods, and these are:

preHandle(): This is executed before the actual request is executed
postHandle(): This is executed after a request is executed
afterCompletion(): This is executed after the whole request transaction is
completed

Using interceptors is optional and mapping them to the correct request paths using the
InterceptorRegistry.addInterceptor().addPathPatterns needs extra caution,
because the patterns used to specify the URL here are path expressions and not the usual
normal URL. Generating these patterns may cause some paths not to be included or
excluded. It is always advisable to include excludePathPatterns() and
includePathPatterns() to ensure that request URL paths are valid.

5
Cross-Cutting the MVC

Interceptors are not only confined to managing requests but also to establishing a set of
behaviors of the applications, such as transaction logging, data transaction management,
custom authorization and authentication, managing services, caching, and workflow
simulation.

Spring 5.0 still supports AOP, which is a programming paradigm that implements a
functionality or concern which may not be part of the business process but is essential to
some areas of the application. These concerns or sets of behaviors are linked to some objects
in order to work, like the HandlerInterceptor (which can intercept anywhere in the
application).

There are two main classifications of concerns and these are the major concerns, which cater
to only a single component of the Spring MVC, and the global concerns, which are applied
throughout the application and also may affect the whole transaction flow.

The following recipes will cover how to implement major concerns such as managing the
request handlers, services, and DAO transactions. Moreover, some of the recipes will also
discuss exception handling, logging, custom security, managing session and request
attributes, and restricting user access, which are all part of the global concerns.

In this chapter, you will learn the following:

Logging and auditing service methods
Managing DAO transactions
Monitoring services and request handlers
Validating parameters and arguments
Managing exceptions
Implementing the caching mechanism
Intercepting request transactions

Cross-Cutting the MVC

[231]

Implementing user authentication
Accessing with restrictions
Controlling concurrent user access
Implementing a mini-workflow using AOP

Logging and auditing service methods
Aspect-Object Programming (AOP) is known in many applications as an immediate
solution for logging or auditing. This first recipe will introduce the concept and components
of AOP in Spring 5.0 as it implements the service logging and auditing features of an MVC
application through the use of the Log4J framework.

Getting started
Create a new Eclipse Maven project, ch05, with the web.xml-lessServletContext
declaration. Add all the previous libraries of Spring 5.0, Servlet 3.1, JSP 2.3, JUnit 4, and other
related plugins to the Maven configuration. Follow Chapter 1, Getting Started with Spring,
for building the context definitions.

How to do it...
Before implementing AOP components, let us first implement logging by following these
steps:

The previous has already created some POJOs, so just copy the Employee model,1.
the supporting DAO and service interfaces, and their corresponding
implementation classes. Place all model classes in a new package,
org.packt.aop.transaction.model.data, all DAO components in
org.packt.aop.transaction.dao, and all services in
org.packt.aop.transaction.service.
Add the updated Log4J libraries to the pom.xml:2.

<dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.17</version>
</dependency>

Cross-Cutting the MVC

[232]

Create the log4j.properties containing the needed configuration details such3.
as the type of appenders to be used, message formats to be applied, and the location of the
log file:

LOG4J configuration
log4j.rootLogger=INFO, Appender1, Appender2
log4j.appender.Appender1=org.apache.log4j.ConsoleAppender
log4j.appender.Appender1.layout=org.apache.log4j.PatternLayout
log4j.appender.Appender1.layout.ConversionPattern=%-7p %d [%t]
%c %x - %m%n
log4j.appender.Appender2=org.apache.log4j.FileAppender
log4j.appender.Appender2.File=C\:\\logs\\ch05.log
log4j.appender.Appender2.layout=org.apache.log4j.PatternLayout
log4j.appender.Appender2.layout.ConversionPattern=%-7p %d [%t]
%c %x - %m%n

Save this file in src/main/resources/ of your Maven project.4.
To start with AOP, include in the repository the AspectJ plugin which is an5.
AOP extension for implementing aspects:

<dependency>
 <groupId>org.aspectj</groupId>
 <artifactId>aspectjrt</artifactId>
 <version>1.8.10</version>
 <scope>runtime</scope>
</dependency>
<dependency>
 <groupId>org.aspectj</groupId>
 <artifactId>aspectjtools</artifactId>
 <version>1.8.10</version>
</dependency>

Create an @Aspect class inside the package6.
org.packt.aop.transaction.core that will manage the logging concerns of
EmployeeService. This class will cut across any EmployeeService method
execution just to monitor the status of the service calls. This class must be injected
as an @Component bean of the container:

import org.apache.log4j.Logger;

@Component
@Aspect
public class EmployeeAspect {
 private Logger logger =
 Logger.getLogger(EmployeeAspect.class);
 @Before("execution(* org.packt.aop.transaction.service

Cross-Cutting the MVC

[233]

 .impl.EmployeeServiceImpl.*(..))")
 public void logBeforeEmployeeTransactions(
 JoinPoint joinPoint){

logger.info("EmployeeAspect.logBeforeEmployeeTransactions()
detected : " + joinPoint.getSignature().getName());
 }
@After("execution(* org.packt.aop.transaction.service
.impl.EmployeeServiceImpl.*(..))")
public void logAfterEmployeeTransactions(
 JoinPoint joinPoint) {
logger.info("EmployeeAspect.logAfterEmployeeTransactions()
 detected : " + joinPoint.getSignature().getName());
 }
}

The two methods inside the aspect class are called advices.7.

The logBeforeEmployeeTransactions() is a type of @Before advice which
means its execution is triggered after any EmployeeServiceImpl method
execution is encountered.

On the other hand, the logAfterEmployeeTransactions() is an @After
advice which is called after any execution of the EmployeeServiceImpl advisced
methods.

Both methods implement the needed logging concerns. The expressions inside
@After and @Before advices are called Pointcuts, which tells the advices when
to execute.

Create more @Aspect classes that will cover specific service transactions such as8.
EmployeeDeleteAspect, EmployeeInsertAspect, EmployeeReadAspect,
and EmployeeUpdateAspect. The following is an implementation of
EmployeeUpdateAspect, which highlights the args() expression used to
capture the arguments of the adviced updateEmployee() method. The args()
is also part of the Pointcut expression:

@Component
@Aspect
public class EmployeeUpdateAspect {
private Logger logger =
 Logger.getLogger(EmployeeUpdateAspect.class);
@Before("execution(* org.packt.aop.transaction.service
.impl.EmployeeServiceImpl.updateEmployee(..))
&& args(empForm, id)")

Cross-Cutting the MVC

[234]

public void logBeforeUpdateEmp(JoinPoint joinPoint,
 EmployeeForm empForm, int id) {
 // refer to sources
}
@After("execution(* org.packt.aop.transaction.service
.impl.EmployeeServiceImpl.updateEmployee(..))
&& args(empForm, id)")
public void logAfterUpdateEmp(JoinPoint joinPoint,
EmployeeForm empForm, int id) {
 // refer to sources
}

}

If the adviced method has no arguments, avoid using args() because it
will lead to compiler errors or non-execution of the Aspect class.
Keyword args() includes all the local parameters of the adviced method.

For a Spring container to recognize aspects, apply the9.
@EnableAspectJAutoProxy annotation to the application context definition
SpringContextConfig, which will enable the support for handling aspect
classes and other related annotations.
Create a test class, TestEmployeeService, to evaluate if logging and AOP are10.
successfully integrated into the MVC application:

@RunWith(SpringJUnit4ClassRunner.class)
@WebAppConfiguration
@ContextConfiguration(classes = { SpringDbConfig.class,
 SpringDispatcherConfig.class })
public class TestEmployeeService {

 @Autowired
 private EmployeeService employeeServiceImpl;
 @Test
 public void testPersistEmployee(){
 EmployeeForm form = new EmployeeForm();
 form.setFirstName("Sherwin");
 form.setLastName("Tragura");
 form.setAge(38);
 // refer to sources
 }
 @Test
 public void testReadEmployees(){
 List<Employee> emps =
 employeeServiceImpl.readEmployees();

Cross-Cutting the MVC

[235]

 assertNotNull(emps);
 }
 @Test
 public void testReadOneEmp(){
 Employee emp = employeeServiceImpl.readEmployee(10);
 }
 @Test
 public void testDelEmp(){
 employeeServiceImpl.delEmployee(11111);
 }
}

How it works...
Aspect classes contain implementations that can be executed on some or any areas of the
MVC platform to modularize the performance of the application. These aspects execute
features that are not really part of the MVC components but can be triggered to become part
of the system at runtime, fulfilling the software concerns they are assigned to. Aspect classes
are denoted by the annotation @Aspect.

Technically, methods written inside aspects are called advices and can be classified into five,
namely @Before, @After, @Around, @AfterReturning, and @AfterThrowing. This
recipe only highlighted @Before methods, which are called before the execution of adviced
methods, and @After, which is triggered after any execution of its methods. Adviced
methods are the transactions intercepted by these advices and can be determined by their
assigned Pointcut expressions.

Both @After and @Before advices have an optional parameter, JoinPoint, which
represents all the adviced methods being executed. It contains properties such as
getThis(), which returns the class name carrying the adviced method (such as
EmployeeServiceImpl), and getSignature(), which returns an object containing the
method signature of the adviced method.

The correctness of writing the advices depends on the Pointcut and the method signature of
the concerned method(s). If the adviced methods do not return any value, the advices must
not return one otherwise it will not be executed by the application. In the case of request
handlers and other services that return a particular object, advices have the option to return
the same object type or just void.

Cross-Cutting the MVC

[236]

With regard to return values, advices may return a specific Java type or a generic object.
Aside from JoinPoint, advices can include the parameters of the adviced methods using
the args() expression. All variables found in args() must be declared as local parameters
using specific types or Object.

On the other hand, Pointcuts can also be a source of errors if not formulated properly:

The preceding diagram showing the Pointcut expression is made up of the following
components:

Expression (1) is the command that will trigger the execution; sometimes the
within command is used
Expression (2) is the return statement of the adviced methods; (*) means all
possible return types including void
Expression (3) is the location path where the adviced methods are to be found; it
includes the package and the name of the class
Expression (4) is the name of the adviced method
Expression (5) is the possible parameters of the adviced method; the notation (..)
means all possible numbers and types of parameters
Expression (6) is the logical operator used to augment more than one expression;
&& is interpreted as AND, while || denotes the typical OR

Aside from observing the correct format, the effectiveness of Pointcut is also measured
through how loose or tight it covers the concerned areas of the application. Thus,
developers must determine first what aspects are for global and specific concern
implementation before designing and generating the advices and their Pointcuts.

Cross-Cutting the MVC

[237]

Managing DAO transactions
Aspects do not only intercept the service layer but also the data transaction layer. This
recipe will give us a concrete scenario when AOP is needed in most DAO transactions.
Aspects implemented for the DAO layer are just limited to logging, tracing, and validating
tasks due to undesirable effects when transactions become complex.

Getting started
Open ch05 and add an @Aspect that will filter null record(s) from JdbcSimpleInsert
and JdbcTemplate.

How to do it...
Our first AOP implementation will be applied for managing DAO transactions. Follow the
following procedure to log all the DAO transactions using aspects, advices and Pointcuts:

Before this recipe starts, be sure to have the EmployeeDao and1.
EmployeeDaoImpl inside the packages org.packt.aop.transaction.dao
and org.packt.aop.transaction.dao.impl, respectively.
To apply aspects to our DAO transactions, let us create an @Aspect inside the2.
package org.packt.aop.transaction.core that will monitor
getEmployees() and getEmployee() methods from EmployeeDaoImpl, and
will verify if the returned values are null or not. If null, this aspect will create
an object of the same type just to avoid NullPointerException:

@Component
@Aspect
public class ManageNullsDao {

 private Logger logger =
 Logger.getLogger(ManageNullsDao.class);

 @Around("execution(* org.packt.aop.transaction.dao
 .impl.EmployeeDaoImpl.getEmployees(..))")
 public Object safeDaoEmps(ProceedingJoinPoint joinPoint)
 throws Throwable {

 logger.info("ManageNullsDao.safeDaoEmps() detected : "
 + joinPoint.getSignature().getName());
 Object emps = joinPoint.proceed();

Cross-Cutting the MVC

[238]

 if (emps == null) {
 return new ArrayList();
 } else {
 return emps;
 }
 }

 @Around("execution(* org.packt.aop.transaction.dao
 .impl.EmployeeDaoImpl.getEmployee(..))")
 public Object safeDaoOneEmp(ProceedingJoinPoint
 joinPoint) throws Throwable {

 logger.info("ManageNullsDao.safeDaoOneEmp()
 detected : " + joinPoint.getSignature().getName());
 Object emp = joinPoint.proceed();
 if (emp == null) {
 return new Employee();
 } else {
 return emp;
 }
 }
}

Execute again the TestEmployeeService with an empty employee table. Use3.
assertNotNull() to check if the result of getEmployees() is still null.

How it works...
The aspect class ManageNullsDao consists of two @Around advices which intercept the
execution of getEmployees() and getEmployee() of EmployeeDaoImpl. It is not
because of its before and after execution why this recipe chose @Around as the appropriate
advice, but its capability to extract the return value of the adviced method. The @Around
advice has an optional parameter, ProceedingJoinPoint, that controls the execution of
the adviced method through its proceed() method. Calling proceed() is equivalent to
executing getEmployees(), which will return a generic type Object. After the object has
been retrieved, validation of whether it is null happens. Whatever the result of the
validation is, the advice method aims to replace all null values so that any component
executing getEmployes() or getEmployee() can avoid runtime exceptions.

Cross-Cutting the MVC

[239]

The preceding diagram shows how @Around wraps the adviced method and provides some
implementation before and after the adviced method is executed.

Monitoring services and request handlers
Aspects has some trade-offs when used to intercept DAO transactions. Most often we use
aspects to monitor services and @Controller transactions. This recipe will show us the
easiest way to monitor service and request transactions using transaction management.

Getting started
Open ch05 and add an @Aspect that will monitor EmployeeController's
deleteRecord() request handler and EmployeeServiceImpl's readEmployee() using a
custom annotation.

Cross-Cutting the MVC

[240]

How to do it...
After the DAO layer, let us monitor all service and @Controller request transactions by
following these steps:

This is the first recipe that will showcase the use of custom transaction 1.
management annotations in formulating Pointcuts for advices. Using Reflection
APIs, create the following method-level annotation inside the
org.packt.aop.transaction.annotation package:

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
public @interface MonitorService { }

To make @MonitorTransaction transaction-aware, implement2.
org.springframework.transaction.PlatformTransactionManager and
place it inside org.packt.aop.transaction.core:

@Component
public class TransactionManager implements
 PlatformTransactionManager {

 @Override
 public void commit(TransactionStatus status)
 throws TransactionException { }
 @Override
 public TransactionStatus
 getTransaction(TransactionDefinition definition)
 throws TransactionException {
 return new SimpleTransactionStatus();
 }
 @Override
 public void rollback(TransactionStatus status)
 throws TransactionException { }
}

Inject the custom TransactionManager bean into the SpringContextConfig3.
container and extract
org.springframework.transaction.support.TransactionTemplate,
which will be used by the advices:

@Configuration
@EnableWebMvc
@EnableAspectJAutoProxy
@ComponentScan(basePackages = {"org.packt.aop.transaction",
"org.packt.aop.transaction.core",

Cross-Cutting the MVC

[241]

"org.packt.aop.transaction.annotation"})
public class SpringContextConfig {
 @Autowired
 private PlatformTransactionManager transactionManager;
 // refer to sources
 @Bean("template")
 TransactionTemplate transactionTemplate(){
 TransactionTemplate template =
 new TransactionTemplate();
 template.setTransactionManager(transactionManager);
 return template;
 }
}

Implement an aspect class that includes a Pointcut that filters all methods, that4.
has @MonitorTransaction, and contains an advice that recognizes the custom
annotation as the main trigger to execute some events with the help of
TransactionManager:

@Component
@Aspect
public class MonitorServiceAspect {
 @Autowired
 private TransactionTemplate template;

 private Logger logger =
 Logger.getLogger(MonitorTransactionAspect.class);

 @Around("execution(* *(..)) && @annotation(monitor)")
 public void logIt(ProceedingJoinPoint pjp,
 MonitorService monitor) {
 template.execute(s->{
 try{
 Employee employee = (Employee)
 pjp.proceed();
 logger.info(employee.getFirstName());
 } catch (Throwable ex) {
 throw new RuntimeException();
 }
 return null;
 });
 }
}

Cross-Cutting the MVC

[242]

Apply now the preceding annotation to the readEmployee() method of5.
EmployeeServiceImpl:

@Service
public class EmployeeServiceImpl implements EmployeeService {
 @Autowired
 private EmployeeDao employeeDaoImpl;

 @MonitorService
 @Override
 public Employee readEmployee(@NegativeArgs
 Integer empId) {
 return employeeDaoImpl.getEmployee(empId);
 }

 // refer to sources
}

Create another custom annotation, @MonitorRequest, using step 1 to step 5.6.
Implement also a MonitorRequestAspect that will use the annotation to trigger
a logging event for the deleteRecord() handler of EmployeeController:

@Component
@Aspect
public class MonitorRequestAspect {
 @Autowired
 private TransactionTemplate template;

 private Logger logger =
 Logger.getLogger(MonitorRequestAspect.class);

 @Around("execution(* *(..)) && @annotation(monitor)")
 public void logIt(ProceedingJoinPoint pjp,
 MonitorRequest monitor) {
 String methodName = pjp.getSignature().getName();
 template.execute(s->{
 try{
 logger.info("executing request handler: " +
 methodName);
 } catch (Throwable ex) {
 throw new RuntimeException();
 }
 return null;
 });
 }
}

Cross-Cutting the MVC

[243]

Save all files. Then clean, install, and deploy the project. Check ch05.log to7.
verify the result.

How it works...
Aspects can monitor and control @Transactional methods by including
org.springframework.transaction.annotation.Transactional in its Pointcuts.
But @Transactional can only be applied to methods that require Spring transaction
management such as JPA and Hibernate transactions. For general-purpose methods, a
custom transaction-aware annotation must be applied in order for aspects to monitor them.

The class org.springframework.transaction.PlatformTransactionManager is used
to implement a general transaction management solution to general bean classes or
methods. Together with @Aspect classes, customizing transactions becomes easy by
extracting TransactionTemplate from PlatformTransactionManager.

The transactional behavior is executed by the execute () method of
TransactionTemplate, which is realized by the advices of the @Aspect that monitors the
methods with the help of custom annotation. The inclusion of the custom annotation in its
Pointcut triggers the execution of the advice whenever the transaction is executed.

This programmatic style of implementing transaction management is always applied to the
service layer. Monitoring secured services can also be done by applying this recipe.

Validating parameters and arguments
Custom annotations can also be aspects to validate if arguments passed to @Service
methods are appropriate or not. The following recipe will use AOP paradigms to intercept
parameter passing.

Getting started
Open ch05 and add an @Aspect that will utilize custom annotation to validate the
employee ID parameter of the readEmployee() service method of
TransactionTemplate.

Cross-Cutting the MVC

[244]

How to do it...
Let us now perform validation on method arguments by doing the following steps:

This recipe will start with the creation of a class-level annotation which is not a1.
transactional type, just like in the previous recipe. Using again the Reflection API,
implement an annotation that will be used by an @Aspect to intercept parameter
passing.

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.PARAMETER)
public @interface NegativeArgs { }

Since a valid employee ID is a positive number, create an aspect that will validate2.
if the empId argument passed onto readEmployee() of EmployeeServiceImpl
is a non-negative number, using the custom annotation @NegativeArgs:

@Component
@Aspect
public class NegativeArgsAspect {
 private Logger logger =
 Logger.getLogger(NegativeArgsAspect.class);
 @Pointcut("execution(*
 *(@org.packt.aop.transaction.annotation.NegativeArgs
 (*), ..))")
 protected void myPointcut() {
 }
 @AfterThrowing(pointcut = "myPointcut() && args(empId)",
 throwing = "e")
 public void afterThrowingException(JoinPoint joinPoint,
 Exception e, Integer empId) {
 if(empId < 0){
 logger.info("cannot be negative number");
 }
 }

 @AfterReturning(pointcut = "myPointcut() &&
 args(empId)")
 public void afterSuccessfulReturn(JoinPoint joinPoint,
 Integer empId) {
 if(empId < 0){
 logger.info("cannot be negative number");
 }
 }
}

Cross-Cutting the MVC

[245]

Apply the annotation to the readEmployee() of EmployeeServiceImpl:3.

 @MonitorService
 @Override
 public Employee readEmployee(@NegativeArgs Integer
 empId) {
 return employeeDaoImpl.getEmployee(empId);
 }

Inside the test class TestEmployeeService, create a test method that will trigger4.
the validation:

@Test
public void testReadEmpMonitor(){
 Employee emp = employeeServiceImpl.readEmployee(-11);
}

How it works...
This recipe offers a defensive way of validating any method's arguments during its
execution. Using a typical custom annotation, aspects can validate any arguments in any
methods, throw an Exception, or replace the value with some defaults at runtime.

Aggressive use of aspects in validating arguments can cause unexpected runtime errors or
the degradation of software performance.

Managing exceptions
Spring 5.0 has built-in API classes such as HandlerExceptionResolver and
@AdviceController to handle @Controller exceptions, but this recipe will create
another way to manage exceptions through an improvised handler implemented using the
AOP paradigm.

Getting started
Open ch05 and add another aspect component that will monitor all methods of
EmployeeServiceImpl and will catch all types of exceptions once encountered.

Cross-Cutting the MVC

[246]

How to do it...
Let us improvise exception handling using AOP concepts by doing these steps:

Just like in the previous recipe, verify if Employee models classes and its service1.
implementations are in their respective packages. We will still be using the
Jdbctemplate-based CRUD transactions.
Other than transactions, @Aspect can also be used to trace and log some2.
exceptions. Let us now add an aspect named ExceptionUpdateAspect in the
package org.packt.aop.transaction.core that will contain two
@AfterThrowing advices, namely logExceptionUpdateEmp(), which will be
triggered once the updateEmployee() method encounters an Exception, and
logExceptionEmployee(), which is applied to all of the methods in
EmployeeServiceImpl:

@Component
@Aspect
public class ExceptionUpdateAspect {
 private Logger logger =
 Logger.getLogger(ExceptionUpdateAspect.class);
 @AfterThrowing(pointcut="execution(*
 org.packt.aop.transaction
 .service.impl.EmployeeServiceImpl.updateEmployee(..))
 && args(empForm,id)", throwing = "e")
 public void logExceptionUpdateEmp(JoinPoint joinPoint,
 EmployeeForm empForm, int id, Throwable e)
 throws Throwable {
 // refer to sources
 }
 @AfterThrowing(pointcut="within(org.packt.aop.transaction
 .service.impl.EmployeeServiceImpl)", throwing = "e")
 public void logExceptionEmployee(JoinPoint joinPoint,
 Throwable e) throws Throwable {
 // refer to sources
 }
}

Execute the TestEmployeeService and test the updateEmployee() method.3.

Cross-Cutting the MVC

[247]

How it works...
The @AfterThrowing advice methods are only executed when an exception is thrown by
the adviced methods in the EmployeeServiceImpl. adviced methods are not required to
implement try-catch or throw exceptions for @AfterThrowing to be valid. Once any
concerned method encounters an exception, @AfterThrowing will be triggered following
the capture of the Exception object through its throwing attribute. There are possibilities
that some of the advices will not be performed due to the execution of @AfterThrowing.

Implementing the caching mechanism
Applying custom AOP to @Repository transactions must be used with caution because it
might ruin the performance of the database CRUD transactions instead of improving them.
All @Repository and @Transactional Spring components can be managed by built-in
Spring aspects through generating a Pointcut such as
execution(@org.springframework.transaction.annotation.Transactional *

*(..)). Adding more custom aspects will, however, bring degradation to the DAO layer's
performance. Aside from managing null values, @Repository only needs a custom
@Aspect when caching large amounts of data records that are frequently accessed.

Object caching is one of the solutions that helps an application enhance its performance
through storing into the memory all frequently accessed data from the database. Instead of
incurring database READ overhead, caching will allow only the execution of a query
transaction when its data is not yet saved in the memory. This recipe will create a custom
aspect that will manage object caching.

Getting started
This recipe will be using Ehcache as the caching mechanism. The same project, ch05, will
be used for this recipe.

Cross-Cutting the MVC

[248]

How to do it...
Let us implement another way of object caching through these steps:

Aside from logging and auditing, aspects can also be used to trigger caching. To1.
enable Ehcache in Spring 5.0, include the following Maven dependency in the
pom.xml:

<dependency>
 <groupId>net.sf.ehcache</groupId>
 <artifactId>ehcache</artifactId>
 <version>3.3.1</version>
</dependency>

Define all the caches to be used by the application in an XML file named2.
ehcache.xml. Place this configuration file in src/main/resources:

<?xml version="1.0" encoding="UTF-8"?>
<ehcache xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="ehcache.xsd"
 updateCheck="true"
 monitoring="autodetect"
 dynamicConfig="true">

 <diskStore path="C://ch05cached" />

 <cache name="employeesCache"
 maxEntriesLocalHeap="500"
 maxEntriesLocalDisk="500"
 eternal="false"
 diskSpoolBufferSizeMB="20"
 timeToIdleSeconds="300" timeToLiveSeconds="600"
 memoryStoreEvictionPolicy="LFU"
 transactionalMode="off">
 <persistence strategy="localTempSwap" />
 </cache>
</ehcache>

If the operating system used is macOS or Linux, point diskStore to the
desired folder location using the correct file system path.

Cross-Cutting the MVC

[249]

Open the SpringDispatcherConfig in3.
org.packt.aop.transaction.dispatcher and initialize the following
org.springframework.cache.ehcache.EhCacheManagerFactoryBean and
org.springframework.cache.CacheManager beans to the container:

import org.springframework.cache.CacheManager;
import org.springframework.cache.ehcache.EhCacheCacheManager;
import
org.springframework.cache.ehcache.EhCacheManagerFactoryBean;
// refer to sources
@EnableWebMvc
@ComponentScan(basePackages="org.packt.aop.transaction")
@PropertySource("classpath:config/jdbc.properties")
@Configuration
public class SpringDispatcherConfig extends
 WebMvcConfigurerAdapter{
@Inject
private ResourceLoader resourceLoader;

// refer to sources
 @Bean
 public CacheManager cacheManager(){
 CacheManager cm = new EhCacheCacheManager(
 ehCacheCacheManager().getObject());
 return cm;
 }

 @Bean
 public EhCacheManagerFactoryBean ehCacheCacheManager() {
 EhCacheManagerFactoryBean cmfb =
 new EhCacheManagerFactoryBean();
 cmfb.setConfigLocation(resourceLoader
 .getResource("classpath:ehcache.xml"));
 cmfb.setShared(true);
 return cmfb;
 }
}

Cross-Cutting the MVC

[250]

Create an @Aspect that will intercept the getEmployees() method in4.
EmployeeDaoImpl and will manage the caching of its return value, which is a
List<Employee>:

import net.sf.ehcache.Cache;
import net.sf.ehcache.CacheManager;
import net.sf.ehcache.Element;
 // refer to sources
@Component
@Aspect
public class CacheListenerAspect {
 @Autowired
 private CacheManager cacheManager;
 private Logger logger =
 Logger.getLogger(CacheListenerAspect.class);
 @Around("execution(* org.packt.aop.transaction.dao
 .impl.EmployeeDaoImpl.getEmployees(..))")
 public Object cacheMonitor(ProceedingJoinPoint joinPoint)
 throws Throwable {

 logger.info("executing " +
 joinPoint.getSignature().getName());
 Cache cache = cacheManager.getCache("employeesCache");
 logger.info("cache detected is " + cache.getName());
 logger.info("begin caching.....");
 String key = joinPoint.getSignature().getName();
 logger.info(key);
 if(cache.get(key) == null){
 logger.info("caching new Object.....");
 Object result = joinPoint.proceed();
 cache.put(new Element(key, result));
 return result;
 }else{
 logger.info("getting cached Object.....");
 return cache.get(key).getObjectValue();
 }
 }
}

Save all files. Stop the Tomcat server first and then start it again due to cache5.
installation. Then clean, build, and deploy the project.

Cross-Cutting the MVC

[251]

How it works...
Spring 5.0 supports several cache implementations such as Gemfire, Guava Cache, and
Ehcache. Since Ehcache is the most widely used type, this recipe injected
org.springframework.cache.ehcache.EhCacheCacheManager to implement the
CacheManager abstraction and instantiated
org.springframework.cache.ehcache.EhCacheManagerFactoryBean to generate
net.sf.ehcache.Cache into the diskStore. One of the caches named employeesCache
is being utilized by the CacheListenerAspect, which intercepts the getEmployees() of
the EmployeeDaoImpl class. This aspect class has an @Around advice named
cacheMonitor() that caches always the first batch of List<Employees> data returned by
getEmployees() in order to prevent the method from accessing the database again the
next time it is executed by the application.

Although this solution is quite helpful and flexible, some developers still use
@EnableCaching, the built-in Spring cache, to use Spring's popular annotations such as
@Cacheable and @CacheEvict.

Intercepting request transactions
The previous chapter ended up with a recipe that used HandlerInterceptor and
HandlerInterceptorAdapter as the mediums for handling incoming and outgoing
request attributes and session data of any request handler in a @Controller, for security
and transaction management purposes. This recipe will provide another option for how to
mimic the functionality of these two Spring MVC API classes.

Getting started
Open the same project, ch05, and add a @Controller that will implement requests and
responses for our employee login and menu transactions.

Cross-Cutting the MVC

[252]

How to do it...
Aside from JEE Filter implementation, let us use aspect to intercept some request-response
transactions:

Aside from implementing Filter, one obvious solution to monitor sessions1.
during pre and post login transactions is to create interceptors. In the package
org.packt.aop.transaction.controller, create a LoginController that
will provide a login form and an employee list results page:

@Controller
public class LoginController {
 @Autowired
 private EmployeeService employeeServiceImpl;
 @RequestMapping(value="/login_emps.html",
 method=RequestMethod.GET)
 public String login(Model model, HttpServletRequest req){
 int browserNo = (Integer)
 req.getAttribute("browserNo");
 if(browserNo == 3){
 model.addAttribute("error", "Browser Not Supported");
 return "browser_error";
 }
 return "login";
 }
 @RequestMapping(value="/login_emps.html",
 method=RequestMethod.POST)
 public ModelAndView loginSubmit(ModelMap model,
 @RequestParam("username") String username,
 @RequestParam("password") String password){

 // refer to sources
 return new
 ModelAndView("redirect:/menu_emps.html",model);
 }
 @RequestMapping(value="/menu_emps.html",
 method=RequestMethod.GET)
 public String menu(Model model, HttpServletRequest req){
 List<Employee> emps =
 employeeServiceImpl.readEmployees();
 model.addAttribute("emps", emps);
 return "menu";
 }
 @RequestMapping(value="/empty_login.html",
 method=RequestMethod.GET)
 public String emptylogin(){
 // refer to sources

Cross-Cutting the MVC

[253]

 }
 @RequestMapping(value="/browser_error.html",
 method=RequestMethod.GET)
 public String browserError(){
 // refer to sources
 }
}

Create an @Aspect class that will intercept /login_emps.html in processing the2.
incoming HttpServletRequest. The class will filter and check the browser type
of the user and will trigger the /browser_error.html page if the application is
accessed through Internet Explorer:

@Component
@Aspect
public class LoginProxyAspect {
 private Logger logger =
 Logger.getLogger(LoginProxyAspect.class);
 @Pointcut("within(@org.springframework
 .stereotype.Controller *))")
 public void classPointcut() { }
 @Pointcut("execution(*
 org.packt.aop.transaction.controller
 .LoginController.login(..))")
 public void loginPointcut() { }
 @Before("classPointcut() && loginPointcut()
 && args(model,req) && @annotation(mapping)")
 public String browserCheck(JoinPoint joinPoint,
 Model model, HttpServletRequest req,
 RequestMapping mapping) throws ServletException,
 IOException{
 logger.info("executing " +
 joinPoint.getSignature().getName());
 logger.warn("MVC application trying to
check browser type...");
 String loginRequestMethod =
 mapping.method()[0].name();
 String username = req.getParameter("username");
 String password = req.getParameter("password");
 req.setAttribute("username", username);
 req.setAttribute("password", password);
 logger.info("executing " +
 joinPoint.getSignature().getName() + " which is a "
 + loginRequestMethod + " request");
 if(loginRequestMethod.equalsIgnoreCase("GET")){
 Enumeration<String> headers =
 req.getHeaderNames();

Cross-Cutting the MVC

[254]

 while(headers.hasMoreElements()){
 String headerName = headers.nextElement();
 if(headerName.equalsIgnoreCase("user-agent")){
 String browserType =
 req.getHeader(headerName);
 if(browserType.contains("Chrome")){
 req.setAttribute("browserNo", 1);
 logger.info("MVC application uses
 Chrome...");
 }else if (browserType.contains("Firefox")){
 req.setAttribute("browserNo", 2);
 logger.info("MVC application uses
 Firefox...");
 }else{
 req.setAttribute("browserNo", 3);
 logger.info("MVC appstops...");
 }
 break;
 }
 }
 }
 return "login";
 }
}

Save all files. Then clean, build, and deploy the ch05 project.3.

How it works...
In this scenario, the appropriate advice that will retrieve all the request headers of the
incoming request for /login_emps.html is the @Before advice. The aspect class
LoginProxyAspect intercepts the incoming request to retrieve the user-agent header in
order to prohibit all transactions from running on Internet Explorer. After detecting the
type of browser, the browserCheck() advice creates a request attribute, browserNo, for
the /login_emps.html to know what browser typed was used.

Another highlight of this recipe is the use of the @Pointcut annotation. @Pointcut is used
when creating an independent rule for join points to be applied anywhere within the aspect
class. Usually, when the Pointcut expression gets complicated, we use the @Pointcut
annotation to simplify and break down the expression to simple terms. For the annotation
to run correctly, it must be defined by a void method without any implementation at all,
such as the loginPointcut() and classPointcut() of LoginProxyAspect.

Cross-Cutting the MVC

[255]

The interception process is configured by the join point rules of loginPointcut() and
classPointcut(). The former includes all the login() methods in LoginController
with any local parameter values and return values, while the latter monitors all the
@Controller class transactions. @Pointcut can limit the concerns to controllers just by
invoking the @ symbol together with the package of the @Controller annotation interface.
In usual cases, the within command tells advices to include all methods inside a package
(for example, within(org.packt.aop.transaction.controller)) or sub-packages
(for example, within(org.packt.aop.transaction..*)). The interception will not be
complete without the @annotation, which limits our concerns to only the request hander
defined by @RequestMapping.

This recipe has browserCheck() advice that intercepts the @Controller request handler
method, named login, without any restriction on the local parameters and return value.

Implementing user authentication
Although Spring Security is the most straightforward and easy solution for securing any
Spring MVC applications, software designers always need the option of customizing the
authentication procedure for non-complex and small-scale security requirements. This
recipe will provide the solution for how to use @Aspect and advices in implementing
security modules.

Getting started
Open ch05 and add the following @Aspect to the loginSubmit() request handler of
EmployeeController.

How to do it...
Let us create a custom login interceptor that validates the user's credentials using database
authentication:

This recipe uses aspects to pre- and post-validate user credentials using the1.
authentication services provided by the previous recipes. Create an aspect class,
LoginAuthAspect, which contains the following @Pointcut definitions and a
Log4J logger:

Cross-Cutting the MVC

[256]

@Component
@Aspect
public class LoginAuthAspect {
 private Logger logger =
 Logger.getLogger(LoginAuthAspect.class);
 @Autowired
 private LoginService loginServiceImpl;
 @Pointcut("within(@org.springframework.stereotype
 .Controller *)")
 public void classPointcut() { }
 @Pointcut("execution(*
 org.packt.aop.transaction.controller
 .LoginController.loginSubmit(..))")
 public void loginSubmitPointcut() { }

}

Inside the @Aspect class, implement a @Before advice that will intercept2.
loginSubmit(), verify if the transaction is POST, and audit the username and
password that tried to log in to the application:

@Before("classPointcut() && loginSubmitPointcut() &&
@annotation(mapping)")
public void registerParams(JoinPoint joinPoint,
 RequestMapping mapping) throws ServletException,
 IOException{

 HttpServletRequest req = ((ServletRequestAttributes)
 RequestContextHolder.getRequestAttributes())
 .getRequest();
 logger.info("executing " +
 joinPoint.getSignature().getName());
 String loginRequestMethod = mapping.method()[0].name();
 logger.info("executing " +
 joinPoint.getSignature().getName() + " which is a "
 + loginRequestMethod + " request");
 if(loginRequestMethod.equalsIgnoreCase("POST")){
 String username = req.getParameter("username");
 String password = req.getParameter("password");
 logger.warn("MVC application detected access from
 user: " + username + " with password: " + password);
 }
}

Cross-Cutting the MVC

[257]

The next advice is authCredentials(), which is an @After advice that will3.
evaluate further the user credentials based on what is recorded in the employee
table. The advice will just generate a Boolean session attribute, authenticated,
which will be set to true if the user is a valid one based on SimpleJdbcInsert
and JdbcTemplate:

@After("classPointcut() && loginSubmitPointcut() &&
@annotation(mapping)")
public void authCredentials(JoinPoint joinPoint,
 RequestMapping mapping) throws ServletException,
 IOException{

 HttpServletRequest req = ((ServletRequestAttributes)
 RequestContextHolder.getRequestAttributes())
 .getRequest();
 logger.info("executing " +
 joinPoint.getSignature().getName());
 String loginRequestMethod = mapping.method()[0].name();
 logger.info("executing " +
 joinPoint.getSignature().getName() + " which is a "
 + loginRequestMethod + " request");
 if(loginRequestMethod.equalsIgnoreCase("POST")){
 String username =
 (String)req.getParameter("username");
 String password =
(String) req.getParameter("password");
 AccountLogin access =
 loginServiceImpl.getUserAccount(username.trim());
 req.getSession().setAttribute("authenticated",
 false);
 if(access != null){
 if(access.getPassword()
.equalsIgnoreCase(password.trim())){
 logger.info("user " + username +" with
 password " + password + " valid");
 req.getSession().setAttribute("authenticated",
true);
 req.getSession().setAttribute("userId",
 access.getId());
 }else{
 req.getSession().setAttribute("authenticated",
 false);
 }
 }
}

Cross-Cutting the MVC

[258]

Save all files. Then clean, build, and deploy the project.4.

How it works...
Obviously, this recipe is a flexible type of implementation and everyone can modify this
recipe given their own set of login scenarios. But one thing is for sure, AOP can establish
database connections using Spring JDBC. Moreover, advices can also verify the HTTP
request type of an adviced method. In the case of loginSubmit(), both advice methods
check first if the incoming transactions are POST ones.

If there is a need to extract the HttpServletRequest, it is not necessary to alter the local
parameters of the advices and the concerns. The best way is to use
org.springframework.web.context.request.RequestContextHolder to retrieve the
HttpServletRequest object and
org.springframework.web.context.request.ServletWebRequest for the
HttpServleResponse object:

HttpServletRequest req = ((ServletRequestAttributes)
RequestContextHolder.getRequestAttributes()).getRequest();
ServletWebRequest servletWebRequest=new ServletWebRequest(req);
HttpServletResponse response=servletWebRequest.getResponse();

Accessing with restrictions
If we can use AOP to customize the user authentication process, we can also use it to
establish the access control list and authorization rules.

Getting started
Given the roles, permissions, and permission sets of Chapter 4, Securing Spring MVC
Applications, this recipe will implement the record deletion of employee records to ROLE_HR
only. Open the Maven Eclipse ch05 project, and add the following features.

Cross-Cutting the MVC

[259]

How to do it...
Let us simulate Spring Security's authorization process by using AOP concepts:

Although authorization can be implemented using the Spring Security1.
framework, this recipe will provide us with another solution using AOP
concepts. Inside the package org.packt.aop.transaction.controller,
create an EmployeeController which will delete a record given an empId
detail:

@Controller
public class EmployeeController {
 @Autowired
 private EmployeeService employeeServiceImpl;
 @RequestMapping("/deldept.html/{deptId}")
 public String deleteRecord(Model model,
 @PathVariable("deptId") Integer deptId){
 employeeServiceImpl.delEmployee(deptId);
 model.addAttribute("emps",
 employeeServiceImpl.readEmployees());
 return "menu";
 }
}

Modify the view page /menu_emps.html to include the DELETE transaction for2.
every record, as shown in the following screenshot:

Now, create an @Aspect class that will intercept the deleteRecord() request3.
handler of EmployeeController to filter the user permissions of the currently
logged in user. Once the user clicks DELETE, the advice method will be triggered
to allow the deletion only if the user has ROLE_HR; otherwise, a redirection to
/banned.html will occur:

@Component
@Aspect
public class DeleteAuthorizeAspect {
 private Logger logger =
 Logger.getLogger(DeleteAuthorizeAspect.class);

Cross-Cutting the MVC

[260]

 @Autowired
 private LoginService loginServiceImpl;
 @Pointcut("within(@org.springframework.stereotype
 .Controller *))")
 public void classPointcut() { }
 @Pointcut("execution(*
 org.packt.aop.transaction.controller
 .EmployeeController.deleteRecord(..))")
 public void delPointcut() { }
 @Around("classPointcut() && delPointcut()
 && @annotation(mapping)")
 public String delEmployee(ProceedingJoinPoint joinPoint,
 RequestMapping mapping) throws Throwable{

 HttpServletRequest req = ((ServletRequestAttributes)
 RequestContextHolder.getRequestAttributes())
 .getRequest();
 logger.info("executing " +
 joinPoint.getSignature().getName());
 int userId = (Integer)req.getSession()
 .getAttribute("userId");
 System.out.println("userId" + userId);
 List<RolePermission> permission =
 loginServiceImpl.getPermissionSets(userId);
 if(isAuthroize(permission)){
 logger.info("user " + userId
 + " is authorized to delete");
 joinPoint.proceed();
 return "menu";
 }else{
 logger.info("user " + userId + " is NOT authorized to
 delete");
 return "banned";
 }
 }

 private boolean isAuthroize(List<RolePermission>
 permission){
 Set<String> userRoles = new HashSet<>();
 Set<String> userPerms = new HashSet<>();
 // refer to sources

 if(userRoles.contains("ROLE_HR")){
 return true;
 }
 return false;
 }
}

Cross-Cutting the MVC

[261]

Save all files. Then clean, build, and deploy the project.4.

How it works...
If in Chapter 4, Securing Spring MVC Applications, we used UserService to create the User
object containing the GrantedAuthority. This chapter provided us with another
mechanism to implement and utilize the access control rules of the application through an
@Around advice. The first thing DeleteAuthorizeAspect does is extract the session
attribute userId generated by the LoginAuthAspect of the previous recipe. At this point,
aspects can interact with each other using session and request attributes. Now, after
retrieving the empId of the currently logged in user, the delEmployee() advice will query
the permission sets assigned to the user through LoginServiceImpl. The advice will only
permit the deletion if one of the roles confirmed is ROLE_HR, otherwise this page will be
shown on the screen:

Controlling concurrent user access
Concurrent access control can also be feasible in AOP since we can improvise the
authentication process through the @Aspect interception. If aspects can communicate with
each other through session attributes, we can utilize the existing session of the application
to count the number of user accesses per account.

Getting started
Update LoginAuthAspect in order to manage the number of allowable user access
privileges an account can utilize.

Cross-Cutting the MVC

[262]

How to do it...
Without using Spring Security, let us simulate concurrent user control by using AOP and
following these steps:

Create a @Bean of Map type that will hold all usernames that are currently logged1.
in to the application. Inject this Map in SpringContextConfig:

Configuration
@EnableWebMvc
@EnableAspectJAutoProxy
@ComponentScan(basePackages="org.packt.aop.transaction")
public class SpringContextConfig {
 @Bean
 public Map<String,Integer> authStore(){
 return new HashMap<>();
 }
}

Update the authCredentials() advice method of LoginAuthAspect to2.
include the validation of the total number of open accesses a current user has:

@After("classPointcut() && loginSubmitPointcut()
&& @annotation(mapping)")
public void authCredentials(JoinPoint joinPoint,
 RequestMapping mapping) throws ServletException,
 IOException{

 HttpServletRequest req =
 ((ServletRequestAttributes)RequestContextHolder
 .getRequestAttributes()).getRequest();
 logger.info("executing " +
 joinPoint.getSignature().getName());
 String loginRequestMethod = mapping.method()[0].name();
 logger.info("executing " +
 joinPoint.getSignature().getName()
 + " which is a " + loginRequestMethod + " request");
 if(loginRequestMethod.equalsIgnoreCase("POST")){
 String username = (String)req.getParameter("username");
 String password = (String) req.getParameter("password");
 AccountLogin access =
 loginServiceImpl.getUserAccount(username.trim());
 req.getSession().setAttribute("authenticated", false);
 if(access != null){
 if(access.getPassword().equalsIgnoreCase(
 password.trim())){
 logger.info("user " + username +" with password "

Cross-Cutting the MVC

[263]

 + password + " valid");
 if(authStore.containsKey(username)){
 if(authStore.get(username) == 2){
 logger.info("user " + username +" with password "
 + password + " is already logged in");
 req.getSession().setAttribute("authenticated",
 false);
 }else{
 int numSess = authStore.get(username);
 authStore.put(username, ++numSess);
 req.getSession().setAttribute("authenticated",
 true);
 req.getSession().setAttribute("userId",
 access.getId());
 }
 }else{
 authStore.put(username, 1);
 req.getSession().setAttribute("authenticated", true);
 req.getSession().setAttribute("userId",
 access.getId());
 }
}
}
}
}

In this recipe, a user is only allowed to open up to two accounts of the
same username, otherwise, the user will be redirected to the
/login_emps.html.

Save all files. Then clean, build, and deploy the updated ch05 project.3.

How it works...
Although there are so many ways, this recipe used a java.util.Map as a global
authStore for usernames which is accessed always by LoginAuthAspect to check
whether a certain account is currently using the application. If the valid user has not
accessed the session at all, it will be registered into the store with one as the number of
currently open accounts. Once the same user successfully logs in to the application using
another browser, the advice will check first if the number of open accesses is less than two,
otherwise, the user will be redirected to /login_emps.html. Now, aside from checking the
existence of the user in the database, the @Around advice authCredentials() will limit
the privilege of the user given a maximum number of allowable accesses per account.

Cross-Cutting the MVC

[264]

Implementing a mini-workflow using AOP
Unlike HandlerInterceptor, this chapter has proven that the AOP paradigm is the best
mechanism for creating modules that can intercept requests, services, data transactions,
security modules, and cache providers. Given the correct concerns and delineation of tasks, a
set of @Aspect classes can optimize the modularity of the MVC application, which
enhances the core features of the application. This last recipe will create a simple web
application that will simulate a document rendition workflow based on popular enterprise
records and document management systems, such as Alfresco.

Getting started
Let us create a new Maven project, ch05-wf, to replicate the setup and configuration done
in the previous project. Given all the different types of advices and @Pointcut definitions,
we need to implement the following high-level activity diagram from scratch using AOP
principle and Spring MVC concepts:

Cross-Cutting the MVC

[265]

How to do it...
To summarize the whole concept of AOP, let us simulate a mini-workflow design which
uses Spring AOP concepts:

Although Spring 5 can still support BPMN 2.0, it has another way to simulate a1.
workflow of transactions using aspects. Let us define all user task executors as
Spring form @Controller requests. userTask1 will ask what type of rendition
type the actor wants all the information to be saved as, and userTask2 will ask
for the email type the user wants the generated document to be sent as:

@Controller
public class UserTaskController {
 @RequestMapping("/wf/start.html")
 public RedirectView renderUserTask(Model model){
 String renditionType = "pdf";
 model.addAttribute("renditionType", renditionType);
 return new RedirectView("/wf/approval.html",true);
 }
 @RequestMapping("/wf/approval.html")
 public RedirectView emailUserTask(Model model){
 String notificationType = "yahoo";
 model.addAttribute("notificationType",
 notificationType);
 return new RedirectView("/wf/end.html",true);
 }
 @ResponseBody
 @RequestMapping("/wf/end.html")
 public String stopActivity(){
 return "done";
 }
}

Workflow events will be implemented using AOP and must be placed inside a2.
org.packt.aop.workflow.core package. The startEvent will be
implemented by the StartEventAspect that simply provides the initial
notification that the workflow has started:

@Component
@Aspect
public class StartEventAspect {
 private Logger logger =
 Logger.getLogger(StartEventAspect.class);
 @Pointcut("within(@org.springframework.stereotype
 .Controller *)")
 public void classPointcut() {}

Cross-Cutting the MVC

[266]

 @Pointcut("execution(*
 org.packt.aop.workflow.controller.UserTaskController
 .renderUserTask(..))")
 public void taskPointcut() {}
 @Before("classPointcut() && taskPointcut() &&
 @annotation(mapping)")
 public void sequence(JoinPoint joinPoint,
 RequestMapping mapping) throws Throwable{
 logger.info("starting rendition workflow....");
 }
}

After providing the rendition type to the renderUserTask() request, the first3.
transaction event will be triggered, the RenderEventAspect. This will execute
the process to convert all unstructured data to either PDF, XLS, or RTF format:

@Component
@Aspect
public class RenderEventAspect {
 @Autowired
 private RenderDelegate renderDelegate;

 @Pointcut("within(@org.springframework.stereotype
 .Controller *)")
 public void classPointcut() {}
 @Pointcut("execution(*
org.packt.aop.workflow.controller.UserTaskController.emailUserT
ask(..))")
 public void taskPointcut() {}
 @Before("classPointcut() && taskPointcut() &&
 @annotation(mapping)")
 public void sequence(JoinPoint joinPoint, RequestMapping
 mapping) throws Throwable{
 HttpServletRequest req =
((ServletRequestAttributes)RequestContextHolder.getRequestAttri
butes()).getRequest();
 String rendetionTyupe =
(String)req.getParameter("renditionType");
 if(rendetionTyupe.equalsIgnoreCase("pdf")){
 renderDelegate.callRenderPDFservice();
 } else if(rendetionTyupe.equalsIgnoreCase("xls")){
 renderDelegate.callRenderXLSservice();
 } else if(rendetionTyupe.equalsIgnoreCase("rtf")){
 renderDelegate.callRenderRTFservice();
 }
 }
}

Cross-Cutting the MVC

[267]

Then, workflow will execute the emailUserTask() request which will ask for4.
the email type where the document will be forwarded. After providing either
GMAIL or YAHOO, the NotificationEventAspect will be triggered to
execute the email transaction:

@Component
@Aspect
public class NotificationEventAspect {
 @Autowired
 private NotificationDelegate notificationDelegate;
 @Pointcut("within(@org.springframework.stereotype
 .Controller *)")
 public void classPointcut() {}
 @Pointcut("execution(*
 org.packt.aop.workflow.controller.UserTaskController
 .stopActivity(..))")
 public void taskPointcut() {}
 @Before("classPointcut() && taskPointcut() &&
 @annotation(mapping)")
 public void sequence(JoinPoint joinPoint, RequestMapping
 mapping) throws Throwable{
 HttpServletRequest req =
 ((ServletRequestAttributes)RequestContextHolder
 .getRequestAttributes()).getRequest();
 String notificationType =
 req.getParameter("notificationType");
 if(notificationType.equalsIgnoreCase("yahoo")){
 notificationDelegate.sendYahooDocs();
 }else if(notificationType
 .equalsIgnoreCase("gmail")){
 notificationDelegate.sendGmailDocs();
 }
 }
}

The workflow will culminate by triggering the EndEventAspect:5.

@Component
@Aspect
public class EndEventAspect {
 private Logger logger =
 Logger.getLogger(EndEventAspect.class);
 @Pointcut("within(@org.springframework.stereotype
 .Controller *)")
 public void classPointcut() {}
 @Pointcut("execution(*
 org.packt.aop.workflow.controller.UserTaskController

Cross-Cutting the MVC

[268]

 .stopActivity(..))")
 public void taskPointcut() {}
 @After("classPointcut() && taskPointcut() &&
 @annotation(mapping)")
 public void sequence(JoinPoint joinPoint, RequestMapping
 mapping) throws Throwable{
 logger.info("end of rendition workflow....");
 }
}

The delegates or services will be executed by the events to perform the necessary6.
rendition algorithms and email notification. All delegates will be placed inside
the org.packt.aop.workflow.delegate package:

@Component
public class RenderDelegate {
 private Logger logger =
Logger.getLogger(RenderDelegate.class);
 public void callRenderPDFservice(){
 logger.info("converting data to PDF format...");
 }
 public void callRenderRTFservice(){
 logger.info("converting data to RTF format...");
 }
 public void callRenderXLSservice(){
 logger.info("converting data to XLS format...");
 }
}

@Component
public class NotificationDelegate {
 private Logger logger =
Logger.getLogger(NotificationDelegate.class);
 public void sendGmailDocs(){
 logger.info("sending docs to GMAIL...");
 }
 public void sendYahooDocs(){
 logger.info("sending docs to YAHOO...");
 }
}

Controllers will determine the gateway paths of the workflow.7.
Create some additional @Aspect for logging, small-scale security rules, and8.
custom caching for frequently retrieved objects.
Save all files. Then clean, deploy, and install ch05-wf and run the first9.
activity task.

Cross-Cutting the MVC

[269]

How it works...
In a BPMN 2.0 workflow design, a gateway is used to manage the flow of execution and is
also capable of executing services needed to generate output. In a customized workflow,
AOP can be used as a gateway protocol, wherein it can determine the request flow after
every user task. Some @Aspect classes can have heavy implementation and some may have
lighter tasks depending on the workflow specifications. By knowing the repercussions of
using AOP in creating software, designers can avoid overlaps and gaps between concerns
and advices. Also, @Aspect implementation must not cause degradation to the
performance of the application; thus, it must focus on the lighter concerns of the
specification.

6
Functional Programming

One of the main reasons why Spring 5.0's framework was created is to fully integrate
functional programming when implementing the asynchronous web framework. The so-
called functional web framework has a reactive core that has its own annotation, interfaces,
and classes for handling requests. Thus, to fully understand reactive programming in
Spring is to know the core platform of Java functional programming.

The main idea of functional programming is to build a set of definitions to evaluate
computer instructions. Each definition is a concise, single, and atomic expression that calls
another occurrence of expressions which, collectively, can give a simplified result. Although
functional programming is an old programming methodology based on mathematical
principles, it is now being integrated in Java for the purposes of creating a transition from
an imperative way of programming to a more reduced, clear, agile and robust style of
coding. But aside from the tangible improvements it can give to Spring, functional
programming can help developers focus on the problems instead of spending so much time
on implementing complex and cluttered low-level implementations.

This chapter will introduce a new face of Java that can be used to solve synchronous and
asynchronous Spring web projects.

In this chapter, you will learn the following:

Implementing lambda expressions using anonymous inner classes
Creating lambda expressions using @FunctionalInterface
Building the built-in functional interfaces
Applying method and constructor references
Using the Stream API
Applying streams to collections
Applying streams to NIO 2.0
Using parallel streams

Functional Programming

[271]

Implementing lambda expressions using
anonymous inner classes
The implementation of functional programming principles in Java has started with the use
of anonymous inner classes. Starting with Java 1.7, an abstract method of a certain interface
now can be implemented using anonymous inner classes, and even without using the
implements keyword, given that it has only one abstract method.

Getting started
Create an Eclipse Maven project, ch06, and pattern the Maven configurations from the
previous chapter's pom.xml. Copy the previous SpringContextConfig,
SpringDbConfig, SpringDispatcherConfig, and SpringWebinitializer and place
them inside their new respective packages under the org.packt.functional.codes core
package. Update the DispatcherServlet configuration details and all the copied context
definition classes to set up the new project. Reuse also the Employee model and DAO
classes used previously.

How to do it...
Functional programming in Java can be illustrated by an interface with one abstract
method. Let us now showcase functional programming in Java by doing these steps:

Let us create a typical EmployeeRecord interface in1.
org.packt.function.codes.service. The interface has only one method, as
follows:

public interface EmployeeRecord {
 public Employee getServiceRecord(Integer empid);
}

Afterwards, implement EmployeeRecord using an anonymous inner class:2.

@Service("employeeService")
public class EmployeeServiceImpl {
 @Autowired
 private EmployeeDao employeeDaoImpl;
 public Employee getEmployee(Integer empid){
 EmployeeRecord emp = new EmployeeRecord(){

Functional Programming

[272]

 @Override
 public Employee getServiceRecord(Integer empid) {
 Iterator<Employee> iterate =
 employeeDaoImpl.getEmployees().iterator();
 while(iterate.hasNext()){
 Employee e = iterate.next();
 if(e.getEmpId().equals(empid)){
 return e;
 }
 }
 return new Employee();
 }
};
 return emp.getServiceRecord(empid);
 }
}

In src\test\java, create a test class, TestEmployeeService, to test the3.
getEmployee() service method:

@RunWith(SpringJUnit4ClassRunner.class)
@WebAppConfiguration
@ContextConfiguration(classes = { SpringDbConfig.class,
 SpringDispatcherConfig.class })
public class TestEmployeeService {
 @Autowired
 private EmployeeServiceImpl employeeService;

 @Test
 public void testEmployeeRec(){
 Employee emp = employeeService.getEmployee(11111);
 System.out.format("%s \n", emp.getFirstName());
 }
}

How it works...
Lambda expression is the sole reason why functional programming is now natively
supported in Java. Some languages name lambda expression as a closure or anonymous
method, but all these terms refer to only one concept and that is animosity in implementation.
Lambda is independent of any class surrounding it and can be returned as an object that
may vary from one instance to another. It is defined by the parameters and returned values
of the abstract method assigned to a particular interface.

Functional Programming

[273]

A custom implementation of lambda becomes possible with the use of anonymous inner
classes. Anonymous inner classes use overriding techniques in order to implement the
interface method. Java 1.7 allows for a Runnable interface to be implemented using
lambda:

Runnable job = new Runnable(){
 @Override
 public void run() {
 // Transactions
 }
};

Likewise, the Comparator interface used to compare a String, array, or List can also be
instantiated in this manner:

Comparator<String> compareTool = new Comparator<String>(){
 @Override
 public int compare(String o1, String o2) {
 return 0;
 }
 };

Implementing lambda expression using
@FunctionInterface
Java 1.8 has formalized the lambda expression implementation through the use of the
@FunctionalInterface annotation and the inclusion of the new specification on
anonymous functions. This recipe will open a new technique in creating lambda expression.

Getting started
Using the same Eclipse project and EmployeeServiceImpl, add the needed service
methods using @FunctionInterface components.

Functional Programming

[274]

How to do it...
Many of the API classes in Java 1.8 use functional interfaces to simplify service
implementation by applying the principles of functional programming. To illustrate what
functional programming is, let us implement the following steps:

Create another version of the EmployeeRecord interface of the previous recipe1.
that uses the @FunctionalInterface annotation:

@FunctionalInterface
public interface EmployeeRecordService {
 public List<Employee> getEmployees();
}

Also in org.packt.function.codes.service, create a functional interface2.
that highlights a method with parameters:

@FunctionalInterface
public interface ComputeSalaryIncrease {
 public double increase(double current, double increase);

 default public double demote(double current, double
 decrease){
 return current - (0.2*decrease);
 }
 static public double rateAppraisal(double current){
 return current * 0.2;
 }
}

Open EmployeeServiceImpl and create getEmployees() that implements3.
EmployeeRecordService:

public List<Employee> getEmployees(){
 EmployeeRecordService employees =
 ()->{ return employeeDaoImpl.getEmployees(); };
 return employees.getEmployees();
}

Adding the method updateSalary() under that will implement4.
ComputeSalaryIncrease:

public double updateSalary(double current, double
 increase){

 ComputeSalaryIncrease salaryInc = (currSal, inc)->{

Functional Programming

[275]

double proRate = currSal + (inc *0.2);
return proRate;
 };
return salaryInc.increase(current, increase);
}

Open TestEmployeeService and add the following test methods:5.

@Test
public void testComputeSalary(){
 System.out.println(employeeService.updateSalary(2000,
 500));
}

@Test
public void testShowEmployees(){
 Iterator<Employee> iterate =
 employeeService.getEmployees().iterator();
 while(iterate.hasNext()){
 Employee temp = iterate.next();
 System.out.format("%s \n", temp.getFirstName());
 }
}

How it works...
The formalization of lambda expressions in Java 1.8 is all documented in JSR 335, which
covers the @FunctionalInterface annotation to create custom functional interfaces,
built-in functional interfaces, and Stream APIs with lots of useful mapping, sorting,
filtering, reduction, and aggregate methods. But what is most important is the
recognition of anonymous functions which have the following form:

() -> { System.out.println("lambda expression"); }

The left-hand side of the arrow symbol is the area of inferred parameters and the right-hand
side is the body of the anonymous function which can be a simple expression or a block of
statements. An anonymous function is technically a reduced lambda expression.

Functional Programming

[276]

In this form, the lambda expression is said to be implementing the correct interface method
when its parameters and return types match the abstract method. If the abstract method has
zero parameters, just like in getEmployees(), the left-hand side of the expression remains
empty. But in the case of updateSalary(), where there are two double parameters, the
lambda expression must contain two local variables at the left-hand side, which are inferred
to be double types. Since these two methods output a value, a return statement must be
found in their respective implementation body bearing the value of the function. And if the
implementation requires a more complex and lengthy logic, the body part of this form can
still be treated as a typical anonymous inner class where variables and constants are
declared and initialized, just like what is emphasized in updateSalary().

This new syntax of lambda expression has nothing to do with the existence of the
@FunctionalInterface annotation. The use of this annotation is only to restrict one
interface to have only one abstract method, otherwise, a compilation error will be issued by
the compiler. Moreover, the use of the annotation @FunctionaInterface allows us to add
more methods to our interfaces, namely the default and static methods, which are allowed by
Java 1.7 and above.

The default methods are instance-scoped methods that become available once the lambda
expression of the said @FunctionalInterface has been successfully implemented. They
are defined by the keyword default.

Unlike in a normal interface, static methods can now be created in
@FunctionalInterface and can be accessed at interface level. Functional interfaces can
have more than one default or static method. The ComputeSalaryIncrease interface
contains one default and one static method.

Applying the built-in functional interfaces
Java 1.8 also introduced some built-in functional interfaces that can be used directly in
different lambda expressions. Predicate, Consumer, Supplier, and Function are some
of the functional interfaces of the newly created package java.util.function, which will
be highlighted in this recipe.

Getting started
Using the same Eclipse project and EmployeeServiceImpl, add the needed service
methods using the pre-defined function interfaces of Java 1.8.

Functional Programming

[277]

How to do it...
There are some built-in functional interfaces that Java 1.8 can provide in order to create
services depending on the type of transactions needed to be implemented. To illustrate how
to use these functional interfaces, follow these steps:

Add another method to EmployeeServiceImpl that will retrieve and filter1.
employees with an age greater than 25:

public List<Employee> getEmployeesFunc(){
 Predicate<Employee> qualifiedEmps =
 (e) -> e.getAge() > 25;
 List<Employee> newListEmps = new ArrayList<>();
 Iterator<Employee> iterate =
 employeeDaoImpl.getEmployees().iterator();
 while(iterate.hasNext()){
 Employee e = iterate.next();
 if(qualifiedEmps.test(e)){
 newListEmps.add(e);
 }
 }
 return newListEmps;
}

Using the Predicate functional interface is one way of establishing a logical
expression to be used for object validation. Its abstract method test() is
implemented using lambda expression.

Add this method that evaluates employee records given two series of Predicates,2.
AND-ed, to comprise a filtering rule. This service method will fetch all qualified
employees with age > 25 belonging to a certain deptId:

public List<Employee> getEmployeePerDept(int deptId){
 Predicate<Employee> qualifiedEmps =
 (e) -> e.getAge() > 25;
 Predicate<Employee> groupEmp =
 (e) -> e.getDeptId() == deptId;
 Predicate<Employee> rule =
 qualifiedEmps.and(groupEmp);
 List<Employee> newListEmps = new ArrayList<>();
 Iterator<Employee> iterate =
 employeeDaoImpl.getEmployees().iterator();
 while(iterate.hasNext()){
 Employee e = iterate.next();
 if(rule.test(e)){
 newListEmps.add(e);

Functional Programming

[278]

 }
 }
 return newListEmps;
}

Create another method that generates random tickets for employee complaints.3.
This method uses the Supplier functional interface for constructing a lambda
expression that only gives a value without any input:

public int employeeTicket(){
 Supplier<Integer> generateTicket =
 () -> (int)(Math.random()*200000);
 return generateTicket.get();
}

The Supplier functional interface has an implemented abstract method, get(),
which can give the expected result generated by its lambda expression.

Add the method printEmployeeNotQuaified(), which prints all employee4.
records with the classification of whether an employee is QUALIFIED or NOT
based on age:

public void printEmployeeNotQuaified(){
 Consumer<Employee> showNotQualified =
 (e) ->{
 if(e.getAge().intValue() > 25){
 System.out.format("%s %s %s\n",
 e.getFirstName(),
 e.getLastName(), "QUALIFIED");
 }else {
 System.out.format("%s %s %s\n",
 e.getFirstName(),
 e.getLastName(), "NOT QUALIFIED");
 }
 };
 Iterator<Employee> iterate =
 employeeDaoImpl.getEmployees().iterator();
 while(iterate.hasNext()){
 Employee e = iterate.next();
 showNotQualified.accept(e);
 }
}

Functional Programming

[279]

This method highlights the use of Consumer that uses the lambda expression to
accept an input of any object, but will only process transactions and not return
any output. It has an implemented abstract method, accept(), that executes the
lambda expression.

Lastly, add the following method that uses Function to convert an object to5.
another form. In this case, the method wants to extract only the age values in
order to compute the average age of all the employees:

public double getAverageAge(){
 double avg = 0.0;
 Function<Employee, Integer> getAge = (e) -> e.getAge();
 Iterator<Employee> iterate =
 employeeDaoImpl.getEmployees().iterator();
 while(iterate.hasNext()){
 Employee e = iterate.next();
 avg += getAge.apply(e);
 }
 return avg;
}

The functional interface has an abstract method, apply(), which extracts the age
element from the whole record.

How it works...
Built-in functional interfaces are also available in current Java and can be used as a new
programming paradigm for the DAO and services of any Spring MVC applications. Aside
from the importance of lambda expression, these built-in functional interfaces help convert
imperative programming the functional programming style, where all transactions are in
the form of functions which can be called repeatedly by other functions one after the other.
The presence of these interfaces provides a clear picture that DAO, services, or any generic
transactions can be implemented in a composed and uncluttered set of commands, which
can be maintained and managed well when compared to low-level and complex iterations
and method calls.

Functional Programming

[280]

Instead of having complicated logical expressions, we can create and join two Predicates,
each with simple and clear logical statements written in lambda expression in order to form
a larger Predicate that will evaluate if an object satisfies the combined rule or not. Here,
we have a series of Predicate function interfaces joined together to implement one
method, test(), without having confusing and messy parentheses and a lengthy logical
statement. Predicate functional interfaces have three default methods, and(), or(), and
negate(), used to call other Predicates to perform AND, OR, and NOT operations,
respectively.

Aside from Predicate, there is Consumer, which is another built-in functional interface
purposely used to accept an object in order to generate results without returning any
functional value. It has a default method, andThen(), which takes another Consumer to
create a series of Consumer implementations.

Supplier is quite the opposite of Consumer because its lambda expression has no
parameter but has a return value. On the other hand, Function is a functional interface
used in mapping transactions where an original object type is mapped to another type. It
has default methods such as compose(), andThen(), and identity(). The andThen()
method is used to call another Function given that the first Function is executed before
the second one, while compose() is used to call another Function wherein the execution
starts with the second Function and is then followed by the first one. Both of the methods
are used to generate a series of conversions. The identity() method is just used to return
the same original type.

Each of these functional interfaces mentioned has their own primitive, binary, and unary
versions.

Applying method and constructor references
Some of the lambda expressions can be simplified using some valid short-hand forms, given
that a certain method or keyword can satisfy the implementation of the concerned
functional interfaces. Instead of writing the full-blown expressions with the parameters and
curly braces, we intend to reduce lambda expression as much as possible to apply the
principles of functional programming. This recipe will highlight how to optimize a lambda
expression used in object instantiation and method calls.

Functional Programming

[281]

Getting started
Open the same project, ch06, and let us implement service classes that utilize built-in
functional interfaces using method and constructor references.

How to do it...
To illustrate the use of method and constructor references, follow these steps:

Create a service implementation named EmployeeDataService, which will1.
provide instances of empty Employee instances and a zero-sized ArrayList
object for a list of employees. Also, it has a method that converts an employee's
birthday from a long value to a java.util.Date object:

@Service("employeeDataService")
public class EmployeeDataService {
 public Employee createEmployee(){
 Supplier<Employee> newEmp = Employee::new;
 return newEmp.get();
 }
 public List<Employee> startList(){
 Supplier<List<Employee>> newList = ArrayList::new;
 return newList.get();
 }

 public Date convertBday(long bdayLong){
 Function<Long, Date> bday = Date::new;
 return bday.apply(bdayLong);
 }
}

Functional Programming

[282]

Then, create another service class, GenericReferences, which shows lambda2.
expressions successfully implemented by just calling on some custom or API
instances and static methods. The following first method showcases how to
implement, straightforwardly, the functional interfaces through using some built-
in static methods of any Java or Spring API:

@Service("genericRef")
public class GenericReferences {
 public int convertInt(String strVal){
 Function<String,Integer> convertToInt =
 Integer::parseInt;
 return convertToInt.apply(strVal);
 }
}

Add the second method to GenericReferences that gives the shorthand way of3.
implementing lambdas through calling some methods that throw any exceptions
(risky methods):

public Date convertBday(String bdayStr){

SimpleDateFormat sdf = new SimpleDateFormat("MM/dd/yyyy");
 Function<String,Date> birthday = t -> {
 Date bdate = null;
 try {
 bdate = sdf.parse(t);
 } catch (ParseException e) {
 bdate = null;
 }
 return bdate;
 };
 return birthday.apply(bdayStr);
}

The method convertBday() uses a risky method parse() of
SimpleDateFormat to convert the input String to the Date object, given the
input mask MM/dd/yyyy. Since parse() needs to be handled by a try-catch
block, the only simple form that it can get is the original lambda expression form.

Functional Programming

[283]

Lastly, add the following method that uses the static method to implement a4.
functional interface in a shorter lambda expression form:

public boolean midYearStarted(Date started){
 Date midYear = new Date("117,5,30");
 Predicate<Date> midDayCheck = midYear::before;
 return midDayCheck.test(started);
}

How it works...
If a functional interface is written to simply return an object through instantiation, with or
without the presence of constructor argument(s), we can use a constructor reference to
implement its abstract method. This simplifies the implementation of a lambda expression
by having the class name of the object concatenated to two colons (:) followed by the new
keyword. The createEmployee() method uses a constructor reference to implement a
Supplier that will provide an empty Employee object. For some classes that require
constructor parameters to instantiate, convertBday() shows us that the constructor
reference is feasible for creating the object. But there is only one case where we cannot push
this short-hand form, and that is when the constructor of the class throws any exceptions
(risky constructor).

The constructor reference is one special type of method reference that refers to a constructor
of a class. A method reference replaces the common lambda expression form as long as the
functional interfaces are satisfied with the result of the method that is not considered risky.

The method reference can also be applied to a typical instance and static methods, too. The
convertInt() method depicts the replacement of the curly braces form with in the
Integer::parseInt statement. The parseInt() method is a static method of the int
wrapper class, which is one of the best candidates for this short-hand form. Likewise, any
instance method can be subject to a method reference, just like in the midYearStarted()
method, wherein a certain employment start date is verified. In this method, the Predicate
is implemented using a method reference to the method before() of the Date object. A
method reference to an instance method requires an instance object of the class needed to
implement the functional interface.

The method reference is not always applicable to all technical requirement, thus the original
lambda form is still suggested for implementing functional interfaces.

Functional Programming

[284]

Using the Stream API
A stream in Java is a sequence of functional definitions or scripts that work as a pipelined
operation, wherein each of these definitions outputs another stream, creating a flow of
stream operations expected to provide an end result. A stream is an outcome of a certain
combination of functional interfaces, code reduction, and some lambda operations. It is also
the first major attempt towards parallelizing some transactions in Java using internal
multithreading. This recipe will highlight how to create Java streams from List, Set, and
arrays of data.

Getting started
Open the same project ch06 and let us add service classes that will show us how to start
creating java.util.stream.Stream from the given EmployeeDao transactions and test
data.

How to do it...
There are few ways to create Java stream objects from a typical collection or array data
store. To use the Stream API, do the following steps:

Let us create an experimental service class, EmployeeStreamService, which1.
consists of service methods dedicated to stream methods. This first method only
shows how to extract streams from employeeDaoImpl:

@Service("employeeStreamService")
public class EmployeeStreamService {
 @Autowired
 private EmployeeDao employeeDaoImpl;
 public void getCollectionStreams(){
 Stream<Employee> serial =
 employeeDaoImpl.getEmployees().stream();
 Stream<Employee> parallel =
 employeeDaoImpl.getEmployees().parallelStream();
 }
}

Functional Programming

[285]

Next, add another method that illustrates how to extract stream data from an2.
existing List<String> or Set<String> collection:

public void getListData(){
 List<String> employeeIDS =
 Arrays.asList("23234", "353453", "22222",
 "5555", "676767");
 Stream<String> streamsIds = employeeIDS.stream();
 Set<String> candidates = new HashSet<String>();
 candidates.add("Joel");
 candidates.add("Candy");
 candidates.add("Sherwin");
 Stream<String> streamCandidates =
 candidates.stream();
 }

Lastly, the method below will show us how to extract a stream from an array of3.
long, int, and double data:

public void getArrayData(){
 int[] ages = {24, 33, 21, 22, 45};
 IntStream ageStream = Arrays.stream(ages);
 double[] salaries = {33000.50, 23100.20, 45000.50};
 DoubleStream salStream = Arrays.stream(salaries);
 long[] longDates = {23434432342L, 11123343435L,
 34343342343L};
 LongStream dateStream = Arrays.stream(longDates);
}

Save all files.4.

Always apply generics to stream objects to avoid explicit object conversion
and some other type-related warnings.

How it works...
There are two types of java.util.stream.Stream, namely the sequential and parallel
streams, but this recipe will focus on the sequential stream type. The sequential stream
consists of sequential aggregate operations executing one after another, just like in a serial
type of operation. All these operations occur in one single thread, wherein each operation
outputs its own stream object:

Functional Programming

[286]

On the other hand, the parallel stream assigns randomly these aggregate operations to
several threads, allowing some of them to execute in parallel:

Once a stream is used and consumed, it cannot be reused for a second time; thus, it might
be quite expensive when it comes to memory usage at some point when streams are badly
needed all throughout a platform. Moreover, streams are taken cautiously with processing
requirements with a heavy computation, because they use threading in executing all their
pipelined operations.

Streams can be directly extracted from Set and List. The generated streams will contain all
Collection data but cannot change them, whatever Stream operations are applied. When
it comes to arrays of primitive types such as int, long, and double, Java 1.8 has a special
kind of generic Stream class that can handle stream object transformation, namely the
IntStream, LongStream, and DoubleStream. All these classes have common operations
which can also be found in Stream API.

Applying streams to collections
Java stream is currently used to transform, manipulate, consume, reduce, and/or transfer
data without changing its data structure. Since a Stream object is not a data structure, it is
designed to be generated by some of the most popular data structures in Java, namely
arrays and collections, to perform a faster declarative way of data processing. It also has
some utility methods that can generate data structures from the baseline.

Functional Programming

[287]

Getting started
Open project ch06 again and add some services that will manipulate EmployeeDao data
using stream methods.

How to do it...
The previous recipe provided with the process for how to generate the Stream objects from
a source data structure. It is time to scrutinize and study the operations involved in stream
objects:

Open again the class EmployeeStreamService in the package1.
org.packt.functional.codes.service.impl and add this set of methods
that initializes Employee, arrays and converts List<Employee> to Employee[]
using some Stream methods:

public Stream<Employee> createEmptyArrayStream(){
 Stream<Employee> stream = Stream.empty();
 return stream;
}

public Stream<Employee> createUnlimitedStream(){
 Stream<Employee> stream =
Stream.generate(() -> {return new Employee();})
.limit(10);
 return stream;
}
public Stream<Employee> createArrayFromOf(Employee[]
 empArr){
 Stream<Employee> empStream = Stream.of(empArr);
 return empStream;
}

public Employee[] convertStreamToArray(
Stream<Employee> arrStream){
 Employee[] newArrayEmps =
 arrStream.toArray(Employee[]::new);
 return newArrayEmps;
 }
public void createCustomArrayStream(){
 Employee emp1 = new Employee();
 Employee emp2 = new Employee();
 Stream<Employee> emptyRecs = Stream.of(emp1, emp2);
 Consumer<Employee> showRecs = System.out::println;
 emptyRecs.forEach(showRecs);

Functional Programming

[288]

 }
 public Stream<Employee> createArrayStream(Employee[]
 empArr){
 Stream<Employee> empStream = Arrays.stream(empArr);
 return empStream;
 }
 public Employee[] arrayStream(){
 Stream<Employee> serial =
 employeeDaoImpl.getEmployees().stream();
 IntFunction<Employee[]> sizeEmpArr =
 (size) -> new Employee[size];
 Employee[] arrEmps = serial.toArray(sizeEmpArr);
 return arrEmps;
 }

The preceding methods focus on ways to create streams of objects from the start.
Creating an empty Stream<Employee> is shown by
createEmptyArrayStream(), while createUnlimitedStream() generates
either an unlimited or limited number of Employee streams. The
createCustomArrayStream() method, on the other hand, creates Employee
objects at runtime and stores them in a Stream object for rendering transactions
using an internal iterator, foreach(). Other methods show how to extract
streams from arrays or collections.

On the other hand, the convertStreamToArray() method accepts an existing
stream of Employee objects and converts it to an array of Employees using a
constructor reference. Likewise, the arrayStream()method executes the same
conversion but uses the IntFunction functional interface to instantiate the
Employee[].

The Stream API has a list of intermediate aggregate methods that are lazily executed2.
until the last aggregate operation is reached. Add the following method that
shows how to use filter() in order to select Employee objects that meet the
preceding age 25 limit:

public List<Employee> getEmployeesAge(){
 AgeLimitService ageLimit = ()->{
 return employeeDaoImpl.getEmployees()
 .stream()
 .filter((Employee e)-> e.getAge() > 25)
 .collect(Collectors.toList());
 };
 return ageLimit.qualifiedEmps();
}

Functional Programming

[289]

The AgeLimitService is a custom functional interface implemented in the
org.packt.functional.code.service as:

@FunctionalInterface
public interface AgeLimitService {
 public List<Employee> qualifiedEmps();
}

Add another method that highlights the use of the sorted() operation with3.
Comparator<Employee> for sorting Employee objects. Lambda expression is
used to implement the Comparator interface:

public List<Employee> getSortedEmployees(){
 Comparator<Employee> compareEmp =
 (e1, e2) -> e1.getLastName().compareTo(e2.getLastName());
 List<Employee> newListEmps =
 employeeDaoImpl.getEmployees()
 .stream()
 .sorted(compareEmp)
 .collect(Collectors.toList());
 return newListEmps;
}

The following method showcases one of the most widely-used aggregate4.
methods, map(), which takes a Function functional interface that converts one
object type to another:

public Set<String> getDistinctNames(){
 Function<Employee,String> allNames =
(e) -> e.getFirstName();
 Set<String> setNames = employeeDaoImpl.getEmployees()
 .stream()
 .filter((a) -> a.getAge() > 25)
 .map(allNames)
 .collect(Collectors.toCollection(HashSet::new));
 return setNames;
}

Some variations of the map() method accept the ToIntFunction,5.
ToDoubleFunction, or ToLongFunction function interfaces in order to
generate combined end results such as the average(), count(), or sum() of all
the objects. The following is a method that uses the mapToInt() method that
extracts the average age of all employees:

public double getAverageAge(){
 ToIntFunction<Employee> sizeEmpArr =

Functional Programming

[290]

 (e) -> e.getAge();
 return employeeDaoImpl.getEmployees()
 .stream()
 .mapToInt(sizeEmpArr).average().getAsDouble();
}

For manipulating existing data without changing the original data structure, the6.
replaceAll() method through its lambda expression can return a new List,
Set, or array of data objects, given some reflected changes. The following is a
method that uses replaceAll() to write all firstNames and lastNames in all
caps:

public List<Employee> updateNames(){
 List<Employee> newListEmps=
 employeeDaoImpl.getEmployees();
 newListEmps.replaceAll((e) ->{
 e.setFirstName(e.getFirstName().toUpperCase());
 e.setLastName(e.getLastName().toUpperCase());
 return e;
 });
 return newListEmps;
}

Other intermediate operations, such as limit(n) and distinct(), can be used7.
as special types of filtering methods which will add more constraints on the
retrieval of records. The distinct() operation returns a stream of unique
elements based on the given Predicate, whereas limit(n) extracts the first n
objects from the container:

public List<Employee> getOldestEmps(){
 Predicate<Employee> checkNotQualified =
 (e) -> e.getAge() < 25;
 Comparator<Employee> compareAge =
 (e1, e2) -> e1.getAge().compareTo(e2.getAge());
 return employeeDaoImpl.getEmployees().stream()
 .filter(checkNotQualified)
 .sorted(compareAge)
 .limit(3)
 .distinct()
 .collect(Collectors.toList());
}

Functional Programming

[291]

Aside from the intermediate aggregate operations, there are also terminal8.
operations in Stream that trigger the execution of the whole sequence of
operations, and reduce() is one of them. The combination of the map() and
reduce() methods is one of the most robust pairs of intermediate methods in
generating basic statistical and mathematical operations on some list or arrays of
data objects. The following method shows how reduce() can combine the list of
numeric values from a List<Employee>, given a summation formula, to give the
sum of all Employee ages. The formula may vary from one requirement to
another:

public double sumAge(){
 BinaryOperator<Integer> addAgeEmp =
(age1, age2) -> age1 + age2;
 Function<Employee,Integer> ageList =
 (e) -> e.getAge();
 double sum = employeeDaoImpl.getEmployees()
 .stream()
 .map(ageList)
 .reduce(0, addAgeEmp);
 return sum;
}

The reduce() method needs an initial value and a formula in the form of the
BinaryOperator functional interface. Moreover, its output is always a single-
valued end result.

Another terminal operation is the collect() method that groups together all9.
data objects in a stream and returns them as a list, set, or array. It uses some
mutable reduction operations found in the class
java.util.stream.Collectors. The following is a service method that
returns all employees with an age greater than 25 in the form of a List:

public List<Employee> getEmployeesFunc(){
 Predicate<Employee> qualifiedEmps =
 (e) -> e.getAge() > 25;
 List<Employee> newListEmps =
 employeeDaoImpl.getEmployees()
 .stream()
 .filter(qualifiedEmps)
 .collect(Collectors.toList());
 return newListEmps;
}

Functional Programming

[292]

Aside from Collectors.toList(), Collectors.toSet() and10.
Collectors.toMap(), a stream can also be stored in other mutable containers
such as LinkedList or LinkedHashSet through the use of the
Collectors.toCollection() static method:

public Set<String> getDistinctNames(){
 Function<Employee,String> allNames =
 (e) -> e.getFirstName();
 Set<String> setNames = employeeDaoImpl.getEmployees()
 .stream()
 .filter((a) -> a.getAge() > 25)
 .map(allNames)
 .collect(Collectors
 .toCollection(LinkedHashSet::new));
 return setNames;
}

The last popular terminal operation is forEach(), which implements the11.
java.lang.Iterable interface to iterate internally all objects passed on it. The
following method shows the firstName, lastName, and age of all records:

public void showAllEmployees(){
 Consumer<Employee> showAll = (e) -> {
 System.out.format("%s %s %d\n", e.getFirstName(),
 e.getLastName(), e.getAge());
 };
 employeeDaoImpl.getEmployees()
 .stream()
 .forEach(showAll);
}

There are also terminal operations that return Boolean because their purpose is12.
to validate a particular input requirement. The following service method searches
and returns true whenever one Employee record is found to have an age of less
than 25:

public boolean validateAgeNotQualified(){
 Predicate<Employee> checkNotQualified =
 (e) -> e.getAge() < 25;
 return employeeDaoImpl.getEmployees()
.stream()
.anyMatch(checkNotQualified);
}

Functional Programming

[293]

How it works...
This recipe discusses three groups of methods under the java.util.stream.Stream
class, and these are the stream creation methods, intermediate operations, and terminal stream
methods.

Streams can be generated in many ways, but the most straightforward technique is to use
the static method of() when creating a stream from individual objects or from an existing
array, and the collection's instance stream() method when creating a sequential stream
from a List, Set, or Map of mutable containers. The Stream class has a static method,
empty(), which can create a zero-size stream, while another static, generate(), produces
an infinite stream of objects.

The second batch of operations is the set of methods that fills up the pipeline of streams that
are executed only once the compiler executes the last stream operation. These Stream
methods are summarized as follows:

filter(): Removes some of the stream objects based on criteria or conditions
implemented in the Predicate functional interface
sorted(): Sorts the stream objects based on the comparator's rule for
comparison, written in lambda expression
map(), flatMap(), mapToInt(), mapToDouble(), mapToLong(): Maps each
original Stream object to a new object type, based on some variations of
Function implemented to extract a certain result
limit(): Cuts the size of the stream to be retrieved based on a certain
Predicate

distinct(): Retrieves a unique list of stream objects based on Predicate

The preceding intermediate methods only update, manipulate, extract, define, streamline,
and remove data without changing the original data structure.

Functional Programming

[294]

The last batches of stream methods are the so-called terminal operations which are the last
operations to appear in the pipeline of streams. Their returned value is either mutable
containers (for example, collections or arrays) or void. There are five known methods under
this group, namely count(), match(), findFirst(), forEach(), collect() with
Collectors, and reduce(). The forEach() method internally iterates all Stream objects
and can output all of them using OutputStream. The reduce() method asks a formula to
perform transactions on stream objects in order to generate a single-valued result. On the
other hand, the return type of collect() operations depends on the static method of the
Collectors class. It can return a mutable container when Collectors.toList(),
Collectors.toSet(), Collectors.toMap(), or Collectors.toCollection() is
called. Or, it can return a single-value element if the method calls
Collectors.averagingInt(), Collectors.counting(), or
Collectors.summingInt(), for instance. On the other hand, the match() method has so
many variations, such as allMatch(), which returns true if all objects satisfy the
Predicate, noneMatch(), that returns true if none of the objects satisfy the Predicate,
and anyMatch(), which returns true if one stream object fulfills the Predicate input. Pretty
straightforwardly, the method count() returns the number of stream objects, while
findFirst() returns the first object given a particular constraint.

Applying streams to NIO 2.0
Collections can not only provide Stream objects, but also NIO 2.0 classes. The following
recipe will provide us with some service methods on file transactions that utilize stream
operations.

Getting started
Open project ch06 again and add some services that will manage dump files containing
employee information.

Functional Programming

[295]

How to do it...
NIO 2.0 APIs are known for their stream-based operations for reading and writing files. We
use NIO 2.0 in many communication and data transformation modules. In this recipe,
Stream API will be applied to perform some file operations using NIO 2.0:

Let us create another service class, EmployeeFileStreamService, in the1.
package org.packt.functional.codes.service.impl. Add the following
method that will retrieve the context of a dump file using NIO 2.0 and Stream
APIs:

public void viewFileContent(String empFile) throws IOException{
 Consumer<String> readStr = System.out::println;
 Stream<String> content = null;
 Path path = Paths.get(empFile);
 content = Files.lines(path, Charset.defaultCharset());
 content.map(String::toUpperCase)
 .forEach(readStr);
 content.close();
}

Add a method that opens a dump file and counts the number of employee2.
records:

public long countRecsInFile(String empFile) throws IOException{
 long numWords = 0;
 Stream<String> content = null;
 Path path = Paths.get(empFile);
 content = Files.lines(path, Charset.defaultCharset());
 numWords = content
 .map(line -> Arrays.stream(line.split(" ")))
 .count();
 content.close();
 return numWords;
}

The following method searches for a directory or file based on the specified3.
extension and returns all of the searches to the caller:

public String searchFilesDir(String filePath, String
 extension) throws IOException{

 Path root = Paths.get(filePath);
 int depth = 3;
 Stream<Path> searchStream =
 Files.find(root, depth, (path, attr) ->

Functional Programming

[296]

 String.valueOf(path).endsWith(extension));
 String found = searchStream
 .sorted()
 .map(String::valueOf)
 .collect(Collectors.joining(" / "));
 searchStream.close();
 return found;
}

The next method will search and list all documents with a preferred extension4.
from a specific directory:

public void viewDirFiles(String dirPath, String extension)
throws IOException{
 Consumer<String> readStr = System.out::println;
 Stream<Path> stream =
 Files.list(Paths.get(dirPath)).sequential();
 stream.map(String::valueOf)
 .filter(path -> path.endsWith(extension))
 .forEach(readStr);
}

The following are two methods that highlight the use of BufferedReader and5.
Stream. The viewDirBuffered() method retrieves all documents from a
specified directory, while the other method, countRecByAge(), counts the
number of records having a particular age:

public void viewDirBuffered(String dirPath) throws IOException{
 Consumer<String> readStr = System.out::println;
 BufferedReader buff =
 Files.newBufferedReader(Paths.get(dirPath));
 buff.lines()
 .map(String::toLowerCase)
 .forEach(readStr);
}
public long countRecByAge(String filePath, int age)
throws IOException{
 Path path = Paths.get(filePath);
 BufferedReader reader = Files.newBufferedReader(path);
 long numRec = reader
 .lines()
 .filter(line -> line.contains(age+""))
 .count();
return numRec;
}

Functional Programming

[297]

Always close the stream after reading. Streams are not needed when writing on a6.
file; rather, use NIO 2.0 classes and methods for writing.
Create a test dump file for testing and save it in src/test/java. A sample7.
employee_list.txt may contain data separated by spaces:

sherwin john tragura 39
owen salvador estabillo 35

How it works...
Java New IO (NIO) 2.0 is a buffered-based set of I/O interfaces and classes that makes file
reading and writing a flexible pair of operations. Its non-blocking mode enables the APIs to
work with threads in reading and writing through some channels. Among all the APIs it
has, the concern of this recipe is the utility class, java.nio.file.Files, which contains a
method that supports Stream operations for file and directory transactions.

The Files.lines() method returns a stream of text so that the file-reading operation can
be more optimized and refined through the use of functional interfaces and stream
operations. Moreover, the Files.find() and Files.walk() methods retrieve a stream of
all file and directory objects that can be further streamlined through the use of pipelined
stream operations. Even the BufferedReader class that is used by NIO 2.0 to open a file
for reading and writing has support for Stream operations.

Using parallel streams
The previous recipe described how to generate the two types of streams, but did not
mention more about parallel streams. This final recipe will explore the pros and cons of
using parallel streams.

Getting started
Open project ch06 again to add service methods that will compare and contrast the two
types of streams, sequential and parallel streams. The services will use the same EmployeeDao
for the JDBC transactions.

Functional Programming

[298]

How to do it...
All the preceding recipes highlighted the sequential stream which is common to many
stream-based transactions. Let us now generate the parallel stream form by following these
steps:

Create a service class, EmployeeParallelStreamService, inside the same1.
package as the previous service classes. Add the following version of
showAllEmployees() that uses parallelStream() to forEach() all
employee records:

public void showAllEmployees(){
 Consumer<Employee> showAll = (e) -> {
 System.out.format("%s %s %d\n",
 e.getFirstName(), e.getLastName(), e.getAge());
 };
 employeeDaoImpl.getEmployees()
 .parallelStream()
 .forEach(showAll);
}

Create the test class that will prove that parallelStream() provides multi-2.
processing when executing the pipelined Stream operations:

@RunWith(SpringJUnit4ClassRunner.class)
@WebAppConfiguration
@ContextConfiguration(classes = { SpringDbConfig.class,
 SpringDispatcherConfig.class })
public class TestEmployeeParallelStreamService {
 @Autowired
 private EmployeeParallelStreamService
 employeeParallelStreamService;
 @Test
 public void testParallelViewRecs(){
 System.out.println("*********ITERATION 1********");
 employeeParallelStreamService.showAllEmployees();
 System.out.println("********ITERATION 2**********");
 employeeParallelStreamService.showAllEmployees();
 System.out.println("********************************");
 }
}

Functional Programming

[299]

Every snapshot of the test method execution will give us a different random order
of employee records, as follows:

************EXECUTION 1*************
Sherwin Tragura 22
Joel Enage 45
Jerry Mayo 42
Sherwin Tragura 38
************EXECUTION 2*************
Sherwin Tragura 22
Joel Enage 45
Sherwin Tragura 38
Jerry Mayo 42

Add the following service methods to EmployeeParallelStreamService that3.
will show all the threads that parallelStream() utilizes when compared to the
sequential version:

public double getSequentialAverageAge(){
 ToIntFunction<Employee> sizeEmpArr =
 (e) -> {
 System.out.println("Thread: " +
 Thread.currentThread().getName());
 return e.getAge();
 };
 return employeeDaoImpl.getEmployees()
 .stream()
 .mapToInt(sizeEmpArr)
 .average().getAsDouble();
}
public double getParallelAverageAge(){
 ToIntFunction<Employee> sizeEmpArr = (e) -> {
 System.out.println("Thread: " +
 Thread.currentThread().getName());
 return e.getAge();
 };
 return employeeDaoImpl.getEmployees()
.parallelStream()
.mapToInt(sizeEmpArr)
.average().getAsDouble();
}

Functional Programming

[300]

Add the test method in TestEmployeeParallelStreamService that will test4.
and execute the preceding service's methods:

@Test
public void compareComputation(){
System.out.println("**********PARALLEL************");
System.out.println("Average: " +
 employeeParallelStreamService.getParallelAverageAge());
 System.out.println("**********SEQUENTIAL**********");
 System.out.println("Average: " +
 employeeParallelStreamService
.getSequentialAverageAge());
System.out.println("*********************************");
}

Executing this test will give us the following console log:

************PARALLEL****************
Thread: main
Thread: ForkJoinPool.commonPool-worker-3
Thread: ForkJoinPool.commonPool-worker-1
Thread: ForkJoinPool.commonPool-worker-2
Average: 36.75
************SEQUENTIAL**************
Thread: main
Thread: main
Thread: main
Thread: main
Average: 36.75

Add another service method that custom generates a thread pool for5.
parallelStream(), to be used in computing the average employee age:

public double getAverageMoreProcessors()
 throws InterruptedException, ExecutionException{
 ToIntFunction<Employee> sizeEmpArr =
 (e) -> {
 System.out.println("Thread: " +
 Thread.currentThread().getName());
 return e.getAge();
 };
 Callable<Double> task =
 () -> employeeDaoImpl.getEmployees()
 .stream()
 .mapToInt(sizeEmpArr)
 .average().getAsDouble();

Functional Programming

[301]

 ForkJoinPool forkJoinPool = new ForkJoinPool(4);
 double avgAge = forkJoinPool.submit(task).get();
 return avgAge;
}

How it works...
Both types of stream use threads in java.util.concurrent.ForkJoinPool to execute all
aggregate methods. The only difference is that the sequential stream uses only one thread,
while the parallel one uses the default number of threads offered by the CPU of the
machine. To enable parallelStream() is much easier than managing the threads that it
uses. If the default number of threads degrades the parallel processing mechanism,
ForkJoinPool can be customized by setting the number of allowable threads, which must
not be more than the number of core processors present in the machine. But the stream
pipeline must be wrapped in a java.util.concurrent.Callable object in order to be
executed by the thread pool.

Since parallelStream() uses concurrent threads, it can help lower the processing time of
some generic transactions only. But it has several drawbacks on synchronized transactions
that involve saving mutable objects, connecting to remote services, processing tightly-coupled
transactions, and computing highly complicated mathematical and statistical formulas. It also has
some bad effects on APIs such as LinkedHashSet, LinkedList, and TreeSet, because
some of its operations require non-thread-safe objects.

7
Reactive Programming

We continue to learn the Java functional programming paradigm in this chapter because
some of the upcoming recipes will still require the APIs of java.util.function while
building Reactive web components and Stream-based transactions.

This chapter discusses some of the new APIs needed to create Java events that are discrete,
asynchronous, and non-blocking which are used in communication between a message
sender and the recipient in many applications. This communication will eventually create a
loosely-coupled and message-driven environment involving one or more Streams of Object.
The model sounds similar to building message-driven transactions in Java Message Service
(JMS) and Advanced Message Queuing Protocol (AMQP) but not exactly, since this
communication model deals more with adaptive and scalable Streams of objects that can
control data requests and even self-manage the data flow when bad data propagation
occurs. When communication pitfalls happen, these APIs will just exit the data propagation
without any exceptions as if nothing serious has happened. Moreover, these events are
responsive in real-time given all possible requests and can somehow use the functional
programming paradigm. This chapter will be all about building these kinds of events,
which lead to Reactive programming concepts.

Reactive programming is needed mostly for transmitting or transferring a Stream of live
data with no guarantee of zero transmission error and predictable data capacity. Its goal is
to control the transmission of data to avoid traffic or starvation on either side of the
transmitter and receiver. Since Streams play a great role in Reactive applications, these data
transmissions are carried out using multithreading and concurrency techniques which can
provide a non-blocking and asynchronous data flow even when data errors are
encountered.

Reactive Programming

[303]

This chapter will highlight Reactive Stream APIs with the major inclusion of Project
Reactor 3.x and RxJava 2.x. Spring 5 supports Reactive and asynchronous web applications
that apply the mentioned Reactive tools in transforming and merging Streams of data using
Java 1.8 JVM and above.

In this chapter you will learn how to perform the following tasks:

Applying the observer design pattern using Reactive Streams
Creating Mono<T> and Flux<T> publishers
Implementing the Subscriber<T> interface
Using java.util.function in Flux and Mono publishers
Applying backpressure to Mono<T> and Flux<T>
Managing task executions using schedulers
Creating concurrent and parallel subscriptions
Managing asynchronous data emissions
Implementing Stream transformation and manipulations
Testing Reactive data transactions
Implementing Reactive events using RxJava 2.x

Applying the observer design pattern using
Reactive Streams
Reactive programming started as a Reactive Streams model initially implemented in the
.NET Framework but popularized by Pivotal and Netflix. This programming paradigm is
supported by a specification used by many developers to extend and implement libraries
that can solve Reactive-related problems. JavaScript, Python, and Java are some of the
languages that have already shown their support by including this specification in their
platforms. Based on the Reactive Stream JVM specification, Java 1.8 and above can now
support Reactive programming. Java 1.9, especially, has a dedicated Flow API
(java.util.concurrent.Flow) which consists of all the Reactive Streams API written
within the context of Java language specification.

This chapter will introduce Reactive programming concepts and will provide recipes on
how this paradigm started using the popular observer design pattern.

Reactive Programming

[304]

Getting started
The Reactive model was conceived by the Reactive Streams 1.x specification and includes
four simple interfaces, namely the Publisher, Subscriber, Subscription, and
Processor. Its slim platform composition makes it the most straightforward and flexible
specification for Reactive programming both in Web and Android development. It aims to
provide sets of rules and guidelines on how to utilize these interfaces by using any kind of
programming language to get rid of asynchronous data requests. This chapter will focus
more on Reactor Project 3.x (Reactor Core 3.x) as the core implementer of Reactive Streams.

How to do it...
This recipe highlights the main APIs involved in implementing the Reactive programming
specification:

Create a Spring Maven project ch07. This project will consist of only native 1.
services to highlight Reactive Streams 1.x interfaces and Reactor 3.x
implementation classes.
Copy DispatcherServlet, SpringContextConfig, SpringDbConfig,2.
SpringDispatcherConfig, and SpringWebinitializer from the previous
chapter and update the details of these application contexts. Use a new core page
named org.packt.Reactive.codes. Also reuse the Employee model and
DAO classes used in the previous recipes.
Configure the pom.xml file to include all the libraries used in the previous 3.
chapter such as the Junit 4, Log4J, Spring 5.0.0.BUILD-SNAPSHOT,
Servlet 3.x, JSP 2.3, and MySQL JDBC connector.
For Reactive Stream 1.0, add the following Maven dependencies in pom.xml:4.

<dependency>
 <groupId>org.ReactiveStreams</groupId>
 <artifactId>Reactive-Streams</artifactId>
 <version>1.0.0</version>
</dependency>
<dependency>
 <groupId>org.ReactiveStreams</groupId>
 <artifactId>Reactive-Streams-tck</artifactId>
 <version>1.0.0</version>
 <scope>test</scope>
</dependency>

Reactive Programming

[305]

For the Reactive implementation classes, add the following dependencies of5.
Reactor Project 3.0:

<dependency>
 <groupId>io.projectreactor</groupId>
 <artifactId>reactor-core</artifactId>
 <version>3.0.7.RELEASE</version>
</dependency>

Inside the package org.packt.Reactive.core.service, create a service6.
interface EmployeeStreamservice that consists of the following abstract
methods:

public interface EmployeeStreamservice {
 public Mono<Void> showThreads();
 public Publisher<Employee> readEmployees();
 public Publisher<Employee> readEmployee(Integer empId);
 public Publisher<String> getValidEmployees();
}

To start this chapter, implement Publisher<Void> that will prove that all7.
Streams are threaded. Create an implementation class named
EmployeeStreamserviceImpl that will implement the abstract method
showThreads () using org.ReactiveStreams.Publisher as shown in the
following code snippet:

@Service
public class EmployeeStreamserviceImpl
implements EmployeeStreamservice {

 @Autowired
 private EmployeeDao employeeDaoImpl;

 @Override
 public Publisher<Void> showThreads() {
 Runnable task = () ->{
 System.out.println(Thread.currentThread().getName());
 };
 Mono<Void> execThread = Mono.fromRunnable(task);
 return execThread;
 }
}

Reactive Programming

[306]

To avoid synchronous ways of retrieving a list of the Employee model records8.
from the database, establish a data retrieval mechanism using the observer design
pattern where Publisher can wrap raw data, convert it into a Stream of objects
that can be managed using its set of events asynchronously and transfer the
Streams to its different subscribers. Add the following method to our
implementation class:

@Override
public Publisher<Employee> readEmployees() {
 Publisher<Employee> publishedEmployees=
 Flux.fromIterable(employeeDaoImpl.getEmployees());
 return publishedEmployees;
}

Publishers cannot be executed without having any subscribers listening to them.9.
A Subscriber is a recipient and can be a simple service, @Controller, or a
module that needs the published Streams. At this point, create a test class
TestEmployeeStreamservice that will implement
org.ReactiveStreams.Subscriber to run showThreads() and
eadEmployees() as follows:

@RunWith(SpringJUnit4ClassRunner.class)
@WebAppConfiguration
@ContextConfiguration(classes = { SpringDbConfig.class,
SpringDispatcherConfig.class })
public class TestEmployeeStreamservice {

 @Autowired
 private EmployeeStreamservice employeeStreamserviceImpl;

 @Test
 public void testStreamThread(){
 Subscriber<Void> mySubscription = newSubscriber<Void>() {

 @Override
 public void onComplete() {
 System.out.println("---End of Stream --");
 }

 @Override
 public void onError(Throwable e) {
 System.out.println("--Transmission Error --");
 }
 @Override
 public void onSubscribe(Subscription subs) {}

Reactive Programming

[307]

 @Override
 public void onNext(Void none) { }

 };
employeeStreamserviceImpl.showThreads().subscribe(mySubscriptio
n);
 }

 @Test
 public void testReadEmployees(){
 Subscriber<Employee> mySubscription = new
Subscriber<Employee>() {

 @Override
 public void onComplete() {
 System.out.println("*-------End of Stream -------");
 }

 @Override
 public void onError(Throwable e) {
 System.out.println("*----Transmission Error ----");
 }

 @Override
 public void onNext(Employee emp) {
 System.out.format("%d %s %s %d\n",emp.getId(),
 emp.getFirstName(), emp.getLastName(), emp.getAge());
 }

 @Override
 public void onSubscribe(Subscription subs) {
 subs.request(Long.MAX_VALUE);
 }

 };
 employeeStreamserviceImpl.readEmployees().
 subscribe(mySubscription);
 }
}

Reactive Programming

[308]

Retrieving a single Object from a service method can also be handled by a10.
publisher but it will require one service transaction to be state-ready for
multithreading or concurrency. A java.util.concurrent.Callable package
is required to wrap and convert these transactions into thread-ready functions
that will return an individual Stream object. The following code snippet is an
implementation that retrieves an employee record in asynchronous mode:

@Override
public Publisher<Employee> readEmployee(Integer empId) {
 Callable<Employee> task = () ->
employeeDaoImpl.getEmployee(empId);
 Publisher<Employee> publishedEmployee =
Mono.fromCallable(task);
 return publishedEmployee;
}

Add the following test case to our TestEmployeeStreamservice that will11.
create a subscriber to readEmployee(Integer empId):

@Test
public void testReadSingleEmployee(){
 Subscriber<Employee> mySubscription = new
Subscriber<Employee>() {

 @Override
 public void onComplete() {
 System.out.println("-----End of Stream -----");
 }

 @Override
 public void onError(Throwable e) {
 System.out.println("--Transmission Error ----");
 }

 @Override
 public void onNext(Employee emp) {
 System.out.format("%d %s %s %d \n", emp.getId(),
 emp.getFirstName(), emp.getLastName(), emp.getAge());
 }

 @Override
 public void onSubscribe(Subscription subs) {
 subs.request(Long.MAX_VALUE);
 }
 };
 employeeStreamserviceImpl.readEmployee(14).

Reactive Programming

[309]

 subscribe(mySubscription);
}

A Stream of objects returned by publishers can consist of different events12.
working asynchronously to process live data in order to extract the desired final
output stream. If all the events did not encounter java.lang.Error or
java.lang.Exception then the publisher will emit the desired value, exit, and
signal a completion. Otherwise, it will emit an error value or message and will
gracefully end the transmission. Following is an implementation of
getValidEmployees() that computes a gradient from the employee's age and
returns a list of employee names in Strings:

@Override
public Publisher<String> getValidEmployees(){
 Function<Employee, String> validEmps = (e) -> {
 double ageGradient = (int) (1 / (e.getAge() - 22));
 if (ageGradient == 0){
 return e.getFirstName() + " " + e.getLastName();
 }else{
 return null;
 }
 };
 Runnable completion = () ->{
 System.out.println("**** End of List*****");
 };

 Publisher<String> publishedEmployees= Flux
 .fromIterable(employeeDaoImpl.getEmployees()).map(validEmps)
 .onErrorReturn("Invalid Employee").doOnComplete(completion);
 return publishedEmployees;
}

The preceding publisher has a method map() which processes all elements
sequentially from fromIterable() to generate another stream. From the
snippet, its main task is to execute the functional interface Function that
concatenates the employee's first name and last names given that the age's
gradient is equal to 0, otherwise the function will return Null. The Null
Stream data triggers an error in publishers.

Add the following test case that will show us the result once risky13.
getValidEmployees() is executed. Be sure to have an employee record with
age 22 to trigger an error:

@Test
public void testGetValidEmployees(){

Reactive Programming

[310]

 Subscriber<String> mySubscription = new Subscriber<String>()
{

 @Override
 public void onComplete() { }

 @Override
 public void onError(Throwable e) { }

 @Override
 public void onNext(String name) {
 System.out.format("Employee: %s \n", name);
 }

 @Override
 public void onSubscribe(Subscription subs) {
 subs.request(Long.MAX_VALUE);
 }
 };
 employeeStreamserviceImpl.getValidEmployees()
 .subscribe(mySubscription);
}

When Publisher triggers onErrorReturn() and doOnComplete(),
Subscriber does not need to write any snippets in its onError() and
onComplete() overrides.

Save all files. Execute all the test cases in TestEmployeeStreamservice and14.
observe how the Publisher-Subscriber model works in the Reactive Streams
specification.

How it works...
Highlighted in this recipe are two of the most important Reactive Streams interfaces,
Publisher and Subscriber. These main APIs impact the interactive and Reactive model
of data Stream emission from the data provider to the recipient component. The main goal
of these interfaces is to implement the flow of the data objects during emission and also to
provide the other to programming languages or web frameworks the opportunity to custom
implement the Reactive specification depending on the purpose.

Reactive Programming

[311]

The blueprint of the Publisher interface is implemented using the following template:

public interface Publisher<T> {
 public void subscribe(Subscriber<? super T> s);
}

Here, T is the type of Stream object and subscribe() is the way Subscriber<T> connects
to live data Stream emissions. There is no other way of executing all the Publisher<T>
events but to connect to subscriber(s).

Moreover, a publisher can be composed of blocking and non-blocking operators that can be
executed asynchronously to process a Stream of elements. For instance, the
getValidEmployees() method extracts a Stream of the Employee objects through
fromIterable() that becomes the observable or subject for the subscribers to listen to.
While generating the stream, another Stream function, map() is executed side-by-side with
fromIterable() to convert each Stream object to another form creating a separate stream.
Thus, if there are other additional operators in the event, there will be levels of
independent, threaded Streams that will be working asynchronously to formulate the final
data emission:

Whenever a Throwable is encountered by any of the Stream layers, the risky layer of
operator(s) in the preceding diagram will just execute its onError() operator in order
for Publisher<T> to exit as if nothing happens. In normal non-asynchronous cases, two or
more methods can be executed sequentially, one after the other which might not be good
whenever server-side exceptions or slow database connections occur (such as starvation or
degradation of resources). Tightly-coupled processes will always replicate more problems
in an application.

Reactive Programming

[312]

On the other hand, a Subscriber interface is designed to contain the following template:

public interface Subscriber<T> {
 public void onSubscribe(Subscription s);
 public void onNext(T t);
 public void onError(Throwable t);
 public void onComplete();
}

Here, onComplete() is the method that will be signaled to execute after a successful data
emission; onError() is the operator triggered when Throwable is encountered during the
Publisher event execution; onNext() is the method that retrieves each Stream object; and
lastly onSubscribe(), which bears the very essential Subscription interface that has a
request() method is used to control the number of data objects fired in each transmission.
There is no guarantee that a subscriber will always get the same Stream provided by
publishers in its previous emissions. Also, the final Stream can contain a single-entity
(Mono<T>) or a list of data (Flux<T>).

Stream operators in publishers are quite similar to threaded operators in the Stream
pipeline of java.util.stream.Stream presented in Chapter 6, Functional Programming.
Some of the operators require a functional interface implemented using Lambda
expressions just like in the recipes. Some require a transaction to be thread-ready through
wrapping it with a Callable object. Thus, we can conclude that Reactor Core 3.x supports
functional Reactive programming using the Java 1.8 APIs of java.util.function.

Creating Mono<T> and Flux<T> publishers
Reactor Core 3.x has two specific implementations of Publisher<T> namely Mono<T> and
Flux<T>. If Subscriber<T> expects at most one Stream element, Mono<T> must be
generated. And if at least one is needed to be transmitted, it must be the Flux<T> type. This
recipe will expound on how to use these Stream types.

Getting started
This recipe will be about how to use Mono<T> and Flux<T> Stream types given raw data
from unit tests and forms. Although they were used in the previous recipe in generating
Publisher<T> Streams, nothing has been mentioned about their basic usage. The same
Maven project, ch07 will be used for this particular recipe.

Reactive Programming

[313]

How to do it...
After the generic API classes, let us deal with the specific APIs of Spring Reactor 3.0 by
using the following steps:

Create a service interface EmployeeNativeStreamservice that contains some1.
non-DAO related services which will exhibit how to use Stream types. The
following are the abstract methods to be implemented:

public interface EmployeeNativeStreamservice {
 public Mono<String> processFormUser(String name);
 public Flux<String> getFormUsers(String... names);
 public Flux<Integer> getAllAge(Integer[] age);
}

The first method to implement is processFormUser() that will accept a2.
username and executes asynchronous operators in order to format the original
String value. Trivial as it may be, this method will tell us how to process a
single object through Mono<T> using several operations running synchronously
on the main thread. This method will start showcasing some of the core
Publisher<T> operations such as doOnNext(), doOnSuccess(), and
doOnError().The doOnext() operation is a very essential method since it is
triggered when this publisher emits data. If a Throwable object is emitted in any
of the operators, an additional threaded operator onErrorReturn() is ready to
be invoked to perform a safe exit. Create an implementation
EmployeeNativeStreamserviceImpl class and drop the following lines of
code as follows:

@Service
public class EmployeeNativeStreamserviceImpl
implements EmployeeNativeStreamservice {
 @Override
 public Mono<String> processFormUser(String name) {
 Function<String,String> upper = (str) -> str.toUpperCase();
 Predicate<String> longName = (str) -> str.length() > 5;
 Consumer<String> success = (str) ->
 System.out.println("successfully processed: " + str);
 Consumer<Throwable> error = (e) ->
 System.out.println("encountered an error: : " +
e.getMessage());
 Consumer<String> onNext =
 (s) -> System.out.println("approved: " + s);
 Mono<String> makeoverName = Mono.just(name)
 .filter(longName)
 .map(upper)

Reactive Programming

[314]

 .doOnSuccess(success)
 .doOnError(error)
 .doOnNext(onNext)
 .onErrorReturn("invalid Name");
 return makeoverName;
 }
}

Secondly, add the method getFormUsers() in the following code snippet that3.
accepts an array of user names through a variable argument list, concatenates a
verification tag ---VALID USER and then converts all usernames to uppercase.
For error handling, another option is to invoke defaultIfEmpty() to emit a
default value if the resulting Stream is empty. Also at this point, Flux<T> has its
own distinct methods doOnComplete() and doOnTerminate().These
asynchronous operators are executed by this Flux<T> Stream type to convert
arrays or lists of elements into Streams:

@Override
public Flux<String> getFormUsers(String... names) {
 Function<String,String> upper =
(str) -> str.concat("---VALID USER");
 Comparator<String> ascSort =
(str1, str2) -> str1.compareTo(str2);
 Runnable complete = () -> {
 System.out.println("completed processing");
 };
 Runnable terminate = () -> {
 System.out.println("terminated with problems");
 };
 Consumer<String> onNext =
(s) -> System.out.println("validated: " + s);
 Flux<String> userNames = Flux.just(names)
 .map(upper)
 .sort(ascSort)
 .defaultIfEmpty("empty list")
 .doOnNext(onNext)
 .doOnComplete(complete)
 .doOnTerminate(terminate)
 .doOnError(Exception.class,
(e) -> System.out.println("exits gracefully"));
 return userNames;
}

Reactive Programming

[315]

Lastly, implement getAllAge() which accepts an array of Integers, adds 10 to4.
each age, and traces all Publisher-Subscriber internal operations happening at the
main thread. Also present in this snippet is retryWhen() which uses time delay
to implement error recovery:

@Override
public Flux<Integer> getAllAge(Integer age[]) {
 Function<Integer, Integer> addBufferAge =
 (a) -> a + 10;
 Flux<Integer> allAges = Flux
 .just(age)
 .map(addBufferAge)
 .retryWhen(opionFlux -> Flux.range(10, 100)
 .flatMap(i ->
 Flux.just(i).map(addBufferAge)))
.log("Adding 10",
 java.util.logging.Level.INFO);
 return allAges;
}

Add the following logback dependencies for the log() operator:5.

<dependency>
 <groupId>ch.qos.logback</groupId>
 <artifactId>logback-classic</artifactId>
 <version>1.2.3</version>
</dependency>

Save EmployeeNativeStreamserviceImpl. Create a test class to execute all6.
three service methods.

How it works...
Both Mono<T> and Flux<T> types are not the same technically as compared to typical data
structures like arrays and List because the latter are fixed memory chunks representing the
types of data to be stored while the former is a series of elements generated periodically,
which cannot be referenced by an initial and last index. The Stream can be unpredictable
since it can be full for a certain period and empty during busy transmissions. Every data
emission may contain a different set of actual data depending on the backpressure applied
to the Stream object .

Reactive Programming

[316]

A Mono<T> publisher generates a Stream of 0 or 1 data objects and consists of threaded
operations that execute asynchronously creating layers of internal Streams. It has core
operations such as doOnSuccess() which is triggered to execute once all the operations
exited without any errors. Its data emission triggers the method doOnNext() which can be
appropriate to execute logging or external tasks. In the service method
processFormUser(), a Stream of String objects is being manipulated by the map() and
filter() operators which are both asynchronous in nature. The threaded filter()
requires java.util.function.Predicate to process only those strings with greater than
five alphanumeric characters whereas map() executes java.util.function.Function to
convert the filtered Stream object to uppercase. If the object does not qualify with
filter(), the resulting Stream will return Null. To accept null data, Mono has a method,
justOrEmpty() that will pre-empt any instances of NullPointerException triggered by
processing Null Streams. Reactive Streams prohibits the use of Null values in any of its
operations:

If a series of data is involved, the Flux<T> Stream type is used but it only requires non-null
inputs. To generate Flux<T> from raw data, it uses the just() method just like Mono<T>
but some of its operators are for multiple-data Streams. A Flux Stream can emit an infinite
amount of data using doOnNext() before doOnComplete() or doOnError() is triggered.

Reactive Programming

[317]

To handle java.lang.Error or java.lang.Exception, both Mono<T> and Flux<T> can
invoke onErrorReturn() to return a value that represents an error flag, doOnError() to
determine the type of exception, and execute Consumer<T> when the transmission error
happens or retry()/retryWhen() to signal a re-subscription after a range() of time with
delays. To verify the new Subscription object, invoke doOnSubscribe().

Sometimes defaultIfEmpty() is called to return any arbitrary value just to avoid a null
value result which is not tolerated by Publisher<T> and Subscriber<T>. And to check as
to where along the way the event got a null value, a log() method is present to show all
transaction logs for the purpose of auditing and tracing. It shows all the series of onNext()
calls to verify the situations during each Stream operation. The method uses the logback
framework in generating the log messages.

Some publishers are created for the purpose of creating dummy tests and providing
defaults to risky Streams. These Streams without data emissions are created through
Mono.empty() and Flux.empty(). And in some rare cases we invoke Mono.never() to
create a Mono<T> Stream that does not execute any callback functions such as
onComplete() and onError().

Implementing the Subscriber<T> interface
Publishers cannot be executed without a Subscriber. There are a few ways to implement a
subscriber and it depends on the type of publisher they are to connect to. This recipe will
provide some snippets on how to instantiate a subscriber and implement its callback events.

Getting ready
This recipe will be utilizing the same ch08 to highlight the different implementation of
Subscriber<T>.

Reactive Programming

[318]

How to do it...
To render or retrieve the emitted data, a subscription API must be created. Perform the
following steps on how to implement Subscriber<T>:

Create a test class TestEmployeeNativeStreamservice that will verify some1.
of the methods in the previous EmployeeNativeStreamservice. Add the
following test method that executes processFormUser() using Subscriber<T>
implemented through java.util.function.Consumer<T>:

@RunWith(SpringJUnit4ClassRunner.class)
@WebAppConfiguration
@ContextConfiguration(classes = {
SpringDbConfig.class, SpringDispatcherConfig.class })
public class TestEmployeeNativeStreamservice {

@Test
public void testMonoUserA(){

Consumer<String> convertUser = (str) ->
 System.out.println("String object: " + str);
employeeNativeStreamserviceImpl
.processFormUser("sjct").subscribe(convertUser);
}
}

Add another test method that generates a subscriber using a method reference in2.
functional programming. This time, this test case aims to run the getAllAge()
method:

@Test
public void testFluxAgeArray(){
 List<Integer> bufferedAge = new ArrayList<>();
 employeeNativeStreamserviceImpl
.getAllAge(new Integer[]{1,2,3,4})
.subscribe(bufferedAge::add);
 for(Integer age: bufferedAge){
 System.out.println(age);
 }
}

Reactive Programming

[319]

Another subscriber that can execute processFormUser() is instantiated using 3.
the Reactor Stream's Subscriber<T> API which is depicted in the method as
follows:

@Test
public void testMonoUserC(){
 Subscriber<String> subscriber = new Subscriber<String>(){

 @Override
 public void onComplete() {
 System.out.println("Mono Streams ended
 successfully.");
 }

 @Override
 public void onError(Throwable e) {
 System.out.println("Something wrong happened.
 Exits now.");
}

 @Override
 public void onNext(String name) {
 System.out.println("String object: " + name);
 }

 @Override
 public void onSubscribe(Subscription subs) {
 subs.request(Long.MAX_VALUE);
 }
};

employeeNativeStreamserviceImpl
 .processFormUser("sjctrags").subscribe(subscriber);
}

The anonymous inner class is used to implement Subscriber<T>.

Save the file. Execute all test cases to view all the results.4.

Reactive Programming

[320]

How it works...
The subscriber is Observer<T> in the Reactive Stream model and its main objective is to
listen to and observe the subject of the model which is either Mono<T> or Flux<T>. The full
creation of a subscriber happens when org.reactiveStreams.Subscriber is used to
override the four callback methods namely onSubscribe(), onNext(), onComplete(),
and onError(). These methods can be enabled only if the publishers' counterparts of these
are not invoked.

The onSubscribe() callback method manages the subscription mechanism of the
subscriber by configuring the emission rate of Stream objects. This method is responsible for
issuing a subscription to publishers and also managing the requests of data emission per
delay per period. The Subscription<T> interface is part of this method which contains the
following blueprint:

public interface Subscription {
 public void request(long n);
 public void cancel();
}

To render each Stream object either OutputStream or Collection, onNext() is executed.
Different implementations can be executed within this method as long as all requirements
fit within the scope of an anonymous inner class.

When the subscriber receives all the needed Stream objects from the publisher without a
problem, it triggers its onComplete() method. Since this method is the last one to be called,
all the necessary finishing touches such as data transformation, database persistence, or
buffered writing are included in this method. But in case Throwable is encountered along
the way, subscriber will trigger its onError() function which becomes the last execution
instead.

The other way of generating subscribers is to implement Java 1.8's Consumer<T> functional
interface. Using Lambda expression, we can construct an implementation that can expose
all the data Stream objects without the limitation of an anonymous inner class.

And since Subscriber<T> supports Lambda expressions, method references can also be
accepted as one way of generating subscribers that will log all Stream objects in a console or
add them in a data repository.

Reactive Programming

[321]

Applying backpressure to Mono<T> and
Flux<T>
Retrieving elements from array or Collection is different from data retrieval in Mono<T>
or Flux<T>. In a typical data retrieval operation, the control of data emission depends on
whether subscribers will pull it or not. The process can be very fast when a number of
elements is practically manageable but dangerously slow when data abruptly increases.
Once the subscriber or receiver becomes overwhelmed with the volume of data emission,
some parts of the application may starve and will lead to memory leak. Backpressure is the
process of controlling the flow of the data Stream to avoid an overflow of data emission
between fast Publisher<T> and slow Subscriber<T>. It aims to maintain an optimal
performance of any Reactive events even in worst-case scenarios.

Getting ready
Here, we will use Maven project ch08 and add the code for backpressure.

How to do it...
Date emissions in Streams are affected by the backpressure operations used to extract the
data. Let us define some backpressure operations by doing the following steps:

Create a separate service class, EmployeeBatchStreamservice that will1.
showcase some abstract methods that will utilize time-related operators that are
needed in setting up backpressure on Stream types:

public interface EmployeeBatchStreamservice {
 public Mono<Employee> selectOneEmployee();
 public Flux<Employee> selectSomeEmpRecords();
 public Flux<List<Employee>> getEmployeesByBatch();
 public Flux<String> getTimedFirstNames();
 public Flux<Employee> selectEmpDelayed();
 public Flux<Employee> getDeferredEmployees();
}

Reactive Programming

[322]

The first event to implement is selectOneEmployee() that emits only one2.
Stream object and converts it to a Mono<Employee> type. The doOnCancel()
method is always invoked in time-related operators like this since these types of
Stream operators trigger the onCancel() method periodically. Add this method
to our EmployeeBatchStreamserviceImpl implementation class:

@Service
public class EmployeeBatchStreamserviceImpl
implements EmployeeBatchStreamservice {
@Autowired
private EmployeeDao employeeDaoImpl;
@Override
public Mono<Employee> selectOneEmployee() {
 Runnable cancel = () ->{
 System.out.println("Stream is cancelled");
};
Mono<Employee> oneRecord =
 Flux.fromIterable(employeeDaoImpl.getEmployees())
.doOnCancel(cancel)
 .log()
.take(1)
.singleOrEmpty();
 return oneRecord;
}
}

The main reason why there is a need to manage the emission of Mono<T>
even though it only contains one piece of data is because in some
circumstances, it may be empty.

Next, the method selectSomeEmpRecords()transmits only those Stream objects3.
that are only covered within a specific emission period and skips two of them
during the operation:

@Override
public Flux<Employee> selectSomeEmpRecords() {
Flux<Employee> takeSomeRecs =
 Flux.fromIterable(employeeDaoImpl.getEmployees())
.log()
.skip(2)
.take(Duration.ofMillis(4));
 return takeSomeRecs;
}

The third method to implement emits groups of Stream objects wherein each4.

Reactive Programming

[323]

group contains n elements:

@Override
public Flux<List<Employee>> getEmployeesByBatch() {
 Flux<List<Employee>> recordsByBatch =
 Flux.fromIterable(employeeDaoImpl.getEmployees())
.log()
.buffer(2);
 return recordsByBatch;
}

The operator buffer(n) returns a Stream of Collection where each
Collection contains the group of Stream objects.

One of the most essential operators used in executing expensive or unstable5.
sources of data is the defer() operator. It provides asynchronous execution to
Publisher<T> that needs to be run in the background as an independent thread
while proceeding with the next operators. This asynchronous method prevents
other operators from interfering with the progress or status of the running
Publisher<T>. The following method uses the defer() method to wrap an
assumed heavy and unstable DAO transaction while filter() waits for its
Predicate<T> to process the controlled data stream:

@Override
public Flux<Employee> getDeferredEmployees() {
 Predicate<Employee> validAge =
(e) -> e.getAge() > 25;
 Supplier<Flux<Employee>> deferredTask =
()->Flux.fromIterable(
employeeDaoImpl.getEmployees());
 Flux<Employee> deferred =
 Flux.defer(deferredTask).log().filter(validAge);
 return deferred;
}

One way to manage defer() operations is to use timeout() to explicitly6.
provide a period of waiting for the subscriber to fulfil its subscription. Following
is a method implemented for the subscriber to wait 300 milliseconds, otherwise it
will trigger its onError() method:

@Override
 public Flux<String> getTimedFirstNames() {
 Function<Employee, String> firstNames =

Reactive Programming

[324]

(e) -> e.getFirstName();
 Supplier<Flux<String>> deferredTask =
()->Flux.fromIterable(
employeeDaoImpl.getEmployees())
 .map(firstNames);
 Flux<String> timedDefer = Flux.defer(deferredTask)
.log()
.timeout(Duration.ofMillis(300));
 return timedDefer;
}

To execute this method properly, be sure to override the onError() method of7.
the subscriber just in case onCancel() is triggered. Create
TestEmployeeBatchStream and add the following test method:

@Test
public void testTimedFirstNames(){
 employeeBatchStreamserviceImpl.getTimedFirstNames()
.subscribe(new Subscriber<String>(){

 @Override
 public void onComplete() { }

 @Override
 public void onError(Throwable arg0) {
 System.out.println("time is out....");
 }

 @Override
 public void onNext(String data) {
 System.out.println(data);
}

 @Override
 public void onSubscribe(Subscription subs) {
 subs.request(Long.MAX_VALUE); }
 });
}

Reactive Programming

[325]

If there is a need to delay the emission of each element for m seconds given a8.
period of 1 hour, the operators take() and delayElements(m) are used.
Combinations of these threaded operations can push any number of data Streams
to the subscriber. A Null Stream object is also a valid, expected result so error
handling must be ready for these kinds of computations:

@Override
public Flux<Employee> selectEmpDelayed() {
 Supplier<Flux<Employee>> deferredTask =
()->Flux.fromIterable(
employeeDaoImpl.getEmployees());
 Flux<Employee> oneRecord = Flux.defer(deferredTask)
.take(Duration.ofHours(1))
.delayElements(Duration.ofSeconds(10));
 return oneRecord;
}

The other way of implementing backpressure is to override the onSubscribe()9.
method of Subscriber<T> to request from Publisher<T> the emission rate of
the resulting stream. This Stream request is done by the subscriber through the
use of request(t) wherein the subscriber will be expecting t Stream objects per
emission. Open the test class TestEmployeeBatchStream and add the following
test case:

@Test
public void testByRequest(){
 Subscriber<Employee> subscriber =
new Subscriber<Employee>(){

 @Override
 public void onComplete() { }

 @Override
 public void onError(Throwable arg0) { }

 @Override
 public void onNext(Employee emp) {
 System.out.println(emp);
 }

 @Override
 public void onSubscribe(Subscription subs) {
 subs.request(2);
 }
 };
 employeeBatchStreamserviceImpl.selectSomeEmpRecords()

Reactive Programming

[326]

.subscribe(subscriber);
}

How it works...
Reactive applications use backpressure to manage of Stream of data flow from publishers to
subscribers. It can be either a pull or push backpressure model depending on the
requirements of the event. The pull data retrieval model is the one controlled by the
subscriber which might be causing degradation or starvation whenever an empty promise
Stream object is emitted by the publisher. A similar scenario is exhibited by the
testByRequest() test case where the subscriber used the request() method of
Subscription to tell the publisher how many Stream objects to emit per batch. On the other
hand, we have a push model where the publisher controls the emission using some
threaded operators such as timeout(), delayElements(), buffer(), skip(), and
take(). This method promotes resiliency which means that the publisher will not be
causing too much stress on its subscribers by sending an overflowing or empty stream.
Given the possible chances of an empty stream, the push model can manage Throwable or
execute Mono.error() to avoid memory leaks.

There are cases where some operations exceed the given time of execution due to I/O
transactions, network problems, or huge volumes of data. Stream operators that are affected
by these circumstances are wrapped by a defer() asynchronous method to prevent others
from interfering with the ongoing status of the deferred operation. Using this method is a
good start in formulating asynchronous transactions with backpressure for events that
consume too many resources. Given different subscribers, the defer() method ensures a
new Stream for each subscriber.

Some of the delay operations are deprecated so it would be wise to use the updated Reactor
Core 3.0 operators. Moreover, for the time-driven operators, onCancel() is always
triggered and doOnCancel() can be invoked for further Runnable tasks or events.

Managing task executions using Schedulers
All Mono<T> and Flux<T> Streams use the main thread for executing all its processors,
which in some circumstances, can create starvation in some applications that are waiting for
the main thread to be released. Eventually, exceptions from both publisher and subscriber
can be thrown due to the starvation generated by the thread problems. This recipe will
discuss creating thread workers that will lighten up the load of the main thread.

Reactive Programming

[327]

Getting ready
Open project ch08 again and add some services that will illustrate the different ways to
create schedulers or thread executors.

How to do it...
To apply schedulers on our Stream operators, let us perform the following steps:

Create a service class EmployeeScheduledStreamservice that contains the1.
following methods that will make use of the custom dispatcher and thread
executor on the main thread:

public interface EmployeeScheduledStreamservice {
 public Flux<Employee> createPublisherThread();
 public Flux<Employee> createSubscriberThread();
 public Flux<Employee> createBothThreads();
 public Flux<Employee> createPubAndMain();
 public Flux<String> createSchedGroupPub();
 public Flux<String> createSchedGroupSub();
 public Flux<Employee> elasticFlow();
 public Flux<String> selectNamesScheduler();
}

The first method to implement is createPublisherThread() which creates a2.
scheduler that triggers a fixed and single-threaded executor-based worker that
will host the subscription to Mono<T> or Flux<T> Streams in the background,
making the main thread available for other processes. Following is the
EmployeeScheduledStreamserviceImpl class which generates a separate
Scheduler for a publisher:

@Service
public class EmployeeScheduledStreamserviceImpl
implements EmployeeScheduledStreamservice {
 @Autowired
private EmployeeDao employeeDaoImpl;

@Override
 public Flux<Employee> createPublisherThread() {
 Scheduler pubWorker =
Schedulers.newSingle("pub-thread");
 Predicate<Employee> validAge =
(e) -> {
 System.out.println("filter thread: "

Reactive Programming

[328]

 + Thread.currentThread().getName());
 return e.getAge() > 25;
 };
 Supplier<Flux<Employee>> deferredTask =
()->{
 System.out.println("defer thread: "
+ Thread.currentThread().getName());
 return Flux.fromIterable(employeeDaoImpl
.getEmployees());
 };
 Flux<Employee> deferred =
 Flux.defer(deferredTask).filter(validAge)
.publishOn(pubWorker);
 return deferred;
}
}

Implement a method that uses a separate, single-threaded executor-based worker3.
for the subscriber's callback execution and loads all the publisher threaded
operations to the main thread. The following is another addition to the service
class:

@Override
public Flux<Employee> createSubscriberThread() {
 Scheduler subWorker =
Schedulers.newSingle("sub-thread");
 Predicate<Employee> validAge = (e) -> {
 System.out.println("filter thread: "
+ Thread.currentThread().getName());
 return e.getAge() > 25;
 };
 Supplier<Flux<Employee>> deferredTask = ()->{
 System.out.println("defer thread: "
+ Thread.currentThread().getName());
 return Flux.fromIterable(employeeDaoImpl
.getEmployees());
 };
 Flux<Employee> deferred =
 Flux.defer(deferredTask).filter(validAge)
.subscribeOn(subWorker);
 return deferred;
}

Reactive Programming

[329]

Next, implement createBothThreads() that uses separate threads for the4.
publisher's subscription and scheduler's Consumer or callback executions:

@Override
public Flux<Employee> createBothThreads() {
 Scheduler subWorker =
Schedulers.newSingle("sub-thread");
 Scheduler pubWorker =
Schedulers.newSingle("pub-thread");
 Predicate<Employee> validAge = (e) -> {
 System.out.println("filter thread: "
+ Thread.currentThread().getName());
 return e.getAge() > 25;
 };
 Supplier<Flux<Employee>> deferredTask = ()->{
 System.out.println("defer thread: "
+ Thread.currentThread().getName());
 return Flux.fromIterable(employeeDaoImpl
.getEmployees());
 };
 Flux<Employee> deferred =
 Flux.defer(deferredTask).filter(validAge)
.subscribeOn(subWorker)
.publishOn(pubWorker);
 return deferred;
}

There are some cases when we isolate some non-critical publisher subscription5.
operations from risky, expensive, or deferred transactions by loading these
critical operations into the background thread. In this case, two threads will be
utilized by the publishers, the main one and the one generated by a scheduler.
Following is a method createPubAndMain() that shows another option for
using Schedulers:

@Override
public Flux<Employee> createPubAndMain() {
 Scheduler pubWorker =
Schedulers.newSingle("pub-thread");
 Predicate<Employee> validAge = (e) -> {
 System.out.println("filter thread: "
+ Thread.currentThread().getName());
 return e.getAge() > 25;
 };
 Supplier<Flux<Employee>> deferredTask = ()->{
 System.out.println("defer thread: "
+ Thread.currentThread().getName());
 return Flux.fromIterable(employeeDaoImpl

Reactive Programming

[330]

.getEmployees());
 };
 Flux<Employee> deferred = Flux.defer(deferredTask)
.publishOn(pubWorker)
.filter(validAge);
 return deferred;
}

If a pool of schedulers is required to be assigned on each Stream operator, then6.
this recipe fits to that requirement. In this model, each task will be assigned
randomly to any available worker for flatMap() processing. The following is
the implementation of the createSchedGroupPub() method that generates 8
workers wherein one worker will be chosen to execute the publisher operations.
Moreover, the recipe creates a separate scheduler for the subscriber:

@Override
public Flux<String> createSchedGroupPub() {
 Scheduler subWorker = Schedulers.newSingle("sub-thread");
 Scheduler parallelGrp = Schedulers.newParallel("pub-grp", 8);
 Function<Employee, String> allCapsNames = (emp) ->
 emp.getFirstName().toUpperCase() + " " +
 emp.getLastName().toUpperCase();
 Flux<String> grpFlux = Flux.fromIterable(employeeDaoImpl
 .getEmployees()).publishOn(parallelGrp).flatMap((emp)->{
 System.out.println("flatMap thread: " +
 Thread.currentThread().getName());
 return
Mono.just(emp).map(allCapsNames).subscribeOn(subWorker);
 });
 return grpFlux;
}

There is no concurrency concept yet in this recipe. After executing this
method, only one worker will be tasked to do every subscriber event. This
recipe is just about creating groups of schedulers and how the platform
chooses the available thread to do the publisher's tasks.

Reactive Programming

[331]

If we can allot a group of schedulers to subscriptions, we can also do it with the7.
subscriber's callback. The following is a method that generates a group of
schedulers that will execute the Consumer<T> transaction of Subscriber<T>:

@Override
public Flux<String> createSchedGroupSub() {
 Scheduler pubWorker =
Schedulers.newSingle("pub-thread");
 Scheduler parallelGrp =
Schedulers.newParallel("sub-grp", 8);
 Function<Employee, String> allCapsNames =
(emp) -> emp.getFirstName().toUpperCase() + " "
+ emp.getLastName().toUpperCase();
 Flux<String> strFlux =
 Flux.fromIterable(employeeDaoImpl
.getEmployees())
 .publishOn(pubWorker)
 .flatMap((str)->{
 System.out.println("flatMap thread: "
+ Thread.currentThread().getName());
 return Mono.just(str).map(allCapsNames)
.subscribeOn(parallelGrp);
 });
 return strFlux;
}

When the event is unsure as to whether to utilize a single or group of n workers,8.
Schedulers.elastic() is executed to dynamically create the required pool of
workers that are cacheable and reusable after every Stream operation:

@Override
public Flux<Employee> elasticFlow() {
 Scheduler elastic =
Schedulers.newElastic("elastic-worker");
 Predicate<Employee> validAge = (e) -> {
 System.out.println("filter thread: "
+ Thread.currentThread().getName());
 return e.getAge() > 25;
 };
 Supplier<Flux<Employee>> deferredTask = ()->{
 System.out.println("defer thread: "
+ Thread.currentThread().getName());
 return Flux.fromIterable(employeeDaoImpl
.getEmployees());
 };
 Flux<Employee> deferred = Flux.defer(deferredTask)
.filter(validAge)

Reactive Programming

[332]

.subscribeOn(elastic);
 return deferred;
}

Lastly, some of the publisher operators require Schedulers as parameters just9.
like the window() operation that creates an internal sub-Flux based on a
delimiter that splits the whole Flux<T> sequence starting from the first
recognized Stream element. The following method shows how window() works
with a Scheduler:

@Override
public Flux<String> selectNamesScheduler() {
 Scheduler winWorker =
Schedulers.newSingle("window-thread");
 Function<Employee, String> allCapsNames =
(emp) -> emp.getFirstName().toUpperCase() + " "
+ emp.getLastName().toUpperCase();
 Flux<String> convertWindows =
 Flux.fromIterable(employeeDaoImpl.getEmployees())
 .windowTimeout(2,
Duration.ofMillis(20), winWorker)
 .flatMap(str -> str
 .map(allCapsNames)
 .collectList()
 .map(name ->
 StringUtils
.collectionToCommaDelimitedString(name))
);
 return convertWindows;
}

How it works...
To apply more asynchronous approaches in generating Mono<T> and Flux<T>, schedulers
are recommended by the Reactive Stream specification to lessen the load of the main thread.
With schedulers, operators can be allowed to execute using many threads. Generally, it
provides asynchronous boundaries to all threaded operators of the publisher.

Reactive Programming

[333]

There are many ways to generate and use schedulers; one is the use of timed operators like
timeout(), delayElements(), and skip() which are showcased in the previous recipe.
These types of methods have built-in schedulers that are run in the background once
executed. Some are created just to become an argument of a publisher operation just like
window() presented in selectNamesScheduler() where the two sub-Flux Streams are
managed by separate threads. The use of publishOn() is one way to manage Streams
using multiple threading by having different threads for the subscriptions. Subscribers
observe all the publisher Streams through the scheduler specified by publishOn(). The
Scheduler.newSingle() factory method is used to generate a single thread that will
process the needed computations. The location where publishOn() is called matters
because it is the point where the rest of the operations will shift to a new scheduler from the
main thread.

On the other hand, assigning another thread to the Subscriber's onComplete(),
onError(), and onNext() is another popular technique for multithreading which is done
through subscribeOn().

Since dispatchers and executors are almost obsolete in this latest version of Reactor Core
3.x, the Scheduler will stand as a dispatcher with an embedded executor that will truly
solve major synchronization problems and thread management on the Mono<T> and
Flux<T> Streams.

There are other commands from schedulers that can be useful in initiating thread execution
such as Schedulers.immediate() which triggers work immediately on the current thread
and Schedulers.elastic() which is suited for I/O related tasks which can contain a pool
of threads.

Creating concurrent and parallel emissions
Besides multithreading, it is possible to achieve concurrency and parallelism with Reactor
Core. This recipe is still about Scheduler but in parallel mode. The clear concept of
parallelism is all about having these n operations distributed to m workers that are executed
independently of each other. This recipe will utilize Schedulers to enable parallelism in
Reactive Streams.

Reactive Programming

[334]

Getting ready
Open project ch07 again and add the following service that shows different ways of how to
implement concurrent and parallel Streams using Schedulers and some Reactive Core 3.x
operators.

How to do it...
To implement concurrent and parallel Stream emissions, perform the following steps:

Add the following service class in our org.packt.reactive.code.service1.
package. This class contains method templates that will detail parallelism and
concurrency based on Reactive Streams specification:

public interface EmployeeParallelStreamservice {
 public Flux<String> parallelEmployeeNames();
 public Flux<GroupedFlux<Integer, Integer>>
 parallelGrpAvg();
 public Flux<String> repeatExecs();
}

Create an implementation class EmployeeParallelStreamserviceImpl that2.
will contain a method parallelEmployeeNames() designed to utilize a pool of
eight threads in order to get the full names of all employees. All these threads
must work on each task in parallel mode. In short, this method implements a
parallel Flux:

@Service
public class EmployeeParallelStreamserviceImpl
implements EmployeeParallelStreamservice{
 @Autowired
 private EmployeeDao employeeDaoImpl;

 @Override
 public Flux<String> parallelEmployeeNames() {
 Function<Employee, String> names = (emp) -> {
 System.out.println("flatMap thread: "
+ Thread.currentThread().getName());
 return emp.getFirstName().charAt(0) +
 emp.getLastName();
 };
 Flux<String> parallelEmpFlux =
 Flux.fromIterable
(employeeDaoImpl.getEmployees())

Reactive Programming

[335]

 .parallel(8)
 .runOn (Schedulers.parallel())
 .sequential()
 .map(names);
 return parallelEmpFlux;
}
}

Another method repeatExecs() implements another design for parallelism3.
wherein the Stream will be repeatedly run m times after each onComplete():

@Override
public Flux<String> repeatExecs() {
 Function<Employee, String> names =
(emp) ->{
 System.out.println("flatMap thread: "
+ Thread.currentThread().getName());
 return emp.getFirstName().charAt(0) +
 emp.getLastName();
 };
 Flux<String> parallelEmpFlux =
 Flux.fromIterable(employeeDaoImpl.getEmployees())
 .repeat(2)
 .parallel(8)
 .runOn (Schedulers.parallel())
 .sequential()
 .map(names)
 .doOnSubscribe(subscription -> {
 System.out.println(subscription);
 });
 return parallelEmpFlux;
}

The last method in this recipe will show us a solution on how to implement4.
grouped parallel Flux. This implementation is so rare that it is only opted for
when there is a need to parallelize the subscriber's callback too:

@Override
public Flux<GroupedFlux<Integer, Integer>> parallelGrpAvg() {
 Function<Employee, Integer> ages = (emp) -> {
 System.out.println("flatMap thread: "
+ Thread.currentThread().getName());
 return emp.getAge();
 };
 Flux<GroupedFlux<Integer, Integer>> parallelEmpFlux =
 Flux.fromIterable(employeeDaoImpl.getEmployees())
 .delaySubscription(

Reactive Programming

[336]

Duration.of(500L, ChronoUnit.MILLIS))
 .parallel(8)
 .runOn (Schedulers.parallel())
 .map(ages)
 .groups();
 return parallelEmpFlux;
}

How it works...
An operator that consumes more time in computations is a serious problem when creating
Streams. Usually, when operations are involved in some I/O tasks, file content retrieval, or
selecting records from an archive data warehouse, it is always recommended to generate
threads that work in parallel mode in order to attend to these heavy operations.

Parallelism starts with a parallel() operator which creates a pool of t threads. These t
threads will eventually become rails of parallel Flux after the runOn() method is invoked.
After all the parallel tasks are done executing, these Streams can be merged into one
resulting Stream by calling the sequential() method. It is a must to call sequential()
since subscription cannot be parallelized easily. But, to really implement 100% parallelism
where the subscription process is also part of the concurrency, use grouped parallel flux.
Each rail is internally paired to a subscription through an internally-created key, to
represent a grouped parallel flux of Stream type
Flux<GroupedFlux<java.lang.Integer,T>>. Applying groups is the same concept of
implementing parallelism to publisher-subscriber by grouping basis.

To add more concurrency power to the reactor stream, we can include the repeat()
operator to repeat the Stream processes at least once. After the completion of all Streams,
repeat() triggers re-subscription eventually executing parallel(), runOn(), and
sequential() operators again and again with an unpredictable task assignment to the
thread pool. Also, the subscription will also be effective and traceable if certain
backpressure will be applied like the use of the delayElements() operator.

Reactive Programming

[337]

Managing continuous data emission
All the Streams generated by the previous recipes need to be subscribed in order to emit
data Streams. This kind of data Stream is called the cold stream. Many of the real-time
applications nowadays need services that emit a data Stream continuously once the server
starts even without any subscription. Thus, data emission in this recipe is not bounded by
any subscribers which gives each subscriber a different set of Streams every now and then
within such a period. This recipe will discuss snippets that implement synchronous and
non-blocking Stream operations.

Getting ready
This chapter will be using ch07 again to implement services that use
ConnectableFlux<T> and Processor<T>.

How to do it...
This will be the first recipe that will implement a continuous stream:

Let us create a service class EmployeeHotStreamservice that contains the1.
following template methods:

public interface EmployeeHotStreamservice {
 public ConnectableFlux<String> freeFlowEmps();
 public void monoProcessorGetEmployee(Integer id);
 public void fluxProcessorGetEmployee(List<Integer> ids);
 public void validateNamesTopic(List<String> names);
 public void validateNamesWorkQueue(List<String> names);
 public void validateNamesReplay(List<String> names);
 public void validateNamesUnicast(List<String> names);
}

The first method to implement is freeFlowEmps() which uses2.
ConnectableFlux<T> in its implementation of a continuous data Stream flow.
Add the following implementation class with the implemented freeFlowEmps()
method. This method also introduces cache() that stores current value for later
computations, if there are any:

@Service
public class EmployeeHotStreamserviceImpl
implements EmployeeHotStreamservice {

Reactive Programming

[338]

 @Autowired
 private EmployeeDao employeeDaoImpl;
 @Override
 public ConnectableFlux<String> freeFlowEmps() {
 List<String> rosterNames = new ArrayList<>();
 Function<Employee, String> familyNames =
(emp) -> emp.getLastName().toUpperCase();
 ConnectableFlux<String> flowyNames =
 Flux.fromIterable(employeeDaoImpl.getEmployees())
.log().map(familyNames).cache().publish();
 flowyNames.subscribe(System.out::println);
 flowyNames.subscribe(rosterNames::add);
return flowyNames;
}
}

To show the connection process, add the following test class that will trigger the3.
data Stream emission to the two subscribers:

@RunWith(SpringJUnit4ClassRunner.class)
@WebAppConfiguration
@ContextConfiguration(classes = { SpringDbConfig
 .class, SpringDispatcherConfig.class })
public class TestEmployeeHotStreamservice {
 @Autowired
 private EmployeeHotStreamservice
 employeeHotStreamserviceImpl;

 @Test
 public void testConnectFluxProcessor(){
 employeeHotStreamserviceImpl.freeFlowEmps().connect();
 }
}

One of the best solutions in generating hot Streams is the use of Processor<T>4.
which stands as a complete event broadcaster that commands the execution of all
its Stream operations in at least one subscriber. Following is a method that
utilizes a synchronous event broadcaster that is only used to signal all event
executions in at least one subscriber synchronously:

@Override
public void monoProcessorGetEmployee(Integer id) {
 MonoProcessor<Integer> future =
 MonoProcessor.create();
 Consumer<Integer> checkEmp = (rowId) ->{
 if(employeeDaoImpl.getEmployee(rowId) == null){
 System.out.println("Employee with id: "

Reactive Programming

[339]

+ rowId + " does not exists.");
 }else{
 System.out.println("Employee with id: "
+ rowId + " exists.");
 }
 };
 Mono<Integer> engine = future
 .doOnNext(checkEmp)
 .doOnSuccess(emp -> {
 System.out.println("Employee's age is "
+ employeeDaoImpl.getEmployee(emp).getAge());
 System.out.println("Employee's dept is: "
+ employeeDaoImpl.getEmployee(emp).getDeptId());
 })
 .doOnTerminate((sup, ex) ->
 System.out.println("Transaction terminated
 with error: " +ex.getMessage()))
 .doOnError(ex -> System.out.println("Error: "
+ ex.getMessage()));
 engine.subscribe(System.out::println);
 future.onNext(id);
 int valStream = future.block();
 System.out.println("Employee's ID again is: " +
 valStream);
}

Another processor is FluxProcessor<T> which broadcasts the data emission to5.
its subscriber(s) mainly exposing the process of emission:

@Override
public void fluxProcessorGetEmployee(List<Integer> ids) {
 Function<Integer,Integer> checkEmp = (id) ->{
 if(!(employeeDaoImpl.getEmployee(id) == null)){
 return employeeDaoImpl
 .getEmployee(id).getAge();
 }else{
 return -1;
 }
 };
 FluxProcessor<Integer, Integer> cpuFlow =
 EmitterProcessor.create();
 Flux<Integer> fluxp = cpuFlow.map(checkEmp);
 Flux<Integer> gradientNum = cpuFlow.map((num) ->
num + 1000);
 fluxp.subscribe(System.out::println);
 gradientNum.subscribe(System.out::println);
 for(Integer id: ids){
 cpuFlow.onNext(id);

Reactive Programming

[340]

 }
 cpuFlow.onComplete();
}

A specialized EmitterProcessor<T> that caches all its Stream elements for6.
future computations and also allows asynchronous event executions to its
subscriber(s) is called ReplayProcessor<T>. Because of its built-in
cache(), this processor remembers the previous element and emits it to the next
subscriber for another event processing while maintaining an asynchronous
boundary between subscribers. Following is validateNamesReplay() that
implements the basic semantics for ReplayProcessor<T>:

@Override
public void validateNamesReplay(List<String> names) {
 ReplayProcessor<String> replayProcessor =
 ReplayProcessor.create();
 Function<String,String> appendLic =
(name) -> name.concat(".112234");
 Function<String,String> appendKey =
(name) -> name.concat("-AEK2345J");
 Function<String,String> upperCase =
(name) -> name.toUpperCase();
 Flux<String> formatter1 =
replayProcessor.filter((s) ->
 s.length() > 4).map(appendLic);
 Flux<String> formatter2 =
replayProcessor.filter((s) ->
 s.startsWith("J")).map(appendKey);
 Flux<String> formatter3 =
replayProcessor.filter((s) ->
 s.endsWith("win")).map(upperCase);

 formatter1.subscribe(System.out::println);
 formatter2.subscribe(System.out::println);
 formatter3.subscribe(System.out::println);

 for(String name : names){
 replayProcessor.onNext(name);
 }
 replayProcessor.onComplete();
}

Reactive Programming

[341]

An asynchronous version of EmitterProcessor<T> that signals all execution of7.
all its events per data Stream element asynchronously is called
TopicProcessor<T>. This processor needs more backpressure solutions to
capture correctly the execution of each subscriber because of its high concurrency
features:

@Override
 public void validateNamesTopic(List<String> names) {
 TopicProcessor<String> topicProcessor =
 TopicProcessor.create();
 Function<String,String> appendLic =
(name) -> name.concat(".112234");
 Function<String,String> appendKey =
(name) -> name.concat("-AEK2345J");
 Function<String,String> upperCase =
(name) -> name.toUpperCase();
 Flux<String> formatter1 =
topicProcessor.filter((s) ->
 s.length() > 4).map(appendLic);
 Flux<String> formatter2 =
topicProcessor.filter((s) ->
 s.startsWith("J")).map(appendKey);
 Flux<String> formatter3 =
topicProcessor.filter((s) ->
 s.endsWith("win")).map(upperCase);

 formatter1.subscribe(System.out::println);
 formatter2.subscribe(System.out::println);
 formatter3.subscribe(System.out::println);

 for(String name : names){
 topicProcessor.onNext(name);
 }
 topicProcessor.onComplete();
}

The next processor, WorkQueueProcessor<T>, is also an asynchronous signal8.
broadcaster like TopicProcessor<T> that evenly distributes each element to the
next available subscriber. The objective is to share the load fairly to all subscribers
which is the same idea with the Round Robin process distribution. Some of the
elements might appear or not depending on the constraints given in each event:

@Override
public void validateNamesWorkQueue(List<String> names) {
 WorkQueueProcessor<String> wqueueProcessor =
 WorkQueueProcessor.create();

Reactive Programming

[342]

 Function<String,String> appendLic =
(name) -> name.concat(".112234");
 Function<String,String> appendKey =
(name) -> name.concat("-AEK2345J");
 Function<String,String> upperCase =
(name) -> name.toUpperCase();
 Flux<String> formatter1 =
wqueueProcessor.filter((s) ->
 s.length() > 4).map(appendLic);
 Flux<String> formatter2 =
wqueueProcessor.filter((s) ->
 s.startsWith("J")).map(appendKey);
 Flux<String> formatter3 =
wqueueProcessor.filter((s) ->
 s.endsWith("win")).map(upperCase);

 formatter1.subscribe(System.out::println);
 formatter2.subscribe(System.out::println);
 formatter3.subscribe(System.out::println);

 for(String name : names){
 wqueueProcessor.onNext(name);
 }
 wqueueProcessor.onComplete();
}

Lastly, a special kind of processor that caches data elements but can only9.
distribute them to strictly one subscriber is UnicastProcessor<T> which is
used in validateNamesUnicast(). This UnicastProcessor<T> is usually
used for events that require asynchronous queue-based fusion of Streams:

@Override
public void validateNamesUnicast(List<String> names) {
 UnicastProcessor<String> unicastProcessor =
 UnicastProcessor.create();
 Function<String,String> appendLic =
(name) -> name.concat(".112234");
 Function<String,String> appendKey =
(name) -> name.concat("-AEK2345J");
 Function<String,String> upperCase =
(name) -> name.toUpperCase();
 Flux<String> formatter1 =
unicastProcessor.filter((s) ->
 s.length() > 4).map(appendLic);
 // CANNOT RUN ANYMORE THE SUBSCRIBERS BELOW
 //Flux<String> formatter2 =
 // unicastProcessor.filter((s) ->

Reactive Programming

[343]

 // s.startsWith("J")).map(appendKey);
 //Flux<String> formatter3 =
 // unicastProcessor.filter((s) ->
 // s.endsWith("win")).map(upperCase);

 formatter1.subscribe(System.out::println);
 for(String name : names){
 unicastProcessor.onNext(name);
 }
 unicastProcessor.onComplete();
}

How it works...
Hot Streams are preferred in applications in which some of its features depend on data
resources that are not fixed and most of the time unknown. To avoid overflows and series
of exceptions and leaks, hot Streams are used for the recipients not to pull the data but just
to connect and listen to incoming Streams, if any, and observe the built-in backpressure and
concurrent loosely coupled event executions.

This recipe highlighted two ways to generate hot Streams and that is through
ConnectableFlux<T> and Processor<T>. The easiest way of converting a typical cold
Stream to a hot Stream is through the use of ConnectableFlux<T>. This flux creates a
continuous flow of Stream from a data repository or from a huge datasource wherein the
flow of execution has started even before any recipients connect to it. Since
ConnectableFlux<T> does not need subscribe() to execute it, the only way to observe
its Stream is to establish a connection. The recipient must explicitly call connect() and the
very reason why no subscription is needed is its behavior as both publisher and subscriber.
This Flux supports multiple subscriptions as seen in this recipe, freeFlowEmps() which
creates a hot Stream that implements a continuous flow of current Employee Stream
elements from the current snapshot of the database with two subscribers doing different
result Callback executions.

On the other hand, using Processor<T> is more robust, pre-packaged, and direct than the
former. It has a built-in asynchronous computing capability to execute Stream operations
and has back-pressure support. Some of these processors have a caching mechanism to
execute proper subscriptions. Just like ConnectableFlux<T>, a processor is both a
publisher and a subscriber and the only way to use the hot Stream they generate is to
connect() with them too.

Reactive Programming

[344]

Implementing Stream manipulation and
transformation
Now we have seen some recipes showing concepts such as basic implementation of
Reactive Stream interfaces and hot Stream generation, it is time to present a recipe that will
enumerate some useful Stream operators needed to combine two or more Streams, compute
single-valued result using reduction, provide gateways of data emissions, group together
single-threaded Streams, and transform them to non-Stream data.

Getting ready
Open project ch07 again to add the following services that showcase important operators
for Stream manipulations and transformations.

How to do it...
There are other Stream operations that can be useful when it comes to data transformation,
conversion, manipulation, and augmentation. To illustrate how to use these deterministic
operations, perform the following steps:

Let us create a service class EmployeeTransformDataStream that will be1.
applying these kind of Stream operations:

public interface EmployeeTransformDataStream {
 public Flux<String> mergeWithNames(List<String> others);
 public Flux<String> concatWithNames(List<String>
 others);
 public Flux<Tuple2<String,String>>
 zipWithNames(List<String> others);
 public Flux<String> flatMapWithNames(List<String>
 others);
 public Mono<Integer> countEmpRecReduce();
 public Flux<GroupedFlux<String, String>> groupNames();
 public Flux<String> chooseEmission(List<String> others);
 public String blockedStreamData();
 public Iterable<String> iterableData();
}

Reactive Programming

[345]

The first method to implement carries two Flux<T> that need to be combined2.
whenever the events of the first Flux<T> must be applied to it while the events of
the second applies to both of them. Add the following service implementation
with the use of the concatWith() operation:

@Service
public class EmployeeTransformDataStreamImpl
implements EmployeeTransformDataStream {
@Autowired
private EmployeeDao employeeDaoImpl;
@Override
public Flux<String> concatWithNames(List<String> others) {
 Function<Employee, String> names =
(emp) -> emp.getFirstName() + "---validated";
 Function<Employee, Mono<String>> flatMapName =
(emp) -> Mono.just(emp).map(names);
 Flux<String> concatNames =
 Flux.fromIterable(employeeDaoImpl.getEmployees())
 .flatMap(flatMapName)
 .concatWith(Flux.fromIterable(others))
 .map(String::toUpperCase)
 .distinct()
 .sort((s1, s2) -> s1.compareTo(s2));
 return concatNames;
}
}

To add transformation, the method concatWithNames() also includes3.
distinct() that allows no duplicate entries and sort() which uses
Comparator<T> interface.
Next, implement mergeWithNames() that uses mergeWith() to combine two4.
Flux<T> given that the operations are only applied to their respective Flux<T>
stream. The method combines the results of the last two events:

@Override
public Flux<String> mergeWithNames(List<String> others) {
 Function<Employee, String> names =
(emp) -> emp.getFirstName() + "---validated";
 Function<Employee, Mono<String>> flatMapName =
(emp) -> Mono.just(emp).map(names);
 Flux<String> mergedNames =
 Flux.fromIterable(employeeDaoImpl
.getEmployees())
 .flatMap(flatMapName)
 .mergeWith(Flux.fromIterable(others)
 .map(String::toUpperCase)

Reactive Programming

[346]

 .sort((s1, s2) -> s1.compareTo(s2)));
 return mergedNames;
}

The method zipWithNames() combines two Flux<T> and creates a5.
reactor.util.function.Tuple2. A tuple is a finite ordered list of two or
more values. In this method, we create a tuple of 2 using a zipWith() method:

@Override
public Flux<Tuple2<String,String>>
zipWithNames(List<String> others) {
 Function<Employee, String> names =
(emp) -> emp.getFirstName() + "---validated";
 Function<Employee, Mono<String>> flatMapName =
(emp) -> Mono.just(emp).map(names);
 Flux<Tuple2<String,String>> zipNames =
 Flux.fromIterable(employeeDaoImpl.getEmployees())
 .flatMap(flatMapName)
 .zipWith(Flux.fromIterable(others));
 return zipNames;
}

To retrieve the values from Tuple2, we have the following test6.
TestEmployeeTransformDataStream class as follows:

@RunWith(SpringJUnit4ClassRunner.class)
@WebAppConfiguration
@ContextConfiguration(classes = { SpringDbConfig
 .class, SpringDispatcherConfig.class })
public class TestEmployeeTransformDataStream {
 @Autowired
private EmployeeTransformDataStream
 employeeTransformDataStreamImpl;

@Test
public void testZipWith(){
 List<String> names = Arrays.asList("John", "Johnwin",
 "Jolina", "Owin");
 employeeTransformDataStreamImpl
.zipWithNames(names).subscribe((tuple) -> {
System.out.println(tuple.getT1() + "-" +
 tuple.getT2());
 });
}
}

Reactive Programming

[347]

Aside from tuples, another operation can transform the Stream of elements into7.
groups based on an input key. The flux generated by groupBy() is a flux of
GroupedFlux<T, T> which can contain a varying number of Stream elements
depending on what is common among them. The following method
groupNames() shows how to group together Streams based on their initial
character as key:

@Override
public Flux<GroupedFlux<String, String>> groupNames() {
 Function<Employee, String> names =
(emp) -> emp.getFirstName().toLowerCase();
 Flux<GroupedFlux<String, String>> grpsNames =
 Flux.fromIterable(employeeDaoImpl.getEmployees())
 .map(names)
 .groupBy(key -> key.charAt(0)+"");
 return grpsNames;
}

To test this method, add another test case to8.
TestEmployeeTransformDataStream that will show how to retrieve each
GroupedFlux<String, String> and will show their keys:

@Test
public void testGroupBy(){
 List<String> names =
Arrays.asList("John", "Johnwin", "Jolina", "Owin");
 employeeTransformDataStreamImpl.groupNames()
.subscribe((grp) ->{
 grp.collectList().subscribe((list)->{
 System.out.println("Key: " + grp.key() + " "
 + list);
 });
 });
}

The method countEmpRecReduce() computes the sum of all age data using the9.
reduce() method. The same method is used to compute other aggregate results
such as finding the minimum, maximum, and average values. This method
always converts the Stream result to the Mono<T> stream:

@Override
public Mono<Integer> countEmpRecReduce() {
 Function<Employee, Integer> ages =
(emp) -> emp.getAge();
 Function<Employee, Mono<Integer>> flatMapAge =
(emp) -> Mono.just(emp).map(ages);

Reactive Programming

[348]

 Mono<Integer> count =
 Flux.fromIterable(employeeDaoImpl.getEmployees())
 .flatMap(flatMapAge)
 .reduce((total, increment) -> total +
 increment);
 return count;
}

If the requirement asks for a conversion of Streams to Object or Iterable<T>,10.
operations such as block(), blockLast(), blockFirst(), and iterable()
methods are used. These are synchronous operations that are sometimes not used
because of their blocking capability. Following are two methods that convert
Streams to String and Iterable<String>:

@Override
public String blockedStreamData() {
 Function<Employee, String> names =
(emp) -> emp.getFirstName();
 String blockStringVal =
 Flux.fromIterable(employeeDaoImpl
.getEmployees())
 .map(names).blockFirst();
 return blockStringVal;
 }

 @Override
 public Iterable<String> iterableData() {
 Function<Employee, String> names =
(emp) -> emp.getFirstName();
 Iterable<String> namesIterate =
 Flux.fromIterable(employeeDaoImpl
.getEmployees())
 .map(names).toIterable();
 return namesIterate;
}

When implementing gateways of Streams wherein the first Stream to emit data11.
will be the final stream, firstEmitting() is used. The following recipe
determines which among the three Flux<T> will emit the first data Streams:

@Override
public Flux<String> chooseEmission(List<String> others) {
 Function<Employee, String> names =
(emp) -> emp.getFirstName();
 Flux<String> sideA = Flux.fromIterable(others)
 .delayElements(
Duration.ofMillis(200));

Reactive Programming

[349]

 Flux<String> sideB =
 Flux.fromIterable(employeeDaoImpl.getEmployees())
 .map(names)
 .delayElements(Duration.ofMillis(300));
 Flux<String> sideC = Flux.fromIterable(others)
 .take(2);
 Flux<String> chosen = Flux.firstEmitting(sideA,
sideB, sideC);
 return chosen;
}

Lastly, an operator widely used, especially in this chapter is flaptMap() which12.
is capable of running multiple Publisher<T> asynchronously processing
transactions and later merging them into an interleaved sequence of Stream data
results that can be subscribed in sequential or parallel mode. The following is a
method that will illustrate how flatMap() provides data transformation during
some computations with the help of repeat() and delayElements():

@Override
public Flux<String> flatMapWithNames(List<String> others) {
 Flux<String> flatMaps = Flux.fromIterable(others)
 .flatMap((str) ->{
return Mono.just(str).repeat(3)
.map(String::toUpperCase)
.delayElements(Duration.ofMillis(1));
 });
 return flatMaps;
}

How it works...
Once the original non-Stream data is converted into Streams, all of them undergo several
transformations and manipulations based on what operations are involved in the Reactive
event. Previous recipes have used map(), sort(), and filter() to change the nature of
the original stream. Now, this recipe has added some of the non-blocking and
asynchronous operations that do not only involve manipulation of one Stream but a group
of Streams.

Reactive Programming

[350]

The concatWith() method combines two sequences, one at a time, applying a set of
operations with different levels of augmentation. The simpler version of this is
concatMap() which merges all the sequences before applying any of the operations to
produce the final augmented stream. On the other hand, mergeWith() augments two
Streams with their respective operations already executed. Whereas, zipWith() creates
tuples of 2, up to 8 depending on the needs of the event. All of these operations flatten all
the Streams to arrive at only one Stream at the end. One of the popular generic flattening
operations is flatMap() which combines result Streams of more than one Publisher<T>
and creates one final stream.

There are some useful operations that are non-blocking, for instance blockFirst() and
blockLast() which extract the final or initial Stream data, respectively. Some blocking
operations like toIterable() create a collection of data ready for traversals, count()
which gives the amount of Stream data per emission, and single() which creates Mono<T>
from the final stream.

Just like the reduce() pipeline operator in Chapter 6, Functional Programming,
Publisher<T> supports reduce() in the execution of
java.util.function.BiFunction<T,T,T> for summation, average, standard deviation,
and variance of any numerical Stream elements. This aggregator is best paired with map()
in dealing with computing non-numerical data Streams.

Streams can also be emitted through chunks with the use of the groupBy() operator. This
operator is a best example of a transformer which groups together Stream data based on
common criteria called keys instead of passing them as individual elements.

And when it comes to choosing which Streams to emit first, the firstEmitting()
operator accepts more than one Stream and lets the fastest Stream emit first to its
subscribers. Depending on the backpressure applied and volume of data,
firstEmitting() does not guarantee that the first to emit will always be the fastest in all
circumstances.

Testing Reactive data transactions
Using the Spring Test framework, Reactive Stream events can be tested using
reactor.test.StepVerifier which contains all the expectations and verifications
needed to validate whether the output Stream data complies with the expected result or if
the event is not properly composed of the appropriate operators.

Reactive Programming

[351]

Getting ready
Open the same ch07 project and create a number of test cases depicting the use of
StepVerifier.

How to do it...
Aside from typical @Test execution, Reactive Stream has a dedicated API called
StepVerifier, which can be used to verify if its Stream emission is appropriate for a
certain requirement. Let us use the following steps to test Reactive Stream operations:

StepVerifier is part of the Reactor Core add-ons so add this dependency to1.
pom.xml:

<dependency>
 <groupId>io.projectreactor.addons</groupId>
 <artifactId>reactor-test</artifactId>
 <version>3.0.7.RELEASE</version>
 <scope>test</scope>
</dependency>

Create a test class TestEmployeUsingVerifier that creates a test case that2.
highlights StepVerifier in testing Publisher<T>, Mono<T> and Flux<T>
data emissions. StepVerifier can check if the operators involved are risky, can
simulate a subscription, can validate expected data values and compare them
with actual values, and can verify if Throwable are thrown during emissions:

@RunWith(SpringJUnit4ClassRunner.class)
@WebAppConfiguration
@ContextConfiguration(classes = { SpringDbConfig
 .class, SpringDispatcherConfig.class })
public class TestEmployeUsingVerifier {
 @Autowired
 private EmployeeStreamservice
 employeeStreamserviceImpl;
 @Autowired
 private EmployeeTransformDataStream
 employeeTransformDataStreamImpl;

@Autowired
 private EmployeeBatchStreamservice
 employeeBatchStreamserviceImpl;
 @Test
 public void testEmpNames(){

Reactive Programming

[352]

 StepVerifier
 .create(employeeStreamserviceImpl.getFirstNames())
.expectSubscription() .expectNext("Sherwin")
.expectNext("Owen") .thenCancel()
.log().verify();
}
}

If the Publisher<T> to be tested has unstable and non-periodic emissions due to3.
voluminous data sources and intermittent connections, a different
StepVerifier must be created which can wait until all considerable emissions
have been generated. The following is a test case that tests a risky Publisher<T>
and waits for 2 seconds before verifying the expected data:

@Test
public void testEmpNamesVirtual(){
 StepVerifier.withVirtualTime(
() -> employeeBatchStreamserviceImpl
.getTimedFirstNames())
 .expectSubscription()
 .thenAwait(Duration.ofSeconds(2))
 .expectNext("Rey")
 .expectNext("Sherwin")
 .thenCancel()
 .log().verify();
 }

Verifying the expected test data results can be written much more simply. Create4.
the test case in the following code snippet that verifies three names using only
one expectNext() invocation:

@Test
public void testOnComplete() {
 List<String> names = Arrays.asList("John", "Johnwin",
 "Jolina", "Owin");
 StepVerifier.create(employeeTransformDataStreamImpl
.concatWithNames(names))
 .expectNext("Johnwin", "Owin", "Riza")
 .expectComplete()
 .verify();
}

Reactive Programming

[353]

Lastly, we can use StepVerifier to test GroupedFlux<T,T> wherein the test5.
case must consider a list of names that will be verified as one group. The
following test case checks if a group contains ["jerry", "joel"] as a group:

@Test
public void testGroup() {
 StepVerifier
 .create(employeeTransformDataStreamImpl
.groupNames()
.blockFirst())
 .expectSubscription()
 .expectNext("joel")
 .expectNext("jerry")
 .expectComplete()
 .verify();
}

A blockFirst() method has been invoked to randomly test one group.

How it works...
Using StepVerifier is optional and it is categorized as an add-on to the Reactor Core 3.x
libraries. This class needs Publisher<T> to test in order to be created. There are two ways
to create StepVerifier: through its create() and withVirtualTime(). When testing stable
and predictable Streams with uniform and controlled backpressure, the create() method
is used. Whereas if testing unstable Streams with highly unpredictable emissions,
withVirtualTime() is used because it uses a scheduler and virtual time delay to wait for
the publisher to emit the necessary elements before the expectations and verifications.

After creating the object, there are methods to use to set expectations like
expectComplete(), expectError(), and expectSubscription(). To compare data
values to the incoming Streams, expectNext() is called with the data as its arguments. To
assume cancellation of subscription, at any point in the verification, thenCancel() can be
invoked.

Lastly, to verify all expectations are in compliance with the event, we call verify().
Usually at the end part the StepVerifier. AssertionError will be thrown if one
expectation fails; otherwise, all the formulae match the desired subscription result.

Reactive Programming

[354]

Implementing Reactive events using RxJava
2.x
There are other Reactive implementations that can still be used with Spring 5.x applications
and one is RxJava 2.x. Under Apache license, RxJava is now a widely used Reactive
programming port in many android applications. It has a huge number of APIs that can
implement extensive and highly-threaded operations with Reactive approach. Behind its
huge set of packages, RxJava follows the Reactive Stream specification.

Getting ready
Lastly, an additional service class will be added to ch07 through which a new approach
will be shown on how to create publishers and subscribers using the RxJava approach.

How to do it...
This last recipe will show us how Spring 5 can integrate with other Reactive Stream
implementation such as RxJava 2.0:

In order for our Spring 5 platform to work perfectly with RxJava, add the1.
following Maven dependencies to the pom.xml configuration:

<dependency>
<groupId>io.Reactivex.rxjava2</groupId>
<artifactId>rxjava</artifactId>
<version>2.1.0</version>
</dependency>

Create a service class EmployeeRxJavaService that contains the following2.
template methods summarizing all RxJava events:

public interface EmployeeRxJavaService {
 public Observable<Employee> getEmployeesRx();
 public Single<Employee> getEmployeeRx(int empid);
 public Flowable<String> getFirstNamesRx();
 public Flowable<String> getEmpNamesRx();
 public Flowable<String> getEmpNamesParallelRx();
 public Flowable<String> combinedStreamRx(List<String>
 others);
 public ConnectableObservable<String> freeFlowEmps();
}

Reactive Programming

[355]

The Publisher<T> interface in Reactor Core is equivalently Observable<T> in3.
RxJava. Similarly, Observable<T> sends data to its subscribers implementing
the concept of observer design pattern. Following is a service method
getEmployeesRx() that converts records of employees to a Stream of data using
Observable<T>:

@Service
public class EmployeeRxJavaServiceImpl
implements EmployeeRxJavaService {
 @Autowired
 private EmployeeDao employeeDaoImpl;

 @Override
 public Observable<Employee> getEmployeesRx() {
 Observable<Employee> publishedEmployees =
Observable.fromIterable(employeeDaoImpl.getEmployees());
 return publishedEmployees;
}
}

To subscribe with Observable<T>, we need to implement its own4.
io.reactivex.functions.Consumer<T> or override the callback of
Observer<T>. RxJava has its own set of functional interfaces and it does support
the Java 1.8 Stream APIs unlike Reactor Core. Following is a test class that
contains two ways to subscribe with observables:

@RunWith(SpringJUnit4ClassRunner.class)
@WebAppConfiguration
@ContextConfiguration(classes = { SpringDbConfig
 .class, SpringDispatcherConfig.class })
public class TestEmployeeRxJavaService {
 @Autowired
 private EmployeeRxJavaService employeeRxJavaServiceImpl;
 @Test
 public void testEmployeeData(){
 Observer<Employee> mySubscription =
new Observer<Employee>() {

 @Override
 public void onComplete() {
 System.out.println("subscription completed");
 }

 @Override
 public void onError(Throwable ex) {
 System.out.println("problems encountered"

Reactive Programming

[356]

+ ex.getMessage());
 }

 @Override
 public void onNext(Employee emp) {
 System.out.format("Employee: %s \n",
 emp.getEmpId());
 }

 @Override
 public void onSubscribe(Disposable arg0) {
 System.out.println("subscription started");
 }
 };
 employeeRxJavaServiceImpl.getEmployeesRx()
.subscribe(mySubscription);
 }
 @Test
 public void testEmployeeDataConsumer(){
 Consumer<Employee> consume = (emp) ->{
 System.out.println(emp.getFirstName());
 };
 employeeRxJavaServiceImpl.getEmployeesRx()
.subscribe(consume);
 }
}

To create a single-valued Stream which can contain at most one value,5.
Single<T> is used. It is not a subclass of Observable<T> but it behaves like a
Mono<T> publisher that can trigger onSuccess() or onError(). The following
is getEmployeeRx() that can emit an Employee record or an error by executing
a Callable task:

@Override
public Single<Employee> getEmployeeRx(int empid) {
 Callable<Employee> task =
() -> employeeDaoImpl.getEmployee(empid);
 Single<Employee> emp = Single.fromCallable(task);
 return emp;
}

Reactive Programming

[357]

If Reactor Core has Flux<T>, RxJava has Flowable<T> that supports6.
backpressure, transformation, grouping, multithreading, and concurrency
operations. The method getFirstNamesRx() converts records of Employees,
extracts their first names and converts all String Stream data to uppercase:

@Override
public Flowable<String> getFirstNamesRx() {
 Function<Employee, Publisher<String>> firstNames =
(emp) -> Mono.just(emp.getFirstName())
.map(String::toUpperCase);
Flowable<String> emps =
 Flowable.fromIterable(employeeDaoImpl.getEmployees())
 .flatMap(firstNames);
 return emps;
}

To create schedulers, RxJava uses io.reactivex.schedulers.Schedulers to7.
create different io.reactivex.Scheduler for the observables and observers.
To assign thread(s) for Observable<T> to process its operations, the method
subscribeOn() is invoked. These threads are where the subscriptions happen.
On the other hand, Observer<T> callbacks or Lambda expressions can be done
in threads assigned by observeOn():

@Override
public Flowable<String> getEmpNamesRx() {
 Scheduler observerWorker = Schedulers.single();
 Scheduler subscriberWorker = Schedulers.newThread();
 Function<Employee, String> names =
(emp) -> emp.getFirstName() + emp.getLastName();
 Flowable<String> emps = Flowable
.fromIterable(employeeDaoImpl.getEmployees())
 .map(names)
.observeOn(observerWorker)
.subscribeOn(subscriberWorker);
 return emps;
}

Reactive Programming

[358]

Parallelism can be designed in most of the RxJava events by creating a thread-8.
pool that will work in parallel mode. The generation of these threads is done by
invoking Schedulers.computation() which is shown in the following code
snippet:

@Override
public Flowable<String> getEmpNamesParallelRx() {
 Function<Employee, String> names = (emp) ->{
 System.out.println("flatMap thread: "
+ Thread.currentThread().getName());
return emp.getFirstName().charAt(0) +
 emp.getLastName();
 };
 Flowable<String> parallelEmpFlux =
Flowable.fromIterable(employeeDaoImpl
.getEmployees())
 .map(names)
 .subscribeOn(Schedulers.computation());
 return parallelEmpFlux;
}

Also, the RxJava has its own operations that will provide Stream transformation9.
and manipulations just like sorted() for sorting numeric and character-based
Stream elements and zipWith() to create tuples of Stream elements. Create the
folllowing method that utilizes the following two operators:

@Override
public Flowable<String> combinedStreamRx(List<String> others) {
 Function<Employee, String> names =
(emp) -> emp.getFirstName() + "---validated";
 Flowable<String> zipNames = Flowable
.fromIterable(employeeDaoImpl.getEmployees())
 .map(names)
 .sorted()
 .zipWith(others,(str1, str2) ->
String.format("%s. %s", str1, str2));
 return zipNames;
}

Reactive Programming

[359]

Just like Reactor Core, RxJava can also provide operations or events that can10.
generate hot Streams. These Streams are always flowing and the only way for its
subscribers to extract the Streams is through the connect() method. It can allow
several subscriptions which eventually connect to the hot Stream to start the
emission. Create the following method that generates
ConnectableObservable<T> from a cold Stream of Employee records:

@Override
public ConnectableObservable<String> freeFlowEmps() {
 List<String> rosterNames = new ArrayList<>();
 Function<Employee, String> familyNames =
(emp) -> emp.getLastName().toUpperCase();
 ConnectableObservable<String> flowyNames =
 Observable
.fromIterable(employeeDaoImpl.getEmployees())
.map(familyNames).cache()
.publish();
 flowyNames.subscribe(System.out::println);
 flowyNames.subscribe(rosterNames::add);
 return flowyNames;
}

Lastly, create a test method that will execute the preceding method:11.

@Test
public void testConnectFluxProcessor(){
employeeRxJavaServiceImpl.freeFlowEmps().connect();
}

How it works...
Unlike any other implementation, the RxJava 2.0 is one of the earliest favorites when it
comes to Reactive programming. Many supporting features and enhancements have been
added to its libraries and now it has several API classes and interfaces that can be used to
generate Reactive events.

The publishers are called Observable<T> which are Streams of elements listened to by
Observer<T> which are the subscribers in Reactor. There are four types of Observable<T>
and two are highlighted in the recipe namely Single<T> which is the same as Mono<T> in
concept and Flowable<T> which is similar to Flux<T>. The other two are Maybe<T> and
Completable<T> wherein the former emits an element, and error or void while the latter
only onComplete() or error without returning any element.

Reactive Programming

[360]

When it comes to asynchronous and threaded operations, it has its own version of sort(),
zipWith() and many others discussed in the previous recipes. Aside from similarities with
Reactor 3.x, there are also some differences when it comes to APIs such as creating
schedulers. In RxJava 2.x, there are five types that can be generated by
io.Reactivex.Scheduler and these are immediate(), newThread(), trampoline(),
computation(), and io(). To create a single-threaded executor, newThread() is invoked
while thread-pool for parallel processing is generated by calling computation(). Calling
trampoline() has a somewhat similar result to elastic() in Reactor 3.x wherein threads
are revived from the cache to be used for the next operation.

Another thing that makes RxJava different from Reactor 3.x is the absence of support for
Java-based functional interfaces and Streams. All Function<T>, Consumer<T>, and
Supplier<T> used in this recipe are APIs of its io.reactivex.functions and do not
belong to java.util.function of Java 1.8 and above. Whether it may or may not affect
Spring 5 applications, what is essential is that RxJava can be a strong option for Reactive
programming solutions in the Spring 5 framework.

8
Reactive Web Applications

Since Spring Framework 3.1, the ApplicationContext has been supporting scalable,
dynamic, real-time, and huge transactions through its non-blocking and asynchronous
request handlers. The previous concepts of functional and reactive programming will be
very helpful in realizing every recipe of this chapter, through which the progression of
Spring Framework's support on non-blocking and asynchronous MVC will be illustrated
piece-by piece, starting from the very start of asynchronous @Controller and services up
to this day on functional and reactive web support.

Certain areas of this chapter will provide proof that Spring 5 still supports the previous
foundation of asynchronous MVC configuration, including some of its new enhancements
on concurrency specified by Java 1.8 and above. Also, the chapter will cover some
supported view technology that can recognize the Reactor's Publisher<T> data stream.
Another inclusion is the integration of Spring Security to the platform and how it is applied
to threads created by TaskExecutor through the command of the DispatcherServlet.
Most importantly, the core part will cover the experimentation on how complete the
support of Apache Tomcat 9 and Spring 5 on Reactive Stream 1.x specification is, which is
the starting point of Spring WebFlux framework. This part of the discussion will need some
flashbacks to recipes with regard to the functional programming of Chapter 6, Functional
Programming and reactive programming using Reactor Core 3.0 and RxJava 2.x of Chapter
7, Reactive Programming.

In this chapter, you will learn the following:

Configuring the TaskExecutor
Implementing @Async services
Creating asynchronous controllers
Creating @Scheduled services
Using Future<T> and CallableFuture<T>

Reactive Web Applications

[362]

Using Mono<T> and Flux<T> publishers for services
Creating Mono<T> and Flux<T> HTTP response
Integrating RxJava 2.0
Using FreeMarker to render Publisher<T> stream
Using Thymeleaf to render Publisher<T> stream
Applying security on TaskExecutors

Configuring the TaskExecutor
It is appropriate to start this chapter with a recipe that will deal with the processing of huge
request transactions, slicing them into pieces to be assigned for thread pool synchronously
executions and managing their callbacks to arrive at a final response. In short, the recipe
below will enumerate on how to enable asynchronous Spring 5 MVC platform.

Getting started
Using the Eclipse STS from Chapter 1, Getting started with Spring, create a Maven Project
ch08 with a core package org.packt.web.reactive to start with.

How to do it...
Let us start this chapter with a new set up and configuration for the new ch08 project and
with the following steps:

Add in its pom.xml and all the needed Maven core libraries and dependencies1.
such as the Spring 5, Servlet 3.1, JSP 2.3.1, JSTL 1.2, MySQL Connector 5.1.x,
HikariCP 2.5.x, and Log4J 1.2.
Just like in the previous chapters, create similar empty classes, namely2.
SpringWebinitializer, SpringWebinitializer, SpringContextConfig,
and SpringDbConfig. Store them in their respective packages and configure
them according to what's been done previously.

Reactive Web Applications

[363]

To enable asynchronous request transactions with callbacks, the Spring 53.
platform must utilize at least Servlet 3.1 container since this version supports
multithreading in web applications. Open SpringWebinitializer and enable
<async-supported/> in a JavaConfig manner:

@EnableWebMvc
@ComponentScan(basePackages = "org.packt.reactive.codes")
@Configuration
public class SpringWebinitializer
implements WebApplicationInitializer {
 @Override
 public void onStartup(ServletContext container)
throws ServletException {
 addRootContext(container);
 addDispatcherContext(container);
 }

 // refer to sources
 private void addDispatcherContext(ServletContext
 container) {

 AnnotationConfigWebApplicationContext
 dispatcherContext =
 new AnnotationConfigWebApplicationContext();
 dispatcherContext.register(
SpringDispatcherConfig.class);
 ServletRegistration.Dynamic dispatcher =
 container.addServlet("ch08-servlet",
 new DispatcherServlet(dispatcherContext));
 dispatcher.addMapping("/");
 dispatcher.setLoadOnStartup(1);
 dispatcher.setAsyncSupported(true);
 }
}

The entire book officially uses Apache Tomcat 9, which generates its
threads from the thread pool.

Reactive Web Applications

[364]

Since we will be generating executor services that will generate threads later, we4.
need to configure server.xml to set the maximum and minimum number of
threads in the Tomcat container. Most importantly, there is a need to change our
Tomcat's Java connector to org.apache.coyote.http11.Http11NioProtocol
for optimal server performance and management of multiple threads during
context root execution:

<Connector port="8443"
 protocol="org.apache.coyote.http11.Http11NioProtocol"
 minProcessors="3"
 maxProcessors="10"
 maxThreads="1000" SSLEnabled="true">
 <UpgradeProtocol
 className="org.apache.coyote.http2.Http2Protocol" />
 <SSLHostConfig honorCipherOrder="false">
 <Certificate
 certificateKeyFile="conf/spring5packt.key"
 certificateFile="conf/spring5packt.crt"
 keyAlias="spring5server"
 type="RSA" />
 </SSLHostConfig>
</Connector>

Afterwards, configure the thread generation process for the application. Create5.
the context configuration below that implements
org.springframework.scheduling.annotation.AsyncConfigurer

responsible for injecting org.springframework.core.task.TaskExecutor
into the Spring container. The context definition must have a class level
annotation @EnableAsync to trigger asynchronous processing anywhere in the
platform:

import java.util.concurrent.Executor;
import java.util.concurrent.Executors;

@EnableAsync
@Configuration
@ComponentScan(basePackages = {"org.packt.web.reactor"})
public class SpringAsynchConfig implements AsyncConfigurer {
 /*
 @Override
 public Executor getAsyncExecutor() {
 ThreadPoolTaskExecutor executor = new
 ThreadPoolTaskExecutor();
 executor.setCorePoolSize(5);
 executor.setMaxPoolSize(9);
 executor.setQueueCapacity(50);

Reactive Web Applications

[365]

 executor.setThreadNamePrefix("Ch08Executor-");
 executor.setWaitForTasksToCompleteOnShutdown(true);
 executor.setKeepAliveSeconds(5000);
 executor.setAwaitTerminationSeconds(1000);
 executor.initialize();
 return executor;
 }
 */
/*
 @Override
 public Executor getAsyncExecutor () {
 SimpleAsyncTaskExecutor executor =
new SimpleAsyncTaskExecutor();
 executor.setConcurrencyLimit(100);
 return executor;
 }
 */
 @Override
 public Executor getAsyncExecutor () {
 ConcurrentTaskExecutor executor =
 new ConcurrentTaskExecutor(
 Executors.newFixedThreadPool(100));
 executor.setTaskDecorator(new TaskDecorator() {
 @Override
 public Runnable decorate (Runnable runnable) {
 return () -> {
 long t = System.currentTimeMillis();
 runnable.run();
 System.out.printf("Thread %s has a
 processing time:
%s%n", Thread.currentThread().getName(),
(System.currentTimeMillis() - t));
 };
 }
 });
 return executor;
 }
}

Preceding there are three executor types, but this recipe uses
ConcurrentTaskExecutor.

Reactive Web Applications

[366]

How it works...
Before reactive programming, asynchronous web features were already part of the previous
Spring core used in huge multiple transactions and batch processing. Up to this day, the
interface TaskExecutor is needed to generate threads for the MVC platform. It has several
implementation types, but the ones widely used are the SimpleAsyncTaskExecutor,
ThreadPoolTaskExecutor, and ConcurrentTaskExecutor.

SimpleAsyncTaskExecutor
The SimpleAsyncTaskExecutor has the least configuration properties since it does not
reuse any threads, but creates a new one once an execution happens. If the concurrency limit
has been reached, this executor blocks all requests and puts them in a queue until a slot is
available.

ThreadPoolTaskExecutor
The next executor, ThreadPoolTaskExecutor is quite the opposite, since it has several
properties to configure for thread management. This type has a scheduling management
support which depends on the properties exposed such as setKeepAliveSeconds(n),
setQueueCapacity(n), and setAwaitTerminationSeconds(n).

ConcurrentTaskExecutor
On the other hand, the ConcurrentTaskExecutor runs the same as the
ThreadPoolTaskExecutor but in a more flexible manner. It has a decorator which is
executed as a runnable task that can be utilized to add some monitoring and statistics for its
task execution.

There is only one TaskExecutor that can be injected into the container implemented by
AsyncConfigurer. This happens because we have only one method,
getAsyncExecutor(), to override in order to inject that sole TaskExecutor appropriate
for the applications.

This entire configuration will not be triggered without invoking the class-level
@EnableAsync in the custom SpringAsyncConfig context definition. In the case that
getAsyncExecutor() has not been overridden, it will inject SimpleAsyncTaskExecutor
by default.

Reactive Web Applications

[367]

Implementing @Async services
It's not only controllers that can be non-blocking in Spring 5; the service layer can too. Just
like its lower versions, Spring 5 also supports asynchronous services to implement
concurrent service transactions in the background. This recipe will highlight Callable<T>
and @Async Spring native services.

Getting started
Open the current Maven project ch08 and implement some methods that run
asynchronously.

How to do it...
Spring 5 offers asynchronous service layer that can be called by any asynchronous
controllers. Let us build these service layer using the following steps:

Before we start this recipe, the use of @Async requires a thorough and1.
appropriate configuration of any TaskExecutor type in SpringAsynchConfig
including some proxy-related configurations on @EnableAsync annotation.
Create a package org.packt.web.reactor.service and add2.
EmployeeService with some template methods:

public interface EmployeeService {
 public CompletableFuture<List<Employee>>
 readEmployees();
 public Callable<List<Employee>> readEmployeesCall();
 public Future<Employee> readEmployee(Integer empId);
 public void addEmployee(EmployeeForm emp);
 public void updateEmployee(EmployeeForm emp, int id) ;
public void delEmployee(Integer empId);
}

Reactive Web Applications

[368]

Any Spring 5 service can be converted to the asynchronous type just by having it3.
return a Callable<T> task. Usually, it is mandatory for synchronous services to
return Callable<T>, even when if it is created to be void by default. Create
EmployeeServiceImpl by implementing readEmployeesCall() which
retrieves a list of employees and wraps it with a Callable task:

@Service
public class EmployeeServiceImpl implements EmployeeService {
 @Autowired
 private EmployeeDao employeeDaoImpl;

@Override
 public Callable<List<Employee>> readEmployeesCall() {
 Callable< List<Employee> > task =
new Callable< List<Employee> >() {
 @Override
 public List<Employee> call () throws
 Exception {
System.out.println("controller:readEmployeesCall
task executor: " +
 Thread.currentThread().getName());
 Thread.sleep(6000);
 List<Employee> empList =
 employeeDaoImpl.getEmployees();
 return empList;
 }
 };
 return task;
 }
}

Another option for creating non-blocking services is to apply the @EnableAsync4.
feature in the Spring platform. With this annotation, the @Async can now be
attached to service methods with or without a return value, in order to run its
transaction asynchronously:

@Async
@Override
public CompletableFuture<List<Employee>> readEmployees() {
 Supplier<List<Employee>> supplyListEmp = ()->{
 System.out.println("service:readEmployees task
 executor: " + Thread.currentThread().getName());
 System.out.println("processing for 5000 ms");
 try {
 Thread.sleep(6000);
 } catch (InterruptedException e) {

Reactive Web Applications

[369]

 e.printStackTrace();
 }
 return employeeDaoImpl.getEmployees();
 };
 return CompletableFuture.supplyAsync(supplyListEmp);
}

@Async
@Override
public void addEmployee(EmployeeForm empForm) {
 Employee emp = new Employee();
 emp.setDeptId(empForm.getEmpId());
 emp.setFirstName(empForm.getFirstName());

 // refer to sources
 try {
 System.out.println("service:addEmployee task executor: " +
 Thread.currentThread().getName());
 System.out.println("processing for 1000 ms");
 Thread.sleep(1000);
 } catch (InterruptedException e) { }
 employeeDaoImpl.addEmployeeBySJI(emp);
}

@Async
public Future<Employee> readEmployee(Integer empId) {
 try {
 System.out.println("service:readEmployee(empid) task
executor: " +
 Thread.currentThread().getName());
 System.out.println("processing for 2000 ms");
 Thread.sleep(2000);
 } catch (InterruptedException e) { }
 return new AsyncResult<>(employeeDaoImpl.getEmployee(empId));
}

@Async
@Override
public void updateEmployee(EmployeeForm empForm, int id) {
 Employee emp = new Employee();
 emp.setDeptId(empForm.getEmpId());
 emp.setFirstName(empForm.getFirstName());

 // refer to sources
 try {
 System.out.println("service:updateEmployee task
 executor: " + thread.currentThread().getName());
 System.out.println("processing for 1000 ms");

Reactive Web Applications

[370]

 Thread.sleep(1000);
 } catch (InterruptedException e) { }
 employeeDaoImpl.updateEmployee(emp);
 }

@Async
@Override
public void delEmployee(Integer empId) {
 try {
 System.out.println("service:delEmployee task
 executor: " + Thread.currentThread().getName());
 System.out.println("processing for 1000 ms");
 Thread.sleep(1000);
 } catch (InterruptedException e) { }
 employeeDaoImpl.delEmployee(empId);
}

Combining @Async with Callable<T> will not work for Spring 5 service
implementation due to some proxy-related issues.

Now, create a full-blown form controller that will perform the adding of new5.
employees and retrieving the list of employees from the data source using the recently
implemented non-blocking methods:

@Controller
@RequestMapping(value="/react/empform.html")
public class EmployeeController {
 @Autowired
 private EmployeeService employeeServiceImpl;
 @Autowired
 private DepartmentService departmentServiceImpl;
 @InitBinder("employeeForm")
 public void initBinder(WebDataBinder binder){
 binder.registerCustomEditor(Integer.class, "age",
new AgeEditor());
 binder.registerCustomEditor(Date.class,
new DateEditor());
 }
 @RequestMapping(method=RequestMethod.GET)
 public String employeeForm(Model model){
 EmployeeForm employeeForm = new EmployeeForm();
 model.addAttribute("employeeForm", employeeForm);
 references(model);
 return "emp-form";
 }

Reactive Web Applications

[371]

 @RequestMapping(method=RequestMethod.POST)
 public String employeeList(Model model, @Validated
 @ModelAttribute("employeeForm") EmployeeForm
 employeeForm, BindingResult result){
 try {
employeeServiceImpl.addEmployee(employeeForm);
 List<Employee> empList = employeeServiceImpl
.readEmployees().get(5000, TimeUnit.SECONDS);
 model.addAttribute("empList", empList);
 } catch (InterruptedException e) { }
catch (ExecutionException e) { }
catch (TimeoutException e) { }
 return "emp-list";
 }
 private void references(Model model){
 List<Integer> deptIds = new ArrayList<>();
 List<Department> depts =
 departmentServiceImpl.readDepartments();
 Iterator<Department> iterate = depts.iterator();
 while(iterate.hasNext()){
 deptIds.add(iterate.next().getId());
 }
 model.addAttribute("deptIds", deptIds);
 }
}

For creating reports and updating and deleting records of employees, we have6.
this ReportController below that will showcase how to invoke @Async
methods with Thread.sleep(n). The following request handler accesses the
CompletableFuture<T> result from an asynchronous readDepartments() of
DepartmentService through a risky get() method:

@Controller
public class ReportController {
 @Autowired
 private DepartmentService departmentServiceImpl;
 @Autowired
 private EmployeeService employeeServiceImpl;
 @RequestMapping(value="/react/viewdepts.html",
 method=RequestMethod.GET)
 public String viewDepts(Model model){
 try {
 model.addAttribute("departments",
 departmentServiceImpl
.readDepartments().get(5000,
 TimeUnit.MILLISECONDS));
 } catch (InterruptedException e) { }

Reactive Web Applications

[372]

catch (ExecutionException e) { }
catch (TimeoutException e) { }
 return "dept-list";
 }

Another way of retrieving result from CompletableFuture<T> task is through7.
its non-risky join() method, which does not throw InterruptedException
when something wrong happens during the asynchronous process:

@RequestMapping(value="/react/viewemps.html",
method=RequestMethod.GET)
public String viewEmps(Model model){
 List<Employee> empList =
employeeServiceImpl.readEmployees().join();
 model.addAttribute("empList", empList);
 return "emp-list";
}

There are @Async methods that perform asynchronous with the help of8.
Thread.sleep() just to delay the process and to avoid thread-related Exception
like the following delEmployee() of EmployeeService:

@RequestMapping(value={"/react/delemp.html/{empId}"})
public String deleteRecord(Model model, @PathVariable("empId")
Integer empId){
 try {
 employeeServiceImpl.delEmployee(empId);
 Thread.sleep(1000);
 List<Employee> empList = employeeServiceImpl
 .readEmployees().get(5000, TimeUnit.SECONDS);
 model.addAttribute("empList", empList);
 } catch (InterruptedException e) { }
 catch (ExecutionException e) { }
 catch (TimeoutException e) { }
 return "emp-list";
}

One way of executing asynchronous services is to use the supplyAsync() static9.
method of CompletableFuture<T> that requires a Supplier<T> functional
interface, as shown by the following request handler:

@RequestMapping(value={"/react/updateemp.html/{id}"},
method=RequestMethod.POST)
public String updateRecordSubmit(Model
model,@PathVariable("id") Integer id, @Validated
@ModelAttribute("employeeForm")

Reactive Web Applications

[373]

EmployeeForm employeeForm, BindingResult result){

 Consumer<List<Employee>> processResult = (empList) ->{
 model.addAttribute("empList", empList);
 };
 Supplier<List<Employee>> asyncSupplier = () ->{
 try {
 employeeServiceImpl.updateEmployee(employeeForm, id);
 Thread.sleep(1000);
 return employeeServiceImpl.readEmployees().get(5000,
 TimeUnit.SECONDS);
 } catch (InterruptedException e) {
 e.printStackTrace();
 } catch (ExecutionException e) {
 e.printStackTrace();
 } catch (TimeoutException e) {
 e.printStackTrace();
 }
 return null;
 };
 CompletableFuture.supplyAsync(asyncSupplier)
 .thenAccept(processResult);
 return "emp-list";
}
private void references(Model model){
 List<Integer> deptIds = new ArrayList<>();
 List<Department> depts = departmentServiceImpl
 .readDepartments().getNow(new ArrayList<>());
 // refer to sources
 model.addAttribute("deptIds", deptIds);
}

Use the EmployeeDao implementation from Chapter 3, Implementing MVC10.
Design Pattern, on JDBC concepts.
Import the AgeEditor and DateEditor of the previous chapters.11.
Utilize the message bundles, view mappings and view pages from Chapter 3,12.
Implementing MVC Design Pattern.
Save all files. Then clean, build, and run transactions. Run each request13.
handler several times and observe /logs/tomcat9-stdout.xxxx-xx-xx.log:

service:readEmployees task executor: pool-3-thread-4
processing for 5000 ms
service:addEmployee task executor: pool-3-thread-3
processing for 1000 ms
Thread pool-3-thread-3 has a processing time: 1012
Thread pool-3-thread-4 has a processing time: 5003

Reactive Web Applications

[374]

service:delEmployee task executor: pool-3-thread-5
processing for 1000 ms
service:readEmployees task executor: pool-3-thread-6
processing for 5000 ms
Thread pool-3-thread-5 has a processing time: 1072
Thread pool-3-thread-6 has a processing time: 5002

How it works...
Building asynchronous services is recommended only for long transaction queues,
voluminous transactions, and remote processing that experiences intermittent server
communication. In the previous Spring versions, @Service methods that return
Callable<T> are automatically considered non-blocking. It can be invoked by the
anyRequest() handler - either synchronous or asynchronous - to execute its task. Another
option is to use the method-level annotation @Async which can be applied to services that
returns a value or void. Once DispatcherServlet encounters the @Async annotation, it
tells TaskExecutor to allot a separate thread for its own asynchronous execution. Any
controller or service that invokes the @Async method will not wait for its completion unless
managed by Thread.sleep() method. This annotation is strictly valid to public
methods, which should not be invoked within the class implementation per se. Exceptions
will be thrown if these restrictions are violated.

Aside from Callable<T>, this recipe includes some services that return Future<T> and
CompletableFuture<T> which are object containers required to be returned by
asynchronous services. These APIs will be expounded in the next recipe.

Creating asynchronous controllers
For enhanced performance and faster request handling, asynchronous controllers have been
present in any Spring instalments, to be used in cases where the service execution takes a
practically large amount of time or the DAO layer retrieves an unpredictable, uncertain,
erratic, and intermittent transmission of data from a certain data repository. Although rare,
complex, and complicated to manage, asynchronous controllers can indeed help cut the
time spent for bulk transactions compared to normal controller processing. With the use of
callbacks, these types of controllers can manage unsuccessful data retrieval, which is one
way of handling exceptions. Overall, given high-powered hardware resources and software
applications servers, asynchronous @Controller transactions can help alleviate the
unwanted acquisition of high-powered hardware specification.

Reactive Web Applications

[375]

Getting started
Open again ch08 and create and add the following @Controller that utilizes thread pool
generated by TaskExecutor.

How to do it...
Asynchronous results need APIs that will parse an entity or list of entities in order to
generate an XML or JSON data format. Let us implement @Controller that parses and
returns asynchronous response by following these steps:

To start with this recipe, add the following Jackson Streaming APIs for1.
converting HTTP response to JSON format. This is because some of the request
handlers will be publishing their data through @ResponseBody:

<dependency>
 <groupId>com.fasterxml.jackson.core</groupId>
 <artifactId>jackson-core</artifactId>
 <version>2.9.0.pr2</version>
</dependency>
<dependency>
 <groupId>com.fasterxml.jackson.core</groupId>
 <artifactId>jackson-databind</artifactId>
 <version>2.9.0.pr2</version>
</dependency>

Inside the package org.packt.web.reactor.controller, add the following2.
ServiceController with a request handler that returns a
java.util.concurrent.Callable data:

@Controller
public class ServiceController {
 @Autowired
 private EmployeeService employeeServiceImpl;
@RequestMapping(value="/web/{id}/employeeCall.json",
produces ="application/json",
method = RequestMethod.GET,
headers = {"Accept=text/xml, application/json"})
 @ResponseBody
public Callable<Employee>
 jsonSoloEmployeeCall(@PathVariable("id") Integer id){
 Callable<Employee> task = new Callable<Employee>() {
@Override
 public Employee call () throws Exception {

Reactive Web Applications

[376]

System.out.println("controller:jsonSoloEmployee
Call task executor: " +
 Thread.currentThread().getName());
 Thread.sleep(1000);
 Employee emp =
employeeServiceImpl.readEmployee(15).get();
 System.out.println(emp.getLastName());
 return emp;
 }
 };
 return task;
 }
}

Using the same @Controller, add another request handler that returns3.
org.springframework.web.context.request.async.WebAsyncTask

response data:

@RequestMapping(value="/web/employeeList.json",
produces ="application/json", method = RequestMethod.GET,
headers = {"Accept=text/xml, application/json"})
@ResponseBody
public WebAsyncTask<List<Employee>> jsonEmpList(){
 Callable<List<Employee>> callable =
new Callable<List<Employee>>() {

 public List<Employee> call() throws Exception {
 Thread.sleep(3000);
 System.out.println("jsonEmpList task
 executor: " +
 Thread.currentThread().getName());
 return employeeServiceImpl.readEmployees()
.get();
 }
 };
 return new WebAsyncTask<List<Employee>>(1000, callable);
}

Lastly, add another request handler, which returns a4.
org.springframework.web.context.request.async.DeferredResult

asynchronous response:

@RequestMapping(value="/web/{id}/employeDR.json",
produces ="application/json", method = RequestMethod.GET,
headers = {"Accept=text/xml, application/json"})
@ResponseBody
public DeferredResult<Employee>

Reactive Web Applications

[377]

 jsonSoloEmployeeDR(@PathVariable("id") Integer id) {
 DeferredResult<Employee> deferredResult =
new DeferredResult<>();
 deferredResult.onCompletion(() ->{
 try {
System.out.println("controller:jsonSoloEmployeeDR
task executor: " +
 Thread.currentThread().getName());
 Thread.sleep(1000);
 deferredResult.setResult(
employeeServiceImpl.readEmployee(id).get());
 } catch (InterruptedException e) { }
catch (ExecutionException e) { }
 });
 return deferredResult;
}

All these service handlers must run on a thread pool generated by the5.
ConcurrentTaskExecutor configured in the previous recipe.
Save all files. Then clean, build, deploy, and run the transactions. Run each6.
request handler several times and observe C:\logs\tomcat9-stdout.xxxx-
xx-xx.log. The following is the result of the log when jsonEmpNames() was
executed four times:

controller:jsonEmpNames task executor: MvcAsync1
controller:jsonEmpNames task executor: MvcAsync2
controller:jsonEmpNames task executor: MvcAsync3
controller:jsonEmpNames task executor: MvcAsync4

How it works...
The normal @Controller runs its request handler one thread at a time and uses only the
default main thread of the application server. If a handler processes an HTTP request for a
long period, the next transaction in the queue will be waiting for the main thread to be
released from its current load. To avoid this starvation, Spring 5 still supports handlers that
return WebAsyncTask<T>, Callable<T>, and DeferredResult<T>, which wrap a task
and its result altogether to be executed by any of the threads generated by TaskExecutor,
as authorized by DispatcherServlet.

Reactive Web Applications

[378]

If a request transaction returns a Callable<T>, Spring MVC coordinates with
TaskExecutor and instructs it to create a thread for processing the Callable transaction.
Then, the DispatcherServlet and all its Spring MVC components will exit to cater
another request from the client but will wait for the response from that spawned thread. As
more Callable tasks are processed by the @Controller, a number of threads will be
running concurrently in the background that will eventually exit after its completion. The
only problem with Callable<T> is the absence of callback methods that will synchronize
its own thread executions.

Although it exhibits similar behavior and purposes to Callable, DeferredResult<T>
contains callback methods that synchronize all running threads inside the task and
propagate all the results before its task ends. Likewise, it has methods that save its state in a
memory to be accessed by some threads during custom callbacks. If the requirement asks
for an asynchronous @Controller to wait for all its subordinate thread executions to finish
or to design a join() synchronization, it is recommended to wrap all its tasks in a
DeferredResult<T> object.

To wrap Callable transactions with time constraints, we create a request handler that
returns WebAsyncTask<T>. Once a controller returns a WebAsyncTask, the
DispatcherServlet communicates with WebAsyncManager to process the wrapped
Callable<T> given a timeout in milliseconds. Once the Callable task has been
performed with or without errors, WebAsyncManager will dispatch the response to the
Dispatcherservlet before it exits.

Relying on a synchronous @Controller when it comes to huge and slow request processes
will cause performance degradation because it will produce a long queue waiting for the
current request handler to complete its task, which means context switching from one
request to another becomes expensive to client and server components.

Creating @Scheduled services
Spring 5 still supports batch processes or service transactions whose executions are
triggered by time, just like any timer-based applications. The following recipe highlights the
creation of batched transactions that run inside the Spring MVC container.

Reactive Web Applications

[379]

Getting started
Open a project, ch08, and add the following time-driven @Service methods.

How to do it...
Scheduled services are usually used to implement batch processing that can run
simultaneously with the request handlers. To create these types of services, follow these
steps:

To enable schedule-based transactions, create a context definition1.
SpringScheduledConfig which implements
org.springframework.scheduling.annotation.SchedulingConfigurer.
Apply the class-level annotation @EnableScheduling and override the method
configureTasks() with the preferred configurations of
org.springframework.scheduling.concurrent.ThreadPoolTaskSchedul

er injected in it:

@Configuration
@EnableScheduling
public class SpringScheduledConfig
implements SchedulingConfigurer {
 @Bean()
 public ThreadPoolTaskScheduler taskScheduler() {
 ThreadPoolTaskScheduler scheduler =
new ThreadPoolTaskScheduler();
 scheduler.setPoolSize(100);
 scheduler.setThreadNamePrefix("Scheduler-");
 scheduler.setWaitForTasksToCompleteOnShutdown(true);
 scheduler.setRemoveOnCancelPolicy(true);
 return scheduler;
 }

 @Override
 public void configureTasks(ScheduledTaskRegistrar
 taskRegistrar) {
 taskRegistrar.setTaskScheduler(taskScheduler());
 }
}

Reactive Web Applications

[380]

Now, create a service class TimeService which contains the following template2.
methods:

public interface TimedService {
 public void batchFixedPeriod();
 public void batchCronPeriod();
 public void batchFixedDelay();
 public void batchInitialDelay();
}

Then, create an implementation class that will implement a time-triggered3.
process that runs every 2000 milliseconds everyday on a separate thread generated
by ThreadPoolTaskScheduler from its pool of threads:

@Service
public class TimedServiceImpl implements TimedService{
 @Scheduled(fixedRate=2000)
 @Override
 public void batchFixedPeriod() {
 System.out.println("scheduled#batchFixedPeriod: " +
 Thread.currentThread().getName());
}
}

Add another scheduled process that uses a cron expression which defines its4.
execution every five seconds daily:

@Scheduled(cron="*/5 * * * * ?")
@Override
public void batchCronPeriod() {
 System.out.println("scheduled#batchCronPeriod: " +
 Thread.currentThread().getName());
}

Create a @Scheduled process that runs for a fixed period of 5000 milliseconds, given5.
that at the start of the execution, it incurs an initial delay of 2000 milliseconds:

@Scheduled(fixedRate=5000, initialDelay=2000)
@Override
public void batchInitialDelay() {
 System.out.println("scheduled#batchFixedDelay: " +
 Thread.currentThread().getName());
}

Reactive Web Applications

[381]

Lastly, implement a batch process that executes every 5000 milliseconds with a delay6.
of 1000 millisecond every after completion per execution:

@Scheduled(fixedDelay=1000)
@Override
public void batchFixedDelay() {
 System.out.println("scheduled#batchFixedDelay: " +
 Thread.currentThread().getName());
}

How it works...
Time-triggered or @Scheduled service transactions in Spring 5 are required to return void
with no parameters. This recipe highlighted some transactions that run periodically using
asynchronous threads configured through the annotation property fixedRate. On the
other hand, the service batchFixedDelay() runs asynchronously with a fixed delay of
1000 milliseconds defined by the property fixedDelay.

With regard to delay features, some batch processes can be configured to execute after a
fixed period of time with some initial delays determined by the initialDelay property, as
depicted in batchInitialDelay() implementation.

But the most detailed, flexible, and manageable way of implementing @Scheduled native
services is through the cron configuration wherein a cron expression is used to schedule
the transaction. Depending on the requirement, the cron can be easily be adjusted
whenever changes happen.

The asynchronous behavior of these scheduled events is attributed to the TaskScheduler
which manages and delegates threads to every @Scheduled service. It is also responsible
for causing all the triggers defined in the @Scheduled to materialize. This TaskScheduler
must be injected into the SchedulingConfigurer through the overridden method
configureTasks().

Using Future<T> and CallableFuture<T>
When it comes to propagating the result of an asynchronous service transaction, there are
two popular APIs that are responsible for wrapping both the task and its result, namely
Future<T> and CallableFuture<T>. These APIs can manage any asynchronous
executions with or without a successful completion. This recipe will demonstrate the usage
of these two containers and will also compare and contrast the two APIs.

Reactive Web Applications

[382]

Getting started
Open ch08 again and add the following @Service methods that return Future<T> and
CallableFuture<T> task containers.

How to do it...
Another way of creating asynchronous services is using Future<T> and
CallableFuture<T> as return values. Let us create these asynchronous APIs in our
services by following these steps:

Open the EmployeeServiceImpl implementation class. Study the service1.
methods readEmployees() and readEmployee(id). The readEmployees()
passes the whole employee record retrieval transaction to the @Controller in a
CompletableFuture<Employee> form. On the other side, the
readEmployee(id) passes the whole result as a Future<Employee> object.
Add another service class, namely DepartmentService, with the following2.
templates:

public interface DepartmentService {

 public CompletableFuture<List<Department>>
 readDepartments();
 public void addDepartment(DepartmentForm dept);
 public void removeDepartment(Integer deptId);
 public void updateDepartment(DepartmentForm dept,
 Integer id);
 public Callable<Department> getDeptId(Integer id);

}

Implement the non-blocking and asynchronous methods of DepartmentService3.
above, prioritizing on the use of CompletableFuture<T> and Future<T> as
returned objects:

@Service
public class DepartmentServiceImpl implements DepartmentService
{
 @Autowired
 private DepartmentDao departmentDaoImpl;

 @Override
 public CompletableFuture<List<Department>>

Reactive Web Applications

[383]

 readDepartments() {
 try {
 Thread.sleep(5000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 return CompletableFuture.completedFuture(
departmentDaoImpl.getDepartments());
 }

 @Async
 @Override
 public void addDepartment(DepartmentForm dept) {
 Department deptData = new Department();
 deptData.setDeptId(dept.getDeptId());
 deptData.setName(dept.getName());
 departmentDaoImpl.addDepartmentByJT(deptData);
 }
 @Async
 @Override
 public void removeDepartment(Integer deptId) {
 departmentDaoImpl.delDepartment(deptId);
 }

 @Async
 @Override
 public void updateDepartment(DepartmentForm dept,
 Integer id) {
 Department deptData = new Department();
 deptData.setDeptId(dept.getDeptId());
 deptData.setName(dept.getName());
 deptData.setId(id);
 departmentDaoImpl.updateDepartment(deptData);
 }

 @Override
 public Callable<Department> getDeptId(Integer id) {
 Callable<Department> task = new
 Callable<Department>() {

 @Override
 public Department call () throws Exception {
 System.out.println("controller:readEmployeesCall
task executor: " +
 Thread.currentThread().getName());
 Thread.sleep(5000);
 Department dept =
 departmentDaoImpl.getDepartmentData(id);

Reactive Web Applications

[384]

 return dept;
 }
 };
 return task;
 }
}

For the EmployeeService method invocation, study EmployeeController4.
request handlers on how to retrieve the list of Employees from the
CompletableFuture<Employee>.
For the DepartmentService method invocation, create the following5.
DepartmentController that will illustrate how to retrieve asynchronous results
from the DepartmentService services. The following POST request transaction
saves a Department record within 5000 milliseconds

@Controller
public class DepartmentController {
 @Autowired
 private DepartmentService departmentServiceImpl;

 // refer to sources
 @RequestMapping(value="/react/deptform.html",
 method=RequestMethod.POST)
 public String submitForm(Model model,
 @ModelAttribute("departmentForm")
DepartmentForm departmentForm){
 try {
 Thread.sleep(5000);
 departmentServiceImpl.addDepartment(
departmentForm);
 model.addAttribute("departments",
 departmentServiceImpl.readDepartments()
.get(5000, TimeUnit.MILLISECONDS));
 } catch (InterruptedException e) { }
catch (ExecutionException e) { }
catch (TimeoutException e) { }
 return "dept-list";
 }

The GET request below performs record data retrieval but returns an empty6.
Department record once a Throwable happens during the process:

@RequestMapping(value={"/react/deldept.html/{deptId}"})
public String deleteRecord(Model model, @PathVariable("deptId")
Integer deptId){
 try {

Reactive Web Applications

[385]

 Thread.sleep(5000);
 } catch (InterruptedException e) { }
 departmentServiceImpl.removeDepartment(deptId);
 model.addAttribute("departments",
 departmentServiceImpl.readDepartments().getNow(new
ArrayList<>()));
 return "dept-list";
}

The following method is another way of processing Future<T> value using a7.
separate thread pool. It allots a thread to an asynchronous method getDeptId()
and requires a while loop to wait for the process to finish. When the transaction
finishes without any Throwable, the record is retrieved through the get()
method of Future<T>. Otherwise, custom recovery can be done.

@RequestMapping(value={"/react/updatedept.html/{id}"})
public String updateRecord(Model model, @PathVariable("id")
Integer id){
 ExecutorService threads = Executors.newFixedThreadPool(5);
 Future<Department> deptfuture =
 threads.submit(departmentServiceImpl.getDeptId(id));
 Department dept = null;
 while (!deptfuture.isDone()) {
 System.out.println("Thread is still busy
 processing....");
 try {
 Thread.sleep(1);
 } catch (InterruptedException e) { }
 }

 try {
 dept = deptfuture.get();
 } catch (InterruptedException e) { }
 catch (ExecutionException e) { }
 DepartmentForm departmentForm = new DepartmentForm();
 departmentForm.setDeptId(dept.getDeptId());
 departmentForm.setName(dept.getName());
 model.addAttribute("departmentForm", departmentForm);
 return "dept-form";
}

Save all files. Then clean, build, and run the application. Check the Tomcat log8.
file for the thread execution trails.

Reactive Web Applications

[386]

How it works...
This recipe focuses on asynchronous tasks that output a certain object such as an Employee,
Department, ArrayList<Employee>, or ArrayList<Department>. Between the two, the
Future<T> has been exposing methods to their invokers since Java 1.5 introduced concepts
of concurrency. It has been used in wrapping tasks and its results whenever asynchronous
methods returns any objects to their caller. Its implementation handler object called
AsyncResult<T> is the one involved in wrapping beans, collections, or arrays of objects.

Since these objects are for non-blocking transactions, the AsyncResult<T> can be
monitored and managed using the utility methods of Future<T>, namely the
isCancelled(), isDone(), and get(). Since there are chances that the result will be
void, we need to create a while loop to check if the task running inside AsyncResult<T>
is still on process. Once isDone() returns true, we can retrieve the result through the
get() method. Also, the isCancelled() can be called to monitor if the task has been
cancelled by an internal background process. Study updateRecord() for the snippet on
how to use these methods.

Whenever we have asynchronous services that return Callable<T>, the
java.util.concurrent.Executors can help manage and execute the Callable<T> to
extract Future<T>. In updateRecord() of DepartmentController, the non-blocking
departmentServiceImpl.getDeptId(id) returns a Callable<Employee> for
processing. To capture the result, the @Controller has to generate a new thread pool
through Executor. In order to execute the Callable<Employee> task, the thread pool will
execute the task at the background using its submit(), method which will eventually
extract the Future<Employee>. Using all the Future<Employee> methods, the Employee
object can be extracted successfully.

The real problem with using Future<T> as container object for tasks is the lack of callback
implementation. Aside from Thread.sleep(), it lacks the synchronization technique to
establish a well-managed sequence of cooperating or competing threads.

Reactive Web Applications

[387]

Thus, Java 1.8 and above has created an implementation of Future, the
CompletableFuture<T>, that provides callbacks and extended features on asynchronous
executions of tasks using its then methods with exception handling. Its utility methods
support both blocking and non-blocking task executions. And most of all,
CompletatableFuture<T> recognizes @FunctionalInterface and lambda expressions. In
readEmployees() of EmployeeService, a Supplier<List<Employee>> has been
generated to be executed by CompletableFuture< List<Employee>> in a common
ForkJoinPool through its supplyAsync() method. This method also returns
CompletableFuture<T> to the invoker. Another way of passing this container to the
invoker is through its utility static method, CompletableFuture.completedFuture().

Although this recipe focused much on its blocking get() overloads,
CompletableFuture<T> offers other asynchronous ways of retrieving its result such as
thenAccept() which accepts a Consumer<T> to process the result. An example is
updateRecordSubmit() request handler of ReportController.

Using Mono<T> and Flux<T> publishers for
services
Although Spring Functional and Reactive Framework will be discussed thoroughly in the
next chapter, this recipe will provide evidence that Spring 5 MVC has a full support on
Reactor Core 3.x's Mono<T> and Flux<T> stream operations. This recipe will ex how to start
and build Spring WebFlux applications from the ground up using the Spring 5 platform.

Getting started
Open project ch08 again and add some @Service non-blocking methods that retrieve
employee data from a data source using Flux<T> and Mono<T>, manipulate them, apply
backpressure to stream operations, and utilize multithreading through Reactor's Scheduler.

Reactive Web Applications

[388]

How to do it...
In the previous chapters, we have provided details about Mono<T> and Flux<T> streams
and how they behave when executed using test methods. This time, let us apply the
following streams in our asynchronous and reactive services by following these steps:

Before we start, add the Maven dependencies of Reactor Stream 1.0 and Reactor1.
Core 3.x in pom.xml. These libraries are also added in the previous chapter.
Add the following template methods on our existing EmployeeService of the2.
previous recipe:

public interface EmployeeService {
 // refer to sources
 public Flux<Employee> readEmployeesFlux(int age);
 public Flux<Employee> readEmployeesByDescAge();
 public Flux<Employee> readEmployeesByAscLastName();
 public Flux<String> readEmpFirstNames();
 public Mono<Double> getAveAge();
}

Then, add the following implementation of asynchronous methods in its existing3.
EmployeeServiceImpl using Flux<T> and Mono<T> stream operations that
utilize only one thread for both publisher and subscriber operations. Add the
following readEmpFirstNames() implementation that uses flatMap() to
extract the first names of all employees and sort() them ascendingly using
Comparator:

@Service
public class EmployeeServiceImpl implements EmployeeService {
// refer to sources

 @Override
 public Flux<String> readEmpFirstNames() {
 Function<Employee, Mono<String>> mapProcess =
(emp) -> Mono.just(emp).map((e)->{
 System.out.println("flux:map task executor: " +
 Thread.currentThread().getName());
 return e.getFirstName().toUpperCase();
 });
 Comparator<String> strComp = (s1, s2) ->{
 System.out.println("flux:sort task executor: " +
 Thread.currentThread().getName());
 return s1.compareTo(s2);
 };
 Flux<String> names =

Reactive Web Applications

[389]

 Flux.fromIterable(employeeDaoImpl
.getEmployees()).flatMap(mapProcess)
 .sort(strComp);
 return names;
 }
}

Add the following service implementation that uses two separate threads for4.
publisher and subscriber operations:

@Override
public Flux<Employee> readEmployeesFlux(int age) {
 Scheduler subWorker = Schedulers.newSingle("sub-thread");
 Scheduler pubWorker = Schedulers.newSingle("pub-thread");
 Predicate<Employee> validAge = (e) -> {
 System.out.println("flux:filter task executor: " +
 Thread.currentThread().getName());
 return e.getAge() > age;
 };
 Supplier<Flux<Employee>> deferredTask = ()->{
 System.out.println("flux:defer task executor: " +
 Thread.currentThread().getName());
 return Flux.fromIterable(employeeDaoImpl.getEmployees());
 };
 Flux<Employee> deferred = Flux.defer(deferredTask)
 .filter(validAge)
 .subscribeOn(subWorker)
 .publishOn(pubWorker);
 return deferred;
}

@Override
public Flux<Employee> readEmployeesByDescAge() {
 Scheduler subWorker = Schedulers.newSingle("sub-thread");
 Scheduler pubWorker = Schedulers.newSingle("pub-thread");
 Supplier<Flux<Employee>> deferredTask = ()->{
 System.out.println("flux:defer task executor: "+
 Thread.currentThread().getName());
 return Flux.fromIterable(employeeDaoImpl.getEmployees());
 };
 Comparator<Employee> descAge = (e1, e2) -> {
 System.out.println("flux:sort task executor: " +
 Thread.currentThread().getName());
 if(e1.getAge().compareTo(e2.getAge()) == 0){
 return 0;
 } else if(e1.getAge().compareTo(e2.getAge()) > 0){
 return -1;
 } else return 1;

Reactive Web Applications

[390]

 };
 Flux<Employee> deferred = Flux.defer(deferredTask)
 .sort(descAge)
 .subscribeOn(subWorker)
 .publishOn(pubWorker);
 return deferred;
}

Lastly, add the following service methods that returns Mono<T> streams and uses5.
some of the generic functional interfaces such as ToIntFunction<T> in
implementing stream operations:

@Override
public Mono<Double> getAveAge() {
 ToIntFunction<Employee> sizeEmpArr = (e) -> {
 System.out.println("flux:toIntFunction task
 executor: " + Thread.currentThread().getName());
 return e.getAge();
 };
 Callable<Double> task = () ->{
 System.out.println("flux:callable task executor: " +
 Thread.currentThread().getName());
 return employeeDaoImpl.getEmployees().stream()
 .mapToInt(sizeEmpArr).average().getAsDouble();
 };

 Mono<Double> aveAge= Mono.fromCallable(task);
 return aveAge;
}

The use of @Async , Callable<T> and other related APIs are not
recommended on these types of services due to some proxy-related issues.

Save all files. Create a test class to test each service above.6.

Reactive Web Applications

[391]

How it works...
The Spring WebFlux is a new paradigm offered by Spring 5 to implement reactive and
asynchronous web applications. It has a wide support on service, controllers, and web
services using Reactor Core 3.0. This recipe provides means on how to apply
Publisher<T> and Subscriber<T> core operations in building the service layers of
Spring framework. Reactive service methods will throw an Exception when applied
@Async because they are already composed of asynchronous and deterministic operators.
The full-blown Spring Reactive and Functional Web Framework will be discussed in the
next chapter.

Creating Mono<T> and Flux<T> HTTP
response
The Spring WebFlux paradigm will not be complete without the @Controller returning
Mono<T> and Flux<T> stream data.

Getting started
Add in project ch08 a set of request handlers that returns on the client Mono<T> and
Flux<T> through @ResponseBody annotation.

How to do it...
After using Reactor Core specification to build the service layer, let us apply Mono<T> and
Flux<T> streams to @Controllers by doing these steps:

Open the ServiceController of the previous recipe again and add the1.
following request handler showcasing the use of Reactor Stream operations:

@RequestMapping(value="/web/employeeNames.json",
produces ="application/json",
method = RequestMethod.GET,
headers = {"Accept=text/xml, application/json"})
@ResponseBody
public Callable<List<String>> jsonEmpNames(){
 Callable<List<String>> task =
new Callable<List<String>>() {

Reactive Web Applications

[392]

 @Override
 public List<String> call () throws Exception {
 List<String> names = new ArrayList<>();
 System.out.println("controller:jsonEmpNames
 task executor: " +
Thread.currentThread().getName());
 Thread.sleep(5000);
 employeeServiceImpl.readEmpFirstNames()
 .subscribe((str)->{
 names.add(str);
 });
 return names;
 }
 };
 return task;
 }
 @RequestMapping(value="/web/employeeFlux.json",
produces ="application/json",
method = RequestMethod.GET,
headers = {"Accept=text/xml, application/json"})
 @ResponseBody
 public Flux<Employee> jsonSoloEmployeeFlux(){
 return employeeServiceImpl.readEmployeesFlux(15);
 }
 @RequestMapping(value="/web/empLastnameFlux.json",
produces ="application/json",
method = RequestMethod.GET,
headers = {"Accept=text/xml, application/json"})
 @ResponseBody
 public Flux<Employee> jsonEmpLastNameFlux(){
 return
 employeeServiceImpl.readEmployeesByAscLastName();
 }
 @RequestMapping(value="/web/empAgeFlux.json",
produces ="application/json",
method = RequestMethod.GET,
headers = {"Accept=text/xml, application/json"})
 @ResponseBody
 public Flux<Employee> jsonEmpAgeFlux(){
 return employeeServiceImpl.readEmployeesByDescAge();
}

Save all files. The clean, build, and deploy. Run and test the request URLs in a2.
browser.

Reactive Web Applications

[393]

How it works...
Since both Tomcat 9 and Spring 5 support asynchronous thread execution, request handlers
can now return Mono<T> and Flux<T> data streams and receive automatic subscription
with the client through the DispatcherServlet of Spring 5 platform. Conventionally, the
@Controller can still programmatically execute the Flux<T> or Mono<T> cold stream
through supplying the appropriate Supplier<T> to the stream's subscribe() method
and wrapping the task and result in a Callable<T> for publishing. However, since Spring
5 understands full-blown reactive programming using Reactor Core, cold stream as well as
hot stream can be published directly to the client. Thus, it can be concluded that the Spring
5 context fully understands reactive and functional programming.

Integrating RxJava 2.0
From our conclusion that Spring 5 understands the full language of reactive programming,
this recipe will show us that this Spring version does not only supports its built-in Reactor
Core extension but can also extend its translation to RxJava 2.x.

Getting started
Add the following service methods and @Controller request handlers to ch08 which will
also highlight RxJava 2.x stream transactions.

How to do it...
Aside from Reactor Core, Spring 5 can work with other reactive libraries, just like the
popular RxJava 2.0. Follow these steps to guide on how to integrate RxJava 2.0 with Spring
5:

Before we start, add the Maven dependencies of RxJava 2.x to pom.xml. This set1.
of libraries has been used in the previous chapter.

Reactive Web Applications

[394]

Open the DepartmentService class and add the following template methods2.
that will soon be implemented as non-blocking transactions:

public interface DepartmentService {
 // refer to sources
 public Observable<Department> getDeptsRx();
 public Single<Department> getDeptRx(int id);
 public Flowable<String> getDepttNamesRx();
}

Implement these template methods in DepartmentServiceImpl using RxJava3.
2.x stream APIs:

@Override
 public Observable<Department> getDeptsRx() {
 Observable<Department> depts=
 Observable.fromIterable(
departmentDaoImpl.getDepartments());
 return depts;
 }

 @Override
 public Single<Department> getDeptRx(int id) {
 Callable<Department> task =
() -> departmentDaoImpl.getDepartmentData(id);
 Single<Department> dept = Single.fromCallable(task);
 return dept;
 }

 @Override
 public Flowable<String> getDepttNamesRx() {
 Function<Department, Publisher<String>> firstNames =
(emp) -> Mono.just(emp.getName())
.map(String::toUpperCase);
 Flowable<String> emps =
 Flowable.fromIterable(departmentDaoImpl
.getDepartments()).flatMap(firstNames);
 return emps;
}

The use of @Async , Callable<T> and other related APIs are not
recommended on these types of services due to some proxy-related issues.

Reactive Web Applications

[395]

To expose these non-blocking transactions, open again ServiceControllers4.
and add the following request handlers that will invoke the newly implemented
RxJava 2.x streams:

@RequestMapping(value="/web/{id}/deptSingle.json",
produces ="application/json",
method = RequestMethod.GET,
headers = {"Accept=text/xml, application/json"})
@ResponseBody
public Single<Department> jsonSoloDeptSingle(
@PathVariable("id") Integer id){
 return departmentServiceImpl.getDeptRx(id) ;
}
@RequestMapping(value="/web/deptList.json",
produces ="application/json",
method = RequestMethod.GET,
headers = {"Accept=text/xml, application/json"})
@ResponseBody
public Observable<Department> jsonSoloDeptList(){
 return departmentServiceImpl.getDeptsRx() ;
}
@RequestMapping(value="/web/deptNames.json",
produces ="application/json",
method = RequestMethod.GET,
headers = {"Accept=text/xml, application/json"})
@ResponseBody
public Flowable<String> jsonDeptNames(){
 return departmentServiceImpl.getDepttNamesRx() ;
}

Save all files. Then clean, build, and deploy this project. Run all the URLs in a5.
browser.

How it works...
This recipe has just proven that, as long as the reactive paradigm follows the Reactive
Stream 1.x specification, Spring 5 is capable of executing the reactive syntax of any reactive
plugin or libraries other than Reactor Core 3.x. Using Observable<T>, Single<T>, and
Flowable<T>, the services, as well as the @Controller request handler has successfully
published all the results using an automatic subscription done by DispatcherServlet.

Reactive Web Applications

[396]

Using FreeMarker to render Publisher<T>
stream
FreeMarker is one of the view technologies that have extended support for Spring 5. The
following recipe will illustrate how FreeMarker templates can publish Mono<T> and
Flux<T> stream data using the Spring Reactive module.

Getting started
Add the following viewResolver and view configuration in ch08 to compile and run
FreeMarker templates.

How to do it...
Spring 5's reactive module supports FreeMarker components to provide templates to
reactive contents. Let us implement FreeMarker templating using the Spring Reactive
module:

Add the newest Maven dependencies of FreeMarker in pom.xml:1.

<dependency>
 <groupId>org.freemarker</groupId>
 <artifactId>freemarker</artifactId>
 <version>2.3.26-incubating</version>
</dependency>

To add the reactive components to the application, include the following Maven2.
dependency that implements the Reactor Core implementation of the Reactive
Streams specification:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-web-reactive</artifactId>
 <version>${spring.version}</version>
</dependency>

Reactive Web Applications

[397]

To avoid conflicts with other non-reactive web configurations, create a root3.
context definition SpringWebReactiveConfig that implements
org.springframework.web.reactive.config.WebReactiveConfigurer.
This definition will inject all reactive view engines and resolvers needed to render
Publisher<T> streams:

@EnableWebMvc
@ComponentScan(basePackages="org.packt.web.reactor")
@PropertySource("classpath:config/jdbc.properties")
@Configuration
public class SpringWebReactiveConfig
implements WebReactiveConfigurer { }

Inject the following FreeMarker bean configuration in the4.
SpringWebReactiveConfig context definition. Set the FreeMarker template
location in \WEB-INF\templates:

@Bean(name = "viewResolverFTL")
 public FreeMarkerViewResolver getViewResolverFtl() {
 FreeMarkerViewResolver viewResolver =
new FreeMarkerViewResolver();
 viewResolver.setPrefix("");
 viewResolver.setSuffix(".ftl");
 viewResolver.setOrder(1);
 return viewResolver;
 }
 @Bean(name = "freemarkerConfig")
 public FreeMarkerConfigurer getFreemarkerConfig() {
 FreeMarkerConfigurer config =
new FreeMarkerConfigurer();
 config.setTemplateLoaderPath("/WEB-INF/templates/");
 return config;
}

Create a RenderController that will publish a list of employees in an FTL5.
template.

@Controller
public class RenderController {
 @Autowired
 private EmployeeService employeeServiceImpl;
 @RequestMapping(value="/ftl/empList.html",
 method=RequestMethod.GET)
 public String usersFtl(Model model){
 model.addAttribute("employees",
employeeServiceImpl.readEmployeesByDescAge()

Reactive Web Applications

[398]

.collectList().block());
 return "ftl_list_emps";
 }
}

Inside the path \WEB-INF\templates, create an FTL template6.
ftl_list_emps.ftl that will serve as the physical view:

<!DOCTYPE html>
<html>
<head>
 <title>Ch08 FreeMarker Reactive View</title>
 </head>
 <body>
 <table>
 <thead>
 <tr>
 <th>Employee ID</th>
 <th>First Name</th>
 <th>Last Name</th>
 <th>Age</th>
 </tr>
 </thead>
 <tbody>
 <#list employees as e>
 <tr>
 <td>${e.empId?html}</td>
 <td>${e.firstName?html}</td>
 <td>${e.lastName?html}</td>
 <td>${e.age?html}</td>
 </tr>
 </#list>
 </tbody>
 </table>
 </body>
</html>

Save all files. Then, clean, build, and deploy. Run the URL on the browser and7.
expect the following result:

Reactive Web Applications

[399]

How it works...
This is the first time that the Spring Reactive module has been introduced in a recipe.
Although Flux<T> and Mono<T> stream data can be recognized implicitly using the
Reactor Core 3.0 APIs, there are several reactive components that Spring 5 can offer which
are found in this module. From Spring 5 technical documentation, this module provide
supports for FreeMarker templating through its two APIs needed for reactive content
parsing:
org.springframework.web.reactive.result.view.freemarker.FreeMarkerConfi

gurer and
org.springframework.web.reactive.result.view.freemarker.FreeMarkerViewR

esolver. Although these reactive APIs can only be used in Functional and Reactive Web
Framework in Chapter 9, Spring Boot 2.0, this recipe still experimented with using the non-
reactive version of these two APIs to render Reactive stream data. The recipe was
successful, but FreeMarker has no parsing API or wrapper that will convert Publisher<T>
stream to raw data for publishing. Mono<T> streams must execute the blocking operation
block() in order to extract the raw data while Flux<T> needs to call
collectList().block() in order to expose the Collection<T> data for page rendering.

Using Thymeleaf to render a Publisher<T>
stream
Other than FreeMarker, Spring 5 has a strong built-in support for Thymeleaf template
compilation, with the objective of rendering Reactive Stream data directly.

Reactive Web Applications

[400]

Getting started
Open the Maven project ch08 and add the following view configuration for Thymeleaf
integration.

How to do it...
To use Thymeleaf as the templating procedure for rendering reactive contents, follow these
steps:

Before this recipe starts, be sure to have the Spring Reactive dependency1.
included in pom.xml since we are building now a reactive web application.
If the rendition requires the use of non-blocking Mono<T> and Flux<T>2.
operations, then Thymeleaf is the appropriate templating library to use, because
FreeMarker cannot directly recognize non-blocking operations. To integrate
Thymeleaf for Spring 5, add the following Maven dependencies:

<dependency>
 <groupId>org.thymeleaf</groupId>
 <artifactId>thymeleaf-spring5</artifactId>
 <version>3.0.6.M4</version>
</dependency>

Open the SpringWebReactiveConfig context definition and inject the3.
following Thymeleaf configuration details. Also, inject the application's
ApplicationContext which is needed by
SpringResourceTemplateResolver:

@Autowired
private ApplicationContext applicationContext;

@Bean(name ="templateResolver")
public SpringResourceTemplateResolver getTemplateResolver() {
 SpringResourceTemplateResolver templateResolver =
new SpringResourceTemplateResolver();
 templateResolver.setApplicationContext(
applicationContext);
 templateResolver.setPrefix("/WEB-INF/templates/");
 templateResolver.setSuffix(".html");
 templateResolver.setTemplateMode("XHTML");
 return templateResolver;
}
@Bean(name ="templateEngine")

Reactive Web Applications

[401]

public SpringTemplateEngine getTemplateEngine() {
 SpringTemplateEngine templateEngine =
new SpringTemplateEngine();
 templateEngine.setTemplateResolver(
getTemplateResolver());
 return templateEngine;
}
@Bean(name="viewResolverThymeLeaf")
public ThymeleafViewResolver getViewResolverThyme(){
 ThymeleafViewResolver viewResolver =
new ThymeleafViewResolver();
 viewResolver.setTemplateEngine(getTemplateEngine());
 viewResolver.setOrder(2);
 return viewResolver;
}

Open the RenderController and add the following request handler that will4.
render a Flux<Employee> to a Thymeleaf template:

@RequestMapping(value="/thymeleaf/empList.html",
 method=RequestMethod.GET)
public String users(Model model){
 model.addAttribute("employees",
 new ReactiveLazyContextVariable(
employeeServiceImpl.readEmployeesByDescAge()));
 return "thyme_list_emps";
}

Extension of Thymeleaf templates is preferred to be .html.

Create a Thymeleaf template in \WEB-INF\templates\xxxx.html that will5.
serve as the physical view of the request handler above:

<!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org">
 <head>
 <title>Ch08 Thymeleaf Reactive View</title>
 </head>
 <body>
 <table>
 <thead>
 <tr>
 <th>Employee ID</th>
 <th>First Name</th>

Reactive Web Applications

[402]

 <th>Last Name</th>
 <th>Age</th>
 </tr>
 </thead>
 <tbody>
 <tr th:each="e : ${employees}">
 <td th:text="${e.empId}"></td>
 <td th:text="${e.firstName}"></td>
 <td th:text="${e.lastName}"></td>
 <td th:text="${e.age}"></td>
 </tr>
 </tbody>
 </table>
 </body>
</html>

Save all files. Then clean, build, and deploy the project. Run the URL in any6.
browser and expect the same output as the previous recipe.

How it works...
When it comes to full-blown support, Thymeleaf can translate the reactive streams to be
rendered by its templates through a wrapper class called
org.thymeleaf.spring5.context.webflux.ReactiveLazyContextVariable. This
object behaves as a blocking mechanism to resolve asynchronous objects like Mono<T> or
Flux<T> in order for the Thymeleaf templates to render the raw data. The translation
process happens during the transition of the stream from the request handler to view.

All its templating APIs must be injected into the Spring Reactive container since Thymeleaf
is one of the supported components in building reactive applications using Spring 5
platform. Similar to FreeMarker, Spring 5 has a reactive version of Thymeleaf APIs but can
only be used in the next chapter.

Applying security on TaskExecutors
The last recipe for this chapter is essential in building secured reactive and asynchronous
Spring MVC applications. This is all about imposing authentication and authorization rules
on asynchronous services and controllers using Spring Security 4.2.x.

Reactive Web Applications

[403]

Getting started
Open ch08 for the last time and apply the security rules based on Spring Security 4.2
security contexts.

How to do it...
This last recipe is an extension of the Spring Security module that is applied to
asynchronous services and controllers. Follow these steps on how threads in asynchronous
and reactive executions can access the user details at runtime:

Before this recipe starts, include inside the pom.xml all the needed Maven1.
dependencies of Spring Security 4.2.2. Refer to Chapter 4, Securing Spring MVC
Applications, recipe ;Applying Aspect-Oriented Programming, for this item.
Create a new package org.packt.web.reactor.security.config to contain2.
the Security context definition derived from Chapter 4, Securing Spring MVC
Applications, recipe Applying Aspect-Oriented Programming. The
inMemoryAuthentication() security configuration will be taken as the
security protocol for this recipe. Also, there will be a slight modification on the
http.sessionManagement() operation to consider asynchronous request
executions:

@Configuration
@EnableWebSecurity
public class AppSecurityConfig extends
 WebSecurityConfigurerAdapter {
 @Override
 protected void configure(AuthenticationManagerBuilder auth)
 throws Exception {
 auth.inMemoryAuthentication()
 .withUser("sjctrags")
.password("sjctrags").roles("USER");
 }
 @Override
 protected void configure(HttpSecurity http) throws
Exception {
 http
 .authorizeRequests()
 .antMatchers("/react/login**",
 "/react/after**").permitAll()
 .anyRequest().authenticated()
 .and()
 .formLogin()

Reactive Web Applications

[404]

 .loginPage("/react/login.html")
 .defaultSuccessUrl("/react/menu.html")
 .failureUrl("/react/login.html?error=true")
 .and().logout().logoutUrl("/react/logout.html")
 .logoutSuccessUrl("/react/after_logout.html")
 .and().sessionManagement()
 .sessionCreationPolicy(
SessionCreationPolicy.IF_REQUIRED);
 http.csrf().disable();
 }
 @Override
 public void configure(WebSecurity web) throws Exception {
 web
 .ignoring()
 .antMatchers("/resources/**")
 .antMatchers("/css/**")
 .antMatchers("/js/**")
 .antMatchers("/image/**");
 }
}

Also include in the new package the configuration of Spring Security's3.
DelegatingFilterProxy with some added support on asynchronous and non-
blocking transactions:

public class SpringSecurityInitializer extends
 AbstractSecurityWebApplicationInitializer {
 @Override
 protected boolean isAsyncSecuritySupported() {
 return true;
 }
 @Override
 protected EnumSet<DispatcherType>
getSecurityDispatcherTypes() {
 return EnumSet.of(DispatcherType.ASYNC,
 DispatcherType.REQUEST, DispatcherType.FORWARD,
 DispatcherType.INCLUDE);
 }
}

Create a service class EmployeeParallelStreamService inside the same4.
package as the previous service classes. Add the following version of
showAllEmployees() that uses parallelStream() to forEach() all
employee records:

public void showAllEmployees(){
Consumer<Employee> showAll =

Reactive Web Applications

[405]

(e) -> {
System.out.format("%s %s %d\n",
e.getFirstName(), e.getLastName(), e.getAge());
};
employeeDaoImpl.getEmployees()
.parallelStream()
.forEach(showAll);
}

Now, apply the security protocol by integrating the AppSecurityConfig context5.
definition to SpringContextConfig through the @Import annotation:

@Import(value = { AppSecurityConfig.class })
@Configuration
@EnableWebMvc
@ComponentScan(basePackages = {"org.packt.web.reactor",
 "org.packt.web.reactor.model"})
public class SpringContextConfig { }

For the thread pool to access SecurityContext for further authentication and6.
authorization rules, inject the following
org.springframework.beans.factory.config.MethodInvokingFactoryB

ean with the necessary details to SpringContextConfig definition. The
SecurityContext is only accessible by the main thread and not with the thread
pool generated by TaskExecutors:

@Bean
 public MethodInvokingFactoryBean
 methodInvokingFactoryBean() {
 MethodInvokingFactoryBean methodInvokingFactoryBean =
new MethodInvokingFactoryBean();
 methodInvokingFactoryBean
.setTargetClass(SecurityContextHolder.class);
 methodInvokingFactoryBean
.setTargetMethod("setStrategyName");
 methodInvokingFactoryBean
.setArguments(new String[]{
SecurityContextHolder.MODE_INHERITABLETHREADLOCAL});
 return methodInvokingFactoryBean;
}

Reactive Web Applications

[406]

Omission of these lines will cause the following NullPointerException
on the threads accessing SecurityContext.

Open EmployeeServiceImpl and DepartmentServiceImpl and apply some7.
audit logs to check if the java.security.Principal is propagated by all
asynchronous threads. First, implement readEmployees() method that
processes employee record retrieval for 6000 milliseconds and returns
CompletableFuture<T>:

@Service
public class EmployeeServiceImpl implements EmployeeService {
 @Async
 @Override
 public CompletableFuture<List<Employee>> readEmployees() {
 Supplier<List<Employee>> supplyListEmp = ()->{
 // refer to sources
 try {
 System.out.println("readEmployees Callable
 login: " + SecurityContextHolder.getContext()
.getAuthentication().getPrincipal());
 Thread.sleep(6000);
 } catch (InterruptedException e) { }
 return employeeDaoImpl.getEmployees();
 };
 return CompletableFuture.supplyAsync(supplyListEmp);
 }
}

Implement the readEmployeesCall() that acceses the user credentials and8.
returns the Callable<t> task:

@Override
public Callable<List<Employee>> readEmployeesCall() {
 Callable< List<Employee> > task = new Callable<
List<Employee> >() {

Reactive Web Applications

[407]

 @Override
 public List<Employee> call () throws
 Exception {
 // refer to sources
 System.out.println("readEmployeesCall Callable
 login: " + SecurityContextHolder.getContext()
 .getAuthentication().getPrincipal());
 Thread.sleep(6000);
 List<Employee> empList = employeeDaoImpl.getEmployees();
 return empList;
 }
 };
 return task;
}

Add an @Async method that accesses the user credentials and processes the9.
insertion of Employee record within 1000 milliseconds:

@Async
@Override
public void addEmployee(EmployeeForm empForm) {
 // refer to sources
 try {
 // refer to sources
 System.out.println("addEmployee @Async login: " +
 SecurityContextHolder.getContext()
 .getAuthentication().getPrincipal());
 Thread.sleep(1000);
 } catch (InterruptedException e) { }
 employeeDaoImpl.addEmployeeBySJI(emp);
}

Methods that return Future<T> can also access the security user details:10.

@Async
public Future<Employee> readEmployee(Integer empId) {
 try {
 System.out.println("service:readEmployee(empid)
 task executor: " + Thread.currentThread().getName());
 System.out.println("processing for 2000 ms");
 System.out.println("readEmployee @Async login: " +
 SecurityContextHolder.getContext()
 .getAuthentication().getPrincipal());
 Thread.sleep(2000);
 } catch (InterruptedException e) { }
 return new AsyncResult<>(employeeDaoImpl.getEmployee(empId));
}

Reactive Web Applications

[408]

Lastly, methods that return the non-blocking and reactive Flux<T> and Mono<T>11.
streams can also access user credentials:

@Override
public Flux<Employee> readEmployeesFlux(int age) {
 Scheduler subWorker = Schedulers.newSingle("sub-thread");
 Scheduler pubWorker = Schedulers.newSingle("pub-thread");
 Predicate<Employee> validAge = (e) -> {
 // refer to sources
 System.out.println("flux:filter task executor
 login: " + SecurityContextHolder.getContext()
 .getAuthentication().getPrincipal());
 return e.getAge() > age;
 };
 Supplier<Flux<Employee>> deferredTask = ()->{
 // refer to sources
 System.out.println("flux:defer task executor
 login: " + SecurityContextHolder.getContext()
 .getAuthentication().getPrincipal());
 return Flux.fromIterable(employeeDaoImpl.getEmployees());
 };
 Flux<Employee> deferred = Flux.defer(deferredTask)
 .filter(validAge).subscribeOn(subWorker)
 .publishOn(pubWorker);
 return deferred;
}

Save all files. Delete the existing ch08 context folder in Tomcat's /webapps12.
before the new deployment. Then clean, install, and deploy the new project
with Spring Security 4.2.x. Run
https://localhost:8443/react/login.html and log in using the given
credentials.
After executing the services, open Tomcat's log and observe a similar output:13.

readDepartments CompletableFuture login:
org.springframework.security.core.userdetails.User@41036863:
Username: sjctrags; Password: [PROTECTED]; Enabled: true;
AccountNonExpired: true; credentialsNonExpired: true;
AccountNonLocked: true; Granted Authorities: ROLE_USER
addDepartment @Async login:
org.springframework.security.core.userdetails.User@41036863:
Username: sjctrags; Password: [PROTECTED]; Enabled: true;
AccountNonExpired: true; credentialsNonExpired: true;
AccountNonLocked: true; Granted Authorities: ROLE_USER
readEmployees Callable login:
org.springframework.security.core.userdetails.User@41036863:

Reactive Web Applications

[409]

Username: sjctrags; Password: [PROTECTED]; Enabled: true;
AccountNonExpired: true; credentialsNonExpired: true;
AccountNonLocked: true; Granted Authorities: ROLE_USER

How it works...
Spring Security 4.2.x supports both synchronous and asynchronous MVC applications. It
must be noted that both DispatcherServlet and DelegatingFilterProxy must be
configured to support asynchronous processes and secure all the @Controller and
services of the application. Moreover, SecurityContext must be accessible to all threads
by setting the Spring Security variable spring.security.strategy to
MODE_INHERITABLETHREADLOCAL by injecting the bean MethodInvokingFactoryBean
into the context definition.

Once this recipe works perfectly, all security concepts elaborated in Chapter 4, Securing
Spring MVC Applications, can be applied to all of the asynchronous services in this chapter.

9
Spring Boot 2.0

All the ideas and concepts established in the previous recipes converge into this chapter
which aims to showcase Spring 5 as the tool in building a reactive and functional web
application. Part of this chapter will discuss recipes on how to build a complete Spring
MVC application with JDBC connectivity, logging, and view technology like JSP,
Thymeleaf, and FreeMarker based on the methodology provided by Spring Boot 2.0, the
main highlight. Features like implementing JPA and REST web services will also be
included to show that some popular core POM starters that have been used in the previous
Spring releases, are still present in this new version. Also, there will be some recipes that
will be designed to compare and contrast built-in starter Maven libraries of Spring Boot 2.0
against its previous stable releases.

This chapter will also provide a concrete and practical set of procedures for building an
application using the new web model, the Functional and Reactive Web Framework of Spring
5. Some recipes will require concepts on Reactor Core 3.0, RxJava 2.x and functional
interfaces to justify the full-support of reactive programming in Spring 5. This is the only
chapter that will lead us on how to implement a reactive WebApplicationContext which
is one way of crafting a reactive web application. This will also teach us how to create a
reactive application that can be run as a standalone service box with an embedded Tomcat
server that supports NIO, and a Reactor Netty server at the side for listening to Spring5's
reactive request-response transactions.

In this chapter, you will learn the following:

Building a non-reactive Spring MVC application
Configuring Logging
Adding JDBC Connectivity
Building a reactive Spring MVC application
Configuring Spring Security 5.x
Using reactive view resolvers

Spring Boot 2.0

[411]

Using RouterFunction and HandlerFunction
Implementing Spring Data with JPA
Implementing REST services using @RestController and Spring REST
Apply Spring Cache

Building a non-reactive Spring MVC
application
Spring Boot is a development strategy or methodology in building Spring 5 applications
without using too many XML configurations and annotations. Since it does not require so
many setups and configurations, software development methodology becomes time-
efficient and requirement-centric. Likewise, it has the default core configuration needed to
run the application immediately after build and also has an easy-integration with plugins
such as JDBC, Spring Security, logging, and Hibernate ORM framework. This first recipe
will provide us with a clear procedure for building an enterprise application using the latest
Spring Boot 2.0.

Getting started
There are many ways to create a Spring Boot 2.0 application, but this book will try to be
consistent with the use of Maven. Using the Eclipse STS in Chapter 1, Getting Started with
Spring, create a Maven Project ch09 with a core package org.packt.spring.boot to be
the root package.

How to do it...
When creating a Spring MVC application using Spring Boot 2.0, the first thing to consider
is the Spring Boot starter parent POM configuration. This inherits all the Spring Boot
Maven dependencies supported by the chosen Spring Boot version. In this book, version
2.0.0M2 is the updated milestone for Spring Boot 2.0 at the moment:

Open the newly created pom.xml of ch09 and add the following starter parent1.
configuration:

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Spring Boot 2.0

[412]

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.packt.cookbook</groupId>
 <artifactId>ch09</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>war</packaging>
 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.0.0.M2</version>
 <relativePath/>
 </parent>
// refer to sources
</project>

For this parent starter configuration to work, be sure to use the preceding Maven2.
3.x to compile and run the pom.xml.
The Spring Boot starter parent requires setting the appropriate Java version for3.
the Spring Boot since the default compiler level is always Java 1.6. Since we are
into Spring Boot 2.0 that supports Spring 5, it is necessary to set the JVM version
to at least 1.8 in the <properties> configuration of pom.xml. Also included in
the settings are projects UTF encodings, runnable JAR's startClass, and Maven
details:

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.packt.cookbook</groupId>
 <artifactId>ch09</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>war</packaging>
 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.0.0.M2</version>
 <relativePath/>
 </parent>
 <properties>
 <project.build.sourceEncoding>UTF-8
</project.build.sourceEncoding>
 <project.reporting.outputEncoding>UTF-8
</project.reporting.outputEncoding>
 <java.version>1.8</java.version>

Spring Boot 2.0

[413]

 <startClass>org.packt.spring.boot.HRBootApplication
</startClass>
 </properties>
// refer to sources
</project>

After configuring all the details about the starter parent, now add the Spring4.
Boot starters that are needed to comprise the default configuration of the Spring
Boot application. These starter POMs are one of the listed inherited dependencies
of the starter parent. Their version numbers are not specified, since it is the job of
the Spring Boot starter parent to figure out what versions are appropriate for the
setup. Since the ultimate goal is to build a Spring MVC application, include the
required starters in the <dependencies>, which is to be later configured by the
application configuration file:

<dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
// refer to sources
</dependencies>

Although Spring Boot 2.0 supports at least Tomcat 8.0 by default, the following5.
starter for Tomcat embedded server can be included for some servlet container
details, but be sure to set the scope to provided since we will be deploying this
application to our Tomcat 9 in WAR format:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-tomcat</artifactId>
 <scope>provided</scope>
</dependency>

The next starters are needed to configure the JSTL, FreeMarker, and Thymeleaf6.
views:

<dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>jstl</artifactId>
 </dependency>
 <dependency>
 <groupId>taglibs</groupId>
 <artifactId>standard</artifactId>
 <version>1.1.2</version>
</dependency>

Spring Boot 2.0

[414]

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-freemarker</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-thymeleaf</artifactId>
</dependency>

If there are dependencies that are not part of the starters, the version
numbers of these artifacts must be specified.

To load all the necessary Spring Boot 2.0.0.M2 starters, add the following Maven7.
repositories:

<repositories>
 <repository>
 <id>spring-snapshots</id>
 <url>http://repo.spring.io/snapshot</url>
 <snapshots><enabled>false</enabled></snapshots>
 </repository>
 <repository>
 <id>spring-milestones</id>
 <url>http://repo.spring.io/milestone</url>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>spring-snapshots</id>
 <url>http://repo.spring.io/snapshot</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 <pluginRepository>
 <id>spring-milestones</id>
 <url>http://repo.spring.io/milestone</url>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 </pluginRepository>
</pluginRepositories>

Spring Boot 2.0

[415]

To close this POM configuration, add the following Maven deployment details.8.
The <finalName> determines the name of the deployed JAR or WAR file:

<build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 <finalName>ch09</finalName>
</build>

If this project is ought to be deployed as a WAR application, omit the
spring-boot-maven-plugin. Otherwise, the Maven plugin stays if the
project will be deployed as a standalone JAR application with its
embedded Tomcat server. Some of the Maven plugins are already part of
the starters such as maven-jar-plugin and maven-surefire-plugin .

Save the pom.xml. Update the ch08 Maven project given the new POM9.
configuration.
Any Spring Boot application must have an execution point where all starter beans10.
will be loaded into the container, project components will be recognized by
Spring Boot default component scan, and auto-configuration will be enabled.
This is the application's entry point that helps bootstrap the application either as11.
standalone or servlet-based application:

@SpringBootApplication
public class HRBootApplication
extends SpringBootServletInitializer {
 @Override
 protected SpringApplicationBuilder
 configure(SpringApplicationBuilder application) {
 return application.sources(HRBootApplication.class);
 }

 public static void main(String[] args) throws Exception {
 SpringApplication.run(HRBootApplication.class, args);
 }
}

Spring Boot 2.0

[416]

This component must be located in the core package
org.packt.spring.boot to recognize all project components through
its auto-configured component-scan capability. Also, if this project is
designed for standalone JAR application, register this class in the
<startClass> of POM's <properties> to be recognized as JAR's main-
class by the parent starter.

To add more non-reactive web configurations to the Application, the12.
@Configuration classes must be generated to contain all the @Bean mappings
needed to complete the MVC platform. In the previous Spring Boot releases,
configuration classes are required to be registered in the META-INF, but with
this version, it is no longer required. Add the following
WebMvcConfigurerAdapter class in the new package
org.packt.spring.boot.config that enables MVC, and adds required view
resolvers, massage bundles, and static resources:

@Configuration
@EnableWebMvc
public class SpringMvcConfig extends WebMvcConfigurerAdapter {
 @Bean
 public InternalResourceViewResolver getViewResolver() {
 InternalResourceViewResolver resolver =
 new InternalResourceViewResolver();
 resolver.setPrefix("/WEB-INF/");
 resolver.setSuffix(".html");
 resolver.setOrder(3);
 return resolver;
 }

 @Override
 public void configureDefaultServletHandling(
 DefaultServletHandlerConfigurer configurer) {
 configurer.enable();
 }
 @Bean
 public ResourceBundleViewResolver bundleViewResolver(){
 ResourceBundleViewResolver viewResolverB =
 new ResourceBundleViewResolver();
 viewResolverB.setBasename("config.views");
 viewResolverB.setOrder(0);
 return viewResolverB;
 }
 @Bean
 public MessageSource messageSource() {
 ReloadableResourceBundleMessageSource messageSource =

Spring Boot 2.0

[417]

 new ReloadableResourceBundleMessageSource();
 messageSource.setBasenames(
 "classpath:config/messages_en_US",
 "classpath:config/errors");
 messageSource.setUseCodeAsDefaultMessage(true);
 messageSource.setDefaultEncoding("UTF-8");
 messageSource.setCacheSeconds(1);
 return messageSource;
 }
 @Bean
 public static PropertySourcesPlaceholderConfigurer
 propertyConfig() {
 return new PropertySourcesPlaceholderConfigurer();
 }

 @Override
 public void addResourceHandlers(ResourceHandlerRegistry
 registry) {
 registry
 .addResourceHandler("/css/**")
 .addResourceLocations("/js/")
 .setCachePeriod(31556926);
 }
}

The use of JSP as view is not really recommended because it will add more
servlet-based configurations to the application, which will create so many
issues on the auto-configuration processes of Spring Boot. Besides, Spring
Boot supports many templating engines such as FreeMarker , Thymeleaf ,
Velocity, and Mustache that are directly supported by the application.

To use FreeMarker and Thymeleaf templates, add the following starters:13.

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-freemarker</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-thymeleaf</artifactId>
</dependency>

Spring Boot 2.0

[418]

The next step is to set up the Thymeleaf and FreeMarker properties through the14.
application configuration file. However, since we have injected into the
application InternalResourceViewResolver and
ResourceBundleViewResolver, conflicts arise when it comes to the ordering of
view hierarchy. There will be no choice but to inject all the configuration @Bean
for these templating engines using another non-reactive @Configuration class
to be dropped inside the package org.packt.spring.boot.config:

@Configuration
@EnableWebMvc
public class SpringContextConfig {
 @Autowired
 private ApplicationContext applicationContext;
 @Bean(name = "viewResolverFTL")
 public FreeMarkerViewResolver getViewResolverFtl() {
 FreeMarkerViewResolver viewResolver =
new FreeMarkerViewResolver();
 viewResolver.setPrefix("");
 viewResolver.setSuffix(".ftl");
 viewResolver.setOrder(1);
 return viewResolver;
 }
 @Bean(name = "freemarkerConfig")
 public FreeMarkerConfigurer getFreemarkerConfig() {
 FreeMarkerConfigurer config = new FreeMarkerConfigurer();
 config.setTemplateLoaderPath("/WEB-INF/templates/");
 return config;
 }
 @Bean(name ="templateResolver")
 public SpringResourceTemplateResolver getTemplateResolver()
{
 SpringResourceTemplateResolver templateResolver =
new SpringResourceTemplateResolver();
 templateResolver.setApplicationContext(
applicationContext);
 templateResolver.setPrefix("/WEB-INF/templates/");
 templateResolver.setSuffix(".html");
 templateResolver.setTemplateMode("XHTML");
 return templateResolver;
 }
 @Bean(name ="templateEngine")
 public SpringTemplateEngine getTemplateEngine() {
 SpringTemplateEngine templateEngine =
new SpringTemplateEngine();
templateEngine.setTemplateResolver(getTemplateResolver());
 return templateEngine;
 }

Spring Boot 2.0

[419]

 @Bean(name="viewResolverThymeLeaf")
 public ThymeleafViewResolver getViewResolverThyme(){
 ThymeleafViewResolver viewResolver =
new ThymeleafViewResolver();
 viewResolver.setTemplateEngine(getTemplateEngine());
 viewResolver.setOrder(2);
 return viewResolver;
}
}

One of the most important components of this application is the application15.
configuration file that contains all the predefined properties of the supported
dependencies needed by all the auto-configuration classes found in Spring Boot
2.0. This file is fetched and read during bootstrap of HRBootApplication to
supply all the properties to the auto-configuration classes enabled by the starter
dependencies. This file is popular as application.xml,
application.properties, or application.yml, and is always located in the
src/main/resources folder:

server.port=8443
server.servlet.context-path=/ch09
server.ssl.key-store=spring5server.keystore
server.ssl.key-store-password=packt@@
server.ssl.keyStoreType=PKCS12
server.ssl.keyAlias=spring5server

spring.thymeleaf.cache=false
#spring.thymeleaf.template-resolver-order=2
#spring.thymeleaf.suffix=.html
spring.freemarker.cache=false
#spring.freemarker.suffix=.ftl

Some of the core properties of
org.springframework.boot.autoconfigure.freemarker.FreeMar

kerAutoConfiguration and
org.springframework.boot.autoconfigure.thymeleaf.Thymelea

fAutoConfiguration classes are commented because these will be
bypassed by FreeMarker and Thymeleaf configuration done in the context
definition previously. All server.* property values are to be supplied to
org.springframework.boot.autoconfigure.web.ServerProperti

es, which handles the embedded server auto-configuration.

Spring Boot 2.0

[420]

Create the src/main/resources/config folder and drop here the16.
views.properties, errors.properties, and messages_en_US.properties
from ch08, here. Modify them to fit into this recipe.
Create src/main/webapp/WEB-INF/templates and drop all test view pages in17.
JSTL, FreeMarker, and Thymeleaf rendition formats here.
There are two ways how to deploy Spring Boot applications: JAR or WAR. In this18.
recipe, this project will be deployed as a WAR as indicated in POM:

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.packt.cookbook</groupId>
 <artifactId>ch09</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>war</packaging>
 // refer to sources
</project>

Run Maven command clean install -U. Deploy the WAR file manually in our19.
installed Tomcat 9. The Spring Boot 2.0 project will have a directory structure like
this:

Spring Boot 2.0

[421]

How it works...
The real essence of why developers choose Spring Boot 2.0 in building applications is the
principle of auto-configuration. Unlike in ground-up Spring MVC 5 development, choosing
the compatible Maven artifacts to the existing Spring API version is not a problem anymore
because of the presence of the parent starter POM. The only challenge is just the choosing of
the external support dependencies not included in the parent starter, since the version
numbers are of critical importance. For clarification, Spring Boot 2.0 is not a framework and
will not replace Spring 5 since its mandate is to generate Spring 5 applications.

There is a list of starters that can be inherited from the Maven repository of Spring Boot
2.0.0.M2 and each has auto-configuration classes found in
org.springframework.boot.autoconfigure.*. To manage these classes, the bootstrap
class, which is also called the Application class, will enable and execute some of them
with the required properties to be filled in the application.properties file. This class,
like our HRBootApplication, must have a class-level @SpringBootApplication to
register it as the entry-point of the application. Another option is to apply
@Configuration, @EnableAutoConfiguration, and @ComponentScan collectively in
order to declare an Application class. These three annotations are needed if we need to
further customize further the bootstrapping details, just like the version of our
HRBootApplication in the following snippet that completely bypasses FreeMarker and
Thymeleaf auto-configuration processes:

@Configuration
@ComponentScan("org.packt.spring.boot")
@EnableAutoConfiguration(exclude={ FreeMarkerAutoConfiguration.class,
 ThymeleafAutoConfiguration.class})
public class HRBootApplication extends SpringBootServletInitializer {
 // refer to sources
}

The HRBootApplication is composed of two methods, namely the main() and the
configure() method overridden from
org.springframework.boot.web.servlet.support.SpringBootServletInitializ

er. If the project is needed to be deployed as a standalone JAR application, the main() is
required to be present to bootstrap the application. If the project needs to be deployed in an
application server, the class must extend SpringBootServletInitializer to bootstrap
in a servlet container using the overridden method, configure().

Spring Boot 2.0

[422]

During bootstrap, all bean components are instantiated and injected and one of them is the
org.springframework.boot.web.servlet.context.AnnotationConfigServletWeb

ServerApplicationContext, which is the context root of the non-reactive Spring MVC
application. All the required properties are categorized according to auto-configuration
class and are found in
https://docs.spring.io/spring-boot/docs/current/reference/html/common-applicati

on-properties.html. Depending on what starter POMs are loaded into the container,
necessary properties are to be registered and configured in the application.properties
in order to load all the configuration beans into the ApplicationContext container.

Configuring Logging
After a long configuration recipe on building a Spring 5 MVC application, let us discuss
how to enable logging using Spring Boot 2.0

Getting started
Open ch09 again and create and add the following @Controller that utilizes thread pools
generated by TaskExecutor.

How to do it...
If logging and auditing can be enabled in a ground-up Spring 5 application, it is easier to
integrate a logging mechanism in Spring Boot. Follow these steps:

Create the following packages that will be utilized in the succeeding recipes:1.

org.packt.spring.boot.controller

org.packt.spring.boot.dao

org.packt.spring.boot.service

https://docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html
https://docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html

Spring Boot 2.0

[423]

Since Spring Boot 2.0 directly supports Logback and SL4J with fewer2.
configurations, create the following logback.xml inside src/main/resources.
Assign a separate logger to each package above wherein each has its own Level
value. Also, utilize two appenders, namely
ch.qos.logback.core.ConsoleAppender to log all the messages in Tomcat's
stdout.log and ch.qos.logback.core.FileAppender to log all messages in
a custom log file /logs/ch09.log:

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <appender name="STDOUT"
 class="ch.qos.logback.core.ConsoleAppender">
 <encoder>
 <pattern>%d{HH:mm:ss.SSS} [%thread] %-5level %logger{36}
-
 %msg%n</pattern>
 </encoder>
 </appender>
 <appender name="FILE"
class="ch.qos.logback.core.FileAppender">
 <file>/logs/ch09.log</file>
 <encoder>
 <pattern>%d{HH:mm:ss.SSS} [%thread] %-5level
%logger{36} - %msg%n</pattern>
 </encoder>
 </appender>
 <logger name="org.packt.spring.boot" level="info">
 <appender-ref ref="FILE" />
 </logger>
 <logger name="org.packt.spring.boot.controller"
level="trace">
 <appender-ref ref="FILE" />
 </logger>
 <logger name="org.packt.spring.boot.service" level="warn">
 <appender-ref ref="FILE" />
 </logger>
 <logger name="org.packt.spring.boot.dao" level="warn">
 <appender-ref ref="FILE" />
 </logger>
 <root level="info">
 <appender-ref ref="FILE" />
 </root>
</configuration>

Spring Boot 2.0

[424]

The order of the details of logback.xml is technically crucial. The first
part of the configuration must be the settings of the appenders chosen,
followed by the custom loggers, and the last will be the root logger detail.
Any violations to this ordering will lead to HTTP status 404.

Open HRBootApplication class and update it to start using the logging feature:3.

@Configuration
@ComponentScan("org.packt.spring.boot")
@EnableAutoConfiguration(exclude={
FreeMarkerAutoConfiguration.class,
 ThymeleafAutoConfiguration.class})
public class HRBootApplication extends
SpringBootServletInitializer {

 private static Logger logger =
 LoggerFactory.getLogger(HRBootApplication.class);

 @Override
 protected SpringApplicationBuilder configure(
 SpringApplicationBuilder application) {
 logger.info("bootstrap in servlet container");
 return application.sources(HRBootApplication.class);
 }

 public static void main(String[] args) throws Exception {
 logger.info("bootstrap as a standadlone with embedded
 server");
 SpringApplication.run(HRBootApplication.class, args);
 }
}

Save all files. The clean and install and manually deploy WAR to Tomcat 9.4.

Spring Boot 2.0

[425]

How it works...
Spring Boot 2.0 uses commons-logging as its abstraction when it comes to implementing a
logging mechanism, which is the reason why it has direct support to Log4J2, Logback, and
java.util.logging APIs. Since we relied on the auto-configuration of the starters, the
default framework used is Logback, and Spring Boot only requires one task, and that is to
create the Logback configuration file with the appropriate loggers, appenders, and the level
values that can be among the following: ERROR, WARN, INFO, DEBUG, and TRACE. To
open logging with tracing, register in application.properties the property
trace=true. Likewise, to enable debug mode, register the property debug=true.

Adding JDBC Connectivity
At this point we are ready to create a full-blown Spring MVC project from Spring Boot 2.0
with a database backend. This recipe will showcase how to add a starter POM that will
auto-configure all APIs for the implementation of java.sql.DataSource needed by all
the JDBC transactions of EmployeeDao and DepartmentDao.

Getting started
Open again current Maven project ch09 and add a new POM starter to implement the JDBC
transactions using MySQL.

How to do it...
Using the previous DAO and service layer, let us implement a Spring Boot 2.0 application
by doing the following steps:

Open pom.xml and add the following starter for the Spring Boot application:1.

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-jdbc</artifactId>
</dependency>

Since this starter uses HikariCP as a default connection pooling plugin,
including Maven dependencies on HikariCP is now not recommended.

Spring Boot 2.0

[426]

Add the MySQL connector for the JDBC connectivity:2.

<dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 <version>5.1.40</version>
</dependency>

Open the application.properties and add the following properties for the3.
org.springframework.boot.autoconfigure.jdbc.DataSourceAutoConfi

guration class:

spring.datasource.driverClassName=com.mysql.jdbc.Driver
spring.datasource.url=jdbc:mysql://localhost:3306/hrs?autoRecon
nect=true&useSSL=true&serverSslCert=classpath:config/spring5pac
kt.crt
spring.datasource.username=root
spring.datasource.password=spring5mysql
spring.datasource.hikari.connection-timeout=60000
spring.datasource.hikari.maximum-pool-size=5

Create a new package org.packt.spring.boot.model.data and copy into it4.
all data models from Chapter 8, Reactive Web Applications.
Copy to org.packt.spring.boot.dao all the DAO interfaces from the5.
previous chapter.
Copy the DAO implementation classes from Chapter 8, Reactive Web Applications,6.
to a new package org.packt.spring.boot.dao.impl.
Since Spring Boot does no longer uses lots of annotations, there will be some7.
modifications in the DAO implementation classes. Instead of auto-wiring objects,
Spring Boot is capable of injecting @Bean to the constructor of any component.
Thus the auto-configured java.sql.DataSource will be automatically injected
to a constructor of any DAO implementation with a parameter as such. Follow
the modifications of EmplayeeDaoImpl and DepartmentDaoImpl as follows:

@Repository
public class DepartmentDaoImpl implements DepartmentDao{
 private JdbcTemplate jdbcTemplate;
 private SimpleJdbcInsert jdbcInsert;
 public DepartmentDaoImpl(DataSource dataSource) {
 jdbcTemplate = new JdbcTemplate(dataSource);
 jdbcInsert = new SimpleJdbcInsert(jdbcTemplate);
}
// refer to sources
}

https://cdp.packtpub.com/spring_5_0_recipes/wp-admin/post.php?post=222&action=edit&save=save#post_205

Spring Boot 2.0

[427]

@Repository
public class EmployeeDaoImpl implements EmployeeDao {
 private JdbcTemplate jdbcTemplate;
 private SimpleJdbcInsert jdbcInsert;
 public EmployeeDaoImpl(DataSource dataSource) {
 jdbcTemplate = new JdbcTemplate(dataSource);
 jdbcInsert = new SimpleJdbcInsert(jdbcTemplate);
}
// refer to sources
}

Save all files. Then clean and install. Generate the WAR file.8.

How it works...
Since the earlier chapters, HikariCP data source pooling has been used because of its fast
performance when it comes to complex JDBC transactions. Spring Boot 2.0 has decided to
use HikariCP as the default data source pooling to replace the Tomcat JDBC connection
pooling. Also, auto-wiring a java.sql.DataSource bean object is no lonhger allowed in
Spring Boot development, since it can already perform automatic constructor injection of
@Bean to any component class.

Building a reactive Spring MVC application
Spring Boot 2.0 supports building reactive Spring MVC applications and also has a starter
POM to provide components with Reactor Core 3.x libraries. Likewise, it has the capability
to easily integrate with RxJava 2.x APIs to provide us with another option for building
reactive transactions. This recipe will be about creating a web application with a 100%
reactive web framework of Spring 5.

Getting started
Reopen ch09 and prepare to build a reactive application using Spring Boot 2.0 with all non-
blocking and functional components derived from the previous chapter.

Spring Boot 2.0

[428]

How to do it...
Chapter 8, Reactive Web Application, introduced us to the reactive APIs of FreeMarker and
Thymeleaf from Spring Reactive module of Spring 5. Let us now explore the reactive
components of Spring Boot by doing the following steps:

There is only one starter POM dependency that is responsible for creating a 100%1.
reactive application that can only be inherited from the Spring Boot 2.0
repository, and that is spring-boot-starter-webflux. Aside from its Spring
Reactor APIs, it contains all the necessary beans needed to instantiate a reactive
AnnotationConfigServletWebServerApplicationContext that can only be
supported by Spring 5:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-webflux</artifactId>
 <exclusions>
 <exclusion>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-reactor-netty
 </artifactId>
 </exclusion>
 </exclusions>
</dependency>

Since this chapter will be using Tomcat as both the embedded and external
server for deployment, exclude Netty plugins from the webflux starter.
Moreover, avoid using
org.springframework.boot.experimental:spring-boot-

starter-web-reactive since it's already deprecated and now
successfully replaced by the webflux starter.

Spring Boot 2.0 supports asynchronous components by default because of the2.
webflux starter. Thus, copy SpringAsynchConfig from the previous chapter
and drop this in org.packt.spring.boot.config without further
configurations. To recall, this class triggered the use of @Async, Callable, and
DeferredResult transactions and also generated the needed thread pool from
TaskExecutor.
Add the Reactor Core 3.x dependencies to execute Publisher<T>, Mono<T>, and3.
Flux<T> stream operations.

Spring Boot 2.0

[429]

In order to execute Observable<T>, Flowable<T>, and Single<T> operations4.
of RxJava 2.x, add the following Maven dependency:

<dependency>
 <groupId>io.reactivex.rxjava2</groupId>
 <artifactId>rxjava</artifactId>
 <version>2.1.0</version>
</dependency>

Copy all service interfaces of ch08 to org.packt.spring.boot.service.5.
Copy the implementation classes of all the services of ch08 to6.
org.packt.spring.boot.service.impl.

Comment first the lines that execute SecurityContextHolder.

Copy all the controllers except LoginController in ch08 to the package7.
org.packt.spring.boot.controller.

Comment first the lines that execute SecurityContextHolder.

Copy all the form models from the previous chapter to a new package8.
org.packt.spring.boot.model.form.
Also copy the custom property editors AgeEditor and DateEditor to9.
org.packt.spring.boot.editor.
Use the existing DAO implementations as modified by the previous recipe.10.
Update your views, errors, and message bundle in11.
src/main/resources/config to contain all the properties derived from ch08.
Apply logging to controllers, services, and DAO components.12.
Lastly, copy all the view pages from the previous ch08 Maven project as follows:13.

Spring Boot 2.0

[430]

Save all files. Then clean and install to generate WAR files. Manually copy14.
the WAR file from /ch09/target to /webapps of Tomcat 9. Access
https://localhost:8443/ch09/menu.html and perform some form
handling transactions.

How it works...
This recipe is the only way of building a 100% reactive Spring 5 web application wherein
the
org.springframework.web.reactive.config.DelegatingWebFluxConfiguration

is injected into the container by Spring Boot and @Autowire it to the constructor of
AnnotationConfigServletWebServerApplicationContext to generate a reactive web
MVC configuration. The following bootstrap log from /logs/ch09.log will give us proof
that the process really occurs with Spring Boot 2.0:

07:35:22.558 [localhost-startStop-1] INFO
o.s.b.f.s.DefaultListableBeanFactory - Overriding bean
definition for bean 'requestMappingHandlerMapping' with a
different definition: replacing [Root bean: class [null];
scope=; abstract=false; lazyInit=false; autowireMode=3;

Spring Boot 2.0

[431]

dependencyCheck=0; autowireCandidate=true; primary=false;
factoryBeanName=org.springframework.web.servlet.config.annotati
on.DelegatingWebMvcConfiguration;
factoryMethodName=requestMappingHandlerMapping;
initMethodName=null; destroyMethodName=(inferred); defined in
class path resource
[org/springframework/web/servlet/config/annotation/DelegatingWe
bMvcConfiguration.class]] with [Root bean: class [null];
scope=; abstract=false; lazyInit=false; autowireMode=3;
dependencyCheck=0; autowireCandidate=true; primary=false;
factoryBeanName=org.springframework.web.reactive.config.Delegat
ingWebFluxConfiguration;
factoryMethodName=requestMappingHandlerMapping;
initMethodName=null; destroyMethodName=(inferred); defined in
class path resource
[org/springframework/web/reactive/config/DelegatingWebFluxConfi
guration.class]]

Because of this process, Spring Boot allows automatic recognition of thread pools generated
by TaskExecutor and also allows assignment of each thread to different @Async,
Callable, DeferredResult, Flux<T>, and Mono<T> operations. Likewise, the integration
of RxJava 2.x does not require further property configuration details because the new web
platform is now totally reactive. At this point, we have a working Spring WebFlux with a
reactive platform built by Spring Boot 2.0 from the ground up.

Configuring Spring Security 5.x
With regard to easy feature or module integration, Spring Boot 2.0 provides an easier way
to integrate Spring Security to the application. This recipe will showcase how to apply the
new Spring Security 5 to a reactive web application.

Getting started
Open the Spring Boot ch09 project and add the Spring Security 5 module into the existing
application.

Spring Boot 2.0

[432]

How to do it...
Let us now start applying security context to the previous reactive application through
these steps:

Open pom.xml and add the following starter POM for Spring Security 5:1.

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
</dependency>

Create a new package org.packt.spring.boot.security and drop into it the2.
same security context definition AppSecurityConfig from ch08.
Avoid registering DelegatingFilterProxy into the container since Spring Boot3.
does it automatically by injecting
org.springframework.boot.web.servlet.DelegatingFilterProxyRegis

trationBean and mapping it to a filter name springSecurityFilterChain. If
you include SpringSecurityInitializer from ch08 into this project, conflicts
will arise and an exception like this will be thrown:

28-Jun-2017 13:01:07.219 SEVERE [https-openssl-nio-8443-exec-6]
org.apache.catalina.core.StandardContext.filterStart Exception
starting filter springSecurityFilterChain
org.springframework.beans.factory.NoSuchBeanDefinitionException
: No bean named 'springSecurityFilterChain' available

There is no need to include SpringSecurityInitializer just to enable
asynchronous support for s pringSecurityFilterChain, because
Spring Boot enables it by default.

The next step is to @Import the AppSecurityConfig to apply the security4.
protocols indicated in the security class definition to the Spring MVC project:

@Import(value = { AppSecurityConfig.class })
@Configuration
@EnableWebMvc
public class SpringContextConfig { // refer to sources }

Finally, you are now ready to use Spring Security 5.x. Uncomment all lines that5.
execute SecurityContextHolder.

Spring Boot 2.0

[433]

Copy the LoginController from ch08 to6.
org.packt.spring,boot.controller.
Also copy the views, login.jsp, logout.jsp and after_logout.jsp to7.
src/main/webapp of this project. Also update the views and message bundle
pertaining to these view pages.
Save all files. Then clean and install project ch09. Manually deploy it to the8.
server. Open a browser and access
https://localhost:8443/ch09/login.html and supply the needed
credentials indicated by in-memory configuration of AppSecurityConfig.

How it works...
As compared to the previous chapters, Spring Security is easy to configure with Spring Boot
2.0 and it gives the application the updated web security module which, in our case, is
version 5.x. To load all the needed classes and interfaces, the spring-boot-starter-
security starter must be included in the set of Maven dependencies. Afterwards, the steps
are exactly the same as those enumerated in Chapter 4, Securing Spring MVC Applications,
and Chapter 8, Reactive Web Applications, with the exclusion of the
DelegatingFilterProxy initialization where we enabled the asynchronous support and
registered the ASYNC filter dispatcher. Thus, we can conclude that Spring Security 5.x can
be applied to a reactive web framework of Spring 5.

Using reactive view resolvers
The previous recipes showed us the procedures required to create a full reactive web
application, but there are still parts of it that need not be present, such as the use of
InternalResourceViewResolver, MessageBundleViewResolver, and the rest of the
non-reactive view resolvers of Spring 5. This recipe will recommend to us the appropriate
view engines for a reactive application.

Getting started
Let us tag ch09 as a closed project and create a separate one for this recipe that will be
named ch09-flux.

Spring Boot 2.0

[434]

How to do it...
Let us now use the reactive view implementation that can render reactive stream data using
Spring Boot:

Just as in the previous recipe, the only requirement for creating a full-blown1.
reactive Spring 5 application is Spring Boot's webflux starter POM dependency.
Also include the embedded Tomcat server as our official reactive server:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-webflux</artifactId>
 <exclusions>
 <exclusion>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-reactor-netty
</artifactId>
 </exclusion>
 </exclusions>
</dependency>
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-tomcat</artifactId>
</dependency>

Avoid adding spring -boot-starter -web since the use of non-
reactive components of Spring 5 will strictly not recommend the use of the
@EnableWebMvc annotation in our context definitions.

Implement logging mechanism for this project similar to ch09.2.
Spring 5 has a reactive support for templating engines such as FreeMarker,3.
Groovy, Thymeleaf, Velocity, and Mustache, which means these can be the
appropriate options to render results from a reactive platform. Since the use of
JSP is strictly prohibited, reactive FreeMarker and Thymeleaf will be configured
to render data:

<dependency>
 <groupId>org.freemarker</groupId>
 <artifactId>freemarker</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context-support</artifactId>
</dependency>

Spring Boot 2.0

[435]

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-thymeleaf</artifactId>
</dependency>

Create the bootstrap class similar to ch09 inside a similar package4.
org.packt.spring.boot:

@SpringBootApplication
public class HRBootApplication extends
 SpringBootServletInitializer {

 @Override
 protected SpringApplicationBuilder
 configure(SpringApplicationBuilder application) {
 return application.sources(HRBootApplication.class);
 }
 public static void main(String[] args) throws Exception {
 SpringApplication.run(HRBootApplication.class, args);
 }
}

Create an application.properties file in src/main/resources and add the5.
following properties for the embedded Tomcat server and MySQL database
connectivity:

server.port=8093
server.servlet.context-path=/ch09-flux

spring.datasource.driverClassName=com.mysql.jdbc.Driver
spring.datasource.url=jdbc:mysql://localhost:3306/hrs?autoRecon
nect=true&useSSL=true&serverSslCert=classpath:config/spring5pac
kt.crt
spring.datasource.username=root
spring.datasource.password=spring5mysql
spring.datasource.hikari.connection-timeout=60000

This project will be deployed and executed as a standalone reactive web
application using a reactive embedded Tomcat server which will execute
its entire request transactions through HTTP using port 8093 .

Spring Boot 2.0

[436]

Next, create reactive context definition classes that will inject all the reactive6.
beans of FreeMarker and Thymeleaf. These @Configuration classes have an
annotation, @EnableWebFlux to import all the Spring WebFlux configurations
including the reactive web ApplicationContext:

@Configuration
@EnableWebFlux
public class WebFluxConfig { // refer to sources }

There is no need to inherit or implement configuration APIs.

Spring 5 has a built-in support for reactive FreeMarker engine that uses the7.
org.springframework.web.reactive.result.view.freemarker.FreeMar

kerViewResolver and
org.springframework.web.reactive.result.view.freemarker.FreeMar

kerConfigurer. There is no need to inject all these bean objects to
WebFluxConfig container.
Likewise, Spring 5 provides injected beans of reactive APIs of Thymeleaf engine8.
such as the org.thymeleaf.spring5.ISpringWebFluxTemplateEngine and
org.thymeleaf.spring5.view.reactive.ThymeleafReactiveViewResolv

er beans. Because of @EnableWebFlux all these beans are already loaded into the
container so custom injection is not needed anymore.
Create a controller inside a package org.packt.spring.boot.controller9.
that will just execute our configuration:

@Controller
public class FluxController {
 private Logger logger =
 LoggerFactory.getLogger(FluxController.class);
 @RequestMapping("/sampleFtl")
 public String home(ModelMap model) {
 model.addAttribute("title", "Reactive FreeMarker
Result");
 model.addAttribute("message", "Built-in
Configuration");
 logger.info("exceuting HelloController");
 return "sampleFtl";
 }
 @RequestMapping("/thymeleaf/sampleThyme")
 public String welcome(ModelMap model) {
 model.addAttribute("title", "Reactive Thymeleaf Result");

Spring Boot 2.0

[437]

 model.addAttribute("message", "Built-in Configuration");
 return "sampleThyme";
 }

}

Built-in support is different from an auto-configuration mechanism; thus, all10.
default properties of Thymeleaf and FreeMarker reactive view resolvers and
template engines are not open to change with this version of Spring Boot.
ThymeleafAutoConfiguration and FreeMarkerAutoConfiguration
properties are only applied only to their non-reactive APIs.
Store all templates in src/main/resources/templates because there is no11.
other means that we can configure its template location.
Save all files. Run the clean spring-boot:run command to execute ch09-12.
flux as a standalone application. Open a browser and execute
http://localhost:8093/ch09-flux/sampleFtl and
http://localhost:8093/ch09-flux/thymeleaf/sampleThyme.

How it works...
A full-blown reactive application does not need spring-boot-starter-web because the
model of a reactive web framework does not only include the use of Spring Reactor and
RxJava 2.x in many of its non-blocking transactions, but covers all the components of MVC
and its embedded server. Spring 5 is a framework created not only to support reactive
programming, but to build a totally reactive platform than can even execute as an
independent reactor engine. We have come to the point where we have a clear picture of
why Spring 5 was created and how powerful its reactive web framework and is which can
only be utilized through Spring Boot 2.0.

Spring Boot 2.0

[438]

Using RouterFunction and HandlerFunction
The previous recipes have shown us how to establish a reactive ApplicationContext and
how Spring Boot 2.0 manages to run this reactive platform using a reactive embedded
Tomcat server. This recipe will add another main feature of Spring 5 that is about building
non-blocking, asynchronous, and context-independent Request-Response transactions
using the functional web framework, a technique of writing a reactive version of
@Controller and its mappings, using a domain-specific language way.

Getting started
Open the standalone Spring Boot ch09-flux project and add the following:
RouterFunction<?> and HandlerFunction<?>.

How to do it...
Let us implement reactive services using HandlerFunction<T> and RouterFunction<T>.
Follow these steps:

Before anything else, implementing a functional web framework means there will1.
be a need to set up and configure another reactive embedded server that will
execute and run these independent services. Since the embedded Tomcat is the one
running for the whole Spring Boot 2.0 application, it will be advisable if Netty,
Jetty, or Undertow were used to listen and run these independent services. This
recipe chose the Reactor Netty server as the dedicated server for these functional-
based events. Thus, now include the Netty APIs from the webflux starter POM:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-webflux</artifactId>
</dependency>

Then, add another webflux@Configuration class to inject2.
reactor.ipc.netty.http.server.HttpServer:

@Configuration
@EnableWebFlux
public class HttpServerConfig {
 @Bean
 public NettyContext nettyContext(ApplicationContext
context) {

Spring Boot 2.0

[439]

 HttpHandler handler =
 DispatcherHandler.toHttpHandler(context);
 ReactorHttpHandlerAdapter adapter =
new ReactorHttpHandlerAdapter(handler);
 HttpServer httpServer =
HttpServer.create("localhost", Integer.valueOf("8095"));
 return httpServer.newHandler(adapter).block();
 }
}

Do not use the existing port of the embedded Tomcat server to avoid
conflicts. Moreover, the reactive AplicationContext is needed by Netty
in order to listen to all registered functional web components such as
HandlerFunction<?> and RouterFunction<?>.

Unlike in the usual @Controller, this functional web framework model of3.
Spring 5 requires all ServletRequest and ServletResponse to be internally
managed by the reactive
org.springframework.web.reactive.function.server.HandlerFunctio

n. This API is implemented using lambda expressions, @FunctionalInterface,
Spring Reactor, RxJava, or any combinations of them. Usually, a
HandlerFunction is created inside a webflux configuration class:

@Configuration
@EnableWebFlux
public class ReactiveControllers {
 public HandlerFunction<ServerResponse> routeMonoHandle(){
 HandlerFunction<ServerResponse> handlerMono =
 request -> ok().body(Mono.just("Mono Stream"),
 String.class);
 return handlerMono;
 }
 public HandlerFunction<ServerResponse> handlerFluxData(){
 HandlerFunction<ServerResponse> handlerFlux =
 req -> ServerResponse.ok()
.body(fromObject("Flux Stream from String"));
 return handlerFlux;
 }
}

Spring Boot 2.0

[440]

Do not apply the @Controller annotation since this is a
@Configuration class.

Another way of writing HandlerFunction<?> is to create a @Component class4.
that will contain all its bare implementations such as DataHandler that is stored
inside org.packt.spring.boot.handler:

@Component
public class DataHandler {

 public Mono<ServerResponse> fluxHello(ServerRequest req) {
 return ok().body(Flux.just("Hello", "World!"),
 String.class);
 }

 public Mono<ServerResponse> stream(ServerRequest req) {
 Stream<String> streamData =
 Stream.of("i", "love", "reactive", "programming")
.sorted()
 .map((str) -> str.toUpperCase() + " ");
 Flux<String> flux = Flux.fromStream(streamData);
 return
ok().contentType(MediaType.APPLICATION_STREAM_JSON)
.body(flux, String.class);
 }
}

All these HandlerFunction<?> or reactive services will not be returned as a5.
ServetResponse without the request URL mapping. In the traditional MVC, the
@RequestMapping annotation maps the request handler to a URL that is called
by the client to execute the handler. In the functional web model,
@RequestMapping will not be used, but a router called
org.springframework.web.reactive.function.server.RouterFunction

, which will route the request to the HandlerFunction<?> whenever it finds a
match with its registered URL. The following are injected RouterFunction<?>
to the handlers in the ReactiveControllers configuration class:

@EnableWebFlux
public class ReactiveControllers {
 // refer to sources
 @Bean
 public RouterFunction<?> routeMono() {
 return route(GET("/mono" + "/stream"),

Spring Boot 2.0

[441]

 routeMonoHandle());
 }
 @Bean
 public RouterFunction<ServerResponse> handledRoute(){
 RouterFunction<ServerResponse> router =
 route(GET("/routeFluxHandle"), handlerFluxData());
 return router;
 }
}

To utilize the DataHandler functions, inject this bean component to the6.
ReactiveControllers configuration class and use method references or
lambda expression to call these HandlerFunction implementations:

@Configuration
@EnableWebFlux
public class ReactiveControllers {
 @Autowired
 private DataHandler dataHandler;

 // refer to sources
 @Bean
 public RouterFunction<ServerResponse> compundRoutes() {
 return route(GET("/routeFlux"),
dataHandler::fluxHello)
 .andRoute(GET("/stream"),
dataHandler::stream);
 }
}

The implementation of RouterFunction<?> here is quite complex, since
it establishes two URL gateways to execute two separate
HandlerFunction<?>.

Save all files. Execute the clean spring-boot:run command to deploy the 7.
reactive application. Open a browser and run all the independent services like
http://localhost:8095/stream.

Spring Boot 2.0

[442]

Avoid using the context root of the Tomcat embedded server for the
reason that Reactor Netty here is configured to stand as a separate and
container-independent reactive server.

How it works...
In the previous recipe, the spring-boot-starter-reactor-netty has been excluded
from the POM dependencies just to avoid confusion on what embedded server to use for
the standalone execution. At this point, Reactor Netty server must be included in order to
listen and run these threaded and functional web components of Spring 5, namely the
HandlerFunction<?> and RouterFunction<?>.

It requires having a webflux@configuration class in order to implement these
components. Syntax errors will arise if we apply @Controller to the class, since
RouterFunction<?> and HandlerFunction<?> together take the role of the
@Controller and @RequestMapping in a typical MVC scenario. In a functional web
model, RouterFunction is implemented to route() all matched requests to
HandlerFunction. These mappings can be a simple one or chaining of
route().and.route() stream operations. Once all these components are injected into the
container, the Reactor Netty server will auto-detect and listen to all these injected
RouterFunction because this server required the reactive ApplicationContext to be
passed as a parameter to ReactorHttpHandlerAdapter in order to build and execute all
these routers.

This recipe has also proven that these functional web components can execute side-by-side
with all the non-reactive @Controller since the former uses Netty while the latter executes
on top of the embedded Tomcat server. Reactor Netty is a full-blown implementation of
NIO specification, which is an appropriate server for executing non-blocking,
asynchronous, and reactive events and services.

This recipe will be the gateway to the next chapter, which is all about microservices
development.

Spring Boot 2.0

[443]

Implementing Spring Data with JPA
Spring Boot 2.0 still supports persistence using JPA, which avoids too many SQL scripts and
Hibernate configurations. It provides auto-configuration when it comes to creating a
persistence layer and, thus, it is an option to auto-configure the hibernate.properties
and some JPA details. This recipe will illustrate how reactive applications can integrate with
a non-reactive Spring Data JPA for MySQL CRUD transactions.

Getting started
Open ch09-flux and add a Spring Data JPA module for persistence and transaction
management.

How to do it...
Spring 5 still supports Spring Data modules including Spring Data JPA. This recipe will
showcase how to integrate Spring Data JPA using Spring Boot 2.0:

First, add the following starter POM dependency for Spring Data JPA auto-1.
configuration:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>

Inside the package org.packt.spring.boot.config, create a non-webflux2.
@Configuration to enable JPA transaction management. Spring Data JPA is not
a reactive dependency, so avoid applying an @EnableWebFlux annotation:

@Configuration
@EnableJpaRepositories(basePackages="org.packt.spring.boot.dao"
)
@EnableTransactionManagement
public class SpringDataConfig { }

Indicating the DAO repository package is optional. Also, there is no need
to inject Hibernate-related beans and JPA-related configuration into the
class definition.

Spring Boot 2.0

[444]

Open and validate if application.properties contain the correct data source3.
details:

spring.datasource.driverClassName=com.mysql.jdbc.Driver
spring.datasource.url=jdbc:mysql://localhost:3306/hrs?autoRecon
nect=true&useSSL=true&serverSslCert=classpath:config/spring5pac
kt.crt
spring.datasource.username=root
spring.datasource.password=spring5mysql
spring.datasource.hikari.connection-timeout=60000

Copy the Employee model class from ch08 and drop it in the4.
org.packt.spring.boot.model.data package. The class must have an
@Entity annotation to convert into a JPA entity model and a @Table annotation
that will map it to the actual table employee in the hr database. If naming
conflicts arise with the property mapping, the @Column can be used to map each
property to the actual name of the column names. Lastly, the JPA domain model
must extend java.io.Serializable to make it a persistent data object:

import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.Table;

@Entity
@Table(name = "employee")
public class Employee implements Serializable {
 private Integer id;
 private Integer empid;
 private String firstname;
 private String lastname;
 private Integer age;
 private String email;
 private Date birthday;
 private Integer deptid;
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 public Integer getId() {
 return id;
}

// refer to sources
}

Spring Boot 2.0

[445]

Create a package org.packt.spring.boot.dao and create an interface5.
EmployeeRepository that extends
org.springframework.data.jpa.repository.JpaRepository. If the
requirement asks for simple CRUD operations with Iterable<T> return values,
use org.springframework.data.repository.CrudRepository. If the
service needs List<T> returned values and other additional features, use
JpaRepository:

@Repository
public interface EmployeeRepository extends
 JpaRepository<Employee, Integer> {
 List<Employee> findByDeptid(Integer deptid);
 List<Employee> findByFirstname(String firstname);
 List<Employee> findByLastname(String lastname);
 List<Employee> findByAge(Integer age);
}

Then, create a service class EmployeeService in6.
org.packt.spring.boot.service that contains the following template
methods:

public interface EmployeeService {
 public List<Employee> findEmployeeByDeptid(Integer deptid);
 public List<Employee>
findEmployeeByFirstname(String firstname);
 public List<Employee> findEmployeeByLastname(String
lastname);
 public List<Employee> findEmployeeByAge(Integer age);
 public List<Employee> findAllEmps();
}

Afterwards, implement EmployeeServiceImpl using the7.
EmployeeRepository:

@Service
@Transactional
public class EmployeeServiceImpl implements EmployeeService{
 @Autowired
 private EmployeeRepository employeeRepository;

 @Override
 public List<Employee> findEmployeeByDeptid(Integer deptid) {
 return employeeRepository.findByDeptid(deptid);
 }

 @Override

Spring Boot 2.0

[446]

 public List<Employee>
findEmployeeByFirstname(String firstname) {
 return employeeRepository.findByFirstname(firstname);
 }

 @Override
 public List<Employee> findEmployeeByLastname(String
lastname) {
 return employeeRepository.findByLastname(lastname);
 }

 @Override
 public List<Employee> findEmployeeByAge(Integer age) {
 return employeeRepository.findByAge(age);
 }

 @Override
 public List<Employee> findAllEmps() {
 return employeeRepository.findAll();
 }
}

The use of @Transactional is optional since HRBootApplication
enables the transaction management at the beginning.

Open DataHandler and add the following HandlerFunction<?> that will 8.
retrieve a stream of employees from the EmployeeRepository:

@Autowired
 private EmployeeService employeeServiceImpl;

public Mono<ServerResponse> empList(ServerRequest req) {
 Flux<Employee> flux =
 Flux.fromIterable(employeeServiceImpl.findAllEmps());
return
 ok().contentType(MediaType.APPLICATION_STREAM_JSON)
 .body(flux, Employee.class);
}

Spring Boot 2.0

[447]

Then open a ReactiveControllers configuration class and add the following9.
RouterFunction<?> that will execute the preceding HandlerFunction<?>:

@Bean
 public RouterFunction<ServerResponse> listAllEmps() {
 return route(GET("/routeEmps"),
dataHandler::empList);
}

Save all files. Execute clean spring-boot:run commands. Open a browser10.
and execute http://localhost:8095/routeEmps.

There is no need to add com.fasterxml.jackson.core dependencies,
since Spring Data starter is responsible for the JSON media type parsing.

How it works...
Spring Data JPA has been widely used in the lower versions of Spring Boot because of its
easy way of implementing transaction management on CRUD operations. This recipe just
proved that, even though Spring Data JPA offers non-reactive repository transactions, it can
still be used with Spring 5's reactive and functional web model. Spring Boot 2.0 supports
reactive Spring Data repositories, which will be discussed in the next chapters.

Spring Boot 2.0

[448]

Implementing REST services using
@RestController and Spring REST
Using HandlerFunction and RouterFunction in exposing repository data is the major
option that is the promoted by this chapter since everything is all about Spring 5. But there
are also non-reactive ways of exposing these data using the conventional
@RestController and Spring REST that are still present in Spring Boot 2.0, which can be
part of building reactive applications and microservices.

Getting started
Open ch09-flux and add the following Spring REST support for Spring Boot 2.0.

How to do it...
To implement REST services in Spring 5, follow these steps:

To enable Spring REST support, add the following starter POM dependency:1.

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-rest</artifactId>
</dependency>

All the annotations of SpringDataConfig needed to implement Spring Data JPA2.
are also needed here for Spring REST configuration.
Inside org.packt.spring.boot.dao, create a DepartmentRepository that3.
extends JpaRespository, which is the same API class used in the previous
recipe:

@RepositoryRestResource(collectionResourceRel="depts",
 path="depts")
public interface DepartmentRepository
extends JpaRepository<Department, Integer>{

 public List<Department> findByName(@Param("name") String
name);
 public List<Department> findByDeptid(
@Param("deptid") Integer deptId);
}

Spring Boot 2.0

[449]

The optional annotation @RepositoryRestResource is present because
the requirement wants the REST endpoint name to be shorter as /depts
than the default, which is /departments. Moreover, the @Param is
required to map the local parameter of the operations to the request
parameter value sent by the client.

To parse all the JSON request and response, inject the beans concerning JSON4.
converters to SpringDataConfig from RepositoryRestMvcConfiguration
by using @Import. Thus, there is no need to add the
com.fasterxml.jackson.core dependency.
However, even without Spring REST, Spring 5's reactive application can expose5.
any data using @RestController of Spring MVC components. The usual
@RequestMapping can still be used to map the handler to the URL with the
indicated HTTP method. But the modern way of mapping requests to a URL is
through the use of @GetMapping and @PostMapping annotations:

@RestController
public class RestServiceController {
 @Autowired
 private EmployeeService employeeServiceImpl;

 @RequestMapping("/objectSampleRest")
 public String exposeString() {
 return "Hello World";
 }
 @GetMapping("/monoSampleRest")
 public Mono<String> exposeMono() {
 return Mono.just("Hello World");
 }
 @GetMapping("/fluxSampleRest")
 public Flux<String> exposeFlux() {
 List<String> names = Arrays.asList("Anna", "John",
"Lucy");
 return Flux.fromIterable(names)
.map((str) -> str.toUpperCase() + "---");
 }
 @GetMapping("/fluxJpaEmps")
 public Flux<Employee> exposeJpaEmps() {
 return Flux.fromIterable(
employeeServiceImpl.findAllEmps());
 }
 @PostMapping(path = "/fluxAddEmp",
consumes = MediaType.APPLICATION_JSON_VALUE)
 public void addMonoEmp(@RequestBody Mono<Employee>
employee){

Spring Boot 2.0

[450]

 }
 @PostMapping(path = "/fluxAddListEmps",
consumes = MediaType.APPLICATION_JSON_VALUE)
 public void addFluxEmp(@RequestBody Flux<Employee>
employee){
 }
}

Save all files. Then clean and deploy the standalone Spring Boot application.6.
Open a browser and run http://localhost:8093/ch09-flux/fluxJpaEmps.

Spring Boot 2.0

[451]

How it works...
The recipe offers two ways to implement REST services using Spring Boot 2.0, and that is
through the use of the @RestController and Spring REST module. The only difference
between the two is that @RestController requires Spring MVC setup in order to generate
endpoints, while Spring Data REST is tied up with Spring Data JPA, so endpoints are
generated at the repository configuration.

The @GetMapping and @PostMapping annotations are new additions to the mapping
libraries that can be applied to @RestController transactions. If the handler needs to
produce data objects using the GET method, @GetMapping is applied. If the request
transaction needs to consume data objects using the POST method, @PostMapping is used
instead.

Implementing REST services in reactive applications is very important, especially if the
main goal is building microservice architecture.

Applying Spring Cache
This final recipe will be about enhancing data retrieval from the data source through Spring
Cache. Just like the rest of the recipes, Spring Boot 2.0 provides an auto-configuration when
it comes to caching. It supports cache implementations such as Ehcache, Infinispan,
Caffeine, Hazelcast, and Redis. The following is a recipe on how to use two caching
types in one reactive application.

Getting started
Open, for the last time, ch09-flux and enable Ehcache and Caffeine caching.

How to do it...
To enable Spring Cache in Spring Boot 2.0 application, follow these steps:

Add the starter POM for Spring Boot 2.0 caching:1.

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-cache</artifactId>
</dependency>

Spring Boot 2.0

[452]

For Ehcache auto-configuration, add the following Ehcache provider to the2.
Maven dependencies:

<dependency>
 <groupId>net.sf.ehcache</groupId>
 <artifactId>ehcache</artifactId>
 <version>2.9.0</version>
</dependency>

Also add the following Caffeine provider to the Maven dependencies:3.

<dependency>
 <groupId>com.github.ben-manes.caffeine</groupId>
 <artifactId>caffeine</artifactId>
 <version>2.5.2</version>
</dependency>

For Ehcache, copy the ehcache.xml of Chapter 5, Cross-Cutting the MVC, and4.
modify the cache name and diskStore path. Spring Boot's default cache type is
Ehcache and it always looks for the ehcache.xml in the
src/main/resources/ folder by default:

<?xml version="1.0" encoding="UTF-8"?>
<ehcache xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="ehcache.xsd"
 updateCheck="true"
 monitoring="autodetect"
 dynamicConfig="true">

 <diskStore path="C://ch09cached" />

 <cache name="departmentCache"
 maxEntriesLocalHeap="10000"
 maxEntriesLocalDisk="1000"
 eternal="false"
 diskSpoolBufferSizeMB="20"
 timeToIdleSeconds="300" timeToLiveSeconds="600"
 memoryStoreEvictionPolicy="LFU"
 transactionalMode="off">
 <persistence strategy="localTempSwap" />
 </cache>
</ehcache>

Spring Boot 2.0

[453]

To configure Caffeine cache manager, open application.properties and5.
add the following properties:

spring.cache.cache-names=employeeCache
spring.cache.caffeine.spec=maximumSize=500,
expireAfterAccess=30s

To finally enable caching, create a context definition class in6.
org.packt.spring.boot.config with the @EnableCaching annotation:

@Configuration
@EnableCaching
public class CachingConfig { }

Open DepartmentRespository and apply Ehcache cache:7.

@Repository
public interface EmployeeRepository extends
JpaRepository<Employee, Integer> {

 @Cacheable("employeeCache")
 List<Employee> findByDeptid(Integer deptid);
 @Cacheable("employeeCache")
 List<Employee> findByFirstname(String firstname);
 @Cacheable("employeeCache")
 List<Employee> findByLastname(String lastname);
 @Cacheable("employeeCache")
 List<Employee> findByAge(Integer age);
}

Open EmployeeRepository and apply Caffeine cache:8.

@Repository
public interface EmployeeRepository extends
 JpaRepository<Employee, Integer> {

 @Cacheable("employeeCache")
 List<Employee> findByDeptid(Integer deptid);
 @Cacheable("employeeCache")
 List<Employee> findByFirstname(String firstname);
 @Cacheable("employeeCache")
 List<Employee> findByLastname(String lastname);
 @Cacheable("employeeCache")
 List<Employee> findByAge(Integer age);
}

Save all files. Then clean and deploy the project ch09-flux.9.

Spring Boot 2.0

[454]

How it works...
Spring Boot 2.0 supports auto-configuration of Spring Cache and can even use multiple
cache implementations working altogether during testing, development and deployment
stages. Ehcache and JCache are the widely used types in caching huge JPA data to main
high performance on CRUD transactions.

10
The Microservices

After the success of service-oriented architecture (SOA), the term microservice has been in
the enterprise software development for quite a while now and is popular and useful to
many experts in building up decomposed services and domain models in many huge
applications. Either to be used for small or huge enterprise software development, the
purpose of microservice architecture is to break down monolithic software prototypes into
independent and granulized service boxes, each having an independent set of objectives
and tasks that can be pulled to decorate a needed requirement. Unlike in distributed
architecture where each submodule does not necessarily interact with the other at runtime,
in microservice design there is always a gray area where these service boxes communicate
depending on the modes and approaches of inter-process communication.

But this chapter will not discuss the theoretical concept of microservices per se, rather, it
will prove that Spring 5 supports and helps build microservices, either with typical RESTful
web services for synchronous transactions or with @Async, Callable<T> and
DeferredResult<T> tasks for asynchronous services. Moreover, one of the main
highlights also is the newest reactive microservice architecture made up of the Flux<T>,
Mono<T> and Publisher<T> data streams generated from Spring Data JPA repositories.
Based on the core concepts of a reactive and functional web framework of Chapter 9, Spring
Boot 2.0, some recipes in this chapter will emphasize building, organizing, and managing
reactive RESTful services that will comprise these microservices from different domain
responsibilities. Likewise, constructing the client-side application that will consume all the
exposed endpoints will also be included.

The Microservices

[456]

On the other hand, this chapter will also be about interaction among microservices and how
the libraries of Spring Cloud work with Spring Boot 2.0.0.M2 in managing the design of
these microservices.

In this chapter you will learn:

Exposing RESTful services in Spring 5
Using the actuator REST endpoints
Building a client-side application with RestTemplate, AsyncRestTemplate, and
WebClient
Configuring the Eureka server for service registration
Implementing the Eureka service discovery and client-side load balancing
Applying resiliency to client application
Consuming endpoints using a declarative method
Using Docker for deployment

Exposing RESTful services in Spring 5
Let us start this chapter with a recipe that will construct, organize, and build microservices
based on the hrs database. The login, employee, and department domains will have
separate and independent microservices catering all the GET and POST request transactions
exposed as blocking, asynchronous and reactive RESTful that Spring 5 can support. This
recipe will require concepts discussed in the previous chapters.

Getting started
Create Maven projects for each domain responsibility and apply synchronous,
asynchronous, and reactive implementation of services and controllers.

The Microservices

[457]

How to do it...
Let us create our first synchronous, asynchronous and reactive microservices by following
these steps:

Using Eclipse STS, create a Maven project for a Spring Boot application named1.
ch10-deptservice that will represent a microservice for the department
domain. Then, create a POM configuration which includes all the needed Spring
Boot 2.0.0.M2 starter POM libraries, such as WebFlux, Spring Context, JDBC,
HikariCP connection pool, Ehcache, JPA, embedded reactive Tomcat container,
Reactor Netty container, FreeMarker and Thymeleaf. Also include some
required support libraries, such as MySQL 5.x connector and Rx Java 2.0:

<project xmlns="...">
 <modelVersion>4.0.0</modelVersion>

 <packaging>war</packaging>
 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.0.0.M2</version>
 <relativePath/>
 </parent>
 <properties>
 <project.build.sourceEncoding>
UTF-8</project.build.sourceEncoding>
 <project.reporting.outputEncoding>
UTF-8</project.reporting.outputEncoding>
 <java.version>1.8</java.version>
 <startClass>org.packt.spring.boot.HRDeptBootApplication
</startClass>
 </properties>
 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-jdbc</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-webflux</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-tomcat</artifactId>
 </dependency>
 ...

The Microservices

[458]

 <dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 <version>5.1.40</version>
 </dependency>
 <dependency>
 <groupId>io.reactivex.rxjava2</groupId>
 <artifactId>rxjava</artifactId>
 <version>2.1.0</version>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 <finalName>ch10-dept</finalName>
 </build>
</project>

Create the core package, org.packt.microservice.core, and drop a2.
bootstrap class inside it named as HRDeptBootApplication. Update the
<startClass> property of pom.xml:

@SpringBootApplication
public class HRDeptBootApplication extends
 SpringBootServletInitializer {
 @Override
 protected SpringApplicationBuilder
 configure(SpringApplicationBuilder application) {
 return application.sources(
HRDeptBootApplication.class);
 }
 public static void main(String[] args) throws Exception {
 SpringApplication.run(HRDeptBootApplication.class,
args);
 }
}

The Microservices

[459]

Create another package, org.packt.microservice.core.config, for the3.
reactive ApplicationContext configuration details. Drop the following
@Configuration classes inside this package:

@Configuration
@EnableCaching
public class CachingConfig { // empty }

@Configuration
@EnableJpaRepositories(
basePackages="org.packt.microservice.core.dao")
@Import(RepositoryRestMvcConfiguration.class)
@EnableTransactionManagement
public class SpringDataConfig { // empty }

@EnableAsync
@Configuration
public class SpringAsynchConfig implements AsyncConfigurer {
 private static Logger logger =
 LoggerFactory.getLogger(SpringAsynchConfig.class);
 @Bean("mvcTaskexecutor")
 @Override
 public Executor getAsyncExecutor() {
 ConcurrentTaskExecutor executor =
new ConcurrentTaskExecutor(
 Executors.newFixedThreadPool(100));
 executor.setTaskDecorator(new TaskDecorator() {
 @Override
 public Runnable decorate (Runnable runnable) {
 return () -> {
 long t = System.currentTimeMillis();
 runnable.run();
 logger.info("creating
 ConcurrentTaskExecutor");
 System.out.printf("Thread %s has a
 processing time: %s%n",
 Thread.currentThread().getName(),
 (System.currentTimeMillis() -
t));
 };
 }
 });
 return executor;
 }
}

@Configuration

The Microservices

[460]

@EnableWebFlux
public class HttpServerConfig {
 @Bean
 public NettyContext nettyContext(ApplicationContext context)
{
 HttpHandler handler =
 DispatcherHandler.toHttpHandler(context);
 ReactorHttpHandlerAdapter adapter =
new ReactorHttpHandlerAdapter(handler);
 HttpServer httpServer = HttpServer.create("localhost",
 Integer.valueOf("9003"));
 return httpServer.newHandler(adapter).block();
}
}

All of these @Configuration are just the same as the previous chapters.

Copy the ehcache.xml and logback.xml configuration files of the previous4.
chapter and drop them to this project's src/main/resources folder. Update the
new Ehcache's diskStore and Logger's log file path for this project.
Also in src/main/resources, create the required application.properties5.
for the auto-configuration of the embedded reactive Tomcat, JDBC and HikariCP
data source setup with JPA and Hibernate 5 data persistency configuration:

server.port=8090
server.servlet.context-path=/ch10-dept

spring.datasource.driverClassName=com.mysql.jdbc.Driver
spring.datasource.url=jdbc:mysql://localhost:3306/hrs?autoRecon
nect=true&useSSL=true&serverSslCert=classpath:config/spring5pac
kt.crt
spring.datasource.username=root
spring.datasource.password=spring5mysql
spring.datasource.hikari.connection-timeout=60000

spring.jpa.hibernate.use-new-id-generator-mappings=false

The Microservices

[461]

Building the proper RESTful services starts with the correct JPA entities. Copy6.
and drop the Department entity model used in ch09 to a new package
org.packt.microservice.core.model.data.

Together with the entity models, create an auxiliary POJO that will contain7.
aggregate and simple data value such as the total number of departments which is a
Long object type. The main reason behind this is that JSON and XML marshallers
do not directly convert wrapper objects (for example, Integer, Double, Float) into
JSON objects or XML entities:

public class CountDept implements Serializable{
 private Long count;

 public Long getCount() {
 return count;
 }

 public void setCount(Long count) {
 this.count = count;
 }
}

Then, implement the @Repository class for DepartmentDao using Spring Data8.
JPA. Apply Ehcache caching to each data retrieval operation. Drop this class
inside org.packt.microservice.core.dao package:

@Repository
public interface DepartmentRepository extends
 JpaRepository<Department, Integer>{

 @Cacheable("departmentCache")
 public List<Department> findByName(String name);
 @Cacheable("departmentCache")
 public List<Department> findByDeptid(Integer deptId);
}

Next, create a DepartmentService, that will compose the RESTful services to be9.
exposed by the microservice. The template includes both asynchronous and
synchronous service signatures:

public interface DepartmentService {
 public Department findDeptByid(Integer id);
 public List<Department> findAllDepts();
 public List<Department> findDeptsByName(String name);
 public List<Department> findDeptsByDeptId(Integer deptid);

The Microservices

[462]

 public void saveDeptRec(Department dept);

 public CompletableFuture<List<Department>>
readDepartments();
 public Future<Department> readDepartment(Integer id);
}

Implement the service class using the preceding DepartmentRepository class.10.
The implementations include blocking transactions and non-blocking ones that
return Future and CompletableFuture tasks. And, since the
@EnableTransactionManagement has been invoked by the configuration class
SpringDataConfig, the @Transactional annotation must be applied per
service implementation class for JPA persistency and commit/rollback
management:

@Service
@Transactional
public class DepartmentServiceImpl implements
DepartmentService{
 @Autowired
 private DepartmentRepository departmentRepository;

 @Override
 public List<Department> findAllDepts() {
 return departmentRepository.findAll();
 }

 @Override
 public List<Department> findDeptsByName(String name) {
 return departmentRepository.findByName(name);
 }

 // refer to sources
 @Override
 public CompletableFuture<List<Department>> readDepartments()
{
 return CompletableFuture.completedFuture(
departmentRepository.findAll());
 }
 @Async
 public Future<Department> readDepartment(Integer id) {
 return new AsyncResult<>(departmentRepository.findById(id)
.orElse(new Department()));
 }
}

The Microservices

[463]

Spring 5's RouterFunction<?> has a separate set of services, which are written11.
as a handler class. A handler class contains all the HandlerFunction<?>
implementation that can be mapped later with the corresponding URL. Below is a
handler class for this microservice that must be placed inside the
org.packt.microservice.core.handler package:

@Component
public class DeptDataHandler {
 // refer to sources
 public Mono<ServerResponse> deptList(ServerRequest req) {
 Flux<Department> flux = Flux.fromIterable(
departmentServiceImpl.findAllDepts());
 return ok().contentType(MediaType.APPLICATION_STREAM_JSON)
.body(flux, Department.class);
 }

 public Mono<ServerResponse> chooseDeptById(ServerRequest
req) {
 Scheduler subWorker = Schedulers.newSingle("sub-thread");
 Mono<Department> emp = Mono.defer(() -> Mono.justOrEmpty(
departmentServiceImpl.findDeptByid(
Integer.parseInt(req.pathVariable("id")))))
.subscribeOn(subWorker);
 return ok().contentType(MediaType.APPLICATION_STREAM_JSON)
.body(emp, Department.class)
 .switchIfEmpty(ServerResponse.notFound().build());
 }

 public Mono<ServerResponse> chooseFluxDepts(ServerRequest
req) {
 return ok().contentType(MediaType.APPLICATION_STREAM_JSON)
.body(req.bodyToFlux(Integer.class)
.flatMap((id) -> Mono.justOrEmpty(
departmentServiceImpl.findDeptByid(id))),
 Department.class)
 .switchIfEmpty(ServerResponse.notFound().build());
 }

 public Mono<ServerResponse> saveDepartmentMono(
ServerRequest req) {
 Scheduler subWorker = Schedulers.newSingle("sub-thread");
 Mono<Department> department = req.bodyToMono(
Department.class).doOnNext(
departmentServiceImpl::saveDeptRec)
.subscribeOn(subWorker);
 return ok().contentType(
MediaType.APPLICATION_STREAM_JSON)

The Microservices

[464]

.build(department.then());
 }

 public Mono<ServerResponse> countDepts(ServerRequest req) {
 Mono<Long> count = Flux.fromIterable(departmentServiceImpl
.findAllDepts()) .count();
 CountDept countDept = new CountDept();
 countDept.setCount(count.block());
 Mono<CountDept> monoCntDept = Mono.justOrEmpty(countDept);
 return ok().contentType(
MediaType.APPLICATION_STREAM_JSON)
.body(monoCntDept, CountDept.class)
 .switchIfEmpty(ServerResponse.notFound().build());
 }
}

At this point, synchronous, asynchronous, and reactive RESTful services can now be12.
implemented to build this microservice for the department domain. Let us start
by implementing the GET and POST synchronous REST web services using the
@RestController, @GetMapping, and @PostMapping of Spring 5:

@RestController
public class DeptBlockingController {
 @Autowired
 private DepartmentService departmentServiceImpl;
 @GetMapping(value="/selectDept/{id}",
produces= MediaType.APPLICATION_JSON_VALUE)
 public Department blockDepartment(
@PathVariable("id") Integer id) {
 return departmentServiceImpl.findDeptByid(id);
 }
 @GetMapping(value="/listDept",
produces= MediaType.APPLICATION_JSON_VALUE)
 public List<Department> blockListDept() {
 return departmentServiceImpl.findAllDepts();
 }
 @PostMapping(value="/saveDeptRec",
consumes= MediaType.APPLICATION_JSON_VALUE)
 public Boolean blockSaveDept(@RequestBody Department dept) {
 try{
 departmentServiceImpl.saveDeptRec(dept);
 return true;
 }catch(Exception e){
 return false;
 }
 }
}

The Microservices

[465]

Now, build the asynchronous REST services that use WebAsyncTask, Callable,13.
and DeferredResult tasks that return the Future<T> and
CompletableFuture<T> objects:

@RestController
public class DeptAsyncController {
 @Autowired
 private DepartmentService departmentServiceImpl;
 @GetMapping(value="/webSyncDeptList.json",
produces ="application/json",
headers = {"Accept=text/xml, application/json"})
 public WebAsyncTask<List<Department>> websyncDeptList(){
 Callable<List<Department>> callable =
new Callable<List<Department>>() {
 public List<Department> call() throws Exception {
 return departmentServiceImpl
.readDepartments().get(500, TimeUnit.MILLISECONDS);
 }
 };
 return new WebAsyncTask<List<Department>>(500, callable);
 }
 @GetMapping(value="/deferSelectDept/{id}.json",
produces ="application/json",
headers = {"Accept=text/xml, application/json"})
 public DeferredResult<Department> deferredSelectDept(
@PathVariable("id") Integer id) {
 DeferredResult<Department> deferredResult =
new DeferredResult<>();
 CompletableFuture.supplyAsync(()->{
 try {
 return departmentServiceImpl
.readDepartment(id).get();
 } catch (InterruptedException e) { }
 catch (ExecutionException e) { }
 return null;
 }).thenAccept((msg)->{
 deferredResult.setResult(msg);
 });
 return deferredResult;
 }
 @GetMapping(value="/callSelectDept/{id}.json",
 produces ="application/json",
 headers = {"Accept=text/xml, application/json"})
 public Callable<Department> jsonSoloEmployeeCall(
 @PathVariable("id") Integer id){
 Callable<Department> task = new Callable<Department>() {
 @Override

The Microservices

[466]

 public Department call () throws Exception {
 Department dept = departmentServiceImpl
.readDepartment(id).get();
 return dept;
 }
 };
 return task;
 }
}

The last set of REST services are the reactive ones which can be implemented in14.
two ways: using the typical @RestController and applying the functional and
web framework APIs, namely the RouterFunction<T> and
HandlerFunction<T> of Spring 5. The following are the reactive services for the
department microservice implemented by @RestController:

@RestController
public class DeptReactiveController {
 @Autowired
 private DepartmentService departmentServiceImpl;
 @GetMapping("/selectReactDepts")
 public Flux<Department> selectReactDepts() {
 return Flux.fromIterable(
departmentServiceImpl.findAllDepts());
 }
 @GetMapping("/selectReactDept/{id}")
 public Mono<Department> selectReactDept (
@PathVariable("id") Integer id) {
 return Mono.justOrEmpty(
departmentServiceImpl.findDeptByid(id))
 .defaultIfEmpty(new Department());
 }
 @PostMapping("/saveReactDept")
 public Mono<Void> saveReactDept(
@RequestBody Department dept) {
 return Mono.justOrEmpty(dept)
.doOnNext(departmentServiceImpl::saveDeptRec).then();
 }
}

The Microservices

[467]

The following are the reactive REST services built by Spring 5's reactive15.
functional web framework written inside @Configuration class:

import static
org.springframework.web.reactive.function.server.RequestPredica
tes.GET;
import static
org.springframework.web.reactive.function.server.RequestPredica
tes.POST;
import static
org.springframework.web.reactive.function.server.RouterFunction
s.route;
@Configuration
@EnableWebFlux
public class DeptReactFuncControllers {
 @Autowired
 private DeptDataHandler dataHandler;
 @Bean
 public RouterFunction<ServerResponse>
 departmentServiceBox(){
 return route(GET("/listFluxDepts"),
 dataHandler::deptList)
 .andRoute(GET("/selectDeptById/{id}"),
 dataHandler::chooseDeptById)
 .andRoute(POST("/selectFluxDepts"),
 dataHandler::chooseFluxDepts)
 .andRoute(POST("/saveFluxDept"),
 dataHandler::saveDepartmentMono)
 .andRoute(GET("/countFluxDepts"),
 dataHandler::countDepts);
 }
}

Save all files. Build and deploy the reactive web project by running the Maven16.
command clean spring-boot:run -U -e. Open a browser and execute all the
GET services. If no errors and exceptions are found, name this application as the
Department microservice.
Copy the Login and Employee domains from the previous chapter and perform17.
again all the processes in this recipe to build two more service boxes namely the
Employee microserviceas ch10-empservice and Login microserviceas ch10-
loginservice project.

The Microservices

[468]

How it works...
Building microservices has always been a good enterprise solution to break down
monolithic applications into functional components that can still interact with each other at
runtime, yet have no dependencies on each other when it comes to scalability and code
maintenance. Since the first chapter, this book has been using the hrs databases consisting
of three domain scopes in one application: the login, the employee, and the department
domains. It has reached this point where we design and build each domain its own Spring
Boot application which caters all the request-response transactions through RESTful
services only within the bound of its domain's details.

From the previous huge application, the completion of this recipe will lead us to three
applications that depict three service boxes that run side-by-side that can cater the same as
the typical single HR application but with more manageable components. This kind of
architecture cannot be possible without the use of @RestController and its related
annotations to expose services that can respond to all user requests to transact with the hr
data source.

But what is unique with this recipe is the clear proof that the Spring 5 web and functional
framework has strong support not only for the usual blocking services, but also for the
asynchronous and reactive RESTful service implementation. It gives us an approach to
build a service box that can contain any of these types or all of them to satisfy client
requirement. Spring Boot 2.0 has provided us the easiest and most straightforward
methodology for building reactive microservices. The following diagram will summarize
the three microservices after this recipe:

The Microservices

[469]

Using the actuator REST endpoints
From one huge reactive web application, the previous recipe built three service boxes which
are all Spring Boot 2.0 applications. As the number of microservices increases, the
management and monitoring of each application becomes inconvenient and time-
consuming. Spring Boot 2.0 supports a starter POM that provides audits, metrics, status,
management operations, and other analytics that can assist in monitoring each
microservice. This dependency is inherited from the repository as the spring-boot-
starter-actuator.

Getting started
This recipe will need the three Maven projects, ch10-deptservice, ch10-empservice,
and ch10-loginservice to contain the Spring Boot Actuator in their respective pom.xml
to view application details and enable shutdown operations to avoid the
java.net.BindException: Address already in use: bind problem.

The Microservices

[470]

How to do it...
Follow these steps to enable Spring Boot Actuator starter POM dependency:

Open the pom.xml of the three Spring Boot 2.0 applications and add the1.
following POM starter library.

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-actuator</artifactId>
</dependency>

To avoid conflicts and URL mapping problems, configure the actuator module by2.
adding the following properties to each application.properties. Below are
the configuration details added to ch10-deptservice:

management.port=8090
management.address=localhost
management.context-path=/appdetails

endpoints.info.enabled=true
endpoints.info.sensitive=false
endpoints.info.id=info
info.app.description=Department Microservice
info.app.version=1.0.0

endpoints.sensitive=false
endpoints.shutdown.sensitive=false
endpoints.shutdown.enabled=true

After updating all the application.properties to accommodate the actuator3.
configuration for ch10-deptservice, save all projects and deploy all the
microservices. Be sure to have a different server.port and management.port
for each service box to avoid JVM BindException.
Since the actuator's security management is disabled, actuator REST endpoints4.
are not sensitive and all endpoints are open for access. Execute actuator by
running custom actuator endpoint
http:/localhost:xxxx/ch10-xxxx/appdetails to check the available
management services available for each microservice.

The Microservices

[471]

Open three browsers and try running /appdetails/info from each5.
microservice to view the custom project description and version.
Since the actuator's /shutdown endpoint service is enabled, we can now6.
shutdown each microservice using the curl command. Download curl for
Windows from the site http://www.paehl.com/open_source/?CURL_7.28.0
and unzip the curl.exe file to C:/Windows/System32. Afterwards, open a
terminal console using the Administrator's account and execute curl -XPOST
http://localhost:xxxx/ch10-xxxx/appdetails/shutdown -k:

This execution is only applicable to the embedded server auto-configured
by the bootstrap. The Reactor Netty server configured in
HttpServerConfig does not always comply with the actuator
/shutdown.

How it works...
Spring Boot 2.0 offers built-in REST endpoints that can be used by experts to view the
information about the microservice application. Some of these endpoints are not available
readily or are sensitive and need user credentials, but some are for public use by default. To
enable these endpoints, we can just open the application.properties and apply the
necessary settings just like what the recipe did to /shutdown which is disabled by default.

The Microservices

[472]

Customizing the actuator module starts at the management endpoint, which is executed
through /actuator by default but was changed to /appdetails in this recipe through
management.context-path setting. Running this actuator main endpoint will list all the
supported endpoints for monitoring the microservice:

One of the widely used endpoints is /metrics, which gives the snapshot on the JVM
memory space and heap status of the running microservice. Likewise, /health is always
executed to check if the application is running smoothly or not, and /mappings to check all
the registered URL request mappings. But above all, it is a necessity to properly shut down
each microservice through the /shutdown endpoint which can easily be invoked through
the curl command.

The Microservices

[473]

Adding the Spring Boot Actuator module is essential, primarily because we acknowledge
the importance of RESTful services, not only in building service boxes but also in
establishing an interaction between the application and the software builder.

Building a client-side application with
RestTemplate, AsyncRestTemplate and,
WebClient
After implementing the RESTful services, let us showcase the procedures on how to
consume synchronous, asynchronous and reactive RESTful services from the three
microservices using client APIs offered by Spring 5.

Getting started
Deploy all the error-free Employee, Department and Login microservices. Let us now
create a Maven project that will serve as a client application to the exposed web services of
these three applications.

How to do it...
Let us build a REST client application by following these steps:

Create a ch10-reports Maven project and configure pom.xml similar to the1.
previous projects. Add the parent POM for Spring Boot 2.0.0.M2 and all its
starter POM dependencies. Just like in the previous recipe, also include the
needed support libraries for MySQL connectivity and RxJava 2.0.
Copy all the data model classes from ch09 and place them inside a new2.
org.packt.microservice.client.model.data package (such as AveAge,
CountDept, Employee, Department, and so on).
Add a bootstrap class for this project inside a root package:3.
org.packt.microservice.client:

@Configuration
@ComponentScan("org.packt.microservice.client")
@EnableAutoConfiguration(
 exclude={FreeMarkerAutoConfiguration.class,
 ThymeleafAutoConfiguration.class})

The Microservices

[474]

public class HRClientBootApplication extends
 SpringBootServletInitializer {
@Override
 protected SpringApplicationBuilder
 configure(SpringApplicationBuilder application) {
 return
application.sources(HRClientBootApplication.class);
 }

 public static void main(String[] args) throws Exception {
 SpringApplication.run(HRClientBootApplication.class,
args);
 }
}

Since I plan to deploy this project to the external Tomcat 9 server as a
Spring MVC project, I disabled the webflux default auto-configuration for
Thymeleaf and FreeMarker view technologies to avoid exceptions.

Inside the src/main/resources folder, create the application.properties4.
and add the following auto-configuration settings in it:

server.port=8443
server.servlet.context-path=/ch10-reports
server.ssl.key-store=config/spring5server.keystore
server.ssl.key-store-password=packt@@
server.ssl.keyStoreType=PKCS12
server.ssl.keyAlias=spring5server

spring.datasource.jmx-enabled=false

The data source auto-configuration is disabled in this project.

The Microservices

[475]

Enable webflux components through the following @Configuration class to be5.
dropped in the org.packt.microservice.client.config package:

@Configuration
@EnableWebMvc
public class WebFluxConfig { // empty }

The class org.springframework.web.client.RestTemplate is used to6.
execute all typical and synchronous RESTful web services. To enable its use
across the platform, inject RestTemplate bean instance into the WebFluxConfig
container:

@Configuration
@EnableWebMvc
public class WebFluxConfig {
 @Bean
 public RestTemplate restTemplate() {
 return new RestTemplate();
 }
}

Emphasis is on the @EnableWebMvc since this project will be a Spring
MVC project.

Create a typical ClientBlockingController that uses RestTemplate to7.
consume REST endpoints of some blocking request transactions exposed from
any of the three microservices:

@Controller
public class ClientBlockingController {
 @Autowired
 protected RestTemplate restTemplate;
 @RequestMapping("/blockingString")
 @ResponseBody
 public String clientSelectEmps() {
 return restTemplate.getForObject(
"http://localhost:8092/ch10-emp/objectSampleRest",
 String.class);
 }
 @RequestMapping(value="/blockingEmployee/{id}",
produces= MediaType.APPLICATION_JSON_VALUE)
 @ResponseBody
 public Employee clientSelectEmp(
@PathVariable("id") Integer id) {

The Microservices

[476]

 HttpHeaders headers = new HttpHeaders();
 headers.set("Accept", MediaType.APPLICATION_JSON_VALUE);
 HttpEntity<String> entity = new HttpEntity<>(headers);
 ResponseEntity<Employee> response =
restTemplate.exchange(
"http://localhost:8092/ch10-emp/selectEmp/{id}" ,
 HttpMethod.GET, entity, Employee.class, id);
 return response.getBody();
 }
 @RequestMapping(value="/blockingSaveDept",
 method=RequestMethod.POST,
consumes= MediaType.APPLICATION_JSON_VALUE)
 @ResponseBody
 public String clientSaveDept(
@RequestBody Department dept){
 try{
 restTemplate.postForObject(
"http://localhost:8090/ch10-dept/saveDeptRec",
dept, Department.class);
 return "OK";
 }catch(Exception e){
 return "NOT OK";
 }
 }
}

To run asynchronous RESTful endpoints that expose Callable<T>,8.
WebAsyncTask<T> and DeferredResult<T> tasks, use the
org.springframework.web.client.AsyncRestTemplate. To enable their
usage, inject its bean object to WebFluxConfig container.

@Bean
 public AsyncRestTemplate asyncRestTemplate(){
 AsyncRestTemplate art = new AsyncRestTemplate();
 return art;
}

Create another simple ClientAsyncController that will house all client-side9.
executions of some asynchronous RESTful services from any of the three
microservices:

@Controller
public class ClientAsyncController {
 @Autowired
 private AsyncRestTemplate asyncRestTemplate;
 @RequestMapping(value="/asyncSelectEmp/{id}",
 produces=MediaType.APPLICATION_JSON_VALUE)

The Microservices

[477]

 @ResponseBody
 public Employee asyncSelectEmps(
@PathVariable("id") Integer id){
 String url ="http://localhost:8092/
ch10-emp/callSelectEmp/{id}.json";
 HttpMethod method = HttpMethod.GET;
 HttpHeaders headers = new HttpHeaders();
 headers.set("Accept", MediaType.APPLICATION_JSON_VALUE);
 HttpEntity<String> requestEntity =
new HttpEntity<String>("params", headers);
 ListenableFuture<ResponseEntity<Employee>> future =
 asyncRestTemplate.exchange(url, method, requestEntity,
 Employee.class, id);
 try {
 ResponseEntity<Employee> entity = future.get();
 return entity.getBody();
 } catch (InterruptedException e) { }
catch (ExecutionException e) { }
 return null;
 }
}

To execute the reactive RESTful services, Spring 5 offers a new API10.
org.springframework.web.reactive.function.client.WebClient that is
available by default in the webflux configuration. The WebClient executes
reactive request transactions either exposed through @RestController or
RouterFunction<?>. Create a typical controller that will consume all reactive
services exposed by the embedded reactive Tomcat server and Reactor Netty
server:

@Controller
public class ClientReactiveController {
 // From Tomcat server
 @RequestMapping("/reactEmps")
 public Flux<Employee> sayFlux() {
 return WebClient.create().method(HttpMethod.GET)
 .uri("http://localhost:8092/
 ch10-emp/selectReactEmps")
 .contentType(
 MediaType.APPLICATION_JSON_UTF8)
.retrieve().bodyToFlux(Employee.class);
 }
 @RequestMapping("/reactSelectEmps/{id}")
 public Flux<Employee> sayFlux(@PathVariable("id") Integer id)
{
 return WebClient.create().method(HttpMethod.GET)
 .uri("http://localhost:8092/

The Microservices

[478]

ch10-emp/selectReactEmp/" + id)
 .contentType(
MediaType.APPLICATION_JSON_UTF8)
.retrieve().bodyToFlux(Employee.class);
 }
 // From Netty Server
 @RequestMapping("/reactFuncEmps")
 public Flux<Employee> sayhandler() {
 return WebClient.create().method(HttpMethod.GET)
 .uri("http://localhost:8902/listFluxEmps")
 .contentType(
MediaType.APPLICATION_JSON_UTF8)
.retrieve().bodyToFlux(Employee.class);
 }
 @RequestMapping("/reactCountDept")
 public Mono<CountDept> count() {
 return WebClient.create().method(HttpMethod.GET)
 .uri("http://localhost:8901/countFluxDepts")
 .contentType(
MediaType.APPLICATION_OCTET_STREAM)
.retrieve().bodyToMono(CountDept.class);
 }
 @RequestMapping(value="/reactSaveEmp",
consumes= MediaType.APPLICATION_JSON_VALUE)
 @ResponseBody
 public String hello(@RequestBody Employee employee){
 Mono<ClientResponse> resp = WebClient.create().post()
.uri("http://localhost:8902/saveEmp")
.accept(MediaType.APPLICATION_JSON)
 .body(BodyInserters.fromObject(employee))
.exchange();
 return resp.block().statusCode().name();
 }
}

Save all files. Then clean, build, and install the project to our external11.
Tomcat 9.x server. Open a browser and execute all GET REST endpoints.

The Microservices

[479]

How it works...
Spring 5 framework provides all the API classes to consume any types of RESTful services.
If the web services are synchronous types, the boiler-plated template class RestTemplate is
used to call, execute, and process the response of any GET, POST, HEAD, PUT, DELETE, and
OPTIONS request through its utility methods getForObject(), postForObject(),
headForHeaders(), put() and delete(). It has a specialized method exchange() which
can work with any HTTP methods, also with or without request parameters. It aims to
return ResponseEntity that contains the callback headers, status and the body of the
response. Since Spring Boot 2.0 has a built in XML marshaller/unmarshaller and JSON
encoding/decoding support, RestTemplate can now easily produce and consume an
individual or list of model objects, except asynchronous and reactive REST web services
since it is designed to work with a single-threaded and blocking client model. Although
deprecated, Spring 5 still supports AsyncRestTemplate that has the core methods of
RestTemplate but only works with an asynchronous and non-blocking REST client model.
Executing endpoints with this class generates ListenableFuture<T> tasks which can
either wrap a result or be null depending on the thread pool executions.

When it comes to reactive REST services, Spring 5 provides a new class WebClient that is
purely reactive and is composed of reactive operators that can understand Reactor Stream
components. This reactive HTTP client is created through its method create() and then
asks for the type of HTTP method() exposed by the endpoint URL indicated in its uri()
method. Further information, such as the header types, will be needed before it invokes
retrieve() and converts the response to Mono<T> or Flux<T>. During POST transactions,
WebClient uses org.springframework.web.reactive.function.BodyInserters to
pass the typical entity model or Publisher<T> as form data to the endpoint before it
invokes exchange() method. All request-response transactions involved in any
WebClient processing are composed of reactive operators that RestTemplate and
AsyncRestTemplate will not understand.

The Microservices

[480]

Configuring the Eureka server for service
registration
Another version of building microservices is through Spring Cloud Finchley modules that
support creating a service registry of microservices with the Spring 5's reactive platform.
This recipe will showcase how to build a cloud-based environment that can host instances
or nodes of service instances in one server machine.

Getting started
Using the latest Spring Cloud modules for Spring Boot 2.0.0.M2, let us create a Eureka
server that will be responsible for hosting the Department, Employee, and Login
microservices to form one cloud of services that can only be distinguished through their
HTTP ports.

How to do it...
Let us create our first Eureka cloud-based services through these steps:

First, create a Spring Boot application that will be deployed and run as a Eureka1.
server and nothing else. Name the project ch10-eureka-hrs. It should contain
only the core starter POM dependencies such as the spring-boot-starter-
webflux since this will just access the microservices.
To enable Spring Cloud Finchley modules, add the following dependency2.
management component inside the pom.xml:

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>Finchley.M1</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

The Microservices

[481]

Afterwards, add the following Spring Cloud starter POM to the Maven3.
dependencies of our pom.xml:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-eureka</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-eureka-server</artifactId>
</dependency>

Also add the actuator module and enable the /shutdown endpoint to shut4.
down the application:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-actuator</artifactId>
</dependency>

Now, create the core package org.packt.microservice.server that contains5.
the bootstrap class HRSEurekaBootApplication that will purposely load and
execute all the needed Eureka management and monitoring commands once
deployed. The indicator that it is a Eureka server is the class-level annotation
@EnableEurekaServer found in the bootstrap:

@SpringBootApplication
@EnableEurekaServer
public class HRSEurekaBootApplication {
 public static void main(String[] args) {
 SpringApplication.run(HRSEurekaBootApplication.class,
args);
 }
}

The Microservices

[482]

In src/main/resources, add an application.properties that will auto-6.
configure this application to become a server only because, by default, Eureka
could be both the client and the server which can be a mess when it comes to
huge microservice design architecture. Likewise, add all the needed properties
for the actuator endpoint:

eureka.instance.hostname=localhost
spring.application.name=eureka
server.port=5566
eureka.client.register-with-eureka=false
eureka.client.fetch-registry=false

spring.datasource.jmx-enabled=false

management.port=5566
management.address=localhost
management.context-path=/appdetails

endpoints.info.enabled=true
endpoints.info.sensitive=false
endpoints.info.id=info
info.app.description=HRS Eureka Server
info.app.version=1.0.0

endpoints.sensitive=false
endpoints.shutdown.sensitive=false
endpoints.shutdown.enabled=true

Save all files. Run clean spring-boot:run -U to deploy the application. Open7.
a browser and access http://localhost:5566/:

The Microservices

[483]

Although you can convert the previous ch10-deptservice, ch10-empservice,8.
and ch10-loginservice to become the Eureka clients, this recipe decided to
create three separate instances which expose the same RESTful services. To start,
create an empty Maven project ch10-depts-instance whose pom.xml is the
same as ch10-deptservice with the inclusion of Spring Cloud Finchley
dependency management component.

Given the added plug-in, add the following Spring Cloud starter POM9.
dependencies needed to set up a Eureka client instance:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-eureka</artifactId>
</dependency>

Then, create the core package org.packt.microservice.instance with the10.
bootstrap class DeptInstanceBootApplication. To enable Eureka server
registration of this instance, add the @EnableDiscoveryClient or
@EnableEurekaClient to the bootstrap. These annotations will tell the Eureka
server to explicitly discover this instance with its port and register it to its
instance store:

@SpringBootApplication
@EnableDiscoveryClient
public class DeptInstanceBootApplication {
 public static void main(String[] args) throws Exception {
SpringApplication.run(DeptInstanceBootApplication.class,
 args);
 }
}

The Microservices

[484]

In src/main/resources, add an application.properties which will11.
contain the same properties in ch10-deptservice combined with some Eureka
client details for this Department microservice instance. Once an exception
happens during endpoint execution, Eureka will redirect the execution to
eureka.client.service-url.defaultZone. Moreover, the server must be
allowed to determine the status of the instance, as per /health of the actuator
module. The Eureka client will only report its health status to Eureka server by
enabling eureka.client.service-url.healthcheck.enabled property:

spring.application.name=depts-service-instance
eureka.client.service-url.defaultZone=
http://localhost:5566/eureka/
eureka.client.service-url.healthcheck.enabled=true
the rest of the properties from ch10-deptservice

Copy all the configuration classes, controllers, handler and route functions, services,12.
JPA repository classes, and entity models from ch10-deptservice and drop them
to their new packages. Also, be sure to update the JPA repository base packages
configured in SpringDataConfig.
Save all files. Run clean spring-boot:run -U Maven commands to deploy13.
the Eureka client. Open http://localhost:5566 again and check that
Department Eureka instance is declared as part of the service registry.

Perform again Steps 8 to 13 to build the Employee and Login microservice14.
instances. After a long and successful procedure, run the Eureka server again and
check if all three instances are registered.

The Microservices

[485]

Run the following endpoints directly from the Eureka server to validate that all15.
the instances are ready for execution. All the services will run using the IP
address of the machine detected by the Eureka server:

http://alibata:8960/selectReactDepts (from the Department instance)
http://alibata:8965/selectReactEmps (from the Employee instance)
http://alibata:8970/fluxJpaUsers (from the Login instance)

Observe the status of your Eureka server. Once Eureka's capacity to renew instances16.
per minute becomes lower than the expected renews from its instances, the message is
thrown by the server similar to what is shown below. This occurrence happens
when some connection issues are experienced by the Eureka server while some of
the instances are expiring due to some heartbeat status. To avoid further
microservice inter-communication problems, we just leave these instances
preserved even if some are due for expiration (for example, self-preservation
mode).

The Microservices

[486]

How it works...
Eureka is part of the Spring Cloud Netflix which is some kind of a service box that can be
configured to create a registry of microservice instances. It is shown in this recipe that
Eureka provides almost the same configuration procedures in building a server and a client
instance. In some scenarios, Eureka can be used to build an application that can be both a
server and client for some singleton architectures.

Setting up a service registry is similar to building a large online portal with sub-modules
independent from the others, but yet interact with each other and come up with one big
infrastructure. Spring Cloud, which is the building block of building this design
architecture with Spring Boot 2.0 and microservices, provides many solutions, such as
Eureka service, that are easy to configure and use. To build a Eureka server only requires
building a Spring Boot application that will wrap Spring Cloud Netflix Eureka services in
its pom.xml and enable loading of all the services at bootstrap level using the annotation
@EnableEurekaServer. Likewise, the same starter POM dependencies are needed to build
Eureka clients which are basically the microservices per se. Each microservice just needs to
apply the @EnableDiscoveryClient annotation in its bootstrap to load all the necessary
services needed to automatically register each instance to the Eureka server.

Proper Eureka server and client configurations also depend on the configuration details
reflected from their application.properties file. As shown by the recipe above, there
are Eureka server properties such as eureka.client.register-with-eureka and
eureka.client.fetch-registry that must not be present in any Eureka client
configurations. On the other hand, clients must declare some additional necessary settings
for the Eureka server to know the exact details of its instances. Just in case, when a client
fails to register during its first heartbeat, the server will give a chance to the instance and
waits for 30 seconds (eureka.instance.leaseRenewalIntervalInSeconds) to
explicitly register itself. This property can also be overridden to tell the server to decrease or
increase the server waiting time. Likewise, the client needs to override the default property
eureka.instance.leaseRenewalIntervalInSeconds to quickly declare an instance at
dead state. The Eureka server can also add some property, such as disabling
eureka.instance.enableSelfPreservation, which is not recommended for complex
architectures.

To resolve some compatibility issues, the only Spring Cloud release that is built using
Spring Boot 2.0 is the SpringBootFinchley version.

The Microservices

[487]

Implementing the Eureka service discovery
and client-side load balancing
Although it is acceptable to call microservice endpoints directly from the Eureka server,
explicitly through its machine name and ports, Spring Cloud offers automatic service
discovery which makes RESTful service execution free from hardcoding the service URL.
When it comes to duplicate instances for backup and recovery purposes, this recipe will
define the concept of client-side load balancing wherein an algorithm is used to determine
the most viable and healthy instance to utilize in executing the endpoints.

Getting started
Create another Eureka instance that will contain a @Controller, which will consume
RESTful services from the Eureka registry applying client-side load balancing built by
SpringCloudNetflixRibbon module.

How to do it...
Let us implement client-side load balancing by following these steps:

First, create a Maven project ch10-eureka-client that contains pom.xml with1.
SpringCloudFinchley dependencies. Just add the core starter POM such as
webflux, the actuator and the following SpringCloudNetflixRibbon module
dependencies:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-eureka</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-ribbon</artifactId>
</dependency>

Then, create a typical bootstrap class suited for a Eureka client that fetches the2.
registry and automatically registers itself to the Eureka server:

@SpringBootApplication
@EnableDiscoveryClient
public class HRSEurekaClientBootApplication {

The Microservices

[488]

 public static void main(String[] args) {
SpringApplication.run(HRSEurekaClientBootApplication.class,
args);
 }
}

In its src/main/resources, create the necessary application.properties3.
for this Eureka client instance:

spring.application.name=hrs-client
eureka.client.service-url.defaultZone=
 http://localhost:5566/eureka/
server.port=8076
same as the previous recipe

Create a webflux Configuration inside4.
org.packt.microservice.client.config with the injected RestTemplate
and AsyncRestTemplate. To apply Spring Cloud Netflix Ribbon algorithm for
client-side load balancing, add @LoadBalanced annotation to each injected
@Bean:

@Configuration
@EnableWebFlux
public class WebFluxConfig {
 @Bean
 @LoadBalanced
 public RestTemplate restTemplate() {
 return new RestTemplate();
 }
 @Bean
 @LoadBalanced
 public AsyncRestTemplate asyncRestTemplate(){
 AsyncRestTemplate art = new AsyncRestTemplate();
 return art;
 }
}

Copy all the needed entity models from the three microservice projects to the5.
package org.packt.microsrevice.client.model.data for JSON
encoding/decoding.

The Microservices

[489]

Now, create the client controller that will consume any endpoints from these6.
three microservices registered in the Eureka server. This time the service URL (for
example, IP address, port, and so on) does not need to be known, since Ribbon will
assist with finding the viable and healthy instances through their declared Eureka
service names EMPS-SERVICE-INSTANCE, DEPTS-SERVICE-INSTANCE, and
LOGIN-SERVICE-INSTANCE:

@Controller
public class AccessRestController {
 private String instanceEmp = "http://EMPS-SERVICE-INSTANCE";
 private String instanceDept =
"http://DEPTS-SERVICE-INSTANCE";
 @Autowired
 protected RestTemplate restTemplate;
 @Autowired
 private AsyncRestTemplate asyncRestTemplate;
 @GetMapping(value="/accessListEmps",
produces= MediaType.APPLICATION_JSON_VALUE)
 @ResponseBody
 public List<Employee> blockListEmp() {
 HttpHeaders headers = new HttpHeaders();
 headers.set("Accept", MediaType.APPLICATION_JSON_VALUE);
 HttpEntity<String> entity = new HttpEntity<>(headers);
 ResponseEntity<List> response = RestTemplate
.exchange(instanceEmp + "/listEmp",
 HttpMethod.GET, entity, List.class);
 return response.getBody();
 }
 @GetMapping(value="/accessListDepts",
produces= MediaType.APPLICATION_JSON_VALUE)
 @ResponseBody
 public List<Employee> blockListDepts() {
 HttpHeaders headers = new HttpHeaders();
 headers.set("Accept", MediaType.APPLICATION_JSON_VALUE);
 HttpEntity<String> entity = new HttpEntity<>(headers);
 ResponseEntity<List> response = restTemplate
.exchange(instanceDept + "/listDept",
HttpMethod.GET, entity, List.class);
 return response.getBody();
 }
 @RequestMapping(value="/asyncSelectEmp/{id}",
 produces=MediaType.APPLICATION_JSON_VALUE)
 @ResponseBody
 public Employee asyncSelectEmps(
@PathVariable("id") Integer id){
 String url = instanceEmp + "/callSelectEmp/{id}.json";
 HttpMethod method = HttpMethod.GET;

The Microservices

[490]

 HttpHeaders headers = new HttpHeaders();
 headers.set("Accept", MediaType.APPLICATION_JSON_VALUE);
 HttpEntity<String> requestEntity =
new HttpEntity<String>("params", headers);
 ListenableFuture<ResponseEntity<Employee>>
 future = asyncRestTemplate
.exchange(url, method, requestEntity,
 Employee.class, id);
 try {
 ResponseEntity<Employee> entity = future.get();
 return entity.getBody();
 } catch (InterruptedException e) {
 e.printStackTrace();
 } catch (ExecutionException e) {
 e.printStackTrace();
 }
 return null;
}
}

In the case of consuming reactive REST services, directly inject the7.
LoadBalancerClient into AccessRestController to explicitly search the
service instance name from any of the healthiest instance of the registry that can
provide the service URL of the desired reactive endpoint such as
/selectReactEmps:

@Autowired
private LoadBalancerClient loadBalancer;

@RequestMapping("/accessReactClients")
public Flux<Employee> sayFlux() {
 ServiceInstance serviceInstance=
loadBalancer.choose("EMPS-SERVICE-INSTANCE");
 String baseUrl=serviceInstance.getUri().toString();
 return WebClient.create().method(HttpMethod.GET)
 .uri(baseUrl + "/selectReactEmps").contentType(
MediaType.APPLICATION_JSON_UTF8).retrieve()
.bodyToFlux(Employee.class);
}

The Microservices

[491]

The Ribbon API that executes the client-side load balancing algorithm is
org.springframework.cloud.client.loadbalancer.LoadBalance

rClient. The annotation @LoadBalanced configures RestTemplate and
AsyncRestTemplate to become a LoadBalancerClient type. The
problem arises only when @LoadBalanced annotation is directly applied
to the new reactive WebClient because it generates an exception:
o.s.web.reactive.function.client -
java.net.UnknownHostException: EMPS-SERVICE-INSTANCE

Save all files. Run Maven commands clean spring-boot:run -U and refresh8.
the Eureka server page. If the HRS-CLIENT instance has been registered, run the
entire client endpoints indicated in AccessRestController.

How it works...
Client-side load balancing is a feature of a client application that decides where to assign
the request transactions during traffic and server problems. This solution was formulated
when the architectural concepts of SOA and microservices became foundations of software
architecture and during the popularity of failover and backup and recovery in the hardware
technology. The fusion between the two different techniques provided a way to build a
resilient, fault-tolerant, and load sharing microservice architecture.

With or without Eureka service discovery, Spring Cloud Netflix Ribbon is always this
simple inter-process communication solution that aims to implement client-side load
balancing with its set of algorithms. In this recipe, a Eureka client has been used as the
specimen in applying Ribbon's LoadBalancerClient to choose the healthiest microservice
instance without specifying the exact IP address and port. The annotation @LoadBalanced
has been used also to configure the RestTemplate and AsyncRestTemplate to apply also
the load balancing algorithm. Using Ribbon with a Eureka server is much easier and more
straightforward than with the non-Eureka client which requires the addition of the
@RibbonClient(name="custom_service_name") to the bootstrap class and the
registration of all the mapping of this custom_service_name to multiple instances to its
application.properties file:

custom_service_name.ribbon.eureka.enabled=false
custom_service_name.ribbon.listOfServers=localhost:8094/ch10-
dept1,localhost:8095/ch10-dept2

This Ribbon module of Spring Cloud Finchley dependencies supports synchronous,
asynchronous and reactive microservice instances built by Spring Boot 2.0 release.

The Microservices

[492]

Applying resiliency to client applications
To apply more effective resilience to endpoint executions, Spring Cloud Netflix Ribbon is
sometimes paired with Spring Cloud Netflix Hystrix, which is built through the circuit
breaker design pattern whose objective is to rescue client applications from shutting down
due to faulty ResponseEntity or undefined Mono<T> and Flux<T> responses.

Getting started
Create a typical Spring Boot 2.0 project named as ch10-hystrix that will focus on the
independent configuration and setup of Hystrix.

How to do it...
Implement recovery transactions by following these steps:

Create a new Maven project ch10-hystrix and add the core starter POM1.
dependencies of Spring Boot 2.0 such as the webflux, embedded Tomcat server
and the actuator. To import Hystrix modules, add first the Spring Cloud
Finchley dependency plugin to pom.xml.
Then, add the Spring Cloud Netflix Hystrix dependencies to pom.xml:2.

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-hystrix</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-hystrix-dashboard
</artifactId>
</dependency>
Inside the core org.packt.microservice.hystrix package, create
the bootstrap class that enables Hystrix circuit breaker
feature using @EnableCircuitBreaker and @EnableHystrix:
@SpringBootApplication
@EnableCircuitBreaker
@EnableHystrix
public class ConsumeHystrixBootApplication
extends SpringBootServletInitializer {
 @Override
 protected SpringApplicationBuilder configure(
SpringApplicationBuilder application) {

The Microservices

[493]

 return application.sources(
ConsumeHystrixBootApplication.class);
 }

 public static void main(String[] args) throws Exception {
SpringApplication.run(ConsumeHystrixBootApplication.class,
 args);
 }
}

Inside the core org.packt.microservice.hystrix package, now create the3.
bootstrap class that enables Hystrix circuit breaker feature using
@EnableCircuitBreaker and @EnableHystrix:

@SpringBootApplication
@EnableCircuitBreaker
@EnableHystrix
public class ConsumeHystrixBootApplication
extends SpringBootServletInitializer {
 @Override
 protected SpringApplicationBuilder configure(
SpringApplicationBuilder application) {
 return application.sources(
ConsumeHystrixBootApplication.class);
 }

 public static void main(String[] args)
throws Exception {
 SpringApplication.run(
ConsumeHystrixBootApplication.class, args);
 }
}

Inside src/main/resources, create the application.properties file that4.
contains the basic Tomcat server deployment properties, just like in the previous
recipes.
Afterwards, create a package, org.packt.microservice.hystrix.config,5.
which contains a webflux configuration class with the injected RestTemplate
and AsyncRestTemplate:

@Configuration
@EnableWebFlux
public class WebfluxConfig {
 @Bean
 public RestTemplate restTemplate() {
 return new RestTemplate();

The Microservices

[494]

 }
 @Bean
 public AsyncRestTemplate asyncRestTemplate(){
 AsyncRestTemplate art = new AsyncRestTemplate();
 return art;
 }
}

Copy and add to a new package,6.
org.packt.microservice.hystrix.model.data, all the needed entity
models for JSON encoding/decoding.
Now, the essential part of this application is in all the @Service found in7.
org.packt.microservice.hystrix.service; this recipe is after creating
recovery transactions called fallback methods for each endpoint service. Each
fallback method is triggered every moment the service method it is assigned to
reaches its tolerance level and starts emitting exceptions and errors. The
following is a DeptHystrixService that consists of circuit-aware executions of
RESTful services from the DEPARTMENT microservice:

@Service
public class DeptHystrixService {
 @HystrixCommand(fallbackMethod = "defaultSelectDept")
 public Mono<Department> getMonoDept(Integer id) {
 return WebClient.create().method(HttpMethod.GET)
 .uri("http://localhost:8090/
ch10-dept/selectReactDept/" + id)
 .contentType(
 MediaType.APPLICATION_OCTET_STREAM)
.retrieve().bodyToMono(Department.class);
 }
 private Mono<Department> defaultSelectDept(Integer id) {
 Mono<Department> blankDept =
Mono.justOrEmpty(new Department());
 return blankDept ;
 }
}

Not all exceptions and errors will lead to the execution of the
fallbackMethod. Since Hystrix supports synchronous, asynchronous
and reactive endpoint calls, the fault tolerance level depends on the type
of endpoint executions. Moreover, fallbackMethod is triggered by
unsuccessful execution and not explicitly called.

Create also EmpHystrixService for Employee microservice based on the8.
service methods of its previous recipes.

The Microservices

[495]

Create also LoginHystrixService for Login microservice based from the9.
service methods of its previous recipe.
To apply all these circuit-aware service methods, create a typical Controller, as10.
shown below:

@Controller
public class HystrixClientController {
 @Autowired
 private DeptHystrixService deptHystrixService;
 @Autowired
 private EmpHystrixService empHystrixService;
 @Autowired
 private LoginHystrixService logniHystrixService;
 @RequestMapping("/hystrixUsers")
 @ResponseBody
 public List<UserDetails> hystrixGetUsers(){
 return logniHystrixService.getLoginUsers();
 }
 @RequestMapping("/hystrixGetEmp/{id}")
 @ResponseBody
 public Employee hystrixSelectEmp(
@PathVariable("id") Integer id){
 return empHystrixService.getAsyncEmp(id);
 }
 @RequestMapping("/hystrixGetDept/{id}")
 @ResponseBody
 public Mono<Department> hystrixSelectDept(
@PathVariable("id") Integer id){
 return deptHystrixService.getMonoDept(id);
 }
}

Save all files. Run clean spring-boot:run -U and then open a browser to11.
execute all HystrixClientController transactions.
Hystrix has a built-in dashboard that helps experts in monitoring the closed-12.
open circuit status of each service. To enable this dashboard, just add the
following starter POM in the pom.xml:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-hystrix-dashboard
</artifactId>
</dependency>

The Microservices

[496]

Be sure to include a working Spring Boot actuator module in the
application.

Shut down the application using the curl command. Start again and access the13.
Hystrix dashboard at
http://localhost:8790/ch10-hystrix/hystrix.stream.

Insert http://localhost:8790/ch10-hystrix/hystrix.stream on the14.
Dashboard and click Monitor Stream button to examine all the circuits.

How it works...
The purpose of Spring Cloud Netflix Hystrix is to add more resiliency solutions to a client
application that aims to execute RESTful services from a set of microservices or from
microservice instances registered in a Eureka server. The resiliency applied by Hystrix is
the execution of a certain recovery method once a RESTful service failed to retrieve a
response. Hystrix has a @HystrixCommand to wire these services to its respective
fallbackMethod that can only be called given a certain fault tolerance level.

What is best in Hystrix is that it can listen to and recognize blocking, non-blocking, and
reactive executions given only the restriction that both service method and its
fallbackMethod must be of the same classification type like a reactive client service
execution is wired to a Mono<T> or Flux<T> fallbackMethod type.

The Microservices

[497]

Consuming endpoints using a declarative
method
Another way of writing client applications for microservices is through the use of Spring
Cloud Netflix Feign which utilizes a declarative and easy mechanism of writing clients for
RESTful endpoints.

Getting started
Create a new Spring Boot application that is an independent specimen on how to enable
Feign as the client solution in a client Spring Boot application that aims to consume exposed
web services from typical or Eureka-registered microservices.

How to do it...
Apply the Feign client solution to Spring Boot application by the following steps:

Create a Maven project ch10-feign that contains core starter POM such as1.
webflux, actuator, and Tomcat server for Spring Boot 2.0 with the addition of
the needed Spring Cloud dependent management configuration which is Spring
Cloud Finchley.
Add the following Spring Cloud Netflix Feign dependency in the pom.xml.2.

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-feign</artifactId>
</dependency>

Create a core package, org.packt.microservice.feign, and add to it this3.
bootstrap class that enables default Feign configurations:

@SpringBootApplication
@EnableFeignClients
public class ConsumeFeignBootApplication
extends SpringBootServletInitializer {
 @Override
 protected SpringApplicationBuilder configure(
SpringApplicationBuilder application) {
 return application.sources(
ConsumeFeignBootApplication.class);
 }

The Microservices

[498]

 public static void main(String[] args) throws Exception {
SpringApplication.run(ConsumeFeignBootApplication.class,
 args);
 }
}

In its src/main/resources, create a typical application.properties that is4.
just needed for a typical RESTful client application. No Feign-related properties
are required to be declared in this file.
Load all the entity models from the other recipes to a new package5.
org.packt.microservice.feign.model.data needed for the converters
during the client executions.
Now, the core of the client application is found in this6.
org.packt.microservice.feign.service package, where all the Feign
interfaces are declared and the service URL mappings are processed. Below is a
DeptListClient, which is a Feign interface needed to implement all the client
services together with some required Feign annotations:

@FeignClient(name = "department-feign",
url = "http://localhost:8090/ch10-dept")
public interface DeptListClient {
 @RequestMapping(method = RequestMethod.GET,
value = "/selectReactDepts")
 public Flux<Department> getDepartments();
}

Create a controller inside the org.packt.microservice.feign.controller7.
package that calls the Feign service generated by @FeignClient:

@RestController
public class DeptFeignController {
 @Autowired
 private DeptListClient deptListClient;
 @RequestMapping(value = "/feignBlockList",
method = RequestMethod.GET, produces = "application/json")
 public List<Department> allBlockingDepts() {
 List<Department> depts = deptListClient.getListDepts();
 return depts;
 }
}

The Microservices

[499]

Save all files. Deploy the project by running clean spring-boot:run -U8.
commands. Open a browser and run
http://localhost:8888/ch10-feign/feignBlockList.

How it works...
The recipe above highlighted another Spring Cloud module that helps simplify the
generation of client application, for microservices. A simple interface with a class-level
annotation @FeignClient can generate results from RESTful endpoints.

On the other hand, this module has built-in loggers, encoders, and decoders which can
process entity models to JSON objects. However, the current version of Feign has no
support for asynchronous and reactive web services. Thus, adding and running the
following services will give us decoding problems.

@RequestMapping(method = RequestMethod.GET,
value = "/selectReactDepts")
 public Flux<Department> getDepartments();
 @RequestMapping(method = RequestMethod.GET,
value = "/webSyncDeptList.json")
 public WebAsyncTask<List<Department>> getAsyncListDepts();

Despite its limitations, Feign is widely used in interfacing many blocking web services
because of its simplicity and robustness in generating client implementation.

Using Docker for deployment
The last recipe will involve deploying our microservices to popular containers such as
Docker. This architectural approach to designing an environment of microservices can be
more expensive, compared to the Eureka service registry, when it comes to operating
system and hardware specification. However, this solution is the best initial big step to
building distributed architecture of microservices.

Getting started
Open ch09-flux for the last time and enable Ehcache and Caffeine caching.

The Microservices

[500]

How to do it...
Let us build a concept of distributed setup for our Department, Employee and Login
microservices by following these steps:

Before the entire configuration, download and install Docker Toolbox from1.
https://www.docker.com/products/docker-toolbox to avoid lots of
complicated Docker configurations. The toolbox will provide us a VirtualBox and
a client to manage our images. Also, it will automatically setup .dropbox session
details for global access to its CLI commands in the Windows operating system.
Install the Docker Toolbox and sign up for a free account to create your docker-2.
machine using Kitematic:

Log in to view your Kitematic dashboard. Once online, you can search for free3.
Docker images and install them through your dashboard. Also, your dashboard
will keep a list of all installed images in your docker-machine. On the lower left
of the dashboard, you will find a button that will invoke the CLI window:

The Microservices

[501]

Now, go back to Spring Boot development. Modify the previous ch10-4.
deptservice, ch10-empservice, and ch10-loginservice so that these can
be dockerized into the docker_machine. To avoid conflicts, create exact copies of
each project with Maven project names ch10-dept-docker, ch10-emp-docker,
and ch10-login-docker.
Since the microservices use MySQL server, add a mysql-server image through5.
the Kitematic account and run the following CLI Docker command with the
needed database credentials to boot up the MySQL image:

docker run --name mysql-server -e
MYSQL_ROOT_PASSWORD=spring5mysql -e MYSQL_DATABASE=hrs -d
mysql:5.6

Among the three microservices, let us first Dockerized ch10-dept-docker.6.
Inside the project, create a folder src/main/docker, and drop a Dockerfile. This
configuration file is an image structure of the Docker image where the Spring
Boot application will be deployed. It has sensitive Docker image information
which is found below:

FROM java:8
MAINTAINER sjctrags@gmail.com
EXPOSE 8080
CMD java -jar ch10-depty-docker.jar
ADD ch10-depty-docker.jar ch10-depty-docker.jar
ENTRYPOINT ["java","-jar","ch10-depty-docker.jar"]

The Microservices

[502]

The correct filename must be Dockerfile and without any extension.
Changing the case will cause an error during Docker deployment.

Afterwards, add the current version of docker-maven-plugin to the7.
<plugins> of pom.xml:

<plugin>
 <groupId>com.spotify</groupId>
 <artifactId>docker-maven-plugin</artifactId>
 <version>1.0.0</version>
 <configuration>
<imageName>${docker.image.prefix}/${project.artifactId}
</imageName>
<dockerHost>https://192.168.99.100:2376</dockerHost>
<dockerCertPath>C:/Users/sjctrags/.docker/machine/certs
</dockerCertPath>
 <dockerDirectory>src/main/docker</dockerDirectory>
 <resources>
 <resource>
 <targetPath>/</targetPath>
<directory>${project.build.directory}</directory>
<include>${project.build.finalName}.jar</include>
 </resource>
 </resources>
 </configuration>
</plugin>

To see the host information of your docker_machine, open a Docker CLI
and run the command docker-machine URL to extract the IP address and
the port of the Docker machine. Moreover, Docker machine can be
accessed only using HTTPS thus .pem certificates found in its repository
are needed to be accessed by Maven.

Before the deployment, the last configuration is to change8.
<packaging>war</packaging> to <packaging>jar</packaging>. Docker
images are built through JAR files.
Finally, run the Maven command clean package docker:build to download9.
all the necessary dependencies and execute the Dockerfile. The whole process
must end with a BUILD SUCCESS.
Check your Kitematic account; both the mysql-server and ch10-dept-docker10.
images must now be uploaded:

The Microservices

[503]

Run the image through CLI commands or by clicking the CREATE button of the11.
image:

Open a browser and run all the controller requests.12.
If the error https://192.168.99.100:2376: Connection reset by peer:13.
socket write error is encountered, just try to restart the Docker machine
through docker-machine restart command.

The Microservices

[504]

How it works...
In building microservices in a distributed environment, Docker images are used to
implement a totally loosely-coupled design where each application is hosted in one image
and can only interact with the others through REST calls and other message-based inter-
process communication.

Deploying Spring Boot applications as Docker images does not require any new Maven
dependencies to be added or new @Configuration components to be injected, as shown
by the recipe. It only takes some changes in the pom.xml and the creation of the Dockerfile
which is one of the challenges in implementing this recipe. The following information of the
Dockerfile must be seriously considered before building the image:

FROM: the image to be created must enable Java 1.8 and above
MAINTAINER: identification of the image owner
COPY/ADD: command to copy JAR file to the image
EXPOSE: the port of the application similar to server port declared in
application.properties; the port to be used by the image once the image
boots up
ENTRYPOINT/CMD: the command in JSON format that will be executed by Docker
to boot up the image

11
Batch and Message-Driven

Processes
The microservices in the previous chapter gave us a clear solution on how to decompose
huge applications into independent, scalable, and manageable components that somehow
provide the procedure on how to practically apply a loosely coupled architecture design in
software development. In applying this loose-coupling approach, the huge hrs application
built in the previous chapters is now composed of three service boxes, each having its own
domain-related operations. Some recipes consumed RESTful services from any of these
microservices using the WebClient or Spring Cloud modules, and applied logging, data
retrieval, and data persistence to some web services. Other than exposing services through
REST, in this chapter, we will explore and scrutinize more features of Spring 5, such as
interprocess communication among microservices and within a microservice to achieve a
scalable and robust Spring 5 application.

The focus will now be on creating synchronous, asynchronous, and reactive batch processes
and message-driven communication that are supported by Spring 5. The inclusion of the
broker software called RabbitMQ will be showcased to help the implementation of
Advanced Message Queuing Protocol (AMQP), which is needed for both direct exchange
and message-based communication among microservices. Also, by using the RabbitMQ
server, Spring Cloud Stream will be used to provide a solution for sending the Object
data and reactive stream from one microservice to another.

On the other hand, the creation of microservices that execute batch process continuously
and periodically through Spring Batch and Spring Cloud Task will also be part of the
following recipes. In general, the objective is to venture into Spring 5 modules that support
the core concepts of building batch processing and message-driven transactions in a
microservice, which are essential in many enterprise solutions.

Batch and Message-Driven Processes

[506]

In this chapter, we will cover the following recipes:

Building synchronous batch processes
Implementing batch processes with a database
Constructing asynchronous batch processes
Building synchronous interprocess communication using AMQP
Creating asynchronous send-receive communication
Creating an event-driven asynchronous communication using AMQP
Creating stream communication with Spring Cloud Stream
Implementing batch processes using Spring Cloud Task

Building synchronous batch processes
The first recipe will be about building a simple batch process that transforms data from one
rendition type to another. This is a typical solution to bulky, non-interactive, and routine
background processes that can be a simple data transformation or a highly computational
data mining algorithm that continuously harvests data using either synchronous thread
pipes or parallel executors. This recipe highlights the synchronous batch process for data
conversion.

Getting started
Create a new Maven project that uses spring-boot-starter-batch to create a
background process that parses an XML file and transfers some filtered content to a text file.

How to do it...
Let's create a standalone application that transforms XML to a text file using the following
steps:

Using Eclipse STS, create a Maven project, ch11-batch-sync, that contains the1.
Spring Boot 2.0.0.M2 starter POM dependencies, such as actuator and JDBC, with
some support plugins such as the MySQL connector.

Batch and Message-Driven Processes

[507]

Add the starter POM dependency for the latest Spring Batch 4.0:2.

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-batch</artifactId>
</dependency>

Since XML parsing is involved, add the Spring OXM module with its XSTREAM3.
dependency in pom.xml:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-oxm</artifactId>
</dependency>
<dependency>
 <groupId>com.thoughtworks.xstream</groupId>
 <artifactId>xstream</artifactId>
 <version>1.4.9</version>
</dependency>

Create a core package, org.packt.process.core, and drop a bootstrap class4.
inside that enables batch processing and task scheduling:

@EnableScheduling
@EnableBatchProcessing
@SpringBootApplication
public class SyncBatchBootApplication {
 // refer to sources
}

Copy logback.xml from the previous project and drop it inside5.
src\main\resources to enable logging.
Now, inside src\main\properties, create the application properties with all6.
the server, actuator, and HikariCP datasource autoconfiguration details. Use
the newly created batchproc database for the updated
spring.datasource.url property. This database will be populated with
configuration tables by Spring Batch once the application starts:

server.port=9007
server.servlet.context-path=/ch11-batch-sync

spring.datasource.driverClassName=com.mysql.jdbc.Driver
spring.datasource.url=jdbc:mysql://localhost:3306/batchproc?aut
oReconnect=true&useSSL=true&serverSslCert=classpath:config/spri
ng5packt.crt
spring.datasource.username=root

Batch and Message-Driven Processes

[508]

spring.datasource.password=spring5mysql
spring.datasource.hikari.connection-timeout=60000
spring.jpa.database-platform=org.hibernate.dialect.MySQLDialect

management.port=9007
management.address=localhost
management.context-path=/appdetails

endpoints.info.enabled=true
endpoints.info.sensitive=false
endpoints.info.id=info
info.app.description=Department Microservice
info.app.version=1.0.0

endpoints.sensitive=false
endpoints.shutdown.sensitive=false
endpoints.shutdown.enabled=true

For the data models, we will utilize the hrs data from the previous chapter, so7.
copy the Department entity model to the
org.packt.process.core.model.data package.
Since Java Architecture for the XML Binding (JAXB) parsing technique will be8.
used in this recipe, apply @XmlRootElement and @XmlElement to all the domain
models to make them JAXB classes:

@XmlRootElement(name = "department")
public class Department implements Serializable{
 private Integer id;
 private Integer deptid;
 private String name;
 @XmlElement
 public Integer getId() {
 return id;
 }
 public void setId(Integer id) {
 this.id = id;
 }
 @XmlElement
 public Integer getDeptid() {
 return deptid;
 }
 public void setDeptid(Integer deptid) {
 this.deptid = deptid;
 }
 @XmlElement
 public String getName() {
 return name;

Batch and Message-Driven Processes

[509]

 }
 public void setName(String name) {
 this.name = name;
 }
}

Create an additional JAXB class that will contain all the Department elements or9.
records, and place this inside the model package:

@XmlRootElement(name="departments")
public class Departments implements Serializable{
 private List<Department> department;

 public List<Department> getDepartment() {
 return department;
 }

 public void setDepartment(List<Department> department) {
 this.department = department;
 }
}

Do not apply @XmlElement to the instance variable since the Department
class is already a JAXB entity, record, or element. Otherwise, parsing
errors will be encountered.

Let's now start building the Spring Batch components needed to transform our10.
XML data to a text file. First, it will be easier to start the configuration with the
reader and writer components. Create a package,
org.packt.process.core.reader, that contains a custom
org.springframework.batch.item.ItemReader<T> implementation whose
read() method is executed multiple times to feed the source data into the
engine. This method returns null once all the data within a given period has
been transported:

public class DepartmentItemReader
implements ItemReader<Department> {
 private final String filename;
 private ItemReader<Department> delegate;

 public DepartmentItemReader(final String filename) {
 this.filename = filename;
 }

 @Override

Batch and Message-Driven Processes

[510]

 public Department read() throws Exception {
 if (delegate == null) {
 delegate = new IteratorItemReader<>(depts());
 }
 return delegate.read();
 }

 private List<Department> depts()
throws FileNotFoundException, JAXBException {
 JAXBContext context = JAXBContext.newInstance(
Departments.class, Department.class);
 Unmarshaller unmarshaller =
 context.createUnmarshaller();
 Departments deptList = (Departments) unmarshaller
.unmarshal(new FileInputStream(filename));
 return deptList.getDepartment();
 }
}

The implementation used JAXB marshaling to read all the data from the
source file. The extracted data will become the items of the batch process.

Create another package, org.packt.process.core.writers, and drop an11.
org.springframework.batch.item.ItemWriter<T> implementation in it,
which has a write() method that is responsible for flushing all items into
another file channel. The following is ItemWriter<T> that writes all items to a
text file but discards writes during rollback:

public class DepartmentItemWriter
implements ItemWriter<Department>, Closeable {
 private PrintWriter writer;

 public DepartmentItemWriter() {
 OutputStream out = null;
 try {
 out = new FileOutputStream("output.txt");
 } catch (FileNotFoundException e) {
 out = System.out;
 } finally{
 this.writer = new PrintWriter(out);
 }
 }

 @Override
 public void write(List<? extends Department> items)

Batch and Message-Driven Processes

[511]

throws Exception {
 for (Department item : items) {
 writer.println(item.getName() + " "
+ item.getDeptid());
 }
 }

 @PreDestroy
 @Override
 public void close() throws IOException {
 writer.close();
 }
}

The text file should only contain the department ID and the name of the
item.

The data transformation or conversion happens only when12.
org.springframework.batch.item.ItemProcessor<I,O> interferes in the
process by accepting read data from ItemReader<T> through its process()
method. ItemProcessor provides the business logic, and a set of rules and
constraints for data conversion, and returns an output item to be accessed and
collected by ItemWriter<T>. The method returns null if the input object does
not deserve to join the others for writing. Create a new package,
org.packt.process.core.processor, that contains an ItemProcess<I,O>
class that processes an input Department object with a name length greater than
or equal to 5:

public class DeptNameProcessor implements
 ItemProcessor<Department, Department> {
 @Override
 public Department process(final Department item)
throws Exception {
 if (item.getName().length() >= 5) {
 return item;
 }
 return null;
 }
}

Batch and Message-Driven Processes

[512]

To impose validation rules, another processor called13.
org.springframework.batch.item.validator.ValidatingItemProcesso

r provides additional tasks to filter out unnecessary or unimportant items based
on the business rules of the requirement. The following class omits a Department
input object that has a department ID lower than 400:

public class DeptIDValidProcesor
extends ValidatingItemProcessor<Department> {

 public DeptIDValidProcesor() {
 super(
 item -> {
 if (item.getDeptid() < 400) {
 throw new ValidationException(
"Customer ID lower than 400...");
 }
 }
);
 setFilter(true);
 }
}

At this point, we are now ready to create the @Configuration job that requires14.
the DepartmentItemReader, DepartmentItemWriter, DeptNameProcessor,
and DeptIDValidProcesor bean objects. The following job configuration class
implements single-item batch processing. The batch process uses an
org.springframework.batch.core.step.tasklet.Tasklet interface
whose execute() method is repeatedly run until all the source data is
consumed. Each execution is wrapped in an
org.springframework.batch.core.Step class that contains all the
information on its attempt to run read-write items. All these step executions will
not work without the injected JobBuilderFactory and StepBuilderFactory:

@Configuration
@EnableWebFlux
public class BatchConfig {
 @Autowired
 private JobBuilderFactory jobCreators;

 @Autowired
 private StepBuilderFactory stepCreators;

 public Job deptBatchJob() {
 return jobCreators.get("deptReportJob")
 .start(taskletStep())

Batch and Message-Driven Processes

[513]

 .build();
 }

 @Bean
 public Step taskletStep() {
 return stepCreators.get("taskletStep")
 .tasklet(tasklet())
 .build();
 }

 @Bean
 public Tasklet tasklet() {
 return (contrib, chunkCtx) -> {
 return RepeatStatus.FINISHED;
 };
 }
}

Our job configuration also implements a bulk batch process by calling the15.
chunk() method of StepBuilderFactory. This method accepts n number of
items, which determines the number of items expected to be rolled out to the
reader, the processor, and the writer. The following snippets are added to
BatchConfig, which will add bulk batch processing:

@Bean
public Step chunkStep() {
 return stepCreators.get("chunkStep")
 .<Department, Department>chunk(5)
 .build();
}

Update the following method to execute both per item and per chunk batch16.
processing:

public Job deptBatchJob() {
 return jobCreators.get("deptReportJob")
 .start(taskletStep())
 .next(chunkStep())
 .build();
}

Batch and Message-Driven Processes

[514]

Now inject all the reader, writer, and processor beans to BatchConfig, and17.
ensure that you convert the scopes of these objects from @Singleton to
@StepScope:

@StepScope
@Bean
public ItemReader<Department> reader() {
 return new DepartmentItemReader("depts.xml");
 }

@StepScope
@Bean
public ItemProcessor<Department, Department> processor() {
 CompositeItemProcessor<Department, Department>
 processor = new CompositeItemProcessor<>();
 processor.setDelegates(Arrays.asList(
new DeptNameProcessor(), new DeptIDValidProcesor()));
 return processor;
}
 @StepScope
 @Bean
 public ItemWriter<Department> writer() {
 return new DepartmentItemWriter();
 }

Update the chunkStep() method to include the reader, writer, and18.
processor:

@Bean
public Step chunkStep() {
 return stepCreators.get("chunkStep")
 .<Department, Department>chunk(5)
 .reader(reader())
 .processor(processor())
 .writer(writer())
 .build();
}

To complete our job configuration class, inject JobLauncher into BatchConfig19.
to execute deptBatchJob() with a TimeStamp job parameter to distinguish one
step execution from the other. Create a scheduler to run the JobLauncher job
every 5,000 milliseconds:

@Autowired
private JobLauncher jobLauncher;

Batch and Message-Driven Processes

[515]

@Scheduled(fixedRate = 5000)
public void startJob() throws Exception {
 JobExecution execution = jobLauncher.run(
 deptBatchJob(), new JobParametersBuilder().addLong(
"procId", System.nanoTime()).toJobParameters());
}

Create a sample depts.xml file and just drop it inside the root project folder:20.

<departments>
 <department>
 <id>111</id>
 <deptid>5656</deptid>
 <name>Human Resources Department</name>
 </department>
 <department>
 <id>1234</id>
 <deptid>6777</deptid>
 <name>Sports and Wellness Department]</name>
 </department>
 <department>
 <id>1456</id>
 <deptid>345</deptid>
 <name>Kiosk</name>
 </department>
 <department>
 <id>1459</id>
 <deptid>23232</deptid>
 <name>Engineering Department</name>
 </department>
...
</departments>

Save all files. Run Maven clean spring-boot:run -U and check the21.
output.txt file in the root project folder:

Batch and Message-Driven Processes

[516]

If you encounter any errors related to existing duplicate running job
during the launch, disable the spring.batch.job.enabled property in
application.properties and retry running the Maven commands
given earlier.

Open the MySQL Workbench and check the batchproc database after launch:22.

How it works...
There are microservices that are built to run independently in the background, with an
objective to capture real-time, less-biased, and optimal results without user intervention or
errors. These kinds of microservices are designed for FTP, data loading, data rendition,
report generation, data warehousing, and archive and software auditing.

Spring Batch is not new to Spring; actually, it is still used in many of the current
applications requiring data spooling. The preceding recipe shows the step-by-step process
to build a complete scheduled batch process. A scheduled batch process runs a set of
executions continually after a certain period of time. A Spring batch execution is basically
all about reading items from a source media and transferring them to another media, with
or without any noise or alterations. It has an API class called ItemReader<T> that allows
the reading of items from a text file, CSV, XML, or database schema. Once injected into the
webflux container, the singleton ItemReader<T> object is converted to @StepScope,
which asks for a new reader instance and a new set of items to be sifted from the source
periodically. This annotation is mandatory, given that these sources are updated in real-
time once in a while.

Batch and Message-Driven Processes

[517]

After the ItemReader<T> fetches the items, it passes them one at a time or in chunks to the
ItemProcessor<I,O> and ValidatingItemProcessor<T> to filter, scrutinize, and
validate these items before it is transferred as the List<O> of processed items to
ItemWriter<T> for the final execution stage. This API class writes to a text file, CSV, XML,
or the database schema all the items from ItemProcessor<I,O>, and signals the last stage
of the execution. Since our implementation is an asynchronous but scheduled batch process,
one Step execution will be spawned after another to execute the read-process-write again
and again. This recipe showed us how to custom implement these readers, writers, and
processors.

After establishing the core processes, the next step is to build the steps to be executed using
StepBuilderFactory; some of these step executions are Tasklet or chunked processes.
And, finally, to create the job or task, we design a lineup of step executions using the
JobBuilderFactory methods, start() and next().

To close the implementation and run the microservice, we instantiate JobExecution
together with the needed job parameters, which are to be launched by a @Scheduled
method.

Spring Boot 2.0 provides a straightforward and routine solution as long as we invoke
@EnableBatchProcessing at the @Configuration context, and we properly inject all the
readers, processors, and writers with @StepScope, since the recipe is a scheduled and
continuous batch process type.

Each job execution is a live object containing the properties:

JobExecution: id=136, version=1, startTime=2017-07-26 14:50:06.0,
endTime=null, lastUpdated=2017-07-26 14:50:06.0, status=STARTED,
exitStatus=exitCode=UNKNOWN;exitDescription=, job=[JobInstance: id=136,

version=0, Job=[deptBatchJob]], jobParameters=[{}].

Spring Batch automatically generates its metadata tables for recovery or retry purposes. But
this can be disabled by having the spring.batch.initializer.enabled=false
property in the application.properties file.

It will run at the JVM heap until it finishes its algorithm. If the job encounters exceptions
and needs to be killed, Spring Batch provides a command-line runner that will execute to
stop these jobs.

Batch and Message-Driven Processes

[518]

Implementing batch processes with a
database
Some batch processes need to read or write to a database schema, as required per step
execution. This recipe will be for a new way of writing a batch process that involves MySQL
database transactions.

Getting started
Using the core components of Spring Batch 4 of the previous recipe, let's design a short-
lived synchronous batch process that reads Employee records from an existing table, and
writes some items to another table of the same database and also to an XML file.

How to do it...
Let's now implement a blocking batch transaction that reads data from a database:

Create a separate Spring Boot 2.0 application, ch11-batch-db, and add the same1.
starter POM dependencies used in the previous recipe, emphasizing the spring-
boot-starter-batch and spring-oxm.
Create a bootstrap class inside its core package, org.packt.process.core, that2.
enables batch processing:

@SpringBootApplication
@EnableBatchProcessing
public class BatchProcessBootApplication {
 // refer to sources
}

Open the MySQL Workbench and create the following reg_employee database3.
schema with the source table, employee, and destination table as permanent:

Batch and Message-Driven Processes

[519]

Now, create application.properties in src\main\resources with an4.
emphasis on reg_employee as the database source:

server.port=9006
server.servlet.context-path=/ch11-batch

spring.datasource.driverClassName=com.mysql.jdbc.Driver
spring.datasource.url=jdbc:mysql://localhost:3306/reg_employee?
autoReconnect=true&useSSL=true&serverSslCert=classpath:config/s
pring5packt.crt
spring.datasource.username=root
spring.datasource.password=spring5mysql
spring.datasource.hikari.connection-timeout=60000
spring.jpa.database-platform=org.hibernate.dialect.MySQLDialect

#spring.batch.job.enabled=false

management.port=9006
management.address=localhost
management.context-path=/appdetails
// refer to sources

Copy logback.xml from the previous project and drop it inside5.
src\main\resources to enable logging.

Batch and Message-Driven Processes

[520]

Since this recipe requires some data from the previous employee records, copy6.
the Employee entity model from the previous chapter and place it inside
org.packt.process.core.model.data. Since the input item is an Employee
record, do not apply @XmlRootElement to the model class.
Add a custom model, Permanent, that will represent the output item of the7.
process. This class must have @XmlRootElement since this will be used as a
JAXB entity for the XML marshalling.
Inside org.packt.process.core.processor, create the following8.
RecordProcessor, which accepts all items from ItemReader<T> and filters
only those whose age is greater than 18 for items to be recommended for writing:

public class RecordProcessor
implements ItemProcessor<Employee, Permanent> {

 private static final Logger log = LoggerFactory.getLogger(
RecordProcessor.class);

 @Override
 public Permanent process(Employee item) throws Exception {
 if (item.getAge() >= 18) {
 Permanent perm = new Permanent();
 perm.setId(item.getId());
 perm.setDeptid(item.getDeptid());
 perm.setName(item.getFirstname() + " " +
 item.getLastname());
 log.info("empId " + perm.getId() + " passed.");
 return perm;
 }
 return null;
 }
}

Now let's start building the job @Configuration class by injecting DataSource9.
and instantiating JdbcTemplate to be used by the reader:

@Configuration
@EnableWebFlux
public class BatchConfig {
 private DataSource dataSource;
 private JdbcTemplate jdbcTemplate;
 public BatchConfig(DataSource dataSource) {
 this.dataSource = dataSource;
 jdbcTemplate = new JdbcTemplate(dataSource);
 }
}

Batch and Message-Driven Processes

[521]

Now inject ItemReader<T> to BatchConfig, which will query records from the10.
employee table of the reg_employee database:

@Bean
 public ItemReader<Employee> reader(DataSource dataSource) {
 JdbcCursorItemReader<Employee> reader =
new JdbcCursorItemReader<Employee>();
 reader.setSql("select * from employee");
 reader.setDataSource(dataSource);
 reader.setRowMapper(
 (ResultSet resultSet, int rowNum) -> {
 log.info("Retrieving item resultset: {}",
 resultSet);
 if (!(resultSet.isAfterLast()) &&
 !(resultSet.isBeforeFirst())) {
 Employee emp = new Employee();
 emp.setId(resultSet.getInt("id"));
emp.setEmpid(resultSet.getInt("empId"));
 emp.setDeptid(resultSet.getInt("deptid"));
 emp.setFirstname(
resultSet.getString("firstname"));
 // refer to sources
 return emp;
 } else {
 log.info("Returning null item");
 return null;
 }
 });
 return reader;
}

In this recipe, we will have two writers, namely the writer that will write to the11.
permanent table and the writer that will generate emp.xml. Add these two
writers to the following BatchConfig class:

@Bean("writer1")
public ItemWriter<Permanent> writer() {
 JdbcBatchItemWriter<Permanent> writer =
 new JdbcBatchItemWriter<>();
 writer.setItemPreparedStatementSetter(setter());
 writer.setItemSqlParameterSourceProvider(
new BeanPropertyItemSqlParameterSourceProvider
<Permanent>());
 writer.setDataSource(dataSource);
 writer.setSql("insert into permanent
(id, name, deptid) values (?,?,?)");
 return writer;

Batch and Message-Driven Processes

[522]

}
@Bean
public ItemPreparedStatementSetter<Permanent> setter() {
 return (item, ps) -> {
 ps.setInt(1, item.getId());
 ps.setString(2, item.getName());
 ps.setInt(3, item.getDeptid());
 };
 }

@Bean("writer2")
public ItemWriter<Permanent> xmlWriter() {
 StaxEventItemWriter<Permanent> xmlFileWriter =
new StaxEventItemWriter<>();
 String exportFilePath =
 "./src/main/resources/emps.xml";
 xmlFileWriter.setResource(new
 FileSystemResource(exportFilePath));
 xmlFileWriter.setRootTagName("employees");
 Jaxb2Marshaller empMarshaller =
new Jaxb2Marshaller();
 empMarshaller.setClassesToBeBound(Permanent.class);
 xmlFileWriter.setMarshaller(empMarshaller);
 return xmlFileWriter;
}

Do not forget to inject the custom RecordProcessor into the webflux container:12.

@Bean
public ItemProcessor<Employee, Permanent> processor() {
 return new RecordProcessor();
}

Lastly, add the steps and job declaration to complete the configuration details:13.

@Bean
public Job importUserJob(JobBuilderFactory jobs,
Step step1, Step step2, JobExecutionListener
 listener) {
 return jobs.get("importUserJob")
 .incrementer(new RunIdIncrementer())
 .listener(listener)
 .flow(step1)
 .next(step2)
 .end()
 .build();
}

Batch and Message-Driven Processes

[523]

 @Bean("step1")
 public Step step1(StepBuilderFactory
 stepBuilderFactory,
 ItemReader<Employee> reader,
 ItemProcessor<Employee, Permanent> processor) {
 return stepBuilderFactory.get("step1")
 .<Employee, Permanent>chunk(5)
 .reader(reader)
 .processor(processor)
 .writer(writer())
 .build();
 }
 @Bean("step2")
 public Step step2(StepBuilderFactory
 stepBuilderFactory,
 ItemReader<Employee> reader,
 ItemProcessor<Employee, Permanent> processor) {
 return stepBuilderFactory.get("step2")
 .<Employee, Permanent>chunk(2)
 .reader(reader)
 .processor(processor)
 .writer(xmlWriter())
 .build();
 }
}

Before we end this recipe, add a listener, JobExecutionListenerSupport,14.
inside a new package, org.packt.process.core.listener, for verification
after a successful batch process execution:

@Component
public class OnCompleteJobExecListener
extends JobExecutionListenerSupport {

 private static final Logger log =
 LoggerFactory.getLogger(
OnCompleteJobExecListener.class);

 private DataSource dataSource;
 private JdbcTemplate jdbcTemplate;
 public OnCompleteJobExecListener(DataSource dataSource) {
 this.dataSource = dataSource;
 jdbcTemplate = new JdbcTemplate(dataSource);
 }

 @Override
 public void afterJob(JobExecution jobExecution) {
 if (jobExecution.getStatus() ==

Batch and Message-Driven Processes

[524]

 BatchStatus.COMPLETED) {
 log.info("Short-lived Job Done...");

 List<Permanent> results = jdbcTemplate
.query("select * from permanent", (rs, row) -> {
 Permanent permanent = new Permanent();
 permanent.setId(rs.getInt("id"));
 permanent.setDeptid(rs.getInt("deptid"));
 permanent.setName(rs.getString("name"));
 return permanent;
 });

 for (Permanent permanent : results) {
 log.info("Data is: " + permanent +
" in the database.");
 }
 }
 }
}

Save all files. Run the clean spring-boot:run -U command, check the15.
emp.xml file in src\main\resources, and check all the output items in
permanent table.

How it works...
Comparing this recipe to the previous one, the job configuration of this solution is simpler
and without much customization. The only customization created was the
RecordProcessor, which filters raw Employee records with an age greater than 18 and
generates the Permanent output items. Also, new in this recipe is a callback class,
JobExecutionListenerSupport, which is executed after a successful or failed execution.
This listener class verifies if the processed records are transferred into the permanent table.

On the other hand, the job has two steps, namely step1 and step2. The first step, step1,
calls ItemReader<T> to retrieve all the employee records to be processed by
RecordProcessor before proceeding to writer1. The second step, step2, calls the same
reader to pass database items to the same processor before proceeding to writer2. The sole
reader uses JdbcCursorItemReader to read all the records from the data source using its
ResultSet.

Batch and Message-Driven Processes

[525]

The writer1 writer is implemented using JdbcBatchItemWriter, which acts like
NamedParameterJdbcTemplate when it comes to mapping the properties of each output
item using placeholder notation (?) before a SQL statement execution performs the writes into
the permanent table. The other writer, writer2, uses StaxEventItemWriter to execute a
STAX parser to generate emp.xml, which contains the same records found in the
permanent table. It is clear that each job can execute multiple steps using varieties of
readers, writers, or processors.

Since this is just a one-pipeline batch process, creating a JobExecution launcher is not
needed since Spring Boot automatically launches the short-lived job with some default job
parameters. To disable this configuration, open application.properties and disable the
spring.batch.job.enabled property. Also, since it automatically launches, there is no
need to convert reader, writer, and processor beans to the @StepScope type.

Constructing asynchronous batch
processes
Each step execution can utilize a thread pool to run its readers, writers, and processors. The
idea is to implement an asynchronous batch process that can execute independently,
instead of each waiting for the previous execution to finish.

Getting started
Create a separate Maven project that will utilize all components of ch11-batch-sync with
the inclusion of thread pool generation.

How to do it...
Let's implement a non-blocking batch process by following these steps:

Create a Spring Boot 2.0 project, ch11-batch-async, that has the same starter1.
POM dependencies with the same MySQL connection pool support and Spring
OXM module.
Create a bootstrap class that enables batch processing and task scheduling:2.

@EnableBatchProcessing
@SpringBootApplication

Batch and Message-Driven Processes

[526]

@EnableScheduling
public class AsyncBatchBootApplication {
 public static void main(String[] args) throws Exception {
 SpringApplication.run(AsyncBatchBootApplication.class,
 args);
 }
}

In its src\main/\resources directory, create application.properties that3.
contain the same configuration as the one in ch11-batch-sync. Just modify
some server-related configurations.
Copy logback.xml from the previous project and drop it inside4.
src\main\resources to enable logging.
Then, copy all the packages from the ch11-batch-sync project without any5.
changes.
Next, start the asynchronous batch processing configuration and inject the6.
TaskExecutor that will generate the thread pool into BatchConfig:

@Bean("mvcTaskexecutor")
 public TaskExecutor getAsyncExecutor() {
 ConcurrentTaskExecutor executor =
new ConcurrentTaskExecutor(
 Executors.newFixedThreadPool(100));
 executor.setTaskDecorator(new TaskDecorator() {
 @Override
 public Runnable decorate (Runnable runnable) {
 return () -> {
 long t = System.currentTimeMillis();
 runnable.run();
 System.out.printf("Thread %s has a
processing time: %s%n",
 Thread.currentThread().getName(),
 (System.currentTimeMillis() - t));
 };
 }
 });
 return executor;
}

Batch and Message-Driven Processes

[527]

Assign threads to taskletStep() and chunkStep() by passing the7.
TaskExecutor bean to the taskExecutor() method of their respective
StepBuildFactory instances.
Save all files. Deploy the application with clean spring-boot:run Maven8.
command. Expect random and messy writes to the output.txt output file.

How it works...
Creating an asynchronous batch process is supported by Spring Batch 4.x, but it may give a
different result compared to the synchronous ones. When uncontrolled, all threads will
compete to perform read or write on the resources, resulting in an undesirable output. It is
advisable to add thread-safe wrapper classes so that the synchronization of these threads
can be applied. But, once managed, this solution will provide a faster reader-processor-writer
transaction compared to its blocking counterpart.

Building synchronous interprocess
communication using AMQP
Another important feature of the design architecture in building microservices is studying
and analyzing their behavior to each other when it comes to data exchange. Chapter 9,
Spring Boot 2.0, established the conclusion that asynchronous, reactive, and blocking
microservices work by exposing REST services that can be consumed by client applications.
Although there is decoupling in the architectural design pattern, a microservice still has
direct control over its clients because of the endpoint consumption occurring during the
process. This gray area can still be considered to be tightly coupled behavior but to a minor
degree. To implement a totally decoupled microservice, this recipe will introduce a new
protocol that can initiate microservices to communicate synchronously with its clients without
any endpoint intervention.

Getting started
Replicate the EMPLOYEE and LOGIN microservices, and update the projects in order to
adopt a new data exchange mechanism using Advance Message Queuing Protocol
(AMQP).

Batch and Message-Driven Processes

[528]

How to do it...
Let's build a message-driven communication using the AMQP protocol with these steps:

Before doing anything else, download the Erlang/OTP and RabbitMQ server.1.
Since all recipes here run on Windows, download the Windows Erlang/OTP
installer from https://www.erlang.org/downloads. Likewise, visit
https://www.rabbitmq.com/download.html and download the Windows
installer for the RabbitMQ server.
Install Erlang/OTP first, followed by the RabbitMQ server. After a successful2.
installation, open a command-line Terminal, visit the
rabbitmq_server-3.6.10\sbin folder, and run the rabbitmq-server
start command to start up the server and the rabbitmq-server stop
command to shut it down.
Inside rabbitmq_server-3.6.10/sbin, run the rabbitmq-plugins enable3.
rabbitmq_management command to install the RabbitMQ web management
console. Stop and start the server again. Open a browser to run
http://localhost:15672/ and log in using the default credentials, guest, with
the password, guest.

The RabbitMQ management console uses the 15672 port by default.

https://www.erlang.org/downloads
https://www.rabbitmq.com/download.html

Batch and Message-Driven Processes

[529]

Now, return to the STS Eclipse and create a Maven project, ch11-ipc-emp. Copy4.
all the packages and the src\main\resource files of ch10-empservice from
the recipes from Chapter 10, The Microservers.
Open pom.xml and add the Spring Boot 2.0 starter POM dependency for AMQP5.
support:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-amqp</artifactId>
</dependency>

Open application.properties and add the following RabbitMQ-related6.
details for autoconfiguration purposes:

spring.rabbitmq.host=localhost
spring.rabbitmq.port=5672
spring.rabbitmq.username=guest
spring.rabbitmq.password=guest
spring.rabbitmq.requested-heartbeat=60

The default port for the RabbitMQ server is 5672, while its management
console is 15672.

Copy logback.xml from the previous project and drop it inside7.
src\main\resources to enable logging.
Inside its org.packt.microservice.core.config, add a @Configuration8.
class that enables RabbitMQ components inside the webflux container. Since this
recipe will implement a Direct Exchange style of messaging, wherein a routing key
or address will be used to guide the exchange, add the following bean object to the
webflux container:

@Configuration
@EnableWebFlux
@EnableRabbit
public class RabbitMQConfig {

 @Bean
 public DirectExchange directExchange() {
 return new DirectExchange("login.packt");
 }
}

Batch and Message-Driven Processes

[530]

The direct exchange name is login.packt.

To implement the typical AMQP-based services, create a new package,9.
org.packt.microservice.core.amqp, and add a service that is injected into
the container as follows:

@Service
public class SendRequestLogin {
 @Autowired
 DirectExchange directExchange;
 private RabbitTemplate rabbitTemplate;
 public SendRequestLogin(RabbitTemplate rabbitTemplate) {
 this.rabbitTemplate = rabbitTemplate;
 }
 public LoginDetails send(String content) {
 LoginDetails results =
(LoginDetails) rabbitTemplate
.convertSendAndReceive(
 directExchange.getName(), "packt", content);
 return results;
 }
}

The routing key is packt, which must be the accept-header address that is
common to both the request sender (producer) and the response listener
(consumer) to establish an acknowledgment or handshake.

At this point, this Employee microservice can now be the request message producer,10.
which will establish a direct exchange communication through the routing key.
After a successful verification of the routing key, the request will be posted in a
waiting queue where the response service is listening. So, now, inside
org.packt.microservice.core.controller, add another controller that will
send a request to retrieve a Login profile when given an employee ID through
the AMQP-based service handler:

@RestController
public class AmqpController {
 @Autowired
 private SendRequestLogin sendRequestLogin;
 @GetMapping(value="/amqpLoginDetail/{id}",
produces = MediaType.APPLICATION_JSON_VALUE)

Batch and Message-Driven Processes

[531]

 public LoginDetails exposeGetLoginDetails(
@PathVariable("id") String id) {
 return sendRequestLogin.send(id);
 }
}

Save all files.11.
Create another Maven project, ch11-ipc-login, and copy all files of ch10-12.
loginservice from Chapter 10, The Microservice. Perform steps 5 to 8 of this
recipe. Update some server-related information to avoid conflicts.
Inside the org.packt.microservice.config package, add another13.
@Configuration class for this project to enable the RabbitMQ components in its
webflux container. This creates the waiting queue that the Employee microservice
utilizes to perform send-reply communication and the binding that builds the
synchronous exchange-driven style of interaction:

@Configuration
@EnableWebFlux
@EnableRabbit
public class RabbitMQConfig {
 @Bean
 public Queue queue() {
 return new Queue("login.packt.retrieval.msg");
 }

 @Bean
 public DirectExchange exchange() {
 return new DirectExchange("login.packt");
 }

 @Bean
 public Binding binding(DirectExchange exchange, Queue
queue) {
 return BindingBuilder.bind(queue)
.to(exchange).with("packt");
 }
}

The routing key indicated by BindingBuilder and the exchange router
name must be the same as the employee's AMQP details.

Batch and Message-Driven Processes

[532]

Now, create the listener class that responds to the request of the Employee14.
microservice every time it reaches the queue, login.packt.retrieval.msg.
Place this class inside another package, org.packt.microservice.core.amqp:

@Service
@RabbitListener(queues = "login.packt.retrieval.msg")
public class RequestListLogins {
 @Autowired
 private LogindetailsService logindetailsServiceImpl;
 @RabbitHandler
 public LoginDetails process(String content) {
 Integer id = Integer.parseInt(content);
 LoginDetails details =
 logindetailsServiceImpl.findLoginById(id);
 return details ;
 }
}

Save all files.15.
Deploy both microservices and run the Employee's request. Open16.
http://localhost:8095/ch11-ipc-emp/amqpLoginDetail/11 in a
browser. Open the RabbitMQ management console, and observe the behavior of
the message exchanges and the queue status for every execution of the URL
request.

Batch and Message-Driven Processes

[533]

Here is some sample data from the LOGIN Microservice response.17.

How it works...
To achieve a loosely-coupled architecture in an ecosystem of microservices using AMQP
synchronous interprocess communication, also called message-driven communication, may
be one of the easiest and best solutions that Spring 5 can provide through Spring Boot 2.0.
The idea is to replace RESTful web services with AMQP message-based communication to
send the message request with some payloads from the producer to an exchange router, and
deliver the response from the message consumer back to the requester.

The overall process of the message exchange implemented in this recipe is detailed here:

The Login Microservice sends the message to the queue triggered by its request
In the RabbitMQ server, the message will be verified if its routing key is the
same as the routing key of the Login Microservice that matches the
@RabbitListener service
Also, the name of the queue, which is login.packt.retrieval.msg, generated
in the Login Microservice must match
If the verification is successful, the exchange login.packt will pass the message to
the QUEUE, which will eventually call the @RabbitListener service to process
the request
If the service encounters no exceptions, Login Microservice will return to the
login.packt exchange, the response together with the routing key, which must
match the routing key of the request message for the acknowledgment
Lastly, Login Microservice will get the response message from the queue

Batch and Message-Driven Processes

[534]

This recipe is only designed for blocking responses or Object from the consumer. If the
microservices are required to expose the Callable<T>, DeferredResult<T>, and
WebAsyncTask<T> data, the next recipe will guide us on how to properly configure an
asynchronous send-receive communication using the AMQP protocol.

Creating asynchronous send-receive
communication
Spring Boot 2.0 directly supports the asynchronous handling of send and receive messages
with asynchronous results. Some microservices purposely implement this kind of exchange
mechanism to avoid traffic and blocking problems when several of them send request
messages at the same time to an exchange with one routing key. Moreover, this solution is
most likely favored due to the presence of client-based callbacks that give microservices
resiliency when the consumer is down or has crashed.

Getting started
Again, open ch11-ipc-emp and ch11-ipc-login, and add the following request and
reply queues, @RabbitListener response transactions, and client services that will
showcase the use of AsyncRabbitTemplate.

How to do it...
Let's build non-blocking and message-driven services using the following steps:

Let's first modify consumer of the message or the source of the response1.
transaction, which is the Login Microservice. Add a @Configuration class that
will create two queues, namely the request and reply queues. This class will be
responsible for creating and binding a new routing key, packt.async, which is
used for asynchronous messaging:

@Configuration
@EnableWebFlux
@EnableRabbit
public class RabbitMQConfigAsync {

@Autowired
 private DirectExchange exchange;

Batch and Message-Driven Processes

[535]

 @Bean
 public Queue requestQueue() {
 return new Queue("msg.request");
 }

 @Bean
 public Queue replyQueue() {
 return new Queue("msg.reply");
 }
 @Bean
 public Binding binding(DirectExchange exchange,
Queue requestQueue) {
 return BindingBuilder.bind(requestQueue)
.to(exchange).with("packt.async");
 }
}

The exchange router will be the same router used in the previous recipe since2.
there must only be one exchange router for the entire application. It is
recommended that you have one exchange per application to avoid convoluted
and messy bindings that will lead to exceptions or undetected services:

Now add another @RabbitListener service, which will be executed by the3.
msg.request queue with the exchange router's confirmation:

@Service
@RabbitListener(queues = "msg.request")
public class RequestAsyncLogins {
 @Autowired
 private LogindetailsService logindetailsServiceImpl;

Batch and Message-Driven Processes

[536]

 @RabbitHandler
 public LoginDetails process(String content) {
 Integer id = Integer.parseInt(content);
 LoginDetails details =
 logindetailsServiceImpl.findLoginById(id);
 return details ;
 }
}

Save all files.4.
Now open ch11-ipc-emp, and add another client service that creates5.
AsyncRestTemplate and implements a request service handler that when
executed will return a Future<T> task wrapper:

@Service
public class SendAsyncLogin {
 @Autowired
 private DirectExchange exchange;
 private AsyncRabbitTemplate asyncRabbitTemplate;
 public SendAsyncLogin(AsyncRabbitTemplate
 rabbitTemplate) {
 this.asyncRabbitTemplate = rabbitTemplate;
 }
 public DeferredResult<LoginDetails> send(String content) {
 final DeferredResult<LoginDetails> response =
new DeferredResult<>();
 ListenableFuture<LoginDetails> future =
 asyncRabbitTemplate.convertSendAndReceive(
exchange.getName(), "packt.async", content);
 future.addCallback(new
 LoginHandlerResponse(response));
 return response;
 }
 private static class LoginHandlerResponse implements
 ListenableFutureCallback<LoginDetails> {

 private DeferredResult<LoginDetails> result;

 public LoginHandlerResponse (
DeferredResult<LoginDetails> result) {
 this.result = result;
 }

 @Override
 public void onFailure(Throwable throwable) {
 result.setResult(new LoginDetails());
 }

Batch and Message-Driven Processes

[537]

 @Override
 public void onSuccess(LoginDetails response) {
 result.setResult(response);
 }
 }
}

The send() method can also return Callable<T> or WebAsyncTask<T>,
depending on the asynchronous model the problem needs.

No new AMQP-related configuration classes must be added to the application.6.
Just add injecting the new service in AmqpController and add a new request
handler method invoking the asynchronous request:

@Autowired
private SendAsyncLogin sendAsyncLogin;

@GetMapping(value="/amqpLoginAsync/{id}",
produces = MediaType.APPLICATION_JSON_VALUE)
 public DeferredResult<LoginDetails>
 exposeGetLoginAsync(@PathVariable("id") String id) {
 return sendAsyncLogin.send(id);
}

Save all files. Deploy both the applications. Open a browser and run7.
http://localhost:8095/ch10-emp/amqpLoginAsync/1 to have the login
profile of an employee with an ID equivalent to 1.

Batch and Message-Driven Processes

[538]

Shut down the Login Microservice by running curl -XPOST8.
http://localhost:8094/ch11-ipc-login/appdetails/shutdown -k. Run
the asynchronous service again and check the result.

How it works...
In Spring Boot 2.0, AsyncRabbitTemplate is already autoconfigured and is ready to be
@Autowired just like RabbitTemplate, its counterpart for the synchronous data exchange.
The main reason why we use this client API is to establish asynchronous requests to the
request queue through an exchange router and receive some asynchronous replies from
the reply queue. This class uses SimpleMessageListenerContainer, which acts like a
broker that fetches the request messages from requestQueue() and manages the replies
from replyQueue() asynchronously without polling them into only one queue, just like we
saw in the previous recipe. The number of requests fetched is based on the prefetch
configuration of the RabbitMQ server. All the send-receive transactions are still delegated
internally by the RabbitTemplate class.

Since it is required that AsyncRabbitTemplate implements two queues, requestQueue()
and replyQueue(), it can delegate send-receive message-based communication based on
the similar methods sendAndReceive() and convertSendAndReceive(). These
operators send the message requests with some payloads to requestQueue() for the broker
to fetch it and forward it to replyQueue(). Based on the exchange's router key, all the
requests are received and processed by replyQueue(), and it later forwards all the
responses to the exchange and then to the broker. This returns a ListenableFuture<T>, a
special type of a Future<T> that wraps and performs some threaded wait operations while
waiting for the response body for 30 seconds at most, by default. It has
ListenableFutureCallback<T> to filter and retrieve the response body during failed or
successful communication. The default waiting time for the replies can be overridden
through its setReceiveTimeout() method during auto wiring.

Batch and Message-Driven Processes

[539]

Comparing the two recipes, send-receive communication is faster because of the broker in
the middle that returns non-blocking results and provides
ListenableFutureCallback<T>, which is responsible for providing an immediate
resilient solution during communication problems.

To build the simplest asynchronous AMQP communication, the next recipe will highlight
the use of event-driven messaging, which scraps the use of router keys.

Creating an event-driven asynchronous
communication using AMQP
If we have a totally distributed and dockerized setup for microservices, where each has
complicated and complex message-driven communication requirements, having multiple
exchanges and routing keys might be inappropriate, especially if the expected
communication for the distributed ecosystem is for a loosely-coupled design. This recipe
will provide a simpler and more adept solution for a loosely-coupled and distributed
microservice architecture that uses a direct reply-to property without any exchange-queue
binding.

Getting started
Again, open the ch11-ipc-emp and ch11-ipc-login microservices, and replace some
configuration details that are important in building a totally asynchronous, of the AMQP-
based communication for a loosely-coupled setup.

How to do it...
Let's implement a direct reply-to communication using the AMQP protocol by following
these steps:

Open the first message consumer, the Login Microservice project. Disable the1.
previous RabbitMQConfig for blocking send-receive communication and replace
it with RabbitMQEventConfig as follows. Obviously, the following class only
contains the queue and no exchange binding setup:

@Configuration
@EnableWebFlux
@EnableRabbit

Batch and Message-Driven Processes

[540]

public class RabbitMQEventConfig {
 @Bean
 public Queue queue() {
 return new Queue("login.packt.retrieval.msg");
 }

}

Then, disable the configuration for the synchronous send-receive and replace it2.
with the following exchange-queue binding configuration:

@Configuration
@EnableWebFlux
@EnableRabbit
public class RabbitMQEventConfigAsync {
 @Bean
 public Queue requestQueue() {
 return new Queue("msg.request");
 }

 @Bean
 public Queue replyQueue() {
 return new Queue("msg.reply");
 }
}

Since there will be no additional changes for its @RabbitListener services, save3.
all files for deployment later.
Go to ch11-ipc-emp, the producer of the request message, and replace the old4.
blocking AMQP configuration with the following:

@Configuration
@EnableWebFlux
@EnableRabbit
public class RabbitMQEventConfig {
 @Bean
 public Queue queue() {
 return new Queue("login.packt.retrieval.msg");
 }
}

On the asynchronous AMQP send-receive configuration, there will be no changes5.
to be reflected so far.

Batch and Message-Driven Processes

[541]

For its blocking client-service implementation, replace SendRequestLogin with6.
this @RepositoryEventHandler from Spring Data REST, which was purposely
created to publish the request message with the payload content of send() to
queue() or requestQueue(). It has an event handler method annotated with
@HandleAfterCreate that is triggered to manage the publish once send() is
called:

@Service
@RepositoryEventHandler
public class SendRequestEventLogin {
 private RabbitTemplate rabbitTemplate;
 private Queue queue;
 public SendRequestEventLogin(Queue queue,
RabbitTemplate rabbitTemplate) {
 this.rabbitTemplate = rabbitTemplate;
 this.queue = queue;
 }
 @HandleAfterCreate
 public LoginDetails loginHandler(String content) {
 return send(content);
 }
 public LoginDetails send(String content) {
 System.out.println("send request");
 LoginDetails results = (LoginDetails)
 rabbitTemplate.convertSendAndReceive(
 queue.getName(), content);
 return results;
 }
}

Also, replace the SendAsyncLogin service class with an event handler that filters7.
the parameter content and uses AsyncRestTemplate to establish broker-based
communication directly with the queue:

@Service
@RepositoryEventHandler
public class SendAsyncEventLogin {

 private AsyncRabbitTemplate asyncRabbitTemplate;
 private Queue requestQueue;

 public SendAsyncEventLogin(Queue requestQueue,
 AsyncRabbitTemplate rabbitTemplate) {
 this.asyncRabbitTemplate = rabbitTemplate;
 // rabbitTemplate.setReceiveTimeout(1000);
 this.requestQueue = requestQueue;

Batch and Message-Driven Processes

[542]

 }

 @HandleAfterCreate
 public DeferredResult<LoginDetails>
loginHandler(String content) {
 return send(content);
 }

 public DeferredResult<LoginDetails> send(String content) {
 System.out.println("send request");
 final DeferredResult<LoginDetails> response =
new DeferredResult<>();
 ListenableFuture<LoginDetails> future =
 asyncRabbitTemplate.convertSendAndReceive(
requestQueue.getName(), content);
 future.addCallback(new
 LoginHandlerResponse(response));
 return response;
}
// refer to sources
}

Save all changes in the Employee microservice application.8.
Deploy the projects. Run both blocking and asynchronous requests again, and9.
observe how fast their execution is compared to the previous two recipes. No
routing keys and exchanges are involved in these processes:

Batch and Message-Driven Processes

[543]

How it works...
Event handlers are the main players in this direct reply-to communication among
microservices. This recipe uses Spring Data REST's @RepositoryEventHandler,
registered as the @Service to the webflux container, which acts like a filter to its service
methods. It has filter event methods registered as @HandlerAfterCreate that directly
publish the request message with or without the payloads included.

Transactions involving event handlers are synchronous by default, but since they are used
for AMQP-based communications, they adjust and comply with the asynchronous
objectives of the protocol. At this point of this chapter, a loosely-coupled architecture has
been established using only a few simple steps.

Creating stream communication with Spring
Cloud Stream
Event-driven communication is one of the best initiatives for building distributed
architecture for microservices. Spring Cloud Stream offers distributed and streaming data
pipelines that can be used to provide data channels to message consumers, producers, and
listener classes through the queues and brokers provided by a binding platform such as
RabbitMQ. With Spring Cloud Stream, Spring Boot 2.0 can build any pluggable
components that will implement the topic-exchange style of message communication, which
is the highlight of this recipe. This also will include reactive streams such as Flux<T> data
streams, which are not yet supported by the previous recipes.

Getting started
Let's create three Spring Boot 2.0 applications that will represent the producer, processor, and
consumer components of the Spring Cloud Stream that has a binding to our RabbitMQ
server setup.

Batch and Message-Driven Processes

[544]

How to do it...
Let's create a reactive stream communication with the Spring Cloud Stream module by
performing the following steps:

First, let's create the message producer, which is technically referred to as the1.
SOURCE in the Spring Cloud Stream terminology. Create a Spring Boot 2.0
application with all the core starter POM dependencies, such as webflux, actuator,
Thymeleaf, and FreeMarker. Since this project will be for Spring Cloud libraries
and plugins for Spring Boot 2.0, add the following Spring Cloud Finchley
dependency configuration into the pom.xml file:

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies
</artifactId>
 <version>Finchley.M1</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

Add the following starter POM, which is required to implement the reactive2.
Spring Cloud Stream:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-stream-reactive</artifactId>
 </dependency>

Since we will be using a RabbitMQ broker for the message exchange, verify that3.
you have the server installed on the machine. Also, add the following Spring
Cloud Stream module for RabbitMQ transactions:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-stream-rabbit
 </artifactId>
</dependency>

Batch and Message-Driven Processes

[545]

Inside the core package, org.packt.process.core, create the bootstrap class4.
for this SOURCE application with an @EnableBinding annotation, together
with an interface argument that identifies the channel connection with which it
registers to the RabbitMQ exchange broker. For this application, the default
Source interface will be used:

@SpringBootApplication
@EnableBinding(Source.class)
public class SourceMsgBootApplication
extends SpringBootServletInitializer {
 // refer to sources
}

Inside its src\main\properties directory, create application.properties5.
that contain the same Tomcat server-related and connectivity details for the hrs
database. Moreover, add the following new details that pertain to the source
message channel and the type of source message that this channel will retrieve during
the process. Also include the RabbitMQ server details that will host the
messaging:

spring.rabbitmq.host=localhost
spring.rabbitmq.port=5672
spring.rabbitmq.username=guest
spring.rabbitmq.password=guest
spring.rabbitmq.requested-heartbeat=60

spring.cloud.stream.bindings.output.destination=packt.cloud
spring.cloud.stream.bindings.output.content-
type=application/json

Create @Controller that will contain two request handlers --one that will send6.
the request with an employee ID for the verification of its profile and one that
will send a Department payload object to the consumer for saving. Both triggers
and event send the request messages to its consumer:

@Controller
public class MessageController {

@Autowired
private Source source;

@RequestMapping(method = RequestMethod.GET,
value = "/selectDept/{id}")
@ResponseBody
public String verifyEmployee(@PathVariable("id")

Batch and Message-Driven Processes

[546]

String id) {
Message<String> result =
MessageBuilder.withPayload(id).build();
source.output().send(result);
return result.getPayload();
}

@RequestMapping(method = RequestMethod.GET,
value = "/addDept/{id}/{deptid}/{name}/")
@ResponseBody
public Department addEmployee(@PathVariable("id")
 Integer id, @PathVariable("deptid") Integer deptid,
 @PathVariable("name") String name) {

Department dept = new Department();
dept.setId(id);
dept.setDeptid(deptid);
dept.setName(name);
Message<Department> result =
 MessageBuilder.withPayload(dept).build();
source.output().send(result);
return result.getPayload();
}
}

Save all files.7.
Since we are done with the producer, let's now create the message consumer or the8.
SINK application. Create a Spring Boot 2.0 application, ch11-ipc-sink, with all
the core starter POM dependencies similar to those for the producer application.
Add the JDBC and JPA starter POM for database transactions. Above all, add the
Spring Cloud Finchley Maven dependency configuration to pom.xml.
Now create a core page for the consumer named org.packt.process.core and9.
drop the following bootstrap class that enables message binding using the SINK
definition:

@SpringBootApplication
@EnableBinding(Sink.class)
public class SinkMsgBootApplication
extends SpringBootServletInitializer {
 // refer to sources
}

Batch and Message-Driven Processes

[547]

In its src\main\resources, add application.properties that contain the10.
RabbitMQ server details, the input exchange channel, and the type of message to be
consumed. Also disable spring.jpa.hibernate.use-new-id-generator-
mappings to follow the MySQL auto-increment procedure for primary key
generation:

spring.jpa.hibernate.use-new-id-generator-mappings=false
spring.cloud.stream.bindings.input.destination=packt.cloud
spring.cloud.stream.bindings.input.content-
type=application/json

spring.rabbitmq.host=localhost
spring.rabbitmq.port=5672
spring.rabbitmq.username=guest
spring.rabbitmq.password=guest
spring.rabbitmq.requested-heartbeat=60
// see the sources

The consumer and producer exchange channel must be one and the same,
which is packt.cloud, in order for the exchange to happen.

Copy the JPA repository, service, and entity models from the ch10-empservice11.
application. Drop them into this project, and apply the needed package
refactoring and some syntax changes.
Create an event handler class that contains events that will be executed every12.
time the request reaches the input queue. For Spring Cloud to detect this bean
class, it must have the @Component annotation:

@Component
public class VerifyEmployeeService {
 @Autowired
 private DepartmentService departmentServiceImpl;
 private static final Logger log =
 LoggerFactory.getLogger(
VerifyEmployeeService.class);
 @ServiceActivator(inputChannel=Sink.INPUT)
 public void validateEmployee(Integer deptId) {
 Department dept = null;
 try{
 dept = departmentServiceImpl.findDeptByid(deptId);
 }catch(Exception e){
 dept = new Department();
 dept.setName("Non-existent");

Batch and Message-Driven Processes

[548]

 }
 log.info("{}", dept.getName());
 }
 @ServiceActivator(inputChannel=Sink.INPUT)
 public void addDepartment(Department dept) {
 try{
 departmentServiceImpl.saveDeptRec(dept);
 }catch(Exception e){
 log.info("{}", e.getMessage());
 }
 log.info("{}", dept.getName());
 }
}

Spring Cloud Stream has a built-in object converter and mapper, which is
the only reason why SINK can easily access employee ID as an int object
from the input channel. Object payloads are automatically converted into
JSON without adding Jackson mapper plugins.

Save all files. Assuming that the RabbitMQ server is running, deploy the13.
SOURCE and SINK projects. Run both
http://localhost:9004/ch11-ipc-source/addDept/777/3433/Psycholo

gy/ and http://localhost:9004/ch11-ipc-source/selectDept/395, and
check the logs. Also, check the department table if the Psychology record has
been inserted.
An optional component of Spring Cloud Stream, which is called a PROCESSOR14.
can be added to this recipe to act like a filter to the incoming stream that matches
an event. These events can forward reactive stream data to SINK. Let's create a
new Spring Boot 2.0 application that will pose as the PROCESSOR for the
preceding message exchange. Add the same core starter POM and Spring Cloud
Finchley dependencies to pom.xml.

Batch and Message-Driven Processes

[549]

Inside its core package org.packt.process.core, create a bootstrap class that15.
enables message binding using the default class definition of the Processor
interface:

@EnableBinding(Processor.class)
@SpringBootApplication
public class ProcessorMsgBootApplication
extends SpringBootServletInitializer {
 // refer to sources
}

Inside the org.packt.process.core.config package, create this listener class16.
that will filter the employee ID payload from the producer message, validate if it's
convertible to an int object, and return 0 if the employee ID is not convertible to
an integer value:

@Configuration
public class EmpIdConverterConverter {
 @StreamListener(Processor.INPUT)
 @SendTo(Processor.OUTPUT)
 public Integer verifyEmpString(String message) {
 System.out.println("first");
 Integer empid = null;
 try{
 empid = Integer.parseInt(message);
 } catch(Exception e){
 empid = 0;
 }
 return empid;
 }
}

This implementation processes and forwards a blocking stream.

Batch and Message-Driven Processes

[550]

Save all files. Deploy the SOURCE, SINK, and PROCESSOR applications. Open17.
a browser and run
http://localhost:9004/ch11-ipc-source/selectDept/39 again. Send an
invalid employee ID and observe the logs.
Unlike in the previous recipe, Spring Cloud Stream is a messaging framework18.
design for long-lived interprocess communication. To create a PROCESSOR that
will manage a hot stream or continuous flow of message requests, the reactor-
based event handlers wherein outgoing and incoming message requests will all
be in Flux<T> stream. Then try once again replacing the previous blocking
verifyEmpString() with the following reactive handler:

@StreamListener
@Output(Processor.OUTPUT)
public Flux<String> verifyEmpString(
@Input(Processor.INPUT) Flux<String> id) {
 System.out.println("first");
 id.delayElements(Duration.ofMillis(2))
 .log();
 return id;
}

Save all files. Deploy all three applications. Rerun19.
http://localhost:9004/ch11-ipc-source/selectDept/39, and observe
the broker exchange between the input and output queues:

Batch and Message-Driven Processes

[551]

How it works...
Spring Cloud Stream is a framework composed of Spring Integration and Spring Boot 2.0,
which is purposely used to establish broker-based communication among microservices
that produce and consume messages at a high rate. Though not shown in this recipe, Spring
Cloud Stream can establish groups or clusters in order to maintain scalability despite high
stream traffic.

All configuration classes and components are considered to be event handler classes or
filters, wherein each of its event methods has an annotation, @StreamListener, an
indicator that these methods are listeners, and sensitive to incoming and outgoing events.
What types of events they are considering depends on the class interfaces defined in their
@EnableBinding bootstrap class configuration. These interfaces contain queue names and
channel definitions. If they follow the SOURCE channel definition, then events of that
application respond to the sending of messages either through REST endpoints or typical
@Controller requests. If the application binds with the SINK messaging definition, then
the application will respond to inputs from incoming requests with their payloads. The
PROCESSOR types are special listeners that add validation or transformation to incoming
messages before they are forwarded to the SINK events. If there are custom queues and
definitions, these interfaces can be customized like SINK and SOURCE:

public interface Sink {
 String INPUT = "packt.input";
 @Input(Sink.INPUT)
 SubscribableChannel input();
}
public interface Source {
 String OUTPUT = "output";
 @Output(Source.OUTPUT)
 MessageChannel output();
}

Custom application gateways can also be defined through a custom interface like the
following, which defines two output and one input channels:

public interface PaymentGateway {
 @Input
 SubscribableChannel payment();
 @Output
 MessageChannel order();
 @Output
 MessageChannel shipping();
}

Batch and Message-Driven Processes

[552]

The @Output annotation inside these interfaces defines an output channel through which
the request messages are being pushed by the output events. The @Input annotation, on the
other hand, defines an input channel through which the SINK applications, for instance,
retrieve the requests. The default queue channel SOURCE is output and for SINK it is
input.

When it comes to the PROCESSOR, @Input supports the Reactor type Flux<T>, which
produces a continuous flow of data streams that can capture either payloads or the entire
messages.

Implementing batch processes using Spring
Cloud Task
All of the microservices implemented here are designed for long-lived communication.
There are service boxes that are written just to trigger auditing, transfer files through FTP,
convert Excel sheets to PDF, and complete file compression and decompression. Spring
Cloud Task is part of the Spring Cloud project that offers implementation for short-lived
microservices, which will be showcased by this last recipe.

Batch and Message-Driven Processes

[553]

Getting started
This application is a simple microservice template that will guide us on how to build and
execute tasks that run only within a short period of time.

How to do it...
Let's implement a simple event using Spring Cloud Task:

Create a Spring Boot 2.0 project, ch11-batch-task, that contains the core starter1.
POM such as webflux, actuator, and the Tomcat server for Spring Boot 2.0, with
the addition of the needed Spring Cloud dependent management configuration,
which is Spring Cloud Finchley.
Add the following Spring Cloud Task dependency into the pom.xml file:2.

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-task-core</artifactId>
</dependency>

Create a core package org.packt.process.core and create a bootstrap class3.
that enables Spring Cloud Task through the @EnableTask annotation:

@SpringBootApplication
@EnableTask
public class TaskBootApplication extends
 SpringBootServletInitializer {
 // refer to sources
}

Inside its srcmain\resources folder, create application.properties similar4.
to the previous recipes. Just create a blank database named springcloudtask
that is mapped solely to this application.
Copy the logback.xml file from the previous chapters and place this file in5.
src\main\resources with some updates.

Batch and Message-Driven Processes

[554]

Inside a new package, org.packt.process.core.config, create a6.
configuration for the task to be executed by implementing the Spring Cloud
Task core interface, org.springframework.boot.CommandLineRunner. This
class simply logs a dummy message:

@Configuration
public class MonitorTask implements CommandLineRunner {

 private final Logger log =
 LoggerFactory.getLogger(MonitorTask.class);

 @Override
 public void run(String... args) throws Exception {
 log.info("running task");
 }
}

Save all files. Deploy the project. Check the log file and open a MySQL7.
Workbench to check the springcloudtask schema:

How it works...
Spring Cloud Task is used for a short cycle of transaction executed by
org.springframework.boot.ApplicationRunner and
org.springframework.boot.CommandLineRunner. With only the @EnableTask
annotation, the processes wrapped by these interfaces will be executed once without a
restart. Better utilization and execution of Spring Cloud Task can be achieved whenever it is
deployed to the Spring Cloud Data Flow server.

12
Other Spring 5 Features

From the installation and configuration of HTTP/2 down to Spring 5 microservices using
Spring Boot 2.0 development, this book has listed a lot of old modules and showed that
Spring 5 still supports them through some successful recipes. Likewise, half of the chapters
also dropped some how-tos on the new set of foundation classes and interfaces needed to
build asynchronous and reactive web solutions.

This book will not be complete without these features, that may or may not be familiar to
some but are within the realms of the Spring 5 platform. These features may belong to the
Spring MVC and Spring WebFlux modules but can be useful in general to solve some future
problems involving Spring 5 web development.

In this chapter, we will cover the following topics:

Using Hibernate 5 object-relational mapping
Applying Hazelcast distributed caching
Building client-server communications with WebSocket
Implementing Reactive WebSocket communication
Implementing asynchronous Spring Data JPA properties
Implementing Reactive Spring Data JPA repositories
Using Spring Data MongoDB
Building applications for big data storage
Building a Spring 5 application using Kotlin

Other Spring 5 Features

[556]

Using Hibernate 5 object-relational mapping
When it comes to object-relational mapping (ORM), this Spring 5 framework supports
Hibernate 5 with easy configuration through the context of Spring Boot 2.0 methodologies.
This first recipe will be about applying Hibernate object-relational mapping to a MySQL
data source using the HikariCP data pooling mechanism.

Getting ready
Create a new Maven project, ch12-hiber, and integrate the Hibernate 5 ORM framework.

How to do it...
Let us integrate Hibernate 5 to the Spring 5 application using the following steps:

Convert the Maven project ch12-hiber to a Spring Boot application by adding1.
the following Spring Boot 2.0.0.M2 starter POM dependencies, such as webflux,
actuator, and JDBC, with some support plugins such as the MySQL connector.
Hibernate 5 has no dedicated starter POM in Spring Boot 2.0, but it is by default2.
contained in the Spring Data JPA starter POM. Since adding the ORM framework
is covered by the Spring MVC module, it is mandatory to include the Spring
MVC starter POM in the Maven configuration, as follows:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
</dependency>

Inside a new org.packt.hiber.core package, add a Bootstrap class that3.
disables the JPA autoconfiguration process, because JPA is bound with Hibernate
5 in Spring Boot, making it impossible to use Hibernate 5 as a standalone
solution. Even without JPA, still ensure that the
@EnableTransactionManagement annotation is applied to the Bootstrap class:

@SpringBootApplication(exclude =
 JpaRepositoriesAutoConfiguration.class)
@EnableTransactionManagement

Other Spring 5 Features

[557]

public class HiberBootApplication
extends SpringBootServletInitializer {
 // refer to sources
}

Inside its src\main\resources directory, create an application.properties4.
file that contains the same server-related and database properties. Also, include
the actuator endpoint details for project monitoring and deployment. Most
importantly, add in here all the needed Hibernate details to be fetched by some
API classes in @Configuration later:

server.port=8087
server.servlet.context-path=/ch12-hiber

spring.datasource.driverClassName=com.mysql.jdbc.Driver
spring.datasource.url=jdbc:mysql://localhost:3306/hrs?autoRecon
nect=true&useSSL=true&serverSslCert=classpath:config/spring5pac
kt.crt
spring.datasource.username=root
spring.datasource.password=spring5mysql
spring.datasource.hikari.connection-timeout=60000

management.port=8087
management.address=localhost
management.context-path=/appdetails

// refer to sources

#Hibernate 5 Details
hibernate.dialect=org.hibernate.dialect.MySQL5InnoDBDialect
hibernate.show_sql=true
hibernate.format_sql=true

Also, include logback.xml and the config folder in the src\main\resources5.
directory, from the previous projects.
Copy the entity model Department from the previous Spring JPA project.6.

Other Spring 5 Features

[558]

Before implementing the Hibernate transactions inside the7.
org.packt.hiber.core.config package, add the following configuration
class which builds the
org.springframework.orm.hibernate5.LocalSessionFactoryBean,
org.springframework.orm.hibernate5.HibernateTransactionManager,
and org.springframework.orm.hibernate5.HibernateTemplate packages
and injects these beans in to the container. The Hibernate properties from the
application.properties file are fetched by these APIs through the property
placeholder variant org.springframework.core.env.Environment, as
follows:

@Configuration
@EnableWebFlux
public class HiberConfig {
 @Autowired
 private Environment environment;
 @Bean
 public Properties hibernateProperties() {
 Properties properties = new Properties();
 properties.put("hibernate.dialect",
environment.getRequiredProperty("hibernate.dialect"));
 properties.put("hibernate.show_sql",
environment.getRequiredProperty("hibernate.show_sql"));
 properties.put("hibernate.format_sql",
environment.getRequiredProperty("hibernate.show_sql"));
 return properties;
 }
 @Bean("sessionFactory")
 public LocalSessionFactoryBean localSessionFactory(
DataSource dataSource, Properties hibernateProperties) {
 LocalSessionFactoryBean sessionFactory =
new LocalSessionFactoryBean();
 sessionFactory.setDataSource(dataSource);
 sessionFactory.setPackagesToScan(
 "org.packt.hiber.core.model.data");
sessionFactory.setHibernateProperties(hibernateProperties);
 return sessionFactory;
 }
 @Bean
public HibernateTransactionManager db1TransactionManager(
DataSource dataSource,
 LocalSessionFactoryBean localSessionFactory) {
 HibernateTransactionManager txManager =
new HibernateTransactionManager();
 txManager.setSessionFactory(
localSessionFactory.getObject());

Other Spring 5 Features

[559]

 txManager.setDataSource(dataSource);
 return txManager;
 }
 @Bean
 public HibernateTemplate hibernateTemplate(
SessionFactory sessionFactory) {
 return new HibernateTemplate(sessionFactory);
 }
}

Let's now build a Hibernate transaction manager for the department table8.
schema of the hrs database. The following are the template methods for the
department @Repository transactions found in the
org.packt.hiber.core.dao package:

public interface DepartmentDao {

 public List<Department> getAllDepts();
 public List<Department> getDeptsByName(String name);
 public List<Department> getDeptsByDeptid(Integer
 deptid);
 public Department getDeptById(Integer id);
 public void saveDept(Department dept);
}

Implement the preceding template methods using the generated9.
org.hibernate.SessionFactory package and its createQuery() method.
Drop this implementation class inside the org.packt.hiber.core.dao.impl
package as follows:

@Repository
public class DepartmentDaoImpl implements DepartmentDao{
 @Autowired
 private SessionFactory sessionFactory;

 @Override
 public List<Department> getAllDepts() {
 return sessionFactory.openSession()
.createQuery("select d from Department d",
 Department.class).getResultList();
 }

 @Override
 public List<Department> getDeptsByName(String name) {
 return sessionFactory.openSession()
.createQuery("select d from Department d
where d.name LIKE '%:name%'", Department.class)

Other Spring 5 Features

[560]

 .setParameter("name", name).getResultList();
 }

 @Override
 public List<Department> getDeptsByDeptid(Integer deptid) {
 return sessionFactory.openSession()
.createQuery("select d from Department d
where d.deptid = :deptid", Department.class)
 .setParameter("deptid",
 deptid).getResultList();
 }

 @Override
 public Department getDeptById(Integer id) {
 return sessionFactory.openSession()
.createQuery("select d from Department d
where d.id = :id", Department.class)
.setParameter("id", id).getSingleResult();
 }

 @Override
 public void saveDept(Department dept) {
 sessionFactory.openSession().persist(dept);
 }
}

Now, implement the service layer by having a set of services found in the10.
org.packt.hiber.core.service package, as follows:

public interface DepartmentService {

 public List<Department> getAllDeptList();
 public List<Department> getDeptsByName(String name);
 public List<Department> getDeptsByDeptid(Integer
 deptid);
 public Department getDeptById(Integer id);
 public void saveDept(Department dept);
}

Inside the org.packt.hiber.core.service.impl package, implement the11.
preceding service methods using the DepartmentDao repository transactions, as
follows:

@Service
public class DepartmentServiceImpl implements
 DepartmentService{
 @Autowired

Other Spring 5 Features

[561]

 private DepartmentDao departmentDaoImpl;

 @Override
 public List<Department> getAllDeptList() {
 return departmentDaoImpl.getAllDepts();
 }

 @Override
 public List<Department> getDeptsByName(String name) {
 return departmentDaoImpl.getDeptsByName(name);
}

// refer to sources
}

Avoid using the @Transaction annotation since Hibernate transaction
management has been enabled by @EnableTransactionManagement
during Bootstrap. The @Transaction annotation is appropriate for JPA
transactions only.

To test Hibernate services, implement the following RESTful services through12.
HiberController in the org.packt.hiber.core.controller package, as
follows:

@RestController
public class HiberController {
 @Autowired
 private DepartmentService departmentServiceImpl;
 @GetMapping(value="/listDepts",
produces= MediaType.APPLICATION_JSON_VALUE)
 public List<Department> listDepts() {
 return departmentServiceImpl.getAllDeptList();
 }
 @GetMapping(value="/selectDept/{id}",
produces= MediaType.APPLICATION_JSON_VALUE)
 public Department selectDept(@PathVariable("id") Integer id)
{
 return departmentServiceImpl.getDeptById(id);
 }
 @GetMapping(value="/selectDeptByDeptid/{deptid}",
produces= MediaType.APPLICATION_JSON_VALUE)
 public List<Department>selectDeptByDeptid(
@PathVariable("deptid") Integer deptid) {
 return
 departmentServiceImpl.getDeptsByDeptid(deptid);
 }
}

Other Spring 5 Features

[562]

Save all files.13.
Build and deploy the project with the clean spring-boot:run -U command.14.
Finally, open a browser and execute a sample RESTful service, as shown in the15.
following screenshot:

How it works...
This recipe is obviously under the Spring MVC module which is concerned with the
implementation and performance of DAO layers in an application. Spring 5 totally supports
the Hibernate ORM framework, but only version 5.x. There is no means for Spring 5 to
inject SessionFactory and the transaction manager like in the previous Hibernate
versions.

To successfully use Hibernate 5, it is advisable to turn off
JpaRepositoriesAutoConfiguration since it is part of the JPA autoconfiguration
process during Bootstrap. This allows us to implement transaction management from
Hibernate 5 when applying the @Repository annotation instead of the default JPA
framework of Spring Boot 2.0.

Since the autoconfiguration for JPA is required to be disabled, the bean objects of these
Hibernate 5 APIs, namely HibernateTransactionManager, HibernateTemplate, and
LocalSessionFactoryBean, must be explicitly injected to the container. Together with the
Hibernate properties declared in the application.properties file, these beans will be
consumed in order to configure the SessionFactory needed to build and execute the
Hibernate Query Language (HQL).

Other Spring 5 Features

[563]

Applying Hazelcast distributed caching
In Chapter 9, Spring Boot 2.0, we introduced a recipe that highlighted Ehcache
configuration with the Spring Boot 2.0 development. However, Ehcache works fine with
applications deployed to a single-node deployment environment only. Once this simple
architecture starts to adapt the distributed or clustered microservices set up, a new object
caching mechanism that fits in a distributed environment must also be used, replacing the
old caching. Unfortunately, Ehcache is not scalable when it comes to infrastructure changes
like this. This recipe will show us a procedure that will implement a distributed caching
mechanism suitable for a loosely-coupled architecture.

Getting ready
Utilize again the Hibernate project ch12-hiber in order to show the step-by-step process
of how to apply Hazelcast distributed caching.

How to do it...
Let us assume that there is a distributed setup of microservices, which can dockerized or
not, just for us to apply the following steps in building Hazelcast caching:

Open the pom.xml file of the ch12-hiber project and add the following Spring1.
Cache starter POM dependency, as follows:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-cache</artifactId>
</dependency>

Then, add the Spring Boot 2.0 starter POM for Hazelcast support. Also, include2.
the updated and stable version of the Hazelcast-Spring external libraries needed
to configure the Hazelcast cache manager for the Spring 5 application, as follows:

<dependency>
 <groupId>com.hazelcast</groupId>
 <artifactId>hazelcast</artifactId>
</dependency>
<dependency>
 <groupId>com.hazelcast</groupId>
 <artifactId>hazelcast-spring</artifactId>
 <version>3.8.3</version>
</dependency>

Other Spring 5 Features

[564]

For the serialization of ArrayList<T> and data models, add the following3.
supplementary cache libraries that can help avoid Hazelcast serialization-related
exceptions:

<dependency>
 <groupId>javax.cache</groupId>
 <artifactId>cache-api</artifactId>
</dependency>

Check whether all data models in the org.packt.hiber.core.model.data4.
package implement java.io.Serializable. All entity models must be
serializable, and that is a requirement for Hazelcast caching.
Now, it is time to build the caching configuration class. Inside the5.
org.packt.hiber.core.config, package and add the CachingConfig class
that builds the cache manager with the Hazelcast instance and some properties.
Do not forget to apply the @EnableCaching class-level annotation:

@Configuration
@EnableCaching
public class CachingConfig {
 @Bean
 public Config hazelCastConfig() {
 Config config = new Config();
 config.setInstanceName("hazelcast-packt-cache");
 config.setProperty("hazelcast.jmx", "true");
 MapConfig deptCache = new MapConfig();
 deptCache.setTimeToLiveSeconds(20);
 deptCache.setEvictionPolicy(EvictionPolicy.LFU);
 config.getMapConfigs().put("hazeldept",deptCache);
 return config;
 }
 @Bean
 public HazelcastInstance hazelcastInstance(
Config hazelCastConfig) {
 return
 Hazelcast.newHazelcastInstance(hazelCastConfig);
 }
 @Bean
 public CacheManager cacheManager(
HazelcastInstance hazelcastInstance) {
 return new
 HazelcastCacheManager(hazelcastInstance);
 }
}

Other Spring 5 Features

[565]

To apply Hazelcast caching, open DepartmentDaoImpl and attach @Cacheable6.
to the data retrieval operations:

@Repository
public class DepartmentDaoImpl implements DepartmentDao{
 @Autowired
 private SessionFactory sessionFactory;

 @Cacheable("hazeldept")
 @Override
 public List<Department> getAllDepts() {
 return sessionFactory.openSession()
.createQuery("select d from Department d",
 Department.class).getResultList();
 }

 @Cacheable("hazeldept")
 @Override
 public List<Department> getDeptsByName(String name) {
 return sessionFactory.openSession()
.createQuery("select d from Department d
where d.name LIKE '%:name%'", Department.class)
.setParameter("name", name).getResultList();
}
// refer to sources
}

Save all files. Deploy the project and check the log file:7.

15:45:22.591 [main] INFO com.hazelcast.system -
[192.168.56.1]:5701 [dev]
[3.8.2] Hazelcast 3.8.2 (20170518 - a60f944) starting at
[192.168.56.1]:5701
15:45:22.591 [main] INFO com.hazelcast.system -
[192.168.56.1]:5701 [dev]
[3.8.2] Copyright (c) 2008-2016, Hazelcast, Inc. All Rights
Reserved.
15:45:22.591 [main] INFO com.hazelcast.system -
[192.168.56.1]:5701 [dev]
[3.8.2] Configured Hazelcast Serialization version : 1
15:45:22.820 [main] INFO c.h.s.i.o.impl.BackpressureRegulator
-
[192.168.56.1]:5701 [dev] [3.8.2] Backpressure is disabled
15:45:23.702 [main] INFO com.hazelcast.instance.Node -
[192.168.56.1]:5701
[dev] [3.8.2] Creating MulticastJoiner
15:45:23.871 [main] INFO c.h.s.i.o.impl.OperationExecutorImpl
-

Other Spring 5 Features

[566]

[192.168.56.1]:5701 [dev] [3.8.2] Starting 8 partition threads
15:45:23.871 [main] INFO c.h.s.i.o.impl.OperationExecutorImpl
-
[192.168.56.1]:5701 [dev] [3.8.2] Starting 5 generic threads (1
dedicated for priority tasks)
15:45:23.871 [main] INFO com.hazelcast.core.LifecycleService -
[192.168.56.1]:5701 [dev] [3.8.2] [192.168.56.1]:5701 is
STARTING
15:45:26.435 [main] INFO com.hazelcast.system -
[192.168.56.1]:5701 [dev]
[3.8.2] Cluster version set to 3.8
15:45:26.437 [main] INFO c.h.i.cluster.impl.MulticastJoiner -
[192.168.56.1]:5701
[dev] [3.8.2]
Members [1] {
 Member [192.168.56.1]:5701 - 3b7936c6-9eda-479a-
ba21-02552e3b24b1
 this
}
15:45:26.477 [main] INFO c.h.internal.jmx.ManagementService -
[192.168.56.1]:5701 [dev] [3.8.2] Hazelcast JMX agent enabled.
15:45:26.501 [main] INFO com.hazelcast.core.LifecycleService -
[192.168.56.1]:5701 [dev] [3.8.2] [192.168.56.1]:5701 is
STARTED

Again, run the same application but with a different port. Observe the following8.
log file:

15:54:54.784 [main] INFO c.h.i.cluster.impl.MulticastJoiner -
[192.168.56.1]:5702
[dev] [3.8.2] Trying to join to discovered node:
[192.168.56.1]:5701
15:54:54.786 [hz.hazelcast-packt-cache.cached.thread-2] INFO
c.h.nio.tcp.InitConnectionTask - [192.168.56.1]:5702 [dev]
[3.8.2] Connecting to /192.168.56.1:5701, timeout: 0, bind-any:
true
15:54:54.796 [hz.hazelcast-packt-cache.IO.thread-Acceptor] INFO
c.h.nio.tcp.SocketAcceptorThread - [192.168.56.1]:5701 [dev]
[3.8.2]
Accepting socket connection from /192.168.56.1:31400
15:54:54.806 [hz.hazelcast-packt-cache.cached.thread-2] INFO
c.h.nio.tcp.TcpIpConnectionManager - [192.168.56.1]:5702 [dev]
[3.8.2]
Established socket connection between /192.168.56.1:31400 and
/192.168.56.1:5701
15:54:54.806 [hz.hazelcast-packt-cache.cached.thread-3] INFO
c.h.nio.tcp.TcpIpConnectionManager - [192.168.56.1]:5701 [dev]
[3.8.2]

Other Spring 5 Features

[567]

Established socket connection between /192.168.56.1:5701 and
/192.168.56.1:31400

How it works...
Most of the time, distributed database architecture is an option to optimize monolithic
databases in a clustered enterprise ecosystem. With this setup, some servers, which can
house microservices, may share data through their own models of data communication.
Now, this recipe provides another solution for optimizing data operations by setting up a
distributed data caching, instead of distributed databases in a distributed ecosystem of
microservices.

Spring Boot 2.0 offers a built-in HazelcastAutoConfiguration class, which does not
require a separate caching server just to establish the nodes of Hazelcast cache instances.
Once applications or microservices that have Hazelcast caches are deployed, their instances
will autodiscover each other and will form a cluster. Instead of connecting to the dedicated
data source, a cluster can just provide a reference to the Hazelcast node of another service
box to retrieve data in that cache.

As we all know, Hazelcast is a popular distributed in-memory tool popular for any grid
project when it comes to caching. Its most important API, which is
com.hazelcast.core.HazelcastInstance, can be configured either by using an XML
file or a Java Configuration class just like in this recipe. If XML configuration is used, drop
the file in src\main\resources and register its location in application.properties
through the spring.hazelcast.config property.

If there is no plan for building, distributed applications or microservices, using Ehcache is
already a perfect data caching solution to optimize huge data retrieval.

Building client-server communications with
WebSocket
Just like its predecessors, Spring 5 supports a high-frequency but low-latency data exchange
between a client and a server using a websocket protocol. This recipe will just provide a
step-by-step procedure on how to implement raw and real-time WebSocket messaging
without using any third-party brokers.

Other Spring 5 Features

[568]

Getting ready
Create a new Maven project, ch12-websocket, that will implement the simple and non-
reactive TextSocketWebHandler to entertain complaints from clients.

How to do it...
Let us create a simple messenger by performing the following steps:

First, convert ch12-websocket to the Spring Boot 2.0 application by to pom.xml1.
the Spring Boot 2.0.0.M2 starter POM dependencies, such as Spring WebFlux for
Reactive components and Spring Boot actuator for project status monitoring and
management.
To add support for the websocket protocol, add the following starter POM2.
dependency in pom.xml:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-websocket</artifactId>
</dependency>

To convert message payloads in JSON format to Java objects, add the following3.
additional Maven dependency:

<dependency>
 <groupId>com.google.code.gson</groupId>
 <artifactId>gson</artifactId>
</dependency>

Inside the core package org.packt.messaging.core, add the following typical4.
Bootstrap class:

@SpringBootApplication
public class ChatBootApplication {
 public static void main(String[] args) throws Exception {
 SpringApplication.run(ChatBootApplication.class,
 args);
 }
}

Other Spring 5 Features

[569]

Inside src\main\resources, create an application.properties file that5.
contains basic autoconfiguration details similar to the previous projects. No
special properties for WebSocket support are needed to be registered here.
Copy the config folder and logback.xml from the previous projects. Update6.
the logger information of the logback.xml file.
To manage the incoming payloads and outgoing messages, implement a custom7.
handler inside the org.packt.messaging.core.config package through the
org.springframework.web.socket.handler.TextWebSocketHandler API.
This handler will utilize the Gson() utility to convert JSON payloads from the
client to valid Java String objects. Moreover, this is the only @Component
annotation where sessions are established per message received:

@Component
public class HotlineSocketHandler extends TextWebSocketHandler
{
 List<WebSocketSession> sessions = new
CopyOnWriteArrayList<>();

 @Override
 public void handleTextMessage(WebSocketSession session,
 TextMessage message)
 throws InterruptedException, IOException {
 for(WebSocketSession webSocketSession : sessions) {
 Map value = new
 Gson().fromJson(message.getPayload(),
 Map.class);
 String[] data =
 value.get("data").toString().split(",");
 webSocketSession.sendMessage(
new TextMessage("Dear " +
 data[0] + ", you complaint is now ..."));
 }
 }

 @Override
 public void afterConnectionEstablished(
WebSocketSession session) throws Exception {
 sessions.add(session);
 }
}

Other Spring 5 Features

[570]

This WebSocket messaging needs an endpoint that a client can be used to open8.
message the communication channels. This endpoint is a unique URL mapped to
one custom handler by the
org.springframework.web.socket.config.annotation.WebSocketConfi

gurer class. This @Configuration class must enable WebSocket support in
Spring Boot by applying the class-level annotation @EnableWebSocket:

@Configuration
@EnableWebSocket
public class ChatSocketConfig implements WebSocketConfigurer {

 public void registerWebSocketHandlers(
WebSocketHandlerRegistry registry) {
 registry.addHandler(new HotlineSocketHandler(),
 "/data");
 }
}

At this point, we are finished configuring the server side of this application. It is9.
time to set up the client side of the application by creating the required static
resources needed to face the users. All these HTML, CSS, and JS files must be
dropped inside a static folder, src/main/resources, in order for Spring Boot
to auto recognize them:

Now, inside the static folder, drop some HTML Bootstrap files (for example,10.
bootstrap.min.css) for response web design, and jQuery JS files (for example,
jquery-xxxx-min.js) for client-side socket implementation. Another option is
to import these files from https://cdnjs.com/libraries/jquery/.
Create an HTML 5 page, hotline.html, which will serve as the client of the11.
application. It will contain form data needed to be sent through the WebSocket
channels:

<!DOCTYPE html>
<html>
<head>
 <title>Chapter 12</title>

https://cdnjs.com/libraries/jquery/

Other Spring 5 Features

[571]

 <link href="./bootstrap.min.css" rel="stylesheet">
 <link href="./main.css" rel="stylesheet">
 <script src="./jquery-1.10.2.min.js"></script>
</head>
<body>
 <div class="col-md-6">
 <form id="complaintForm" class="form-inline">
 <div class="form-group">
 <label for="name">What is your name?
</label>
 <input type="text" id="name"
class="form-control"
placeholder="Your name here...">
 <label for="complaint">
What is your complaint?
 </label>
 <input type="text" id="complaint"
 class="form-control"
placeholder="Your complaint here...">
 </div>
 <button id="send"
class="btn btn-success"
 type="submit">Send</button>
 </form>
 </div>
 <div class="row">
 <div class="col-md-12">
 <table id="helpdesk" class="table table-hover">
 <thead>
 <tr>
 <th>Customer Service</th>
 </tr>
 </thead>
 <tbody id="feedbacks">
 </tbody>
 </table>
 </div>
 </div>
</body>
</html>

Assign the necessary element ID to each of the form components.

Other Spring 5 Features

[572]

All the client-side WebSocket connections and transactions happen inside a12.
JavaScript file. Using the jQuery API, create the following socketapp.js file,
which implements some event handlers such as connect(), disconnect(),
and sendFormData():

var ws;
function setConnected(connected) {
 $("#connect").prop("disabled", connected);
 $("#disconnect").prop("disabled", !connected);
 if (connected) {
 $("#helpdesk").show();
 }
 else {
 $("#helpdesk").hide();
 }
 $("#feedbacks").html("");
}

function connect() {
 ws = new WebSocket('ws://localhost:8085/
ch12-websocket/data');
 ws.onmessage = function(data){
 showFeedbacks(data.data);
 }
 setConnected(true);
}

function disconnect() {
 if (ws != null) {
 ws.close();
 }
 setConnected(false);
 console.log("Disconnected");
}

function sendFormData() {
 var data = JSON.stringify({'data': $("#name").val() +
 "," + $("#complaint").val()})
 ws.send(data);
}

function showFeedbacks (message) {
 $("#feedbacks").append("<tr><td> " + message +
 "</td></tr>");
}

$(function () {

Other Spring 5 Features

[573]

 $("form").on('submit', function (e) {
 e.preventDefault();
 });
 $("#connect").click(function() { connect(); });
 $("#disconnect").click(function() { disconnect(); });
 $("#send").click(function() { sendFormData(); });
});

Import socketapps.js inside hotline.html using the <script> tag.13.
Save all files. Clean, build, and deploy the Spring Boot application. Open a14.
browser and execute
http://localhost:8085/ch12-websocket/hotline.html:

How it works...
One of the popular solutions nowadays in building web-based real-time communication is
WebSocket, which utilizes a TCP connection in establishing client-server communication.
This communication strategy allows saving client sessions at the server side, which
enhances bi-directional communication between the client and the server. Lots of payload
converters and serializers are available nowadays that can help scrutinize and persist
messages for security and audit purposes. Moreover, communication using WebSocket is
lighter than the usual HTTP-based strategy, since the header information involved during
the process is less. In the WebSocket client and in server exchange, the transfer of data per
frame is at least 2 bytes compared to HTTP-based communications, which can take at least 8
Kb per frame. Some requirements may not apply low-latency communication, which will
always need an HTTP header exchange.

Other Spring 5 Features

[574]

Implementing Reactive WebSocket
communication
It is only with Spring 5 that APIs for Reactive WebSocket communication are available to
build an ideal, resilient, optimized, and real-time client-server messaging without too many
complicated configurations. Part of the additional Reactive modules added to Spring Boot
2.0 are the classes and interfaces ready to build WebSocket communications that utilize the
Flux<T> and Mono<T> stream payloads, with backpressure operators applied during bi-
directional stream processing.

Getting ready
Create another Maven project, ch12-messenger, needed to implement a mini-chat room
based on the Reactive WebSocket APIs.

How to do it...
Let us build a fast and asynchronous messenger using Reactive WebSocket by performing
the following steps:

Just like in the previous recipe, convert ch12-messenger to a Spring Boot 2.01.
application by adding the Spring Boot 2.0.0.M2 starter POM dependencies, like
webflux, actuator for project status monitoring and management, and the
websocket protocol we recently used.

There is no Reactive counterpart for the POM starter WebSocket.

Other Spring 5 Features

[575]

Inside the core package org.packt.messenger.core, add the following2.
Bootstrap class:

@SpringBootApplication
public class ChatBootApplication {
 public static void main(String[] args) throws Exception {
 SpringApplication.run(ChatBootApplication.class,
 args);
 }
}

The application.properties file inside the src/main/resources directory3.
will be just the same as in the previous recipe.
Enable logging using logback and SLF4J.4.
Implement5.
org.springframework.web.reactive.socket.WebSocketHandler, which
is the appropriate custom handler for incoming Reactive sessions wrapped in an
org.springframework.web.reactive.socket.WebSocketSession. It has a
handle()method that manages the communication between the client and server
by retrieving the message payloads in the form of the
Flux<WebSocketMessage> streams that no converters or serializers can process,
but only through a reactor server. Drop @Component inside
org.packt.messaging.core.handler:

@Component
public class MessageWebSocketHandler implements
WebSocketHandler {
 @Override
 public Mono<Void> handle(WebSocketSession session) {
 return session.send(session.receive()
 .map(str -> str.getPayloadAsText())
 .map(str -> "Howdy, " + str
+ "? Welcome to the Portal!")
 .map(session::textMessage))
 .delayElement(Duration.ofMillis(2)).log();
 }
}

In WebSocketHandler, it is mandatory for a server to broadcast its reply
in the form of a textMessage() method. Also, it is essential to always
include the delayElement() backpressure operator during simultaneous
Flux<WebSocketMessage> exchanges to avoid server-related exceptions.

Other Spring 5 Features

[576]

To enable WebSocket support and to build an entry point for each custom6.
handler, implement the following WebSocket configuration inside the
org.packt.messaging.core.config package. Unlike the non-reactive
version, this configuration requires three beans to be injected into the container,
namely the org.springframework.web.reactive.HandlerMapping,
org.springframework.web.reactive.socket.server.support.WebSocke

tHandlerAdapter, and
org.springframework.web.reactive.socket.server.WebSocketService

packages. The WebSocketHandlerAdapter and WebSocketService methods
automatically check and detect any container-specific
RequestUpgradeStrategy that is needed to implement Reactive WebSocket
handshakes through the endpoints:

@Configuration
@EnableWebSocket
public class ReactiveChatSocketConfig {

 @Autowired
 private WebSocketHandler messageWebSocketHandler;

 @Bean
 public HandlerMapping webSocketMapping() {
 Map<String, WebSocketHandler> map = new HashMap<>();
 map.put("/react", messageWebSocketHandler);
 SimpleUrlHandlerMapping mapping =
new SimpleUrlHandlerMapping();
 mapping.setOrder(10);
 mapping.setUrlMap(map);
 return mapping;
 }

 @Bean
 public WebSocketHandlerAdapter handlerAdapter() {
 return new WebSocketHandlerAdapter(
webSocketService());
 }

 @Bean
 public WebSocketService webSocketService() {
 return new HandshakeWebSocketService(
new ReactorNettyRequestUpgradeStrategy());
 }
}

Other Spring 5 Features

[577]

In order to create a Reactive WebSocket handshake, which will eventually7.
transfer Flux<WebSocketMessage> from client to server and vice versa, a
server-specific strategy used to initiate the WebSocket exchange is required. The
embedded Tomcat does not have this so called RequestUpgradeStrategy, but
the Reactor Netty server has. Drop this Reactor Netty configuration class, used in
the previous chapters, in order to run our reactive chatroom:

@Configuration
@EnableWebFlux
public class HttpServerConfig implements WebFluxConfigurer{
 @Bean
 public NettyContext nettyContext(ApplicationContext context)
{
 HttpHandler handler =
 DispatcherHandler.toHttpHandler(context);
 ReactorHttpHandlerAdapter adapter =
new ReactorHttpHandlerAdapter(handler);
 HttpServer httpServer =
HttpServer.create("localhost",
 Integer.valueOf("8908"));
 return httpServer.newHandler(adapter).block();
 }
}

At this point, we are finished building the server side aspect of this Reactive8.
WebSocket project. Let's start building the client side by having an HTML 5
client.html page inside the src/main/resources/static folder of the
application:

<!DOCTYPE html>
<html>
<head>
 <title>Chapter 12</title>
 <link href="./bootstrap.min.css" rel="stylesheet">
 <link href="./main.css" rel="stylesheet">
 <script src="./jquery-1.10.2.min.js"></script>
</head>
<body>
<div id="main-content" class="container">
 <div class="row">
 <H2>GreetMe Portal</H2>
 <div class="col-md-12">
 <form class="form-inline">
 <div id="greetForm" class="form-group">
 <label for="name">What is your name?
 </label>

Other Spring 5 Features

[578]

 <input type="text" id="name"
class="form-control"
placeholder="Your name here...">
 <label for="greet">Say your greetings?
 </label>
 <input type="text" id="greet"
class="form-control"
placeholder="Your greeting here...">
 <button id="send"
class="btn btn-success"
 type="submit">Send</button>
 </div>
 </form>
 </div>
 </div>
 <div class="row">
 <div class="col-md-12">
 <table id="greetings" class="table
table-hover">
 <thead>
 <tr>
 <th>Conversation with Portal</th>
 </tr>
 </thead>
 <tbody id="conversations">
 </tbody>
 </table>
 </div>
 </div>
</div>
</body>
</html>

Ensure that you assign the element tag ID to the form components.

Other Spring 5 Features

[579]

Now, implement the WebSocket client event handlers, namely onopen() and9.
onmessage(). Drop the reactivesocketapp.js file as a static resource inside
the static folder:

$(document).ready(function () {
 var socket = new
WebSocket("ws://localhost:8908/react");
 socket.onopen = function (event) {
 var newMessage = document.createElement('p');
 newMessage.textContent =
"--- CONVERSATION READY";
 document.getElementById('conversations')
.appendChild(newMessage);
 socket.onmessage = function (e) {
 var newMessage =
 document.createElement('p');
 newMessage.textContent =
"--- PORTAL: " + e.data;
 document.getElementById('conversations')
.appendChild(newMessage);
 }
 $("#send").click(function (e) {
 e.preventDefault();
 var message = $("#name").val();
 socket.send(message);
 var newMessage =
 document.createElement('p');
 newMessage.textContent =
"--- GUEST: " + message;
 document.getElementById('conversations')
.appendChild(newMessage);
 });
 }
});

The IP address and port of the Reactor Netty server must be the details
used in establishing a Reactive WebSocket connection.

Import reactivesocketapps.js inside client.html using the <script> tag.10.
Save all files. Clean, build, and deploy the Spring Boot application.11.

Other Spring 5 Features

[580]

Open a browser and go to12.
http://localhost:8085/ch12-messenger/client.html:

How it works...
The reactive approach to WebSocket is necessary when the requirement for client-server
messaging involves an unbounded number of request streams and event subscriptions. The
request handler instances can be instantiated infinitely, wherein each is being managed by
an assigned thread. Then, these instances can be shared among existing WebSocket
connections triggered by the client. To confirm this behavior, open the ch12-
messenger.log project and study this audit from the request handler created in the
preceding recipe:

 18:14:27.878 [reactor-http-nio-2] INFO reactor.Mono.DelayElement.1 -
 onSubscribe([Fuseable] MonoDelayElement.DelayElementSubscriber)
 18:14:27.879 [reactor-http-nio-2] INFO reactor.Mono.DelayElement.1 -
 request(unbounded)

The reactive data exchange should be managed by a reactive application server that
supports the RequestUpgradeStrategy component, which is a kind of container needed
for the Reactive WebSocket handshake. Unfortunately, Tomcat 9.x does not support
RequestUpgradeStrategy by default, which means it is not capable of recognizing
Reactive sessions with Flux<WebSocketMessage> as payloads.

Other Spring 5 Features

[581]

Implementing asynchronous Spring Data
JPA properties
Previously, we had lots of recipes and snippets regarding how to build repositories using
the Spring Data JPA module through Spring Boot 2.0. All the repository properties created
earlier were mostly non-blocking that return typical collections of model data. This recipe
will focus on asynchronous JpaRepository properties that retrieve Future<T>,
CompletableFuture<T>, and ListenableFuture<T>.

Getting ready
Create a new Maven project, ch12-asyncjpa, that will implement the Spring Data JPA
with asynchronous properties.

How to do it...
Let us now explore the asynchronous side of Spring Data JPA module:

Convert ch12-asyncjpa to a Spring Boot 2.0 application by adding the Spring1.
Boot 2.0.0.M2starter POM dependencies, such as webflux, actuator for project
status monitoring and management, Spring JDBC, and MYSQL connector.
Since there is no dedicated Spring Data JPA module for asynchronous repository2.
transactions, add the same starter POM dependencies for Spring Data JPA to
pom.xml:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>

Inside the core package, org.packt.microservice.core, add the following3.
Bootstrap class:

@SpringBootApplication
public class HRDeptBootApplication
extends SpringBootServletInitializer {
 // refer to sources
}

Other Spring 5 Features

[582]

Copy the config folder and logback.xml from the previous project to4.
src/main/resources. Update the log file details of logback.xml.
Inside the src/main/resources directory, add application.properties5.
that contains the same details as the previous Spring Data JPA project. Since we
will rely on the auto-increment feature of MySQL for object ID generation, always
set spring.jpa.hibernate.use-new-id-generator-mappings to false to
allow data persistence.
To configure the Spring Data JPA module, add the following configuration class6.
inside org.packt.microservice.core.config, which will enable JPA
transaction management:

@Configuration
@EnableJpaRepositories(
 basePackages="org.packt.microservice.core.dao")
@EnableTransactionManagement
public class SpringDataConfig { }

Enable asynchronous features though this configuration class that also generates7.
thread pools through Executor:

@EnableAsync
@Configuration
public class SpringAsynchConfig implements AsyncConfigurer {
 private static Logger logger =
 LoggerFactory.getLogger(SpringAsynchConfig.class);
 @Bean("mvcTaskexecutor")
 @Override
 public Executor getAsyncExecutor() {
 ConcurrentTaskExecutor executor =
 new ConcurrentTaskExecutor(
 Executors.newFixedThreadPool(100));
 executor.setTaskDecorator(new TaskDecorator() {
 @Override
 public Runnable decorate (Runnable
 runnable) {
 return () -> {
 long t =
 System.currentTimeMillis();
 runnable.run();
 logger.info("creating thread
 pool....");
 System.out.printf("Thread %s has a
 processing time: %s%n",
Thread.currentThread().getName(),
(System.currentTimeMillis() - t));

Other Spring 5 Features

[583]

 };
 }
 });
 return executor;
 }
}

Copy the JPA Department entity model from the previous project to the8.
org.packt.microservice.core.model.data package.
Now, create the DepartmentRepository interface using JpaRepository,9.
showcasing the implementation of asynchronous properties as follows:

@Repository
public interface DepartmentRepository
extends JpaRepository<Department, Integer>{
 @Async
 public Future<List<Department>>
findAllByDeptid(Integer deptid);
 @Async
 public CompletableFuture<Department>
 findIgnoreCaseByName(String name);
 @Async
 public ListenableFuture<Department>
 findDeptById(Integer id);

}

Then, create a DepartmentService interface that has the following services.10.
Drop this file inside the org.packt.microservice.core.service package:

public interface DepartmentService {
 public List<Department> findAllDeptList();
 public Department findAllDeptById(Integer id);
 public List<Department> findAllByDeptName(String name);
 public Future<List<Department>>
findAllByDeptId(Integer deptId);
 public CompletableFuture<Department>
 findAllFirstByNameIgnoreCase(String name);
 public ListenableFuture<Department>
findAllFirstById(Integer id);
}

Other Spring 5 Features

[584]

To implement the services, just apply the asynchronous properties from11.
DepartmentRepository:

@Service
public class DepartmentServiceImpl implements
DepartmentService{
 @Autowired
 private DepartmentRepository departmentRepository;

 @Override
 public Future<List<Department>>
findAllByDeptId(Integer deptId) {
 return departmentRepository.findAllByDeptid(deptId);
 }

 @Override
 public CompletableFuture<Department>
 findAllFirstByNameIgnoreCase(String name) {
 return departmentRepository
.findIgnoreCaseByName(name);
 }

 @Override
 public ListenableFuture<Department>
findAllFirstById(Integer id) {
 return departmentRepository.findDeptById(id);
}

 // refer to sources
}

We have come to the highlight of this recipe, which is the implementation of the12.
request handlers given the asynchronous data retrieval from
DepartmentRepository. These request handlers just reuse the concepts
discussed in the previous chapters on how to build callbacks which retrieve the
exact data from Future<T>, CompletableFuture<T>, and
ListenableFuture<T>.
Create @Controller, bearing all these request methods inside13.
org.packt.microservice.core.controller:

@RestController
public class DeptAsyncController {
 @Autowired
 private DepartmentService departmentServiceImpl;
 private Department result = new Department();
 @GetMapping(value="/webSyncDept/{id}.json",

Other Spring 5 Features

[585]

produces ="application/json",
headers = {"Accept=text/xml, application/json"})
 public WebAsyncTask<Department> websyncDeptList(
 @PathVariable("id") Integer id){
 Callable<Department> callable =
 new Callable<Department>() {
 public Department call() throws Exception {
 ListenableFuture<Department> listenFuture =
 departmentServiceImpl.findAllFirstById(id);
 listenFuture.addCallback(
new ListenableFutureCallback<Department>(){

 @Override
 public void onSuccess(Department dept) {
 result = dept;
 }

 @Override
 public void onFailure(Throwable arg0) {
 result = new Department();
 }
 });
 return result;
 }
 };
 return new WebAsyncTask<Department>(500, callable);
 }
 @GetMapping(value="/deferSelectDept/{name}.json",
produces ="application/json",
headers = {"Accept=text/xml, application/json"})
 public DeferredResult<Department> deferredSelectDept(
 @PathVariable("name") String name) {
 DeferredResult<Department> deferredResult =
 new DeferredResult<>();
 CompletableFuture.supplyAsync(()->{
 try {
 return departmentServiceImpl
 .findAllFirstByNameIgnoreCase(name)
 .get(500, TimeUnit.MILLISECONDS);
 } catch (InterruptedException e) {
 e.printStackTrace();
 } catch (ExecutionException e) {
 e.printStackTrace();
 } catch (TimeoutException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 return null;

Other Spring 5 Features

[586]

 }).thenAccept((msg)->{
 deferredResult.setResult(msg);
 });
 return deferredResult;
 }
 // refer to sources
}

Save all files. Then clean, build, and deploy the microservice.14.

How it works...
Although this asynchronous JPA feature appears in its previous version, Spring 5 still
supports the @Async repository transactions to enhance multiple and simultaneous CRUD
transactions. At the DAO layer, these asynchronous JPA properties promote resiliency
among the request handlers just by providing them the necessary callback handlers through
which the data processing will be managed, not only during success but also when failure
happens along the way. Also, these kinds of DAO transactions give requests time delays to
process the response within a specific and practical time frame.

Implementing Reactive Spring Data JPA
repositories
After the synchronous repository methods, this recipe will showcase the Spring 5 support
for Reactive Spring Data JPA repositories. If you are expecting that this recipe will be used
for relational databases, this Reactive Spring Data JPA is feasible only for NoSQL databases
such as MongDB and Couchbase, and not with MySQL and other relational databases.

Getting ready
Create another Maven project, ch12-mongodb, that will be used to implement the Reactive
Spring Data JPA with a MongoDB database.

Other Spring 5 Features

[587]

How to do it...
Let us utilize Reactive Spring Data JPA by performing the following steps:

Convert ch12-mongodb to a Spring Boot 2.0 application by adding the Spring1.
Boot 2.0.0.M2 starter POM dependencies, such as webflux, actuator for project
status monitoring and management, Spring JDBC, MySQL connector, and the
Spring Data JPA starter POM that we just used.

There is no reactive counterpart for the Spring Data JPA's
CrudRepository and JpaRepository.

Before anything else, verify that you have installed the recent binary for the2.
MongoDB server in your system. If not, go back to Chapter 1, Getting Started with
Spring, and follow the procedure on how to install the MongoDB server.
To turn on the MongoDB server, open a command-line terminal and run the3.
server using the \bin\mongod command.
Open another terminal and open the server shell through \bin\mongo. Using4.
MongoDB tutorials from https://docs.mongodb.com/manual/tutorial/, we are
now ready to administer and manage a MongoDB database.
Create a hrs database by running the use hrs command.5.
Create an employee collection and insert a record in it using the following6.
command:

db.employee.insert({ "id":23456, "firstName": "Sherwin John",
"lastName": "Tragura", "age":39, "email":"sjctrags@gmail.com",
"birthday":"10-30-1978", "deptid":359})

Add more document records to employee and then view all Collections using7.
the db.employee.find() command.

Other Spring 5 Features

[588]

NoSQL databases, such as MongoDB, leverage JSON as the core data
model. Thus, use data types that are recognizable only to JSON documents
such as Long, Double, String, Boolean, and other JSON objects defined
by MongoDB.

After the entire MongoDB server configuration and database setup, let's create8.
the Bootstrap class for our Spring Boot application inside a core package,
org.packt.nosql.mongo.core:

@SpringBootApplication
public class MongoBootApplication
extends SpringBootServletInitializer {
 // refer to sources
}

Copy the config folder and logback.xml from the previous recipe. Update the9.
log file details correctly to enable logging for this application.
Create an application.properties file for this project containing all the10.
server-related and MySQL database-related information for JPA
autoconfiguration. The only irony here is that we will not be using any MySQL
features in this recipe. We just need to comply with the JPA autoconfiguration
process for the implementation of its transaction management beans.
Inside org.packt.nosql.mongo.core.config, add a Reactive Spring Data11.
configuration class that looks similar to the one from previous recipes:

@Configuration
@EnableJpaRepositories(
basePackages="org.packt.nosql.mongo.core.dao")
@EnableTransactionManagement
public class ReactiveDataConfig { }

Since the base storage unit of MongoDB is an entity called document, create an12.
entity model needed for persisting the Employee documents into the Mongo
database. Drop this document object inside the
org.packt.nosql.mongo.core.model.data package:

@Document(collection="employee")
public class Employee {
 private BigInteger _id;
 @Id
 private Long id;
 private Long empid;
 private String firstname;
 private String lastname;

Other Spring 5 Features

[589]

 private Long age;
 private String email;
 private Date birthday;
 private Long deptid;
 @PersistenceConstructor
 public Employee(Long id, BigInteger _id, Long empid,
String firstname, String lastname, Long age,
String email, Date birthday, Long deptid) {
 super();
 this.id = id;
 this._id = _id;
 this.empid = empid;
 this.firstname = firstname;
 this.lastname = lastname;
 this.age = age;
 this.email = email;
 this.birthday = birthday;
 this.deptid = deptid;
}
// getters and setters
}

We declared the custom employee id as the primary @Id of the entity
model and not BigInteger _id, which is the default object ID assigned
to each document by the Mongo server. Likewise, there is a shift from
Integer to Long data types in this entity model due to the data type
constraints of JSON.

Inside org.packt.nosql.mongo.core.dao, create a custom13.
EmployeeRepository interface that will highlight the Reactive API class
org.springframework.data.repository.reactive.ReactiveCrudReposi

tory:

@Repository
public interface EmployeeRepository
extends ReactiveCrudRepository<Employee, Long>{
 public Flux<Employee> findAllById(Flux<Long> ids);
 public Flux<Employee> findAllByFirstname(String fname);
 public Flux<Employee> findAllByLastname(String lname);
}

Create an Employee service class that will consist of the following template14.
methods:

public interface EmployeeService {
 public Flux<Employee> getAllEmps();

Other Spring 5 Features

[590]

 public Flux<Employee> getAllEmps(Flux<Long> ids);
 public Mono<Employee> getEmpByid(Long id);
 public Flux<Employee> getEmpsByFname(String fname);
 public Flux<Employee> getEmpsByLname(String lname);
 public void saveEmp(Employee emp);
 public void saveEmps(Flux<Employee> emps);
}

Implement the preceding service class using the reactive EmployeeRepository15.
class:

@Service
public class EmployeeServiceImpl implements EmployeeService{
 @Autowired
 private EmployeeRepository employeeRepository;

 @Override
 public Flux<Employee> getAllEmps() {
 return employeeRepository.findAll();
 }

 @Override
 public Flux<Employee> getAllEmps(Flux<Long> ids) {
 return employeeRepository.findAllById(ids);
 }

 @Override
 public Mono<Employee> getEmpByid(Long id) {
 return employeeRepository.findById(id);
}
// refer to sources
}

Inside org.packt.nosql.mongo.core.controller, create16.
EmReactiveController, which will execute the Reactive services implemented:

@RestController
public class EmpReactiveController {
 @Autowired
 private EmployeeService employeeServiceImpl;
 @GetMapping("/selectReactEmps")
 public Flux<Employee> selectReactDepts() {
 return employeeServiceImpl.getAllEmps();
 }
 @GetMapping("/selectReactEmp/{id}")
 public Mono<Employee> selectReactDept(
@PathVariable("id") Long id) {

Other Spring 5 Features

[591]

 return employeeServiceImpl.getEmpByid(id);
 }
}

Save all files. Then clean, build, and deploy the application.17.
Open a browser and run one of the REST services:18.

How it works...
Currently, Spring Boot has dedicated support for MongoDB, Apache Cassandra,
Couchbase, and Redis when it comes to reactive repository transactions. Any document-
based database can be used to store, retrieve, update, and delete data using Reactive
streams operations as long as Spring Data JPA can detect their server configurations.
Currently, there is still no reactive support for relational databases like MySQL, but we can
write asynchronous repository transactions as discussed in the previous recipe.

Using Spring Data MongoDB
Spring Framework has been supporting MongoDB, Apache Cassandra, and Redis when it
comes to NoSQL data transactions. Each data repository has its own Spring Data module
that developers can use without much effort on the configuration side. Spring 5, with the
help of Spring Boot 2.0, can still provide support to MongoDB, and both non-blocking and
Reactive repository transactions. But this recipe is all about implementing Reactive Spring
Data MongoDB repository properties.

Getting ready
Again, open ch12-mongodb without removing previous Spring Data JPA reactive
components.

Other Spring 5 Features

[592]

How to do it...
Let us not use the dedicated Spring Data MongoDB to implement Reactive repository
transactions:

Add the following Reactive Spring Data MongoDB dependency in the pom.xml1.
file:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-mongodb-reactive
</artifactId>
</dependency>

Open the application.properties file and add the following MongoDB2.
server configuration details:

spring.data.mongodb.host=localhost
spring.data.mongodb.port=27017
spring.data.mongodb.database=app1

Before we proceed, create another Collections in the hrs database, but this3.
time composed of the Department records. Insert a few documents using the
Mongo commands mentioned in the previous recipe.
Go back again to the Spring Eclipse STS. Create a Department model, which will4.
be used by the application to transact with the Mongo database. Drop this file
inside the org.packt.nosql.mongo.core.model.data package:

@Document(collection="department")
public class Department {
 private BigInteger _id;
 @Id
 private Long id;
 private Long deptid;
 private String name;
 @PersistenceConstructor
 public Department(BigInteger _id, Long id, Long deptid,
String name) {
 super();
 this._id = _id;
 this.id = id;
 this.deptid = deptid;
 this.name = name;
}
// setters and getters
}

Other Spring 5 Features

[593]

Create a configuration class inside org.packt.nosql.mongo.core.config,5.
which will enable MongoDB transaction management. This class must inherit
org.springframework.data.mongodb.config.AbstractReactiveMongoCo

nfiguration to inject some beans needed to establish Reactive MongoDB CRUD
transactions, such as ReactiveMongoTemplate:

@Configuration
@EnableReactiveMongoRepositories(
basePackages="org.packt.nosql.mongo.core.dao")
@EnableWebFlux
public class MongoConfig
extends AbstractReactiveMongoConfiguration {

 @Override
 public MongoClient mongoClient() {
 return MongoClients.create();
 }

 @Override
 protected String getDatabaseName() {
 return "hrs";
 }
 @Bean
 public ReactiveMongoTemplate reactiveMongoTemplate() {
 return new ReactiveMongoTemplate(
mongoClient(), getDatabaseName());
 }
}

Now, let's create a MongoDB Reactive repository class inside6.
org.packt.nosql.mongo.core.dao using its own Spring Data MongoDB
module:

@Repository
public interface DepartmentRepository
extends ReactiveMongoRepository<Department, Long>{
 public Flux<Department> findAllById(Flux<Long> ids);
 public Flux<Department> findAllByName(String name);
}

Create a Department service class that consists of all Reactive services:7.

public interface DepartmentService {
 public Flux<Department> getAllDepts();
 public Flux<Department> getAllDepts(Flux<Long> ids);
 public Mono<Department> getDeptByid(Long id);

Other Spring 5 Features

[594]

 public void saveDept(Department dept);
 public void saveDepts(Flux<Department> depts);
}

Implement all the services in DepartmentService using8.
DepartmentRepository:

@Service
public class DepartmentServiceImpl implements
 DepartmentService {
 @Autowired
 private DepartmentRepository departmentRepository;

 @Override
 public Flux<Department> getAllDepts() {
 return departmentRepository.findAll();
 }

 @Override
 public Flux<Department> getAllDepts(Flux<Long> ids) {
 return departmentRepository.findAllById(ids);
 }

 @Override
 public Mono<Department> getDeptByid(Long id) {
 return departmentRepository.findById(id);
 }
 // refer to sources
}

Create REST services to use the following Reactive services. Save all files. Then9.
clean, build, and deploy the application.

How it works...
This recipe illustrated how Spring 5 supports MongoDB when it comes to both typical and
Reactive Spring Data JPA. If an application needs non-blocking data repository
transactions, the typical spring-boot-starter-data-mongodb starter POM dependency
needs to be added in pom.xml. If the application is more of the resilient type, then the
spring-boot-starter-data-mongodb-reactive starter must be of the required
dependency. This kind of support is also true for Apache Cassandra and Redis.

Other Spring 5 Features

[595]

Reactive Spring Data MongoDB is a module of Spring Data that provides support starting
from entity models down to MongoDB reactive repositories, providing data from derived
queries wrapped in a Flux<T> or Mono<T> stream. The module has both
ReactiveMongoRepository and ReactiveCrudRepository, which can be used
synonymously without any difference in performance, since the former is derived from the
latter. The only matter here is the use of ReactiveMongoTemplate, which can make
reference to Mongo databases with the help of ReactiveMongoRepository but not with
ReactiveCrudRepository.

Since MongoDB is a document-based NoSQL database, it requires its entity model to be
annotated with @Document to hold all the binary JSON (BSON) data to be persisted into its
collections. The idea of Collections depicts the concept of a relation containing all Mongo
unstructured documents. MongoDB is an unstructured database, so it has no concept of
relational models such as databases and table schema.

The @Id annotation is associated with the primary key of the document and is mapped to
the Object _id of Collections by default. To retrieve the _idper Document, include it
inside the entity model as a BigInteger object, not to be confused with Longid, which is
the custom data assigned per Department record.

To successfully retrieve data from Collections, each entity model must have a
constructor with all the injected fields as parameters and a @PersistenceConstructor
annotation mapped to it.

Building applications for big data storage
NoSQL databases have become popular nowadays in building big data storage. Spring has
provided support for some of the most popular big data technologies like Hadoop.
However, this recipe aims to implement an application that can persist and retrieve data
from big data storage technology that is scalable, easy to configure and set up, and simple
when it comes to sharding, replications, and CRUD transactions. Before this chapter ends,
here is an implementation of Spring Boot 2.0 that connects to Apache CouchDB with fewer
configuration details.

Getting ready
Create a new Maven project, ch12-couch, that will implement data persistence and
retrieval from the CouchDB storage.

Other Spring 5 Features

[596]

How to do it...
Let us build a Spring 5 application that uses Apache CouchDB for big data storage by
performing the following steps:

First download the recent version of the Apache CouchDB installer from1.
http://couchdb.apache.org/. Follow the installation procedure from their technical
documentation at http://docs.couchdb.org/en/2.1.0/.
After a successful installation, open a browser and run2.
http://127.0.0.1:5984/_utils/. This will launch CouchDB Fauxton, which
is a web-based administration console for CouchDB. Verify the installation and
create a root account using the console.
Then, click on the Databases setup option and Log In using your specified root3.
account:

Other Spring 5 Features

[597]

In the Databases dashboard, create a database named hrs:4.

Click on the newly created database so that you can view all the records or5.
DesignDocuments in table, metadata, or JSON format:

Other Spring 5 Features

[598]

For the time being, that is all for CouchDB configuration and database setup.6.
Let's shift to Spring STS Eclipse and convert ch12-couchdb into a Spring Boot
2.0 application. Just like in the previous recipes, add webflux, actuator, and a
Spring MVC module for the @RestController implementation.

The simplest way to connect to CouchDB or Cloudant is to add this starter POM7.
dependency inside pom.xml:

<dependency>
 <groupId>com.clianz</groupId>
 <artifactId>cloudant-spring-boot-starter</artifactId>
 <version>0.9.5</version>
</dependency>

Inside the core package org.packt.nosql.couch.core, add the following8.
Bootstrap class:

@SpringBootApplication
public class CouchBootApplication
extends SpringBootServletInitializer {
 // refer to sources
}

Copy the config folder and logback.xml from the other recipes and drop them9.
in to src/main/resources. Edit logging details in logback.xml to enable
logging correctly.
Create application.properties inside src/main/resources and register10.
the actuator properties, server information, and database-related details needed
for autoconfiguration. Also add the following CouchDB server details:

server.port=8090
server.servlet.context-path=/ch12-couch

// refer to sources
cloudant.username=packt
cloudant.password=spring5server
cloudant.url=http://localhost:5984

Other Spring 5 Features

[599]

Add the following @Configuration annotation inside11.
org.packt.nosql.couch.core.config, which injects the CouchDB databases
required to connect. In our case, our big data infrastructure only has one database
from one node address, and that is hrs:

@Configuration
public class CouchDbConfig {
 @Bean
 public Database hrsDb(CloudantClient cloudant) {
 return cloudant.database("hrs", true);
 }
}

Due to its simplicity, CouchDB and Cloudant only require a typical POJO with12.
setters, getters, and a constructor in order to implement data persistence and
retrieval. Create the Department POJO and drop this inside the
org.packt.nosql.couch.core.model.data package:

public class Department {
 private Long id;
 private Long deptid;
 private String name;

 public Department(Long id, Long deptid, String name) {
 this.id = id;
 this.deptid = deptid;
 this.name = name;
}
// setters and getters
}

Inside org.packt.nosql.couch.core.controller, create the following REST13.
service that retrieves all the current databases based on the Cloudant
configuration, lists all DesignDocuments which are JSON-based Department
records from hrs, and Couchbase database, and saves the Department
document record as DesignDocument:

@RestController
public class CouchController {

 @Autowired
 private Database hrsDb;

 @Autowired
 private CloudantClient cloudant;

Other Spring 5 Features

[600]

 @GetMapping("/alldbs")
 public List<String> checkdbs(){
 return cloudant.getAllDbs();
 }

 @GetMapping("/listDepts")
 public List<Department> listDepts() throws IOException{
 return hrsDb.getAllDocsRequestBuilder()
 .includeDocs(true).build().getResponse()
 .getDocsAs(Department.class);
 }

 @GetMapping("/save/{id}/{deptid}/{name}")
 public String saver(@PathVariable("id") Long id,
 @PathVariable("deptid") Long deptid,
 @PathVariable("name") String name) {
 Response resp = hrsDb.save(
 new Department(id, deptid, name));
 return resp.getReason();
 }

}

Save all files. Then clean, build, and deploy the project.14.

How it works...
MongoDB and CouchDB are two different NoSQL databases when it comes to goals and
objectives. MongoDB always promotes data integrity and consistency to all of its clients,
while CouchDB applies map reduction to merge redundant data. As with building huge
and distributed data storage, choosing CouchDB as the storage will consume less time in
configuration than MongoDB, since the latter requires us to consider more details. Although
CouchDB lacks SQL-like transactions and familiarity of data transactions, the
implementation of its data persistency and retrieval requires less code and time. All its
foundation objects are derived from its com.cloudant.client.api.CloudantClient,
which carries all transactions, from retrieving all databases to data retrieval using map
reductions.

Other Spring 5 Features

[601]

Building a Spring 5 application using Kotlin
The last recipe of this chapter will be about a new feature integrated into the new platform
of Spring 5, Kotlin. This is a JVM language created by JetBrains that can work with some
Java APIs. This Kotlin extension is another powerful and concise option for writing a Spring
5 application that is at par with the Java-based style when it comes to performance and
quality. Its short and readable language makes developers focus more on high-level
requirements rather than the complex programming how-tos. This recipe will illustrate how
to create Spring 5 applications with Reactive services using Kotlin.

Getting ready
Create the last Maven project for this chapter, ch12-kot, which will provide with us a
microservice written in Kotlin.

How to do it...
Let us build a Spring 5 reactive web project using Kotlin by performing the following steps:

Convert the ch12-kot project to Spring Boot 2.0 by adding the parent starter1.
POM of Spring Boot 2.0.0M2, including some major dependencies such as
webflux, actuator, Spring JDBC, Spring Data JPA, and the MySQL connector
plugin.
Inside the <properties> tag of pom.xml, add these lines specific to Kotlin2.
plugins:

<kotlin.compiler.incremental>true
</kotlin.compiler.incremental>
 <kotlin.version>1.1.3-2</kotlin.version>
 <project.build.sourceEncoding>UTF-8
</project.build.sourceEncoding>
 <project.reporting.outputEncoding>UTF-8
</project.reporting.outputEncoding>
 <java.version>1.8</java.version>
 <startClass>
 org.packt.microservice.kotlin.KotlinBootApplication
</startClass>

Other Spring 5 Features

[602]

With the properties inserted, add the following JetBrains plugins for Kotlin3.
dependencies:

<dependency>
 <groupId>org.jetbrains.kotlin</groupId>
 <artifactId>kotlin-stdlib-jre8</artifactId>
 <version>${kotlin.version}</version>
 </dependency>
 <dependency>
 <groupId>org.jetbrains.kotlin</groupId>
 <artifactId>kotlin-reflect</artifactId>
 <version>${kotlin.version}</version>
</dependency>

Maven will not compile Kotlin components without this Kotlin Maven plugin4.
added to the <plugins> tag of the pom.xml file:

<plugin>
 <artifactId>kotlin-maven-plugin</artifactId>
 <groupId>org.jetbrains.kotlin</groupId>
 <version>${kotlin.version}</version>
 <configuration>
 <compilerPlugins>
 <plugin>spring</plugin>
 <plugin>jpa</plugin>
 </compilerPlugins>
 <jvmTarget>1.8</jvmTarget>
 </configuration>
 <executions>
 <execution>
 <id>compile</id>
 <phase>compile</phase>
 <goals>
 <goal>compile</goal>
 </goals>
 </execution>
 <execution>
 <id>test-compile</id>
 <phase>test-compile</phase>
 <goals>
 <goal>test-compile</goal>
 </goals>
 </execution>
 </executions>
 <dependencies>
 <dependency>
 <groupId>org.jetbrains.kotlin</groupId>

Other Spring 5 Features

[603]

 <artifactId>kotlin-maven-allopen
</artifactId>
 <version>${kotlin.version}</version>
 </dependency>
 <dependency>
 <groupId>org.jetbrains.kotlin
</groupId>
 <artifactId>kotlin-maven-noarg
</artifactId>
 <version>${kotlin.version}</version>
 </dependency>
 </dependencies>
</plugin>

Always use the current Kotlin release and its compatible Java version. This
recipe only covers Kotlin executed by Java 1.8 at runtime.

We are now ready to build the application. Inside a new package,5.
org.packt.microservice.kotlin, create a file,
KotlinBootApplication.kt, that contains the Bootstrap class:

@SpringBootApplication
open class KotlinBootApplication {
 companion object {
 @JvmStatic
 fun main(args: Array<String>) {
 SpringApplication.run(
KotlinBootApplication::class.java, *args)
 }
 }
}

There is no concept of static objects in Kotlin, so always wrap your
object with companion object {} with the annotation @JvmStatic to
convert it to static.

Copy the config folder and logback.xml from the previous recipe. Update the6.
log file details correctly to enable logging for this application.

Other Spring 5 Features

[604]

Create an application.properties file for this project, containing all the7.
server-related and MySQL database-related information for JPA
autoconfiguration.

Now, let's generate the JPA entity models in Kotlin. Here is a file,8.
Department.kt, that contains an entity model, Department. Drop this class
inside the org.packt.microservice.kotlin.model.data package:

@Entity
class Department {
 lateinit var id : Integer
 lateinit var name: String
 @Id @GeneratedValue(strategy = GenerationType.AUTO)
 lateinit var deptid: Integer
 constructor(
 id: Integer,
 name: String,
 deptid: Integer) {
 this.id = id
 this.name = name
 this.deptid = deptid
 }
}

Let's now create the JPA repository in the Kotlin language. Here is a Kotlin class9.
that implements CrudRepository<K,T> to generate the blocking JPA
properties:

interface DepartmentRepository :
CrudRepository<Department, Integer>{
 fun findByName(name: String): Iterable<Department>
 fun findByDeptid(deptid: Integer): Iterable<Department>
}

Lastly, create a Kotlin @RestController annotation inside10.
org.packt.microservice.kotlin.controller, which contains a service that
produces the List<Department> and Flux<Department> stream results:

@RestController
public class DepartmentController {
 @Autowired
 private lateinit var repository:DepartmentRepository

 @GetMapping("/listdepts")
 fun findAll() = repository.findAll()

Other Spring 5 Features

[605]

 @GetMapping("/listdepts/{name}")
 fun findByName(@PathVariable name:String) =
 repository.findByName(name)
 @GetMapping("/fluxdepts")
 fun fluxDepts() = Flux.just(repository.findAll())
}

Save all files. Then clean, build, and deploy the Kotlin microservice.11.

How it works...
As you can see from the processes involved in this recipe, there is great similarity between
Kotlin and Java-based styles of writing Spring 5 applications using Spring Boot 2.0. The
only reason for this is that Kotlin provides strong interoperability behavior with libraries
compiled in Java 1.8, unlike Groovy.

Groovy is a dynamically-typed and object-oriented language which is considered a popular
JVM-based language. Its codes are compiled using static Java compilers to generate
bytecodes faster than Java compilation. Its edge is some string and numerical operations
which are heavy if executed multiple times in Java. But Groovy fails to execute a majority of
Java APIs, unlike Kotlin, which can import almost all of them. Kotlin is also a JVM-based
language, but written as an improvement to Java and not to Groovy and other JVM-based
languages.

The strength of Kotlin over Java is the clarity and simplicity of its coding convention, which
allows developers to focus on the high-level specification of the project. Everything that we
have done, from Chapter 2, Learning Dependency Injection (DI) up to this chapter, can be
done by Kotlin with less code. Currently, Kotlin can be used to implement Android-based
applications because of its shorter and lighter bytecodes. You can learn more about Kotlin
through the documentation at https://kotlinlang.org/docs/tutorials/.

https://kotlinlang.org/docs/tutorials/

13
Testing Spring 5 Components

It has been a long way getting to know the features and modules of Spring 5 Framework,
through details of every ground-up implementation or through the Spring Boot 2.0 way of
developing each of its components. We had categorized, scrutinized, and examined several
Spring 5 major components already such services, @Repository transactions, view
resolvers, and request handlers through sets of recipes we performed in the earlier chapters.
We had arrived at several conclusions and recommendations already as to when, where,
and how to use this newest installment of the Spring Framework to solve any real-world
problems, be it in some experimental sample problem or for enterprise software solution.

This book will not end without providing the knowledge of how to perform different kind
of tests to all recipes before deploying them to the production servers. This last chapter will
enumerate the core concepts of context-dependent and standalone testing of Spring MVC
and the Spring WebFlux components of Spring 5. It will also highlight some new Spring
Test Framework APIs that are needed to test some reactive RESTful services, Spring Cloud
module implementations; Kotlin-written components, and microservices built using Spring
Boot 2.0.

It is time to use the Spring Test starter POM of Spring Boot 2.0 in building unit and
integration test cases for some major MVC functionalities especially the functional and
reactive web framework, reactive JPA repositories, asynchronous @Controller, and non-
blocking services.

In this chapter, you will learn the following topics:

Creating tests for Spring MVC components
Building standalone controller tests
Creating tests for DAO and service layers
Creating tests on secured applications
Creating tests using Spring Boot 2.0

Testing Spring 5 Components

[607]

Creating tests for Spring Data JPA
Building tests for blocking asynchronous and reactive RESTful services
Building tests for Kotlin components

Creating tests for Spring MVC components
This first recipe is about writing unit tests for a general Spring 5 web application. This will
highlight the basic steps on how to start integration testing with Spring TestContext
framework by validating and verifying that all the beans injected into the container are
@Autowired correctly in order to build the required MVC application. This framework can
be used not only for testing, but also for test-driven development methodology.

Getting ready
Open the previous Maven Spring ch03 and add the following MVC test cases.

How to do it...
Let us perform Spring core testing with JUnit 4, Mockito 2.x, and Spring TestContext
framework:

Before we start the configuration, ensure that you have the spring-context1.
module in pom.xml. Then, add the following Spring Test, and now the JUnit 4.x
and Mockito 2.x Maven dependencies to your pom.xml:

 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-test</artifactId>
 <version>${spring.version}</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.12</version>
 <scope>test</scope>
 <exclusions>
 <exclusion>
 <groupId>org.hamcrest</groupId>
 <artifactId>hamcrest-core</artifactId>

Testing Spring 5 Components

[608]

 </exclusion>
 </exclusions>
 </dependency>
 <dependency>
 <groupId>org.hamcrest</groupId>
 <artifactId>hamcrest-library</artifactId>
 <version>1.3</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.mockito</groupId>
 <artifactId>mockito-core</artifactId>
 <version>2.8.47</version>
 <scope>test</scope>
 </dependency>

The hamcrest-library framework is optional. The given hamcrest-
core framework of the JUnit 4.x dependency can still be utilized instead.

Inside the project's src/test/java folder, create a core package2.
org.packt.dissect.mvc.test and add a Spring TextContext test class to it
with the proper configuration details. This test class will load all the beans
injected inside the container into the Test Framework for integration testing:

 import static org.springframework.test.web.servlet.request
 .MockMvcRequestBuilders.get;
 import static org.springframework.test.web.servlet.request.
 MockMvcRequestBuilders.post;
 import static org.springframework.test.web.servlet.result.
 MockMvcResultHandlers.print;
 import static org.springframework.test.web.servlet.result.
 MockMvcResultMatchers.status;
 import static org.springframework.test.web.servlet.result.
 MockMvcResultMatchers.view;
 @RunWith(SpringJUnit4ClassRunner.class)
 @WebAppConfiguration
 @ContextConfiguration(classes = { SpringWebinitializer.class,
 SpringDispatcherConfig.class , SpringContextConfig.class})
 public class TestContextConfiguration {

 @Autowired
 private WebApplicationContext ctx;

 }

Testing Spring 5 Components

[609]

The ctx object has been defined by the @WebApplicaConfiguration
annotation as the container of the Spring TestContext is loaded and
configured by the application's contexts defined in
@ContextConfiguration.

To proceed with MVC testing, ctx must be injected into a specialized class called3.
org.springframework.test.web.servlet.MockMvc, which will provide all
the needed utilities to run integrated testing. Add the following lines inside
TestContextConfiguration:

 private MockMvc mockMvc;
 @Before
 public void setUp() {
 this.mockMvc = MockMvcBuilders.webAppContextSetup(ctx)
 .build();
 }

Let's now create our first test case, which is to check whether all the beans are4.
@Autowired correctly into the application container:

 @Test
 public void testApplicaticatonContextBeans() {
 ServletContext servletContext = ctx.getServletContext();
 Assert.assertNotNull(servletContext);
 }

Running the program gave me an exception because a validator was not correctly5.
injected into the container. Any errors or exceptions on the bean autowiring must
be fixed, otherwise all test cases will fail to run:

After fixing any errors, modify the test case and add the following lines to it in6.
order to check whether certain controllers exist inside the container:

 @Test
 public void testApplicaticatonContextBeans() {
 ServletContext servletContext = ctx.getServletContext();
 Assert.assertNotNull(servletContext);
 Assert.assertNotNull(ctx.getBean("helloController"));
 Assert.assertNotNull(ctx.getBean("formController"));
 }

Testing Spring 5 Components

[610]

Now, add a test case that will test a GET handler request and print the details of7.
its execution:

 @Test
 public void testSimpleGet() throws Exception {
 mockMvc.perform(get("/simple.html")).andDo(print())
 .andExpect(view().name("get"));
 }

Look at the following test case that checks whether there is a form model8.
attribute mapped to the form page and verifies the class type of the model
attribute:

 @Test
 public void testFormViewPage() throws Exception {
 mockMvc.perform(get("/employee_form.html"))
 .andDo(print())
 .andExpect(status().isOk())
 .andExpect(view().name("form_page"))
 .andExpect(model()
 .attributeExists("employeeForm"))
 .andExpect(model().attribute("employeeForm",
 any(EmployeeForm.class)));
 }

Here is a test case that executes a POST request handler with a sample form data9.
that will undergo EmployeeValidator and some custom property editors
mapped to the form model attribute:

 @Test
 public void testFormSubmitPage() throws Exception {
 mockMvc.perform(post("/employee_form.html")
 .contentType(MediaType.APPLICATION_FORM_URLENCODED)
 .param("firstName", "Emma")
 .param("lastName", "Yoda")
 .param("position", "Project Manager")
 .param("age", "22")
 .param("birthday", "October 30, 2001")
 .param("email", "xxccyy@yahoo.com")
 .accept(MediaType.APPLICATION_FORM_URLENCODED))
 .andExpect(view().name("success_page"))
 .andDo(print())
 .andExpect(status().isOk());
 }

Testing Spring 5 Components

[611]

Since the application's EmployeeValidator does not allow any employee profile10.
with an age greater than 65, the following is a test case that proves that the test
data is erroneous and will just send it back to form_page to ask for some other
data:

 @Test
 public void testFormSubmitPageErrors() throws Exception {
 mockMvc.perform(post("/employee_form.html")
 .contentType(MediaType.APPLICATION_FORM_URLENCODED)
 .param("firstName", "Emma")
 .param("lastName", "Yoda")
 .param("position", "Project Manager")
 .param("age", "80")
 .param("birthday", "October 30, 2001")
 .param("email", "sjctrags@yahoo.com")
 .accept(MediaType.APPLICATION_FORM_URLENCODED))
 .andExpect(view().name("form_page"))
 .andDo(print())
 .andExpect(status().isOk())
 .andExpect(model()
 .attributeHasFieldErrors("employeeForm", "age"));
 }

Save all files.11.

How it works...
Spring MVC testing is a method of integration testing provided by the Spring TestContext
framework. The framework starts with calling the JUnit 4 runner
org.junit.runner.RunWith, which is an annotation used for executing the JUnit 4 tests.
The org.springframework.test.context.junit4.SpringJUnit4ClassRunner
annotation of the framework is applied to the test class in order to load the
ApplicationContext container to the test suite. Let us not forget that all beans involved
in testing are @Autowired to the ApplicationContext container.

Aside from the runner, the framework has other annotations namely
@WebAppConfiguration and @ContextConfiguration which help load and expose the
WebAplicationContext beans to the framework's MockMvc, the provider of all the test
utilities for integration testing. One of the useful methods of MockMvc is perform(), which
executes a request URI to return a failure or success.

Testing Spring 5 Components

[612]

No matter how complete and correct the Spring TestContext configuration is, if the
loaded WebApplicationContext beans contains autowiring errors, the whole framework
will not work.

Building standalone controller tests
There are times when individual controller testing is preferable to loading the whole
context into the Spring TestContext framework. This mechanism is only applicable to
controllers that have fewer dependencies on other beans of the container, which makes
them easy to test individually.

Getting ready
Once again, open the Maven ch03 project and add the following standalone controller test
cases.

How to do it...
Let us test some existing controllers in ch03 by performing the following steps:

Create another test class inside org.packt.dissect.mvc.test without loading1.
WebApplicationContext and configure MockMvc to test only
SimpleController of this project:

 import static org.springframework.test.web.servlet.request.
 MockMvcRequestBuilders.get;
 import static org.springframework.test.web.servlet.request.
 MockMvcRequestBuilders.post;
 import static org.springframework.test.web.servlet.result.
 MockMvcResultHandlers.print;
 import static org.springframework.test.web.servlet.result.
 MockMvcResultMatchers.status;
 import static org.springframework.test.web.servlet.result.
 MockMvcResultMatchers.view;
 @RunWith(MockitoJUnitRunner.class)
 public class TestControllerConfiguration {
 private MockMvc mockMvc;
 @Before
 public void setUp() {
 this.mockMvc = MockMvcBuilders.standaloneSetup(new

Testing Spring 5 Components

[613]

 SimpleController()).build();
 }
 }

Add some test cases on the controller's GET and POST request handlers:2.

 @Test
 public void testGetPage() throws Exception {
mockMvc.perform(get("/simple.html")).andDo(print())
 .andExpect(status().isOk())
 .andExpect(view().name("get"));
 }
 @Test
 public void testPostPage() throws Exception {
 mockMvc.perform(post("/simple.html"))
 .andExpect(view().name("post"))
 .andDo(print())
 .andExpect(status().isOk());
 }

Add another test case that will test a non-existent component or a handler request3.
that is not found inside SimpleController.

@Test
 public void testOtherRequest() throws Exception {
 mockMvc.perform(get("/login.html")).andDo(print())
 .andExpect(view().name("login"));
}

Run the test method and observe what happens.4.

How it works...
This recipe is about building a unit test for a controller through the use of the Spring
TestContext framework. The use of @MockitoJUnitRunner is to load the controller to the
SpringContext container for testing. This Mockito injection only loads the controller to the
Test framework including its validators, view resolvers, and message handlers. After this
procedure, MockMvcBuilders offers some utility methods that will instantiate the
controller and mock its request handlers.

This type of testing focuses more on the properties of each controller, making the tests more
refined and focused on the behavior of each component. This is also an effective and
convenient way of determining what causes some bugs during its actual execution.

Testing Spring 5 Components

[614]

Creating tests for DAO and service layers
Integration testing is also needed to validate and verify the results of each repository and
service method. All repository transactions are dependent on the java.sql.DataSource
package configured by one of the context definitions. Likewise, the services will not be
working without the repository beans injected into the container. Although it needs the full
configuration of Spring TestContext, this recipe does not need the creation of MockMvc just
to execute these test cases.

Getting ready
Open the Maven project ch03-jdbc and add the following unit test cases for service and
DAO layers.

How to do it...
Let us test the service and DAO layers by performing the following steps:

Add the Spring Test module, JUnit 4, and Mockito Maven dependencies into the1.
project's pom.xml file.
Inside src/test/java, create the org.packt.dissect.mvc.test package and2.
add inside it a Spring TestContext class:

 import static org.junit.Assert.*;
 @RunWith(SpringJUnit4ClassRunner.class)
 @WebAppConfiguration
 @ContextConfiguration(classes = { SpringDbConfig.class,
 SpringDispatcherConfig.class })
 public class TestDepartmentDao { }

Add the following test cases that execute the actual DepartmentDao repository3.
transactions using JdbcTemplate and evaluate the results using the Assert
methods of JUnit:

 @Autowired
 private DepartmentDao departmentDaoImpl;

 @Test
 public void testGetDepartment(){
 Department dept = departmentDaoImpl.getDepartmentData(8);
 assertNotNull(dept);

Testing Spring 5 Components

[615]

 }
 @Test
 public void testUpdateDepartment(){
 Department rec1 = new Department();
 rec1.setId(9);
 rec1.setDeptId(555555);
 rec1.setName("Accounting Department");
 departmentDaoImpl.updateDepartment(rec1);
 Department dept = departmentDaoImpl.getDepartmentData(9);
 assertSame("Accounting Department",dept.getName());
 }
 @Test
 public void testDeleteDepartment(){
 departmentDaoImpl.delDepartment(1);
 List<Department> depts = departmentDaoImpl.getDepartments();
 assertTrue(depts.size() > 0);
 }
 @Test
 public void testReadDepartmentRecords(){
 List<Department> depts = departmentDaoImpl.getDepartments();
 assertNotNull(depts);
 for(Department d : depts){
 System.out.println(d.getName());
 }
 }

Create another test class that uses mocking to test the DepartmentService4.
methods:

 @RunWith(SpringJUnit4ClassRunner.class)
 @WebAppConfiguration
 @ContextConfiguration(classes = { SpringWebinitializer.class,
 SpringDbConfig.class, SpringDispatcherConfig.class })
 public class TestEmployeeService{
 @InjectMocks
 private EmployeeServiceImpl employeeServiceImpl;
 @Mock
 private EmployeeDaoImpl employeeDaoImpl;
 @Before
 public void setUp(){
 MockitoAnnotations.initMocks(this);
 }
 @Test
 public void testService(){
 List<Employee> emps = new ArrayList<>();
 Employee rec1 = new Employee();
 rec1.setId(22);
 rec1.setEmpId(3673);

Testing Spring 5 Components

[616]

 rec1.setAge(22);
 rec1.setBirthday(new Date(101,11,1));
 rec1.setDeptId(555);
 rec1.setFirstName("Joanna");
 rec1.setLastName("Kiko");
 emps.add(rec1);
 given(employeeDaoImpl.getEmployees()).willReturn(emps);
 System.out.println(employeeServiceImpl.readEmployees());
 }
 }

How it works...
It is ideal to run tests against all repositories and service methods before applying them to
any request-response transactions. To test all these components, we need to load all the
necessary context definitions to Spring TestContext in order to access every autowiring
detail of each bean. To test the correctness and effectiveness of each method, we have to
execute the actual methods or perform isolated testing using mocking.

Although quite risky, TestDepartmentDao executes the actual repository transactions that
deal with the actual database schema. This can be effective, as long as the data involved is
not live. On the other hand, TestDepartmentService prefers to use the @Mock objects to
be injected into some @InjectMock objects for testing. To avoid using the actual data, the
test class mocked DepartmentDao and substituted some dummy lists of departments
instead into the service transaction readEmployees() to check whether the process of
retrieval does not encounter any exceptions or performance problems. This can be effective,
especially if the resources are not readily available to provide some test data to service
layer.

Creating tests on secured applications
Spring TestContext can also provide ways to test methods and controllers that need login
credentials, which many applications with Spring Security integration require. This recipe
builds MockMvc to the ApplicationContext container secured by the Spring Security 4.x
module.

Getting ready
Open the Maven project ch04 and add test classes to test secured methods.

Testing Spring 5 Components

[617]

How to do it...
Let us apply security model to some service methods and test them using Spring
TestContext:

Add the Spring Test module, JUnit 4, and Mockito Maven dependencies to the1.
project's pom.xml file.
Add a specialized Spring Security Test dependency to the pom.xml file:2.

 <dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-test</artifactId>
 <version>4.2.2.BUILD-SNAPSHOT</version>
 <scope>test</scope>
 </dependency>

Inside src/test/java, create a org.packt.mvc.secured.test package and3.
drop inside it a test class that builds MockMvc from a secured
WebApplicationContext method. Also, it tests controllers by providing some
Spring Security details such as the username and password:

 import static
org.springframework.security.test.web.servlet.setup.SecurityMockMvcConfigur
ers.
 springSecurity;
 @RunWith(SpringJUnit4ClassRunner.class)
 @WebAppConfiguration
 @ContextConfiguration(classes = { SpringWebinitializer.class,
 SpringDispatcherConfig.class , SpringContextConfig.class})
 public class TestSecuredControllers {
 @Autowired
 private WebApplicationContext ctx;
 private MockMvc mockMvc;
 @Before
 public void setUp() {
 this.mockMvc = MockMvcBuilders.webAppContextSetup(ctx)
 .apply(springSecurity()).build();
 }
 @Test
 public void testApplicaticatonContextBeans() {
 ServletContext servletContext = ctx.getServletContext();
 Assert.assertNotNull(servletContext);
 }
 @Test
 public void adminCanCreateOrganization()
 throws Exception {

Testing Spring 5 Components

[618]

this.mockMvc.perform(get("/deptform.html").with(user("sjctrags")
 .password("sjctrags").roles("USER"))
 .contentType(MediaType.APPLICATION_FORM_URLENCODED)
 .accept(MediaType.APPLICATION_FORM_URLENCODED))
 .andDo(print())
 .andExpect(status().isOk());
 }
 }

Using invalid credentials, the execution of4.
adminCanCreateOrganization()will lead to HTTP 302:

Create another test class that tests a secured method using the correct login5.
credentials and role. Recall from Chapter 4, Applying Aspect-Oriented
Programming, that three roles were created for the entire application, namely
ROLE_USER, ROLE_ADMIN, and ROLE_HR, and each is assigned to different
DepartmentService methods. Accessing the readDepartments() method
requires a ROLE_USER role:

 import static org.springframework.security.test.web.servlet.setup.
 SecurityMockMvcConfigurers.springSecurity;
 import static org.junit.Assert.*;
 @RunWith(SpringJUnit4ClassRunner.class)
 @WebAppConfiguration
 @ContextConfiguration(classes = { SpringWebinitializer.class,
 SpringDispatcherConfig.class, SpringContextConfig.class})
 public class TestSecuredServices {
 @Autowired
 private DepartmentService departmentServiceImpl;

Testing Spring 5 Components

[619]

 @Autowired
 private WebApplicationContext ctx;
 private MockMvc mockMvc;
 @Before
 public void setUp() {
 this.mockMvc = MockMvcBuilders.webAppContextSetup(ctx)
 .apply(springSecurity()).build();
 }
 @Test
 @WithMockUser(roles="USER")
 public void testListDepts(){
 SecurityContextHolder.getContext()
 .setAuthentication(new UsernamePasswordAuthenticationToken(
 "sjctrags", "sjctrags"));
 List<Department> depts =
departmentServiceImpl.readDepartments();
 assertNotNull(depts);
 for(Department dept : depts){
 System.out.println(dept.getDeptId());
 }
 }
 }

Running the test method testListDepts() with the wrong credentials and role6.
will lead to the following exception:

Testing Spring 5 Components

[620]

How it works...
In order to test controllers and methods from an application secured by Spring Security 4.x,
it is required to build a Spring TestContext that employs Spring Security into the test suite.
One way is to instantiate MockMvc with WebApplicationText by applying the
springSecurity()mock method from SecurityMockMvcConfigurers.

Using the application from Chapter 4, Applying Aspect-Oriented Programming, we tested
/deptform.html bypassing /login.html, which results in using the appropriate user
credentials and role to successfully run the request. On the other hand, the @WithMockUser
annotation from the Spring Security Test module that provides utilities to mock secured
methods. The test will be successful only given the proper login credentials which must be
provided to, SecurityContextHolder.getContext().setAuthentication(new
UsernamePasswordAuthenticationToken("admin", "admin"));. This authentication
API must always be the first line to be executed in any test cases involving secured
methods.

Creating tests using Spring Boot 2.0
At this point, we are done with creating test classes using the Spring 5 framework from the
ground up. This recipe will highlight how to build test classes using Spring Boot 2.0
spring-boot-starter-test.

Getting ready
Open the Spring Boot ch09 project and implement some test cases using Spring Boot 2.0.

How to do it...
Let us implement test cases in Spring Boot 2.0 projects by performing the following steps:

First, add the Spring Test starter POM in the pom.xml file:1.

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>

Testing Spring 5 Components

[621]

This application is secured by Spring Security, so add the following Spring2.
Security Test module to the application in order to utilize some mock-related
annotations useful during testing:

 <dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-test</artifactId>
 <version>4.2.2.BUILD-SNAPSHOT</version>
 <scope>test</scope>
 </dependency>

To test the Spring Boot 2.0 controller methods, add the following3.
SpringTestContext class insideorg.packt.secured.mvc.test of
src/test/java with an emphasis on the new annotations, @SpringBootTest
and @AutoConfigureMockMvc:

 import static
org.springframework.security.test.web.servlet.request.
 SecurityMockMvcRequestPostProcessors.user;
 import static org.springframework.test.web.servlet.request.
 MockMvcRequestBuilders.get;
 import static org.springframework.test.web.servlet.result.
 MockMvcResultHandlers.print;
 import static org.springframework.test.web.servlet.result.
 MockMvcResultMatchers.status;
 @RunWith(SpringRunner.class)
 @SpringBootTest
 @AutoConfigureMockMvc
 @ContextConfiguration(classes={ HRBootApplication.class,
 SpringContextConfig.class, SpringAsynchConfig.class })
 public class TestControllers {
 @Autowired
 private MockMvc mvc;
 @Test
 public void callEmpFormReq() throws Exception {
 mvc.perform(get("/react/empform.html")
 .with(user("sjctrags")
 .password("sjctrags").roles("USER")))
 .andDo(print())
 .andExpect(status().isOk());
 }
 }

Testing Spring 5 Components

[622]

To simply test the JDBC, DAO, and service layers, add the following4.
@SpringBootTest class inside the same org.packt.spring.boot.test
package:

import static org.junit.Assert.*;
@RunWith(SpringRunner.class)
@SpringBootTest
@ContextConfiguration(classes={ HRBootApplication.class,
 SpringContextConfig.class, SpringAsynchConfig.class })
public class TestDaoLayer {

@Autowired
private DepartmentDao departmentDaoImpl;
@Test
public void testDeptDao(){
assertNotNull(departmentDaoImpl.getDepartments());
System.out.println(
departmentDaoImpl.getDepartments());
}
}

How it works...
Similar to the previous recipe, Spring Boot test classes always start with a call to the
@RunWith annotation with a SpringRunner parameter that tells JUnit to run all test cases
within the context of the Spring TestContext framework. The SpringRunner parameter is a
newer and shorter name for SpringJUnit4ClassRunner. The @SpringBootTest
annotation, on the other hand, can be used to bootstrap the entire container in preparation
for the integration testing. All beans are loaded into the Test framework to build MockMvc
through the @AutoConfigureMockMvc annotation.

The unit test for request handler in Spring Boot 2.0 uses @WebMvcTest instead of
@SpringBootTest, which is limited only to a single controller and can only execute with
all the needed @MockBean annotation to provide mock implementations for the controller's
required autowired beans. Mocking services and repository components are needed since
not all beans are loaded into the Test framework.

Creating tests for Spring Data JPA
Spring Boot offers a convenient way of writing test classes to run Spring Data JPA
transactions.

Testing Spring 5 Components

[623]

Getting ready
Open the Spring Boot ch09-flux project and add the following test classes for Spring Data
JPA repository transactions.

How to do it...
Perform the following steps in creating test cases for Spring Data JPA repository layer:

Just like in the previous recipe, add the required Spring Test starter POM1.
dependency in the project's pom.xml file.
Inside src/test/java, create an org.packt.spring.boot.test package and2.
add inside a test class with a new annotation, @DataJpaTest, inside it:

@RunWith(SpringRunner.class)
@DataJpaTest
@ContextConfiguration(classes={ HRBootApplication.class,
 CachingConfig.class, SpringDataConfig.class,
WebFluxConfig.class})
@AutoConfigureTestDatabase(replace=Replace.NONE)
public class EmployeeRepositoryTest {
 @Autowired
 private TestEntityManager entityManager;
 @Autowired
 private EmployeeRepository employeeRepository;
 @Test
 public void testLoadGames() {
 List<Employee> deptTest =
 employeeRepository.findAll();
 assertNotNull(deptTest);
 System.out.println(deptTest.size());

 }
}

Save all files. Execute the test class.3.

Testing Spring 5 Components

[624]

How it works...
A Spring Boot test class dedicated to testing Spring Data JPA transactions has a distinct
annotation, @DataJpaTest, that configures testing on the JPA persistence layer. It
automatically searches for an in-memory database with Hibernate and the Spring Data JPA
setup and recognizes JPA entity classes involved in the transactions management. It has an
option to use the current DataSource configuration instead of default in-memory database,
just by adding @AutoConfigureTestDatabase(replace=Replace.NONE) on the test
class. The @DataJpaTest annotation always enables SQL log, thus, running the preceding
test method will generate the following output:

Building tests for blocking, asynchronous
and reactive RESTful services
If testing Spring Data JPA transactions is easier with Spring Boot, then the following recipe
that involves testing RESTful services is also quite straightforward and convenient as
compared to the usual MockMvc style.

Getting ready
Again, open the DEPARTMENT microservices project, which is ch10-deptservice, and add
the following test classes that will validate the results of each RESTful service.

How to do it...
Let us implement test cases for each RESTful service of a microservice by performing the
following steps:

Just like in the previous recipe, add the needed Spring Test starter POM1.
dependency in the project's pom.xml file.

Testing Spring 5 Components

[625]

Inside src/test/java, create an org.packt.microservice.core.test2.
package and drop a test class that executes blocking RESTful services using
org.springframework.boot.test.web.client.TestRestTemplate:

import static org.assertj.core.api.Assertions.assertThat;
@RunWith(SpringRunner.class)
@SpringBootTest(webEnvironment = WebEnvironment.RANDOM_PORT)
@ContextConfiguration(classes={ HRDeptBootApplication.class,
 CacheConfig.class, SpringDataConfig.class,
 SpringAsynchConfig.class })
public class TestRestService {
 @Autowired
 private TestRestTemplate restTemplate;

 @Test
 public void exampleTest() {
 String body = this.restTemplate.getForObject(
"/objectSampleRest", String.class);
 assertThat(body).isEqualTo("Hello World");
 }
 @Test
 public void exampleTestList() {
 String body = this.restTemplate.getForObject(
"/objectSampleRest", String.class);
 assertThat(body).isEqualTo("Hello World");
 }
 @Test
 public void exampleTestListAll() {
 List<Department> body =
 this.restTemplate.getForObject(
"/listDept", List.class);
 assertNotNull(body);
System.out.println(body);
 }
}

Add another test class that scrutinizes asynchronous services that return the3.
Callable<T>, DeferredResult<T>, and WebAsyncTask<T> tasks:

import static
org.springframework.test.web.servlet.request.MockMvcRequestBuil
ders.asyncDispatch;
import static
org.springframework.test.web.servlet.request.MockMvcRequestBuil
ders.get;
import static
org.springframework.test.web.servlet.result.MockMvcResultMatche

Testing Spring 5 Components

[626]

rs.header;
import static
org.springframework.test.web.servlet.result.MockMvcResultMatche
rs.request;
import static
org.springframework.test.web.servlet.result.MockMvcResultMatche
rs.status;
@RunWith(SpringRunner.class)
@AutoConfigureMockMvc
@SpringBootTest(webEnvironment = WebEnvironment.RANDOM_PORT)
@ContextConfiguration(classes={ HRDeptBootApplication.class,
 CacheConfig.class, SpringDataConfig.class,
 SpringAsynchConfig.class })
public class TestAsyncService {
 @Autowired
 private MockMvc mockMvc;
 @Test
 public void testController () throws Exception {
 MvcResult result = mockMvc.perform(
get("/callSelectDept/359.json"))
 .andExpect(request().asyncStarted())
 .andReturn();
 result.getRequest().getAsyncContext()
.setTimeout(5000);
 result.getAsyncResult();
 result= mockMvc.perform(asyncDispatch(result))
 .andExpect(status().isOk())
 .andExpect(header().string("Content-Type",
MediaType.APPLICATION_JSON_UTF8_VALUE))
 .andReturn();
 System.out.println(result.getResponse()
.getContentAsString());
 }
}

Although there is AsyncRestTemplate, there is no corresponding test
API for this as of the moment.

Testing Spring 5 Components

[627]

Lastly, add a Spring TestContext class that evaluates reactive RESTful services4.
exposed through either the @RestController or HandlerRouter<T>
implementation. This test class uses the new API
org.springframework.test.web.reactive.server.WebTestClient from
Spring 5:

import static org.junit.Assert.assertEquals;
@RunWith(SpringRunner.class)
@AutoConfigureMockMvc
@SpringBootTest(webEnvironment = WebEnvironment.RANDOM_PORT)
@ContextConfiguration(classes={ HRDeptBootApplication.class,
 HttpServerConfig.class, SpringDataConfig.class,
 SpringAsynchConfig.class })
public class TestReactService {

 @Autowired
 private WebTestClient webTestClient;
 @Test
 public void testDeptById(){
 FluxExchangeResult<Department> result =
 webTestClient.get()
.uri("http://localhost:8090/ch10-
 dept/selectReactDept/359")
.accept(MediaType.APPLICATION_JSON_UTF8)
 .exchange().returnResult(Department.class);
 assertEquals(result.getStatus().value(), 200);
 Department dept =
 result.getResponseBody().blockFirst();
 System.out.println(dept.getName());
 }
 @Test
 public void testDeptByIdRouter(){
 FluxExchangeResult<Department> result =
 webTestClient.get()
.uri("http://localhost:8901/selectDeptById/359")
.accept(MediaType.APPLICATION_JSON_UTF8)
 .exchange().returnResult(Department.class);
 assertEquals(result.getStatus().value(), 200);
Department dept =
 result.getResponseBody().blockFirst();
 System.out.println(dept.getName());
 }
}

Testing Spring 5 Components

[628]

How it works...
To test RESTful services, aside from using the typical MockMvc, Spring Framework provides
a utility class named TestRestTemplate, which is a convenient alternative to Spring REST
integration tests. Together with the simulated random ports given by
WebEnvironment.RANDOM_PORT of @SpingBootTest, TestRestTemplate can easily be
injected into the test class without much configuration and can then proceed executing the
REST endpoints through its methods such as exchange(), getForObject(),
postForObject(), delete(), and put().

Since there is no utility test class for asynchronous or non-blocking REST services, it is
recommended to use MockMvc with some asynchronous mocking events such as
asyncStarted() and asyncDispatch(). Although not pretty straightforward as the
blocking counterpart, the first request execution of the perform() method of MockMvc with
the service URL must execute the asyncStarted() method, which flags the start of
asynchronous processing. Then create another request execution triggered by
asyncDispatch(), which handles the continuation of the previous request processing. If
the test method always returns a null result, set a time delay to the first MvcResult before
the second perform() method starts to execute.

Reactive REST services can be tested through WebTestClient, which was discussed in the
previous chapter. It is a variant of WebClient that is used to run services that return the
Flux<T>, Mono<T>, or Publisher<T> stream data. It is also used to save a stream of data
into the repository. The REST endpoint generated by HandlerRouter<T> and
HandlerFunction<T> can also be tested using WebTestClient.

Building tests for Kotlin components
Spring Boot 2.0 supports writing test classes for Kotlin component testing. This recipe will
highlight how to test a RESTful service written in the Kotlin language.

Getting ready
Open the Spring Boot ch12-kotlin project and add a Kotlin test class.

Testing Spring 5 Components

[629]

How to do it...
Using Kotlin language, perform the following steps in implementing test cases for Kotlin
request handlers:

First, add the Kotlin-JUnit Maven dependency into the pom.xml file:1.

<dependency>
 <groupId>org.jetbrains.kotlin</groupId>
 <artifactId>kotlin-test-junit</artifactId>
 <version>${kotlin.version}</version>
 <scope>test</scope>
</dependency>

Add a JUnit 4 plugin.2.
Inside src/test/kotlin, create an org.packt.microservice.kotlin.test3.
package and add inside it a Kotlin test class that will test one of the Kotlin REST
endpoints:

import org.junit.Assert.*;
@RunWith(SpringRunner::class)
@SpringBootTest(webEnvironment =
 SpringBootTest.WebEnvironment.RANDOM_PORT)
public class DepartmentControllerTest {
 @Autowired
 lateinit var restTemplate: TestRestTemplate
 @Test
 fun testRestData() {
 val listDepts = restTemplate.getForObject(
"/listdepts", List::class.java)
 assertTrue(listdepts.size > 0)
 }
}

Avoid using static import because Kotlin does not support the
static keyword.

Save all files. Run the test class through the Maven command, test.4.

Testing Spring 5 Components

[630]

How it works...
Kotlin test classes are slimmer versions of Java-based test classes. To run the test classes, the
Maven command test must be executed, either through command line or the Eclipse
Maven plugin. Other than its condensed syntax, the rest of the APIs are derived from the
Spring 5 framework components, which makes it easier to use.

Index

@
@Async services
 implementing 367, 368, 370, 372, 373
 working 374
@Controller
 creating 94, 99
 creating, with method-level URL mapping 100
@FunctionInterface
 used, for implementing lambda expression 273,

274, 276
@Scheduled services
 creating 378, 381

A
Access Control List (ACL) 160
actuator REST endpoints
 using 469, 470
 working with 472
Advanced Message Queuing Protocol (AMQP)

302, 505
anonymous inner classes
 used, for implementing lambda expressions 271
Apache CouchDB 596
Apache Tomcat 9 364
Apache Tomcat application server
 reference link 12
applications, for big data storage
 building 595, 596, 597, 599, 600
arguments
 validating 243, 244, 245
Aspect-Object Programming (AOP)
 about 231
 used, for mini-workflow implementing 264, 265,

267

asynchronous batch processes
 constructing 525, 527

asynchronous controllers
 creating 374, 375, 376
 working 377
asynchronous send-receive communication
 creating 534, 535, 537
 working 538
asynchronous service
 tests, building 624
asynchronous Spring Data JPA properties
 implementing 581, 583, 584
 working 586
authentication filters
 implementing 185, 193, 195, 196, 197
authentication process
 customizing 176, 178, 179, 180, 185

B
base-package 96
batch processes
 implementing, with database 518, 520, 522, 523
 implementing, with Spring Cloud Task 552, 553,

554

 working 524
beans
 managing, in JavaConfig container 53, 54, 56
 managing, in XML-based container 47, 48, 51,

53

blocking service
 tests, building 624
built-in functional interfaces
 applying 276, 277, 279, 280

C
caching mechanism
 implementing 247, 248, 249, 250
CallableFuture<T>
 using 381, 384, 386

[632]

Certificate Authority (CA) 16
certificate signing request (CSR) 13
channels
 sessions, mapping to 172
clear-text type 13
Clickjacking
 about 224
 solving 224, 226
client applications
 resiliency, applying 492, 494
client-server communications
 building, with WebSocket 567, 568, 570, 572,

573

client-side application
 building, with AsyncRestTemplate 473, 475
 building, with RestTemplate 473, 477
 building, with WebClient 475
 working 479
client-side load balancing
 implementing 487, 488
 working with 491
collections
 injecting 66, 67, 71
 streams, applying to 286, 287, 289, 291, 292,

293, 294
concurrency 302
concurrent emission
 creating 333, 334
concurrent user access
 controlling 261, 262
ConcurrentTaskExecutor 366
console 19
Constructor Injection 53
constructor reference
 applying 280, 281, 282, 283
continuous data emission
 managing 337, 341
CouchDB Fauxton 596
Cross-Site Request Forgery (CSRF)
 solving 220, 221, 222
Cross-Site Scripting (XSS)
 about 160
 solving 224, 226

D
DAO transactions
 managing 237, 239
Data Access Object (DAO) layer
 about 152
 implementing, Spring JDBC Framework used

149, 155
 tests, creating 614, 616
data management 19
database connection pooling
 creating 140, 149
database
 permissions, creating 210, 211, 215
 roles, creating 210, 211, 215
debug 19
declarative method
 used, for consuming endpoints 497
Denial of Attack (DoA) 114
Dependency Injection (DI) 53
Docker Toolbox 500
Docker
 using, for deployment 499, 500, 501, 503
 working 504
Dockerfile 504

E
eager spring beans
 defining 60, 62
Eclipse projects
 creating, Maven used 19
EL expression 99
encrypted passwords
 generating 201, 202, 203, 204
endpoints
 consuming, with declarative method 497, 499
Erlang/OTP 528
Eureka server
 configuring, for service registration 480, 483,

485, 486
 working with 486
Eureka service discovery
 implementing 487
 working with 491
event-driven asynchronous communication

[633]

 creating, AMQP used 539, 541
 working 543
exceptions
 about 247
 handling 246
 managing 245, 247

F
failure handlers
 implementing 185, 193, 195, 196, 197
Flash-scoped bean
 used, for page redirection implementing 135
Flow API 303
form @Controller
 designing 109, 114
form validation 116
FreeMarker
 about 396, 417
 using, for rendering Publisher<T> stream 396
 working 399
Functional and Reactive Web Framework 399
Functional Web Framework 9
Future<T>
 using 381, 384, 387

G
Gradle
 about 23, 34
 URL, for installing 26
 used, for Spring projects 31
 used, for Spring STS Eclipse projects creating 23

H
HandlerFunction
 building 438
 using 439, 440, 441
 working 442
Hazelcast cache manager 563
Hazelcast distributed caching
 applying 563, 565
 working 567
Hazelcast-Spring external libraries 563
Hibernate 5 object-relational mapping
 using 556, 557, 559, 561
 working with 562

HikariCP 556
HTTP Strict Transport Security (HSTS) 225
HTTP/2
 about 12
 configuring 12
HTTPS 172

I
implements keyword 271
inner bean
 creating 63, 64, 66
interceptors
 creating, for login data validation 226, 227, 228
IoC 53

J
Jackson Streaming APIs 375
Java Development Kit (JDK)
 about 9
 reference link 12
Java Development Kit 1.8
 installing 10, 12
Java JDK installers
 URL, for downloading 10
Java Message Service (JMS) 302
Java Runtime Environment 19
JavaConfig container
 beans, managing 53, 54, 56
JavaConfig
 about 79
 used, for creating Spring MVC 78, 79, 81, 82
 used, for implementing Spring container 44, 45,

46, 47
JCenter 28
JDBC Connectivity
 adding 425, 426
 working 427
JetBrains 601
JPA repository base packages 484
JRE keystore 14
JSR 369 16
JSR-330 56
JSR-369 16

[634]

K
Kitematic 500
Kotlin components
 tests, building 628, 630
Kotlin
 about 605
 used, for building Spring 5 application 601

L
lambda expressions
 implementing, @FunctionInterface used 273,

274, 276
 implementing, anonymous inner classes used

271, 273
lazy spring beans
 defining 60, 62
logging mechanism
 working 425
logging
 configuring, Spring Boot 2.0 used 422, 424
login data validation
 interceptors, creating 226, 227, 228
Login Microservice 533
login success
 implementing 185, 193, 195, 196, 197

M
Maven
 about 23
 URL 20
 used, for Eclipse projects creating 19
 used, for Spring projects deploying 29
MavenCentral 28
Method Injection 53
method reference
 about 283
 applying 280, 281, 282, 283
method-level URL mapping
 @Controller, creating 100
microservices 455
mini-workflow
 implementing, AOP used 264, 265, 267, 269
MongoDB 3.2 36
MongoDB 3.2 database server

 installing 36
 URL, for downloading 37
Mono<T> and Flux<T> HTTP response
 creating 391, 393
Mono<T> and Flux<T> publishers
 backpressure, applying 321, 322, 325
 creating 312, 313, 316, 317
 using, for services 387, 390, 391
multi-action @Controller
 creating 114, 116
multiple ApplicationContexts
 generating 82, 85, 86, 88
multithreading 302
MVC application
 service layer, creating 156
MVC methods
 security, applying 205, 209
MySQL 5.7 database server
 installing 34
 URL, for installing 34

N
NIO 2.0
 about 16
 streams, applying 294
 streams, applying to 295, 297
non-reactive Spring MVC application
 building 411, 412, 414, 416, 418, 420
 working 421

O
object-relational mapping (ORM) 556
observer design pattern
 applying, Reactive Streams used 303, 304, 305,

306, 308, 311, 312
OpenSSL
 about 13
 for Windows 16
 reference link 13

P
page redirection
 implementing, with bean 135
parallel emission
 creating 333, 334

[635]

parallel streams
 using 297, 298, 299, 300
parameter type conversion 116
parameters
 validating 243, 244, 245
permissions
 creating, from database 210, 211, 215
Plain Old Java Objects (POJO) 48
Pointcut
 about 233
 expression, components 236
ports
 sessions, mapping to 172
predictable data capacity 302
Project Object Model (POM) 23
Project Reactor 3.x 303
Properties
 injecting 66, 67, 71
Prototype beans
 creating 57, 58

R
RabbitMQ 505
Reactive data transactions
 testing 350, 351, 353
Reactive events
 implementing, RxJava 2.x used 354, 357, 358,

359, 360
Reactive programming 9, 302
reactive RESTful service
 tests, building 624
Reactive Spring Data JPA repositories
 implementing 586, 587, 588
 working 591
reactive Spring MVC application
 building 427, 428
 working 430
Reactive Stream 1.0 304
Reactive Stream
 about 303
 used, for applying observer design pattern 303,

304, 305, 306, 308, 311, 312
Reactive Streams 1.x 304
reactive view resolvers
 using 433, 434, 437

 working 437
Reactive Web Applications
 @Async services, implementing 367
 @Scheduled services, creating 378
 asynchronous controllers, creating 374
 TaskExecutor, configuring 362
Reactive WebSocket communication
 implementing 574, 577, 580
 working 580
Reactor 3.x 304
Reactor Core 3.x 387
Reactor Netty server 577
Reactor Project 3.0 305
Reactor Project 3.x 304
request handlers
 monitoring 239, 240, 242, 243
request transactions
 intercepting 251, 252, 255
request-scoped bean
 creating 129
resiliency
 applying, to client applications 492, 495
 working with 496
ResourceBundleMessageSource
 using, for view 89, 90, 91, 92
REST services
 implementing, @RestController and Spring REST

used 448, 449, 450
 working 451
RESTful services
 exposing 456, 460, 465
 working with 468
roles
 creating, from database 210, 211, 215
RouterFunction
 using 438, 439, 441
 working 442
RxJava 2.0
 integrating 393
 working 395
RxJava 2.x
 about 303
 used, for implementing Reactive events 354,

357, 358, 359, 360

[636]

S
Schedulers
 about 387
 used, for managing task executions 326, 328,

329, 331, 333
secured applications
 tests, creating 616, 620
security
 applying, on TaskExecutors 403
 applying, to MVC methods 205, 209
 jsr250Enabled 209
 prePostEnabled 209
 secureEnabled 209
server keystore 13
service layer
 creating, in MVC application 156
 tests, creating 614, 616
service methods
 auditing 231, 232, 236
 logging 231, 232, 236
service-oriented architecture (SOA) 455
services
 monitoring 239, 240, 242, 243
session fixation attacks
 solving 221
session fixation
 about 220
 solving 220, 222
session-scoped bean
 creating 129
sessions
 managing 215, 218, 220
 mapping, to channels 172
 mapping, to ports 172
 storing 215, 218, 220
SimpleAsyncTaskExecutor 366
Singleton
 creating 57, 58
Spring 5 application
 building, Kotlin used 601, 603, 604
 working with 605
Spring 5
 features 555
 RESTful services, exposing 456, 459, 461, 467

Spring Batch 505
Spring Batch 4 518
Spring Boot 411
Spring Boot 2.0 419
 about 410
 used, for tests creating 620, 622
Spring Boot Actuator 469
Spring Boot starters 413
Spring Cache
 applying 451, 452, 453
 working 454
Spring Cloud 456
Spring Cloud Finchley modules 480, 553
Spring Cloud module 505
Spring Cloud Netflix Eureka services 486
Spring Cloud Netflix Hystrix 492, 496
Spring Cloud Netflix Ribbon 491
Spring Cloud Stream 505, 543, 551
Spring Cloud Task
 about 505, 552, 553
 used, for implementing batch processes 553
Spring container
 implementing, JavaConfig used 44, 45, 46, 47
 implementing, XML used 41, 43
Spring Data 36
Spring Data JPA
 implementing 443, 445, 446
 tests, creating 622, 623, 624
 working 447
Spring Data MongoDB
 using 591, 592, 593
 working 594
Spring JDBC Framework
 used, for implementing DAO layer 149, 155
Spring Maven 304
Spring MVC components
 tests, creating 607, 611
Spring MVC
 creating, JavaConfig used 78, 79, 81, 82
 creating, XML-based approach used 71, 72, 73,

75, 76, 77, 78
Spring OXM module 507, 525
Spring projects
 deploying, Gradle used 31
 deploying, Maven used 29

[637]

Spring Reactive module 399
Spring Security 4.2.2
 about 161
 configuring 161, 172
Spring Security 4.x 616
Spring Security 5.x
 configuring 431, 432
 working 433
Spring STS Eclipse projects
 creating, Gradle used 23
Spring Test Framework APIs 606
Spring TestContext framework 607
Spring Tool Suite (STS)
 about 17
 reference link 17
Spring Web Project 41
Spring WebFlux 391
Spring-Beans 43
Spring-Context 43
Spring-Core 43
standalone controller tests
 building 612, 613
STAX parser 525
Stream API
 using 284, 285, 286
stream communication
 creating, with Spring Cloud Stream 543, 544,

545, 548, 551
Stream manipulation
 implementing 344, 345, 347, 350
Stream transformation
 implementing 344, 345, 347, 350
streams
 applying, to collections 286, 287, 289, 291, 292,

293, 294
 applying, to NIO 2.0 classes 294, 295, 297
STS Eclipse 3.8 18
STS Eclipse 3.8 IDE
 installing 17
Subscriber<T> interface
 implementing 317, 318, 319, 320
synchronous batch processes
 building 506, 507, 510, 513, 515
 working 516
synchronous interprocess communication

 building, AMQP used 527, 529, 533

T
task executions
 managing, Schedulers used 326, 328, 329, 331,

333

task list 19
TaskExecutor
 configuring 362, 364, 366
 security, applying 402, 404, 407, 409
tests
 building, for asynchronous service 624
 building, for blocking service 624
 building, for Kotlin components 628, 630
 building, for reactive RESTful service 624
 creating, for DAO layer 614, 616
 creating, for service layers 614, 616
 creating, for Spring Data JPA 622, 623, 624
 creating, for Spring MVC components 607, 611
 creating, on secured applications 616, 620
 creating, Spring Boot 2.0 used 620, 622
ThreadPoolTaskExecutor 366
Throwable 311
Thymeleaf
 about 417

 using, for rendering Publisher<T> stream 399,
400

 working 402
TLS 172
Tomcat 9
 installing 12
Transport Layer Security (TLS) 13

U
user authentication
 access control, establishing 258, 259, 261
 implementing 255, 256, 257, 258
user details
 creating 197, 201

V
view
 ResourceBundleMessageSource, using for 89,

90, 91, 92
VirtualBox 500

W
WebClient module 505
WebSocket
 client-server communications, building with 567

X
XML Binding (JAXB) 508
XML-based approach

 used, for creating Spring MVC 71, 72, 73, 75,
76, 77, 78

XML-based container
 beans, managing 47, 48, 51, 53
XML
 used, for implementing Spring container 41, 43

Z
zero transmission error 302

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Getting Started with Spring
	Installing Java Development Kit 1.8
	Getting started
	How to do it...
	How it works...

	Installing Tomcat 9 and configuring HTTP/2
	Getting started
	How to do it...
	How it works...

	Installing STS Eclipse 3.8 IDE
	Getting started
	How to do it...
	How it works...

	Creating Eclipse projects using Maven
	Getting started
	How to do it...
	How it works...

	Creating Spring STS Eclipse projects using Gradle
	Getting started
	How to do it...
	How it works...

	Deploying Spring projects using Maven
	Getting started
	How to do it...
	How it works...

	Deploying Spring projects using Gradle
	Getting started
	How to do it...
	How it works...

	Installing the MySQL 5.7 database server
	Getting started
	How to do it...
	How it works...

	Installing the MongoDB 3.2 database server
	Getting started
	How to do it...
	How it works...

	Chapter 2: Learning Dependency Injection (DI)
	Implementing a Spring container using XML
	Getting started
	How to do it...
	How it works...

	Implementing a Spring container using JavaConfig
	Getting started
	How to do it...
	How it works...

	Managing beans in an XML-based container
	Getting started
	How to do it...
	How it works...

	Managing beans in the JavaConfig container
	Getting started
	How to do it...
	How it works...

	Creating Singleton and Prototype beans
	Getting started
	How to do it...
	How it works...

	Defining eager and lazy spring beans
	Getting started
	How to do it...
	How it works...

	Creating an inner bean
	Getting started
	How to do it...
	How it works...

	Injecting Collections and Properties
	Getting started
	How to do it...
	How it works...

	Creating a Spring MVC using an XML-based approach
	Getting started
	How to do it...
	How it works...

	Creating a Spring MVC using the JavaConfig approach
	Getting started
	How to do it...
	How it works...

	Generating multiple ApplicationContexts
	Getting started
	How to do it...
	How it works...

	Using ResourceBundleMessageSource for Views
	Getting started
	How to do it...
	How it works...

	Chapter 3: Implementing MVC Design Patterns
	Creating the simple @Controller
	Getting started
	How to do it...
	How it works...

	Creating a simple @Controller with method-level URL mapping
	Getting started
	How to do it...
	How it works...

	Designing a simple form @Controller
	Getting started
	How to do it...
	How it works...

	Creating a multi-action @Controller
	Getting started
	How to do it...
	How it works...

	Form validation and parameter type conversion
	Getting started
	How to do it...
	How it works...

	Creating request- and session-scoped beans
	Getting started
	How to do it...
	How it works...

	Implementing page redirection and Flash-scoped beans
	Getting started
	How to do it...
	How it works...

	Creating database connection pooling
	Getting started
	How to do it...
	How it works...

	Implementing the DAO layer using the Spring JDBC Framework
	Getting Started
	How to do it...
	How it works...

	Creating a service layer in an MVC application
	Getting started
	How to do it...
	How it works...

	Chapter 4: Securing Spring MVC Applications
	Configuring Spring Security 4.2.2
	Getting started
	How to do it...
	How it works...

	Mapping sessions to channels and ports
	Getting started
	How to do it...
	How it works...

	Customizing the authentication process
	Getting started
	How to do it...
	How it works...

	Implementing authentication filters, login success, and failure handlers
	Getting started
	How to do it...
	How it works...

	Creating user details
	Getting started
	How to do it...
	How it works...

	Generating encrypted passwords
	Getting started
	How to do it...
	How it works...

	Applying Security to MVC methods
	Getting started
	How to do it...
	How it works...

	Creating roles and permissions from the database
	Getting started
	How to do it...
	How it works...

	Managing and storing sessions
	Getting started
	How to do it...
	How it works...

	Solving Cross-Site Request Forgery (CSRF) and session fixation attacks
	Getting started
	How to do it...
	How it works...

	Solving Cross-Site Scripting (XSS) and clickjacking attacks
	Getting started
	How to do it...
	How it works...

	Creating interceptors for login data validation
	Getting started
	How to do it...
	How it works...

	Chapter 5: Cross-Cutting the MVC
	Logging and auditing service methods
	Getting started
	How to do it...
	How it works...

	Managing DAO transactions
	Getting started
	How to do it...
	How it works...

	Monitoring services and request handlers
	Getting started
	How to do it...
	How it works...

	Validating parameters and arguments
	Getting started
	How to do it...
	How it works...

	Managing exceptions
	Getting started
	How to do it...
	How it works...

	Implementing the caching mechanism
	Getting started
	How to do it...
	How it works...

	Intercepting request transactions
	Getting started
	How to do it...
	How it works...

	Implementing user authentication
	Getting started
	How to do it...
	How it works...

	Accessing with restrictions
	Getting started
	How to do it...
	How it works...

	Controlling concurrent user access
	Getting started
	How to do it...
	How it works...

	Implementing a mini-workflow using AOP
	Getting started
	How to do it...
	How it works...

	Chapter 6: Functional Programming
	Implementing lambda expressions using anonymous inner classes
	Getting started
	How to do it...
	How it works...

	Implementing lambda expression using @FunctionInterface
	Getting started
	How to do it...
	How it works...

	Applying the built-in functional interfaces
	Getting started
	How to do it...
	How it works...

	Applying method and constructor references
	Getting started
	How to do it...
	How it works...

	Using the Stream API
	Getting started
	How to do it...
	How it works...

	Applying streams to collections
	Getting started
	How to do it...
	How it works...

	Applying streams to NIO 2.0
	Getting started
	How to do it...
	How it works...

	Using parallel streams
	Getting started
	How to do it...
	How it works...

	Chapter 7: Reactive Programming
	Applying the observer design pattern using Reactive Streams
	Getting started
	How to do it...
	How it works...

	Creating Mono<T> and Flux<T> publishers
	Getting started
	How to do it...
	How it works...

	Implementing the Subscriber<T> interface
	Getting ready
	How to do it...
	How it works...

	Applying backpressure to Mono<T> and Flux<T>
	Getting ready
	How to do it...
	How it works...

	Managing task executions using Schedulers
	Getting ready
	How to do it...
	How it works...

	Creating concurrent and parallel emissions
	Getting ready
	How to do it...
	How it works...

	Managing continuous data emission
	Getting ready
	How to do it...
	How it works...

	Implementing Stream manipulation and transformation
	Getting ready
	How to do it...
	How it works...

	Testing Reactive data transactions
	Getting ready
	How to do it...
	How it works...

	Implementing Reactive events using RxJava 2.x
	Getting ready
	How to do it...
	How it works...

	Chapter 8: Reactive Web Applications
	Configuring the TaskExecutor
	Getting started
	How to do it...
	How it works...
	SimpleAsyncTaskExecutor
	ThreadPoolTaskExecutor
	ConcurrentTaskExecutor

	Implementing @Async services
	Getting started
	How to do it...
	How it works...

	Creating asynchronous controllers
	Getting started
	How to do it...
	How it works...

	Creating @Scheduled services
	Getting started
	How to do it...
	How it works...

	Using Future<T> and CallableFuture<T>
	Getting started
	How to do it...
	How it works...

	Using Mono<T> and Flux<T> publishers for services
	Getting started
	How to do it...
	How it works...

	Creating Mono<T> and Flux<T> HTTP response
	Getting started
	How to do it...
	How it works...

	Integrating RxJava 2.0
	Getting started
	How to do it...
	How it works...

	Using FreeMarker to render Publisher<T> stream
	Getting started
	How to do it...
	How it works...

	Using Thymeleaf to render a Publisher<T> stream
	Getting started
	How to do it...
	How it works...

	Applying security on TaskExecutors
	Getting started
	How to do it...
	How it works...

	Chapter 9: Spring Boot 2.0
	Building a non-reactive Spring MVC application
	Getting started
	How to do it...
	How it works...

	Configuring Logging
	Getting started
	How to do it...
	How it works...

	Adding JDBC Connectivity
	Getting started
	How to do it...
	How it works...

	Building a reactive Spring MVC application
	Getting started
	How to do it...
	How it works...

	Configuring Spring Security 5.x
	Getting started
	How to do it...
	How it works...

	Using reactive view resolvers
	Getting started
	How to do it...
	How it works...

	Using RouterFunction and HandlerFunction
	Getting started
	How to do it...
	How it works...

	Implementing Spring Data with JPA
	Getting started
	How to do it...
	How it works...

	Implementing REST services using @RestController and Spring REST
	Getting started
	How to do it...
	How it works...

	Applying Spring Cache
	Getting started
	How to do it...
	How it works...

	Chapter 10: The Microservices
	Exposing RESTful services in Spring 5
	Getting started
	How to do it...
	How it works...

	Using the actuator REST endpoints
	Getting started
	How to do it...
	How it works...

	Building a client-side application with RestTemplate, AsyncRestTemplate and, WebClient
	Getting started
	How to do it...
	How it works...

	Configuring the Eureka server for service registration
	Getting started
	How to do it...
	How it works...

	Implementing the Eureka service discovery and client-side load balancing
	Getting started
	How to do it...
	How it works...

	Applying resiliency to client applications
	Getting started
	How to do it...
	How it works...

	Consuming endpoints using a declarative method
	Getting started
	How to do it...
	How it works...

	Using Docker for deployment
	Getting started
	How to do it...
	How it works...

	Chapter 11: Batch and Message-Driven Processes
	Building synchronous batch processes
	Getting started
	How to do it...
	How it works...

	Implementing batch processes with a database
	Getting started
	How to do it...
	How it works...

	Constructing asynchronous batch processes
	Getting started
	How to do it...
	How it works...

	Building synchronous interprocess communication using AMQP
	Getting started
	How to do it...
	How it works...

	Creating asynchronous send-receive communication
	Getting started
	How to do it...
	How it works...

	Creating an event-driven asynchronous communication using AMQP
	Getting started
	How to do it...
	How it works...

	Creating stream communication with Spring Cloud Stream
	Getting started
	How to do it...
	How it works...

	Implementing batch processes using Spring Cloud Task
	Getting started
	How to do it...
	How it works...

	Chapter 12: Other Spring 5 Features
	Using Hibernate 5 object-relational mapping
	Getting ready
	How to do it...
	How it works...

	Applying Hazelcast distributed caching
	Getting ready
	How to do it...
	How it works...

	Building client-server communications with WebSocket
	Getting ready
	How to do it...
	How it works...

	Implementing Reactive WebSocket communication
	Getting ready
	How to do it...
	How it works...

	Implementing asynchronous Spring Data JPA properties
	Getting ready
	How to do it...
	How it works...

	Implementing Reactive Spring Data JPA repositories
	Getting ready
	How to do it...
	How it works...

	Using Spring Data MongoDB
	Getting ready
	How to do it...
	How it works...

	Building applications for big data storage
	Getting ready
	How to do it...
	How it works...

	Building a Spring 5 application using Kotlin
	Getting ready
	How to do it...
	How it works...

	Chapter 13: Testing Spring 5 Components
	Creating tests for Spring MVC components
	Getting ready
	How to do it...
	How it works...

	Building standalone controller tests
	Getting ready
	How to do it...
	How it works...

	Creating tests for DAO and service layers
	Getting ready
	How to do it...
	How it works...

	Creating tests on secured applications
	Getting ready
	How to do it...
	How it works...

	Creating tests using Spring Boot 2.0
	Getting ready
	How to do it...
	How it works...

	Creating tests for Spring Data JPA
	Getting ready
	How to do it...
	How it works...

	Building tests for blocking, asynchronous and reactive RESTful services
	Getting ready
	How to do it...
	How it works...

	Building tests for Kotlin components
	Getting ready
	How to do it...
	How it works...

	Index

