
Version 92

Material number: 50099230

© SAP 2010 / Page 1

<Course Number and Course Title ABC123
Overiew>TB1300
SAP Business One – Software
Development Kit (SDK)

SAP Business One

2010 / Q2

Copyright 2010 SAP AG. All rights reserved.

Neither this training manual nor any part thereof may
be copied or reproduced in any form or by any means,
or translated into another language, without the prior
consent of SAP AG. The information contained in this
document is subject to change and supplement without prior
notice.

All rights reserved.

Copyright

Trademarks:
Microsoft ®, Windows ®, NT ®, PowerPoint ®, WinWord ®, Excel ®, Project ®, SQL-Server ®,
Multimedia Viewer ®, Video for Windows ®, Internet Explorer ®, NetShow ®, and HTML Help ® are
registered trademarks of Microsoft Corporation.
Lotus ScreenCam ® is a registered trademark of Lotus Development Corporation.
Vivo ® and VivoActive ® are registered trademarks of RealNetworks, Inc.
ARIS Toolset ® is a registered Trademark of IDS Prof. Scheer GmbH, Saarbrücken
Adobe ® and Acrobat ® are registered trademarks of Adobe Systems Inc.
TouchSend Index ® is a registered trademark of TouchSend Corporation.
Visio ® is a registered trademark of Visio Corporation.
IBM ®, OS/2 ®, DB2/6000 ® and AIX ® are a registered trademark of IBM Corporation.
Indeo ® is a registered trademark of Intel Corporation.
Netscape Navigator ®, and Netscape Communicator ® are registered trademarks of Netscape
Communications, Inc.
OSF/Motif ® is a registered trademark of Open Software Foundation.
ORACLE ® is a registered trademark of ORACLE Corporation, California, USA.
INFORMIX ®-OnLine for SAP is a registered trademark of Informix Software Incorporated.
UNIX ® and X/Open ® are registered trademarks of SCO Santa Cruz Operation.
ADABAS ® is a registered trademark of Software AG
The following are trademarks or registered trademarks of SAP AG; ABAP/4, InterSAP, RIVA, R/2, R/3, R/3
Retail, SAP (Word), SAPaccess, SAPfile, SAPfind, SAPmail, SAPoffice, SAPscript, SAPtime, SAPtronic,
SAP-EDI, SAP EarlyWatch, SAP ArchiveLink, SAP Business Workflow, and ALE/WEB. The SAP logo and
all other SAP products, services, logos, or brand names included herein are also trademarks or registered
trademarks of SAP AG.
Other products, services, logos, or brand names included herein are trademarks or registered trademarks of
their respective owners.

Course Prerequisites

Required:
SAP Business One standard business processes
Basic knowledge and experience with Microsoft .NET technology –
ideally Visual Basic .NET
Basic knowledge of and experience with software development
processes
Basic general accounting and IT skills

The following are required prerequisites for attending this course:
Knowledge of SAP Business One standard business processes. This prerequisite can be met by
completing the courses in the “Product essentials Learning Map”
Basic knowledge and experience with Microsoft .NET technology – ideally Visual Basic .NET since the
exercises in the course will be performed with VB .NET and code examples are also provided in VB
.NET only
Basic knowledge of and experience with software development processes
Students must bring their own laptop with SAP Business One software at release 8.8 installed. No
training system will be provided for participants. Participants will be required to install a local demo
database on their laptop during the class.

Note: this course assumes that participants have basic general accounting and IT skills.

User notes

These training materials are not a teach-yourself program. They complement the explanations provided
by your course instructor. Space is provided on each page for you to note down additional information.

There may not be sufficient time during the course to complete all the exercises. The exercises provide
additional examples that are covered during the course. You can also work through these examples in
your own time to increase your understanding of the topics.

Target Audience

The target audience for this course is an external SAP Business
One consultant who will be developing additional functionality in
or for SAP Business One.

Duration: 4 ½ days

Course Overview

Contents:
Course Goals
Course Objectives
Course Content
Course Overview Diagram
Main Business Example

Course Goals

This course will prepare you to:
Know the basics of the SAP Business One SDK as well
as details that are important for a general understanding
of the SDK
Create a partner package that contains enhancements to
the SAP Business One Software

To ensure that you retain the knowledge gained in this course and successfully complete the certification
examination, we recommend that you consolidate the content in your own time after the course.

We also recommend joining the developer community on the SAP Community Network to seek and
provide help in everyday SDK challenges.

Course Objectives

After completing this course, you will be able to:
Develop simple additional functions (add-ons) using the Data
Interface (DI) Application Programming Interface (API) and develop
simple enhancements using the User Interface API (UI API)
Use the User-Defined Objects (UDO) feature
Use SDK components in (customer) projects
Modify business processes with the SDK
Create and deliver an add-on installation package, including using the
license mechanism
Find and work with the SDK relevant information resources
Know SAP solution certification requirements

© SAP 2010 / Page 8

Unit 5 The User Interface API

Unit 6 Add-On Packaging, Add-On
Administration & Licensing

Unit 1 Course Overview

Unit 2 SDK Introduction

Unit 3 The Data Interface API

Unit 4 User-Defined Objects

Preface

Appendices

Course Content

1 Course Overview

2 SDK Introduction

3 The Data Interface API

4 User-Defined Objects (UDO)

5 The User Interface API

6 Packaging, Add-On Administration and Licensing

Appendices:

Contain guidance how to implement the “Course Project”

Include information about available tools

Provide an overview on SDK installation matters and support processes

Provide more details about some features that are only mentioned briefly in the User Interface API unit

The last one is supposed to refresh – or provide – details e.g. about the “Formatted Search” feature

Glossary

API – Application Programming Interface
Technology name for approaching application through an interface

COM – Component Object Model
Microsoft sepcific technology / Model for interfaces

SDK – Software Development Kit
A package that enables developers to implement own modules – here to build solutions that interface with
SAP Business One (i.e. COM objects, services, and other tools)

Interface
An access point to exchange data with e.g. an application

Software Solution Partner (SSP)
Also known as ISV (Independent Software Vendor) implements solution(s) based on SAP Business One
and SAP Business One SDK

Channel Partner (CP)
Sells and customizes SAP Business One. Often uses SAP Business One SDK for customer projects only.

2 4 66

Course Overview Diagram

Client

Server

Server

SAP Business One
Database

SAP Business One3rd Party
Application

Ja
va

 C
o

Data Interface
API

License
Service

UDO

DI Server

U
se

r I
nt

er
fa

ce
 A

PI

1

5

3 3

1-1

This unit is a short outline and will give you an overview on component level.

In addition it will show how SAP uses the SDK for extensions (i.e. „Add-Ons“) to SAP Business One.

Introduction

Contents:
The SAP Business One SDK
Components of the SAP Business One SDK
Introduction to DI API
Introduction to UI API
SAP Business One integration for SAP NetWeaver
Introducing the Course Project

1-2

Introduction: Unit Objectives

At the conclusion of this unit, you will be able to describe and explain:

The SAP Business One Software Development Kit
Data Interface API
User Interface API
SAP Business One integration for SAP NetWeaver

1-3

1 Course Overview

2 SDK Introduction

3 The Data Interface API

4 User-Defined Objects (UDO)

5 The User Interface API

6 Packaging, Add-On Administration and Licensing

2 4 66

Course Overview Diagram

Client

Server

Server

SAP Business One
Database

SAP Business One3rd Party
Application

Ja
va

 C
o

Data Interface
API

License
Service

UDO

DI Server

U
se

r I
nt

er
fa

ce
 A

PI

1

5

3 3

1-4

SAP Business One - Technology and
Interfacing

SAP® Business One

Server

RDBMS

Integration

Services

Client

Interfaces

Continuous and integrated solution
Windows look & feel (SAP style)
Simple navigation
Ability to drill down to details
“Drag and relate” feature

Two-tier client-server architecture (fat client)
Microsoft Windows 32 based, 64 Bit supp.
Microsoft SQL Server

Ease of Use

Product
Architecture

Customizing
Form Settings
Queries / Reports
User-Defined Tables and Fields
Linkage of input fields to queries
User-Defined Objects (UDOs)

Microsoft Excel, Word (out)
Microsoft Outlook (in / out)

Adaptations

MS Office
Integration

File-based (built-in)
SOAP (HTTP/XML)
APIs (COM, web services (SOA) starting)
User-Defined objects (UDOs)
Integration (not only) to SAP systems

Interfaces

SDK (COM)

GUI

Email

Backup

Microsoft
SQL Server

SDK (COM)

SDK (DI Server)

License

SAP Business One is implemented as a two-layer architecture. The system is based on a Microsoft
SQL Server database where data is stored centrally. The business logic is mostly processed on the
client software (fat client).

In detail, the client software consists of a graphical user interface and the business object classes
connecting to the database.

There are several built-in integration capabilities, interfaces and customization features (see
“Adaptation”, MS Office Integration” + “Interfaces”):

Besides all the adaptation capabilities accessible for customers, SAP Business One SDK enables
partners to implement a solution extending SAP Business One using APIs and other features.

DI Server e.g. enables partners to use SAP Business One data in a Browser without the need to
install any SAP Business One component on the client or the application server of the web-based
application.

The UDO feature is a further step to ease creation of additional functionality inside SAP Business
One.

Licenses are also managed centrally. Partners can use the mechanism for own purposes.

1-5

Introducing SAP Business One SDK: Unit
Overview Diagram

Topic 3: Introducing User Interface API

Topic 4: SAP Business One integration for SAP NetWeaver

Introduction

Topic 1: Introducing SAP Business One SDK

Topic 2: Introducing Data Interface API

Topic 5: Introduction to the Course Project

1-6

Introducing SAP Business One SDK: Topic
Objectives

After completing this topic, you will be able to:
Describe purpose and components of the SDK
Explain SDK packages and licenses shortly
Tell where to find further information or seek help
Use test tools available on the SAP Community Network

1-7

The SAP Business One client software consists of a graphical user interface and the business object
classes connecting to the database.
The source code of SAP Business One is not accessible by third parties. This guarantees a single version
of SAP Business One with approved stability, functionality and upgrade functionality.
If you want to extend and change the functionality of SAP Business One, you can use the built-in tools
for adjustments such as User defined fields and tables, formatted search, etc.). If your enhancements need
more, You can use the SAP Business One Software Development Kit.
With this SDK, you can

add industry-specific functions
add other functions you deem necessary
create interfaces to third-party tools.

SDK gives access to Business One internals via a set of programmatic interfaces based on COM: every
development environment supporting COM can be used
Many add-ons can be executing together with Business One changing its standard behavior: add-ons live
in separate address spaces than Business One

Nevertheless you should not underestimate the power of the customization tools!
Check-out the Appendix „More exercises and solutions“ for more information about „formatted search“
„queries“ and „alerts“.

SAP Business One SDK - Motivation

Customization
capabilities are
powerful!

Customization
capabilities cannot
solve every
requirement.

Source code not
accessible!

Use SDK!

SAP
Add-Ons

Software
Development Kit

Partner
Add-Ons

SAP
Business One

1-8

The different application programming interfaces (APIs) included in the Software Development Kit use
open Microsoft standards that allow access to a lot of business objects provided by SAP Business One.
API runtimes are installed with the SAP Business One client application – except DI Server which is part
of the SAP Business One Server Tools installation
You can access SAP Business One

on business data level through the Data Interface API (DI API). Most SAP Business One business
objects are exposed in this API. They can be accessed by external programs. If you prefer using Java,
use “Java Connector” to access DI API.
on business data level through DI Server (Data Interface). DI Server is a DCOM service that runs on
the SAP Business One server and accepts XML data packed in SOAP (Simple Object Access Protocol)
“envelopes”.
on user interface level: The User Interface API (UI API) provides access to a running application where
you can add or modify forms, and provide your own event handlers to actively influence the existing
business logic.

In addition to that you can define your own business objects (User-Defined Objects (UDO)) that are
joined to the SAP Business One business object collection.
The SDK ships with

Sample Code
Documentation
Utilities

SAP Business One SDK – Components
Overview

Server

Server

Data Interface
API

Ja
va

 C
o

License
Service

DI Server

UDO

Client

?

3rd Party
Application

U
se

r I
nt

er
fa

ce
 A

PI

SAP Business One
Database

SAP Business One

1-9

There‘s only one set of APIs – no debug / release…

According to the remark above you could see the SAP Business One Software Development Kit to be
available in three “versions”:

The SDK Installation is a full version suitable for development of additional components by partners or
customers. It contains documentation and examples.

The SDK Implementation Version basically is just the general authorization to use UI API, if at least a
Professional User license has been installed.

The SDK DI API / Runtime Installation is required if customers want to run additional functions
provided by a partner using DI API. It is installed with the client.

In the past „Compatibility License for Add-Ons“ existed – to allow partners to work without using the
SAP license mechanism for some time. While this is still possible – there‘s no license for this purpose
yet, but the users need any payable SAP license to connect to SAP Business One‘s SDK starting with
version 8.8.

The SDK consists of 2 major packages:
1) The Runtimes (i.e. the APIs)

The runtimes (DI API + UI API) are installed together with the SAP Business One client application
DI API can be installed stand-alone (separate installer package available)

2) The documentation (samples, helpfiles, utilities) named „SDK Installation“

“SDK” Installation
Development package for partners – includes SDK help, samples, tools

(SDK) Licenses
SDK Implementation License

For customer specific implementation (usage of UI API only)
SDK Implementation license (99999 licenses) included in Professional User license

SDK Development License / Add-On Solution License
Need development or solution license to use UI&DI API (we will talk about that later)
Partner has to order SDK Development License to start development

AddOn Access User License
Allows to work via UI&DI API – cannot be used to do anything in the B1 application

Indirect Access User License
Allows to work via DI only – cannot be used to do anything in the B1 application

New in version 8.8: Add-on connection requires user having an SAP License!

SAP Business One SDK – Terminology and
Packaging

1-10

You can get more information on the service marketplace via http://service.sap.com/smb.

Another valuable source of information about the SAP Business One SDK is currently the SAP
Developer's Network. You can access it under http://www.sdn.sap.com. There is a Discussion forum
where hot topics regarding the SAP Business One SDK are discussed.

Please note:

You can find additional information in Appendix 3 of this course material.

SAP Business One SDK - More Information

Visit us at:
http://www.sap.com/smb
http://service.sap.com/smb

The most important source of information for developers:
The SAP Community Network (aka SAP Developer Network):
http://www.sdn.sap.com

http://service.sap.com/smb.
http://www.sdn.sap.com.
http://www.sap.com/smb
http://service.sap.com/smb
http://www.sdn.sap.com

1-11

What you can find on SDN: People like you...

Free registration to Discussion Forums

1-12

What you can find on SDN: Technical
information...

Developer A
rea – includes:

Links to tools, artic
les, FAQ etcFAQ

1-13

What you can find on SDN: Development tools

B1 Form Checker

B1 DB Browser

B1 Test Composer

B1 Code Generator

1-14

Introducing SAP Business One SDK: Topic
Summary

You should now be able to:
Describe purpose and components of the SDK
Explain SDK packages and licenses shortly
Tell where to find further information or seek help
Use test tools available on the SAP Community Network

1-15

Introducing SAP Business One SDK: Unit
Overview Diagram

Topic 3: Introducing User Interface API

Topic 4: SAP Business One integration for SAP NetWeaver

Introduction

Topic 1: Introducing SAP Business One SDK

Topic 2: Introducing Data Interface API

Topic 5: Introduction to the Course Project

1-16

Introducing Data Interface API (DI API): Topic
Objectives

After completing this topic, you will be able to:
Explain what DI API is high-level
Tell how DI API is used
Know about DI Server
Explain the User-Defined Objects concept high-level

1-17

DI API is meant to be used by partners only!
To use the DI API, you must either use a development environment and programming language that
support Microsoft COM (component object model) technology and is released by SAP.
Alternatively – just using JavaConnector (JCo) – you can use a Java development environment like
Eclipse
The following development environments are released by SAP:

Microsoft Visual Basic .NET (or Microsoft Visual Studio 6.0)
Microsoft Visual C++ .NET (or Microsoft Visual Studio 6.0 for C++)
Microsoft C# .NET

Other development environments supporting COM technology might work but SAP does not provide
support for them. See SAP Note 615987 for a complete list of development environments released by
SAP.
Note: SDK does not contain a development environment or source code editors. This is to give you the
flexibility to choose the environment you prefer.
Supported platforms: https://websmp209.sap-ag.de/~sapidb/011000358700001241092005/
Note: SAP highly recommends that you install the latest Support Packages for the supported platforms.
See SAP Note 628155 for a complete overview of supported platforms.
The UDO feature is supported by DI API as far as meta data are concerned.

SAP Business One SDK – Data Interface API /
DIServer

SAP Business One
Company
Database

DI API
(or JCo

or DI Server)UDO

Provides objects and methods (add, update etc.) to work on data level – installing the SAP
Business One client application is not required

Provides access to business objects (e.g. master data and transactional data) and cross
functionalities (services)

Performs the same checks as the SAP Business One client application

Links existing third-party solutions “as-is”

Use COM capable development tools (e.g. Microsoft Visual Studio)

3rd Party
Application

SAP Business One

https://websmp209.sap-ag.de/~sapidb/011000358700001241092005/

1-18

Sometimes partners ask for: an option to integrate SAP Business One „screens“ into their applications;
such functionality is unfortunately not available…

Data Interface API – Use cases

There are a couple of scenarios where Data Interface API is engaged:

Data level integration of existing applications:

Easily read or write data from / to SAP Business One – when needed

Data Import / Export scenarios – which are not covered through SAP tools – and where
the capabilities of the SAP Business One application are not sufficient.

Depending on the architecture of the overall solution you might consider to use DI Server
though.

Handling data in an Add-On that uses UI API (see next unit) beyond UI API‘s capabilities.

Essentially writing data to the SAP Business One database by default requires usage of
DI API

Even though other techniques may be faster when it comes to reading data from the
database – usage of DI API is often a good choice regarding usability (no need to
request additional credentials etc) and data coherence (imagine that the required data
might be stored in various tables).

1-19

DI Server uses the same XML format as DI API – just wrapped in a SOAP „envelope“.

In addition it gets a SOAP response.

Check-out the DI Server helpfile for more details!

SAP Business One SDK – Special: DI Server

The DI Server is designed to run on a server machine and supplies a light-weight
SOAP-based access layer

Based on the DI API technology but acts as a “Server” (as a service)
Supports all business objects that are exposed by the DI API
Enables to develop SOAP-based solutions
Potential Solution to heavy duty operations (e.g. batch)
Can support larger number of clients working at the same time.

The DI Server implements a connection pooling mechanism to enhance
performance and scalability of the server.

As DI Server is a SOAP-based interface it does not limit the client to a COM
interface, but allows a wide range of possible client technologies.

Limitations:
Meta data operations not supported
Different support for transaction handling than plain DI API

1-20

The SAP Business One architecture now allows to add own Business Objects for your own purposes to
the applications object collection.

As a consequence you can register your objects to participate in some most important functionalities
(„Services“) offered by the SAP Business One application as stated above. Thus you don‘t have to
reimplement the functionality in your application needed for supplying the Search function or adding data
to the database (with some preconditions).

A lot more details will be covered in the unit dedicated to the User Defined Object feature.

We would like to emphasize that this already brings a lot of benefit to you – even without using the
Implementation DLL feature!

SAP Business One SDK – User Defined Object
(UDO)

Object Collection

Add
Find

Remove
…..

New partner
object

Register the object
for services

UDO

The User Defined Object offers partners the ability to:
Add own Business Objects to the application’s object collection.
Use the set of services that the application offers, such as:

Connect a Form to the Object; use Find, Add, and Update modes and other predefined
services.
Optionally the predefined behavior of the services can be modified and extended
through implementing a class that inherits (C++) from a business object base class in a
DLL and overriding virtual methods.

SAP Business One supports two types of main Objects:
Master Data Object
Document Object

1-21

Introducing Data Interface API (DI API): Topic
Summary

You should now be able to:
Explain what DI API is high-level
Tell how DI API is used
Know about DI Server
Explain the User-Defined Objects concept high-level

1-22

Introducing SAP Business One SDK: Unit
Overview Diagram

Topic 3: Introducing User Interface API

Topic 4: SAP Business One integration for SAP NetWeaver

Introduction

Topic 1: Introducing SAP Business One SDK

Topic 2: Introducing Data Interface API

Topic 5: Introduction to the Course Project

1-23

Introducing User Interface API (UI API): Topic
Objectives

After completing this topic, you will be able to:
Explain what UI API is high-level
Tell how UI API is used

1-24

To use UI API, you must either use a development environment and programming language that support
Microsoft COM (component object model) technology and is released by SAP.

UI API has no Java libraries

Often you also use DI API and UI API in the same Add-On / 3rd party application

The UDO feature is supported by UI API

The following development environments are released by SAP:

Microsoft Visual Studio 6.0 for Visual Basic (VB) and Microsoft Visual Basic .NET

Microsoft Visual Studio 6.0 for C or C++ and Microsoft Visual C++ .NET

Microsoft C# .NET

Other development environments supporting COM technology might work but SAP does not provide
support for them. See SAP Note 615987 for a complete list of development environments released by
SAP.

Note: SDK does not contain a development environment or source code editors. This is to give you the
flexibility to choose the environment you prefer.

SAP Business One SDK – User Interface API

SAP Business One
Company
Database

Data Interface
API

U
se

r I
nt

er
fa

ce
 A

PI

Provides objects and methods to access screen objects of the User Interface

Provides access to internal system events of the user interface

Provides ability to modify or add menus, windows, or fields

Provides one integrated user interface

Use COM capable development tools (Microsoft Visual …)

3rd Party
Application

SAP Business One

1-25

User Interface API – Use Cases

User Interface API is usually used to:

Reach a „seamless“ integration of additional functionality with SAP Business One
(usually requested by customers)

…including hooking on SAP Business One standard processes
…including adding own GUI elements into SAP Business One standard forms
…including adding own forms and plugging the corresponding data behind

Manipulate SAP Business One standard functionality (when standard options do not
apply to the customer‘s processes (or the branch the customer works in))

…including hiding SAP Business One GUI elements
…including blocking SAP Business One events

1-26

Introducing User Interface API (UI API): Topic
Summary

You should now be able to:
Explain what UI API is high-level
Tell how UI API is used

1-27

Introducing SAP Business One SDK: Unit
Overview Diagram

Topic 3: Introducing User Interface API

Topic 4: SAP Business One integration for SAP NetWeaver

Introduction

Topic 1: Introducing SAP Business One SDK

Topic 2: Introducing Data Interface API

Topic 5: Introduction to the Course Project

1-28

Introducing SAP Business One integration for
SAP NetWeaver: Topic Objectives

After completing this topic, you will be able to:
Explain the purpose of B1iSN
Tell what connectivity types it supports
Describe how to set it up
…and how to build your own scenarios
Talk about getting information about errors

1-29

“SAP Business One integration for SAP NetWeaver”
B1iSN

B1iSN – Solution for seamless integration between SAP Business One and:

SAP R/3 and/or SAP ERP (ECC 6.0) and/or SAP Business One and/or …

Key benefits of B1iSN:
Rapidly connects subsidiaries running SAP Business One to headquarters (and other
subsidiaries)
Standardizes and unifies business processes across the business ecosystem

Headquarters Headquarters

Branch Office

Customer

Acquisition

Customer

Branch Office

Subsidiary

Manufacturing
Site

Supplier

1-30

BW = Business Warehouse

Mayn connectivity types available

B1iSN Connectivity Types

B1iSN 2007 provides many of out-of-the-box
connectivity types

SAP Business One (DI, SQL)

SAP ERP (RFC / ALE/XI-PI)

SAP NetWeaver BW (RFC / SOAP)

Database systems (SQL)

HTTP any

File (CSV, Offset)

Web Services (In/Out, Sync/Async)

For each connectivity type multiple systems
can be set up (many to many)

Connectivity types are represented in B1iSN
via System Types

CSV, DSV,
Offset, IDE

SQL

DI, SQL

SOAP

RFC, ALE,
BAPI, XI

Web Services

1-31

Typical setup:

B1iSN installed on a different machine

B1iSN Simple sample for deployment

Notification Mechanism: Creating Events for change in SAP B1 (table SBO-COMMON.SEVT)
EventSender: Sending Events to SAP B1iSN
DI Proxy: The Data Channel between SAP B1 and SAP B1iSN
B1iSN Server: The Integration Server

B1
Database

Notification Mech.

DI-API

DI Proxy

Event Sender

B1 Server

B1i SN Server

B1
Database Server

B1 Server
1 Dedicated

B1i SNServer

1-32

High level – only the part in pink color is missing

B1iSN – Model Driven Integration approach

Sender ReceiverReceiverReceiver

Ad
ap

te
rs

Ad
ap

te
rs

Technical Flow Control

Technical Services
guaranteed delivery
in-order-processing
tracing, logging
job scheduling
transactional control

Building Blocks

data enrichment
primary key handling
receiver determination

error handling
value mapping
value defaulting

Actual development
effort

structural mapping
BIU

1-33

Graphical overview of BizStep

A green box says that a specific element is relevant and correct.
A yellow box show elements that are “not correct”
A red box is displayed in case the item relevant for the scenario, mandatory but not yet
specified or missing in the repository.

Object MyPO to be created

System Ext property to be
defined

1-34

Message Log – shows what is going on:

What went well

Whether problems arised

Click on the hyperlink to see the „message“ at this stage

B1iSN Server: Monitoring during Runtime –
Message Logs

1 The list of Message Logs can
be limited for the following
parameters

Time range
Sender / Receiver System
Sender / Receiver Object
Sender / Receiver Object
Status

The logging functionality should be switched
off in the productive environment. As per
process step a copy of the processed
message is created and stored – messages
with status failure are created always – even
if the logging is switched off

As a result we have Message
Logs with the Status “Success”
– there is no further need for
paying attention
Furthermore Messages with
status “Failure” are logged –
here it is necessary to further
investigate on the failure root

2

1-35

Introducing SAP Business One integration for
SAP NetWeaver: Topic Summary

You should now be able to:
Explain the purpose of B1iSN
Tell what connectivity types it supports
Describe how to set it up
…and how to build your own scenarios
Talk about getting information about errors

1-36

Introducing SAP Business One SDK: Unit
Overview Diagram

Topic 3: Introducing User Interface API

Topic 4: SAP Business One integration for SAP NetWeaver

Introduction

Topic 1: Introducing SAP Business One SDK

Topic 2: Introducing Data Interface API

Topic 5: Introduction to the Course Project

1-37

Course Project Introduction: Topic Objectives

After completing this topic, you will be able to:
Explain the course project

1-38

Course Project - Description: Video Library
Module

Business case:
Add a small module that will enhance SAP Business One application
functionality to manage a video library.

Features:
A movie is consider as an Item with some specific properties
Add a new DVD
DVD Availability Check
Rent DVD
Return DVD

Within the Course Project we will create an Add-On using UI API and DI API.

The following slides show how these forms could look like…

1-39

After you have passed the UI API section of this course you may have a couple of ideas how to improve
this form. You are encouraged to try to apply them!

Course Project – Add New DVD

A Movie is considered as an Item Master Data with some specific properties.
Adding a DVD will insert an item master data as well. DVD Code = Item Code…

1-40

After you have passed the UI API section of this course you may have a couple of ideas how to improve
this form. You are encouraged to try to apply them!

Course Project – DVD Availability Check

Check the DVD availability before rental.

1-41

After you have passed the UI API section of this course you may have a couple of ideas how to improve
this form. You are encouraged to try to apply them!

Course Project – Rent/Return DVD

Rent DVD: The stock no. of DVD will decrease.

Return DVD: The stock no. of DVD will increase.

1-42

After you have passed the UI API section of this course you may have a couple of ideas how to improve
this form. You are encouraged to try to apply them!

Course Project - Display “Movies Rental
History” on Item Master Data

A Movie is considered as an Item Master Data The form displays a list of the
movie Rental.

1-43

Course Project Introduction: Topic Summary

You should now be able to:
Explain the course project

1-44

Introduction: Unit Summary

You should now be able to describe and explain:
The SAP Business One Software Development Kit
The components of the SAP Business One Software Development Kit
How to use SDK in general
Data Interface API
User Interface API
How SAP Add-Ons and applications use SDK
SAP Business One Integration for SAP NetWeaver

1-45

Course Project – Exercises

Unit: Introduction

Topic: Specification for the Course Project

The following pages contain details about the functionality you should
implement in the Course Project:

Add Meta Data (additional user defined fields to the SAP Business
One company database)and Master Data

Create new Menus and Forms for your add-on

Create an Add-On (which will be running “inside” SAP Business
One) which will allow you to control your DVD Store

Create an installer for this Add-On

You want to develop additional functionality for SAP Business One.

Add a small module that will enhance SAP Business One application
functionality to manage a DVD Store.

Pre-requisite: Use a non-continuous stock system

Pre-requisite: For usability we will only stock 1 DVD per title

1-1 Adding MetaData

1-1-1 Add the following UserFields to the Item Master Data Table (OITM).

Aisle Number – Indicates in which aisle the movie is stored.

Field Name: AISLE
Field Description: Aisle Number

Field Type: db_Numeric
Field EditSize: 2

Rented – Indicates weather the movie is rented or not.
Holds 2 “valid values”: Y/N.

Field Name: RENTED
Field Description: Rented/Available
Field Type: db_Alpha

Field EditSize: 1

1-46

CardCode – In case the movie is “Rented”. This field will hold the
CardCode of the customer who rented it otherwise it will be empty.

Field Name: CARDCODE

Field Description: Card Code

Field Type: db_Alpha

Field EditSize: 20

1-2 Define settings for master data

1-2-1 Open the Item Groups table in SAP Business One. You can find this
under Administration -> Setup -> Stock Management -> Item Groups.
Define the DVD categories you wish to use e.g. Horror, Comedy, Drama,
Animation, Romance, Science Fiction etc.

1-2-2 Create three new price lists and assign the associated fixed prices for the
DVDs depending on the price list set. The window can be found under
Stock Management -> Price Lists - > Price Lists. Price list are called

Weekly rental

1 night rental

3 night rental

1-3 Creating DVD Store Add-On

1-3-1 Create a new project and add the UI API and the DI API to the project
references.

1-3-2 Connect with your Add-On to the UI and to the DI API using the multiple
add-on feature.

1-3-3 Add the following Menu Items to SAP Business One Menu collection:

Sub Menu: DVD Store

Menu Items: Members Master Data

DVD Master Data

DVD Availability Check

Rent DVD

Return DVD

1-47

1-3-4 Members Master Data Form

1-3-4-1 Each new DVD store member is represented by an entry in
OCRD (Business Partner Master Data)

 -3-4-2 Functionality: When clicking on the Members Master Data
menu the Business Partner Master Data form opens – this is the
standard SAP Business One form.

1-3-4-3 Add some new DVD store members.

1-3-4-4 Additional Functionality: Add a new tab to the Business
Partner Master Data form called ‘Rental History’. Create a
matrix on this new tab – this will record the DVDs previously
rented by this customer. Display Invoice No, Date and DVD
name for all previous rentals by this customer. The screen
should look as follows:

 Hint: You will need to query the Invoice tables

1-3-4-5 Functionality: Allow the user to sort by DVD Name

1-3-5 Add DVD Form

1-3-5-2 Each new DVD is represented by an entry in OITM (Item
Master Data). Each time we add a new DVD we will also add a
Goods Receipt to add the new DVD to Stock. Therefore it is
more efficient to create our own user form.

1-48

1-3-5-2 Functionality: Draw the “Add New DVD” form (do it through
code or use the screen painter).

1-3-5-3 Functionality: When the user clicks on Add a new Item will be
created in OITM via the DI.

ItemCode = DVD Code

ItemName = DVD Name

U_AISLE = DVD Aisle

ItemGroup = DVD Category

Price List = DVD Price List (Weekly, 1 night rental, 3 night
rental)

1-3-5-4 Also via the DI create a Goods Receipt (oInventoryGenEntry)
to add the new DVDs to stock

Price List = DVD Price List

ItemCode = DVDCode

Quantity = No. of DVDs. For ease of usability we will only add
1 DVD per title.

1-49

1-3-6 DVD Availability Check Form

1-3-6-1 This was already partly created in the UI Exercises so you can
reuse some of the code. This form will allow you to search for
a particular DVD and check it’s availability.

1-3-6-2 Functionality: Draw the “DVD Availability Check” form (do
it through code or use the screen painter).

1-3-6-3 Note all are Edit Text except:

1-3-6-3-1 DVD Name is linked to a Choose from List
(OITM)

1-3-6-3-2 DVD Category is a combo box linked to Item
Groups already defined

1-3-6-4 Functionality: Data bind each field to it’s associated column in
the database (DBDataSource = OITM)

1-3-6-5 Functionality: When clicking on the Choose button or
selecting tab in DVDName a Choose from List window will
open with all available DVDs from the OITM table in the
database. Select the DVD you want to view and the remaining
fields will be auto filled based on that selection.

1-3-6-6 Functionality: When clicking Rent DVD the Rent DVD
window opens.

1-50

1-3-7 Rent DVD Form

1-3-7-1 This form will enable the use to rent a particular DVD to a
member. Rental is different from normal sales process. A
virtual warehouse will be created for those rented DVD. When
a DVD is rented, this DVD will be transferred from main
warehouse to the virtual rented warehouse with stock transfer,
and a manual JE similar to A/R invoice or a service invoice
will be added via the DI. Once the DI manual AR JE or Service
Invoice has been added we will use the UI to open the
Incoming Payment screen, select the Customer and select the
Payment Means so the Payment can be completed by the user.

1-3-7-2 Functionality: Draw the “Rent DVD” form (do it through code
or use the screen painter).

1-3-7-3 Functionality: Customer (OCRD) and DVD (OITM) are both
combo boxes and should be automatically filled when the form
is open. (Hint: use RecordSet)

1-3-7-4 Functionality: User selects Customer and DVD Name. When
the user clicks on Rent
- Stock level: A stock transfer of this DVD with Quantity of 1
will be added from main warehouse to rented warehouse via
the DI API.
- Financial level: A manual AR JE or AR service invoice will
be added via the DI API.

Hint: Ensure error checking is done e.g. DVD is available to
rent, Combo boxes have been selected etc.

1-3-7-5 Functionality: Store the CardCode and DocNum of the newly
added Invoice in two variables (Hint: use GetNewObjectCode
method to retrieve DocNum)

1-51

1-3-7-6 Functionality:Via UI:

1-3-7-6-1 Open the Incoming Payment window by simulating
a click on the Incoming Payment menu under
Banking.

1-3-7-6-2 Fill the Code field on the Incoming Payment screen
with the Customer value you saved in the variable
when Invoice was added via the DI. The invoices to
be paid will appear in the Matrix.

1-3-7-6-3 Loop through the rows (Invoices) in the matrix
until value in DocNum cell equals the value in the
DocNum variable saved after adding the Manual
AR JE or AR Service Invoice via DI.

1-3-7-6-4 When matching DocNum is found select the
Selected checkbox.

1-3-7-6-5 Simulate a click on the Payment Means icon.

1-3-7-6-6 The user will now be able to process the Payment
for the DVD rental.

1-3-7-7 Functionality: Via DI Update OITM as DVD is now rented

U_Rented = Y

U_CardCode = Customer

1-3-8 Return DVD Form

1-3-8-1 This form will enable the use to return a DVD to the store. It
will create a Goods Receipt via the DI to return DVD to stock
also.

1-3-8-2 Functionality: Draw the “Return DVD” form (do it through
code or use the screen painter).

1-52

1-3-8-3 Functionality: User selects DVD Name. When the user clicks
on Return a Stock Transfer for the DVD (OITM) being
transferred from Rented warehouse to Main warehouse via the
DI API. This DVD will then be returned back into stock

Hint: you will need to check what customer is currently renting
the DVD first.

1-3-8-4 Functionality: Via DI Update OITM as DVD is now back in
stock.

U_Rented = N

U_CardCode = “”

1-4 Add-On Administration

1-4-1 Create and installation package for your Add-on. (Use the SAP Business
One Development Environment (B1DE) toolset for this purpose)

1-4-2 Create an ard file. (Use B1DE – and try “manually”)

1-4-3 Register your Add-On.

1-5 License

1-5-1 Request a BASIS license for you add-on and include the Add-On
Identifier in your code.

2-1

This unit is a short outline and will give you an overview on component level.

In addition it will show how SAP uses the SDK for extensions (i.e. „Add-Ons“) to SAP Business One.

The Data Interface API

Contents:
The The Data Interface API (DI API)
Architecture and Compatibility
Object types

Business Objects
“Services”
Other Objects

Usage
Examples
Java Connector (short Intro), DI Server (short Intro)

2-2

The Data Interface API: Unit Objectives

At the conclusion of this unit, you will be able to:

Describe what the Data Interface API is
Explain how the Data Interface API exchanges data with SAP Business One
Use the most important objects of the Data Interface API

2-3

1 Course Overview

2 SDK Introduction

3 The Data Interface API (short look on JCo + DI Server)

4 User-Defined Objects (UDO)

5 The User Interface API

6 Packaging, Add-On Administration and Licensing

2 4 66

Course Overview Diagram

Client

Server

Server

SAP Business One
Database

SAP Business One3rd Party
Application

Ja
va

 C
o

Data Interface
API

License
Service

UDO

DI Server

U
se

r I
nt

er
fa

ce
 A

PI

1

5

3 3

2-4

The Data Interface API: Business Example

Due to the specified requirements you need to add functionality outside
the SAP Business One application.

For this purpose, you use the SAP Business One Data Interface API.

2-5

DI API Introduction: Unit Overview Diagram

Topic 3: Non-Business Objects

Topic 4: Meta Data Objects

Topic 5: DI API Services

Topic 6: Java Connector (optional)

The Data Interface API

Topic 1: DI API Introduction

Topic 2: Business Objects

Topic 7: DI Server (optional)

2-6

DI API Introduction: Topic Objectives

At the conclusion of this topic, you will be able to:
Explain the architecture of the DI API
Describe how compatibility is implemented
Categorize available objects
Explain the key features of DI API
Describe details regarding connection to a company

2-7

This slide provides details about the software architecture of the data interface API (DI API): The
business functions are included in an implementation layer (OBServerDLL.DLL). The DLL is based
on existing source code of the SAP Business One client, that is, the business objects of the SAP
Business One client were copied to this DLL.

You can access the business objects of the SAP Business One client by addressing the interface layer,
which is represented by the SAPbobsCOM.DLL. In addition to the existing business objects, you can
also address more generic objects such as the RecordSet object.

DI API Introduction – General Architectural
Principle

Implementation Layer
(OBServerDLL.DLL)

3rd Party Application

Interface Layer
(SAPbobsCOM.DLL)

• Based on COM technology
• Exposes the business objects and implements additional,

generic objects, such as RecordSet

• Based on existing source code of SAP Business One client
I.e. checks are the same as in the SAP Business One application

• Implements business objects and database connectivity

2-8

The Data Manager stores temporary object data, converts object data to internal data formats, retrieves
data from the database, and controls the database transactions.

The Schema Generator creates XML schemas based on object interface descriptions. The schema
generator also creates object validation lists.

The DI Core, which is the main component of the DI API, performs all the data logic operations.

The COM Interface provides the interface to the add-on application.

The DI API uses the OBServerDLL.dll component that performs all the business logic operations.
(The OBServerDLL.dll component is not a part of the DI API package, but is distributed with the SAP
Business One application.)

The DI API is a wrapper to the OBServerDLL.dll

Please note:

Not only the same business logic as you can find in the SAP Business One application applies when DI
API is used, but also all the permissions set for the user will allow or disallow particular transactions –
just as it will be in the application!

DI API Introduction – DI API Software
Architecture

Client(s) Server

Sbo-Common
Database

Common
Database

Company
DatabaseO

B
Se

rv
er

D
LL

.d
ll

DI API

COM Interface

DI Core

Data
Manager

Schema
Generator

3rd Party
Application

2-9

DI API version should be equal to the company version or smaller than that. (For example: If the
company version is 8.8 than the DI API version can be 2007 or 8.8) Maximum = the company
version

Observer DLL version will be equal to company version.

In detail (if the referenced version of DI API is installed on the client PC):

An Add-On application using DI API 2007 can connect to any company database of version 2007 or
8.8

An Add-On application using DI API 8.8 can connect to any company database of version 8.8, but
not of version 2007

Please note:

For the RecordSet object compatibility may change due to incompatible changes in database structure.

DI API Introduction – Side by Side model

Add-On Reference Sbo-Common DB Company DB

Client

DI API 2007 Observer.dll 2007 Version 2007

DI API 8.8 Observer.dll 8.8 Version 8.8

Server 2

Server 1

3rd Party
Application

3rd Party
Application

2-10

Objects in DI API can be divided into three basic groups:

Business Objects

Infrastructure Objects

Special Objects

DI API Introduction – Object Categories

Business Objects
Master Data Objects

BusinessPartners
Items
…

Transactional Data Objects
Journal Entries
Documents: Order, Invoice,…
…

Infrastructure Objects
Company object
Extended Functionality Objects

RecordSet
DataBrowser
SBObob

Meta Data Objects
UserTablesMD
UserKeysMD
UserFieldsMD
UserObjectsMD

Special Objects
Service Type Objects

CompanyService
AccountsService
BusinessPartnersService
FormPreferencesService
MessagesService
ReportLayoutsService
SeriesService
...

Definition Objects related to SAP
Business One GUI

ChooseFromList
DynamicSystemStrings
Formatted Searches
MultiLanguageTranslations
UserQueries

2-11

A lot of business objects contain collections of additional objects like UserFields and more

UserFields

Browser (DataBrowser)

ContactEmployees

Addresses (BPAddresses)

AccountReceibablePayables (BP AccountReceibablePayables)

BPPaymentMethods

BPWithholdingTax

BPPaymentDates

BPBankAccounts

BusinessPartners

DI API Introduction – Business Objects

Example: Object model of the BusinessPartners Master Data Object

Represent records in the SAP Business One company database – often distributed across
multiple tables
Represent the functionality of the SAP Business One application
Provide access to data and enable to modify the data (GetByKey, Read, Add, Update,
Remove,…)
Rules and checks (including authorizations) apply – regardless whether data are handled
through the application or DI API / DI Server Business Objects

2-12

DI API Introduction – Service Type Objects /
Services

DI Services / Service Type objects are meant to reflect the concept of Service-Oriented
Architecture (SOA) in the SAP Business One world.

The DI Services provide interfaces to additional logic within SAP Business One, which is
not necessarily encapsulated in a business object.

The main service is CompanyService:

It allows to manage administrative data of a company.

For example, you can update the Administration data (OADM) or Company data (CINF) or
create new Posting Periods (OACP) or update Finance Periods (OFPR).

2-13

The Company object is the main object of the Data Interface API.

The RecordSet object allows to run SQL queries to retrieve data.

Re Recordset:

Because the database tables are accessed directly, testing (and probably changes) must be done after
upgrading SAP Business One because the database structure might have been changed.

The DI API Recordset object has nothing to do with e.g. ADO Recordset etc.

DI API Introduction – Infrastructure Objects

The Infrastructure objects do not represent SAP Business One data.

Company object
Represents an SAP Business One Company database on Microsoft SQL Server
Use this object to access the other objects in DI API

Extended Functionality Objects
Recordset Used to run SQL queries and stored procedures
DataBrowser Enables data navigation trough records of a certain object Type

(e.g. business partners) in conjunction with Recordset
SBObob Exposing extended / supplemental functionality

Meta Data Objects
UserTablesMD Create user tables
UserKeysMD Define an index for a user table
UserFieldsMD Create user fields (add to SAP Business One tables or user tables)
UserObjectsMD Define User Defined Objects

2-14

The Company object is the main object of the Data Interface API. You have to use a method of the
Company object to connect to an existing SAP Business One database. Correspondingly, you can also
disconnect your application from that database. When you have established a connection, you can
access data in the corresponding SAP Business One database for the Company object.

Using the corresponding methods of the Company object, you can also create logical units of work or
global transactions, which span more than one business object.

Moreover, the Company object provides methods to extract a business object.

You can find more information about the components of the Company object in the obsCOM help file.

DI API Introduction – Company object

The Company object…
Represents an SAP Business One database
Is used to establish a connection to a Microsoft SQL Server database

Use it to …
Access Data in an SAP Business One database
Connect to and disconnect from a customer database
Start and end global transactions
Work with XML data

Company

2-15

This slide focusses on the database connection part when connecting to a company database with DI
API!

In addition you always have to supply the SAP Business One user code + password into the properties
UserName and Password!

In case the connect method fails:

Check all the properties.

Use the “GetLastError” method to retrieve the error code and string. You can find details about the
error code in the SDK documentation.

Reassign OBSCommon user (note# 694413).

DI API – Database connect (prior to version 8.8)

UseTrusted

TrueFalse

(default)

Connect with DB user.

Change values for the following properties:

DBUserName, DBPassword.
UseTrusted = False

DBUserName = “<Valid DB user (e.g. sa)>”

DBPassword = “<The password>”

Connect with Windows
user account (MSSQL
only!).
Change value for the
following property:
UseTrusted = True

Relevant Properties:
UseTrusted
DBUserName
DBPassword

Please note:
Starting with B1 8.8 DB credentials are kept centrally – and are administrated via License Service.

For backward compatibility reasons DI API still supports supplying credentials for connection.

2-16

To run an Add-On application, you must first establish a connection to a database. The code for the
connection is fairly simple as shown on this slide.

Follow these steps to establish a connection to a database:

Define variable for the Company object.

Initialize the Company object.

Set connect (server) data.

Set AddOn identifier

you must have a fully-licensed development environment to use this (including SDK Dev license
or solution license for your AddOn) - not available in evaluation environment

Details will be discussed later

Don’t set AddOnIdentifier, if running on evaluation

Connect to SAP Business One.

Execute error handling.

To use SAPbobsCOM.DLL, you have to set a reference. In Visual Studio 98, for instance, you can do
that in Project References.

Please note that some properties are optional.

DI API Introduction – Log On

Dim oCompany As SAPbobsCOM.Company
Dim lRetCode, lErrCode As Long
Dim sErrMsg as String

'Instantiate a Company object
oCompany = New SAPBobsCOM.Company
oCompany.Server = "(local)"
oCompany.CompanyDB = "SBODemo_US"
oCompany.UserName = "manager"
oCompany.Password = “<manager password>“
‘Please note: Log on to SAP Business One with password
‚ „manager“ after creation – you will be asked to change it;
‚ password identical to user name is not permitted
oCompany.Language = ln_English

‘Set AddOn identifier – a long string with numbers; identifies
‘your Add-On against License Service … optional!
‘oCompany.AddOnIdentifier = “fill in your Add-On Identifier here”

lRetCode = oCompany.Connect()

'Check Return Code
If lRetCode <> 0 Then

oCompany.GetLastError(lErrCode, sErrMsg)
End If

lRetCode = oCompany.Connect()

Object:

Company

Methods:

+Connect()
…
Properties:
Server
ServerType (opt.)
CompanyDB
UserName
Password
DBUserName (comp.)
DBPassword (comp.)
Language (opt.)
UseTrusted (comp.)
AddOnIdentifier (opt.)
…
(comp.) := kept for backward

compatibility

2-17

DI API Introduction – Error Handling in DI API

There are two ways you must be prepared to handle errors:
Return Code + GetLastError
Use the return value of some methods to verify the result of the execution, such as
Add, Update, Remove…
Use GetLastError method of the Company object to retrieve the last error message
and code issued by any object related to the Company object

AND

Exception Handling
Some objects will throw an exception.

In VB, we can use “On Error GoTo ErrorHandler” to process these errors – or Exception
handling (try / catch in .NET incl. VB .NET).

Exception can be raised by methods and properties (e.g. type mismatch)

2-18

Connecting has already been practiced in the introduction unit…

DI API Introduction: Topic Summary

You should now be able to:
Explain the architecture of the DI API
Describe how compatibility is implemented
Categorize available objects
Explain the key features of DI API
Describe details regarding connection to a company

2-19

DI API Introduction: Exercise

You should create a new Microsoft Visual Studio.NET
project for VB.NET and practice the first exercise:

Connect to a SAP Business One company database using DI
API…

2-20

Business Objects: Unit Overview Diagram

Topic 3: Non-Business Objects

Topic 4: Meta Data Objects

Topic 5: DI API Services

Topic 6: Java Connector (optional)

The Data Interface API

Topic 1: DI API Introduction

Topic 2: Business Objects

Topic 7: DI Server (optional)

2-21

Business Objects: Topic Objectives

At the conclusion of this topic, you will be able to:
Describe what business objects are
List the most important methods of business objects
Explain how to read or write a business object from or to an XML file
Design a transaction involving more than one business object
Tell how to get notified on changes in business objects

2-22

Let us look at the business partner as an example for business objects:

Besides the object itself and all the properties that represent single data in the record in the database, it
contains a larger number of properties that represent „sub-objects“ in the database stored in different
tables.

In this case these „sub-objects“ represent also the tabs / folders on the Business Partners master data
form.

The layout of other business objects is similar to this.

Business Objects: Business Partners

Represents the business partners record in SAP Business One

Use this object to add, find or update business partners

You can use it also to handle additional user-defined fields

UserFields

Browser (DataBrowser)

ContactEmployees

Addresses (BPAddresses)

AccountReceibablePayables (BP AccountReceibablePayables)

BPPaymentMethods

BPWithholdingTax

BPPaymentDates

BPBankAccounts

BusinessPartners

2-23

First of all, we want to add a business partner to the company database (to which we have connected
before).

In a first step, you have to create an instance of the business partner object. For this purpose, you use
the GetBusinessObject method of the Company object.

Then, you can provide the attributes of the business partner. You have to provide at least the
mandatory attributes. In this case you have to provide the CardCode property. The built-in auto-
complete procedure completes the default values of the other properties.

In a last step, you call the Add method to create a new business partner record in your Company
database.

Please note that GetBusinessObject returns a generic „Object“ that needs to be casted to the real object
class in other (non-VB!) programming languages!

Business Objects Example: Add Business
Partner

'First connect to database (see Log on sample)
…
'Some variables:
Dim oBP As SAPbobsCOM.BusinessPartners
Dim lRetCode, lErrCode As Integer
Dim sErrMsg As String

‘Prepare empty oBP Object:
oBP = oCompany.GetBusinessObject(oBusinessPartners)

oBP.CardCode = "C08154711"
oBP.CardName = "James Tiberius Kirk"
oBP.CardType = cCustomer
'…

‘Add the new BP to the database
lRetCode = oBP.Add()

If lRetCode <> 0 Then
oCompany.GetLastError(lErrCode, sErrMsg)
MessageBox.Show("Error: " sErrMsg + “; Code: “ + lErrCode)

End If

2-24

Examples of business objects include the following:

Product tree objects

Items (represents Master Inventory Items record in SAP Business One)

Business partners

Documents (represents the Sales and Purchase documents)

Payments object

Using the SaveXML method, an object can be extracted and saved as an XML file. XML data can also
be imported using the Company object .

Business Objects: Standard Methods

Object:
<Business Object>

Properties:
Browser
<Lines>
…

Methods:
+Add
+GetByKey
+Remove
+SaveXML
+Update
…

Add a new Object
Get the object by key
Remove the object (if possible)
Save the object as XML file
Update the object

Allows navigation/browsing over records
Different types of Lines occurr in a lot of objects

2-25

Often business objects refer to Line objects.

Examples of Line objects include the following:

Addresses of business partners (BPAddresses)

ItemWarehouseInfo contained in Items

Document lines (Document_Lines object)

Payment Accounts (Payments_Accounts Object)

Almost all line objects have the following methods:

Add (add a new line object, for example, add an alternate address for a business partner

SetCurrentLine (set the current line within the collection of line objects). The count starts from zero.

Business Objects: Standard Methods: Line
Objects

Properties:
…

Methods:
+Add
+SetCurrentLine

Add a new record
Set the current line

Object:
<Lines object>

2-26

Business Objects: Line Object Example

'First connect to database (see Log on sample)
'…
‘Variables:
Dim oBP As SAPbobsCOM.BusinessPartners = _

oCompany.GetBusinessObject(SAPbobsCOM.BoObjectTypes.oBusinessPartners)
Dim lRetCode As Integer

If oBP.GetByKey(“C08154711”) = True then ‘here we use an existing record…
‘First line is always prepared (in any business object that has lines…)
oBP.ContactEmployees.Name = "John Cash“

‘Prepare / declare 2nd line… (automatically positions on new line)
oBP.ContactEmployees.Add() ‘No change in DB here – therefore will work always…
oBP.ContactEmployees.Name = “John Walker“

‘Please note: In case you need to position on particular line…
‘oBP.ContactEmployees.SetCurrentLine(<0-based line no.>)

‘Write changes to DB now…!
lRetCode = oBP.Update()
If lRetCode <> 0 Then
…

End If
Else

MessageBox.Show(„Business Partner C08154711 not found!“)
End if

Here, we have an example for a line object of the business partner object: You can add several contact
employees to the business partner record. To do so, you first have to add a Contact employee row
using the corresponding Add method.
In a second step you set the current line in the contact employees array. Then you can provide the
contact employee properties.

2-27

UserFields

Browser (DataBrowser)

PriceList (Items_Prices)

WhsInfo (ItemWarehouseInfo)

Items

Business Objects: Items

Represents Master Inventory Items record

Enables you to add, update, or find an items record

The Items object represents the Master Inventory Items record in SAP Business One.
The Items object enables you to add, update, or find an items record.

2-28

Lines (Document_Lines)

Browser (DataBrowser)

UserFields

Documents

WithholdingTaxData

Expenses (DocumentsAdditionalExpenses)

Business Objects: Documents

The Documents object represents the header of SAP Business One Sales and Purchase
Documents

It contains the master header data for the document such as CardCode, Address, Document
Date, Document Total etc.

2-29

This code sample shows how to add an order containing two lines to the SAP Business One database.

Documents - Create an Order

Dim oOrderDoc as SAPbobsCOM.Documents

oOrderDoc = oCompany.GetBusinessObject _

(SAPbobsCOM.BoObjectTypes.oOrders)

' set the business partner code

oOrderDoc.CardCode = "C20000"

' set the documents due date - mandatory

oOrderDoc.DocDueDate = Date

' First line (no need to add line)

oOrderDoc.Lines.ItemCode = "A00001"

oOrderDoc.Lines.Quantity = 1

' Second line

' first prepare empty line for the second line

oOrderDoc.Lines.Add()

oOrderDoc.Lines.ItemCode = "A00002"

oOrderDoc.Lines.Quantity = 1

' Adding the new order document

Dim RetVal As Long

' Add Order to the database

RetVal = oOrderDoc.Add()

' Check if Add method succeeded

If RetVal <> 0 Then

oCompany.GetLastError(lErrCode, ErrMsg)

MessageBox.Show(lErrCode & " " & sErrMsg)

End If

2-30

Here you can see how to reference (note rectangles in the code) the order added on slide before in an
Invoice to be added to the SAP Business One database right now.

Do you remember how this can be done inside the SAP Business One application?

' Second line; first: prepare line

oInvoiceDoc.Lines.Add()

oInvoiceDoc.Lines.BaseType = _

SAPbobsCOM.BoObjectTypes.oOrders

oInvoiceDoc.Lines.BaseEntry = CInt(OrdCodeStr)

oInvoiceDoc.Lines.BaseLine = 1

oInvoiceDoc.Lines.TaxCode = "LA"

' Add Invoice to the database

RetVal = oInvoiceDoc.Add

' Check if Add method succeeded

If RetVal <> 0 Then

oCompany.GetLastError(lErrCode, sErrMsg)

MessageBox.Show(lErrCode & " " & sErrMsg)

End If

End Sub

' Create Invoice

Sub CreateInvoiceDocument()

' Get the DocNum for the new added order added on
slide before…

Dim OrdCodeStr As String

oCompany.GetNewObjectCode (OrdCodeStr)

' Get the required business object

Dim oInvoiceDoc As SAPbobsCOM.Documents

oInvoiceDoc = oCompany.GetBusinessObject

(SAPbobsCOM.BoObjectTypes.oInvoices)

' set the business partner code

oInvoiceDoc.CardCode = "C20000"

' set the document’s due date - mandatory

oInvoiceDoc.DocDueDate = Date

' First line (always there…)

oInvoiceDoc.Lines.BaseType =
SAPbobsCOM.BoObjectTypes.oOrders

oInvoiceDoc.Lines.BaseEntry = CInt(OrdCodeStr)

oInvoiceDoc.Lines.BaseLine = 0

oInvoiceDoc.Lines.TaxCode = "LA"

Documents – Create an Invoice (based on the
order)

2-31

Working with XML – Motivation

A Technique of saving and loading data

XML Advantages
Enable exchanging large-scale data between SAP Business One company
database and customer’s database (regardless of the database type)
Standard
Cheap
Convenient

2-32

Working with XML – Relevant methods and
properties

Company object
oCompany.GetBusinessObjectFromXML (FilePath_OR_XMLString, Index)
oCompany.GetXMLelementCount (FilePath_OR_XMLString)
oCompany.GetXMLobjectType (FilePath_OR_XMLString, Index)
oCompany.GetBusinessObjectXmlSchema (ObjectType)

XML export type – determines whether or not e.g. to export read-only data
oCompany.XmlExportType = e.g. xet_ExportImportMode
Please note: ONLY with xet_ExportImportMode data are exported in a manner that
allows to import them again.

Working with XML as an XML string (not as an XML file)
oCompany.XMLAsString = True

Business objects
oBusinessObject.SaveXML (FilePath_OR_XMLString)
oBusinessObject.Browser.ReadXML (FilePath_OR_XMLString)
Use ReadXML to update an existing object

Taken from the DI API documentation (SDK HelpCenter):
XmlExportType – Valid Values:

xet_AllNodes
Export to XML all fields (both read only and read/write fields) from the database.
(XML files cannot be read using ReadXml or GetBusinessObjectFromXML.)

xet_ValidNodesOnly
Export to XML only valid fields that support XML import (read/write fields only) from the database.
(XML files cannot be read using ReadXml or GetBusinessObjectFromXML.)

xet_NodesAsProperties
Export to XML all fields as properties from the database.
(XML files cannot be read using ReadXml or GetBusinessObjectFromXML.)

xet_ExportImportMode
Export to XML only valid fields that support XML import and export (read/write fields only that do not

contain null values) from the database.
(XML files CAN be read by the ReadXml or GetBusinessObjectFromXML method.)

2-33

You can save business object data in XML format in order to use them outside of SAP Business One.

To create an XML file, you call the SaveXML method of the corresponding business object.

Working with XML – Example: SaveXML

'First connect to database…

Dim oBP As SAPbobsCOM.BusinessPartners = _
oCompany.GetBusinessObject(SAPbobsCOM.BoObjectTypes.oBusinessPartners)

oCompany.XmlExportType = SAPbobsCOM.BoXmlExportTypes.xet_ExportImportMode

…

If (oBP.GetByKey("C20000“) = False) Then
MessageBox.Show("Failed to find the business partner")

Else
oBP.SaveXml ("c:\temp\BP_" + oBP.CardCode + ".xml")

End If

2-34

When reading master data items from an XML file, you can use several methods of the Company
object to access the type and the number of items in the XML file:

GetXMLelementCount returns the number of items in the XML file.

GetXMLobjectType retrieves the item type of a specific item in the XML file.

GetBusinessObjectFromXML returns the attributes of a specific business object.

Working with XML – Example: Business
Partner from XML

Dim sFileName As String = "c:\temp\BPs.xml“
Dim lEcount, ii As Long

'Get the number of Business object in the file ...
lEcount = oCompany.GetXMLelementCount(sFileName)

'Loop through the objects; when finding the first BusinessPartner
'object: load it, add it to the DB.
For ii = 0 To lEcount–1
If oCompany.GetXMLobjectType(sFileName, ii) = _

SAPbobsCOM.BoObjectTypes.oBusinessPartners Then

‘”Read” the Business object data into the object…
‘Please note:
‘If the format is not OK you might run into an exception!
oBP = oCompany.GetBusinessObjectFromXML(sFileName, ii)

iRetVal = oBP.Add()
‘…handle error…

End If
Next ii

2-35

When a data operation is performed on a business object, a transaction is started. The SAP Business
One database uses transactions to keep the data consistent. If the operation is successful, then a
Commit operation is issued and the data is saved. If the operation fails, then a rollback operation is
started and the data is discarded. If the data operation is performed on a single business object, all this
is done automatically.

If you want to perform database actions that must be divided into several steps, you can use
StartTransaction method to start a series of operations.

When a global transaction is started with StartTransaction, the business objects use this global
transaction. If one of the business objects fails during any process, the transaction ends and an
automatic rollback operation is started. When the transaction is successful, you must use the
EndTransaction method to free the locked records and allow other users access to them.

Use the „InTransaction“ property in case you are not sure about the status of the transaction.

Transaction Handling: Overview

The Data Interface API supports two different types of transactions:

Single Transaction (default)
Each data operation performed on a business object starts a transaction
Depending on the result (success or failure), the system automatically issues a commit or a
rollback

Global Transaction
Allows perform several data operations and then a full commit or rollback based on specific criteria.
If any of the data operations fails the global transaction will be rolled-back entirely
Start and end of global transaction can be managed by using the Company object:
oCompany.StartTransaction()
Boolean oCompany.InTransaction
oCompany.EndTransaction([wf_RollBack / wf_Commit])

2-36

Transaction Handling: Flow Chart of Global
Transactions

Start Transaction

Run a list of
operations on the DB

Did ALL
operations
succeed?

NO!

At least one operation failed

Yes? …then
you can still

choose:

Rollback? Commit?

Automatic Rollback already
happened, Transaction has

been terminated

End Transaction

Stop processing and handle
error!

Please note: “InTransaction”
property of Company object
holds info whether or global

transaction is still active.

If you use the StartTransaction method you have to commit or roll back the transaction using the
EndTransaction method… if nothing went wrong in between.

2-37

DIEventService: https://www.sdn.sap.com/irj/servlet/prt/portal/prtroot/docs/library/uuid/53cefa6a-
0a01-0010-cd8e-e7c189cb6519

SBO_SP_TransactionNotification article:
https://www.sdn.sap.com/irj/servlet/prt/portal/prtroot/docs/library/uuid/e991e2b9-0901-0010-0395-
ef5268b00aaf

Links may have changed in the meantime though…

Any synchronization issues – or issues with credentials will have to be considered carefully; usually
registering the incoming „events“ and processing them asynchronously should resolve that issue – just
like it is handled in the SAP Business One integration package.

Motivation
There are no DI API data-driven notifications (only FormData events in the UI API
– see next Unit)
Adding SQL triggers or Stored Procedures at the database level is not permitted!

Solution
Add some code inside the stored procedures called
SBO_SP_TransactionNotification (or SBO_SP_PostTransactionNotice).
The DI EventService tool (on SDN) proposes a ready to use solution based on the
SBO_SP_TransactionNotification.

Important remarks:
The code within the stored procedure runs in database context – i.e. outside an
Add-On or DI API-based application…

If a transaction includes further transactions in the background (e.g. A/R Invoice
creates Journal Entry in the background) only information about the “top-level”
transaction may get sent to the stored procedure!

How to get notified on changes in business
objects…

https://www.sdn.sap.com/irj/servlet/prt/portal/prtroot/docs/library/uuid/53cefa6a-
https://www.sdn.sap.com/irj/servlet/prt/portal/prtroot/docs/library/uuid/e991e2b9-0901-0010-0395-

2-38

Business Objects: Topic Summary

You should now be able to:
Describe what business objects are
List the most important methods of business objects
Explain how to read or write a business object from or to an XML file
Design a transaction involving more than one business object
Tell how to get notified on changes in business objects

2-39

Business Objects: Exercise

You now should:
Work with Business Objects in general
Use the XML capabilities
Practice Transaction handling along the exercises at the end of
this unit…

2-40

Non-Business Objects: Unit Overview Diagram

Topic 3: Non-Business Objects

Topic 4: Meta Data Objects

Topic 5: DI API Services

Topic 6: Java Connector (optional)

The Data Interface API

Topic 1: DI API Introduction

Topic 2: Business Objects

Topic 7: DI Server (optional)

2-41

Non-Business Objects: Topic Objectives

At the conclusion of this topic, you will be able to:
List some valuable Non-Business objects
Explain how to work with Non-Business objects

2-42

Purpose:

Temporary solution for partners that need to work with objects that aren’t exposed (yet) with the DI
API.

Very risky – mostly no validations, BE CAREFUL!!!

We recommend strongly to use the RecordSet object only for data reading purposes!

Please note:

DoQuery – The SQL syntax may be dependent on the underlying database type!

RecordSet Object

Purpose:
Temporary solution to work with SAP Business One objects that aren’t exposed (yet) in DI
API.
Read data from and write data to user tables (writing only for tables of type “no object”) which
you added to the Database.

How to use the RecordSet object?
Definition
DoQuery
Browse the records

RecordSet

Fields Field

2-43

In the example in the slide, the RecordSet object is used to get all datas from a UserTable.

RecordSet Object: Example – DoQuery

' Declare Recordset variable
Dim oRecordSet As SAPbobsCOM.Recordset

' Get an initialized Recordset object
oRecordSet = oCompany.GetBusinessObject(BoRecordset)

' Perform the DoQuery
oRecordSet.DoQuery ("Select Code, Name, U_LastName from XYZ_UDT

where U_LastName = ‘Lopez’")

'Access data
While Not oRecordSet.EOF

MessageBox.Show(
"Code " & oRecordSet.Fields.Item("Code").Value & _
"Name " & oRecordSet.Fields("Name").Value & _
"LastName " & oRecordSet.Fields ("U_LastName").Value
)

‘ Get the next record
oRecordSet.MoveNext

End While

2-44

The DataBrowser object enables more complex and sophisticated data manipulation within business
objects.

You cannot create this object directly, rather it is invoked as a property of a business object.

For example, the BusinessPartner object has a property "Browser", which refers to a DataBrowser
object.

After successfully executing an SQL query with the RecordSet object, you can set the RecordSet to the
DataBrowser's RecordSet property and link the two objects together.

Properties:
Browser => RecordSet
…

Methods:
…

Object:
<Business Object>

DataBrowser Object – Features

You can call the DataBrowser object using the Browser
property for all business objects

Enables data navigation through all objects of a certain
object type

Easy to use – direct access to business object properties

You cannot create a new DataBrowser object, it is
invoked as a Browser property of a business object.

Example: Walk through all business partners

2-45

The DataBrowser object enables more complex and sophisticated data manipulation within business
objects.

You cannot create this object directly, rather it is invoked as a property of a business object.

For example, the BusinessPartner object has a property "Browser", which refers to a DataBrowser
object.

After successfully executing an SQL query with the RecordSet object, you can set the RecordSet to the
DataBrowser's RecordSet property and link the two objects together.

DataBrowser Object – Working steps

Define a RecordSet object

Call Query on the RecordSet

Set the DataBrowser sub object with the RecordSet

Manipulate your Data Browser (Move First,
MoveNext, …)Properties:

Browser => RecordSet
…

Methods:
…

Object:
<Business Object>

2-46

DataBrowser Object: Browse Business
Partners

Dim oBP As SAPbobsCOM.BusinessPartners

Dim sVal As String

Dim oRecSet As SAPbobsCOM.Recordset '1) Definition

oBP = oCompany.GetBusinessObject(oBusinessPartners)

oRecSet = oCompany.GetBusinessObject(BoRecordset)

oRecSet.DoQuery "select CardName from OCRD" ‘2) Retrieve the records

oBP.Browser.Recordset = oRecSet ‘3) Assign the RecordSet to the DataBrowser

oBP.Browser.MoveFirst

While oBP.Browser.EOF = False ‘4) Work with data (properties)

sVal = oBP.CardCode 'Direct approach to the properties

sVal = oBP.CardName ‘no need to work with field name

sVal = oBP.CardType

oBP.Browser.MoveNext ‘All properties are filled automatically when “moving”

Wend

1) Define recordset for Data browser object
2) Call RecordSet‘s DoQuery to retrieve the data (here retrieve two fields from BP header table)
3) Assign the recordset to the data browser
4) Work with data (properties)
Direct approach to the properties - no need to work with field name (usually = property name)
All properties are filled when navigating to a particular record

2-47

The SBObob Object

Available methods (in alphabetical order)

ConvertEnumValueToValidValue

ConvertValidValueToEnumValue

Format_DateToString

Format_MoneyToString

Format_StringToDate

GetAccountSegmentsByCode

GetBPList

GetContactEmployees

GetCurrencyRate

GetDueDate

GetFieldValidValues

GetIndexRate

GetItemList

GetItemPrice

GetLocalCurrency

GetObjectKeyBySingleValue

GetObjectPermission

GetSystemCurrency

GetSystemPermissions

GetTableFieldList

GetTableList

GetUserList

GetValidValueDescription

GetWareHouseList

SetCurrencyRate

SetObjectPermission

The SBObob object enables to retrieve commonly-used information easily.
Please note: Returned data are packaged into DI API RecordSet objects.

2-48

Connecting has already been practiced in the introduction unit…

Non-Business Objects: Topic Summary

You should now be able to:
List some valuable Non-Business objects
Explain how to work with Non-Business objects

2-49

Non-Business Objects: Exercise

You are now ready for:
Hands-on RecordSet, DataBrowser, SBObob etc. in an exercise…

2-50

Meta Data Objects: Unit Overview Diagram

Topic 3: Non-Business Objects

Topic 4: Meta Data Objects

Topic 5: DI API Services

Topic 6: Java Connector (optional)

The Data Interface API

Topic 1: DI API Introduction

Topic 2: Business Objects

Topic 7: DI Server (optional)

2-51

See also course TB1200 where creating user defined fields and tables within SAP Business One is
discussed in detail

Meta Data Objects: Topic Objectives

At the conclusion of this topic, you will be able to:
Create user-defined tables
Create user-defined fields
Write records into User Table
Add UserKeys to user-defined tables

2-52

User-defined fields are fully integrated in the SAP Business One software. You can include user-
defined fields in document templates, use them to run queries and so on.

Meta Data objects: User-Defined Tables,
Fields and Keys

Use in Searches

Use in Reports

…and more…

Include in
Document Templates

User-Defined
Tables/
Fields/
Keys

2-53

User-Defined Tables: Scope

User-Defined
Table

The “User-Defined Tables” feature enables you to define your own tables within an SAP Business One
Company database. “User-Defined Fields” can be added to these User-Defined Tables.
There are a few fields which are generated / added by default: Code, Name and some more for User-
Defined Tables for User-Defined Objects. The Code field / column is used for the primary key.
You can define a user table in the “User-Defined Tables-Setup” screen.

IMPORTANT!
Please note:
You will have to use either the CopyExpress SAP AddOn or use code (could use XML) to deploy

database structures for your Add-On in customer databases!
There‘s no scripting etc. provided by SAP Business One – or DI API…

2-54

Add User-Defined Tables

Add User-Defined Tables via „User-Defined Tables-Setup“ form

Use context menu to remove a User-Defined Table (please note that there are
some prerequisites!)

Creating user tables can be done from the Manage User Fields screen using Tools Customization
Tools User-Defined Tables - Setup.
On the form for defining user tables, you provide a three-character table name and a description.
When it generates the database table, the system adds an @ sign to the table name; for example, if you
enter XX_TST as the table name, the name of the database table will be @XX_TST.
Due to the new table types („Object Type“) necessary for User Defined Objects, there are 5 types
now. For tables you don‘t want to use with User Defined Objects choose „No Object“.

Please note: Here, you can also delete user-defined tables via context menu with these prerequisites:
a) the table is not used for a user-defined object.
b) The table is not used (linked) in a user-defined field.

2-55

Meta Data Objects: UserTablesMD

'Object variable
Dim oUTables As SAPbobsCOM.UserTablesMD
'Create Instance of UserTablesMD object
oUTables = oCompany.GetBusinessObject(oUserTables)

'Check whether table already exists
If oUTables.GetByKey(“TB1_Table”) Then
oUTables = Nothing
Exit Sub

Else
oUTables.TableName = “TB1_Table”
oUTables.TableDescription = “TB1300 test table”
lRet = oUTables.Add()

End If

‘ IMPORTANT: Only one (“handle to a”) user table or field object should be “alive”
‘ at the same time!!!
In .NET call this first:
System.Runtime.InteropServices.Marshal.ReleaseComObject(oUTables)
‘In .NET and VB6 set object variable to Nothing…
oUTables = Nothing

Use the UserTablesMD object to create a user defined table via DI API

Please use your Namespace as a prefix for the table name!
If you provide a name XX_tab, the system automatically enhances the name to @XX_tab.

Please note:
You should call ReleaseComObject in .NET to make sure that the object you worked with is released

synchronously.
GC.Collect() will release the object some time later and only ONE meta data object can be alive at one

time – check what happens, if this is not the case…

2-56

Add User-Defined Fields to Tables

User-Defined Fields can be added to the available SAP Business One tables or User-Defined Tables:

Select the table line in the “User-Defined Fields – Management” screen and choose Add.

2-57

Meta Data Objects: UserFieldsMD

'Object variable
Dim oUFields As SAPbobsCOM.UserFieldsMD

'Create Instance of UserTablesMD object
oUFields = oCompany.GetBusinessObject(oUserFields)

'Add field... "Manufacturer"
oUFields.TableName = “@TB1_Table”
oUFields.Name = "Make"
oUFields.Description = "Manufacturer"
oUFields.Type = db_Alpha
oUFields.EditSize = 20
lRet = oUFields.Add()

‘ IMPORTANT: Only one (“handle to a”) user table or field object should be “alive”
‘ at the same time!!!
In .NET call this first:
System.Runtime.InteropServices.Marshal.ReleaseComObject(oUFields)

‘In .NET and VB6 set object variable to Nothing…
oUFields = Nothing

Use the UserFieldsMD object to create user defined fields

Please note:
You should call ReleaseComObject in .NET to make sure that the object you worked with is released

synchronously.
GC.Collect() will release the object some time later and only ONE meta data object can be alive at one

time – check what happens, if this is not the case.

2-58

Defining a User-Defined Field

Title and Description

Type and Structure

Alphanumeric

Numeric

Date/Time

Units and Sums

General

Regular, Address, Telephone, Text

Date, Time

Price, Sum, Unit, Quantity

Link, Picture

Additional Attributes

Valid values (optional)

Default value
Mandatory
(requires Default value)

Assign default values

When defining a user-defined field, you have to provide a technical name (maximum 18 characters) -
the title - and a description (maximum 30 characters). Here the title should be English because all
database table field names are English. The system creates the database field U_<title>. Because the
description will be displayed on the screen, your description should be in the local language.
Moreover, you will assign a dedicated type with a dedicated structure to the field, where the structure
depends on the type. In the figure you can see all possible types and their structures, determine the
format of the field. Fields representing date structures are displayed as all other date fields in the
system and allow the same input. Common fields, which allow the attachment of files and pictures, are
stored in the Pictures or Attachments folder, which is specified in the common settings. You cannot
change the type of the field later on.

2-59

Linking User-Defined Fields to User-Defined
Tables

Please remember:

When you create a User-Defined Table,
two fields in the database are created
by default: Code and Name

Please note:

The data in the field will be taken from
the field Code in the linked User-
Defined Table.

…therefore the field has to be
alphanumerical and 8 characters long.

You cannot link a User-Defined Field
to other tables than User-Defined
Tables (e.g. you can‘t link a User-
Defined Field to the Business
Partners table OCRD!)

If you want to display data from another field of the User-Defined Table the User-Defined Field is
linked to, you can use the “Formatted Search” feature to fill such data e.g. into another User-Defined
Field.
The linkage can be changed at any time, but the data in the User-Defined Field will have to be updated
to reflect the new situation!
Please note that no Foreign Key or other constraints are used in this scenario!

2-60

User-Defined Fields in SAP Business One GUI

SAP Business One allows you to add (in theory) as many fields as you want to existing business
objects – until you may hit database system limitations (e.g. MS SQL Server 2000 allows max. 8K for
one record in a table…).
Those User-Defined Fields in SAP Business One tables are displayed in an additional window (see
above) or as an additional column in the lines (or as an additional row e.g. in Business Partners
Addresses).
You can e.g. add fields to the following objects:

Purchase order and sales order
Payment documents
Master data (G/L accounts, articles, Business Partner, Contacts, Pricing Lists)
Product structures and production orders
Accounting documents
Profit center and division rules
Budget scenarios
Etc etc etc.

Please note:
When you add a User-Defined Field to a table of a document object (e.g. OINV of A/R Invoice)
through DI API the system will add the User-Defined Field to ALL document tables (Sales Order,
Purchase Order etc etc)!
The same happens when you add a User-Defined Field through the SAP Business One application –
it‘s just more obvious there since there you will only find „Marketing Documents“ anyway (not A/R
Invoice etc)…
You can configure the visibility of User-Defined Fields on Object or Document level:
A/R Invoice may show e.g. less/other User-Defined Fields than Sales Order – depending on the
chosen configuration („General“ in the screenshot above…).
Not all objects / tables are enabled to be extended through User-Defined Fields!

2-61

UserKeys Object

The UserKeys object allows to manage additional Keys on User-Defined
Tables.

They are meant to improve performance in searching (querying) and
navigating.

How to add UserKeys:
1. Name the key.
2. Choose the User-Defined Fields that should be part of the key.
3. Choose Unique = True/False
4. Add the key.

A sample of using the UserKeys object is provided with the DI API samples (MetaDataOperations).

2-62

Meta Data Objects: UserKeysMD

'Object variable
Dim oUKeys As SAPbobsCOM.UserKeysMD

'Create Instance of UserTablesMD object
oUFields = oCompany.GetBusinessObject(oUserKeys)

oUKeys.TableName = "BE_MyTable"
oUKeys.KeyName = "BE_MyKey1"

'Set the first column's alias (No Add method for the first element)
oUKeys.Elements.ColumnAlias = "FieldName1"

'Set the second column's alias
oUKeys.Elements.Add() ' Add an item to the Elements collection
oUKeys.Elements.ColumnAlias = "FieldName2"

'Determine whether the key should be unique or not
oUKeys.Unique = tYES

'Add the key
lRet = oUKeys.Add()

'IMPORTANT: Only one handle to a user table or field or key object
'should be alive at the same time

2-63

Add Data to User-Defined Tables

In the toolbar menu go to “Tools” “User-Defined Windows”

When linked to a User-Defined Field Choose “Define new”

Data can be entered in the user table by choosing Tools User-Defined Windows:
A list of the user-defined tables appears. To enter data in a table, choose the relevant table and enter
data (form will switch from OK mode to Update mode).
Data can be entered in the user-defined table also in a different way in case the table is connected /
linked to a user-defined field in another table:

This is done by selecting the user field and choosing Define new in the combo box displayed there. The
connected User-Defined Table opens so you can enter data.
Alternatively, you can use the SAP Business One SDK to access the user-defined tables and fields.

2-64

DI API provides an object for adding records to a user-defined table – in addition to the option to use a
SQL command with the RecordSet object:

UserTable represents a record in a user-defined table.

The default fields Code + Name are properties of this object whereas the particular user-defined fields
are stored in a UserFields collection as e.g. for any business object…

Add Data to User-Defined Tables using DI API

'Object variable
Dim userTable As SAPbobsCOM.UserTable
‘Use the user table we added before
userTable = oCompany.UserTables.Item("TB1300")

‘Add a first row in the @TB1300 table
userTable.Code = "A1“
userTable.Name = "A.1“
userTable.UserFields.Fields.Item("U_1stUDF").Value = "First value“
userTable.Add()

'Second row in the @TB1300 table
userTable.Code = "A2“
userTable.Name = "A.2“
userTable.UserFields.Fields.Item("U_1stUDF").Value = "Second value“
userTable.Add()

'IMPORTANT:
'1)Please note that this code works ONLY for User-Defined Tables of 'type „No object“!
‚2)Data cannot be added to User tables via oCompany.GetBusinessObjectFromXML()
‚ since there‘s no business object for that purpose!
‚UserTables is an object, but not a business object…!

2-65

Meta Data Objects: Topic Summary

You should now be able to:
Create user-defined tables
Create user-defined fields
Write records into User Table
Add UserKeys to user-defined tables

2-66

Meta Data Objects: Exercise

You are now ready for:
a MetaData objects exercise…

2-67

DI API Services: Unit Overview Diagram

Topic 3: Non-Business Objects

Topic 4: Meta Data Objects

Topic 5: DI API Services

Topic 6: Java Connector (optional)

The Data Interface API

Topic 1: DI API Introduction

Topic 2: Business Objects

Topic 7: DI Server (optional)

2-68

DI API Services: Topic Objectives

At the conclusion of this topic, you will be able to:
Explain how to use DI API Services

2-69

DI API Services - How to use?

1. Call CompanyService of the Company object. The CompanyService is the
main DI service and must be called before using any other service.

2. Call the method GetBusinessService to use a particular service.

3. Create an empty data structure for this service.
- or -
Create / modify a data structure from an XML file or XML string after retrieving
it from the service.

4. Fill/change the properties of the specified data structure.

5. Call the required service method – like CreateOpenBalance.

2-70

The BusinessPartnersService enables to transfer credit or debit amounts from a specified opening
balance account to one or more business partner accounts.

This service creates a journal entry line.

DI API Services – Example: Business Partners
Service

‘1) get general company service
oCmpSrv = oCompany.GetCompanyService

‘2) get specific Business Partners service
oBPsService = oCmpSrv.GetBusinessService(ServiceTypes.BusinessPartnersService)

‘3) a) get Accounts Service Data Interface
oOpenningBalanceAccount = oBPsService.GetDataInterface(

BusinessPartnersServiceDataInterfaces.bpsdiOpenningBalanceAccount)

'set the account information for the opening balance account
oOpenningBalanceAccount.OpenBalanceAccount = "_SYS00000000078" ‘using segmentation…
oOpenningBalanceAccount.Details = "Bp Accounts Opening Balance“
oOpenningBalanceAccount.Date = date.Today

‘3) b) get Business Partners Service Data Interface and set the corresponding information for the BPs…
oBpAccounts = oBPsService.GetDataInterface(

BusinessPartnersServiceDataInterfaces.bpsdiBPCodes)

oBpAccountFirst = oBpAccounts.Add() 'add first account
oBpAccountFirst.Code = “C20000"
oBpAccountFirst.Credit = 300

oBpAccountSecond = oBpAccounts.Add () 'add second account
oBpAccountSecond.Code = “C40000”
oBpAccountSecond.Credit = 300

‘4) call the method that takes the structures/”Data Interfaces” and creates the balances…
oBPsService.CreateOpenBalance(oOpenningBalanceAccount, oBpAccounts)

2-71

DI API Services: Topic Summary

You should now be able to:
Explain how to use DI API Services

2-72

Java Connector (optional): Unit Overview
Diagram

Topic 3: Non-Business Objects

Topic 4: Meta Data Objects

Topic 5: DI API Services

Topic 6: Java Connector (optional)

The Data Interface API

Topic 1: DI API Introduction

Topic 2: Business Objects

Topic 7: DI Server (optional)

2-73

Java Connector (optional): Topic Objectives

At the conclusion of this topic, you will be able to:
Describe how to install, use and troubleshoot the Java Connector (JCO)

2-74

Java Connector (optional) – Architecture

ServerClient

JAVA application

SBO-Common

Observer.dll

Implementation
(OBServerDLL.dll)

1

3

DI APInterface
(SAPbobsCOM.dll)

SAP Business One
Java Connector

…can deal with COM
(For DI API only!)

2

2-75

There is an extra JCo help file. Below this, the help file for the data interface API holds as well.

Java Connector (optional) – Details

Class / package hierarchy

java.lang.Object
com.sap.smb.sbo.util.ConvertUtil
com.sap.smb.sbo.api.SBOCOMUtil
com.sap.smb.sbo.api.SBOErrorMessage
java.lang.Throwable (implements java.io.Serializable)

java.lang.Exception
com.sap.smb.sbo.util.NestingException

com.sap.smb.sbo.api.SBOCOMException
com.sap.smb.sbo.wrapper.util.WrapperUtil

General remarks:

All Interfaces are contained in the package com.sap.smb.sbo.api

Check the Java Connector helpfile for more details.

Important difference to DI API:

Objects to add new records are created using “new<Object name>” of the SBOCOMUtil
class instead of using ICompany object’s “getBusinessObject”!

E.g. newBusinessPartners must be used when you want to add a business partner!

2-76

JCO installation

The JCO always connects to latest version of the DI API

2-77

JCO usage

Add sboapi.jar and sbowrapper.jar in the JAVA application

2-78

JCO usage – connect to company

import com.sap.smb.sbo.api.*;

……

company = SBOCOMUtil.newCompany();

company.setServer("(local)");

company.setUseTrusted(new Boolean(true));

company.setCompanyDB("SBODemoCN");

company.setUserName("manager");

company.setPassword("manager");

……

rc = company.connect();

if (rc == 0) { System.out.println("Connected!");

} else { errMsg = company.getLastError();

System.out.println("Failed: "+ errMsg.getErrorMessage()+ " "+ errMsg.getErrorCode());

}

return rc;

2-79

JCO usage – add a business partner

import com.sap.smb.sbo.api.*;

public static IBusinessPartners bp;

……

bp = SBOCOMUtil.newBusinessPartners(cmp);

bp.setCardCode("JCO1");

bp.setCardName("JCO Test1");

bp.setCardType(Integer.valueOf(0));

rc = bp.add();

2-80

JCO usage – update an order

import com.sap.smb.sbo.api.*;

public static IDocuments order;

……

order = SBOCOMUtil.getDocuments(cmp, Integer.valueOf(17), Integer.valueOf(138));

order.setComments("JCO test1");

rc = order.update();

2-81

JCO usage – Recordset

import com.sap.smb.sbo.api.*;

ICompany com = null;

IRecordset RecSet = null;

String FldName, String FldVal;

Object index;

String sQueryItemList1 = "Select * From OITM";

RecSet = SBOCOMUtil.runRecordsetQuery(conn.company,sQueryItemList1);

int Count = RecSet.getFields().getCount().intValue();

while (RecSet.isEoF().equals(new Boolean(false))) {

for (i = 0; i < Count; i++) {

index = new Integer(i);

FldName = RecSet.getFields().item(index).getName();

FldVal = String.valueOf(RecSet.getFields().item(index).getValue());

RecSet.moveNext();

}

}

2-82

However, in development mode, we also recommend to use command line parameter in project
settings to avoid hardcode it

Troubleshooting

Test the issue in DI API first to check if it is the issue in DI

SAP Notes
1313297 : How to use SAP Business One Java Connector (JCO)
1157304 : JCO_Failed connection to SBO produces memory leak
1034147 : JCO_JVM shuts down with large payload

2-83

Java Connector (optional): Topic Summary

You should now be able to:
Describe how to install, use and troubleshoot the Java Connector (JCO)

2-84

Java Connector (optional): Unit Overview
Diagram

Topic 3: Non-Business Objects

Topic 4: Meta Data Objects

Topic 5: DI API Services

Topic 6: Java Connector (optional)

The Data Interface API

Topic 1: DI API Introduction

Topic 2: Business Objects

Topic 7: DI Server (optional)

2-85

DI Server (optional): Topic Objectives

At the conclusion of this topic, you will be able to:
Use DI Server in principle

2-86

DI Server uses the same XML format as DI API – just wrapped in a SOAP „envelope“.

In addition it gets a SOAP response.

Check-out the DI Server helpfile for more details!

DI Server (optional) – Introduction

The DI Server is designed to run on a server machine and supply a light-weight
SOAP-based access layer for heavy duty integration purposes

Based on the DI API technology but acts as a “Server” (as a service)
Supports all business objects that are exposed by the DI API
Enables to develop SOAP-based solutions
Give suitable solution to have heavy duty operations (e.g. batch)
Can support larger number of clients working at the same time.

The DI Server implements a connection pooling mechanism to enhance
performance and scalability of the server.

As DI Server is a SOAP-based interface it does not limit the client to a COM
interface, but allows a wide range of possible client technologies e.g. building
traditional Web applications using ASP or JSP.

2-87

Business logic is provided through the OBServer.dll – this time running on the server instead of being
loaded by DI API in the background.

„Clients“ just stands for accessing DI Server with any technology possible + displaying the data in any
form to the user. This could be a page displayed in a browser, but it could also be a desktop application
using DI Server instead of DI API.

DI API Introduction – DI Server Software
Architecture

Client(s) Server

Sbo-Common
Database

Common
Database

Company
DatabaseO

B
Se

rv
er

D
LL

.d
ll

DI Server

COM Interface

SOAP Parser

DI Core

Expose DI Server functionality e.g. in a WebService…

Use method Interact for calls to DI Server

WebService

Please note that B1iSN is exposing WebServices too!

Check out on SDN!

3rd Party
Application

e.g. a Browser
\

2-88

DI Server (optional) – SOAP Command types

There are four types of commands:
System Commands – Login, logout (and “debug”).
Data Manipulation – Add, Update, Cancel, Close and other basic
operations on objects.
Data Retrieve – GetByKey, ExecuteSQL and Functions which are
encapsulated in the SBObob object in DI API.

DI Services – similar to DI API services:
– The same services as the DI API (MessagesService,

AlertsManagementService,…)
– A generic services view of some of the DI API object
– Please read carefully DI Server help file for more detailed information.

Only one type of commands is allowed in a single Envelope.
Further details can be found in the SDK HelpCenter and samples.

2-89

DI Server (optional) – How to use it

1. Wrap an XML into a SOAP envelope

2. Call the COM object through the Interact(request) command

3. The COM object will send the XML and will return an XML as the result.

2-90

DI Server (optional) – Sample: Login

DI API

DI Server

2-91

DI Server (optional) – Sample: Add Object

DI API

DI Server

2-92

DI Server (optional) – Transaction / Batch
Operations

Start/EndTransaction commands do not exist as in DI API:
Each Envelope is one Transaction when using BatchInteract()
The list of envelopes are considered as a Global Transaction when using Interact()

* no option to exchange information with DI Server inside a Global Transaction, e.g.:
no GetNewObjectByKey

* you can only connect to one database (header holds session ID)
Each command has a response
You can set an identifier for each command and receive it in the response

2-93

Overview of differences between DI API and DI
Server (optional)

DI ServerDI APICharacteristic

Uses a single SOAP request that
contains all parameters.

Uses many RPC calls in order to
invoke a single method.
But please note:
Using XML reduces the numbers of
calls to a very few!

“Function call efficiency”

Can (theoretically) handle “unlimited”
number of connections (configurable)
per database.
Session pooling mechanism.

Can handle one connection per
database/per DI API instance

Connection handling & scalability

Single and Global transactions defined
by using Interact or BatchInteract.
NO GetNewObjectCode equivalence
inside a transaction

Single and Global transactions by
Start/EndTransaction commands.
Allows GetNewObjectCode method
inside a transaction…

Transaction management

ImpossiblePossibleHandling „Meta data“ (UDTs etc)

ImpossiblePossible„Single-Sign On“ in conjunction with
UI API

Deployed on a single server; may be
used by many client machines

Must be installed on client machines
(COM DLL).

Deployment

Direct SOAP callsJava wrapper (JCo) or ext. SOAP
layer.

Integration with External tools
(Internet sales, XI system)

2-94

DI Server (optional): Topic Summary

You should now be able to:
Use DI Server in principle

2-95

Sometimes partners ask for: an option to integrate SAP Business One „screens“ into their applications;
such functionality is unfortunately not available…

Data Interface API – Use cases

There are a couple of scenarios where Data Interface API is engaged:

Data level integration of existing applications:
Easily read or write data from / to SAP Business One – when needed

Data Import / Export scenarios – which are not covered through SAP tools – and
where the capabilities of the SAP Business One application are not sufficient.

Depending on the architecture of the overall solution you might consider to use B1iSN or DI
Server though.

Handling data in an Add-On that uses UI API (see next unit) beyond UI API‘s
capabilities.

Essentially writing data to the SAP Business One database often requires usage of DI API
Even though other techniques may be faster when it comes to reading data from the
database – usage of DI API is often a good choice regarding usability (no need to request
additional credentials etc) and data coherence (imagine that the required data might be stored
in various tables).

2-96

Data Interface API: Unit Summary

You should now be able to:
Understand what the Data Interface API is
Understand how the DI API exchanges data with SAP Business One

2- 97

Data Interface API – Exercises

Unit: Data Interface API

Topic: Establish a Connection to SAP Business One

At the conclusion of this exercise, you will be able to:

Connect to an SAP Business One database

You want to develop additional functionality for SAP Business
One.

In a first step, you want to create a simple program to connect to an
existing SAP Business One database.

1-1 Log on to SAP Business One.

1-1-1 Note the name of one database you want to log on to.

1-1-1 Note one user in that database and the user's password.

1-2 Create a new Visual Studio project.

1-2-1 Within this project, create a form with two buttons on it. One of
the buttons should be used to connect to the SAP Business One
database, the other to disconnect from it.

1-2-2 Add a reference to the SAP Business One DI API COM library…

1-3 Code the connection to the SAP Business One database.

1-3-1 Define a variable for the Company object – ensure it is defined as a
member of the add-on application class or globally.

1-3-2 Create a new Company object.

1-3-3 Set the properties needed to connect to the SAP Business One
database.

1-3-4 Call connect on the Company object

2- 98

1-4 Implement error handling and success handling.

1-4-1 If the connection succeeds, display a message box displaying a
corresponding message.

1-4-2 If the connection failed, display the error message provided by the
Company object.

1-5 Code the disconnection from the SAP Business One database.

2- 99

Data Interface API – Exercises

Unit: Data Interface API

Topic: Documents Object

At the conclusion of this exercise, you will be able to:

Work with Documents objects

Create a Sales Order in Business One. Via the DI create an Invoice based on this
Sales Order and later create an Incoming Payment for that Invoice

2-1 On your Visual Studio project create a new button called “Invoice and
Payment”

2-2 In Business One create an Order for a particular customer and a particular
item.

2-2-1 First you must create a new Document object instance for the
Invoice. Then you set the properties of the Documents object and
the Documents_Lines ensuring the BaseEntry, BaseLine and
BaseType are set.

2-2-2 Add the whole document. In the case of success, you should bring
up a message box telling the user the number of the newly added
Sales Invoice using the method GetNewObjectCode. In case of any
error, you should display a message box with an error message.

The Documents object must be created with the
GetBusinessObject method of the company object you are
connected to. Look in the online help of the
GetBusinessObject method for the correct object type. Which
one must be used?
To access the Documents_Lines object, look at the properties
of the Documents object.

2- 100

To create a document based on a document you need to utilize
the properties BaseEntry (DocEntry of Base document),
BaseType (in this case Sales Order), BaseLine (line you wish
to copy to target document)

2-2-3 Finally you should release the document object variables.

2-3 Create the Incoming Payment for this Invoice

2-3-1 Create a new Payments object instance for the Incoming Payment.
Then you set the properties for the CardCode, Invoice DocEntry,
and we will pay via cash so we will use the properties
CashAccount and CashSum.

2-3-2 Add the whole document. In the case of success, you should bring
up a message box telling the user the number of the newly added
Payment using the method GetNewObjectCode. In case of any
error, you should display a message box with an error message.

2-3-3 Finally you should release the document object variables.

2- 101

Data Interface API – Exercises

Unit: Data Interface API

Topic: XML

At the conclusion of this exercise, you will be able to:

Work with XML

Create data as XML and checkout how to use this process to add
new data to the SAP Business One database.

3-1 On your Visual Studio project create a new button called “Working with
XML”

3-2 Save the Invoice created in the Documents exercise as XML.

3-2-1 Try all settings for XmlExportType property on the Company
object and find the differences.

Have a look at the DI-API Help file

3-2-2 Save the Invoice document created in the previous exercise in Xml
format

Use the GetAsXml or SaveXml methods of the Documents
object (verify all business objects have the same methods)

3-2-3 Test also the method GetBusinessObjectXmlSchema of the
Company object. What kind of information does it save?

2- 102

3-3 Modify the XML data obtained before and add it to the SAP Business One
database.

Use the method GetBusinessObjectFromXML of the Company
object

3-3-1 Try all files generated above and check the errors (exceptions) for
details.

2- 103

Data Interface API – Exercises

Unit: Data Interface API

Topic: Transactions

At the conclusion of this exercise, you will be able to:

Work with transactions

Create an Order via DI API and later create an Invoice that is based
in that Order, Documents exercise done before.

This time open a transaction before and close it afterwards.

3

4-1 Log on to a SAP Business One Company as shown in the first exercise.

4-2 Open a transaction (StartTransaction of the Company Object).

4-3 Perform the same actions as you did in the Documents exercise.

4-4 Close the transaction (EndTransaction of the Company Object).

4-5 Play e.g with the TaxCode (or VatGroup – depending on the localization!)
property to see if and how the transaction fails. Also use wrong data (e.g.
non-existing CardCode etc.) to see the reaction (as discussed in the
presentation).

2- 104

2- 105

Data Interface API – Exercises

Unit: Data Interface API
Topic: Using General Objects

At the conclusion of this exercise, you will be able to:

Use the data browser object to browse through a set of data

Use the record set object

Create an application to navigate through all customers.
You will use the Browser property of the BusinessPartners object.
Add the navigation buttons to your form and provide the coding so
that the user can browse through the customers.

4

5-1 On your Visual Studio project create a new button called “General
Objects”

5-2 Create a new form in your Visual Studio application containing a text box
where you will show the Business Partners Card Code and four buttons:
first, previous, next and last.

5-3 Create a Recordset object and set the Browser property of the
BusinessPartners object to this Recordset.

There is a code sample in the DI-API Help documentation.

2- 106

5-3-1 Add the code to all four of the buttons so that the user can navigate
backwards and forward through the customers. Be sure that your
application only includes customers, not Leads or Vendors
(Suppliers).

Use the DoQuery method of the RecordSet object with the
appropriate SQL query.

5-4 Test your changes. Be sure to include the following scenarios:

5-4-1 Click the “First Record” button (), then click it again. Try the
same thing with the “Last Record” button ().

5-4-2 Click the “First Record” button (), then click the “Previous
Record” button ().

5-4-3 Click the “Last Record” button (), then click the “Next Record”
button ().

5-4-4 If any of these scenarios raises an error, add code that will fix the
error. Then test the application again.

2- 107

Data Interface API – Exercises

Unit: Data Interface API

Topic: Meta Data

At the conclusion of this exercise, you will be able to:

Work with Meta Data objects in the DI API

Create user-fields and user-tables in the SAP Business One
database.

Use the UserTableMD Object to create User Tables

Use the UserFieldMD Object to create User Fields

Use the specifications for the User-Defined Table and the User-
Defined Fields within from the “Course Project Exercise” (see
end of the course’s “Introduction” section

5

6-1 As a first small exercise add a User-Defined Field to the item table
(OITM) through DI API. On your Visual Studio project create a new
button called “UDF and UDT”

6-1-1 Use namespace “TB1_” as a prefix…

6-2 Add a User-Defined Table (use namespace “TB1_” as a prefix…), but do
not add any fields to the table yet.

Table name: TB1_VIDS
Table description: Video Management

You will need to create an instance of the UserTablesMD object in
order to add a field to the User Table. It is recommended that after
you create your table you set this object variable to “Nothing” so that
its properties do not inadvertently carry forward to the next table or
field you are creating.

6-3 Test your application by opening the “Manage User Fields” window in
SAP Business One. Check to see that the table was added.

2- 108

6-4 Remove the User-Defined Table (in the SAP Business One application)
you just created before. Enhance your application with the capability to
remove the User-Defined Table through DI API – and then test your
application to see that you can also add and delete the User-Defined Table
in SAP Business One.

6-5 Add the following User-Defined Fields to your new User-Defined Table:

You will need to create an instance of the UserFieldsMD object in order to
add a field to the User Table. It is recommended that after you create each
field, you set this object variable to “Nothing” so that its properties do not
inadvertently carry forward to the next field you are creating. Do the same
thing at the end of the last user field added.

Aisle Number – Indicates in which aisle the movie is stored.
Field Name: AISLE
Field Description: Aisle Number
Field Type: db_Numeric
Field EditSize: 2

Section – Indicates the section the movie is store in the aisle.
Field Name: SECTION
Field Description: Section Number
Field Type: db_Alpha
Field EditSize: 20

Rented – Indicates weather the movie is rented or not.
 Holds 2 “valid values”: Y/N.

Field Name: RENTED
Field Description: Rented/Available
Field Type: db_Alpha
Field EditSize: 1

CardCode – In case the movie is “Rented”
This field will hold the CardCode of the customer who
rented it otherwise it will be empty.

Field Name: CARDCODE
Field Description: Card Code
Field Type: db_Alpha
Field EditSize: 20

6-6 Test your application and make sure all your fields were added
successfully.

2- 109

6-7 Write data into the User-Defined Table.

6-7-1 Add about 15 records to your new User-Defined Table.

In order to add a record, you will need to use the
UserTable object. The name of this object is a bit
misleading – the UserTable object actually corresponds
to a record within a user table.

When referring to specific fields within a User Table
record, you must prefix the fieldname with “U_”. For
example, if you have created a User-Defined Table
object variable called pRecord, you could set the value
of the “Make” field by adding this line of code:
pRecord.UserFields("U_Make").Value = “Ford”

The “Code” and “Name” must each be unique within the User
Table. The “Code” is the Primary Key used to retrieve a
record.

6-7-2 Your User-Defined Table could look like this:

2- 110

2- 111

Data Interface API – Optional Exercise

Unit: Data Interface API
Topic: Services

At the conclusion of this exercise, you will be able to:

Work with Service Type objects

Use CompanyService to change the backgound color of forms for a
particular company…

6

7-1 On your Visual Studio project create a new button called “Service Object”

7-2 Get CompanyServices object.

7-3 Get structure which reflects information in table OADM.

7-4 Set the background color to purple.

7-5 Call the method which updates the information in the SAP Business One
database. See the effect in the SAP Business One application.

Please note that only forms opened after changing the bachground color
will reflect this change.

2- 112

2-113

Data Interface API – Solutions

Unit: Data Interface API

Topic: Establish a Connection to SAP Business One

At the conclusion of this exercise, you will be able to:

Connect to an SAP Business One database

You want to develop additional functionality for SAP Business One.

In a first step, you want to create a simple program to connect to an
existing SAP Business One database.

1-1 Log on to SAP Business One.

1-1-1 Note the name of one database you want to log on to E.g.
SBODemo_UK

1-1-2 Note one user in that database and the user's password E.g.
Manager, Manager

1-2 Create a new Visual Studio project.

1-2-1 Within this project, create a form with two buttons on it. One of
the buttons should be used to connect to the SAP Business One
database, the other to disconnect from it.

2-114

1-2-2 Add a reference to the SAP Business One DI API COM library…

Click Project -> Add Reference and click on the COM tab

1-3 Code the connection to the SAP Business One database.

1-3-1 Define a variable for the Company object – ensure it is defined as
a member of the add-on application class or globally. Suggestion:
Create a new module and put the Company variable there. Since
this is a separate module you need to either specify the module in
each call or add a declaration so the other form/modules can see
this.

Public oCompany As SAPbobsCOM.Company

1-3-2 Create a new Company object.

oCompany = New SAPbobsCOM.Company

1-3-3 Set the properties needed to connect to the SAP Business One
database.

oCompany.Server = "Your server name”

 oCompany.CompanyDB = "SBODemo_UK"

 oCompany.UserName = "manager"

2-115

oCompany.Password = "B1Admin”

 oCompany.DbServerType = SAPbobsCOM.BoDataServerTypes.dst_MSSQL2005

 oCompany.DbUserName = "sa"

 oCompany.DbPassword = "sapass"

oCompany.LicenseServer = "Your license server name”

Note DBUserName and DBPassword are not required
in Version 8.8.

1-3-4 Call connect on the Company object

retVal = oCompany.Connect

1-4 Implement error handling and success handling.

1-4-1 If the connection succeeds, display a message box displaying a
corresponding message.

1-4-2 If the connection failed, display the error message provided by the
Company object.

If retVal <> 0 Then

 oCompany.GetLastError(retVal, retStr)

 MsgBox("Error " & retVal & " " & retStr)

Else

 MsgBox("Connected to " & oCompany.CompanyName)

End If

1-5 Code the disconnection from the SAP Business One database.

If oCompany.Connected = True Then

 oCompany.Disconnect()

 End If

A further sample can be found in the SDK DI samples (in the SDK Folder
– see Appendix “SDK Installations” for more information),
COM DI/1.BasicOperations.

2-116

2-117

Data Interface API – Solutions

Unit: Data Interface API

Topic: Documents Object

At the conclusion of this exercise, you will be able to:

Work with Documents objects

Create an Invoice via DI API and later create an Incoming Payment for
that Invoice

2-1 On your Visual Studio project create a new button called “Invoice and
Payment”

2-2 In Business One create an Order for a particular customer and a particular
item.

2-2-1 First you must create a new Document object instance for the
Invoice. Then you set the properties of the Documents object and
the Documents_Lines ensuring the BaseEntry, BaseLine and
BaseType are set.

Dim oInvoice As SAPbobsCOM.Documents

 oInvoice =
oCompany.GetBusinessObject(SAPbobsCOM.BoObjectTypes.oInvoices)

 oInvoice.CardCode = "C2000"

 oInvoice.Lines.BaseEntry = 8 'DocEntry of Sales Order

2-118

 oInvoice.Lines.BaseLine = 0 'Copy first line

 oInvoice.Lines.BaseType = 17 'Sales Order base document

2-2-2 Add the whole document. In the case of success, you should bring
up a message box telling the user the number of the newly added
Sales Invoice using the method GetNewObjectCode. In case of any
error, you should display a message box with an error message.

retVal = oInvoice.Add

If retVal <> 0 Then

 oCompany.GetLastError(retVal, retStr)

 MsgBox("Error " & retVal & " " & retStr)

Else

 MsgBox("Invoice number " & oCompany.GetNewObjectKey & " created")

 InvNum = oCompany.GetNewObjectKey

End If

2-2-3 Finally you should release the document object variables.

 oInvoice = Nothing

 retVal = ""

 retStr = ""

2-119

2-3 Create the Incoming Payment for this Invoice

2-3-1 Create a new Payments object instance for the Incoming Payment.
Then you set the properties for the CardCode, Invoice DocEntry,
and we will pay via cash so we will use the properties
CashAccount and CashSum.

Dim oIncomingPymt As SAPbobsCOM.Payments

 oIncomingPymt =
oCompany.GetBusinessObject(SAPbobsCOM.BoObjectTypes.oIncomingPaymen
ts)

 oIncomingPymt.CardCode = "C2000"

 oIncomingPymt.Invoices.DocEntry = InvNum

 oIncomingPymt.CashAccount = "_SYS00000000076"

 oIncomingPymt.CashSum = "14.10"

Note: CashAccount “_SYS…” uses an internal account number in a database
where account segmentation is used. If Account segmentation is not used – just
use the visible account numbers.

2-3-2 Add the whole document. In the case of success, you should bring
up a message box telling the user the number of the newly added
Payment using the method GetNewObjectCode. In case of any
error, you should display a message box with an error message.

 retVal = oIncomingPymt.Add

If retVal <> 0 Then

 oCompany.GetLastError(retVal, retStr)

 MsgBox("Error " & retVal & " " & retStr)

Else

 MsgBox("Incoming Payment number " & oCompany.GetNewObjectKey & "
added")

End If

2-120

2-3-3 Finally you should release the document object variables.

 oIncomingPymt = Nothing

 retVal = ""

 retStr = ""

Another sample exercise can be found in the SDK samples (in the SDK
Folder – see Appendix “SDK Installations” for more information),
COM DI/5.OderAndInvoice.

2-121

Data Interface API – Solutions

Unit: Data Interface API

Topic: XML

At the conclusion of this exercise, you will be able to:

Work with XML

Create data as XML and checkout how to use this process to add new
data to the SAP Business One database.

3-1 On your Visual Studio project create a new button called “Working with
XML”

2-122

3-2 Save the Invoice created in the Documents exercise as XML.

3-2-1 Try all settings for XmlExportType property on the Company
object and find the differences.

The 4 property types are
 XML ExportType Definition
oCompany.XmlExportType =
SAPbobsCOM.BoXmlExportTypes.xet_AllNodes

Export to XML all fields (both read only
and read/write fields) from the database.

oCompany.XmlExportType =
SAPbobsCOM.BoXmlExportTypes.xet_ExportIm
portMode

Export to XML only valid fields that
support XML import (read/write fields
only) from the database.

oCompany.XmlExportType =
SAPbobsCOM.BoXmlExportTypes.xet_NodesAsP
roperties

Export to XML all fields as properties
from the database.

SAPbobsCOM.BoXmlExportTypes.xet_ValidNod
esOnly

Export to XML only valid fields that
support XML import and export
(read/write fields only that do not contain
null values) from the database.

3-2-2 ave the Invoice document created in the previous exercise in Xml
format

oCompany.XmlExportType =
SAPbobsCOM.BoXmlExportTypes.xet_ExportImportMode

Dim oInvoice As SAPbobsCOM.Documents
 oInvoice =
oCompany.GetBusinessObject(SAPbobsCOM.BoObjectTypes.oInvoices)

If oInvoice.GetByKey(5) = False Then
 oCompany.GetLastError(retVal, retStr)
 MsgBox("Failed to Retrieve Invoice" & retVal & " " & retStr)

Exit Sub
End If

'Save the object as an xml file
 oInvoice.SaveXML("C:\Program Files\SAP\SAP Business One
SDK\Samples\CourseXML\Invoice.xml")

3-2-3 Test also the method GetBusinessObjectXmlSchema of the
Company object. What kind of information does it save?

Dim schema As String
 schema =
oCompany.GetBusinessObjectXmlSchema(SAPbobsCOM.BoObjectTypes.oInvoices)
 MsgBox(schema)

This method retrieves the XML schema used to define the structure
and content of the object.

2-123

3-3 Modify the XML data obtained before and add it to the SAP Business One
database.

oInvoice = oCompany.GetBusinessObjectFromXML("C:\Program Files\SAP\SAP
Business One SDK\Samples\CourseXML\Invoice.xml", 0)

 retVal = oInvoice.Add

If retVal <> 0 Then
 oCompany.GetLastError(retVal, retStr)
 MsgBox("Error " & retVal & " " & retStr)

Else
 MsgBox("Invoice number " & oCompany.GetNewObjectKey & " created")

End If

3-3-1 Try all files generated above and check the errors (exceptions) for
details.

Similar exercises can be found in the SDK samples (in the SDK Folder –
see Appendix “SDK Installations” for more information),
COM DI/7.SaveXML and COM DI/8.LoadFromXML

2-124

1

2-125

Data Interface API – Solutions

Unit: Data Interface API

Topic: Transactions

At the conclusion of this exercise, you will be able to:

Work with transactions

Create an Order via DI API and later create an Invoice that is based in
that Order, Documents exercise done before.

This time open a transaction before and close it afterwards.

2

There is no additional “Solution” to this exercise.

2-126

2-127

Data Interface API – Solutions

Unit: Data Interface API
Topic: Using General Objects

At the conclusion of this exercise, you will be able to:

Use the data browser object to browse through a set of data

Use the record set object

Create an application to navigate through all customers.
You will use the Browser property of the BusinessPartners object. Add
the navigation buttons to your form and provide the coding so that the
user can browse through the customers.

5-1 On your Visual Studio project create a new button called “General
Objects”

5-2 Create a new form in your Visual Studio application containing a text box
where you will show the Business Partners Card Code and four buttons:
first, previous, next and last.

2-128

5-3 Create a Recordset object and set the Browser property of the
BusinessPartners object to this Recordset. Be sure that your application
only includes customers, not Leads or Vendors (Suppliers).

 oRecordSet =
oCompany.GetBusinessObject(SAPbobsCOM.BoObjectTypes.BoRecordset)
 oBusinessPartner =
oCompany.GetBusinessObject(SAPbobsCOM.BoObjectTypes.oBusinessPartners)

 oRecordSet.DoQuery("Select CardCode from OCRD where CardType = 'C'")

 oBusinessPartner.Browser.Recordset = oRecordSet

5-3-1 Add the code to all four of the buttons so that the user can navigate
backwards and forward through the customers.

For example to move First use the following code. It needs to be
changed slightly for the other 3 actions.

If oBusinessPartner.Browser.BoF = False Then
 oBusinessPartner.Browser.MoveFirst()
 FillField()

End If

5-4 Test your changes. Be sure to include the following scenarios:

5-4-1 Click the “First Record” button (), then click it again. Try the
same thing with the “Last Record” button ().

5-4-2 Click the “First Record” button (), then click the “Previous
Record” button ().

5-4-3 Click the “Last Record” button (), then click the “Next Record”
button ().

5-4-4 If any of these scenarios raises an error, add code that will fix the
error. Then test the application again.

A similar exercise can be found in the SDK samples (in the SDK Folder –
see Appendix “SDK Installations” for more information),
COM DI/1.BasicOperations

3

2-129

Data Interface API – Solutions

Unit: Data Interface API

Topic: Meta Data
At the conclusion of this exercise, you will be able to:

Work with Meta Data objects in the DI API

Create user-fields and user-tables in the SAP Business One database.

Use the UserTableMD Object to create User Tables

Use the UserFieldMD Object to create User Fields

6-1 As a first small exercise add a User-Defined Field to the item table
(OITM) through DI API. On your Visual Studio project create a new
button called “UDF and UDT”

6-1-1 Use namespace “TB1_” as a prefix…

Dim oUDF As SAPbobsCOM.UserFieldsMD
 oUDF = oCompany.GetBusinessObject(SAPbobsCOM.BoObjectTypes.oUserFields)
 oUDF.TableName = "OITM"
 oUDF.Name = "TB1_Course"
 oUDF.Description = "Course UDF"
 oUDF.Type = SAPbobsCOM.BoFieldTypes.db_Alpha
 oUDF.EditSize = 20

 retVal = oUDF.Add
If retVal <> 0 Then

 oCompany.GetLastError(retVal, retStr)

2-130

 MsgBox("Error " & retVal & " " & retStr)
Else

 MsgBox("UDF Added")
End If

 oUDF = Nothing

6-2 Add a User-Defined Table (use namespace “TB1_” as a prefix…), but do
not add any fields to the table yet.

Dim oUsrTble As SAPbobsCOM.UserTablesMD
 oUsrTble = oCompany.GetBusinessObject(SAPbobsCOM.BoObjectTypes.oUserTables)

 oUsrTble.TableName = "TB1_DVD"
 oUsrTble.TableDescription = "DVD Management"
 retVal = oUsrTble.Add

If retVal <> 0 Then
 oCompany.GetLastError(retVal, retStr)
 MsgBox("Error " & retVal & " " & retStr)

Else
 MsgBox("UDT Added")

End If

oUsrTble = Nothing

6-3 Test your application by opening the “Manage User Fields” window in
SAP Business One. Check to see that the table was added.

6-4 Remove the User-Defined Table (in the SAP Business One application)
you just created before. Enhance your application with the capability to
remove the User-Defined Table through DI API – and then test your
application to see that you can also add and delete the User-Defined Table
in SAP Business One.

If oUsrTble.GetByKey("TB1_DVD") = True Then
 retVal = oUsrTble.Remove

End If

If retVal <> 0 Then
 oCompany.GetLastError(retVal, retStr)
 MsgBox("Error " & retVal & " " & retStr)

Else
 MsgBox("UDT Removed")

End If

2-131

6-5 Add the following User-Defined Fields to your new User-Defined Table:

Aisle Number – Indicates in which aisle the movie is stored.
Field Name: AISLE
Field Description: Aisle Number
Field Type: db_Numeric
Field EditSize: 2

Section – Indicates the section the movie is store in the aisle.
Field Name: SECTION
Field Description: Section Number
Field Type: db_Alpha
Field EditSize: 20

Rented – Indicates weather the movie is rented or not.
 Holds 2 “valid values”: Y/N.

Field Name: RENTED
Field Description: Rented/Available
Field Type: db_Alpha
Field EditSize: 1

CardCode – In case the movie is “Rented”
 This field will hold the CardCode of the customer who
rented it otherwise it will be empty.

Field Name: CARDCODE
Field Description: Card Code
Field Type: db_Alpha
Field EditSize: 20

Same process as adding a user defined field to a System table except we
use the correct notation for a User Defined Table i.e. using @

oUDF.TableName = "@TB1_DVD"

6-6 Test your application and make sure all your fields were added
successfully.

2-132

6-7 Write data into the User-Defined Table.

6-7-1 Add about 15 records to your new User-Defined Table.

Dim oUserTable As SAPbobsCOM.UserTable
 oUserTable = oCompany.UserTables.Item("TB1_DVD")
 oUserTable.Code = "1"
 oUserTable.Name = "Avatar"
 oUserTable.UserFields.Fields.Item("U_AISLE").Value = "2"
 oUserTable.UserFields.Fields.Item("U_SECTION").Value = "Science Fiction"
 oUserTable.UserFields.Fields.Item("U_RENTED").Value = "N"

 retVal = oUserTable.Add
If retVal <> 0 Then

 oCompany.GetLastError(retVal, retStr)
 MsgBox("Error " & retVal & " " & retStr)

Else
 MsgBox("Record Added")

End If

 oUserTable = Nothing

6-7-2 Your User-Defined Table could look like this:

A similar solution can be found in the SDK samples (in the SDK Folder –
see Appendix “SDK Installations” for more information),
…\COM UI DI\VB.NET\UIDIBasicApp\CreateUserTables

4

2-133

Solution to Optional Exercise

Unit: Data Interface API

Topic: Services

At the conclusion of this exercise, you will be able to:

Work with Service Type objects

Use CompanyService to change the backgound color of forms for a
particular company…

7-1 On your Visual Studio project create a new button called “Service Object”

7-2 Get CompanyServices object.

7-3 Get structure which reflects information in table OADM.

7-4 Set the background color to purple.

2-134

7-5 Call the method which updates the information in the SAP Business One
database. See the effect in the SAP Business One application

Dim oCompanyService As SAPbobsCOM.CompanyService
Dim oCompanyInfo As SAPbobsCOM.CompanyInfo
Dim oCompanyAdminInfo As SAPbobsCOM.AdminInfo

 oCompanyService = oCompany.GetCompanyService
 oCompanyAdminInfo = oCompanyService.GetAdminInfo
 oCompanyAdminInfo.CompanyColor = 3

5 oCompanyService.UpdateAdminInfo(oCompanyAdminInfo)

A solution (+ more sample code around services) can be found in the SDK
samples (in the SDK Folder – see Appendix “SDK Installations” for more
information),
COM DI/ 11.Basic Company Settings

3-1

User Defined Objects (UDOs)

Contents:
SAP Business One Objects
Explain why UDOs may make sense
Implementing UDOs step-by-step
Use DI API’s GeneralService to maintain UDO data

3-2

User Defined Objects: Unit Objectives

At the conclusion of this unit, you will be able to:

Describe the SAP Business One Objects
Why UDOs may make sense
Implement UDOs step-by-step
Use UDOs within an Add-on

3-3

1 Course Overview

2 SDK Introduction

3 The Data Interface API (short look on JCo + DI Server)

4 User-Defined Objects (UDO)

5 The User Interface API

6 Packaging, Add-On Administration and Licensing

42 66

Course Overview Diagram

Client

Server

Server

SAP Business One
Database

SAP Business One3rd Party
Application

Ja
va

 C
o

Data Interface
API

License
Service

UDO

DI Server

U
se

r I
nt

er
fa

ce
 A

PI

1

5

3 3

3-4

User Defined Objects: Topic Objectives

At the conclusion of this topic, you will be able to:
Explain the architecture of UDOs
Describe available services that reduce development efforts

3-5

May be a very good solution to add new business logic to the SAP Business One application.

Fast way to develop Add-ons since a major part of the implementation is provided automatically.

Fast way to develop any Add-On working with data from User-Defined Tables with database format
used for UI.

User-Defined Business Objects will be added to the SAP Business
One application objects collection.
User-Defined Business Objects come with a set of basic functionalities
(named “services”) which are common for any Business Object in SAP
Business One.

User-Defined Business Objects – Benefits

Object Collection

Predefined Services

UDO New partner
object

Register the object
for services

3-6

Object Types

SBO application supports 2 main types of objects:
Master Data Objects – e.g. Business Partner
Documents – e.g. Sales Order

The Document object supports methods that are not implemented
in Master Data objects like:

Document numbering (Serial Numbers)
Close

3-7

The above are SAP Business One services available for partners new object.

Predefined Services for Business Objects

Service Description

Add Add a new record of the object to the DB.

Update Update the fields of the object in the DB.

Find Supports “Choose From List” for the object.

Close Only relevant for „Document Data“ type User-Defined Objects

Cancel Only changes the record’s status to “Cancel = Y”.

Delete Master Data – deleting record, Doc – no effect.

Manage Series Relevant to document objects. Adding the object to the Document Numbering form and
managing the series for that object..

History Creates a log table for the object and saves its history.

Default Form Creates a default form for the object which manages all the services.

Year Transfer Copying the tables and the records in the Year Transfer operation (only released for the
Netherlands and Israel).

3-8

In the current situation the partner usually needs to implement the connection between the DI and the
UI API.

Information flow between Add-ons and SAP
Business One using DI API and UI API

GUI Layer

System
Form

Business Layer

System
Objects

DB Layer

DI API

UI API

System
Table

Each Add-on
implements basic
functionality itself

Numbering

Log

Add, Find, Update,
etc.

Partner Add On

Interface to the
table no logic

User Defined Form

User Defined Table

3-9

After running the UDO wizard your object is registered to SAP Business One services.

Create user form and
connect it to the
Defined object

Information flow between Add-ons and SAP
Business One using UI API and UDOs

GUI Layer

System
Form

Business Layer

System
Objects

DB Layer

UI API

UI Add-on

User Defined Object

Predefined
service
register for
the object

1. Add, Update..
2. History log
3. Series
4. User signature
5. Year Transfer

System
table

User Defined Form

User Defined Table

3-10

Flow between Add-ons and SAP Business One
using UI API and UDOs including Impl. DLL

UI API

UDO implementation

System
Form

Business Layer

System
Objects User Defined Object

Predefined
service
register for
the object

1. Add, Update..
2. History log
3. Series
4. User signature
5. Year Transfer

System
table

User Defined Form

User Defined Table

Create user form and
connect it to the
Defined object

UI Add-onGUI Layer

DB Layer

3-11

Connecting has already been practiced in the introduction unit…

User Defined Objects: Topic Summary

You should now be able to:
Explain the architecture of UDOs
Describe available services that reduce development efforts

3-12

User Defined Objects: Topic Objectives

At the conclusion of this topic, you will be able to:

Implement UDOs step-by-step
Use DI API’s GeneralService to maintain UDO data

3-13

You can go through “Order Meal” sample provided with the UDO documentation.

Choose from the UDO documentation:

SAP Business One – User Defined Object Samples Document Type Sample – Meal Ordering
Object Stage…

User Defined Object Implementation Steps

1) Define Base Table:
Create User Table/s with User Fields that will hold the data for your new
business object.

2) Register the required services for your new business object.
Create a UI Form (Optional)

3) Object Implementation (Optional):
Implement base class methods that need to be extended by the object.

3-14

Define Base Tables

Create User Table/s with User Fields that will hold the data for your new business
object.

Use SAP Business One application
(Tools User Defined Fields Manage User Fields User Tables)
Use the DI API Metadata object
(UserTablesMD and UserFIeldsMD)

Do not forget to choose the suitable object type.

3-15

Add a new object: Inserts a new User Defined Object

Update an existing object: Updates an existing object

Unregister an existing object: Removes the Object registration (OUDO)

Delete an existing object: Removes the Object registration and clears the object’s tables.

UDO Registration – Using the Wizard (Step 1)

The registration wizard helps you to register your User Defined Objects.

The registration is per company.

Choose from SAP Business One menu:

Tools User Defined objects Registration Wizard

3-16

UDO Registration Steps 2 – Basic Settings and
3 – Services

Set A Unique ID for your object

(use namespace)

Set the object type

Set the Header/Parent table

Register for services.

Add and Update are the basic services
and cannot be deselected.

3-17

UDO Registration Steps 4 – Fields for “Find”
and 5 – select child/son tables

If the Find service was selected:

Select the fields from the parent
table to be displayed in the find
form.

Select the Child tables of the object.

Only suitable tables are displayed in
the list.

3-18

UDO Registration Step 6 – Optionally define
“Default Form”

If the Default Form service was checked:

Select fields from parent table to be displayed in the default form.

Select fields from one child table.

3-19

Please refer to slide number 21 for further information about the extension DLL.

UDO Registration Step 7 – Optional
Implementation DLL

Set the Extension DLL file (optional).

3-20

UDO Default Form

The UDO wizard provides the option to create a default UI Form.
Use this option in case:

You need to test on your object.
You need a quick solution.

Load your UI form:
Tools Default Forms Your form
Limitation:

Only 1 child table supported.

3-21

Use the new interface for creating a form

How to define a UDO through DI API?

Dim oUserObjectMD As UserObjectsMD

oUserObjectMD = _

oCompany.GetBusinessObject(SAPbobsCOM.BoObjectTypes.oUserObjectsMD)

oUserObjectMD.Code = "TT_MD“
oUserObjectMD.Name = "TEST_MD“

oUserObjectMD.ObjectType = _
SAPbobsCOM.BoUDOObjType.boud_MasterData

oUserObjectMD.TableName = "T_MD“ ‘ Main user table (same type as the UDO)

oUserObjectMD.ChildTables.TableName = "T_MD1“ ‘ First child user table

‘ Add 2nd line; first line in a already exists by default
oUserObjectMD.ChildTables.Add()
oUserObjectMD.ChildTables.TableName = "T_MD2“ ‘ Second child user table

3-22

How to define a UDO through DI API?
(continued)

Dim c_Yes As SAPbobsCOM.BoYesNoEnum = BoYesNoEnum.tYES

‘ Configure Services
oUserObjectMD.CanCancel = c_Yes
oUserObjectMD.CanClose = c_Yes
oUserObjectMD.CanCreateDefaultForm = c_Yes ‘ Need to specify columns
oUserObjectMD.CanDelete = c_Yes
oUserObjectMD.CanFind = c_Yes ‘ Need to specify columns
oUserObjectMD.CanLog = SAPbobsCOM.BoYesNoEnum.tNO
oUserObjectMD.CanYearTransfer = SAPbobsCOM.BoYesNoEnum.tNO
oUserObjectMD.ManageSeries = c_Yes

' Columns added in the ChooseFromList form, repeat this 3 lines for each column
oUserObjectMD.FindColumns.ColumnAlias = „Code"
oUserObjectMD.FindColumns.ColumnDescription = „Code"

‘ … add Columns for Default Form in the same way …
oUserObjectMD.FindColumns.Add()
oUserObjectMD.FindColumns.ColumnAlias = "U_MyName"
oUserObjectMD.FindColumns.ColumnDescription = "My Name„

‘ Add the UDO
lRetCode = oUserObjectMD.Add()

3-23

Steps to writing you own object’s business logic unit:

Write a class that inherits from CSBOBusinessObject.

Export CreateObject function (dll entry point).

Implement Destroy and Close functions (pure virtual).

Overwrite any desired virtual function.

Call the base class functions to get the default behavior.

Use the interface functions to do your work.

Register the dll in the registration wizard.

UDO Implementation DLL (I) (optional)

You are able to overwrite the implementation for your object
In case you want to add actions to the default behavior.
In case you want to replace the default behavior.

Important:
You must implement in C++.
You can only register one DLL per UDO.
Pay attention to the namespaces to avoid conflicts
When a user activates a UDO, the SAP Business One application loads the DLL in
memory.

…find a description how to implement such a DLL file step-by-step in the notes
below…

3-24

Include the header files:

SboBusinessObject.h - Defines CSboBusinessObject, base Class for SBO objects.

SboDataAccessGate.h - Defines CSboDataAccessGate, BD interface.

SboCondition.h - Elements for query conditions.

SBO_Types.h

__SBOERR.h - Application errors definition.

_AppObjects.h - List of SBO objects id’s.

UDO Implementation DLL (II) (optional)

class MyUDO : public CSboBusinessObject
{

public:
MyUDO (unsigned long systemHandle);
~MyUDO ();

‘ Mandatory
virtual CSboBusinessObject *Clone (unsigned long systemHandle)

{return new MyUDO (systemHandle);}

virtual void Destroy ()
{delete this;}

‘ Optional (just a sample!)
virtual SBOErr OnAdd ();
virtual SBOErr OnUpdate ();

};

Write a C++ Class inheriting from CSboBusinessObject and redefine the virtual
pure methods Clone and Destroy.

3-25

DI General Service – Methods

The new interface includes the GeneralService and a set of 4 supporting objects
One interface is good for all UDOs (Master Data and Document)
The new interface provides access to UDO data:

Add records
Find records
Delete records
Cancel / Close document
Invoke partner method (to invoke a custom method written in an implementation DLL for
your UDO)
GetDataInterfaceFromXMLFile / GetDataInterfaceFromXMLString (creates object from XML
file or string)
Get/Set property – for Getting and Setting table field values (for most fields that are auto
generated, only Get is implemented)

3-26

DI General Service – Objects

General Data – Represents a single row in a database table of a UDO, or in a child table of
the UDO
GeneralDataParams – Holds the keys to rows in database tables linked to a UDO data. This
object is used to pass keys to and from GeneralService methods
GeneralCollectionParams – A collection of GeneralDataParams objects
GeneralDataCollection – A collection of GeneralData objects, each of which represents a row
in a child user table for a specific row of the main table of a UDO
InvokeParams – Holds a single, string value. This object is used to pass a parameter to or
receive a return value from the Invoke method of the GeneralService service.

3-27

DI General Service – Objects
Implementation Chart

GeneralData
(Header Table
Record)

GeneralDataParams
(Header Table Key)

GeneralCollectionParams
(Header Table Key Collection)

GeneralDataCollection
(Son Key Collection)

GeneralData
(Son Table
Record)

1

1

1

n

n

n

1 1

3-28

Sample is for Document UDO type, Master Data is quite similar

SAPbobsCOM.GeneralService oDocGeneralService;
SAPbobsCOM.GeneralData oDocGeneralData;
SAPbobsCOM.GeneralDataCollection oDocLinesCollection;
SAPbobsCOM.GeneralData oDocLineGeneralData;
// Retrieve the relevant service
oDocGeneralService = (SAPbobsCOM.GeneralService)oCompService.GetGeneralService("MyDocUDO");
// Point to the Header of the Doc UDO
oDocGeneralData = (SAPbobsCOM.GeneralData)oDocGeneralService.GetDataInterface

(SAPbobsCOM.GeneralServiceDataInterfaces.gsGeneralData);
// Insert values to the Header properties
oDocGeneralData.SetProperty("U_CustCode", "2");
oDocGeneralData.SetProperty("U_CustName", "Customer2");

…
// Insert Values to the Lines properties
oDocLinesCollection = (SAPbobsCOM.GeneralDataCollection)oDocGeneralData.Child("SAP_DOCL");
// Line
oDocLineGeneralData = oDocLinesCollection.Add();
oDocLineGeneralData.SetProperty("U_ItemCode", "Item1");
oDocLineGeneralData.SetProperty("U_Quantity", "1");

…

// Add - Doc UDO Header and Line Data to DB
oDocGeneralService.Add(oDocGeneralData);

DI General Service – Code Sample
Add Document

3-29

DI General Service – Code Sample
Update Document

SAPbobsCOM.GeneralService oDocGeneralService;

SAPbobsCOM.GeneralData oDocGeneralData;

SAPbobsCOM.GeneralDataCollection oDocLinesCollection;

SAPbobsCOM.GeneralData oDocLineGeneralData;

SAPbobsCOM.GeneralDataParams oGenralParameter;

// Retrieve the relevant service

oDocGeneralService = (SAPbobsCOM.GeneralService)oCompService.GetGeneralService("MyDocUDO");

// Get by key - header record

oGenralParameter = (SAPbobsCOM.GeneralDataParams)oDocGeneralService.GetDataInterface
(SAPbobsCOM.GeneralServiceDataInterfaces.gsGeneralDataParams);

oGenralParameter.SetProperty("DocEntry", "1");

oDocGeneralData = oDocGeneralService.GetByParams(oGenralParameter);

// Update - Add Lines to the child tables, Insert Values to the Lines properties

oDocLinesCollection = (SAPbobsCOM.GeneralDataCollection)oDocGeneralData.Child("SAP_DOCL");

// Add Line

oDocLineGeneralData = oDocLinesCollection.Add();

oDocLineGeneralData.SetProperty("U_ItemCode", "Item2");

oDocLineGeneralData.SetProperty("U_Quantity", "2");
…

// Update DocTotal in the header

oDocGeneralData.SetProperty("U_DocTotal",
"50");

// Update the MD UDO

oDocGeneralService.Update(oDocGeneralDat
a);

3-30

Similar code for Cancel and Close (which are relevant for document object type only!)

DI General Service – Code Sample
Delete Document

SAPbobsCOM.GeneralService oDocGeneralService;

SAPbobsCOM.GeneralData oDocGeneralData;

SAPbobsCOM.GeneralDataParams oGenralParameter;

// Retrieve the relevant service

oDocGeneralService = (SAPbobsCOM.GeneralService)oCompService.
GetGeneralService("MyDocUDO");

// Get by key – header record

oGenralParameter =
(SAPbobsCOM.GeneralDataParams)oDocGeneralService.GetDataInterface(SAPbobsC
OM.GeneralServiceDataInterfaces.gsGeneralDataParams);

oGenralParameter.SetProperty("DocEntry", "3");

// Delete whole record (Header and Lines)

oDocGeneralService.Delete(oGenralParameter);

3-31

DI General Service – Code Sample
GetList

SAPbobsCOM.GeneralService oDocGeneralService;

SAPbobsCOM.GeneralCollectionParams oDocsCollectionParams; //List

// Retrieve the relevant service

oDocGeneralService =
(SAPbobsCOM.GeneralService)oCompService.GetGeneralService("MyDocUDO");

// Get the List

oDocsCollectionParams = oDocGeneralService.GetList();

oDocsCollectionParams.ToXMLFile(System.AppDomain.CurrentDomain.BaseDirectory +
"\\DocList.xml");

MessageBox.Show("There are " + oDocsCollectionParams.Count + " documents");

3-32

DI General Service – Code Samples

Refer to the blog:

Simple Sample Blog (Accessing UDO in DI API):

https://www.sdn.sap.com/irj/scn/weblogs?blog=/pub/wlg/13009

How to use UDO services in DI Server:
http://www.sdn.sap.com/irj/scn/weblogs?blog=/pub/wlg/17725

Code sample can be downloaded via a link provided in the blog

https://www.sdn.sap.com/irj/scn/weblogs?blog=/pub/wlg/13009
http://www.sdn.sap.com/irj/scn/weblogs?blog=/pub/wlg/17725

3-33

UDOs in UI API

Features related to UI API are going to be discussed in the UI API unit.

3-34

Connecting has already been practiced in the introduction unit…

User Defined Objects: Topic Summary

You should now be able to:
Implement UDOs step-by-step
Use DI API’s GeneralService to maintain UDO data

3-35

User Defined Objects: Unit Summary

You should now be able to:
Describe SAP Business One Objects
Why UDOs may make sense
Implementing UDOs step-by-step
Use DI API’s GeneralService to maintain UDO data

3-36

3-37

UDO – Exercises

Unit: User Defined Object

Topic: Basics

At the conclusion of this exercise, you will be able to:

Add a User Defined Table of type UDO

Register your UDO

Fill your UDO with data
.

1-1 Define the User defined table

1-1-1 Take the table you defined in the DI Exercises (Exercise 6)
TB1_DVD and define it a user defined object type Master Data.
You can do this via the SAP Business One application or via the
DI API as highlighted in the DI Exercises.

You will first need to delete the user table created previously and recreate
it as a User Defined Object. If you wish to keep the data you can first
export it to excel and re-enter it in after again.

1-1-2 Define the user defined fields again for this table (from DI
exercises)

3-38

1-2 Register the UDO

This can be done via the SAP Business One Objects Registration Wizard or
via the DI API

UDO Code: TB1_DVDAvail

UDO Name: TB1_DVDAvailability

Select services Cancel, Delete and Find

Find columns Code, Name, U_Section, U_Aisle, U_Rented, U_CardCode

1-3 Enter data into the UDO using the General Service

3-39

UDO – Solutions

Unit: User Defined Object

Topic: Basics

At the conclusion of this exercise, you will be able to:

Add a User Defined Table of type UDO

Register your UDO

Fill your UDO with data

1-1 Define the User defined table

1-1-1 Take the table you defined in the DI Exercises (Exercise 6)
TB1_DVD and define it a user defined object type Master Data.
You can do this via the SAP Business One application or via the
DI API as highlighted in the DI Exercises.

1-1-2 Define the user defined fields again for this table (from DI
exercises)

3-40

1-2 Register the UDO

Dim oUserObjectMD As SAPbobsCOM.UserObjectsMD

 oUserObjectMD =
oCompany.GetBusinessObject(SAPbobsCOM.BoObjectTypes.oUserObjectsMD)

 oUserObjectMD.Code = "TB1_DVDAvail"
 oUserObjectMD.Name = "DVDAvailability"
 oUserObjectMD.ObjectType = SAPbobsCOM.BoUDOObjType.boud_MasterData
 oUserObjectMD.TableName = "TB1_DVD"

 oUserObjectMD.CanCancel = SAPbobsCOM.BoYesNoEnum.tYES
 oUserObjectMD.CanClose = SAPbobsCOM.BoYesNoEnum.tYES
 oUserObjectMD.CanDelete = SAPbobsCOM.BoYesNoEnum.tYES
 oUserObjectMD.CanFind = SAPbobsCOM.BoYesNoEnum.tYES

 oUserObjectMD.FindColumns.ColumnAlias = "Code"
 oUserObjectMD.FindColumns.Add()
 oUserObjectMD.FindColumns.ColumnAlias = "Name"
 oUserObjectMD.FindColumns.Add()
 oUserObjectMD.FindColumns.ColumnAlias = "U_SECTION"
 oUserObjectMD.FindColumns.Add()
 oUserObjectMD.FindColumns.ColumnAlias = "U_AISLE"
 oUserObjectMD.FindColumns.Add()
 oUserObjectMD.FindColumns.ColumnAlias = "U_RENTED"
 oUserObjectMD.FindColumns.Add()
 oUserObjectMD.FindColumns.ColumnAlias = "U_CARDCODE"

 retVal = oUserObjectMD.Add()

1-3 Enter data into the UDO using the General Service

Dim oGeneralService As SAPbobsCOM.GeneralService
Dim oCompanyService As SAPbobsCOM.CompanyService
Dim oGeneralData As SAPbobsCOM.GeneralData

 oCompanyService = oCompany.GetCompanyService
 oGeneralService = oCompanyService.GetGeneralService("TB1_DVDAvail")

oGeneralData =
oGeneralService.GetDataInterface(SAPbobsCOM.GeneralServiceDataInterfaces.gsGene
ralData)

 oGeneralData.SetProperty("Code", "32")
 oGeneralData.SetProperty("Name", "Gran Torino")
 oGeneralData.SetProperty("U_SECTION", "Drama")
 oGeneralData.SetProperty("U_AISLE", "8")
 oGeneralData.SetProperty("U_RENTED", "Y")
 oGeneralData.SetProperty("U_CARDCODE", "Kim Kingston")

 oGeneralService.Add(oGeneralData)

4-1

The User Interface API

Contents:
API overview
Establishing a connection to the user interface
Working with system forms
Creating and working with custom forms
Menus
Event handling

4-2

Steps:

General introduction

Connecting to User Interface API (UI API)

Implementing functionality required to ensure seamless integration (events, menus etc)

Modifying existing forms (how and when)

Developing and connecting own forms

…how to connect own forms to data from the database

The User Interface API: Unit Objectives

At the conclusion of this unit, you will be able to:

Explain what the User Interface API is
Explain how to establish a connection to a running SAP Business One
application
Explain how the API interacts with the SAP Business One client
Add menu entries
Work with existing SAP Business One forms
Create forms and integrate them into SAP Business One GUI

4-3

1 Course Overview

2 SDK Introduction

3 The Data Interface API (brief look at JCo + DI Server)

4 User-Defined Objects (UDO)

5 The User Interface API

6 Packaging, Add-On Administration and Licensing

42 66

Course Overview Diagram

Client

Server

Server

SAP Business One
Database

SAP Business One3rd Party
Application

Ja
va

 C
o

Data Interface
API

License
Service

UDO

DI Server

U
se

r I
nt

er
fa

ce
 A

PI

1

5

3 3

4-4

You want to:

Perform additional checks in SAP Business One

Enhance SAP Business One by seamlessly integrating
additional functionality

The User Interface API: Business Example

4-5

UI API Introduction: Unit Overview Diagram

Topic 3: Creating Forms

Topic 4: ItemEvents, Event Filtering (and more)

Topic 5: Menus

Topic 6: Data Binding

The User Interface API

Topic 1: UI API Introduction

Topic 2: Add-On Basics

Topic 7: Use UDO in Add-On

Topic 8: Additional Events

Topic 9: Additional Objects

Topic 10: UI API – Additional Information

4-6

UI API Introduction: Topic Objectives

At the conclusion of this topic, you will be able to explain:
How User Interface API works
How to connect to the SAP Business One application through UI API

4-7

The UI API exposes user interface elements of the SAP Business One front-end:

Respond to internal events in the SAP Business One client application

Add or modify menus

Add new forms

Modify existing forms

Get or set values on a form

By using the event mechanism a 3rd party application can react to user interactions with the SAP
Business One application.

Inquiry

Vendor

Name

Contact Employee

Phone

Vendor Ref. No.

Inquiry No.

Inquiry Date

Item Number Item Description Quantity Price

Document Type

Tax

Total Sum

Add Cancel

Inquiry Ref. No.

UI API Introduction – Scope

Control flow of applications

Change existing screen layout:
Add/Remove Controls
Change Control Properties

Add new screens (i.e. “Forms”)

Add/Modify/Remove menus

Summary: UI API provides the capability for seamless integration maintaining the
uniform “look and feel” of SAP Business One

4-8

UI API Introduction – Characteristics

DCOM executable running on the client machine – 1 instance per Windows session
Connected to all instances of the SAP Business One application
Gives access to user interface elements within the SAP Business One application via a
COM interface
Sends events (usually originating) from SAP Business One GUI elements (items) to your
event sink / event handler

Enables add-on executables to customize or extend the SAP Business One client
application
Relatively low-level – most large-scale/complex changes require significant
programming effort

4-9

Multiple add-ons (from several vendors) may be used alongside the SAP Business One application to
provide a complete solution

3rd party applications can modify SAP Business One GUI through UI API

3rd party applications can get events from SAP Business One through UI API to react to user
interaction

3rd Party
Application C

3rd Party
Application B

Client

UI API Introduction – Solution Architecture

Server

Server

SAP Business One
Database

SAP Business One

U
se

r I
nt

er
fa

ce
 A

PI

License
Service

…

3rd Party
Application A

4-10

UI API add-ons are launched by SAP Business One and then have to connect to the UI API within a
timeout limit of approx. 10 seconds.

“SAP Business One checks for registered add-ons”

Add-On Administration settings control which add-ons are started for a user – Refer to the „Add-On
Packaging, Administration & Licensing“ unit

UI API Introduction – Startup process for add-
ons

User logs in to a company in
SAP Business One

SAP Business One
checks for registered

add-ons

SAP Business One starts
registered add-ons

Add-on must use
command line input as

“connection string”

SAP Business One and add-
on(s) run in parallel

When SAP Business One shuts
down:

Add-ons responsible for their own
shutting down

4-11

When SAP Business One is launched, it starts the UI API and connects with it before any add-ons are
started

If add-ons are registered to start within a user session:

1. SAP Business One links to the UI API and establishes an event-sink for them

2. SAP Business One starts 3rd party application A and passes a command line parameter to it

2.a 3rd party application A creates an Application object that has a counterpart in the UI API

2.b 3rd party application A provides an event sink for events to be fired from the Application object
on the UI API side

2.c The UI API application object registers itself in the IAppLink object for bidirectional
communication

3. The same set of steps is repeated for 3rd party application B

U
se

r I
nt

er
fa

ce
 A

PI

IAppLink
<<create>>

<<event sink>>

SAP
Business One

(A + B registered)

UI API Introduction – Load and establish
connections

IApplication

IApplication

<<create>>

<<event sink>>

<<create>>

<<event sink>>

1 2

3

“0030002C0030002C00530041005000420044005F00440061007400650076002C0050004C006F006D0056004900490056”

3rd Party
Application A

3rd Party
Application B

4-12

SAP Business One starts add-on applications registered for automatic start-up in the order determined
by the system administrator (see section “Creating a package”)

The add-ons establish connections to the UI API and register event sinks

When an event occurs in SAP Business One UI, it is passed to add-ons which created event sinks for
such events, one at a time

U
se

r I
nt

er
fa

ce
 A

PI

UI API Introduction – Events for Add-Ons

IAppLink
Notify on
Button

pressed
IApplication

Notify on
Button

pressed

IApplication
Notify on
Button

pressed

IApplication
Notify on
Button

pressed

Sends Button
pressed event via

event sink

Sends Button
pressed event via

event sink

Sends Button
pressed event via

event sink

UI API Server

3rd Party
Application A

3rd Party
Application B

3rd Party
Application C

SAP Business
One

4-13

Every add-on action is reflected in the SAP Business One application via the UI API

The same mechanism is used in the other direction, from the SAP Business One application to add-ons

UI API Introduction – Events for SAP Business
One…

IAppLink

IApplication
Notify on
property
changed

Sets
property of
GUI
element

Sends
“property
changed”
event via
event sink

User Interface API

SAP Business
One

3rd Party
Application B

4-14

The User Interface API (UI API) is a collection of COM objects that provide access to:

forms

controls within these forms

menus

Note: The “Main Menu” and the status bar are forms as well

UI API Introduction – Object Overview

Menus

Forms

Controls (“Items”)
on Forms

Connection Objects
SboGuiAPI
Application

Desktop

Menu

Form
Items

ComboBox
EditText
Matrix
Grid
Folder
ActiveX
…

DataSources
DBDataSource
DataTable
UserDataSource

4-15

The Application object (reflecting the IApplication interface on the UI API DCOM server side)
provides access to forms, controls within forms, menus and the main window (desktop)

“Forms” and “Menus” are collections accessible via the Application object.

„Menus“ holds a snapshot of the menu items currently available – both visible and not visible)

„Forms“ holds the collection of the currently available forms – both visible and not visible.

It is not possible to explicitly display a new instance of a specific type of system form, e.g. Sales
Quotation. New system forms can be instantiated indirectly, for example by activating the
corresponding menu item

„Form“ object is a representation of a form, both system and user-defined

„Item“ object represents a window control - contents, position, size, visibility and other attributes
can be modified

„DataSources“ collection - objects which hold data for form items, designed to provide efficient data
handling separately from UI presentation

Desktop object/property - use it to change e.g. the background image

UI API Introduction – Objects and Collections

Application

Forms Form

Items Item

Menus

Desktop

MenuItem

DataSources
DBDataSources

UserDataSources

SubMenus

DBDataSource

UserDataSource

1..n

1..n

1..n

1..n

Menu MenuItem
SubMenus

1..n

1..n Specific1..1

…

…

…

DataTables DataTable1..n

ChooseFromLists ChooseFromList1..n

DataBrowser

Settings

<Object>
<Collection>

Legend

> 20 further Properties !

Company

ResourceData

StatusBar

„Events“

Further Properties

Further Props.

4-16

You can view technical information related to forms, items (controls), and corresponding database
tables/fields by selecting View > System Information and mouse over the items(controls) in question.

The information is shown in the lower left corner of the screen:

Form Type (string, but appears as a number for system forms)

Item UID (string, but appears as a number for system items)

Pane - current layer linking items with folders (tabs) – see later in this unit

Database table name

Database field name

Menu item unique id

Note:

Database details are not available for items which display information that is:

Calculated within the user interface

Sourced from more than one database field – for example amounts combine the float value with the
currency code, e.g. „EUR 7.59“. The information in the status bar will contain a „variable“ ID.

The information displayed relates to the position of the mouse pointer, not necessarily the item
which currently has input focus

UI API Introduction – Gathering Information

4-17

Most UI API code is event driven. Events are usually fired in response to user actions within the SAP
Business One application.

AppEvent, ProgressBarEvent + StatusBarEvent will always be forwarded to add-ons, i.e. they cannot
be filtered out.

Other types of events can be filtered (ItemEvent) or must be added to the (ItemEvent) event filter (click
on menu).

Note:

It is the developer’s responsibility to make sure that their code will handle each application event
successfully

AppEvent events must be processed by your application. Refer to the Standards & Guidelines
document for more information

UI API Introduction – Events reflected in UI API

Mandatory:
AppEvent: Event fired when: Application is shut down, Add-on is stopped via “Add-On Manager”, Company
is changed. UI language is changed

Important / Frequently used:
ItemEvent: Specific events that occur on forms or items (Click on button, form loading…)

FormDataEvent : Fired when a form with a linked business object loads/saves/removes data

MenuEvent: A click on a sub-menu item in the application

Supplementary (discussed later):
RightClickEvent: Fired before + after context / right-click menu comes up
PrintEvent : Occurs during any kind of “print” (i.e. print, preview + adding attachment)
ReportDataEvent: Follows PrintEvent and allows capture of print data
StatusBarEvent: Occurs when a message is displayed in the application’s status bar
ProgressBarEvent : Occurs when a progress bar is created, stopped or released

Except for AppEvent and StatusBarEvent, UI API usually notifies event handlers twice:
BeforeAction = True Before
SAP Business One (and other add-ons) handle the event.. Gives you the option to block a particular event

BeforeAction = False After
SAP Business One (and other add-ons) have handled the event

4-18

Your application connects to the SAP Business One client through the SboGuiApi object using the
Connect method

If a connection has been established, the GetApplication method of the SboGuiApi object grants access
to an application instance, which must be used to access the application’s containers (for example,
menus or forms) for event manipulation and for property settings

The user interface can be accessed using the objects that exist within User Interface API objects

Using the connection string supplied by the SAP Business One application as a command line
parameter for Connect() makes sure that the add-on gets connected to the correct instance of the SAP
Business One application

Add-on SAP Business One Client (as seen from the Add-On)

UI API Introduction – Connecting to the
Application

Add On
Application

SAP Business One
UI API

SAP Business One
Application in UI API

.Connect

Connected to GUI Object

.GetApplication

returns Application Object

4-19

In VB.NET, the SBO_Application object has to be declared with the WithEvents modifier for it to
support event handling

The connection to the UI API requires:

Connection String

Development mode - supplied by SAP; preferrably use in MS Visual Studio debug project settings
as “command line parameter” rather than hard-coding it. See the “How to” section in the SDK
Helpcenter.

Runtime mode - supplied by the SAP Business One application as a command line parameter

An Add-On Identifier String - allows the SAP Business One License Service to recognize your Add-
On. To create the identifier, use the Add-On Identifier Generator available from the SAP Business
One application (License Administration).

Licensing and AddOnIdentifiers are discussed later in the course

UI API Introduction – Connecting to UI API

Private WithEvents SBO_Application As SAPbouiCOM.Application

Private Sub Logon()
'Declare a new instance of the SboGuiApi object which represents the UI API app...
'…which only runs once on each client system…
Dim oSboGuiApi As New SAPbouiCOM.SboGuiApi
Dim sConnStr As String

'Get the connection string – as a commandline parameter…
‘Use the “Debug” connection string to launch the Add-On from development env.…
sConnStr = Environment.GetCommandLineArgs.GetValue(1)

‘Set the AddOn identifier (optional) – some long string with numbers
‘oSboGuiApi.AddOnIdentifier = <just a placeholder>

'Connect to UI API
oSboGuiApi.Connect (sConnStr)

'Get the Application object / interface – the only object you need from here:
‘… there’s an opt. parameter that identifies the SAP B1 instance; only for “Debug”
SBO_Application = oSboGuiApi.GetApplication()

‘After we got the Application object we don’t need this anymore.
oSboGuiApi = Nothing

End Sub

Object(s):

SboGuiApi

Methods:

+Connect(…)

+GetApplication(…)

Properties:

AddOnIdentifier…

4-20

Always test an add-on thoroughly before deploying in a productive environment

Due to bug fixes in the SDK, incorrect code might “work” on an older version, but it might encounter
exceptions after an upgrade

UI API Introduction – Upgrade Compatibility

UI API
version 2007

UI API
version 8.8

Upgrade

SAP
Business One
version 2007

SAP
Business One

version 8.8

3rd Party
Application A
developed on

UI API

Add-ons generally only need re-compilation to run on newer versions of the UI API

4-21

UI API Introduction: Topic Summary

You should now be able to explain:
how the User Interface API works
how to connect to the SAP Business One application through UI API

4-22

UI API Introduction: Exercise

Now do the first UI API exercise and try to connect in
exercise 1-1.

4-23

Add-On Basics: Unit Overview Diagram

Topic 3: Creating Forms

Topic 4: ItemEvents, Event Filtering (and more)

Topic 5: Menus

Topic 6: Data Binding

The User Interface API

Topic 1: UI API Introduction

Topic 2: Add-On Basics

Topic 7: Use UDO in Add-On

Topic 8: Additional Events

Topic 9: Additional Objects

Topic 10: UI API – Additional Information

4-24

Add-On Basics: Topic Objectives

At the conclusion of this topic, you will be able to:
Explain how to use single sign-on to connect to both the User Interface API and
the Data Interface API
Explain how to use the option to get the Data Interface API connection
parameters through UI API
Explain the use of events to ensure that your add-on is synchronized with SAP
Business One

4-25

Add-On Basics
Multiple Add-Ons using DI API

UI API

Add-on 1
(first add-on to connect)

Add-on 2
Add-on N

UI API + DI API
connection;
memory consumption
> ~1.5MB

UI API + DI API
connection;
mem. > ~1.5MB

UI API + DI API
connection;
mem. > ~1.5MB

DI API

SAP Business One version 2007 introduced the option to share a DI API
connection across add-ons:

Call Application.Company.GetDICompany() in UI API to get a reference to
the DI API Company object

SAP Business One Application
(Loading OBServerDLL at 1st add-on connection)

4-26

User credentials are not directly available

Documentation and sample code is included in the SDK help: Getting Started -> Single Sign On

„Single Sign-On“ is still a valid option to connect to both UI API and DI API, but the „Mutiple Add-
On“ feature should be preferred.

Company Object Company Object

Add-On Basics
Single Sign-On

In SAP Business One prior to version 2007, each UI API add-on needing the
DI API must have its own DI API connection

DI API connection can be set up reusing the logon information of the existing
UI API connection

DI API

4. Connects to the Company
database

2. Gets connection
information in the session
context using the cookie

UI API

Cookie

Encrypted
Connection
Information

1. Creates a session
dependent „Cookie“

3. Deciphers and sets
connection information
for login to Company
database

4-27

Add-On Basics
Single Sign-On (Code example)

'After connecting to UI, but before connecting to DI:
'Acquire the connection context cookie from the DI API

Dim sCookie As String
sCookie = oDICompany.GetContextCookie

'Retrieve the connection context string from the
'UI API using the acquired cookie.

Dim conStr As String
conStr = SBO_Application.Company.GetConnectionContext(sCookie)

'Set the connection context information to the DI API.
ret = oDICompany.SetSboLoginContext(conStr)
If Not ret = 0 then

Exit Sub 'the operation has failed.
End If

'Establish the connection to the company database.
ret = oDICompany.Connect()

4-28

Add-On Basics
Details about AppEvents (mandatory!)

Language Change
Occurs when the user changes the display language in the company settings
(Administration > System Initialization > General Settings)

=> The Modules menu is rebuilt and any additional add-on menus removed. You must
handle the Language Change events in your add-on and reapply your menu changes
using the new language selected by the user

Shutdown of SAP Business One / Company Change / Add-On shutdown in
Add-On Manager (“UIServerTerminition”)

Shutdown occurs when the user closes the SAP Business One application
Company change occurs when the user selects another company within the same user
interface session
UIServerTerminition is fired when an AddOn is requested to stop through Add-On
Manager (Administration > Add-ons > Add-on Manager)

=> You must do clean-up work (remove menus (UI Server Termination), close windows,
…) and stop your add-on (e.g. call End in VB.NET)

4-29

Add-On Basics: Topic Summary

You should now be able to:
Explain how to use single sign-on to connect to both the User Interface API and
the Data Interface API
Explain how to use the option to get the Data Interface API connection
parameters through UI API
Explain the use of events to ensure that your add-on is synchronized with SAP
Business One

4-30

Add-On Basics: Exercise

You should now be ready to add these basic features to your
Add-On in an exercise:

“Single Sign-On” (or the alternative way to connect to DI API as well)
Handlers for the (mandatory) AppEvents
…more Event handlers – if you like…

4-31

Creating Forms: Unit Overview Diagram

Topic 3: Creating Forms

Topic 4: ItemEvents, Event Filtering (and more)

Topic 5: Menus

Topic 6: Data Binding

The User Interface API

Topic 1: UI API Introduction

Topic 2: Add-On Basics

Topic 7: Use UDO in Add-On

Topic 8: Additional Events

Topic 9: Additional Objects

Topic 10: UI API – Additional Information

4-32

Creating Forms: Topic Objectives

At the conclusion of this topic, you will be able to:
Explain how to create new forms and items
Use Screen Painter Add-On to design forms
Save and load forms using XML

4-33

Creating Forms – User Forms

User form is a form that you add to Business One using the UI API

There are several ways to create a user form
Code it step-by-step
Use the Screen Painter add-on

You must assign a type and a unique ID (UID) which must be prefixed with your
company’s namespace, e.g. SAP_AsstMD stands for the form type of Fixed Asset
Master Data in SAP Fixed Asset Add-On.

4-34

Creating Forms – General Remarks

Adding items to user forms
Unique id “1” and “2” will inherit Business One’s behavior for “OK” and “Cancel” buttons
Positioning
LinkTo property

Default tab order is based on the order in which items are added to a form, but can
be changed later on; see UI API helpfile or Appendix 4 for details

DataSources will improve performance

XML layout improves form load speed

4-35

Using FormCreationParams is the preferred method, although version 6.5 style still works:

Dim oForm As SAPbouiCOM.Form

oForm = oApp.Forms.Add("myForm" & oApp.Forms.Count)

'Set the form title, by assigning a value to the title-property

oForm.Title = "Hello World“

'Set the visible-property of the form object to TRUE to make the form visible

oForm.Visible = True

Creating Forms – Create a Form (Sample)

Dim oForm As SAPbouiCOM.Form
Dim creationPackage As SAPbouiCOM.FormCreationParams

‘Create the FormCreationParams object
creationPackage = SBO_Application.CreateObject(

SAPbouiCOM.BoCreatableObjectType.cot_FormCreationParams)

‘Specify the parameters in the object
creationPackage.UniqueID = “MP_MyFormID"
creationPackage.FormType = “MP_MyFormType"
creationPackage.BorderStyle = SAPbouiCOM.BoFormBorderStyle.fbs_Fixed

‘ Add the form to the SBO application
oForm = SBO_Application.Forms.AddEx(creationPackage)

‘Set the form title and visibility
‘Please note! Even if the form is not visible – it may be „there“ in the Forms collection…
‘…and UI API will throw an Exception if you try to add a form with the same UniqueID!

oForm.Title = “Hello World”
oForm.Visible = True

4-36

For more information, see the User Interface API online help for the Form object

Creating Forms – Create Items on the Form
(Sample)

Dim oItem As SAPbouiCOM.Item
Dim oButton As SAPbouiCOM.Button

'Add button, buttons with UID 1 and 2 should be OK and Cancel
oItem = oForm.Items.Add("1", it_BUTTON)
oButton = oItem.Specific
oButton.Caption = "&OK"
'Set Size and Location:
oItem.Top = 200
oItem.Left = 20
oItem.Width = 70
oItem.Height = 19

oItem = oForm.Items.Add("2", it_BUTTON)
oButton = oItem.Specific
oButton.Caption = "&Cancel"
'Set Size and Location:
oItem.Top = 200
oItem.Left = 95
oItem.Width = 70
oItem.Height = 19

4-37

Creating Forms – Screen Painter

Best method for initial layout design

Screen Painter
easy-to-use graphical form design tool
add-on application and part of the SDK tools
independent on any development environment
lets you create forms with SAP Business One look and feel
generates XML form definitions which load fast and are easy to use with UI
API’s XML handling features

Available to install like any other add-on
Once running, launch it from the menu: Tools > Screen Painter

4-38

The Screen Painter is a graphical design tool that enables you to quickly and easily create user forms
for SAP Business One

The Screen Painter is part of SDK and installs and runs as an add-on application

Launch it from Tools > Screen Painter

Creating Forms – Screen Painter

4-39

Creating Forms – Working with XML

Why use XML?
A series of operations is replaced by a single batch operation. This means less code and
better performance!

Saving a form layout to an XML file
sXML = oForm.GetAsXML() 'get XML string
oXML.loadXML(sXML) 'load XML into DOM document obj.
oXML.save (App.Path & "\Form.xml") 'save file

Updating ANY form (or loading a user form) from an XML file
SBO_Application.LoadBatchActions (oXMLDoc.xml) ‘load string through one call

Preferred user form loading mechanism
oFormCreationParams.XmlData = oXMLDoc.xml
Use with creation params; preferred over LoadBatchActions due to greater flexibility/control

4-40

New forms should not be created using the LoadBatchAction method of the Application object (see
next slide for the preferred method)

Existing forms can be modified using LoadBatchAction with “action” = “update” (see UI API help file
or SDN Developer Area for SAP Business One for more)

Add your changes to the XML and keep the XML e.g. in a resource file

Since LoadBatchAction just takes an XML string you could of course just load the XML as a text file
– or from the DB (as a string); using XML libraries facilitates handling and makes it possible to modify
the XML before loading

Creating Forms – Save, Load or Update using
XML (Sample)

Dim oXMLDoc As New Xml.XmlDocument ‘…when using .NET’s System.Xml
Dim oForm As SAPbouiCOM.Form
Dim xmlData As String
Dim m_sPathToFormXML As String = “c:\xml\xml_UpdateSample.xml“

‘1) Save: get XML resource from Quotation form
oForm = SBO_Application.Forms.GetForm(“149”, 1)
If oForm Is Nothing Then Exit Sub

xmlData = oForm.GetAsXML()

‘2) Load or Update: load the xml file into the XML document object
oXMLDoc.Load (m_sPathToFormXML)

‘upload the xml… (preferrably to update a form…)
SBO_Application.LoadBatchActions (oXMLDoc.InnerXml)

‘eventually check for errors and warnings
SBO_Application.GetLastBatchResults()
oXMLDoc = Nothing

4-41

Creating Forms – Loading Forms using XML
(Sample)

Dim oForm As SAPbouiCOM.Form
Dim creationPackage As SAPbouiCOM.FormCreationParams
Dim oXMLDoc As New Xml.XmlDocument ‘…when using .NET’s System.Xml

‘Create the FormCreationParams object
creationPackage = SBO_Application.CreateObject(_

SAPbouiCOM.BoCreatableObjectType.cot_FormCreationParams)

‘Please note: These parameters override corresponding data in the XML
creationPackage.UniqueID = “MP_MyFormID"
creationPackage.FormType = “MP_MyFormType"
creationPackage.BorderStyle = SAPbouiCOM.BoFormBorderStyle.fbs_Fixed

‘Just a sample for an XML string describing a form… same as used for LoadBatchActions
oXMLDoc.Load(“C:\XML\Sample.srf”)
creationPackage.XmlData = oXMLDoc.InnerXml

‘Add the form to the SBO application
oForm = SBO_Application.Forms.AddEx(creationPackage)

‘Set the form visible (can be set in XML too)!
oForm.Visible = True

4-42

Creating Forms: Topic Summary

You should now be able to:
Explain how to create new forms and items
Use Screen Painter Add-On to create forms
Save and load forms using XML

4-43

Creating Forms: Exercise

You are now ready for :
Hands-on in an exercise about Screen Painter and XML handling
features of the UI API…

4-44

Item Events: Unit Overview Diagram

Topic 3: Creating Forms

Topic 4: ItemEvents, Event Filtering (and more)

Topic 5: Menus

Topic 6: Data Binding

The User Interface API

Topic 1: UI API Introduction

Topic 2: Add-On Basics

Topic 7: Use UDO in Add-On

Topic 8: Additional Events

Topic 9: Additional Objects

Topic 10: UI API – Additional Information

4-45

ItemEvents, Event filtering, and more: Topic
Objectives

At the conclusion of this topic, you will be able to:
Handle ItemEvents
Use event filtering
Manipulate SAP Business One forms

4-46

Form item types are the same as controls in Visual Basic forms from a user perspective - except the
LinkedButton which is specific to SAP Business One

Technically, the SAP objects are unrelated to VB form controls

Examples of form item types are:

Button

CheckBox

ComboBox

EditText

LinkedButton

Grid

Matrix (most tables in system forms)

OptionBtn ("Radio Button")

PictureBox

StaticText

Items – Some Item Types

Button

Checkbox

Combobox

EditText

LinkedButton

Matrix

StaticText

Folder

ButtonCombo

4-47

The Form.PaneLevel property is used with the Item.FromPane and Item.ToPane values to create
multiple panes or “layers” within a form, in which different items are visible on different panes

Typically used with Folder tabs to display different items on different tabs

Set FromPane and ToPane properties for each item

If both properties are set to 0, the item will be visible on all panes

Example: If item oEdit1.FromPane = 1 and oEdit1.ToPane = 3, then the item will be visible when
oForm.PaneLevel is 1, 2, or 3

Items – Item Properties

Properties which are common to all items are directly available in the Item object
Examples:

Top, Left, Width, Height properties
Update method

Other members depend on item type (ComboBox, Matrix, etc).
These are available through the Item's "Specific" property

Examples:
String property (EditText item)
Selected property (ComboBox item)
ValidValues property (ComboBox item)
Columns property (Matrix item)
Layout property (Matrix item)

4-48

The code snippets

oEdit = oItem.Specific

oEdit.String = "Hello World"

and

oItem.Specific.String = "Hello World"

are equivalent.

In the latter case, however, IntelliSense will not automatically display EditText members, so it is easier
to use a reference to the specific object (e.g. EditText) to work with.

Note:

Setting the String property of the EditText item will (technically) cause a COM event to be fired to UI
API. Changing many properties from add-on code results in a lot of calls through the UI API and may
cause performance issues. It is recommended to set the value through DataSource. Refer to
DataBinding with Datasources for details.

Items – Accessing Item Members (Sample)

Dim oItem As SAPbouiCOM.Item
Dim oEdit As SAPbouiCOM.EditText

oItem = oForm.Items.Item(“54”)

'now you can access generic Item properties
oItem.Width = 120

‘…to access the String property and other properties specific to
‘the EditText type of item use the specific “sub” object EditText

‘VB implicitly casts the item‘s Specific value
‘ to the left-hand side object type.
‘In C#, C++ you need to cast explicitly.
oEdit = oItem.Specific
oEdit.String = “Hello World”

4-49

BubbleEvent

BubbleEvent specifies whether the event will continue to be processed by SAP Business One

Default value is True

By setting BubbleEvent = False, you are canceling the event. This is similar to setting Cancel = True in
a VB application.

BubbleEvent is only valid when BeforeAction = True

ItemEvent – General Remarks

Occurs when a UI event takes place on a form OR any of its items (controls)

Examples of Item Events: LostFocus, GotFocus, FormActivate, FormLoad, Click,
ItemPressed, …

ItemEvent handler (function):
Private Sub SBO_Application_ItemEvent (_

ByVal FormUID As String, _
ByRef pVal As ItemEvent, _
ByRef BubbleEvent As Boolean _

) Handles SBO_Application.ItemEvent

The data structure „pVal“ contains a large number of data providing details
regarding the calling situation

BubbleEvent specifies whether the event will continue to be processed by SAP
Business One

4-50

Add-onSAP Business One Client

ItemEvent – Flow Of Control

Form in
SAP Business One

application

SAP Business One
event handler

My
event handler

ItemEvent

return Control

BeforeAction = True

ActionSuccess = False / True

return Control

BeforeAction = False

4-51

The parameter BubbleEvent is available for the ItemEvent as well as for the MenuEvent

ItemEvent – Flow Of Control
(BubbleEvent=False)

Add-onSAP Business One Client

Form in
SAP Business One

SAP Business One
event handler

My
event handler

ItemEvent

return Control

BeforeAction = True

BubbleEvent = False

4-52

This example adds a button to a Business Partner Master Data form when it loads

Do not confuse UI API Item object with Items in general collections (such as UI API Items or Forms)

Note: Changes to SAP system forms occur only at runtime and are not persisted in any way. The
method shown uses explicit low-level code – the alternative is to use XML batch actions.

ItemEvent – Adding and Disabling an Item
(Sample)

Sub SBO_Application_ItemEvent(ByVal FormUID As String, _
ByRef pVal As SAPbouiCOM.ItemEvent, _
ByRef BubbleEvent As Boolean) Handles SBO_Application.ItemEvent

‘Check FormTypeEx to handle all instances of the Business Partners Form the same way!
If pVal.FormTypeEx = “134” AND pVal.BeforeAction = False Then

If pVal.EventType = et_FORM_LOAD Then
'adding a button to the BP Master Data form when it just has been loaded
Dim oItems As SAPbouiCOM.Items = SBO_Application.Forms.Item(FormUID).Items
Dim oItem As SAPbouiCOM.Item
Dim oButton As SAPbouiCOM.Button

oItem = oItems.Add("item1", it_BUTTON)
oItem.Top = oItems.Item(“2").Top
oItem.Left = oItems.Item(“2"). Left + oItems.Item(“2").Width + 10

oButton = oItem.Specific
oButton.Caption = "second"

oItems.Item(“40").Enabled = False ‘disable the drop-down ComboBox for BP types…

End If ’END et_FORM_LOAD

If pVal.EventType = et_ITEM_PRESSED Then
If pVal.ItemUID = "item1" Then 'do something when the new button is pressed
End If

End If ’END et_ITEM_PRESSED

End If ’END If pVal.FormTypeEx = “134”
End Sub

4-53

Handling this event will make sure that your add-on is called whenever data are displayed or changed.

Several types of lower-level events may cause a FormDataEvent. Add-on code is clearer when it
handles a FormDataEvent instead of a mixture of ItemEvents and MenuEvents which underlie it.

FormDataEvent - Sample

The FormDataEvent occurs when the application performs the following actions on forms
connected to business objects:

Add, Update, Delete, Load (via browse, link button, or find) form data.

Private Sub SBO_Application_FormDataEvent(_
ByRef BOInfo As SAPbouiCOM.BusinessObjectInfo, _
ByRef BubbleEvent As Boolean) _
Handles SBO_Application.FormDataEvent

If (BusinessObjectInfo.BeforeAction = True) Then ‘Before Event
'Do something

Else 'After event
Dim oForm As SAPbouiCOM.Form = SBO_Application.Forms.Item(BOInfo.FormUID)
Dim oBusinessObj As SAPbouiCOM.BusinessObject = oForm.BusinessObject
Dim uid As String = oBusinessObj.Key

If (BOInfo.Type = "2") Then
Dim BP1 As SAPbobsCOM.BusinessPartners
BP1 = oCompany.GetBusinessObject(BoObjectTypes.oBusinessPartners)
BP1.Browser.GetByKeys(BOInfo.ObjectKey)

Dim cardCode As String = BP1.CardCode
End If

End If
End Sub

4-54

et_ITEM_PRESSED and et_FORM_LOAD are often used to add additional validation checks before
saving a document or to manipulate a form before it’s shown (e.g. make some fields invisible
depending on business logic)

et_KEY_DOWN might be useful for a special kind of „help“ (when key „X“ is pressed some detail is
shown)

other form events are usually used less frequently

Event Filtering – Motivation

A lot of form events are forwarded to add-ons, including
et_ITEM_PRESSED a button released/pressed
et_FORM_LOAD SAP Business One application opened a form

et_KEY_DOWN a key was pressed
et_GOT_FOCUS/ et_LOST_FOCUS an item got/lost focus
et_CLICK “Mouse Up” on editable item

All menu click events are forwarded to add-ons…
et_MENU_CLICK “Mouse Up” occurred on menu item (not a sub-menu!)

in SAP Business One application
This event must be included in a filter if an add-on
is to handle MenuEvents

by default, all add-ons receive all events in the event handlers they implement
-> this takes time even for events to which the add-on does not respond

filtering (capturing) only the events that need to be handled improves performance

4-55

By default, the UI API receives all events triggered by the SAP Business One application.

Without event filtering, all events are sent to your add-on application. Your event handler is getting
called each time an event is raised. This can result in poor performance overall.

If you use event filtering, only the selected events are sent to your add-on application. Significantly
fewer COM calls will be made and performance improves.

AppEvents are not affected.

Note:

Once you define an EventFilter, add it to the EventFilters object and assign it to the Application object,
your add-on will start to only receive events specified in the filters.

To continue to receive MenuEvents, don’t forget to include et_MENU_CLICK in the filter.

Event Filtering – Before and After

Add-on

Event Handler
without vs.

With (x)
Event Filters

X = NOT included in Event Filter

=> will not get fired to event handler
when filter is applied

ItemEvents

x

x

x

x

4-56

Event is filtered by event type and form type.

The add-on notifies the list of required events through the SetFilter() method of the Application object

The event list contains event types for:

form events, listing all form types for which they will be raised

menu click event

The event list cannot contain:

AppEvents (aet_ShutDown...)

ProgressBarEvents

StatusBarEvents

Note: Most UI API events are notified twice – before they take place in the user interface
(BubbleEvent = True) and after they have taken place

Event Filtering - Sample

The add-on will receive only the following events:

- et_ITEM_PRESSED for all forms

- Other forms:
Purchase Order - all events (et_ALL_EVENTS)
Sales Order - et_KEY_DOWN and et_ITEM_PRESSED

NOTE: To make sure that MenuEvents are sent to the add-on et_MENU_CLICK needs to be
added to the event filter too!

oFilters
oFilter et_ALL_EVENTS

form2 142 (Purchase Order)

oFilter et_KEY_DOWN
form1 139 (Sales Order)

oFilter et_ITEM_PRESSED

oFilter et_MENU_CLICK

4-57

You can remove a particular form type from the filter by using RemoveEx(„FormType“)

You can also remove all filters through a Reset() of the Filters collection

Filtering Events: Code Example

‘1) create a new EventFilters object
oFilters = New SAPbouiCOM.EventFilters

‘2) add an event type to the container
‘ (this method returns an EventFilter (<> EventFilters) object)
oFilter = oFilters.Add(et_CLICK)

‘3) assign the form types on which the event should be processed
oFilter.AddEx(“139”) ‘Sales Order Form
oFilter.AddEx(“142”) 'Purchase Order Form

‘… add a second event type to the container
oFilter = oFilters.Add(et_KEY_DOWN)

‘… assign the form type on which this event should be processed
oFilter.AddEx(“139”) ‘Sales Order Form

‘4) set the event filters object to the application
SBO_Application.SetFilter(oFilters)

4-58

Want to find the “right” event? Use the Event
Logger!

EventLogger is part of the SAP Business One Development Environment (B1DE) toolset –
and available on SDN… (see unit „Introduction“)
Easily identify the events fired by the UI API depending on user actions
Check the information given by SAP Business One for each event – including available event
types (ItemEvent, MenuEvent, AppEvent etc).

4-59

ItemEvents, Event filtering, and more: Topic
Summary

You should now be able to:
Handle ItemEvents
Use event filtering
Manipulate SAP Business One forms

4-60

ItemEvents, Event filtering, and more:
Exercise

You are now ready for:
Hands-on handling of ItemEvents etc. in an exercise…

4-61

Menus: Unit Overview Diagram

Topic 3: Creating Forms

Topic 4: ItemEvents, Event Filtering (and more)

Topic 5: Menus

Topic 6: Data Binding

The User Interface API

Topic 1: UI API Introduction

Topic 2: Add-On Basics

Topic 7: Use UDO in Add-On

Topic 8: Additional Events

Topic 9: Additional Objects

Topic 10: UI API – Additional Information

4-62

Menus: Topic Objectives

At the conclusion of this topic, you will be able to:
Add and remove menu items
Describe menu event handling

4-63

Menus – Relevant Objects and Events

The Menus object is a collection of MenuItem objects
It holds all currently visible menu items
You can add your own menus
You can enable/disable/remove menus

MenuEvent provides notification of menu click events
You can use it to open user forms or to perform other operations
…or to capture (and eventually block) the opening of system forms at a very early stage
Please note that clicks on toolbar buttons are represented as menu events as well

Application

Forms Form

Menus MenuItem
SubMenus

1..n

1..n

Menu MenuItem

SubMenus
1..n

…

…

…

4-64

Menus – Adding a Popup Menu Item (Sample 1)

Dim oMenus As SAPbouiCOM.Menus
Dim oMenuItem As SAPbouiCOM.MenuItem
Dim oCreationPackage As SAPbouiCOM.MenuCreationParams

‘ Get the menus collection from the application
oMenus = SBO_Application.Menus

oCreationPackage = SBO_Application.CreateObject(
SAPbouiCOM.BoCreatableObjectType.cot_MenuCreationParams)

' Point on the module sub menu
oMenuItem = SBO_Application.Menus.Item("43520")
oMenus = oMenuItem.SubMenus

‘ Set SubMenu values into the MenuCreateionPackage object
oCreationPackage.Type = SAPbouiCOM.BoMenuType.mt_POPUP
oCreationPackage.UniqueID = "SM_VID“
oCreationPackage.String = "Video Store“
oCreationPackage.Image = sPath & "VID.bmp“
oCreationPackage.Position = 8 ' Some valid position; check-out what happens, if it is invalid.

Try ' If the menu already exists this code will fail
oMenuItem = oMenus.AddEx(oCreationPackage) ' Add the SubMenu item

Catch err As Exception ' Error Handling
SBO_Application.MessageBox(err.Message)

End Try

4-65

Note:

If you are reusing a MenuCreationParams object for several menu items, set all properties, including
Position, every time – AddEx() does not change/increase any properties implicitly

Menus – Adding a String Menu Item (Sample 2)

' Get the menu collection of the newly added pop-up item
Try

oMenus = oMenuItem.SubMenus

' Add Menu Item
oCreationPackage.Type = SAPbouiCOM.BoMenuType.mt_STRING
oCreationPackage.UniqueID = "SM_VID_F1“
oCreationPackage.String = "Movies On Shelf“
oCreationPackage.Image = sPath & "v1.bmp“
oCreationPackage.Position = 1

oMenus.AddEx(oCreationPackage)

Catch err As Exception ' Error Handling

SBO_Application.MessageBox(err.Message)

End Try

4-66

Menus – Additional Information

You cannot add top-level menu items (i.e. at the same level as “File”, “Edit”, “Modules”,
“Help”, …)
If you add a menu item with sub-menus to menu “Modules”, it will automatically appear in the
“Main Menu” form
If you link menus to a form, they will appear under the “Goto” top level menu
oForm.Menu.AddEx(oMenuCreationParams)

Every menu item has its unique id
You can export menu items to XML to find out the particular IDs.
You can use „System information“ to find it – just let the mouse pointer hover over the
menu item

Context or „right-click“ menus can be modified when handling the RightClickEvent (see later in
this unit – or in the UI API help file)

4-67

Menus – MenuEvent (Sample)

Private Sub SBO_Application_MenuEvent _
(ByRef pVal As SAPbouiCOM.MenuEvent, _
ByRef BubbleEvent As Boolean) _
Handles SBO_Application.MenuEvent

If pVal.BeforeAction Then
SBO_Application.MessageBox _

("Menu item: " + pVal.MenuUID + " sent BEFORE SAP Business One processes it.", _
bmt_Long, _
True)

'// to stop SAP Business One from processing this event
'// unmark the following statement
'// BubbleEvent = False

Else
SBO_Application.MessageBox _

("Menu item: " + pVal.MenuUID + " sent AFTER SAP Business One processed it.", _
bmt_Long, _
True)

End If

End Sub

4-68

Menus: Topic Summary

You should now be able to:
Add and remove menu items
Describe menu event handling

4-69

Menus: Exercise

You are now ready to:
Add new menus in SAP Business One and
Handle Menu Events in an exercise…

4-70

Data Binding: Unit Overview Diagram

Topic 3: Creating Forms

Topic 4: ItemEvents, Event Filtering (and more)

Topic 5: Menus

Topic 6: Data Binding

The User Interface API

Topic 1: UI API Introduction

Topic 2: Add-On Basics

Topic 7: Use UDO in Add-On

Topic 8: Additional Events

Topic 9: Additional Objects

Topic 10: UI API – Additional Information

4-71

Data Binding: Topic Objectives

At the conclusion of this topic, you will be able to:
Bind data to form items

4-72

Data Binding: Characteristics and Motivation

DataSources serve as containers for data within a form - they are not
necessarily linked directly to the database

DataSources improve performance because frequent manipulation of data
values does not necessarily require frequent updates of the user interface

Some items (e.g. Matrix, Grid) should be bound to a data source

Some items (e.g. Checkbox) have to be bound to a data source – some items
may not even be displayed unless they are bound to a data source

4-73

Data Binding: Types of Data Sources

There are 3 types of data sources

DBDataSource – linked to a database table, represents tabular data (you can only
use 1 table + only set conditions – no sorting etc.)

UserDataSource – acts as a container for data within the form, can be connected
e.g. to an EditText or a column in a Matrix

DataTable – two methods:
Populate with SQL statement (so that you can use joins, sorting etc.)

OR (no mixing possible)
Define the Columns of the DataTable one-by-one and fill through code…

DataTables are mostly used in conjunction with Grid or ChooseFromList objects

4-74

Using data binding, you can easily add data to matrix columns. The SAP Business One Software
Development Kit provides several objects that support data binding to form items.

Data Binding:
Principle

Purchase Order

Vendor

Name

Contact Employee

Phone

Vendor Ref. No.

Inquiry No.

Inquiry Date

Item Number Item Description Quantity Price

Document Type

Tax

Total Sum

Add Cancel

Inquiry Ref. No.

Quant

3rd Party
Application

(add-on)

Define DBDataSources, DataTables
and UserDataSources and bind to
columns in Matrix, EditText items etc.

Data may come „straight“ from DB – or:
Are reformatted or calculated by the
add-on

Binding

Binding

Data
Data

Price …

4-75

Data Binding:
Object Summary

Form

DataSources
…

(methods)

DBDataSources
UserDataSources
DataTables

DataSource DBDataSources

Count

Add
Item

DBDataSource

Offset
TableName

Query
GetValue, SetValue

UserDataSource
DataType
Length
UID
Value

UserDataSources
Count

Add
Item

DataTables

Count

Add
Item

DataTable

UniqueID
Columns, Rows

ExecuteQuery
GetValue, SetValue

4-76

To create a data-bound form:

Define the form

Define data sources within the form

Link data sources to matrix columns or individual items/controls

Populate data source values – this will display the data in the data bound items

Data Binding:
Steps for items and Data Sources

Form

Items

Item

Specific

DataBind

SetBound()

DataSources

DBDataSources

DBDataSource

UserDataSources

UserDataSource Note:

Binding a DataTable to a Grid
is slightly different…

DataTables

DataTable

4-77

The Form object contains a collection of DataSources which holds all data sources within the form.

A DBDataSource object represents a database data source (i.e. a table in the SAP Business One scope
of tables) attached to a form.

A table can be attached only once to a form using method Add of the DBDataSources collection.

User data sources can also be attached to a form using the Add method of the UserDataSources
collection. For more information, see the documentation for the UserDataSources collection.

A DataTable can be used to read data from any database/table or be used in the same way as a
UserDataSource.

In conjunction with a Grid item, the DataTable enables the display of tabular data with collapse/expand
functionality.

Data Binding: Add Data Sources to Form

Form

Items
DataSources

DBDataSources

UserDataSources

DBDataSource

UserDataSource
1..n

1..n

Menu

'Add a DBDataSource to the form
oForm.DataSources.DBDataSources.Add ("OUSR")

'Add a UserDataSource
oForm.DataSources.UserDataSources.Add (“udsRemarks", dt_LONG_TEXT, 30)

‘ Add a DataTable
oForm.DataSources.DataTables.Add("MyDataTable")

DataTables DataTable
1..n

4-78

Having added a data source to a form, then specify which form items to link to it.

For a simple item such as an EditText, the item‘s Specific property contains the DataBound object.

Use its SetBound method to bind the item to a data source.

For matrices, data is binded column-by-column.

Dim editTxt As SAPbouiCOM.EditText
‘Create an edit text item
item = form.Items.Item("CodeEdTxt")
editTxt = item.Specific

‚Bind table OCRD field CardCode to the edit text
editTxt.DataBind.SetBound(True, "OCRD", "CardCode")

Data Binding:
Bind a DBDataSource to an Item

Purchase Order
Vendor
Name
Contact Employee
Phone
Vendor Ref. No.

Inquiry No.
Inquiry Date

Item NumberItem DescriptionQuantityPrice

Document Type

Tax

Total Sum

Add Cancel

Inquiry Ref. No.

Matrix1

CodeEdTxt

<bindable Item type>.DataBind.SetBound
(Boolean fBound,
string TableName (…or DataSource ID; “” for UserDataSource),
string Alias (DBField, DataTableColumn or UserDataSource ID))

4-79

Data Binding:
Bind DataSources to Matrix columns / Grid

Dim oColumnDBS As SAPbouiCOM.Column
Dim oColumnUDS As SAPbouiCOM.Column
oMatrix = Form.Items.Item("Matrix1").Specific
oColumns = oMatrix.Columns

‘DBDataSource: Binding a field / alias of the table to a column
oColumnDBS = oColumns.Item("UserName")
oColumnDBS.DataBind.SetBound (True, "OUSR", "U_NAME“)

‘UserDataSource: Bind a UserDataSource (UID) to a column
oColumnUDS = oColumns.Item(“Remarks")
oColumnUDS.DataBind.SetBound (True, "", “udsRemarks“)

‘DataTable: Bind a DataTable object to a Grid
oGrid.DataTable = Form.DataSources.DataTables.Item("MyDataTable")

4-80

This code fragment will populate a matrix from table OUSR based on the data binding of individual
matrix columns.

The Query method retrieves all data. Optionally, a Conditions argument can be specified to implement
a WHERE clause.

The matrix can be populated row-by-row using the AddRow method or populated in one step with
LoadFromDataSource. When some matrix columns are user data bound, LoadFromDataSource is only
useful if all rows contain the same value for any user data bound column.

To reference a user data source and set its value:
oUserDataSource = oForm.DataSources.UserDataSources.Item("Remarks")
oUserDataSource.Value = "my user data"

Data Binding:
Get Data from a DBDataSource

Dim oDBDataSource As SAPbouiCOM.DBDataSource
Dim oMatrix As SAPbouiCOM.Matrix

' getting the data sources bound to the form
oDBDataSource = oForm.DataSources.DBDataSources.Item("OUSR")

' getting the matrix on the form
oMatrix = oForm.Items.Item("Matrix1").Specific

oMatrix.Clear()

' Querying the DB Data source – i.e. load data from DB
oDBDataSource.Query()

' Adding the data to the matrix
oMatrix.LoadFromDataSource()

4-81

To populate your DataTable “manually”:

Dim oDataTable as SAPbouiCOM.DataTable

Dim oCol As SAPbouiCOM.DataColumn

‘ Add the columns to the Grid manually

oDataTable = oForm.DataSources.DataTables.Item("MyDataTable")

oCol = oDataTable .Columns.Add("XX_Col0", SAPbouiCOM.BoFieldsType.ft_AlphaNumeric)

oCol = oDataTable . Columns.Add("XX_Col1", SAPbouiCOM.BoFieldsType.ft_AlphaNumeric)

oCol = oDataTable . Columns.Add("XX_Col2", SAPbouiCOM.BoFieldsType.ft_AlphaNumeric)

‘ Add a first row

oDataTable.Rows.Add()

oCol = oDataTable . Columns.Item("XX_Col0")

oCol.Cells.Item(0).Value = "MyVal0"

oCol = oDataTable .Columns.Item("XX_Col1")

oCol.Cells.Item(0).Value = "MyVal1"

oCol = oDataTable .Columns.Item("XX_Col2")

oCol.Cells.Item(0).Value = "MyVal2”

oGrid.DataTable = oForm.DataSources.DataTables.Item("MyDataTable")

Data Binding:
Populating a DataTable

Dim oDataTable As SAPbouiCOM.DataTable

' getting the data sources bound to the form
oDataTable = oForm.DataSources.DataTables.Item(“MyDataTable")

' Querying the DataTable
oDataTable.ExecuteQuery(“Select CardCode, DocDate from OINV")

' Columns of the Grid will be added and populated automatically

4-82

Data Binding:
DataSources on System Forms

IMPORTANT

DataSources are only populated with data already stored in the database

Updates have to be committed to the database

DataSources on system forms cannot be changed (there are plans to allow
changing at least user-defined fields in version 9.0)

ItemEvents such as et_DATASOURCE_LOAD and et_MATRIX_LOAD only
occur for user forms, not system forms

4-83

Navigation
When navigating between records, set a condition for the
DBDataSource – or the DataTable

Values
When you need to display values in a different format than stored in the
database, use UserDataSource:
Run the query (e.g. via DI API or DBDataSource), format the data as required
and then store the values in UserDataSources

Clearing form items
Set the condition of DBDataSources so that the results are empty
Set UserDataSource values to „“
Set UI item strings directly to „“ only as a last resort

Data Binding:
DataSources on User Forms

4-84

Data Binding: Topic Summary

You should now be able to:
Bind data to form items

4-85

Data Binding: Exercise

You are now ready for:
Hands-on data binding in an exercise…

4-86

Use UDO in Add-On: Unit Overview Diagram

Topic 3: Creating Forms

Topic 4: ItemEvents, Event Filtering (and more)

Topic 5: Menus

Topic 6: Data Binding

The User Interface API

Topic 1: UI API Introduction

Topic 2: Add-On Basics

Topic 7: Use UDO in Add-On

Topic 8: Additional Events

Topic 9: Additional Objects

Topic 10: UI API – Additional Information

4-87

Use UDO in an add-on: Topic Objectives

At the conclusion of this topic you will know how to use UDO features in
UDO forms:

Connected UDO to form
Default buttons
Number series

4-88

How to use your new UDO within an Add-on?

Connect Form to a UDO:

creationPackage = SBO_Application.CreateObject

(SAPbouiCOM.BoCreatableObjectType.cot_FormCreationParams)

creationPackage.FormUID = "MathExamsID"

creationPackage.Type = "SM_MathExam“

‘ Need to set the parameter with the object unique ID

creationPackage.ObjectType = "SM_MATHGRADES“

oForm = SBO_Application.Forms.AddEx(creationPackage)

4-89

Default Buttons on UDO Form

Service UI form support

Add/Update/
Find
(automatic event
handling for '// the
OK buttons)

oItem = oForm.Items.Add("1", SAPbouiCOM.BoFormItemTypes.it_BUTTON)

oButton = oItem.Specific

Do not set the caption for this button

Cancel
oItem = oForm.Items.Add(“2", SAPbouiCOM.BoFormItemTypes.it_BUTTON)

oButton = oItem.Specific

Do not set the caption for this button

4-90

UDO Form Data Binding – Number Series

Service UI form support

Manage
Series

‘ create a combo box for the series relevant for this document type
oItem=oForm.Items.Add("SeriesName", BoFormItemTypes.it_COMBO_BOX)
oComboBox = oItem.Specific

‘ fill the combo with relevant series
oComboBox.ValidValues.FillWithSeries(True, False, 0)
oComboBox.DataBind.SetBound(True, "@MATH", "Series")

‘ edit text the hold the document number (related to the selected series)
oItem = oForm.Items.Add(“DocNum", SAPbouiCOM.BoFormItemTypes.it_EDIT)
oEditText = oItem.Specific
oEditText.DataBind.SetBound(True, "@MATH", "DocNum")

‘***** later e.g. in the event handler *************************************
‘ get the “next serial number” from the selected series in add mode
strSeries = oComboBox.Selected.Value
lNum = oForm.BusinessObject.GetNextSerialNumber(CLng(strSeries))

‘ set the “next serial number” it into the document number field
oEditText.String = CStr(lNum)

4-91

Use UDO in an add-on: Topic Summary

You should now be able touse UDO features in UDO forms:

Connected UDO to form
Default buttons
Number series

4-92

Additional Events: Unit Overview Diagram

Topic 3: Creating Forms

Topic 4: ItemEvents, Event Filtering (and more)

Topic 5: Menus

Topic 6: Data Binding

The User Interface API

Topic 1: UI API Introduction

Topic 2: Add-On Basics

Topic 7: Use UDO in Add-On

Topic 8: Additional Events

Topic 9: Additional Objects

Topic 10: UI API – Additional Information

4-93

Additional Events (optional): Topic Objectives

At the conclusion of this topic you will know about further events in
addition to the basic ones such as ItemEvent:

ProgressBarEvent
StatusBarEvent
RightClickEvent
ReportDataEvent
PrintEvent

4-94

ProgressBarEvent / StatusBarEvent

ProgressBarEvent
Occurs when a progress bar (in the status bar) is created, stopped or released

Public Event ProgressBarEvent
(ByVal pVal As ProgressBarEvent, ByRef BubbleEvent As Boolean)

ProgressBarEvent - holds all the relevant information about the event – essentially the type:
pbet_ProgressBarCreated
pbet_ProgressBarStopped
pbet_ProgressBarReleased

StatusBarEvent
Occurs when a message is displayed in SAP Business One’s status bar

Public Event StatusBarEvent (ByVal Text As String, ByVal MessageType As
BoStatusBarMessageType)

4-95

RightClickEvent - Overview

By default all menu entries from Edit, Data and Goto menus in the SAP Business
One application are displayed in the context or right-click menu

RightClickEvent is raised when the user right-clicks an item

To add/remove menus to/from the context menu of an item:
…catch RightClickEvent ‘Before’ and
…add menus to Edit, Data, Goto menus in the SAP Business One application

In the ‘After’ event user should retrieve changes and/or remove menu changes that
should only be temporary

Code sample – Add menu:
Private Sub SBO_Application_RightClickEvent(ByRef contextMenuInfo As SAPbouiCOM.contextMenuInfo, ByRef
BubbleEvent As Boolean) Handles SBO_Application.RightClickEvent

If (contextMenuInfo.BeforeAction = True) Then
Dim oCreationPackage As SAPbouiCOM.MenuCreationParams = SBO_Application.CreateObject _

(BoCreatableObjectType.cot_MenuCreationParams)
oCreationPackage.Type = SAPbouiCOM.BoMenuType.mt_STRING
oCreationPackage.UniqueID = "MyMenu1"
oCreationPackage.String = "My Menu1"
oCreationPackage.Enabled = True
‘ Adding new menu to Data menu in B1
Dim oMenuItem As SAPbouiCOM.MenuItem = SBO_Application.Menus.Item("1280")
Dim oMenus As SAPbouiCOM.Menus = oMenuItem.SubMenus
oMenus.AddEx(oCreationPackage)

End If
Code sample – Remove menu:
Private Sub SBO_Application_RightClickEvent(ByRef contextMenuInfo As SAPbouiCOM.contextMenuInfo, ByRef
BubbleEvent As Boolean) Handles SBO_Application.RightClickEvent

If (contextMenuInfo.BeforeAction = True) Then
‘ In Before Action – Remove menu from context menu only
contextMenuInfo.RemoveFromContent(“4870”) 'Data->Filter & Grid
‘ Remove menu from context menu by disabling menu
‘Edit menu
Dim menuItem As SAPbouiCOM.MenuItem = SBO_Application.Menus.Item(“768”)
' Edit->Paste
Dim menuItem1 As SAPbouiCOM.MenuItem = oMenuItem .SubMenus.Item(“773”)
menuItem1.Enabled = False

End If
End Sub
Code sample – Cleanup:
Private Sub SBO_Application_RightClickEvent(ByRef contextMenuInfo As SAPbouiCOM.contextMenuInfo, ByRef
BubbleEvent As Boolean) Handles SBO_Application.RightClickEvent

If (contextMenuInfo.BeforeAction = False) Then
‘Retrieve Edit->Paste menu that was removed in before action
Dim menuItem As SAPbouiCOM.MenuItem = _

SBO_Application.Menus.Item(“768”) ‘Edit menu
Dim menuItem1 As SAPbouiCOM.MenuItem = oMenuItem .SubMenus.Item(“773”)

' Edit->Paste
menuItem1.Enabled = True
‘ Remove user menu that was added to Data menu in ‘Before’ Right Click event
oMenuItem = SBO_Application.Menus.Item("1280") ' Data menu

menuItem1 = oMenuItem.SubMenus.Item ("MyMenu1")
oMenus.Remove(menuItem1)

End If
End Sub

4-96

Right Click Menu – Details

RightClickEvent - Fires ‘Before’ and ‘After’ events

RightClickEvent (ByRef contextMenuInfo As ContextMenuInfo,
ByRef BubbleEvent As Boolean)

ContextMenuInfo – holds all parameters for the event

String FormUID – form unique id

BoEventTypes EventType – event type

String ItemUID – item unique id

String ColUID – column unique id . Default value is -1

String Row – row number. Default value is -1

Boolean BeforeAction – indicates if the event is ‘Before’ or ‘After’

Boolean ActionSuccess – relevant only for ‘After’ event, indicates whether B1 application action
succeeded

4-97

ReportDataEvent / PrintEvent

ReportDataEvent (and subsequently PrintEvent) occur when an end-user performs
one of the following actions:

- Clicking on Print or Print Preview icons
- Sending documents to print using “Document Printing” option
- A document is sent to print by the “Document Generation Wizard”

ReportDataEvent
ReportDataEvent (ByRef eventInfo As ReportDataInfo,

ByRef BubbleEvent As Boolean)
In “BeforeAction = True” for this event the add-on has to signal that it wants to get
report data in XML format. It does so by calling RegisterForReport():

eventInfo.RegisterForReport (True)

PrintEvent

4-98

Additional Events : Topic Objectives

You should now be able to describe:
ProgressBarEvent
StatusBarEvent
RightClickEvent
ReportDataEvent
PrintEvent

4-99

Additional Objects: Unit Overview Diagram

Topic 3: Creating Forms

Topic 4: ItemEvents, Event Filtering (and more)

Topic 5: Menus

Topic 6: Data Binding

The User Interface API

Topic 1: UI API Introduction

Topic 2: Add-On Basics

Topic 7: Use UDO in Add-On

Topic 8: Additional Events

Topic 9: Additional Objects

Topic 10: UI API – Additional Information

4-100

Additional Objects (optional): Topic Objectives

At the conclusion of this topic, you will know about additional objects in
addition to the basic building blocks such as Form and Item:

Grid
ChooseFromList
FormSettings

4-101

Grid / DataTable – Overview

The Grid is planned to replace the longer-established Matrix as a tabular
control

Grid is a view of a DataTable
The Grid is responsible for the visual settings
The DataTable is responsible for the data behind the user interface
Grid & DataTable synchronise automatically
– Data changes flow from Grid to DataTable and vice versa
– Meta-Data / Structural changes are synchronized from the DataTable to its

managed Grids

The Grid enables expand/collapse

4-102

DataTable

UserDataSource

DBDataSourceDBDataSources

DataTables

UserDataSources

DataSource

Object Model

Grid / DataTable - Object Models

DataTable is a type of DataSource

Rows (GridRows)

RowHeaders

DataTable

Columns (GridColumns)

Grid

GridColumns

Object Model

4-103

DataTable versus Grid

Structural actions
Control of column display types & properties
Expose collapsible view mechanism of
existing data
Row selection methods

Structural actions
Execute query (+data)
Load from XML (+data)
Add columns

Data Actions
Set cell value by display type

Data Actions
Add rows
Set cell value by data type

DataTable Grid

4-104

ChooseFromList - Overview

ChooseFromList (CFL) is the ability to use the built-in lookup functionality form from a
trigger item
The CFL form displays a list of objects (of the same type) as a result of a simple query
New functionality will enable developers to apply filters to CFL objects which were defined
for system forms
No need to develop lookup forms from scratch

4-105

ChooseFromList - Details

Use CreationParams mechanism to create a ChooseFromList (CFL) object
Set a condition (same object as for DBDataSources)
Connect a CFL-capable item to a CFL (EditText , EditTextColumn, Button):

EditText , EditTextColumn
Property ChooseFromListUID as String (read-write)

Sets the item to be the trigger item for the CFL UID
(using a wrong ID will cause an exception)

Property ChooseFromListAlias as String
Alias – Field in database that will be compared in

query (using a wrong alias will cause an exception)
Remark: Set the alias after setting CFL UID.

Button
Property ChooseFromListUID as String (read-write)

Sets the item to be the trigger item for the CFL UID
(using a wrong ID will cause an exception)

4-106

How to handle the Event
et_CHOOSE_FROM_LIST

ChooseFromList Event “inherits” from ItemEvent

=> It comes as an ItemEvent, but the structure passed to the event handler is different!

BeforeAction = True

Sent before the ChooseFromList form is opened

If BubbleEvent = FALSE the CFL form will not open – as you would expect

BeforeAction = False

Sent after the user made his choice (select) or pressed “Cancel” in the CFL form

Properties:
ChooseFromListUID as String (read-only)

Note: For a CFL that was opened from “Find” – the UID of the CFL will be -1

SelectedObjects as DataTable (read-only)

The result is valid/available during the after event only
All manipulation of the data must be completed during the event

Code sample available in SDK samples

XML support for ChooseFromList:

XML

<Form >

<ChooseFromLists>

<ChooseFromList UniqueID=”1” ObjectType=”2” MultiSelection=”0” IsSytem=“1”>

<conditions>

<condition alias="CardType" bracket_close_num="0" bracket_open_num="0"
compare_fields="0" compared_field_alias="" cond_end_val="" cond_value="C"

operation="1" relationship="0" use_result="0"/>

<conditions>

</ ChooseFromList >

</ChooseFromLists>

<Items>

<Item uid=”5” …type=“EditText”>

<Specific ChooseFromListUID=“” ChooseFromListAlias=”CardCode”/>

</Specific>

</Item>

……….<Column ChooseFromListUID=“MyCFL” ChooseFromListAlias=“kk” > (EditText/linkbutton)

</Column>

<Items>

4-107

ChooseFromList – Limitations and Restrictions

Possible trigger item types are Button, EditText and EditTextColumn (use of other types will
throw an exception)
The user CFL is opened the same way as a system CFL:

EditText/Edit Column /Link Column – by {TAB}
Button – By press

The table of the CFL object is the header table. Therefore the condition is applied to the
header table.
The will be no automatic copy between the resulted DataTable to any DataSource. Explicit
code must be written to do this.
A user-CFL form will always open, even if there is only one match or no match at all
Find mode – Executing find also opens a CFL form but there is no trigger item
CFL form – cancel on ‘new’ button will not raise an “after event”
There’s a 1:1 relationship between the trigger item and the CFL
System CFL limitations

We can’t see the system conditions on CFL. We can only see the Add-On Conditions.
System CFL is not editable - the only change that is allowed is adding conditions
You cannot change the trigger item of system CFL

Changing the trigger item of a user CFL
When new item is bound to a CFL the old one is overridden
When replacing CFL – the old connection of both is overridden

4-108

User Form Settings – Overview

The setting button enables users to configure the way a matrix in a form will be displayed
Every column can be toggled as visible and/or active

4-109

Beware of “unexpected” behavior when multiple forms of the same types are open simultaneously or
when the user is logged in multiple sessions

User Form Settings – Overview (continued)

Form Settings / Form Preferences (see DI API)

Saving preferences
Form settings are updated when a form is closed
The preferences are held in memory (application cache) until the application is closed
or another database selected
When the application is closed the updated preferences are saved to the database
(table CPRF)

Loading preferences
Application caches form preferences as it logs in to the company database
When a form is loaded, it loads and applies the settings from cache
User Forms – Preferences are applied automatically only when layout is loaded from
XML

Form
Property Settings as FormSettings (read-only)

Only on user forms, exception is raised on system forms

4-110

Form Settings Default Behavior

The default behavior expects a form with a “grid”:
The grid is set as the default grid for the settings
The Settings menu will be enabled for the form
The row format and expand line will be enabled for the grid

Disabling this functionality:
The Settings functionality is on by default
To disable it from an add-on, disable the form settings menu item (ID 5890)
To disable the row format and expand line, set EnableRowFormat = False

4-111

Additional Objects: Topic Summary

You now know how to use:

Grid
ChooseFromList
FormSettings

4-112

UI API - Additional Information: Unit Overview
Diagram

Topic 3: Creating Forms

Topic 4: ItemEvents, Event Filtering (and more)

Topic 5: Menus

Topic 6: Data Binding

The User Interface API

Topic 1: UI API Introduction

Topic 2: Add-On Basics

Topic 7: Use UDO in Add-On

Topic 8: Additional Events

Topic 9: Additional Objects

Topic 10: UI API – Additional Information

4-113

Go to SDN to find People, Information and
Tools

Developer A
rea – includes:

Links to tools, artic
les etc

B1 Form Checker

B1 DB Browser

B1 Test Composer

B1 Code Generator

Free registration to

Discussion Forums

FAQ

4-114

Check “what’s going on” using B1TE’s
.NETProfiler

B1TE (“SAP Business One Test Environment”) is available on the SDN (see unit
“Introduction”)
Traces calls to SDK APIs and any other .NET objects
Marks deprecated SDK API calls
Only available for add-ons using Microsoft .NET (uses Profiling API of MS .NET)

4-115

Check your Forms using B1TE’s Form Checker

Checks a form against the B1 programming guidelines and UI standards & guidelines
Lists all the possible issues encountered in a form itself
Can check XML layout definitions as well as any forms shown in the application

4-116

Add-On Testing – Using SAP Business One
Test Composer (B1TC)

Simple way to test add-ons
Records, replays and checks values
Can perform batch tests and selected tests in a batch

4-117

User Interface API – Use Cases

User Interface API is most often used to:

Achieve a „seamless“ integration of additional functionality with SAP
Business One (usually requested by customers), including

…linking into SAP Business One standard processes
…adding custom GUI elements into SAP Business One standard forms
…adding custom forms with user-defined data links

Manipulate SAP Business One standard functionality (when standard
options do not apply to the customer‘s or industry processes, including

…hiding SAP Business One GUI elements
…blocking SAP Business One events

=> Changes to standard functionality must be documented!

4-118

The User Interface API: Unit Summary

You should now be able to:
Explain what the User Interface API is
Explain how to establish a connection to a running SAP Business One
application
Work with existing SAP Business One forms
Create forms and integrate them into SAP Business One GUI
Add menu entries
Explain how the API interacts with the SAP Business One client

4-119

User Interface API – Exercises

Unit: User Interface API

Topic: Basics

At the conclusion of this exercise, you will be able to:

Connect to a SAP Business One Application

Display a MessageBox in SAP Business One

Use Single Sign-On and the “Multi Add-On” feature

React to AppEvents
You want to use the SAP Business One User Interface API for actively manipulating
Process flow. As a first step you have to connect to the Application actually running.

1-1 Implement a connection to a running SAP Business One application.

1-1-1 Create a new Visual Basic project

1-1-2 Define the variables you need for a connection to a running SAP
Business One application.

1-1-3 Connect to the SAP Business One SboGuiApi and get a handle to
the running application.

1-2 Display a MessageBox within SAP Business One.

1-2-1 The method to display a MessageBox has several optional
parameters. Check them out.

The lecture will continue after you have implemented this..; the
remaining pieces of this exercise will be covered in the next steps.

You will need at least two variables, one for the SboGuiApi object
and one for the Application object

There is a Method of the Application object to display message boxes
within SAP Business One

4-120

1-3 Use the Single-Sign-On feature (and/or the Multiple Add-On feature) to
connect to DI API as well.

1-4 Define the AppEvent handler – and implement the handling of these
events (which are mandatory to be handled).

To define Event Handlers in Microsoft Visual Studio .NET please
check the content on the drop-down comboboxes – which are
displayed just above the source code…

4-121

User Interface API – Exercises

Unit: User Interface API
Topic: Creating Forms

At the conclusion of this exercise, you will be able to:

Create a form within SAP Business One

You want to create a form which is displayed in the SAP Business One
main window.

2-1 Create a new form within SAP Business One. The form should contain the
following items:

 Input field for DVD Name (will be linked to a Choose from list)
 Input field for DVD Aisle

 Input field for DVD Section
 Input field for DVD Rented
 Input field for Rented To

 OK button
 Cancel button.

 Rent DVD button

 This (the screenshot below) is the final goal, but you will only get data
when you have gone through the “Databinding” lesson as well; in this
exercise we will only focus on the form’s layout…

4-122

2-2 Enhance your program so that the form will be saved as an XML file.

2-3 Change your program. The form should now be loaded from the XML file
you have created in the last step. Display the form in the SAP Business
One window.

2-4 Use the tools from the B1TE toolset (essentially Form Checker) to
check whether you have designed your form(s) according to some
important UI guidelines…

Some helpful data for designing Forms

(See ScreenDesignGuidelines.pdf for more information!)
Form
Height 413px
Width 557px
Controls common
Distance to left edge 5px
Distance to right edge 5px
Distance to top edge 5px
Distance to bottom edge 5px
Button
Height 19px
Width 65px
Spacing 5px
Label Field
Height 14px
Width Depends on text
Horizontal spacing >=12px (ungrouped)
Vertical spacing 1px (grouped)

>=3px (ungrouped)
Input Field
Height 14px
Width Enough to show complete field value
Horizontal Spacing >=12px (ungrouped)
Vertical spacing 1px (grouped)

>=3px (ungrouped)
Field Help
Vertical distance to input
field

1px

Matrix Objects
Width Form width minus 2 times 5px to the left and right

edge
Number of rows <=7 rows, add scrollbars if more necessary

4-123

User Interface API – Exercises

Unit: User Interface API
Topic: Additional Event Handling

At the conclusion of this exercise, you will be able to:

Handle SAP Business One events.

You want to actively influence the SAP Business One dialogues.
Therefore you need to handle SAP Business One events.

You only want to receive the events you are interested in.

3-1 Catch FormLoad event for Order form

3-2 Display the message "Caught Order FormLoad Event" when the
FormLoad event for the Order form arrives (use the Application.Message
method).

3-3 Catch the click event on the “Rent DVD” button you've added in the
previous exercise. Again display a message once the event is caught.

3-4 Create a filter to only receive the events we are interested in.

Look for the FormLoad event into the possible events thrown by
SAP Business One (Application, Menu or Item events)

Have a look into the Event parameters to find out whether the
FormLoad event is coming from the Order form or from another
form

To set a filter on the UI events you should use the EventFilter object.

Don’t forget to assign the EventFilter to the application you are
connected to.

4-124

4-125

User Interface API – Exercises

Unit: User Interface API
Topic: New Menu entries in SAP Business One window

At the conclusion of this exercise, you will be able to:

Add a menu entry in the SAP Business One main menu

The form of your Add-On solution should be displayed when the user
chooses your new menu entry.

For that purpose you will create a new entry and handle the menu event.

4-1 Add a menu entry to the "Modules" menu called DVD Store. Those are
the menu entries which are also displayed in the Main Menu. Add a new
sub-menu to that menu entry called DVD Availability.

4-2 Handle the menu event: When you choose the menu entry, your form
should be displayed.

4-3 Add another menu only visible when your form is open. This menu should
appear under the GoTo menu.

Ideally you use the specification for the menu of the “Course
Project” example!

Use the Menu collection property into the Form object to link the
menus to your form

4-126

4-127

User Interface API – Exercises

Unit: User Interface API
Topic: Data Binding

At the conclusion of this exercise, you will be able to:

Bind data to fields of a form within the SAP Business One window.

You have created a new form that is displayed within SAP Business One.
Now you want the system to display data on that form

5-1 Declare a DBDataSource and UserDataSource object. Link it to the form
you created in the Creating Forms exercise.

5-2 Bind the form's items with the corresponding data from the User Defined
table created in the DI exercises (TB1_DVD).

5-3 Get the data from the data sources and display them in the corresponding
fields on your form. Note you will first need to read the value selected by
the user from the Choose from List (Item Event) and then fill all other
fields accordingly.

5-4 Test your application.

Use the Method "DataBind.SetBound" on each item to assign it

 the corresponding table and field name it is associated to
for the DBDataSources

Use the Query method into the DBDataSource object to filter the
information you want to show

4-128

4-129

User Interface API – Solutions

Unit: User Interface API

Topic: Basics

At the conclusion of this exercise, you will be able to:

Connect to a SAP Business One Application

Send a Message in SAP Business One

Use Single Sign-On and the “Multi Add-On” feature

React to AppEvents
You want to use the SAP Business One User Interface API for actively manipulating
Process flow. As a first step you have to connect to the Application actually running.

1-1 Implement a connection to a running SAP Business One application.

1-1-1 Create a new Visual Studio project for a windowless add-on
application and add a reference to the SAP Business One DI API
COM library and UI API COM library.

1-1-2 Define the variables you need for a connection to a running SAP
Business One application.

Private WithEvents SBO_Application As SAPbouiCOM.Application
Dim SboGuiApi As SAPbouiCOM.SboGuiApi
Dim sConnectionString As String

1-1-3 Connect to the SAP Business One SboGuiApi and get a handle to
the running application.

 SboGuiApi = New SAPbouiCOM.SboGuiApi
 sConnectionString = Environment.GetCommandLineArgs.GetValue(1)
 SboGuiApi.Connect(sConnectionString)
 SBO_Application = SboGuiApi.GetApplication()

1-2 Display a MessageBox within SAP Business One.

1-2-1 The method to display a MessageBox has several optional
parameters. Check them out.

SBO_Application.MessageBox("Connected", 1, "Continue", "Cancel")

4-130

1-3 Use the Single-Sign-On feature (and/or the Multiple Add-On feature) to
connect to DI API as well.

Private oCompany As SAPbobsCOM.Company
oCompany = New SAPbobsCOM.Company
oCompany = SBO_Application.Company.GetDICompany()

1-4 Define the AppEvent handler – and implement the handling of these
events (which are mandatory to be handled).

Solutions can be found in the SDK Help Center documentation and SDK
samples (in the SDK Folder – see Appendix “SDK Installations” for more
information),
COM UI / VB .NET / 01.HelloWorld
COM UI / VB .NET / 02.CatchingEvents
COM UI DI / VB .NET / Hello World

4-131

User Interface API – Solutions

Unit: User Interface API
Topic: Creating Forms

At the conclusion of this exercise, you will be able to:

Create a form within SAP Business One

You want to create a form which is displayed in the SAP Business One
main window.

2-1 Create a new form within SAP Business One. The form should contain the
following items:

Some example code:

Form Creation:
 creationPackage =
SBO_Application.CreateObject(SAPbouiCOM.BoCreatableObjectType.cot_FormCreatio
nParams)

 creationPackage.UniqueID = "TB1_DVDAvailability"
 creationPackage.FormType = "TB1_DVDAvailability"

creationPackage.ObjectType = "TB1_DVDAvail" ‘link form to your UDO

 oForm = SBO_Application.Forms.AddEx(creationPackage)

 oForm.Title = "DVD Availability Check"
 oForm.Left = 336
 oForm.ClientWidth = 280
 oForm.Top = 44

 oForm.ClientHeight = 200

4-132

Button creation:
 oItem = oForm.Items.Add("RentDVD",
SAPbouiCOM.BoFormItemTypes.it_BUTTON)
 oItem.Left = 200
 oItem.Width = 65
 oItem.Top = 170
 oItem.Height = 19

 oButton = oItem.Specific
oButton.Caption = "Rent DVD"

Choose from List
Dim oCFLs As SAPbouiCOM.ChooseFromListCollection
 oCFLs = oForm.ChooseFromLists

Dim oCFL As SAPbouiCOM.ChooseFromList
Dim oCFLCreationParams As SAPbouiCOM.ChooseFromListCreationParams
oCFLCreationParams =
SBO_Application.CreateObject(SAPbouiCOM.BoCreatableObjectType.cot_ChooseF
romListCreationParams)

 oCFLCreationParams.ObjectType = "TB1_DVDAvail" ‘Note – this is the Code you
gave in the wizard when you registgered the UDO for TB1_DVD in the UDO
exercises

 oCFLCreationParams.UniqueID = "DVDCFL"
 oCFL = oCFLs.Add(oCFLCreationParams)

EditText Creation
 oItem = oForm.Items.Add("DVDNameT",
SAPbouiCOM.BoFormItemTypes.it_EDIT)
 oItem.Left = 90
 oItem.Width = 163
 oItem.Top = 25
 oItem.Height = 14
 oItem.LinkTo = "DVDNameL" ‘link it to the associated Static

 oEditText = oItem.Specific
oEditText.DataBind.SetBound(True, "", "DVDName")
 oEditText.ChooseFromListUID = "DVDCFL"

2-2 Enhance your program so that the form will be saved as an XML file.

Firstly add a reference to Microsoft XML – this references .NET’s System.Xml library
 oXmlDoc = New Xml.XmlDocument
 sXmlString = oForm.GetAsXML
 oXmlDoc.LoadXml(sXmlString)

 oXmlDoc.Save("File location \" & "DVDAvailability.xml")

4-133

2-3 Change your program. The form should now be loaded from the XML file
you have created in the last step. Display the form in the SAP Business
One window.

This code uses MSXML library – so this is just for demonstration. It’s preferable to use
LoadBatchActions for updates and Forms.AddEx to load forms.
Private Sub LoadFromXML(ByVal Filename As String)

Dim oXMLDoc As MSXML2.DOMDocument
 oXMLDoc = New MSXML2.DOMDocument

 oXMLDoc.load("File Location\" & Filename)
 SBO_Application.LoadBatchActions((oXMLDoc.xml)
End Sub

2-4 Use the tools from the B1TE toolset (essentially Form Checker) to check
whether you have designed your form(s) according to some important UI
guidelines…

Similar solution can be found in the SDK UI samples (in the SDK Folder – see Appendix
“SDK Installations” for more information),
COM UI/03.SimpleForm, 06.MatrixAndDataSources and 04.WorkingWithXML

4-134

Some helpful data for designing Forms
Form
Height 413px
Width 557px
Controls common
Distance to left edge 5px
Distance to right edge 5px
Distance to top edge 5px
Distance to bottom edge 5px
Button
Height 19px
Width 65px
Spacing 5px
Label Field
Height 14px
Width Depends on text
Horizontal spacing >=12px (ungrouped)
Vertical spacing 1px (grouped)

>=3px (ungrouped)
Input Field
Height 14px
Width Enough to show complete field value
Horizontal Spacing >=12px (ungrouped)
Vertical spacing 1px (grouped)

>=3px (ungrouped)
Field Help
Vertical distance to input
field

1px

Matrix Objects
Width Form width minus 2 times 5px to the left and right

edge
Number of rows <=7 rows, add scrollbars if more necessary

Please note that more exhaustive information is available in the “User Interface:
Standards and Guidelines” in the “SAP Business One Topic Search” on SAP
Servicemarketplace at http://service.sap.com/smb/sbo/resources (October 2007).

http://service.sap.com/smb/sbo/resources

4-135

User Interface API – Solutions

Unit: User Interface API
Topic: Additional Event Handling

At the conclusion of this exercise, you will be able to:

Handle SAP Business One events.

You want to actively influence the SAP Business One dialogues.
Therefore you need to handle SAP Business One events.

You only want to receive the events you are interested in.

3-1 Catch FormLoad event for Order form

If pVal.FormType = "139" And pVal.EventType =
SAPbouiCOM.BoEventTypes.et_FORM_LOAD And pVal.BeforeAction = False Then
End If

3-2 Display the message "Caught Order FormLoad Event" when the
FormLoad event for the Order form arrives (use the Application.Message
method).

 SBO_Application.MessageBox("Caught Order FormLoad Event")

3-3 Catch the click event on the “Rent DVD” button you've added in the
previous exercise. Again display a message once the event is caught.
If FormUID = "TB1_DVDAvailability" And pVal.ItemUID = "RentDVD" And
pVal.EventType = SAPbouiCOM.BoEventTypes.et_ITEM_PRESSED Then

 SBO_Application.MessageBox("Caught click on Rent DVD button")
End If

4-136

3-4 Create a filter to only receive the events we are interested in.
Public oFilters As SAPbouiCOM.EventFilters
Public oFilter As SAPbouiCOM.EventFilter
oFilters = New SAPbouiCOM.EventFilters()

oFilter = oFilters.Add(SAPbouiCOM.BoEventTypes.et_ITEM_PRESSED)
oFilter.AddEx("139") 'Orders Form

 oFilter.AddEx(“TB1_DVDAvailability”)
SBO_Application.SetFilter(oFilters)

A solution implementing events catching can be found in the SDK UI
samples (in the SDK Folder – see Appendix “SDK Installations” for more
information), COM UI/ 02.CatchingEvents.

4-137

User Interface API – Solutions

Unit: User Interface API
Topic: New Menu entries in SAP Business One window

At the conclusion of this exercise, you will be able to:

Add a menu entry in the SAP Business One main menu

The form of your Add-On solution should be displayed when the user
chooses your new menu entry.

For that purpose you will create a new entry and handle the menu event.

4-1 Add a menu entry to the "Modules" menu called DVD Store. Those are
the menu entries which are also displayed in the Main Menu. Add a new
sub-menu to that menu entry called DVD Availability.

Dim oMenus As SAPbouiCOM.Menus
Dim oMenuItem As SAPbouiCOM.MenuItem

 oMenus = SBO_Application.Menus

Dim oCreationPackage As SAPbouiCOM.MenuCreationParams
 oCreationPackage =
SBO_Application.CreateObject(SAPbouiCOM.BoCreatableObjectType.cot_MenuCreatio
nParams)

 oMenuItem = SBO_Application.Menus.Item("43520") 'Modules

Dim sPath As String

 sPath = Application.StartupPath
 sPath = sPath.Remove(sPath.Length - 3, 3)

 oCreationPackage.Type = SAPbouiCOM.BoMenuType.mt_POPUP
 oCreationPackage.UniqueID = "TB1_DVDStore"
 oCreationPackage.String = "DVD Store"
 oCreationPackage.Enabled = True
 oCreationPackage.Image = sPath & "dvd.bmp"

 oMenus = oMenuItem.SubMenus

Try
 oMenus.AddEx(oCreationPackage)

 oMenuItem = SBO_Application.Menus.Item("TB1_DVDStore")
 oMenus = oMenuItem.SubMenus

 oCreationPackage.Type = SAPbouiCOM.BoMenuType.mt_STRING

4-138

 oCreationPackage.UniqueID = "TB1_Avail"
 oCreationPackage.String = "DVD Availability"
 oMenus.AddEx(oCreationPackage)

Catch er As Exception ' Menu already exists
 SBO_Application.MessageBox("Menu Already Exists")

End Try

4-2 Handle the menu event: When you choose the menu entry, your form
should be displayed.

If pVal.MenuUID = "TB1_Avail" And pVal.BeforeAction = False Then
 LoadFromXML("DVDAvailability.xml")

End If

Private Sub LoadFromXML(ByVal Filename As String)
Dim oXMLDoc As MSXML2.DOMDocument
Try

 oXMLDoc = New MSXML2.DOMDocument

oXMLDoc.load("File location\" & Filename)
 SBO_Application.LoadBatchActions(oXMLDoc.xml)

Catch ex As Exception
 MessageBox.Show(ex.Message)

End Try

End Sub

4-3 Add another menu only visible when your form is open. This menu should
appear under the GoTo menu.

Dim oCreationPackage As SAPbouiCOM.MenuCreationParams
 oCreationPackage =
SBO_Application.CreateObject(SAPbouiCOM.BoCreatableObjectType.cot_MenuCreatio
nParams)
Dim oMenuForm As SAPbouiCOM.Form

 oCreationPackage.Type = SAPbouiCOM.BoMenuType.mt_STRING
 oCreationPackage.UniqueID = "TB1_TestMenu"
 oCreationPackage.String = "Test Menu"

 oMenuForm.Menu.AddEx(oCreationPackage)

A similar solution can be found in the SDK UI samples (in the SDK Folder
– see Appendix “SDK Installations” for more information),
COM UI/ 05.AddingMenuItems

4-139

User Interface API – Solutions

Unit: User Interface API
Topic: Data Binding

At the conclusion of this exercise, you will be able to:

Bind data to fields of a form within the SAP Business One window.

You have created a new form that is displayed within SAP Business One.
Now you want the system to display data on that form

5-1 Declare a DBDataSource and UserDataSource object. Link it to the form
you created in the Creating Forms exercise.

oForm.DataSources.DBDataSources.Add("@TB1_DVD")

oForm.DataSources.UserDataSources.Add("DVDName",
SAPbouiCOM.BoDataType.dt_SHORT_TEXT)

Note the TB1_DVD table should be defined as Master Data UDO table and registered as
a UDO

5-2 Bind the form's items with the corresponding data from the User Defined
table created in the DI exercises (TB1_DVD).

Firstly for each Edit Text field bind the field to it’s corresponding column in the
User defined table e.g.
oEditText.DataBind.SetBound(True, "@TB1_DVDAVAIL", "U_AISLE")

4-140

5-3 Get the data from the data sources and display them in the corresponding
fields on your form. Note you will first need to read the value selected by
the user from the Choose from List (Item Event) and then fill all other
fields accordingly.

If pVal.EventType = SAPbouiCOM.BoEventTypes.et_CHOOSE_FROM_LIST Then
Dim oCFLEvent As SAPbouiCOM.ChooseFromListEvent
Dim oCFL As SAPbouiCOM.ChooseFromList
Dim CFLID As String
Dim oForm As SAPbouiCOM.Form

 oCFLEvent = pVal
 CFLID = oCFLEvent.ChooseFromListUID
 oForm = SBO_Application.Forms.Item(FormUID)
 oCFL = oForm.ChooseFromLists.Item(CFLID)

If oCFLEvent.BeforeAction = False Then

Dim oDataTable As SAPbouiCOM.DataTable
 oDataTable = oCFLEvent.SelectedObjects

Dim val As String
Try

 val = oDataTable.GetValue(1, 0)
Catch ex As Exception

 MessageBox.Show(ex.Message)
End Try

If pVal.ItemUID = "DVDNameT" Then
 oForm.DataSources.UserDataSources.Item("DVDName").ValueEx = val

 oDBDataSource = oForm.DataSources.DBDataSources.Item("@TB1_DVD")
 oDBDataSource.Query()

End If
End If

End If

5-4 Test your application.

A similar solution can be found in the SDK UI samples (in the SDK Folder
– see Appendix “SDK Installations” for more information),
COM UI/03.SimpleForm and, 06.MatrixAndDataSources

5-1

Add-On Packaging, Administration & Licensing

Contents:
Add-On Administration
Packaging

Creating a Package
Licensing

Add-On Identifiers

5-2

Creating an Add-On: Unit Objectives

At the conclusion of this unit, you will be able to:

List what you need to do to create an Add-On package
Perform the steps that are necessary to register an Add-On
Describe the SAP Business One license mechanism
Explain the different Add-On Identifier types and their usage

5-3

1 Course Overview

2 SDK Introduction

3 The Data Interface API (short look on JCo + DI Server)

4 User-Defined Objects (UDO)

5 The User Interface API

6 Packaging, Add-On Administration and Licensing

42 6

Course Overview Diagram

Client

Server

Server

SAP Business One
Database

SAP Business One3rd Party
Application

Ja
va

 C
o

Data Interface
API

License
Service

UDO

DI Server

U
se

r I
nt

er
fa

ce
 A

PI

1

5

3 3

5-4

Creating an Add-On: Business Example

You have developed an industry-specific solution for SAP
Business One. Now you want to deliver this solution to
your customers.

5-5

Packaging Introduction: Unit Overview
Diagram

Add-On Packaging, Administration & Licensing

Topic 1: Packaging Introduction

Topic 2: License Concept

5-6

Packaging Introduction: Topic Objectives

At the conclusion of this topic, you will be able to:
Explain how to package your solution
Describe what to include in the Add-On package
How to get the registration data file
Describe how your solution will be registered in SAP Business One

5-7

In your Add-On documentation make sure that – beyond the documentation of any User-Defined
Tables, Fields etc – document each event and form in the SAP Business One application that you
handle or manipulate.

Include the following information:

Expected situation (prerequisite)

Action that is performed (change of data)

Condition for a break in event chain (i.e. when you set parameter BubbleEvent = False)

Situation that can be expected by possible successors (other Add-Ons) handling the same event

Packaging – Package contents

Add-On components (including registration data file, setup etc.)
Add-On Installer must be 1 (one!) executable file
Provide Documentation
Describe User-defined fields and tables
Describe the User-defined objects you define in your Add-On (if applicable)
List where you modify SAP Business One standard functionality (if appropriate):

E.g. list which Modules – or forms / items – you hide etc

List where you interfere in the control flow of SAP Business One standard functionality
(if appropriate) – i.e. list any Event you capture which originates from SAP Business
One standard functionality:

recommended for all Add-Ons; mandatory for Add-Ons to be certified
especially where you might set BubbleEvent to False (Mandatory for all Add-Ons)
This is important since at the customer site various Add-Ons from various
vendors might get engaged!

5-8

After you’ve finished to develop the add-on for your customer the most important thing is to deliver
and install it correctly on your clients station.
Before installing the Add-on on the customer’s station make sure that:

Customers station complies with the prerequisites for running SAP Business One. (the prerequisites
are detailed available system setup documentation)
All the relevant components are installed on your client station

We recommend you to create an installation package with one of the available tools in the market (for
example: Microsoft package and deployment, Installed Shield) in this way you can be sure that all the
relevant components (dll, OCXs, etc…) will be packed in the package – or to use the installation
wizard which is included in the B1DE (SAP Business One Devlopment Environment) toolset – which
is available through SDN..

Do you remember (just because it happened often that partners disregarded that fact…)?
An Add-On can connect to UI API in two different modes:
Development Mode

Using the predefined connection string (don’t confuse it with the Add-On Identifier!!!) within your
code
0030002C0030002C00530041005000420044005F00440061007400650076002C0050004C006F006
D0056004900490056

Customer Mode (Runtime mode)
Connect using the connection string that comes as the commandline parameter…

Register / Install / Administrate

Develop / Create Package

Overview – Add-On deployment step-by-step

Register (and install) the Add-On

Create registration data file

Create installation program

Set User Preferences

Set Company Preferences

Run-time

Compile the Add-On program

Run or Stop the Add-On

Assign Add-On Licenses to Users (if appropriate)

5-9

Add-On Installer – AddOnInstallAPI.dll

The installation is always initiated by the SAP Business One client.

The installer must handle a command line parameter:
"RecommendedPathForAddOn" | "PathForAddOnInstallAPI.dll"

You must use the AddOnInstallAPI.dll in your installer!

Mandatory:
EndInstallEx(String, Boolean)
Call this function at the end of the installation process.
The boolean parameter allows to indicate success (= True) or failure (= False).
The function returns an integer value; 0 signals success.
EndUnInstall(String, Boolean)
Call this function at the end of the uninstallation process.
The boolean parameter allows to indicate success (= True) or failure (= False).
The function returns an integer value; 0 signals success.

Optional:
SetAddOnFolder(path)
If you modified the default installation path as provided by SAP Business One
RestartNeeded()
Call this function if the setup program restarts the PC (see SDK documentation for more details!)

See UI API helpfile for more details

Please note the „EndInstall“ is deprecated!

5-10

Packaging – Create Registration Data File

The registration data file allows the application to identify your add-on and run it automatically
when the application is launched.

In order to generate the license data file
1. Run the AddOnRegDataGen.exe file, typically located at:

C:\Program Files\SAP Manage\SAP Business One SDK\Tools\AddOnRegDataGen

5-11

Please note that during installation exceeding the „Estimated Install Time“ will cause a message box to
pop up. In the message box the user can confirm – or deny – the successful installation of the Add-On
– at a later time.

Packaging – Create Registration Data File #2

2. Enter your partner information
3. Enter the add-on information
4. Enter the data of the add-on installer
5. Choose Generate File to create the registration data file

5-12

Packaging – Create Registration Data File in
a batch

AddOnRegDataGen.exe is batch capable.

Calling convention (commandline parameters):

AddOnRegDataGen.exe <xml info> <InstallerVersion>
<Installer> <Uninstaller> <Add-On-Exe>

Sample:

AddOnRegDataGen.exe MyAddOn.xml 1.0 setup.exe setup.exe
MyAddOn.exe

The „<xml info>“:

<AddOnInfo partnernmsp="ABC" contdata="my cont data"
addonname="My Add-On" addongroup="M" esttime="300"
instparams="" uncmdarg="" partnername="My Comp" />

5-13

Add-On Administration – Introduction

The Add-On Administration tool is designed to help administrators deploy and manage add-
on applications on end-users workstations.

IMPORTANT:

The Add-On Administration tool and the current installation mechanism have been
introduced in SAP Business One Version 2004. You might encounter older versions on
the customer site. Check-out the appropriate information e.g. on SAP Service
Marketplace /education.

With the Add-On Administrator you can:
Register Add-Ons
Set Company preferences
Set User Preferences
Remove Add-Ons
Monitor Add-Ons

5-14

Add-On Administration – Overview

Add-On Registration Process registers the Add-On applications in the SBO-
Common DB on the SAP Business One server

Will be done before the first installation of an Add-On on a client machine.
The System Administrator registers the Add-On using Add-On Administration; this
triggers the import of the installation package and the ARD file into the SBO-Common
DB (table SARI).
Add-On installation can be started in one step with registration; otherwise it will be
started at the next logon.

Add-On Upgrade will be done by repeating the Add-On Registration Process.
Please note that the new Add-On version must be greater than the installed version
(e.g. “1.1” instead of “1.0”).
In a first step the upgrade process will start the „uninstall“!
Add-On upgrade can be started in one step with registration; otherwise it will be
started at the next logon.

Add-On Administration is only available for users with Superuser privileges for
the company.

5-15

Add-On Administration – Register installation
package

In SAP Business One go to: Administration-> Add-On-> Add-On Administration

Once the Add-On is registered, it appears in the Available Add-On list on the
Add-On Administration window.

Package has been copied into SBO-Common database (table SARI)…

Add-Ons on the server
NOT assigned to current

company.

Add-Ons assigned
to current company.

Choose Register Add-On

Registration Data File: Choose the data file
of the Add-On.

Installation Package: Choose the
installation file of the Add-On.

Check Assign to Current Company, if you
like to assign the Add-On to the
current company.

Check Activate for Company, if you like to
start the installation on the PC you
currently use.

Choose OK to close the window and
register the Add-On

5-16

Setting Company Preferences

The Add-On Administration tool lets you set different company-wide preferences for

each company-assigned add-on.

To set these preferences, you must assign the add-on to the company (if you haven't done so already
during the registration process) by moving the add-on from the Available Add-On list to the Company
Assigned Add-On list using the icons.

The company preferences include:

See slide…

Add-On Administration – Company Preferences

Start-up Group - Assigning a Start-up Group controls the start-up behavior and
deployment of add-ons for all users connecting to a company

Mandatory - Add-on is needed to fulfill requirements of the customer specification;
Add-On will be started automatically

Automatic - Add-on is started automatically by the SAP Business One application

Manual - Add-on is not started automatically by the SAP Business One application

This setting can be changed per user – except for “Mandatory”

Force install - Forces the SAP Business One application to try again to install
an Add-On that failed to install each time the end-user logs on to the company.

Event-receiving order - This order is determined by the order (from top to
bottom) in the Company Assigned Add-On list.

Active – An Add-On can be temporarily deactivated through this setting.

5-17

Add-On Administration – Send notification to
Users

Client Install – A user can install new add-ons without logging again to Business
one.

Administrator registers new add-ons and sends notification to users by clicking on the
button on the Add-on Administration form.

5-18

Add-On Administration – Add-On Admin
Remarks

Active flag overrides all other settings for the AddOn in a company:

If the Add-On is marked as not active (the check box is not checked) the Add-On
could be updated – without being installed and executed immediately.

Extended log for Add-On Installation:
Add Windows environment variable AAdminLog

Values 0 (no log) … 3 (every message will be logged)
Logfile can be found in <Temp> folder of the Windows user (e.g. C:\Documents and
Settings\<user>\Local Settings\Temp)

5-19

In case an Add-On terminates the user will be informed about that fact including options to continue
working or logoff from thr current company.

Add-On Administration – Add-On Manager

In SAP Business One go to: Administration Add-On Add-On Manager

Add-On State

Start Add-On

Stop Add-On

Monitor Add-Ons in SAP Business One
Client (current user).

Displays a list of Add-ons the user is
allowed to run.

Displays Current Add-on Status:
Connected, Disconnected, Failed

Notifies through Popup-Message in case
Add-On failed.

Ability to Start Add-On manually within
the SAP Business One application

Displays only the relevant information
for current user

5-20

In contrast to using B1DE to implement add-ons – no B1DE DLL files have to be shipped together
with the installer.

You can use the B1DE installer wizards without using B1DE for your add-on project!

© SAP 2008 / Page 20

Creating an installer using the B1DE – Toolset

The B1DE Package contains 2 installer wizards that you can use to create Add-on
installers easily:

SAP Installer Wizard – to generate the setup code to install and register an add-on with B1
VB B1 Installer Wizard – to generate the .NET setup code to install and register an add-on
with B1 (potentially better suitable for more sophisticated installation routines)

5-21

Packaging Introduction: Topic Summary

You should now be able to:
Explain how to package your solution
Describe what to include in the Add-On package
How to get the registration data file
Describe how your solution will be registered in SAP Business One

5-22

Also try to install the Add-Ons you implemented in the exercises before and / or the Video Library
course project you‘ll develop later…

Packaging Introduction: Exercise

Check-out the sample installation program in the SDK Folder
(see Appendix “SDK Installations” for details about the SDK
Folder)…

5-23

Additional Information: Certification Process

This process is mandatory for Solution Partners (SPs / ISVs) and optional for
Sale & Software Partners (SSPs)

It includes specification of various technical information – above all what of
and how the SDK’s interfaces are used

Partners also have to describe test cases that characterize the solution.

Certificators will approve documentation and test cases for the certification
session – or request additional information – or more details.

In the certification session data provided will be discussed and test cases will
be checked.

5-24

License Concept: Unit Overview Diagram

Add-On Packaging, Administration & Licensing

Topic 1: Packaging Introduction

Topic 2: License Concept

5-25

License Concept: Topic Objectives

At the conclusion of this topic, you will be able to:
Describe the license concept for the SAP Business One Software Development
Kit and Add-ons
Describe the meaning of

License service and license file
Add-on Identifier
License mode
License Key Name (string)

Order a license file

5-26

License Concept: Business Example

Your company has built a solution (Add-on) for SAP Business One. Now
you want to add license checks for named users to your solution. To do
so, you use the license concept of the SAP Business One Software
Development Kit.

5-27

License Concept – Motivation

Ensure Return on Investment (ROI)
Restrict usage of an Add-On solution
Re-use license mechanism of SAP Business One

No need for own license check programming
No need to set up a license infrastructure

Please note: Licenses for registered Add-Ons will be provided without further approval so
far (Sept. 2007).

After a click on “License Overview” at the SAP Channel Partner Portal Quick Link
http://service.sap.com/licensekey a „License Report“ listing requested licenses for your
registered Add-On solutions is displayed…

http://service.sap.com/licensekeya

5-28

The license service is part of the SAP Business One server tools and can be installed on a central
machine that can support multiple SAP Business One systems and Company Databases.

From version 2005 on, it is a CORBA service instead of COM service as of version 2004

You need to set port (default = 30000) + PC name (not IP address!) – in 2004 you could also use the
IP address; no port could be specified (the port used was owned by DCOM).

2005 technology solves the domain problem with the DCOM service as of 2004

When you connect to SAP Business One the system receives from the license service the modules the
user is licensed. Whenever a form is clicked to be opened, it checks if the form is part of the license
package the user has.

One named user can access multiple systems with just one license.

The license service does not need to be installed on a separate machine. It can of course also be
installed on the SAP Business One database server.

The partner solution (= Add-on) identifies itself via SDK

The license check for partner solutions is done via SAP Business One client resp. SDK DI API

Two different SAP Business One database server (e.g. test system and productive system) can use one
license service.

To simplify the handling of licenses it‘s recommended to use one central license service for the whole
SAP Business One system landscape

License Service
(CORBA)

Licensing Infrastructure – Architecture /
Landscape sample

SAP Business One
Client

SDK
DI API

Partner
Solution

SAP Business One
Client

License
File

SAP Business One
Database Server
(…„points“ to License Service)

SDK
UI API

Partner
Solution

Check

Check

Check

The License Service serves all license checks
The connection information (server + port) between an SAP Business One Database
Server is stored in table SLIC in SBO-Common
License assignments to user codes are stored in the file B1upf.xml

Partner
Tool

Licensing
API

SBO-Common : SLIC

DI ServerPartner
Solution

Check

B1upf.xml

5-29

„Hardware Key“ available in the SAP Business One „About…“ screen and the Properties of the
License Service

Licensing Infrastructure – Technical
Components

License Service / License Manager
Part of „SAP Business One Server Tools“
Can be installed on any computer
Calculates a „Hardware Key“
Provides logging capabilities to detect license-related issues
Allows to set the port number it listens to

Actually the port that is specified is the port number of the „Naming Service“ that
handles the initial connect to license service…
License service itself listens to that port number + 1

Checks whether a session is still alive – to release concurrent user type licenses if
necessary
Responds to license checks triggered from any SAP Business One component

SDK components: Connect to component

Please note: “Named User” type license checks are performed per user code + database
name (disregarding DB server + client PC)

It is only allowed to log on to SAP Business One once per user code / DB name!

License
Service

(CORBA)

5-30

Licensing Infrastructure – Technical
Components (cont.)

License File
Specific for a particular License Service
Generated through SAP Service Marketplace on request
Includes licenses for:

– All purchased SAP Business One components
– Includes SAP components that are available for free
– …and Add-On solutions

Can be uploaded through License Service – or through the SAP Business One client
application
Issued per „localization“; customers who upgrade from previous versions will receive
a „Global“ license that still allows to use any localization.

B1Upf.xml
Keeps information regarding licenses assigned to specific user codes
…is keeps this information independently from Company Database and even SAP
Business One “Server”

License
File

B1upf.xml

5-31

Add-On Licensing – Step-by-step

ISV / Solution Partner
Register Add-On solution

Currently use message to SAP Support for component SBO-SDK-AA
Receive License Key Name
Generate Add-On Identifier
Use Add-On Identifier in source code to trigger check for specific Add-On Solution license

VAR / Sales & Service Partner / Customer
Order SAP Licenses on the Channel Partner Portal http://service.sap.com/smb/sbo/order
“Request” License Key from SAP (includes Add-On licenses)
Install Add-On Solution
Assign Licenses to users

http://service.sap.com/smb/sbo/order

5-32

License Key Name
Technical String returned by SAP upon registration of the Add-On Solution
Starts with „BASIS“ followed by a 10-digit number

Identical to SWPRODUCTNAME in the license file + extension (extension related to chosen DB type); e.g.:
SWPRODUCTNAME=BASIS1234567890_MSS

Add-On Identifier
Identifier that is used in Add-On code
„Add-On Identifier Generator“ in SAP Business One generates “Solution”, “Implementation” or
“Development” Add-On Identifiers

“Solution” Add-On Identifier is generated from the License Key Name, allows to use DI API and UI API
(Add-On License to be assigned to the user)
“Implementation” Add-On Identifier allows to use UI API only (concurrent user license)
“Development” Add-On Identifier allows to use DI API and UI API as well, but requires “SDK
Development” License (concurrent user license)

Use only the first 15 characters of the License Key Name (e.g. BASIS1234567890) to generate a “Solution”
Add-On Identifier

Add-On Licensing – Terms

5-33

Add-On Licensing – Remarks

ISV / Solution Partner
Register Add-On solution

Registration during the License Key Request as “Partner Solution not listed” (just type
in a name) will result in the solution being available for your direct customers only.
“SDK Development” License is prerequisite to register a Solution (it is checked
whether this license has been ordered for any installation on the partner/customer
number).

An Add-On that uses SDK’s UI API only can run on “SDK Implementation” License.
Please note: Add-On Identifier is specific for the “System”; it has to be regenerated
for other “Systems”.

VAR / Sales & Service Partner / Customer
Can register “proprietary” Add-On solutions as well – “SDK Development” License is a
prerequisite.

5-34

Process for the License Key Request:

Go to http://service.sap.com/licensekey

Select the Installation Number a license file should be requested for. The respective systems for this
Installation Number will be displayed

To modify an existing license choose the respective System, change data and request a new license
file.

Go to “Request New System” Link to request an new license file for a new license landscape

Fill in data and choose “Next Step”

In this screen the licenses of the different SAP Business One components and Certified and Uncertified
Partner Solutions can be selected and will be included in the license file.

Customer specific solutions are shown in a personalized list for the partner only. If a customer runs a
customer specific solution, the partner has to order the license file (with the same transaction). The
partner can register his/her customer-specific solution via his/her license request form. His/Her solution
is then shown in his/her personalized license request form and can be selected for a license file for the
customer.

Also expiration dates can be set to give partners the possibility to send out demo or test licenses for
their solutions.

Add-On Licensing – License Key Request

Use the Hardware Key supplied by License Manager or in
the „About…“ dialog in SAP Business One when creating the
„System“

Choose from SAP licenses purchased (purchased licenses
can be distributed across multiple “Systems” within an
“Installation”)

Choose Add-On Solution licenses as agreed with the SSP

An email with an attached license file will be sent to the
address entered for the „System“

http://service.sap.com/licensekey

5-35

Add-On Licensing – License Administration

The License Administration form allows
Administrators to maintain licenses and
Grant users access to SAP Business One modules and Add-On solutions
View content of license file
Import a new license file to the license service
Lock any users from the SAP Business One system

5-36

Add-On Licensing – License Administration

SAP Business One and Add-On license can be maintained and controlled through the
License Administration Form -> Administration -> License -> License Administration.
Configurations can be maintained only for the Company Database the administration is
currently logged on to.
Indirect Access user is a valid SAP Business One license type, not authorized to any
functionality inside the SAP Business One GUI application.
No limitation on the number of add-ons assigned to one user
Add-on licenses can only be assigned to users with a valid SAP Business One license type
Registered Add-ons are displayed under External Licenses

Please note:
To use B1i(SN) two (free) licenses have to be assigned to the (technical) user „B1i“ in SAP
Business One:

License type „B1i“
License type „B1iINDIRECT_MSS“

5-37

The Add-On Identifier String needs to be assigned to the Add-On Identifier Property before calling the
connect method in the APIs

Connections should be re-used to avoid wasting licenses for the same user.

Add-on solutions using the UI and DI API should set the Add-On Identifier only in the UI API and
first connect to the UI API and then to the DI API.

Another connection through the DI API would use up another license

If the Add-On is assigned to the „Mandatory“ start group, a user that has not been assigned a license
for this Add-On cannot logon to the particualr company.

Add-On Licensing – Activate license check

In general the Add-On Identifier String must be passed to the AddOnIdentifier
property before calling the Connect() method of an API.

Sample code UI API

Dim b1GuiApi as New SAPbouiCOM.SboGuiApi
b1GuiApi.AddonIdentifier = „4CC5B8A4E0213A68489E38CB4052855EE8678 _
CD237F64D1C11C52706A541BD245D5E6E4050AE9B919FBE0FAB44F9”
b1GuiApi.Connect(sConnectionString)

Sample code DI API (for usage without UI API)

m_cmp = New SAPbobsCOM.Company
m_cmp.AddonIdentifier = „4CC5B8A4E0213A68489E38CB4052855EE8678 _
CD237F64D1C11C52706A541BD245D5E6E4050AE9B919FBE0FAB44F9”
lret = m_cmp.Connect()

5-38

Add-On Licensing – Technical details

Please note:
Add-On solutions using both, UI API and DI API in conjunction with the “single-sign
on” feature have to leave the AddOnIdentifier property of DI‘s company object
empty!
When using the “Multi Add-on” feature to get the DI connection through UI API – the
Connect() method won’t be called anyway.
DI Server performs a license check when it starts.
DI Server has a CPU-based license model!

Please note further:
UI API has a functionality to check the License Status of a particular form for the
logged on user:
Application.Company.GetFormLicenseStatus(…)

5-39

Regarding „Historical Licenses“:

In the license file you will still find entries for „Implementation License“ and „Compatibility License“.

„Compatibility License“ has been kept to support non-registered Add-ons technically.

„Implementation License“ may not make much sense in this context. It has been kept for backward
compatibility reasons though.

Add-On-related Licenses – Overview

Licenses vs. Components License
Type UI API DI API DI Server Screen

Painter
SAP Add-
Ons

Namespace and
Add-On registration

SDK Development Conc. X X - - - Yes

<(ISV) Solution License> Named X X - - - -

DI Server CPU - - X - - -

SAP Add-Ons (free) Named - - - - X -

SDK Tools (free) Named - - - X - -

Historical Licenses

SDK Implementation (free) Conc. X - - - - -

Compatibility License (free) Conc. X X - - - -

The following table lists relevant licenses and what each of them allows to use.
Named = Named user license
Conc. = Concurrent user license
CPU = CPU-based license

Please note (again):
To use UI API or DI API the user must have an SAP license assigned in addition (Indirect Access,
Limited or Professional User) – no matter which SDK License type should be used!

5-40

The Implementation Mode is meant to be used during the implementation and development of small
implementation Add-Ons

Allows to create and run small implementation Add-Ons in a specific customer environment without
applying for an Add-On License Key Name.
Add-Ons with implementation identifier strings run only in the environment (license server) the
identifier was created in.

The Development Mode is targeted to be used during the development phase of Add-On solutions
(Please note: Concurrent user mode applies)

A development license for the SAP Business One SDK must be available
The Solution Mode will be used running Add-On solutions at the customer site

This mode was created to check valid licensing for partner Add-On solutions for SAP Business One
The logged on user must have been assigned a (named user) license for this Add-On.
The installation of the SDK runtime version is a prerequisite for Add-ons using DI API or Java
Connector, but there’s no additional license check for the SDK in this license mode

The Compatibility Mode is available to support “old” Add-Ons that have been developed before
release 2004 and do not use the Add-On Identifier string

“Older” Add-Ons still run with SAP Business One release 2004 to ensure compatibility
Add-Ons that do not set the “AddonIdentifier” property are assumed to be “old” Add-Ons.

several modes for different Add-ons are possible in one SAP Business One system landscape / can run
with the same SAP Business One application

Add-On Identifier vs. license „mode“

License File

(SDK implementation version)

SDK development version

N named user for Add-on 1

(Compatibility)

Add-on 3 / solution mode

Current user is
assigned to the license

Add-on 2 / development mode

Add-on 1 / implementation mode

Add-on 4 / compatibility mode

Run-time scenario:

Current user is
assigned to the
license

Current user is
assigned to the license

Different licenses are needed for different license „modes“

The Add-on Identifier determines the license mode
implementation identifier = implementation mode (UI API only)
development identifier = development mode
solution identifier = solution mode
no identifier = compatibility mode

5-41

License Concept: Topic Summary

You should now be able to:
Describe the license concept for the SAP Business One Software Development
Kit and Add-ons
Describe the meaning of

License service and license file
Add-on Identifier
License mode
License Key name (string)

Order a license file

5-42

Creating an Add-On: Unit Summary

You should now be able to:
List what you need to do to create an Add-On package
Perform the steps that are necessary to register an Add-On
Describe the SAP Business One license mechanism
Explain the different Add-On Identifier types and their usage

5-43

Add-On Installer / Licensing – Exercises

Unit: Add-On Packaging

Topic: Basics

At the conclusion of this exercise, you will be able to:

Write a simple VB .NET installer program.

VB .NET has capabilities to implement such an installer.

1-1 You can create your own installer or use the B1 Simple Installer or B1
Professional Installer from the SDN Development Tools

5-44

5-45

Add-On Installer / Licensing – Exercises

Unit: Licensing
Topic: License mechanism for Add-Ons

At the conclusion of this exercise, you will be able to:

Use the licensing mechanism

2-1 Use Add-On Identifier generator to:

Create a Development identifier

Create an Implementation identifier

Solution Identifier (need BASIS license from SAP)

Note the differences

2-2 Use the Identifier in your code (use the property AddonIdentifier from the
DI Company object or from the UI SboGuiApi object) and check out
when it fails.

5-46

5-47

Add-On Installer / Licensing – Solutions

Unit: Add-On Packaging

Topic: Basics

At the conclusion of this exercise, you will be able to:

Write a simple VB .NET installer program.

A solution can be found in the SDK UI samples (in the SDK Folder – see
Appendix “SDK Installations” for more information),
COM UI/ 14. AddOnInstaller.

 Or from the SDN:
http://www.sdn.sap.com/irj/sdn/index?rid=/webcontent/uuid/a175fb62-0c01-
0010-a8b5-fa58a13b1cf7#section21

http://www.sdn.sap.com/irj/sdn/index?rid=/webcontent/uuid/a175fb62-0c01-

5-48

5-49

Add-On Installer / Licensing – Solutions

Unit: Licensing
Topic: License mechanism for Add-Ons

At the conclusion of this exercise, you will be able to:

Use the licensing mechanism

There is no solution other than documented in the unit / the exercise.

5-50

6-1

Appendix1 - Tools

Contents:

Available on SDN
Add-On test tools
Add-On development tools

6-2

B1 SDK Tools – What?

Set of development and testing tools helping partners to develop and test their add-
ons.

Given as free source code in SDN:

http://www.sdn.sap.com/irj/sdn/businessone

Tools offered:
Development Environment
Event Logger
DI LogsReader
DI Event Service
COM License Bridge
Test Environment
Test Composer

http://www.sdn.sap.com/irj/sdn/businessone

6-3

B1 SDK Tools – How to download?

6-4

B1DE

Packages B1 SDK coding solutions best practices by providing wizards for code
generation and helpful tools for development of add-ons.

Based on B1 SDK

Integrated with Microsoft Visual Studio .NET 2005 and 2008: the most used development
environment for B1 solutions

Comes with a set of documented guidelines to:
ensure correct usage of APIs
avoid the repetitive development (connection, forms and menus creation,…)
help partners to concentrate on the business side
ensure compatibility
add-on inter-working
etc

6-5

B1DE – Tools proposed

B1 Code Generator Wizard
a set of Microsoft Visual Studio .NET wizards and add-ins

to generate .NET B1 solutions: VB.NET and C#
B1 Simple Installer Wizard

a Microsoft Visual Studio .NET wizard
to generate the setup code to install and register an add-on with B1

B1 Professional Installer Wizard
a Microsoft Visual Studio .NET wizard

to generate the .NET setup code to install and register an add-on with B1
B1 UDO Form Generator

a Windows tool (also integrated with B1 Code Generator Wizard)
to generate an XML form starting from an UDO

B1 DB Browser
a Windows tool (also integrated with B1 Code Generator Wizard)

to visualize the current status of a SAP Business One database in terms of the tables,
columns, types, default values, database constraints and links
to visualize the changes in the database between two B1 versions

6-6

B1DE – B1 Code Generator Wizard

Generates your add-on code and data managing:

UI API and DI API connections

metadata objects creation
User Defined Tables
User Defined Fields
User Defined Objects

events management
listener-based interface
events registration
events filtering

menu actions
creation, deletion, update
attach a form to a menu

form generation

DEMO

6-7

B1DE - Installer Wizards

B1 add-on installing requirements:
a unique setup executable
an ARD file

Two wizards available
Simple installer

generates a simple .NET Application Project
no coding required at all

Professional installer
generates a .NET Setup and Deployment project
requires .NET Setup and Deployment projects basic knowledge

DEMO

6-8

B1DE - DbBrowser

Visualizes current status of a B1 database

Offers the possibility to navigate between linked/related tables.

Shows information about changes between B1 versions

6-9

Event Logger

Motivation
Easily identify the events fired by the UI API depending on the user actions
Observe the information given by B1 for each event.

6-10

DI LogsReader

This tool provides a clear view of the XML file logs that can be produced by DI API. You can
then analyze all DI API calls with detailed information, like interface and command name,
elapsed time, input and output types and values.

6-11

DIEventService

Motivation
UI API FormData events only alerts on user actions done on the B1 GUI, no alerts given for
other add-ons action
Avoid conflicts between different add-ons using the SBO_SP_TransactionNotification

Solution proposed
Listener-based interface for data event notification
Easy to use high-level interface integrated with the SDK
Samples provided

6-12

DIEventService - Architecture

DB B1DIEventSender

B1DIEventServer

B1DIEventService

Partner add-on

.NET Remoting.NET Remoting

Server

Client

MSMQ

Call listeners

Connect
AddListener
RemoveListener
Disconnect

SBO_SP_TransactionNotification

6-13

DIEventService – Sample code

Connection

// Create an instance of the listener service
evtService = new B1DIEventService(oCompany)
evtService.Connect(ConnectionLost_Listener)

// Add a listener method per each group: objType + transaction Type
evtService.addListener(SAPbobsCOM.BoObjectTypes.oItems.ToString(),

B1DIEventTransactionTypes.Add.ToString(),
AddItems_Listener)

// Add a listener method per each group: objType + transaction Type
evtService.addListener(SAPbobsCOM.BoObjectTypes.oOrders.ToString(),

B1DIEventTransactionTypes.Add.ToString(),
AddOrders_Listener)

Listeners method declaration

// AddItems Delegate implementation in the add-ons side
public void AddItems_Listener(B1DIEventService.B1DIEventArgs
eventInfo)
{
...

}

// AddOrders Delegate implementation in the add-ons side
public void AddItems_Listener(B1DIEventService.B1DIEventArgs
eventInfo)
{
...

}

Disconnection

// Remove a listener
evtService.removeListener(SAPbobsCOM.BoObjectTypes.oItems.ToString(),

B1DIEventTransactionTypes.Add.ToString())

// Disconnect the service
evtService.disconnect()

6-14

B1 Test Environment (B1TE)

Set of profiling tools for SAP B1 SDK add-ons
Do not require the source code or a development environment
Used by SAP during solution certification phase
Scenarios:

Analyze add-ons compliance with SDK
Troubleshoot run-time issues
Check compatibility breakages

Tools included:
B1 DB Browser
B1 DB Profiler
B1 .NET Profiler
B1 Form Checker
B1 Bubble Checker
MSSQL Profiler

6-15

B1TE - DbBrowser

Visualizes current status of a B1 database

Offers the possibility to navigate between linked/related tables.

Shows information about changes between B1 versions

6-16

B1TE - DbProfiler

Keeps track of all changes in a B1 database carried out by a correct execution of a DI API
call (based on SBO_SP_TransactionNotification stored procedure).

DOES NOT: Track incorrect accesses – as for instance accessing and modifying a B1
company DB through ODBC or direct SQL statements.

6-17

B1TE - .NETProfiler

Traces calls to SDK APIs and any other .NET objects

Marks deprecated SDK API calls

Can generate list of used objects/methods for TPP

Only available for Add-Ons using in MS .NET (uses Profiling API of MS .NET)

6-18

B1TE - Form Checker

Checks a form against the B1 programming and look-and-feel rules guidelines

Lists all the possible issues encountered in a form itself

Can check xml forms as well as forms shown in B1

6-19

B1TE - Bubble Checker

Lists all events sent by the B1 application

Marks the events that are stopped by an add-on (BubbleEvent set to false)

6-20

B1TE - Use of MSSQL Profiler

Tracks all database operations, those done with and without using the DI API

B1TE provides some templates for Microsoft SQL Server Profiler or the MSDE’s OSQL
command line tool

6-21

B1 Test Composer (B1TC)

Motivation
give to partners a simple way to test their add-ons

Core features
record, replay, check values
batching tests, selecting tests in a batch

Independence from 3rd party SW
self consistent and free
No dependency from any licensed tool

Automatic generation of test documentation
want to run tests, not writing test documentation

6-22

B1TC – Main window

6-23

B1TC – Record and Play tests cases

Record window

Play window

6-24

7-1

Appendix2 – SDK Installations & Support
Processes

Contents:
SDK Installations
Partners support process

Customer message
DRQ

Market Place overview
How to open a customer message
How to download patches
How to Order License File
Naming Conventions
Searching for notes
RKT self Learning

SDN Developer Area and Forum

7-2

SDK Installations: Objectives

At the conclusion of this topic, you will be able to:

List the components of the SAP Business One SDK
Tell some details about DI API installation
Describe what is in the “SDK installation”

7-3

SDK Installations
1. SDK Components

DI API
Available for all existing versions
Java connector Part of Server installation from version 2007
Optionally separate installation (Part of SAP Business One client installation)

DI Server
Part of Server Tools installation

UI API
Part of SAP Business One client installation

UDO – User Defined Object
Built in into SAP Business One itself – no additional requirements
Please note that there is a path for extensions that has to be specified on the Company
Settings “Path” page

“SDK package” – contains:
Help
Samples
Tools

Note: UI API version must be identical to client version

7-4

SDK Installations
2. DI API and JCo – Installation

Standard installation path in version 8.8:

C:\Program Files\SAP\SAP Business One DI API

DI API: Part of the client installer

JCo included in DI API Installer:

C:\Program Files\SAP\SAP Business One Server DI API\JCO\LIB

Version 6.5, 2004 C:\Program Files\SAP Manage\SAP Business One DI API

DI API is a separate installation for versions 6.2 – 2004

=> This is something to check in addition in case of problems

In 2005 DI installation is part of the Autorun for the client installation.

IMPORTANT:
The DI API installation package in the B1_SHR folder doesn‘t get updated by the upgrader; you will
have to copy the new DI API installation package „manually“ to that location - in case you intend to
install DI API on a machine where you won‘t install the SAP Business One client application…

7-5

SDK Installations
3. SDK - What is in it?

The SDK folder contains:
Help & Documentation
UDO library & header files
Samples – for several platforms

Visual Basic .Net
C#

Samples – for most major features
DI API
UI API
DI API + UI API
UDO
DI Server

Tools
Registration tools
…for other tools please visit the SAP (Developer) Network www.sdn.sap.com

http://www.sdn.sap.com

7-6

SDK Installations: Summary

You are now able to:
List components of the SAP Business One SDK
Tell some details about DI API installation
Describe what is in the “SDK installation”

7-7

1a. Partner support process

Partner needs
help in using
the feature

Support sends
sample and

documentation;

Eventually a
request may be

considered
„consulting“

and thus might
be billable

There is a bug
in the feature

BUG is
transfered to

developement
for fix

The feature
doesn’t exist in
the version the

partner uses

If the feature
doesn’t already

exist in the
future version,

Start a DRQ
process

Use SAP Service Marketplace alias “sbosupport”
Partner opens a Customer message
The Global Support Center (GSC) team gets the message and answers the partner.

If needed, the message is escalated to Development support team.
There are 3 Possibilities

1 2 3

7-8

1b. DRQ – Development Request Process

Partner that needs a feature that the API doesn’t supply has to open a DRQ
message

DRQ - Development request for the continuous improvement of SAP Business One
Any request for changes or improvements in the system from it’s current behavior
Development requests should be handled through the DRQ process

Process
Open message for component SBO-DRQ

The Local PM will receive the DRQ messages and handle the versions content

7-9

2. The SAP Service Marketplace

http://service.sap.com
To access, the SAP Service Marketplace you will need a login or “S-Number” (Somebody within
your organization will be able to create S-Numbers if you don’t have one yet.)
An “alias” is a URL-suffix that gives you access to a particular page on the SAP Service
Marketplace.

Example: “smb” alias is: http://service.sap.com/smb

Useful sites
http://service.sap.com/notes
http://service.sap.com/knowledgebase
http://service.sap.com/namespaces
http://service.sap.com/smb

To contact the community or use its resources go to:
https://www.sdn.sap.com/irj/sdn/businessone

http://service.sap.com
http://service.sap.com/smb
http://service.sap.com/notes
http://service.sap.com/knowledgebase
http://service.sap.com/namespaces
http://service.sap.com/smb
https://www.sdn.sap.com/irj/sdn/businessone

7-10

2a. Market Place – How to open a customer
message?

www.service.sap.com/smb/sbo/support

Log in using your s-user and password

Click "SAP Business One Messages" (from the main page) You will get the page which is
displayed above.

Click on the 'Create message 'button

Fill in the required fields as accurately as possible

http://www.service.sap.com/smb/sbo/support

7-11

2b. Market Place – How to Download patches?

Click the following link:
https://websmp103.sap-ag.de/sbo-swcenter

Choose from the links tree on the left side of the screen:

Support Packages & Patches

SAP Business One Releases prior to SBO 2004

SAP Business One A

SAP Business One 6.5 (choose the version you need)

Binary Patches

SAP Business One 6.5

Win 32

While upgrading from one version to another (for example if you upgrade from version 6.2 to version
6.5) first you need to install the major release and than you need to upgrade to the most recent
published patch. (In the slide below it is patch number 7).

https://websmp103.sap-ag.de/sbo-swcenter

7-12

2c. Market Place – How to Order License File?

License from SAP can be ordered from the SAP Service Marketplace
http://service.sap.com/licensekeys

To order a license from SAP simply an S-User and the Installation number for which the license is
requested for is needed.

Partners can order licenses for customers through the respective Installation Number.

Process:

Go to http://service.sap.com/licensekey

Select the Installation Number a license file should be requested for. The respective systems for this
Installation Number will be displayed

To modify an existing license choose the respective System, change data and request a new license
file.

Go to “Request New System” Link to request an new license file

Fill in data and choose “Next Step”

http://service.sap.com/licensekeys
http://service.sap.com/licensekey

7-13

2c. Market Place – How to Order License File?
(cont.)

In this screen the licenses of the different SAP Business One components and Partner Solutions can be
selected and will be included in the license file.

Certified and Uncertified Partner Solutions can be selected in the drop down boxes. They’re registered
via the local SAP partner management for the solution provider.

Customer specific solutions are shown in a personalized list for the partner, only. If a customer runs a
customer specific solution, the partner has to order the license file (with the same transaction). The
partner can register his/her customer-specific solution via his/her license request form. His/Her solution
is then shown in his/her personalized license request form and can be selected for a license file for the
customer.

Also expiration dates can be set to give partners the possibility to sent out demo or test licenses for
their solutions.

7-14

2d. Market Place – Naming Conventions -
Motivation

Partner 1

DoSomething.dll

Partner 2

DoSomething.dll

Customer 1

DoSomething.dll

Different solutions using the SAP Business One APIs that may be installed at a customer site may use
same name for the solution objects
(UDT, UDF, form’s unique id, item’s unique id, exe files, dll files….)

This may cause conflicts, and as a result one or more of the solutions will not work properly

7-15

2d. Market Place – Naming Conventions
Solution

Partner 1

XX_DoSomething.dll

Partner 2

YY_DoSomething.dll

Customer 1

XX_DoSomething.dll

YY_DoSomething.dll

Customer 2

XX_DoSomething.dll

YY_DoSomething.dll

To prevent conflicts with other solutions using the SAP Business One APIs that may be installed at a
customer site
you've to use a name prefix for your solution objects
The name prefix "ROOT" followed by the delimiter "_" ensures unique names (for example,
"ROOT_myname")

7-16

2d. Market Place – Naming Conventions – Why and
How?

Why do we need Namespaces?
To prevent conflict with other solutions using the SDK
A tool for setting unique names for forms, Items and menu items, User Tables and User Fields

Name prefixes define a space of possible names for objects
Therefore name prefixes are commonly called Namespaces

The Namespace must be reserved at SAP to obtain a name prefix which is unique
within the "SAP world“

Your Namespace (OXYZ for example) followed by the delimiter "_" ensures unique
names – XYZ_myname

The same Namespace can be used for more than one solution by using an
organizational rule to ensure unique names within the company – XYZ_S1_myname

7-17

2d. Market Place – Namespace – How to order?

Relevant note: 647987

SAP Business One Namespace Reservation Process
Allows an automated Namespace Reservation through the SAP Service Marketplace
Provides fast and real time order processing
Requires that „SDK Development License“ has been ordered

http://service.sap.com/namespaces

Customers and partners must have a contract relating to an SDK Development Version otherwise the
request will not pass the contract check and the name space will be rejected.

see note 647987 for more information about name prefixes and how to request them.

http://service.sap.com/namespaces

7-18

2d. Market Place – Namespace – Process

The Namespace is entered in the syntax /XYZ/
It must contain alphanumeric characters with a letter as the first character, have
a minimum length of 3 characters, and a maximum length of 8 characters

After pressing the ‘save’ button
Error Message –the prefix is already reserved
If the name space is not reserved it will be assigned to you company

Wait for the acceptance from SAP

Reserve your accepted name prefix in the SAP Service Market Place

Do not forget to use your Namespace in all your SAP Business One solutions
(Tables Names, User Defined Objects,…)

Hint for SDK6.01, SDK6.2:
Due to technical limitations a three character prefix must be used for SAP Business One SDK releases
6.01, and 6.2.

see note 647987 for more information about name prefixes and how to request them.

7-19

2e. Market Place – Searching for notes

To search for a note, use SAP Service Marketplace alias “notes”
(http://service.sap.com/notes)

Select “Restrict by Software Components”, then enter your selection on the
restrictions options, then after pressing Select choose the sofware component
you are looking for a note on it:

SBO-DI-API
SBO-UI-API
SBO-JAVACO
SBO-DTW
SBO-PAINTR
… etc.

Or use “SBO*” for all notes related to SAP Business One

http://service.sap.com/notes

7-20

2f. Market Place – Self Learning site

“Education” site in Channel Partner Portal http://channel.sap.com

An SAP Online Knowledge Product (OKP) is a set of role-specific Learning Maps that give you
timely, firsthand information on the implementation and operation of the latest SAP solutions or
upgrades.

Whether you are working in development, sales, consulting or support, the relevant Learning Maps
will update your knowledge on basic functionality as well as on the latest product release level. SMB
Learning Maps are developed within the framework of Ramp-Up Knowledge Transfer (RKT).

Use the RKT for self update in new features.

http://channel.sap.com

7-21

3. SAP Developer Network – Developer Area +
Forum
Join the community at: http://sdn.sap.com

http://sdn.sap.com

7-22

	01_TB1300_00_Course_Overview
	02_TB1300_01_Introduction
	03_TB1300_01_Course Project
	04_TB1300_02_Data_Interface_API
	05_TB1300_02_Data Interface API - Exercises
	06_TB1300_02_Data Interface API - Solutions
	07_TB1300_03_User_Defined_Objects
	08_TB1300_03_UDO - Exercises
	09_TB1300_03_UDO - Solutions
	10_TB1300_04_User_Interface_API
	11_TB1300_04_User Interface API - Exercises
	12_TB1300_04_User Interface API - Solutions
	13_TB1300_05_Add-OnPackaging_Administration_Licensing
	14_TB1300_05_Add-On Installer_ Licensing - Exercises
	15_TB1300_05_Add-On Installer_Licensing - Solutions
	16_TB1300_06_Appendix1_Tools
	17_TB1300_07_Appendix2_SDKInstallations_SupportProcesses

