

React Router Quick Start Guide

Routing in React applications made easy

Sagar Ganatra

BIRMINGHAM - MUMBAI

Copyright and Credits

React Router Quick Start Guide
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author(s), nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged
to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Amaraba banerjee
Acquisition Editor: Noyonika Das
Content Development Editor: Kirk Dsouza
Technical Editor: Sushmeeta Jena
Copy Editor: Safis Editing
Project Coordinator: Hardik Bhinde
Proofreader: Safis Editing
Indexer: Mariammal Chettiyar
Graphics: Alishon Mendonsa
Production Coordinator: Shraddha Falebhai

First published: September 2018

Production reference: 1280918

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78953-255-5

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
https://www.packtpub.com/
https://www.packtpub.com/

Contributors

About the author
Sagar Ganatra is a frontend engineer and an architect from Bangalore, India. He has more
than a decade of experience in developing web and mobile applications. He specializes in
architecting projects using JavaScript and frameworks such as React, Angular, and Node.
His previous books include Kendo UI Cookbook and Instant Kendo UI Mobile, both published
by Packt Publishing. He also writes about frontend technologies in his blog, sagarganatra
(dot) com.

About the reviewer
Tadas Subonis started coding roughly when he was thirteen. Since then, he has
programmed with PHP, JavaScript, Python, C++, and Java (the language in which he has
probably written the most code). He has an MSc in Artificial Intelligence, is a certified
professional and a technical lead that has deployed multiple complex projects that were
based on web technologies. Also, he is an author of Reactive Android Programming.

Mario Krajacic a self-taught JavaScript developer who fell in love with coding while trying
to automate tasks at his previous network and projects administrator positions. He is
passionate about technology and continuous learning.

Most of his experience comes from working with Node.js and React.js and a major part of
his learning journey being Chingu.io—a global collaboration platform for tech-learners.

I would like to thank the author for writing this book and trusting me with the review and
Chance McAllister for a review recommendation and for founding and leading the
amazing Chingu community!

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Introduction to React Router 4 and Creating Your First Route 6
A brief look at React 7

Component-based architecture in React 8
Creating a React component 9

Introduction to React-Router 11
Getting started with React-Router 13

Adding the React-Router library 15
Defining application routes 16

Summary 19

Chapter 2: Configuring Routes - Using Various Options in the Route
Component 21

Route props 22
The exact prop 22
The strict prop 23
The sensitive prop 24
Inline rendering with the render prop 25
Inline rendering with the children prop 26

Route component props 27
History 27
The location object 28
The match object 29

Route parameters 30
Nested routes and dynamic routing 32
Dynamic routes from JSON 35
Summary 37

Chapter 3: Using the Link and NavLink Components to Navigate to a
Route 38

<Link> component 39
replace prop 40
innerRef prop 40
to prop with an object 41

<NavLink> component 43
activeClassName prop 43
activeStyle prop 43
exact prop 44
strict prop 45

Table of Contents

[ii]

isActive prop 45
location prop 46

Navigating to nested routes 47
Navigating to a route programmatically using history 47
Using the withRouter higher–order component 48
Preventing transitions with <Prompt> 50
Summary 52

Chapter 4: Using the Redirect and Switch Components 53
The <Redirect> component 54

The to prop 54
The push prop 56

Protecting routes and authorization 57
Redirecting with a callback route 59

Exclusive routing with the <Switch> component 61
Ordering of the <Route> components in <Switch> 62

<Route> with path '/' as the first child in <Switch> 62
<Route> with path params 63

Adding a 404 – Page Not Found 63
Using <Redirect> in <Switch> to redirect to a Page Not Found page 65
Redirecting from an old path to a new path 66

Summary 67

Chapter 5: Understanding the Core Router, and Configuring the
BrowserRouter and HashRouter components 68

<Router> component 69
Including <Router> from react-router 70
react-router package 71
react-router-dom package 72

<BrowserRouter> component 73
basename prop 74
forceRefresh prop 75
keyLengthprop 75
getUserConfirmation prop 76
Showing a custom dialog box using the getUserConfirmation prop 77

<HashRouter> component 81
hashType prop 82

Summary 83

Chapter 6: Using StaticRouter in a Server-Side Rendered React
Application 84

Performing SSR of a React application using Node.js and Express.js 85
Installing dependencies 85
Webpack build configuration 86
Server-Side application 87
Rendering a React application using ReactDOMServer.renderToString 88

Table of Contents

[iii]

Adding <StaticRouter> and creating routes 89
Server-Side redirect using the <Redirect> and staticContext 91
Request URL matching with matchPath 93

StaticRouter context prop 95
Creating Isomorphic React applications 97

Webpack configuration 99
Server-Side configuration 100

Summary 101

Chapter 7: Using NativeRouter in a React Native Application 102
Using NativeRouter in a React Native application 103

Creating a new project with the create-react-native-app CLI 103
Adding the <NativeRouter> component 105

The <NativeRouter> component 110
The initialEntries prop 111
The initialIndex prop 111

The <BackButton> component 112
Creating Deeplinks with <DeepLinking> 113

Ejecting from the create-react-native-app 114
Adding <intent-filter> to the manifest file 115
Including the <DeepLinking> component 117

Summary 118

Chapter 8: Redux Bindings with connected-react-router 119
State management with Redux 120

Actions 120
Reducers 121
Store 121
Redux in React 122

Getting started with connected-react-router 125
Reading state information from the Redux store 128
Navigating by dispatching actions 130
Summary 131

Other Books You May Enjoy 132

Index 135

Preface
The React framework from Facebook redefines the way frontend applications should be
built. React Router has become the de-facto routing framework for applications built with
React. With its latest version 4 release, the library has been rewritten in React and it lets you
handle routing declaratively. In this book, you'll learn how the react-router library can be
used in any React application, including web and native mobile applications developed
with React Native. The book also covers topics such as server-side routing and Redux
integration with React Router.

Who this book is for
This book is for web and native mobile application developers who are considering
building applications using React and React Router. A little knowledge of the React
framework and JavaScript would be helpful in understanding the concepts discussed in
this book.

What this book covers
Chapter 1, Introduction to React Router 4 and Creating Your First Route, is an introduction to
the component-based architecture in React and how you can get started with creating
routes using the Route component from React Router.

Chapter 2, Configuring Routes – Using Various Options in the Route Component, discusses
various Route component props that can be used to match the requested URL location and
how these matches can be used to render a component. Also, the chapter explains how
routes can be added dynamically as the user traverses through the application.

Chapter 3, Using the Link and NavLink Components to Navigate to a Route, talks about how to
use the Link and NavLink components in React Router to allow you to navigate to routes
defined in the application. This chapter also explains about the higher-order component
withRouter and how to prevent accidental transition using the Prompt component.

Chapter 4, Using the Redirect and Switch Components, goes into how to use the Redirect
component to redirect the user to a different route and the Switch component to match one
route and redirect the user to a 404 page not found page if the requested location is not
found.

Preface

[2]

Chapter 5, Understanding the Core Router, and Configuring the BrowserRouter and HashRouter
components, is an in-depth explanation of how the core router interface is used to update the
sections of the screen and the browser's history. The chapter also explains two router
interfaces used in a web application: BrowserRouter and HashRouter.

Chapter 6, Using StaticRouter in a Server-Side Rendered React Application, explores how to use
the StaticRouter component to provide routing features on a server-side-rendered
application. The chapter also explains how StaticRouter and BrowserRouter can be
used to build an isomorphic web application.

Chapter 7, Using NativeRouter in a React Native Application, details how to provide routing
in a native mobile application developed with React Native using the NativeRouter
component. The chapter also explains how you can integrate with the device's back button
using the BackButton component and provide deep linking support using the
DeepLinking component.

Chapter 8, Redux Bindings with connected-react-router, examines how to use the connected-
react-router library, which provides Redux bindings for React Router; the chapter
explains how to read routing information from the router state in the Redux store and how
to navigate by dispatching actions to the store.

To get the most out of this book
React Router is used in web and native applications developed with React. The book
assumes that you have a good understanding of JavaScript and some of the new language
features introduced in ECMAScript 6, such as classes and spread operators.

The book provides a brief introduction to React and component-based architecture in React.
Some of the other core concepts of React are documented at https:/ /reactjs. org.

The book assumes that the reader has used Node.js and NPM to install libraries and
packages from the NPM repository.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

https://reactjs.org
https://reactjs.org
https://reactjs.org
https://reactjs.org
https://reactjs.org
https://reactjs.org
https://reactjs.org
https://reactjs.org
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[3]

You can download the code files by following these steps:

Log in or register at www.packt.com1.
Select the SUPPORT tab2.
Click on Code Downloads & Errata3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/React- Router- Quick- Start- Guide. In case there's an update to the code,
it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here:
https://www.packtpub.com/sites/default/files/downloads/9781789532555_ColorImage
s.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in
your system."

http://www.packt.com
https://github.com/PacktPublishing/React-Router-Quick-Start-Guide
https://github.com/PacktPublishing/React-Router-Quick-Start-Guide
https://github.com/PacktPublishing/React-Router-Quick-Start-Guide
https://github.com/PacktPublishing/React-Router-Quick-Start-Guide
https://github.com/PacktPublishing/React-Router-Quick-Start-Guide
https://github.com/PacktPublishing/React-Router-Quick-Start-Guide
https://github.com/PacktPublishing/React-Router-Quick-Start-Guide
https://github.com/PacktPublishing/React-Router-Quick-Start-Guide
https://github.com/PacktPublishing/React-Router-Quick-Start-Guide
https://github.com/PacktPublishing/React-Router-Quick-Start-Guide
https://github.com/PacktPublishing/React-Router-Quick-Start-Guide
https://github.com/PacktPublishing/React-Router-Quick-Start-Guide
https://github.com/PacktPublishing/React-Router-Quick-Start-Guide
https://github.com/PacktPublishing/React-Router-Quick-Start-Guide
https://github.com/PacktPublishing/React-Router-Quick-Start-Guide
https://github.com/PacktPublishing/React-Router-Quick-Start-Guide
https://github.com/PacktPublishing/React-Router-Quick-Start-Guide
https://github.com/PacktPublishing/React-Router-Quick-Start-Guide
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781789532555_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789532555_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789532555_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789532555_ColorImages.pdf

Preface

[4]

A block of code is set as follows:

In GitHubComponent
GitHub ID - mjackson

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

<Route
 to='/github/:githubID'
 component={GitHubComponent}
/>

Any command-line input or output is written as follows:

 Root:
 path: /category, isExact: true

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packt.com and mention the book title in the subject
of your message. If you have questions about any aspect of this book, please email us at
questions@packt.com.

Preface

[5]

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

1
Introduction to React Router 4
and Creating Your First Route

Single page applications (SPAs) have become the de facto standard for developing
applications for the web. Many JavaScript libraries and frameworks have emerged that help
frontend engineers in developing SPAs. These include React, Angular, Ember, and
Backbone, to name a few. These libraries or frameworks abstract native APIs and provide
services and components that can be used to build applications quicker. SPAs are an
excellent choice for providing a fluid user experience; as the user traverses through the site,
HTTP requests are triggered, and only certain sections of the page are updated, instead of
requesting the server for the entire page.

React is an open source JavaScript library that helps you in building user interfaces and the
view layer in web and mobile applications. It encourages developers to visualize the view
layer as a collection of components that can be reused throughout the application. Most
frontend frameworks include a routing package that enables you to update sections of the
page when the user clicks through various links provided on the site. A router in a frontend
framework listens to the changes in the URL and keeps the application in sync by rendering
the corresponding view components. For example, when the user visits '/dashboard', the
page would render various dashboard components, such as charts and tables, and when
the user visits, say, '/user', the page would list various user attributes. In a React-based
application, a Router library is required, since React does not ship with one. React-Router is
one such popular routing library built completely with React. The library includes various
components that can be used to render views as the user navigates through the application.
Apart from matching the URL and rendering the view components, React-Router has
several features that help you to configure the routes easily.

Introduction to React Router 4 and Creating Your First Route Chapter 1

[7]

In this chapter, the following topics are discussed:

A brief look at React: This section introduces you to some of the core concepts in
React, such as component-based architecture, creating components in React, and
how data can be provided to child components in the application tree
Introduction to React-Router: Here, we first create a React application using the
create-react-app CLI and then add the React-Router library (the 'react-
router-dom' package) as a dependency
Creating your first route: After adding React-Router as a dependency, the
application's first route is created using the <BrowserRouter> and <Route>
components

A brief look at React
React is a JavaScript library that provides a set of components and services and enables you
to build user interfaces.

Here is a quote from reactjs.org:

"React is a declarative, efficient, and flexible JavaScript library for building user
interfaces."

The library is developed and maintained by Facebook and is licensed under MIT. It's
extensively used in building various applications at Facebook, including Facebook web and
Instagram web.

React enables you to build view components that get updated when the application's state
changes. The state here could refer to the underlying domain data, or it may reflect where
the user is in the application journey. React ensures that the view components reflect the
application state.

Here are some of the important features of React:

JSX: Components in React applications use an XML/HTML-like syntax, known as
JSX, to render the view elements. JSX allows you to include HTML in your
JavaScript/React code; the familiar syntax of HTML with attributes in your React
component's render function does not require you to learn a new templating
language. This JSX is then used by preprocessors such as Babel to transpile
HTML text to JavaScript objects that the JavaScript engine can understand.

Introduction to React Router 4 and Creating Your First Route Chapter 1

[8]

One-way data binding: React applications are organized as a series of nested
components; a set of immutable values are passed to the component's renderer as
properties in HTML tags. The component does not modify the properties (or
props) it receives from its parent; instead, the child communicates the user
actions to its parent component and the parent component modifies these
properties by updating the component's state.
Virtual DOM: In React, for every DOM object, a corresponding virtual DOM
object is created that has the same set of properties as the real DOM object.
However, the virtual DOM object lacks the power to update the view when the
user interacts with the page. Components in React re-render the view elements
whenever a change in state is detected, and this re-render updates the virtual
DOM tree. React then compares this virtual DOM tree with the snapshot that was
created before the update to determine the DOM objects that changed. Finally,
React modifies the real DOM by updating only those DOM objects that changed.

Component-based architecture in React
Since its release in 2013, React has redefined the way that frontend applications should be
built. It introduces the concept of component-based architecture, which, in essence, allows
you to visualize your application as if it were made up of tiny, self-sustained view
components. These view components are reusable; that is, a component such as
CommentBox or Footer encapsulates the necessary functionality and can be used across the
pages in the site.

A page in this context is itself a view component that is composed of other tiny view
components, as shown here:

<Dashboard>
 <Header>
 <Brand />
 </Header>
 <SideNav>
 <NavLink key=”1”>
 <NavLink key=”2”>
 </SideNav>
 <ContentArea>
 <Chart>
 <Grid data="stockPriceList">
 </ContentArea>
 <Footer />
</Dashboard>

Introduction to React Router 4 and Creating Your First Route Chapter 1

[9]

Here, <Dashboard> is a view component that encompasses several other view components
(Header, SideNav, ContentArea, and Footer), which in turn are made up tiny
components (Brand, NavLink, Chart, and Grid). The component-based architecture
encourages you to build components that provide certain functionality and are not tightly
coupled with any of their parent or sibling components. These components implement
certain functionality and provide an interface through which they can be included in the
page.

In the preceding example, a <Grid> component would include features such as rendering
data in rows and columns, providing search functionality, and also an option to sort the
columns either in ascending or descending order. The <Grid> component would
implement all of the aforementioned features and provide an interface through which it can
be included in the page. The interface here would include the tag name (Grid) and set of
properties (props) that accept the values from its parent component. Here, the <Grid>
component could interface with the backend system and retrieve the data; however, this
would make the component tied tightly to the given backend interface, thus not making it
reusable. Ideally, a view component would receive data from its parent component and act
accordingly:

<Grid data="stockPriceList" />

Here, the <Grid> component receives a list containing stock price information through
its data prop and would render this information in a tabular format. A component that
includes this <Grid> component can be termed a Container component and Grid as a
child component.

A Container component is also a View component; however, its responsibility includes
providing its child components with the necessary data to render. A Container
component could initiate HTTP calls to a backend service and receive the data required to
render its child components. In addition to that, the Container component is also
responsible for the positioning of the individual view components in its view area.

Creating a React component
A React component is created by extending the Component class provided by React as
follows:

import React, { Component } from 'react';
import './button.css';

export class Button extends Component {
 render() {

Introduction to React Router 4 and Creating Your First Route Chapter 1

[10]

 return (
 <button className={this.props.type}>
 {this.props.children}
 </button>
);
 }
}

Here, the Button class extends React's Component class and overrides the render method.
The render method returns the JSX, which will be rendered on the DOM when the page
loads. The type and children properties are available in this.props. React allows you
to pass data to its components through props and does so by using the following syntax:

import React, { Component } from 'react';
import { Button } from './components/Button/button';
import './App.css';

export default class App extends Component {
 render() {
 return (
 <div className="App">
 <Button type="secondary">CANCEL</Button>
 <Button type="primary">OK</Button>
 </div>
);
 }
}

Here, we have wrapped the Button component inside a parent component, App, to render
two button elements. The type attribute is consumed by the Button component to set the
class name (className) of the CANCEL and OK buttons and text mentioned inside the
Button tag. This can be referenced using the children property. The children property
can be plain text or other view components. The child component gets a reference to the
data provided by its parent component using this.props. The children property in
'this.props' provides a reference to all the child elements included between the tags by
the parent component. If you've used Angular in the past, consider the preceding snippet
as similar to how you would include elements using ng-transclude in AngularJS, or ng-
content in Angular.

Introduction to React Router 4 and Creating Your First Route Chapter 1

[11]

Here, the <App> component contains the <Button> component and can be referred to as a
container component, which is responsible for rendering the buttons on the page.

The next step is to render the <App> component on the DOM. The <App> component serves
as a root component, that is, a root node in a tree. Every component in the application has
the <App> component as its top-most parent component:

import React from 'react';
import ReactDOM from 'react-dom';
import App from './App';
import './index.css';

ReactDOM.render(<App />, document.getElementById('root'));

This code is included in index.js, which imports the React and ReactDOM libraries. The
ReactDOM library has a render method, which accepts the component to be rendered as its
first parameter, and a reference to the DOM node where the root component has to be
rendered.

When the app is run, the content inside the <App> component is rendered:

Introduction to React-Router
React-Router is a routing library for SPAs built with React. React-Router version 4 is a
complete rewrite and embraces the React philosophy of component-based architecture.

This is from the React-Router documentation (https:/ /reacttraining. com/ react-
router/)

"React Router is a collection of navigational components that compose declaratively
with your application. Whether you want to have bookmarkable URLs for your web app
or a composable way to navigate in React Native, React Router works wherever React is
rendering--so take your pick!"

https://reacttraining.com/react-router/
https://reacttraining.com/react-router/
https://reacttraining.com/react-router/
https://reacttraining.com/react-router/
https://reacttraining.com/react-router/
https://reacttraining.com/react-router/
https://reacttraining.com/react-router/
https://reacttraining.com/react-router/
https://reacttraining.com/react-router/
https://reacttraining.com/react-router/
https://reacttraining.com/react-router/

Introduction to React Router 4 and Creating Your First Route Chapter 1

[12]

React-Router can be used wherever React can be applied; that is, React-Router works both
in the browser and in the native environment with React Native.

The library is divided into three packages:

react-router: Common core components for DOM and Native versions
react-router-dom: Components for use in browser and web applications
react-router-native: Components for use in native applications built with
React Native

The library provides various components that can be used to add routes dynamically to
your application. The dynamic routing in React-Router v4 allows you to specify application
routes as the user progresses through the application journey. Frameworks such as
AngularJS and Express require you to specify the routes upfront, and this routing
information is required when the application bootstraps. In fact, the earlier versions of
React-Router followed the same paradigm and required the routing configuration to be
available upfront.

Apart from dynamic routing and providing fluid navigation in a React application, the
library includes various features that are available in traditional websites. These include the
following:

Navigating backward and forward through the application, maintaining the
history, and restoring the state of the application
Rendering appropriate page components when presented with a URL (deep-
linking)
Redirecting the user from one route to the other
Support for rendering a 404 page when none of the routes match the URL
Support for hash-based routes and pretty URLs with HTML5 mode

It's a common misconception that React-Router is the official routing
solution provided by Facebook. In reality, it's a third-party library and is
licensed under MIT.

Introduction to React Router 4 and Creating Your First Route Chapter 1

[13]

Getting started with React-Router
Let's create a React application and then add React-Router as a dependency.

To create a React application, we will use the create-react-app CLI. The create-
react-app CLI makes it easier to create an application that already works. The CLI creates
a project scaffold so that you can start using the latest JavaScript features, and also provides
scripts to build applications for a production environment. There are various React and
React-Router starter kits available; however, using create-react-app helps in
demonstrating how React-Router can be added to an existing bare-bones React application.

The first step is to install create-react-app globally using NPM, as follows:

npm install -g create-react-app

The CLI requires the node version to be greater than or equal to 6, and the npm version to
be greater than 5.2.0.

Once the CLI has been installed, we will create a new application using the create-
react-app command, as seen here:

create-react-app react-router-demo-app

The following output is displayed when create-react-app completes the installation of
packages:

Inside that directory, you can run several commands:
 npm start
 Starts the development server.

 npm run build
 Bundles the app into static files for production.

 npm test
 Starts the test runner.

 npm run eject
 Removes this tool and copies build dependencies, configuration
 files
 and scripts into the app directory. If you do this, you can't
 go back!
 We suggest that you begin by typing:
 cd react-router-demo-app
 npm start

Introduction to React Router 4 and Creating Your First Route Chapter 1

[14]

If you used the yarn package manager (https:/ /yarnpkg. com/en/), the npm commands in
the preceding snippet would be replaced with yarn.

The react-router-demo-app directory is created during installation (if it doesn't already
exist). Inside the directory, the following project structure is created:

/react-router-demo-app
 |--node_modules
 |--public
 | |--favicon.ico
 | |--index.html
 | |--manifest.json
 |--src
 | |--App.css
 | |--App.js
 | |--App.test.js
 | |--index.css
 | |--index.js
 | |--logo.svg
 | |--registerServiceWorker.js
 |--package-lock.json
 |--package.json
 |--README.md

The CLI installs all the necessary dependencies, such as Babel, to transpile ES6 code to ES5,
thus enabling you to leverage the latest JavaScript features. It also creates a build pipeline
configuration with the help of webpack. Post-installation, no additional configuration is
required to start or build the app. As noted in the preceding output, you can start the app
using the npm start command and build a production-ready app using npm build.

https://yarnpkg.com/en/
https://yarnpkg.com/en/
https://yarnpkg.com/en/
https://yarnpkg.com/en/
https://yarnpkg.com/en/
https://yarnpkg.com/en/
https://yarnpkg.com/en/
https://yarnpkg.com/en/
https://yarnpkg.com/en/
https://yarnpkg.com/en/

Introduction to React Router 4 and Creating Your First Route Chapter 1

[15]

On running npm start, the application is compiled and will open a browser window with
a Welcome to React message displayed, as shown here:

In the index.js file, the ReactDOM reference is used to render the application's root
component as follows:

ReactDOM.render(<App />, document.getElementById('root'));

The <App> component marks the beginning of the tree that will get rendered when the
application starts.

Adding the React-Router library
Now that we have our sample application up and running, let's add React-Router library as
a dependency using npm:

npm install --save react-router-dom

Introduction to React Router 4 and Creating Your First Route Chapter 1

[16]

This command will download and add react-router-dom to the /node_modules
directory. The package.json file now includes this as a dependency:

"dependencies": {
 "react": "^16.4.0",
 "react-dom": "^16.4.0",
 "react-router-dom": "^4.3.0",
 "react-scripts": "1.1.4"
}

At the time of writing this book, version 4.3.0 of react-router-dom was
available. You can try the alpha and beta builds by mentioning react-
router-dom@next when including the library using npm.

Defining application routes
The react-router-dom package includes a <BrowserRouter> component, which is used
as a wrapper before adding routes in the application. To use React-Router in the React
Native application, the react-router-native package is used. This will be discussed in
detail in later chapters. The <BrowserRouter> component is an implementation of the
router interface that makes use of HTML5's history API to keep the UI in sync with the URL
path.

The first step is to wrap the application's root component with <BrowserRouter>, as
shown here:

import { BrowserRouter } from 'react-router-dom';

ReactDOM.render(
 <BrowserRouter>
 <App />
 </BrowserRouter>,
 document.getElementById('root')
);

Wrapping your application inside <BrowserRouter> will create an instance of history for
our <App> component, giving all of its child components access to props from the native
browser history API. This allows components to match against URL paths and render the
appropriate page component.

Introduction to React Router 4 and Creating Your First Route Chapter 1

[17]

History is a JavaScript library that lets you manage history stack
navigation and helps in persisting state between sessions.

Routing in React-Router isn't actually routing—it's conditional rendering of components
based on the pattern that matches with the current URL path. To define a route, we need
two pieces of information: the URL path to match with and the component to render. Let's
create two components, HomeComponent and DashboardComponent, that render
at /home and /dashboard respectively.

In src/components/home/home.component.js:

import React from 'react';

export const HomeComponent = () => (
 <div>
 Inside Home route
 </div>
);

And in src/components/dashboard/dashboard.component.js:

import React from 'react';

export const DashboardComponent = () => (
 <div className="dashboard">
 Inside Dashboard route
 </div>
);

The import statement is required since we are returning JSX from the preceding
components.

The next step is to define a route using the Route component (from 'react-router-
dom'). The Route component accepts several props, but for the purpose of this example,
we will use path and component.

Introduction to React Router 4 and Creating Your First Route Chapter 1

[18]

In App.js:

class App extends Component {
 render() {
 return (
 <div className="container">
 <Route
 path="/home"
 component={HomeComponent}
 />
 <Route
 path="/dashboard"
 component={DashboardComponent}
 />
 </div>
);
 }
}

export default App;

Here, we're defining routes within the 'render' method of the <App> component. Each
<Route> component has a path prop, which mentions the URL path to match, and a
component prop, mentioning the component to render once the path matches the URL.

In the preceding example, the component was created without extending
React's component class. If a component, created by extending React's
component class, is provided as a value to the component prop, then the
component's lifecycle methods, componentWillMount and
componentWillUnmount, are called every time that <Route> renders the
component.

When you run the app (npm start) and visit localhost:3000/home, HomeComponent is
rendered and the message Inside Home Component is displayed.
Similarly, DashboardComponent is rendered when you visit
localhost:3000/dashboard.

<BrowserRouter> creates a History object, which it uses to keep track of the current
location and re-render the site whenever it changes. <BrowserRouter> makes the
History object available to its descendent child components through React's context. A
Route component that does not have <BrowserRouter> as its parent will fail to work.

Introduction to React Router 4 and Creating Your First Route Chapter 1

[19]

Also, it's a requirement that <BrowserRouter> has only one child element. In the
following snippet, <BrowserRouter> is given two child elements:

<BrowserRouter>
 <Route
 path="/home"
 component={HomeComponent} />
 <Route
 path="/dashboard"
 component={DashboardComponent} />
</BrowserRouter>

The preceding code will result in an error, such as A <Router> may have only one child
element. To resolve this, you could either move these routes into a component and provide
the component reference, or wrap the <Route> components in the preceding snippet inside
another element, such as div or React Fragment.

A React fragment is used to group a list of children without adding
extra nodes to the DOM. A fragment is used when the component returns
multiple elements.

Apart from BrowserRouter, there are other types of routers in the React-Router library:
HashRouter, MemoryRouter, and StaticRouter. These are discussed in later chapters.

Summary
React is a JavaScript library used to build user interfaces. Unlike libraries such as Angular
and Ember, which include a routing package, the React library does not include any
components or services that help in routing. React-Router is a routing library that can be
used in any React application, web or native. React-Router version 4 is a complete rewrite
of the earlier versions and all of its components are written in React. The library includes
the packages react-router-dom for use in web applications; react-router-native, for
use in native applications built with React-Native; and react-router, a core package that
both react-router-dom and react-router-native have a dependency on.

Introduction to React Router 4 and Creating Your First Route Chapter 1

[20]

The create-react-app CLI is used to quickly scaffold a React application. It includes
build configuration scripts that can be used to generate builds for development and
production environments. The react-router-dom package is then added as a dependency
to the application. The package includes the <BrowserRouter> component, which
implements a History interface. The application's root component, <App />, is wrapped
inside React-Router's <BrowserRouter> component to make the History object available
to all the components in the application tree.

To create our first route, the <Route> component is included. It
accepts path and component as props, and renders the component when the browser's
URL matches the <Route> path.

In Chapter 2, Configuring Routes - Using Various Options in the Route Component,
the <Route> component props are discussed in detail. Also, we will take a look at the
various props that the rendered component receives, and consider how these props can be
used to create nested routes.

2
Configuring Routes - Using

Various Options in the Route
Component

React-Router allows you to declaratively define routes using the <Route> component. It's
the main building block of React-Router, and renders the component mentioned in the
component prop when the path value mentioned in the path prop matches the browser's
URL location. The <Route> component, like any other React component, accepts a set of
props. These props provide more granular control over how the browser's URL path
should match the <Route> component's path, and a couple of other rendering options as
well.

In the previous chapter, we briefly saw how a <Route> component is used to match the
URL path and render a component. In this chapter, we will take a look at the following:

A deep dive into various props that can be added to a <Route> component, such
as exact, strict, render, children, and sensitive.
Route component props: the component, which gets rendered as a result of
a <Route> path match, receives data as props that can then be used to create
nested routes.
Route parameters: The <Route> component's path can be configured to accept
additional params from the URL segment, and these params can be read in the
rendered component.
Nested or dynamic routes: a <Route> component can be added inside a
rendered component instead of defining routes at the application level. The
rendered component thus provides the next step in the application journey.
Generating routes from JSON configuration: Route information available in the
JSON object can be used to add routes to the application.

Configuring Routes - Using Various Options in the Route Component Chapter 2

[22]

Route props
When you look at the source code of React-Router, the <Route> component accepts the
following props:

Route.propTypes = {
 computedMatch: PropTypes.object, // private, from <Switch>
 path: PropTypes.string,
 exact: PropTypes.bool,
 strict: PropTypes.bool,
 sensitive: PropTypes.bool,
 component: PropTypes.func,
 render: PropTypes.func,
 children: PropTypes.oneOfType([PropTypes.func, PropTypes.node]),
 location: PropTypes.object
};

Let's take a look at each of these props in the following section.

The exact prop
In our previous <Route> example, let's change the '/home' route path to '/', as shown
here:

<div className="container">
 <Route
 path="/"
 component={HomeComponent}
 />
 <Route
 path="/dashboard"
 component={DashboardComponent}
 />
 </div>

Configuring Routes - Using Various Options in the Route Component Chapter 2

[23]

With these routes in place, when the browser's URL is set to /dashboard, you'll notice that
the content from both components is displayed as follows:

Inside Home route
Inside Dashboard route

Here, the '/' in '/dashboard' matches both of the <Route> paths, '/' and
'/dashboard' ; therefore it renders content from both the components. To match the
browser's location.pathname exactly with the <Route> component's path, add the exact
prop to the <Route>, as shown here:

..
 <Route
 path="/"
 component={HomeComponent}
 exact
 />
 ..

Similarly, when you try to access the '/dashboard' and
'/dashboard/portfolio' paths, you'll notice that in both
instances, DashboardComponent is rendered. To prevent '/dashboard/portfolio'
from matching the <Route> component with the '/dashboard' path, add the exact prop.

React-Router uses the path-to-regexp library internally to determine
whether a route element's path prop matches the current location.

The strict prop
When the <Route> path has a trailing slash, and you would like to match this path,
including the trailing slash, with the browser's URL, then include the strict prop. For
example, after changing the <Route> path from '/dashboard' to '/dashboard/', the
<Route> component would still match the URL path without the trailing slash. In other
words, '/dashboard' would match the <Route> component with
the '/dashboard/' path.

Configuring Routes - Using Various Options in the Route Component Chapter 2

[24]

However, after adding the strict prop, React-Router ensures that <Route> matches only
if the URL has a trailing slash:

<Route
 path="/dashboard/"
 component={DashboardComponent}
 strict
/>

With this <Route> configuration in place, the '/dashboard' path would not match.
However, when you add a trailing slash to the URL, as in '/dashboard/', the
<Route> component with a strict prop will match and the DashboardComponent would
be rendered.

Please note, if you mention additional URL segments, then it would still
match the path prop mentioned in the <Route> component. For example,
if the URL path is '/dashboard/123', it would match
the '/dashboard/' path with a <Route> component that has the strict
prop. To match a path including the additional URL segments, you can
specify the exact prop along with the strict prop.

The sensitive prop
A <Route> component's path is not case-sensitive, that is, a <Route> component with its
path prop value set to '/Dashboard' would match the '/dashboard' or
'/DASHBOARD' URL path. To make a <Route> component's path case-sensitive, add the
sensitive prop:

<Route
 path="/Dashboard"
 component={DashboardComponent}
 sensitive
/>

Configuring Routes - Using Various Options in the Route Component Chapter 2

[25]

The sensitive prop ensures that the path prop's case is taken into consideration when
matching it with the browser's URL path. By adding the sensitive prop, one can define
routes with the same pathname, but do so using a different case:

<Route
 path="/Dashboard"
 component={DashboardComponent}
 sensitive
/>
<Route
 path="/dashboard"
 component={StockListComponent}
 sensitive
/>

This code would create two distinct routes and would render the corresponding component
when the <Route> component's case-sensitive path matches the browser's URL path.

Inline rendering with the render prop
We have already taken a look at how the component prop can be used to render a view
when the <Route> path matches the browser's location.pathname. There are two other
props available to render a view: render and children.

The render prop is used for inline rendering. The function mentioned as a value to
the render prop should return a React element similar to the following:

<Route
 path="/user"
 render={() => (
 <div> Inside User Route </div>
)}
/>

From the preceding code snippet, when the '/user' path matches the browser's URL, the
function specified as a value to the render prop is executed, and the React element
returned from this function is rendered.

When you specify both component and render props in the same
<Route> component, the component prop will take precedence.

Configuring Routes - Using Various Options in the Route Component Chapter 2

[26]

Inline rendering with the children prop
The children prop should be used in a case where you want to render the view
irrespective of whether or not there's a path match. The syntax for the children prop is
similar to the render prop, as shown here:

<Route
 path="/sidenav"
 children={() => (
 <div> Inside Sidenav route </div>
)}
/>

The <Route> component with a children prop is rendered even if the path prop is not
specified. Also, the exact and strict props will not have any effect on
a <Route> component with a children prop.

Both the component and render props take precedence over
the children prop. Also, when either the component or render props
are mentioned, the view is rendered only if the path matches the
requested URL.

A <Route> component with a children prop is rendered based on its position in the list of
routes. For example, if the previous <Route> component is specified as the last entry in the
list of routes, then it is rendered after all the preceding matching routes have been
rendered. Also, if the previous <Route> component is listed before the matching route,
then the route's content is rendered before rendering the matching route's content, as seen
here:

<Route
 path="/sidenav"
 children={() => (
 <div> Inside Sidenav route </div>
)}
/>

<Route
 path="/user"
 render={() => (
 <div> Inside User route </div>
)}
/>

Here, when you try to access the '/user' path, the <Route> component with a children
prop is rendered before rendering the route with the '/user' path.

Configuring Routes - Using Various Options in the Route Component Chapter 2

[27]

Route component props
The component that gets rendered when the <Route> path matches the browser's URL
path receives certain props, such as history, location, match, and staticContext.
The data provided by these props includes information pertaining to the route. The props
are available to the component that gets rendered using the component, render, or
children props of the <Route> component.

The staticContext property is set when you are rendering the application on the server
side and it is not available (as in, set to undefined) in the client-side router that is, when
using the <BrowserRouter> interface. Server-side rendering of the application is covered
in the upcoming chapters.

History
React-Router has a dependency on the history package. history is a JavaScript library
used in maintaining sessions in any JavaScript application. Consider the following quote
from history’s documentation (https:/ / github. com/ ReactTraining/ history):

"history is a JavaScript library that lets you easily manage session history anywhere
JavaScript runs. history abstracts away the differences in various environments and
provides a minimal API that lets you manage the history stack, navigate, confirm
navigation, and persist state between sessions."

The history object has several properties and methods:

action: The current action, PUSH, POP, or REPLACE
length: The count of entries in the history stack
location: The current location, which includes the hash, pathname, search, and
state properties

hash: Hash fragment
pathname: URL path
search: URL query string
state: The state information provided when navigating from one
route to the other using location.pushState

block(): A function that registers a prompt message that will be displayed
when the user tries to navigate away from the current page.

https://github.com/ReactTraining/history
https://github.com/ReactTraining/history
https://github.com/ReactTraining/history
https://github.com/ReactTraining/history
https://github.com/ReactTraining/history
https://github.com/ReactTraining/history
https://github.com/ReactTraining/history
https://github.com/ReactTraining/history
https://github.com/ReactTraining/history
https://github.com/ReactTraining/history
https://github.com/ReactTraining/history

Configuring Routes - Using Various Options in the Route Component Chapter 2

[28]

createHref(): A function that constructs a URL segment; it accepts an object
with the pathname, search, and hash properties.
go(n): A function that navigates through the history stack. history.go(-1)
moves the pointer back by one position and history.go(1) moves the pointer
forward by one position in the history stack.
goBack(): A function that navigates the pointer back by one position in the
history stack; the same as history.go(-1).
goForward(): A function that navigates the pointer forward by one position in
the history stack; the same as history.go(1).
listen(listenerFn): A function that registers a listener function that gets
called whenever there's a change in history.location.
push(path, state?): A function that navigates to the given pathname, adding
an entry to the history stack. It optionally accepts a state parameter, which
can be used to pass application state data.
replace(path, state?): A function that navigates to the given pathname,
replacing the current entry in the history stack. It also accepts an optional
state parameter.

The history object is used by React-Router internally to update the entries in the history
stack when the user tries to navigate between pages. It's provided to the rendered
component as a prop so that the user can be navigated to different pages using the
aforementioned methods in the history object. In the next chapter, we will take a look at
various APIs provided by React-Router that help you navigate to different routes defined in
the application.

The location object
The location object gives a snapshot of data representing the current state of the
application. It includes the following properties: pathname, hash, search, and state. The
navigation components can provide values to these props, which can then be read by the
rendered component that matches the browser's URL. As mentioned previously, we will
take a look at various navigation components in Chapter3, Using Link and NavLink
Components to Navigate to a Route.

The location information is also found in the history object; however, the history object
is mutable, and thus, accessing the location in the history object should be avoided.

Configuring Routes - Using Various Options in the Route Component Chapter 2

[29]

The match object
The match object contains information on how the <Route> path matches the current URL.
It includes the url, path, isExact, and params properties.

Let's refer to one of the earlier routes where the render prop is used:

<Route
 path="/user"
 render={({ match }) => {
 console.log(match);
 return (
 <div> Inside User route </div>
);
 }}
/>

When you try accessing the /user path, the match object's properties will have the
following values:

url - '/user'
path - '/user'
params - {}
isExact - true

url: A string that returns the matched portion of the URL
path: A string that returns the route's path string, that is, the path pattern
mentioned in the <Route> component's path prop
params: An object containing a list of path params passed to the route (there will
be more on params in the upcoming sections)
isExact: A Boolean value; this is true if the URL matches the provided path
prop in its entirety

The isExact property is false if only a part of the URL segment matches
the <Route> component's path. For example, the <Route> component with the /user path
doesn't match the URL of /user/123 in its entirety, and in this case, isExact is false.

As mentioned earlier, a <Route> component with a children prop is rendered
irrespective of whether or not the path prop matches the browser's URL path. Here, the
match object would be set to null if the path does not match the URL segment:

<Route
 path="/sidenav"
 children={({ match }) => {
 console.log(match)

Configuring Routes - Using Various Options in the Route Component Chapter 2

[30]

 return (
 <div> Inside Sidenav route </div>
);
 }}
/>

With this <Route> configuration, when you try to access the /user path, the
<Route> component with the /sidenav path is matched, since it has a children prop.
However, here the match object is set to null. This helps in determining whether a path
matched the URL segment or not for a <Route> component with a children prop.

Route parameters
A <Route> component in React-Router can be configured to accept URL parameters that
change for a given object. For example, to display user information for a given userID, the
URL path could look like '/user/1' for a user with
a userID of '1', and '/user/123' for a user with a userID of '123'. The last portion of
the URL is dynamic; however, in each instance, the rendered component would perform
the same operation for a given userID.

An example of such a use case is Twitter's profile page. The page accepts twitterID and
displays the feed for the given user.

A <Route> component can be configured to accept the dynamic portion in the URL by
appending an additional path in the 'to' prop, prefixed with a colon (:) as seen here:

<Route
 to='/github/:githubID'
 component={GitHubComponent}
/>

Here, the '/:githubID' path is dynamic, and can match paths such
as '/github/ryanflorence' and '/github/mjackson' (the GitHub IDs of the creators
of React-Router).

These matched URL parameters can then be consumed in the rendered component
using match.params:

export class GitHubComponent extends Component {
 render() {
 const { match: { params } } = this.props;
 return (
 <div>

Configuring Routes - Using Various Options in the Route Component Chapter 2

[31]

 In GitHubComponent

 GitHub ID - {params.githubID}
 </div>
)
 }
}

When you try accessing the '/github/mjackson' URL path, you'll see this message:

In GitHubComponent
GitHub ID - mjackson

The match.params object contains key-value pairs of the matching params in the route.
The <Route> component can also accept multiple params in the URL, as shown here:

<Route
 path="/github/:githubID/:twitterID"
 component={GitHubComponent}
/>

Here, the githubID and twitterID params are dynamic and can match URL paths such
as '/github/ryanflorence/mjackson'. The second param, twitterID, can be read in
the component using match.params.twitterID.

In the previous <Route> configuration, the githubID and twitterID params are required
params, that is, the route won't match if both the params are not present in the URL path.
To mark a param as optional, suffix the param with a question mark (?), as shown in the
following snippet:

<Route
 path="/github/:githubID/:twitterID?"
 component={GitHubComponent}
/>

In the preceding <Route> configuration, the twitterID param is marked as optional. This
means that when you try to access the '/github/ryanflorence' path, that is, access the
path without providing a value to the twitterID param in the URL, then the path will
match the URL and the component will be rendered. However, when the component tries
to access the param using match.params.twitterID, it will return undefined.

Configuring Routes - Using Various Options in the Route Component Chapter 2

[32]

The <Route> path can also be configured to accept params that match a regular expression,
as shown here:

...
<Route
 path="/github/:githubID(\w+)"
 component={GitHubComponent}
/>
<Route
 path="/user/:userID(\d+)"
 component={UserComponent}
/>
...

Here, the githubID param is restricted to alphanumeric strings, and the userID param is
restricted to numeric values. The param is suffixed with a regex pattern to define the kind
of values that the <Route> param would accept, that is, a pattern that restricts the values
that can be provided to the param.

Nested routes and dynamic routing
The earlier versions of React-Router required the routes to be defined upfront, and the child
routes to be nested inside another route, as seen here:

<Router>
 <Route path='/' component={Container}>
 <IndexRoute component={Home} />
 <Route path='user' component={User}>
 <IndexRoute component={Twitter} />
 <Route path='instagram' component={Instagram} />
 </Route>
 </Route>
</Router>

This code can be considered static routing, wherein the route configuration is required by
the library when the application initializes. Here, the route with the '/' path serves as the
parent of all the routes, and the route with the 'user' path is a child route of '/', and a
parent route for the route with the 'instagram' path.

In React-Router v4, nested routes can be defined inside the rendered components, that is,
routes get registered as the user navigates through the application. With the rewrite in
v4, <Route> is a React component, and thus can be included in any component's render
method.

Configuring Routes - Using Various Options in the Route Component Chapter 2

[33]

Consider a parent route as defined in App.js (the <App /> root component):

<Route
 path="/category"
 component={CategoryComponent}
/>

Here, the '/category' path is mapped to the CategoryComponent component.

CategoryComponent can, in turn, render other routes using the same <Route>
component. However, when defining routes inside the rendered component
(CategoryComponent), a reference to the current matching URL is required to be specified
in the <Route> component's to prop. For example, a sub route with a '/pictures' path
can be created using a <Route> component; however, an absolute path needs to be
specified in the to prop, that is, '/category/pictures' or, more
generally, '/<current_matching_url>/pictures'.

As mentioned earlier, the match prop passed to the rendered component contains
information on how the path matched the current URL. The match prop's URL property
can be used to refer to the parent URL:

export const CategoryComponent = ({ match }) => {
 return (
 <div className="nested-route-container">
 <div className="root-info">
 <h4> Root: </h4>
 <h5> path: {match.path}, isExact:
{match.isExact.toString()}</h5>
 </div>
 <Route
 path={`${match.url}/pictures`}
 render={({ match }) => {
 return (
 <div>
 <h4> Viewing pictures: </h4>
 <h5>
 path: {match.path},
 isExact:
 {match.isExact.toString()}
 </h5>
 </div>
)
 }}
 />
 <Route
 path={`${match.url}/books`}

Configuring Routes - Using Various Options in the Route Component Chapter 2

[34]

 render={({ match }) => {
 return (
 <div>
 <h4> Viewing books: </h4>
 <h5>
 path: {match.path},
 isExact:
 {match.isExact.toString()}
 </h5>
 <Route
 path={`${match.url}/popular`}
 render={({ match }) => (
 <div>
 Inside popular,
 path:
 {match.path}
 </div>
)} />
 </div>
)
 }}
 />
 </div>
)
}

The CategoryComponent defined in the preceding snippet accepts the match prop, and
the routes defined in the component have path values in the format
of '${match.url}/<child_route_path>'. The match.url template variable contains
the parent route's URL value, in this case, /category. Using the same principle, routes
with the paths of '/category/pictures' and '/category/books' are also defined.

Let's test these routes:

Scenario 1: location.pathname is '/category':

Here, the parent route is rendered and the page will render the route
information as follows:

 Root:
 path: /category, isExact: true

Here, match.isExact is true, since there are no additional URL segments
after the /category path.

Configuring Routes - Using Various Options in the Route Component Chapter 2

[35]

Scenario 2: location.pathname is '/category/pictures' or
'/category/books':

After rendering the '/category' parent route, the library looks for
<Route> components with the paths of '/category/pictures' and
'/category/books'. It finds one and renders the corresponding
component:

 Root:
 path: /category, isExact: false
 Viewing pictures:
 path: /category/pictures, isExact: true

Now, match.isExact in the parent route (a <Route> component with
a '/category' path) is false; however, it's true in the child route.

Scenario 3: location.pathname is '/category/books/popular':

It's possible to nest as many routes as you wish. Here, '/books' is a nested
route, and also has another nested route, '/popular', which matches
the '/category/books/popular' path:

 Root:path: /category,
 isExact: false
 Viewing books:
 path: /category/books, isExact: false
 Inside popular,
 path: /category/books/popular

The match prop is very useful in creating nested routes. These nested routes
become accessible only when their parent route is rendered, allowing you to add
your routes dynamically.

Dynamic routes from JSON
A set of <Route> components can also be generated by looking up an array containing a
collection of route configuration options. Each route option should contain the necessary
details, such as 'path' and 'component'.

Configuring Routes - Using Various Options in the Route Component Chapter 2

[36]

A collection of routes could look like the following:

const STOCK_ROUTES = [
 {
 path: 'stats',
 component: StatsComponent,
 },
 {
 path: 'news',
 component: NewsComponent
 },
 {
 path: 'trending',
 component: TrendingComponent
 }
];

Each object in the preceding array contains a 'path' key specifying the route path, and
a 'component' key containing a reference to the component that you want to render when
the user visits the route. The preceding collection can then be used inside the component's
render method to generate a list of <Route> components, as follows:

...
render() {
 const { match } = this.props;
 return (
 <div>
 Inside Stocks, try /stocks/stats or /stocks/news or
/stocks/trending
 {
 STOCK_ROUTES.map((route, index) => {
 return (
 <Route
 key={index}
 path={`${match.url}/${route.path}`}
 component={route.component}
 />
)
 })
 }
 </div>
);
}
...

Configuring Routes - Using Various Options in the Route Component Chapter 2

[37]

The route configuration defined in STOCK_ROUTES is used to add a list of <Route>
components when the StockComponent renders. The parent <Route> component is
rendered at the '/stocks' path, hence the use of match.url in the path when generating
the <Route> component under the '/stocks' path.

Summary
In this chapter, we learned that the <Route> component can be configured using various
props. This includes using the exact prop to render a component only when the browser's
URL path matches the value mentioned in the <Route> component's path; using the
strict prop in a <Route> component to ensure that the URL path matches the trailing
slash mentioned in the path prop; including the sensitive prop to make the path prop
value case-sensitive; and using the render and children props for inline rendering. The
<Route> component with the children prop renders irrespective of the value specified in
the path prop. This is useful in cases where you have several view components in the page
layout and these should be rendered irrespective of the value specified in the path prop.

The component rendered as a result of the <Route> path match can receive data as props.
This includes props such as history, location, match, and staticContext. The match
prop can be used to used create nested routes, that is, the url property in the match prop
contains information that can then be used in the path prop of the <Route> component
included in the rendered component. The <Route> components can also be added by
looking up the configuration specified in an object. An array containing path and
component information can then be used to add multiple routes in the application.

The <Route> component's path prop can be configured to accept URL segments as path
params. These params can then be read by the rendered component using match.params.
The params can be configured to accept certain values by specifying a regular expression as
a suffix to the path param.

3
Using the Link and NavLink

Components to Navigate to a
Route

React-Router provides the <Link> and <NavLink> components, which allow you to
navigate to different routes defined in the application. These navigation components can be
thought of as being like anchor links on the page that allow you to navigate to other pages
in the site. In a traditional website, when you navigate through the application using
anchor links, it results in a page refresh, and all the components in the page are re-
rendered. Navigation links created with <Link> and <NavLink> do not result in a page
refresh, and only those certain sections of the page that are defined using the <Route> and
match the URL path are updated.

Similar to a <Route> component, the navigation components <Link> and <NavLink> are
React components that allow you to define navigation links declaratively.

In this chapter, we will take a look at the various options available for navigating to routes
defined in the application. This includes the following:

The <Link> component and its props
The <NavLink> component and its props
Navigating to a nested route using the match prop
Navigating to a route programmatically using history
Using a High Order Component withRouter
Preventing route transitions using the <Prompt> component

Using the Link and NavLink Components to Navigate to a Route Chapter 3

[39]

<Link> component
A <Link> component is used to navigate to an <indexentry content="
component:about"> existing route that is defined using the <Route> component. To
navigate to a route, specify the pathname used in the route as a value to the to prop:

import { Link } from 'react-router-dom';

class App extends Component {
 render() {
 return (
 <div class="container">
 <nav>
 <Link to="/">Home</Link>
 <Link to="/dashboard">Dashboard</Link>
 </nav>
 <Route
 path="/"
 component={HomeComponent}
 exact
 />
 <Route
 path="/dashboard"
 component={DashboardComponent}
 />
 </div>
);
 }
}

Notice that the to prop's value is the same as the value assigned to the path prop in
<Route>. The page now renders two links:

When you click on Home, you will see the text Inside Home route displayed, and, when
you click on Dashboard, you will be navigated to the route with its path prop set to
/dashboard.

Using the Link and NavLink Components to Navigate to a Route Chapter 3

[40]

When you navigate to a route using <Link>, history.push() is called, which adds an
entry to the history stack. Thus, when you click the browser's back button, you will be
navigated to the previous route that you were accessing (the Home route). As mentioned in
the previous chapter, the history library is used by React-Router to maintain the state of
the application as the user traverses through various routes during the application journey.

The <Link> component has two other props—replace and innerRef.

replace prop
The replace prop in <Link> calls history.replace(), which replaces the current entry
in the history stack with the new path name mentioned in the to prop:

<Link to="/dashboard" replace>Dashboard</Link>

For example, if you access the page at the path /home, accessing the preceding link will
replace the current entry in the history stack with /dashboard, which basically replaces the
entry /home with /dashboard.

innerRef prop
React provides ref to get a reference to the rendered DOM element. This reference (ref)
can then be used to perform certain operations outside the regular flow, such as focusing on
the input element, media playback, and so on. <Link> is a composite component and it
renders an anchor element on the DOM.

The <Link> component mentioned in the previous code snippet translates to anchor
elements as follows:

..
<nav>
 Home
 Dashboard
</nav>
..

To get a reference to this rendered anchor element, the prop innerRef is added to <Link>:

<nav>
 <Link
 to="/"
 innerRef={this.refCallback}>

Using the Link and NavLink Components to Navigate to a Route Chapter 3

[41]

 Home
 </Link>
 <Link
 to="/dashboard"
 innerRef={this.refCallback}>
 Dashboard
 </Link>
</nav>

The innerRef prop accepts a callback function as its value; here, a function refCallback
is specified as a value to the innerRef prop. The refCallback gets the reference to the
inner element of the <Link> component:

refCallback(node) {
 node.onmouseover = () => {
 node.focus();
 }
}

The callback function—refCallback—is called when the <Link> component mounts.
From the preceding code snippet, we can see that a mouseover handler is added for both
the anchor elements rendered by the two <Link> components. When the user hovers over
the link, the corresponding anchor gets a focus.

to prop with an object
The to prop can be either a string or an object. The object can contain the following
properties:

pathname: The path to navigate to
search: The query parameters to the path, represented as a string value
hash: a hash string to add to the URL
state: an object containing state information that the rendered component can
consume

Using these parameters, let's add a <Link> component:

<Link
 to={{
 pathname: '/user',
 search: '?id=1',
 hash: '#hash',

Using the Link and NavLink Components to Navigate to a Route Chapter 3

[42]

 state: { isAdmin: true }
 }}>
 User
</Link>

The preceding code translates to the following:

User

The state information is not included in the URL path; however, it's available to the
component that gets rendered as a result of a <Route> match:

<Route
 path="/user"
 render={({ location }) => {
 const { pathname, search, hash, state } = location;
 return (
 <div>
 Inside User route
 <h5>Pathname: {pathname}</h5>
 <h5>Search: {search}</h5>
 <h5>Hash: {hash}</h5>
 <h5>State: {'{'}
 {Object.keys(state).map((element, index) => {
 return (

 {element}: {state[element].toString()}

)
 })}
 {'}'}
 </h5>
 </div>
);
 }}
/>

The location object contains all of the previously defined parameters, including the
state object.

The state object can be used to store data as the user navigates through the application
and provide this data to the component that gets rendered next as a result of <Route>
match.

Using the Link and NavLink Components to Navigate to a Route Chapter 3

[43]

<NavLink> component
The <NavLink> component is similar to the <Link> component, except that several props
can be specified that help you to conditionally add styling attributes to the rendered
element. It accepts the same set of props as the <Link> component (to, replace,
and innerRef) for navigating to a route, and it includes props to style the selected route.

Let's take a look at these props that help you style the <NavLink> component.

activeClassName prop
By default, the class name active is applied to the active <NavLink> component. For
example, when a <NavLink> is clicked and the corresponding route is rendered, the
selected <NavLink> has its class name set to active. To change this class name, specify
the activeClassName prop on the <NavLink> component with its value set as the CSS
class name that you want to apply:

<nav>
 <NavLink to="/">Home</NavLink>
 <NavLink
 to="/dashboard"
 activeClassName="selectedLink">
 Dashboard
 </NavLink>
</nav>

The next step is to specify the styles for the CSS class selectedLink in your application's
CSS file. Note that the first <NavLink> does not specify the activeClassName prop. In
this case, when the <NavLink> is clicked, the active class is added:

<nav>
 Home
 <a aria-current="page" href="/dashboard">Dashboard
</nav>

However, when the second <NavLink> is clicked, the selectedLink class is applied:

<nav>
 <a aria-current="page" href="/">Home
 <a class="selectedLink" aria-current="page"
href="/dashboard">Dashboard
</nav>

Using the Link and NavLink Components to Navigate to a Route Chapter 3

[44]

activeStyle prop
The activeStyle prop is also used to style the selected <NavLink>. However, instead of
providing a class to apply when the <NavLink> is selected, the CSS style properties can be
provided inline:

<NavLink
 to="/user"
 activeStyle={{
 background: 'red',
 color: 'white'
 }}>
 User
</NavLink>

exact prop
When you click on the <NavLink> with the to prop /dashboard, the active class (or
inline style specified in activeStyle prop) is applied to both the <NavLink> components
in the page. Similar to the <Route> component, the / in /dashboard matches the path
specified in the to prop, and thus the active class is applied to both the <NavLink>
components.

In this case, the exact prop can be used to apply the active class or activeStyle only
when the path matches the browser's URL:

<NavLink
 to="/"
 exact>
 Home
</NavLink>
<NavLink
 to="/dashboard"
 activeClassName="selectedLink">
 Dashboard
</NavLink>

Using the Link and NavLink Components to Navigate to a Route Chapter 3

[45]

strict prop
The <NavLink> component also supports the strict prop, which can be used to match the
trailing slash specified in the to prop:

<NavLink
 to="/dashboard/"
 activeClassName="selectedLink"
 strict>
 Dashboard
</NavLink>

Here, the class selectedLink is applied to the <NavLink> component only when the
browser's URL path matches the path /dashboard/—for example, when a trailing slash is
present in the URL.

isActive prop
The isActive prop is used to determine whether the <NavLink> component should have
the active class applied (or inline styles specified in activeStyle prop). The function
specified as a value to the isActive prop should return a Boolean value:

<NavLink
 to={{
 pathname: '/user',
 search: '?id=1',
 hash: '#hash',
 state: { isAdmin: true }
 }}
 activeStyle={{
 background: 'red',
 color: 'white'
 }}
 isActive={(match, location) => {
 if (!match) {
 return false;
 }
 const searchParams = new URLSearchParams(location.search);
 return match.isExact && searchParams.has('id');
 }}>
 User
</NavLink>

Using the Link and NavLink Components to Navigate to a Route Chapter 3

[46]

From the preceding example, the function accepts two parameters—match and location.
The styles defined in the activeStyle prop are applied only when the condition
match.isExact && searchParams.has('id') evaluates to true, so, only when the
match is exact and the URL has a query parameter id.

When the browser's URL is /user, the corresponding route defined with <Route> is
displayed. However, the <NavLink> component will have the default styling and not the
styles mentioned in the activeStyle prop, since the query parameter id is missing.

location prop
The isActive function in <NavLink> receives the browser's history location and
determines whether the browser's location.pathname matches the given condition. To
provide a different location, include the location prop:

<NavLink
 to="/user"
 activeStyle={{
 background: 'red',
 color: 'white'
 }}
 location={{
 search: '?id=2',
 }}
 isActive={(match, location) => {
 if (!match) {
 return false;
 }
 const searchParams = new URLSearchParams(location.search);
 return match.isExact && searchParams.has('id');
 }}>
 User
</NavLink>

Notice that the to prop doesn't specify the search parameter; however, the
location prop includes it, and thus, when the browser's location is /user, the isActive
function returns true, since the search parameter includes the id property.

Using the Link and NavLink Components to Navigate to a Route Chapter 3

[47]

Navigating to nested routes
In the last chapter, we saw how to create nested routes using the match prop that the
rendered component receives. The match.url property contains the browser's URL path
that matched the <Route> component's path. Similarly, the <Link> and <NavLink>
components can be used to create navigation links to access these nested routes:

<nav>
 <Link
 to={`${match.url}/pictures`}>
 Pictures
 </Link>
 <NavLink
 to={`${match.url}/books`}
 activeStyle={{
 background: 'orange'
 }}>
 Books
 </NavLink>
</nav>

In the preceding code snippet, the <Link> and <NavLink> components make use of
match.url to get a reference to the current rendered route and add the additional path
values required to navigate to the nested route.

Navigating to a route programmatically
using history
The <Link> and <NavLink> components render anchor links on the page, which allow you
to navigate from the current route to the new route. However, in many cases, the user
should be navigated to a new route programmatically when an event occurs. For example,
the user should be navigated to a new route upon clicking the Submit button in the login
form. The history object available to the rendered component can be used in such cases:

export const DashboardComponent = (props) => (
 <div className="dashboard">
 Inside Dashboard route
 <button onClick={() => props.history.push('/user')}>
 User
 </button>
 </div>
);

Using the Link and NavLink Components to Navigate to a Route Chapter 3

[48]

Here, the DashboardComponent receives props as its argument, which contains the
history object. The onClick handler calls props.history.push with the
pathname /user. This call adds an entry to the history stack, and navigates the user to the
<Route> with the path /user. The history object can also be used to replace the current
entry in the history stack by using history.replace in place of history.push.

Using the withRouter higher–order
component
The history object is available to the component rendered with a <Route> match. In the
preceding example, the DashboardComponent was rendered as a result of navigation to
the path /dashboard. The rendered component received the props, which contained the
history object (as well as match, location, and staticContext). In a case where, the
rendered component on the page is not the outcome of a route navigation, the history
object will not be available to the component.

Consider a FooterComponent included in App.js :

class FooterComponent extends Component {
 render() {
 return (
 <footer>
 In Footer
 <div>
 <button
 onClick={() =>
 this.props.history.push('/user')}>
 User
 </button>
 <button
 onClick={() =>
 this.props.history.push('/stocks')}>
 Stocks
 </button>
 </div>
 </footer>
)
 }
}

Using the Link and NavLink Components to Navigate to a Route Chapter 3

[49]

The FooterComponent has two buttons that call history.push to navigate to one of the
pages in the application. On clicking the button, the error TypeError: Cannot read
property 'push' of undefined is thrown. The error is thrown because the history
object is not available in the props property, as the component is not rendered as a result of
navigation. To circumvent this, use the higher-order component withRouter:

export const Footer = withRouter(FooterComponent);

Here, the withRouter function defined in the react-router package accepts a React
component as its argument and augments it to provide the necessary objects on the props
property—history, match, location, and staticContext.

React documentation on HOC: A higher-order component is a function
that takes a component and returns a new component. Although a
component transforms props into UI, a higher-order component
transforms a component into another component.

A component wrapped inside a withRouter HOC can define routes and navigation links
using <Route>, <Link>, and <NavLink>:

import { withRouter } from 'react-router';

class FooterComponent extends Component {
 render() {
 return (
 <footer>
 In Footer
 <div>
 <button onClick={() =>
 this.props.history.push('/user')}>User</button>
 <button onClick={() =>
 this.props.history.push('/stocks')}>Stocks</button>
 <Link to='subroute'>User</Link>
 <Route
 path='/subroute'
 render={() => {
 return Inside Footer Subroute
 }} />
 </div>
 </footer >
)
 }
}

export const Footer = withRouter(FooterComponent);

Using the Link and NavLink Components to Navigate to a Route Chapter 3

[50]

In the preceding code snippet, the withRouter HOC enables the component to get the
context of the router, and hence makes components such as Link, NavLink, and Route
available.

Preventing transitions with <Prompt>
When you navigate between the pages in the application, the transition to the new route
occurs instantly. However, there are scenarios in which you want to prevent this transition
based on the state of the application. One such common example is when a user has entered
data into form fields and has spent several minutes (or hours) filling up the form data. If
the user clicks on a navigation link accidentally, all the data entered in the form will be lost.
The user should be notified of this route navigation, so that the user gets a chance to save
the data entered into the form.

Traditional websites keep track of the state of the form and display a confirmation message
when the user tries to navigate away from a page that contains a form that has not been
submitted to the server. In these scenarios, a confirmation dialog box is shown with two
options, OK and CANCEL; the former option allows the user to transition to the next step
and the latter cancels the transition:

React-Router provides the <Prompt> component, which can be used to display a
confirmation dialog box to prevent the user from navigating away from the current
<Route> accidentally:

import { Prompt } from 'react-router-dom'

<Prompt
 when={this.state.isFormSubmitted}
 message='Are you sure?'
/>

Using the Link and NavLink Components to Navigate to a Route Chapter 3

[51]

The <Prompt> component here accepts two props—when and message. From the
preceding code snippet, it can be seen that a confirmation dialog box with the message Are
you sure? is shown to the user if the value of the state property isFormSubmitted is
true, and when the user tries to navigate away from the current route.

Please note, the <Prompt> message is shown only when the user tries to
navigate away from the current route. No message is shown when the
state property is set to true.

The value assigned to the when prop can be any Boolean variable or a Boolean value. In
React, the component's state is used as a View-Model to maintain the state of the
rendered component. The state properties are ideal in cases such as these to determine
whether the <Prompt> should be shown when the user tries to navigate away from the
current route.

The value of the message prop can be a string or a function:

<Prompt
 when={this.state.isFormSubmitted}
 message={(location) => 'Are you sure you want to navigate to
${location.pathname}?'} />

The function receives the location parameter, which includes the location information
about the route that the user is trying to navigate to.

Similar to other components in the 'react-router-dom' package, the
<Prompt> component should be used inside a rendered <Route>. When
you try to use a <Prompt> without it having the context of the current
route, the message. You should not use <Prompt> outside a <Router> is
shown.

It's also possible to show a message whenever the user tries to navigate away from the
current route (irrespective of the state of the application) by not including the when prop:

<Prompt message='Are you sure?' />

More often than not, the when prop is included in <Prompt>, and the value assigned to the
when prop is used to determine whether the confirmation dialog box should be shown.

When you're trying these examples, ensure that you have only one
<Prompt> for the given <Route>, else the library will report the warning
A history supports only one prompt at a time.

Using the Link and NavLink Components to Navigate to a Route Chapter 3

[52]

Summary
In this chapter, we looked at how the <Link> and <NavLink> navigation components can
be used to navigate to various routes defined in the application. These components render
anchor links in the page, and, when the user clicks on these links, sections of the page are
updated as opposed to doing a complete page reload, thus providing a lucid user
experience. The <Link> component accepts the props to, replace, and innerRef.

The <NavLink> component is similar to the <Link> component, and it accepts all the props
that the <Link> component works with. In addition to adding a link to the page, the
<NavLink> component accepts several props—activeClassName, activeStyle, exact,
strict, and isActive.

To create links to the nested routes, the <Link> and <NavLink> components can use the
prefix match.url in the to prop. Also, you can programmatically navigate using
history.push or history.replace in the event–handler function. Props—history,
match, location, and staticContext—can be made available to components rendered
outside the Route context via the withRouter higher order component. The 'react-
router-dom' package includes a <Prompt> component that can be used to display a
confirmation dialog box when the user tries to navigate to route by accidentally clicking on
a navigation link. The <Prompt> component accepts the when and message prop, and,
based on the Boolean value assigned to the when prop, the message specified in the
message prop will be shown to the user.

In Chapter 4, Using the Redirect and Switch Components, we will take a look at
the <Redirect> and <Switch> components. Also, we will see how these components can
be used to protect the routes and display a Page Not Found page when none of the routes
in the page match the requested URL.

4
Using the Redirect and Switch

Components
Redirecting the user from one route to the other can be achieved using React-Router's
<Redirect> component. In traditional websites, where pages are rendered on the server
side, the web server hosting the application is configured with rewrite rules that redirect
the user to a different URL. This redirection could be used when the content has moved to a
new page, and in cases where certain pages of the site are still under construction. HTTP
redirection is an expensive operation and thus the application's performance is also
affected.

In single–page application (SPA), the redirection occurs on the browser, where the user is
redirected to a different route based on a certain condition. This redirection is faster, since
there's no HTTP roundtrip involved, and the transition is similar to navigating from one
route to the other using the <Link> or <NavLink> components.

In this chapter, the following topics are discussed:

<Redirect> component: Redirecting the user from one route to the other route
Protecting routes and authorization: A use case where the user is redirected to
the login page when an attempt is made to access a protected route
<Switch> component: Rendering the first matching <Route>
Adding a 404 Page Not Found page: A use case where <Switch> and <Route>
or <Switch> and <Redirect> components are used to render a 404 page when
none of the <Route> components match the browser's URL path

Using the Redirect and Switch Components Chapter 4

[54]

The <Redirect> component
The <Redirect> component is included in the react-router-dom package. It helps in
redirecting the user from the component where it's included to the route specified in
the 'to' prop:

import { Redirect } from 'react-router-dom';

export class HomeComponent extends Component {
 render() {
 return (
 <Redirect to='/dashboard' />
)
 }
}

In the preceding scenario, when HomeComponent is rendered (based on a <Route> match),
the user is redirected to the '/dashboard' route. For example, when the user accesses the
home page (at path '/'), the <Route> with the path '/' renders the previous component
and then the user is immediately redirected to the <Route> with its path value as
'/dashboard'. This is similar to how a <Link> or <NavLink> component with
a 'to' prop is used to navigate the user to a different route. Here, instead of triggering the
navigation as a result of a user action, the redirection happens when the component is
rendered.

The redirection example mentioned previously is ideal in scenarios where certain pages in
the application have moved to a different directory.

The <Redirect> component is similar to other components in React-Router, such
as <Route> and <Link>. As observed previously, it's a React component that can be
included in the render function. Also, the <Redirect> component accepts a similar set of
props to the <Link> component.

The to prop
The to prop is used to specify the route to which the user should be redirected. If a
matching <Route> is found, the user is redirected to the specified path and the
corresponding component is rendered.

Using the Redirect and Switch Components Chapter 4

[55]

The to prop can also accept an object that specifies the values for the pathname, search,
hash, and state properties:

<Redirect
 to={{
 pathname: '/dashboard',
 search: '?q=1',
 hash: '#hash',
 state: { from: match.url }
 }}
/>

Similar to the <Link> component, the previously mentioned properties are specified in the
to prop of the <Redirect> component. Notice that the state property has the value {
from: match.url }. Here, match.url provides the current value of the browser's URL
path and this value is then provided to the rendered component when the redirection
occurs.

The rendered component can then read the state information using
this.props.location.state:

export class DashboardComponent extends Component {
 render() {
 const { location } = this.props;
 return (
 <div>
 In DashboardComponent

 From : {location.state.from}
 </div>
)
 }
}

In the preceding example, DashboardComponent is rendered as a result of a redirection
from the HomeComponent. The value of location.state.from shares the path
information to the redirected component about the page from which the redirection
occurred. This is useful when you have a generic page to which you want to be redirected
and the redirected page has to display information about the path from which the
redirection occurred. For example, when an error occurs in the application, the user should
be redirected to a page that renders the error message, providing information on the page
where the error occurred. In this case, the state information could include
properties—errorMessage and from; the latter's value as match.url that is the page
where the error occurred.

Using the Redirect and Switch Components Chapter 4

[56]

If the redirected <Route> is not found, the browser's URL is updated and
no errors are thrown. This is by design; ideally, if there is no matching
route, the user should be redirected to a 404 or a Page Not Found page.
The <Route> to render when there's no match is discussed in the next
section.

Inside the component, when you try to redirect to the same route, React-Router throws a
warning message Warning: You tried to redirect to the same route you're currently on:
"/home". This check ensures that the redirect does not lead to an infinite loop.

It's also possible to run into a situation where the redirected component includes a
<Redirect> in its render method, redirecting back to the same route, that is, following this
route redirect path: /home => /dashboard => /home. This runs into a loop until React
stops rendering the component; React then throws an error Maximum update depth
exceeded. This can happen when a component repeatedly calls setState inside
componentWillUpdate or componentDidUpdate. React limits the number of nested
updates to prevent infinite loops. React-Router uses state to keep track of the user's location
in the application journey and thus the preceding error occurs when React tries to update
the state several times because of redirection. When working with redirection, you need to
ensure that it does not lead to an infinite loop of redirection.

The push prop
The <Redirect> component redirects the user to the given path by calling
history.replace(<path>), that is, replacing the current entry in the history stack with
the new path. By specifying the push prop in the <Redirect> component, history.push is
called instead of history.replace:

<Redirect to="/dashboard" push />

Using the Redirect and Switch Components Chapter 4

[57]

Protecting routes and authorization
The routes defined using the <Route> component can be accessed through the browser's
URL, by navigating to the route using <Link> or <NavLink>, or by redirecting the user
with the <Redirect> component. However, in most applications, some of the routes
should be accessible only to authorized or logged-in users. For example, say the
/user path displays the logged-in user's data; this path should be protected and only the
logged-in user should be allowed to access the route. In these cases, the <Redirect>
component comes in handy for redirecting the user to the login page (at the path /login)
when you try to access the path /user.

To demonstrate this, let's create a component called UserComponent, which will be
rendered when you try to access the path /user:

export class UserComponent extends Component {
 render() {
 const { location } = this.props;
 return (
 <div>
 Username: {location && location.state ?
location.state.userName
 : ''}

 From: {location && location.state ? location.state.from :
''}

 <button onClick={this.logout}>LOGOUT</button>
 </div>
)
 }
}

From the preceding code snippet, we can see that UserComponent displays state
information available in this.props.location and the LOGOUT button.

Using the Redirect and Switch Components Chapter 4

[58]

To check whether the user has logged in, a request to the server should be made to check if
the user's session exists. However, in our case, a check to see if the user is logged in would
be made by referring to a variable in the browser's localStorage:

export class UserComponent extends Component {
 state = {
 isUserLoggedIn: false
 }
 componentWillMount() {
 const isUserLoggedIn = localStorage.getItem('isUserLoggedIn');
 this.setState({isUserLoggedIn});
 }
 render() {
 ...
 }
}

Here, the component's state property, isUserLoggedIn, will be updated with the value
stored in the localStorage variable of the same name.

The next step is to use this state information in the render function of the UserComponent
class and redirect the user using the <Redirect> component:

export class UserComponent extends Component {
 ...
 render() {
 const { location } = this.props;
 if (!this.state.isUserLoggedIn) {
 return (
 <Redirect to="/login" />
);
 }
 ...
 }
}

Here, the value of the state property, isUserLoggedIn, is checked, and, if it evaluates to
false, or if it's not found, then the user is redirected to the route with the path '/login'.

Using the Redirect and Switch Components Chapter 4

[59]

The last step would be to implement the logout function, which is called when the user
clicks the LOGOUT button:

export class UserComponent extends Component {
 logout = (event) => {
 localStorage.removeItem('isUserLoggedIn');
 this.setState({ isUserLoggedIn: false });
 }
 ...
}

Logging the user out involves removing the localStorage variable and updating the state
property isUserLoggedIn to 'false'.

With these changes, when the state property—isUserLoggedIn—is set to false, the
UserComponent is rerendered and the user is redirected to the path /login, asking the
user to provide credentials to access the page. Also, now when you try to access the path
/user by the entering the same in the browser's address bar, the <Route> with its path
prop /user would match. However, when UserComponent is rendered, the state property
isUserLoggedIn would evaluate to false, redirecting the user to the /login page.

Redirecting with a callback route
When you try to access a protected <Route>, you will be redirected to the login page to
provide credentials. After providing credentials, you should be redirected to the page that
you tried to access earlier. For example, when you try to access the protected route at the
path /stocks, you would be redirected to the path /login, and then, on providing correct
credentials, you should be redirected to the same path /stocks that you tried to access
earlier. However, from the previous example, you would be redirected to the path /user
and the user's profile information would be displayed. The desired behavior is to be
redirected to the protected route /stocks instead of the path /user.

This can be accomplished by providing state information when redirecting the user.

In StocksComponent (a component rendered as a result of a <Route> match, /stocks),
when you redirect the user to the login page, provide the state information in the to prop:

export class StocksComponent extends Component {
 ...
 render() {
 const {match } = this.props;
 if (!this.state.isUserLoggedIn) {
 return (

Using the Redirect and Switch Components Chapter 4

[60]

 <Redirect
 to={{
 pathname: "/login",
 state: { callbackURL: match.url }
 }}
 />
)
 }

 return (
 <div>
 In StocksComponent
 </div>
)
 }
}

In the component's render function, the user is redirected to the login page using the
<Redirect> component. The <Redirect> component here includes a to prop specifying
the pathname to which the user should be redirected, and it also includes a state object
mentioning the callbackURL property. The value of the callbackURL property is
match.url, that is, the current browser URL path /stocks.

This state information can then be used in the LoginComponent to redirect the user to the
path /stocks:

export class LoginComponent extends Component {
 ...
 render() {
 const { location: { state } } = this.props;
 if (this.state.isUserLoggedIn) {
 return (
 <Redirect
 to={{
 pathname: state &&
 state.callbackURL || "/user",
 state: {
 from: this.props.match.url,
 userName: this.state.userName
 }
 }}
 />
)
 }
 ...
 }
}

Using the Redirect and Switch Components Chapter 4

[61]

Here, when the user provides credentials to access the protected route, the <Redirect>
component redirects the user to the path mentioned in the state.callbackURL.
If callbackURL is not available, the user would be redirected to the default route, which is
redirected to the path /user.

A combination of Route component props, match.url, and location.state can be used to
redirect the user to the protected route that was requested earlier.

Exclusive routing with the <Switch>
component
When a URL is presented to <BrowserRouter>, it will look for routes created with
<Route> components and render all the routes that match the browser's URL path. For
example, consider the following routes:

<Route
 path="/login"
 component={LoginComponent}
/>
<Route
 path="/:id"
 render={({ match }) =>
 <div> Route with path {match.url}</div>
 }
/>

Here, both the routes with the paths /login and /:id match the /login URL path. React-
Router renders all the <Route> components that match the URL path. However, to render
only the first matching route, the library provides the <Switch> component. The
<Switch> component accepts a list of <Route> components as its children and it renders
only the first <Route> that matches the browser's URL:

<Switch>
 <Route
 path="/login"
 component={LoginComponent}
 />
 <Route
 path="/:id"

Using the Redirect and Switch Components Chapter 4

[62]

 render={({ match }) =>
 <div> Route with path {match.url}</div>
 }
 />
</Switch>

By wrapping a list of <Route> components inside a <Switch> component, React-Router
sequentially searches for a <Route> matching the browser's URL path. Once a
matching <Route> is found, <Switch> stops the search and renders the matching <Route>.

In the preceding example, the first <Route> in <Switch> is rendered only if the browser's
URL path is /login and paths other than /login (/123, /products, /stocks and so on) would
match the second route and render the corresponding component.

If the order of the previous two <Route> components is swapped (that is, the <Route> with path /:id is listed
above the <Route> with path /login), the <Route> with path /login would never get rendered
because <Switch> allows only one and the first matching route to be rendered.

Ordering of the <Route> components in <Switch>
The ordering of the <Route> components inside <Switch> matters because the <Switch>
component looks for a matching <Route> sequentially, and once a <Route> matching the
browser's URL is found, it stops the search. This behavior may not be desired and you may
want to render another route listed inside <Switch>. However, it can be corrected by
changing the order in which <Route> are listed in <Switch>:

In the following examples, some of the common mistakes in listing the <Route>
components in <Switch> are mentioned:

<Route> with path '/' as the first child in <Switch>
Consider the following code snippet:

<Switch>
 <Route
 path="/"
 component={LoginComponent}
 />
 <Route
 path="/dashboard"
 component={DashboardComponent}
 />
</Switch>

Using the Redirect and Switch Components Chapter 4

[63]

If the browser's URL path is /dashboard, it would match the first <Route> with path /
and the <Route> with path /dashboard would never be matched and rendered. To fix
this, either include the exact prop or list the <Route> with path / as the last entry in
<Switch>.

<Route> with path params
In the following code snippet, a <Route> with a path param is listed as the second entry:

<Switch>
 <Route
 path="/github"
 component={LoginComponent}
 />
 <Route
 path="/github/:userId"
 component={DashboardComponent}
 />
</Switch>

In the previous example, <Route> with path /github would match the URL path
/github as well as path /github/mjackson; thus, the first <Route> is rendered even
when a <Route> with a specific path is available. To fix this, either provide the exact prop
or list the <Route> with path /github below the <Route> with path /github/:userId.

From both cases mentioned in the previous paragraph, listing <Route> components with
specific paths above <Route> components with generic paths would avoid undesirable
results.

Adding a 404 – Page Not Found
As mentioned, the <Switch> component looks through all the <Route> components
sequentially for a match and stops the search once a <Route> with its path matching the
browser's URL is found. This is unlike a list <Route> in a page, where every matched
<Route> is rendered. The <Switch> thus becomes a good fit for rendering a Page Not
Found page, that is, rendering a component when none of the <Route> mentioned as
children to <Switch> match the browser's URL.

Using the Redirect and Switch Components Chapter 4

[64]

Let's include a <Route> with no path prop as the last entry in <Switch>:

<Switch>
 <Route
 path="/login"
 component={LoginComponent}
 />
 <Route
 path="/user"
 render={({ match }) =>
 <div> Route with path {match.url}</div>
 }
 />
 <Route
 render={({ location }) =>
 <div> 404 - {location.pathname} not
 found</div>
 }
 />
</Switch>

From the preceding code snippet, we can see that when none of the <Route> with a path
prop match the browser's URL, the last <Route> without the path prop would match and
render.

It's important to include the Page Not Found <Route> as the last entry because the
<Switch> component stops the search once a matching <Route> is found. In the preceding
case, if the <Route> with no prop is included above other <Route>, then the Page Not
Found route would be rendered even if a <Route> matching the browser's URL was
present in the list.

You could also specify a <Route> with its path prop value as * instead of <Route> with no
path prop, to render a Page Not Found page:

<Switch>
 ...
 <Route
 path="*"
 render={({ location }) =>
 <div> 404 - {location.pathname} not
 found</div>
 }
 />
</Switch>

Using the Redirect and Switch Components Chapter 4

[65]

In both cases, the path would match the browser's URL and render the Page Not Found
page.

Using <Redirect> in <Switch> to redirect to a
Page Not Found page
The <Switch> component's children can include a list of <Route> and <Redirect>
components as well. The <Redirect> component, when included as the last entry in
<Switch>, will redirect the user to the given path if none of the <Route> mentioned above
the <Redirect> component match the browser's URL:

<Switch>
 <Route
 path="/login"
 component={LoginComponent}
 />
 <Route
 path="/user"
 render={({ match }) =>
 <div> Route with path {match.url}</div>
 }
 />
 <Redirect to="/home" />
</Switch>

The <Redirect> component mentioned previously redirects the user to the <Route> with
path /home. This is similar to displaying a 404: Page Not Found page; instead of
displaying the component in line, the user is redirected to a different route.

For example, if the browser's URL path is /dashboard, the first two routes (with the paths
/login and /user) wouldn't match, and thus the user is redirected using the <Redirect>
component mentioned as the last entry in <Switch>.

Using the Redirect and Switch Components Chapter 4

[66]

Redirecting from an old path to a new path
The <Redirect> component can also be used to redirect the user from a given path to a
new path. The <Redirect> component accepts a prop, from, which can be used to specify
the path that should match the browser's URL from which the user should be redirected.
Also, the path that the user should be redirected to should be specified in the to prop:

<Switch>
 <Route
 path="/login"
 component={LoginComponent}
 />
 <Route
 path="/user"
 render={({ match }) =>
 <div> Route with path {match.url}</div>
 }
 />
 <Redirect
 from="/home"
 to="/login"
 />
 <Redirect to="/home" />
</Switch>

From the preceding example, we can see that when the browser's URL path is /home, the
<Redirect> component with the from prop would match the given path and redirect the
user to the <Route> with the path /login.

The <Redirect> component's from prop is useful when some of the pages on the site have
been moved to a new directory. For example, if the user page has been moved to a new
directory path, settings/user, then <Redirect from="/user"
to="/settings/user" /> will redirect the user to the new path.

Using the Redirect and Switch Components Chapter 4

[67]

Summary
The <Redirect> component can be used to redirect the user from the current rendered
route to a new route. The component accepts props: to and push. This redirection could be
used when the components in the application have moved to a different directory, or when
the user is not authorized to visit the page. The <Redirect> component is helpful when a
user visits a protected route and only authorized users are allowed to view the page.

The <Switch> component is used when only one <Route> out of a list of <Route> should
be rendered. The <Switch> component accepts a list of <Route> and <Redirect>
components as its children, and sequentially searches for a matching <Route> or a
<Redirect> component. When a match is found, <Switch> renders the component and
stops looking for a matching path.

This behavior of <Switch> can be leveraged to build a 404: Page Not Found, which
would be rendered when none of the <Route> components listed in <Switch> match the
browser's URL path. By listing a <Route> without any path prop as the last entry in
<Switch>, the <Route> is rendered if none of the <Route> components listed above match
the browser's URL path. Alternatively, the <Redirect> component can be listed as the last
entry to redirect the user to a page when none of the <Route> components in the <Switch>
match.

5
Understanding the Core Router,

and Configuring the
BrowserRouter and

HashRouter components
The React-Router library provides several components that address various use cases, such
as adding navigation links with <Link> and <NavLink>, redirecting the user using the
<Redirect> component, and so on. The <BrowserRouter> component wraps the
application's root component (<App />) and enables these components to interact with the
history object. When the application initializes, the <BrowserRouter> component
initializes the history object and makes it available to all its child components using
React's context.

Routing in a single-page application is not really routing; rather, it's conditional rendering
of components. The <BrowserRouter> component creates the history object, and
the history object has methods such as push, replace, pop, and so on, which are used
when navigation occurs. The history object enables the application to maintain history
when the user is navigating between the pages. Other than <BrowserRouter>, React-
Router provides various Router implementations—<HashRouter>, <StaticRouter>,
<MemoryRouter>, and <NativeRouter>. These Routers make use of the low-level Router
interface, which is included in the react-router core package.

Understanding the Core Router, and Configuring the BrowserRouter and
HashRouter components Chapter 5

[69]

In this chapter, we will take a look at the low-level <Router> component and various
router implementations:

<Router> and the react-router package
<BrowserRouter> props
HashRouter—a Router implementation for use in legacy browsers

Other <Router> implementations, such as <StaticRouter>, <MemoryRouter>, and
<NativeRouter>, are discussed in the next chapters.

<Router> component
As previously mentioned, React-Router provides various Router implementations:

<BrowserRouter>

<HashRouter>

<MemoryRouter>

<StaticRouter>

<NativeRouter>

These Routers make use of a low-level interface—<Router>. The <Router> component is
part of the core react-router package, and the functionality provided by the <Router>
interface is extended by these Router implementations.

The <Router> component accepts two props—history and children. The history
object can be a reference to the browser's history or it can be the application's history
maintained in memory (which is useful in native applications where an instance of
browser's history is not available). The <Router> component accepts one child component,
which is generally the application's root component. Also, it creates a context
object, context.router, through which all its descendent child components, such as
<Route>, <Link>, <Switch>, and so on, get a reference for the history object.

From reactjs.org:

Context provides a way to pass data through the component tree without having to pass
props down manually at every level.

Understanding the Core Router, and Configuring the BrowserRouter and
HashRouter components Chapter 5

[70]

The <Router> interface is generally not used in building applications; instead, one of the
high-level Router components that is suitable for the given environment is used. One of the
common use cases for using the <Router> interface is to synchronize a custom history
object with state–management libraries such as Redux and MobX.

Including <Router> from react-router
The core react-router package can be installed via npm:

npm install --save react-router

The Router class can then be included in the application file:

import { Router } from 'react-router'

The next step is to create a history object that can then be provided as a value to the
history prop of <Router>:

import createBrowserHistory from 'history/createBrowserHistory';

const customHistory = createBrowserHistory()

Here, the createBrowserHistory class from the history package is used to create a
history object for the browser environment. The history package includes classes
suitable for various environments.

The last step is to wrap the application's root component with the <Router> component
and render the application:

ReactDOM.render(
 <Router history={customHistory}>
 <App />
 </Router>, document.getElementById('root'));

Notice that the <Router> component accepts a history prop whose value is the history
object created with createBrowserHistory. Similar to the <BrowserRouter>
component, the <Router> component accepts only one child, and throws an error when
there is more than one child component.

Understanding the Core Router, and Configuring the BrowserRouter and
HashRouter components Chapter 5

[71]

React allows its prop values to change and it re-renders the component whenever a change
is detected. In this case, if we try to change the value assigned to the history prop, React-
Router throws a warning message. Consider the following code snippet:

class App extends Component {
 state = {
 customHistory: createBrowserHistory()
 }

 componentDidMount() {
 this.setState({
 customHistory: createBrowserHistory()
 });
 }

 render() {
 return (
 <Router history={this.state.customHistory}>
 <Route
 path="/"
 render={() => <div> In Home </div>}
 />
 </Router>
);
 }
}

In the preceding example, the state property customHistory contains the history object,
which is provided to the <Router> component. However, when the value of
customHistory changes in the componentDidMount lifecycle function, React-Router
throws the warning message Warning: You cannot change <Router> history.

react-router package
The react-router package includes some of the core components, such as the <Router>
component mentioned previously. The package also includes several other components
that are then used by components available in the react-router-dom and react-
router-native packages. The react-router package exports these components:

export MemoryRouter from "./MemoryRouter";
export Prompt from "./Prompt";
export Redirect from "./Redirect";
export Route from "./Route";
export Router from "./Router";
export StaticRouter from "./StaticRouter";

Understanding the Core Router, and Configuring the BrowserRouter and
HashRouter components Chapter 5

[72]

export Switch from "./Switch";
export generatePath from "./generatePath";
export matchPath from "./matchPath";
export withRouter from "./withRouter";

Some of the components mentioned here were discussed in earlier chapters. The package
also provides helper functions, such as generatePath and matchPath, and router
implementations, such as <MemoryRouter> and <StaticRouter>. The components and
services defined in react-router-dom and react-router-native import these
components and services, and are included in their respective packages.

react-router-dom package
The react-router-dom package provides components that can be used in a browser-
based application. It declares a dependency on the react-router package and exports the
following components:

export BrowserRouter from "./BrowserRouter";
export HashRouter from "./HashRouter";
export Link from "./Link";
export MemoryRouter from "./MemoryRouter";
export NavLink from "./NavLink";
export Prompt from "./Prompt";
export Redirect from "./Redirect";
export Route from "./Route";
export Router from "./Router";
export StaticRouter from "./StaticRouter";
export Switch from "./Switch";
export generatePath from "./generatePath";
export matchPath from "./matchPath";
export withRouter from "./withRouter";

Notice that some of the components mentioned here are also included in the react-
router package. The components in react-router-dom import the components defined
in react-router and then export them. For example, take a look at the <Route>
component:

import { Route } from "react-router";
export default Route;

The Router implementations BrowserRouter, <HashRouter>, and <MemoryRouter>
create a history object specific to the given environment, and render the <Router>
component. We will take a look at these Router implementations shortly.

Understanding the Core Router, and Configuring the BrowserRouter and
HashRouter components Chapter 5

[73]

The react-router-native package makes use of the <MemoryRouter> implementation
in react-router, and provides a <NativeRouter> interface. The NativeRouter
implementation and its packaging details are discussed in upcoming chapters.

<BrowserRouter> component
The <BrowserRouter> component was discussed briefly in the first chapter. As the name
suggests, the <BrowserRouter> component is used in browser-based applications and it
uses HTML5's history API to keep the UI in sync with the browser's URL. Here, we take a
look at how the component creates a history object for the browser environment and
provides this history object to the <Router>.

The <BrowserRouter> component accepts the following props:

static propTypes = {
 basename: PropTypes.string,
 forceRefresh: PropTypes.bool,
 getUserConfirmation: PropTypes.func,
 keyLength: PropTypes.number,
 children: PropTypes.node
};

Similar to the <Router> interface, the <BrowserRouter> accepts only one child
component (usually the application's root component). The children prop mentioned in
the preceding code snippet refers to this child node. The createBrowserHistory method
from the history package is used to create a history object for initializing the
<Router>:

import { createBrowserHistory as createHistory } from "history";
import Router from "./Router";

class BrowserRouter extends React.Component {
 ...
 history = createHistory(this.props);
 ...
 render() {
 return <Router
 history={this.history}
 children={this.props.children}
 />;
 }
}

Understanding the Core Router, and Configuring the BrowserRouter and
HashRouter components Chapter 5

[74]

In the preceding code snippet, the <BrowserRouter> uses the provided props to create a
history object using the history/createBrowserHistory class. The component then
renders the <Router> component, and provides the created history object and the
children object from props.

basename prop
The basename prop is used to provide a base URL path for all the locations in the
application. For example, if you want to render your application at the /admin path instead
of rendering at the root path /, then specify the basename prop in <BrowserRouter>:

<BrowserRouter basename="/admin">
 <App />
</BrowerRouter>

The basename prop now adds the base URL path /admin to the application. When you
navigate using <Link> and <NavLink>, the basename path is added to the URL. For
example, consider the following code with two <Link> components:

<BrowserRouter basename="/admin">
 <div className="component">
 <nav>
 <Link to="/">Home</Link>
 <Link to="/dashboard">Dashboard</Link>
 </nav>
 </div>
</BrowserRouter>

When you click on the Home link (path /), you'll notice that the URL path is updated to
/admin instead of /. And, when you click on the Dashboard link, the updated URL path is
/admin/dashboard. With the basename prop in <BrowserRouter>, the
preceding <Link> components translate to the following:

Home
Dashboard

The anchor link's href attribute is prefixed with the /admin path.

Understanding the Core Router, and Configuring the BrowserRouter and
HashRouter components Chapter 5

[75]

forceRefresh prop
The forceRefresh prop is a Boolean prop, and when set to true, navigation to any route
will result in a page refresh—instead of updating specific sections of the page, the entire
page is reloaded:

<BrowserRouter forceRefresh={true}>
 <Link to="/dashboard">Dashboard</Link>
</BrowserRouter>

When you click on the navigation link Dashboard, you'll notice that the page reloads when
requesting for the URL path /dashboard.

keyLengthprop
The keyLength prop is used to specify the length for the location.key. The
locaction.key property represents a unique key that is provided to a location. Take a
look at the following code snippet:

<BrowserRouter keyLength={10}>
 <div className="container">
 <nav>
 <Link to="/dashboard">Dashboard</Link>
 <Link to="/user">User</Link>
 </nav>
 <Route
 path="/dashboard"
 render={({ location }) =>
 <div> In Dashboard, Location Key: {location.key} </div>
 }
 />
 <Route
 path="/user"
 render={({ location }) =>
 <div> In User, Location Key: {location.key} </div>
 }
 />
 </div>
</BrowserRouter>

When you navigate to either of the /dashboard or /user paths, the value of
location.key will be a random alphanumeric string of length 10. By default, the value of
keyLength prop used to generate the key is 6.

Understanding the Core Router, and Configuring the BrowserRouter and
HashRouter components Chapter 5

[76]

When you navigate back and forth between the /dashboard and /user paths by using the
navigation links, you'll notice that a new key is generated for every navigation. This is
because will you navigate using the navigation links, history.push is called and a new
key is generated, and the key is unique for each entry in the history stack. Thus, when you
navigate by clicking the browser's back button, history.pop is called, and you'll notice
that the key generated for the location is shown and a new key is not generated.

getUserConfirmation prop
The getUserConfirmation prop accepts a function as its value, and it's executed when
the user-initiated navigation is blocked using the <Prompt> component. The <Prompt>
component shows a confirmation dialog box using the window.confirm method, and
navigates the user to the selected path only if the user clicks the OK button. However,
when the <BrowserRouter> component specifies the getUserConfirmation prop, the
function provided as a value to this prop will be executed. This provides an opportunity to
display a custom dialog box.

Let's take a look at the following configuration:

<BrowserRouter getUserConfirmation={this.userConfirmationFunc}>
 <div className="container">
 <nav>
 <Link to="/dashboard">Dashboard</Link>
 <Link to="/user">User</Link>
 </nav>
 <Route
 path="/dashboard"
 render={({ location }) =>
 <div> In Dashboard, Location Key: {location.key} </div>
 }
 />
 <Route
 path="/user"
 render={({ location }) =>
 <div> In User, Location Key: {location.key}
 <Prompt message="This is shown in a confirmation
 window" />
 </div>
 }
 />
 </div>
</BrowserRouter>

Understanding the Core Router, and Configuring the BrowserRouter and
HashRouter components Chapter 5

[77]

Suppose the current URL path is /user and you try to navigate to a different route, such
as /dashboard, by clicking the navigation link provided in the nav menu. The <Prompt>
message will be shown if the getUserConfirmation prop is not specified. In this case, the
function userConfirmationFunc, which is defined in the component's class, is executed.

You can call window.confirm to display a confirmation dialog box asking the user about
the navigation:

userConfirmationFunc = (message, callback) => {
 const status = window.confirm(message);
 callback(status);
}

The function accepts two parameters—message and callback. The message parameter
specifies the message that needs to be displayed, and the message prop included in
the <Prompt> component provides this value. The function is expected to execute the
callback function provided as the second parameter.

Here, a callback function is provided as the second parameter by the <BrowserRouter>.
The window.confirm function is called with the provided message, and the user is
presented with two buttons—OK and CANCEL; on clicking OK, status is set to true, and,
on clicking CANCEL, status is set to false. The callback function provided as the
second parameter is called with this status value; it is a true value that allows the user to
navigate to the selected route.

This the default behavior; a native-browser-confirmation dialog box is shown before
allowing the user to navigate to the selected page. However, this behavior can be changed
in the userConfirmationFunc mentioned previously; you can show a custom dialog box
instead of displaying the browser's native-confirmation dialog box.

Showing a custom dialog box using the
getUserConfirmation prop
For the purpose of this example, let's add material-UI, which includes a custom dialog
box component:

npm install --save @material-ui/core

Understanding the Core Router, and Configuring the BrowserRouter and
HashRouter components Chapter 5

[78]

Let's create a custom dialog box that wraps the Dialog component in @material-
ui/core:

import {
 Button,
 Dialog,
 DialogActions,
 DialogContent,
 DialogTitle
} from '@material-ui/core';

export class ConfirmationDialog extends Component {
 render() {
 const { message, handleClose, isOpen } = this.props;
 return (
 <Dialog open={isOpen}>
 <DialogTitle>Custom Prompt</DialogTitle>
 <DialogContent>{message}</DialogContent>
 <DialogActions>
 <Button onClick={handleClose.bind(this, true)}>
 OK
 </Button>
 <Button onClick={handleClose.bind(this, false)}>
 CANCEL
 </Button>
 </DialogActions>
 </Dialog>
)
 }
}

This component accepts three props—message, handleClose, and isOpen. The message
prop is the message that you want to show in the custom dialog box, and the handleClose
prop is a function reference provided to the component that is invoked when the user clicks
on the buttons OK or CANCEL, which allow or cancel the transition to the selected path,
respectively.

Let's use this in our root component file (in App.js), and show the ConfirmationDialog
when the user tries to navigate to a different route:

class App extends Component {
 state = {
 showConfirmationDialog: false,
 message: '',
 callback: null
 }
 ...

Understanding the Core Router, and Configuring the BrowserRouter and
HashRouter components Chapter 5

[79]

We will first set the state properties to their initial values in the React Component. The
state properties mentioned previously change when the user tries to navigate to a
different route:

 ...
 userConfirmationFunc = (message, callback) => {
 this.setState({
 showConfirmationDialog: true,
 message: message,
 callback: callback
 });
 }

The preceding userConfirmationFunc function sets the state properties such that it will
display the custom confirmation dialog box (ConfirmationDialog) when the user tries to
navigate away from the current route.

The following handleClose function, defined in the App component, will be provided to
the ConfirmationDialog component that we created earlier:

 ...
 handleClose(status) {
 this.state.callback(status);
 this.setState({
 showConfirmationDialog: false,
 message: '',
 callback: null
 })
 }

This provides us with a way to hide the custom confirmation dialog box and to reset the
component's state properties to their initial values.
The this.state.callback(status) statement will close the confirmation dialog box,
and either navigate the user to the selected route (if the status is true) or cancel the
navigation (if the status is false).

Here's the updated render method of the component class:

 ...
 render() {
 return (
 <BrowserRouter
 getUserConfirmation={this.userConfirmationFunc}>
 ...
 <Route
 path="/user"

Understanding the Core Router, and Configuring the BrowserRouter and
HashRouter components Chapter 5

[80]

 render={({ location }) => {
 return (
 <div>
 In User, Location Key: {location.key}
 <Prompt message="This is shown in a
 confirmation modal" />
 </div>
);
 }}
 />
 <ConfirmationDialog
 isOpen={this.state.showConfirmationDialog}
 message={this.state.message}
 handleClose={this.handleClose.bind(this)}
 />
 ...
 </BrowserRouter>
)
 }
}

In the preceding render method, the custom ConfirmationDialog box is included, and
it's rendered only if the state property showConrfirmationDialog is set to true. The
userConfirmationFunc sets the state properties and the custom dialog is shown as
follows:

The handleClose function in the preceding code snippet is called by the ConfirmDialog
box when the user clicks either of the buttons OK or CANCEL. The OK button will send
the value true, whereas the CANCEL button sends a false value to the handleClose
function defined previously.

Understanding the Core Router, and Configuring the BrowserRouter and
HashRouter components Chapter 5

[81]

<HashRouter> component
The <HashRouter> component is part of the react-router-dom package, and, similar to
<BrowserRouter>, it's also used in building applications for the browser environment.
The primary difference between <BrowserRouter> and <HashRouter> is the URL that the
component creates:

A <BrowserRouter> creates a URL as follows:

www.packtpub.com/react-router

Whereas the <HashRouter> adds a hash to the URL:

www.packtpub.com/#/react-router

The <BrowserRouter> component leverages the HTML5 History API to keep track of the
router history, whereas the <HashRouter> component uses window.location.hash (the
hash portion of the URL) to remember the changes in the browser's history stack. The
<BrowserRouter> should be used in building applications that work on modern browsers
that support the HTML5's History API, and the <HashRouter> should be used in
applications that need to support legacy browsers.

The <HashRouter> uses the createHashHistory class to create the history object. This
history object is then provided to the core <Router> component:

import { createHashHistory as createHistory } from "history";

class HashRouter extends React.Component {
 ...
 history = createHistory(this.props);
 ...
 render() {
 return <Router
 history={this.history}
 children={this.props.children}
 />;
 }
}

Understanding the Core Router, and Configuring the BrowserRouter and
HashRouter components Chapter 5

[82]

The <HashRouter> accepts the following props:

static propTypes = {
 basename: PropTypes.string,
 getUserConfirmation: PropTypes.func,
 hashType: PropTypes.oneOf(["hashbang", "noslash", "slash"]),
 children: PropTypes.node
};

Similar to <BrowserRouter>, the props basename and getUserConfirmation are used
to specify the base URL path and function to confirm navigation to the selected URL
respectively. However, the <HashRouter> does not support location.key and
location.state, thus the prop keyLength is not supported. Also, the prop
forceRefresh is not supported.

Let's take a look at the hashType prop.

hashType prop
The hashType prop is used to specify the encoding method to use for
window.location.hash. The possible values are slash, noslash, and hashbang.

Let's take a look at how the URLs are formed when you include the hashType prop with
one of these values:

<HashRouter hashType="slash">
 <App />
</HashRouter>

When you specify slash as the value to the hashType prop, a slash (/) is added after the
hash (#). Thus, the URLs will be of the forms —#/, #/dashboard, #/user, and so on.

Please note, slash is the default value for the prop hashType, and it's not
required to include the hashType prop when you want to add a slash
after the #.

Similarly, when the value of the hashType prop is noslash, the URLs are of the forms —#,
#dashboard, #user, and so on:

<HashRouter hashType="noslash">

Understanding the Core Router, and Configuring the BrowserRouter and
HashRouter components Chapter 5

[83]

When the value hashbang is assigned to the hashType prop, it creates URLs of the
form—#!/, #!/dashboard, #!/user, and so on:

<HashRouter hashType="hashbang">

The hashbang was added so that the search engine bots can crawl and
index single-page application. However, Google has deprecated this
crawling strategy. Read about it here: https:/ /webmasters. googleblog.
com/2015/ 10/ deprecating- our- ajax- crawling- scheme. html.

Summary
The <Router> component in the react-router package provides a low-level
implementation of the router interface. Various routers in react-router-dom and react-
router-native use this low-level <Router> interface to provide routing features for the
given environment. The history prop in <Router> is used to specify the history object
for the given environment. For example, the <BrowserRouter> component uses
history/createBrowserHistory to create a history object in the browser
environment. All the Router components accept only one child, and it's usually the
application's root component.

The BrowserRouter component in react-router-dom makes use of the HTML5 history
API to keep the application's URL in sync with the browser's history. It accepts
props—basename, keyLength, forceRefresh, and getUserConfirmation. The
<HashRouter>, on the other hand, adds a hash (#) to the browser's URL and uses
window.location.hash to track history. It accepts props basename,
getUserConfirmation, and hashType. The hashType prop is used to specify the
encoding method to use for window.location.hash; possible values are slash, noslash,
and hashbang.

In Chapter 6, Using StaticRouter in a Server-Side Rendered React Application, we will take a
look at server-side rendering with the <StaticRouter> component.

https://webmasters.googleblog.com/2015/10/deprecating-our-ajax-crawling-scheme.html
https://webmasters.googleblog.com/2015/10/deprecating-our-ajax-crawling-scheme.html
https://webmasters.googleblog.com/2015/10/deprecating-our-ajax-crawling-scheme.html
https://webmasters.googleblog.com/2015/10/deprecating-our-ajax-crawling-scheme.html
https://webmasters.googleblog.com/2015/10/deprecating-our-ajax-crawling-scheme.html
https://webmasters.googleblog.com/2015/10/deprecating-our-ajax-crawling-scheme.html
https://webmasters.googleblog.com/2015/10/deprecating-our-ajax-crawling-scheme.html
https://webmasters.googleblog.com/2015/10/deprecating-our-ajax-crawling-scheme.html
https://webmasters.googleblog.com/2015/10/deprecating-our-ajax-crawling-scheme.html
https://webmasters.googleblog.com/2015/10/deprecating-our-ajax-crawling-scheme.html
https://webmasters.googleblog.com/2015/10/deprecating-our-ajax-crawling-scheme.html
https://webmasters.googleblog.com/2015/10/deprecating-our-ajax-crawling-scheme.html
https://webmasters.googleblog.com/2015/10/deprecating-our-ajax-crawling-scheme.html
https://webmasters.googleblog.com/2015/10/deprecating-our-ajax-crawling-scheme.html
https://webmasters.googleblog.com/2015/10/deprecating-our-ajax-crawling-scheme.html
https://webmasters.googleblog.com/2015/10/deprecating-our-ajax-crawling-scheme.html
https://webmasters.googleblog.com/2015/10/deprecating-our-ajax-crawling-scheme.html
https://webmasters.googleblog.com/2015/10/deprecating-our-ajax-crawling-scheme.html
https://webmasters.googleblog.com/2015/10/deprecating-our-ajax-crawling-scheme.html
https://webmasters.googleblog.com/2015/10/deprecating-our-ajax-crawling-scheme.html
https://webmasters.googleblog.com/2015/10/deprecating-our-ajax-crawling-scheme.html
https://webmasters.googleblog.com/2015/10/deprecating-our-ajax-crawling-scheme.html
https://webmasters.googleblog.com/2015/10/deprecating-our-ajax-crawling-scheme.html
https://webmasters.googleblog.com/2015/10/deprecating-our-ajax-crawling-scheme.html

6
Using StaticRouter in a Server-

Side Rendered React
Application

 Server-Side Rendering (SSR) is a technique of rendering client-side only single-page
applications (SPAs) on the server and sending the fully rendered page as a response to the
user's request. In client-side SPAs, the JavaScript bundle is included as a script tag, and,
initially, no content is rendered in the page. The bundle is first downloaded, and then the
DOM nodes are populated by executing the code in the bundle. There are two downsides to
this—on poor connections, it might take more time to download the bundle, and the
crawlers that don't execute JavaScript will not be able to see any content, thus affecting the
page's SEO.

SSR solves these problems by loading HTML, CSS, and JavaScript in response to the user's
request; the content is rendered on the server and the final HTML is given to the crawler. A
React application can be rendered on the server using Node.js and the components
available in React-Router can be used to define routes in the application.

In this chapter, we will take a look at how React-Router components can be used in a
server-side rendered React application:

Performing SSR of a React application using Node.js and Express.js
Adding <StaticRouter> component and creating routes
Understanding the <StaticRouter> props
Creating Isomorphic React applications by rendering the first page on the server
and then allowing the client-side code to take over the rendering of subsequent
pages

Using StaticRouter in a Server-Side Rendered React Application Chapter 6

[85]

Performing SSR of a React application using
Node.js and Express.js
In this example, we will use Node.js and Express.js to create a server-side application that
will render the React application on the server. Node.js is a cross-platform JavaScript
runtime environment for servers and applications. It is built on Google's V8 JavaScript
engine, and it uses an event-driven, non-blocking I/O model, which makes it efficient and
lightweight. Express.js is one of the most popular routing and middleware web-framework
modules used in the Node.js environment. It allows you to create middleware that helps
with handling HTTP requests from clients.

Installing dependencies
Let's first create a server-side application using the npm init command:

npm init -y

This will create a file, package.json, with default values for various fields. The next step
is to add dependencies:

npm install --save react react-dom react-router react-router-dom express

The preceding command will add all the necessary libraries to the dependencies list in the
package.json file. Please note that we are not creating a React application using
the create-react-app CLI; instead, we will add the required dependencies and write the
configuration files for building the application.

To build the application, the following dev dependencies are added to the
devDependencies list:

npm install --save-dev webpack webpack-cli nodemon-webpack-plugin webpack-
node-externals babel-core babel-loader babel-preset-env babel-preset-react

The preceding command will add the libraries required to build the application for the
devDependencies list in the package.json file.

The next step is to write a build configuration, so that the server-side application can be
built.

Using StaticRouter in a Server-Side Rendered React Application Chapter 6

[86]

Webpack build configuration
This is from Webpack's documentation:

At its core, WebPack is a static module bundler for modern JavaScript applications.
When webpack processes your application, it internally builds a dependency graph which
maps every module your project needs and generates one or more bundles.

Webpack has become the de facto standard for creating bundles for JavaScript applications.
The create-react-app CLI includes scripts that internally use webpack to create bundles
for development and production environments.

Create a file called webpack-server.config.babel.js, and include the following
configuration:

import path from 'path';
import webpack from 'webpack';
import nodemonPlugin from 'nodemon-webpack-plugin';
import nodeExternals from 'webpack-node-externals';

export default {
 entry: './src/server/index.js',
 target: 'node',
 externals: [nodeExternals()],
 output: {
 path: path.resolve(__dirname, 'dist'),
 filename: 'server.js',
 publicPath: '/'
 },
 module: {
 rules: [
 {
 test: /\.js$/,
 use: 'babel-loader'
 }
]
 },
 plugins: [
 new webpack.DefinePlugin({
 __isBrowser__: false
 }),
 new nodemonPlugin()
]
}

Using StaticRouter in a Server-Side Rendered React Application Chapter 6

[87]

From the preceding configuration, the file index.js (at the ./src/server path) is
mentioned as the entry point, and the generated output file server.js is copied to the
dist directory. The webpack plugin babel-loader is used to transpile JavaScript files in
the application using Babel and Webpack. The nodemon-webpack-plugin is used to run
the nodemon utility, which will monitor the changes in the JavaScript files in the
application, and reload and build the application when webpack is running in watch mode.

The next step is to create a .babelrc file, which will list the presets required to build the
application:

{
 "presets": ["env","react"]
}

The babel-preset-env and babel-preset-react plugins are used to transpile ES6 and
React code down to ES5. As the last step, add a script command in the package.json file
to start the application using the configuration mentioned in the webpack-
server.config.babel.js file:

"scripts": {
 "start": "webpack --config webpack-server.config.babel.js --watch --
mode development"
}

The command npm start will build the application, and will listen to the changes in the
JavaScript files in the application and rebuild it when a change is detected.

Server-Side application
As mentioned in the webpack configuration, the entry point to the application is at
/src/server/index.js. Let's create the index.js file at this path, and include the
following code, which starts the server application at a given port:

import express from 'express';

const PORT = process.env.PORT || 3001;

const app = express();

app.get('*', (req, res) => {
 res.send(`
 <!DOCTYPE HTML>
 <html>
 <head>

Using StaticRouter in a Server-Side Rendered React Application Chapter 6

[88]

 <title>React SSR example</title>
 </head>
 <body>
 <main id='app'>Rendered on the server side</main>
 </body>
 </html>
 `);
});

app.listen(PORT, () => {
 console.log(`SSR React Router app running at ${PORT}`);
});

When you run the npm start command and access the application at the URL
http://localhost:3001, the preceding HTML content is rendered. This ensures that
the webpack configuration builds the application and runs the preceding server-side code
at port 3001, with nodemon monitoring the changes in the file.

Rendering a React application using
ReactDOMServer.renderToString
To render a React application on the server-side, let's first create a React component file
—shared/App.js:

import React, { Component } from 'react';

export class App extends Component {
 render() {
 return (
 <div>Inside React App (rendered with SSR)</div>
);
 }
}

Then, render the preceding component in the server/index.js file:

import express from 'express';
import React from 'react';
import ReactDOMServer from 'react-dom/server';
import { App } from '../shared/App';

app.get('*', (req, res) => {

Using StaticRouter in a Server-Side Rendered React Application Chapter 6

[89]

 const reactMarkup = ReactDOMServer.renderToString(<App />);
 res.send(`
 <!DOCTYPE HTML>
 <html>
 ...
 <main id='app'>${reactMarkup}</main>
 ...
 </html>
 `);
});

The ReactDOMServer class includes various methods for rendering React components in a
server-side Node.js application. The renderToString method in ReactDOMServer class
renders the React component on the server-side and returns the generated markup. This
generated markup string can then be included in the response being sent to the user.

When you visit the page at http://localhost:3001, you will notice that the message
Inside React App (rendered with SSR) is displayed.

To confirm that the content is indeed rendered on the server-side, you can right click on the
page and select the View page source option from the context menu. The page source is
shown in a new tab, and it includes the following content:

<main id='app'>
 <div data-reactroot="">
 Inside React App (rendered with SSR)
 </div>
</main>

The preceding content is helpful when the crawler visits the application. By rendering the
React component on the server-side, the markup is populated and included as the response
from the server. This content is then indexed by the search engine's crawler, helping with
the application's SEO aspects.

Adding <StaticRouter> and creating routes
The <StaticRouter> component is part of the react-router-dom package (uses
<StaticRouter> definition in react-router), and it's used in rendering React-Router
components on the server-side. The <StaticRouter> component is similar to the other
Router components, as it accepts only one child component—the React application's root
component (<App />). This component should be used in a stateless application, where the
user is not clicking around to navigate to different sections of the page.

Using StaticRouter in a Server-Side Rendered React Application Chapter 6

[90]

Let's include the <StaticRouter> component by wrapping the application's root
component:

import { StaticRouter } from 'react-router-dom';

app.get('*', (req, res) => {
 const context = {};
 const reactMarkup = ReactDOMServer.renderToString(
 <StaticRouter context={context} location={req.url}>
 <App />
 </StaticRouter>
);

 res.send(`
 ...
 <main id='app'>${reactMarkup}</main>
 ...
 `);
});

Notice that the <StaticRouter> component accepts two props—context and location.
The context object is an empty object and is populated with properties when one of the
<Route> components inside <App /> is rendered as a result of the browser's location
match.

The location object is usually the requested URL, and this information is available to the
middleware function. The request object (req) contains the url property specifying the
requested URL.

Let's include a couple of <Route> components in App.js:

export class App extends Component {
 render() {
 return (
 <div>
 Inside React App (rendered with SSR)
 <Route
 exact
 path='/'
 render={() => <div>Inside Route at path '/'</div>}
 />
 <Route
 path='/home'
 render={() =>
 <div>Inside Home Route at path '/home'</div>
 }

Using StaticRouter in a Server-Side Rendered React Application Chapter 6

[91]

 />
 </div>
);
 }
}

The <Route> components match the requested URL specified in the <StaticRouter>
component's location property and render.

Server-Side redirect using the <Redirect> and
staticContext
From the previous example, let's redirect the user from the / path to the /home path using
the <Redirect> component:

<Route
 path="/"
 render={() => <Redirect to="/home" />}
 exact
/>

When you try accessing the URL http://localhost:3001/, you will notice that the
redirection does not take place and the browser's URL is not updated. The preceding
redirect would have sufficed in the client-side environment. However, in the server-side
environment, the server is responsible for handling the redirect. In this case, the context
object mentioned in the <StaticRouter> component is populated with necessary details:

{
 "action": "REPLACE",
 "location": {
 "pathname": "/home",
 "search": "",
 "hash": "",
 "state": undefined
 },
 "url": "/home"
}

The context object contains the result of the component render. It's usually an empty
object when the component renders just the content. However, it's populated with the
preceding details when the rendered component redirects to a different path. Notice that
the url property specifies the path to which the user should be redirected—to
the '/home' path.

Using StaticRouter in a Server-Side Rendered React Application Chapter 6

[92]

A check can be added to see if the url property exists in the context object, and then the
user can be redirected by using the redirect method on the response object:

...
const reactMarkup = ReactDOMServer.renderToString(
 <StaticRouter context={context} location={req.url}>
 <App />
 </StaticRouter>
);

if (context.url) {
 res.redirect(301, 'http://' + req.headers.host + context.url);
} else {
 res.send(`
 <!DOCTYPE HTML>
 <html>
 ...
 </html>
 `);
}

The redirect method in the response object is used to perform the server-side
redirection, and mentions the status code and the URL to redirect to.

It's also possible to populate the context object with more properties by using the
staticContext prop in the rendered component:

<Route
 path="/"
 exact
 render={({ staticContext, }) => {
 if (staticContext) {
 staticContext.status = 301;
 }
 return (
 <Redirect to="/home" />
)
 }}
/>

Here, the staticContext prop is available in the rendered component, and the
status property is added to it before redirecting the user using the <Redirect>
component. The status property is then available in the context object:

res.redirect(context.status, 'http://' + req.headers.host + context.url);

Using StaticRouter in a Server-Side Rendered React Application Chapter 6

[93]

Here, the status property in the context object is used to set the HTTP status when the
user is redirected using the redirect method.

Request URL matching with matchPath
When rendering the React application on the server-side, it is also helpful to know whether
the requested URL matches any of the existing routes in the application. Only if the route is
available should the corresponding component be rendered on the server-side. However, if
the route is not available, the user should be presented with a Page Not Found page (404).
The matchPath function in the react-router package allows you match the requested
URL against an object containing route-matching properties such as path, exact, strict,
and sensitive:

import { matchPath } from 'react-router'

app.use('*', (req, res) => {
 const isRouteAvailable = matchPath(req.url, {
 path: '/dashboard/',
 strict: true
 });
 ...

});

The matchPath function is similar to how the library matches <Route> components
against the requested URL path. The first parameter passed to the matchPath function is
the requested URL, and the second parameter is the object against which the requested
URL should be matched. When the route matches, the matchPath function returns an
object detailing how the requested URL matched the object.

For example, if the requested URL is /dashboard/, the matchPath function returns the
following object:

{
 path: '/dashboard/',
 url: '/dashboard/',
 isExact: true,
 params: {}
}

Using StaticRouter in a Server-Side Rendered React Application Chapter 6

[94]

Here, the path property mentions the path pattern used to match the requested URL, the
url property mentions the matched portion of the URL, the isExact Boolean property is
set to true if the requested URL and path matched exactly, and the params property lists
the params that matched the provided pathname. Consider the following example, which
mentions parameters in the path:

const matchedObject = matchPath(req.url, '/github/:githubID');

Here, instead of specifying an object as a second parameter, a path string is specified. This
short notation is useful if you want to match the path against the requested URL, and use
the default values for the exact, strict, and sensitive properties. The matched object
will return the following:

{
 path: '/github/:githubID',
 url: '/github/sagar.ganatra',
 isExact: true,
 params: { githubID: 'sagar.ganatra' }
}

Notice that the params property is now populated with the list of params mentioned in the
path, with the values provided in the requested URL.

On the server-side, before initializing the <StaticRouter> and rendering the React
application, a check can be performed to see if the requested URL matches any of the routes
defined in a collection of objects. For example, consider a collection of route objects.

In shared/routes.js we have the following:

export const ROUTES = [
 {
 path: '/',
 exact: true
 },
 {
 path: '/dashboard/',
 strict: true
 },
 {
 path: '/github/:githubId'
 }
];

Using StaticRouter in a Server-Side Rendered React Application Chapter 6

[95]

The preceding array contains route objects that can then be used in matchPath to check if
the requested URL matches any of the routes in the preceding list:

app.get('*', (req, res) => {
 const isRouteAvailable = ROUTES.find(route => {
 return matchPath(req.url, route);
 })
 ...
});

If the requested URL is found, then isRouteAvailalbe will be the matched object in the
ROUTES list, else it's set to undefined when none of the route objects match the requested
URL. In the latter case, a Page Not Found markup can be sent to the user:

if (!isRouteAvailable) {
 res.status(404);
 res.send(`
 <!DOCTYPE HTML>
 <html>
 <head><title>React SSR example</title></head>
 <body>
 <main id='app'>
 Requested page '${req.url}' not found
 </main>
 </body>
 </html>`);
 res.end();
}

When the user requests a path, say /user, none of the objects mentioned in the ROUTES
would match, and the preceding response is sent, mentioning the 404 HTTP status, with
the response body mentioning that the requested path /user was not found.

StaticRouter context prop
The <StaticRouter> component accepts props basename, location, and context.
Similar to other Router implementations, the basename prop in <StaticRouter> is used
to specify the baseURL location and the location, prop is used to specify the location
properties—pathname, hash, search, and state.

The context prop is used only in the <StaticRouter> implementation, and it contains
the result of the component render. As mentioned previously, the context object can be
populated with an HTTP status code and with other arbitrary properties as well.

Using StaticRouter in a Server-Side Rendered React Application Chapter 6

[96]

At the time of initialization, the context object can contain properties that can then be
consumed by the rendered component:

const context = {
 message: 'From StaticRouter\'s context object'
}

const reactMarkup = ReactDOMServer.renderToString(
 <StaticRouter context={context} location={req.url} >
 <App />
 </StaticRouter>
);

Here, the context object contains a message property, and when the <Route> component
that matches the requested URL is found, the staticContext object containing this
property is available to the rendered component:

<Route
 path='/home'
 render={({ staticContext }) => {
 return (
 <div>
 Inside Home Route, Message - {staticContext.message}
 </div>
);
 }}
/>

When you try to access the /home path, the preceding <Route> matches and the value
mentioned in the staticContext message property is rendered.

The staticContext prop is available only in the server-side environment, and thus, when
you try to refer the staticContext object in an isomorphic application (discussed in the
next section), an error stating that you're trying to access the property message of
undefined is thrown. A check can be added to see if the staticContext is available or if
the value of the __isBrowser__ property defined in the webpack configuration can be
checked:

<Route
 path='/home'
 render={({ staticContext }) => {
 if (!__isBrowser__) {
 return (
 <div>
 Inside Home Route, Message - {staticContext.message}
 </div>

Using StaticRouter in a Server-Side Rendered React Application Chapter 6

[97]

);
 }
 return (
 <div>Inside Home Route, Message</div>
);
 }}
/>

In the preceding example, if the page is rendered on the server-side, then the
__isBrowser__ property will be false and the message specified in the staticContext
object will be rendered.

Creating Isomorphic React applications
An application where the code can run on server-and client-side environments with little or
no change is referred to as an Isomorphic application. In an Isomorphic application, the
first request made by the user's web browser is processed by the server, and any
subsequent request is processed by the client. By processing and rendering the first request
on the server-side, and sending HTML, CSS, and JavaScript code provides a better user
experience, and also helps search engine crawlers to index the page. All subsequent
requests can then be processed by the client-side code, which is sent as part of the first
response from the server.

Here's the updated request-response flow:

Using StaticRouter in a Server-Side Rendered React Application Chapter 6

[98]

To render the application on the client-side, either of the <BrowserRouter> or
<HashRouter> components can be used. For the purpose of this example, we will use the
<BrowserRouter> component.

The application structure after adding a directory for the client-side code is as follows:

/server-side-app
|--/src
|----/client
|------index.js
|----/server
|------index.js
|----/shared
|------App.js

Here, the shared directory will contain code that can be used by both the server-and the
client-side code. The client-side specific code that uses the <BrowserRouter> component
resides in the index.js file in the client directory:

import React from "react";
import ReactDOM from "react-dom";
import { BrowserRouter } from "react-router-dom";
import { App } from "../shared/App";

// using hydrate instead of render in SSR app
ReactDOM.hydrate(
 <BrowserRouter>
 <App />
 </BrowserRouter>,
 document.getElementById("app")
);

Here, the hydrate method in the ReactDOM class is used instead of calling the
render method to render the application. The hydrate method is specifically designed to
handle cases where the initial render happens on the server-side (using ReactDOMServer),
and all the subsequent route-change requests to update specific sections of the page are
handled by the client-side code. The hydrate method is used to attach event listeners to
the markup rendered on the server-side.

The next step is to build the application, so that the client-side bundle is generated at the
build time and included in the first response from the server.

Using StaticRouter in a Server-Side Rendered React Application Chapter 6

[99]

Webpack configuration
The existing webpack configuration builds the server-side application and runs the
nodemon utility to monitor the changes. To generate a client-side bundle, we need to
include another webpack configuration file—webpack-client.config.babel.js:

import path from 'path';
import webpack from 'webpack';

export default {
 entry: './src/client/index.js',
 output: {
 path: path.resolve(__dirname, './dist/public'),
 filename: 'bundle.js',
 publicPath: '/'
 },
 module: {
 rules: [
 {
 test: /\.js$/,
 use: 'babel-loader'
 }
]
 },
 plugins: [
 new webpack.DefinePlugin({
 __isBrowser__: "true"
 })
]
}

The preceding configuration resolves the dependencies in the /src/client/index.js file
and creates a bundle at /dist/public/bundle.js. This bundle contains all the client-side
code required to run the application; not only the code in the index.js file but also the
components declared in the shared directory.

The current npm start script also needs to be modified so that the client-side application
code builds along with the server-side code. Let's create a file that exports both the server
and client webpack configurations—webpack.config.babel.js:

import clientConfig from './webpack-client.config.babel';
import serverConfig from './webpack-server.config.babel';

export default [clientConfig, serverConfig];

Using StaticRouter in a Server-Side Rendered React Application Chapter 6

[100]

Finally, the npm start script is updated to refer to the preceding configuration file:

"start": "webpack --config webpack.config.babel.js --mode development --
watch"

The preceding script will generate server.js, which contains the server-side code, and
bundle.js, which contains the client-side code.

Server-Side configuration
The last step is to update the server-side code to include the client-side bundle
(bundle.js) as part of the first response. The server-side code can include a <script> tag
which specifies the bundle.js file in the source (src) attribute:

res.send(`
 <!DOCTYPE HTML>
 <html>
 <head>
 <title>React SSR example</title>
 <script src='/bundle.js' defer></script>
 ...
 </html>
`);

Also, for our express server to serve a JavaScript file, we include the middleware function
for serving static content:

app.use(express.static('dist/public'))

The preceding code allows static files such as JavaScript files, CSS files, and Images, to be
served from the dist/public directory. The preceding statement should be included
before app.get() is used.

When you access the application at the /home path, the first response is from the server,
and, in addition to rendering the <Route> that matched the /home path, the client-side
bundle—bundle.js—is also included in the response. The bundle.js file is downloaded
by the browser, and any change in the route path is then handled by the client-side code.

Using StaticRouter in a Server-Side Rendered React Application Chapter 6

[101]

Summary
In this chapter, we looked at how a React application can be rendered on the server-side
(with Node.js and Express.js) using the ReactDOMserver.renderToString method. The
<StaticRouter> component in React-Router can be used to wrap the application's root
component, thus enabling you to add <Route> components that match the requested URL
path on the server-side. The <StaticRouter> component accepts props context and
location. The staticContext prop (available only on the server-side) in the rendered
component contains the data provided by the <StaticRouter> in the context prop. It
can also be used to add properties when you want to redirect the user using the
<Redirect> component.

The matchPath function is used to determine whether the requested URL matches the
provided object of the shape {path, exact, strict, sensitive}. It's similar to how
the library matches the requested URL with the available <Route> components in the page.
The matchPath function gives us the ability to determine if the requested URL matches
any of the routes object in the collection; this provides us with an opportunity to send a 404:
Page not found response up front.

It's also possible to create an isomorphic React application that renders the first request on
the server-side and the subsequent requests on the client side. This is accomplished by
including the client-side bundle file when sending the first response from the server. The
client-side code takes over after the first request, which enables you to update specific
sections of the page that match the requested route.

In Chapter 7, Using NativeRouter in a React Native Application, we will take a look at how the
NativeRouter component can be used to define routes in a native mobile application
created with React-Native.

7
Using NativeRouter in a React

Native Application
The React Router library provides the react-router-native package, which includes the
implementation of the NativeRouter component for use in React Native applications. The
React Native framework allows you to build native mobile applications for iOS and
Android using JavaScript and React.

From React Native's Documentation (https:/ / facebook. github. io/react- native/):

"With React Native, you don't build a mobile web app, an HTML5 app, or a hybrid
app. You build a real mobile app that's indistinguishable from an app built using
Objective-C or Java. React Native uses the same fundamental UI building blocks as
regular iOS and Android apps. You just put those building blocks together using
JavaScript and React."

In this chapter, the following topics are discussed:

Using NativeRouter in a React Native application
The NativeRouter component and its props
Using the <BackButton> component to interact with a devices' back button
Creating Deeplinks using the <DeepLinking> component

https://facebook.github.io/react-native/
https://facebook.github.io/react-native/
https://facebook.github.io/react-native/
https://facebook.github.io/react-native/
https://facebook.github.io/react-native/
https://facebook.github.io/react-native/
https://facebook.github.io/react-native/
https://facebook.github.io/react-native/
https://facebook.github.io/react-native/
https://facebook.github.io/react-native/
https://facebook.github.io/react-native/
https://facebook.github.io/react-native/
https://facebook.github.io/react-native/
https://facebook.github.io/react-native/

Using NativeRouter in a React Native Application Chapter 7

[103]

Using NativeRouter in a React Native
application
Similar to the create-react-app CLI, the create-react-native-app CLI is used to
create an application that includes build scripts that can be used to build an application for
both development and production environments. It also includes packager, which allows
you to test your application on iOS and Android emulators and also on real devices.

Creating a new project with the create-react-
native-app CLI
Let's get started by first installing the CLI:

npm install -g create-react-native-app

The preceding command installs the CLI in the global node_modules directory. The next
step is to create a React Native project using the CLI:

create-react-native-app react-native-test-app

The react-native-test-app directory is created and all the required scripts are
downloaded in the node_modules directory.

Now, when you run the npm start script, the build script starts packager and it
generates a QR code and a URL for you to access the application on a real device (iOS or
Android) or on the emulator. Also, you could launch the iOS or Android emulator if you
have Xcode or Android Studio installed. Here's an example:

Your app is now running at URL: exp://192.168.1.100:19000
View your app with live reloading:
Android device:
-> Point the Expo app to the QR code above.
(You'll find the QR scanner on the Projects tab of the app.)
iOS device:
-> Press s to email/text the app URL to your phone.
Emulator:
-> Press a (Android) or i (iOS) to start an emulator.
Your phone will need to be on the same local network as this computer.
For links to install the Expo app, please visit https://expo.io.
Logs from serving your app will appear here. Press Ctrl+C at any time to
stop.
› Press a to open Android device or emulator, or i to open iOS emulator.

Using NativeRouter in a React Native Application Chapter 7

[104]

› Press s to send the app URL to your phone number or email address
› Press q to display QR code.
› Press r to restart packager, or R to restart packager and clear cache.
› Press d to toggle development mode. (current mode: development)

For the purpose of this example, we will use the Xcode emulator; here's a screenshot of the
application when you request the application to be viewed on the iOS emulator:

Using NativeRouter in a React Native Application Chapter 7

[105]

React Native provides several components that allow you to build views for the native
platform. Let's take a look at the code and understand some of the components used to
build the preceding view.

In App.js, the following code is included:

export default class App extends React.Component {
 render() {
 return (
 <View style={styles.container}>
 <Text>Open up App.js to start working on your app!</Text>
 <Text>Changes you make will automatically reload.</Text>
 <Text>Shake your phone to open the developer menu.</Text>
 </View>
);
 }
}

Here, React Native's <View> component is used to create a container in a similar way to
how you would create a container using <div> or <section> in a React application. In
React Native, instead of using HTML elements, such as <div> and , React Native's
components, such as <View> and <Text>, are used.

Adding the <NativeRouter> component
Let's now add the react-router-native package to the application that we just created:

 npm install --save react-router-native

The NativeRouter component is used in React Native applications to provide routing and
navigation support. It enables components such as <Route> and <Link> to be used in the
native application.

Let's first create a side menu that includes a couple of <Link> components:

import { Link } from 'react-router-native';

export class Menu extends Component {
 render() {
 return (
 <ScrollView scrollsToTop={false} style={styles.menu}>
 <View>
 <Link to="/">
 <Text>Home</Text>
 </Link>

Using NativeRouter in a React Native Application Chapter 7

[106]

 <Link to="/dashboard">
 <Text>Dashboard</Text>
 </Link>
 </View>
 </ScrollView>
)
 }
}

The <ScrollView> component is used as a container to host our menu items (the <Link>
components). As the name suggests, the <ScrollView> component is used to create a
scrollable container. The next step is to add <Route> components to the application:

export class ContentView extends Component {
 render() {
 return (
 <View style={styles.container}>
 <Route
 path="/"
 exact
 component={HomeComponent}
 />
 <Route
 path="/dashboard"
 component={DashboardComponent}
 />
 </View>
)
 }
}

The ContentView component wraps the <Route> components inside a <View>
component, thus defining two application routes with path / and /dashboard.

As the last step, we will now use the <SideMenu> component from react-native-side-
menu to create a drawer menu. This menu is then wrapped inside the <NativeRouter>
component in App.js:

export default class App extends Component {
 render() {
 const menu = <Menu />;
 return (
 <NativeRouter>
 <View style={styles.container}>
 <SideMenu menu={menu}>
 <ContentView />
 </SideMenu>

Using NativeRouter in a React Native Application Chapter 7

[107]

 </View>
 </NativeRouter>
);
 }
}

Similar to other Router implementations, the NativeRouter component wraps the
application root component and enables the <Route> and <Link> components to
update history as the user navigates through the application.

After rebuilding the application on the emulator:

Using NativeRouter in a React Native Application Chapter 7

[108]

When you select either of the links, ContentView is updated with the component rendered
as a result of a <Route> match.

The preceding functionality is similar to how BrowserRouter enables you to navigate
through various routes defined in the application. Similar to the <Route> and <Link>
components, other components such as <Switch>, <Redirect>, and <NavLink> behave
the same in a React Native application. However, when you try to block the navigation
using the <Prompt> component, React Native's Alert component should be used to
display a confirmation message.

From NativeRouter's implementation:

import { Alert } from "react-native";

NativeRouter.defaultProps = {
 getUserConfirmation: (message, callback) => {
 Alert.alert("Confirm", message, [
 { text: "Cancel", onPress: () => callback(false) },
 { text: "OK", onPress: () => callback(true) }
]);
 }
};

Using NativeRouter in a React Native Application Chapter 7

[109]

NativeRouter provides a default implementation of the getUserConfirmation function,
which makes use of the Alert component defined in the react-native package to
display a confirmation message to the user:

This default behavior can be overridden by including the getUserConfirmation prop:

<NativeRouter getUserConfirmation={customGetUserConfirmation}>
...
</NativeRouter>

Using NativeRouter in a React Native Application Chapter 7

[110]

The <NativeRouter> component
The NativeRouter component uses the MemoryRouter component defined in the react-
router package to provide routing support in a React Native application. MemoryRouter
is used when you want to maintain the browsing history in memory without updating the
URL in the address bar. It's particularly useful in non-browser environments where an
address bar is not available. The MemoryRouter component creates a history object using
the createMemoryHistory class available in the history package. This history object is
then provided to the low-level <Router> interface.

In NativeRotuer.js:

import MemoryRouter from "react-router/MemoryRouter";

const NativeRouter = props => <MemoryRouter {...props} />;

Then the MemoryRouter component creates a history object using
createMemoryHistory, in MemoryRouter.js:

import { createMemoryHistory as createHistory } from "history";

class MemoryRouter extends React.Component {

 history = createHistory(this.props);
 ...

 render() {
 return <Router
 history={this.history}
 children={this.props.children}
 />;
 }
}

The NativeRouter component accepts props: initialEntries, initialIndex,
getUserConfirmation, keyLength, and children. As mentioned previously, a default
implementation for getUserConfirmation is included in the NativeRouter class and
both keyLength and children props behave similarly to other Router components, as
mentioned in previous chapters.

Let's take a look at initialEntries and initialIndex props.

Using NativeRouter in a React Native Application Chapter 7

[111]

The initialEntries prop
The initialEntries prop is used to populate the history stack with a list of locations:

export default class App extends Component {
 render() {
 const initialEntries = ['/', '/dashboard'];
 return (
 <NativeRouter initialEntries={initialEntries}>
 ...
 </NativeRouter>
);
 }
}

At the time of initializing NativeRouter, you could populate the history by providing an
array of location paths. A location path could be a string or even an object of shape {
pathname, search, hash, state }:

const initialEntries = [
 '/' ,
 {
 pathname: '/dashboard',
 search: '',
 hash: 'test',
 state: { from: '/'}
 }
];

The initialIndex prop
The initialIndex prop is used to specify the index value of the location in the
initialEntries array to render when the application loads. For example, if the
initialEntries array has two locations listed, then an initialIndex value of 1 loads
the second entry; that is, a <Route> instance matching the pathname mentioned as the
second entry in initialEntries array is rendered:

export default class App extends Component {
 render() {
 const initialEntries = ['/', '/dashboard'];
 const initialIndex = 1;

 return (
 <NativeRouter
 initialEntries={initialEntries}

Using NativeRouter in a React Native Application Chapter 7

[112]

 initialIndex={initialIndex}>
 ...
 </NativeRouter>
)
 }
}

In this example, the initialIndex value is set to 1 and thus the <Route> matching the
location path /dashboard is rendered when the application loads.

The <BackButton> component
By default, when you press the back button on an Android device, the application exits
instead of navigating the user to the previous state in the history. The React Native library
includes a BackHandler class, which lets you customize the behavior of the devices'
hardware back button. The <BackButton> component in React Router uses the
BackHandler class to customize the behavior of the back button on an Android device:

import { NativeRouter, BackButton } from 'react-router-native';

export default class App extends Component {
 render() {
 return (
 <NativeRouter>
 <View style={styles.container}>
 <BackButton />
 <SideMenu menu={menu}>
 <ContentView />
 </SideMenu>
 </View>
 </NativeRouter>
)
 }
}

The <BackButton> component can be included anywhere in the application. In the
preceding example, the component is included in the root component and it does not
include any child components. Please note that the <BackButton> component does not
render anything on the viewport; rather, it facilitates the interaction with the devices' back
button.

Using NativeRouter in a React Native Application Chapter 7

[113]

Here's the workflow:

Whilst on the Dashboard screen (at path /dashboard), when you click the devices' back
button, the user is navigated to the home page (at path /).

Creating Deeplinks with <DeepLinking>
In a web application, the HTTP URL refers to a location that can be accessed by entering the
same in the address bar of the browser. In Single Page Applications, this location refers to a
specific route that the user can navigate to. In the context of a mobile application, DeepLink
refers to a specific page or content that you would want to view. For example, when you
click on a link on a mobile device, instead of opening a new tab in the browser window, an
application is launched and the requested page is shown.

Using NativeRouter in a React Native Application Chapter 7

[114]

Unlike web applications, which use HTTP to refer to a specific location, applications on a
mobile device need to declare a URI scheme for the application. For example, the Twitter
application uses the URI scheme twitter:// and thus you could view their Twitter profile
by referring to the URI twitter://profile. Deeplinks are very helpful when the user
clicks on links in an email or accesses push notification messages, which navigate the user
to the application to show the requested content.

React Native provides interfaces that allow you to create Deeplinks for devices on both iOS
and Android platforms. In this section, we will take a look at how to create Deeplinks to an
application's content on an Android device and thus we require Android Studio to be
installed. Android Studio allows us to create virtual devices (AVD) that can then be used to
test Deeplinks.

A step-by-step guide to installing the necessary components on iOS and
Android is detailed in the React Native
documentation: https://facebook.github.io/react-native/docs/getti
ng-started.html.

After installing Android Studio and creating an AVD, the application needs to be
configured with a URI scheme. To add the URI scheme, some of the native files need to be
updated, and to get access to these native files, you need to eject from the current setup.

Ejecting from the create-react-native-app
The create-react-native-app CLI is a very good option for scaffolding a React Native
application and for testing the application on an emulator. However, to
test DeepLinking we would need to include entries in the manifest file and thus it's
required that we eject from the configuration using the following command:

npm run eject

The previous command will generate configuration files for iOS and Android platforms.
This bare-minimum configuration allows you to generate a .ipa file for an iOS device and
a .apk file for an Android device. In this section, we will see how we can generate the .apk
file, which will then be deployed to an AVD.

https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html

Using NativeRouter in a React Native Application Chapter 7

[115]

After ejecting, you will see various directories and files generated for both iOS and
Android:

|--/android
|----/.gradle
|----/app
|----/build
|----/gradle
|----/keystores
|--/ios
|----/chapter7DeepLink
|----/chapter7DeepLink-tvOS
|----/chapter7DeepLink-tvOSTests
|----/chapter7DeepLink.Xcodeproj
|----/chapter7DeepLinkTests

The next step is to build and run the application on the Android device:

npm run android

The previous command will run the build script and generate the .apk file, which gets
deployed on an AVD. Please ensure that you have the virtual device running before
executing the previous command.

To configure the URI scheme on an Android device, the AndroidManifest.xml manifest
file located at the /android/app/src/main path needs to be updated. In the next section,
we will see the configuration that needs to be added to the manifest file.

Adding <intent-filter> to the manifest file
The AndroidManifest.xml file contains meta information about the application, and it is
used to declare various components present in the application. These components are
activated using intent filters. An <intent-filter> instance in the manifest file is used to
define the capabilities of the application and in defining a policy on how other applications
would interact with the application.

Using NativeRouter in a React Native Application Chapter 7

[116]

When you eject from the configuration, the AndroidManifest.xml file is generated:

<manifest
 xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.chapter7deeplink">
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission
android:name="android.permission.SYSTEM_ALERT_WINDOW"/>
 <application
 android:name=".MainApplication"
 android:label="@string/app_name"
 android:icon="@mipmap/ic_launcher"
 android:allowBackup="false"
 android:theme="@style/AppTheme">
 <activity
 android:name=".MainActivity"
 android:label="@string/app_name"
android:configChanges="keyboard|keyboardHidden|orientation|screenSize"
 android:windowSoftInputMode="adjustResize">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER"
/>
 </intent-filter>
 </activity>
 <activity
 android:name="com.facebook.react.devsupport.DevSettingsActivity" />
 </application>
</manifest>

Here, <intent-filter> has the action and the category defined for the application as
android.intent.action.MAIN and android.intent.category.LAUNCHER. The
previous intent-filter enables the application to be seen on the user's device and when
the user taps on the application, MainActivity (see the activity tag) in the application is
triggered.

Similarly, intent-filter for defining a URI scheme for the application can be added to
the manifest file:

<intent-filter android:label="filter_react_native">
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.DEFAULT" />
 <category android:name="android.intent.category.BROWSABLE" />
 <data android:scheme="deeplink" android:host="app.chapter7.com" />
</intent-filter>

Using NativeRouter in a React Native Application Chapter 7

[117]

Here, the <data> tag is used to specify the URI scheme for the application. The
android:scheme attribute in the <data> tag is used to specify the scheme name and the
android:host attribute is used to specify the type of hostname to use for the application.
Thus the deeplink://app.chapter7.com URI is used to access the home page in the
application. A route with the /dashboard path can be accessed using this
URI: deeplink://app.chapter7.com/dashboard.

The next step is to use React Router's <DeepLinking> component so that the application
can react to the incoming request and navigate the user to the request route.

Including the <DeepLinking> component
The <DeepLinking> component in the react-router-native package uses React
Native's Linking interface to listen to the changes in the URL. Whenever a change is
detected, the user is navigated to the requested path by adding an entry in the history stack.

The <DeepLinking> component can be included anywhere in the application:

export class RootComponent extends Component {
 render() {
 return (
 <View style={styles.container}>
 <DeepLinking />
 <View style={styles.nav}>
 <Link to="/app.chapter7.com">
 <Text>Home</Text>
 </Link>
 <Link to="/app.chapter7.com/dashboard">
 <Text>Dashboard</Text>
 </Link>
 </View>
 <View style={styles.routeContainer}>
 <Route path="/app.chapter7.com" exact
component={HomeComponent} />
 <Route path="/app.chapter7.com/dashboard"
component={DashboardComponent} />
 </View>
 </View>
)
 }
}

Using NativeRouter in a React Native Application Chapter 7

[118]

Here, the <DeepLinking> component is included in the RootComponent of the
application, and also the <Route> paths are updated with the prefix
app.chapter7.com to match the hostname declared in the AndroidManifest.xml file.

To test deep-linking, try the following command:

adb shell am start -W -a android.intent.action.VIEW -d
deeplink://app.chapter7.com/dashboard

The previous command should launch the application on the AVD and navigate you to the
route with the /dashboard path.

Summary
In this chapter, we looked at how React Router's <NativeRouter> component can be used
in a React Native application. The <NativeRouter> component is available in the react-
router-native package, and it uses the <MemoryRouter> component internally, which is
defined in the react-router package. The <NativeRouter> component accepts
props: initialEntries, initialIndex, getUserConfirmation, keyLength, and
children. Also, it provides a default implementation for the getUserConfirmation
function, which uses React Native's Alert component to display a confirmation message.
This confirmation message is shown when the <Prompt> component is included in the
application and the user tries to navigate away from the current route.

The <BackButton> component in react-router-native is a wrapper around React
Native's BackHandler class, which listens to the devices' back button and navigates the
user back by one entry in the history stack. The <DeepLinking> component is used to
handle deep links to the content in the application. The component uses React Native's
Linking interface to listen to the URL changes and it navigates the user to the requested
route when the application is accessed using a deep link URI scheme. To define a URI
scheme for the application, the AndroidManifest.xml manifest file is updated
with <intent-filter> for the main activity (.MainActivity). intent-filter declares
the URI scheme and the hostname to use to access the content inside the application.

In the next chapter, we will take a look at the state management tool, Redux, and
understand how React Router can be used in conjunction with Redux.

8
Redux Bindings with

connected-react-router
In previous chapters, we looked at how the component's state can be used to store model
data and how React updates the view when the model is updated as a result of a user
action. In large applications, this state information should be made available not only to the
current component and its children but also to other components in the application tree.
There are various state management libraries available that aid in keeping the user interface
components in sync with the application state. Redux is one such library that uses a central
data store to manage the state of the application. The store serves as a source of truth and
the components in the application can rely on the state maintained in the store.

In this chapter, we will take a look at the connected-react-router library, which
provides Redux bindings for React Router. The following topics are discussed in this
chapter:

State management with Redux—An introduction to Redux concepts
Getting started with connected-react-router
Reading the react-router state from the Redux store
Navigating to different routes by dispatching actions

Redux Bindings with connected-react-router Chapter 8

[120]

State management with Redux
As mentioned, Redux uses a single store to manage the state of the application. Apart from
Store, there are two other building blocks: Actions and Reducers.

Let's take a look at how these building blocks help maintain state and update the view
when state in Store changes.

Actions
Actions let you define the operations that the user can perform to update the state of the
application. An Action is a JavaScript object of the { type, payload } shape, where
type is a string mentioning the user action and payload is the data with which the state
should be updated:

let todoId = 0;
export const addTodo = text => ({
 type: 'ADD_TODO'
 payload: {
 text,
 id: todoId++,
 isCompleted: false
 }
})

Here, the addTodo action accepts a TODO text and indicates that the Action is used to add
a TODO to a list of TODOs. payload here is an object containing the TODO text, a TODO
ID, and a Boolean flag, isCompleted (set to false). It's also possible to have actions that
don't require the payload property to be included. For example, consider the following
action:

export const increment = () => ({
 type: 'INCREMENT'
})

Here, the action type INCREMENT indicates that the value of an entity has to be
incremented by one. The preceding action does not need a payload property and based
on the action type, the state of the entity can be updated.

Redux Bindings with connected-react-router Chapter 8

[121]

Reducers
A Reducer in Redux alters the state of an entity based on the action dispatched to the
store. A Reducer is a pure function that accepts two parameters: state and action. The
Reducer then returns an updated state based on the value store in action.type. For
example, consider the following reducer:

const todoReducer = (state = [], action) => {
 switch (action.type) {
 case 'ADD_TODO':
 return [
 ...state,
 {
 id: action.payload.id,
 text: action.payload.text,
 isCompleted: action.payload.isCompleted
 }
];
 default:
 return state;
 }
}

The initial state of todoReducer is set to an empty array (state parameter's default value)
and a TODO is added to the list when the action type is ADD_TODO. One of the core tenets of
Redux is not to mutate the state tree, but rather return a new state tree as a result of an
action dispatched by the component. This helps to keep the reducer function pure (that is,
with no side effects), and helps in recognizing the new state change when the React
component re-renders the view elements.

Similarly, there could be multiple actions that update the TODO state (such as
MARK_COMPLETED and DELETE), and the reducer can alter the state of the TODO list based
on the action type dispatched to the store.

Store
Store is a central data object from which the application state can be derived. The
components in the application subscribe to the changes in the store's state and update the
view.

Redux Bindings with connected-react-router Chapter 8

[122]

Here's how the data flows in Redux:

The user performs an operation, such as submitting a form or clicking a button, thus
dispatching an action to the store. The application defines various actions that the user can
perform and reducer is coded so that it can handle these actions and update the state of the
entity. The state of various entities in the application is maintained in one central location:
the store. For example, the application could have various entities, such as Todo and the
User profile, and the store would maintain the state information for these entities.
Whenever the reducer updates the state value of a particular entity in the store, the user
interface component receives an update from the store, updating the component's state
information and re-rendering the view with the updated state.

Redux in React
After creating a project using the create-react-app CLI, include the dependencies
redux and react-redux dependencies:

npm install --save redux react-redux

The redux library includes the createStore, combineReducers, bindActionCreators,
applyMiddleware, and compose helper functions; whereas the react-redux library
includes Redux bindings that help your React components communicate with the Redux
store.

The next step is to define actions that the user can initiate from the user interface. In our
example, we will create a Counter component that can increment and decrement the
counter value.

Redux Bindings with connected-react-router Chapter 8

[123]

In actions/counter.js:

export const increment = () => ({
 type: 'INCREMENT'
});

export const decrement = () => ({
 type: 'DECREMENT'
});

After defining actions for our counter entity, the reducer that updates the state of the
counter needs to be defined:

In reducers/counter.js:

const counterReducer = (state = 0, action) => {
 switch (action.type) {
 case 'INCREMENT':
 return state + 1;
 case 'DECREMENT':
 return state - 1;
 default:
 return state;
 }
}

export default counterReducer;

The reducer defined here updates the state value based on the type of action triggered
by the user. Similarly, you can have various reducers and actions in the application that
update the entity's state when a certain action is triggered by the user.

The combineReducers utility from redux allows you to combine all the reducers into one
single reducer, which can then be used in initializing the store for the application.

In reducers/index.js:

import { combineReducers } from 'redux';
import counterReducer from './counter';

const rootReducer = combineReducers({
 count: counterReducer,
 todo: todoReducer
});

export default rootReducer;

Redux Bindings with connected-react-router Chapter 8

[124]

A rootReducer is created using the combineReducers function, which accepts an object
with a key-value mapping of an entity and a reducer. Here counterReducer is assigned to
the count entity and todoReducer is assigned to an entity with the todo key.

rootReducer is then used in the createStore function to create a store.

In index.js:

import { createStore } from 'redux';

const store = createStore(
 rootReducer
);

The store is made available to the components in the application using the
<Provider> component defined in the react-redux library:

ReactDOM.render(
 <Provider store={store}>
 <Counter />
 </Provider>,
 document.getElementById('root')
);

The components in the application can now subscribe to the state changes in the entities
(count and todo) in the store using the connect higher-order function. A Counter
component is created, which will display the current state value of count and will dispatch
the increment and decrement actions that we defined in actions/counter.js.

In components/counter.component.js:

import { increment, decrement } from '../actions/counter';
const Counter = ({ count, increment, decrement }) => (
 <div>
 <h4>Counter</h4>
 <button onClick={decrement}>-</button>
 {count}
 <button onClick={increment}>+</button>
 </div>
)

Redux Bindings with connected-react-router Chapter 8

[125]

The count, increment, and decrement props are made available from the store using
the following connect method:

import { connect } from 'react-redux';
import { increment, decrement } from '../actions/counter';

...

const mapStateToProps = state => ({
 count: state.count
});

const mapDispatchToProps = dispatch => ({
 increment: () => dispatch(increment()),
 decrement: () => dispatch(decrement())
})

export default connect(mapStateToProps, mapDispatchToProps)(Counter);

The connect higher-order function from react-redux helps you to inject the Redux state
into your React components. The connect HOC accepts two
arguments: mapStateToProps and mapDispathToProps. As observed, the Redux
state count property is assigned to the component's state count property in
mapStateToProps, and similarly, the component can dispatch actions to the store using
the increment and decrement actions specified in mapDispatchToProps. Here, to read
the state values from the Redux store, mapStateToProps is used, and connect provides
the entire state tree to the component so that the component can read from various objects
in the state tree. To alter the state of the tree, mapDispatchToProps helps in dispatching
actions registered with the store. The connect HOC provides the dispatch method so
that the component can invoke actions on the store.

Getting started with connected-react-router
The connected-react-router library provides Redux bindings for React Router; for
example, the application's history can be read from a Redux store and you can navigate to
different routes in the application by dispatching actions to the store.

Let's first install connected-react-router and other libraries using npm:

npm install --save connected-react-router react-router react-router-dom
history

Redux Bindings with connected-react-router Chapter 8

[126]

Next, we will update the store settings.

In index.js:

import { applyMiddleware, createStore, compose } from 'redux';
import { ConnectedRouter, connectRouter, routerMiddleware } from
'connected-react-router';

const history = createBrowserHistory();

const composeEnhancer = window.__REDUX_DEVTOOLS_EXTENSION_COMPOSE__ ||
compose;

const store = createStore(
 connectRouter(history)(rootReducer),
 composeEnhancer(applyMiddleware(routerMiddleware(history)))
);

The createStore function has the following signature:

createStore(reducer, preloadedState, enhancer)

It accepts three parameters: the first parameter is the reducer function, which returns the
next state tree given the current state tree and the action to handle; the second parameter
specifies the initial state of the application and should be an object with the same shape as
the one used in combineReducers; the third parameter specifies the store enhancer,
which adds more capabilities to the store, such as time travel, persistence, and so on.

In our example, the first parameter is as follows:

connectRouter(history)(rootReducer)

connectRouter from connected-react-router wraps rootReducer and returns a new
root reducer with the router state in it. The connectRouter reducer responds to actions
with type @@router/LOCATION_CHANGE to update the router state. Notice that
connectRouter accepts the history object as its parameter; connectRouter then uses
the history object to initialize the router state with the location and action properties.

The second parameter to createStore is enhancer:

composeEnhancer = window.__REDUX_DEVTOOLS_EXTENSION_COMPOSE__ || compose;
...
composeEnhancer(applyMiddleware(routerMiddleware(history)))

Redux Bindings with connected-react-router Chapter 8

[127]

Please note that we're specifying enhancer as the second parameter. The createStore
method marks the second parameter as enhancer if it is a function and when the third
parameter to createStore is not specified. The compose utility in redux returns a
function obtained by composing given functions from right to left. In the previous case, we
are checking whether the Redux Devtools Extension is available in the browser, which
enables you to view the state of various entities in the application.

routerMiddleware defined in connected-react-router is a middleware function used
to redirect the user using the provided history object. If an action of the
'CALL_HISTORY_METHOD' type is dispatched, the middleware function will navigate the
user to the requested route by calling one of the methods on the history object. It also
prevents the action (CALL_HISTORY_METHOD) from reaching other reducers defined in the
application and the middleware components that are defined after routerMiddleware.

The applyMiddleware utility in Redux is used to create a store enhancer, which applies
middleware to the dispatch method of the Redux store.

The next step is to make the store (created with createStore) available to the components
in the application using the <Provider> component:

ReactDOM.render(
 <Provider store={store}>
 <ConnectedRouter history={history}>
 <App />
 </ConnectedRouter>
 </Provider>,
document.getElementById('root'));

Here, we have wrapped the application root component inside the <ConnectedRouter>
component, which, in turn, is wrapped inside the <Provider> component. This is required
since ConnectedRouter subscribes to the changes in the router state to see whether the
location property has changed and then calls the history.push method to navigate the
user to the requested route.

With these changes, the components in our application can now read the state information
from the store and also dispatch actions to navigate to various routes defined in the
application.

Redux Bindings with connected-react-router Chapter 8

[128]

Reading state information from the Redux
store
To test the preceding setup, let's first create a <Link> component in our navbar and a
corresponding <Route> with the same path name:

<Link
 to={{
 pathname: '/dashboard',
 search: 'q=1',
 hash: 'test',
 state: { key: 'value' }
 }}
>
 Dashboard
</Link>
...
<Route path='/dashboard' component={Dashboard} />

Notice that the <Link> component specifies the to object with the pathname,
search, hash, and state properties. We will read this information from the Redux store in
our rendered component:

const Dashboard = ({ pathname, search, hash, state, count }) => {
 return (
 <div>
 <h4>In Dashboard</h4>
 <div> Pathname : {pathname} </div>
 <div> Search : {search} </div>
 <div> Hash : {hash} </div>
 <div> State-Key : {state? state.key : null} </div>
 </div>
)
}

const mapStateToProps = state => ({
 pathname: state.router.location.pathname,
 search: state.router.location.search,
 hash: state.router.location.hash,
 state: state.router.location.state
});

export default connect(mapStateToProps)(Dashboard);

Redux Bindings with connected-react-router Chapter 8

[129]

From this code snippet, the pathname, search, location, and hash properties are read
from state.router.location. As mentioned earlier, the connectRouter function
creates the router state and it updates the value when an action of
type LOCATION_CHANGE has been dispatched. The <ConnectRouter> component listens to
the changes in the history object and then dispatches the LOCATION_CHANGE action
whenever you try to navigate using the <Link> component.

If you have Redux Dev Tools installed in Chrome (available in the Chrome Web Store), you
can observe the action dispatched when you try to navigate from one route to the other:

Redux Bindings with connected-react-router Chapter 8

[130]

In this Dev Tools window, the @@router/LOCATION_CHANGE action is dispatched when
you try to navigate, and the action in the following section shows the payload provided
when dispatching the action.

Navigating by dispatching actions
The connected-react-router library provides actions that you can dispatch from your
components to navigate to the routes defined in the application. These include push,
replace, go, goBack, and goForward. These methods call the corresponding methods on
the history object to navigate to the specified path.

The DashboardComponent in the previous example can now be updated to use
mapDispatchToProps:

import {push, replace} from 'connected-react-router';

const Dashboard = ({ pathname, search, hash, state, count, push, replace })
=> {
 return (
 ...
<button onClick={() => {push('/')}}>HOME</button>
 <button onClick={() => {replace('/counter')}}>COUNTER</button>
 ...
)
}

const mapStateToProps = state => ({
...
});

const mapDispatchToProps = dispatch => ({
 push: (path) => dispatch(push(path)),
 replace: (path) => dispatch(replace(path))
});

export default connect(mapStateToProps, mapDispatchToProps)(Dashboard);

The preceding component now dispatches push and replace actions when you click on
the HOME and the COUNTER buttons respectively. The mapDispatchToProps function
enables you to dispatch actions to the store and, in our example, the push and replace
functions accept a pathname to dispatch actions.

Redux Bindings with connected-react-router Chapter 8

[131]

Summary
In this chapter, we looked at how the Redux library can be used to create a store to manage
various state entities in the application. The store receives actions and the reducers alter the
state of the application when an action is dispatched. The connected-react-
router library provides Redux bindings for React Router and it includes a higher-order
function, connectRouter, which wraps rootReducer and creates a router state. The
connectRouter function is then used in the createStore function to make the router
state available to the components in the application.

The <ConnectedRouter> component in connected-react-router listens to the changes
in the history location and dispatches the LOCATION_CHANGE action to update the router
state property. This router state property can then be read by the rendered route
component by reading the state information from the store.

The library also includes the push, replace, go, goBack, and goForward actions, which
the component can dispatch to navigate to the routes defined in the application.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

React Design Patterns and Best Practices
Michele Bertoli

ISBN: 978-1-78646-453-8

Write clean and maintainable code
Create reusable components applying consolidated techniques
Use React effectively in the browser and node
Choose the right styling approach according to the needs of the applications
Use server-side rendering to make applications load faster
Build high-performing applications by optimizing components

https://www.packtpub.com/web-development/react-design-patterns-and-best-practices

Other Books You May Enjoy

[133]

React Cookbook
Carlos Santana Roldan

ISBN: 978-1-78398-072-7

Gain the ability to wield complex topics such as Webpack and server-side
rendering
Implement an API using Node.js, Firebase, and GraphQL
Learn to maximize the performance of React applications
Create a mobile application using React Native
Deploy a React application on Digital Ocean
Get to know the best practices when organizing and testing a large React
application

https://www.packtpub.com/web-development/react-cookbook

Other Books You May Enjoy

[134]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
actions
 dispatching, for navigation 130
application routes
 defining 16, 18
authorization
 managing 57, 58, 59

B
BackButton component 112
bookmarkable URLs 12
BrowserRouter component
 about 73
 basename prop 74
 custom dialog box, displaying with

getUserConfirmation prop 77, 80
 forceRefresh prop 75
 getUserConfirmation prop 76
 keyLength prop 75, 76

C
callback route
 redirecting with 59, 60, 61
connected-react-router
 about 125
 implementing 126, 127
 installing 125
create-react-native-app CLI
 ejecting from 114
 project, creating 103, 105
custom dialog box
 displaying, with getUserConfirmation prop 78, 80

D
DeepLinking component
 create-react-native-app, ejecting 114

 including 117, 118
 intent-filter, adding to manifest file 115
Deeplinks
 creating, with DeepLinking component 113
dynamic routes
 from JSON 35, 37
dynamic routing 32, 34, 35

E
Express.js
 about 85
 used, for Server-Side Rendering (SSR) of React

application 85

G
getUserConfirmation prop
 custom dialog box, displaying 78, 80

H
hashbang
 reference 83
HashRouter component
 about 81, 82
 hashType prop 82
history object
 about 27
 action property 27
 block() function 27
 createHref() function 28
 go(n) function 28
 goBack() function 28
 goForward() function 28
 length property 27
 listen(listenerFn) function 28
 location property 27
 push(path, state?) function 28

[136]

 replace(path, state?) function 28
history
 route, navigating programmatically 47

I
Isomorphic React applications
 creating 97, 98
 Server-Side configuration 100
 webpack, configuration 99, 100

J
JSON
 dynamic routes 35, 37
JSX 7

L
Link component
 about 39
 innerRef prop 40
 replace prop 40
 to prop, with object 41, 42
location object 28

M
match object 29

N
NativeRouter component
 adding 105, 106, 108, 109
 implementing 110
 initialEntries prop 111
 initialIndex prop 111, 112
 project, creating with create-react-native-app CLI

103, 105
 using, in React Native application 103
navigation
 actions, dispatching 130
navigational components 12
NavLink component
 about 43
 activeClassName prop 43
 activeStyle prop 44
 exact prop 44
 isActive prop 45

 location prop 46
 strict prop 45
nested routes
 about 32, 34, 35
 navigating to 47
Node.js
 about 85
 used, for Server-Side Rendering (SSR) of React

application 85

O
one-way data binding 8

P
Prompt
 transitions, preventing 50, 51

R
React component
 creating 9
React Native 12
React Router, packages
 react-router 12
 react-router-dom 12
 react-router-native 12
React Router
 about 11
 adding 15
 application routes, defining 16, 18
 features 12
 implementing 13, 14
React
 about 6
 component-based architecture 8
 features 7
 overview 7
Redirect component
 about 54
 push prop 56
 to prop 54, 56
 used, for redirecting to Page Not Found page 65
 using, in Switch component 65
Redux store
 state information, reading 128, 129, 130
Redux

 in React 122, 124, 125
 state management 120
Route component props
 about 27
 history object 27, 28
 location object 28
 match object 29, 30
Route component
 using, in Switch component 62
 with path '/' as first child, in Switch component 62
 with path params, in Switch component 63
Route parameters 30
Route props
 about 22
 exact prop 22, 23
 inline rendering, with children prop 26
 inline rendering, with render prop 25
 sensitive prop 24
 strict prop 23
Router component
 about 69
 including, from react-router package 70, 71
 react-router package 71
 react-router-dom package 72
routes
 navigating to, programmatically with history 47
 protecting 57, 58, 59
 redirecting, with callback route 59, 60, 61

S
Server-Side Rendering (SSR)
 about 84
 dependencies, installing 85
 of React application, with Express.js 85
 of React application, with Node.js 85
 React application, rendering with

ReactDOMServer.renderToString 88
 Server-Side application, starting 87
 webpack, build configuration 86
single page applications (SPAs) 6

state information
 reading, from Redux store 128, 129, 130
state management
 actions 120
 with Reducers 121
 with Redux 120
 with Store 121
StaticRouter component
 adding 89
 context prop 95
 Redirect component, used for Server-Side

redirect 91, 92
 requested URL, matching with matchPath 93
 routes, creating 89
 staticContext, used for Server-Side redirect 91,

92

Switch component
 404 – Page Not Found, adding 63, 65
 exclusive routing 61
 Redirect component, using 65
 redirecting, to new path 66
 Route components, ordering 62

T
transitions
 preventing, with Prompt 50, 51

V
virtual DOM 8

W
webpack
 about 86
 configuration 86
withRouter
 using 48, 49, 50

Y
yarn package manager
 reference 14

	Cover
	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introduction to React Router 4 and Creating Your First Route
	A brief look at React
	Component-based architecture in React
	Creating a React component

	Introduction to React-Router
	Getting started with React-Router
	Adding the React-Router library
	Defining application routes

	Summary

	Chapter 2: Configuring Routes - Using Various Options in the Route Component
	Route props
	The exact prop
	The strict prop
	The sensitive prop
	Inline rendering with the render prop
	Inline rendering with the children prop

	Route component props
	History
	The location object
	The match object

	Route parameters
	Nested routes and dynamic routing
	Dynamic routes from JSON
	Summary

	Chapter 3: Using the Link and NavLink Components to Navigate to a Route
	<Link> component
	replace prop
	innerRef prop
	to prop with an object

	<NavLink> component
	activeClassName prop
	activeStyle prop
	exact prop
	strict prop
	isActive prop
	location prop

	Navigating to nested routes
	Navigating to a route programmatically using history
	Using the withRouter higher–order component
	Preventing transitions with <Prompt>
	Summary

	Chapter 4: Using the Redirect and Switch Components
	The <Redirect> component
	The to prop
	The push prop

	Protecting routes and authorization
	Redirecting with a callback route

	Exclusive routing with the <Switch> component
	Ordering of the <Route> components in <Switch>
	<Route> with path '/' as the first child in <Switch>
	<Route> with path params

	Adding a 404 – Page Not Found
	Using <Redirect> in <Switch> to redirect to a Page Not Found page
	Redirecting from an old path to a new path

	Summary

	Chapter 5: Understanding the Core Router, and Configuring the BrowserRouter and HashRouter components
	<Router> component
	Including <Router> from react-router
	react-router package
	react-router-dom package

	<BrowserRouter> component
	basename prop
	forceRefresh prop
	keyLengthprop
	getUserConfirmation prop
	Showing a custom dialog box using the getUserConfirmation prop

	<HashRouter> component
	hashType prop

	Summary

	Chapter 6: Using StaticRouter in a Server-Side Rendered React Application
	Performing SSR of a React application using Node.js and Express.js
	Installing dependencies
	Webpack build configuration
	Server-Side application
	Rendering a React application using ReactDOMServer.renderToString

	Adding <StaticRouter> and creating routes
	Server-Side redirect using the <Redirect> and staticContext
	Request URL matching with matchPath

	StaticRouter context prop
	Creating Isomorphic React applications
	Webpack configuration
	Server-Side configuration

	Summary

	Chapter 7: Using NativeRouter in a React Native Application
	Using NativeRouter in a React Native application
	Creating a new project with the create-react-native-app CLI
	Adding the <NativeRouter> component

	The <NativeRouter> component
	The initialEntries prop
	The initialIndex prop

	The <BackButton> component
	Creating Deeplinks with <DeepLinking>
	Ejecting from the create-react-native-app
	Adding <intent-filter> to the manifest file
	Including the <DeepLinking> component

	Summary

	Chapter 8: Redux Bindings with connected-react-router
	State management with Redux
	Actions
	Reducers
	Store
	Redux in React

	Getting started with connected-react-router
	Reading state information from the Redux store
	Navigating by dispatching actions
	Summary

	Other Books You May Enjoy
	Index

