

Learn Spring for Android
Application Development

Build robust Android applications with Kotlin 1.3 and Spring 5

S. M. Mohi Us Sunnat
Igor Kucherenko

BIRMINGHAM - MUMBAI

Learn Spring for Android Application
Development
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Aaron Lazar
Acquisition Editor: Sandeep Mishra
Content Development Editor: Manjusha Mantri
Technical Editor: Riddesh Dawne
Copy Editor: Safis Editing
Language Support Editor: Storm Mann
Project Coordinator: Prajakta Naik
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Graphics: Jisha Chirayil
Production Coordinator: Arvindkumar Gupta

First published: January 2019

Production reference: 1310119

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78934-925-2

www.packtpub.com

http://www.packtpub.com

To my beloved parents, Md. Montaz and Taslima Taz, for their benevolent support and
countless sacrifices.

To my lovely wife, Chaity, who always supported me and provided motivation whenever I was
in trouble.

– S M Mohi Us Sunnat

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the authors
S. M. Mohi Us Sunnat is a passionate Android developer and trainer with over 4 years'
experience. He has developed applications using Kotlin as the principal
programming language. He is the founder of DreamOgrammerS, a small IT company. He is
the organizer of Droidcon Dhaka. He loves community engagement and works on a
number of open source projects, including Mozilla Firefox and Brave. He is also the
community leader of the Bangladesh Kotlin user group and the Dhaka Twitter developer
community of Bangladesh.

Writing a book is harder than writing blogs and more gratifying than I could have ever
imagined. None of this would have been possible without my family and friends. I will
start by thanking my loving wife, Chaity, for her continuous support. She was as
important to this book being completed as I was. A special thanks to my friends, Faysal,
Hasib, Kiron, Jisan, Mirza, and Zibon. They encouraged me every time I struggled
throughout this journey. And finally, my sincere gratitude to everyone on the PacktPub
team who helped me so much, especially Manjusha Mantri, for her patience and trust in
me. I will not forget all of this help and am indebted to you all.

Igor Kucherenko is an Android developer at Techery, a software development company
that uses Kotlin as the main language for Android development. Currently, he lives in
Ukraine, where he is a speaker in the Kotlin Dnipro community, which promotes
Kotlin, and shares his knowledge with audiences at meetups. You can find his articles
concerning Kotlin and Android development on Medium and in a blog for Yalantis, where
he worked previously.

I'd like to thank my colleague for imparting his knowledge, and Packt for the opportunity
to write this book, as well as my wife for her patience while I was writing it.

About the reviewers
Abid Khan is an application developer and test engineer with over 10 years of experience.
He has worked with different programming languages, including C/C++ and Java, and is
now working with Kotlin as a primary language for Android development. Abid is also the
author of a book, Hands-On Object-Oriented Programming in Kotlin. He lives in Stockholm,
Sweden, and spends most of his time reading books, learning new technologies, and
blogging.

H. M. Mahedi Hasan Jisan is currently pursuing his master's degree in computer science at
the University of Regina, Canada. He is working in the research field under the supervision
of a professor. He completed his B.Sc. in computer science and engineering at BRAC
University in 2017. He previously worked as a junior software engineer at Cramstack Ltd.,
from June 2017 to December 2018. Learn Spring for Android Application Development is the
first book that he has worked on as a technical reviewer.

I would like to thank S M Mohi Us Sunnat, a writer of this book. He has previously helped
me a lot with Android programming, and encouraged me to pursue my dreams. I would
like to dedicate this book to my family and friends.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: About the Environment 7
Technical requirements 8
Setting up the environment 8

Spring 9
Java 9
Kotlin 10
Apache Tomcat 12

Configuring Tomcat 12
Verifying Tomcat 16

Integrated development environment 17
IntelliJ IDEA 17
Eclipse 18

Android 22
Summary 23
Questions 23
Further reading 23

Chapter 2: Overview of Kotlin 24
Technical requirements 24
Introduction to Kotlin 25
Setting up the environment 25
Build tools 27
Basic syntax 28

Defining packages 28
Defining variables 29
Defining functions 29
Defining classes 29

Object-oriented programming 30
Functions 31

Functional programming 32
Declarative and imperative styles 32
Extension functions 33
Collections in Kotlin 34

Higher-order functions 34
Lambdas 35

Control flow elements 36
The if { ... } else { ... } expression 36
The when { ... } expression 37

Table of Contents

[ii]

Loops 38
for loops 39
while loops 40

Ranges 41
String templates 42
Null safety, reflection, and annotations 42

Null safety 42
Reflection 44
Annotations 45

Summary 46
Questions 47
Further reading 47

Chapter 3: Overview of Spring Framework 48
Technical requirements 49
Introduction to Spring 49

The advantages of Spring 50
Spring Architecture 50

Core containers 52
Data Access/Integration 53
Web 54
Aspect-oriented programming 54
Instrumentation 54
Test 54

Configuring beans 55
Spring configuration metadata 55

XML-based configuration 55
Bean scopes 56

Singleton scope 56
Prototype scope 58
Bean life cycle 58
Dependency injection 60
Auto-wiring beans 64

Annotation-based configuration 66
The @Required annotation 67
The @Autowired annotation 68
The @Qualifier annotation 70

Code-based configuration 73
The @Configuration and @Bean annotations 73
Dependency injection bean 75
The @Import annotation 76
Life cycle callbacks 77
Creating a scope bean 78

Spring MVC 79
DispatcherServlet 80
Creating a project 81

Converting to a Maven project 82
Spring MVC dependencies to pom.xml 82

Table of Contents

[iii]

Creating Spring configuration beans 83
Creating a controller class 85
The view 86

IntelliJ Ultimate 87
Eclipse 88

SpringBoot 89
Creating a project 89

Creating an application class 90
Summary 93
Questions 93
Further reading 94

Chapter 4: Spring Modules for Android 95
Technical requirements 96
REST client module 96
The RestTemplate module 97
Gradle and Maven repository 97

Gradle 98
Maven 98
RestTemplate constructors 99
RestTemplate functions 100

HTTP GET 100
HTTP POST 101
HTTP PUT 102
HTTP DELETE 103
HTTP OPTIONS 103
HTTP HEAD 104

Retrofit 105
The use of Retrofit 105
Advantages of Retrofit 105
Configuring Retrofit 105
Downloading Retrofit 106
HTTP request functions 106

GET 107
PUT 107
DELETE 107
HEAD 107

Creating an Android app 108
Gradle information 110
Gradle dependencies 110
Creating a model 111
Implementing a service 112
Calling callback 113
Creating an interface 114
Mobile applications 116

Summary 117
Questions 117

Table of Contents

[iv]

Further reading 117

Chapter 5: Securing Applications with Spring Security 118
Technical requirements 119
Spring Security architecture 119

Authentication 119
Modifying authentication managers 121

Authorization 122
Web security 122
Method Security 122

The advantages of Spring Security 123
Spring Security features 124
Spring Security modules 125

Implementing Spring Security 125
Maven 126
Gradle 126

Securing REST with basic authentication 126
What is basic authentication? 127
Creating a project 127

Configuring pom.xml 129
Configuring a Spring bean 131
Configuration for Spring Security 131
Configuring an authentication entry point 132
Configuring Spring WebApplicationInitializer 133
Creating a user model 134
Creating a controller 134
Using the HTTP client 135

Creating an Android app 138
Gradle information 139
Gradle dependencies 139
Creating a user model 140
Implementing the user service 141
Authenticating with OkHttp interceptors 142
Calling callbacks 143
Creating the UI 144

Creating a custom list adapter 145
Mobile applications 148

Securing REST with Spring Security OAuth2 150
What is OAuth2? 150

OAuth2 Roles 150
OAuth2 grant types 152

Creating a project 152
Maven dependencies 152
Configuring the resource server 153
Configuring the authorization server 154
Creating the security config 157
Creating the controller class 158

Table of Contents

[v]

Creating the application class 159
Application properties 159
Checking the output 160

Checking unprotected URLs 160
Getting access tokens 161
Accessing the protected URL 162

Common mistakes and errors 163
Summary 164
Questions 165
Further reading 165

Chapter 6: Accessing the Database 166
Technical requirements 166
Database 167

Types of database 167
Personal database 168
Relational database 168
Distributed database 168
Object-oriented database 168
NoSQL database 168
Graph database 169
Cloud database 169

Database management system 169
Data access in the Spring 170
Java database connectivity in Spring 171
Creating a sample project using JDBC 172

Maven dependencies 172
Creating DataSource 173
Creating a table in database 173
Creating a model 175
Creating row mapper 175
Creating an API interface 176
Creating a user repository 176

JdbcTemplate implementation 177
Creating HTTP methods for RESTful APIs 177

Create 178
READ 178
UPDATE 179
DELETE 179

Creating service 179
Creating controller 181

Autowired service 181
Getting the user list 181
Getting one user by ID 181
Inserting a new user 182
Updating a user 182
Deleting a user 183

Testing the output 183

Table of Contents

[vi]

Getting the user list 183
Getting one user by ID 185
Inserting a new user 185
Updating a user 187
Deleting a user 188

Java Persistence API 188
Architecture of JPA 189

Creating a project using JPA 190
Maven dependencies 190
Creating the DataSource 191
Creating a model 192
Creating a user repository 193
Creating controller 194

Autowired repository 194
Getting the user list 194
Getting one user by ID 195
Inserting new user 195
Updating a user 195
Deleting a user 196

Seeing the output 196
Database of client-side application 198
Architecture components 198
Creating an Android app 200

Gradle information 202
Gradle dependencies 203
Creating entity 203
Creating the DAO 207
Creating the LiveData class 207
Creating a Room database 208
Populating the database 209
Implementing the repository 211
Creating the ViewModel 212
Creating new activity 213
Creating custom RecyclerView adapter 216

Implementing RecyclerView 218
Modifying main activity 218

Getting data from another activity 219
Adding XML layouts 219
Switching another activity 220

Run the app 222
Summary 225
Questions 225
Further reading 226

Chapter 7: Concurrency 227
Technical requirements 227
Coroutines 228

Table of Contents

[vii]

Coroutine basics 229
Call stacks 230
Coroutine testing 231
Coroutine scope 233
Channels 237

The producer function 240
The actor function 241

Sequential operations 243
Callback hell 244

What is a callback? 244
Thread pools 247
Summary 249
Questions 249
Further reading 249

Chapter 8: Reactive Programming 250
Technical requirements 250
Reactive programming with Spring Reactor 251

The Observer pattern 251
The Flux publisher 253

The filter operator 255
The map operator 256
The flatMap operator 256
The reduce operator 257
The from static method 257
Cancellation 259

The Mono publisher 260
Blocking and non-blocking 262
RxJava 263

Flowable 263
Observable 264

The debounce operator 264
The throttle operator 265

Single 266
Maybe 266
Completable 266

RxJava in Android 267
The RxAndroid library 267
The RxBinding library 268

Summary 271
Questions 271
Further reading 271

Chapter 9: Creating an Application 272
Technical requirements 273
Project idea 273

Table of Contents

[viii]

Server side 274
Creating the design 274
Developing a database model 276
Creating a project 280
Creating entities 280

Creating a Profile entity 281
Creating a Post entity 282
Creating a Comment entity 284
Creating like entity 285

Creating repositories 286
Creating a controller 288

Creating a profile's HTTP requests 288
Creating a post's HTTP requests 289
Creating a comment's HTTP requests 290

Implementing security 292
Modified application.properties 295

Client side 295
Creating the design 296
Creating a project 297
Implementing dependencies 298
Creating HomeActivity 298

Modifying the layout 299
Creating models 300

Creating profile model 300
Creating post model 300
Creating a comment model 301

Creating services 301
Creating the profile service 301
Creating the post service 302
Creating the comment service 303
Creating an API service 304

Creating a login activity 305
Modifying the layout 305
Modifying activity 308
Login request 308

Creating the registration activity 309
Modifying layout 309
Modifying the activity 311
Registering a new profile 312

Modifying the main activity 313
Modifying the layout 314
Modifying the activity 314
Fetching a post 315
Submitting a post 315
Implementing the menu 316

Modifying the post adapter 317
Modifying post adapter layouts 318
Creating the adapter for posts 319

Table of Contents

[ix]

Modifying the profile layout 320
Modifying a profile activity 322
Fetching the profile details 322

Post details activity 323
Modifying the post details layout 323
Modifying the post details activity 325
Fetching post details 325
Submitting comment 326
Modifying the comment adapter 326

Checking the output 327
Summary 330
Questions 331
Further reading 331

Chapter 10: Testing an Application 332
Technical requirements 333
Software testing 334
JUnit 334

Advantages of JUnit 334
Basic annotations of JUnit 335
Creating a project 335
Test a project using JUnit 336

Creating a test case for a Rest API 339
UI testing on Android 342
Espresso 342

Creating an application 343
Injecting dependencies 344
Modifying the application 344
Creating testing files 345

Summary 350
Questions 350
Further reading 351

Assessments 352

Other Books You May Enjoy 357

Index 360

Preface
This book is designed to develop both server and client for an application. We have used
the Kotlin language for both the server and client sides. In this book, Spring will be the
server-side application, and Android the client-side application. Our primary focus is on
those areas that will be able to help a developer develop a secure application with the latest
architecture. This book describes the basics of Kotlin and Spring, which will be of benefit if
you are unfamiliar with these platforms. We also designed the chapters for implementing
security and database in a project. This book delves into the use of Retrofit for handling
HTTP requests and SQLite Room for storing data in an Android device. You will also be
able to find a way of how to develop a robust, reactive project. Then, you will learn how to
test a project using JUnit and Espresso for developing a less bug-prone and stable project.

Who this book is for
This book is designed for those developers who are new to Kotlin who wish to develop
projects with Spring and Android. Spring for Android provides a functional REST client
that supports marshaling objects from JSON. Developers depend on other language
platforms, such as PHP and Python for REST API, but Spring comes with Java/Kotlin and a
rich content that helps developers to use REST API with the maximum security. There are
some dependencies in the application code and Spring removes these dependencies.
Nowadays, Java is being replaced by Kotlin, which is lighter and requires fewer lines of
code to finish the job.

What this book covers
Chapter 1, About the Environment, creates an environment for both the server side and
client side. We will also look into the types of tools that will be needed for the project. We
will also understand what we can create with a platform using Spring and Android.

Chapter 2, Overview of Kotlin, covers the basics of Kotlin and examines how to set up the
environment and which tools or IDEs are available for Kotlin, including basic syntax and
types. We will see the flow structures, including if-else statements, for loops, and
while loops. We will also look into the object-oriented programming for Kotlin and cover
classes, interfaces, objects, and so on. Functions will also be covered, along with
parameters, constructors, and syntax. We will also explain null safety, reflection, and
annotations, which are the core features of Kotlin.

Preface

[2]

Chapter 3, Overview of Spring Framework, covers the basics of Spring Framework and
readers will learn how to configure Spring and beans. Dependency injection will be
explained in this chapter, along with the architecture of Spring. Readers will learn about
Spring MVC and Spring Boot, which are helpful for developing the application as quickly
as possible. Spring Data modules will also be explained. We will also cover Spring Security,
which provides authentication and other securities for the applications.

Chapter 4, Spring Modules for Android, covers the RestTemplate and Retrofit modules that
are connected to the Android projects. An explanation of HTTP clients is provided. Objects
to JSON marshaling will also be covered. We will learn how to start and set up the
environment. HTTP request methods for both the RestTemplate and Retrofit modules, such
as POST, GET, UPDATE, and DELETE, will also be covered, along with the common
functionality of other Spring modules and Maven dependency management.

Chapter 5, Securing Applications with Spring Security, covers the requirements for Spring
Security. We will learn how to register and configure security and authentication in the web
server. We will also learn about the architecture of Spring Security and how to use it for
clients. We will see the approach to securing an API for Android application and what the
security flow will be. We will learn how to use Spring Security in relation to the REST API.
Use of the basic authentication, OAuth2, implicit flow, and the authorization code flow will
also be discussed. We will also learn how to connect with Android projects and use basic
authentication.

Chapter 6, Accessing the Database, covers the existing Spring data modules. We will also
cover JDBC, JPA, H2, MySQL for Spring, and SQLite Room for Android. We will also learn
about the use of JPA to create REST API in Spring and fetch the APIs and handle the
contents in Android.

Chapter 7, Concurrency, covers coroutines, including topics such as concurrency,
parallelism, and thread pools. We will also learn about sequential operations and callback
hell.

Chapter 8, Reactive Programming, covers reactive programming-related topics, including
Spring Reactor and blocking. Readers will also learn about RxJava and RxAndroid in this
chapter.

Preface

[3]

Chapter 9, Creating an Application, starts with the installation of the Android environment.
We will then configure Spring on the web server and make a project design. We will then
create UI, layout, and RESTful web services and retrieve JSON from the APIs. We will also
learn to use Spring Boot and Spring Security for the app. We will then learn how to use
Basic Auth to secure the data and give access to users. We will use secured REST API for an
Android app and how to handle contents in Android. This application will be based on
Kotlin, and we will be taking advantage of the features of Kotlin features, features
including null safety, reflection, and annotation, in this application.

Chapter 10, Testing an Application, deals with Spring testing. This includes unit, integration,
and UI testing, and their uses. We will get to know the test structure for the project, along
with the testing tools such as JUnit and Espresso. Test cases for JUnit and JPA will also be
discussed. We will learn how to write UI test cases for the Android application. We will
also learn to execute these tests via Android Studio. We will also learn how to test UI
using Espresso in Kotlin, and its uses in relation to Kotlin in the Android app. We will also
look into concurrency and reactive programming in the application.

To get the most out of this book
A basic knowledge of Spring and Kotlin will be helpful, but not essential. MySQL
Workbench for the database, Eclipse or IntelliJ IDEA for Spring, Android Studio for
Android, and the Postman or Insomnia REST client will be required to run the code
samples for this book.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

http://www.packt.com
http://www.packt.com/support
http://www.packt.com

Preface

[4]

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Learn- Spring- for- Android- Application- Development/ . In case there's
an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /www. packtpub. com/ sites/ default/ files/
downloads/9781789349252_ ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The switch { ... } control flow element is replaced by when { ... }."

A block of code is set as follows:

fun test() {
 Bar.NAME
 Bar.printName()
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

<!-- A bean example with singleton scope -->
<bean id = "..." class = "..." scope = "singleton"/>
<!-- You can remove the scope for the singleton -->
<bean id = "..." class = "..."/>

https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781789349252_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789349252_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789349252_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789349252_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789349252_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789349252_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789349252_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789349252_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789349252_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789349252_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789349252_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789349252_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789349252_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789349252_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789349252_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789349252_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789349252_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789349252_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789349252_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789349252_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789349252_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789349252_ColorImages.pdf

Preface

[5]

Any command-line input or output is written as follows:

$ mkdir css
$ cd css

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/

Preface

[6]

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/

1
About the Environment

The title of this book makes reference to two of the greatest stage names—Spring,
ostensibly the best framework of Java, and Android, which has the greatest number of
clients of any operating system. This book will help to you learn and develop a product-
ready application on your own which will be lightweight, secure, powerful, and
responsive.

Before start learning about the Spring and Android, we will demonstrate examples and
code from Kotlin, as this programming language is very new to developers. These days,
Kotlin is so popular that Google has declared it the official language of Android. Moreover,
the Spring language also supports Kotlin. In this book, we will figure out how to make a
robust, secure, and intense server dependent on Spring in the Kotlin language, and use the
substance and utilize of this server in an Android application as a client.

In this chapter, you will learn how to set up the environment to create Spring and Android
projects, including the required tools and applications. This will include going through
steps with accompanying images for visualization purposes. The developers who know
Java, at that point, will have some leeway since it is the common platform among Spring
and Kotlin. We will demonstrate the code and models with Kotlin that runs on JVM. The
Kotlin is designed by JetBrains. On the off-chance that you are new to Kotlin and Spring,
being familiar with Java will allow you to write code in Kotlin with ease.

About the Environment Chapter 1

[8]

The following topics will be covered in this chapter:

Setting up the environment
Spring
 Java
 Kotlin
Apache Tomcat
Integrated development environments
Android

Technical requirements
To run these frameworks, we need some tools and a specific operating system. Here is the
list of these:

Operating system: Linux and macOS are recommended for development
because we can find all the required packages for these OSes and they are lighter
than Windows.
IDE: My recommended IDE is IntelliJ IDEA (Ultimate version). This is the best
IDE for Java, but you have to purchase it to use it. You can also
use Eclipse and Netbeans; only one of these is necessary to develop Spring
applications. We will show all the projects in IntelliJ, but we will also learn the
setup of the environments for Spring in both IntelliJ IDEA and Eclipse.

You can find all the examples from this chapter on
GitHub: https://github.com/PacktPublishing/Learn-Spring-for-Android-Application
-Development/.

Setting up the environment
An environment setup is one of the prime parts before developing an application. To the
developers who are currently working with Spring, feel free to skip this part. This section is
for new developers, who need to set up the foundation and the instruments to begin
developing.

Here are the steps of how to set up the environment in the accompanying segments.

https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/

About the Environment Chapter 1

[9]

Spring
Spring is the most powerful Java application framework; it is currently the most popular in
the enterprise world. It helps to create high-performing applications that have easily-
testable and reusable code. This is open source and was written by Rod Johnson, first
released under the Apache 2.0 license in June 2003.

To create and run Spring applications, you need some tools and language supports. You
also need a server to test and run your project in your operating system. We will show you
how to set up the environment for Spring.

The following software and tools are needed with the current version:

Java (version 1.8)
Kotlin (version 1.3)
Apache Tomcat (version 9.0.11)
IntelliJ Ultimate (version 2018.2.2) or Eclipse Photon
Spring Framework Libraries (version 5.0.8.RELEASE)

Java
Java is available in two editions:

Standard Edition (J2SE)
Enterprise Edition (J2EE)

Here, we will opt for Standard Edition. Java is free to download and use for all operating
systems.

You can download Java 10.0.2 from http:/ /www. oracle. com/technetwork/ java/ javase/
downloads/index. html.
Download for your operating system.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

About the Environment Chapter 1

[10]

After installation, please check whether Java is installed. To check, open your Terminal and
type java --version. If Java is installed successfully, you will see the following Java
version:

Check java version

Alternatively, you will see an error. If this occurs, try to install it again to resolve it.

Kotlin
Developed by JetBrains, Kotlin is an open source and statically-typed programming
language. It runs on the Java Virtual Machine (JVM) and can be compiled to JavaScript
source code or use the LLVM compiler infrastructure. Kotlin is easy to learn, especially for
Java developers.

To use Kotlin, you don't need to download or set it up separately like Java. It comes with
the IDEs. Kotlin is a built-in feature of Android Studio, IntelliJ Ultimate, or IntelliJ
Community. To use Kotlin in Eclipse, you need to follow these steps:

Go to help -> Eclipse Marketplace from the Eclipse toolbar.1.
In the search box, write Kotlin, there you will find the Kotlin plugin.2.
Install it and you can write code in Kotlin:3.

About the Environment Chapter 1

[11]

Eclipse Marketplace

About the Environment Chapter 1

[12]

We highly recommend using IntelliJ IDE to implement the latest version
of Kotlin. The Eclipse plugin does not have the latest version of Kotlin.

Apache Tomcat
We require a steady, free, and open source web server that we can use to create and run
Spring-Framework-based ventures. We will utilize Apache Tomcat, which is easy to
understand for all developers of Java. You can also use Jetty or Undertow to develop in
Spring.

Tomcat is an open source web server. This allows the utilization of Java Servlets and
JavaServer Pages (JSP) for the Java server. The core segment of Tomcat is Catalina.

Apache Tomcat is a web server and not an application server.

You can download Tomcat 9.0.11 from https:/ /tomcat. apache. org/ download- 90. cgi.

If you use Tomcat version 9, you have to use Java version 8 or later. According to the
Apache Tomcat source, this version builds on Tomcat 8.0.x and 8.5.x, and implements the
Servlet 4.0, JSP 2.3, EL 3.0, WebSocket 1.1, and JASPIC 1.1 specifications (the versions
required by the Java EE 8 platform).

Let's see how to configure and verify the Tomcat server.

Configuring Tomcat
You can configure the Tomcat server in two ways—either using the Terminal or from the
IDE. To set up the server, you have to download the Tomcat server's content from https:/ /
tomcat.apache.org/ download- 90. cgi.

Configuring Tomcat by these following steps:

Download a binary distribution of the core module from the link.1.
Extract the file. This creates a folder named apache-tomcat-9.0.11 (version2.
number can be changed).

https://tomcat.apache.org/download-90.cgi
https://tomcat.apache.org/download-90.cgi
https://tomcat.apache.org/download-90.cgi
https://tomcat.apache.org/download-90.cgi
https://tomcat.apache.org/download-90.cgi
https://tomcat.apache.org/download-90.cgi
https://tomcat.apache.org/download-90.cgi
https://tomcat.apache.org/download-90.cgi
https://tomcat.apache.org/download-90.cgi
https://tomcat.apache.org/download-90.cgi
https://tomcat.apache.org/download-90.cgi
https://tomcat.apache.org/download-90.cgi
https://tomcat.apache.org/download-90.cgi
https://tomcat.apache.org/download-90.cgi
https://tomcat.apache.org/download-90.cgi
https://tomcat.apache.org/download-90.cgi
https://tomcat.apache.org/download-90.cgi
https://tomcat.apache.org/download-90.cgi
https://tomcat.apache.org/download-90.cgi
https://tomcat.apache.org/download-90.cgi
https://tomcat.apache.org/download-90.cgi
https://tomcat.apache.org/download-90.cgi
https://tomcat.apache.org/download-90.cgi
https://tomcat.apache.org/download-90.cgi
https://tomcat.apache.org/download-90.cgi
https://tomcat.apache.org/download-90.cgi
https://tomcat.apache.org/download-90.cgi
https://tomcat.apache.org/download-90.cgi
https://tomcat.apache.org/download-90.cgi

About the Environment Chapter 1

[13]

To access it with ease, rename the folder Tomcat and move it to /usr/local (for3.
Linux) or /Library (for macOS):

Project files

For Linux, use these steps:

// If you have an older version of Tomcat, then remove it
before using the newer one
sudo rm -rf /usr/local/Tomcat // To remove exist TomCat

sudo mv ~/Download/Tomcat /usr/local // To move TomCat from the
download directory to your desire direction

For macOS, use these steps:

// If you have an older version of Tomcat, then remove it
before using the newer one
sudo rm -rf /Library/Tomcat // To remove exist
TomCat

sudo mv Downloads/Tomcat /Library/ // To move TomCat from
the download directory to your desire direction

About the Environment Chapter 1

[14]

To check the current directory, type the following:

For Linux: cd /usr/local/Tomcat/
For macOS: cd /Library/Tomcat/

Type ls to see a list of this directory:4.

check tomcat files in terminal

Change the ownership of the /usr/local/Tomcat or /Library/Tomcat folder5.
hierarchy:

For Linux: sudo chown -R <your_username> /usr/local/Tomcat/
For macOS: sudo chown -R <your_username> /Library/Tomcat/

Make all scripts executable:6.

For Linux: sudo chmod +x /usr/local/Tomcat/bin/*.sh
For macOS: sudo chmod +x /Library/Tomcat/bin/*.sh

To check the contents of Tomcat, use the following command:7.

For Linux: ls -al /usr/local/Tomcat/bin/*.sh
For macOS: ls -al /Library/Tomcat/bin/*.sh

You can see that every file is listed with -rwxr-xr-x@, where -x means8.
executable. Executable demonstrates to us the authorization status to get to the
files:

About the Environment Chapter 1

[15]

Check the tomcat executable files in terminal

To start and stop, type the following:9.

For macOS:

/Library/Tomcat/bin/startup.sh
/Library/Tomcat/bin/shutdown.sh

For Linux:

/usr/local/Tomcat/bin/startup.sh
/usr/local/Tomcat/bin/shutdown.sh

To turn on and off the Tomcat server, use this command:10.

About the Environment Chapter 1

[16]

Verifying Tomcat
After starting the server, go to your browser and1.
enter http://localhost:8080, which will show you the default page:

Default tomcat local hosting

This is how we can configure Tomcat from the Terminal.

About the Environment Chapter 1

[17]

Integrated development environment
When it comes to writing Java programs, you can use any text editor. However, we
encourage you to use an integrated development environment (IDE) because they provide
numerous features. IntelliJ IDEA, Eclipse, and NetBeans are the best of them. IntelliJ is a
paid IDE, but you can use Eclipse or NetBeans, which are free.

We can use IDE to do the following:

Manage Tomcat
Develop apps and web apps where there is no need to remember the full name of
the methods and signatures
Highlight compile errors

In this book, we will work with Eclipse and IntelliJ IDEA.
You can download the Ultimate version, which has a 30-day free trial, from https:/ /www.
jetbrains.com/idea/ download/ .

To download the Eclipse, visit http:/ /www. eclipse. org/ downloads/ packages/ .

For Spring, you should download Eclipse IDE for the Java EE Developers version.

For both, once you start IDE, it will ask for a workspace. You can create a folder of your
choice and give the path of that folder.

IntelliJ IDEA
IntelliJ IDEA is a Java coordinated development environment for developing computer
software. It is developed by JetBrains and is accessible as an Apache 2 Licensed people
group release and in a restrictive business version. Both can be utilized for business
development.

The latest version of Kotlin comes built-in with IntelliJ IDEA ultimate and
IntelliJ IDEA community.

https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
http://www.eclipse.org/downloads/packages/
http://www.eclipse.org/downloads/packages/
http://www.eclipse.org/downloads/packages/
http://www.eclipse.org/downloads/packages/
http://www.eclipse.org/downloads/packages/
http://www.eclipse.org/downloads/packages/
http://www.eclipse.org/downloads/packages/
http://www.eclipse.org/downloads/packages/
http://www.eclipse.org/downloads/packages/
http://www.eclipse.org/downloads/packages/
http://www.eclipse.org/downloads/packages/
http://www.eclipse.org/downloads/packages/
http://www.eclipse.org/downloads/packages/
http://www.eclipse.org/downloads/packages/

About the Environment Chapter 1

[18]

Eclipse
Eclipse is an incorporated development environment utilized in computer programming
and is the most generally-utilized Java IDE. It contains a base workspace and an extensible
module framework for tweaking the environment. Eclipse is composed generally in Java
and its essential utility is for developing Java applications, yet it might likewise be utilized
to develop applications in other programming dialects by means of modules, including
Ada, ABAP, C, C++, C#, Clojure, COBOL, D, Erlang, Fortran, Groovy, Haskell, JavaScript,
Julia, Lasso, Lua, NATURAL, Perl, PHP, Prolog, Python, R, Ruby (including the Ruby on
Rails framework), Rust, Scala, and Scheme.

To use Kotlin in Eclipse, you will need to install the Kotlin plugin.

Eclipse doesn't have the latest version of Kotlin.

After creating a project, you’ll need to integrate the Tomcat server manually. However, if
you use Spring Boot, you don't need to do anything because this comes with the Tomcat
server.

Follow these steps to create a web project and implement the Tomcat server into your
project:

Visit new > New Dynamic Web Project.1.
Provide a Project Name.2.
To integrate Tomcat, click New Runtime:3.

About the Environment Chapter 1

[19]

new project create

About the Environment Chapter 1

[20]

Download version 9+, select Apache Tomcat v9.0, and click Finish:4.

tomcat version selection

Select the latest Dynamic web module version.5.
Click Finish.6.

About the Environment Chapter 1

[21]

You will find these files after creating the project:

Project files

Go to the Server tab, which is in the bottom-left window:7.

project IDE interface

About the Environment Chapter 1

[22]

Select Tomcat v9.0 Server at localhost.8.
Hit the start button.9.
Once the server is started, verify it by visiting http://localhost:8080 in a10.
browser.
If everything is OK, you can start and stop the Tomcat server from here.11.

Android
Android is a mobile operating system developed by Google, in light of an altered form of
the Linux kernel and other open source software and designed basically for touchscreen
mobile gadgets, for example, cell phones and tablets. What's more, Google has additionally
developed Android TV for televisions, Android Auto for vehicles, and Wear OS for
wristwatches, each with a specific UI. Variations of Android are likewise utilized on IoT,
advanced cameras, PCs, and various hardware. It was first developed by Android Inc.,
which Google purchased in 2005, and Android was disclosed in 2007. The first commercial
Android devices were launched in September 2008. The current version has since
experienced numerous significant discharges, with the present variant being 9 Pie,
released in August 2018. The core Android source code is known as Android Open Source
Project (AOSP) and is authorized under the Apache License.

In this book, we will figure out how to create a REST API, security, and a database in a
Spring platform on a server. We will also learn how to make an Android application and
retrieve data from the server, as well as its utilization as a client.

Android Studio is the main IDE among the different IDEs to make an Android application.
This is the official IDE for Android. This is based on the IntelliJ IDEA of JetBrains, which is
structured especially for Android application development.

To download Android Studio, visit https:/ /developer. android. com/ studio/ . Here, you
will find the latest version of Android Studio to download. The best part is that this
includes JRE, the latest SDK, and other important plugins to develop.

Install the Android Studio application after downloading it. This tool is very easy to use.

Don't forget to update and download the latest version of the SDK
platform. To update or install a new SDK platform, go to the SDK
Manager. In the SDK Platform, you can see the list of all the Android
version's platforms.

https://developer.android.com/studio/
https://developer.android.com/studio/
https://developer.android.com/studio/
https://developer.android.com/studio/
https://developer.android.com/studio/
https://developer.android.com/studio/
https://developer.android.com/studio/
https://developer.android.com/studio/
https://developer.android.com/studio/
https://developer.android.com/studio/
https://developer.android.com/studio/
https://developer.android.com/studio/

About the Environment Chapter 1

[23]

If you have read and installed the environment without any hassle, you are ready to
proceed with learning the information in this book. We have submitted the code on GitHub
and shared the link in the Technical requirements section, so you can use that example code.

Summary
This chapter is mainly for those developers who are new to this platform. We have shown
the setup procedure using some specific tools and applications and you can also develop
your project with different tools and applications. We have looked at how to set up an
environment to develop Spring and Android. You are now familiar with all the required
tools and software. Now can you configure the Tomcat server in your OS and familiarize
yourself with how to start and stop the server. You can decide which IDE you need for
developing. We also learned the installation procedure for Android Studio without any
hassle. Lastly, there are no criteria to use the latest version of the tools or software.

In the next chapter, we will explore Kotlin, which is a statically-typed programming
language and the official language for Android.

Questions
Is the Spring Framework built on Java SE or Java EE?1.

What are the alternative IDEs of Eclipse and IntelliJ IDEA for developing Spring?2.

Is Tomcat a web server or an application server?3.

What are the alternatives of the Tomcat server for running Spring?4.

Is Android Studio the IDE to develop Android?5.

Further reading
Mastering Spring 5.0 (https:/ /www. packtpub. com/ application- development/
mastering- spring- 50) by Ranga Karanam

https://www.packtpub.com/application-development/mastering-spring-50
https://www.packtpub.com/application-development/mastering-spring-50
https://www.packtpub.com/application-development/mastering-spring-50
https://www.packtpub.com/application-development/mastering-spring-50
https://www.packtpub.com/application-development/mastering-spring-50
https://www.packtpub.com/application-development/mastering-spring-50
https://www.packtpub.com/application-development/mastering-spring-50
https://www.packtpub.com/application-development/mastering-spring-50
https://www.packtpub.com/application-development/mastering-spring-50
https://www.packtpub.com/application-development/mastering-spring-50
https://www.packtpub.com/application-development/mastering-spring-50
https://www.packtpub.com/application-development/mastering-spring-50
https://www.packtpub.com/application-development/mastering-spring-50
https://www.packtpub.com/application-development/mastering-spring-50
https://www.packtpub.com/application-development/mastering-spring-50
https://www.packtpub.com/application-development/mastering-spring-50
https://www.packtpub.com/application-development/mastering-spring-50
https://www.packtpub.com/application-development/mastering-spring-50

2
Overview of Kotlin

Kotlin is the official Android programming language and is statically typed. It is fully
interoperable with Java, meaning that any Kotlin user can use the Java framework and mix
commands from both Kotlin and Java without any limitations. In this chapter, we will cover
the basics of Kotlin and will look at how to set up the environment. We will also look at its
flow structures, such as if { ... } else { ... } expressions and loops. In addition to
this, we will look into object-oriented programming for Kotlin, and we will cover classes,
interfaces, and objects. Functions will also be covered, along with parameters, constructors,
and syntax.

This chapter will cover the following topics:

Setting up the environment
Build tools
Basic syntax
Object-oriented programming
Functions
Control flow
Ranges
String templates
Null safety, reflection, and annotations

Technical requirements
To run the code in this chapter, you will just need Android Studio and Git installed. This
chapter won't require any additional installations.

You can find examples from this chapter on GitHub, at the following link: https:/ / github.
com/PacktPublishing/ Learn- Spring- for- Android- Application- Development/ tree/
master/app/src/main/ java/ com/ packt/ learn_ spring_ for_ android_ application_
development/chapter2.

https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter2

Overview of Kotlin Chapter 2

[25]

Introduction to Kotlin
The 3.0 version of Android Studio was released by Google, and it promoted Kotlin as a first
class language for Android development. Kotlin is developed by JetBrains in the same way
as the Intellij IDEA platform, which is the basis of Android Studio. This language was
released in February 2016, it was in development for five years before it was released. It's
easy to gradually convert the code base of a project from Java to Kotlin, and a developer
that is familiar with Java can learn Kotlin in a few weeks. Kotlin became popular before its
release, because this language is full of features and is designed to interoperate with Java.
The following diagram shows how Kotlin and Java code are compiled to the same
bytecode:

As you can see, part of our application can be written in Java and another part in Kotlin.
The kotlinc compiler compiles Kotlin source code to the same bytecode as the javac
compiler.

Setting up the environment
To get started with Android development, you will need to download and install the Java
Development Kit (JDK) from http:/ / www.oracle. com/ technetwork/ java/ javase/
downloads/index. html. You will also need to download and install the Android Studio
Integrated Development Environment (IDE), from https:/ /developer. android. com/
studio/.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://developer.android.com/studio/
https://developer.android.com/studio/
https://developer.android.com/studio/
https://developer.android.com/studio/
https://developer.android.com/studio/
https://developer.android.com/studio/
https://developer.android.com/studio/
https://developer.android.com/studio/
https://developer.android.com/studio/
https://developer.android.com/studio/
https://developer.android.com/studio/

Overview of Kotlin Chapter 2

[26]

To create a new project, launch Android Studio and press Start a new Android Studio
project. Then, you should type a project name and your unique application ID, as shown in
the following screenshot:

In the preceding screenshot, the Application name field is filled according to the name of
this book, and the Company domain field is packt.com. Android Studio concatenates
these two values and creates the Package name identifier that is equal to the application ID
identifier. In our case, the application ID is as follows:

com.packt.learn_spring_for_android_application_development

Overview of Kotlin Chapter 2

[27]

Build tools
Android Studio is an official IDE for Android development, and it is based on the Intellij
IDEA platform and uses the Gradle build tool system. A typical project structure looks as
follows:

Overview of Kotlin Chapter 2

[28]

The build.gradle file contains the project configuration and manages the library
dependencies. To add a dependency to the Spring for Android extension, we should add
the following lines:

repositories {
 maven {
 url 'https://repo.spring.io/libs-milestone'
 }
}

dependencies {
 //.......
 implementation 'org.springframework.android:spring-android-rest-
template:2.0.0.M3'
}

Basic syntax
Syntax is a significant part of the programming language, defining a set of rules that must
be applied to combinations of symbols. Otherwise, a program can't be compiled, and will
be considered incorrect.

This section will describe the basic syntax of Kotlin, covering the following topics:

Defining packages
Defining variables
Defining functions
Defining classes

Defining packages
Packaging is a mechanism that allows us to group classes, interfaces, and sub-packages. In
our case, a declaration of a package in a file may look as follows:

package com.packt.learn_spring_for_android_application_development

All citizens of the file belong to this package and must be located in the appropriate folder.

Overview of Kotlin Chapter 2

[29]

Defining variables
In Kotlin, we can define a read-only variable using the val keyword, and we can use the
var keyword for mutable variables. In Kotlin, a variable can be defined as a first class
citizen, meaning that we don't have to create a class of a function to hold variables. Instead,
we can declare them directly in a file.

The following example shows how to define read-only and mutable variables:

val readOnly = 3
var mutable = 3

Defining functions
To define a function, we have to use the fun keyword; this also can be declared as a first
class citizen. This means that a function can only be defined in a file. We will touch on
functions in greater detail in the Functions section, but for now, let's look at a simple
example that changes the value of the mutable variable:

fun changeMutable() {
 mutable = 4
}

In the previous snippet, we can see that the changeMutable function can be declared as a
first class citizen in the same file as the mutable variable, or in any other place.

Defining classes
To define a class, we have to use the class keyword. All of the classes in Kotlin are final by
default, and if we want to extend a class, we should declare it with the open keyword. A
class that holds the readOnly and mutable variables, as well as the changeMutable
method, may look like this:

class Foo {
 val readOnly = 3
 var mutable = 3

 fun changeMutable() {
 mutable = 4
 }
}

Overview of Kotlin Chapter 2

[30]

It is worth mentioning that a function that is a class member is called a method. In this way,
we can explicitly specify that a function belongs to a class.

Object-oriented programming
Object-oriented programming is a model of programming language that is based on
objects that can represent data. Kotlin supports object-oriented programming in the same
way that Java does, but even more strictly. This is because Kotlin doesn't have primitive
types and static members. Instead, it provides a companion object:

class Bar {
 companion object {
 const val NAME = "Igor"

 fun printName() = println(NAME)
 }
}

The companion object is an object that is created once, during class initialization. In
Kotlin, we can refer to members of companion object in the same way as static in Java:

fun test() {
 Bar.NAME
 Bar.printName()
}

However, under the hood, the nested Companion class is created, and we actually use an
instance of this class, as follows:

Bar.Companion.printName();

Moreover, Kotlin supports the following concepts, which make the type system stronger:

Nullable types
Read-only and mutable collections
No raw type of collections

Overview of Kotlin Chapter 2

[31]

The last point means that we can't compile code, as shown in the following screenshot:

This message means that we have to provide a generic to specify a certain type of this
collection.

From the object-oriented programming viewpoint, Kotlin supports the same features as
Java. These include encapsulation, inheritance, polymorphism, composition, and
delegation. It even provides a language-level construction that helps to implement these
concepts.

Functions
To define a function in Kotlin, you have to use the fun keyword, as follows:

fun firstClass() {
 println("First class function")
}

The preceding snippet demonstrates that we can declare functions as first class citizens. We
can also define functions as class members, as follows:

class A {
 fun classMember() {
 println("Class member")
 }
}

A local function is a function that is declared in another one, as follows:

fun outer() {
 fun local() {
 println("Local")
 }
 local()
}

Overview of Kotlin Chapter 2

[32]

In the preceding snippet, the local function is declared inside of the outer function. The
local functions are only available in the scope of a function where they were declared.
This approach can be useful if we want to avoid duplicate code inside of a function.

This section will cover the following topics:

Functional programming
Higher-order functions
Lambdas

Functional programming
Kotlin particularly supports a functional style that allows us to operate functions in the
same way as variables. This approach brings many features to Kotlin, as well as new ways
to describe the flow of a program more concisely.

This subsection will cover the following topics:

Declarative and imperative styles
Extension functions
Collections in Kotlin

Declarative and imperative styles
We used to use the imperative style of programming when writing object-oriented
programming, but for functional programming, a more natural style is declarative. The
declarative style assumes that our code describes what to do, instead of how to do it, as is
usual with imperative programming.

The following example demonstrates how functional programming can be useful in certain
cases. Let's imagine that we have a list of numbers, and we want to find the number that is
greater than 4. In the imperative style, this may look as follows:

fun imperative() {
val numbers = listOf(1, 4, 6, 2, 9)
for (i in 0 until numbers.lastIndex) {
if (numbers[i] > 4) {
println(numbers)
 }
 }
}

Overview of Kotlin Chapter 2

[33]

As you can see, we have to use a lot of control flow statements to implement this simple
logic. In the declarative style, it may look as follows:

fun declarative() {
 println(listOf(1, 4, 6, 2, 9).find { it > 4 })
}

The preceding snippet demonstrates the power of functional programming. This code looks
concise and readable. The Kotlin standard library contains a lot of extension functions that
extend the functionality of the list type.

Extension functions
The extension functions feature of Kotlin doesn't relate to functional programming, but it's
better to explain this concept before moving forward. This feature allows us to extend a
class or type with a new functionality, without using inheritance or any software design
patterns, such as decorators.

In object-oriented programming, a decorator is a design pattern that
allows us to add a behavior to an object dynamically, without affecting
other objects from the same class.

In the following code snippet, the extension function is added to the functionality of the A
class:

fun A.extension() {
 println("Extension")
}

As you can see, it's easy to use this feature. We just need to specify a class name and declare
a function name after the dot. Now, we can invoke the extension function as usual:

fun testExtension() {
 A().extension()
}

Overview of Kotlin Chapter 2

[34]

Collections in Kotlin
The find function that we've seen is contained in the Collections.kt file from the Kotlin
standard library. This file contains a lot of extension functions that bring a functional
approach to Kotlin and extend the functionality of Java's collection, in order to simplify
work with them.

A collections is a hierarchy of classes and interfaces that are used to store
and manipulate a group of objects.

The most common functions from the Collections.kt file are as follows:

filter: This returns a new list that contains elements that only matched a
passed predicate
find: This returns an element that matched a passed predicate
forEach: This performs an approved action on each element
map: This returns a new list, where each element was transformed according to
the passed function

All of these are referred to as higher-order functions.

Higher-order functions
A function is called higher-order if it can take or return another function. The following
diagrams show the different cases of higher-order functions.

The first diagram demonstrates a case in which the f function takes the lambda and returns
a simple object:

Overview of Kotlin Chapter 2

[35]

The second diagram demonstrates a case in which the f function takes an object and
returns a function:

Finally, the third diagram demonstrates a case in which the f function takes and returns
lambdas:

Let's look at the implementation of the firstOrNull function, as follows:

public inline fun <T> Iterable<T>.firstOrNull(predicate: (T) -> Boolean):
T? {
 for (element in this) if (predicate(element)) return element
 return null
}

The firstOrNull function is an extension that takes a lambda as a parameter and invokes
it as the usual function—predicate(element). This returns the first element that matches
the predicate in a collection; it is null if there is no other element that meets a condition.

Lambdas
A lambda is a function that is not declared. This is useful when we need to invoke an
action, but we don't need to define a function for it, because we will use it only once, or
only in one scope. A lambda is an expression, meaning that it returns a value. All of the
functions in Kotlin are expressions, and even a scope of a function doesn't contain the
return keyword; it returns a value that is evaluated at the end.

Overview of Kotlin Chapter 2

[36]

The following lambda expression returns an object of the Unit type, implicitly:

{x: Int -> println(x)}

A declaration of the Unit object looks as follows:

public object Unit {
 override fun toString() = "kotlin.Unit"
}

A reference to a lambda can be saved to a variable:

val predicate: (Int) -> Unit = { println(it) }

We can use this variable to invoke the saved lambda:

predicate(3)

Control flow elements
In Kotlin, control flow elements are expressions. This is different from Java, in which they
are statements. Statements just specify the flow of a program, and don't return any
values. This section will cover the following control flow elements:

The if { ... } else { ... } expression
The when { ... } expression

The if { ... } else { ... } expression
In Kotlin, the if control flow element can be used in the same way as it is used in Java. The
following example demonstrates the use of if as a usual statement:

fun ifStatement() {
 val a = 4
 if (a < 5) {
 println(a)
 }
}

Overview of Kotlin Chapter 2

[37]

If you are using the if { ... } else { ... } control flow element as an expression,
you have to declare the else block, as follows:

fun ifExpression() {
 val a = 5
 val b = 4
 val max = if (a > b) a else b
}

The preceding example shows that if { ... } else { ... } returns a value.

The when { ... } expression
The switch { ... } control flow element is replaced by when { ... }. The when {
... } element of Kotlin is much more flexible than the switch { ... } element in Java,
because it can take a value of any type. A branch only has to contain a matched condition.

The following example demonstrates how to use when { ... } as a statement:

fun whenStatement() {
 val x = 1
 when (x) {
 1 -> println("1")
 2 -> println("2")
 else -> {
 println("else")
 }
 }
}

The preceding code snippet contains the else branch, which is optional for a case with a
statement. The else branch is invoked if all other branches don't have a matching
condition. The else branch is mandatory if you use when { ... } as an expression and
the compiler can't be sure that all possible cases are covered. The following expression
returns Unit:

fun whenExpression(x: Int) = when (x) {
 1 -> println("1")
 2 -> println("2")
 else -> {
 println(x)
 }
}

Overview of Kotlin Chapter 2

[38]

As you can see, expressions provide a much more concise way to write code. To be
sure that your branches cover all of the possible cases, you can use enums or sealed classes.

An enum is a special kind of class that is used to define a set of constants.
A sealed class is a parent class that has a restricted hierarchy of subclasses.
All of the subclasses can only be defined in the same file as a sealed class.

In Kotlin, enums work similarly to how they work in Java. Sealed classes can be used if we
want to restrict a class hierarchy. This works in the following way:

You should declare a class using the sealed keyword1.
All inheritors of your sealed class must be declared in the same file as their2.
parent

The following example demonstrates how this can be implemented:

sealed class Method
class POST: Method()
class GET: Method()

With the when { ... } expression, we can use classes of the Method type, in the
following way:

fun handleRequest(method: Method): String = when(method) {
 is POST -> TODO("Handle POST")
 is GET -> TODO("Handle GET")
}

As you can see, using this approach, we don't have to use the else branch.

Loops
A loop is a special statement that allows us to execute code repeatedly. Kotlin supports two
types of loops, as follows:

for

while

Overview of Kotlin Chapter 2

[39]

for loops
A for loop statement allows us to iterate anything that contains the iterate() method. In
turn, this provides an instance that matches the iterator interface through the principle of
duck typing.

The duck typing principle means that an interface is implemented
implicitly if all of the methods that it contains are implemented.

The Iterator interface looks as follows:

public interface Iterator<E> {
 boolean hasNext();

 E next();
}

If we want to provide the iterator(), hasNext(), and next() methods as class
members, we have to declare them with the operator keyword. The following example
demonstrates a case of this:

class Numbers(val numbers: Array<Int>) {

 private var currentIndex: Int = 0

 operator fun iterator(): Numbers = Numbers(numbers)

 operator fun hasNext(): Boolean = currentIndex < numbers.lastIndex

 operator fun next(): Int = numbers[currentIndex ++]
}

The Numbers class can be used as follows:

fun testForLoop() {
 val numbers = Numbers(arrayOf(1, 2, 3))
 for (item in numbers) {
 //......
 }
}

Overview of Kotlin Chapter 2

[40]

An implementation using extension functions is as follows:

class Numbers(val numbers: Array<Int>)

private var currentIndex = 0
operator fun Numbers.iterator(): Numbers {
 currentIndex = 0
 return this
}
operator fun Numbers.hasNext(): Boolean = currentIndex < numbers.lastIndex
operator fun Numbers.next(): Int = numbers[currentIndex ++]

As you can see, extension functions allow us to make preexisting classes iterable.

while loops
The while() { ... } and do { ... } while() statements work in the same way that
they work in Java. The while statement takes a condition, and do specifies a block of code
that should be invoked while the condition is true. The following example demonstrates
how do { ... } while() looks in Kotlin:

fun testWhileLoop() {
 val array = arrayOf(1, 2, 3)
 do {
 var index = 0
 println(array[index++])
 } while (index < array.lastIndex)
}

As you can see, the do { ... } while construction works in the same way that it does in
other C-like languages.

Overview of Kotlin Chapter 2

[41]

Ranges
Kotlin supports the concept of ranges, which represent sequences of comparable types. To
create a range, we can use the rangeTo methods that are implemented in classes, such as
Int, in the following way:

public operator fun rangeTo(other: Byte): LongRange = LongRange(this,
other)

public operator fun rangeTo(other: Short): LongRange = LongRange(this,
other)

public operator fun rangeTo(other: Int): LongRange = LongRange(this, other)

public operator fun rangeTo(other: Long): LongRange = LongRange(this,
other)

So, we have two options for creating a range, as follows:

Using the rangeTo method. This may look as follows—1.rangeTo(100).
Using the .. operator. This may look as follows—1..100.

Ranges are extremely useful when we work with loops:

for (i in 0..100) {
 //
}

The 0..100 range is equal to the 1 <= i && i <= 100 statement.

If you want to exclude the last value, you can use the until function, in the following way:

0 until 100

We can also use the step function, as follows:

1..100 step 2

The preceding snippet represents a range like the following:

[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, ... 99]

It's worth mentioning that ranges support a lot of until functions, such as filter or map:

(0..100)
 .filter { it > 50 }
 .map { it * 2 }

Overview of Kotlin Chapter 2

[42]

String templates
Kotlin supports one more powerful feature—string templates. Strings can contain code
expressions that can be executed, and their results concatenated to the string. The syntax of
the string template assumes that we use the $ symbol at the start of an expression. If the
expression contains some evaluation, it has to be surrounded by curly braces.
The simplest use of string templates looks like the following:

var number = 1
val string = "number is $number"

A more advanced example that contains an expression is as follows:

val name = "Igor"
val lengthOfName = "length is ${name.length}"

As you can see, the string templates feature allows us to write code in a more concise way
than the usual concatenation or the StringBuilder class.

Null safety, reflection, and annotations
Although we have already covered the most common topics that relate to a basic overview
of Kotlin, there are a few more topics that have to be touched upon.

This section will introduce the following topics:

Null safety
Reflection
Annotations

Null safety
Kotlin supports a more strict type system when compared to Java, and divides all types into
two groups, as follows:

Nullable
No-nullable

Overview of Kotlin Chapter 2

[43]

One of the most popular causes of an app crashing is the NullPointerException. This
happens as a result of accessing a member of a null reference. Kotlin provides a
mechanism that helps us to avoid this error by using a type system.

The following diagram shows what the class hierarchy looks like in Kotlin:

In Kotlin, nullable types have the same names as no-nullable types, except with the ?
character at the end.

If we use a no-nullable variable, we can't assign null to it, and the following code can't be
compiled:

var name = "Igor"
name = null

To be able to compile this code, we have to explicitly declare the name variable as nullable:

var name: String? = "Igor"
name = null

After doing this, we cannot compile the following code:

name.length

Overview of Kotlin Chapter 2

[44]

To access members of nullable types, we have to use the ?. operator, like in the following
example:

name?.length

One expression can contain the ?. operator as many times as needed:

name?.length?.compareTo(4)

If a member in this chain is null, the next member can't be invoked.

To provide an alternative program flow, if null is encountered, we can use the Elvis
operator (?:). This can be used in the following way:

name?.length?.compareTo(4) ?: { println("name is null") }()

The preceding snippet demonstrates that the Elvis operator can be used if we want invoke a
block of code if an expression returns as null.

Reflection
Reflection allows us to introspect code at runtime; this is implemented by a set of languages
and standard library features. The Kotlin standard library contains the kotlin.reflect
package that, in turn, contains classes that represent references to elements, such as classes,
functions, or properties.

To obtain a reference to an element, we should use the :: operator. The following example
demonstrates how to obtain a reference to a class:

val reference: KClass<String> = String::class

As you can see, references to classes are represented by the KClass class.

References to functions can also be passed to high-order functions. The following example
shows how this may look:

fun isOdd(number: Int): Boolean = number % 2 == 0
val odds = listOf(1, 2, 3, 4, 5).filter(::isOdd)

Overview of Kotlin Chapter 2

[45]

A reference to a property is represented by the KProperty class, and this can be obtained
in the following way:

val referenceToOddsPreperty = ::odds

KProperty is a class that represents a property of a class, and it can be used to retrieve
metadata, such as names or types.

Annotations
Annotations are used to attach metadata to code. This is created using the annotation
keyword:

public annotation class JvmStatic

In the most common cases, annotations are used by annotation processing tools to generate
or modify code. Let's look at the following example:

class Example1 {
 companion object {
 fun companionClassMember() {}
 }
}

The Kotlin bytecode viewer shows the following code:

public final class Example1 {
 public static final Example1.Companion Companion = new
Example1.Companion((DefaultConstructorMarker)null);

 public static final class Companion {
 public final void companionClassMember() {
 }

 private Companion() {
 }

 // $FF: synthetic method
 public Companion(DefaultConstructorMarker $constructor_marker) {
 this();
 }
 }
}

Overview of Kotlin Chapter 2

[46]

As you can see, the Example1 class contains the nested Companion class that contains the
companionClassMember method. We can mark the companionClassMember method
when the @JvmStatic annotation and the decompiled code to Java code version looks as
follows:

public final class Example1 {
 public static final Example1.Companion Companion = new
Example1.Companion((DefaultConstructorMarker)null);

 @JvmStatic
 public static final void companionClassMember() {
 Companion.companionClassMember();
 }

 public static final class Companion {
 @JvmStatic
 public final void companionClassMember() {}

 private Companion() {}

 // $FF: synthetic method
 public Companion(DefaultConstructorMarker $constructor_marker) {
 this();
 }
 }
}

The preceding snippet contains the additional static companionClassMember function in
the Example1 class that invokes the method of the Companion class. Using the
@JvmStatic annotation, we tell the compiler to generate an additional method that can be
used from the Java side.

Summary
In this chapter, we took a close look at the basic syntax of Kotlin. We also introduced and
looked at examples of some features, such as lambdas, string templates, and ranges.
Furthermore, you learned that control flow elements, such as if { ... } else { ... }
and when { ... }, can be used as expressions that can make our code more concise and
readable.

In the next chapter, we will take a look at an overview of the Spring framework.

Overview of Kotlin Chapter 2

[47]

Questions
What is Kotlin?1.
How does Kotlin support object-oriented programming?2.
How does Kotlin support functional programming?3.
How do we define variables in Kotlin?4.
How do we define functions in Kotlin?5.

Further reading
 Kotlin Quick Start Guide (https:/ / www. packtpub. com/ application- development/ kotlin-
quick-start-guide) by Marko Devcic, published by Packt.

https://www.packtpub.com/application-development/kotlin-quick-start-guide
https://www.packtpub.com/application-development/kotlin-quick-start-guide
https://www.packtpub.com/application-development/kotlin-quick-start-guide
https://www.packtpub.com/application-development/kotlin-quick-start-guide
https://www.packtpub.com/application-development/kotlin-quick-start-guide
https://www.packtpub.com/application-development/kotlin-quick-start-guide
https://www.packtpub.com/application-development/kotlin-quick-start-guide
https://www.packtpub.com/application-development/kotlin-quick-start-guide
https://www.packtpub.com/application-development/kotlin-quick-start-guide
https://www.packtpub.com/application-development/kotlin-quick-start-guide
https://www.packtpub.com/application-development/kotlin-quick-start-guide
https://www.packtpub.com/application-development/kotlin-quick-start-guide
https://www.packtpub.com/application-development/kotlin-quick-start-guide
https://www.packtpub.com/application-development/kotlin-quick-start-guide
https://www.packtpub.com/application-development/kotlin-quick-start-guide
https://www.packtpub.com/application-development/kotlin-quick-start-guide
https://www.packtpub.com/application-development/kotlin-quick-start-guide
https://www.packtpub.com/application-development/kotlin-quick-start-guide
https://www.packtpub.com/application-development/kotlin-quick-start-guide
https://www.packtpub.com/application-development/kotlin-quick-start-guide

3
Overview of Spring Framework

Spring is a powerful, lightweight application framework that provides support for various
frameworks, such as Hibernate, Struts, and JSF. Spring Framework is one of the top
enterprise frameworks for building the most complex, secure and robust products. This
framework is very popular for Java developers, as most developers working in Java
Enterprise are working with Spring. Nowadays, Spring supports the Kotlin language, so it's
becoming more popular with other language users. In this book, we'll develop Spring
projects in Kotlin.

In this chapter, we'll learn about the basics of Spring Framework. We'll discuss the basics of
Spring and also see some examples of how to implement them with Spring MVC and
SpringBoot.

This chapter covers the following topics:

Introduction to Spring
The advantages of Spring
Spring architecture
Configuring beans
Spring MVC
SpringBoot

Overview of Spring Framework Chapter 3

[49]

Technical requirements
In Chapter 1, About the Environment, we demonstrated how to set up the environment and
what tools, software, and IDE are needed in order to develop Spring. To begin,
visit https://start. spring. io/ and create your very first project. The following options
will be available there:

A Maven project or a Gradle project (we've chosen Maven)
Language: Java or Kotlin (we've chosen Kotlin)
Spring Boot version: 2.1.1 (SNAPSHOT)

Once you click on Create, you need to give information, such as Group, Artifact, Name,
Description, Package Name, Packaging, and Java Version.

For this stage, there's no need to add any dependencies. Lastly, generate the project and
import this into your IDE.

The source code with an example for this chapter is available on
GitHub: https://github.com/PacktPublishing/Learn-Spring-for-Android-Application
-Development/tree/master/Chapter03.

Introduction to Spring
Spring Framework is an open source framework. This is written in Java and developed by
Pivotal software. Any Java-based enterprise applications can use the core of this
framework. Spring Framework uses the Plain Old Java Object (POJO), which makes it
easier to build an enterprise application.

A POJO is a Java object that isn't bound by any restriction other than those
forced by the Java language specification. POJOs are used to increase the
readability and reusability of an application.

Let's learn the advantages of Spring and architectures in the following sections.

https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter03

Overview of Spring Framework Chapter 3

[50]

The advantages of Spring
Spring Framework is a component-rich framework with the following advantages:

Spring can be utilized for independent applications, web applications, and
mobile applications.
Spring has given an answer for free coupling through the creation of
dependency injection (DI). This gives a configuration file (or annotation) to
rearrange the conditions.
It utilizes aspect-oriented programming (AOP) and makes it possible to isolate
cross-cutting concerns, such as logging, reserving, and security.
It limits boilerplate code. Spring has a huge amount of bundles and classes that
decrease coding and keep away from the boilerplate code.
It bolsters different frameworks, such as ORM, Hibernate, Logging, and JEE.
Spring provides a simple and secure approach to dealing with login frameworks,
forms, and so on.
It handles autowiring, which can be a nightmare when building a complex web
application.
Spring Web Framework has a web MVC framework, which gives leverage, rather
than a legacy web framework.
It has the ability to take out the creation of singleton and factory classes.
Spring Framework incorporates support for overseeing business objects and
presenting their administrations to the introduction-level segments with the aim.
It underpins both XML and annotation arrangements.

Spring Architecture
Spring Framework is a layered architecture that's composed of a few modules. All modules
are based on the highest point of its core container. These modules give a developer
everything they may require for use in the enterprise application development. In any case,
developers allowed to pick the highlights they need and dispose of the modules that are of
no use.

Modular programming is a software design technique. This separates the
functionality of a program into independent modules so that each
contains one specific functionality.

Overview of Spring Framework Chapter 3

[51]

Here's a diagram of the Spring architecture:

Spring Framework has about 20 modules, which are grouped into Core Containers, Data
Access/Integration, Web, AOP, Instrumentation, and Test.

Let's learn about the components of Spring architecture.

Overview of Spring Framework Chapter 3

[52]

Core containers
This section consists of Core, Beans, Context, and Expression Language modules.

The Core module is the center of the Spring architecture. This provides the implementation
for features such as Inversion of Control (IoC) and Dependency Injection (DI). IoC is one
of the center containers of the Spring core. DI is another known name of IoC. This container
is responsible for creating forms of objects and controls the complete life cycle. During this
life cycle, the system creates a dependency and the container injects those dependencies
while it creates the bean. This inverse process of DI is basically called IoC.

org.springframework.beans and org.springframework.context are the two
containers of Spring Framework's IoC. IoC has a root interface, called BeanFactory, which
is executed by the items and holds various bean definitions, each bean being recognized by
a String name. A propelled configuration component is given by this interface to deal with
items. ApplicationContext is a sub-interface of BeanFactory, which includes more
application-layer settings. For example, it includes WebApplicationContext for use in
web applications. ApplicationContext is in charge of instantiating, designing, and
collecting the beans.

The tasks of object instantiation, configuration, and object assembling are specified for the
container in the configuration metadata. There are three ways to configure the metadata:
through XML, annotation, or code. This occurs in spite of the way that we work with
Kotlin, so we'll write code and metadata in the Kotlin language.

Here's a simple diagram of the flow of the Core container:

Overview of Spring Framework Chapter 3

[53]

The core container is the process of getting the Spring project ready to see the output. With
the help of Java POJO Classes, which are mainly the business objects and the Metadata
(the configuration metadata), the Spring Container represents the ready application as
output.

The Bean module represents a bean, which is an object that's assembled, managed,
and instantiated by the IoC Container.

The Context module supports EJB, JMS, Basic Remoting, and so on. The
ApplicationContext interface is the point of concurrence of the Context module.

The Expression Language module is normally used to execute logic, such as data query,
sum, divide, and mod, in the application. To execute the logic, this module provides
powerful expressions, as listed here:

Arithmetic +, -, *, /, %, ^
Relational <=, >=,<, >, ==, !=
Logical &&, ||, !
Conditional ?, :
Regex matches

Data Access/Integration
Data Access/Integration is responsible for setting and getting public or private data. It acts
as a bridge between the data-access layer and the business layer. Here are some names of
the data modules:

JDBC: Java Database Connectivity (JDBC) helps the application to connect with
the database.
Object-relational mapping: This uses as an integration layer for object-
relational mapping (ORM) APIs.
Object/XML mapping: This uses as an integration layer for object/XML
mapping (OXM) implementations.
 Java Messaging Service: This is used to provide support in Spring for the Java
Messaging Service (JMS).
Transactions: This is used to provide programmatic and declarative transaction
management for the POJO classes.

Overview of Spring Framework Chapter 3

[54]

Web
The web is the center of the Spring MVC framework. We can also integrate other
technologies, such as JSF and Spring MVC. The web provides some basic integration
features, such as login, logout, and uploading or downloading files. The web layer has four
modules:

Web: This provides the basic web-oriented integration features.
Web-servlet: This module contains Spring's MVC implementation for the web
application.
Web-struts: This module provides an enhanced and improved framework to
make web development easier.
Web-portlet: This module is an identical representation of the web MVC
framework.

Aspect-oriented programming
Aspect-oriented programming (AOP) is a key component of Spring Framework. This
provides a new way to think about the structure of a program. AOP can be implemented in
Java and Kotlin. It can be configured in the bean.

AOP splits program logic into certain parts, called affirmed concerns. In any enterprise
application, there are cross-cutting concerns, which should to be separate from the basic
business logic. Logging, transaction handling, performance observing, and security are
known as cross-cutting concerns within the application.

Instrumentation
Instrumentation is the capacity to screen the level of an item's performance, to analyze
mistakes, and to compose the trace information. Instrumentation is one of the key
highlights of Spring Framework for auditing application performance. Spring supports
instrumentation through AOP and logging.

Test
One of the essential parts of an enterprise software development is testing. JUnit or TestNG
can be used to test Spring components. This supports the unit and integration testing of
Spring elements.

Overview of Spring Framework Chapter 3

[55]

Configuring beans
A bean is an object that can be instantiated and assembled by the Spring IoC. These beans
are created by configuring Spring's metadata. Here's a set of properties that represent each
bean definition:

Class
Name
Scope
Constructor-arg

Let's learn about the configured metadata's uses in the following sections.

Spring configuration metadata
The three major functions that provide configuration metadata with the Spring container
are as follows:

XML-based configuration
Kotlin/Java-annotation-based configuration
Kotlin/Java-code-based configuration

XML-based configuration
The XML-based configuration was introduced in Spring 2.0, and enhanced and extended in
Spring 2.5 and 3.0. The main reason for moving to XML-based configuration files was to
make Spring XML configuration easier. The classic <bean/> based approach is good, but
also adds some more configuration that can become complex in the big project.

Let's take a look at an example of an XML-based setup document with various bean
definitions, including the scope, initialization technique, and destruction strategy, and then
we'll discuss this. Here's a piece of code for bean.xml:

<!-- A simple bean definition -->
<bean id = "..." class = "...">
<!-- collaborators and configuration-->
</bean>

<!-- A bean example with prototype scope -->
<bean id = "..." class = "..." scope = "prototype">
<!-- collaborators and configuration-->

Overview of Spring Framework Chapter 3

[56]

</bean>

<!-- A bean definition with initialization function -->
<bean id = "..." class = "..." init-function = "...">
<!-- collaborators and configuration-->
</bean>

<!-- A bean definition with destruction function -->
<bean id = "..." class = "..." destroy-function = "...">
<!-- collaborators and configuration for this bean go here -->
</bean>

Bean scopes
We can choose to proclaim an extension for a bean while defining it. For instance, if we
constrain Spring to deliver another bean occasion each time, we can initialize a
prototype scope as an attribute of a bean. Additionally, if we need Spring to restore a
similar bean example, we should proclaim the bean's scope attribute to be a singleton.

Spring Framework underpins the accompanying five scopes, three of which are accessible
in the event that we utilize a web-aware ApplicationContext. Here are some
common scopes:

Singleton: Returns the same instance that's used by default every time
Prototype: Returns a different instance every time
Request: Defines an HTTP request that's visible in a single JSP page of the
application
Session: Defines an HTTP session that's visible in all JSP pages of the application

Singleton scope
The default scope is always a singleton. This is a bean definition of the Spring IoC
container that returns a single object instance in every object initialization. Here's a piece of
code for the singleton scope:

<!-- A bean example with singleton scope -->
<bean id = "..." class = "..." scope = "singleton"/>
<!-- You can remove the scope for the singleton -->
<bean id = "..." class = "..."/>

Overview of Spring Framework Chapter 3

[57]

Let's take a look at an example of a singleton scope.

Create a Spring project in the IDE. To do this, create two kt files and a bean
XML configuration file under the src folder.

Here's a piece of the code of CreateUserGreeting.kt:

class UserGreeting {
 private var globalGreeting: String? = "Sasuke Uchiha"

 fun setGreeting(greeting: String) {
 globalGreeting = greeting
 }

 fun getGreeting() {
 println("Welcome, " + globalGreeting!! + "!!")
 }
}

The content of BeansScopeApplication.kt is as follows:

fun main(args: Array<String>) {
 val context = ClassPathXmlApplicationContext("Beans.xml")
// first object
 val objectA = context.getBean("userGreeting", UserGreeting::class.java)

// set a value for greeting
 objectA.setGreeting("Naruto Uzumaki")

 objectA.getGreeting()

 val objectB = context.getBean("userGreeting", UserGreeting::class.java)
 objectB.getGreeting()
}

The following is the beans.xml configuration file:

<?xml version = "1.0" encoding = "UTF-8"?>
<beans xmlns = "http://www.springframework.org/schema/beans"
 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation = "http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

 <bean id="userGreeting" class ="ktPackage.UserGreeting"
scope="singleton"/>

</beans>

Overview of Spring Framework Chapter 3

[58]

After running this project, you will find this output:

Welcome, Naruto Uzumaki!! <--- value of objectA
Welcome, Naruto Uzumaki!! <--- value of objectB

Prototype scope
A prototype scope creates a new instance of a bean in every object initialization.
This scope is preferred for the stateful beans. The container doesn't manage the full life
cycle of this prototype scope. Here's a code piece for a prototype scope:

<!-- A bean example with prototype scope -->
<bean id = "..." class = "..." scope = "prototype"/>

Let's look at an example of a prototype scope.

Reuse the previous project and modify the bean XML configuration file, as follows:

<?xml version = "1.0" encoding = "UTF-8"?>
<beans xmlns = "http://www.springframework.org/schema/beans"
 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation = "http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

 <bean id="userGreeting" class ="ktPackage.UserGreeting"
scope="prototype"/>

</beans>

Once we finish creating the source and bean configuration files, we can run the application.
If there's no error, we'll get the following message:

Welcome, Naruto Uzumaki!! <--- value of objectA
Welcome, Sasuke Uchiha!! <--- value of objectB

Bean life cycle
Occasionally, we need to instate assets in the bean classes. For instance, this is possible by
making database associations or approving third-party services at the season of
initialization before any customer request. Spring Framework gives distinctive courses
through which we can give post-introduction and pre-annihilation techniques in a Spring
bean life cycle.

Overview of Spring Framework Chapter 3

[59]

These are as follows:

By actualizing the InitializingBean and DisposableBean interfaces—both
of these interfaces announce a solitary strategy where we can instate/close assets
in the bean. For post-instatement, we can execute the InitializingBean
interface and provide an implementation of the afterPropertiesSet()
function. For pre-destroy, we can actualize the DisposableBean interface
and provide an implementation of the destroy() function. These functions are
the callback techniques, which are similar to servlet audience implementations.
This functionality is easy to utilize, yet it's not recommended, as it will cause
tight coupling with Spring Framework in our bean implementations.
Giving init-function and destroy-function quality values for the bean in
the Spring bean configuration file. This is the prescribed functionality as there's
no immediate dependency to Spring Framework. We can also make our
own functions.

Both the post-init and pre-destroy functions shouldn't have any
contentions, but they can throw exceptions. We would also have to get the
bean occasion from the Spring application setting for these functions.

Let's see an example of the life cycle of a bean. Here, we'll look at how to initialize and
destroy the bean function. Reuse the previous project and modify the bean
XML configuration file as follows:

<?xml version = "1.0" encoding = "UTF-8"?>
<beans xmlns = "http://www.springframework.org/schema/beans"
 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation = "http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

 <bean id="userGreeting" class ="ktPackage.UserGreeting" init-function =
"afterPropertiesSet"
 destroy-function = "destroy"/>

</beans>

Now add two functions in UserGreeting.kt:

class UserGreeting {
 private var globalGreeting: String? = "Sasuke Uchiha"

 fun setGreeting(greeting: String) {
 globalGreeting = greeting
 }

Overview of Spring Framework Chapter 3

[60]

 fun getGreeting() {
 println("Welcome, " + globalGreeting!! + "!!")
 }

 fun afterPropertiesSet(){
 println("Bean is going to start.")
 }

 fun destroy(){
 println("Bean is going to destroy.")
 }
}

Call registerShutdownHook() after the task is completed in the main function of the
class:

fun main(args: Array<String>) {
 val context = ClassPathXmlApplicationContext("Beans.xml")
 val objectA = context.getBean("userGreeting", UserGreeting::class.java)

 objectA.setGreeting("Naruto Uzumaki")
 objectA.getGreeting()
 context.registerShutdownHook()
}

The output will be as follows:

Bean is going to start.
Welcome, Naruto Uzumaki!!
Bean is going to destroy.

Dependency injection
DI is a system where dependencies of an object are provided by outside containers. Spring
DI helps in wiring a class with its dependencies and keeping them decoupled so that we
can inject these dependencies at runtime.

The dependencies are characterized in the bean configuration. The two most common
approaches to injecting objects utilizing XML are constructor injection and setter injection,
which we'll take a look at now:Constructor injection

Overview of Spring Framework Chapter 3

[61]

Constructor injections inject dependencies to the class constructor. Let's take a look at an
example of the constructor injection. Reuse the previous project and modify the content of
beans.xml:

<?xml version = "1.0" encoding = "UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">
 <!--Constructor-based Dependency Injection Example Start-->
 <bean id="userGreeting" class="ktPackage.UserGreeting">
 <constructor-arg ref="userSurname" />
 </bean>
 <bean id="userSurname" class="ktPackage.UserSurname"/>
 <!--Constructor-based Dependency Injection Example End-->
</beans>

constructor-arg is utilized to inject dependencies. The reference of constructor-arg is
an object of the constructor.

Create a class of UserSurname.kt to see the use of the constructor injection. We'll get the
surname from this class, as follows:

class UserSurname {
 init {
 println("This is init of UserSurname")
 }

 fun getSurname(){
 println("This is the surname of user")
 }
}

Initialize UserSurname and add the getUserSurname() function to
CreateUserGreeting.kt:

// added a constractor of UserSurname
class UserGreeting(surname: UserSurname) {
 private var userSurname: UserSurname ?= surname
 init {
 println("It is a constructor for user's surname")
 }

 private var globalGreeting: String? = "Sasuke Uchiha"

 fun setGreeting(greeting: String) {
 globalGreeting = greeting

Overview of Spring Framework Chapter 3

[62]

 }

 fun getGreeting() {
 println("Welcome, " + globalGreeting!! + "!!")
 }

 fun afterPropertiesSet(){
 println("Bean is going to start.")
 }

 fun destroy(){
 println("Bean is going to destroy.")
 }

 fun getUserSurname(){
 userSurname?.getSurname()
 }
}

Now, if we call the getUserSurname() function in BeansScopeApplication, we'll get
the UserSurname class.

Here's the sample code of BeansScopeApplication.kt:

fun main(args: Array<String>) {
 val context = ClassPathXmlApplicationContext("Beans.xml")
 val objectA = context.getBean("userGreeting", UserGreeting::class.java)
 objectA.getUserSurname()

// objectA.setGreeting("Naruto Uzumaki")
// objectA.getGreeting()
// context.registerShutdownHook()
}

The output will be as follows:

This is init of UserSurname <------ init from UserSurname.kt
It is a constructor for user's surname <------ init from
UserGreeting.kt
This is the surname of user <------ getUserSurname() of
UserGreeting.kt

Overview of Spring Framework Chapter 3

[63]

Setter injection

In Spring, a setter injection is a kind of DI in which the framework injects the objects that
are dependent on another object into the customer using a setter function. The container
first calls the no contention constructor and then calls the setters. The setter-based injection
will work regardless of whether a few dependencies have been injected utilizing the
constructor.

Let's see an example of the setter injection. Here, reuse the previous project and modify
the content of beans.xml:

<?xml version = "1.0" encoding = "UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">
<!--Setter Injection Example Start-->
 <bean id="userGreeting" class="ktPackage.UserGreeting">
 <property name="userSurnameClass" ref="userSurname"/>
 </bean>
 <bean id="userSurname" class="ktPackage.UserSurname"/>
 <!--Setter Injection Example End-->
</beans>

After modifying the bean file, add a setter and getter of UserSurname to
the CreateUserGreeting.kt file:

class UserGreeting {
 private var userSurname: UserSurname? = null

 fun setUserSurnameClass(surname: UserSurname) {
 userSurname = surname
 }

 fun getUserSurnameClass(): UserSurname? {
 return userSurname
 }

 private var globalGreeting: String? = "Sasuke Uchiha"

 fun setGreeting(greeting: String) {
 globalGreeting = greeting
 }

 fun getGreeting() {
 println("Welcome, " + globalGreeting!! + "!!")
 }

Overview of Spring Framework Chapter 3

[64]

 fun afterPropertiesSet() {
 println("Bean is going to start.")
 }

 fun destroy() {
 println("Bean is going to destroy.")
 }

 fun getUserSurname() {
 userSurname?.getSurname()
 }
}

The result will be as follows:

This is init of UserSurname
Setting User Surname in UserGreeting
This is the surname of user

An example of an empty string or null value is as follows:

<bean id="app" class="App">
<property name="name" value=""/>
</bean>
<!-- If we need to pass an empty string or null as a value -->
<bean id="app" class="App">
<property name="name"><null/></property>
</bean>

Auto-wiring beans
We've been utilizing <constructor-arg> and <property> to inject dependencies.
Instead, we can autowire the dependencies, which helps to diminish the measure of
configurations that should be composed.

There are diverse choices for auto-wiring that manage the Spring container on the most
proficient method to infuse the conditions. A bean has no auto-wiring by default.

Here are the two major types of auto-wiring:

byName: To autowire a bean, the Spring container chooses the bean by the class
name. Here's an example of the use of byName:

<bean id="app" class="App" autowire="byName"/>

Overview of Spring Framework Chapter 3

[65]

byType: To autowire a bean, the Spring container chooses the bean according to
the class type. Here is an example of the use of byType:

<bean id="app" class="App" autowire="byType"/>

If there are multiple implementing classes for a Service interface, you'll find two types of
scenario.

In the case of services (a cluster of services execute the Service interface), bean won't
allow us to execute the autowire of byName. If there isn't an occurrence of byName, it will
inject all the executing objects.

In the case of mainService (an object actualizes the Service interface), for
the byType/constructor, allocate the autowire-applicant attribute in the <bean> tag of all
executing classes as false, keeping one of them as true.

Here's an example of how to handle multiple implementing classes for a Service interface
in beans.xml:

<?xml version = "1.0" encoding = "UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

 <!--Beans Auto-Wiring Example Start-->
 <bean id="userGreeting" class="ktPackage.UserGreeting"
autowire="byType"/>
 <bean id="userSurname" class="ktPackage.UserSurname" autowire-
candidate="true"/>
 <bean id="xxxxx" class="ktPackage.XXXX" autowire-candidate="false"/>
<!--demoClass-->
 <bean id="yyyyy" class="ktPackage.YYYY" autowire-candidate="false"/>
<!--demoClass-->
 <!--SBeans Auto-Wiring Example End-->
</beans>

For byName, either rename mainService in the application class to one of the actualizing
classes (that is, userSurname), or rename the bean id of that class in the XML
configuration to mainService:

<?xml version = "1.0" encoding = "UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

Overview of Spring Framework Chapter 3

[66]

 <!--Beans Auto-Wiring Example Start-->
 <bean id="userGreeting" class="ktPackage.UserGreeting"
autowire="byName"/>
 <bean id="mainService" class="ktPackage.UserSurname"/>
 <bean id="xxxxx" class="ktPackage.XXXX"/> <!--demoClass-->
 <bean id="yyyyy" class="ktPackage.YYYY"/> <!--demoClass-->
 <!--SBeans Auto-Wiring Example End-->
</beans>

Here are some limitations of auto-wiring:

Overriding possibility: To specify the dependencies, you can use
the <constructor-arg> and <property> settings, which will override auto-
wiring.
Primitive data types: Primitives, strings, and classes can't be called.
Confusing nature: Auto-wiring is less accurate than unequivocal wiring.

Annotation-based configuration
Annotations are the new technology of DI. This started being used with Spring 2.5. There
was no need for any XML files to maintain the configuration. To use the annotation-based
configuration, you need to create a component class in which you can implement bean
configurations. Annotations are unique names or markers on the pertinent class, function,
or field revelation.

Presumably, you're familiar with @Override, which is an annotation that tells the compiler
that this annotation is an abrogated function.

In the preceding annotations, the conduct of Spring Framework was to a great extent
controlled through XML configuration. Today, the utilization of annotations gives us
many advantages through the way we design the practices of Spring Framework.

Here's a piece of bean.xml code:

<?xml version = "1.0" encoding = "UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd">

 <context:annotation-config/>

Overview of Spring Framework Chapter 3

[67]

 <!-- bean definitions will be from here -->
</beans>

If we use <context:annotation-config/> in bean.xml, we can begin annotating the
code to wire values into properties, functions, or constructors. We'll learn about a few
essential annotations in the following sections.

The @Required annotation
The @Required annotation is applied to bean property-setter functions. The bean property
must be populated in the XML configuration file at configuration-time. This annotation
essentially shows that the setter function must be arranged to be dependency-injected with
a value at configuration-time.

Add a user model and the Main class with a bean.xml configuration file.

The content of the bean.xml configuration file is as follows:

<?xml version = "1.0" encoding = "UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd">

 <context:annotation-config/> <!--after this tag, we have to write the
beans-->

 <bean id="users" class="requiredAnnotation.UsersForReq">
 <property name="name" value="Naruto Uzumaki"/>
 <property name="village" value="Konohagakure"/>
 </bean>
</beans>

The content of UsersForReq.kt is as follows:

class Users{
 private var village: String? = null
 private var name: String? = null

 @Required
 fun setVillage(village: String?) {
 this.village = village
 }

Overview of Spring Framework Chapter 3

[68]

 fun getVillage(): String? {
 return village
 }

 @Required
 fun setName(name: String) {
 this.name = name
 }

 fun getName(): String? {
 return name
 }
}

The content of AnnotationBasedReqApp.kt is as follows:

fun main(args: Array<String>) {
 val context =
ClassPathXmlApplicationContext("requiredAnnotation/beans_for_req.xml")
 val users = context.getBean("users") as UsersForReq

 println("Name: "+users.getName())
 println("Village: "+users.getVillage())
}

The output of this project will be as follows:

Name: Naruto Uzumaki
Village: Konohagakure

The @Autowired annotation
The @Autowired annotation helps us to connect constructors, fields, and setter functions.
This annotation injects object dependencies.

Here's the sample code of how to use @Autowired on a property:

class User(val name: String,
 val id: String)

class Users{
 @Autowired
 val user:User ?= null
}

Overview of Spring Framework Chapter 3

[69]

Here's the sample code of how to use @Autowired on a property:

class UsersForAutowired{
 private lateinit var userDetails: UserDetails

 @Autowired
 fun setUserDetails(userDetails: UserDetails){
 this.userDetails = userDetails
 }

 fun getUserDetails(){
 this.userDetails.getDetails()
 }
}

The content of UserDetails.kt is as follows:

class UserDetails{
 init {
 println("This class has all the details of the user")
 }

 fun getDetails(){
 println("Name: Naruto Uzumaki")
 println("Village: Konohagakure")
 }
}

The output of the project will be as follows:

This class has all the details of the user
Name: Naruto Uzumaki
Village: Konohagakure

We can utilize the @Autowired annotation on properties to dispose of the setter functions.
When we pass values of autowired properties utilizing <property>, Spring will allocate
those properties with the passed values or references. So with the utilization of
@Autowired on properties, the UsersForAutowired.kt file will become as follows:

class UsersForAutowired{
 init {
 println("UsersForAutowired constructor.")
 }

 @Autowired
 private lateinit var userDetails: UserDetails

 fun getUserDetails(){

Overview of Spring Framework Chapter 3

[70]

 this.userDetails.getDetails()
 }
}

The result will be as follows:

UsersForAutowired constructor.
This class has all the details of the user
Name: Naruto Uzumaki
Village: Konohagakure

You can also apply @Autowired to constructors. An @Autowired constructor annotation
demonstrates that the constructor should be autowired when making the bean. This should
be the case regardless of whether any <constructor-arg> components are utilized when
configuring the bean in the XML file.

Here is the modified content of UsersForAutowired.kt:

class UsersForAutowired @Autowired constructor(private var userDetails:
UserDetails) {
 init {
 println("UsersForAutowired constructor.")
 }

 fun getUserDetails() {
 this.userDetails.getDetails()
 }
}

The result will be as follows:

This class has all the details of the user
UsersForAutowired constructor.
Name: Naruto Uzumaki
Village: Konohagakure

The @Qualifier annotation
You might create an excess of one bean of a similar type and need to wire just a single one
of them with the property. In such cases, you can utilize the @Qualifier annotation
alongside @Autowired to evacuate the disarray by determining which correct bean will be
wired. In this section, we'll look at a precedent to demonstrate the utilization of
a @Qualifier annotation.

Overview of Spring Framework Chapter 3

[71]

The content of the bean.xml configuration file is as follows:

<?xml version = "1.0" encoding = "UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd">

 <context:annotation-config/> <!--after this tag, you have to write the
beans-->

 <!-- Definition for Fighters bean without constructor-arg -->
 <bean id="fighters" class="qualifierAnnotation.Fighters"/>

 <!--fighter 1-->
 <bean id="fighter1" class="qualifierAnnotation.UsersForQualifier">
 <property name="name" value="Naruto Uzumaki"/>
 <property name="village" value="Konohagakure"/>
 </bean>

 <!--fighter 2-->
 <bean id="fighter2" class="qualifierAnnotation.UsersForQualifier">
 <property name="name" value="Gaara"/>
 <property name="village" value="Sunagakure"/>
 </bean>
</beans>

Here's the content of AnnotationBasedQualifierApp.kt:

fun main(args: Array<String>) {
 val context =
ClassPathXmlApplicationContext("qualifierAnnotation/beans_for_qualifier.xml
")
 val fighters = context.getBean("fighters") as Fighters
 fighters.getName()
 fighters.getVillage()
}

Now, add another class. Here's the content for UsersForQualifier.kt:

class UsersForQualifier{
 private var village: String? = null
 private var name: String? = null

 fun setVillage(village: String?) {

Overview of Spring Framework Chapter 3

[72]

 this.village = village
 }

 fun getVillage(): String? {
 return village
 }

 fun setName(name: String) {
 this.name = name
 }

 fun getName(): String? {
 return name
 }
}

Finally, add the Fighters.kt class. Here's the content of this class:

class Fighters {
 @Autowired
 @Qualifier("fighter1")
 lateinit var usersForQualifier: UsersForQualifier

 init {
 println("Fighters constructor.")
 }

 fun getName() {
 println("Name: " + usersForQualifier.getName())
 }

 fun getVillage() {
 println("Village: " + usersForQualifier.getVillage())
 }
}

If you run the output, it will be as follows:

Fighters constructor.
Name: Naruto Uzumaki
Village: Konohagakure

Modify the qualifier value like so:

 @Qualifier("fighter2")

Overview of Spring Framework Chapter 3

[73]

It will create the following output:

Fighters constructor.
Name: Gaara
Village: Sunagakure

Code-based configuration
We saw how to design Spring beans by utilizing the XML configuration file. If you are used
to XML configuration, you can ignore this topic.

The code-based configuration alternative empowers you to compose the majority of your
Spring configuration without XML.

The @Configuration and @Bean annotations
The use of the @Configuration annotation on a class, implies that this class will be
utilized by the Spring IoC container and will be considered a source of bean definitions.

The use of a @Bean annotation on a function means the function will return an object that's
enrolled as a bean in the Spring application context.

Here's a sample code of @Configuration and @Bean:

@Configuration
open class CodeBasedConfiguration{
 @Bean
 open fun mainApp(): MainApp{
 return MainApp()
 }
}

The previous code will be equivalent to the following XML configuration:

<beans>
 <bean id = "mainApp" class = "MainApp"/>
</beans>

Overview of Spring Framework Chapter 3

[74]

Here, the function name is commented on with the @Bean annotation, which creates and
returns the bean definition. Your configuration class can have a presentation for in excess of
one @Bean.

The content of GreetingConfigurationConfBean.kt is as follows:

@Configuration
open class GreetingConfigurationConfBean{
 @Bean
 open fun greeting(): GreetingConfBean{
 return GreetingConfBean()
 }
}

The content of GreetingConfBean.kt is as follows:

class GreetingConfBean{
 private var users: String? = null
 fun setUsers(users: String) {
 this.users = users
 }
 fun getUsers() {
 println("Welcome, $users!!")
 }
}

The content of MainAppConfBean.kt is as follows:

fun main(args: Array<String>) {
 val applicationContext =
AnnotationConfigApplicationContext(GreetingConfigurationConfBean::class.jav
a)

 val greeting = applicationContext.getBean(GreetingConfBean::class.java)
 greeting.setUsers("Naruto Uzumaki")
 greeting.getUsers()
}

The result will be as follows:

Welcome, Naruto Uzumaki!!

Overview of Spring Framework Chapter 3

[75]

Dependency injection bean
Annotate the @Bean annotation to inject dependencies. Here's the content of
GreetingConfigurationDIBean.kt:

@Configuration
open class GreetingConfigurationDIBean{
 @Bean
 open fun greeting(): GreetingDIBean {
 return GreetingDIBean(getUserDetails())
 }

 @Bean
 open fun getUserDetails(): GreetingDetailsDIBean {
 return GreetingDetailsDIBean()
 }
}

When two @Beans are dependent on each other, the dependency is as simplistic as having
one bean method call another.

The content of GreetingDIBean.kt is as follows:

class GreetingDIBean (private val userDetails: GreetingDetailsDIBean){
 init {
 println("Inside DependenciesInjectBean.GreetingDIBean
constructor.")
 }

 fun getGreeting() {
 userDetails.getGreetingDetails()
 }
}

The content of GreetingDetailsDIBean.kt is as follows:

class GreetingDetailsDIBean{
 init {
 println("This class has all the details of the user")
 }

 fun getGreetingDetails(){
 println("Welcome, Naruto Uzumaki!!")
 }
}

Overview of Spring Framework Chapter 3

[76]

The content of MainApp.kt is as follows:

fun main(args: Array<String>) {
 val applicationContext =
AnnotationConfigApplicationContext(GreetingConfigurationDIBean::class.java)

 val greeting = applicationContext.getBean(GreetingDIBean::class.java)
 greeting.getGreeting()
}

The result will be the following:

This class has all the details of the user
Inside Greeting constructor.
Welcome, Naruto Uzumaki!!

The @Import annotation
Spring's @Import annotation offers functions such as <import/> an element in Spring
XML. By utilizing the @Import annotation, you can import at least one @Configuration
class. It can also import classes that contain no less than one @Bean function.

The content of Boo.kt is as follows:

class Foo{
 init {
 println("This is class Foo")
 }
}
class Boo{
 init {
 println("This is class Boo")
 }
}

The content of ConfigBoo.kt is as follows:

@Configuration
class ConfigFoo {
 @Bean
 fun foo(): Foo{
 return Foo()
 }
}

@Configuration
@Import(ConfigFoo::class)

Overview of Spring Framework Chapter 3

[77]

class ConfigBoo {
 @Bean
 fun foo(): Boo {
 return Boo()
 }
}

You don't need to specify both ConfigFoo.class and ConfigBoo.class when
instantiating the context, so the following code isn't required when you initialize
AnnotationConfigApplicationContext:

val applicationContext =
AnnotationConfigApplicationContext(ConfigBoo::class.java,
ConfigFoo::class.java)

As bean definitions of ConfigFoo are already loaded by using the @Import annotation
with the ConfigBoo bean, only ConfigBoo needs to be explicitly specified:

val applicationContext =
AnnotationConfigApplicationContext(ConfigBoo::class.java)

Here's the modified complete code of the main function of MainAppImport.kt:

fun main(args: Array<String>) {
 val applicationContext =
AnnotationConfigApplicationContext(ConfigBoo::class.java)

 //both beans Boo and Foo will be available...
 val boo: Boo = applicationContext.getBean(Boo::class.java)
 val foo: Foo = applicationContext.getBean(Foo::class.java)
}

The result will be as follows:

This is class Boo
This is class Foo

Life cycle callbacks
A @Bean annotation supports determining discretionary introductions and obliteration
callback functions. If you noticed beans.xml in the XMLBasedSpringConfiguration
project, you can find the init-method and destroy-method attributes. Here's an example
of how to initialize the init-method and destroy-method attributes:

<bean id="userGreeting" class="ktPackage.UserGreeting" init-
method="afterPropertiesSet" destroy-method="destroy"/>

Overview of Spring Framework Chapter 3

[78]

Here's the modified code of MainAppLifeCall.kt:

fun main(args: Array<String>) {
 val applicationContext =
AnnotationConfigApplicationContext(ConfigFoo::class.java)

 val foo: Foo = applicationContext.getBean(Foo::class.java)
 applicationContext.registerShutdownHook()
}

The modified code of Foo.kt is as follows:

class Foo{
 fun init(){
 println("Foo is initializing...")
 }

 fun destroy(){
 println("Foo is destroying...")
 }
}

Now create a configuration class for Foo. The modified code of ConfigFoo.kt is as
follows:

@Configuration
open class ConfigFoo {
 @Bean(initMethod = "init", destroyMethod = "destroy")
 open fun foo(): Foo {
 return Foo()
 }
}

The output of this project will be as follows:

Foo is initializing...
Foo is destroying...

Creating a scope bean
Create a @Scope bean to make a prototype scope with @Configuration. @Configuration
represents the configure file of a SpringBoot project. Here's a piece of code that shows how
to use the @Scope prototype annotation:

@Configuration
public class ConfigFoo {

Overview of Spring Framework Chapter 3

[79]

 @Bean
 @Scope("prototype")
 public Foo foo() {
 return new Foo();
 }
}

Spring MVC
The Spring Web MVC framework uses the model-view-controller (MVC) architecture,
which manages the web applications. This provides a ready component that can be used by
developers to develop a robust and loosely-coupled web application. With the presentation
of Spring 3.0, the @Controller component additionally enables you to make peaceful web
locales and applications through the @PathVariable annotation and different features.
The MVC pattern separates the different aspects, such as input, business, and UI logic of
the application.

There are three parts to MVC:

The model is at the core of MVC applications. This is where the primary logic
and information objects that comprise the core usefulness of the application are
produced.
The view is the place the information given by the model is introduced to the
client. A view regulates the visual (or other) interface components – it chooses,
filters, and arranges data provided by the model.
The controller is in charge of preparing client requests, building a proper model,
and passing it to the view for rendering.

Here are some of the advantages of Spring MVC framework:

Spring MVC helps to separate each role, such as the model object and controller.
When developing and deploying an application, it helps developers to use the
lightweight servlet container.
It provides a robust and powerful configuration for the project.
You can develop a project very quickly and in parallel.
Testing is very easy and you can inject test data using a setter function.

Overview of Spring Framework Chapter 3

[80]

DispatcherServlet
DispatcherServlet is one of the core components of the Spring MVC. This works as a
front-controller in an application. A front-controller means the Spring MVC receives all
incoming requests and forwards these to the Spring MVC controller for processing. This is
totally coordinated with the Spring IoC container and accordingly enables you to utilize
each element of Spring.

DispatcherServlet handles all the HTTP requests and responses that are designed
under the Spring MVC.

Here's a diagram to illustrate DispatcherServlet:

The succession of occasions relating to an approaching HTTP request to
DispatcherServlet is as follows:

The application (as a client) sends a request to DispatcherServlet.1.
DispatcherServlet asks the related Handler Mapping to call2.
the Controller.

Overview of Spring Framework Chapter 3

[81]

The Controller takes requests from DispatcherServlet and calls a relevant3.
service function based on the GET or POST function. The service function sets the
model data based on the business logic.
ViewResolver selects the defined View.4.
The defined View is executed on the application.5.

Creating a project
Now, we'll learn about the MVC framework with Kotlin. Although this project is a web
application and we need to utilize Maven for dependencies administration, we need to
make a dynamic web application and then change it to a Maven venture first. The
following screenshot demonstrates how to prepare our task skeleton structure:

Now we're going to learn how to convert this project into a Maven project.

Overview of Spring Framework Chapter 3

[82]

Converting to a Maven project
Now that the skeleton code for our Maven web-application venture is prepared, we can
begin rolling out improvements to it, as well as making our Spring MVC HELLO WORLD
application.

The created project is a non-Maven project. We need to convert the project into the Maven
project.

To convert this project into a Maven project, open the existing project. In the project tool
window, right-click your project and select Add Framework Support.

In the dialog that opens, select Maven from the options on the left and click OK:

Spring MVC dependencies to pom.xml
We have to include spring-web and spring-webmvc dependencies in pom.xml, as well as
including a servlet-programming interface, JSP-programming interface, and JSTL
dependencies. Here's part of the pom.xml file (the full version is on GitHub) of our project
with the Spring Core, Kotlin, and Web dependencies:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <properties>

Overview of Spring Framework Chapter 3

[83]

 <springframework.version>5.0.8.RELEASE</springframework.version>
 <kotlin.version>1.3.0</kotlin.version>
 <jstl.version>1.2</jstl.version>
 </properties>

 <dependencies>
 <!--Spring dependencies-->
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-core</artifactId>
 </dependency>

 <!--We need to add the following Kotlin dependencies-->
 <dependency>
 <groupId>org.jetbrains.kotlin</groupId>
 <artifactId>kotlin-stdlib-jdk8</artifactId>
 </dependency>
 </dependencies>
 <build>
 <plugins>

 </plugins>
 </build>
</project>

Creating Spring configuration beans
Go to the /WebContent/WEB-INF/ directory and create an XML file called spring-mvc-
kotlin-servlet.xml:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:mvc="http://www.springframework.org/schema/mvc"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/mvc
 http://www.springframework.org/schema/mvc/spring-mvc.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd">

Overview of Spring Framework Chapter 3

[84]

 <mvc:annotation-driven />
 <context:component-scan
 base-package="mvckotlin" />
 <mvc:default-servlet-handler />

 <bean id="viewResolver"
class="org.springframework.web.servlet.view.UrlBasedViewResolver">
 <property name="viewClass"
 value="org.springframework.web.servlet.view.JstlView" />
 <property name="prefix" value="/WEB-INF/jsp/" />
 <property name="suffix" value=".jsp" />
 </bean>
</beans>

In the spring-mvc-kotlin-servlet.xml configuration file, we mentioned a
<context:component-scan> tag. All the components from the mvckotlin package and
all its child packages will now be loaded by the Spring:

This will load our MVCKotlinApp.class and also assign a viewResolver bean.
<property name="prefix" value="/WEB-INF/jsp/" /> will resolve the
view and add a prefix string named /WEB-INF/jsp/.
Note that we have returned a ModelAndView object with the view name
welcome in our MVCKotlinApp class.
This will be resolved to the /WEB-INF/jsp/greeting.jsp path.
There's a web.xml file under the /WebContent/WEB-INF/ directory. If you don't
find it, create it in the /WebContent/WEB-INF/ directory. Here's a piece of code
from web.xml:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app_4_0.xsd"
 version="4.0">
 <display-name>spring-mvc-kotlin</display-name>
 <welcome-file-list>
 <welcome-file>index.jsp</welcome-file>
 <welcome-file>default.jsp</welcome-file>
 <welcome-file>default.html</welcome-file>
 <welcome-file>index.html</welcome-file>

 </welcome-file-list>
 <servlet>
 <servlet-name>spring-mvc-kotlin</servlet-name>
 <servlet-

Overview of Spring Framework Chapter 3

[85]

class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>spring-mvc-kotlin</servlet-name>
 <url-pattern>/index.jsp</url-pattern>
 <url-pattern>/greeting.jsp</url-pattern>
 </servlet-mapping>
</web-app>

web.xml will map DispatcherServlet with the /greeting.jsp URL pattern.
Furthermore, note that we have mentioned index.jsp as a greeting file.

After initialization, DispatcherServlet will look for a file named [servlet-name]-
servlet.xml in the WEB-INF folder. The value of the servlet XML file prefix name, and
value of the <servlet-name> tag in web.xml, have to be the same. In our example, the
name of the servlet is spring-mvc-kotlin-servlet.xml.

Creating a controller class
Go to src | main | java in the project and create the package name that we mentioned in
spring-mvc-kotlin-servlet.xml. Assume that our package name is mvckotlin:

Overview of Spring Framework Chapter 3

[86]

Create a controller .kt file. We call this MVCKotlinAppController.kt:

@Controller
class MVCKotlinAppController {
 @RequestMapping("/greeting")
 fun greetingMessage(): ModelAndView {
 val message =
 "<div style='text-align:center;'>" +
 "<h3>Welcome to Learn Spring for Android Application
Development</h3>" +
 "</div>"
 return ModelAndView("greeting", "message", message)
 }
}

We have a class named MVCKotlinAppController.kt and annotated this with
@Controller, which means that this class is a controller class. After initializing the project,
Spring starts to search the bundle from here.

The @RequestMapping("/greeting") annotation will map a web request and
/greeting will create a base URI.

We have created a function named greetingMessage() that will return a ModelAndView
object. Here we just create a sample HTML code for greeting. If we go to
http://localhost:8080/greeting, this will return a view based
on greetingMessage().

The view
Create a new file named /WebContent/index.jsp, with the following content:

<%@ page contentType="text/html;charset=UTF-8" language="kotlin" %>
<html>
<head>
 <title>Spring MVC Kotlin</title>
</head>
<body>

<div style="text-align: center">
 <h2>
 Hey You..!! This is your 1st Spring MCV Tutorial..

 </h2>
 <h3>
 Click here to See Welcome Message...
(to

Overview of Spring Framework Chapter 3

[87]

 check Spring MVC Controller... @RequestMapping("/greeting"))
 </h3>
</div>
</body>
</html>

Then create another file named /WebContent/WEB-INF/jsp/greeting.jsp, with the
following content:

<html>
<head>
 <title>Spring MVC Kotlin</title>
</head>
<body>
${message}
</body>
</html>

IntelliJ Ultimate
To run the project, you need to set up the run configuration. Follow these steps to do so:

Click the Run... button from the toolbar and then add Maven with the clean1.
install comment:

Add TomCat Server --> Local and add the SpringMVCKotlin:war build from2.
Deployment:

Overview of Spring Framework Chapter 3

[88]

Click the RUN button on the menu bar to start the project.3.

Eclipse
Here are the steps to build the project:

To run the project, right-click on Project | Run As | Maven Build....1.
Add Goals—clean install.2.
Click Apply and Run.3.

If there are no errors, you'll see the following BUILD SUCCESS message:

Visit http://localhost:8080/SpringMVCKotlin/, where you'll see the following
output of the demo code:

Overview of Spring Framework Chapter 3

[89]

SpringBoot
SpringBoot is a Spring Framework module that has some features to help developers create
a production-class application. SpringBoot is a combination of two words—BOOT is from
bootstrap, while SPRING is a framework used to build Java enterprise applications. This is
a large framework that's also supported by numerous other frameworks. SpringBoot is
similar in that it lets you bootstrap a spring application from scratch, which is how it gets
the name SpringBoot. According to spring.io, here's the definition of
SpringBoot—"Spring Boot makes it easy to create stand-alone, production-grade, Spring-
based applications that you can just run." This means that it helps you to create a runnable
project without the help of others. In addition, we showed a production-grade
project here, which is a ready-product application. SpringBoot minimizes the pain of setting
up an application.

The features of SpringBoot are as follows:

It helps to create a standalone Spring application.
It comes with Tomcat, Jetty, or Undertow, and so there's no need to worry about
setting up the server environment.
With the use of SpringBoot, you don't need to deploy WAR files.
Third-party frameworks can be imported automatically with their
configurations.
XML configuration isn't required if you use SpringBoot.

SpringBoot doesn't produce code or make changes to your files. Instead,
when you start up your application, SpringBoot dynamically wires up
beans and settings, and applies them to your application context.

Let's create a SpringBoot project to learn about its dependencies and features.

Creating a project
To create a Spring Boot project, let's generate a sample project from https:/ /start.
spring.io/. Here, you can add your required dependencies, such as Web, Thymeleaf, JPA ,
and DevTools. This can be done as follows:

In the drop-down menus at the top, select Maven Project with Kotlin and Spring1.
Boot 2.1.1 (SNAPSHOT):

https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/

Overview of Spring Framework Chapter 3

[90]

Give the name of Group, Artifact, Package Name, and add Dependencies. Then2.
hit Generate Project.
Download and unzip the project.3.
Import the downloaded project into your IDE.4.

After following these steps, you're ready to use and modify the project. Let's see what's
inside this project. You'll find a controller file
under src/main/kotlin/{packageName}/AppController.kt.

Here's a piece of code from the controller file:

@RestController
class HtmlController {
 @GetMapping("/")
 fun blog(model: Model): String {
 model["title"] = "Greeting"
 return "index"
 }
}

Create a class named HtmlController.kt and annotate it with the @RestController
annotation to make it a controller class in which we'll deal with web requests.
@RestController is the combination of @Controller and @ResponseBody.

Create a function named blog(model: Model) and annotate it with
@GetMappingmaps("/"). This will return index.xml as output.

Overview of Spring Framework Chapter 3

[91]

Creating an application class
Under src/main/kotlin/{packageName}, create an application class named
SpringBootKotlinApplication.kt:

@SpringBootApplication
class SpringBootKotlinApplication

fun main(args: Array<String>) {
 runApplication<SpringBootKotlinApplication>(*args)
}

@SpringBootApplication is utilized to empower the following three features:

@Configuration enables Java-based configuration.
@EnableAutoConfiguration enables the auto-configuration feature of
SpringBoot.
@ComponentScan enables component scanning.

The main() function utilizes SpringBoot's SpringApplication.run() method to
dispatch an application. This web application is 100% unadulterated Kotlin and there's no
need to arrange any pipes or foundations here.

Similarly, there's a CommandLineRunner function set apart as @Bean and this keeps
running on startup. It recovers every one of the beans that were made either by your
application or were naturally added by SpringBoot. It then sorts and prints these out.

In the code of the SpringBootKotlinApplication class, in contrast with Java, you can
see the absence of semicolons, the absence of sections in an empty class (you can add a few,
in case you have to proclaim beans by means of a @Bean annotation), and the utilization of
a runApplication top-level function.
runApplication<SpringBootKotlinApplication>(*args) is Kotlin's informal option
in contrast to
SpringApplication.run(SpringBootKotlinApplication::class.java, *args),
and this can be utilized to customize the application.

Now create an HTML file in the folder underneath src/main/resources/templates/.

The content of index.html is as follows:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8"/>

Overview of Spring Framework Chapter 3

[92]

 <title>Spring Boot Kotlin</title>
</head>
<body>
 <p>Welcome, Naruto. This project is based on Spring Boot in Kotlin</p>
</body>
</html>

Start the web application by running the main function of
SpringBootKotlinApplication.kt. If everything is fine, you'll see this in the logcat:

Next, go to http://localhost:8080/. Here, you should see a web page with a
SpringBoot Kotlin application headline:

We've covered the basics of SpringBoot. Later, we'll go into this in more depth with more
dependencies.

Overview of Spring Framework Chapter 3

[93]

Summary
In this chapter, we explored Spring and its modules, dependencies, and use of functions.
We attempted to cover all the essential information that will be required for the rest of this
book. We looked at the steady and solid architecture of Spring Framework with Core,
Information Access, Web, AOP, Instrumentation, and Test. Furthermore, we figured out the
life cycle of a bean and how to design beans in three different ways. We found out about
the depth of bean configurations, and we learned about the use of beans in XML,
annotation, and code. Now we know how to inject the dependencies into the tasks.

We explored two noteworthy frameworks: Spring MVC and SpringBoot. We'll now be able
to make an MVC-based venture with its dependencies and modules. In addition, we
learned out about the use of SpringBoot and created a web application that uses Boot,
allowing us to make a web page without an HTML file. We also explored the contrasts
between Spring MVC and SpringBoot. You can now create a Spring project in the Kotlin
language.

In the next chapter, we'll learn about the required Android and Spring modules to build a
client application on the Android platform.

Questions
What is Spring Framework?1.
What is dependency injection?2.
What is aspect-oriented programming?3.
What is the Spring IoC container?4.
What is a Spring bean?5.
What is a controller in Spring MVC?6.
What is DispatcherServlet?7.
What is ContextLoaderListener?8.
What is the boilerplate code?9.

Overview of Spring Framework Chapter 3

[94]

Further reading
Learning Spring Application Development (https:/ /www. packtpub. com/
application- development/ learning- spring- application- development)
Spring MVC: Beginner's Guide - Second Edition (https:/ /www. packtpub. com/
application- development/ spring- mvc- beginners- guide- second- edition)
Spring: Microservices with Spring Boot (https:/ /www. packtpub. com/ application-
development/ spring- microservices- spring- boot)

https://www.packtpub.com/application-development/learning-spring-application-development
https://www.packtpub.com/application-development/learning-spring-application-development
https://www.packtpub.com/application-development/learning-spring-application-development
https://www.packtpub.com/application-development/learning-spring-application-development
https://www.packtpub.com/application-development/learning-spring-application-development
https://www.packtpub.com/application-development/learning-spring-application-development
https://www.packtpub.com/application-development/learning-spring-application-development
https://www.packtpub.com/application-development/learning-spring-application-development
https://www.packtpub.com/application-development/learning-spring-application-development
https://www.packtpub.com/application-development/learning-spring-application-development
https://www.packtpub.com/application-development/learning-spring-application-development
https://www.packtpub.com/application-development/learning-spring-application-development
https://www.packtpub.com/application-development/learning-spring-application-development
https://www.packtpub.com/application-development/learning-spring-application-development
https://www.packtpub.com/application-development/learning-spring-application-development
https://www.packtpub.com/application-development/learning-spring-application-development
https://www.packtpub.com/application-development/learning-spring-application-development
https://www.packtpub.com/application-development/learning-spring-application-development
https://www.packtpub.com/application-development/learning-spring-application-development
https://www.packtpub.com/application-development/learning-spring-application-development
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-microservices-spring-boot
https://www.packtpub.com/application-development/spring-microservices-spring-boot
https://www.packtpub.com/application-development/spring-microservices-spring-boot
https://www.packtpub.com/application-development/spring-microservices-spring-boot
https://www.packtpub.com/application-development/spring-microservices-spring-boot
https://www.packtpub.com/application-development/spring-microservices-spring-boot
https://www.packtpub.com/application-development/spring-microservices-spring-boot
https://www.packtpub.com/application-development/spring-microservices-spring-boot
https://www.packtpub.com/application-development/spring-microservices-spring-boot
https://www.packtpub.com/application-development/spring-microservices-spring-boot
https://www.packtpub.com/application-development/spring-microservices-spring-boot
https://www.packtpub.com/application-development/spring-microservices-spring-boot
https://www.packtpub.com/application-development/spring-microservices-spring-boot
https://www.packtpub.com/application-development/spring-microservices-spring-boot
https://www.packtpub.com/application-development/spring-microservices-spring-boot
https://www.packtpub.com/application-development/spring-microservices-spring-boot
https://www.packtpub.com/application-development/spring-microservices-spring-boot
https://www.packtpub.com/application-development/spring-microservices-spring-boot
https://www.packtpub.com/application-development/spring-microservices-spring-boot
https://www.packtpub.com/application-development/spring-microservices-spring-boot

4
Spring Modules for Android

This chapter will cover the modules and features that support Spring for Android and use
REST in Android as a client. There are some modules that help request and retrieve REST
APIs. They also provide security, such as basic authentication and OAuth2. Because of these
securities, the resources of the server are secured and are therefore difficult to hack. Even a
client needs to be granted permission from the owner to use the resources from the
protected server. The modules also incorporate a strong OAuth-based authorization client
and implementations for mainstream social websites, such as Google, Twitter, Facebook,
and so on.

This chapter covers the following topics:

The RestTemplate module.
The Gradle and Maven repository
RestTemplate module
Retrofit
Creating an Android app

Spring Modules for Android Chapter 4

[96]

Technical requirements
The Android SDK is required to develop Android applications. The developers used
Eclipse and the Android plugin to develop Android applications at the beginning of the
Android development. But later, Google announced that Android Studio is the official tool
for Android application development. It has all the vital modules, such as Gradle, Maven,
Android SDK, NDK, Java JDK, and so on, so we don't have to utilize the Terminal
command line. In Chapter 1, About the Environment, we demonstrated how to download
and create a sample Android application using Android Studio.

The source code with an example for this chapter is available on GitHub at the following
link: https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-De
velopment/tree/master/Chapter04

REST client module
Representational State Transfer (REST) is designed to take advantage of the existing
protocols. The consistent systems of REST are often called RESTful systems. It can be used
over almost every protocol, but it normally takes advantage of HTTP during the use of web
APIs. It makes it simpler for systems to speak with one another. These systems are
portrayed by how they are stateless and separate the concerns of the client and server. We
will go in depth into what these terms mean and why they are advantageous qualities for
services on the web.

A RESTful web service is responded to with a payload formatted in either HTML, XML,
JSON, or some other format. The response can affirm that a change has been made to
the requested response, and the reaction can give hypertext links that are related to other
resources, or a bundle of resources. At the point in which HTTP is utilized, as is normal, the
tasks that are accessible are GET, POST, PUT, DELETE, and other predefined HTTP functions.

To use Spring for Android, you can use different HTTP libraries. Spring has suggested
using RestTemplate for Android. This is now outdated and may not be supported for the
newer Android version. However, now, you can find some libraries that are easier and
more powerful, with lots of features. You can use a different HTTP library, such as one of
the following:

RestTemplate

Retrofit
Volley

https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter04

Spring Modules for Android Chapter 4

[97]

We will explore the use of all of these libraries in this chapter. In our upcoming chapters,
we will use Retrofit because it's easier, updated, robust, and requires less code to be
written. However, you can use any of them in your projects.

The RestTemplate module
RestTemplate is a robust and Java-based REST client. In Android application
development, we can use the RestTemplate module, which will provide a template to
request and retrieve a REST API. RestTemplate is Spring's core class for synchronous
client-side HTTP access. It's intended to disentangle correspondence with HTTP servers
and authorize RESTful standards.

RestTemplate is the main class for synchronous RESTful HTTP requests. A native
Android HTTP client library is used to retrieve requests. The default
ClientHttpRequestFactory, which is utilized when you make another RestTemplate
example, varies depending on the adaptation of Android on which your application is
running.

Gradle and Maven repository
To develop an Android application, we have to implement or compile a few dependencies.
Android officially supports Gradle to implement or compile dependencies. Android also
supports Maven, so if you want to use Maven, then you need to modify pom.xml.

You can check the latest version of the dependency at https:/ /mvnrepository. com/
artifact/org.springframework. android/ spring- android- core for
implementing spring-android-core, which has the core modules for Android.

 You can check the latest version of the dependency at https:/ /mvnrepository. com/
artifact/org.springframework. android/ spring- android- rest-
template for implementing spring-android-rest-template, which has the all
modules for RestTemplate.

Now, we will look at the use of Gradle and Maven for the Android project.

https://mvnrepository.com/artifact/org.springframework.android/spring-android-core
https://mvnrepository.com/artifact/org.springframework.android/spring-android-core
https://mvnrepository.com/artifact/org.springframework.android/spring-android-core
https://mvnrepository.com/artifact/org.springframework.android/spring-android-core
https://mvnrepository.com/artifact/org.springframework.android/spring-android-core
https://mvnrepository.com/artifact/org.springframework.android/spring-android-core
https://mvnrepository.com/artifact/org.springframework.android/spring-android-core
https://mvnrepository.com/artifact/org.springframework.android/spring-android-core
https://mvnrepository.com/artifact/org.springframework.android/spring-android-core
https://mvnrepository.com/artifact/org.springframework.android/spring-android-core
https://mvnrepository.com/artifact/org.springframework.android/spring-android-core
https://mvnrepository.com/artifact/org.springframework.android/spring-android-core
https://mvnrepository.com/artifact/org.springframework.android/spring-android-core
https://mvnrepository.com/artifact/org.springframework.android/spring-android-core
https://mvnrepository.com/artifact/org.springframework.android/spring-android-core
https://mvnrepository.com/artifact/org.springframework.android/spring-android-core
https://mvnrepository.com/artifact/org.springframework.android/spring-android-core
https://mvnrepository.com/artifact/org.springframework.android/spring-android-core
https://mvnrepository.com/artifact/org.springframework.android/spring-android-core
https://mvnrepository.com/artifact/org.springframework.android/spring-android-core
https://mvnrepository.com/artifact/org.springframework.android/spring-android-rest-template
https://mvnrepository.com/artifact/org.springframework.android/spring-android-rest-template
https://mvnrepository.com/artifact/org.springframework.android/spring-android-rest-template
https://mvnrepository.com/artifact/org.springframework.android/spring-android-rest-template
https://mvnrepository.com/artifact/org.springframework.android/spring-android-rest-template
https://mvnrepository.com/artifact/org.springframework.android/spring-android-rest-template
https://mvnrepository.com/artifact/org.springframework.android/spring-android-rest-template
https://mvnrepository.com/artifact/org.springframework.android/spring-android-rest-template
https://mvnrepository.com/artifact/org.springframework.android/spring-android-rest-template
https://mvnrepository.com/artifact/org.springframework.android/spring-android-rest-template
https://mvnrepository.com/artifact/org.springframework.android/spring-android-rest-template
https://mvnrepository.com/artifact/org.springframework.android/spring-android-rest-template
https://mvnrepository.com/artifact/org.springframework.android/spring-android-rest-template
https://mvnrepository.com/artifact/org.springframework.android/spring-android-rest-template
https://mvnrepository.com/artifact/org.springframework.android/spring-android-rest-template
https://mvnrepository.com/artifact/org.springframework.android/spring-android-rest-template
https://mvnrepository.com/artifact/org.springframework.android/spring-android-rest-template
https://mvnrepository.com/artifact/org.springframework.android/spring-android-rest-template
https://mvnrepository.com/artifact/org.springframework.android/spring-android-rest-template
https://mvnrepository.com/artifact/org.springframework.android/spring-android-rest-template
https://mvnrepository.com/artifact/org.springframework.android/spring-android-rest-template

Spring Modules for Android Chapter 4

[98]

Gradle
Gradle is a build system that's used to build Android bundles (APK files) by overseeing
conditions and giving custom build logic. It is a JVM-based form framework, meaning that
you can compose your own content in Java, which Android Studio makes use of.

In Android Studio, Gradle is a custom form apparatus that's used to fabricate Android
bundles (APK files) by overseeing dependencies and giving custom form rationale. An
APK file (Android application bundle) is an extraordinarily formatted compressed file that
contains bytecode, resources (pictures, UI, XML, and so on), and manifest files.

The dependency command of how to implement these dependencies is shown in the
following code:

dependencies {
 //
https://mvnrepository.com/artifact/org.springframework.android/spring-andro
id-rest-template
 implementation 'org.springframework.android:spring-android-rest-
template:2.0.0.M3'

//
https://mvnrepository.com/artifact/org.springframework.android/spring-andro
id-core
 implementation 'org.springframework.android:spring-android-
core:2.0.0.M3'
}

repositories {
 maven {
 url 'https://repo.spring.io/libs-snapshot'
 }
}

Maven
The Android Maven module is used to build applications for the Android OS and assemble
libraries. These are to be used to create the Android Archive Library (AAR) and the
inheritance APKLIB format, thus utilizing Apache Maven.

Spring Modules for Android Chapter 4

[99]

Here is a code sample of how to add a dependency of Android in pom.xml:

<dependencies>
 <!--
https://mvnrepository.com/artifact/org.springframework.android/spring-andro
id-rest-template -->
 <dependency>
 <groupId>org.springframework.android</groupId>
 <artifactId>spring-android-rest-template</artifactId>
 <version>2.0.0.BUILD-SNAPSHOT</version>
 </dependency>

<!--
https://mvnrepository.com/artifact/org.springframework.android/spring-andro
id-core -->
 <dependency>
 <groupId>org.springframework.android</groupId>
 <artifactId>spring-android-core</artifactId>
 <version>1.0.1.RELEASE</version>
 </dependency>
</dependencies>
<repositories>
 <repository>
 <id>spring-snapshots</id>
 <name>Spring Snapshots</name>
 <url>https://repo.spring.io/libs-snapshot</url>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 </repository>
</repositories>

RestTemplate constructors
The four RestTemplate constructors are listed in the following code:

RestTemplate();
RestTemplate(boolean includeDefaultConverters);
RestTemplate(ClientHttpRequestFactory requestFactory);
RestTemplate(boolean includeDefaultConverters, ClientHttpRequestFactory
requestFactory);

Spring Modules for Android Chapter 4

[100]

This constructor has no parameter, by default. If you want to use a default set of message
converters with another RestTemplate example, you can pass TRUE as a parameter. If you
want to use another ClientHttpRequestFactory, then you need to pass it as a
parameter.

RestTemplate functions
RestTemplate gives a larger amount of functions. It has six primary HTTP functions,
which makes it simple to conjure numerous RESTful services and authorize REST best
practices. RestTemplate's strategy name pursues a naming tradition; the initial segment
demonstrates what the HTTP strategy is and the second part shows what will be returned.
There is an interface called ResponseErrorHandler in RestTemplate which is used
to determine whether a particular response has an error or not. Here are the descriptions of
the six HTTP functions.

HTTP GET
HTTP characterizes an arrangement of request functions to demonstrate the coveted
activity to be performed for a given resource. The GET function requests a description of the
predetermined resource and requests that utilizing GET should just retrieve data. GET is a
standout among the most well-known HTTP functions.

Here are the common functions of HTTP GET:

@Throws(RestClientException::class)
fun <T> getForObject(url: String, responseType: Class<T>, vararg
urlVariables: Any): T

@Throws(RestClientException::class)
fun <T> getForObject(url: String, responseType: Class<T>, urlVariables:
Map<String, *>): T

@Throws(RestClientException::class)
fun <T> getForObject(url: URI, responseType: Class<T>): T

fun <T> getForEntity(url: String, responseType: Class<T>, vararg
urlVariables: Any): ResponseEntity<T>

fun <T> getForEntity(url: String, responseType: Class<T>, urlVariables:
Map<String, *>): ResponseEntity<T>

Spring Modules for Android Chapter 4

[101]

@Throws(RestClientException::class)
fun <T> getForEntity(url: URI, responseType: Class<T>): ResponseEntity<T>

Here is an example of how to call these functions:

val restTemplate = RestTemplate()

val baseUrl: String ?= "YOUR_URL" // API URL as String
val response = restTemplate.getForEntity(baseUrl, String::class.java)

val uri = URI(baseUrl) // API URL as URL format
val responseURI = restTemplate.getForEntity(uri, String::class.java)Auth
Module

HTTP POST
HTTP POST requests that the asset at the URI accomplishes something with the given
substance. POST is often utilized to make another substance; however, it can likewise be
utilized to refresh an element.

Here are the common functions of HTTP POST:

@Throws(RestClientException::class)
fun postForLocation(url: String, request: Any, vararg urlVariables: Any):
URI

fun postForLocation(url: String, request: Any, urlVariables: Map<String,
*>): URI

@Throws(RestClientException::class)
fun postForLocation(url: URI, request: Any): URI

fun <T> postForObject(url: String, request: Any, responseType: Class<T>,
vararg uriVariables: Any): T

fun <T> postForObject(url: String, request: Any, responseType: Class<T>,
uriVariables: Map<String, *>): T

@Throws(RestClientException::class)
fun <T> postForObject(url: URI, request: Any, responseType: Class<T>): T

fun <T> postForEntity(url: String, request: Any, responseType: Class<T>,
vararg uriVariables: Any): ResponseEntity<T>

@Throws(RestClientException::class)
fun <T> postForEntity(url: String, request: Any, responseType: Class<T>,

Spring Modules for Android Chapter 4

[102]

uriVariables: Map<String, *>): ResponseEntity<T>

@Throws(RestClientException::class)
fun <T> postForEntity(url: URI, request: Any, responseType: Class<T>):
ResponseEntity<T>

Here is an example of how to call these functions:

/** POST **/

val restTemplate = RestTemplate()

val baseUrl: String ?= "YOUR_URL"
val uri = URI(baseUrl)
val body = "The Body"

val response = restTemplate.postForEntity(baseUrl, body,
String::class.java)

val request = HttpEntity(body)
val responseExchange = restTemplate.exchange(baseUrl, HttpMethod.POST,
request, String::class.java)

val responseURI = restTemplate.postForEntity(uri, body, String::class.java)
val responseExchangeURI = restTemplate.exchange(uri, HttpMethod.POST,
request, String::class.java)

HTTP PUT
To store an element at a URI, the PUT function can create a new element or update a current
one. A PUT request is idempotent. Idempotency is the fundamental contrast between the
desires for PUT versus a POST request.

Here are the common functions of HTTP PUT:

Here are the common functions -
@Throws(RestClientException::class)
fun put(url: String, request: Any, vararg urlVariables: Any)

@Throws(RestClientException::class)
fun put(url: String, request: Any, urlVariables: Map<String, *>)

@Throws(RestClientException::class)
fun put(url: String, request: Any, urlVariables: Map<String, *>)

Spring Modules for Android Chapter 4

[103]

Here is an example of how to call the functions of HTTP PUT:

val baseUrl: String ?= "YOUR_URL"
val restTemplate = RestTemplate()
val uri = URI(baseUrl)

val body = "The Body"

restTemplate.put(baseUrl, body)
restTemplate.put(uri, body)

HTTP DELETE
HTTP DELETE is a request function that is used to remove a resource. However, the
resource does not have to be removed immediately. DELETE could be an asynchronous or
long-running request.

Here are the common functions of HTTP DELETE:

@Throws(RestClientException::class)
fun delete(url: String, vararg urlVariables: Any)

@Throws(RestClientException::class)
fun delete(url: String, urlVariables: Map<String, *>)

@Throws(RestClientException::class)
fun delete(url: URI)

Here is an example of how to call these functions:

val baseUrl: String ?= "YOUR_URL"
val restTemplate = RestTemplate()
val uri = URI(baseUrl)

restTemplate.delete(baseUrl)
restTemplate.delete(uri)

HTTP OPTIONS
The HTTP OPTIONS function is utilized to depict the correspondence options for the target
resource. The client can indicate a URL for the OPTIONS method, or a reference mark, (*),
to allude to the whole server.

Spring Modules for Android Chapter 4

[104]

Here are the common functions of HTTP OPTIONS:

@Throws(RestClientException::class)
fun optionsForAllow(url: String, vararg urlVariables: Any): Set<HttpMethod>

@Throws(RestClientException::class)
fun optionsForAllow(url: String, urlVariables: Map<String, *>):
Set<HttpMethod>

@Throws(RestClientException::class)
fun optionsForAllow(url: URI): Set<HttpMethod>

Here is an example of how to call the functions:

val baseUrl: String ?= "YOUR_URL"
val restTemplate = RestTemplate()
val allowHeaders = restTemplate.optionsForAllow(baseUrl)

val uri = URI(baseUrl)
val allowHeadersURI = restTemplate.optionsForAllow(uri)

HTTP HEAD
In the current version of Spring (4.3.10), HEAD is automatically supported.

@RequestMapping functions mapped to GET are also implicitly mapped to HEAD, meaning
that there is no need to have HEAD explicitly declared. An HTTP HEAD request is processed
as if it were an HTTP GET, but instead of writing the body, only the number of bytes is
counted, as well as the Content-Length header set.

Here are the common functions of HTTP HEAD:

@Throws(RestClientException::class)
fun headForHeaders(url: String, vararg urlVariables: Any): HttpHeaders

@Throws(RestClientException::class)
fun headForHeaders(url: String, urlVariables: Map<String, *>): HttpHeaders

@Throws(RestClientException::class)
fun headForHeaders(url: URI): HttpHeaders

Spring Modules for Android Chapter 4

[105]

Retrofit
Retrofit is a library that makes parsing an API reaction simple and better for utilization in
the application. Retrofit is a REST client for Java and Android that makes it moderately
simple to recover and transfer JSON by means of a REST-based web service. In Retrofit, you
can arrange which converter is utilized for the information serialization. Normally, for
JSON, you utilize Gson, but you can add custom converters to process XML or different
conventions. Retrofit utilizes the OkHttp library for HTTP requests.

The use of Retrofit
To work with Retrofit, you will require the following three classes:

A model class, which is utilized as a JSON model
Interfaces that characterize the conceivable HTTP activities
 The Retrofit.Builder class, which utilizes the interface and the developer
programming interface to permit characterizing the URL endpoint for HTTP
activities.

Each function of an interface speaks to one conceivable programming interface call. It must
have an HTTP annotation (GET, POST, DELETE, and so on) to determine the request type
and the relative URL.

Advantages of Retrofit
Retrofit is very easy to utilize. It basically gives you a chance to regard programming
interface calls as straightforward Java method calls, so you just characterize which URLs to
hit and the request/reaction parameters as Java classes.

The whole system call, plus JSON/XML parsing, is totally taken care of by Retrofit (with
assistance from Gson for JSON parsing), alongside support for self-assertive formats with
pluggable serialization/deserialization.

Configuring Retrofit
Of course, Retrofit can just deserialize HTTP bodies into OkHttp's ResponseBody type and
it can acknowledge its RequestBody type for @Body.

Spring Modules for Android Chapter 4

[106]

Converters can be added in order to support different sorts. Seven kinds of modules adjust
mainstream serialization libraries for your benefit. These include the following libraries:

Gson: com.squareup.retrofit2:converter-gson
Jackson: com.squareup.retrofit2:converter-jackson
Moshi: com.squareup.retrofit2:converter-moshi
Protobuf: com.squareup.retrofit2:converter-protobuf
Wire: com.squareup.retrofit2:converter-wire
Simple XML: com.squareup.retrofit2:converter-simplexml
Scalars (primitives, boxed, and String):
com.squareup.retrofit2:converter-scalars

Downloading Retrofit
Download the latest JAR from https:/ /search. maven. org/remote_ content? g= com.
squareup.retrofit2 a=retrofit v=LATEST.

Alternatively, you can inject the dependency via Maven with the following code:

<dependency>
 <groupId>com.squareup.retrofit2</groupId>
 <artifactId>retrofit</artifactId>
 <version>2.4.0</version>
</dependency>

Alternatively, you can use Gradle, as per the following code:

implementation 'com.squareup.retrofit2:retrofit:2.4.0'
implementation 'com.squareup.retrofit2:converter-gson:2.3.0'
compile 'com.jakewharton.picasso:picasso2-okhttp3-downloader:1.1.0'

HTTP request functions
Each function must have an HTTP annotation that gives the request function and relative
URL. There are five built-in annotations—GET, POST, PUT, DELETE, and HEAD. The overall
URL of the asset is indicated in the annotation.

Let's take a look at the use of these annotations. We are considering all the URLs based on
GitHub API v3 (https:/ /developer. github. com/ v3/).

https://search.maven.org/remote_content?g=com.squareup.retrofit2&a=retrofit&v=LATEST
https://search.maven.org/remote_content?g=com.squareup.retrofit2&a=retrofit&v=LATEST
https://search.maven.org/remote_content?g=com.squareup.retrofit2&a=retrofit&v=LATEST
https://search.maven.org/remote_content?g=com.squareup.retrofit2&a=retrofit&v=LATEST
https://search.maven.org/remote_content?g=com.squareup.retrofit2&a=retrofit&v=LATEST
https://search.maven.org/remote_content?g=com.squareup.retrofit2&a=retrofit&v=LATEST
https://search.maven.org/remote_content?g=com.squareup.retrofit2&a=retrofit&v=LATEST
https://search.maven.org/remote_content?g=com.squareup.retrofit2&a=retrofit&v=LATEST
https://search.maven.org/remote_content?g=com.squareup.retrofit2&a=retrofit&v=LATEST
https://search.maven.org/remote_content?g=com.squareup.retrofit2&a=retrofit&v=LATEST
https://search.maven.org/remote_content?g=com.squareup.retrofit2&a=retrofit&v=LATEST
https://search.maven.org/remote_content?g=com.squareup.retrofit2&a=retrofit&v=LATEST
https://search.maven.org/remote_content?g=com.squareup.retrofit2&a=retrofit&v=LATEST
https://search.maven.org/remote_content?g=com.squareup.retrofit2&a=retrofit&v=LATEST
https://search.maven.org/remote_content?g=com.squareup.retrofit2&a=retrofit&v=LATEST
https://search.maven.org/remote_content?g=com.squareup.retrofit2&a=retrofit&v=LATEST
https://search.maven.org/remote_content?g=com.squareup.retrofit2&a=retrofit&v=LATEST
https://search.maven.org/remote_content?g=com.squareup.retrofit2&a=retrofit&v=LATEST
https://search.maven.org/remote_content?g=com.squareup.retrofit2&a=retrofit&v=LATEST
https://search.maven.org/remote_content?g=com.squareup.retrofit2&a=retrofit&v=LATEST
https://search.maven.org/remote_content?g=com.squareup.retrofit2&a=retrofit&v=LATEST
https://search.maven.org/remote_content?g=com.squareup.retrofit2&a=retrofit&v=LATEST
https://search.maven.org/remote_content?g=com.squareup.retrofit2&a=retrofit&v=LATEST
https://search.maven.org/remote_content?g=com.squareup.retrofit2&a=retrofit&v=LATEST
https://search.maven.org/remote_content?g=com.squareup.retrofit2&a=retrofit&v=LATEST
https://search.maven.org/remote_content?g=com.squareup.retrofit2&a=retrofit&v=LATEST
https://search.maven.org/remote_content?g=com.squareup.retrofit2&a=retrofit&v=LATEST
https://search.maven.org/remote_content?g=com.squareup.retrofit2&a=retrofit&v=LATEST
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/

Spring Modules for Android Chapter 4

[107]

GET
Let's assume that you want to get a response to your details from your GitHub account.
You need to use the following endpoint with the @GET function to get the user's info:

@GET("group/{id}/users")
Call<List<Users>> groupList(@Path("id") int id);

Let's assume that you want to create a new repo in your GitHub account. Here, you need to
use the following endpoint with the @POST function:

@POST("user/repos")
fun createRepo(@Body repo:Repository,
 @Header("Authorization") accessToken: String,
 @Header("Accept") apiVersionSpec: String,
 @Header("Content-Type") contentType: String):
Call<Repository>

PUT
Let's assume that you want to update a GitHub Gist object. You need to use the following
endpoint with the @PUT function:

@PUT("gists/{id}")
fun updateGist(@Path("id") id: String,
 @Body gist: Gist): Call<ResponseBody>

DELETE
Let's assume that you want to delete a repository from your GitHub account. In this case,
you need to use the following endpoint with the @DELETE function:

@DELETE("repos/{owner}/{repo}")
 fun deleteRepo(@Header("Authorization") accessToken: String,
 @Header("Accept") apiVersionSpec: String,
 @Path("repo") repo: String,
 @Path("owner") owner: String): Call<DeleteRepos>

HEAD
A request header can be refreshed progressively using the @Header annotation. If the value
is invalid, the header will be overlooked:

// example one

Spring Modules for Android Chapter 4

[108]

@GET("user")
Call<User> getUser(@Header("Authorization") String authorization)

// example two
@Headers("Accept: application/vnd.github.v3.full+json", "User-Agent: Spring
for Android")
@GET("users/{username}")
fun getUser(@Path("username") username: String): Call<Users>

Creating an Android app
Let's create a simple Android app as a client that will retrieve the REST API using the
GitHub API. First of all, we need to create an app from Android Studio and put down our
project and the company domain. Don't forget to check Include Kotlin support. It will
include all of the support of Kotlin. The following screenshot shows the Create Android
Project window:

Spring Modules for Android Chapter 4

[109]

Then, select the minimum API version from the Phone and Tablet option. There is no need
to add other options for this project. After clicking Next, in the Add an Activity to
Mobile section, you can select Empty Activity and then, after renaming the Activity Name
and layout, click Finish. After the build, you will be ready to start creating an Android app.

The final files of this project are shown in the following screenshot:

Spring Modules for Android Chapter 4

[110]

Gradle information
Here are the details of my Android Studio's Gradle file:

buildscript {
 ext.kotlin_version = '1.3.10'
 repositories {
 google()
 jcenter()
 }
 dependencies {
 classpath 'com.android.tools.build:gradle:3.2.1'
 classpath "org.jetbrains.kotlin:kotlin-gradle-
plugin:$kotlin_version"

 // NOTE: Do not place your application dependencies here; they
belong
 // in the individual module build.gradle files
 }
}

allprojects {
 repositories {
 google()
 jcenter()
 }
}

task clean(type: Delete) {
 delete rootProject.buildDir
}

Gradle dependencies
We will use Retrofit and its features, so we need to implement all the dependencies, as
shown in the following code:

 implementation 'com.squareup.retrofit2:retrofit:2.4.0'
 implementation 'com.squareup.retrofit2:converter-gson:2.4.0'

 implementation 'com.squareup.retrofit2:retrofit-converters:2.5.0'
 implementation 'com.squareup.retrofit2:retrofit-adapters:2.5.0'
 implementation 'com.squareup.okhttp3:logging-interceptor:3.12.0'
 implementation 'com.google.code.gson:gson:2.8.5'

Spring Modules for Android Chapter 4

[111]

Creating a model
We will use the GitHub API. You can check all the REST API URLs at https:/ / api.
github.com/. We will use the simplest API, which has no security issues. We will show the
list of a user's repositories. The API is https:/ / api.github. com/ users/ {user}/ repos. You
need a GET HTTP function with a username parameter.

The following screenshot shows the output of the REST API:

The left-hand side of the preceding screenshot shows part of the content of a repo and the
right-hand side is the collapsed total repo list.

https://api.github.com/
https://api.github.com/
https://api.github.com/
https://api.github.com/
https://api.github.com/
https://api.github.com/
https://api.github.com/
https://api.github.com/
https://api.github.com/
https://api.github.com/users/%7Buser%7D/repos
https://api.github.com/users/%7Buser%7D/repos
https://api.github.com/users/%7Buser%7D/repos
https://api.github.com/users/%7Buser%7D/repos
https://api.github.com/users/%7Buser%7D/repos
https://api.github.com/users/%7Buser%7D/repos
https://api.github.com/users/%7Buser%7D/repos
https://api.github.com/users/%7Buser%7D/repos
https://api.github.com/users/%7Buser%7D/repos
https://api.github.com/users/%7Buser%7D/repos
https://api.github.com/users/%7Buser%7D/repos
https://api.github.com/users/%7Buser%7D/repos
https://api.github.com/users/%7Buser%7D/repos
https://api.github.com/users/%7Buser%7D/repos
https://api.github.com/users/%7Buser%7D/repos

Spring Modules for Android Chapter 4

[112]

So, according to the API, we will create a user model for the client side. Here is the model
class named GitHubUserModel.kt, where we will show only the name of the list of all the
repos:

class GitHubUserModel {
 val name: String? = null
}

Create an interface that will have the HTTP request functions. In this project, we will only
use a GET function that retrieves all the details of the users. Here, we are using
the GET Retrofit annotation to encode details about the parameters and the request
function. For this function, our endpoint is /users/{user}/repos, where you need to
add a parameter of the userName and it will provide a list of UserModel.

Here is the code of the GithubService interface:

interface GithubService {
 @GET("/users/{user}/repos")
 fun reposOfUser(@Path("user") user: String):
Call<List<GitHubUserModel>>
}

Implementing a service
This class is responsible for the main task. It will be responsive for the control of all the
tasks using the Retrofit.builder class and will configure it with the base of the given
URL.

Here is the code of UserServiceImpl.kt:

class GithubServiceImpl{
 fun getGithubServiceFactory(): GithubService {
 val retrofit = Retrofit.Builder()
 .baseUrl("https://api.github.com/")
 .addConverterFactory(GsonConverterFactory.create())
 .build()
 return retrofit.create(GithubService::class.java)
 }
}

Here, our baseUrl() is https://api.github.com/.

Spring Modules for Android Chapter 4

[113]

Calling callback
Here, we are calling CallBack<> from the MainActivity. This callback will have
the response of the REST API request.

Let's check the MainActivity.kt code:

class MainActivity : AppCompatActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)

 val githubService: GithubService =
GithubServiceImpl().getGithubServiceFactory()

 val call: Call<List<GitHubUserModel>> =
githubService.reposOfUser("sunnat629")
 call.enqueue(object: Callback<List<GitHubUserModel>>{
 override fun onFailure(call: Call<List<GitHubUserModel>>, t:
Throwable) {
 Log.wtf("PACKTPUB", t.message)
 }

 override fun onResponse(call: Call<List<GitHubUserModel>>,
response: Response<List<GitHubUserModel>>) {
 val listItems = arrayOfNulls<String>(
response.body()!!.size)
 for (i in 0 until response.body()!!.size) {
 val recipe = response.body()!![i]
 listItems[i] = recipe.name
 }
 val adapter = ArrayAdapter<String>(this@MainActivity,
android.R.layout.simple_list_item_1, listItems)
 displayList.adapter = adapter
 }
 })
 }
}

Spring Modules for Android Chapter 4

[114]

First of all, we need to initialize
GithubServiceImpl().getGithubServiceImpl(username,password) so that we can
call reposOfUser() from UserService. Here, I add my GitHub username in the
parameter. Then, we will call enqueue(retrofit2.Callback<T>), which will
be executed asynchronously and send the request and get the response. It has two
functions—onResponse() and onFailure(). If there is any server-related error, then it
will call onFailure(), and if it gets the response and the resources, it will
call onResponse(). We can use the resources of the onResponse() function for this.

Here, we will get a response of the UserModel list. So, we can use this list to show our
REST output in our application UI.

Creating an interface
We will show a list of the user's details and the names of all the repos. Here, we will use
ListView.

Here is the code of the acitivity_main.xml file:

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity">

 <ListView
 android:id="@+id/displayList"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

</android.support.constraint.ConstraintLayout>

Spring Modules for Android Chapter 4

[115]

We will use this listview in the onResponse() function of MainActivity.

We will get the list and create a custom adapter to show the user list, as shown in the
following code:

val listItems = arrayOfNulls<String>(response.body()!!.size)
for (i in 0 until response.body()!!.size) {
 val recipe = response.body()!![i]
 listItems[i] = recipe.name
}
val adapter = ArrayAdapter<String>(this@MainActivity,
android.R.layout.simple_list_item_1, listItems)
displayList.adapter = adapter

Here, we get the list of repos and convert them into an array. Then, we create the native
adapter for the list with val adapter =
ArrayAdapter<String>(this@MainActivity,

android.R.layout.simple_list_item_1, listItems) and set the adapter in our list
with displayList.adapter = adapter.

You should never perform long-running tasks on the main thread. It will
incur an Application Not Responding (ANR) message.

Spring Modules for Android Chapter 4

[116]

Mobile applications
So, after everything, run your server. Then, run your app. The following screenshot shows
the output of our app:

 You can modify this as you wish, although you have to be careful about the endpoint and
the model.

Spring Modules for Android Chapter 4

[117]

Summary
In this chapter, we have given a quick presentation of the ideas driving REST and the REST
client modules. The RESTful HTTP way of dealing with uncovering functionality is unique.
We have seen the different libraries of REST client functions. First, we saw what
RestTemplate is and its implementation in an Android application. Now, we know about
the constructors of RestTemplate and its functionalities. Furthermore, we have learned
about Retrofit, allowing us to actualize Retrofit in an Android application. We have also
seen the utilization of its functionalities. Lastly, we look at how to implement Retrofit to get
data from a REST API.

In the following chapters, we will develop a total project, including security,
authorization/authentication, a database, and a custom REST API, with the Spring and
Android application to deal with the API as a client. In these chapters, you will explore the
full usage of the API and prepare to figure out how to make an API for a server and recover
it from the client.

Questions
What is the difference between REST and RESTful?1.
What is the architectural style for creating a web API?2.
What tools are required to test your web API?3.
What are RESTful web services?4.
What is a URI? What is the purpose of a URI in REST-based web services?5.
What does the HTTP Status Code 200 state? 6.
What does the HTTP Status Code 404 state?7.

Further reading
Hands-On RESTful API Design Patterns and Best Practices (https:/ /www. packtpub.
com/application- development/ hands- restful- api-design- patterns- and-
best-practices), by Pethuru Raj, Anupama Raman, and Harihara Subramanian
Building a RESTful Web Service with Spring (https:/ / www.packtpub. com/ web-
development/ building- restful- web- service- spring), by Ludovic Dewailly

https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring
https://www.packtpub.com/web-development/building-restful-web-service-spring

5
Securing Applications with

Spring Security
Security is one of the first priorities for the enterprise, e-commerce, and banking projects.
These projects need to create a security system since they exchange millions of dollars and
store the protected resources of an organization.

Spring Security is a sub-task of the immense Spring Framework portfolio. It has been
upgraded to be utilized with a Spring MVC web application framework, yet can similarly
be utilized with Java servlets. This supports authentication incorporation with a long list of
other technologies, such as Lightweight Directory Access Protocol (LDAP), Java
Authentication and Authorization Service (JAAS), and OpenID. It was developed as a
complete security solution for Java-based enterprise environments.

In this chapter, we'll learn about Spring Security and its modules and learn how to
implement security in a Spring-based project. The following topics will be covered in this
chapter:

Spring Security architecture
The advantages of Spring Security
Spring Security features
Spring Security modules
Implementing Spring Security
Securing REST with Spring Security basic authentication
Securing REST with Spring Security OAuth2

Securing Applications with Spring Security Chapter 5

[119]

Technical requirements
You need to add these dependencies to enable and use the features of Spring Security. Here
are the dependencies that need to be added to the pom.xml file of the Spring project:

<dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>Spring_Security_SUB_Module_Name</artifactId>
 <version>CURRENT_RELEASE_VERSION</version>
</dependency>

<dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-core</artifactId>
 <version>5.1.1.RELEASE</version>
</dependency>

You can find all the examples from this chapter on GitHub
at https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Deve
lopment/tree/master/Chapter05.

Spring Security architecture
Spring Security is the security service solution for a J2EE-based enterprise production. This
helps to develop a secured application in a faster and easier way with the use of its
particular dependency-injection principles. To develop a secure J2EE-based enterprise
application, Spring Security is an incredible and flexible authentication and authorization
framework. Authentication is the process of checking the identity of a procedure or a client.
On the other hand, authorization implies a procedure of checking the authority of a client
to perform activities in the application.

Authentication
Authentication is the process that identifies a user or client based on their username and
password. It helps a user to get the access protected system objects based on their identity.
For the authentication procedure, spring security gives us the AuthenticationManager
interface. This interface has just a single capacity, named validate().

https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter05

Securing Applications with Spring Security Chapter 5

[120]

The accompanying snippet of code is an example of the AuthenticationManager
interface:

interface AuthenticationManager {
 @Throws(AuthenticationException::class)
 fun authenticate(authentication: Authentication): Authentication
}

Three tasks are completed by the authenticate() in this AuthenticationManager
interface:

authenticate() returnsAuthentication on the off-chance that its capacity
can check that the input represents a valid principle. The previously-mentioned
code generally returns authenticated=true.
In the event that the capacity finds that the input doesn't speak to a substantial
rule, it tosses AuthenticationException.
In the event that the capacity can't choose anything, it will return null.

AuthenticationException is a runtime exception. An application handles this exception
in a conventional way.

ProviderManager is often used to implement AuthenticationManager, and represents
a chain of AuthenticationProvider objects. If there's no parent accessible, it
throws AuthenticationException.

AuthenticationProvider resembles AuthenticationManager, but has an additional
function. This additional function enables the client to query on the off-chance that it
supports a given Authentication type.

Here's some code of the AuthenticationProvider interface:

interface AuthenticationProvider {
 @Throws(AuthenticationException::class)
 fun authenticate(authentication:Authentication):Authentication
 fun supports(authentication: Class<*>): Boolean
}

Securing Applications with Spring Security Chapter 5

[121]

This interface has two functions—authenticate() returns the user's authentication
details and supports() returns a Boolean if the authentication and given username-
password pair matches, or doesn't.

Here is a diagram of the AuthenticationManager hierarchy utilizing ProviderManager:

According to this diagram, in an application, ProviderManager may have a group of
other ProviderManager instances but the first one will behave as a parent.
Every ProviderManager may have multiple AuthenticationManager. For example, if
all web resources are under the same path, every group will have its own dedicated
AuthenticationManager. However, there will be only one common parent, which will
act as a global resource and will be shared by these dedicated AuthenticationManager
instances. Now, let's see how to modify the authentication manager.

Modifying authentication managers
Spring Security provides some configuration helpers to set up authentication manager
features in your application. This will help to get the features
quickly. AuthenticationManagerBuilder helps to modify the authentication managers.

Here is an example of how to implement AuthenticationManagerBuilder in
the ApplicationSecurity.kt class:

class ApplicationSecurity: WebSecurityConfigurerAdapter() {
 @Autowired
 fun initialize(builder: AuthenticationManagerBuilder, dataSource:

Securing Applications with Spring Security Chapter 5

[122]

DataSource){
builder.jdbcAuthentication().dataSource(dataSource).withUser("Sunnat629").p
assword("packtPub").roles("USER")
 }
}

Here, we have given a username, sunnat629, and a password, packtPub, as a USER role in
this application.

Spring Boot accompanies a default global AuthenticationManager,
which is sufficiently secure. You can supplant it by giving your own
AuthenticationManager bean.

Authorization
Authorization is the process of accepting or rejecting access to network resources. It will
grant access to utilize the data from the resources. After the Authentication process, the
Authorization process begins. Authorization is used to deal with controlling access.
AccessDecisionManager is one of the core entities of this.

Web security
The servlet channels of spring security provide web security. The
@WebSecurityConfigurer annotation is used to enable the web security and
override WebSecurityConfigurerAdapter in the web security class.

Method Security
This is a module of a security method that's provided by Spring Security. We can provide a
role in a particular function so that role-based users can access the function.

The following annotation is used to enable this feature:

 @EnableGlobalMethodSecurity(securedEnabled = true)

Securing Applications with Spring Security Chapter 5

[123]

Here's an example of how to enable method security in the
SpringSecurityApplication.kt class, which is the main application class of our demo
project:

@SpringBootApplication
@EnableGlobalMethodSecurity(securedEnabled = true)
class SpringSecurityApplication{

 fun main(args: Array<String>) {
 runApplication<SpringSecurityApplication>(*args)
 }
}

Now you can create the method resources, such as the following code:

@Secured
class CustomService{
 @Secured
 fun secure(): String{
 return "The is Secured..."
 }
}

Here, we created a secured class named CustomService using the @Secured annotation,
and then created a secured function that will return a spring. The @Secured annotation is
used to specify a list of roles on a function.

The advantages of Spring Security
The Spring Security framework provides the following advantages:

Spring Security is an open source security framework
It supports authentication and authorization
It protects against common tasks
It can be integrated with Spring MVC and the Servlet API
It supports Java and Kotlin configuration support
It's easy to develop and unit-test the applications
Spring dependency injection and AOP can be used with ease
It develops loosely-coupled applications

Securing Applications with Spring Security Chapter 5

[124]

Spring Security features
There are a lot of features that are implemented in Spring Security.

Here, we have explained some common and major features:

LDAP: LDAP is an open application protocol. This maintains and accesses
distributed directory data services over the internet.
OAuth 2.0 login: This component makes it possible for the client to log into the
application by utilizing their existing accounts on Google, Facebook, Twitter, or
GitHub.
Basic access authentication: This gives a username and password when a client
requests them over the network.
Digest access authentication: This asks the program to affirm the identity of the
client before sending personal information over the system.
Web form authentication: In this authentication system, a web form collects and
authenticates user credentials from the web browser.
Authorization: Spring Security offers this feature to approve of the client before
getting the assets.
HTTP authorization: This refers to the HTTP authorization of web request URLs.
It uses Apache Ant paths or regular expressions.
Reactive support: This provides reactive programming and web runtime
support.
Modernized password encoding: A new password encoder,
named DelegatingPasswordEncoder, is introduced from Spring Security 5.0.
Single sign-on: This feature allows a client to access multiple applications with a
single account.
JAAS: JAAS is a Pluggable Authentication Module that's implemented in Java.
Remember-me: Spring Security utilizes HTTP cookies, which remember a client's
login ID and password in order to maintain a strategic distance from login again
until the client logs out.
Software localization: You can create the user interface of an application in any
human language.

Securing Applications with Spring Security Chapter 5

[125]

Spring Security modules
The Spring Security module has been isolated into a few sub-modules in Spring Security
3.0. However, in the present version, there are 12 submodules. To support these modules,
the code is sub-partitioned into isolated containers. These containers are currently
disengaged, where every submodule has a diverse useful area and third-party
dependencies.

Here is a list of sub-module jars:

spring-security-core.jar

spring-security-remoting.jar

spring-security-web.jar

spring-security-config.jar

spring-security-ldap.jar

spring-security-oauth2-core.jar

spring-security-oauth2-client.jar

spring-security-oauth2-jose.jar

spring-security-acl.jar

spring-security-cas.jar

spring-security-openid.jar

spring-security-test.jar

The Spring Security Core sub-module is the base module for the rest of the
Security sub-modules, such as web, config, and oauth2.

Implementing Spring Security
If you want to use Spring Security in your project, you need to implement the Spring
Security dependencies that you want to use in both Maven and Gradle.

Let's take a look at how to implement the Spring Security dependencies in both Maven and
Gradle.

Securing Applications with Spring Security Chapter 5

[126]

Maven
To implement the security dependencies, you need to implement spring-security-core
in pom.xml:

<dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>Spring_Security_SUB_Module_Name</artifactId>
 <version>CURRENT_RELEASE_VERSION</version>
</dependency>

<!--here is an example of a security core sub-modules-->
<dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-core</artifactId>
 <version>5.1.1.RELEASE</version>
</dependency>

Gradle
To implement the dependencies, you need to put the following code in build.gradle:

dependencies {
 implementation
'org.springframework.security:[Spring_Security_SUB_Module_Name]:CURRENT_REL
EASE_VERSION'
}

// here is an example of a security core sub-modules
dependencies {
 implementation 'org.springframework.security:[spring-security-
core]:5.1.1.RELEASE'
}

Securing REST with basic authentication
Within this topic, we'll learn basic authentication with a simple project. Here, we'll create an
example where you'll build a secure REST API. We'll make a project and implement the
basic authentication. This will help us to avoid the basic configuration and complete Kotlin
config duration. For this project, you must enter your username and password to access the
content. This project has no UI and therefore you need to use an HTTP client to test the
project. Here, we're using Insomnia (https:/ /insomnia. rest/ download/). You can test
your project and access the content from here.

https://insomnia.rest/download/
https://insomnia.rest/download/
https://insomnia.rest/download/
https://insomnia.rest/download/
https://insomnia.rest/download/
https://insomnia.rest/download/
https://insomnia.rest/download/
https://insomnia.rest/download/
https://insomnia.rest/download/
https://insomnia.rest/download/

Securing Applications with Spring Security Chapter 5

[127]

Before starting with our project, we'll learn about basic authentication and its use.

What is basic authentication?
Basic authentication is the simplest authentication scheme, which is built into the HTTP
protocol. To use it, the client needs to send HTTP requests with the authentication header,
which contains the word Basic followed by a space. Then, the given string of username and
password will be considered as username/password and encoded into Base64. For
example, if the username and password are Sunnat629 and pa$$worD, these will be
converted into Base64 encoding, which will be U3VubmF0NjI5L3BhcyQkd29yRA== as
authorized. Finally, the client will send Authorization:
Basic U3VubmF0NjI5L3BhcyQkd29yRA== to the server.

Base64 can easily be decoded. This is neither encrypted nor hashed. If you
want to use the basic authentication, we highly recommend using this
together with other security tools, such as HTTPS/SSL.

Creating a project
We'll create a small project where we'll implement the basic authentication security to
protect the data. A user needs to be accepted by our security system to access the data. Let's
create the project with the given steps:

To create the project, go to the https:/ /start. spring. io/ and modify the given1.
field with your requirement. You can check our project information in the
following screenshot:

https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/

Securing Applications with Spring Security Chapter 5

[128]

Here, we're using Maven Project and selecting the language as Kotlin and the
Spring Boot version as 2.1.1 (SNAPSHOT).

We've added the Security, Web, and DevTools dependencies. You can check the
list in pom.xml.

When you select Generate Project, you'll get the project as a ZIP file. Unzip3.
and open this project with your IDE.

Securing Applications with Spring Security Chapter 5

[129]

It will take a moment to download and update the Maven dependencies. Here's a4.
screenshot of your project's content:

If you need to add new dependencies or update the versions, modify pom.xml. If you want
to create kotlin files, you need to create files under the
src->main->kotlin->{Package_NAME} folder.

Configuring pom.xml
In this pom.xml, you'll have all the information regarding the project. Here, you can insert
new dependencies, update versions, and so on. Here is the sample pom.xml (the full code is
on the GitHub, at https:/ / github. com/ PacktPublishing/ Learn- Spring- for- Android-
Application-Development/ tree/ master/ Chapter05:

<groupId>com.packtpub.sunnat629</groupId>
<artifactId>ssbasicauth</artifactId>
<version>0.0.1-SNAPSHOT</version>

https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter05
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter05

Securing Applications with Spring Security Chapter 5

[130]

<packaging>jar</packaging>

<name>Spring Security Basic Authentication</name>
<description>A sample project of Spring Security Basic
Authentication</description>

<properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
 <java.version>1.8</java.version>
 <kotlin.version>1.3.0</kotlin.version>
</properties>

<dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 <dependency>
 <groupId>com.fasterxml.jackson.module</groupId>
 <artifactId>jackson-module-kotlin</artifactId>
 </dependency>
 <dependency>
 <groupId>org.jetbrains.kotlin</groupId>
 <artifactId>kotlin-stdlib-jdk8</artifactId>
 </dependency>
 <dependency>
 <groupId>org.jetbrains.kotlin</groupId>
 <artifactId>kotlin-reflect</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-test</artifactId>
 <scope>test</scope>
 </dependency>

Securing Applications with Spring Security Chapter 5

[131]

</dependencies>

Configuring a Spring bean
To configure a Spring bean, we'll create an application file named
SSBasicAuthApplication.kt and use Java configuration, which configures Spring
Security without writing any XML code.

Here's a simple code for the application file (SSBasicAuthApplication.kt):

@ComponentScan(basePackages = ["com.packtpub.sunnat629.ssbasicauth"])
@SpringBootApplication
class SSBasicAuthApplication: SpringBootServletInitializer()

fun main(args: Array<String>) {
 runApplication<SSBasicAuthApplication>(*args)
}

Here, we've extended SpringBootServletInitializer. This runs SpringApplication
from a traditional WAR archive. This class is responsible for binding the Servlet, Filter,
and ServletContextInitializer beans from the application context to the server.

@SpringBootApplication is a convenience annotation that's equivalent to declaring
@Configuration and @EnableAutoConfiguration for this SSBasicAuthApplication
class.

Mention a package name or a collection of package names in the
@ComponentScan annotation to specify the base packages. This is used with the
@Configuration annotation to tell Spring packages to scan for annotated components.

Configuration for Spring Security
To add the configuration for Spring Security of our project, create a file
named SSConfig.kt in the application package using the following code:

@Configuration
@EnableWebSecurity
class SSConfig: WebSecurityConfigurerAdapter() {

 @Autowired

Securing Applications with Spring Security Chapter 5

[132]

 private val authEntryPoint: AuthenticationEntryPoint? = null

 @Throws(Exception::class)
 override fun configure(http: HttpSecurity) {
 http.csrf().disable().authorizeRequests()
 .anyRequest().authenticated()
 .and().httpBasic()
 .authenticationEntryPoint(authEntryPoint)
 }

 @Autowired
 @Throws(Exception::class)
 fun configureGlobal(auth: AuthenticationManagerBuilder) {
 auth.inMemoryAuthentication()
 .withUser("sunnat629")
.password(PasswordEncoderFactories.createDelegatingPasswordEncoder()
 .encode("password"))
 .roles("USER")
 }
}

We've annotated this class with @Configuration, which helps in the Spring annotation-
based configuration. @EnableWebSecurity will enable the web security support of Spring
Security.

We've extended WebSecurityConfigurerAdapter and this will give us access to
overriding and customizing the Spring features. We're using HTTP Basic Authentication
and all of our requests will be authenticated using this.

If the authentication fails, we need to handle this. To do so, create an authentication entry
point class named AuthenticationEntryPoint.kt and autowire it. It will help to retry
this process again in case of the failure.

Here we are using the sunnat629 username, the password password, and the USER role.

Configuring an authentication entry point
Configure the authentication entry point to handle the failed authentication. When the
credentials aren't authorized, this class is mainly responsible for sending the response.

Here's the code of an authentication entry point class named
AuthenticationEntryPoint.kt:

@Component
class AuthenticationEntryPoint : BasicAuthenticationEntryPoint() {

Securing Applications with Spring Security Chapter 5

[133]

 @Throws(IOException::class, ServletException::class)
 override fun commence(request: HttpServletRequest,
 response: HttpServletResponse,
 authEx: AuthenticationException) {
 response.addHeader("WWW-Authenticate", "Basic realm=$realmName")
 response.status = HttpServletResponse.SC_UNAUTHORIZED
 val writer = response.writer
 writer.println("HTTP Status 401 - " + authEx.message)
 }

 @Throws(Exception::class)
 override fun afterPropertiesSet() {
 realmName = "packtpub ssbasicauth"
 super.afterPropertiesSet()
 }
}

Here, we've extended BasicAuthenticationEntryPoint(). This will return a full
description of a 401 Unauthorized response to the client.

401 Unauthorized Error is an HTTP response status code. This indicates that the
request sent by the client couldn't be authenticated.

Configuring Spring WebApplicationInitializer
A Spring WebApplicationInitializer uses a Servlet 3.0+ implementation to configure
ServletContext programmatically.

Here's the sample code of the WebApplicationInitializer class,
called MyApplicationInitializer.kt:

class MyApplicationInitializer: WebApplicationInitializer {

 @Throws(ServletException::class)
 override fun onStartup(container: ServletContext) {

 val ctx = AnnotationConfigWebApplicationContext()
 ctx.servletContext = container
 val servlet = container.addServlet("dispatcher",
DispatcherServlet(ctx))
 servlet.setLoadOnStartup(1)
 servlet.addMapping("/")
 }
}

Securing Applications with Spring Security Chapter 5

[134]

This class will help to map the project URL path, "\", using start. As we are using a code-
based annotation in place of an XML configuration, we are
using AnnotationConfigWebApplicationContext.

 Then we have created and registered the dispatcher servlet.

Creating a user model
By accessing a simple REST API, we're creating a user model class. When the client inputs a
correct username and password, this will return a simple JSON output of some user details.

Here is the code of Users.kt:

class Users(val id: String,
 val name: String,
 val email: String,
 val contactNumber: String)

 In this user model, we have an id, a name, an email, and a contactNumber. We'll create a
JSON-type REST API that will be protected by our security system.

Creating a controller
The controller class will map the URL path of the project. Here, we will use the GET or POST
HTTP request functions to create the REST API. Here's a sample code of the controller of the
project, named UserController.kt:

@RestController
class UserController {

 @GetMapping(path = ["/users"])
 fun userList(): ResponseEntity<List<Users>>{
 return ResponseEntity(getUsers(), HttpStatus.OK)
 }

 private fun getUsers(): List<Users> {
 val user = Users("1","Sunnat", "sunnat123@gmail.com", "0123456789")
 val user1 = Users("2","Chaity", "chaity123@gmail.com",
"1234567890")
 val user2 = Users("3","Jisan", "jisan123@gmail.com", "9876543210")
 val user3 = Users("4","Mirza", "mirza123@gmail.com", "5412309876")
 val user4 = Users("5","Hasib", "hasib123@gmail.com", "5678901234")

 return Arrays.asList<Users>(user, user1, user2, user3, user4)

Securing Applications with Spring Security Chapter 5

[135]

 }
}

Here, we've created a user list of five people with the user model. In a controller, the
@RequestMapping annotation is applied to the class level and/or the method level. This
maps a particular request path onto a controller. With the @GetMapping(path =
["/users"]) annotation, the client will send a GET request to get the list of the users if the
Http status is OK.

Using the HTTP client
To see the output, open your third-party HTTP client tools. Here, we're using Insomnia.

After you run the project, open Insomnia.

Please follow these steps to test the project:

Create a New Request with a name.1.
In the GET input box, put the http://localhost:8080/user URL.2.
Here, localhost:8080 is the root URL and as we use @RequestMapping(path
= ["/user"], method = [RequestMethod.GET]) in the controller class, the
project will work under the http://localhost:8080/user path.
If you hit the Send button, you'll see an HTTP Status 401 - Bad3.
credentials error, as shown in the following screenshot:

Although you're using the basic authentication, you have to input a Username and
Password to complete this request. You need to click on the Auth (second tab) and select
Basic auth; you can enter the Username and Password there. If you input a random
username and password, you'll also get the same error.

After entering the correct Username and Password, you'll get the list of the users in JSON
format as output, as shown in the following screenshot:

Securing Applications with Spring Security Chapter 5

[136]

You can also test in the browser. There, you'll be asked to input the Username and
Password.

You can also use the browser to see the REST API:

Securing Applications with Spring Security Chapter 5

[137]

After inserting the username and password, we can see the user list:

You've created a very simple project using Spring Security basic authentication. We hope
that from now on you can write your own auth-based project with the help of Spring
Security.

Securing Applications with Spring Security Chapter 5

[138]

Creating an Android app
It's time to create a simple Android app as a client that will retrieve the REST API from our
base authentication server. First of all, we need to create an app from Android Studio and
fill in your project name and the company domain. Don't forget to check Include Kotlin
support. Here's a screenshot of the create application project window:

Select the minimum API version from the Phone and Tablet option. There's no need to add
other options for this project. After clicking Next, you can select Empty Activity in the Add
an Activity to Mobile window. After renaming the Activity Name and layout, click Finish.
After building the gradle, you'll be ready to start creating an Android app.

Now, let's see how to implement the project's dependencies in Gradle.

Securing Applications with Spring Security Chapter 5

[139]

Gradle information
In the Gradle file, mention the Kotlin dependency and the application Gradle version. Here
are the details of my Android Studio's Gradle file:

buildscript {
 ext.kotlin_version = '1.3.10'
 repositories {
 google()
 jcenter()
 }
 dependencies {
 classpath 'com.android.tools.build:gradle:3.2.1'
 classpath "org.jetbrains.kotlin:kotlin-gradle-
plugin:$kotlin_version"

 // NOTE: Do not place your application dependencies here; they
belong
 // in the individual module build.gradle files
 }
}

allprojects {
 repositories {
 google()
 jcenter()
 }
}

task clean(type: Delete) {
 delete rootProject.buildDir
}

Here, our Gradle version is 3.2.1 and the Kotlin version is 1.3.10

Gradle dependencies
In this Gradle file, we'll implement the dependencies of Retrofit, which will help us to fetch
the JSON-type REST API from our previous project. Here are all the dependencies:

implementation 'com.android.support:appcompat-v7:27.1.1'
implementation 'com.android.support.constraint:constraint-layout:1.1.3'

implementation 'com.google.code.gson:gson:2.8.5'

implementation 'com.squareup.retrofit2:retrofit:2.4.0'

Securing Applications with Spring Security Chapter 5

[140]

implementation 'com.squareup.retrofit2:converter-gson:2.4.0'
implementation 'com.squareup.retrofit2:retrofit-converters:2.5.0'
implementation 'com.squareup.retrofit2:retrofit-adapters:2.5.0'
implementation 'com.squareup.okhttp3:logging-interceptor:3.12.0'

Creating a user model
We'll fetch the REST API of our basic authentication-based Spring project, which was
created using basic authentication. Although the REST API has four entities (id, name,
email, and contactNumber), we'll create a model based on this REST API.

Here's the output of the REST API where we can see five users' details:

Securing Applications with Spring Security Chapter 5

[141]

According to the API, we'll create a user model for the client side. Here's the model class,
named UserModel:

class UserModel (val id: String
 val name: String,
 val contactNumber: String,
 val id: String,
 val email: String)

Now, we need to create an interface that will have the HTTP request functions. In
this project, we'll only use a GET function that retrieves all the details of users. Here, we're
using the GET retrofit annotation to encode details about the parameters and request
function.

Here's the code of the UserService interface:

interface UserService {
 @GET("/user")
 fun getUserList(): Call<List<UserModel>>
}

We'll search the /user endpoint and this will provide a list of user models.

Implementing the user service
Retrofit client calls the Gerrit API and handles the result by printing the result of the call to
the console.

Create a class where we'll build a Retrofit client, and this will call the API and handle the
result. This will be responsible for controlling all the tasks using
the Retrofit.builder class and configuring it with the base of the given URL.

Securing Applications with Spring Security Chapter 5

[142]

Here's the code of UserServiceImpl.kt:

class UserServiceImpl{
 fun getGithubServiceImpl(username:String, password:String): UserService
{
 val retrofit = Retrofit.Builder()
 .client(getOkhttpClient(username, password))
 .baseUrl(YOUR_SERVER_DOMAIN)
 .addConverterFactory(GsonConverterFactory.create())
 .build()
 return retrofit.create(UserService::class.java)
 }

 private fun getOkhttpClient(username:String, password:String):
OkHttpClient{
 return OkHttpClient.Builder()
 .addInterceptor(BasicAuthInterceptor(username, password))
 .build()
 }
}

According to this code, we set .client() with username and password. Then we
implemented the YOUR_SERVER_DOMAIN (assume the URL of the Rest API server is
http://localhost:8080), baseUrl() , and we've used OkHttpClient as the client.

Authenticating with OkHttp interceptors
Although we're using a base authentication security, we need a username and password
to grant access to this REST API. Here, we're using OkHttp interceptors for authentication.
This will help you to send a request and get the auth permission to access the resources.

Here, we've called the BasicAuthInterceptor class in OkHttpClient.Builder():

 private fun getOkhttpClient(username:String, password:String):
OkHttpClient{
 return OkHttpClient.Builder()
 .addInterceptor(BasicAuthInterceptor(username, password))
 .build()
 }

Here's the class of BasicAuthInterceptor.kt:

class BasicAuthInterceptor(user: String, password: String) : Interceptor {

 private val credentials: String = Credentials.basic(user, password)

Securing Applications with Spring Security Chapter 5

[143]

 @Throws(IOException::class)
 override fun intercept(chain: Interceptor.Chain): Response {
 val request = chain.request()
 val authenticatedRequest = request.newBuilder()
 .header("Authorization", credentials).build()
 return chain.proceed(authenticatedRequest)
 }
}

In this class, only the credentials are added as your user details. Here, a client will make a
request using the username and password credentials. During every request,
this interceptor acts before it's performed and alters the request header. Consequently, you
don't need to add @HEADER("Authorization") to the API function.

Calling callbacks
Here, we're calling CallBack<> from MainActivity. This callback response comes from a
server or offline requests. This means returning the result of a long-running function at a
later moment in time.

Check the MainActivity.kt code to use the CallBack function and handle the result:

class MainActivity : AppCompatActivity() {

 var username: String = "sunnat629"
 var password: String = "password"

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)

 val githubService: UserService =
UserServiceImpl().getGithubServiceImpl(username,password)

 val call: Call<List<UserModel>> = githubService.getUserList()
 call.enqueue(object: Callback<List<UserModel>> {
 override fun onFailure(call: Call<List<UserModel>>, t:
Throwable) {
 Log.wtf("PACKTPUB", t.message)
 }

 override fun onResponse(call: Call<List<UserModel>>, response:
Response<List<UserModel>>) {
 val adapter = UserListAdapter(this@MainActivity,
response.body())

Securing Applications with Spring Security Chapter 5

[144]

 displayList.adapter = adapter
 }
 })
 }
}

Let's discuss the preceding code as follows:

First, we need to1.
initialize UserServiceImpl().getGithubServiceImpl(username,passwor
d) so that we can call getUserList() from UserService.
Then we'll call enqueue(retrofit2.Callback<T>), which will2.
be executed asynchronously, send the request, and get the response.
enqueue() has two functions: onResponse() and onFailure(). If there are3.
any server-related errors, it will call onFailure(), and if it gets the response and
the resources, it will call onResponse(). We can also use the resource of
the onResponse() function.

Here, we'll get a response of the UserModel list. We can show the list in our application UI.

Creating the UI
In the created main_activity layout, we'll show a list of the user details where we show
the name, email ID, and contact number of a user—we'll use ListView.

Here's the code of the mainActivity layout of the MainActivity class:

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity">

 <TextView
 android:id="@+id/textView"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/user_title"
 app:layout_constraintEnd_toEndOf="parent"
 android:textStyle="bold"
 android:padding="5dp"

Securing Applications with Spring Security Chapter 5

[145]

 android:gravity="center_horizontal"
 android:textAppearance="?android:textAppearanceLarge"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

 <ListView
 android:id="@+id/displayList"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginStart="8dp"
 android:layout_marginLeft="8dp"
 android:layout_marginTop="8dp"
 android:layout_marginEnd="8dp"
 android:layout_marginRight="8dp"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/textView" />

</android.support.constraint.ConstraintLayout>

In this layout, we have one TextView and one ListView.

We'll use this ListView in the onResponse() function of MainActivity.

We'll get the list and create a custom adapter to show the user list, as follows:

val adapter = UserListAdapter(this@MainActivity,
response.body()//this is a arraylist
)

Here, we have a custom adapter where we'll send the context and the Array list of the
users.

Creating a custom list adapter
To show the output of the REST API, we need to create a custom list adapter and so we
need to design an XML file of the custom list adapter. Here's the XML code for each row
in the list:

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"

Securing Applications with Spring Security Chapter 5

[146]

 android:padding="10dp">

 <TextView
 android:id="@+id/name"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:gravity="center_horizontal"
 android:padding="5dp"
 android:textAppearance="?android:textAppearanceMedium"
 android:textStyle="bold"
 app:layout_constraintBottom_toTopOf="@+id/contactNumber"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 tools:text="@tools:sample/full_names" />

 <TextView
 android:id="@+id/contactNumber"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:gravity="center_horizontal"
 android:padding="5dp"
 android:textAppearance="?android:textAppearanceSmall"
 app:layout_constraintBottom_toTopOf="@+id/email"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/name"
 tools:text="@tools:sample/cities" />

 <TextView
 android:id="@+id/email"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:gravity="center_horizontal"
 android:padding="5dp"
 android:textAppearance="?android:textAppearanceSmall"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/contactNumber"
 tools:text="@tools:sample/cities" />

</android.support.constraint.ConstraintLayout>

Here, we have a TextView of name, contactNumber, and email.

Securing Applications with Spring Security Chapter 5

[147]

After that, we'll create the adapter, named UserListAdapter.kt, as follows:

class UserListAdapter(context: Context,
 private val userList: List<UserModel>?) :
BaseAdapter() {
 private val inflater: LayoutInflater =
context.getSystemService(Context.LAYOUT_INFLATER_SERVICE)
 as LayoutInflater
 override fun getView(position: Int, convertView: View?, parent:
ViewGroup?): View {
 val rowView = inflater.inflate(R.layout.user_list_item, parent,
false)
 val name = rowView.findViewById(R.id.name) as TextView
 val email = rowView.findViewById(R.id.email) as TextView
 val contactNumber = rowView.findViewById(R.id.contactNumber) as
TextView
 val userDetails = getItem(position) as UserModel
 name.text = userDetails.name
 email.text = userDetails.email
 contactNumber.text = userDetails.contactNumber
 return rowView
 }
 override fun getItem(position: Int): Any {
 return userList!![position]
 }
 override fun getItemId(position: Int): Long {
 return position.toLong()
 }
 override fun getCount(): Int {
 return userList!!.size
 }
}

This class extends BaseAdapter(), which will add several inherited functions.

Then you need to add LayoutInflater, which converts the XML layout into
corresponding ViewGroups and Widgets:

getView() creates a view for a row of the list. Here, you'll define all the UI-
based information.
getItem() returns the position of the list that's obtained from the server.
getItemId() defines a unique ID for each row in the list.
getCount() returns the size of the list.

Securing Applications with Spring Security Chapter 5

[148]

Now, in getView(), you'll add the element of the layout, as follows:

 val name = rowView.findViewById(R.id.name) as TextView
 val email = rowView.findViewById(R.id.email) as TextView
 val contactNumber = rowView.findViewById(R.id.contactNumber) as
TextView

You should never perform long-running tasks on the main thread. This will result in an
Application Not Responding (ANR).

Mobile applications
Once we've completed our code, it's time to see the output. Run your basic authentication
Spring project and then run your app. Here's the output of your app, where we can see the
user details:

Securing Applications with Spring Security Chapter 5

[149]

In the following screenshot, the left side is the server API, where we have the user details,
and on the right we have the client output of the Android application:

We've created a client application that will fetch the data of a basic authentication Spring-
Security-based REST API.

Securing Applications with Spring Security Chapter 5

[150]

Securing REST with Spring Security OAuth2
In the last section, we learned how to make a basic authorization project. This provides
solid security for a project, but it doesn't have the dimension of security required for a
complex or enterprise-level project. Since this security can be broken or hacked, we require
a more grounded security framework to handle these sorts of hacking. OAuth is one of the
best security frameworks – it's exceedingly utilized by Google, Facebook, Twitter, and
many other popular platforms. Now we'll learn about OAuth2 and its use.

What is OAuth2?
OAuth is a safe authorization convention, and OAuth2 is the second form of the OAuth
protocol. This protocol is called a framework. OAuth2 enables a third-party application to
provide limited access to an HTTP service, such as Google, GitHub, or Twitter. This access
is either intended for the benefit of the proprietor or to enable the third-party application to
get access to the user account. This creates an authorization stream between web and
desktop or mobile devices. It has some important roles that control the users' access
limitation.

OAuth2 Roles
There are four roles in OAuth2:

Resource Owner: Normally, this is you.
Resource Server: The server host's protected data. For example, Google, Github,
or Twitter hosts your personal and professional information.
Client: An application that requests a resource server to access data. The client
can be a website, a desktop application, or even a mobile application.
Authorization Server: This server will issue an access token to the client. This
token will be the key to accessing the information and it's mainly used to request
the resource server for the client.

Securing Applications with Spring Security Chapter 5

[151]

Here's a diagram of the general workflow of the OAuth protocol (the flow isn't fixed for
every protocol; it's based on the type of authorization granted):

Here are the steps of the workflow:

To access the service resources, the Application sends the Authorization1.
Request to the User.
 The Application receives an Authorization Grant if the User authorizes the2.
request.
The Application sends the grant to the Authorization Server for an Access3.
Token.
If the Authorization Grant is valid and the Application is authenticated, the4.
Authorization Server creates an Access Token.
The Application gets the Access Token from the Authorization Server.5.
The application sends a request to the Resource Server for resources from the6.
server as well as authentication.
Using the token, the Resource Server provides the requested recourses to7.
the Application.

Securing Applications with Spring Security Chapter 5

[152]

OAuth2 grant types
There are four kinds of OAuth2 Grants:

Authorization Code: This is used in a server-side application and allows the
client to get a long-lasting access token. However, this token will be invalidated if
the client asks the server for a new token.
Implicit: For the most part, this is utilized with mobile or web applications.
Resource Owner Password Credentials: In this grant, the credentials
are first sent to the customer. Then they're sent to the authorization server.
Client Credentials: This is used when the client itself is the resource owner.
There's no authorization to get from the client's end.

So, that's a brief summary of the OAuth protocol. Now let's create a project using the
Spring Security OAuth2 modules.

Creating a project
We'll create a simple Spring Security OAuth2-based project. To do so, go to https:/ /
start.spring.io/ and modify the given field with your requirement.

Here, we're using the Maven Project and selecting the language as Kotlin. The Spring Boot
version is 2.1.1 (SNAPSHOT).

After you select Generate Project, you'll get the project as a ZIP file. Unzip and open this
project with your IDE.

Maven dependencies
Our main dependencies are Web, Security, Cloud Security, Cloud OAuth2, JPA, H2,
Lombok, and Thymeleaf.

Here are the mentioned Maven dependencies in pom.xml:

 <dependencies>

<!--spring security-->
<dependency>
 <groupId>org.springframework.security</groupId>

https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/

Securing Applications with Spring Security Chapter 5

[153]

 <artifactId>spring-security-config</artifactId>
 <version>5.2.0.BUILD-SNAPSHOT</version>
</dependency>
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
</dependency>

<!--spring cloud security-->
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-oauth2</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-security</artifactId>
</dependency>

<!--database-->
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>
<dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <scope>runtime</scope>
</dependency>

Configuring the resource server
A resource server will have all the protected resources, and these are protected by the
OAuth2 token. It's time to learn about this resource server with the help of the code. Create
a resource server named ResourceServerConfig.kt.

Here is the code of our ResourceServerConfig.kt:

@Configuration
@EnableResourceServer
class ResourceServerConfig: ResourceServerConfigurerAdapter(){

Securing Applications with Spring Security Chapter 5

[154]

 @Throws(Exception::class)
 override fun configure(http: HttpSecurity?) {
 http!!
 .authorizeRequests()
 .antMatchers("/open_for_all").permitAll() // anyone can
enter
 .antMatchers("/private").authenticated() // only authorized
user can enter
 }
}

To enable the features of the OAuth 2.0 resource-server mechanism, you need to add an
annotation named @EnableResourceServer, and although it's a configuration class, you
need to add the @Configuration annotation.

This class extends ResourceServerConfigurerAdapter, this then extends
ResourceServerConfigurer, which will make it possible to override and configure
ResourceServerConfigurer.

We override configure(http: HttpSecurity?), where we mention which URL paths
are protected and which are not protected.

authorizeRequests() permits confining access dependent on the utilization
of HttpServletRequest.

antMatchers() refers to the implementation of the Ant-style path patterns in mappings.

We use .antMatchers("/").permitAll(), which allows all users to access this URL
path, "/". In addition, we use .antMatchers("/private").authenticated(), which
means a user needs a token to access this /private path.

Configuring the authorization server
An authorization server is a configuration class. In this class, we'll create a grant-type
environment. A grant type helps a client get an access token from the end user. This
server's configuration is designed to implement the client details' service and token service.
It's also responsible for enabling or disabling certain components of the mechanism
globally. Now, create an authorization server class named
AuthorizationServerConfig.kt.

Here's the code for AuthorizationServerConfig.kt:

@Configuration
@EnableAuthorizationServer

Securing Applications with Spring Security Chapter 5

[155]

class AuthorizationServerConfig: AuthorizationServerConfigurerAdapter() {

 @Autowired
 lateinit var authenticationManager: AuthenticationManager

 @Autowired
 lateinit var passwordEncoder: BCryptPasswordEncoder

 @Throws(Exception::class)
 override fun configure(security:
AuthorizationServerSecurityConfigurer?) {
 security!!.checkTokenAccess("isAuthenticated()")
 }

 @Throws(Exception::class)
 override fun configure(clients: ClientDetailsServiceConfigurer?) {
 clients!!
 .inMemory()
 .withClient("client")
 .secret(passwordEncoder.encode("secret"))
 .authorizedGrantTypes("password")
 .authorities("ROLE_CLIENT", "ROLE_TRUSTED_CLIENT")
 .scopes("read", "write", "trust")
 .resourceIds("oauth2-resource")
 .accessTokenValiditySeconds(5000) // token validity time
duration 5 minuets

 }

 @Throws(Exception::class)
 override fun configure(endpoints:
AuthorizationServerEndpointsConfigurer?) {
 endpoints!!.authenticationManager(authenticationManager)
 }
}

The @EnableAuthorizationServer annotation enables the features of the OAuth 2.0
authorization server mechanism. You need to add the @Configuration annotation to
make it the configuration class.

Securing Applications with Spring Security Chapter 5

[156]

This class extends AuthorizationServerConfigurerAdapter, which then
extends ResourceServerConfigurer. It will make it possible to override and configure
AuthorizationServerConfigurer. There are three types of configure() functions:

ClientDetailsServiceConfigurer: This defines the details service of a client.
AuthorizationServerSecurityConfigurer: This defines the security
constraints on the token endpoint.
AuthorizationServerEndpointsConfigurer: This defines the authorization
and token endpoints and the token services.

According to our code, in configure(security:
AuthorizationServerSecurityConfigurer?), we define whether or not to check the
token endpoint which is authenticated.

In configure(clients: ClientDetailsServiceConfigurer?), we define the
ClientDetails service. In this project, we didn't use a database, so we use an in-
memory implementation of the ClientDetails service. Here are the important attributes
of the client:

withClient(): This is required and this is where we define the client
ID, "client".
secret(): This is required for trusted clients and is where we define
the secret, "secret", but we have to encode the password. Here, we
inject BCryptPasswordEncoder to encode the password or secret key.
authorizedGrantTypes(): We have used the "password" grant type that's
authorized for the client to use.
scope(): The scope is used to limit the access for the resources of a client. If the
scope is undefined or empty, that means the client isn't limited by scope. Here,
we use "read", "write", and "trust".
authorities(): This is used to grant the client.
resourceId(): This optional ID is used for the resource.
accessTokenValiditySeconds(): This refers to the token validity time
duration.

In configure(endpoints: AuthorizationServerEndpointsConfigurer?), we've
configured AuthorizationEndpoint, which supports the grant type. We inject
AuthenticationManager and configure it
via AuthorizationServerEndpointsConfigurer.

Securing Applications with Spring Security Chapter 5

[157]

Creating the security config
This is a Java configuration class for Spring Security that enables users to configure Spring
Security easily without the use of XML. Create a secure config file named
SecurityConfiguration.kt. Here's the code for the class:

@Configuration
@EnableWebSecurity
class SecurityConfiguration: WebSecurityConfigurerAdapter() {

 @Throws(Exception::class)
 override fun configure(auth: AuthenticationManagerBuilder?) {
 auth!!
 .inMemoryAuthentication()
 .passwordEncoder(passwordEncoder())
 // user1 as USER
 .withUser("sunnat")
 .password(passwordEncoder().encode("password"))
 .roles("USER")
 .and()

 // user2 as ADMIN
 .withUser("admin")
 .password(passwordEncoder().encode("password"))
 .roles("ADMIN")
 }

 @Throws(Exception::class)
 override fun configure(http: HttpSecurity?) {
 http!!
 .antMatcher("/**").authorizeRequests()
 .anyRequest().authenticated()
 .and()
 .formLogin()
 .and()
 .httpBasic()
 }

 @Bean(name = [BeanIds.AUTHENTICATION_MANAGER])
 @Throws(Exception::class)
 override fun authenticationManagerBean(): AuthenticationManager {
 return super.authenticationManagerBean()
 }

 @Bean
 fun passwordEncoder(): BCryptPasswordEncoder {
 return BCryptPasswordEncoder(16)

Securing Applications with Spring Security Chapter 5

[158]

 }
}

This is a configuration class, so you need to add the @Configuration annotation.

This class extends WebSecurityConfigurerAdapter, and the
@EnableWebSecurity annotation provides the web-based security mechanism.

According to this code, we use two @Bean annotations in the required functions. We inject
AuthenticationManager and configure it via
AuthorizationServerEndpointsConfigurer. The BCryptPasswordEncoder instance
is used to encode the passwords.

In configure(http: HttpSecurity?), note the following:

antMatcher("/**").authorizeRequests() means that this HttpSecurity
will only be applicable to URLs that start with /**.
anyRequest().authenticated() utilization guarantees that any request to
our application requires the client to be confirmed.
formLogin() allows users to authenticate with form-based logins.
httpBasic() means the user is validated with HTTP Basic authentication.

In configure(auth: AuthenticationManagerBuilder?), note the following:

inMemoryAuthentication() includes memory confirmation to
AuthenticationManagerBuilder and restores
InMemoryUserDetailsManagerConfigurer to permit customization of the in-
memory validation.
passwordEncoder(passwordEncoder()) means that the password will be an
encoded password.
withUser("user") and withUser("admin") is the name of the user.
password(passwordEncoder().encode("password")) is the encoded
password.
roles("USER") and roles("ADMIN") is the role of a user.

Creating the controller class
Create a controller class named UserController.kt, as follows:

@RestController
@RequestMapping("/")

Securing Applications with Spring Security Chapter 5

[159]

class UserController{

// This is for all means there is no security issue for this URL path
 @GetMapping(value = ["/open_for_all", ""])
 fun home(): String{
 return "This area can be accessed by all."
 }

 // Yu have to use token to get this URL path
 @GetMapping("/private")
 fun securedArea(): String{
 return "You used an access token to enter this area."
 }
}

Here, we've annotated this class as @RestController, which handles all the web
requests. @RequestMapping("/") means that the default URL path is "/".

The @GetMapping implemented functions are home(), which can be accessed by everyone,
and securedArea(), which can be accessed only by those who have the access token. We
configured these in the ResourceServerConfig class.

Creating the application class
Lastly, create the application class, named SpringSecurityOAuth2Application.kt,
which will convert your application into a SpringBoot application:

@SpringBootApplication
class SpringSecurityOAuth2Application

fun main(args: Array<String>) {
 runApplication<SpringSecurityOAuth2Application>(*args)
}

Application properties
This step is optional, particularly in this project. Here, we just change the port number for
this project. To change it, modify application.properties under the resources folder:

#this project server port
server.port=8081

Here, we change the port number to 8081.

Securing Applications with Spring Security Chapter 5

[160]

Checking the output
If you're reading this section, that means you've configured everything correctly. After
finishing the project, you'll have these files:

After completing the setup, run the project. If there are no errors, you can find
the run window. The following screenshot shows that there are no errors and the
application is ready to use:

Checking unprotected URLs
Now, open the Insomnia application.

Create a GET request from the top inbox and use the
http://localhost:8081/open_for_all URL.

Your result will look like the following screenshot:

Securing Applications with Spring Security Chapter 5

[161]

In the ResourceServerConfig class, we configured that "/open_for_all" can be
accessed by everyone.

Getting access tokens
Create a POST request from the top inbox and put down
the http://localhost:8081/oauth/token URL. This is the default POST URL to get the
token.

Add three parameters—username=sunnat, password=password,
and grant_type=password—in the Multipart window:

You can find the information of username and password in the SecurityConfiguration
class, and grant_type will be found in AuthorizationServerConfig. Here, we're using
the password grant type.

Go to the Basic window and input the username and password. You can find this
information in the AuthorizationServerConfig class, where the username is mentioned
in withClient() and the password is secret().

We added an image of the Insomnia tool where we wrote down the username and
password. Now click the send button. If there are no errors, you'll get the
following access_token:

Securing Applications with Spring Security Chapter 5

[162]

You can see the access_token that will be used to access the protected
resources. expires_in means that after 4469 seconds the token will expire. "scope":
"read write trust" means you can read, write, and modify the resources.

Accessing the protected URL
We found the access_token and now we'll use it. To do this, create another GET request
and insert http://localhost:8081/private.

As a parameter, use access_token with the value of the given token key, and click Send:

Once that's done, you can access the /private URL, which is protected and configured in
the ResourceServerConfig class.

We're now ready to use the OAuth2 Spring Security in our project.

Securing Applications with Spring Security Chapter 5

[163]

Common mistakes and errors
During this project, you may encounter some common errors.

For example, you might get some errors during building and running the project. To solve
this, check that all versions of the dependencies are the latest. In addition, check whether
every dependency is present. If you use the database, make sure you have the correct
database and scheme name in application.properties.

In the POST request, sometimes you can find the following error message:

The previous screenshot indicates that you entered an incorrect grant_type. Please check
the parameter, as well as the AuthorizationServerConfig class where you mention the
grant_type:

Please check the SecurityConfiguration class and match the system username-
password with the given username and password parameters. The following screenshot
means you entered an incorrect client or secret value in the Basic Auth tab:

Securing Applications with Spring Security Chapter 5

[164]

The preceding screenshot means you entered an incorrect client or secret value in the
Basic Auth tab. Please match the client and secret value
from AuthorizationServerConfig and the Basic Auth tab's value:

The preceding screenshot means your token key has expired. You need to refresh a new
access token to solve this error.

You may face some other errors. To see the solutions, you can always search StackOverflow
(https://stackoverflow. com/).

Summary
In this chapter, you learned how to use Spring Security with confidence. First, we covered
what Spring Security is as well as its architecture. We also learned about the advantage of
using Spring Security, looking at its features and modules. Now, we're able to implement
Spring Security in any project. We learned what the basic authentication is and, using an
example, we saw how to implement the basic authentication in a project as well as how to
secure the resources in a server. We also learned how to create a secured REST API.
Then we learned how to create a client application in Android to fetch and use the
protected resources from the REST API. We also learned how to implement a username and
password to get access to the basic authentication-based secured server. In addition, we
familiarized ourselves with how to use a custom adapter in a listview in the client
application. In the last section, we explored a better-secured protocol: OAuth2. We learned
the role and workflow of this protocol. With a simple project, we learned how to configure
the OAuth2 authorization and resource servers. Finally, we saw how to retrieve the REST
API using a third-party HTTP client.

In the next chapter, we'll learn about the database, which is very important, as it's the main
place to store and handle your data.

https://stackoverflow.com/
https://stackoverflow.com/
https://stackoverflow.com/
https://stackoverflow.com/
https://stackoverflow.com/
https://stackoverflow.com/
https://stackoverflow.com/
https://stackoverflow.com/

Securing Applications with Spring Security Chapter 5

[165]

Questions
What does Spring Security target?1.
What are the fundamental classes of Spring Security?2.
Which filter class is required for Spring Security?3.
Is password hashing supported in Spring Security?4.
What are the OAuth 2.0 Grant Types?5.

Further reading
Here is a list of information you can refer to:

Spring Security - Third Edition (https:/ /www. packtpub. com/ application-
development/ spring- security- third- edition) by Mick Knutson, Robert
Winch, Peter Mularien
Hands-On Spring Security 5 for Reactive Applications (https:/ / www.packtpub. com/
application- development/ hands- spring- security- 5- reactive- applications)
by Tomcy John
OAuth 2.0 Cookbook (https:/ / www. packtpub. com/ virtualization- and- cloud/
oauth-20- cookbook) by Adolfo Eloy Nascimento

https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/hands-spring-security-5-reactive-applications
https://www.packtpub.com/application-development/hands-spring-security-5-reactive-applications
https://www.packtpub.com/application-development/hands-spring-security-5-reactive-applications
https://www.packtpub.com/application-development/hands-spring-security-5-reactive-applications
https://www.packtpub.com/application-development/hands-spring-security-5-reactive-applications
https://www.packtpub.com/application-development/hands-spring-security-5-reactive-applications
https://www.packtpub.com/application-development/hands-spring-security-5-reactive-applications
https://www.packtpub.com/application-development/hands-spring-security-5-reactive-applications
https://www.packtpub.com/application-development/hands-spring-security-5-reactive-applications
https://www.packtpub.com/application-development/hands-spring-security-5-reactive-applications
https://www.packtpub.com/application-development/hands-spring-security-5-reactive-applications
https://www.packtpub.com/application-development/hands-spring-security-5-reactive-applications
https://www.packtpub.com/application-development/hands-spring-security-5-reactive-applications
https://www.packtpub.com/application-development/hands-spring-security-5-reactive-applications
https://www.packtpub.com/application-development/hands-spring-security-5-reactive-applications
https://www.packtpub.com/application-development/hands-spring-security-5-reactive-applications
https://www.packtpub.com/application-development/hands-spring-security-5-reactive-applications
https://www.packtpub.com/application-development/hands-spring-security-5-reactive-applications
https://www.packtpub.com/application-development/hands-spring-security-5-reactive-applications
https://www.packtpub.com/application-development/hands-spring-security-5-reactive-applications
https://www.packtpub.com/application-development/hands-spring-security-5-reactive-applications
https://www.packtpub.com/application-development/hands-spring-security-5-reactive-applications
https://www.packtpub.com/application-development/hands-spring-security-5-reactive-applications
https://www.packtpub.com/application-development/hands-spring-security-5-reactive-applications
https://www.packtpub.com/virtualization-and-cloud/oauth-20-cookbook
https://www.packtpub.com/virtualization-and-cloud/oauth-20-cookbook
https://www.packtpub.com/virtualization-and-cloud/oauth-20-cookbook
https://www.packtpub.com/virtualization-and-cloud/oauth-20-cookbook
https://www.packtpub.com/virtualization-and-cloud/oauth-20-cookbook
https://www.packtpub.com/virtualization-and-cloud/oauth-20-cookbook
https://www.packtpub.com/virtualization-and-cloud/oauth-20-cookbook
https://www.packtpub.com/virtualization-and-cloud/oauth-20-cookbook
https://www.packtpub.com/virtualization-and-cloud/oauth-20-cookbook
https://www.packtpub.com/virtualization-and-cloud/oauth-20-cookbook
https://www.packtpub.com/virtualization-and-cloud/oauth-20-cookbook
https://www.packtpub.com/virtualization-and-cloud/oauth-20-cookbook
https://www.packtpub.com/virtualization-and-cloud/oauth-20-cookbook
https://www.packtpub.com/virtualization-and-cloud/oauth-20-cookbook
https://www.packtpub.com/virtualization-and-cloud/oauth-20-cookbook
https://www.packtpub.com/virtualization-and-cloud/oauth-20-cookbook
https://www.packtpub.com/virtualization-and-cloud/oauth-20-cookbook
https://www.packtpub.com/virtualization-and-cloud/oauth-20-cookbook
https://www.packtpub.com/virtualization-and-cloud/oauth-20-cookbook
https://www.packtpub.com/virtualization-and-cloud/oauth-20-cookbook

6
Accessing the Database

In this chapter, we will learn about the database in the Spring Framework. The database is a
collection of data that is stored in the server in an organized way, so that an application can
retrieve the data in the way that the user requests. In this chapter, you will learn how to use
the database on both the client and server side. In addition to this, we will explore the
usage of JDBC, JPA, Hibernate, and MySQL from the server side, and we will look at the
room persistence library from the client side.

This chapter covers the following topics:

What is a database?
What is a database management system?
Data access in Spring.
Data access with JDBC in Spring.
Creating a sample project using JDBC.
Data access with JPA and Hibernate in Spring.
Creating a sample project using JPA + Hibernate.
What is the room persistence library?
Creating an Android application using the room persistence library.

Technical requirements
We have previously demonstrated how to set up the environment and what tools, software,
and IDE are needed in order to develop Spring. To create your project, visit this
link: https://start. spring. io/ . The following options will be available here:

Maven project
Language – Kotlin

https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/

Accessing the Database Chapter 6

[167]

Spring Boot version – 2.1.1 (SNAPSHOT)
When you create the project, you need to provide some information, such
as—Group, Artifact, Name, Description, Package Name, Packaging, and Java
Version.

We will use MySQL in upcoming projects. Consequently, you need to download the tools
for MySQL from https:/ /dev. mysql. com/ downloads/ workbench/ and install it. Please try
to configure the MySQL database with the given information to make your project easier:

Host -- localhost
Port -- 3306
Username -- root
Password -- 12345678

The source code with an example for this chapter is available on GitHub at the following
link: https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-De
velopment/tree/master/Chapter06.

Database
A database is a collection of information that is stored in the server in an organized way. A
user can fetch and use this data from the server in various systems. In the database, a user
can add, delete, update, get, or manage the data. Normally, data is assembled into tables,
columns, and rows, making it easier to find relevant data. A computer database contains
aggregations of data records or files. A company's data can include their statistics or client
information, or it can be top secret documents. A database manager provides the client or
the user with the ability to control read and/or write access, analyze the data, and so on. We
will now look at various types of database and their uses.

Types of database
Databases are used for a variety of purposes, such as to store personal or company
information. There are several databases available on the market, as described in the
following sections.

https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter06

Accessing the Database Chapter 6

[168]

Personal database
A personal database is designed for data stored on a personal computer. This database is
small and very easy to manage, and it is normally used by a small group of people or a
small organization.

Relational database
The relational database is created on a set of tables that fit into a pre-defined category.
These databases are sorted by an arrangement of tables where information gets fit into a
pre-characterized class. The table is comprised of rows and columns. The column has a
passage for information for an explicit classification. On the other side, rows contain a case
for that information characterized by the classification. The relational database has a
standard user and application program interface named Structured Query Language
(SQL).

Distributed database
A distributed database is stored in multiple physical locations and distributed at various
sites of an organization. The sites are connected with the help of communication links, so
the user can access the distributed data easily. There are two kinds of distributed
database—homogeneous and heterogeneous. In a homogenous distributed database, the
physical locations have the same hardware and run in the same OS and database
applications. However, in the heterogeneous distributed database, the hardware, OS, or
database applications can be found in a different location.

Object-oriented database
In an object-oriented database, items are created by using object-oriented programming
such as Java and C++, which are stored in relational databases. But for those items, an
object-oriented database is well-suited. An object-oriented database is sorted out around
objects as opposed to activities, and information instead of rationale.

NoSQL database
A NoSQL database is normally used for a large set of distributed data. This database is very
effective for big data where an organization analyzes large chunks of unorganized data
stored in multiple virtual servers in the cloud.

Accessing the Database Chapter 6

[169]

Graph database
A graph database is a type of NoSQL database that uses graph theory to store, map, and
query the relationships of the data. It is a collection of lots of nodes and edges. The nodes
represent the entity and the edges represent the connection between nodes. This database is
used a lot in social media platforms such as Facebook.

Cloud database
A cloud database is mainly built for a virtualized environment. The virtualized
environment can be a hybrid cloud, public cloud, or private cloud. These databases provide
various benefits, such as the ability to pay for storage capacity and per-user basis
bandwidth. As a software-as-a-server, it provides support to enterprise business
applications.

Database management system
A database management system (DBMS) is system software that is made for creating and
managing databases. With the help of the DBMS, a user or a developer can create, get,
update, and manage data in a systemic way. This system is kind of an interface between a
user and a database. It also ensures that data is consistently organized and easily accessible.

Here is a diagram regarding the use of a DBMS:

Accessing the Database Chapter 6

[170]

There are three important features of a DBMS, and these are the data, the database engine,
and the database schema. The data is a collection of information, the database engine
allows data to be locked, accessed, and modified, and the database schema defines the
logical structure of the database.

The DBMS provides a general view of how data can be accessed by multiple users from
multiple locations in a controlled manner. It also limits a user's access to user data. The
database schema provides the logic of how a user can view the data. The DBMS handles all
the requests and executes them on the database.

Both logical and physical data independence is offered by the DBMS. This means that an
application can use APIs to utilize the data from the database. In addition, clients and
applications don't need to worry about the locations of the stored data and changes to the
physical structure of the data, such as storage and hardware.

Popular database models and their management systems include the following:

Relational database management system (RDMS)
NoSQL DBMS
In-memory database management system (IMDBMS)
Columnar database management system (CDBMS)
Cloud-based data management system

Data access in the Spring
Data access is responsible for authorizing access to data repositories. It helps to distinguish
the role ability, like users or administrators in the application. It maintains the data access
system, such as insert, retrieve, update, or delete based on the role. In Chapter 3, Overview
of Spring Framework, we have learned about the architecture of Spring.

Accessing the Database Chapter 6

[171]

Here is a diagram of the Spring architecture, where Data Access is one of the layers:

As you can see, Data Access is one of the layers of Spring architecture. This part is
concerned with data access. JDBC, ORM, OXM, JMS, and Transactions modules are
modules that are used in Spring. We have mentioned the details of this in Chapter 3,
Overview of Spring Framework, under the Spring architecture topic. In this chapter, we will
see the use of JDBC and ORM (JPA, Hibernate).

Java database connectivity in Spring
Java Database Connectivity (JDBC) is an API specification for connecting and moving data
from the frontend to the backend. The classes and interfaces are written in Java. Nowadays,
it also supports Kotlin. We will write in Kotlin throughout this chapter. This basically acts
as an interface or bridge between the Java-based application and database. JDBC is very
similar to the Open Database Connectivity (ODBC). Like ODBC, JDBC enables a JDBC
application to access a collection of data.

Accessing the Database Chapter 6

[172]

In the Spring Framework, the JDBC is divided into the following four separate packages:

Core: This is the JDBC's core functionality and JdbcTemplate,
SimpleJdbcInsert, and SimpleJdbcCall are the important classes of this core
part
DataSource: This is used to access data sources
Object: The JDBC can access in an object-oriented manner. As a business object,
it executes queries and returns the results
Support: Support classes work under core and object packages

Creating a sample project using JDBC
Let's learn JDBC using a project in which we will create REST APIs for users and show the
list of user details. In this project, we will use JDBC, MySQL, and Spring Boot.

To create a project, go to this link: https:/ /start. spring. io and create a Kotlin-based
project. Here are the dependencies of JDBC:

JDBC: this will implement all the features regarding JDBC
MySQL: this will implement all the features of MySQL database

Maven dependencies
If you go to the pom.xml file, there you can see the dependencies for the JDBC, and we are
using MySQL for the data. Here is a piece of code of the pom.xml file:

<!-- This is for JDBC use -->
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-jdbc</artifactId>
</dependency>

<!-- This is for use the MySQL -->
<dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 <scope>runtime</scope>

https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io

Accessing the Database Chapter 6

[173]

</dependency>

Creating DataSource
We configure the DataSource and connection pool in the application.properties.
Spring Boot uses the spring.datasource interface as a prefix to configure DataSource.
Our database schema name is packtpub_dbtest_schema. You can create this on your
own and rename it. Here are the details of application.properties:

Database Configuration

spring.datasource.url=jdbc:mysql://localhost:3306/packtpub_dbtest_schema
spring.datasource.username=root
spring.datasource.password=12345678

According to the previous code, spring.datasource.url=jdbc:mysql:
//localhost:3306/packtpub_dbtest_schema means the URL for the database schema
called packtpub_dbtest_schema to access the data in the
project. spring.datasource.username=root means the username of the database is
root, and spring.datasource.password=12345678 means the username of the
database is 12345678.

In our system, the MySQL details are as follows:

Host -- localhost // the host URL
Port -- 3306 // the host POST
number
Username -- root // the username of the
database
Password -- 12345678 // the password of the
database
Database Name - packtpub_dbtest // the Database name
Database Schema Name - packtpub_dbtest_schema // the Database Schema
name

Creating a table in database
Go to the MySQL Workbench and select the database.

Accessing the Database Chapter 6

[174]

We have included some user details for the USERS table. You can copy and paste the
following code to create a USERS table and insert some demo data:

create table users (id int not null auto_increment, name varchar(255),
email varchar(255), contact_number varchar(255)
, primary key (id)) engine=MyISAM;
INSERT INTO user (id, name, email, contact_number) values (1, 'Sunnat',
'sunnat629@gmail.com', '1234567890');
INSERT INTO user (id, name, email, contact_number) values (2, 'Chaity',
'chaity123@gmail.com', '9876543210');
INSERT INTO user (id, name, email, contact_number) values (3, 'Mirza',
'mirza123@gmail.com', '1234567800');
INSERT INTO user (id, name, email, contact_number) values (4, 'Hasib',
'hasib123@gmail.com', '1234500800');
INSERT INTO user (id, name, email, contact_number) values (4, 'Jisan',
'jisan123@gmail.com', '1004500800');

After inserting the user details in the user table, you can see the content in your users
table, as in the following screenshot:

Accessing the Database Chapter 6

[175]

Creating a model
In this project, we will create a REST API to see the list of user details where we can get a
username, email ID, and contact number. So let's create a model of a user; the class name is
UserModel.kt.

Here is the code of the model class:

data class UserModel(val id: Int,
 val name: String,
 val email: String,
 val contact_number: String)

We have created a class named UserModel, where we have initialized id, name, email,
and contact_number.

Creating row mapper
RowMapper is an interface that is provided by the Spring JDBC. This is used to map a row
with a Java object and to fetch data from the database. It uses the query() function of
the JdbcTemplate class. Let's create a RowMapper interface named UserRowMapper.kt.

Here is the code of this interface:

class UserRowMapper : RowMapper<UserModel> {

 @Throws(SQLException::class)
 override fun mapRow(row: ResultSet, rowNumber: Int): UserModel? {
 return UserModel(row.getInt("id"),
 row.getString("name"),
 row.getString("email"),
 row.getString("contact_number"))
 }
}

In this code, we extended RowMapper<UserModel> and overrode the mapRow where we
return the UserModel.

Accessing the Database Chapter 6

[176]

Creating an API interface
To get a REST API response, we need to create an interface where we will mention what we
want to do with the data, such as getting the user list, creating a new user, and deleting or
updating the user details. Let's create an interface named UserInterface.kt.

Here is the code of the interface:

interface UserInterface {
 fun getAllUserList(): List<UserModel>
 fun getUserByID(id: Int): UserModel?
 fun addNewUser(userModel: UserModel)
 fun updateUser(userModel: UserModel)
 fun deleteUser(id: Int)
}

We have used five functions, which are explained as follows:

getAllUserList(): This will return a list of the details of all users
getUserByID(id: Int): This will return the details of a specific user
addNewUser(userModel: UserModel): This will add new user details
updateUser(userModel: UserModel): This will update an existing user's
details
deleteUser(id: Int): This will delete a specific user

Creating a user repository
We will communicate with the database in this class. This is a repository class and so we
annotate this class with @Repository. Let's create a repository class named
UserRepository.kt, which implements the UsersInterface.

Here is the code of the repository class:

@Repository
class UserRepository: UsersInterface {

 override fun getAllUserList(): List<UserModel> {
 }

 override fun getUserByID(id: Int): UserModel? {
 }

 override fun addNewUser(userModel: UserModel) {

Accessing the Database Chapter 6

[177]

 }

 override fun updateUser(userModel: UserModel) {
 }

 override fun deleteUser(id: Int) {
 }
}

We have created a repository class named UserRepository, where we
implement UsersInterface, and override all the functions of the interface. We use
the @Repository annotation to make it a repository class.

Let's complete this class step by step in the following section.

JdbcTemplate implementation
JdbcTemplate is the heart of the JDBC. This is the center class of JDBC. SQL queries
are executed by JdbcTemplate, which also fetches the results. To use this JdbcTemplate,
we need to autowire the JdbcTemplate in this repository class. Here is the piece of code of
this repository class:

@Repository
class UserRepository: UserInterface {

 @Autowired
 private lateinit var jdbcTemplate: JdbcTemplate

 }

Creating HTTP methods for RESTful APIs
For this project, we will create create, read, update, and delete (CRUD) operations.

Accessing the Database Chapter 6

[178]

Create
Find the code snippet pertaining to the create operation, where we will insert the user
details:

override fun addNewUser(userModel: UserModel) {
 val addQuery = "INSERT INTO users (name, email, contact_number) values
(?,?,?)"
jdbcTemplate.update(addQuery,userModel.name,userModel.email,userModel.conta
ct_number)
}

The addQuery = "INSERT INTO users (name, email, contact_number) values
(?,?,?)" is the query to insert the user in the USER table.

The jdbcTemplate.update() is the function where we use the query and user details as
the parameters to insert in the database.

READ
Find the code snippet pertaining to the read operation. The following function will return a
list of all the user's details:

override fun getAllUserList(): List<UserModel> {
 val selectAllSql = "SELECT * FROM users"
 return jdbcTemplate.query(selectAllSql, UserRowMapper())
}

selectAllSql = "SELECT * FROM users" is the query to fetch all the users from user
the table. jdbcTemplate.query() will execute the query and fetch the data.

This following function will get a user's details based on id:

override fun getUserByID(id: Int): UserModel? {
 val selectAllSql = "SELECT * FROM users WHERE id = ?"
 return jdbcTemplate.queryForObject(selectAllSql, UserRowMapper(), id)
}

selectAllSql = "SELECT * FROM users WHERE id = ?" is the query to fetch a user
from the user table by using the ID. jdbcTemplate.queryForObjec() will execute the
query and fetch the data.

Accessing the Database Chapter 6

[179]

UPDATE
Find the code snippet for update operation:

override fun updateUser(userModel: UserModel) {
 val updateQuery = "UPDATE users SET name=?,email=?, contact_number=?
WHERE id=?"
 jdbcTemplate.update(updateQuery, userModel.name, userModel.email,
userModel.contact_number, userModel.id)
}

updateQuery = "UPDATE users SET name=?,email=?, contact_number=? WHERE

id=?" is the query to update a user from the user table by using the
ID. jdbcTemplate.update() will execute the query and update the data.

DELETE
Find the code snippet for delete operation:

override fun deleteUser(id: Int) {
 val deleteQuery = "DELETE FROM users WHERE id=?"
 jdbcTemplate.update(deleteQuery, id)
}

deleteQuery = "DELETE FROM users WHERE id=?" is the query to update a user from
user table by using the ID. jdbcTemplate.update() will execute the query and delete the
specific data.

With these functions, we have finished our repository class.

Creating service
After creating the repository class, let's create the service class where we will autowire the
repository class using the @autowired annotation. Let's create a service class
named UserService.kt with the @Service annotation that implements the
UserInterface and overrides all functions.

Here is the piece of code for the UserService.kt:

@Service
class UserService: UsersInterface {

 @Autowired
 private lateinit var userRepository: UserRepository

Accessing the Database Chapter 6

[180]

}

Let's override and modify the functions with the help of UserRepository. Here is the full
code of the UserService class:

@Service
class UserService: UsersInterface {
 @Autowired
 private lateinit var userRepository: UserRepository

 override fun getAllUserList(): List<UserModel> {
 return userRepository.getAllUserList()
 }

 override fun getUserByID(id: Int): UserModel? {
 return userRepository.getUserByID(id)
 }

 override fun addNewUser(userModel: UserModel) {
 userRepository.addNewUser(userModel)
 }

 override fun updateUser(userModel: UserModel, id: Int) {
 userRepository.updateUser(userModel, id)
 }

 override fun deleteUser(id: Int) {
 userRepository.deleteUser(id)
 }
}

getAllUserList(): This function will fetch all the users
getUserByID(id: Int): This function will fetch a user by ID
addNewUser(userModel: UserModel): This function will insert a new user
updateUser(userModel: UserModel, id: Int): This function will update a
user by ID
deleteUser(id: Int): This function will delete a user by ID

Accessing the Database Chapter 6

[181]

Creating controller
If your model, repository, and service classes are complete, then you are ready to create the
controller class, where we will create GetMapping, PostMapping, PutMapping,
and DeleteMapping to create RESTful API URL paths. Let's create a controller class named
UserController.kt using the @RestController annotation to create the controller
class:

@RestController
class UserController {

}

Autowired service
Let's autowire the UserService using the @Autowired annotation. Here is the piece of
code for this UserController class:

 @Autowired
 private lateinit var userService: UserService

Getting the user list
Find the code snippet for the getAllUsers() operation:

// Getting the User List
@GetMapping(path = ["/users"])
fun getAllUsers(): ResponseEntity<List<UserModel>> {
 return ResponseEntity(userService.getAllUserList(),
 HttpStatus.OK)
}

The @GetMapping(path = ["/users"]) annotation is the URL path of /users and it is
a GET request function. Here, we will get a list of the users from the database.

Getting one user by ID
Find the code snippet for the getAllUserByID() operation:

// Getting one User by ID
@GetMapping(path = ["/user/{id}"])
fun getAllUserByID(@PathVariable("id") id: Int): ResponseEntity<UserModel>

Accessing the Database Chapter 6

[182]

{
 return ResponseEntity(userService.getUserByID(id),
 HttpStatus.OK)
}

The @GetMapping(path = ["/user/{id}"]) annotation is the URL path of
"/user/{id}", and it is a GET request with a specific ID. Here, we will get the specific user
details from the database.

Inserting a new user
Find the code snippet for addNewUser() operation:

// Inserting new User
@PostMapping(path = ["/user/new"])
fun addNewUser(@RequestBody userModel: UserModel): String {
 ResponseEntity(userService.addNewUser(userModel), HttpStatus.CREATED)
 return "${userModel.name} has been added to database"
}

The @PostMapping(path = ["/user/new"]) annotation is the URL path of
"/user/new", and it is a POST request. Here, we can insert user details into the database.

Here, @RequestBody is an annotation of the Spring MVC framework. This is used in a
controller to implement object serialization and deserialization. It helps you to avoid
boilerplate codes by extracting the logic. The @RequestBody annotated function returns a
value that is bound to the HTTP web response body. Here, the object is UserModel.

Updating a user
Find the code snippet for updateUser() operation:

// Updating a User
@PutMapping(path = ["/user/{id}"])
fun updateUser(@RequestBody userModel: UserModel, @PathVariable("id") id:
Int): ResponseEntity<UserModel> {
 userService.updateUser(userModel, id)
 return ResponseEntity(userModel, HttpStatus.OK)
}

The @PutMapping(path = ["/user/{id}"]) annotation is the URL path of
"/user/{id}", and it is a PUT request with a specific ID. Here, we will update the specific
user details in the database.

Accessing the Database Chapter 6

[183]

Deleting a user
Find the code snippet for deleteUser() operation:

// Deleting a User
@DeleteMapping(path = ["/user/{id}"])
fun deleteUser(@PathVariable("id") id: Int): String {
 userService.deleteUser(id)
 return "$id User has been deleted."
}

The @DeleteMapping(path = ["/user/{id}"]) annotation is the URL path of
"/user/{id}", and it is a delete request with a specific ID. Here, we will delete the specific
user details from the database.

If you finish this controller class, then you are ready to run this application and test the
REST API using Insomnia.

Testing the output
Let's run the project. If the project doesn't experience an error, then you'll be able to see the
RUN tab of the IDE, as demonstrated in the following screenshot:

Now, open the Insomnia app. Let's apply the REST API request in this app.

Getting the user list
Use this GET request with this URL: http://localhost:8080/users, and hit Send. The
user details will be fetched from the database and you can see the return JSON value, as the
following screenshot:

Accessing the Database Chapter 6

[184]

Accessing the Database Chapter 6

[185]

Getting one user by ID
Create a GET function with this URL: http://localhost:8080/user/1, and hit Send.
The user details will be fetched from the database and you can see the return JSON value of
a user whose id is 1, as in the following screenshot:

Inserting a new user
Create a POST function with this URL: http://localhost:8080/user/new a and
hit Send. This will insert a user in the database and show the new user details, as in the
following screenshot:

Accessing the Database Chapter 6

[186]

If you use the /users GET request URL path, you can check the user list containing the new
user:

Accessing the Database Chapter 6

[187]

Updating a user
Create an UPDATE function with this URL: http://localhost:8080/user/8, and
hit Send. It will update the user who has the ID number eight in the database and shows
the updated user information, as in the following screenshot:

If you use the http://localhost:8080/user/8 GET request URL path, you can check
the new user with the new details like the following screenshot:

Accessing the Database Chapter 6

[188]

Deleting a user
Create a DELETE function with this URL: http://localhost:8080/users, and hit Send.
This will delete the specific user from the database, as shown in the following screenshot:

If you check all the users, then you will see that there are only seven.

Finally, we have created an application that is using JDBC, and we have also created a
REST API. You can check out our GitHub project for the latest update if there is any. I also
add a SQL file with the MySQL code.

Java Persistence API
The Java Persistence API (JPA) is an approach to object-relational mapping (ORM). ORM
is a system that maps Java objects to databases, tables, and vice-versa. JPA can be used in
both Java enterprise and standard edition-based applications. Hibernate, TopLink,
EclipseLink, and Apache OpenJPA are the implementations of the JPA. Among these,
Hibernate is the most advanced and widely used.

JPA helps the developer to work directly with the objects, and therefore, there is no need to
worry about the SQL statements. With the help of the JPA, they can map, store, update, and
fetch the data from a relational database to a Java object or vice versa.

JPA metadata is mainly defined by the annotation in a class. However, it also supports
XML, which means it can be defined by XML. We will use the annotation to define the JPA
metadata throughout this book. Now, we will see the architecture of JPA, and its uses.

Accessing the Database Chapter 6

[189]

Architecture of JPA
The following diagram shows the class-level architecture of JPA:

Let's describe the diagram:

EntityManagerFactory: A factory class of EntityManager that creates and
manages multiple EntityManager instances.
EntityManager: This is an interface that manages the persistence operations on
objects.
Entity: This is a persistence object that is stored as records in the database
EntityTransaction: This has a one-to-one relationship with EntityManager.
For each EntityManager, operations are maintained by
the EntityTransaction class.
Query: This is an interface that is implemented by each JPA vendor to obtain
relational objects with the criteria.
Persistence: This is a class. To obtain an EntityManagerFactory instance, it
contains static methods.

Accessing the Database Chapter 6

[190]

If you look at the diagram again, you may notice that there is some relation between the
classes and interfaces that belong to the javax.presistence package:

Between EntityManagerFactory and EntityManager, there is a one-to-many
relationship
Between EntityManager and EntityTransaction, there is a one-to-one
relationship
Between EntityManager and Query, there is a one-to-many relationship
Between EntityManager and Entity, there is a one-to-many relationship

Creating a project using JPA
Let's create a simple project using Spring Boot with JPA, as well as Hibernate and MySQL.
We will build a RESTful CRUD API of a user list.

To create a project, go to this link: https:/ /start. spring. io and create a Kotlin-based
project.

Maven dependencies
If you go to the pom.xml file, you can see the dependencies for the JDBC there. We are
using MySQL for the database:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
</dependency>

<dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <scope>runtime</scope>
</dependency>

<dependency>

https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io

Accessing the Database Chapter 6

[191]

 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 <scope>runtime</scope>
</dependency>

According to this code, here are the dependencies:

Web
JPA
MySQL
H2

Here, we have seen a new dependency named h2. This is one of the well known, in-
memory databases. Spring Boot and H2 have a great combination between one another.

Creating the DataSource
We configure the DataSource and connection pool in the application.properties. Spring
boot uses the spring.datasource interface as a prefix to configure DataSource. Our
database schema name is cha6_dbtest_schema. You can create this on your own and
rename it. Here are the details of application.properties:

Spring DATASOURCE (DataSourceAutoConfiguration & DataSourceProperties)
spring.datasource.url =
jdbc:mysql://localhost:3306/cha6_dbtest_schema?useSSL=false
spring.datasource.username = root
spring.datasource.password = 12345678

Hibernate Properties
The SQL dialect makes Hibernate generate better SQL for the chosen
database
spring.jpa.properties.hibernate.dialect =
org.hibernate.dialect.MySQL5Dialect

Hibernate ddl auto (create, create-drop, validate, update)
spring.jpa.hibernate.ddl-auto = update

In our system, the MySQL details are as follows:

Host -- localhost

Port -- 3306

Accessing the Database Chapter 6

[192]

Username -- rootPassword -- 12345678

Database Name - packtpub_dbtest

Database Schema Name - packtpub_dbtest_schema

Creating a model
In this project, we will create a REST API to see the list of user details where we can get a
username, email ID, and contact number. So let's create a model of a user where the class
name is UserModel.kt.

Here is the code of the model class:

@Entity
@Table(name="user_jpa")
@EntityListeners(AuditingEntityListener::class)
data class UserModel(
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 @Column(name = "id")
 var id: Long = 0,

 @NotBlank
 @Column(name = "name")
 var name: String ?= null,

 @NotBlank
 @Column(name = "email")
 var email: String ?= null,

 @NotBlank
 @Column(name = "contact_number")
 var contact_number: String ?= null
)

Here, our UserModel class has the following fields:

id: Primary key with auto increment
name: (NOT NULL field)
email: (NOT NULL field)
contact_number: (NOT NULL field)

Accessing the Database Chapter 6

[193]

Unlike JDBC, you don't need to create any table manually in your database. JPA will create
a table using the UserModel. Let's look at how to create a table in our database using this
UserModel object:

@Entity: All your domain models must be annotated with this annotation. This
annotation is used to mark the class as a persistent Java class.
@Table: This annotation is used to provide the details of the table. The entity will
be mapped by it.
@Id: This is used to define the primary key.
@GeneratedValue: This annotation is used to define the primary key generation
strategy. In the preceding case, we have declared the primary key as an auto
increment field.
@NotBlank: This is used to verify that the annotated field is not null or empty.
@Column: This is used to verify the properties of the column that will be mapped
to the annotated field.

Creating a user repository
We will communicate with the database in this repository class. This is a Repository class,
and so we annotate it with @Repository. Let's create a Repository class
named UserRepository.kt, which extends the JpaRepository. By extending
JpaRepository, this interface will get a set of generic CRUD functions to create, update,
delete, and fetch the data.

Here is the code of the Repository class:

@Repository
interface UserRepository: JpaRepository<UserModel, Long>

Here are some functions we will get from this JPARepository:

List<T> findAll(): To fetch all the data
List<T> findAll(Sort var1) : To fetch all the data in sort
List<T> findAllById(Iterable<ID> var1): To fetch data by ID
<S extends T> List<S> saveAll(Iterable<S> var1): To insert data
using the list of a data

Accessing the Database Chapter 6

[194]

Creating controller
If your model and repository classes are complete, then you are ready to create the
controller class where we will create the GetMapping, PostMapping, PutMapping,
and DeleteMapping to create RESTful API URL paths. Let's create a controller class
named UserController.kt using the @RestController annotation to create the
controller class:

@RestController
class UserController {

}

Autowired repository
Let's autowire the UserRepository using the @Autowired annotation. Here is the piece of
code of this class:

@RestController
class UserController {

 @Autowired
 private lateinit var userRepository: UserRepository

}

Getting the user list
Find the code snippet for getAllUsers() operation:

// to get all the users details
 @GetMapping("/users")
 fun getAllUsers(): List<UserModel>{
 return userRepository.findAll()
 }

The @GetMapping(path = ["/users"]) annotation means it is used to GET a request.
Here, we will get a list of the users from the database using findAll() of the
UserRepository interface, which implemented JpaRepository. Consequently, we don't
need to create a custom interface, unlike JDBC.

Accessing the Database Chapter 6

[195]

Getting one user by ID
Find the code snippet getAllUserByID() operation as follows:

 // to get one specific user details
 @GetMapping("/user/{id}")
 fun getUser(@PathVariable(name = "id") id: Long): UserModel {
 return userRepository.findById(id).get()
 }

The @GetMapping(path = ["/user/{id}"]) annotation is the URL path of
"/user/{id}", and it is a GET request with a specific ID. Here, we
return findById(id).get() to get the specific user details from the database.

Inserting new user
Find the code snippet for addNewUser() operation as follows:

// to add a user
@PostMapping("/users")
fun addUser(@Valid @RequestBody userModel: UserModel): UserModel {
 return userRepository.save(userModel)
}

The @PostMapping(path = ["/user/"]) annotation is the URL path of "/user/", and
it is a POST request. Here, we enter the details of a user to insert the user data in the
database.

To bind the request body with a method parameter, we are using
the @RequestBody annotation.

The @Valid annotation makes sure that the request body is valid and not null.

Here, we return save(userModel) to insert new user details into the database.

Updating a user
Find the code snippet for the updateUser() operation:

 // to update a user
 @PutMapping("/user/{id}")
 fun updateUser(@PathVariable(name = "id")id: Long, @Valid @RequestBody
userDetails: UserModel): UserModel {
 val currentUser: UserModel = userRepository.findById(id).get()

Accessing the Database Chapter 6

[196]

 currentUser.name = userDetails.name
 currentUser.email = userDetails.email
 currentUser.contact_number = userDetails.contact_number

 return userRepository.save(currentUser)
 }

The @PutMapping("/user/{id}") annotation is the URL path of "/user/{id}", and it
is a PUT request with a specific ID. Here, we will update the specific user details in the
database.

Deleting a user
Find the code snippet for deleteUser() operation as follows:

// to delete a user
 @DeleteMapping("/user/{id}")
 fun deleteUser(@PathVariable(name = "id")id: Long): ResponseEntity<*>{
 userRepository.delete(userRepository.findById(id).get())
 return ResponseEntity.ok().build<Any>()
 }

The @DeleteMapping("/user/{id}") annotation is the URL path of "/user/{id}" and
it is a DELETE request with a specific ID. Here we will delete the specific user details from
the database.

If you finish this controller class, then you are ready to run this application and test
the REST API using Insomnia.

Seeing the output
Before running the project, go to the MySQL Workbench app, the cha6_dbtest table,
and cha6_dbtest_schema. There you will notice that there will be no table
named user_jpa, which was mentioned in the UserModel class as a table name.

Accessing the Database Chapter 6

[197]

Here is the screenshot of the schema where we have no table:

Let's run the application, check the database again, and refresh the schema. Notice that now
there is a table as we mentioned in the @Table annotation of the UserModel. This has all
the columns of that object, including—id, name, email, and contact_number.

Here is the screenshot of the updated database:

The testing system is the same as the JDBC. Please check this yourself, and if you are
confused, then go to the Testing the Output of JDBC project.

Here is the REST API URL of this project:

GET http://localhost:8080/users: To get a list of all users
GET http://localhost:8080/user/1: To get a specific user details
POST http://localhost:8080/user/new: To insert a new user
PUT http://localhost:8080/user/1: To update a specific user details
DELETE http://localhost:8080/user/2: To delete a specific user details

Accessing the Database Chapter 6

[198]

Database of client-side application
Up to this point, you have learned about databases for the server-side. Now we are going to
understand databases for the client-side. The Android application will be our client-side
application. The demand for Android is now rapidly increasing, and it has also surpassed
the PC-based operating systems. Even nowadays, hardware is also more powerful than a
PC or laptop.

The database is the essential part for a smart device, and it is the best way to store and
manage the data on a device. This data can be handled in two ways. One way is online
based, which means all the data is handled by a server-side or cloud and mobile
communicates with them through the network. Without the internet connection, this
system is almost useless. The second option is to store all the data in the local database. This
means that it can be used offline and is also less dependent on the internet.

There are some criteria for the mobile-based database:

Lightweight and fast
Secured
Independent from an online server
Easy to handle using the code
Can be shared publicly or privately
Low power consumption and low memory

There are lots of mobile databases available on the market but very few databases have met
these criteria. SQLite, Realm DB, and ORMLite are few of them.

We will use the SQLite database throughout this book. However, we are not going to use
the raw SQLite. We will instead use a library called room persistence library, which is part
of the architecture components. IT provides an abstraction layer over the SQLite. This
allows database access that is more robust and helps with much less code.

Architecture components
The architecture components are one of the components of Android Jetpack. This is a
guideline for application architecture. This component is built on some libraries to do
common tasks in an easier way. With the help of this component, a developer can develop
their project, which can be robust, maintainable, and testable.

Accessing the Database Chapter 6

[199]

Today we will create an Android offline application where we will use Android
components.

Here is the diagram of this architecture:

The following is a brief description of all the components:

UI Controller: UI components like activities and fragments are under this
component.
ViewModel: This fetches data with the help of model and provides it to the UI.
LiveData: This class holds the observable data. This is lifecycle-aware, unlike
the regular observable.

Accessing the Database Chapter 6

[200]

Repository: This manages multiple data sources.
Room Database: This is a top database layer, which is from the SQLite database.
Entity: This describes a database table.
DAO: The full form is a data access object (DAO). It maps SQL queries.
SQLite database: Data is stored using this in the device. It is created and
maintained by the room.

Creating an Android app
Let's create a simple Android app that has a database. This will store the details of users
(including name, contact number, and email ID) and show these details in
a list using RecyclerView.

First of all, we need to create an app from Android Studio, write down your project, and
the company domain. Don't forget to check Include Kotlin support to make it a Kotlin-
based application. The following screenshot shows the Create Android Project window:

Accessing the Database Chapter 6

[201]

Now select the minimum API version from the Phone and Tablet option. There is no need
to add other options for this project. After clicking Next in the Add an Activity to Mobile,
you can select Basic Activity and then, after renaming the Activity Name and layout,
click Finish. After building the project, you will be ready to start creating an Android app.

Here is the screenshot of the Add an Activity to Mobile window and here we select the
Basic Activity template like the following screenshot:

The final files of this project are shown in the following screenshot, where you can see all
the files and resources after finishing this project:

Accessing the Database Chapter 6

[202]

Gradle information
Here are the details of my Android Studio's Gradle file:

buildscript {

 dependencies {
 classpath 'com.android.tools.build:gradle:3.2.1'
 classpath "org.jetbrains.kotlin:kotlin-gradle-plugin:1.3.10"

 }
}

This file injects the dependencies of the Gradle and Kotlin. In this project, the Gradle
version is 3.2.1 and the Kotlin version is 1.3.10

Accessing the Database Chapter 6

[203]

Gradle dependencies
This Gradle file is for the application. It contains all the dependencies and other Android
SDK versions.

Here is the following code in the dependencies block:

 // Room components
 implementation
"android.arch.persistence.room:runtime:$rootProject.roomVersion"
 kapt "android.arch.persistence.room:compiler:$rootProject.roomVersion"
 androidTestImplementation
"android.arch.persistence.room:testing:$rootProject.roomVersion"

 // Lifecycle components
 implementation
"android.arch.lifecycle:extensions:$rootProject.archLifecycleVersion"
 kapt
"android.arch.lifecycle:compiler:$rootProject.archLifecycleVersion"

 // Coroutines
 api "org.jetbrains.kotlinx:kotlinx-coroutines-
core:$rootProject.coroutines"
 api "org.jetbrains.kotlinx:kotlinx-coroutines-
android:$rootProject.coroutines"

To enable the coroutines features, add the following code end of the app's build.gradle
file:

kotlin {
 experimental {
 coroutines "enable"
 }
}

Creating entity
Let's create a class of user named UserModel.kt with the @Entity annotation so that each
user is an entity. All variables columns shouldn't be private and so that Room will able to
instantiate your objects:

@Entity(tableName = "users")
class Users(): Parcelable {
 @PrimaryKey(autoGenerate = true)
 @NonNull
 @ColumnInfo(name = "userId")

Accessing the Database Chapter 6

[204]

 var userId: Int = 0

 @NonNull
 @ColumnInfo(name = "username")
 lateinit var username: String

 @NonNull
 @ColumnInfo(name = "email")
 lateinit var email: String

 @NonNull
 @ColumnInfo(name = "contactNumber")
 lateinit var contactNumber: String

 @NonNull
 @ColumnInfo(name = "address")
 lateinit var address: String

 constructor(username: String, email: String, contactNumber: String,
address: String):this(){
 this.username = username
 this.email = email
 this.contactNumber = contactNumber
 this.address = address
 }

 override fun toString(): String {
 return "Users(username='$username', email='$email',
contactNumber='$contactNumber', address='$address')"
 }
}

Let's see what is in this class:

@Entity(tableName = "users"): An entity class represents a table, and our
table name is users
@ColumnInfo(name = "**"): This specifies a name in the table
@PrimaryKey(autoGenerate = true): This means the ID is our primary key
and it will automatically increase the value
@NonNull: This means there will be no null or empty value in the columns

Accessing the Database Chapter 6

[205]

To pass this object from one activity to another, we need to convert this class into
a Parcelable class. So let's extend this class. In the traditional way, it will need lots of
code like the following:

@Entity(tableName = "users")
class Users(): Parcelable {

 constructor(parcel: Parcel) : this() {
 userId = parcel.readInt()
 username = parcel.readString()!!
 email = parcel.readString()!!
 contactNumber = parcel.readString()!!
 address = parcel.readString()!!
 }

 override fun writeToParcel(parcel: Parcel, flags: Int) {
 parcel.writeInt(userId)
 parcel.writeString(username)
 parcel.writeString(email)
 parcel.writeString(contactNumber)
 parcel.writeString(address)
 }

 override fun describeContents(): Int {
 return 0
 }

 companion object CREATOR : Parcelable.Creator<Users> {
 override fun createFromParcel(parcel: Parcel): Users {
 return Users(parcel)
 }

 override fun newArray(size: Int): Array<Users?> {
 return arrayOfNulls(size)
 }
 }
}

So, it's really complex to understand and handle, though we don't need to modify the
override functions and constructors. However, if you omit these lines, then, of course, you
will be happy, and your code will look nice. To do this, we need to apply the lazy coder's
way.

Accessing the Database Chapter 6

[206]

We just need an annotation named @Parcelize on top of the model class. Here is the full
code for this:

@Parcelize
@Entity(tableName = "users")
class Users(): Parcelable {
 @PrimaryKey(autoGenerate = true)
 @NonNull
 @ColumnInfo(name = "userId")
 var userId: Int = 0

 @NonNull
 @ColumnInfo(name = "username")
 lateinit var username: String

 @NonNull
 @ColumnInfo(name = "email")
 lateinit var email: String

 @NonNull
 @ColumnInfo(name = "contactNumber")
 lateinit var contactNumber: String

 @NonNull
 @ColumnInfo(name = "address")
 lateinit var address: String

 constructor(username: String, email: String, contactNumber: String,
address: String):this(){
 this.username = username
 this.email = email
 this.contactNumber = contactNumber
 this.address = address
 }

 override fun toString(): String {
 return "Users(username='$username', email='$email',
contactNumber='$contactNumber', address='$address')"
 }
}

So there is no more extra code. To enable this, you need to add the following code in the
android block of the build.gradle (Module: app) file:

android {

 androidExtensions {

Accessing the Database Chapter 6

[207]

 experimental = true
 }
}
dependencies {

}

Creating the DAO
Let's create an interface named UserDAO.kt, and annotated with @DAO annotation. This
will help Room to identify the DAO class. Here is the code for the DAO interface:

@Dao
interface UserDAO

In this interface, we will create functions that will be responsible for inserting, deleting, and
getting the user details:

@Insert
fun addNewUser(users: Users)

In the preceding code, @Insert is used to insert a user:

@Query("DELETE FROM USERS")
fun deleteAllUsers()

In the previous code, @Query("DELETE FROM USERS") is used to delete all the users from
the USERS table:

@Query("SELECT * FROM USERS")
fun getAllUsers(): List<Users>

In this code, @Query("SELECT * FROM USERS") is used to get all the users as a list from
the USERS table.

Creating the LiveData class
Data always changes dynamically and so we have to keep it updated and show the latest
result to users. For this reason, we need to observe the data. LiveData is a lifecycle library
class that can observe the data and react.

Accessing the Database Chapter 6

[208]

Let's wrap the getAllUsers() function of UserDao.kt with the LiveData:

@Query("SELECT * FROM USERS")
fun getAllUsers(): LiveData<List<Users>>

The @Query("SELECT * FROM USERS") is to get all the information from the USERS table

So here is the full code of the DAO interface:

@Dao
interface UserDAO {

 @Insert(onConflict = OnConflictStrategy.REPLACE)
 fun addNewUser(users: Users)

 @Query("DELETE FROM USERS")
 fun deleteAllUsers()

 @Query("SELECT * FROM USERS")
 fun getAllUsers(): LiveData<List<Users>>
}

In the MainActivity, we will see how to create an Observer of the data and override the
observer's onChanged() function.

Creating a Room database
Room is not a database but a layer of the SQLite database. It mainly uses DAO and the
queries to make it easier to fetch the database for the clients. It doesn't use the main thread,
but runs asynchronously on a background thread and so the UI performance doesn't fall.

Let's create an abstract class named UsersRoomDatabase and extend RoomDatabase. Use
the @Database annotation with an entity of Users class and add the version number.
Lastly, initialize an abstract function of the UserDao class:

@Database(entities = [Users::class], version = 1)
abstract class UsersRoomDatabase : RoomDatabase() {
 abstract fun userDAO(): UserDAO

}

Let's create a singleton. This will handle multiple instances of the database when it opens at
the same time.

Accessing the Database Chapter 6

[209]

Initialize the UsersRoomDatabase object.

The name of the UsersRoomDatabase is "user_database".

Here is the piece of code for this object:

// static members
companion object {
 @Volatile
 private var INSTANCE: UsersRoomDatabase? = null

 fun getDatabase(context: Context, scope: CoroutineScope):
UsersRoomDatabase {
 val tempInstance = INSTANCE
 if (tempInstance != null) {
 return tempInstance
 }
 synchronized(this) {
 val instance = Room.databaseBuilder(
 context.applicationContext,
 UsersRoomDatabase::class.java,
 "user_database"
).addCallback(UserDatabaseCallback(scope))
 .build()
 INSTANCE = instance
 return instance
 }
 }
}

Populating the database
To store data in the database, we can input some demo data by using the code for the users.
The rest of the data will be stored by using the NewUserActivity.kt class.

For the demo data, we are creating a simple function where we insert two demo user
details and it will show after running the app.

To do this, let's create an inner callback named UserDatabaseCallback() with
the CoroutineScope parameter and extend RoomDatabase.Callback(). Lastly, we will
override the onOpen(db: SupportSQLiteDatabase) and there we can add two random
user objects:

fun populateDatabase(userDao: UserDAO) {
 userDao.addNewUser(

Accessing the Database Chapter 6

[210]

 Users(
 "Sunnat", "sunnat629@gmail.com",
 "1234567890", "Dhaka"
)
)
 userDao.addNewUser(
 Users(
 "Chaity", "chaity123@gmail.com",
 "54321987", "Dhaka"
)
)
 }

Here we have created the user details using the userDao.addNewUser(). These user
details will show in the listview if we run the application.

Lastly, we need to add the callback to the database and call build() to finish this callback
like this code shows:

fun getDatabase(context: Context, scope: CoroutineScope): UsersRoomDatabase
{
 val tempInstance = INSTANCE
 if (tempInstance != null) {
 return tempInstance
 }
 synchronized(this) {
 val instance = Room.databaseBuilder(
 context.applicationContext,
 UsersRoomDatabase::class.java,
 "user_database"
).addCallback(UserDatabaseCallback(scope))
 .build()
 INSTANCE = instance
 return instance
 }
}

private class UserDatabaseCallback(
 private val scope: CoroutineScope
) : RoomDatabase.Callback() {

 override fun onOpen(db: SupportSQLiteDatabase) {
 super.onOpen(db)
 INSTANCE?.let { database ->
 scope.launch(Dispatchers.IO) {
 populateDatabase(database.userDAO())
 }
 }

Accessing the Database Chapter 6

[211]

 }

}

In the preceding code, we created a callback class named UserDatabaseCallback where
we populate the database using the DAO function named userDAO().

Then we add this callback in the instance of getDatabase() function
using addCallback().

Implementing the repository
Repository class is the bridge between the Room database and the ViewModel. This
provides data from multiple data sources and isolates the data layer.

We can separate this repository into two sections; one is DAO, which is mainly used for the
local database and to connect the local database with the application. Another section is the
network, which is mainly used for handling and communicating between the cloud and
application.

Now create a repository class named UsersRepository.kt and declare UserDAO as the
constructor of this class.

Here is the code of UsersRepository.kt:

class UsersRepository(private val mUserDAO: UserDAO) {

 val mAllUsers: LiveData<List<Users>> = mUserDAO.getAllUsers()

 @WorkerThread
 suspend fun insert(user: Users){
 mUserDAO.addNewUser(user)
 }
}

Here, we have initialized the user list. Now the Room will execute all queries. The queries
will be done in a different thread.

LiveData will notify the callback function if there are any changes in the database.
The insert(user: Users) is the function that is used to wrap the addNewUser(). This
insert function has to run on a non-UI thread or the application will crash. To avoid this, we
need to use @WorkerThread annotation, which helps to execute this function on a non-UI
thread.

Accessing the Database Chapter 6

[212]

Creating the ViewModel
Now create a ViewModel class named MainViewModel.kt.

Here is the MainViewModel.kt class:

open class MainViewModel(application: Application) :
AndroidViewModel(application) {
 private val mRepository: UsersRepository
 private val mAllUsers: LiveData<List<Users>>

 private var parentJob = Job()
 private val coroutineContext: CoroutineContext
 get() = parentJob + Dispatchers.Main

 private val scope = CoroutineScope(coroutineContext)

 init {
 val userDao = UsersRoomDatabase.getDatabase(application,
scope).userDAO()
 mRepository = UsersRepository(userDao)
 mAllUsers = mRepository.mAllUsers
 }

 fun getAllUsers(): LiveData<List<Users>>{
 return mAllUsers
 }

 fun insert(users: Users) = scope.launch(Dispatchers.IO){
 mRepository.insert(users)
 }

 override fun onCleared() {
 super.onCleared()
 parentJob.cancel()
 }
}

This class gets the Application as a parameter and extends the AndroidViewModel.

Initialize a private variable of WordRepository and a LiveData, which will cache the list
of the users.

In the init block, add a UserDAO reference from the UsersRoomDatabase. Initialize the
mAllUsers with the mRepository.mAllUsers.

Accessing the Database Chapter 6

[213]

Creating new activity
Now we need an activity where we will create a function to insert the user details and save
into the database. Right-click on the app folder and create Empty Activity
named NewUserActivity.kt like the following screenshot:

Accessing the Database Chapter 6

[214]

Here is the code of the layout of this class named activity_new_user.xml. (The entire
code can be found at GitHub link):

 <EditText
 android:id="@+id/editEmail"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:hint="@string/hint_email"
 android:inputType="textEmailAddress"
 android:padding="5dp"
 android:textSize="18sp" android:layout_marginTop="8dp"
 app:layout_constraintTop_toBottomOf="@+id/editUsername"
app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintEnd_toEndOf="parent"/>

 <EditText
 android:id="@+id/editContactID"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:hint="@string/hint_contact"
 android:inputType="phone"
 android:padding="5dp"
 android:textSize="18sp" android:layout_marginTop="8dp"
 app:layout_constraintTop_toBottomOf="@+id/editEmail"
app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 />

 <Button
 android:id="@+id/buttonSave"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:background="@color/colorPrimary"
 android:text="@string/button_save"
 android:textColor="@android:color/white"
 android:layout_marginBottom="8dp"
 app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
android:layout_marginTop="8dp"
 app:layout_constraintTop_toBottomOf="@+id/editAddress"
app:layout_constraintVertical_bias="1.0"/>
</android.support.constraint.ConstraintLayout>

Accessing the Database Chapter 6

[215]

Here we have added four EditText where we can input—username, contactNumber,
email, address, and a button named buttonSave to save this information into the
database.

Here is the code of the NewUserActivity.kt class:

class NewUserActivity : AppCompatActivity(), View.OnClickListener {

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_new_user)
 buttonSave.setOnClickListener(this)
 }

 override fun onClick(view: View?) {
 if (view!!.id == R.id.buttonSave){
 val intent = Intent()
 if (isTextFieldEmpty()){
 Snackbar.make(view, "Empty Field", Snackbar.LENGTH_LONG)
 .setAction("Action", null).show()
 setResult(Activity.RESULT_CANCELED, intent)
 } else {
 val users = Users(editUsername.text.toString(),
 editEmail.text.toString(),
 editContactID.text.toString(),
 editAddress.text.toString())

 Log.wtf("CRAY", editUsername.text.toString()+" "+
 editEmail.text.toString()+" "+
 editContactID.text.toString()+" "+
 editAddress.text.toString())

 Log.wtf("CRAY", users.toString())
 // If an instance of this Activity already exists, then it
will be moved to the front.
 // If an instance does NOT exist, a new instance will be
created.
 intent.addFlags(Intent.FLAG_ACTIVITY_REORDER_TO_FRONT)
 intent.putExtra(getString(R.string.result_replay), users)
 setResult(Activity.RESULT_OK, intent)
 }
 finish()
 }
 }

 private fun isTextFieldEmpty(): Boolean {
 return TextUtils.isEmpty(editUsername.text) ||
 TextUtils.isEmpty(editEmail.text) ||

Accessing the Database Chapter 6

[216]

 TextUtils.isEmpty(editContactID.text) ||
 TextUtils.isEmpty(editAddress.text)
 }
}

According to the preceding code:

Implement the View.OnClickListener and override the onClick(view:
View?).
In the onCreate(), setOnClickListener() for the buttonSave, and override
the onClick(view: View?) that we want to execute with the button. Lastly, we
call an Intent, which will change the activity from the UserModel to the
MainActivity class.
The isTextFieldEmpty() is designed to check whether the EditText fields are
empty or not.
Then we get all the text, make a UserObject, and pass this Parcelable user object
to the MainActivity
using intent.putExtra(getString(R.string.result_replay), users).

Creating custom RecyclerView adapter
To show all the user list, we will use the RecyclerView. For our project, we need to
customize the RecyclerView adapter in our own way. In this adapter, we mainly pass the
user model. This will show the username, email, and contact number. Let's create an
adapter named UserListAdapter.kt and
extend RecyclerView.Adapter<UserListAdapter.UserViewHolder>(). Here is the
code for the UserListAdapter.kt:

class UserListAdapter internal constructor(context: Context) :
 RecyclerView.Adapter<UserListAdapter.UserViewHolder>() {

 private val mLayoutInflater: LayoutInflater =
LayoutInflater.from(context)!!
 private var mUsers: List<Users> = emptyList() // Cached copy of users

 inner class UserViewHolder(itemView: View) :
RecyclerView.ViewHolder(itemView) {
 val rowName: TextView = itemView.name
 val rowEmail: TextView = itemView.email
 val rowContactNumber: TextView = itemView.contactNumber
 val rowAddress: TextView = itemView.contactNumber

Accessing the Database Chapter 6

[217]

 }

 override fun onCreateViewHolder(parent: ViewGroup, viewType: Int):
UserViewHolder {
 val itemView: View =
mLayoutInflater.inflate(R.layout.recyclerview_item, parent, false)
 return UserViewHolder(itemView)
 }

 override fun onBindViewHolder(holder: UserViewHolder, position: Int) {
 holder.rowName.text = mUsers[position].username
 holder.rowEmail.text = mUsers[position].email
 holder.rowContactNumber.text = mUsers[position].contactNumber
 holder.rowAddress.text = mUsers[position].address
 }

 override fun getItemCount(): Int {
 return mUsers.size
 }

 internal fun setNewUser(users: List<Users>) {
 mUsers = users
 notifyDataSetChanged()
 }
}

According to the code:

onCreateViewHolder()
onBindViewHolder()
UserViewHolder()

Here we initialize four attributes of the activity_new_user.xml in the UserViewHolder
inner class :

val rowName: TextView = itemView.name
val rowEmail: TextView = itemView.email
val rowContactNumber: TextView = itemView.contactNumber
val rowAddress: TextView = itemView.contactNumber

Accessing the Database Chapter 6

[218]

We have set the userModel's value in these four attributes in onBindViewHolder()
function as follows:

holder.rowName.text = mUsers[position].username
holder.rowEmail.text = mUsers[position].email
holder.rowContactNumber.text = mUsers[position].contactNumber
holder.rowAddress.text = mUsers[position].address

Implementing RecyclerView
RecyclerView is a list where we can see all the user list. RecyclerView is a part of design
material that helps to make the list smoother and faster to load the data.

In the MainActivity, we set RecycleView in the onCreate() function as shown by this
code:

val userListAdapter = UserListAdapter(this)
recyclerview.adapter = userListAdapter
recyclerview.layoutManager = LinearLayoutManager(this)

Modifying main activity
Let's modify this MainActivity class to complete our project. Let's start by connecting the
UI to the database. We will use the RecyclerView to show the list of data from the
database.

Let's create a variable of ViewModel as shown by the following code:

private lateinit var mMainViewModel: MainViewModel

Use ViewModelProviders to connect the MainViewModel with MainActivity. In
onCreate(), we will get the ViewModel from the ViewModelProvider as shown by the
following code:

mMainViewModel = ViewModelProviders.of(this).get(MainViewModel::class.java)

Accessing the Database Chapter 6

[219]

To add the LiveData observer let's add this observe() for getAllUsers() as shown by
the following code:

mMainViewModel.getAllUsers().observe(this,
 Observer {
 userList -> userListAdapter.setNewUser(userList!!)
 })

Getting data from another activity
We mentioned in the Creating new activity section that we have passed the Parcelable user
object to the MainActivity. To get this object, we need to create a request code. Let's
create a request code like the following:

private val requestCode: Int = 1

Now override the onActivityResult() function, where we will retrieve the passed object
of the NewUserActivity.

Here is the code of onActivityResult() function:

override fun onActivityResult(requestCode: Int, resultCode: Int, data:
Intent?) {
 super.onActivityResult(requestCode, resultCode, data)
 if (requestCode == this.requestCode && resultCode ==
Activity.RESULT_OK){
 data?.let {
 val users: Users =
it.getParcelableExtra(getString(R.string.result_replay)) as Users
 mMainViewModel.insert(users)
 }
 }
}

The getParcelableExtra() is used to retrieve a Parcelable object. After then, we call
the mMainViewModel.insert(users) to insert the returned User into the database.

Adding XML layouts
In the content_main.xml, we add the RecyclerView. Here is the code of this layout:

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"

Accessing the Database Chapter 6

[220]

 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:layout_behavior="@string/appbar_scrolling_view_behavior"
 tools:showIn="@layout/activity_main"
 tools:context=".ui.MainActivity">
 <android.support.v7.widget.RecyclerView
 android:id="@+id/recyclerview"
 android:background="@android:color/darker_gray"
 tools:listitem="@layout/recyclerview_item"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 android:layout_height="0dp" android:layout_width="0dp"/>
</android.support.constraint.ConstraintLayout>

Switching another activity
In the activity_main.xml, we have added a FloatingActionButton, which we will
use to go to NewUserActivity. To complete this task, use the following code in the
onCreate() with the mentioned request code:

fab.setOnClickListener {
 val intent = Intent(this@MainActivity, NewUserActivity::class.java)
 startActivityForResult(intent, requestCode)

 /*Snackbar.make(view, "Replace with your own action",
Snackbar.LENGTH_LONG)
 .setAction("Action", null).show()*/
}

So, here is the complete code of MainAcivity.kt:

class MainActivity : AppCompatActivity() {

 private val requestCode: Int = 1

 private lateinit var mMainViewModel: MainViewModel

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)
 setSupportActionBar(toolbar)

 val userListAdapter = UserListAdapter(this)

Accessing the Database Chapter 6

[221]

 recyclerview.adapter = userListAdapter
 recyclerview.layoutManager = LinearLayoutManager(this)

 mMainViewModel =
ViewModelProviders.of(this).get(MainViewModel::class.java)
 mMainViewModel.getAllUsers().observe(this,
 Observer {
 userList -> userListAdapter.setNewUser(userList!!)
 })

 fab.setOnClickListener {
 val intent = Intent(this@MainActivity,
NewUserActivity::class.java)
 startActivityForResult(intent, requestCode)
 }
 }

 override fun onActivityResult(requestCode: Int, resultCode: Int, data:
Intent?) {
 super.onActivityResult(requestCode, resultCode, data)
 if (requestCode == this.requestCode && resultCode ==
Activity.RESULT_OK){
 data?.let {
 val users: Users =
it.getParcelableExtra(getString(R.string.result_replay)) as Users
 mMainViewModel.insert(users)
 }
 }
 }
}

Now that we have completed the project, run the application. We will explore this in the
next section.

Accessing the Database Chapter 6

[222]

Run the app
After running the app on your Android device or emulator, you will see this screen:

Accessing the Database Chapter 6

[223]

We can see our pre-added user details here. Now click the float button and go to the new
user activity where you can write down the information of a user as shown by this
screenshot:

Accessing the Database Chapter 6

[224]

Lastly, click the Save button. You can now see the new username, which is displayed
as Naruto in this image:

So, in this way we have learned how to use Room for the local database. In the next chapter,
you will see more use of this library in an Android application.

Accessing the Database Chapter 6

[225]

Summary
The database itself is a large platform and we have covered those parts that are relevant to
our Spring and Android projects and contents. In this chapter, we have learned what the
database is, as well as looking at the various types of it. We have seen a brief description of
the DBMs. After that, we have learned about the JDBC, which is an API specification for
connecting and moving data from frontend to backend. Then we have developed a project
using JDBC where we created, read, updated, and deleted data from the databases. After
this topic, we have learned another API called JPA, which is an approach to ORM and a
system that maps Java objects to database tables and vice-versa. Then we have learned
more about the JPA and its use with the help of a project. There, we have also learned about
CRUD-based REST API. Lastly, we have learned about the latest technology of Android
called architecture components. Also, we looked at one of the components called Room,
which is a wrap of the top level of the SQLite database. Finally, I want to reiterate that this
database chapter has not explained everything. If you want to learn more about the
database, you can read our recommended books, and we have mentioned the links with the
names of the books and authors under the Further reading section. In the next chapter, you
can learn about the concurrency, which means the ability of different units of a program,
algorithm, or problem.

Questions
What is the H2 in the Spring Boot?1.
What is a resource in REST API?2.
What is the full meaning of CRUD?3.
What is the difference between the DAO and repository?4.
What is SQLite?5.
What datatypes does SQLite support?6.
What are the standard SQLite commands?7.
What are the disadvantages of SQLite?8.

Accessing the Database Chapter 6

[226]

Further reading
Spring Persistence with Hibernate (https:/ /www. packtpub. com/ application-
development/ spring- persistence- hibernate) by Ahmad Seddighi
Hands-On Full Stack Development with Spring Boot 2.0 and React (https:/ /www.
packtpub. com/ application- development/ hands- full- stack- development-
spring-boot- 20- and- react) by Juha Hinkula
Working with Data and Cloud in Spring 5.0 [Video] (https:/ /www. packtpub. com/
application- development/ working- data- and-cloud- spring- 50- video)
by Ranga Rao Karanam

Android Database Programming (https:/ /www. packtpub. com/ application-
development/ android- database- programming) by Jason Wei

https://www.packtpub.com/application-development/spring-persistence-hibernate
https://www.packtpub.com/application-development/spring-persistence-hibernate
https://www.packtpub.com/application-development/spring-persistence-hibernate
https://www.packtpub.com/application-development/spring-persistence-hibernate
https://www.packtpub.com/application-development/spring-persistence-hibernate
https://www.packtpub.com/application-development/spring-persistence-hibernate
https://www.packtpub.com/application-development/spring-persistence-hibernate
https://www.packtpub.com/application-development/spring-persistence-hibernate
https://www.packtpub.com/application-development/spring-persistence-hibernate
https://www.packtpub.com/application-development/spring-persistence-hibernate
https://www.packtpub.com/application-development/spring-persistence-hibernate
https://www.packtpub.com/application-development/spring-persistence-hibernate
https://www.packtpub.com/application-development/spring-persistence-hibernate
https://www.packtpub.com/application-development/spring-persistence-hibernate
https://www.packtpub.com/application-development/spring-persistence-hibernate
https://www.packtpub.com/application-development/spring-persistence-hibernate
https://www.packtpub.com/application-development/spring-persistence-hibernate
https://www.packtpub.com/application-development/spring-persistence-hibernate
https://www.packtpub.com/application-development/hands-full-stack-development-spring-boot-20-and-react
https://www.packtpub.com/application-development/hands-full-stack-development-spring-boot-20-and-react
https://www.packtpub.com/application-development/hands-full-stack-development-spring-boot-20-and-react
https://www.packtpub.com/application-development/hands-full-stack-development-spring-boot-20-and-react
https://www.packtpub.com/application-development/hands-full-stack-development-spring-boot-20-and-react
https://www.packtpub.com/application-development/hands-full-stack-development-spring-boot-20-and-react
https://www.packtpub.com/application-development/hands-full-stack-development-spring-boot-20-and-react
https://www.packtpub.com/application-development/hands-full-stack-development-spring-boot-20-and-react
https://www.packtpub.com/application-development/hands-full-stack-development-spring-boot-20-and-react
https://www.packtpub.com/application-development/hands-full-stack-development-spring-boot-20-and-react
https://www.packtpub.com/application-development/hands-full-stack-development-spring-boot-20-and-react
https://www.packtpub.com/application-development/hands-full-stack-development-spring-boot-20-and-react
https://www.packtpub.com/application-development/hands-full-stack-development-spring-boot-20-and-react
https://www.packtpub.com/application-development/hands-full-stack-development-spring-boot-20-and-react
https://www.packtpub.com/application-development/hands-full-stack-development-spring-boot-20-and-react
https://www.packtpub.com/application-development/hands-full-stack-development-spring-boot-20-and-react
https://www.packtpub.com/application-development/hands-full-stack-development-spring-boot-20-and-react
https://www.packtpub.com/application-development/hands-full-stack-development-spring-boot-20-and-react
https://www.packtpub.com/application-development/hands-full-stack-development-spring-boot-20-and-react
https://www.packtpub.com/application-development/hands-full-stack-development-spring-boot-20-and-react
https://www.packtpub.com/application-development/hands-full-stack-development-spring-boot-20-and-react
https://www.packtpub.com/application-development/hands-full-stack-development-spring-boot-20-and-react
https://www.packtpub.com/application-development/hands-full-stack-development-spring-boot-20-and-react
https://www.packtpub.com/application-development/hands-full-stack-development-spring-boot-20-and-react
https://www.packtpub.com/application-development/hands-full-stack-development-spring-boot-20-and-react
https://www.packtpub.com/application-development/hands-full-stack-development-spring-boot-20-and-react
https://www.packtpub.com/application-development/hands-full-stack-development-spring-boot-20-and-react
https://www.packtpub.com/application-development/hands-full-stack-development-spring-boot-20-and-react
https://www.packtpub.com/application-development/hands-full-stack-development-spring-boot-20-and-react
https://www.packtpub.com/application-development/working-data-and-cloud-spring-50-video
https://www.packtpub.com/application-development/working-data-and-cloud-spring-50-video
https://www.packtpub.com/application-development/working-data-and-cloud-spring-50-video
https://www.packtpub.com/application-development/working-data-and-cloud-spring-50-video
https://www.packtpub.com/application-development/working-data-and-cloud-spring-50-video
https://www.packtpub.com/application-development/working-data-and-cloud-spring-50-video
https://www.packtpub.com/application-development/working-data-and-cloud-spring-50-video
https://www.packtpub.com/application-development/working-data-and-cloud-spring-50-video
https://www.packtpub.com/application-development/working-data-and-cloud-spring-50-video
https://www.packtpub.com/application-development/working-data-and-cloud-spring-50-video
https://www.packtpub.com/application-development/working-data-and-cloud-spring-50-video
https://www.packtpub.com/application-development/working-data-and-cloud-spring-50-video
https://www.packtpub.com/application-development/working-data-and-cloud-spring-50-video
https://www.packtpub.com/application-development/working-data-and-cloud-spring-50-video
https://www.packtpub.com/application-development/working-data-and-cloud-spring-50-video
https://www.packtpub.com/application-development/working-data-and-cloud-spring-50-video
https://www.packtpub.com/application-development/working-data-and-cloud-spring-50-video
https://www.packtpub.com/application-development/working-data-and-cloud-spring-50-video
https://www.packtpub.com/application-development/working-data-and-cloud-spring-50-video
https://www.packtpub.com/application-development/working-data-and-cloud-spring-50-video
https://www.packtpub.com/application-development/working-data-and-cloud-spring-50-video
https://www.packtpub.com/application-development/working-data-and-cloud-spring-50-video
https://www.packtpub.com/application-development/working-data-and-cloud-spring-50-video
https://www.packtpub.com/application-development/working-data-and-cloud-spring-50-video
https://www.packtpub.com/application-development/working-data-and-cloud-spring-50-video
https://www.packtpub.com/application-development/working-data-and-cloud-spring-50-video
https://www.packtpub.com/application-development/working-data-and-cloud-spring-50-video
https://www.packtpub.com/application-development/working-data-and-cloud-spring-50-video
https://www.packtpub.com/application-development/android-database-programming
https://www.packtpub.com/application-development/android-database-programming
https://www.packtpub.com/application-development/android-database-programming
https://www.packtpub.com/application-development/android-database-programming
https://www.packtpub.com/application-development/android-database-programming
https://www.packtpub.com/application-development/android-database-programming
https://www.packtpub.com/application-development/android-database-programming
https://www.packtpub.com/application-development/android-database-programming
https://www.packtpub.com/application-development/android-database-programming
https://www.packtpub.com/application-development/android-database-programming
https://www.packtpub.com/application-development/android-database-programming
https://www.packtpub.com/application-development/android-database-programming
https://www.packtpub.com/application-development/android-database-programming
https://www.packtpub.com/application-development/android-database-programming
https://www.packtpub.com/application-development/android-database-programming
https://www.packtpub.com/application-development/android-database-programming
https://www.packtpub.com/application-development/android-database-programming
https://www.packtpub.com/application-development/android-database-programming

7
Concurrency

Concurrency is the ability of a program or algorithm to be divided into parts that can be
executed out of order without affecting the results. This approach allows for parallel
execution in a multi-core environment, which can significantly improve the performance.
It's important to understand the difference between concurrency and parallelism. Parallelism
assumes that a program is implemented in a concurrent way, but concurrency doesn't mean
that the program is executed in parallel.

This chapter will cover the following topics:

Coroutines
Sequential operations
Callback hell
Thread pools

Technical requirements
To run the code in this chapter, you will need to integrate the coroutines-core library.
To do this, you should add the following line to the repositories block of the
build.gradle file:

jcenter()

You should also add the following line to the dependencies block:

implementation 'org.jetbrains.kotlinx:kotlinx-coroutines-core:0.30.2'

Add the following line to integrate the kotlinx-coroutines-android library:

implementation 'org.jetbrains.kotlinx:kotlinx-coroutines-android:0.30.2'

Concurrency Chapter 7

[228]

If you are using a Kotlin version lower than 1.3, you should also add the following lines to
the build.gradle file:

kotlin {
 experimental {
 coroutines "enable"
 }
}

To integrate Spring for the Android library, you should add the following lines:

implementation 'org.springframework.android:spring-android-rest-
template:2.0.0.M3'
implementation group: 'com.fasterxml.jackson.core', name: 'jackson-
databind', version: '2.8.6'

You should also add the repositories block, as follows:

repositories {
 maven {
 url 'https://repo.spring.io/libs-milestone'
 }
}

This chapter will also work with the JSON to Kotlin Class plugin. To install this plugin,
open the Preferences window and select the Plugins section.

Press the Install button and restart Android Studio.

The source code for this chapter, with examples, is available on GitHub, at the following
link: https://github. com/ PacktPublishing/ Learn- Spring- for- Android- Application-
Development/tree/ master/ Chapter07.

Coroutines
A coroutine is a powerful feature of the Kotlin programming language. Its main objective is
to allow for suspending a function while it waits for the result of another function that
invokes a long-term operation. This feature allows us to write asynchronous code without
callbacks in a sequential way.

https://plugins.jetbrains.com/plugin/9960-json-to-kotlin-class-jsontokotlinclass-
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter07

Concurrency Chapter 7

[229]

This section will cover the following topics:

Coroutine basics
Call stacks
Coroutine testing
Coroutine scope

Coroutine basics
If you are familiar with the concept of threads, you will know that each thread has its own
call stack. We will cover the thread's call stack topic in the next section. The creation of a
new thread is a complex operation that takes about two megabytes of memory. Coroutines
use a thread pool under the hood, and only require the creation of several additional
methods and classes. That is why you can consider coroutines as lightweight threads.

Let's imagine that we have a long-term operation, as shown in the following code:

class Image

fun loadImage() : Image {
 Thread.sleep(3000)
 return Image()
}

The loadImage function takes three seconds and returns an instance of the Image class. We
also have the showImages function that takes three instances of the Image class, and looks
as follows:

fun showImages(image1: Image, image2: Image, image3: Image) {
 //
}

So, we have three independent tasks that can be executed in parallel. We can create three
coroutines here, each of which will execute the loadImage function. To create a new
coroutine, we can use one of the functions called a coroutine builder, such as async or
launch:

val subTask1 = GlobalScope.async { loadImage() }
val subTask2 = GlobalScope.async { loadImage() }
val subTask3 = GlobalScope.async { loadImage() }

Concurrency Chapter 7

[230]

The async function returns an instance of Deferred. This class encapsulates a task that
will return the result in the future. A caller function suspends when it invokes the await
function of an instance of the Deferred class. This means that a thread that has a call stack
with this function is not blocked, but is just suspended. The following snippet shows how
this may look:

showImages(subTask1.await(), subTask2.await(), subTask3.await())

When we call the await function, we suspend invoking the current function. In addition,
the showImages function will be called when all of the subtasks return the result.

The following diagram shows how these functions can be executed:

This diagram shows that three tasks can be executed almost in parallel, depending on
whether the distribution of the load between cores and the showImages function is
invoked when all three of the images are loaded.

Call stacks
Each coroutine and thread has its own call stack. This means that a coroutine or a thread is
created along with its call stack. A call stack contains something like blocks for each
function that is invoked using a context of this thread or coroutine. This block represents
a memory space that contains metadata, primitive local variables, and local references to
objects in the heap. You can consider a call stack a part of the memory that is allocated for a
thread or coroutine.

Concurrency Chapter 7

[231]

The following diagram shows how a Call stack looks when a thread or coroutine is created:

If the main() function invokes another function, a new block is added to the call stack. This
looks as follows:

When the loadImage function returns a value to the main function, the block of the
loadImage function is removed from the stack.

Coroutine testing
The runBlocking coroutine builder can be used for testing. This creates a coroutine that
uses a current thread. The test within the JUnit framework may look as follows:

class ExampleUnitTest {

 @Test
 fun comicLoading() = runBlocking {
 val image = async { loadImage() }.await()
 assertNotNull(image)
 }
}

Concurrency Chapter 7

[232]

This snippet loads an image using the async coroutine builder, and checks that the image
is not null. The source code of the runBlocking function looks as follows:

@Throws(InterruptedException::class)
public fun <T> runBlocking(context: CoroutineContext =
EmptyCoroutineContext, block: suspend CoroutineScope.() -> T): T {
 val currentThread = Thread.currentThread()
 val contextInterceptor = context[ContinuationInterceptor]
 val privateEventLoop = contextInterceptor == null // create private
event loop if no dispatcher is specified
 val eventLoop = if (privateEventLoop) BlockingEventLoop(currentThread)
else contextInterceptor as? EventLoop
 val newContext = GlobalScope.newCoroutineContext(
 if (privateEventLoop) context + (eventLoop as
ContinuationInterceptor) else context
)
 val coroutine = BlockingCoroutine<T>(newContext, currentThread,
eventLoop, privateEventLoop)
 coroutine.start(CoroutineStart.DEFAULT, coroutine, block)
 return coroutine.joinBlocking()
}

As you can see, the runBlocking coroutine builder uses the currentThread function to
obtain an instance of the Thread class. When you run this test, you will see the following
window:

This window shows that the test has passed successfully.

Concurrency Chapter 7

[233]

Coroutine scope
With the release of version 0.26.0 of coroutines, a new, important feature was
introduced—coroutine scope. All of the coroutine builders from the coroutines-core
library are extension functions of the CoroutineScope interface.

The CoroutineScope interface looks as follows:

public interface CoroutineScope {
 @Deprecated(level = DeprecationLevel.HIDDEN, message = "Deprecated in
favor of top-level extension property")
 public val isActive: Boolean
 get() = coroutineContext[Job]?.isActive ?: true

 public val coroutineContext: CoroutineContext
}

We need the coroutine scope to provide a proper cancellation mechanism for the coroutines
that we launch in our application. Modern frameworks, such as Android SDK or React
Native, are built in such a way that all components, and the application itself, have a life
cycle. In Android SDK, this can be an activity or a fragment, and in React Native, it can be a
component.

The coroutine scope represents a scope of an object that has a life cycle, such as an activity
or a component. The coroutines-core library provides a scope for an entire application,
and we can use it if we want to launch a coroutine that works as long as an application
runs. The scope of the entire application is represented by the GlobalScope object, and
looks as follows:

object GlobalScope : CoroutineScope {
 @Deprecated(level = DeprecationLevel.HIDDEN, message = "Deprecated in
favor of top-level extension property")
 override val isActive: Boolean
 get() = true

 override val coroutineContext: CoroutineContext
 get() = EmptyCoroutineContext
}

Concurrency Chapter 7

[234]

Let's create a new activity with its own coroutine scope. The easiest way to do this is to call
the context menu of a package and choose the New section, which looks as follows:

Then, choose the Empty Activity option in the Activity subsection, as follows:

Concurrency Chapter 7

[235]

Android Studio will open the Configure Activity window, where you can change a
configuration of Activity and press the Finish button:

Concurrency Chapter 7

[236]

A newly created XKCDActivity class will look as follows:

class XKCDActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_xkcd)
 }
}

If we want to launch a life cycle aware coroutine from this class, we should implement the
CoroutineScope interface, as follows:

class XKCDActivity : AppCompatActivity(), CoroutineScope {
 override val coroutineContext: CoroutineContext
 get() = Dispatchers.Main

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_xkcd)
 }
}

The CoroutineScope interface looks as follows:

public interface CoroutineScope {
 @Deprecated(level = DeprecationLevel.HIDDEN, message = "Deprecated in
favor of top-level extension property")
 public val isActive: Boolean
 get() = coroutineContext[Job]?.isActive ?: true

 public val coroutineContext: CoroutineContext
}

The XKCDActivity class implements the CoroutineScope interface and overrides the
coroutineContext property. The overridden coroutineContext property contains a
getter that returns Dispatchers.Main.

The Dispatchers is an object from the coroutines-core library, which contains the
following dispatchers:

Default is used by all standard coroutine builders, such as launch or async
Main is used to run a coroutine on the main thread
Unconfident invokes a coroutine immediately, on the first available thread
IO is used to run coroutines that perform input/output operations

Concurrency Chapter 7

[237]

Since a getter of the overridden coroutineContext property returns the Main dispatcher,
all coroutine builders from this class will launch coroutines that work on the main thread.

The XKCDActivity has its own coroutine scope, but it is not life cycle aware. This means
that a coroutine launched in a scope of this activity will not be destroyed if the activity is
destroyed. We can fix this in the following way:

class XKCDActivity : AppCompatActivity(), CoroutineScope {
 private lateinit var lifecycleAwareJob: Job
 override val coroutineContext: CoroutineContext
 get() = Dispatchers.Main + lifecycleAwareJob

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_xkcd)
 lifecycleAwareJob = Job()
 }

 override fun onDestroy() {
 super.onDestroy()
 lifecycleAwareJob.cancel()
 }
}

The lifecycleAwareJob will be used as a parent for all coroutines, and will cancel all
child coroutines when an activity is destroyed. The following example code shows how to
use this approach:

override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_xkcd)
 lifecycleAwareJob = Job()
 launch {
 val image = async(Dispatchers.IO) { loadImage() }.await()
 showImage(image)
 }
}

The launch coroutine builder creates a coroutine that works on the main thread, and the
async coroutine builder creates a coroutine that works on the input/output thread. When
the image is ready, it will be shown on the main thread of the application. If we press the
back button, the coroutines will be destroyed, along with XKCDActivity.

Concurrency Chapter 7

[238]

Channels
The async function returns an instance of the Deferred class that allows us to compute a
single value. If we need to transfer a sequence of values between coroutines, we can use
channels.

A channel is an interface that looks as follows:

public interface Channel<E> : SendChannel<E>, ReceiveChannel<E> {
 //.....
}

The SendChannel interface looks as follows:

public interface SendChannel<in E> {
 @ExperimentalCoroutinesApi
 public val isClosedForSend: Boolean
 @ExperimentalCoroutinesApi
 public val isFull: Boolean
 public suspend fun send(element: E)
 public val onSend: SelectClause2<E, SendChannel<E>>
 public fun offer(element: E): Boolean
 public fun close(cause: Throwable? = null): Boolean
 @ExperimentalCoroutinesApi
 public fun invokeOnClose(handler: (cause: Throwable?) -> Unit)
}

The SendChannel interface contains the send method that takes a parameter and adds it to
this channel. The isFull property is true if this channel already contains a value. In this
case, the send function suspends the caller until the contained value is not consumed.

A channel can be closed by invoking the close method. In this case, the
isClosedForSend property is true, and the send method throws an exception.

While the SendChannel interface allows us to put a value into a channel, the
ReceiveChannel interface allows us to get the value from the channel. The
ReceiveChannel interface looks as follows:

public interface ReceiveChannel<out E> {

 @ExperimentalCoroutinesApi
 public val isClosedForReceive: Boolean
 @ExperimentalCoroutinesApi
 public val isEmpty: Boolean
 public suspend fun receive(): E
 public val onReceive: SelectClause1<E>

Concurrency Chapter 7

[239]

 @ExperimentalCoroutinesApi
 public suspend fun receiveOrNull(): E?

 @ExperimentalCoroutinesApi
 public val onReceiveOrNull: SelectClause1<E?>
 public fun poll(): E?
 public operator fun iterator(): ChannelIterator<E>
 public fun cancel(): Boolean
 @ExperimentalCoroutinesApi
 public fun cancel(cause: Throwable? = null): Boolean
}

The receiveOrNull() method returns and removes an element from this channel, or
returns null if the isClosedForReceive property is true. The ReceiveChannel contains
the iterator method, and can be used in the for loop.

Let's look at the following example code:

fun channelBasics() = runBlocking<Unit> {
 val channel = Channel<Int>()
 launch {
 println("send 0 ${Date().toGMTString()}")
 channel.send(0)
 delay(1000)
 println("send 1 ${Date().toGMTString()}")
 channel.send(1)
 }
 delay(3000)
 val theFirstElement = channel.receive()
 println("receive $theFirstElement ${Date().toGMTString()}")
 delay(4000)
 val theSecondElement = channel.receive()
 println("receive $theSecondElement ${Date().toGMTString()}")
}

In the preceding example, we sent two values by a channel and received those values. We
also used the delay function to show that an operation takes some time.

The output looks as follows:

send 0 21 Oct 2018 13:30:12 GMT
 receive 0 21 Oct 2018 13:30:15 GMT
 send 1 21 Oct 2018 13:30:16 GMT
 receive 1 21 Oct 2018 13:30:19 GMT

This output shows that the send function suspends a coroutine until a value is consumed.

Concurrency Chapter 7

[240]

We can use the for loop to receive values from a channel, as follows:

fun channelIterator() = runBlocking<Unit> {
 val channel = Channel<Int>()
 launch {
 (0..5).forEach {
 channel.send(it)
 }
 }
 for (value in channel) {
 println(value)
 }
}

The output looks as follows:

 0
 1
 2
 3
 4
 5

The producer function
The producer function is called a channel builder, and it returns an instance of the
ReceiveChannel class. This function looks as follows:

@ExperimentalCoroutinesApi
public fun <E> CoroutineScope.produce(
 context: CoroutineContext = EmptyCoroutineContext,
 capacity: Int = 0,
 block: suspend ProducerScope<E>.() -> Unit
): ReceiveChannel<E> {
 val channel = Channel<E>(capacity)
 val newContext = newCoroutineContext(context)
 val coroutine = ProducerCoroutine(newContext, channel)
 coroutine.start(CoroutineStart.DEFAULT, coroutine, block)
 return coroutine
}

As you can see in the preceding snippet, the produce function contains a receiver
parameter of the ProducerScope type. The ProducerScope interface looks as follows:

public interface ProducerScope<in E> : CoroutineScope, SendChannel<E> {
 val channel: SendChannel<E>
}

Concurrency Chapter 7

[241]

As you can see, the ProducerScope interface extends the SendChannel interface. This
means that we can use the send method inside a lambda that we pass to the producer
function.

An example of using the producer function may look as follows:

suspend fun numbersProduce(): ReceiveChannel<Int> = GlobalScope.produce {
 launch {
 (0..10).forEach {
 send(it)
 }
 }
}

We can use the numbersProduce function in the following way:

fun producerExample() = runBlocking<Unit> {
 val numbers = numbersProduce()
 for (value in numbers) {
 println(value)
 }
}

The actor function
The actor function contains a receiver parameter of the ActorScope type. The source code
of the actor function looks as follows:

public fun <E> CoroutineScope.actor(
 context: CoroutineContext = EmptyCoroutineContext,
 capacity: Int = 0,
 start: CoroutineStart = CoroutineStart.DEFAULT,
 onCompletion: CompletionHandler? = null,
 block: suspend ActorScope<E>.() -> Unit
): SendChannel<E> {
 val newContext = newCoroutineContext(context)
 val channel = Channel<E>(capacity)
 val coroutine = if (start.isLazy)
 LazyActorCoroutine(newContext, channel, block) else
 ActorCoroutine(newContext, channel, active = true)
 if (onCompletion != null) coroutine.invokeOnCompletion(handler =
onCompletion)
 coroutine.start(start, coroutine, block)
 return coroutine
}

Concurrency Chapter 7

[242]

The ActorScope interface looks similar to the ProducerScope interface, but implements
the ReceiveChannel interface:

public interface ActorScope<E> : CoroutineScope, ReceiveChannel<E> {
 val channel: Channel<E>
}

As you probably know, it is not a good idea to access mutable data from different
coroutines. To deal with this, we can use channels and the actor function, in the following
way:

suspend fun numberConsumer() = GlobalScope.actor<Int> {
 var counter = 0
 for (value in channel) {
 counter += value
 println(counter)
 }
}

The preceding snippet contains a mutable variable named counter. We change the value
of the counter variable when a channel receives a new value. Since a channel suspends the
caller until a consumer finishes processing the current value, we can be sure that the
counter variable will be modified in the right way.

The numbersCounter function can be used as follows:

@Test
fun actorExample() = runBlocking<Unit> {
 val actor = numberConsumer()
 (0..10).forEach {
 launch {
 actor.send(it)
 }
 }
}

The preceding snippet launches ten coroutines that send a value to an actor in parallel.

The output looks as follows:

 0
 1
 3
 6
 10
 15
 21

Concurrency Chapter 7

[243]

 28
 36
 45
 55

The output shows that the counter variable is modified in the right way.

Sequential operations
One of the most important benefits of the coroutines approach is a guarantee that functions
are invoked in the same order in which they are written. The order of the operations is a
very important nuance when we execute concurrent code in a multithreaded environment.

Let's imagine that we have to load a user's details, using the following function:

suspend fun loadUserDetails(): User {
 delay(3000)
 return User(0, "avatar")
}

The loadUserDetails function invokes the delay function from the coroutines-core
library and returns an instance of the User class. The delay function suspends the
invocation of the current coroutine. When a user is ready, we have to pass a value of the
avatar property to the loadImage function:

suspend fun loadImage(avatar: String): Image {
 delay(3000)
 return Image()
}

The loadImage function also invokes the delay function, and returns an instance of the
Image class. We should then pass the received instance of the Image class to the
showImage function.

The following code shows how to execute these functions sequentially, using coroutines:

fun main(args: Array<String>) = runBlocking {
 val user = async { loadUserDetails() }.await()
 val image = async { loadImage(user.avatar) }.await()
 showImage(image)
}

Concurrency Chapter 7

[244]

The preceding snippet invokes all three functions that use different coroutines,
sequentially. The following diagram shows a sequence of functions invoking:

Callback hell
One of the main reasons that you should use coroutines is to avoid callback hell.

This section will cover the following topics:

What is a callback?
Wrapping callbacks

What is a callback?
A callback is a pattern that is used to retrieve the results of an asynchronous task. This
approach assumes that we pass a reference to a function that should be invoked when an
asynchronous operation is done.

By synchronous operations, we mean that the tasks are executed one after
another. The asynchronous approach assumes that several tasks can be
performed in parallel.

Concurrency Chapter 7

[245]

The loadImage function in the following example code uses a callback to return the result:

fun loadImage(callback: (Image) -> Unit) {
 executor.submit {
 Thread.sleep(3000)
 callback(Image())
 }
}

The preceding code snippet shows the simplest example of how to create an asynchronous
function that returns the results using the callback. In our case, the callback is a lambda that
takes an instance of the Image class and returns Unit. The following diagram shows how
this sequence works:

This function can be used as follows:

fun main(args: Array<String>) {
 loadImage { image ->
 showImage(image)
 }
}

The preceding snippet shows that it is easy to use a callback to deal with asynchronous
code. We just implement and pass a lambda that is invoked when an image is ready.

Concurrency Chapter 7

[246]

The following diagram shows how to implement this approach:

Let's imagine that we are requesting a list of users from the server. After that, we send
another request to get detailed information about a user, and then, we load an avatar. In
code, this may look as follows:

fun loadListOfFriends(callback: (List<ShortUser>) -> Unit) {
 executor.submit {
 Thread.sleep(3000)
 callback(listOf(ShortUser(0), ShortUser(1)))
 }
}

The loadListOfFriends function takes a lambda that takes a list of instances of the
ShortUser class, as follows:

fun loadUserDetails(id: Int, callback: (User) -> Unit) {
 executor.submit {
 Thread.sleep(3000)
 callback(User(id, "avatar"))
 }
}

Concurrency Chapter 7

[247]

The loadUserDetails function takes a lambda and an identifier of a user, as follows:

fun loadImage(avatar: String, callback: (Image) -> Unit) {
 executor.submit {
 Thread.sleep(3000)
 callback(Image())
 }
}

The loadImage function takes a path to the avatar and lambda. The following example
code demonstrates the most common problem that occurs when we use an approach with
callbacks. We encounter the problem of code complexity and readability when concurrent
tasks have to pass data to each other:

fun main(args: Array<String>) {
 loadListOfFriends {users ->
 loadUserDetails(users.first().id) {user ->
 loadImage(user.avatar) {image ->
 showImage(image)
 }
 }
 }
}

The preceding snippet demonstrates what callback hell is. We have a lot of nested
functions, and it is hard to maintain this code.

Thread pools
The creation of a new thread is a complex operation that takes up a lot of resources. In the
Call stacks section, we covered how memory is allocated for a new thread. When the lower
block of a function is removed from a stack, the thread is destroyed. To avoid constantly
creating new threads, we can use thread pools. There is no logic in creating a new thread
for invoking each short-term operation, because this operation and switching the program
flow to a created context can take more time than executing the task itself. The thread-pool
pattern assumes a class that contains a set of threads that are waiting for a new task, and a
queue that holds the tasks.

Concurrency Chapter 7

[248]

The following diagram shows how this works:

The preceding diagram shows that a pool contains a queue that holds tasks submitted by
producers. The threads from the pool take tasks from the queue and execute them.

Coroutines use thread pools under the hood. The java.util.concurrent package
provides the functionality to create your own thread pools. The Executers class contains a
lot of static factory functions to create a pool, as shown in the following screenshot:

The following example code demonstrates how to create and use a single-threaded
executor:

fun main(args: Array<String>) {
 val executor = Executors.newSingleThreadExecutor()
 executor.submit { loadImage() }
 executor.submit { loadImage() }
}

Concurrency Chapter 7

[249]

In the preceding snippet, we instantiated the executor variable and used the submit
method to add a task to the queue.

Summary
In this chapter, we looked at concurrency and the problems that can arise in a
multithreaded environment. We introduced and looked at the most common examples of
coroutine usage. We also familiarized ourselves with patterns, such as thread pools and
callbacks, and how to use them. Furthermore, we covered synchronous and asynchronous
programming, and the problems related to these topics.

In the next chapter, we will look at an overview of reactive programming, which is useful
when we want to process asynchronous actions.

Questions
What is a call stack?
What is a thread pool?
What is a callback?
Why are coroutines called lightweight threads?

Further reading
Mastering High Performance with Kotlin (https:/ / www.packtpub. com/ application-
development/mastering- high- performance- kotlin) by Igor Kucherenko, published by
Packt Publishing.

https://www.packtpub.com/application-development/mastering-high-performance-kotlin
https://www.packtpub.com/application-development/mastering-high-performance-kotlin
https://www.packtpub.com/application-development/mastering-high-performance-kotlin
https://www.packtpub.com/application-development/mastering-high-performance-kotlin
https://www.packtpub.com/application-development/mastering-high-performance-kotlin
https://www.packtpub.com/application-development/mastering-high-performance-kotlin
https://www.packtpub.com/application-development/mastering-high-performance-kotlin
https://www.packtpub.com/application-development/mastering-high-performance-kotlin
https://www.packtpub.com/application-development/mastering-high-performance-kotlin
https://www.packtpub.com/application-development/mastering-high-performance-kotlin
https://www.packtpub.com/application-development/mastering-high-performance-kotlin
https://www.packtpub.com/application-development/mastering-high-performance-kotlin
https://www.packtpub.com/application-development/mastering-high-performance-kotlin
https://www.packtpub.com/application-development/mastering-high-performance-kotlin
https://www.packtpub.com/application-development/mastering-high-performance-kotlin
https://www.packtpub.com/application-development/mastering-high-performance-kotlin
https://www.packtpub.com/application-development/mastering-high-performance-kotlin
https://www.packtpub.com/application-development/mastering-high-performance-kotlin
https://www.packtpub.com/application-development/mastering-high-performance-kotlin
https://www.packtpub.com/application-development/mastering-high-performance-kotlin

8
Reactive Programming

Reactive programming is an asynchronous approach to event handling. We encounter
asynchronous events, such as user interactions with the interface or the delivery of long-
term operation results, all the time. There are also libraries, such as RxJava and Reactor,
that allow us to write reactive code in Kotlin or Java.

In this chapter, you will learn about the Observer pattern, and how to transform
asynchronous events from one type to another. You will also learn how to use the Mono,
Single, Observable, and Flux classes that implement the reactive programming concepts.

 This chapter will cover the following topics:

Reactive programming with Spring Reactor
Blocking and non-blocking
RxJava
RxJava in Android

By the end of this chapter, you will be able to apply reactive programming to your
applications, using the RxJava and Reactor libraries.

Technical requirements
You can find the examples from this chapter on GitHub, at the following link: https:/ /
github.com/PacktPublishing/ Learn- Spring- for- Android- Application- Development/
tree/master/app/ src/ main/ java/ com/ packt/ learn_ spring_ for_ android_ application_
development/chapter8.

To integrate the Reactor library into your project, add the following line to the repositories
section of the build.gradle file:

maven { url 'https://repo.spring.io/libs-milestone' }

https://github.com/ReactiveX/RxJava
https://github.com/reactor/reactor-core
https://github.com/reactor/reactor-core
https://github.com/reactor/reactor-core
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/app/src/main/java/com/packt/learn_spring_for_android_application_development/chapter8

Reactive Programming Chapter 8

[251]

Add the following line to the dependencies section:

implementation "io.projectreactor:reactor-core:3.2.2.RELEASE"

The Reactor library works with a version of the Java Development Kit (JDK), 8 or above.
So, we should add the following line to the Android section:

compileOptions {
 sourceCompatibility JavaVersion.VERSION_1_8
 targetCompatibility JavaVersion.VERSION_1_8
}

To integrate the RxJava library, add the following line to the dependencies section:

implementation "io.reactivex.rxjava2:rxjava:2.2.3"

To integrate the RxAndroid library, add the following line to the dependencies section:

implementation 'io.reactivex.rxjava2:rxandroid:2.1.0'

To integrate the RxBinding library, you should add the following line to the dependencies
section:

implementation 'com.jakewharton.rxbinding3:rxbinding:3.0.0-alpha1'

Reactive programming with Spring Reactor
Reactor is a library that implements reactive programming concepts for the JVM. This
approach is based on the Observer pattern, and it provides types that can emit zero, one, or a
sequence of values.

In this section, you will learn the following:

How to implement the Observer pattern
How to use the Flux publisher
How to use the Mono publisher

The Observer pattern
The Observer pattern assumes that there is an object that sends a message, and another object
that receives it. The following diagram shows how a class hierarchy can be organized to
implement this approach:

Reactive Programming Chapter 8

[252]

The Activity class implements the OnClickListener interface and contains an instance
of the Button class, while the Button class contains the performClick method that
invokes the onClick method of an instance of the OnClickListener class, if it is not null.
The onClick method of the activity will then be invoked. In this way, an instance of the
Activity class will be notified when a user clicks on the button.

The following example code shows how this approach works.

The ObserverActivity contains an instance of the Button class and invokes the
setOnClickListener method:

class ObserverActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_observer)
 findViewById<Button>(R.id.button).setOnClickListener {
 Toast.makeText(this, "Clicked!", Toast.LENGTH_LONG).show()
 }
 }
}

Reactive Programming Chapter 8

[253]

The setOnClickListener method looks as follows:

public void setOnClickListener(@Nullable OnClickListener l) {
 if (!isClickable()) {
 setClickable(true);
 }
 getListenerInfo().mOnClickListener = l;
}

The performClick method invokes the onClick function, as follows:

public boolean performClick() {
 ////......
 final boolean result;
 final ObserverInfo li = mObserverInfo;
 if (li != null && li.mOnClickObserver != null) {
 playSoundEffect(SoundEffectConstants.CLICK);
 li.mOnClickObserver.onClick(this);
 result = true;
 } else {
 result = false;
 }
 ///........
 return result;
}

This shows that the performClick method invokes the onClick method if a reference of
the OnClickObserver type is not null.

The Flux publisher
The Flux class represents a stream of values. This means that an instance of the Flux type
can emit values, and a subscriber can receive them. This class contains a lot of functions
that can be divided into two groups:

Static factories that allow us to create a new instance of the Flux type from
different sources, such as callbacks or arrays.
Operators that allow us to process emitted values

Reactive Programming Chapter 8

[254]

The following example code shows how this works:

fun fluxTest() {
 Flux.fromArray(arrayOf(1, 2, 3))
 .map { it * it }
 .subscribe { println(it) }
}

The fromArray function creates a new instance of the Flux type that emits values from
passed arrays, one by one. The map method allows us to modify a value from the upstream,
and the subscribe method is needed to pass an Observer that takes the resulting values.

The output of this example looks as follows:

 1
 4
 9

The Flux provides a lot of operators that can be used to process the emitted values. The
following example code demonstrates this:

Flux.fromArray(arrayOf(1, 2, 3))
 .filter { it % 2 == 1 }
 .map { it * it }
 .reduce { sum, item -> sum + item }
 .subscribe { println(it) }

The .filter, .map, .reduce, and .subscribe operators are provided by the flux. We
will look at each one of them in detail in just a bit.

From the operator point of view, a stream is divided into upstream and downstream. An
operator takes a value from the upstream, modifies it, and passes the result to the
downstream. The following diagram shows how operators work:

Reactive Programming Chapter 8

[255]

From the map operator point of view, the values emitted from the filter function belong
to the upstream, and the items that are taken by reduce belong to the downstream.

The result of the preceding example looks as follows:

1
9

The output shows that after all of the transformations, an instance of the Flux class emits
only two numbers.

The filter operator
The filter method takes a predicate, and if a value from the upstream doesn't meet a
condition of the predicate, it isn't passed to the downstream.

A predicate is a function that takes parameters and returns a Boolean value.

The following diagram shows how the filter method works in the previous example:

In this example, the filter operator is only used to receive odd numbers.

Reactive Programming Chapter 8

[256]

The map operator
The map operator takes a lambda that applies a transformation for each value from the
upstream. The map function can be used to change the values of the primitive values, or to
transform an instance from one type to another.

The following diagram shows how this works:

The map function takes another function that describes how an element from the upstream
should be transformed.

The flatMap operator
The flatMap operator works in a similar way to the map, but works asynchronously. This
means that it should return an instance that can return a value in the future, such as Flux
or Mono. The following example code shows how it can be used:

Flux.fromArray(arrayOf(1, 2, 3))
 .flatMap { Mono.just(it).delayElement(Duration.ofSeconds(1)) }
 .subscribe { println(it) }

The output of this example looks as follows:

 1
 2
 3

Mono is similar to Flux, but it can emit one or zero elements. In this example, we use the
delayElement function, which is why each element is received by a subscriber with a one-
second delay.

Reactive Programming Chapter 8

[257]

The following diagram shows how it works:

This shows that each flatMap operator passes each value to the
downstream asynchronously, with a one-second delay.

The reduce operator
The reduce function takes an instance of the BiFunction type, which contains the apply
function, taking two values and returning a single one. The this operator can be used to
combine all items from the upstream into a single value, as follows:

The preceding diagram shows that the upstream contains two values, and the reduce
function passes a sum of them to the downstream.

The from static method
The fromArray function is one of many static factory methods that are provided by the
Flux class. If we want to create our own source of events, we can use the from function.
Let's create an instance of the Flux class that emits the Unit object when a user clicks on
the button.

Reactive Programming Chapter 8

[258]

We can implement this case as follows:

Flux.from<Unit> { subscriber ->
 findViewById<Button>(R.id.button).setOnClickListener {
 subscriber.onNext(Unit)
 }
}.subscribe {
 Toast.makeText(this, "Clicked!", Toast.LENGTH_LONG).show()
}

The preceding snippet shows how to wrap an Observer into an instance of the Flux class.
This example illustrates using the from function to create a new instance of the Flux class.

Let's run an application and press the THE OBSERVER PATTERN button:

Reactive Programming Chapter 8

[259]

The preceding screenshot shows how an example works. When a user clicks the button, the
onNext method is invoked and the Observable emits a value. The lambda that we passed
to the subscribe method is invoked, and it shows a message.

Cancellation
Instances of the Activity or Fragment class have life cycles that are represented by
methods, such as onCreate and onDestroy. We should clean all resources by using the
onDestroy method, in order to avoid memory leaks.

The subscribe method returns an instance of the Disposable type, as follows:

public final Disposable subscribe(Consumer<? super T> consumer) {
 Objects.requireNonNull(consumer, "consumer");
 return subscribe(consumer, null, null);
}

The Disposable interface contains two methods, as follows:

dispose cancels a publisher
isDisposed returns true if a publisher has already been cancelled

The following example code shows how to cancel a publisher when the onDestroy method
is invoked:

class ObserverActivity : AppCompatActivity() {
 private var disposable: Disposable? = null

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_observer)
 disposable = Flux.from<Unit> { subscriber ->
 findViewById<Button>(R.id.button).setOnClickListener {
 subscriber.onNext(Unit)
 }
 }.subscribe {
 Toast.makeText(this, "Clicked!", Toast.LENGTH_LONG).show()
 }
 }

 override fun onDestroy() {
 super.onDestroy()
 disposable?.dispose()
 }
}

Reactive Programming Chapter 8

[260]

As you can see, the onDestroy method invokes the dispose method to unsubscribe from
an instance of the Flux class.

The Mono publisher
The Mono publisher works in a similar way to Flux, but can only emit no values or a single
value. We can use this to perform a request to a server and return the result.

The following example code makes a request and receives an instance of the Comic class,
loading an instance of the Bitmap class and displaying the retrieved image:

Mono.fromDirect<Comic> { subscriber -> subscriber.onNext(loadComic()) }
 .map { comic -> comic.img }
 .flatMap { path -> Mono.fromDirect<Bitmap> { subscriber ->
subscriber.onNext(loadBitmap(path)) } }
 .subscribeOn(Schedulers.single())
 .subscribe { bitmap ->
 Handler(Looper.getMainLooper()).post {
findViewById<ImageView>(R.id.imageView).setImageBitmap(bitmap)
 }
 }

Reactive Programming Chapter 8

[261]

The subscribeOn method is used to specify a scheduler for long-term tasks. Let's run this
example, as follows:

The preceding snippet retrieves an instance of the Comic class, transforms it to a path to an
image, loads the image, and then shows a downloaded image.

Reactive Programming Chapter 8

[262]

Blocking and non-blocking
When we work with Android, we should remember that we have a main thread that is
responsible for a user interface. First, it is not a good idea to invoke long-term operations in
the main thread, because in that case, a user interface freezes. Secondly, when we invoke a
synchronous method, this blocks a thread. Our user interface is unresponsive until a
function that is invoked from the main thread returns the result. That is why we should
invoke a long-term operation asynchronously, and reactive programming can help us to do
just that.

The Mono and Flux classes contain the publishOn and subscribeOn methods that can
switch threads when operators are invoked. The subscribeOn method is used to specify a
scheduler that produces emitted values, and the publishOn is used to specify a
thread scheduler for the downstream of an observable.

Scheduler is an abstraction over thread pool. The following example code creates our own
scheduler that uses the main thread:

val UIScheduler = Schedulers.fromExecutor { runnable ->
Handler(Looper.getMainLooper()).post(runnable)
}

Now, we can rewrite an example from the Mono publisher section, in the following way:

Mono.fromDirect<Comic> { subscriber -> subscriber.onNext(loadComic()) }
 .map { comic -> comic.img }
 .flatMap { path -> Mono.fromDirect<Bitmap> { subscriber ->
subscriber.onNext(loadBitmap(path)) } }
 .subscribeOn(Schedulers.single())
 .publishOn(UIScheduler)
 .subscribe { bitmap ->
findViewById<ImageView>(R.id.imageView).setImageBitmap(bitmap) }

The single function of the Schedulers class returns an instance of the Scheduler type that
creates and uses a single thread under the hood. The subscribeOn method specifies that
all operators from the upstream have to use a scheduler that is returned by the single()
function.

We pass our own scheduler that uses the main thread under the hood. For this reason, the
lambda that is passed to the subscribe method is performed on the main thread.

Reactive Programming Chapter 8

[263]

The following diagram shows how this works:

The diagram shows that the main thread is not blocked, and runs with a background, in
parallel.

RxJava
RxJava is another popular library that implements the concept of reactive programming. It
also provides types, such as Observable or Single, that emit values. All of these classes also
provide static factories and operators.

In this section, we will cover the following:

How to use the Flowable class
How to use the Observable class
How to use the Single class
How to use the Maybe class
How to use the Completable class

Flowable
The Flowable class was introduced in the second version of the RxJava library. This class
represents a stream of events, such as Flux from Reactor.

You should consider using Flowable when you read data from a file, database, or network.
The following example code shows how to create and use Flowable:

Flowable.fromIterable(listOf(1, 2, 3))
 .subscribe { println(it) }

This shows how to create an instance of the Flowable class that emits values.

Reactive Programming Chapter 8

[264]

Observable
The Observable class is similar to Flowable, but it can throw
a MissingBackpressureException.

Backpressure is a case when an observable produces values faster than a
subscriber can consume them. In this case,
a MissingBackpressureException is thrown.

An example use case is as follows:

Observable.fromIterable(listOf(1, 2, 3))
 .subscribe { println(it) }

The preceding snippet shows how to create an instance of the Observable class that emits
values.

It is worth mentioning that Observable has lower overhead than Flowable. You should
consider using Observable when you handle user interface events.

There are operators that can help you to deal with backpressure, such as debounce or throttle.
Let's take a look at each one of them.

The debounce operator
The debounce method takes a duration and returns an instance of the Observable class
that only emits a value if a time frame that is equal to the passed time from the moment
when the previous value was emitted. The following diagram explains how this works:

Reactive Programming Chapter 8

[265]

The preceding diagram shows how the debounce method reduces events. The debounce
method takes a time frame and returns a new instance of the Observable type that
only emits the last value that was produced during this timeframe.

The throttle operator
The throttle operator returns an instance of the Observable that only emits one item
from the upstream during the sequential time window that has passed. The throttle is a
family of methods, such as throttleFirst or throttleLast.

The following diagram shows how the throttleFirst method works:

The throttleLast method works as follows:

The preceding diagrams shows that the throttleFirst and throttleLast methods can
be used to reduce the emitted values.

Reactive Programming Chapter 8

[266]

Single
The Single class works in a similar way to Mono from the Reactor library. This can also be
used to perform a request to a server. We should consider using Flowable when a source
returns only one item.

The following example code shows how Single can be used:

Single.just(1).subscribe(Consumer<Int> { println(it) })

This snippet contains an instance of the Single class that emits one value.

Maybe
An instance of the Maybe type can emit no value, or a single value. The following example
code shows how to use Maybe and the test method:

Maybe.just(1)
 .map { item -> item + 1 }
 .filter { item -> item == 1 }
 .defaultIfEmpty(4)
 .test()
 .assertResult(4)

The test method returns an instance of the TestObservable that is used for testing and
contains methods such as assertResult. The defaultIfEmpty method of the Maybe
class allows us to specify a default value that can be emitted if an instance of the
Maybe class is empty.

Completable
An instance of the Completable class doesn't emit a value at all. It can be used to notify the
user of task completion. In addition, it can be used when we delete an item from a database,
for instance.

Reactive Programming Chapter 8

[267]

The following example code shows a case of deleting an item from a database:

Completable.fromAction { Database.delete() }
 .test()
 .assertComplete()

The test method returns an instance of the TestObservable class.

RxJava in Android
RxJava is a very popular library for Android development, and there are a lot of other
libraries that are based on RxJava, such as RxAndroid and RxBinding.

This section will cover the following topics:

The RxAndroid library
The RxBinding library

The RxAndroid library
The RxAndroid library provides a scheduler that uses the main thread. The following
example code shows how to use this scheduler:

Flowable.fromIterable(listOf(1, 2, 3))
 .subscribeOn(Schedulers.computation())
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe { println(it) }

The preceding snippet shows how to use the observeOn method to handle emitted values
on the main thread.

Reactive Programming Chapter 8

[268]

The RxBinding library
The RxBinding library provides a reactive application programming interface. Let's
imagine that we want to observe an input of EditText and display this text in TextView.

The RxBinding library provides extension functions for user interface components, such as
textChanges:

fun TextView.textChanges(): InitialValueObservable<CharSequence> {
 return TextViewTextChangesObservable(this)
}

We can implement our example by using the textChanges function, as follows:

class RxActivity : AppCompatActivity() {

 private val editText by lazy(LazyThreadSafetyMode.NONE) {
 findViewById<EditText>(R.id.editText)
 }

 private val textView by lazy(LazyThreadSafetyMode.NONE) {
 findViewById<TextView>(R.id.textView)
 }

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_rx)
 editText
 .textChanges()
 .subscribe { textView.text = it }

 }
}

In the preceding snippet, we invoked the textChanges function and subscribed to a
retrieved subscriber. The textChanges method returns an instance of the Observable
class that emits the text from the input.

Reactive Programming Chapter 8

[269]

The result looks as follows, and shows that the text from the input immediately appears on
the screen:

Reactive Programming Chapter 8

[270]

The RxBinding library also contains the clicks extension function, which looks as follows:

fun View.clicks(): Observable<Unit> {
 return ViewClickObservable(this)
}

The clicks extension function returns an instance of the ViewClickObservable class.

Furthermore, the ViewClickObservable looks as follows:

private class ViewClickObservable(
 private val view: View
) : Observable<Unit>() {

 override fun subscribeActual(observer: Observer<in Unit>) {
 if (!checkMainThread(observer)) {
 return
 }
 val observer = Observer(view, observer)
 observer.onSubscribe(observer)
 view.setOnClickListener(observer)
 }
 }

It uses the subscribeActual method to pass an instance of the Observer class to the
setOnClickListener of an instance of the View class.
The ViewClickObservable class inherits from the Observable class and overrides the
subscribeActual method.
Finally, the Observer class looks as follows:

 private class Observer(
 private val view: View,
 private val observer: Observer<in Unit>
) : MainThreadDisposable(), OnClickObserver {

 override fun onClick(v: View) {
 if (!isDisposed) {
 observer.onNext(Unit)
 }
 }

 override fun onDispose() {
 view.setOnClickListerner(null)
 }
}

The preceding snippet invokes the onNext method when the onClick method is invoked.

Reactive Programming Chapter 8

[271]

Summary
In this chapter, we looked at reactive programming and how it can help us to handle
asynchronous events. We also introduced the React and RxJava libraries that provide
classes such as Mono, Flux, Single, and Observable, which follow reactive programming
concepts.

Reactive programming allows us to use different thread schedulers to process and
transform events with multithreading. The Blocking and Non-Blocking section showed us
how to work with thread schedulers. You also learned that reactive programming is based
on the Observer pattern.

Modern Android applications handle a lot of different asynchronous events, such as user
interactions and push notifications. Learning about Reactive programming is important,
because it can help us to better manage our resources through asynchronous processing,
allowing us to build more complex applications that are capable of multitasking.

In the next chapter, you will learn how to create the Application class.

Questions
What is reactive programming?
What is the Mono class?
What is the Observable class?
What is a scheduler?

Further reading
To gain more comprehensive knowledge about applying reactive programming
with Reactor, I recommend reading Hands-On Reactive Programming with Reactor
(https:/ / www. packtpub. com/ application- development/ hands- reactive-
programming- reactor), by Rahul Sharma.

https://www.packtpub.com/application-development/hands-reactive-programming-reactor
https://www.packtpub.com/application-development/hands-reactive-programming-reactor
https://www.packtpub.com/application-development/hands-reactive-programming-reactor
https://www.packtpub.com/application-development/hands-reactive-programming-reactor
https://www.packtpub.com/application-development/hands-reactive-programming-reactor
https://www.packtpub.com/application-development/hands-reactive-programming-reactor
https://www.packtpub.com/application-development/hands-reactive-programming-reactor
https://www.packtpub.com/application-development/hands-reactive-programming-reactor
https://www.packtpub.com/application-development/hands-reactive-programming-reactor
https://www.packtpub.com/application-development/hands-reactive-programming-reactor
https://www.packtpub.com/application-development/hands-reactive-programming-reactor
https://www.packtpub.com/application-development/hands-reactive-programming-reactor
https://www.packtpub.com/application-development/hands-reactive-programming-reactor
https://www.packtpub.com/application-development/hands-reactive-programming-reactor
https://www.packtpub.com/application-development/hands-reactive-programming-reactor
https://www.packtpub.com/application-development/hands-reactive-programming-reactor
https://www.packtpub.com/application-development/hands-reactive-programming-reactor
https://www.packtpub.com/application-development/hands-reactive-programming-reactor
https://www.packtpub.com/application-development/hands-reactive-programming-reactor
https://www.packtpub.com/application-development/hands-reactive-programming-reactor

9
Creating an Application

So far, we have prepared you to become a professional Spring-based developer. You have
learned what Spring is, as well as the functions of its architecture, components, security
features, database, and so on. We have also shown you how to develop an Android app
and handle HTTP requests and use the database.

As you know, we developed all the example projects in Kotlin, and nowadays, this
language is very famous among developers for its conciseness and interoperability. In this
chapter, we will implement all the features of the previous chapters to develop a project
that will have a server and a client side.

This chapter covers the following topics:

Project idea
Creating the design
Server side:

Developing a database model
Creating a project and Maven dependency
Creating entities, repositories, and a controller
Implementing security
Modified application.properties

Client side:
Creating models
Creating HTTP requests
Creating API services
Modifying activities
Fetching REST APIs
Creating an adapter and XML layouts
Checking the output

Creating an Application Chapter 9

[273]

Technical requirements
You will need almost all the dependencies, such as security, MySQL, JPA, Hibernate, and
JDBC, from the previous chapters.

The source code with an example for this chapter is available on GitHub at the following
link: https://github. com/ PacktPublishing/ Learn- Spring- for- Android- Application-
Development/tree/ master/ Chapter09.

You will find two projects—social_network is the server side, which has been developed
with the help of the Spring Framework, and ClientSide is the client side, which has been
developed for the Android platform.

Project idea
The project idea is the most important part. You need to generate this idea very carefully
and have to identify the facts behind your project. You need to keep in mind how this
project could be effective on the market, how the users will accept your project, why they
will use it, why they should choose your app instead of others, what features will make it
different from other existing similar projects, and so on. After generating an idea, you need
to create a draft in your mind of how will it look. Then you need to put it down on paper,
design the workflow of the project, and then develop the project's code. Lastly, you need to
test the project for its smoothness, check that it's bug/error free, and prepare it for the
market.

In this chapter, we will create a small project that is like a social network. We will name
it Packt Network. This project will have two parts. One is a server and one is a client, and
both sides will be written in Kotlin. First of all, we create a Spring project where we will
build our server and REST API. The data will be stored in a MySQL database, and we will
handle the database using JDBC, JPA, and Hibernate. This data will be protected by the
basic authentication of Spring Security.

In our second project, we will create an Android application and handle the created REST
APIs of the server. We will use Retrofit to handle the REST APIs and the network. Then we
will create a registration and login page to create and login as a user, using a username and
password. After this, the user can post a status and see a list of all the other user's statuses.
A comment can be also posted in a status.

Now we will start to design and develop our server-side project using Spring.

https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09

Creating an Application Chapter 9

[274]

Server side
On the server side, we are using the Spring Framework. We will handle all the data with a
MySQL database and protect the resources with basic authentication.

First of all, we will design the project's backend logic. Then we will plan for the REST API.
We will create a data model using MySQL Workbench. Then we will create the project
using http://start. spring. io. Then we will create the database entity using JPA and
Hibernate, and we will check that the REST API is working. To check this, we will use an
HTTP client software tool named Insomnia. Then we will implement basic authentication
with Spring Security to protect our resources. Lastly, we will give you a task to complete,
on upgrading the project, and becoming a contributor to this project on GitHub.

Creating the design
As we mentioned before, this project will be like a social media platform; the users can post
their statuses and others can see them in the timeline and can like it, add comments, and so
on. For this project, there won't be a UI for the server side. We will create a backend server.
To create this server, we will have to create a REST API that can be used by the client
application. To do this, we need to create a database based on our REST API.

First of all, we split our database table names, the HTTP function requests, and the URL
path.

There will be four tables:

Let's have a look at each of them:

One is for the users. All their information will be stored in a table named
Profile.
There will be another table named Post, where all the posted statuses of all the
users will be stored.

http://start.spring.io
http://start.spring.io
http://start.spring.io
http://start.spring.io
http://start.spring.io
http://start.spring.io
http://start.spring.io
http://start.spring.io
http://start.spring.io

Creating an Application Chapter 9

[275]

Another table named Comment will store all the comments of all the posted
statuses.
Another table named LikeObj will store all the likes of all the posted statuses,
but we won't provide this feature for the comments.

Now we will create the URL path of the REST API using an HTTP function request, and all
the output will be designed for JSON. We are using JSON because it is very easy to handle
and understand for all developers.

Regarding the Profile table, here are the URL paths of the HTTP requests:

POST http://localhost:8080/user/new: This request will create a user
profile with all the information the user has posted on their profile
GET http://localhost:8080/user/{id}: This request will get the details of
the given id holder
PUT http://localhost:8080/user/{id}: This request will update the user
details of the given id holder
DELETE http://localhost:8080/user/{id}: This request will delete the
user details of the given id holder, including all the posts, comments, and likes
from this user

Regarding the Post table, here are the URL paths of the HTTP requests:

POST http://localhost:8080/post/{id}/new: This request will create a
post from the id holder
GET http://localhost:8080/posts: This request will get all the post's
details
GET http://localhost:8080/post/{id}: This request will get the post
details of the given id holder
DELETE http://localhost:8080/post/{id}: This request will delete the
post details of the given id holder, including all the comments

Regarding the Comment table, here are the URL paths of the HTTP requests:

POST HTTP://localhost:8080/comment/{post_id}: This request will create
a comment on the post_id holder
DELETE HTTP://localhost:8080/comment/{post_id}: This request will
delete the comment of the given post_id holder

Creating an Application Chapter 9

[276]

Regarding the LikeObj table, here are the URL paths of the HTTP requests:

POST http://localhost:8080/like/new: This request will like a post of the
post_id holder
DELETE ttp://localhost:8080/like/new: This request will unlike a post of
the post_id holder

Developing a database model
We will use JPA, and one of the most noticeable points is that creating a database is not
recommended, because as we know, JPA will automatically create database tables with
fields using the entity class of the project. But still, we need to create a demo database and
draw an EER diagram. You can create your EER on paper or you can create one digitally
using MySQL Workbench. Here, we will use MySQL Workbench, which has a free version.
This is one of the best tools for developing a database or creating a model for a database:

You need to download this1.
software from https://dev.mysql.com/downloads/workbench/, if you don't
have it. Then install and run it. As we mentioned before, we have some default
values:

Host -- localhost // our hosting URL
Port -- 3306 // our hosting port
Username -- root // username of the MySQL
Password -- 12345678 // password of the MySQL

Open this application and select the Models option, as shown in the following2.
screenshot:

https://dev.mysql.com/downloads/workbench/

Creating an Application Chapter 9

[277]

Click the plus (+) sign to create a new model for our application. In the new3.
window, you will find all the necessary features to create a model. Save this
model as my_app:

Create a table called Profile. The columns will be id (primary key),4.
username, password, email, first_name, last_name, acc_created_time,
contact_number, dob, city, and country.
A table called Post. The columns will be id (primary key) and text.5.
Create another table called Comment. The columns will be id (primary6.
key) and text.
Lastly, create a table called Like. The column will be id (primary key).7.

Creating an Application Chapter 9

[278]

But there are some relationships between the tables:

Between Profile and Post: There is a many-to-one relation for Post because a
user can post multiple statuses, and each post has only one user.
Between Profile and Comment: There is a many-to-one relation for
Comment because a user can post multiple comments, and each comment has
only one user.
Between Profile and Like: There is a many-to-one relation for Like because a
user can like multiple posts, and each like has only one user.
Between Post and Comment: There is a one-to-many relation for Post because a
post may have multiple comments, but a comment is for only one specific post.
Between Post and Like: There is a one-to-many relation for Post because a
post may have multiple likes, but each like is for only one specific post:

Creating an Application Chapter 9

[279]

So after all the relations, we can see the table names of the database, as shown in the
following screenshot:

Finally, you can create the EER diagram by clicking on the EER Diagram icon, as shown in
the following screenshot:

This is the EER diagram model of our project. You may find two extra tables, named
post_likes and post_comments. It generates these using JPA and Hibernate. We will
discuss this later.

So, our database modeling is done. Now you can export it as SQL and create the database
for the project. But we recommend you not to do this because we need to do some
modification.

Creating an Application Chapter 9

[280]

Now create the project.

Creating a project
To create a project, go to https:/ / start. spring. io and create a Kotlin-based project. Here
are the dependencies of the project:

Web
JDBC
MySQL
DevTools
JPA
H2

You can find these in the pom.xml file. There you can update, add, or remove the
dependencies.

To enable JPA auditing, you need to annotate @EnableJpaAuditing annotation on
the SocialNetworkApplication.kt class. It will enable the use of JPA functionalities.

Here is the code for this class:

@SpringBootApplication
@EnableJpaAuditing
class SocialNetworkApplication

fun main(args: Array<String>) {
 runApplication<SocialNetworkApplication>(*args)
}

Creating entities
First of all, we need to create four as the table details of the database. The four entities are
Profile, Post, Comment, and LikeObj. In the following sections, you'll learn how to
create the entity classes.

https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io

Creating an Application Chapter 9

[281]

Creating a Profile entity
Create a Profile entity named Profile.kt with the @Entity annotation to convert this
class into an entity class. Here is the code of this model class (the entire code can be found
at the provided GitHub Link):

@Entity
class Profile : Serializable {

 constructor(id: Long) {
 this.id = id
 }

 constructor(name: String) {
 this.username = name
 }

 @JsonProperty("contactNumber")
 var contactNumber: String? = null

 @JsonProperty("dob")
 var dOB: Date? = null

 @JsonProperty("city")
 var city: String? = null

 @JsonProperty("country")
 var country: String? = null
}

In this class, we have 11 elements, which contain all the user's details. We have four
constructors to use this model according to our tasks. Here are the constructors:

constructor(id: Long) {

}

constructor(name: String) {

}

constructor(id: Long, name: String, password: String) {

}

Creating an Application Chapter 9

[282]

constructor(username: String, password: String, email: String,
accCreatedTime: Instant,
 firstName: String?, lastName: String?, contactNumber: String?, dOB: Date?,
 city: String?, country: String?) {

}

Now let's discuss the annotations that are used in this class:

@Id
@GeneratedValue
var id: Long? = 0

According to the previous code, we used @Id annotation on the id, which means that id is
the primary key of the Profile entity. The @GeneratedValue annotation means it
increments the value of id.

Here is a snippet of the code for the password object:

@JsonIgnore
@JsonProperty("password")
var password: String = ""

According to this code, @JsonIgnore uses variables or functions. If you use it, then the
requested JSON won't show this variable. Here, we used it on the password, and that
means no-one can fetch the password.

@JsonProperty defines that during the serialization and deserialization of JSON, it
changes the visibility of the logical property of its element.

Creating a Post entity
Create a Post entity named Post.kt with the @Entity annotation to convert this class
into an entity class. Here is the code of this model class:

@Entity
class Post(text: String, postedBy: Profile) : Serializable {

 @Id
 @GeneratedValue
 var id: Long? = 0

 var text: String? = text

 @ManyToOne(fetch = FetchType.LAZY)

Creating an Application Chapter 9

[283]

 @JoinColumn(name = "profile_id")
 @JsonIgnoreProperties("username","password",
"email","accCreatedTime","firstName","lastName",
 "contactNumber","dob","city","country")
 var postedBy: Profile? = postedBy

 @JsonIgnore
 @JsonProperty("postCreatedTime")
 var postCreatedTime: Instant? = Instant.now()

 @OneToMany(cascade = [CascadeType.ALL], fetch = FetchType.LAZY,
orphanRemoval=true)
 val comments = mutableListOf<Comment>()

 @OneToMany(cascade = [CascadeType.ALL], orphanRemoval = true)
 var likes: List<LikeObj>? = mutableListOf<Comment>()
}

Here we have two elements and one constructor. Here is the constructor:

@Entity
class Post(text: String, postedBy: Profile) : Serializable {

}

It's time now to discuss some new annotations that have been used in this class:

@ManyToOne(fetch = FetchType.LAZY)
@JoinColumn(name = "profile_id")
@JsonIgnoreProperties("username","password",
"email","accCreatedTime","firstName","lastName",
 "contactNumber","dob","city","country")
 var postedBy: Profile? = postedBy

@ManyToOne on the Profile variable means that this will indicate which user posted that
specific status.

@JoinColumn means its access element Profile is connected with the foreign key
using profile_id.

@JsonIgnoreProperties(......) ignores the JSON properties during deserialization.
In this project, when you get the post's JSON, in the profile attribute you will only find
the id. Here is a simple example of a JSON:

Creating an Application Chapter 9

[284]

You can see "id":0, which is the id of the post.

Now create a mutable list of the Comment and annotate it with @OneToMany, as follows:

 @OneToMany(cascade = [CascadeType.ALL], fetch = FetchType.LAZY,
orphanRemoval=true)
 val comments = mutableListOf<Comment>()

@OneToMany(....) means a post can be many comments and likes.

cascade = [CascadeType.ALL] attribute is a feature of Hibernate. It means you can
apply all primary cascade types.

fetch = FetchType.LAZY means it fetches the data lazily during the first access.

orphanRemoval=true means if the post has been deleted, then all the comments and likes
on this post will be deleted automatically.

Creating a Comment entity
Create a Comment entity named Comment.kt with the @Entity annotation to convert this
class into an entity class. Here is the code of this model class:

@Entity
class Comment(text: String, postedBy: Profile) : Serializable {

 @Id
 @GeneratedValue
 var id: Long? = 0

 var text: String? = text

 @JsonIgnore

Creating an Application Chapter 9

[285]

 @JsonProperty("accCreatedTime")
 var accCreatedTime: Instant? = Instant.now()

 @ManyToOne
 @JoinColumn(name = "profile_id")
@JsonIgnoreProperties("username","password","email","accCreatedTime","first
Name","lastName" , "contactNumber","dob","city","country")
 var postedBy: Profile? = postedBy
}

Here we have three elements and one constructor. Here is the constructor:

@Entity
class Comment(text: String, postedBy: Profile) : Serializable {

}

Creating like entity
Create a like entity named LikeObj.kt with the @Entity annotation to convert this class
into an entity class. Here is the code of this model class:

@Entity
class LikeObj(mProfile: Profile) : Serializable {

 @Id
 @GeneratedValue
 var id: Long? = 0

 @ManyToOne
 @JoinColumn(name = "profile_id")
@JsonIgnoreProperties("username","password","email","accCreatedTime","first
Name","lastName",
 "contactNumber","dob","city","country")
 var profile: Profile? = mProfile
}

Here we have one element and one constructor. Here is the constructor:

@Entity
class LikeObj(profile: Profile) : Serializable {

}

Creating an Application Chapter 9

[286]

Creating repositories
Create a repository for a profile named ProfileRepository.kt and implement
the JpaRepository repository that has all the necessary CRUD request methods to fetch
the database. Here is the code for this class:

@Repository
interface ProfileRepository : JpaRepository<Profile, Long>

Now create a repository for a post named PostRepository.kt and implement
the JpaRepository repository that has all the necessary CRUD request methods to fetch
the database. Here is the code for this class:

@Repository
interface PostRepository : JpaRepository<Post, Long>

Then create a repository for a comment named CommentRepository.kt and implement
the JpaRepository<> repository that has all the necessary CRUD request methods to fetch
the database. Here is the code for this class:

@Repository
interface CommentRepository : JpaRepository<Comment, Long>

Lastly, create a repository for the like model named LikeRepository.kt and implement
the JpaRepository<> repository that has all the necessary CRUD request methods to fetch
the database. Here is the code for this class:

@Repository
interface LikeRepository : JpaRepository<LikeObj, Long>

To delete all the data regarding the deleted post, we need to create a repository for
the profile named DeletePCLRepository.kt and implement an interface
named DeletePCLByIDInterface.kt with one function, which will delete all the data
regarding the deleted user. Here is the code for the interface:

interface DeletePCLByIDInterface {
 fun deleteAllUsersInfoByUserID(userID: Long): Any
}

Here is the code for the DeletePCLRepository.kt class:

@Repository
class DeletePCLRepository : DeletePCLByIDInterface {

 @Autowired
 private lateinit var jdbcTemplate: JdbcTemplate

Creating an Application Chapter 9

[287]

 override fun deleteAllUsersInfoByUserID(userID: Long): Any {

 val deletePosts = "DELETE FROM post, comment WHERE profile_id = ?;"
 val deleteComments = "DELETE FROM comment WHERE profile_id = ?"
 val deleteLikes = "DELETE FROM like_obj WHERE profile_id = ?"

 jdbcTemplate.update(deletePosts, userID)
 jdbcTemplate.update(deleteComments, userID)
 jdbcTemplate.update(deleteLikes, userID)

 return "DONE"
 }
}

To check a registered user, create a repository named UserExistRepository.kt and
implement an interface named UserExistInterface.kt with two functions.

Here is the code for the interface:

interface UserExistInterface{
 fun isUserExist(name: String): Boolean
}

In this interface, isUserExist(username: String) will search the Profile table of the
database and return a Boolean based on the existing of the user.

Here is the code for the UserExistRepository.kt class:

@Repository
class UserExistRepository: UserExistInterface {
 @Autowired
 private lateinit var jdbcTemplate: JdbcTemplate

 override fun isUserExist(name: String): Boolean {
 val sql = "SELECT count(*) FROM PROFILE WHERE username = ?"
 val count = jdbcTemplate.queryForObject(sql, Int::class.java, name)
 return count != 0
 }
}

In this class, we add the @Autowired annotation to autowire the JdbcTemplate to utilize
the JDBC database. We override the issue exist(name: String) function.

"SELECT count(*) FROM PROFILE WHERE username = ?" is an SQL query that is used
to search the existing users from the Profile table of the database. If there is a user, then it
will return true.

Creating an Application Chapter 9

[288]

Creating a controller
Now, create a controller class named AppController.kt and annotate it
with @RestController to convert it into a controller class:

@RestController
class AppController {

}

Now autowire the repositories, as shown in the following code:

@Autowired
private lateinit var profileRepository: ProfileRepository

@Autowired
private lateinit var userExist: UserExistRepository

@Autowired
private lateinit var postRepository: PostRepository

@Autowired
private lateinit var commentRepository: CommentRepository

@Autowired
private lateinit var likeRepository: LikeRepository

@Autowired
private lateinit var deletePCLRepository : DeletePCLRepository

Then create HTTP function requests. We won't discuss this here because we have already
described the use of the HTTP requests in Chapter 4, Spring Modules for Android.

Creating a profile's HTTP requests
Now create HTTP function requests for the profiles.

Here is the function for creating a profile's POST request:

// New Profile registration
@PostMapping("/profile/new")
fun registerUser(@RequestBody profile: Profile): Any {
 if (!userExist.isUserExist(profile.username)) {
 profile.password = passwordEncoder.encode(profile.password)
 profileRepository.save(profile)

Creating an Application Chapter 9

[289]

 return profile
 }
 return "{\"duplicate\": \"${profile.username} is taken. Try another\"}"
}

Here is the function for creating a profile's GET request:

// Get Profile by ID
@GetMapping("/profile/{id}")
fun getUserById(@PathVariable("id") id: Long): Any {
 return profileRepository.findById(id)
}

Here is the function for creating a profile's PUT request:

// Update Profile by ID
@PutMapping("/profile/{id}")
fun updateUserById(@PathVariable("id") id: Long, @RequestBody mUser:
Profile): Any {
 val profile = profileRepository.getOne(id)
 if (mUser.firstName != null) profile.firstName = mUser.firstName
 if (mUser.lastName != null) profile.lastName = mUser.lastName
 if (mUser.contactNumber != null) profile.contactNumber =
mUser.contactNumber
 if (mUser.city != null) profile.city = mUser.city
 if (mUser.country != null) profile.country = mUser.country
 return profileRepository.save(profile)
}

Here is the function for creating a profile's DELETE request:

// Delete Profile by ID
@DeleteMapping("/profile/{userId}")
fun deleteUserById(@PathVariable("userId") userId: Long): Any {
 deletePCLRepository.deleteAllUsersInfoByUserID(userId)
 return profileRepository.deleteById(userId)
}

Creating a post's HTTP requests
Now create the HTTP request functions for the Post.

Here is the function for creating a post's POST request:

// Post status by Profile ID
@PostMapping("/post/{profile_id}/new")
fun submitPost(@PathVariable("profile_id") profile_id: Long, @RequestParam

Creating an Application Chapter 9

[290]

text: String): Any {
 val mPost = Post(text, Profile(profile_id))
 postRepository.save(mPost)

 return mPost
 }

Here is the function for the creating a post's GET request to fetch all the posts:

// Get all posted status
@GetMapping("/posts")
fun getPostList(): Any {
 return postRepository.findAll()
}

Here is the function for creating a post's GET request to fetch one post:

// Get all posted status by Profile ID
@GetMapping("/post/{id}")
fun getPostById(@PathVariable("id") id: Long): Any {
 return postRepository.findById(id)
}

Here is the function for the creating a post's PUT request to update one post:

// Update all posted status by Profile ID
 @PutMapping("/post/{profile_id}")
 fun updatePostById(@PathVariable("profile_id") id: Long, @RequestParam
text: String): Any {
 val modifiedPost = postRepository.getOne(id)
 modifiedPost.text = text
 return postRepository.save(modifiedPost)
 }

Here is the function for creating a post's DELETE request:

// Delete a posted status by Profile ID
@DeleteMapping("/post/{id}")
fun deletePostByUserId(@PathVariable("id") id: Long): Any {
 return postRepository.deleteById(id)
}

Creating a comment's HTTP requests
Now create the HTTP request functions for the Comment.

Creating an Application Chapter 9

[291]

Here is the function for creating a comment's POST request:

// Post comment in a post by Profile ID and Post ID
 @PostMapping("/comment/{post_id}")
 fun postCommentByPostId(@PathVariable("post_id") postId: Long,
@RequestParam id: Long, @RequestParam commentText: String): Any {
 val optionalPost: Optional<Post> = postRepository.findById(postId)
 return if (optionalPost.isPresent) {
 val myComment = Comment(commentText, Profile(id))
 val post = optionalPost.get()
 post.comments.add(myComment)
 postRepository.save(post)
 return post
 } else {
 "There is no post.."
 }
 }

First, we need to initialize an optionalPost object by finding the existing post. Then, if the
post exists, we create a Comment model named myComment, then add the mutable list
of Comment, and then save the post using postRepository.

Here is the function for creating a comment's GET request:

// get comment List of a post
@GetMapping("/comment/{id}")
fun getCommentListByPostId(@PathVariable("id") id: Long): Any {
 return commentRepository.findById(id)
}

Here is the function for creating a comment's PUT request:

// get comment List of a post
@GetMapping("/comment/{id}")
fun getCommentListByPostId(@PathVariable("id") id: Long, @RequestParam
text: String): Any {
 val modifiedComment = commentRepository.getOne(id)
 modifiedComment.text = text
 return commentRepository.save(modifiedComment)
}

Here is the function for creating a comment's DELETE request:

// delete comment List of a status
@DeleteMapping("/comment/{id}")
fun deleteCommentByPostId(@PathVariable("id") id: Long): Any {
 return commentRepository.findById(id)
}

Creating an Application Chapter 9

[292]

Implementing security
We are implementing basic authentication security. It will be similar to what we covered in
Chapter 5, Securing Applications with Spring Security. But there we
used inMemoryAuthentication(), and here we will fetch the username and password
from the database and implement them for the project using UserDetailsService:

Create a service class named CustomUserDetailsService.kt.1.
Implement the UserDetailsService and annotated by @Service to make it a2.
service class. Here is the code for this service class:

@Service
class CustomUserDetailsService: UserDetailsService {

 @Autowired
 private lateinit var userByNameRepository: UserByNameRepository

 @Throws(UsernameNotFoundException::class)
 override fun loadUserByUsername(username: String): User {
 val profile = userByNameRepository.getUserByName(username)

 return
org.springframework.security.core.userdetails.User(username,
profile.password,
 AuthorityUtils.createAuthorityList("USER"))
 }
}

Here, we autowire the UserByNameRepository.kt repository and3.
override loadUserByUsername(username: String). We will fetch the
username and password from the repository and match them with the
username and password given by the client. Here is the code
for UserByNameRepository.kt:

@Repository
class UserByNameRepository: UserByNameInterface {
 @Autowired
 private lateinit var jdbcTemplate: JdbcTemplate

 override fun getUserByName(username: String): Profile {
 val sql = "SELECT * FROM PROFILE WHERE username = ?"
 val profile = jdbcTemplate.queryForObject(sql, UserRowMapper(),
username)

 return profile!!
 }

Creating an Application Chapter 9

[293]

 override fun getUserByNamePassword(username: String, password:
String): Boolean {
 val sql = "SELECT * FROM PROFILE WHERE username = ?, password = ?"
 val profile = jdbcTemplate.queryForObject(sql, UserRowMapper(),
username, password)
 return profile != null
 }
}

interface UserByNameInterface {
 fun getUserByName(username: String): Profile
 fun getUserByNamePassword(username: String, password: String):
Boolean
}

 Now create the code for the RowMapper class of the user4.
named UserRowMapper.kt to fetch the user details. Here is a piece of code from
this class:

class UserRowMapper : RowMapper<Profile> {

 @Throws(SQLException::class)
 override fun mapRow(row: ResultSet, rowNumber: Int): Profile? {
 val profile = Profile(row.getLong("id"),
 row.getString("username"),
 row.getString("password"))
 return profile
 }
}

Let's create a WebSecurityConfigurerAdapter class5.
named SecurityConfigurer.kt and annotate it with @Configuration
and @EnableWebSecurity to make a configuration file and enable web
security. Here is the code for the SecurityConfigurer.kt class:

@Configuration
@EnableWebSecurity
class SecurityConfigurer : WebSecurityConfigurerAdapter() {

 @Autowired
 private lateinit var authEntryPoint: AuthenticationEntryPoint

 @Autowired
 private lateinit var customUserDetailsService:
CustomUserDetailsService

 @Throws(Exception::class)

Creating an Application Chapter 9

[294]

 override fun configure(http: HttpSecurity) {
 http.csrf().disable().authorizeRequests()
 .antMatchers("/profile/new").permitAll()
 .anyRequest()
 .authenticated()
 .and()
 .formLogin()
 .and()
 .httpBasic()
 .authenticationEntryPoint(authEntryPoint)
 }

 @Autowired
 @Throws(Exception::class)
 fun configureGlobal(auth: AuthenticationManagerBuilder) {
 auth
 .userDetailsService(customUserDetailsService)
 .passwordEncoder(getPasswordEncoder())
 }

 @Bean
 fun getPasswordEncoder(): PasswordEncoder {
 return object : PasswordEncoder {
 override fun encode(charSequence: CharSequence): String {
 return charSequence.toString()
 }

 override fun matches(charSequence: CharSequence, s: String): Boolean {
 return true
 }
 }
 }
}

In the previous code, we've done the following:

To use this registration URL path, "/profile/new", any user can access. It
doesn't need a username and password.
We use PasswordEncoder to encode the password.
We autowired configureGlobal(auth: AuthenticationManagerBuilder)
and passed CustomUserDetailsService via
auth.userDetailsService(customUserDetailsService) to check and
match the username.

Creating an Application Chapter 9

[295]

Modified application.properties
The application.properties file is used to connect the database with the application
and define how the database will behave. Here is the code for application.properties:

===============================
DATABASE
===============================

spring.datasource.url=jdbc:mysql://localhost:3306/my_app_schema?useSSL=fals
e&allowPublicKeyRetrieval=true
spring.datasource.username=root
spring.datasource.password=12345678

===============================
JPA / HIBERNATE
===============================
spring.jpa.show-sql=true

Hibernate ddl auto (create, create-drop, validate, update)
spring.jpa.hibernate.ddl-auto = update

Hibernate Properties
The SQL dialect makes Hibernate generate better SQL for the chosen
database
spring.jpa.properties.hibernate.dialect=org.hibernate.dialect.MySQL5Dialect

Here we have used the database named my_app, and the schema is my_app_schema. We
disable useSSL with useSSL=false, and to retrieve the public key we
use allowPublicKeyRetrieval=true.

Here, we use spring.jpa.hibernate.ddl-auto = update, which means after
restarting your server the data won't be lost.

Client side
After creating our backend, we need to create a client-based application to utilize the
server. In this part, we will create an Android application as a client-based frontend
application. To create the application, we need to make a design before starting coding. We
will create an Android application and handle HTTP requests with the use of Retrofit.

First of all, we will design the workflow of the application.

Creating an Application Chapter 9

[296]

Creating the design
To design our application, we have to keep in mind what the project is about and how the
backend was designed. As we know, this is a mini-social-network-type app. So we have to
create some model objects that are exactly the same as the server's model objects. In the
application's workflow, we will have some layouts that will represent our applications.

The workflow is shown in the following diagram:

Here are the brief of the workflow according to this diagram:

Login page: If you have a registered account, you can input the username and
password to enter the application's main page. Or, if you are new, you need to go
to the registration page and register an account.
Registration page: This is for registering an account.
Home activity: This is the main part of your application.

Creating an Application Chapter 9

[297]

Profile: You can see your details here.
Status details: You can see the details of any post that you click on.

So far, this project is based on these layouts. Now we need to create an Android
application.

Creating a project
To create a new project, go to Android Studio and click New Project. This time, select
Android for Mobile, then select Basic Activity, as shown in the following screenshot:

Creating an Application Chapter 9

[298]

Implementing dependencies
After building the project, add these dependencies in the dependencies{} block of
build.gradle (Module:app). These are for Material Design, Retrofit, and RxJava:

// Design
implementation 'com.android.support:design:28.0.0'
implementation 'com.android.support:recyclerview-v7:28.0.0'
implementation 'com.android.support:cardview-v7:28.0.0'

// Retrofit
implementation "com.squareup.retrofit2:retrofit:$retrofit_version"
implementation "com.squareup.retrofit2:converter-gson:$retrofit_version"
implementation "com.squareup.retrofit2:adapter-rxjava2:$retrofit_version"
implementation "com.squareup.retrofit2:retrofit-
converters:$retrofit_version"
implementation "com.squareup.retrofit2:retrofit-adapters:$retrofit_version"
implementation "com.squareup.okhttp3:logging-interceptor:$okhttp3_version"
implementation "com.google.code.gson:gson:$gson_version"

// Rx
implementation 'io.reactivex.rxjava2:rxandroid:2.0.2'
implementation 'io.reactivex.rxjava2:rxjava:2.2.0'

Creating HomeActivity
After creating the project, you will find MainActivity, but here we have renamed it
as HomeActivity.kt, and the layout name is activity_home.

Now go to the activity, and here is the default code for this class:

class HomeActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main2)
 setSupportActionBar(toolbar)

 fab.setOnClickListener { view ->
 Snackbar.make(view, "Replace with your own action",
Snackbar.LENGTH_LONG)
 .setAction("Action", null).show()
 }
 }
}

Creating an Application Chapter 9

[299]

Modifying the layout
First, create a layout named home_content.xml, add FrameLayout, and add an id name.
Here is the code for this XML file (you can see the full version on GitHub):

<?xml version="1.0" encoding="utf-8"?>
<android.support.design.widget.CoordinatorLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".ui.MainActivity">
 <android.support.constraint.ConstraintLayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".ui.MainActivity">

 <android.support.v7.widget.RecyclerView
 android:id="@+id/displayList"
 android:layout_width="0dp"
 android:layout_height="0dp"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 tools:listitem="@layout/post_item"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintHorizontal_bias="0.0"
android:layout_marginTop="8dp"
 app:layout_constraintTop_toBottomOf="@+id/appBarLayout"/>

 </android.support.constraint.ConstraintLayout>

 <android.support.design.widget.FloatingActionButton
 android:id="@+id/fabMain"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="bottom|end"
 android:layout_margin="@dimen/fab_margin"
 app:srcCompat="@android:drawable/ic_dialog_email"/>
</android.support.design.widget.CoordinatorLayout>

Creating an Application Chapter 9

[300]

Creating models
To create the models, we need to keep the same model items as the backend. But we will
also include the Gson annotation, @SerializedName. The value of the @SerializedName
annotation is used when serializing and deserializing objects. Here,
@SerializedName("username") is stating that this is the name of the Username in the
JSON. Though we implement the Gson, you can call these model classes as the response of
the API. That means when this application requests the server and fetches the content, then
this content will be returned with the help of these model classes.

Creating profile model
Create a Profile data class named Profile.kt, and here is the sample code:

data class Profile(
 @SerializedName("id") var userID: String,
 @SerializedName("username") var username: String,
 @SerializedName("password") var password: String,
 @SerializedName("email") var email: String,
 @SerializedName("accCreatedTime") var accCreatedTime: String,
 @SerializedName("firstName") var firstName: String,
 @SerializedName("lastName") var lastName: String,
 @SerializedName("contactNumber") var contactNumber: String,
 @SerializedName("country") var country: String
)

Creating post model
Create a Post data class named Post.kt, and here is the sample code:

data class Post(
 @SerializedName("id") var postId: Long?,
 @SerializedName("text") var text: String?,
 @SerializedName("postedBy") var profile: Profile?,
 @SerializedName("accCreatedTime") var accCreatedTime: String?,
 @SerializedName("comments") var comment: ArrayList<Comment>?,
 @SerializedName("likes") var likes: ArrayList<Like>?
)

Creating an Application Chapter 9

[301]

Creating a comment model
Create a comment data class named Comment.kt, and here is the sample code:

data class Comment (
 @SerializedName("id") var comment: Long?,
 @SerializedName("text") var text: String?,
 @SerializedName("postedBy") var profile: Profile?,
 @SerializedName("accCreatedTime") var accCreatedTime: String?
)

Creating services
This is the most important section. This will send the GET request to the server to fetch the
data from the server. First of all, we will create the services of the model classes. We will
create the HTTP request functions using the Retrofit annotation, which are explained in the
section called HTTP Request Functions in Chapter 4, Spring Modules for Android.

Creating the profile service
According to our server, we have four HTTP requests for the profile. So we will create
three HTTP requests using the Retrofit annotations. Now create an interface named
ProfileService.kt, and here is the code:

interface ProfileService {

 // New Profile registration
 @Headers("Content-Type: application/json")
 @POST("/profile/new")
 fun registerProfile(@Body profile: Profile): Observable<Profile>

 @Headers("Content-Type: application/json")
 @GET("/profile/login")
 fun loginProfile(@Query("username") username: String,
@Query("password") password: String): Observable<Profile>

 // Get All Profiles
 @Headers("Content-Type: application/json")
 @GET("/profiles")
 fun getUserList(): Observable<List<Profile>>

 // Get Profile by ID
 @GET("/profile/{userId}")

Creating an Application Chapter 9

[302]

 fun getUserById(@Path("userId") userId: Long): Observable<Profile>
}

Based on the preceding code, here are the brief details of the functions:

registerProfile(@Body profile: Profile) registers a new profile. You
need to pass a project object.
getUserList() gets all the profiles.
getUserById(@Query("userId") userId: Long) gets a profile. You need to
pass a user ID.

Creating the post service
According to our server, we have three HTTP requests for the profile. So we will create
three HTTP requests using the Retrofit annotations. Now create an interface
named ProfileService.kt, and here is the code:

interface PostService {
 @Headers("Content-Type: application/json")
 @POST("/post/{profile_id}/new")
 fun submitNewPost(@Path("profile_id") id: Long, @Query("text") text:
String): Observable<List<Post>>

 // Get all posted status
 @Headers("Content-Type: application/json")
 @GET("/posts")
 fun getPostList(): Single<List<Post>>

 // Get all posted status by Profile ID
 @Headers("Content-Type: application/json")
 @GET("/post/{id}")
 fun getPostById(@Path("id") id: Long): Observable<Post>

}

Based on the preceding code, here is a brief description of the functions:

submitNewPost(@Query("id") id: Long, @Field("text") text:

String) submits a new post, and to submit the new post, you need to pass the
user ID and the text.

Creating an Application Chapter 9

[303]

getPostList() gets all the posts.
getPostById(@Query("id") id: Long) gets a post. You need to pass a post
ID.

Creating the comment service
To handle the comment REST APIs, we will create two HTTP requests. So we will create
two POST and DELETE requests using the Retrofit annotations. Now create an interface
named PostService.kt, and here is the code:

interface CommentService {
 // Post comment in a post by Profile ID and Post ID
 @POST("/comment/{user_id}/{post_id}")
 fun postCommentByPostId(@Path("post_id") postId: Long, @Path("user_id")
userId: Long,
 @Query("commentText") commentText: String):
Observable<Post>

 // Delete comment in a post by Profile ID and Post ID
 @DELETE("/comment/{user_id}/{post_id}")
 fun deleteCommentByPostId(@Path("post_id") postId: Long,
@Path("user_id") userId: Long,
 @Query("commentText") commentText: String):
Observable<Post>
}

postCommentByPostId(@Path("post_id") postId: Long, @Path("user_id")
userId: Long,

@Query("commentText") commentText: String) is a POST request function, and it
submits a new comment. You need to pass the user_id, post_id, and the text.

deleteCommentByPostId(@Path("post_id") postId: Long, @Path("user_id")
userId: Long,

@Query("commentText") commentText: String) is a DELETE request function, and it
deletes the comment. You need to pass the user_id and post_id.

So far, all the requests have been created, and now we need to create an API service that
will hit the server and fetch the JSON.

Creating an Application Chapter 9

[304]

Creating an API service
We explained this procedure in Chapter 4, Spring Modules for Android. So we will just show
you the code and explain the new features. Create an object named APIService.kt and
add gsonConverter() and getOkhttpClient(username, password):

object APIService{
 fun getRetrofitBuilder(username:String, password:String): Retrofit {
 return Retrofit.Builder()
 .client(getOkhttpClient(username, password))
 .baseUrl(Constants.API_BASE_PATH)
 .addCallAdapterFactory(RxJava2CallAdapterFactory.create())
 .addConverterFactory(gsonConverter())
 .build()
 }

 fun gsonConverter(): GsonConverterFactory {
 return GsonConverterFactory
 .create(
 GsonBuilder()
 .setLenient()
 .disableHtmlEscaping()
 .create()
)
 }

 fun getOkhttpClient(profileName: String, password: String):
OkHttpClient {
 return OkHttpClient.Builder()
 .addInterceptor(BasicAuthInterceptor(profileName, password))
 .connectTimeout(30, TimeUnit.SECONDS)
 .readTimeout(60, TimeUnit.SECONDS)
 .build()
 }
}

If you're confused about addInterceptor(BasicAuthInterceptor(profileName,
password)), then please go to Chapter 5, Securing Applications with Spring Security, and
check out the section called Authenticating with OkHttp interceptors.

Now we need to initialize the RetrofitBuilder functions of the services. We have four
service interfaces, and now we will create four RetrofitBuilder functions for them. Add
this code in the APIService.kt file:

// get profile request builder
fun profileAPICall(username:String, password:String) =
getRetrofitBuilder(username, password)

Creating an Application Chapter 9

[305]

 .create(ProfileService::class.java)

// get post request builder
fun postAPICall(username:String, password:String) =
getRetrofitBuilder(username, password)
 .create(PostService::class.java)

// get comment request builder
fun commentAPICall(username:String, password:String) =
getRetrofitBuilder(username, password)
 .create(CommentService::class.java)

Now we will work for the frontend, which means the activities and layouts.

Creating a login activity
This is the first activity of the app. When users enter the app it will be the first thing they
see. For the user, they need to go to the register activity to register a new profile. After the
registration, they will get access to the application.

Modifying the layout
Create an empty activity named LoginActivity.kt, and a layout
named activity_login.xml. Here is the code in the xml (you will find the full version of
this layout on GitHub):

<android.support.v7.widget.CardView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_alignParentEnd="true"
 android:layout_alignParentStart="true"
 android:layout_centerHorizontal="true"
 android:background="@color/reg_body"
 app:layout_constraintTop_toTopOf="parent"
app:layout_constraintStart_toStartOf="parent"
 android:layout_marginBottom="64dp"
app:layout_constraintBottom_toBottomOf="parent"
 android:layout_marginStart="32dp"
app:layout_constraintEnd_toEndOf="parent" android:layout_marginEnd="32dp"
 android:id="@+id/cardView">

Creating an Application Chapter 9

[306]

 <android.support.constraint.ConstraintLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 app:layout_constraintHorizontal_bias="0.0"
 app:layout_constraintVertical_bias="1.0"
android:layout_marginEnd="24dp"
 android:layout_marginTop="32dp"
 android:layout_marginStart="24dp"
android:layout_marginBottom="32dp">
 <TextView
 android:id="@+id/LogIn"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentTop="true"
 android:layout_centerHorizontal="true"
 android:text="@string/title_login"
 android:textSize="30sp"
 android:textStyle="bold"
 android:typeface="monospace"
app:layout_constraintEnd_toEndOf="parent"
 android:layout_marginEnd="8dp"
app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent"
android:layout_marginStart="8dp"
 android:layout_marginTop="8dp"/>

 <Button android:layout_width="match_parent"
android:layout_height="wrap_content"
 android:text="@string/title_login"
 android:id="@+id/reg_submit"

app:layout_constraintTop_toBottomOf="@+id/password_title_reg"
 app:layout_constraintStart_toStartOf="parent"
app:layout_constraintEnd_toEndOf="parent"
 android:layout_marginEnd="32dp"
android:layout_marginStart="32dp"
 android:layout_marginTop="64dp"/>

Here we have user input for Username and Password. In this layout, we have also one
button to log in and one TextView to go to the RegistrationActivity.

Creating an Application Chapter 9

[307]

Here is the image preview of this layout:

Creating an Application Chapter 9

[308]

Modifying activity
Go to the LogInActivity.kt file, where we will input the login information. The user
needs to provide a username and a password. Then this information will be searched in
the Profile table of the server database. If there are the same username and password in
this Profile table, you will be able to enter the MainActivity, or you will get an error
message. If you are a new user, you can click New Member? to register a new profile.

First, we will check SharedPreferences to see if we have the saved username and
password. It will show in the username and password fields, or it will remain blank so you
can input the values. Here is the function of this logic:

override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_login)

 setUsernamePassword()
 }

private fun setUsernamePassword() {
 if (PrefUtils.getUsername(this) != null
 || PrefUtils.getPassword(this) != null) {
 username_input_login.setText(PrefUtils.getUsername(this))
 password_input_login.setText(PrefUtils.getPassword(this))
 }
}

Now set the OnClickListener() listener function in the TextView named need_reg,
which will take us to the RegistrationActivity. Here is the code for this function:

need_reg.setOnClickListener {
 val intent = Intent(this, RegistrationActivity::class.java)
 startActivity(intent)
}

Login request
Now we will create a function named logInUser(), which will send a POST request to the
server and match the username and password. In return of failed, it gets an error and
shows the error message, or it will take to to the MainActivity. Here is the function:

private fun logInUser(){

 APIClient.profileAPICall(username_input_login.text.toString(),
password_input_login.text.toString())

Creating an Application Chapter 9

[309]

.loginProfile(username_input_login.text.toString(),password_input_login.tex
t.toString())
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe({
 newUser ->
 if(newUser.error != null){
 Toast.makeText(applicationContext,newUser.error!!,
Toast.LENGTH_SHORT).show()
 }else {
 PrefUtils.storeUsernameID(this, newUser.userID!!)
 PrefUtils.storeUsername(this, newUser.username!!)
 PrefUtils.storePassword(this, newUser.password!!)
 username_input_login.setText(PrefUtils.getUsername(this))
 password_input_login.setText(PrefUtils.getPassword(this))
 val intent = Intent(this, MainActivity::class.java)
 startActivity(intent)
 }
 },{
 error ->
 Toast.makeText(applicationContext,R.string.err_login_msg,
Toast.LENGTH_SHORT).show()
 Log.wtf("******", error.message.toString())
 })
}

Here, we store the username, password, and userID if we get the correct response.

Creating the registration activity
Create an activity for registration named RegistrationActivity.kt, where we will
register a new account. Before modifying the code, we need to modify the layout.

Modifying layout
Create a layout for RegistrationActivity.kt named activity_registration.xml.
Here I have added a UI, so please look at the full version of this file on GitHub. Here is a
piece of code from this file:

 <Button android:layout_width="match_parent"
android:layout_height="wrap_content"
 android:text="@string/title_reg"
 android:id="@+id/reg_submit"
android:layout_marginTop="32dp"

Creating an Application Chapter 9

[310]

app:layout_constraintTop_toBottomOf="@+id/country_title_reg"
 app:layout_constraintStart_toStartOf="parent"
android:layout_marginStart="32dp"
 app:layout_constraintEnd_toEndOf="parent"
android:layout_marginEnd="32dp"/>

 </android.support.constraint.ConstraintLayout>
 </ScrollView>
 </android.support.v7.widget.CardView>

</android.support.constraint.ConstraintLayout>

Here is the image preview of this layout:

Creating an Application Chapter 9

[311]

Modifying the activity
Here is the code for RegistrationActivity:

class RegistrationActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_registration)

 }
}

Now add some logic to validate the username, password, and email id. Here is the code:

private fun validateName(): Boolean {
 if (username_input_reg.text.toString().trim().isEmpty()) {
 username_title_reg.error = getString(R.string.err_msg_name)
 requestFocus(username_input_reg)
 return false
 } else {
 username_title_reg.isErrorEnabled = false
 }

 return true
}

private fun validateEmail(): Boolean {
 if (email_input_reg.text.toString().trim().isEmpty() ||
!isValidEmail(email_input_reg.text.toString().trim())) {
 email_title_reg.error = getString(R.string.err_msg_email)
 requestFocus(email_input_reg)
 return false
 } else {
 email_title_reg.isErrorEnabled = false
 }

 return true
}

private fun validatePassword(): Boolean {
 if (password_input_reg.text.toString().trim().isEmpty()
 || con_password_input_reg.text.toString().trim().isEmpty()) {

 if (password_input_reg.text.toString().trim()
 == con_password_input_reg.text.toString().trim()){
 password_title_reg.error =
getString(R.string.err_match_password)

Creating an Application Chapter 9

[312]

 requestFocus(password_title_reg)
 }

 password_title_reg.error = getString(R.string.err_msg_password)
 requestFocus(password_title_reg)
 return false
 } else {
 password_title_reg.isErrorEnabled = false
 }

 return true
}

Add a TextWatcher inner class, which will send an alert if there is any invalid input:

private inner class MyTextWatcher (private val view: View) : TextWatcher {

 override fun beforeTextChanged(charSequence: CharSequence, i: Int, i1:
Int, i2: Int) {}

 override fun onTextChanged(charSequence: CharSequence, i: Int, i1: Int,
i2: Int) {}

 override fun afterTextChanged(editable: Editable) {
 when (view.id) {
 R.id.username_input_reg -> validateName()
 R.id.email_input_reg -> validateEmail()
 R.id.input_password -> validatePassword()
 }
 }
}

When the username, password, or the email id is invalid, it will show an alert.

Registering a new profile
Now we will create a function called registerUser(), which will help you to send
requests to the server and fetch the output from the server. We will show you how to use
RxJava in Chapter 8, Reactive Programming, and Retrofit in Chapter 4, Spring Modules for
Android. Here is the code for registerUser():

private fun registerUser(){
 val newProfile = Profile(null,
 username_input_reg.text.toString(),
 password_input_reg.text.toString(),
 email_input_reg.text.toString(),

Creating an Application Chapter 9

[313]

 null,
 first_name_input_reg.text.toString(),
 last_name_input_reg.text.toString(),
 contact_input_reg.text.toString(),
 country_input_reg.text.toString())
 APIClient.profileAPICall("","")
 .registerProfile(newProfile)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe({
 newUser ->
 if(newUser.duplicate != null){
 Toast.makeText(applicationContext,newUser.duplicate!!,
Toast.LENGTH_SHORT).show()
 }else {
 PrefUtils.storeUsernameID(this, 1)
 PrefUtils.storeUsername(this, username)
 PrefUtils.storePassword(this, password)
 val intent = Intent(this, LoginActivity::class.java)
 startActivity(intent)
 }

 },{
 error ->
Toast.makeText(applicationContext,error.message.toString(),
Toast.LENGTH_SHORT).show()

 })
}

Here, we will take the contents from EditText and create a Profile object. Then we take
an observer that will fetch the profile list as JSON type and handle the updated list in
the subscribe() function. If the result is complete, it will return in the first parameter, and
then we will save the username, password, and userID locally
using SharedPreferences and return to LoginActivity. If it throws an error, it will go
to the second parameter.

Modifying the main activity
This is our home page. Here, you can see all the posts. We need to modify our layout and
the activity class.

Creating an Application Chapter 9

[314]

Modifying the layout
The layout of MainActivity is in the activity_main.xml file. Here, we have
added RecyclerView to show the list, one FabButton to submit the post, and a TextView
to show if there is no post available. Here is a piece of the code:

<?xml version="1.0" encoding="utf-8"?>
<android.support.design.widget.CoordinatorLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".ui.MainActivity">

<android.support.v7.widget.RecyclerView
 android:id="@+id/displayList"
 android:layout_width="0dp"
 android:layout_height="0dp"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 tools:listitem="@layout/post_item"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintHorizontal_bias="0.0" android:layout_marginTop="8dp"
 app:layout_constraintTop_toBottomOf="@+id/appBarLayout"/>
 </android.support.constraint.ConstraintLayout>
 <android.support.design.widget.FloatingActionButton
 android:id="@+id/fabMain"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="bottom|end"
 android:layout_margin="@dimen/fab_margin"
 app:srcCompat="@android:drawable/ic_dialog_email"/>
</android.support.design.widget.CoordinatorLayout>

Modifying the activity
Go to MainAcitivty.kt. Here, we have RecycleView and the post adapter. We will add
a global List<Post> and set the recycleView in the onCreate() function like this:

private var postList: List<Post> = listOf()

override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

Creating an Application Chapter 9

[315]

 setContentView(R.layout.activity_main)
 displayList.layoutManager = LinearLayoutManager(this)
 displayList.setHasFixedSize(true)
 postRecycleViewAdapter = PostRecycleViewAdapter(this, postList)
 displayList.adapter = postRecycleViewAdapter
}

Here, we have initialized
the PostRecycleViewAdapter named postRecycleViewAdapter and set the adapter
into the list named displayList.

Fetching a post
We will fetch all the posts using the getAllPosts() function. This function will send a
request to the server to get all the post list. In return, we will get the updated list
named newPostList and pass using setItems(newPostList) to
PostRecycleViewAdapter and notify with notifyDataSetChanged(). For the error
handling, we have used toast. Here is the code of the getAllPosts() function:

private fun getAllPosts() {
 APIClient.postAPICall(PrefUtils.getUsername(this)!!,
PrefUtils.getPassword(this)!!)
 .getPostList()
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe({
 newPostList ->
 postRecycleViewAdapter.setItems(newPostList)
 postRecycleViewAdapter.notifyDataSetChanged()
 },{
 error ->
 Toast.makeText(applicationContext, error.message.toString(),
Toast.LENGTH_SHORT).show()
 })
}

Submitting a post
When you press the fab button we will see an alert box where you can input your status
using submitPost(). In return, we get the post list named newPostList and pass the list
to the setItems(newPostList) of the PostRecycleViewAdapter to replace with the
older post list with the new one. Lastly, notify with notifyDataSetChanged(), and the
RecycleView list will be updated.

Creating an Application Chapter 9

[316]

Here is the code for the submitPost() function:

private fun submitPost(id: Long, text: String){
 APIClient.postAPICall(PrefUtils.getUsername(this)!!,
PrefUtils.getPassword(this)!!)
 .submitNewPost(id, text)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe({
 newPostList ->
 postRecycleViewAdapter.setItems(newPostList)
 postRecycleViewAdapter.notifyDataSetChanged()
 },{
 error ->
 Toast.makeText(applicationContext, error.message.toString(),
Toast.LENGTH_SHORT).show()
 })
}

Implementing the menu
To show the profile details and update a post, we will add two icons on the Toolbar. To do
this, we need to create a toolbar file. Create a menu file in res > menu
named menu_main.xml. There we will add two items, one for profile and one for updating
a post.

Here is the code for menu_main.xml:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto">
 <item
 android:id="@+id/profileMenu"
 android:icon="@drawable/ic_face_white_24dp"
 app:showAsAction="always"
 android:title="@string/title_profile">
 </item>
 <item
 android:id="@+id/postUpdate"
 android:icon="@drawable/ic_autorenew_white_24dp"
 app:showAsAction="always"
 android:title="@string/title_update">
 </item>
</menu>

Creating an Application Chapter 9

[317]

We have used app:showAsAction="always", and it means the items will always show on
the toolbar.

Now implement it in MainAcitivy.kt. To do this, we need to override two functions, and
these are onCreateOptionsMenu() and onOptionsItemSelected().

We will bind the menu_main menu XML file using menuInflater.inflate() in
onCreateOptionsMenu(), and we will write down the logic for every menu item in
the onOptionsItemSelected():

 override fun onCreateOptionsMenu(menu: Menu): Boolean {
 menuInflater.inflate(R.menu.menu_main, menu)
 return true
 }

 override fun onOptionsItemSelected(item: MenuItem?): Boolean {
 when (item!!.itemId) {
 R.id.profileMenu -> {
 val intent = Intent(this, ProfileActivity::class.java)
 startActivity(intent)
 }
 R.id.postUpdate -> {
 getAllPosts()
 }
 }
 return true
 }

R.id.profileMenu will take you to the ProfileActivity class.

R.id.postUpdate will update the post using getAllPosts().

Modifying the post adapter
Now we need to modify our post adapter class. It will help us to show the post in a nice
structure. Our post adapter name is PostRecycleViewAdapter, and the layout name
is post_item.

Creating an Application Chapter 9

[318]

Modifying post adapter layouts
To utilize the post adapter, we need to create an xml file named post_item.xml, and here
we will implement the UI. Here is a piece of the code (the entire code can be found on
GitHub):

 <TextView android:layout_width="wrap_content"
android:layout_height="wrap_content"
 tools:text="@tools:sample/date/ddmmyy"
 android:id="@+id/postedDate"
 android:textAppearance="?android:textAppearanceSmall"
 app:layout_constraintTop_toBottomOf="@+id/profileName"
 app:layout_constraintStart_toStartOf="@+id/profileName"
 android:layout_marginTop="4dp"
 app:layout_constraintBottom_toBottomOf="parent"
android:layout_marginBottom="4dp"/>
 </android.support.constraint.ConstraintLayout>

 <TextView android:layout_width="0dp"
android:layout_height="wrap_content"
 tools:text="@tools:sample/lorem"
 android:id="@+id/postText"
 android:padding="4dp"
 android:textAppearance="?android:textAppearanceSmall"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
android:layout_marginTop="4dp"
 app:layout_constraintTop_toBottomOf="@+id/constraintLayout"/>

We have four TextView for user full name, username, posted time, and the post text.

Here is a sample image from the preview option of the layout:

Creating an Application Chapter 9

[319]

Creating the adapter for posts
Let's create a custom RecycleView adapter named PostRecycleViewAdapter.kt to
display the post list. We have shown you how to create custom adapters in Chapter 4,
Spring Modules for Android, so we won't repeat it. Here is the PostRecycleViewAdapter
class:

class PostRecycleViewAdapter(private var context: Context,
 private val postList: List<Post>):
RecyclerView.Adapter<PostRecycleViewAdapter.ViewHolder>() {

}

Now create the ViewHolder class and initialize all the content of the post_item layout in
PostRecycleViewAdapter.kt, as shown in the following code:

class ViewHolder(view: View): RecyclerView.ViewHolder(view){
 val postRoot = view.findViewById(R.id.postRoot) as ConstraintLayout

 val profileFullName = view.findViewById(R.id.profileFullNamePost) as
TextView
 val username = view.findViewById(R.id.usernamePost) as TextView
 val postedDate = view.findViewById(R.id.postedDate) as TextView
 val postText = view.findViewById(R.id.postText) as TextView
}

Now override onCreateViewHolder() and return the ViewHolder class:

override fun onCreateViewHolder(viewGroup: ViewGroup, p1: Int): ViewHolder
{
 val layoutInflater =
LayoutInflater.from(context).inflate(R.layout.post_item, viewGroup, false)
 return ViewHolder(layoutInflater)
}

Now, we need to set the value in every raw of the list based on its position. To do this,
override the onBindViewHolder() function and add this code:

override fun onBindViewHolder(viewHolder: ViewHolder, position: Int) {

 val userDetails = postList[position]

 viewHolder.profileFullName.text = "${userDetails.profile!!.firstName}
${userDetails.profile!!.lastName} "
 viewHolder.username.text = userDetails.profile!!.username
 viewHolder.postedDate.text = userDetails.postCreatedTime

Creating an Application Chapter 9

[320]

 viewHolder.postText.text = userDetails.text

}

Modifying the profile layout
This layout will help to get the profile details from the users. Open
activity_profile.xml and modify it as follows (please check GitHub for the full layout
code):

<?xml version="1.0" encoding="utf-8"?>

 <!--full name-->

 <TextView android:layout_width="wrap_content"
android:layout_height="wrap_content"
 android:id="@+id/profileFullNameTitlePro"
 android:textStyle="bold"
 android:text="@string/title_full_names"
 android:textAppearance="?android:textAppearanceSmall"
 android:layout_marginStart="8dp"
 app:layout_constraintStart_toStartOf="parent"
android:layout_marginTop="32dp"
 app:layout_constraintTop_toBottomOf="@+id/usernamePro"
android:layout_marginEnd="8dp"
 app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintHorizontal_bias="0.0"/>

 <TextView android:layout_width="wrap_content"
android:layout_height="wrap_content"
 tools:text="@tools:sample/full_names"
 android:id="@+id/profileFullNamePro"
 android:textAppearance="?android:textAppearanceSmall"
app:layout_constraintTop_toTopOf="@+id/profileFullNameTitlePro"
app:layout_constraintBottom_toBottomOf="@+id/profileFullNameTitlePro"
 app:layout_constraintEnd_toEndOf="parent"
 android:layout_marginEnd="160dp"
 app:layout_constraintVertical_bias="1.0"/>

</android.support.constraint.ConstraintLayout>

Here we have one TextView for the username, a TextView for each profile item label
name, and four for the profile contents of Full Name, Email, Contact Number,
and Country.

Creating an Application Chapter 9

[321]

Here is the preview of the Profile details:

Creating an Application Chapter 9

[322]

Modifying a profile activity
Create a new activity called ProfileActivity.kt, and here is the code:

class ProfileActivity : AppCompatActivity() {

 private var username: String = ""
 private var password: String = ""

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_profile)
 setTitleName()

 username = PrefUtils.getUsername(this)!!
 password = PrefUtils.getPassword(this)!!
 }
}

Fetching the profile details
To fetch the profile details, we need to create a function named getUser() in which we
will call getUserById() from the Profile services. In return, it will provide the user
details, or if there is an error, it will show the error message. Here is the code of
the getUserById() function:

private fun getUser(){
 APIClient.profileAPICall(username,password)
 .getUserById(PrefUtils.getUsernameID(this)!!)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe({
 myUser ->

 usernamePro.text = myUser.username
 profileFullNamePro.text = "${myUser.firstName}
${myUser.lastName}"
 emailPro.text = myUser.email
 contactNumberPro.text = myUser.contactNumber
 countryPro.text = myUser.country
 },{
 error ->
 UtilMethods.hideLoading()
 Log.wtf("******", error.message.toString())
 })
 }

Creating an Application Chapter 9

[323]

Post details activity
Now we will need our last activity, PostDetailsActivity.kt, and the layout is
in activity_post_details.xml. In this activity, you will see a specific post and its
comments. You can also post a comment.

Modifying the post details layout
This view will show specific post details. Here is a piece of code from
activity_post_details.xml:

<android.support.v7.widget.RecyclerView
 android:id="@+id/displayList_com"
 android:layout_width="0dp"
 android:layout_height="0dp"
 tools:listitem="@layout/post_item"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintTop_toBottomOf="@+id/postRoot_pd"
 android:layout_marginBottom="8dp"
app:layout_constraintBottom_toBottomOf="parent"
 android:layout_marginStart="16dp" android:layout_marginEnd="16dp"
android:layout_marginTop="8dp"/>

<android.support.constraint.ConstraintLayout
 android:layout_width="match_parent"
 android:id="@+id/postRoot_pd"
 android:layout_height="wrap_content"
 android:layout_marginTop="8dp"
 app:layout_constraintTop_toBottomOf="@+id/appBarLayout_pd"
app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
android:layout_marginEnd="8dp"
 android:layout_marginStart="8dp">

Here we have a post's details and its list of comments.

Creating an Application Chapter 9

[324]

The preview of this layout is as follows:

Creating an Application Chapter 9

[325]

Modifying the post details activity
This is an activity where will handle a specific post. This post will be fetched by a postId,
and we will get this through the intent that is sent from PostRecycleViewAdapter. To get
the intent view, we need to use intent.extras. We use Long with the key name of
"postId", as shown in the following code:

private var postId:Long = -1

if(intent.extras!=null){
 postId = intent.extras.getLong("postId")
}

Fetching post details
Now create a function called getPostById(id: Long), and we will pass the given
postId from MainActivity. We will handle all the value in the specific TextView, such
as MainActivity:

@SuppressLint("CheckResult")
private fun getPostById(id: Long){
 UtilMethods.showLoading(this)
 APIClient.postAPICall(PrefUtils.getUsername(this)!!,
PrefUtils.getPassword(this)!!)
 .getPostById(id)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe({
 post ->
 postText_pd.text = post.text
 profileFullNamePost_pd.text = "${post.profile!!.firstName}
${post.profile!!.lastName}"
 usernamePost_pd.text = post.profile!!.username
 postedDate_pd.text =
SimpleDateFormat(Constants.TIME_FORMAT).format(post.postCreatedTime!!)

 commentList = post.comment!!

 Log.wtf("******", commentList.toString())
 commentRecycleViewAdapter.setItems(commentList)
 commentRecycleViewAdapter.notifyDataSetChanged()

 UtilMethods.hideLoading()
 },{
 error ->
 UtilMethods.hideLoading()

Creating an Application Chapter 9

[326]

 Log.wtf("******", error.message.toString())
 Toast.makeText(applicationContext, error.message.toString(),
Toast.LENGTH_SHORT).show()
 })
}

Submitting comment
To submit a comment, click fabButton and enter a comment. The system of comment
submission is similar to the post submission system. We create a function
named submitComment(id: Long, text: String) and use it to submit the comment.
Here is the submitComment() function:

@SuppressLint("CheckResult")
private fun submitComment(id: Long, text: String){
 UtilMethods.showLoading(this)
 APIClient.commentAPICall(PrefUtils.getUsername(this)!!,
PrefUtils.getPassword(this)!!)
 .postCommentByPostId(id, PrefUtils.getUsernameID(this)!!,text)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe({
 newPostList ->
 commentList = newPostList.comment!!

 Log.wtf("******", commentList.toString())
 commentRecycleViewAdapter.setItems(commentList)
 commentRecycleViewAdapter.notifyDataSetChanged()
 UtilMethods.hideLoading()
 },{
 error ->
 UtilMethods.hideLoading()
 Log.wtf("******", error.message.toString())
 Toast.makeText(applicationContext, error.message.toString(),
Toast.LENGTH_SHORT).show()
 })
}

Modifying the comment adapter
This adapter is the same as the Post adapter. Check the Modifying Post Adapter, Modifying
Post Adapter Layouts to modify this comment adapter. The name of this adapter
is CommentRecycleViewAdapter.kt and the layout is comment_item.xml.

Our project is complete! Now it's time to check the output of the server and the client.

Creating an Application Chapter 9

[327]

Checking the output
To check our output, first, run the server from the Social_Network Spring project. Then
you can run two different emulators or Android devices as client users.

Now open the Android app. Click the New Member? button to create a new account. Fill in
all the required details and click the Registration button:

Creating an Application Chapter 9

[328]

If the username is already taken, then it will alert you like this:

Creating an Application Chapter 9

[329]

Now if you press the Profile button, the second left on the toolbar, you will see the Profile
details. If you press the Update button, the top-left icon of the toolbar, your post will
update, as you can see in the following screenshot:

Click on any post and you will see the specific post, and you can add a comment using the
Fab button:

Creating an Application Chapter 9

[330]

We are at end of this long journey. Now your client application is ready to use. Here you
can post a status, see the posted status, check the details of the post, and put comments on
that post. We have shown you how to use the server and handle the resources from the
server in an Android application. You can find some minor functions and layouts on
GitHub that may be helpful with this application. We recommend you create another
application with your own imagination and deploy it. That will be more effective, and you
can learn more about what you want to learn. There are lots of alternative ways to handle
HTTP requests, and so you can learn more. If you want to learn more, have a look at
the Further reading section.

Summary
After a long journey, we have finished this chapter. Here we have seen how to create a
server side and a client side complete application using all the modules of the previous
chapters, such as Spring Security and database. You can modify this project in your own
style. You can implement new architecture and implement new frameworks. In this
chapter, first, we learned about the design of a project. Then we created the database model
for our project. After creating the database model, we created our server-side project and
implemented the dependencies. Then we created the models based on the database model.
Then we created the repositories and the controller. In the controller, we created the HTTP
request functions. Then we implemented the security. We used basic authentication from
Spring Security. Then we modified application.properties to connect to the MySQL
database. After finishing the server side, we started to create the Android application. We
created the workflow of the application. Then we created the models of the users, posts,
and comments. Then we created the API services and requests. After the backend, we
developed the layouts and activities. In the activities, we called the HTTP request using
Retrofit and RxJava. Then we modified the UI classes and layouts of the application. Lastly,
we tested the output of the project.

In Chapter 10, Testing an Application, you will learn how to use the JUnit framework to unit
test the Spring project and the UI testing using the Espresso in the Android application.

Creating an Application Chapter 9

[331]

Questions
What is the EER diagram?1.
What are CRUD operations?2.
What type of tools can be used as the HTTP client?3.
Currently, what are the minimum, maximum, and targeted API versions for4.
Android?
What are the common names of the Android architecture?5.
What are the names of emulators to develop Android applications?6.

Further reading
Building Applications with Spring 5 and Kotlin (https:/ /www. packtpub. com/
application- development/ building- applications- spring- 5-and- kotlin) by
Miloš Vasić

Spring MVC – Beginner's Guide - Second Edition (https:/ /www. packtpub. com/
application- development/ spring- mvc- beginners- guide- second- edition) by
Amuthan Ganeshan

Android Development with Kotlin (https:/ /www. packtpub. com/application-
development/ android- development- kotlin) by Marcin Moskala, Igor Wojda

Kotlin for Android Developers [Video] (https:/ / www.packtpub. com/ application-
development/ kotlin- android- developers- video) by Yusuf Saber

https://www.packtpub.com/application-development/building-applications-spring-5-and-kotlin
https://www.packtpub.com/application-development/building-applications-spring-5-and-kotlin
https://www.packtpub.com/application-development/building-applications-spring-5-and-kotlin
https://www.packtpub.com/application-development/building-applications-spring-5-and-kotlin
https://www.packtpub.com/application-development/building-applications-spring-5-and-kotlin
https://www.packtpub.com/application-development/building-applications-spring-5-and-kotlin
https://www.packtpub.com/application-development/building-applications-spring-5-and-kotlin
https://www.packtpub.com/application-development/building-applications-spring-5-and-kotlin
https://www.packtpub.com/application-development/building-applications-spring-5-and-kotlin
https://www.packtpub.com/application-development/building-applications-spring-5-and-kotlin
https://www.packtpub.com/application-development/building-applications-spring-5-and-kotlin
https://www.packtpub.com/application-development/building-applications-spring-5-and-kotlin
https://www.packtpub.com/application-development/building-applications-spring-5-and-kotlin
https://www.packtpub.com/application-development/building-applications-spring-5-and-kotlin
https://www.packtpub.com/application-development/building-applications-spring-5-and-kotlin
https://www.packtpub.com/application-development/building-applications-spring-5-and-kotlin
https://www.packtpub.com/application-development/building-applications-spring-5-and-kotlin
https://www.packtpub.com/application-development/building-applications-spring-5-and-kotlin
https://www.packtpub.com/application-development/building-applications-spring-5-and-kotlin
https://www.packtpub.com/application-development/building-applications-spring-5-and-kotlin
https://www.packtpub.com/application-development/building-applications-spring-5-and-kotlin
https://www.packtpub.com/application-development/building-applications-spring-5-and-kotlin
https://www.packtpub.com/application-development/building-applications-spring-5-and-kotlin
https://www.packtpub.com/application-development/building-applications-spring-5-and-kotlin
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/spring-mvc-beginners-guide-second-edition
https://www.packtpub.com/application-development/android-development-kotlin
https://www.packtpub.com/application-development/android-development-kotlin
https://www.packtpub.com/application-development/android-development-kotlin
https://www.packtpub.com/application-development/android-development-kotlin
https://www.packtpub.com/application-development/android-development-kotlin
https://www.packtpub.com/application-development/android-development-kotlin
https://www.packtpub.com/application-development/android-development-kotlin
https://www.packtpub.com/application-development/android-development-kotlin
https://www.packtpub.com/application-development/android-development-kotlin
https://www.packtpub.com/application-development/android-development-kotlin
https://www.packtpub.com/application-development/android-development-kotlin
https://www.packtpub.com/application-development/android-development-kotlin
https://www.packtpub.com/application-development/android-development-kotlin
https://www.packtpub.com/application-development/android-development-kotlin
https://www.packtpub.com/application-development/android-development-kotlin
https://www.packtpub.com/application-development/android-development-kotlin
https://www.packtpub.com/application-development/android-development-kotlin
https://www.packtpub.com/application-development/android-development-kotlin
https://www.packtpub.com/application-development/kotlin-android-developers-video
https://www.packtpub.com/application-development/kotlin-android-developers-video
https://www.packtpub.com/application-development/kotlin-android-developers-video
https://www.packtpub.com/application-development/kotlin-android-developers-video
https://www.packtpub.com/application-development/kotlin-android-developers-video
https://www.packtpub.com/application-development/kotlin-android-developers-video
https://www.packtpub.com/application-development/kotlin-android-developers-video
https://www.packtpub.com/application-development/kotlin-android-developers-video
https://www.packtpub.com/application-development/kotlin-android-developers-video
https://www.packtpub.com/application-development/kotlin-android-developers-video
https://www.packtpub.com/application-development/kotlin-android-developers-video
https://www.packtpub.com/application-development/kotlin-android-developers-video
https://www.packtpub.com/application-development/kotlin-android-developers-video
https://www.packtpub.com/application-development/kotlin-android-developers-video
https://www.packtpub.com/application-development/kotlin-android-developers-video
https://www.packtpub.com/application-development/kotlin-android-developers-video
https://www.packtpub.com/application-development/kotlin-android-developers-video
https://www.packtpub.com/application-development/kotlin-android-developers-video
https://www.packtpub.com/application-development/kotlin-android-developers-video
https://www.packtpub.com/application-development/kotlin-android-developers-video

10
Testing an Application

To make an application more usable and attractive, we always concentrate on the logos,
contents, UI, experiences, and so on, besides we also take care of the coding style. We use
the latest architectures and frameworks to reduce code lines and boiler codes in order to
make a robust, simple, and fast application. However, many developers forget about the
testing phase. Some might not realize there's an issue until a crash report generates during
application use, because they didn't adequately test during the project. Generally, some
developers skip testing, as they don't want to spend some extra time on writing test cases
that are not directly used in the project. This is a common mistake and results in falling
quality.

Applications that randomly crash will always be disliked by the user, which is why the
most successful Android apps always undergo thorough testing. In-depth testing can iron
out an app's bugs, and optimize memory use, as well as allowing you to improve the
condition of an app in regards to functional behavior, usabilities, and correctness.

In this chapter, we will walk through testing and its use in both Spring and Android. This
chapter covers the following topics:

Software testing
Fundamental of testing
Unit testing on Spring Boot
Creating a project
JUnit
UI testing on Android
Espresso

Testing an Application Chapter 10

[333]

Technical requirements
You will need to import some dependencies for both Spring and Android. Here are the
dependencies.

Spring

To implement the dependency for testing, you need to add the testing dependency in the
pom.xml file:

<!-- This is to implement the testing functions for the spring project -->
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
</dependency>

Android

To test an Android project, we need to implement the testing dependencies in the gradle
file. To add the dependencies, we need to implement in the dependencies {...} of
build.gradle (app module) file. Here is a snippet code of this build.gradle file:

// Dependencies for local unit tests
dependencies{
testImplementation "junit:junit:$rootProject.ext.junitVersion"

// Espresso UI Testing dependencies.
androidTestImplementation "com.android.support.test.espresso:espresso-
core:$rootProject.ext.espressoVersion"
androidTestImplementation "com.android.support.test.espresso:espresso-
contrib:$rootProject.ext.espressoVersion"
androidTestImplementation "com.android.support.test.espresso:espresso-
intents:$rootProject.ext.espressoVersion"
}

The source code with an example for this chapter is available on GitHub at the following
link: https://github. com/ PacktPublishing/ Learn- Spring- for- Android- Application-
Development/tree/ master/ Chapter10.

https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10

Testing an Application Chapter 10

[334]

Software testing
Software testing is one of the most essential parts of any project. Testing evaluates the
stability, usability, quality assurance, functionality of components, and ensures that the
software is ready to publish in the market. It also helps to find out the errors, missing
requirements of a project, and so on. Testing uses techniques to execute some processes in
an application or program with the intent to find bugs.

In Chapter 6, Accessing the Database and Chapter 9, Creating an Application, we created
Spring applications and implemented REST APIs. Then we tested with a third-party tool
called Insomnia. After this, we mentioned the URL path with the HTTP CRUD request
functions and checked the output. This system was fine and we could see the output
directly. However, it can often be difficult to find the errors and bugs, as it can't show you
the errors or any abnormal behavior. Though this project is running, it's not necessarily safe
to release to the market. Therefore, we need to further test its stability. Let's run through
two popular testing tools and frameworks, JUnit and Espresso.

JUnit
JUnit is the most popular testing framework, built for Java, and is open source. It has
almost all the features and modules necessary to test a Java-based application in a test-
driven development environment. JUnit mainly focuses on writing tests that are automated
for a certain class or function. It helps to call a function and check for the expected output.
Before seeing some examples of JUnit in use, let's learn about its advantages.

Advantages of JUnit
JUnit is widely used for testing Java applications because of its user-friendly functionalities.
It has some powerful advantages, such as the following:

The JUnit framework is open source
It provides text-based command lines as well as AWT-based and Swing-based
graphical test mechanisms
It has some annotations to utilize test functions
It has a test runner to test running applications
It allows you to write code
It can test automatically and provide feedback

Testing an Application Chapter 10

[335]

Basic annotations of JUnit
JUnit has some basic and important annotations, such as the following:

The @BeforeClass: This runs once before any test functions in the class. In this
function, you can connect the database or connection pool. This function has to
be a static method.
The @AfterClass: This runs once after any test functions in the class. In this
function, you can close the database connection and cleanup.
The @Before: This can run before @Test annotated functions. Here you create
some objects and share to all @Test annotated testing functions.
The @After: This can run after @Test annotated functions. Here, you modify or
clean the objects and share to all @Test annotated testing functions.
The @Test: This annotated function is the test function.

Now we'll look at an example of how to test a project with JUnit. Here, you can learn about
the life cycle of the testing annotations and the use of these annotations.

Creating a project
Let's create a project where we will create REST APIs using a database for users, and show
a list of the user details. In this project, we will use JDBC, MySQL, and Spring Boot.

To create a project, go to https:/ / start. spring. io and create a Kotlin-based project with
the following given dependencies:

Web
JDBC
MySQL
DevTools

Now we'll create some demo code, and we can test them.

https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io

Testing an Application Chapter 10

[336]

Test a project using JUnit
Open your project that we generated previously and follow these steps:

Go to the test | kotlin | com.packtpub.sunnat629.testing_application, as in this1.
screenshot:

Now create a class named JUnitTestClass.kt where we will create some test2.
cases using the annotations. Here is the sample code:

class JUnitTestClass {

 companion object {
 @BeforeClass
 @JvmStatic
 fun runBeforeClass(){
 println("============ @BeforeClass ============\n")
 }

 @AfterClass
 @JvmStatic
 fun runAfterClass(){
 println("============ @AfterClass ============")
 }
 }

 @Before
 fun runBefore(){
 println("============ @Before ============")
 }

 @After

Testing an Application Chapter 10

[337]

 fun runAfter(){
 println("============ @After ============\n")
 }

 @Test
 fun runTest1(){
 println("============ @TEST One ============")
 }

 @Test
 fun runTest2(){
 println("============ @TEST Two ============")
 }
}

You can see that we have written the @BeforeClass and @AfterClass annotated function
in the companion object {}, which means these functions are static. In Kotlin, you have
to write the static variables and functions in the companion object {}.

We have used the @JvmStatic annotation. This is especially used in Kotlin to specify that
this function is static and needs to be generated in the element of this function.

Now run this test by clicking the Run Test icon beside the function name, as in3.
the following screenshot:

Testing an Application Chapter 10

[338]

After running the test on all the test cases, it will show the results; namely, pass or fail. Here
is the output:

Here you can see that we had two test cases named runTest1 and runTest2 that have
passed the test.

Now modify our runTest1 function and write logic:4.

@Test
fun runTest1(){
 println("============ @TEST One Start ============")
 assertEquals(6, doSum(3,2))
 println("============ @TEST One End ============")
}

private fun doSum(num1: Int, num2: Int): Int{
 return num1 + num2
 }

Here, we have done a very simple equation to check the testing function. We have used a
method of Assert class. The assertEquals() is a method of assert, and mainly checks
the equality with the two inputs. Here, for example, we provide 6 and (2+3), which is not
true and it will show an error.

Testing an Application Chapter 10

[339]

If the equation is correct, then you will see the test is passed or it will show an error with
the expected result. Here is what the result looks like:

There are a lot of Assert methods. Here are some of them:

The assertArrayEquals: This will return the equality of two array types input
The assertEquals: This will return the equality of two same types of input such
as int, long, double, String, and so on
The assertTrue: This will assert that the given condition is true
The assertFalse: This will assert that the given condition is false
The assertNotNull: This will assert that the given object is not null
The assertNull: This will assert that the given object is null

Creating a test case for a Rest API
Now we will see how to test the database using the JPA and Hibernate of a Spring project.
Here are the steps of how to test the database using JPA:

Open the social_network project. The link is here: https:/ /github. com/1.
PacktPublishing/ Learn- Spring- for- Android- Application- Development/ tree/
master/Chapter09/ social_ network.
Now go to the test | kotlin | com.packtpub.sunnat629.social_network package2.
and create a file named ProfileRepositoryTest.kt with two annotations
named @RunWith(SpringRunner::class) and @DataJpaTest.

Here is the code of the ProfileRepositoryTest.kt:

@RunWith(SpringRunner::class)
@DataJpaTest
class ProfileRepositoryTest {

 @Autowired
 private lateinit var entityManager: TestEntityManager

 @Autowired

https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09/social_network
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09/social_network
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09/social_network
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09/social_network
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09/social_network
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09/social_network
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09/social_network
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09/social_network
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09/social_network
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09/social_network
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09/social_network
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09/social_network
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09/social_network
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09/social_network
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09/social_network
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09/social_network
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09/social_network
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09/social_network
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09/social_network
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09/social_network
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09/social_network
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09/social_network
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09/social_network
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09/social_network
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09/social_network
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09/social_network
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09/social_network
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09/social_network
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter09/social_network

Testing an Application Chapter 10

[340]

 private lateinit var profileRepository: ProfileRepository

 @Test
 fun getUserTesting(){
 val newProfile = getNewProfile()
 val saveProfile = entityManager.merge(newProfile)

 val foundProfile = profileRepository.getOne(saveProfile.id!!)

 assertThat(foundProfile.username)
 .isEqualTo(saveProfile.username)
 }

 private fun getNewProfile(): Profile {
 return Profile("naruto",
 "12345",
 "naruto123@gmail.com",
 "Naruto",
 "Uzumak")
 }
 }

The following is an explanation of the preceding code:

The @RunWith(SpringRunner::class) is the annotation in the connector
between the Spring and JUnit. It uses the Spring's testing support to run JUnit.
The @DataJpaTest enables the JPA testing features.
We autowired the TestEntityManager, which is mainly designed for JPA testing
and JPA EntityManager's alternative.
The getUserTesting(), which has the @Test annotation and is the main
testing function.

Now, we will insert a demo Profile object and check if the insertion is working or not. To
begin with, we have to create a Profile object using the getNewProfile() function.

After this we save this profile as a new variable, such as this:

val saveProfile = entityManager.merge(newProfile)

Testing an Application Chapter 10

[341]

Here, we used the entityManager.merge(), which will insert the profile in the database.

We also autowired the profileRepository now use this line to fetch the inserted profile
by the ID:

val foundProfile = profileRepository.getOne(saveProfile.id!!)

Now we have used the assertThat() to check the given logic is correct or not. In this
function, we have checked the created profile and the fetched profile:

 assertThat(foundProfile.username).isEqualTo(saveProfile.username)

Now, if there are any errors regarding insertion or communication with the database, it will
return an error.

Here is the output of our test:

If you provide something as a false value, or the test encounters an error, it will output the
following:

We have entered a profile name as naruto, but we tested the name Uzumak, which is why
it didn't match. The result subsequently failed.

Testing an Application Chapter 10

[342]

UI testing on Android
Nowadays, people are more dependent on mobile than desktop. If we consider Android,
millions of applications are on the Play Store and other app stores. So, it is very important
to test the UI to make a UI bug free and stable product in the app store. You need to be very
careful during testing as there are myriad devices with various display sizes. For the
backend, you can test with the JUnit and the system is same. But now our test will be UI-
based and so we will use Espresso. This is the most popular framework for UI testing.

Espresso
Espresso is an open source framework and an instrumentation-based API, designed by
Google. It is good practice to create some test cases of various scenarios of the project. It
helps to find out the unexpected results or bugs of the UI, as well as the use case. It
automatically syncs the actions of the test with the UI of the application. It allows you to
test on both real devices and emulators. But there is a disadvantage of the use in a real
device due to its high price to test various size of displays and manufacturers. So an
emulator is the best solution to reduce the cost and time for testing. According to the
Espresso testers, almost 99% of bugs on an Android application can be detected by this
framework. The APIs of Espresso are very small, predictable, and easy to learn. You can
also customize these APIs if you want.

Let's create a project and test it with Espresso.

Testing an Application Chapter 10

[343]

Creating an application
Let's create a simple Android app as a client that will retrieve the REST API using the
GitHub API:

First of all, we need to create an app from Android Studio and put down your1.
project and the company domain. Don't forget to check Include Kotlin support.
The following screenshot shows the Create Android Project window:

Then select the minimum API version from the Phone and Tablet option. There2.
is no need to add other options for this project. After clicking Next, in the add an
Activity to mobile field, you can select Empty Activity and then, after renaming
the activity name and layout, click Finish. After the build, you will be ready to
start creating an Android app.

After creating the project, we need to implement the dependencies to test.

Testing an Application Chapter 10

[344]

Injecting dependencies
This project is mainly to test UI the application and so we need to implement
Espresso. Write down the given lines to implement Espresso in the dependencies{} block
of build.gradle (Module—app):

testImplementation 'junit:junit:4.12'
androidTestImplementation 'com.android.support.test:runner:1.0.2'

// Espresso UI Testing dependencies.
androidTestImplementation "com.android.support.test.espresso:espresso-
core:3.0.2"
androidTestImplementation "com.android.support.test.espresso:espresso-
contrib:3.0.2"
androidTestImplementation "com.android.support.test.espresso:espresso-
intents:3.0.2"

Then in the same file, add the code to implement the JUnit3 and JUnit4 tests against an
Android package in the android{} block:

testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"

AndroidJUnitRunner is the instrumentation runner. It mainly controls the test APK, the
environment, and all of the test launches.

Now sync the project to download and add the dependencies to the project.

Modifying the application
We have learned how to create an app based on RecyclerView in Chapter 9, Creating an
Application, so we can just run through the concept of this app. We have a user data class
with the ID and username. We will insert 100 users in the database and show in a custom
RecyclerView. We also use a UserItemAdapter to customize the RecyclerView.

Clone this project if you want: https:/ /github. com/ PacktPublishing/ Learn- Spring- for-
Android-Application- Development/ tree/ master/ Chapter10/ TestingWithEspresso.

https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10/TestingWithEspresso
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10/TestingWithEspresso
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10/TestingWithEspresso
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10/TestingWithEspresso
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10/TestingWithEspresso
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10/TestingWithEspresso
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10/TestingWithEspresso
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10/TestingWithEspresso
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10/TestingWithEspresso
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10/TestingWithEspresso
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10/TestingWithEspresso
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10/TestingWithEspresso
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10/TestingWithEspresso
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10/TestingWithEspresso
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10/TestingWithEspresso
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10/TestingWithEspresso
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10/TestingWithEspresso
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10/TestingWithEspresso
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10/TestingWithEspresso
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10/TestingWithEspresso
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10/TestingWithEspresso
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10/TestingWithEspresso
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10/TestingWithEspresso
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10/TestingWithEspresso
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10/TestingWithEspresso
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10/TestingWithEspresso
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10/TestingWithEspresso
https://github.com/PacktPublishing/Learn-Spring-for-Android-Application-Development/tree/master/Chapter10/TestingWithEspresso

Testing an Application Chapter 10

[345]

In this project, you find the MainActivity.kt where you can find a list view. Here is a
piece of code from this class:

 userLists.adapter = UserItemAdapter(this, userList)

Here, the userLists is the RecyclerView and we have the UserItemAdapter custom
adapter of a UserModel. Here, the UserModel code is where we take the ID and name of a
user:

data class User(var userID: Int, var username: String)

Now, we will test this list view using Espresso with some major functions that are
frequently used in our projects.

Creating testing files
Let's write some test cases. To write this code, we need to create new files in the
androidTest package. To do this, follow the steps:

Now go to src | androidTest | java | module_name of the project. Here is a1.
screenshot of this directory:

Create a class2.
named MainActivityTest.kt with @RunWith(AndroidJUnit4::class)
annotation. This annotation will link the test and the app features.

Testing an Application Chapter 10

[346]

Let's create our very first Espresso test:

First of all, we need to connect our MainActivity class. To do this, we will initialize a
variable of ActivityTestRule<MainActivity> and it will provide all the functionalities
for the MainActivity. It has an annotation of @Rule, which means testing for a single
activity and here it is MainActivity.

This getCountUser() function is for checking the number of your list:

// User count Matching
@Test
fun getCountUser(){
 onView(withId(R.id.userLists))
 .check(matches(itemCount(20)))
}

In the previous code, we do the following:

ViewMatchers.onView() means it will take a matcher logic.
 ViewMatchers.withId() uses to connect the component of your activity's
layout. In our main_activity.xml, the ID name of the RecyclerView
is userLists, so we connect it here.
check(..) will return a Boolean.
The matches(itemCount(20) means it will match the given number with your
user list number.

We need to create the itemCount() manually. To do this, create a class
named CustomUserMatchers.kt. Here, is the code of this class:

class CustomUserMatchers {
 companion object {
 fun itemCount(count: Int): Matcher<View>{
 return object : BoundedMatcher<View,
RecyclerView>(RecyclerView::class.java){
 override fun describeTo(description: Description?) {
 description!!.appendText("Total User = $count")
 }

 override fun matchesSafely(item: RecyclerView?): Boolean {
 return item?.adapter?.itemCount == count
 }
 }
 }
 }
}

Testing an Application Chapter 10

[347]

Here, we create a CustomUserMatchers.kt class where we create a static function and
return a Matcher<View>.

BoundedMatcher<View, RecyclerView>(RecyclerView::class.java) have two
functions named describeTo(description: Description?)
and matchesSafely(item: RecyclerView?) and we have overriden these classes.

In the matchesSafely, we will check the equality of the list number with the given
number.

In our output list, we have 100 users but here the given number is 20. So when you run the
test, it will fail, as in this screenshot:

If you provide 100 and run then you can see that the test is passed, as in this screenshot:

Now create a test case named getUserPosition() to get a specific position and click it:

// User Click with a position number
@Test
fun getUserPosition(){
 onView(withId(R.id.userLists))
 .perform(actionOnItemAtPosition
 <RecyclerView.ViewHolder>(34, click()))
}

Testing an Application Chapter 10

[348]

The actionOnItemAtPosition<RecyclerView.ViewHolder> is to select a position of
the RecyclerView list using the RecyclerView. ViewHolder and then we use
a click() of row 34 of the list. That means this test will go to your given position and then
it will click that item. You can see in the following screenshot that it has clicked and
showed the Toast that the test case has clicked the row 34 of the list:

If you look at the logcat, you will also notice that the test has been passed. Here is the
output of the logcat of Android Studio:

Create a getIsDisplayed() function to test whether the given list is displaying
or not.
The withId(R.id.userLists) will get the listview of the MainActivity.

Testing an Application Chapter 10

[349]

The check(matches(isDisplayed())) checks whether the list is displaying in
the device or not:

// User list display test
@Test
fun getIsDisplayed(){
 onView(withId(R.id.userLists))
 .check(matches(isDisplayed()))
}

Create a getIsClickable() function to test whether the given list is displaying or not.
The withId(R.id.userRoot) will get the ConstraintLayout and
check(matches(isClickable())) will match layout's clickability status of the list:

// User list display test
@Test
fun getIsClickable(){
 onView(withId(R.id.userRoot))
 .check(matches(isClickable()))
}

Create a getScrollToBottom() function to check how to scroll to the specific position.
The withId(R.id.userLists) will get the list view
and perform(scrollToPosition<RecyclerView.ViewHolder>(activityTestRule.
activity.userLists.adapter!!.itemCount - 1)) will scroll to the bottom of the list.
Using this test case, you can see whether the list is smooth or not:

// User list scroll to bottom
@Test
fun getScrollToBottom(){
 onView(withId(R.id.userLists))
.perform(scrollToPosition<RecyclerView.ViewHolder>(activityTestRule.activit
y.userLists.adapter!!.itemCount - 1))
}

There are even more functions of Espresso. You can check this cheat sheet (https:/ /
developer.android. com/ training/ testing/ espresso/ cheat- sheet), which is provided by
Google.

https://developer.android.com/training/testing/espresso/cheat-sheet
https://developer.android.com/training/testing/espresso/cheat-sheet
https://developer.android.com/training/testing/espresso/cheat-sheet
https://developer.android.com/training/testing/espresso/cheat-sheet
https://developer.android.com/training/testing/espresso/cheat-sheet
https://developer.android.com/training/testing/espresso/cheat-sheet
https://developer.android.com/training/testing/espresso/cheat-sheet
https://developer.android.com/training/testing/espresso/cheat-sheet
https://developer.android.com/training/testing/espresso/cheat-sheet
https://developer.android.com/training/testing/espresso/cheat-sheet
https://developer.android.com/training/testing/espresso/cheat-sheet
https://developer.android.com/training/testing/espresso/cheat-sheet
https://developer.android.com/training/testing/espresso/cheat-sheet
https://developer.android.com/training/testing/espresso/cheat-sheet
https://developer.android.com/training/testing/espresso/cheat-sheet
https://developer.android.com/training/testing/espresso/cheat-sheet
https://developer.android.com/training/testing/espresso/cheat-sheet
https://developer.android.com/training/testing/espresso/cheat-sheet

Testing an Application Chapter 10

[350]

Summary
Testing is always a good way to discover errors in the UI, backend code, or logic. It helps to
understand the reason for crashes. Here, we have learned about two powerful frameworks.
One is JUnit and another is Espresso. In this chapter, we have seen how to add the
dependencies for testing. We have learned how to implement the JUnit into a project. We
saw how to use the logic in our test case and how to check to see the pass or fail result of a
test case. Additionally, we have seen how to connect the database for testing. Then, we saw
how to insert a demo object into a database, and subsequently, fetch it from the database,
after which we have matched the object.

In Android testing, we have used the Espresso framework to test the UI. Finally, we have
seen some uses of the Espresso APIs and how to handle and connect them with a specific
activity. This chapter gave you a brief idea of testing so that you can use test cases to perfect
your project. If you want to learn more, please see our reference book under the Further
reading section.

If you are reading this paragraph, that means you have finished this book and are ready to
build a server-based and client-based projects alone. Now you are a one-man army, able to
create a server and mobile application with security, databases, and testing. I hope you
enjoyed reading this book and that it will be a reference point in your upcoming projects.

Questions
What types of code does JUnit support?1.
Who designed Espresso?2.
In which platform, JUnit uses?3.
Why is the Espresso used in the Andriod application?4.
What is the Android testing strategy?5.
What is the standard ratio of testing?6.
How do you test different screen sizes on devices?7.

Testing an Application Chapter 10

[351]

Further reading
Android Application Testing Guide (https:/ /www. packtpub. com/application-
development/ android- application- testing- guide) by Diego Torres Milano
Learning Android Application Testing (https:/ /www. packtpub. com/ application-
development/ learning- android- application- testing) by Paul Blundell, Diego
Torres Milano
Spring Framework Master Class - Beginner to Expert [Video] (https:/ /www.
packtpub. com/ application- development/ spring- framework- master- class-
beginner- expert- video) by Ranga Karanam

https://www.packtpub.com/application-development/android-application-testing-guide
https://www.packtpub.com/application-development/android-application-testing-guide
https://www.packtpub.com/application-development/android-application-testing-guide
https://www.packtpub.com/application-development/android-application-testing-guide
https://www.packtpub.com/application-development/android-application-testing-guide
https://www.packtpub.com/application-development/android-application-testing-guide
https://www.packtpub.com/application-development/android-application-testing-guide
https://www.packtpub.com/application-development/android-application-testing-guide
https://www.packtpub.com/application-development/android-application-testing-guide
https://www.packtpub.com/application-development/android-application-testing-guide
https://www.packtpub.com/application-development/android-application-testing-guide
https://www.packtpub.com/application-development/android-application-testing-guide
https://www.packtpub.com/application-development/android-application-testing-guide
https://www.packtpub.com/application-development/android-application-testing-guide
https://www.packtpub.com/application-development/android-application-testing-guide
https://www.packtpub.com/application-development/android-application-testing-guide
https://www.packtpub.com/application-development/android-application-testing-guide
https://www.packtpub.com/application-development/android-application-testing-guide
https://www.packtpub.com/application-development/android-application-testing-guide
https://www.packtpub.com/application-development/android-application-testing-guide
https://www.packtpub.com/application-development/learning-android-application-testing
https://www.packtpub.com/application-development/learning-android-application-testing
https://www.packtpub.com/application-development/learning-android-application-testing
https://www.packtpub.com/application-development/learning-android-application-testing
https://www.packtpub.com/application-development/learning-android-application-testing
https://www.packtpub.com/application-development/learning-android-application-testing
https://www.packtpub.com/application-development/learning-android-application-testing
https://www.packtpub.com/application-development/learning-android-application-testing
https://www.packtpub.com/application-development/learning-android-application-testing
https://www.packtpub.com/application-development/learning-android-application-testing
https://www.packtpub.com/application-development/learning-android-application-testing
https://www.packtpub.com/application-development/learning-android-application-testing
https://www.packtpub.com/application-development/learning-android-application-testing
https://www.packtpub.com/application-development/learning-android-application-testing
https://www.packtpub.com/application-development/learning-android-application-testing
https://www.packtpub.com/application-development/learning-android-application-testing
https://www.packtpub.com/application-development/learning-android-application-testing
https://www.packtpub.com/application-development/learning-android-application-testing
https://www.packtpub.com/application-development/learning-android-application-testing
https://www.packtpub.com/application-development/learning-android-application-testing
https://www.packtpub.com/application-development/spring-framework-master-class-beginner-expert-video
https://www.packtpub.com/application-development/spring-framework-master-class-beginner-expert-video
https://www.packtpub.com/application-development/spring-framework-master-class-beginner-expert-video
https://www.packtpub.com/application-development/spring-framework-master-class-beginner-expert-video
https://www.packtpub.com/application-development/spring-framework-master-class-beginner-expert-video
https://www.packtpub.com/application-development/spring-framework-master-class-beginner-expert-video
https://www.packtpub.com/application-development/spring-framework-master-class-beginner-expert-video
https://www.packtpub.com/application-development/spring-framework-master-class-beginner-expert-video
https://www.packtpub.com/application-development/spring-framework-master-class-beginner-expert-video
https://www.packtpub.com/application-development/spring-framework-master-class-beginner-expert-video
https://www.packtpub.com/application-development/spring-framework-master-class-beginner-expert-video
https://www.packtpub.com/application-development/spring-framework-master-class-beginner-expert-video
https://www.packtpub.com/application-development/spring-framework-master-class-beginner-expert-video
https://www.packtpub.com/application-development/spring-framework-master-class-beginner-expert-video
https://www.packtpub.com/application-development/spring-framework-master-class-beginner-expert-video
https://www.packtpub.com/application-development/spring-framework-master-class-beginner-expert-video
https://www.packtpub.com/application-development/spring-framework-master-class-beginner-expert-video
https://www.packtpub.com/application-development/spring-framework-master-class-beginner-expert-video
https://www.packtpub.com/application-development/spring-framework-master-class-beginner-expert-video
https://www.packtpub.com/application-development/spring-framework-master-class-beginner-expert-video
https://www.packtpub.com/application-development/spring-framework-master-class-beginner-expert-video
https://www.packtpub.com/application-development/spring-framework-master-class-beginner-expert-video
https://www.packtpub.com/application-development/spring-framework-master-class-beginner-expert-video
https://www.packtpub.com/application-development/spring-framework-master-class-beginner-expert-video
https://www.packtpub.com/application-development/spring-framework-master-class-beginner-expert-video

Assessments

Chapter 1
Spring is built on Java Standard Edition (SE), but can run Java Enterprise1.
Edition (EE)
Almost all Java-supported IDEs where you can use Spring, such as NetBeans,2.
and Visual Studio
Tomcat is a web server3.
You can also use Jetty and Undertow for Spring development4.
No. You can you use IntelliJ IDEA, Visual Studio—Xamarin, PhoneGap, Corona,5.
and CppDroid, but Android Studio is highly recommended, and it is the official
IDE for developing an Android app

Chapter 2
Kotlin is a statically typed programming language that compiles to the same1.
bytecode as Java.
Kotlin supports all the features of object-oriented programming.2.
Kotlin supports a lot of the features of functional programming.3.
To define a read-only variable, we have to use the val keyword and the var4.
keyword for mutability.
To define a function, we have to use the fun keyword. Functions can be defined5.
as first-class citizens, class members, or local.

Chapter 3
Spring stands out as the most broadly utilized Java EE framework. Spring1.
Framework's core ideas are Dependency Injection and Aspect-Oriented
Programming. Spring Framework can also be utilized in normal Java applications
to accomplish free coupling between various segments by actualizing
dependency injection, and we can perform cross-cutting assignments.

Assessments

[353]

Dependency injection configuration design enables us to expel the hardcoded2.
dependencies and make our application approximately coupled, extendable, and
viable. We can execute a dependency injection example to move the dependency
goals from accumulate time to runtime. A portion of the advantages of utilizing
Dependency Injection is Detachment of Concerns, Boilerplate Code decrease,
Configurable segments, and simple unit testing.
Aspect-oriented programming (AOP) is a programming worldview that3.
supplements object-oriented programming (OOP) by isolating the worries of a
software application to enhance modularization.
Inversion of Control (IoC) is the instrument to accomplish free coupling among4.
object dependencies. To accomplish free coupling and dynamic official of the
objects at runtime, objects characterize their dependencies that are being injected
by other constructing agent objects. Spring IoC container is the program that
injects dependencies into an object and prepares it for our utilization.
Any normal Java class that is introduced by Spring IoC container is called Spring5.
Bean. We utilize a Spring ApplicationContext to get the Spring Bean
occurrence.
Much the same as MVC configuration design, a controller is the class that deals6.
with all the customer requests and sends them to the arranged assets to deal
with. In Spring MVC,
org.springframework.web.servlet.DispatcherServlet is the front
controller class that introduces the context-dependent on the Spring beans
configurations.
DispatcherServlet is the front controller in a Spring MVC application, and it7.
stacks the Spring Bean configuration file, stating every one of the beans that are
arranged. In the event that annotations are empowered, it additionally filters the
bundles and designs any beans annotated with the @Component, @Controller,
@Repository, or @Service annotations.
ContextLoaderListener is the audience to fire up and close down Spring's8.
root WebApplicationContext. Its important roles are to tie the life cycle of
ApplicationContext to the life cycle of the ServletContext, and to robotize
the production of ApplicationContext. We can utilize it to characterize shared
beans that can be utilized across various Spring contexts.
Boilerplate code is repetitive code that shows up again and again for similar9.
purposes.

Assessments

[354]

Chapter 4
REST means REpresentational State Transfer; it is a generally new aspect of1.
composing a web programming interface.
RESTFUL is referred for web services composed by applying REST building idea
are called RESTful services. It centers around system assets and how the
condition of an asset ought to be transported over HTTP convention to various
clients written in various dialects. In a RESTful web service, HTTP methods such
as GET, POST, PUT, and DELETE can be utilized to perform CRUD activities.

The architectural style for creating a web API is as follows:2.
HTTP for client-server communication
XML/JSON as a formatting language
Simple URI as the address for the services
Stateless communication

The SOAPUI tool for SOAP WS and Firefox poster plugin for RESTFUL services.3.
Web services dependent on REST architecture are known as RESTful web4.
services. These web services utilize HTTP methods to execute the idea of REST
architecture. A RESTful web service more often than not characterizes a URI
(Uniform Asset Identifier), a service, gives asset portrayal, for example, JSON
and set of HTTP methods.
URI stands for Uniform Resource Identifier. Every asset in REST architecture is5.
recognized by its URI. The motivation behind a URI is to find a resource on the
server facilitating the web service.
It is an HTTP success code: OK.6.
It is an HTTP client error code: Not Found.7.

Chapter 5
There are two areas that Spring Security mainly targets, and these1.
are authentication and authorization.
The SecurityContext and SecurityContextHolder classes, which are Spring2.
security.
The DelegatingFilterProxy class is required for Spring security, and this3.
class is from package org.springframework. web.filter.

Assessments

[355]

Yes. Spring Security supports password hashing.4.
Authorization Code, Implicit, Password, Client Credentials, Device Code,5.
Refresh Token.

Chapter 6
H2 is an open source Java database that is very lightweight. It can be embedded1.
in Java applications. It also runs on the client-server model.
A resource means how data will be represented in REST architecture. It allows a2.
client to read, write, modify, and create resources using HTTP methods, for
example GET, POST, PUT, DELETE, and so on.
CRUD stands for Create, Read, Update, and Delete.3.
DAO is an abstraction of data persistence. Repository is an abstraction of a4.
collection of objects.
SQLite uses dynamic typing. Content can be stored as INTEGER, REAL, TEXT,5.
BLOB, or NULL.
Alternatives to the SQLite database are OrmLite, Couchbase Lite, and Snappy6.
DB.
The standard SQLite commands are SELECT, CREATE, INSERT, UPDATE, DROP,7.
and DELETE.
There are some disadvantages of SQLite. They are as follows:8.

It is used to handle low-to-medium traffic HTTP requests.
The size of SQLite is restricted to 2 GB in most cases.

Chapter 7
The call stack is a part of memory that is allocated by a thread or a coroutine and1.
contains a stack of functions that were invoked in the context of the thread and
local variables.
Thread pool is a pattern that uses a set of threads that are waiting for a job from a2.
queue.
Callback is a pattern used for delivering the result of an asynchronous operation.3.
Coroutines are lightweight threads, because the creation of a coroutine doesn't4.
require as many resources as the creation of a thread.

Assessments

[356]

Chapter 8
Reactive programming is an approach to asynchronous events handling.1.
Mono is a publisher that can emit zero or one event.2.
Observable is a class from RxJava that emits a stream of values.3.
Scheduler is an abstraction over thread pools.4.

Chapter 9
EER stands for Enhanced Entity-Relationship. It is a high-level model to a1.
modified and transitive version of an ER model. It helps to create database
schemas with more accuracy.
CRUD stands for create, read, update and delete.2.
Postgresql, MySQL, MongoDB, and so on.3.
 Postman. Insomnia is easy to use and powerful.4.
The minimum API is 21; target and max will be the latest API (the current latest5.
API is 28).
MVC, MVP, and MVVM.6.
Android Studio, Genymotion (free/pain), Remix OS, and Nox Player.7.
 ANR is short for Application Not Responding. When the application is stuck the8.
UI because of some bugs in the background, then it occurs.
Sketch is the best, and Adobe XD is also a powerful app for designing9.
prototypes.

Chapter 10
Text-based command lines, and also AWT-based and Swing-based graphical test1.
mechanisms.
Google.2.
In Java-based applications.3.
Unit test, integration test, and UI test.4.
70% small (unit tests), 20% medium (integration tests), and 10% large (UI tests).5.
The best way to handle it is to use emulators.6.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Building Applications with Spring 5 and Vue.js 2
James J. Ye

ISBN: 9781788836968

Analyze requirements and design data models
Develop a single-page application using Vue.js 2 and Spring 5
Practice concept, logical, and physical data modeling
Design, implement, secure, and test RESTful API
Add test cases to improve reliability of an application
Monitor and deploy your application to production

https://www.packtpub.com/application-development/building-applications-spring-5-and-vuejs-2

Other Books You May Enjoy

[358]

Hands-On Full Stack Development with Spring Boot 2.0 and React
Juha Hinkula

ISBN: 9781789138085

Create a RESTful web service with Spring Boot
Understand how to use React for frontend programming
Gain knowledge of how to create unit tests using JUnit
Discover the techniques that go into securing the backend using Spring Security
Learn how to use Material UI in the user interface to make it more user-friendly
Create a React app by using the Create React App starter kit made by Facebook

https://www.packtpub.com/application-development/hands-full-stack-development-spring-boot-20-and-react

Other Books You May Enjoy

[359]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

@
@Autowired annotation 68, 69, 70
@Bean annotation 73, 74
@Configuration annotation 73, 74
@Import annotation 76, 77
@Qualifier annotation 70, 73
@Required annotation 67, 68

A
activity, modifying
 data, obtaining 219
 XML layouts, adding 219
activity
 layout, modifying 314
 menu, implementing 316, 317
 modifying 314
 post, fetching 315
 post, submitting 315
 switching 220
affirmed concerns 54
Android app, REST client
 callback, calling 113
 creating 108, 109
 Gradle dependencies 110
 Gradle information 110
 interface, creating 114
 mobile applications 116
 model, creating 111, 112
 service, implementing 112
Android app
 activity, creating 213, 215, 216
 activity, modifying 218
 authenticating, with OkHttp interceptors 142
 callbacks, calling 143
 creating 138, 200, 201
 custom RecyclerView adapter, creating 216

 DAO, creating 207
 database, populating 209, 211
 entity, creating 203, 205, 206
 executing 222, 224
 Gradle dependencies 139, 203
 Gradle information 139, 202
 LiveData class, creating 207
 mobile applications 116, 148, 149
 repository, implementing 211
 Room database, creating 208
 UI, creating 144
 user model, creating 140, 141
 user service, implementing 141
 ViewModel, creating 212
Android Archive Library (AAR) 98
Android Open Source Project (AOSP) 22
Android Studio
 URL, for downloading 22
Android
 about 22
 testing dependencies, implementing 333
 UI testing 342
Annotation-based configuration
 @Autowired annotation 68
 @Qualifier annotation 70
 @Required annotation 67
 about 66
annotations 42, 45, 46
Apache Tomcat
 about 12
 configuring 12
 verifying 16
architecture components 198, 199
architecture, Spring Framework 50
aspect-oriented programming (AOP) 50, 54
AuthenticationManager interface 120, 121
AuthorizationServerConfig.kt 154

[361]

auto-wiring beans
 about 64
 limitations 66

B
basic authentication, project
 authentication entry point, configuring 132
 configuration, adding for Spring Security 131
 controller, creating 134
 HTTP client, using 135, 136, 137
 pom.xml, configuring 129
 Spring bean, configuring 131
 Spring WebApplicationInitializer, configuring 133
 user model, creating 134
basic authentication
 about 127
 project, creating 127, 129
 used, for securing REST 126
bean configuration
 Annotation-based configuration 66
 code-based configuration 73
 Spring configuration metadata 55
bean scopes
 about 56
 auto-wiring beans 64
 bean life cycle 58, 60
 Dependency Injection 60
 prototype scope 58
 singleton scope 56
beans
 about 55
 configuring 55

C
callback 244, 245, 246
callback hell
 about 247
 avoiding, with coroutines 244
channel builder 240
channel
 about 238, 239, 240
 actor function 241, 243
 producer function 240
client side
 about 295

 activity, modifying 313
 dependencies, implementing 298
 design, creating 296
 HomeActivity, creating 298
 login activity, creating 305
 models, creating 300
 output, checking 327, 329, 330
 post adapter, modifying 317
 post details activity 323
 project, creating 297
 registration activity, creating 309
 services, creating 301
client-side application
 databases 198
code-based configuration
 @Bean annotation 73
 @Configuration annotation 73
 @Import annotation 76
 about 73
 dependencies inject bean 75, 76
 life cycle callbacks 77, 78
 scope bean, creating 78
Columnar database management system

(CDBMS) 170
Completable class 266
concurrency
 about 227
 technical requisites 227
constructor injections 61
control flow
 about 36
 if else expression 36
 loop 38
 when expression 37
controller
 autowired repository 194
 autowired service 181
 comment's HTTP requests, creating 290
 creating 181
 post's HTTP requests, creating 289
 profile's HTTP requests, creating 288
 user list, creating 194
 user list, obtaining 181
 user, deleting 183, 196
 user, inserting 182, 195

[362]

 user, obtaining by ID 181, 195
 user, updating 182, 195
Core containers
 about 52
 Bean module 53
 Context module 53
 Core module 52
 Expression Language module 53
coroutine scope
 about 233
 activity, creating with 234, 235, 236, 237
coroutines
 about 228
 basics 229, 230
 Call stack 230, 231
 callback hell, avoiding with 244
 testing 231, 232
create, read, update, and delete (CRUD)

operations
 about 177
 create 178
 delete 179
 read 178
 update 179
custom RecyclerView adapter
 creating 216
 implementing 218

D
data access object (DAO) 200
Data Access/Integration 53
data access
 about 170
 in Spring 170
database 167
database management system (DBMS) 169, 170
debounce operator 264
Dependency Injection (DI) 61, 63, 64
DispatcherServlet 80

E
entities
 comment entity, creating 284
 like entity, creating 285
 post entity, creating 282, 283

 profile entity, creating 281, 282
environment
 Apache Tomcat 12
 integrated development environment 17
 Java 9
 Kotlin 10
 setting up 8, 25
 Spring 9
Espresso
 about 342
 application, creating 343
 application, modifying 344
 dependencies, injecting 344
 testing files, creating 345, 348, 349

F
Flowable class 263
Flux class
 about 253, 255
 cancellation 259
 filter operator 255
 flatMap operator 256
 from static method 257, 259
 map operator 256
 reduce operator 257
framework 150
function
 about 31
 functional programming 32
 higher-order functions 34
 lambda 35
functional programming
 declarative styles 32
 extension functions 33
 imperative styles 32
 Kotlin, collection 34

G
Gradle 97, 98
Gradle build tool 27

H
higher-order functions 34
HomeActivity
 layout, modifying 299

[363]

HTTP DELETE function 103
HTTP GET function 100
HTTP HEAD function 104
HTTP OPTIONS function 104
HTTP POST function 101
HTTP PUT function 102
HTTP request functions
 about 106
 DELETE 107
 GET 107
 HEAD 107
 PUT 107

I
if else expression 36
In-memory database management system

(IMDBMS) 170
instrumentation 54
Integrated Development Environment (IDE) 25
integrated development environment
 about 17
 Eclipse 18, 21
 IntelliJ IDEA 17
Inversion of Control (IoC) 52

J
Java 9
Java 10.0.2
 URL, for downloading 9
Java Authentication and Authorization Service

(JAAS) 118
Java Database Connectivity (JDBC)
 about 53
 API interface, creating 176
 controller, creating 181
 DataSource, creating 173
 in Spring 171
 maven dependencies 172
 model, creating 175
 packages 172
 row mapper, creating 175
 service, creating 179
 table, creating in database 174
 testing output 183
 used, for creating project 172

 user repository, creating 176
Java Development Kit (JDK)
 about 25, 251
 URL 25
Java Messaging Service (JMS) 53
Java Persistence API (JPA)
 about 188
 architecture 189, 190
 controller, creating 194
 DataSource, creating 191
 maven dependencies 190
 model, creating 192, 193
 output 196
 used, for creating project 190
 user repository, creating 193
Java POJO Classes 53
Java Virtual Machine (JVM) 10
javac compiler 25
JavaServer Pages (JSP) 12
JUnit
 about 334
 advantages 334
 annotations 335
 project, creating 335
 test case, creating for Rest API 339
 used, for testing project 336, 337, 339

K
Kotlin 10, 25

L
lambda 35
Lightweight Directory Access Protocol (LDAP) 118
login activity
 layout, modifying 305, 307
 login request 308
 modifying 308
loop
 about 38
 for loop 39
 while loop 40

M
Maven 97, 98
Maybe type 266

[364]

Metadata 53
method 30
mobile-based database
 criteria 198
model-view-controller (MVC) architecture
 about 79
 controller 79
 model 79
 view 79
models
 comment, creating 301
 post, creating 300
 profile, creating 300
modular programming 50
Mono publisher 260

N
Naruto 224
Null safety 42

O
OAuth2
 about 150
 grant types 152
 roles 150
OAuth
 about 150
 workflow 151
object-oriented programming 30
object-relational mapping (ORM) 53, 188
object/XML mapping (OXM) 53
Observable class
 about 264
 debounce operator 264
 throttle operator 265
Observer pattern 251, 253
Open Database Connectivity (ODBC) 171
output, Spring Security OAuth2-based project
 access tokens, obtaining 161, 162
 checking 160
 protected URL, accessing 162
 unprotected URLs, checking 160

P
packages, JDBC
 core 172
 dataSource 172
 object 172
 support 172
post adapter
 creating 319
 layout, modifying 318
 profile activity, modifying 322
 profile details, fetching 322
 profile layout, modifying 320
post details activity
 comment adapter, modifying 326
 comment, submitting 326
 fetching 325
 modifying 323, 325
project idea 273
project, JDBC
 service, creating 180
prototype scope 58

R
ranges 41
reactive programming, with Spring Reactor
 Flux publisher 253
 Mono publisher 260
 Observer pattern 251
reactive programming
 technical requisites 250
Reactor 251
reflection 42, 44
registration activity
 layout, modifying 309
 modifying 311, 312
 profile, registering 312, 313
Relational database management system (RDMS)

170

Representational State Transfer (REST) 96
REST client module 96
REST
 securing, with basic authentication 126
 securing, with Spring Security OAuth2 150
RESTful systems 96

[365]

RESTful web service 96
RestTemplate constructors 99
RestTemplate functions
 about 100
 HTTP DELETE 103
 HTTP GET 100
 HTTP HEAD 104
 HTTP OPTIONS 103
 HTTP POST 101, 102
 HTTP PUT 102
RestTemplate module 97
Retrofit
 about 105
 advantages 105
 configuring 105
 downloading 106
 HTTP request functions 106
 uses 105
room persistence library 198
RxAndroid library 267
RxBinding library 268, 270
RxJava
 about 263
 Completable class 266
 Flowable class 263
 in Android 267
 Maybe type 266
 Observable class 264
 RxAndroid library 267
 RxBinding library 268, 270
 Single class 266

S
SendChannel interface 238
sequential operations 243
server side
 about 274
 controller, creating 288
 database model, developing 276, 277, 279
 design, creating 274, 275
 modified application.properties 295
 project, creating 280
 repositories, creating 286, 287
 security, implementing 292, 293, 294
services

 API, creating 304, 305
 comment, creating 303
 post, creating 302
 profile, creating 301
setter injection 63
Single class 266
singleton scope 56
 about 58
software testing 334
Spring architecture
 aspect-oriented programming 54
 components 51
 Core containers 52
 Data Access/Integration 53
 instrumentation 54
 testing 54
 web 54
Spring configuration metadata
 about 55
 bean scopes 56
 XML-based 55
Spring Container 53
Spring Framework
 about 49
 advantages 50
 architecture 50
 technical requisites 49
Spring modules, for Android
 Gradle 97
 Maven 97
 REST client module 96
 RestTemplate module 97
 Retrofit 105
 technical requisites 96
Spring MVC
 about 79
 advantages 79
 controller class, creating 85, 86
 dependencies, to pom.xml 82
 DispatcherServlet 80
 Eclipse 88
 Maven project, converting 82
 project, creating 81
 Spring configuration beans, creating 83, 85
 view, creating 86

[366]

Spring Security OAuth2-based project
 application class, creating 159
 application properties 159
 authorization server, configuring 154, 155
 common errors 163, 164
 controller class, creating 158
 creating 152
 Maven dependencies 152
 output, checking 160
 resource server, configuring 153
 security config, creating 157, 158
Spring Security OAuth2
 used, for securing REST 150
Spring Security
 advantages 123
 architecture 119
 authentication 119, 121
 authentication managers, modifying 121
 authorization 122
 dependencies, implementing in Gradle 126
 dependencies, implementing in Maven 126
 features 124
 implementing 125
 method security 122
 modules 125
 technical requisites 119
 web security 122
Spring
 about 9
 data access 170
 Java Database Connectivity (JDBC) 171
 testing dependencies, implementing 333
SpringBoot
 about 89
 application class, creating 91, 92
 features 89
 project, creating 89
string templates 42
Structured Query Language (SQL) 168
syntax
 about 28
 classes, defining 29
 functions, defining 29
 packages, defining 28
 variables, defining 29

T
testing output
 about 183
 user list, obtaining 183
 user, deleting 188
 user, inserting 185
 user, obtaining by ID 185
 user, updating 187
testing, Spring 54
thread pools
 about 247
 working 247, 249
thread
 blocking 262
 non-blocking 263
throttle operator 265
transactions 53
types, database
 about 167
 cloud 169
 distributed 168
 graph 169
 NoSQL 168
 object-oriented 168
 personal 168
 relational 168

U
UI testing
 on Android 342
UI, Android app
 custom list adapter, creating 145, 148
user repository
 creating 176
 HTTP methods, creating for RESTful APIs 177
 JdbcTemplate, implementation 177
userModel's value 218

W
web layer, Spring architecture
 web 54
 web-portlet 54
 web-servlet 54
 web-struts 54

when expression 37 X
XML-based configuration files, Spring 55

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: About the Environment
	Technical requirements
	Setting up the environment
	Spring
	Java
	Kotlin
	Apache Tomcat
	Configuring Tomcat
	Verifying Tomcat

	Integrated development environment
	IntelliJ IDEA
	Eclipse

	Android
	Summary
	Questions
	Further reading

	Chapter 2: Overview of Kotlin
	Technical requirements
	Introduction to Kotlin
	Setting up the environment
	Build tools
	Basic syntax
	Defining packages
	Defining variables
	Defining functions
	Defining classes

	Object-oriented programming
	Functions
	Functional programming
	Declarative and imperative styles
	Extension functions
	Collections in Kotlin

	Higher-order functions
	Lambdas

	Control flow elements
	The if { ... } else { ... } expression
	The when { ... } expression
	Loops
	for loops
	while loops

	Ranges
	String templates
	Null safety, reflection, and annotations
	Null safety
	Reflection
	Annotations

	Summary
	Questions
	Further reading

	Chapter 3: Overview of Spring Framework
	Technical requirements
	Introduction to Spring
	The advantages of Spring
	Spring Architecture
	Core containers
	Data Access/Integration
	Web
	Aspect-oriented programming
	Instrumentation
	Test

	Configuring beans
	Spring configuration metadata
	XML-based configuration
	Bean scopes
	Singleton scope
	Prototype scope
	Bean life cycle
	Dependency injection
	Auto-wiring beans

	Annotation-based configuration
	The @Required annotation
	The @Autowired annotation
	The @Qualifier annotation

	Code-based configuration
	The @Configuration and @Bean annotations
	Dependency injection bean
	The @Import annotation
	Life cycle callbacks
	Creating a scope bean

	Spring MVC
	DispatcherServlet
	Creating a project
	Converting to a Maven project
	Spring MVC dependencies to pom.xml
	Creating Spring configuration beans
	Creating a controller class
	The view
	IntelliJ Ultimate
	Eclipse

	SpringBoot
	Creating a project
	Creating an application class

	Summary
	Questions
	Further reading

	Chapter 4: Spring Modules for Android
	Technical requirements
	REST client module
	The RestTemplate module
	Gradle and Maven repository
	Gradle
	Maven
	RestTemplate constructors
	RestTemplate functions
	HTTP GET
	HTTP POST
	HTTP PUT
	HTTP DELETE
	HTTP OPTIONS
	HTTP HEAD

	Retrofit
	The use of Retrofit
	Advantages of Retrofit
	Configuring Retrofit
	Downloading Retrofit
	HTTP request functions
	GET
	PUT
	DELETE
	HEAD

	Creating an Android app
	Gradle information
	Gradle dependencies
	Creating a model
	Implementing a service
	Calling callback
	Creating an interface
	Mobile applications

	Summary
	Questions
	Further reading

	Chapter 5: Securing Applications with Spring Security
	Technical requirements
	Spring Security architecture
	Authentication
	Modifying authentication managers

	Authorization
	Web security
	Method Security

	The advantages of Spring Security
	Spring Security features
	Spring Security modules
	Implementing Spring Security
	Maven
	Gradle

	Securing REST with basic authentication
	What is basic authentication?
	Creating a project
	Configuring pom.xml
	Configuring a Spring bean
	Configuration for Spring Security
	Configuring an authentication entry point
	Configuring Spring WebApplicationInitializer
	Creating a user model
	Creating a controller
	Using the HTTP client

	Creating an Android app
	Gradle information
	Gradle dependencies
	Creating a user model
	Implementing the user service
	Authenticating with OkHttp interceptors
	Calling callbacks
	Creating the UI
	Creating a custom list adapter

	Mobile applications

	Securing REST with Spring Security OAuth2
	What is OAuth2?
	OAuth2 Roles
	OAuth2 grant types

	Creating a project
	Maven dependencies
	Configuring the resource server
	Configuring the authorization server
	Creating the security config
	Creating the controller class
	Creating the application class
	Application properties
	Checking the output
	Checking unprotected URLs
	Getting access tokens
	Accessing the protected URL

	Common mistakes and errors

	Summary
	Questions
	Further reading

	Chapter 6: Accessing the Database
	Technical requirements
	Database
	Types of database
	Personal database
	Relational database
	Distributed database
	Object-oriented database
	NoSQL database
	Graph database
	Cloud database

	Database management system
	Data access in the Spring
	Java database connectivity in Spring
	Creating a sample project using JDBC
	Maven dependencies
	Creating DataSource
	Creating a table in database
	Creating a model
	Creating row mapper
	Creating an API interface
	Creating a user repository
	JdbcTemplate implementation
	Creating HTTP methods for RESTful APIs
	Create
	READ
	UPDATE
	DELETE

	Creating service
	Creating controller
	Autowired service
	Getting the user list
	Getting one user by ID
	Inserting a new user
	Updating a user
	Deleting a user

	Testing the output
	Getting the user list
	Getting one user by ID
	Inserting a new user
	Updating a user
	Deleting a user

	Java Persistence API
	Architecture of JPA

	Creating a project using JPA
	Maven dependencies
	Creating the DataSource
	Creating a model
	Creating a user repository
	Creating controller
	Autowired repository
	Getting the user list
	Getting one user by ID
	Inserting new user
	Updating a user
	Deleting a user

	Seeing the output

	Database of client-side application
	Architecture components
	Creating an Android app
	Gradle information
	Gradle dependencies
	Creating entity
	Creating the DAO
	Creating the LiveData class
	Creating a Room database
	Populating the database
	Implementing the repository
	Creating the ViewModel
	Creating new activity
	Creating custom RecyclerView adapter
	Implementing RecyclerView

	Modifying main activity
	Getting data from another activity
	Adding XML layouts
	Switching another activity

	Run the app

	Summary
	Questions
	Further reading

	Chapter 7: Concurrency
	Technical requirements
	Coroutines
	Coroutine basics
	Call stacks
	Coroutine testing
	Coroutine scope
	Channels
	The producer function
	The actor function

	Sequential operations
	Callback hell
	What is a callback?

	Thread pools
	Summary
	Questions
	Further reading

	Chapter 8: Reactive Programming
	Technical requirements
	Reactive programming with Spring Reactor
	The Observer pattern
	The Flux publisher
	The filter operator
	The map operator
	The flatMap operator
	The reduce operator
	The from static method
	Cancellation

	The Mono publisher

	Blocking and non-blocking
	RxJava
	Flowable
	Observable
	The debounce operator
	The throttle operator

	Single
	Maybe
	Completable

	RxJava in Android
	The RxAndroid library
	The RxBinding library

	Summary
	Questions
	Further reading

	Chapter 9: Creating an Application
	Technical requirements
	Project idea
	Server side
	Creating the design
	Developing a database model
	Creating a project
	Creating entities
	Creating a Profile entity
	Creating a Post entity
	Creating a Comment entity
	Creating like entity

	Creating repositories
	Creating a controller
	Creating a profile's HTTP requests
	Creating a post's HTTP requests
	Creating a comment's HTTP requests

	Implementing security
	Modified application.properties

	Client side
	Creating the design
	Creating a project
	Implementing dependencies
	Creating HomeActivity
	Modifying the layout

	Creating models
	Creating profile model
	Creating post model
	Creating a comment model

	Creating services
	Creating the profile service
	Creating the post service
	Creating the comment service
	Creating an API service

	Creating a login activity
	Modifying the layout
	Modifying activity
	Login request

	Creating the registration activity
	Modifying layout
	Modifying the activity
	Registering a new profile

	Modifying the main activity
	Modifying the layout
	Modifying the activity
	Fetching a post
	Submitting a post
	Implementing the menu

	Modifying the post adapter
	Modifying post adapter layouts
	Creating the adapter for posts
	Modifying the profile layout
	Modifying a profile activity
	Fetching the profile details

	Post details activity
	Modifying the post details layout
	Modifying the post details activity
	Fetching post details
	Submitting comment
	Modifying the comment adapter

	Checking the output

	Summary
	Questions
	Further reading

	Chapter 10: Testing an Application
	Technical requirements
	Software testing
	JUnit
	Advantages of JUnit
	Basic annotations of JUnit
	Creating a project
	Test a project using JUnit
	Creating a test case for a Rest API

	UI testing on Android
	Espresso
	Creating an application
	Injecting dependencies
	Modifying the application
	Creating testing files

	Summary
	Questions
	Further reading

	Assessments
	Other Books You May Enjoy
	Index

