

ASP.NET Core 5 Secure
Coding Cookbook

Practical recipes for tackling vulnerabilities in your
ASP.NET web applications

Roman Canlas

BIRMINGHAM—MUMBAI

ASP.NET Core 5 Secure Coding Cookbook
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author(s), nor Packt Publishing or its dealers
and distributors, will be held liable for any damages caused or alleged to have been caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

Group Product Manager: Aaron Lazar
Publishing Product Manager: Richa Tripathi
Senior Editor: Ruvika Rao
Content Development Editor: Vaishali Ramkumar
Technical Editor: Karan Solanki
Copy Editor: Safis Editing
Project Coordinator: Deeksha Thakkar
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Nilesh Mohite

First published: June 2021
Production reference: 3040821

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80107-156-7
www.packt.com

http://www.packt.com

To the reader, I hope I have piqued your interest in writing secure code and
you'll learn as much as I have in writing this book.

– Roman Canlas

Foreword
When tackling the topic of security, we should ask ourselves why we make technology
and tools in the first place. Do we create for security or for a specific application? Afterall,
there is a reason why we call software applications. We are applying purposes to our
software. For this wisdom, we look to a woman who knew a lot about software, hardware,
and big boats:

"A ship in port is safe, but that's not what ships are built for."

- Grace Hopper
Similarly, your application is built for a reason. But, as Grace implies, security must be
achieved, even if it isn't our primary purpose.

In ASP.NET Core 5 Secure Coding Cookbook, author Roman Canlas has set a precedent
by writing a book with a title that you have to think about for a few seconds, before
you can fully grok its purpose. Much like the title, you'll find yourself pondering and
contemplating over the content of this book, finding new ways to apply this wisdom. You'll
find practical solutions and detailed explanations, from security coding fundamentals, to
fixing issues in injection, authentication, exposed data, and more.

One of the backbones of ASP.NET Core 5 is to provide an application development
framework that champions and enables secure coding. It is no accident that Microsoft has
provided these tools.

"Security is... our top priority - if we don't solve these security problems,
then people will hold back."

- Bill Gates

As Bill Gates once said, there is nothing more important than security. If your code isn't
secure, then, as a developer, you will not build a robust application; it will be limited.
Likewise, your users will also hold back and will be hesitant to how they might use and
trust your application. It's critical that the framework allows secure coding capabilities,
and it's equally important that you take this book to heart and implement these patterns,
processes, and practices.

Take this book with you in your career, and then refer back to these recipes as often as you
can. Just like chefs should review their recipes before they cook their culinary creations,
you also should review these recipes before you serve your customers with a masterpiece
of your own.

Ed Price
Senior Program Manager of Architectural Publishing
Microsoft | Azure Architecture Center (http://aka.ms/Architecture)
Co-Author of 5 Books, including The Azure Cloud Native Architecture Mapbook and
ASP.NET Core 5 for Beginners (both from Packt)

http://aka.ms/Architecture

Contributors

About the author
Roman Canlas is a senior application security engineer working at a Fortune 500
company where he successfully established its global application security program from
the ground up. His years of experience as a developer have led to him being
an expert in secure code reviews and static application security testing, focusing on web
technologies.

Roman holds multiple certifications: the GIAC Web Application Penetration Tester
(GWAPT), ISC2's Certified Secure Software Lifecycle Professional (CSSLP), and
EC-Council's Certified Application Security Engineer in .NET (CASE.NET).

Roman also has a master's degree in information systems and a bachelor's in
computer science.

To Doug, Tim, and Chuck, thanks for believing in me and supporting
my personal endeavor. To Richa, for believing in the book's topic and

giving me the opportunity to write for Packt. To Vaishali, Ruvika, Karan,
Nithya, Deeksha, and the rest of the Packt team, I thank you all for your

tireless efforts. To Allan Mangune and Hemant Shah, both great technical
reviewers, I am grateful for your comments and feedback.

About the reviewers
Hemant Shah is a strong advocate of shift left in the industry. His software developer
training and background allow him to speak the developer's language in managing
AppSec programs and helps the development team understand the value and impact
of delivering secure software. He is a cloud and application security professional with
a bachelor's degree in information technology with around 15 years of experience in
designing, troubleshooting, and securing large-scale applications with sound exposure to
OWASP. Secure coding reviews, risk assessment procedures, authentication technologies,
policy formation, threat modeling, and design reviews are the key areas he is focused on.

Allan SP Mangune is a certified public accountant and holds a post-graduate degree of
Master of Science in computer information systems from the University of Phoenix. He
has been writing software since 2000 and practicing secure coding since he gained, in
2008, his Certified Ethical Hacker v5 credential. He has helped clients with their digital
transformation journey and digital security. He has delivered Agile project management
workshops to large organizations for more than a decade. He is a certified ScrumMaster
and holds a Prince2 Agile Foundation certificate. For 10 years, he was awarded Microsoft
MVP for ASP.NET and Development Technologies. He used to be a Microsoft Certified
Trainer. He builds his own drones during his free time.

Table of Contents
Preface

1
Secure Coding Fundamentals

Technical requirements 2
Input validation 2
Enabling whitelist validation
using validation attributes 4
Getting ready 4
How to do it… 4
How it works… 8

Whitelist validation using the
FluentValidation library 8
Getting ready 8
How to do it… 9
How it works… 11
There's more… 12
See also… 12

Syntactic and semantic
validation 12
Creating a custom validation attribute
to implement semantic validation 13
Getting ready 13
How to do it… 13
How it works… 20

Input sanitization 20
Getting ready 21

How to do it… 21
How it works… 23

Input sanitization using the
HTMLSanitizer library 24
Getting ready 24
How to do it… 24
How it works… 26

Output encoding 26
Output encoding using
HtmlEncoder 27
Getting ready 27
How to do it… 28
How it works… 28

Output encoding using
UrlEncoder 29
Getting ready 30
How to do it… 30
How it works… 31

Output encoding using
JavascriptEncoder 31
Getting ready 32
How to do it… 32
How it works… 34

x Table of Contents

Protecting sensitive data using
the Data Protection API 34
Getting ready 34

How to do it… 35
How it works… 37
See also 39

2
Injection Flaws

Technical requirements 42
What is SQL injection? 42
Fixing SQL injection with Entity
Framework 42
Getting ready 42
How to do it… 45
How it works… 46
There's more… 47

Fixing SQL injection in ADO.NET 47
Getting ready 47
How to do it… 48
How it works… 49
There's more… 50

Fixing NoSQL injection 51
Getting ready 51
How to do it… 51

How it works… 52
There's more… 52

Fixing command injection 53
Getting ready 53
How to do it… 55
How it works… 57
There's more… 58

Fixing LDAP injection 59
Getting ready 59
How to do it… 59
How it works… 61

Fixing XPath injection 63
Getting ready 63
How to do it… 64
How it works… 66
There's more… 67

3
Broken Authentication

Technical requirements 70
Fixing the incorrect restrictions
of excessive authentication
attempts 70
Getting ready 70
How to do it… 72
How it works… 73
There's more… 74

Fixing insufficiently
protected credentials 78
Getting ready 78
How to do it… 78
How it works… 81

Fixing user enumeration 81
Getting ready 81
How to do it… 83

Table of Contents xi

How it works… 84

Fixing weak password
requirements 84
Getting ready 84
How to do it… 86
How it works… 87

Fixing insufficient session
expiration 87
Getting ready 87
How to do it… 88
How it works… 89

4
Sensitive Data Exposure

Technical requirements 92
Fixing insufficient protection
of data in transit 92
Getting ready 92
How to do it… 93
How it works… 95

Fix missing HSTS headers 96
Getting ready 96
How to do it… 97
How it works… 99
There's more… 100

Fixing weak protocols 101
Getting ready 101

How to do it… 102
How it works… 104

Fixing hardcoded
cryptographic keys 104
Getting ready 104
How to do it… 105
How it works… 111
There's more… 112

Disabling caching for critical
web pages 112
Getting ready 112
How to do it… 113
How it works… 115

5
XML External Entities

Technical requirements 118
Enabling XML validation 118
Getting ready 118
How to do it… 119
How it works… 122
There's more… 123

Fixing XXE injection with
XmlDocument 124

Getting ready 124
How to do it… 125
How it works… 125
There's more… 126

Fixing XXE injection with
XmlTextReader 126
Getting ready 126
How to do it… 127

xii Table of Contents

How it works… 127

Fixing XXE injection with
LINQ to XML 128

Getting ready 128
How to do it… 128
How it works… 130

6
Broken Access Control

Technical requirements 134
Fixing IDOR 134
Getting ready 134
How to do it… 137
How it works… 141

Fixing improper authorization 142
Testing improper authorization 142
Getting ready 143
How to do it… 143
How it works… 145

Fixing missing access control 145
Getting ready 146
How to do it… 146
How it works… 150

Fixing open redirect
vulnerabilities 151
Getting ready 151
How to do it… 152
How it works… 155

7
Security Misconfiguration

Technical requirements 158
Disabling debugging features
in non-development
environments 158
Getting ready 158
How to do it… 159
How it works… 160

Fixing disabled security
features 160
Getting ready 161
How to do it… 161
How it works… 163

Disabling unnecessary features 165

Getting ready 165
How to do it… 165
How it works… 167

Fixing information exposure
through an error message 168
Getting ready 168
How to do it… 168
How it works 169

Fixing information exposure
through insecure cookies 170
Getting ready 170
How to do it… 170
How it works 173

Table of Contents xiii

8
Cross-Site Scripting

Technical requirements 176
Fixing reflected XSS 176
Getting ready 176
How to do it… 179
How it works… 180

Fixing stored/persistent XSS 180
Getting ready 181

How it works… 184
There's more… 185

Fixing DOM XSS 185
Getting ready 188
How to do it… 188
How it works… 190

9
Insecure Deserialization

Technical requirements 194
Fixing unsafe deserialization 194
Getting ready 194
Testing unsafe deserialization 195
How to do it… 200
How it works… 201
There's more… 202

Fixing the use of insecure
deserializers 203
Getting ready 203

How to do it… 203
How it works… 206
There's more… 207

Fixing untrusted data
deserialization 208
Testing untrusted data deserialization 208
Getting ready 211
How to do it… 211
How it works… 212

10
Using Components with Known Vulnerabilities

Technical requirements 214
Fixing the use of a vulnerable
third-party JavaScript library 214
Getting ready 214
Testing outdated and vulnerable
third-party libraries 215
How to do it… 217

How it works… 219
There's more… 219
See also 223

Fixing the use of a vulnerable
NuGet package 223
Getting ready 223
Testing vulnerable NuGet packages 223

xiv Table of Contents

How to do it… 224
How it works… 226

Fixing the use of a library
hosted from an untrusted
source 226

Getting ready 226
How to do it… 227
How it works… 228
There's more… 228

11
Insufficient Logging and Monitoring

Technical requirements 230
Fixing insufficient logging
of exceptions 230
Getting ready 230
How to do it… 231
How it works… 235

Fixing insufficient logging of
DB transactions 236
How to do it… 236
How it works… 238

Fixing excessive
information logging 239
How to do it… 239
How it works… 240

Fixing a lack of
security monitoring 242
How to do it… 242
How it works… 243
There's more… 244

12
Miscellaneous Vulnerabilities

Technical requirements 246
Fixing the disabled
anti-Cross-Site Request
Forgery protection 246
Getting ready 246
How to do it… 247
How it works… 249
There's more… 250

Preventing Server-Side
Request Forgery 251
Getting ready 252
How to do it… 253
How it works… 255

There's more… 256

Preventing log injection 256
Getting ready 256
How to do it… 256
How it works… 258
There's more… 258

Preventing HTTP response
splitting 259
Getting ready 259
How to do it… 259
How it works… 262
There's more… 262

Table of Contents xv

Preventing clickjacking 264
Getting ready 264
Clickjacking proof of concept (PoC) 264
How to do it… 266
How it works… 269

Fixing insufficient randomness 269
Getting ready 270
How to do it… 270
How it works… 271

13
Best Practices

Technical requirements 274
Getting ready 274

Proper exception handling 274
Getting ready 274
How to do it… 275
How it works… 276
There's more… 277

Using security-related
cookie attributes 277
Getting ready 277
How to do it… 277

How it works… 280

Using a Content Security Policy 280
Getting ready 281
How to do it… 281
How it works… 283
There's more… 285

Fixing leftover debug code 287
Getting ready 288
How to do it… 288
How it works… 289
There's more… 289

Other Books You May Enjoy

Index

Preface
ASP.NET Core is fast becoming the web application framework of choice for developers
and is now in the top ranks of platform popularity. ASP.NET Core web applications are
also no exception when it comes to being targets for malicious attacks. As more and more
web developers write code to create these ASP.NET Core web applications, the need to
educate developers on writing secure code also increases.

An ASP.NET Core application developed with secure code can withstand attacks and help
reduce its risk of exploitation. With proper guidance on fixing security flaws in code, ASP.
NET Core web applications can prevent or stop security problems.

This book covers code examples written in C# with steps on remediating various ASP.NET
Core web application vulnerabilities discovered by a secure code review or security test.
You'll find practical examples and different ways to solve the security bugs introduced by
insecure code in a recipe-style format.

This book begins with a chapter on the fundamentals of secure coding, but the succeeding
content is patterned using the OWASP Top 10 (2017 version). The OWASP Top 10 is the
de facto standard documentation for the most common risks to web applications.

Each chapter in this book (starting with Chapter 2, Injection Flaws) represents problem-
solution content for each type of risk. Chapter 12, Miscellaneous Vulnerabilities focuses
on various other vulnerabilities that were previously in the OWASP Top 10 for additional
coverage. The last chapter discusses secure coding best practices.

By the end of this book, you will be able to identify the different types of vulnerabilities in
ASP.NET Core web applications and will have the know-how to remediate them in code.

Who this book is for
This book is intended for developers and software engineers who use the ASP.NET Core
framework to develop web applications. Ideal for both the beginner and the experienced,
this book will guide the novice on learning the necessary foundations of writing secure
code, and the seasoned to use it as a quick source for step-by-step ASP.NET Core secure
coding recipes.

xviii Preface

This book is also excellent for application security engineers who want to know more
about the details of securing ASP.NET Core applications through code and will help them
understand how to fix issues identified by the security tests that they perform daily.

What this book covers
Chapter 1, Securing Coding Fundamentals, is about basic secure coding patterns that every
ASP.NET Core developer must know.

Chapter 2, Injection Flaws, explores recipes for various injection flaws, such as SQL
injection, NoSQL injection, command injection, LDAP injection, and XPath injection.

Chapter 3, Broken Authentication, covers recipes for vulnerabilities that focus on
insufficiently protected credentials, user enumeration, weak password requirements, and
insufficient session expiration.

Chapter 4, Sensitive Data Exposure, shows how to implement HTTPS in our ASP.NET
Core web applications, enable HSTS, ensure that the latest version of TLS is applied, and
secure the cryptographic keys to prevent data leakage

Chapter 5, XML External Entities, covers recipes for remediating malicious XML External
Entities. This chapter explains a sample insecure code snippet on XXE injection. An
explanation of how to fix XXE injection will be discussed.

Chapter 6, Broken Access Control, explores recipes that use the built-in authorization
mechanism in ASP.NET Core and the steps to implement role-based authorization to
prevent unauthorized access to resources in your web application.

Chapter 7, Security Misconfiguration, discusses recipes to prevent security
misconfiguration by turning debugging off in code, adding security features, and stopping
unwanted information leaks to prying attackers with proper application settings.

Chapter 8, Cross-Site Scripting, covers recipes for remediating different types of XSS. This
chapter explains insecure code for Reflected, Stored, and DOM XSS. This chapter also
explains how to fix these cross-site scripting vulnerabilities in code.

Chapter 9, Insecure Deserialization, covers recipes on how to safely deserialize input
using properly configured libraries, mitigate risks that an obsolete .NET class brings in
your ASP.NET Core web application, and use a better deserializer alternative to securely
deserialize data streams.

Chapter 10, Using Components with Known Vulnerabilities, discusses recipes for fixing
ASP.NET Core web applications that use components with known vulnerabilities.

Preface xix

Chapter 11, Insufficient Logging and Monitoring, explores recipes for fixing insufficient
logging and monitoring in ASP.NET Core web applications and explains how the lack of
these features puts web applications at risk.

Chapter 12, Miscellaneous Vulnerabilities, discusses recipes for fixing vulnerabilities that
are no longer in the OWASP Top 10 list and various ASP.NET Core web application
vulnerabilities.

Chapter 13, Best Practices, covers best practice recipes with proven patterns that enable
ASP.NET Core security features.

To get the most out of this book
Follow along the recipes using the sample Online Banking web application found in this
book's GitHub repository. Each recipe has a before and after folder. You will begin
with each recipe using the before folder with an initial version of the sample Online
Banking web application as a starting point. The after folder will serve as a reference to
validate whether all steps are executed correctly.

All the recipes in this book were tested using Windows. Most of the recipes should also work
in Linux and macOS (with ASP.NET Core being a cross-platform web framework) except for
recipes that require software and plugins that only run in Windows.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to the copying and pasting of code.

You may benefit from following the author on Twitter (https://twitter.com/
securecodeninja) or adding them as a connection in LinkedIn (https://www.
linkedin.com/in/romancanlas)

https://twitter.com/securecodeninja
https://twitter.com/securecodeninja
https://www.linkedin.com/in/romancanlas
https://www.linkedin.com/in/romancanlas

xx Preface

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook.
If there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801071567_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "The AddTransient method allows our custom validator
CustomerValidator to be discoverable by ASP.NET Core."

A block of code is set as follows:

 if (result.Succeeded)

 {

 _logger.LogInformation("User logged in.");

 return LocalRedirect(returnUrl);

 }

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

var result = await
_signInManager.PasswordSignInAsync(Input.Email, Input.Password,
 Input.RememberMe, lockoutOnFailure: true);

https://github.com/PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook
https://github.com/PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781801071567_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801071567_ColorImages.pdf

Preface xxi

Any command-line input or output is written as follows:

git clone https://github.com/PacktPublishing/ASP.NET-Core-
Secure-Coding-Cookbook.git

1. Bold: Indicates a new term, an important word, or words that you see onscreen.
For example, words in menus or dialog boxes appear in the text like this. Here is an
example: "Select one record and click its Edit link."

Tips or important notes
Appear like this.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to
do it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the
previous section.

There's more…
This section consists of additional information about the recipe in order to make you
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

xxii Preface

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Share Your Thoughts
Once you've read ASP.NET Core 5 Secure Coding Cookbook, we'd love to hear your
thoughts! Please click here to go straight to the Amazon review page for this book and
share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
https://packt.link/r/180107156X

1
Secure Coding
Fundamentals

Understanding secure coding principles is one of the foundations of being a security
minded ASP.NET Core developer. Applying these concepts in practice by writing secure
code will help your web applications improve their security posture.

This introductory chapter is all about basic secure coding patterns that every ASP.NET
Core developer must know. Learning about these defensive techniques will help you
mitigate security vulnerabilities in code, and with these recipes, you will be able to
understand how to implement proper input validation by using whitelisting, perform
input sanitization, and how to escape output and protect data.

2 Secure Coding Fundamentals

In this chapter, we're going to cover the following recipes:

• Enabling whitelist input validation using validation attributes

• Whitelist validation using the FluentValidation library

• Syntactic and semantic validation

• Input sanitizing

• Input sanitization using the HTMLSanitizer library

• Output encoding using HtmlEncoder

• Output encoding using UrlEncoder

• Output encoding using JavascriptEncoder

• Protecting sensitive data using the Data Protection API

Technical requirements
This book was written and designed to be used with Visual Studio Code, Git, and
.NET 5.0. The code examples in these recipes will be presented in ASP.NET Core
Razor pages. The sample solution also uses SQLite as the database engine for a more
simplified setup. You can find the code for this chapter at https://github.com/
PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/main/
Chapter01.

Input validation
One of the most effective ways to defend your application against injection attacks is
writing proper input validation. This defensive programming technique verifies if the input
conforms to an expected data format, such as data type, length, or range (to name a few).
The input can be from an untrusted source, and without validation, a bad actor can feed
malicious data to the ASP.NET Core web application, potentially exploiting a vulnerability.
This process could affect the application and could lead it to perform unintended actions.

There are two ways to validate input:

• Blacklisting

• Whitelisting

https://github.com/PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/main/Chapter01
https://github.com/PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/main/Chapter01
https://github.com/PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/main/Chapter01

Input validation 3

With the blacklisting validation strategy, known bad input is defined in a list. The data is
then verified against this list to decide if the input should be accepted or rejected. However,
this approach is flawed as you can only define so much bad input, and it would not be a
comprehensive list. An attacker can simply bypass this validation by constructing payloads
that are not on the blacklist. Here's an example of blacklisting presented in pseudocode:

when receiving a string input

 for each character in string input

 if character is in blacklist

 reject string input

 return error

Whitelisting validation is the opposite, but it's the preferred tactic. Here's its equivalent
in pseudocode:

when receiving a string input

 for each character in string input

 if character is not in whitelist

 reject string input

 return error

Here, known-good input is listed, where data is allowed into the system if it exists in the
list and denied if not.

Note
The majority of this chapter focuses on input validation because I cannot
emphasize enough how important it is to validate input. Proper input
validation is perhaps the single most critical fundamental secure coding
practice, and it will make your ASP.NET Core web application significantly
improve its application security.

4 Secure Coding Fundamentals

Enabling whitelist validation using validation
attributes
Web developers can take advantage of the built-in validation framework that ASP.NET
Core provides. The intrinsic Data Annotation Attribute (DAA) allows you to validate
values that are bound to model properties. Validating against a matching pattern enables
us to filter input, and we can specify the regular expression as our whitelist. If the model's
value does not resemble a regular expression, it will be considered bad input.

There are plenty of validation attributes that you can use to build business rules around
your model, but for us to implement whitelist validation, the RegularExpression
attribute must come into play.

In this recipe, we will use the RegularExpression attribute to define a pattern for our
model properties to whitelist characters.

Getting ready
Open the command shell and download the sample Online Banking app by cloning the
ASP.NET Secure Coding Cookbook repository:

git clone https://github.com/PacktPublishing/ASP.NET-Core-
Secure-Coding-Cookbook.git

Run the sample app to verify that there are no build or compile errors. In your command
shell, navigate to the sample app folder at \Chapter01\input-validation\
before\OnlineBankingApp and run the following command:

dotnet build

The dotnet build command will build our sample OnlineBankingApp project and its
dependencies.

How to do it…
Let's take a look at the steps for this recipe:

1. From the starting exercise folder, launch Visual Studio Code by typing the
following command:

code .

Enabling whitelist validation using validation attributes 5

2. Open the Models/Customer.cs file and add a
[RegularExpressionAttribute] validation attribute on top of the
FirstName, MiddleName, and LastName model properties, as highlighted in
the following code. Include the ^[A-Z]+[a-zA-Z]*$ expression as well:

[RegularExpression(@"^[A-Z]+[a-zA-Z]*$",
 ErrorMessage = "First Name must contain only
 letters")]

[Display(Name = "First Name")]

[StringLength(60, MinimumLength = 3)]

[Required]

public string FirstName { get; set; }

[RegularExpression(@"^[A-Z]+[a-zA-Z]*$",
 ErrorMessage = "Middle Name must contain only
 letters")]

[Display(Name = "Middle Name")]

[StringLength(60, MinimumLength = 3)]

[Required]

public string MiddleName { get; set; }

[RegularExpression(@"^[A-Z]+[a-zA-Z]*$",
 ErrorMessage = "Last Name must contain only
 letters")]

[Display(Name = "Last Name")]

[StringLength(60, MinimumLength = 3)]

[Required]

public string LastName { get; set; }

3. Navigate to Terminal | New Terminal in the menu or simply press Ctrl + Shift + ' in
Visual Studio Code.

4. Type the following command in the Terminal to build and run the sample app:

dotnet run

5. Open a browser and go to http://localhost:5000/Customers/Create.

6 Secure Coding Fundamentals

6. The browser will display the web page for creating new customers, as shown in the
following screenshot:

Figure 1.1 – Create Customer page

7. In the First Name text box, enter an input that contains numbers and press Tab to
shift the focus to a different input element.

Enabling whitelist validation using validation attributes 7

8. The validation will kick in and an error message will appear:

Figure 1.2 – First Name attribute validation

By using [RegularExpression] attribute validation, the validation rule was applied
to the FirstName property model, thereby limiting the characters that are allowed in the
First Name field.

8 Secure Coding Fundamentals

How it works…
The FirstName, MiddleName, and LastName properties of the Customer class are
annotated with the [RegularExpression] validation attributes so that these model
property values are checked against a pattern.

The ^[A-Z]+[a-zA-Z]*$ regular expression pattern specifies that letters are only
allowed in these fields and that the first letter should be in uppercase format. This
whitelisting technique prevents a bad actor from injecting malicious input and only
permits known-good characters for customer names.

By implementing validation in the model, we avoid unnecessary code repetition, thus
making our code more maintainable and reducing the chances of introducing security bugs.
This model validation is performed automatically and fails securely if the input is invalid.

Note
Regular expressions are a complex topic and are beyond the scope of this
cookbook. To learn more about regular expressions, see .NET Regular
Expressions on the official Microsoft documentation site: https://docs.
microsoft.com/en-us/dotnet/standard/base-types/
regular-expressions.

Whitelist validation using the FluentValidation
library
Most web developers may want to decouple the validation rules from their models and
prefer the solution to be written in a unit test-friendly way. You may wish to create
your own library that performs whitelisting validation or opt to use a popular and
easy-to-use third-party library such as FluentValidation, which has excellent
validation features.

Getting ready
Using Visual Studio Code, open the sample Online Banking app folder at \Chapter01\
input-validation-fluentvalidation\before\OnlineBankingApp.

https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expressions
https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expressions
https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expressions

Whitelist validation using the FluentValidation library 9

How to do it…
Let's take a look at the steps for this recipe:

1. Launch Visual Studio Code and open the starting exercise folder by typing the
following command:

code .

2. Navigate to Terminal | New Terminal in the menu or simply press Ctrl + Shift + ' in
Visual Studio Code.

3. Type the following command to install the FluentValidation package in
your project:

dotnet add package FluentValidation

4. Open the Startup.cs file and add a reference to the following namespaces.
This will provide access to the FluentValidation classes and methods:

using FluentValidation;

using FluentValidation.AspNetCore;

5. Add a reference to the OnlineBankingApp.Models namespace:

using OnlineBankingApp.Models;

6. In the ConfigureServices method, add calls to the AddFluentValidation
and AddTransient methods to configure FluentValidation and add the
custom validator service, which we will create in the next step:

public void ConfigureServices(IserviceCollection
 services)

{

 services.AddRazorPages().AddFluentValidation();

 services.AddTransient<IValidator<Customer>,
 CustomerValidator>();

//code removed for brevity

7. In the Models folder, create a new file for our custom validator and name it
CustomValidator.cs.

10 Secure Coding Fundamentals

8. Add the following code to CustomValidator.cs:

using FluentValidation;

namespace OnlineBankingApp.Models

{

 public class CustomerValidator :
 AbstractValidator<Customer> {

 public CustomerValidator() {

 RuleFor(x => x.FirstName)
 .Matches(@"^[A-Z]+[a-zA-Z]*$");

 RuleFor(x => x.MiddleName)
 .Matches(@"^[A-Z]+[a-zA-Z]*$");

 RuleFor(x => x.LastName)
 .Matches(@"^[A-Z]+[a-zA-Z]*$");

 }

 }

}

9. Navigate to Terminal | New Terminal in the menu or simply press Ctrl + Shift + ' in
Visual Studio Code.

10. Type the following command in the Terminal to build and run the sample app:

dotnet run

11. Open a browser and go to http://localhost:5000/Customers/Create.

12. The browser will display the web page for creating new customers, as shown
in Figure 1.1.

13. In the First Name text box, enter an input that contains numbers and press Tab to
shift the focus to a different input element.

14. The validation will kick in and an error message will appear (see Figure 1.2).

Whitelist validation using the FluentValidation library 11

How it works…
FluentValidation is a server-side validation framework that allows developers to
define validation rules using lambda expressions. To integrate this library into our sample
Online Banking web app, we installed the FluentValidation package and added it as
a reference to our solution:

using FluentValidation.AspNetCore;

The call to the AddFluentValidation extension method allows the model binding
feature of the ASP.NET Core framework to use this library's validation features:

services.AddRazorPages().AddFluentValidation();

Note
You can still use ASP.NET Core's built-in validator implementation
and validation attributes, and then combine them with the
FluentValidations package.

Then, we derived our own CustomerValidator class from AbstractValidator so
that we have a class to set our validation rules in. Inside this validator class, there are calls
to the FluentValidation package's regular expression, which has a built-in validator
to check if any of the name properties contain letters as defined in the matching pattern:

RuleFor(x => x.FirstName).Matches(@"^[A-Z]+[a-zA-Z]*$");

RuleFor(x => x.MiddleName).Matches(@"^[A-Z]+[a-zA-Z]*$");

RuleFor(x => x.LastName).Matches(@"^[A-Z]+[a-zA-Z]*$");

We also made a call to the AddTransient method to add the custom validator to the
collection service:

services.AddTransient<IValidator<Customer>,

CustomerValidator>();

The AddTransient method allows CustomerValidator to be discovered by
ASP.NET Core.

12 Secure Coding Fundamentals

There's more…
The two previous recipes are both examples of server-side validation. This type of validation
performed by code running on the web server. With ASP.NET Core web applications (or
any web app in general), there's another way of performing validation, and it is executed in
the user-agent (typically, a web browser). Web developers can write client-side validation
using either HTML5 form validation or by writing custom JavaScript code.

When scaffolding ASP.NET Core web application projects, templates make it easy to
implement client-side validation easy by having unobtrusive jQuery libraries instantly
added as references to Pages\Shared_ValidationScriptsPartial.cshtml:

<script src="~/lib/jquery-validation/dist/jquery.validate.min.
js"></script>

<script src="~/lib/jquery-validation-unobtrusive/jquery.
validate.unobtrusive.min.js"></script>

The input tag helpers that we place in our Razor pages render HTML5 data-* attributes
that our unobtrusive JavaScript library will then read and validate from the client-side,
before the browser sends any request to a web server. This setup simplifies the process of
adding client-side validation to our ASP.NET Core web application.

Tip
Do not rely entirely upon client-side validation and do not trust input coming
from the client. A user can disable JavaScript via their browser's settings, which
will prevent the client-side validation code from executing.

See also…
If you're interested in learning more about the FluentValidation library, see the
ASP.NET Core section of the official FluentValidation library: https://docs.
fluentvalidation.net/en/latest/aspnet.html.

Syntactic and semantic validation
The preceding recipe is one form of syntactic validation, where we validate the
correctness of the field's structure (in this case, the names should only contain
alphabetical characters).

Another type of validation is based on semantics, where the validity of the input relies on
a specific business context.

https://docs.fluentvalidation.net/en/latest/aspnet.html
https://docs.fluentvalidation.net/en/latest/aspnet.html

Syntactic and semantic validation 13

Creating a custom validation attribute to implement
semantic validation
In semantic validation, a context check is done to ensure that the data conforms to a
business rule. Using our Online Banking app as an example, we can define a business rule,
stating that a customer must have a reputable email address before a record can be created.

In this recipe, you will learn how to perform semantic validation using custom
validation attributes.

Getting ready
Request a free API key at https://emailrep.io/key. EmailRep is a simple public
API for checking an email's reputation. Once your request has been approved, you will
receive an email from EmailRep.io that contains your API key. Use this API key when
consuming the EmailRep.io web API.

Enable secrets storage for safekeeping our EmailRep API key. Open a Terminal and run
the following command:

dotnet user-secrets init

Then, run the following command:

dotnet user-secrets set "EmailRepApiKey" "key=place-your-api-
key-here"

Using Visual Studio Code, open the sample Online Banking app folder at \Chapter01\
input-validation\before\OnlineBankingApp.

How to do it…
Let's take a look at the steps for this recipe:

1. Launch Visual Studio Code and open the starting exercise folder by typing the
following command:

code .

2. In the Services folder, create a new file and name it EmailReputation.cs.
Inside it, add references to the following namespaces:

using System.Net;

using System.IO;

https://emailrep.io/key

14 Secure Coding Fundamentals

using System.Text.Json;

using Microsoft.Extensions.Configuration;

using OnlineBankingApp.Models;

3. Declare an IEmailReputation interface:

namespace OnlineBankingApp.Services

{

 public interface IEmailReputation

 {

 bool IsRisky(string input);

 }

}

4. Within the same OnlineBankingApp.Services namespace, declare a
EmailReputation class that inherits from the IEmailReputation interface.
Inject the IConfiguration service into its constructor:

public class EmailReputation : IEmailReputation

{

 private readonly IConfiguration Configuration;

 public EmailReputation(IConfiguration config)

 {

 Configuration = config;

 }

}

5. Implement the IsRisky method in EmailReputation:

public bool IsRisky(string email)

{

 var emailRepApiKey =
 Configuration["EmailRepApiKey"];

 HttpWebRequest repEmailRequest =
 (HttpWebRequest)WebRequest.Create
 ($"https://emailrep.io/{email}");

 repEmailRequest.Headers.Add("Cookie",
 $"{emailRepApiKey}");

Syntactic and semantic validation 15

 repEmailRequest.Headers.Add("User-Agent",
 "MyAppName");

 HttpWebResponse repEmailResponse =
 (HttpWebResponse) repEmailRequest.GetResponse();

 Stream newStream =
 repEmailResponse.GetResponseStream();

 var repEmail = new
 StreamReader(newStream).ReadToEnd();

 var reputation =
 JsonSerializer.Deserialize<Reputation>
 (repEmail);

 if (reputation.suspicious ||
 reputation.details.blacklisted ||
 reputation.details.spam ||
 reputation.details.malicious_activity ||
 reputation.details.malicious_activity_recent)

 return true;

 return false;

}

Here, we made a call to the EmailRep query API and sent the API key and
the name of the app as part of the request headers; that is, Cookie and
User-Agent. The response is in JSON format. We can deserialize this to
retrieve the reputation information.

Tip
Secrets such as API keys shouldn't be hardcoded in code or configuration files.
A compromised account with access to the code repository is all it takes to
leak these sensitive pieces of information. Developers should store passwords
and credentials in a safer environment, such as Azure Key Vault or AWS Key
Management Service.

In this recipe, we're using the secret manager tool to safekeep our EmailRep
API key during development. To learn more about the secret manager tool and
how to store your secrets, see the Safe storage of app secrets in development in
ASP.NET Core section of the Microsoft documentation: https://docs.
microsoft.com/en-us/aspnet/core/security/app-
secrets?view=aspnetcore-5.0&tabs=windows.

https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets?view=aspnetcore-5.0&tabs=windows
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets?view=aspnetcore-5.0&tabs=windows
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets?view=aspnetcore-5.0&tabs=windows

16 Secure Coding Fundamentals

6. Navigate to the Model folder of the OnlineBankingApp project and create a
new file called ReputableEmailAttribute.cs to begin creating a custom
validation attribute.

7. Add the following namespace references to the ReputableEmailAttribute.
cs file:

using System.ComponentModel.DataAnnotations;

using System.Net;

using System.IO;

using System.Text.Json;

8. Declare a Reputation and a Details class:

public class Details

{

 public bool blacklisted { get; set; }

 public bool malicious_activity { get; set; }

 public bool malicious_activity_recent { get; set;}

 public bool spam { get; set; }

 public bool suspicious_tld { get; set; }

}

public class Reputation

{

 public Details { get; set; }

 public string email { get; set; }

 public string reputation { get; set; }

 public bool suspicious { get; set; }

}

Both classes will hold the deserialized information from the response we receive
from the EmailRep.io API.

Note
The EmailRep.io API's response contains more information than the
properties we define in the Reputation and Details classes. We've used
what's most essential for this recipe, but you're free to include more if you desire.

Syntactic and semantic validation 17

9. Declare another class named ReputableEmailAttribute in
the OnlineBankingApp.Models namespace that inherits from
ValidationAttribute and defines the GetErrorMessage property:

namespace OnlineBankingApp.Models

{

 public class ReputableEmailAttribute :
 ValidationAttribute

 {

 public string GetErrorMessage() =>
 "Email address is rejected because of its
 reputation";

 }

}

10. Override the IsValid method of ValidationAttribute with the
following code:

protected override ValidationResult IsValid(object
 value,ValidationContext validationContext)

{

 string email = value.ToString();

 var service = (IEmailReputation)
 validationContext.GetService
 (typeof(IEmailReputation));

 if (service.IsRisky(email))

 return new ValidationResult(GetErrorMessage());

 return ValidationResult.Success;

}

11. Modify the Models/Customer.cs file and annotate the Email property with
the new custom [ReputableEmail] validation attribute:

[ReputableEmail]

[Display(Name = "Email Address")]

[Required]

[EmailAddress]

public string Email { get; set; }

18 Secure Coding Fundamentals

12. Navigate to Terminal | New Terminal in the menu or simply press Ctrl + Shift + ' in
Visual Studio Code.

13. Type the following commands in the Terminal to build and run the sample app:

dotnet run

14. Open a browser and go to http://localhost:5000/Customers.

15. The browser will display a list of customers that have been generated by the
seeded data.

16. Select one record and click its Edit link:

Figure 1.3 – Edit Customer page

Syntactic and semantic validation 19

17. You will be redirected to the Edit page, where you will be able to modify the details
of a Customer.

18. Change the current Email Address field and give it a value of email@test.xyz.

19. Click Save. Notice the error message that appears, indicating that the email has
been rejected:

Figure 1.4 – Email Address attribute validation

By creating our custom validation attribute and annotating the email address, we can now
execute semantic validation within the Customer model. Writing proper custom model
validators is recommended because it provides more control and flexibility when creating
validation rules.

20 Secure Coding Fundamentals

How it works…
We created a new class that inherits from ValidateAttribute and override its
IsValid method. To enforce semantic validation, we created a service that our
custom attribute will use to make a call to the EmailRep Query API and determine if
its EmailAddress is associated with any known malicious activity, marked as spam,
suspicious, or blacklisted:

 if (reputation.suspicious ||
 reputation.details.blacklisted ||
 reputation.details.spam ||
 reputation.details.malicious_activity ||
 reputation.details.malicious_activity_recent)

 return new ValidationResult(GetErrorMessage());

return ValidationResult.Success;

This type of validation, where an email address is rejected based on its reputation, might
be familiar to you. This validation is called blacklisting. Blacklisting validation is one of
the validation strategies that you can use in your ASP.NET Core web application.

Poor validation can expose your ASP.NET Core web application to unnecessary security
risks. It is critical to implement sufficient validation strategies in your application to cover
both the syntax and semantical rules, thus reducing the chances of injection and logic
vulnerabilities. Using built-in validation frameworks or trusted third-party validation
libraries such as FluentValidation are good countermeasures.

Note
Many other companies offer the same email reputation service, which provides
a score and assesses the risk of an email address. Utilize a reliable API service
based on your requirements and needs to check an email address's integrity
before saving the record on your database.

Input sanitization
Another complementing strategy that a developer can implement in processing input
is to remove or replace unwanted characters from the data. Your application might
expect some free-form text or HTML formatted input, and to avoid attacks that will take
advantage of this vector, you must perform sanitization.

Input sanitization 21

You can write your own methods for sanitizing and, similar to input validation,
implement either a whitelisting or blacklisting approach for modifying input.

In this recipe, you will learn how to write your own code for sanitizing input.

Getting ready
Using Visual Studio Code, open the sample Online Banking app folder at \Chapter01\
input-sanitization\before\OnlineBankingApp.

How to do it…
Let's take a look at the steps for this recipe:

1. Launch Visual Studio Code and open the starting exercise folder by typing the
following command:

code .

2. Open the Models/FundTransfer.cs file and add a reference to the System.
Text.RegularExpressions namespace:

using System.Text.RegularExpressions;

3. Modify the code in the Note model property:

[StringLength(60)]

[DataType(DataType.MultilineText)]

public string Note {

 get => note;

 set => note = Regex.Replace(value,
 @"[\!\@\$\%\^\&\<\>\?\|\;\[\]\{\~]+"
 , string.Empty);

}

4. Navigate to Terminal | New Terminal in the menu or simply press Ctrl + Shift + ' in
Visual Studio Code.

22 Secure Coding Fundamentals

5. In the Visual Studio Code Terminal, type the following command to build and run
the sample app:

dotnet run

6. Open a browser and go to http://localhost:5000/FundTransfers/
Create.

7. Select an account to transfer from and to via the drop-down list.

8. Enter an Amount to transfer.

9. In the Notes multi-text field, attempt to exploit the app by entering a malicious
script tag (that is, <script>alert()</script>), as shown in the
following screenshot:

Figure 1.5 – Malicious input in the Note field

Input sanitization 23

10. Click Send.

11. The sample app will redirect you to the Fund Transfers page, where you will see the
recently created fund transfer record.

12. Notice that the less than and greater than characters were removed from the Note
section and have now been sanitized:

Figure 1.6 – Sanitized Note value

We can pass the [\!\@\$\%\^\&\<\>\?\|\;\[\]\{\~]+ regular expression as
one of the Regex.Replace method parameters, specifying that we want to remove
unwanted characters matching this pattern. This method changes the Note input value
from <script>alert()</script> to scriptalert()/script, making the
rendered output safer.

How it works…
Our sample Online Banking app has a Fund Transfer page that allows users to transfer
money between accounts. One of its form fields is Notes, which lets a user enter freeform
text formatted with HTML tags.

We modified the Note model property's set assessor to sanitize the value being assigned to
it to prevent unwanted characters or markup, such as the <script> tag.

We added a reference to the System.Text.RegularExpressions namespace so that
we can use the Regex.Replace method to sanitize input. Using the Regex.Replace
method, we specified a regular expression pattern to look out for in the value; we replace it
with an empty string if a match is found.

24 Secure Coding Fundamentals

Input sanitization using the HTMLSanitizer
library
There are other open source libraries out there that do a good job of sanitizing input, and
one of them is HTMLSanitizer.

In this recipe, you will learn how to sanitize input using the HTMLSanitizer
third-party library.

Getting ready
Using Visual Studio Code, open the sample Online Banking app folder at \Chapter01\
input-sanitization-htmlsanitizer\before\OnlineBankingApp.

How to do it…
Let's take a look at the steps for this recipe:

1. Launch Visual Studio Code and open the starting exercise folder by typing the
following command:

code .

2. Navigate to Terminal | New Terminal in the menu or simply press Ctrl + Shift + '
in Visual Studio Code.

3. Type the following command to install the HtmlSanitizer package in your project:

dotnet add package HtmlSanitizer

4. Open the Models/FundTransfer.cs file and add a reference to Ganss.XSS,
which is the HtmlSanitizer namespace:

using Ganss.XSS;

5. Modify the code in the Note model property setter:

[StringLength(60)]

[DataType(DataType.MultilineText)]

public string Note {

 get => note;

 set => note = new HtmlSanitizer().Sanitize(value);

}

Input sanitization using the HTMLSanitizer library 25

6. In the Visual Studio Code Terminal, type the following command to build and run
the sample app:

dotnet run

7. Open a browser and go to http://localhost:5000/FundTransfers/
Create.

8. Select an account to transfer from and to via the drop-down list.

9. Enter an Amount to transfer.

10. In the Notes multi-text field, enter Contingency Fund
<script>alert()</script>. This is a string that's formatted with a bold tag
that has a malicious script tag next to it, as shown in the following screenshot:

Figure 1.7 – HTML formatted input in the Note field

26 Secure Coding Fundamentals

11. Click Send.

12. The sample app will redirect you to the Fund Transfers page, where you will see the
recently created fund transfer record.

13. Notice that the Contingency Fund string is bold formatted but with the script tag
completely removed:

Figure 1.8 – Formatted and sanitized Note value

Using the HtmlSanitizer NuGet package, we can sanitize the user-controlled input
and prevent our sample solution from having XSS vulnerabilities.

How it works…
To allow safe HTML formatting for our Notes in our sample Online Banking app,
we must clean the input so that it doesn't contain any harmful tags and attributes.
HTMLSanitizer helps us with this task, and with its built-in whitelisting mechanism, it
will only allow specific HTML or CSS tags and attributes.

The preceding code shows that the Sanitize method strips the rest of the tags or
attributes from the input string that are not in the whitelist.

By default, HTMLSanitizer already provides a list of safe tags. You can create
your own whitelist, but for our example, we do not need to set the AllowTags or
AllowAttribute properties of the Sanitizer instance; just call the Sanitize
method and pass the value.

Output encoding
Output encoding or escaping is yet another defensive technique that helps neutralize
injection attacks. This process replaces the characters in the untrusted data, which allows
the application to display the output safely in its proper context.

Output encoding using HtmlEncoder 27

In an ASP.NET Core web application, there's different contextual output that a developer
should know about to understand the right encoder to use in a given context. These are
HTML, HTML attribute context, CSS context, and JavaScript context.

By default, the Razor engine in ASP.NET Core automatically escapes output, apart from a
few exceptions, where a method will disable such encoding. ASP.NET Core also provides a
variety of encoders that we can use to explicitly implement proper contextual output.

In the next few recipes, we will learn how to perform output encoding with
HtmlEncoder, UrlEncoder, and JavascriptEncoder.

Output encoding using HtmlEncoder
HTML encoding converts special characters so that the browser will interpret the text
correctly and not render it as HTML. For instance, a string may contain a less than
character <, and in HTML standards, this is an HTML entity being used to open and close
tags. This needs to be escaped into < to preserve the meaning of the text.

The protection that escaping output provides lies in preventing the attacker from changing
the intent or the input's purpose when it is parsed by the interpreter. This stops the
malicious actor from trying to execute scripts within the HTML context.

The following table displays the most common HTML entities and their encoded
counterparts. This is by no means a complete list:

Table 1.1 – HTML entities

In this recipe, you will learn how to use HtmlEncoder to escape output in HTML.

Getting ready
Using Visual Studio Code, open the sample Online Banking app folder at \Chapter01\
output-encoding-html\before\OnlineBankingApp.

28 Secure Coding Fundamentals

How to do it…
Let's take a look at the steps for this recipe:

1. Launch Visual Studio Code and open the starting exercise folder by typing the
following command:

code .

2. Open the Pages\FundTransfers\Index.cshtml file and add an @inject
directive to the Razor page to inject the HtmlEncoder service:

@inject System.Text.Encodings.Web.HtmlEncoder htmlEncoder

3. Replace the markup inside the Note table data cell with the following code:

@if (item.Note is not null) {

 @(new Microsoft.AspNetCore.Html.HtmlString
 (htmlEncoder.Encode(item.Note)))

}

4. Navigate to Terminal | New Terminal in the menu or simply press Ctrl + Shift + ' in
Visual Studio Code.

5. In the Visual Studio Terminal, type the following command to build and run the
sample app:

dotnet run

6. Open a browser and go to http://localhost:5000/FundTransfers.

7. View the rendered HTML by right-clicking anywhere in the page and selecting
View page source from the browser's context menu.

8. Notice the markup where Notes with the script tag has been HTML encoded:

<td>Contingency Fund <script>alert()</script>
</td>

How it works…
The System.Text.Encodings.Web namespace brings in a wealth of character
encoders that a developer can use to escape output. One of them is HtmlEncoder, which
will help us HTML-encode our data.

Output encoding using UrlEncoder 29

Through dependency injection, we can add the HtmlEncoder object using the
@inject directive:

@inject System.Text.Encodings.Web.HtmlEncoder htmlEncoder

The htmlEncoder variable will hold an instance of the HtmlEncoder object, and
with its Encode method, we can pass in the value of the Note property from the
FundTransfer object for escaping:

htmlEncoder.Encode(item.Note)

The Encode method transforms the value of item.Note and will now be an
encoded string.

Output encoding using UrlEncoder
URL encoding converts characters in the output into ASCII format. It also replaces unsafe
characters with a % character as a prefix and then adds two hexadecimal digits.

Here's a partial list of characters and their URL-encoded equivalents:

Table 1.2 – Percent encoded characters and their equivalents

30 Secure Coding Fundamentals

In this recipe, you will learn how to use UrlEncoder to escape URLs.

Getting ready
Using Visual Studio Code, open the sample Online Banking app folder at \Chapter01\
output-encoding-url\before\OnlineBankingApp.

How to do it…
Let's take a look at the steps for this recipe:

1. Launch Visual Studio Code and open the starting exercise folder by typing the
following command:

code .

2. Open the Pages\FundTransfers\Index.cshtml file and add an @inject
directive to the Razor page to inject the UrlEncoder service:

@inject System.Text.Encodings.Web.UrlEncoder urlEncoder

3. Replace the markup inside the Note table data cell with the following code:

<td>

<a asp-page="./Create" asp-route-id="@item.ID"
asp-fragment="@(item.Note is null ? string.Empty :
urlEncoder.Encode(item.Note))" >Send Again

</td>

4. Navigate to Terminal | New Terminal in the menu or simply press Ctrl + Shift + ' in
Visual Studio Code.

5. In the Visual Studio Terminal, type the following command to build and run the
sample app:

dotnet run

6. Open a browser and go to http://localhost:5000/FundTransfers.

7. View the rendered HTML by right-clicking anywhere in the page and selecting
View page source from the browser's context menu.

Output encoding using JavascriptEncoder 31

8. Notice the markup where the hyperlink for Send Again, along with its script tag,
has been URL encoded:

<td>

<a href="/FundTransfers/Create?id=1#Contingency%20
Fund%20%3Cscript%3Ealert()%3C%2Fscript%3E">
Send Again

</td>

The text in the fragment is now percent-encoded, thus replacing the potentially malicious
characters such as < and > with %3C and %3E.

How it works…
The asp-fragment attribute gets assigned the Note model property value to be sent as
a piece of persisting information to the Create New Fund Transfer page:

asp-fragment="@(item.Note is null ? string.Empty : item.Note)

Without encoding the item.Note URL fragment, the code that processes this data in
the destination page could pick this value and parse it as-is in its literal form. The risk
of processing unescaped data is that the interpreter may take this as code and execute it
based on the wrong context.

We can use the Encode method of the UrlEncoder object to escape the Note model
property value to prevent this from happening.

Output encoding using JavascriptEncoder
Web development wouldn't be complete without JavaScript. It has always been the
de facto scripting language for developing web applications, and it is used for multiple
purposes, from animation to validating input from the client side. There will be
instances where developers will mix JavaScript code blocks with C# code or the Razor
syntax within ASP.NET Core pages. This approach makes escaping outp`ut alongside
JavaScript necessary, and it also prevents JavaScript code from being injected with
malicious functions.

In this recipe, you will learn how to use JavascriptEncoder to escape output
in JavaScript.

32 Secure Coding Fundamentals

Getting ready
Using Visual Studio Code, open the sample Online Banking app folder at \Chapter01\
output-encoding-js\before\OnlineBankingApp.

How to do it…
Let's take a look at the steps for this recipe:

1. Launch Visual Studio Code and open the starting exercise folder by typing the
following command:

code .

2. Open the Pages\Customers\Index.cshtml file and add an @inject
directive to the Razor page to inject the JavascriptEncoder service:

@inject System.Text.Encodings.Web.JavaScriptEncoder
jsEncoder

3. Replace @section Scripts with the following code:

@section Scripts {

 <script type="text/javascript">

 $(document).ready(function() {

 @foreach (var item in Model.Customer) {

 <text>

 var $tr = $('<tr>').append
 ($('<td>').text("@jsEncoder
 .Encode(item.FirstName)"));

 $tr.append($('<td>').text
 ("@jsEncoder.Encode(item
 .MiddleName)"));

 $tr.append($('<td>').text
 ("@jsEncoder.Encode
 (item.LastName)"));

 $tr.append($('<td>')
 .text("@jsEncoder.Encode
 (item.DateOfBirth.ToString
 ("d"))"));

Output encoding using JavascriptEncoder 33

 $tr.append($('<td>').text
 ("@jsEncoder.Encode
 (item.Email)"));

 $tr.append($('<td>').text
 ("@jsEncoder.Encode
 (item.Phone)"));

 $tr.appendTo('#table');

 </text>

 }

 });

 </script>

}

4. Navigate to Terminal | New Terminal in the menu or simply press Ctrl + Shift + ' in
Visual Studio Code.

5. In the Visual Studio Terminal, type the following command to build and run the
sample app:

dotnet run

6. Open a browser and go to http://localhost:5000/Customers.

7. View the rendered HTML by right-clicking anywhere in the page and selecting
View page source in the browser's context menu.

8. Notice the markup where the hyperlink for View Details, along with its script tag,
has been URL encoded:

var $tr = $('<tr>').append($('<td>').text("Dylan \u003C/
script\u003E\u003Cscript\u003Ealert()\u003C/script\
u003E"));

The characters in the model property values are now JavaScript encoded, thus preventing
bad actors from exploiting the output and injecting arbitrary JavaScript code.

34 Secure Coding Fundamentals

How it works…
Inside the script section, we have jQuery code that generates the content of an HTML
table on the fly. A loop goes through each item of the Customer collection and renders it
to each table's cell:

 $(document).ready(function() {

 @foreach (var item in Model.Customer) {

 <text>

 ...code removed for brevity

 </text>

 }

 });

 </script>

}

Within the JavaScript context, we are using the JavascriptEncoder object and calling
the Encode method to encode all the data in the model.

Protecting sensitive data using the Data
Protection API
There is no question that part of the ASP.NET Core secure coding technique should
involve protecting your application's sensitive data at rest. Personally identifiable
information (PII), data classified as confidential, and enumerable keys and IDs should be
encrypted. ASP.NET Core made it easy for developers to achieve this by developing a data
protection stack in its framework that provides a simplified API.

In this recipe, you will learn how to use the Data Protection API (DPAPI) to protect
parts of your ASP.NET Core web application that expose sensitive data.

Getting ready
Using Visual Studio Code, open the sample Online Banking app folder at \Chapter01\
data-protection\before\OnlineBankingApp.

Protecting sensitive data using the Data Protection API 35

How to do it…
Let's take a look at the steps for this recipe:

1. Launch Visual Studio Code and open the starting exercise folder by typing the
following command:

code .

2. Open the Pages\Customers\Index.cshtml.cs file and add a reference to
the Microsoft.AspNetCore.DataProtection namespace:

using Microsoft.AspNetCore.DataProtection;

3. Add the Data Protector interface as a private member:

private readonly IDataProtector _dataProtector;

4. Modify the IndexModel page model so that it includes an additional parameter
for the constructor:

public IndexModel(OnlineBankingApp.Data
 .OnlineBankingAppContext context,
 IDataProtectionProvider dataProtector)

{

 _context = context;

 _dataProtector = dataProtector.CreateProtector
 ("OnlineBankingApp.Pages.Customers");

}

5. Add a new EncCustomerID property to the Customer class:

[NotMapped]

public string EncCustomerID { get; set; }

6. Encrypt the ID property of the Customer class using the Protect method:

public async Task OnGetAsync()

{

 foreach (var cust in _context.Customer)

 {

 cust.EncCustomerID =
 _dataProtector.Protect(cust.ID.ToString());

36 Secure Coding Fundamentals

 }

 Customer = await _context.Customer.ToListAsync();

}

7. Change the line where the anchor tag is dynamically generated by the jQuery code:

$tr.append($('<td>').append("<a href='/Customers/
Details?id=@item.EncCustomerID'>See Details"));

8. Open the Pages\Customers\Details.cshtml.cs file and add a reference to
the Microsoft.AspNetCore.DataProtection namespace:

using Microsoft.AspNetCore.DataProtection;

9. Add the Data Protector interface as a private member:

private readonly IDataProtector _dataProtector;

10. Modify the DetailsModel page model so that it includes an additional
parameter for the constructor:

public DetailsModel
 (OnlineBankingApp.Data.OnlineBankingAppContext
 context, IDataProtectionProvider dataProtector)

{

 _context = context;

 _dataProtector = dataProtector.CreateProtector
 ("OnlineBankingApp.Pages.Customers");

}

11. Change the OnGetAsync method:

public async Task<IActionResult> OnGetAsync(string id)

{

 if (id == null)

 {

 return NotFound();

 }

Protecting sensitive data using the Data Protection API 37

 var decID =
 Int32.Parse(_dataProtector.Unprotect(id));

 Customer = await _context.Customer
 .FirstOrDefaultAsync(m => m.ID == decID);

12. Open a browser and go to http://localhost:5000/Customers.

13. View the rendered HTML by right-clicking anywhere in the page and selecting
View page source from the browser's context menu.

14. Notice the two lines of jQuery code where the hyperlink to the Details page is no
longer exposing the actual Customer ID in the query string parameter:

$tr.append($('<td>').append("<a href='/Customers/Details?
id=CfDJ8CsNdycKdZtHo72FYN-pXqvrK1k8Z-c4FPe7huOeyCazSmmHbF
8fUaQAbio0JpDxOcg9J4-voevmBcHwpBsJWx77ZG5vhpzkLnGB8m13uBo
5BLiIdsl2Epk9kj97d5PRJw'>See Details"));

...

$tr.append($('<td>').append("<a href='/Customers/Deta
ils?id=CfDJ8CsNdycKdZtHo72FYN-pXquGL7YVUQfASM5cVvyol-
OK-xQyErXGit9Kdgs6YyBBdEcNtoqq9c7kqr1J7EzkI0zszL-
700OTcVgXvqY4wdyseN-2uESydCdv-KOqOXboLg'>See Details</
a>"));

The href attribute has now been replaced with a URL that's been appended with a
different value for the id query string parameter. This parameter now has the Customer
ID in its encrypted form.

How it works…
Our Customer ID is initially exposed as a query string parameter value in the anchor
tags and can be easily viewed using the browser developer tools. This makes the
application vulnerable to enumeration-based types of attacks, so we need to protect this
data from prying eyes:

See Details

Note
Typically, numeric types as primary keys are a thing of the past now, and
enterprise database design steers away from having numeric IDs and instead
uses Global Unique Identifiers (GUIDs). But for simplification purposes, we
can use integers to understand the risk of using guessable keys.

38 Secure Coding Fundamentals

We can utilize the data protection services from the DPAPI and encrypt this information
before rendering the link on the page.

Start by adding a reference to Microsoft.AspNetCore.DataProtection and
utilizing IDataProtectionProvider by injecting this service into our pagemodel:

DetailsModel(OnlineBankingApp.Data.OnlineBankingAppContext
context, IDataProtectionProvider dataProtector)

Adding this interface to the constructor allows us to call the CreateProtector method
so that we can create an instance of the IDataProtector object. One of the arguments
required by IDataProtector is a unique purpose string, which we can use to encrypt
and decrypt payloads:

_dataProtector = dataProtector.CreateProtector
("OnlineBankingApp.Pages.Customers");

We will use OnlineBankingApp.Pages.Customers as our purpose string for both
the Index and Detail models to decipher the Customer ID, which is the information
we are trying to protect. The purpose string creates isolation, which prevents consumers
other than DetailsModel and IndexModel from decrypting the protected data.

We need to add a new property that will hold the encrypted Customer ID, so we must
define EncCustomerID as a string data type. We will annotate it with [NotMapped] to
prevent Entity Framework from creating a column for this new property:

[NotMapped]

public string EncCustomerID { get; set; }

Lastly, we must iterate through all the customers, protect their Customer IDs, and assign
them to the EncCustomerID property:

foreach (var cust in _context.Customer)

{

 cust.EncCustomerID =
 _dataProtector.Protect(cust.ID.ToString());

}

Add UnProtect when needed from DetailsModel. Here, we must decrypt the
protected data to pull the information from the database:

var decID = Int32.Parse(_dataProtector.Unprotect(id));

Protecting sensitive data using the Data Protection API 39

If _dataProtector was instantiated with a different purpose string, a
CryptographicException will be thrown; otherwise, the ciphertext's decryption
will be successful.

See also
The preceding recipe is a simple example of how to quickly implement DPAPI and
protect your data in your ASP.NET Core web applications. To understand the philosophy
behind the DPAPI, and to get a deeper understanding of the APIs, see ASP.NET
Core Data Protection in the Microsoft official documentation at https://docs.
microsoft.com/en-us/aspnet/core/security/data-protection/
introduction?view=aspnetcore-5.0.

https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/introduction?view=aspnetcore-5.0
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/introduction?view=aspnetcore-5.0
https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/introduction?view=aspnetcore-5.0

2
Injection Flaws

Injection flaws in code can have the most devastating effects on ASP.NET Core web
applications. The lack of validation and sanitization of untrusted input allows this
vulnerability to be exploited, leading to the execution of arbitrary OS commands,
authentication bypass, unexpected data manipulation, and content. At worse, it can
disclose sensitive information and lead to an eventual data breach.

This chapter introduces you to various injection flaws and explains how you can remediate
this security defect in code.

In this chapter, we're going to cover the following recipes:

• Fixing SQL injection with Entity Framework

• Fixing SQL injection in ADO.NET

• Fixing NoSQL injection

• Fixing command injection

• Fixing LDAP injection

• Fixing XPath injection

By the end of this chapter, you will learn how to properly write secure code and remove
security bugs that will prevent injection attacks.

42 Injection Flaws

Technical requirements
This book was written and designed to use with Visual Studio Code, Git, and .NET
5.0. Code examples in recipes are presented in ASP.NET Core Razor pages. The code
exercises have been tested in a Windows environment but should work in Linux-based
operating systems with some minor differences. The sample solution also uses SQLite as
the database engine for a more simplified setup. MongoDB is required to be able to test
the recipes for NoSQL injection. A tool that can open and browse SQLite databases such
as the DB Browser for SQLite is also required. You can find the code for this chapter at
https://github.com/PacktPublishing/ASP.NET-Core-Secure-Coding-
Cookbook/tree/main/Chapter02.

What is SQL injection?
ASP.NET Core web applications interact with databases to store data and records. We
use Standard Query Language (SQL) to communicate with a Database Management
System (DBMS) to access and manage data. These queries are composed utilizing the
programming language, platform, or library of choice, but the code to generate these
queries can be written insecurely.

A developer can write code that produces a dynamic SQL by concatenating strings along
with untrusted user input. Without proper countermeasures, a malicious actor can
inject suspicious commands into the input string, thereby changing the query's intent,
or execute an arbitrary SQL. Identified as SQL Injection, this vulnerability in code still
prevails in web applications today.

Fixing SQL injection with Entity Framework
Entity Framework Core (EF Core) is a popular Object-Relational Mapping (ORM)
framework of choice for ASP.NET Core developers. This framework is cross-platform,
and its ease of use allows developers to instantly model and query data into objects.
Nevertheless, ORM frameworks such as EF Core can still be misused.

In this recipe, we will execute a simple SQL injection to exploit the vulnerability, locate the
security bug, and remediate the risk by rewriting a more secure version of the code.

Getting ready
Using Visual Studio Code, open the sample Online Banking app folder at \Chapter02\
sql-injection\razor\ef\before\OnlineBankingApp\.

https://github.com/PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/main/Chapter02
https://github.com/PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/main/Chapter02

Fixing SQL injection with Entity Framework 43

Testing a SQL injection
Here are the steps:

1. Navigate to Terminal | New Terminal in the menu or simply press Ctrl + Shift + ' in
Visual Studio Code.

2. Type the following command in the terminal to build and run the sample app:

dotnet run

3. Open a browser and go to http://localhost:5000/FundTransfers.

4. The browser will display the web page for searching fund transfers using keywords
in the Filter By Notes field, as shown in the following screenshot:

Ystem.

Figure 2.1 – Fund Transfers page

5. In the Filter By Notes textbox, type C and then hit the Search button.

6. The web page will now return one entry finding one match for the Contingency
Fund note:

Figure 2.2 – Fund Transfers search result

44 Injection Flaws

7. Now try entering the SQL injection payload: %';create table tbl1(one
varchar(10), two smallint);Select * from Customers where
id like '1.

8. Notice that no error was thrown on the web page:

Figure 2.3 – Successful SQL injection

9. To confirm that the SQL injection payload was executed successfully, open the \
Chapter02\sql-injection\razor\ef\before\OnlineBankingApp\
OnlineBank.db SQLite database using the DB Browser for SQLite tool:

Figure 2.4 – OnlineBank.db in DB Browser for SQLite

Notice the newly created tbl1 SQLite table

Now, let's see how to identify the SQL injection vulnerability in code that uses EF and
mitigate the preceding issue by fixing this security flaw and applying a countermeasure.

Fixing SQL injection with Entity Framework 45

How to do it…
Let's take a look at the steps for this recipe:

1. Launch Visual Studio Code and open the starting exercise folder by typing the
following command:

code .

2. Navigate to Terminal | New Terminal in the menu or simply press Ctrl + Shift + ' in
Visual Studio Code.

3. Type the following command in the terminal to build the sample app to confirm
that there are no compilation errors:

dotnet build

4. Open the Pages/FundTransfers/Index.cshtml.cs file and locate the
vulnerable part of the OnGetAsync method, where a dynamic query is composed:

public async Task OnGetAsync()

{

 var fundtransfer = from f in _context.FundTransfer

 select f;

 if (!string.IsNullOrEmpty(SearchString))

 {

 fundtransfer = _context.FundTransfer.
 FromSqlRaw("Select * from FundTransfer
 Where Note Like'%" + SearchString +
 "%'");

 }

 FundTransfer = await fundtransfer.ToListAsync();

}

5. To remediate the SQL injection vulnerability, let's start by adding a reference
to System.

46 Injection Flaws

6. Next, change the preceding highlighted code into the following by using the
FromSqlInterpolated method:

fundtransfer = _context.FundTransfer.
FromSqlInterpolated($"Select * from FundTransfer Where
Note Like {"%" + SearchString + "%"}");

7. The FromSqlInterpolated method will create a LINQ query from the
interpolated string supplied.

The interpolated parameter, SearchString, will then be converted into a
DbParameter object, making the code safe from SQL injection.

How it works…
The Entity Framework allows you to execute raw SQL queries using the FromSQLRaw
method. However, this method is dangerous as you can supply the argument with
concatenated strings with the user input, SearchString:

_context.FundTransfer.FromSqlRaw("Select * from FundTransfer
Where Note Like'%" + SearchString + "%'");

Using the payload used in the SQL injection test, imagine replacing the SearchString
value with the malicious string %';create table tbl1(one varchar(10), two
smallint);Select * from Customers where id like '1.

With FromSqlRaw blindly concatenating the injected input, the SQL statement now
reads as follows:

Select * from FundTransfer Where Note Like'%%';create table
tbl1(one varchar(10), two smallint);Select * from Customers
where id like '1 %'

This is a perfectly valid series of SQL statements, except that it has a dangerous command
that creates a new table or, in other cases or DBMS, could turn into a remote code
execution by spawning a shell.

This way of forming SQL statements is regarded as bad coding practice. To write better
and secure code, use methods such as FromSqlInterpolated to help compose
harmless SQL statements with parameterized values.

Fixing SQL injection in ADO.NET 47

There's more…
Parameterization is a proven secure coding practice that will prevent SQL injection.
Another way to rewrite the code in this recipe is to use the DbParameter classes.

Introduce an instance of SqLiteParameter (which is derived from DbParameter)
into the code as follows:

var searchParameter =
 new SqliteParameter("searchString", SearchString);

fundtransfer = _context.FundTransfer
 .FromSqlRaw("Select * from FundTransfer
 Where Note Like'%@searchString%'",searchParameter);

Whitelisting is also a useful technique as a means to filter user input. You will have
already seen this approach discussed in detail in Chapter 1, Secure Coding Fundamentals.
Whitelisting will cause ASP.NET Core web applications to only process data that is in an
expected format, but this technique is not as effective as using prepared statements or
parameterized queries.

Fixing SQL injection in ADO.NET
ADO.NET is a data provider platform that is integral to the .NET Framework. Since the
advent of the .NET Framework, ADO.NET has been the component used to query and
manipulate data in the database. ADO.NET can be used in developing data-driven ASP.
NET Core web applications, but similar to any data providers, developers may write
insecure code when using any of the System.Data.* or Microsoft.Data.* classes.

In this recipe, we will identify the SQL injection vulnerability in the code when
using the ADO.NET and mitigate the issue by fixing this security flaw and applying a
countermeasure.

Getting ready
Using Visual Studio Code, open the sample Online Banking app folder at \Chapter02\
sql-injection\razor\ado.net\before\OnlineBankingApp\.

48 Injection Flaws

How to do it…
Let's take a look at the steps for this recipe:

1. Launch Visual Studio Code and open the starting exercise folder by typing the
following command:

code .

2. Navigate to Terminal | New Terminal in the menu or simply press Ctrl + Shift + ' in
Visual Studio Code.

3. Type the following command in the terminal to build the sample app to confirm
that there are no compilation errors:

dotnet build

4. Open the Data/FundTransferDAL.cs file, which is the class that represents
the data access layer of the sample application and locate the vulnerable part of the
GetFundTransfers method where the user-controlled input is passed into the
search parameter:

public IEnumerable<FundTransfer> GetFundTransfers(string
 search)

{

 List<FundTransfer> fundTransfers =
 new List<FundTransfer>();

 using (SqliteConnection con =
 new SqliteConnection(connectionString))

 {

 SqliteCommand cmd =
 new SqliteCommand("Select *
 fromFundTransfer where Note like '%"
 + search + "%'", con);

 cmd.CommandType = CommandType.Text;

 con.Open();

 SqliteDataReader rdr = cmd.ExecuteReader();

Fixing SQL injection in ADO.NET 49

5. The preceding highlighted code is where the query is composed, and the search
concatenated to form a SQL query.

6. To remediate the SQL injection vulnerability, change the preceding highlighted code:

public IEnumerable<FundTransfer> GetFundTransfers(string
 search)

{

 List<FundTransfer> fundTransfers =
 new List<FundTransfer>();

 using (SqliteConnection con =
 new SqliteConnection(connectionString))

 {

 SqliteCommand cmd =
 new SqliteCommand("Select * from
 FundTransfer where Note like '%" +
 @search + "%'", con);

 cmd.CommandType = CommandType.Text;

 cmd.Parameters.AddWithValue("@search",search);

 con.Open();

 SqliteDataReader rdr = cmd.ExecuteReader();

Using the parameterization approach, we have converted the search string into a SQL
parameter and passed the value into SqlLiteParameterCollection.

How it works…
The SqlLiteCommand instance is blindly passed with a raw SQL concatenated user
input. This supplied string is a source for a SQL injection. The input string search is not
validated and unsanitized, letting an adversary insert an arbitrary SQL command or
modify the query's intention:

SqliteCommand cmd = new SqliteCommand("Select * from
FundTransfer where Note like '%" + search + "%'", con);

50 Injection Flaws

You can rewrite the vulnerable ADO.NET code and make it secure by using query
parameters. The AddWithValue method from SqliteParametersCollection of
the SQliteCommand object allows you to add query parameters and safely pass values
into the query:

cmd.Parameters.AddWithValue("@search", search);

Changing the search string into a placeholder makes the query parameterized:

SqliteCommand cmd = new SqliteCommand("Select * from
FundTransfer where Note like '%" + @search + "%'", con);

When your ASP.NET Core web application executes the preceding lines of code, the query
is now parameterized, safely passing the search value, and preventing malicious actors
from altering the SQL.

There's more…
This recipe uses SQLite as the DBMS for the sample solution, but if you were to use
Microsoft SQL Server, another option is to convert the query into a stored procedure
and use it with DB parameters. You would then have to utilize the SQLCommand
object and set the CommandType property to System.Data.CommandType.
StoredProcedure, allowing the execution of parameterized stored procedures from
code. These classes are available under the System.Data.SqlClient namespace and
in the new Microsoft.Data.SqlClient package.

Here's a sample code snippet:

SqlCommand cmd = new
 SqlCommand("sp_SearchFundTransfer",con);

cmd.CommandType = CommandType.StoredProcedure;

cmd.Parameters.AddWithValue("@search", search);

To write better and secure code, use the built-in support for database features
such as prepared statements or parameterized queries made possible by its data
provider frameworks.

Fixing NoSQL injection 51

Fixing NoSQL injection
NoSQL databases are a different type of database in which non-relational and semi-
structured data is stored. There are many kinds of NoSQL databases to name, such
as Cassandra, Redis, DynamoDB, and MongoDB, each with its own query language.
Although distinct from one another, these queries are also prone to injection attacks.

In this recipe, we will identify the NoSQL injection vulnerability in code that is using
MongoDB as the backend and fix the problem by applying several countermeasures.

Getting ready
Using Visual Studio Code, open the sample Online Banking app folder at Chapter02\
nosql-injection\before\OnlineBankingApp.

How to do it…
Let's take a look at the steps for this recipe:

1. Launch Visual Studio Code and open the starting exercise folder by typing the
following command:

code .

2. Navigate to Terminal | New Terminal in the menu or simply press Ctrl + Shift + ' in
Visual Studio Code.

3. Type the following command in the terminal to build the sample app to confirm
that there are no compilation errors:

dotnet build

4. Open the Services/PayeeService.cs file and locate the vulnerable part of
the code in the Get(string name) method:

public List<Payee> Get(string name) {

 var filter = "{$where: \"function()
 {return this.Name == '" + name + "'}\"}";

 return payees.Find(filter).ToList();

}

52 Injection Flaws

5. To remediate the NoSQL injection vulnerability, change the preceding
highlighted code:

public List<Payee> Get(string name) {

 return payees.Find(payee => payee.Name ==
 name).ToList();

}

The filter passed into the Find method is now replaced with a Lambda expression, a
much more secure way of searching for a payee by name.

How it works…
The Get method has a string parameter that can be supplied with a non-sanitized or
validated value. This value can alter the MongoDB filter composed with it, making the
NoSQL database perform an unintended behavior.

The name parameter can be appended with an expression that would evaluate the query
into a logical result different from what the query was expected to perform. A JavaScript
clause can also be inserted into a query that can terminate the statement and add a new
block of arbitrary code.

By way of some general advice, avoid using the $where operator. Simply apply a C#
Lambda expression as a filter to prevent any injectable JSON or JavaScript expression.

There's more…
Suppose the preceding options are not possible and it is necessary to use the $where
clause, you must then JavaScript-encode the input. Use the JavaScriptEncoder class
from the System.Text.Encodings.Web namespace to encode the value being passed
into the parameter:

1. First, modify the PayeeService.cs file to add a reference to the
Encoder namespace:

using System.Text.Encodings.Web;

2. Next, define a property for JavaScriptEncoder:

private readonly JavaScriptEncoder _jsEncoder;

Fixing command injection 53

3. Change the PayeeService constructor and add a new parameter to inject
JavaScriptEncoder:

public PayeeService(IOnlineBankDatabaseSettings
settings,JavaScriptEncoder jsEncoder)

4. Lastly, encode the name parameter using the Encode function of
JavaScriptEncoder:

var filter = "{$where: \"function() {return this.Name ==
'" + _jsEncoder.Encode(name) + "'}\"}";

If a malicious input was passed into the name parameter and was escaped by the Encode
method, the C# MongoDB driver will throw an exception if the escaped value could not
be interpreted as a valid JavaScript expression.

To prevent NoSQL injections, developers must avoid building dynamic queries using string
concatenation. NoSQL databases offer ways to query and process data, but you must be
aware of potential security implications a feature might bring into the ASP.NET Core web
application.

Fixing command injection
Web applications such as the ones developed with ASP.NET Core have a plethora of
components and libraries that enable them to execute OS commands in the host. If not
written securely, the code that composes and runs these commands can likely expose the
ASP.NET Core web application to command injection exploitation. Shell commands can
be executed unexpectedly if this security flaw in code is not prevented.

In this recipe, we will identify the command injection vulnerability in code and fix the
security vulnerability.

Getting ready
Using Visual Studio Code, open the sample Online Banking app folder at Chapter02\
command-injection\before\OnlineBankingApp.

54 Injection Flaws

Testing command injection
Here are the steps:

1. Navigate to Terminal | New Terminal in the menu or simply press Ctrl + Shift + ' in
Visual Studio Code.

2. Type the following command in the terminal to build and run the sample app:

dotnet run

3. Open a browser and go to http://localhost:5000/Backups/Create.

4. The browser will display the web page for initiating database backup, as shown in
the following screenshot:

Figure 2.5 – Backup page

5. Enter this command injection payload, backup & calc, in the Backup Name
field, and hit the Create button.

6. Notice that the page redirected to the list of backup pages and the backup was
created. However, the calculator app has appeared:

Fixing command injection 55

Figure 2.6 – Successful command injection

If this security bug is not handled, this problem could also expose the underlying hosts to
Remote Code Execution (RCE).

How to do it…
Let's take a look at the steps for this recipe:

1. Launch Visual Studio Code and open the starting exercise folder by typing the
following command:

code .

2. Navigate to Terminal | New Terminal in the menu or simply press Ctrl + Shift + ' in
Visual Studio Code.

56 Injection Flaws

3. Type the following command in the terminal to build the sample app to confirm
that there are no compilation errors:

dotnet build

4. Open the Services/BackupService.cs file and locate the vulnerable part of
the code in the BackupDB(string backupname) method:

public async Task BackupDB(string backupname)

{

 using (Process p = new Process())

 {

 string source =
 Environment.CurrentDirectory +
 "\\OnlineBank.db";

 string destination =
 Environment.CurrentDirectory +
 "\\backups\\" + backupname;

 p.StartInfo.Arguments =
 " /c copy " + source + " " + destination;

 p.StartInfo.FileName = "cmd";

 p.StartInfo.CreateNoWindow = true;

...code removed for brevity

5. To remediate the command injection vulnerability, add a new method that utilizes
the built-in file copying function:

public async Task FileCopyAsync(string sourceFileName,
 string destinationFileName,
 int bufferSize = 0x1000,
 CancellationToken cancellationToken =
 default(CancellationToken))

{

 using (var sourceFile =
 File.OpenRead(sourceFileName))

 {

 using (var destinationFile =
 File.OpenWrite(destinationFileName))

 {

Fixing command injection 57

 await
 sourceFile.CopyToAsync(destinationFile,
 bufferSize, cancellationToken);

 }

 }

}

6. Rewrite the entire body of the BackupDB method and use the newly created
method:

public async Task BackupDB(string backupname)

{

 string source =
 Environment.CurrentDirectory +
 "\\OnlineBank.db";

 string destination =
 Environment.CurrentDirectory + "\\backups\\"
 + backupname;

 await FileCopyAsync(source, destination);

}

We have refactored the BackUpDB method to use the FileCopyAsync method to
limit your code to just perform file copying tasks, thereby preventing the execution of
unwanted shell commands.

How it works…
In our sample solution, administrators are allowed to provide a name to create a database
backup. The BackUpDB method accepts a user-controlled input parameter of the string
type. The input string is used to form a command that will initiate a command shell to
have files copied from the source to the destination.

The added input string is expected to have the destination filename, but this can be
manipulated to include commands that are more than just a value for an argument.
Without validation or sanitization, this could cause the application to execute unwanted
shell commands under the web application's identity and authorization.

58 Injection Flaws

There's more…
One option of stopping OS command injection is to implement proper validation through
the whitelisting technique. This technique can be achieved by using regular expressions (see
the Input validation recipe in Chapter 1, Secure Coding Fundamentals):

1. Add a reference to the System.Text.RegularExpressions namespace:

using System.Text.RegularExpressions;

2. Then, use the RegEx class and its IsMatch method to validate the input against a
pattern to only accept valid characters:

public async Task BackupDB(string backupname)

{

 var regex = new Regex(@"^[a-zA-Z0-9]+$");

 if (!regex.IsMatch(backupname)) return;

 using (Process p = new Process())

 {

 string source =
 Environment.CurrentDirectory +
 "\\OnlineBank.db";

 string destination =
 Environment.CurrentDirectory +
 "\\backups\\" + backupname;

 p.StartInfo.Arguments = " /c copy " + source +
 " " + destination;

 p.StartInfo.FileName = "cmd";

 p.StartInfo.CreateNoWindow = true;

// code removed for brevity

We have now added a whitelisting validation with the use of the IsMatch method. The
IsMatch method prevents non-alphanumeric characters and input from being processed
in the succeeding lines of code, mitigating the risk of command injection.

Fixing LDAP injection 59

Fixing LDAP injection
The Light Directory Access Protocol (LDAP) is a standard protocol used to access
directory services such as Microsoft's Active Directory and Apache Directory. Web
applications use LDAP to search the directory server to get users and group information,
which also serves as a means of authentication. This retrieval of data from the web
application to the LDAP directory server is possible because of the LDAP query language
and its filters. Developers write code to compose these queries. Like any other dynamic
query construction, this method can open the code to injection, particularly LDAP
injection, when the concatenated user-controlled input is not validated or sanitized.

In this recipe, we will identify the LDAP injection vulnerability in code and fix the
security vulnerability.

Getting ready
Using Visual Studio Code, open the sample Online Banking app folder at \Chapter02\
ldap-injection\before\OnlineBankingApp\.

How to do it…
Let's take a look at the steps for this recipe:

1. Launch Visual Studio Code and open the starting exercise folder by typing the
following command:

code .

2. Navigate to Terminal | New Terminal in the menu or simply press Ctrl + Shift + ' in
Visual Studio Code.

3. Type the following command in the terminal to build the sample app to confirm
that there are no compilation errors:

dotnet build

4. Open the Services/LdapDirectoryService.cs file and locate the
vulnerable part of the code in the Search(string userName) method:

public User Search(string userName)

{

 using (DirectoryEntry entry =
 new DirectoryEntry(config.Path))

 {

60 Injection Flaws

 entry.AuthenticationType =
 AuthenticationTypes.Anonymous;

 using (DirectorySearcher searcher =
 new DirectorySearcher(entry))

 {

 searcher.Filter = "(&(" +
 UserNameAttribute + "="
 + userName + "))";

 searcher.PropertiesToLoad.Add
 (EmailAttribute);

 searcher.PropertiesToLoad.Add
 (UserNameAttribute);

 var result = searcher.FindOne();

// code removed for brevity

5. To fix the LDAP injection vulnerability, refactor the code to include a whitelist
validation of the userName parameter:

public User Search(string userName)

{

 if (Regex.IsMatch(userName, "^[a-zA-Z][a-zA-Z0-
 9]*$")){

 using (DirectoryEntry entry =
 new DirectoryEntry(config.Path))

 {

 entry.AuthenticationType =
 AuthenticationTypes.Anonymous;

 using (DirectorySearcher searcher =
 new DirectorySearcher(entry))

 {

 searcher.Filter = "(&(" +
 UserNameAttribute + "=" + userName
 + "))";

 searcher.PropertiesToLoad.Add
 (EmailAttribute);

 searcher.PropertiesToLoad.Add
 (UserNameAttribute);

Fixing LDAP injection 61

 var result = searcher.FindOne();

// code removed for brevity

Reusing the whitelisting technique through the use of regular expressions, we again utilize
the IsMatch method to ascertain whether the pattern matches the input. If the input
does not match the regular expression, the input is then rejected.

How it works…
In our sample solution, we have a web page that allows an admin user to search for a
specific user account using the search bar:

Figure 2.7 – Manage Users page

Entering a user ID and hitting the Search button will send an LDAP query to the LDAP
directory service to search for a user that has the exact user ID:

Figure 2.8 – Search user result

62 Injection Flaws

Note
The steps on setting up your LDAP directory service are not provided in this
book. Suppose you want a working directory server that runs in your local
machine to work with the sample solution. In that case, I suggest you install
ApacheDS and follow the steps from the Setting up an LDAP server for
development/testing using Apache Directory Studio page in the official
Crafter CMS documentation: https://docs.craftercms.org/
en/3.1/developers/cook-books/how-tos/setting-up-
an-ldap-server-for-dev.html.

Change the Ldap entry in appsettings.json if necessary:
 "Ldap": {

 "Path": "LDAP://localhost:10389/
DC=example,DC=com",

 "UserDomainName": "example"

 },

As the Search method is invoked, an LDAP query is dynamically composed, and a filter
is concatenated with the value entered in the search textbox:

searcher.Filter = "(&(" + UserNameAttribute + "=" + userName +
"))";

The userName parameter is not sanitized or validated, and a bad actor can exploit this
by injecting suspicious filters that could retrieve sensitive information from the LDAP
directory server.

To mitigate this risk, we used Regex's IsMatch method to add a whitelist validation
approach. The conditional expression will only be equivalent to true if any of the
characters in userName are alphanumeric:

public User Search(string userName)

{

 if (Regex.IsMatch(userName, "^[a-zA-Z][a-zA-Z0-9]*$")){

 using (DirectoryEntry entry = new
 DirectoryEntry(config.Path))

 {

// code removed for brevity

Include as part of the overall secure coding strategy the implementation of a whitelist
input validation to check user-controlled inputs, safeguarding your ASP.NET Core web
application from LDAP injection attacks.

https://docs.craftercms.org/en/3.1/developers/cook-books/how-tos/setting-up-an-ldap-server-for-dev.html
https://docs.craftercms.org/en/3.1/developers/cook-books/how-tos/setting-up-an-ldap-server-for-dev.html
https://docs.craftercms.org/en/3.1/developers/cook-books/how-tos/setting-up-an-ldap-server-for-dev.html

Fixing XPath injection 63

Fixing XPath injection
Data-driven ASP.NET Core web applications can use XML databases as a means to store
information and records. These data types are in XML format, and one way of navigating
through the nodes of XML is by XPath.

Developers can, by mistake, dynamically construct XPath queries with untrusted data.
This neglect can result in an arbitrary query execution or the retrieval of sensitive data
from the XML database.

In this recipe, we will fix the XPath injection vulnerability in code.

Getting ready
Using Visual Studio Code, open the sample Online Banking app folder at \Chapter02\
xpath-injection\before\OnlineBankingApp\.

This example uses the following XML data:

<?xml version="1.0" encoding="utf-8"?>

<knowledgebase>

 <knowledge>

 <topic lang="en">Types of Transfers</topic>

 <description lang="en">

 Make transfers from checking and savings to:

 Checking and savings

 Make transfers from line of credit to:

 Checking and savings

 </description>

 <tags>transfers, transferring funds</tags>

 <sensitivity>Public</sensitivity>

 </knowledge>

 <knowledge>

 <topic lang="en">Expedited Withdrawals</topic>

 <description lang="en">

 Expedited withdrawals are available to our
 executive account holders.

 You may reach out to Stanley Jobson at
 stanley.jobson@bank.com

 </description>

 <tags>withdrawals, expedited withdrawals</tags>

64 Injection Flaws

 <sensitivity>Confidential</sensitivity>

 </knowledge>

</knowledgebase>

How to do it…
Let's take a look at the steps for this recipe:

1. Launch Visual Studio Code and open the starting exercise folder by typing the
following command:

code .

2. Navigate to Terminal | New Terminal in the menu or simply press Ctrl + Shift + ' in
Visual Studio Code.

3. Type the following command in the terminal to build the sample app to confirm
that there are no compilation errors:

dotnet build

4. Open the Services/KnowledgebaseService.cs file and locate the
vulnerable part of the code in the Search method:

public List<Knowledge> Search(string input)

{

 List<Knowledge> searchResult = new
 List<Knowledge>();

 var webRoot = _env.WebRootPath;

 var file = System.IO.Path.Combine(webRoot,
 "Knowledgebase.xml");

 XmlDocument XmlDoc = new XmlDocument();

 XmlDoc.Load(file);

 XPathNavigator nav = XmlDoc.CreateNavigator();

 XPathExpression expr =
 nav.Compile(@"//knowledge[tags[contains(text()
 ,'" + input + "')] and sensitivity/text()
 ='Public']");

Fixing XPath injection 65

 var matchedNodes = nav.Select(expr);

// code removed for brevity

An XPath expression is dynamically created by concatenating the user-controlled
input. Without any validation or sanitization done on the input parameter, a
malicious actor can manipulate the XPath query by injecting malicious string,
changing the intent of the whole expression.

5. To fix this security bug, let's refactor the code and implement input sanitization
based on the whitelisting technique. To start, add a reference to both the System
and System.Linq namespaces:

using System;

using System.Linq;

6. Add a new method to the KnowledgebaseService class and name it
Sanitize:

private string Sanitize(string input)

{

 if (string.IsNullOrEmpty(input)) {

 throw new ArgumentNullException("input",
 "input cannot be null");

 }

 HashSet<char> whitelist = new HashSet<char>
 (@"1234567890ABCDEFGHIJKLMNOPQRSTUVWXYZ
 abcdefghijklmnopqrstuvwxyz ");

 return string.Concat(input.Where(i =>
 whitelist.Contains(i))); ;

}

7. Call the new Sanitize method, passing the input parameter to it as an
argument. Assign the result to the sanitizedInput variable:

public List<Knowledge> Search(string input)

{

 string sanitizedInput = Sanitize(input);

 List<Knowledge> searchResult = new
 List<Knowledge>();

 var webRoot = _env.WebRootPath;

66 Injection Flaws

 var file = System.IO.Path.Combine(webRoot,
 "Knowledgebase.xml");

 XmlDocument XmlDoc = new XmlDocument();

 XmlDoc.Load(file);

 XPathNavigator nav = XmlDoc.CreateNavigator();

 XPathExpression expr =
 nav.Compile(@"//knowledge[tags[contains(text()
 ,'" + sanitizedInput + "')] and
 sensitivity/text()='Public']");

// code removed for brevity

The custom Sanitize method will now remove unnecessary and possibly dangerous
characters in the input string. The output is now passed into a sanitizedInput
variable, making the XPath expression safe from exploitation.

How it works…
As we have learned in Chapter 1, Secure Coding Fundamentals, in the Input sanitization
section, input sanitization is a defensive technique that can be practiced to remove
suspicious characters in a user-supplied input. This approach will prevent the application
from processing unwanted XPath injected into the query.

We have created the new Sanitize method that will serve as our sanitizer. Inside
this method is a whitelist of defined characters and a Lambda invoked to remove the
characters rejected from userName:

HashSet<char> whitelist = new
HashSet<char>(@"1234567890ABCDEFGHI
JKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz ");

return string.Concat(input.Where(i =>
 whitelist.Contains(i))); ;

Searching for a help article with an unacceptable character will not throw an exception,
and our sample Online Banking web application will also not process the string:

Fixing XPath injection 67

Figure 2.9 – Searching the knowledge base

There's more…
An alternative fix is to parameterize the XPath query. We will define a variable that will
serve as a placeholder for an argument. This technique allows the data to be separated
from code:

XmlDocument XmlDoc = new XmlDocument();

XmlDoc.Load(file);

XPathNavigator nav = XmlDoc.CreateNavigator();

XPathExpression expr =
 nav.Compile(@"//knowledge[tags[contains(text(),$input)]
 and sensitivity/text()='Public']");

XsltArgumentList varList = new XsltArgumentList();

varList.AddParam("input", string.Empty, input);

CustomContext context = new CustomContext(new NameTable(),
 varList);

expr.SetContext(context);

var matchedNodes = nav.Select(expr);

foreach (XPathNavigator node in matchedNodes)

{

 searchResult.Add(new Knowledge() {Topic =
 node.SelectSingleNode(nav.Compile("topic"))
 .Value,Description = node.SelectSingleNode
 (nav.Compile("description")).Value});

}

68 Injection Flaws

In the preceding code, the XPath expression is modified, and the $input variable
is now a placeholder for the previously concatenated input value. We also used the
XsltArgumentList object to create a list of arguments to include input before passing
into the XpathExpression expression's custom context. In this way, the XPath query is
parameterized and protected from malicious injection upon execution.

Note
This mitigation requires the creation of a user-defined custom context class
that derives from XsltContext. There are other classes required to make
this XPath parameterization possible. The class files are included in the sample
solution, namely; Services\XPathExtensionFunctions.cs,
Services\XPathExtensionVariable.cs, and Services\
CustomContext.cs. The whole guide and source for these classes are
also available online at the .NET official documentation: https://docs.
microsoft.com/en-us/dotnet/standard/data/xml/user-
defined-functions-and-variables.

https://docs.microsoft.com/en-us/dotnet/standard/data/xml/user-defined-functions-and-variables
https://docs.microsoft.com/en-us/dotnet/standard/data/xml/user-defined-functions-and-variables
https://docs.microsoft.com/en-us/dotnet/standard/data/xml/user-defined-functions-and-variables

3
Broken

Authentication
Perhaps the most crucial security requirement of all – authentication – is necessary to
verify and confirm identity in an ASP.NET web application. Failing to implement strong
authentication allows hackers to expose this flaw and exploit it to gain forbidden access.

Weak password policies, missing brute-force attack prevention mechanisms, weakly
hashed passwords, and long active sessions are a few root causes of these authentication
defects. Proper credential management and session configuration are key in preventing
these vulnerabilities in code. This chapter will teach us how to fix these issues.
In this chapter, we're going to cover the following recipes:

• Fixing incorrect restrictions of excessive authentication attempts
• Fixing insufficiently protected credentials
• Fixing user enumeration
• Fixing weak password requirements
• Fixing insufficient session expiration

By the end of this chapter, you will have learned how to implement CAPTCHA to prevent
brute-force attacks, use a robust hashing algorithm to better protect your passwords, send
generic messages to avoid unnecessary information being exposed, and configure sessions
so that they expire in an acceptable time period.

70 Broken Authentication

Technical requirements
This book was written and designed to use with Visual Studio Code, Git, and .NET
5.0. Code examples in recipes are presented in ASP.NET Core Razor Pages. The sample
solution also uses SQLite as the database engine for a more simplified setup. You can
find the code for this chapter at https://github.com/PacktPublishing/ASP.
NET-Core-Secure-Coding-Cookbook/tree/main/Chapter03.

Fixing the incorrect restrictions of excessive
authentication attempts
An adversary will always try to gain access to the system and beat its authentication
mechanism. The most prevalent way of doing this is by using compromised credentials,
collected from illicit sources, or as simple as having a list of common passwords, which
can be found on the web. These attacks can be executed with automation using a crafted
script or a tool.

An ASP.NET Core web application must withstand this exploitation by implementing
defensive measures. This helps with rejecting excessive authentication attempts and
writing secure code.

In this recipe, we will identify the root cause of vulnerabilities in code and mitigate the
issue by enabling the lockout feature.

Getting ready
Using Visual Studio Code, open the sample Online Banking app folder at \Chapter03\
improper-auth\before\OnlineBankingApp.

Testing the restriction of excessive authentication attempts
Follow these steps:

1. Navigate to Terminal | New Terminal in the menu or simply press Ctrl + Shift + ' in
Visual Studio Code.

2. Type the following command in the Terminal to build and run the sample app:

dotnet run

3. Open a browser and go to http://localhost:5000.

https://github.com/PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/main/Chapter03
https://github.com/PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/main/Chapter03

Fixing the incorrect restrictions of excessive authentication attempts 71

4. The browser will display the Log in page:

Figure 3.1 – Log in page

5. Try to log in by entering stanley.s.jobson@lobortis.ca as the email
address and password123 as the password.

6. You will see an error stating Invalid login attempt:

Figure 3.2 – Invalid login attempt

72 Broken Authentication

7. Repeat Step 5 more than five times to try and invoke an account lockout.

After multiple failed attempts of logging in, notice that the account is not being
locked. This missing lockout feature makes the ASP.NET Core web application open
to brute-force attacks.

How to do it…
Let's take a look at the steps for this recipe:

1. Using the same sample solution we opened in the preceding steps, type the
following command in the Terminal to build the sample app to confirm there are
no compilation errors:

dotnet build

2. Open the \Chapter03\improper-auth\before\OnlineBankingApp\
Areas\Identity\Pages\Account\Login.cshtml.cs file and locate the
line of code that makes a call to the PasswordSignInAsync method:

public async Task<IActionResult> OnPostAsync(string
 returnUrl = null)

{

 returnUrl ??= Url.Content("~/");

 ExternalLogins = (await
 _signInManager.GetExternalAuthenticationScheme
 sAsync()).ToList();

 if (ModelState.IsValid)

 {

 var result = await
 _signInManager.PasswordSignInAsync(Input.
 Email, Input.Password,
 Input.RememberMe,lockoutOnFailure:
 false);

 if (result.Succeeded)

 {

 _logger.LogInformation("User logged in.");

Fixing the incorrect restrictions of excessive authentication attempts 73

 return LocalRedirect(returnUrl);

 }

3. Change the last parameter in the PasswordSignInAsync method from false
to true:

var result = await

_signInManager.PasswordSignInAsync(Input.Email, Input.
 Password, Input.RememberMe, lockoutOnFailure: true);

Changing the lockoutOnFailure argument from false to true will trigger a
lockout on the user account when several failed password logins have been reached.

4. Next, configure the Identity service by setting the
DefaultLockoutTimeSpan and MaxFailedAttempts properties:

services.AddIdentity<Customer,IdentityRole>(options => {

 options.Lockout.DefaultLockoutTimeSpan =
 TimeSpan.FromMinutes(5);

 options.Lockout.MaxFailedAccessAttempts = 3;

})

Setting the lockout policies will configure the lockout behavior of our sample Online
Banking web application. DefaultLockoutTimeSpan sets the time for how long a
user is locked out in minutes. The default value of this setting is 5 minutes.

The default number of failed password attempts before a user is locked out is 5. The
default value can be overwritten by assigning the MaxFailedAccessAttempts
property of IdentityOptions, which can be configured in the AddIdentity
method and is invoked from the ConfigureServices method.
MaxFailedAccessAttempts is set to lock the user out after three failed login
attempts. The values of these properties should be assigned with values as per your
organization's lockout policy.

How it works…
PasswordSignInAsync is a method call we use to log in a Customer using their
Input.Email and Input.Password values. It expects a lockoutOnFailure
argument that indicates whether a Customer should be locked out from the account if
the login fails for a specified number of attempts.

74 Broken Authentication

The lockoutOnFailure parameter is set to true to enable a lockout on a failed sign
in. This will prevent automated and excessive authentication retries by a malicious actor.
The number of failed attempts can be defined using the MaxFailedAccessAttempts
property of the LockoutOptions class.

Tips
Make sure to log failed sign-in attempts and account lockouts. These types of
events should be logged and monitored for a potential brute-force attack. You
will learn more about proper logging and monitoring techniques in Chapter 11,
Insufficient Logging and Monitoring.

There's more…
Another security feature that can help prevent brute-force attacks is to implement a
CAPTCHA. A CAPTCHA is a challenge-response test that helps determine if a human
or a computer executed the action. This type of test can help detect abuse and automated
login attempts.

There are various CAPTCHA systems available for web developers to use, and Google's
reCAPTCHA is the most popular among them. To use Google's reCAPTCHA in your
ASP.NET Core web application, follow these steps:

1. Sign up for the reCAPTCHA service on the Google Developer website (https://
developers.google.com/recaptcha/intro) to get an API key pair. This
API key pair will be used to integrate reCAPTCHA into our sample solution.

2. When registering localhost as the website, select the reCAPTCHA v2 I'm not a
robot checkbox. This recipe is based on version 2 of the reCAPTCHA system.

3. Type the following command in the Terminal to install the Google reCAPTCHA
ASP.NET Core 3 library:

dotnet add package reCAPTCHA.AspNetCore

4. The Google reCAPTCHA ASP.NET Core 3 library is a third-party and open source
NuGet package that helps ASP.NET Core web developers integrate the Google
reCAPTCHA system easily.

Warning
Using any third-party libraries comes with a risk. You may want to review the
package's code before integrating it into your ASP.NET Core web application.
Make sure that you are using the latest and stable version.

https://developers.google.com/recaptcha/intro
https://developers.google.com/recaptcha/intro

Fixing the incorrect restrictions of excessive authentication attempts 75

5. Create a new entry for the reCAPTCHA settings in the appsettings.json file:

{

 "RecaptchaSettings": {

 "SecretKey": "secret key",

 "SiteKey": "site key"

 },

 "https_port": 443,

6. Open the \Chapter03\improper-auth\before\captcha\
OnlineBankingApp\Startup.cs file and add a reference to the Google ASP.
NET reCAPTCHA library:

using reCAPTCHA.AspNetCore;

7. Register the reCAPTCHA service in the ConfigureServices method:

services.AddRecaptcha(Configuration.
GetSection("RecaptchaSettings"));

8. Select the Razor pages where you want to enable the Google reCAPTCHA.
Typically, this is placed on pages where authentication or registration abuse is
expected. Open the \Chapter03\improper-auth\before\captcha\
OnlineBankingApp\Areas\Identity\Pages\Account\Login.cshtml
file and add a reference to the reCAPTCHA namespaces:

@page

@using reCAPTCHA.AspNetCore

@using reCAPTCHA.AspNetCore.Versions;

9. Include a reference to Microsoft.Extensions.Options. A reference to
this Microsoft.Extensions.Options namespace provides access to
classes that implement the Options pattern, including the reCAPTCHA-related
configuration settings:

@using Microsoft.Extensions.Options;

76 Broken Authentication

10. Add the Recaptcha HTML Helper just below the submit button so that the Razor
page renders the reCAPTCHA and displays the challenge:

<div class="form-group">

<button type="submit" class="btn btn-primary">
 Log in</button>

</div>

<div class="form-group">

 @(Html.Recaptcha<RecaptchaV2Checkbox>(Recaptcha
 Settings?.Value))

</div>

11. Open the corresponding page model class' \Chapter03\improper-auth\
before\captcha\OnlineBankingApp\Areas\Identity\Pages\
Account\Login.cshtml.cs file and add a reference to the reCAPTCHA
namespaces:

using reCAPTCHA.AspNetCore;

12. Using dependency injection, declare a private readonly object that will hold an
instance of IRecaptchaService. Add a new parameter to the LoginModel
constructor that will expose the injected service in the class:

private readonly IRecaptchaService _recaptcha;

public LoginModel(SignInManager<Customer>
 signInManager,

 ILogger<LoginModel> logger,

 UserManager<Customer> userManager,

 IRecaptchaService recaptcha)

{

 _userManager = userManager;

 _signInManager = signInManager;

 _logger = logger;

 _recaptcha = recaptcha;

}

Fixing the incorrect restrictions of excessive authentication attempts 77

13. In the OnPostAsync method, call where the account login verification
happens and add the following highlighted lines of code to validate the
reCAPTCHA response:

public async Task<IActionResult> OnPostAsync(string
 returnUrl = null)

{

 var recaptcha = await
 _recaptcha.Validate(this.HttpContext.Request);

 if (!recaptcha.success)
 ModelState.AddModelError("Recaptcha",
 "Error Validating Captcha");

14. The Validate method call from the reCAPTCHA service will take the current
HTTP context and check whether the user's CAPTCHA response is valid.

15. Repeat steps 1 to 7 of the Testing the restriction of excessive authentication attempts
section and check out the results of implementing a CAPTCHA test when trying
to log in:

Figure 3.3 – Login page with reCAPTCHA

78 Broken Authentication

Supplementing the ASP.NET Core web application with a reCAPTCHA service will now
prevent automated attacks and brute-forcing.

Fixing insufficiently protected credentials
Password breakers and crackers are now more powerful than ever with advanced
hardware and endless computing resources. Simply hashing the passwords is no longer
enough, and it is now crucial to pick the right hashing function to protect the credentials
from being exposed when a data breach happens.

In this recipe, we will modify the code that implements a weak hashing function and
replace it with BCrypt.

Getting ready
Using Visual Studio Code, open the sample Online Banking app folder at \Chapter03\
insufficient-protected-creds\before\OnlineBankingApp.

How to do it…
Let's take a look at the steps for this recipe:

1. Type the following command in a Terminal to build the sample app to confirm
there are no compilation errors:

dotnet build

2. Open the \Chapter03\insufficient-protected-creds\before\
OnlineBankingApp\Areas\Identity\PasswordHasher.cs file.
The PasswordHasher class is derived from IPasswordHasher, which
lets you define your own custom hashing mechanism for your ASP.NET Core
web application. Notice, however, that the hashing algorithm being used in the
HashPassword method is MD5, which is a known weak hashing algorithm:

public string HashPassword(Customer customer, string
 password)

{

 using (var md5 = new MD5CryptoServiceProvider()) {

Fixing insufficiently protected credentials 79

 var hashedBytes = md5.ComputeHash(System.Text
 .Encoding.UTF8.GetBytes(password));

 var hashedPassword =
 BitConverter.ToString(hashedBytes)
 .Replace("-", "").ToLower();

 return hashedPassword;

 }

}

Note
There are many reasons why a developer would customize their hashing
process and select a weaker algorithm – migration from legacy applications
and backward compatibility is one. It is still advisable and worth the effort to
migrate your passwords into a more robust algorithm.

3. In the Visual Studio Code Terminal, type in the following command to install the
Bcrypt.Net NuGet package:

dotnet add package BCrypt.Net-Next

4. Bcrypt.Net is a .NET library implementation of the Bcrypt hashing function
based on the Blowfish cipher. The BCrypt hashing function implements a strong
security measure as it adds salt to the hashing process. Bcrypt.Net lets developers
define their own salt in the hash, but it is advisable to just let the library generate its
own salt.

Note:
For more information and details about the BCrypt hashing algorithm, see the
official publication titled A Future-Adaptable Password Scheme by the bcrypt
algorithm designers Niels Provos and David Mazieres on the USENIX website:

 https://www.usenix.org/legacy/events/usenix99/
provos/provos_html/node1.html.

5. Add a reference to the Bcrypt.NET namespace:

using BC = BCrypt.Net.BCrypt;

https://www.usenix.org/legacy/events/usenix99/provos/provos_html/node1.html
https://www.usenix.org/legacy/events/usenix99/provos/provos_html/node1.html

80 Broken Authentication

6. Register our custom IPasswordHasher service using the AddSingleton
method:

services.AddSingleton<IEmailSender, EmailSender>();

services.Configure<AuthMessageSenderOptions>
(Configuration);

services.AddSingleton<IPasswordHasher<Customer>,

 PasswordHasher>();

7. Replace both the HashPassword and VerifyHashedPassword methods with
the following code:

public class PasswordHasher : IPasswordHasher<Customer>

{

 public string HashPassword(Customer customer,
 string password)

 {

 return BC.HashPassword(password);

 }

 public PasswordVerificationResult
 VerifyHashedPassword(Customer customer,
 string hashedPassword, string password)

 {

 if (BC.Verify(password, hashedPassword))

 return PasswordVerificationResult.Success;

 else

 return PasswordVerificationResult.Failed;

 }

}

Here, we are using the HashPassword and Verify methods of the BCrypt library to
hash passwords and verify the hash, respectively.

Fixing user enumeration 81

How it works…
Our sample application has customized the hashing algorithm implementation by
creating a PasswordHasher class and inheriting from the IPasswordHasher
interface, to modify how a password is hashed. The MD5 hashing algorithm is known
to be a weak cipher. We can replace this vulnerable hash function by implementing the
bcrypt algorithm.

We installed the BCrypt.NET library implementation via the BCrypt.Net-Next NuGet
package, adding a reference to the BCrypt.Net.BCrypt namespace and rewriting the
entire HashPassword function to make a call to BCrypt.Net's HashPassword method.

Note:
Most security experts prefer Argon2, a newer hashing function introduced
back in July 2015 that has a compute-intensive hard memory function,
making it resistant to hardware-based attacks. Isopoh.Cryptography.
Argon2 is an open source project that ports the Argon2 hashing function
implementation, a library that ASP.NET Core developers can use if they prefer
to use this hashing method. You can follow the instructions for installing
the .NET Core Argon2 library at: https://github.com/mheyman/
Isopoh.Cryptography.Argon2.

On the other hand, Bcrypt is still a good option since its process is
time-consuming, making it hard to break; however, it can be prone to
GPU-based cracking.

Fixing user enumeration
Every single piece of information is vital to a malicious actor. Knowing if a user exists in
a web application gives the attacker leverage to execute a more damaging and successful
attack. Protect your ASP.NET Core web application by not providing this information by
displaying general messages during authentication failures.

In this recipe, we will change the code that displays the not-so generic error message to
prevent user enumeration attacks.

Getting ready
Using Visual Studio Code, open the sample Online Banking app folder at \Chapter03\
user-emumeration\before\OnlineBankingApp.

https://github.com/mheyman/Isopoh.Cryptography.Argon2
https://github.com/mheyman/Isopoh.Cryptography.Argon2

82 Broken Authentication

Testing user enumeration
Follow these steps:

1. Navigate to Terminal | New Terminal in the menu or simply press Ctrl + Shift + ' in
Visual Studio Code.

2. Type the following command in the Terminal to build and run the sample app:

dotnet run

3. Open a browser and go to http://localhost:5000.

4. The browser will display the login page (see Figure 3.1).

5. Log in using ginger.knowles@bank.com as the username and password123
as the password.

6. Notice the error message Customer does not exist:

Figure 3.4 – User enumeration

This error message provides information to the attacker that a particular email address
does not exist in the system. The attacker can then use this information to collect email
addresses that have an account or record.

Fixing user enumeration 83

How to do it…
Let's take a look at the steps for this recipe:

1. Type the following command in the Terminal to build the sample app to confirm
there are no compilation errors:

dotnet build

2. Open the \Chapter03\user-enumeration\before\
OnlineBankingApp\Areas\Identity\Pages\Account\Login.
cshtml.cs file and locate the line of code within the OnPostAsync method call
that throws the Customer does not exist. error message:

if (result.IsLockedOut)

{

 _logger.LogWarning("Customer account locked out.");

 return RedirectToPage("./Lockout");

}

else

{

 var user = await
 _userManager.FindByEmailAsync(Input.Email);

 if (user == null)

 {

 ModelState.AddModelError(string.Empty,
 "Customer does not exist.");

 return Page();

 }

}

3. Modify the code so that it returns a generic message; that is, Invalid login
attempt.:

if (result.IsLockedOut)

{

 _logger.LogWarning("Customer account locked out.");

 return RedirectToPage("./Lockout");

84 Broken Authentication

}

else

{

 ModelState.AddModelError(string.Empty,
 "Invalid login attempt.");

 return Page();

}

Changing the error message that's displayed on failed login attempts will prevent user
enumeration attacks.

How it works…
An adversary can gather information by analyzing an application's behavior, especially on
the messages that your ASP.NET Core web application displays to its users. The message
"Customer does not exist" indicates that an email address (used as a username, in this case)
does not exist in the database. This malicious actor can then come up with a list of valid
usernames and email addresses that they can use for other nefarious activities.

Here, we replaced the error message in the call to the AddModel method with a generic
one to avoid this enumeration. We also prevented the determination between an existing
and non-existent customer account.

Fixing weak password requirements
The complexity of a user's credentials or password determines the likelihood of a
successful dictionary attack. If the password is not complicated enough, it will be a matter
of minutes before an adversary guesses the credentials to use to authenticate in an ASP.
NET Core web application using automation.

In this recipe, we will change the password properties of ASP.NET Identity to implement a
much stronger password policy.

Getting ready
Using Visual Studio Code, open the sample Online Banking app folder at \Chapter03\
weak-password-policy\before\OnlineBankingApp.

Fixing weak password requirements 85

Testing for a weak password policy
Follow these steps:

1. Navigate to Terminal | New Terminal in the menu or simply press Ctrl + Shift + ' in
Visual Studio Code.

2. Type the following command in the Terminal to build and run the sample app:

dotnet run

3. Open a browser and go to http://localhost:5000/Identity/Account/
Register.

4. The browser will display the registration page:

Figure 3.5 – Registration page

5. Fill in the form and enter password123 as the password.

Notice that the web application created the account, despite the password being weak.

86 Broken Authentication

How to do it…
Let's take a look at the steps for this recipe:

1. Type the following command in the Terminal to build the sample app to confirm
there are no compilation errors:

dotnet build

2. Open the \Chapter03\weak-password-policy\before\
OnlineBankingApp\Startup.cs file, go to the ConfigureServices
method, and examine the Password properties of IdentityOptions:

public void ConfigureServices(IServiceCollection
services)

{

 services.Configure<IdentityOptions>(options =>

 {

 options.Password.RequireDigit = true;

 options.Password.RequireLowercase = false;

 options.Password.RequireNonAlphanumeric =
 false;

 options.Password.RequireUppercase = false;

 options.Password.RequiredLength = 6;

 options.Password.RequiredUniqueChars = 1;

 });

3. ASP.NET Core's IdentityOptions is configured to have a weak password
policy, thus overriding the default safe values for the RequireLowercase,
RequireNonAlphanumeric, and RequireUppercase properties.

4. Change the values of the RequireLowercase, RequireNonAlphanumeric, and
RequireUppercase properties to true to impose a stronger password policy:

public void ConfigureServices(IServiceCollection
 services)

{

 services.Configure<IdentityOptions>(options =>

 {

 options.Password.RequireDigit = true;

Fixing insufficient session expiration 87

 options.Password.RequireLowercase = true;

 options.Password.RequireNonAlphanumeric =true;

 options.Password.RequireUppercase = true;

 options.Password.RequiredLength = 6;

 options.Password.RequiredUniqueChars = 1;

 });

5. Repeat steps 1 to 5 of the Testing for a weak password policy section and see if you
can create a user account while using pasword123 as your password.

How it works…
Not requiring lowercase, alphanumeric, and uppercase characters is no longer an
acceptable password policy. A firm password policy is needed to stop successful
credential-based brute-force attacks, as this helps stop our customer account being
compromised. In the preceding steps, we enabled a strong password policy by setting
the RequireLowercase, RequireNonAlphanumeric, and RequireUppercase
properties of the ASP.NET Core Identity service to true.
Another layer of defense that you can implement in your ASP.NET Core web application
is multi-factor authentication (MFA). MFA in ASP.NET Core is beyond the scope of
this book, but to learn more about MFA, view the Multi-factor authentication in ASP.
NET Core topic in the official ASP.NET online documentation at https://docs.
microsoft.com/en-us/aspnet/core/security/authentication/
mfa?view=aspnetcore-5.0.

Fixing insufficient session expiration
In general, web applications create sessions to maintain users' intercommunication
with the web server between multiple requests. These sessions bind a user's identity and
support authenticated users being tracked. An ASP.NET Core web application must keep
the length of an authenticated user's session to a minimum. This helps avoid the risk of
causing a wide window of opportunity for a bad actor to take advantage in the event of a
session-based attack.
In this recipe, we will shorten the validity of a session to mitigate the risk of session-based
attacks.

Getting ready
Using Visual Studio Code, open the sample Online Banking app folder at \Chapter03\
improper-session\before\OnlineBankingApp.

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/mfa?view=aspnetcore-5.0
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/mfa?view=aspnetcore-5.0
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/mfa?view=aspnetcore-5.0

88 Broken Authentication

How to do it…
Let's take a look at the steps for this recipe:

1. Type the following command in the Terminal to build the sample app to confirm
there are no compilation errors:

dotnet build

2. Open the \Chapter03\weak-password-policy\before\
OnlineBankingApp\Startup.cs file and locate the code where the
application cookies have been set. Notice ExpireTimeSpan, which configures the
length of time the cookie stays valid for. This is set to 24 hours:

services.ConfigureApplicationCookie(options =>

{

 options.LoginPath = $"/Identity/Account/Login";

 options.LogoutPath = $"/Identity/Account/Logout";

 options.AccessDeniedPath =
 $"/Identity/Account/AccessDenied";

 options.ExpireTimeSpan = TimeSpan.FromHours(24);

});

3. Assign the ExpireTimeSpan property with a shorter timeout:

services.ConfigureApplicationCookie(options =>

{

 options.LoginPath = $"/Identity/Account/Login";

 options.LogoutPath = $"/Identity/Account/Logout";

 options.AccessDeniedPath =
 $"/Identity/Account/AccessDenied";

 options.ExpireTimeSpan = TimeSpan.FromMinutes(15);

});

The value of ExpireTimeSpan is now shorter, which will make exploiting an open and
valid session difficult for an adversary.

Fixing insufficient session expiration 89

How it works…
An ASP.NET Core web application's cookie settings are set by invoking
the ConfigureApplicationCookie method. This method accepts
CookieAuthenticationOptions, including a property that determines the behavior
of a cookie. The ExpireTimeSpan property, which specifies the session cookie's validity,
has been set to 15 minutes compared to a lengthy 24 hours.

Note:
Your ASP.NET Core web application may be subject to an Information Security
standard set by your organization or regulation due to the nature of your
company's business. For instance, with the payment card industry, you must
conform to the Payment Card Industry Data Security Standard (PCI-DSS)
section 6.5.10 on broken authentication and session management requirements.

To learn more about the PCI-DSS, please read the official PCI-DSS
documentation: https://www.pcisecuritystandards.
org/documents/PCI_DSS_v3-2-1.
pdf?agreement=true&time=1612424525744.

https://www.pcisecuritystandards.org/documents/PCI_DSS_v3-2-1.pdf?agreement=true&time=1612424525744
https://www.pcisecuritystandards.org/documents/PCI_DSS_v3-2-1.pdf?agreement=true&time=1612424525744
https://www.pcisecuritystandards.org/documents/PCI_DSS_v3-2-1.pdf?agreement=true&time=1612424525744

4
Sensitive Data

Exposure
Data protection in transit and at rest is paramount. Ensuring the use of strong transport
protocols and web security directives can stop data from being compromised in transit
and prevent unintended sensitive data exposure. Utilizing the latest Transport Layer
Security (TLS) protocol version in code can help mitigate these vulnerabilities, which are
brought about by the implementation flaws in lower versions of TLS, making man-in-the-
middle attacks such as POODLE, LogJam, and FREAK difficult to succeed.

This chapter will help you determine if security requirements that adequately protect
data in transit and at rest exist in your code. You will also learn about what additional
web security mechanisms you can implement in your ASP.NET Core web application to
protect you from unwanted data leakage.

In this chapter, we're going to cover the following recipes:

• Fixing insufficient protection of data in transit

• Fixing missing HTTP Strict Transport Security (HSTS) headers

• Fixing weak protocols

• Fixing hardcoded cryptographic keys

• Disabling caching for critical web pages

92 Sensitive Data Exposure

These recipes will teach you how to implement HTTPS in your ASP.NET Core web
applications, enable HSTS, ensure that the latest version of TLS has been applied, and how
to secure cryptographic keys. This chapter will also discuss sending the Cache-Control
directive to disable caching on pages that contain sensitive data.

Technical requirements
This book was written and designed to use with Visual Studio Code, Git, and .NET 5.0.
Code examples in recipes are presented in ASP.NET Core Razor pages. The code
examples in this book's recipes are mainly presented in ASP.NET Core Razor pages.
The sample solutions also use SQLite as the database engine for a more simplified setup.
The complete code examples for this chapter are available at https://github.com/
PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/main/
Chapter04.

Fixing insufficient protection of data in transit
TLS is a network communication protocol that's used on the web to secure data and
achieve privacy through cryptography. Missing or flawed implementations of this secure
protocol brings an ASP.NET web application to a massive amount of risk when sensitive
data being transmitted between the browser and the web server is unencrypted or
potentially intercepted. Enabling TLS is the first step to adequately encrypting data in
transit. The succeeding recipes in this chapter will add even more protection.

Not enabling TLS in your ASP.NET Core web application puts your confidential data in
transit between the clients and servers at risk. You must ensure that HTTPS has been
configured for the best protection.

In this recipe, we will learn how to correctly mitigate the risk of a missing security
protocol implementation and support for HTTPS.

Getting ready
To complete the recipes in this chapter, we will need a sample Online Banking app.

Open the command shell and download the sample Online Banking app by cloning the
ASP.NET Secure Coding Cookbook repository, as follows:

git clone https://github.com/PacktPublishing/ASP.NET-Core-
Secure-Coding-Cookbook.git

https://github.com/PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/main/Chapter04
https://github.com/PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/main/Chapter04
https://github.com/PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/main/Chapter04

Fixing insufficient protection of data in transit 93

Run the sample app to verify that there are no build or compile errors. In your command
shell, navigate to the sample app folder at \Chapter04\insufficient-transport-
protection\before\OnlineBankingApp and run the following command:

dotnet build

The dotnet build command will build our sample OnlineBankingApp project and
its dependencies.

How to do it…
Let's take a look at the steps for this recipe:

1. From the starting exercise folder, launch Visual Studio Code by typing in the
following command:

code .

2. Open the Startup.cs class file and add the following code before the closing
braces of the ConfigureServices method:

if (Environment.IsDevelopment())

{

 services.AddHttpsRedirection(options =>

 {

 options.RedirectStatusCode =
 StatusCodes.Status307TemporaryRedirect;

 options.HttpsPort = 5001;

 });

}

else

{

 services.AddHttpsRedirection(options =>

 {

 options.RedirectStatusCode =
 StatusCodes.Status308PermanentRedirect;

 options.HttpsPort = 443;

 });

}

94 Sensitive Data Exposure

We added a conditional statement checking if the current environment is running
in development or production. This check will help us determine if we must
perform temporary redirection or permanent redirection using the standard
HTTPS port 443.

3. Add a call to the UseHttpsRedirection method just before the call to
UseStaticFiles in the Configure method:

app.UseHttpsRedirection();

4. Open the launchsettings.json file and change the values in
applicationUrl and environmentVariables, as shown in the following
highlighted code:

"OnlineBankingApp": {

 "commandName": "Project",

 "dotnetRunMessages": "true",

 "launchBrowser": true,

 "applicationUrl": "https://localhost:5001",

 "environmentVariables": {

 "ASPNETCORE_ENVIRONMENT": "Development",

 "ASPNETCORE_URLS":
 "http://localhost:5000;https://localhost:5001

 }

The launchsettings.json file is a configuration file that allows you to work
on multiple environments during development. This file is not included when
deploying to production. If you have a setting for IISExpress, you may also want
to change the ASPNETCORE_URLS environment variable and applicationURL.

5. Navigate to Terminal | New Terminal in the menu or simply press Ctrl + Shift + ' in
Visual Studio Code.

6. Type the following command in the Terminal to build and run the sample app:

dotnet run

Fixing insufficient protection of data in transit 95

7. Open a browser and go to http://localhost:5000:

Figure 4.1 – HTTPS enabled
Notice that the sample solution is redirected to https://localhost:5001.

Note
Web APIs are beyond the scope of this book, but it is important to note that
HTTP redirection must be disabled in APIs. Web APIs should also reject
requests in HTTP and return a HTTP 400 status code.

How it works…
In the Startup class, we call the AddHttpsRedirection method to register
UseHttpsRedirection to the service collection. We configure the middleware
options by setting two properties: RedirectStatusCode and HttpsPort. By default,
RedirectStatusCode is Status307TemporaryRedirect, but it should be
changed to Status308PermanentRedirect in production environments to prevent
user-agents (also known as browsers) from changing the HTTP methods from POST to
GET. We must also specify the HTTPS standard port of 443:

services.AddHttpsRedirection(options =>

{

 options.RedirectStatusCode =
 StatusCodes.Status308PermanentRedirect;

 options.HttpsPort = 443;

});

Tip
The call to AddHttpsRedirection is optional unless you need a different
redirect status code or a different port other than 443.

96 Sensitive Data Exposure

To redirect HTTP requests to HTTPS, we must add the HTTPS middleware in
Configure with a call to the UseHttpsRedirection method.

Note
Secure Socket Layer, also known as SSL, is a predecessor of TLS. Other
references describe SSL and TLS as one and the same, but TLS has been used in
this book to suggest the latest version of the cryptographic protocol.

However, TLS supports a wide variety of cipher suites and not all are created
equal. Some offer better security, such as the GCM ciphers, which is the ideal
choice. For more information about ciphers, please see the TLS Cipher String
Cheat Sheet from OWASP: https://cheatsheetseries.owasp.
org/cheatsheets/TLS_Cipher_String_Cheat_Sheet.html.

Fix missing HSTS headers
HTTP Strict Transport Security or HSTS is another web application security mechanism
that helps prevent man-in-the-middle attacks. It allows web servers to send a special HTTP
Response header that informs supporting browsers that the subsequent communication
and transmission of data should only be done over HTTPS; otherwise, succeeding
connections will not be allowed.

Failing to opt-in HSTS as an additional security policy does not eliminate the threat of
sensitive data interception. Supplementing HTTPS with HSTS will thwart the risk of a
user being exposed to an unencrypted channel.

This recipe will teach us how to enable the missing HSTS in our sample ASP.NET Core
web application to force the client to communicate over HTTPS entirely.

Getting ready
We will be using the Online Banking app we used in the previous recipe. Using Visual
Studio Code, open the sample Online Banking app folder at \Chapter04\missing-
hsts\before\OnlineBankingApp\.

You can perform the steps in this folder to fix the missing HSTS headers.

https://cheatsheetseries.owasp.org/cheatsheets/TLS_Cipher_String_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/TLS_Cipher_String_Cheat_Sheet.html

Fix missing HSTS headers 97

How to do it…
Let's take a look at the steps for this recipe:

1. From the starting exercise folder, launch Visual Studio Code by typing the
following command:

code .

2. Open the Startup.cs class file and add the following code before the
AddHttpsRedirection call of the ConfigureServices method:

 services.AddHsts(options =>

 {

 options.ExcludedHosts.Clear();

 options.Preload = true;

 options.IncludeSubDomains = true;

 options.MaxAge = TimeSpan.FromDays(60);

 });

if (Environment.IsDevelopment())

{

 services.AddHttpsRedirection(options =>

 {

 options.RedirectStatusCode =
 StatusCodes.Status307TemporaryRedirect;

 options.HttpsPort = 5001;

 });

}

else

{

 services.AddHttpsRedirection(options =>

 {

 options.RedirectStatusCode =
 StatusCodes.Status308PermanentRedirect;

 options.HttpsPort = 443;

 });

}

98 Sensitive Data Exposure

Tip
The call to the Clear method of ExcludedHostsProperty is used for
the purposes of testing HSTS locally and in development. This method stops
localhost from being excluded since it's a loopback host. This code must
be removed in the production environment.

You can also add exclude options for localhost and/or development
environment hosts as an alternative:

options.ExcludedHosts.Add("localhost");

Testing HSTS locally can lead to some unexpected errors when it is set up
incorrectly. When you encounter errors, you will have to clear the HSTS cache.

3. Add a call to the UseHsts method:

if (webHostEnv.IsDevelopment())

{

 appBuilder.UseDeveloperExceptionPage();

}

else

{

 appBuilder.UseExceptionHandler("/Error");

 appBuilder.UseHsts();

}

4. For the IsDevelopment method to return false and for us to be able to test
HSTS locally, we need to temporarily change the environment variable. Open \
Chapter04\missing-hsts\before\OnlineBankingApp\Properties\
launchSettings.json and locate the ASPNETCORE_ENVIRONMENT node.
Change the value from Development to Staging:

 "environmentVariables": {

 "ASPNETCORE_ENVIRONMENT": "Staging",

 "ASPNETCORE_URLS":
 "http://localhost:5000;https://localhost:5001"

 }

5. Navigate to Terminal | New Terminal in the menu or simply press Ctrl + Shift + ' in
Visual Studio Code.

Fix missing HSTS headers 99

6. Type the following command in the Terminal to build and run the sample app:

dotnet run

7. Press F12 to open the browser's developer tools.

8. Go to the Network tab and monitor the upcoming traffic.

9. Open a browser and go to http://localhost:5000.

Your browser will automatically redirect you to https://localhost:5001.

10. In the Network tab of the developer tools pane, select the second set of HTTP traffic
that's been sent to the localhost and examine the HTTP Response header:

Figure 4.2 – Strict-Transport-Security HTTP header
A new HTTP header is included in the response. The Strict-Transport-Security
HTTP header enables HSTS in your ASP.NET Core web application.

How it works…
To enable HSTS in our ASP.NET Core web application, we need to add the HSTS
service by making a call to AddHsts. The following properties of the HSTS service are
configured here:

• Preload: Sends the preload flag as part of the Strict-Transport-Header. It directs
the supporting browser to include your ASP.NET Core web application's domain in
the preloaded list, thus preventing users access over HTTP.

• IncludeSubdomains: Another directive that lets the subdomains have HSTS
enabled, not just the top-level domain name.

• MaxAge: A property that determines the max-age directive of the Strict-Transport-
Security header. This dictates how long the browser will remember to send requests
for over HTTPS in seconds.

100 Sensitive Data Exposure

Note
Setting the MaxAge property value to 31,536,000 seconds guarantees that the
max-age attribute in the HSTS header is enforced for at least a year, and it also
prevents users from manually accepting an untrusted SSL certificate.

Finally, a call to the UseHsts method adds the middleware for HSTS.

There's more…
Using the preload flag in the Strict-Transport-Security header can have undesirable
outcomes for your users. Tread lightly when you're enabling this property while setting up
the HSTS middleware. For instance, try browsing the site for a second time over HTTP:

Figure 4.3 – HSTS enabled/ browsing over HTTP

Fixing weak protocols 101

Notice that the browser is preventing you from using the sample ASP.NET web application.

Note
Not all browsers support the HSTS header. To see the list of browsers that
support HSTS, see the Strict-Transport-Security Browser Compatibility table
on the official Mozilla Developer website: https://developer.
mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-
Transport-Security#browser_compatibility.

Fixing weak protocols
The cryptographic protocol known as TLS has evolved over the years and initially started
as Secure Sockets Layer, most commonly known as SSL. This is now deprecated, and so its
successors have been discovered to have vulnerabilities in their design. The latest version of
the Transport Layer Security protocol, TLS 1.3, was created to solve these problems.

Enabling HTTPS and using TLS is not enough to protect your ASP.NET Core web
applications from accidental data exposure. An adversary can potentially exploit a weak
version of TLS. To overcome this, you must employ the latest and greatest versions of
cryptographic ciphers and protocols.

This recipe will teach you how to change an outdated version of TLS and write code to
utilize the TLS 1.3 version of the protocol.

Getting ready
Using Visual Studio Code, open the sample Online Banking app folder at \Chapter02\
weak-protocol\before\OnlineBankingApp\.

You can perform the steps in this folder to fix weak protocols.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security#browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security#browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security#browser_compatibility

102 Sensitive Data Exposure

How to do it…
Let's take a look at the steps for this recipe:

1. From the starting exercise folder, launch Visual Studio Code by typing the
following command:

code .

2. Open the Program.cs class file. This class sets up the host and, by default, uses
Kestrel as the web server. The CreateHostBuilder method call is where you
can locate the line where the SslProtocols property is being assigned with a
lower version of TLS. The current value indicates that the TLS version being used is
version TLS 1.0:

public static IHostBuilder CreateHostBuilder(string[]

 args) =>

 Host.CreateDefaultBuilder(args)

 .ConfigureWebHostDefaults(host =>

 {

 host.UseKestrel(options =>

 {

 options.ConfigureHttpsDefaults
 (https =>

 {

 https.SslProtocols =
 SslProtocols.Tls;

 });

 });

 host.UseStartup<Startup>();

 });

3. Assign the SslProtocols property, along with a much stronger version of TLS:

options.ConfigureHttpsDefaults(https =>

{

 https.SslProtocols = SslProtocols.Tls12 |
 SslProtocols.Tls13;

});

Fixing weak protocols 103

4. Navigate to Terminal | New Terminal in the menu or simply press Ctrl + Shift + ' in
Visual Studio Code.

5. Type the following command in the Terminal to build and run the sample app:

dotnet run

6. Press F12 to open the browser's developer tools.

7. Go to the Network tab and monitor the upcoming traffic.

8. Open a browser and go to http://localhost:5000. Your browser will
automatically redirect you to https://localhost:5001.

9. Go to the Security tab of the developer tools pane and look at the secure
connection details:

Figure 4.4 – Secure connection details
The Security tab shows details of the version of the TLS protocol being used, as well
as the cipher.

104 Sensitive Data Exposure

How it works…
The current version of the code is using a lower and vulnerable version of
TLS. SslProtocols is assigned an enum value of SslProtocols.Tls, which is
equivalent to TLS 1.0. TLS 1.0 is deprecated as of March 2020.

The default web server being used in this sample ASP.NET Core web application is
Kestrel. Within the code, we configured the settings of Kestrel with UseKestrel,
passing the property values as options.

One of these properties is SslProtocols, which we should assign with
theSslProtocols.Tls12 and SslProtocols.Tls13 piped enum values to specify
that only TLS 1.2 and TLS 1.3 are allowed. These will be set to our defaults.

Fixing hardcoded cryptographic keys
Cryptographic keys are an essential part of the whole ecosystem of cryptography. This
string is vital for encrypting and decrypting sensitive data. In particular, asymmetric
cryptographic algorithms have private keys (as part of the public-private key pair
exchange) that are meant to be kept secure from prying eyes. If these secret keys fall into
the wrong hands or get leaked, an attacker will be able to successfully perform sensitive
data decryption.

Note
The topic of applied cryptography is wide and complex. This book briefly
touched on weak cryptographic algorithms in this chapter, but for a more
comprehensive understanding of how cryptography is implemented in
.NET, please read .NET Cryptography Model from the official Microsoft
online documentation: https://docs.microsoft.com/en-us/
dotnet/standard/security/cryptography-model.

The following recipe will help us find the security flaw in our code that would compromise
these cryptographic private keys and remediate the risk with a code fix.

Getting ready
Using Visual Studio Code, open the sample Online Banking app folder at \Chapter04\
hard-coded-key\before\OnlineBankingApp\.

You can perform the steps in this folder to fix hardcoded cryptographic keys.

https://docs.microsoft.com/en-us/dotnet/standard/security/cryptography-model
https://docs.microsoft.com/en-us/dotnet/standard/security/cryptography-model

Fixing hardcoded cryptographic keys 105

How to do it…
Let's take a look at the steps for this recipe:

1. From the starting exercise folder, launch Visual Studio Code by typing the
following command:

code .

2. Open the \Areas\Identity\Pages\Account\Register.cshtml.cs file
and go to the OnPostAsync method definition:

public async Task<IActionResult> OnPostAsync(string
returnUrl = null)

{

 returnUrl ??= Url.Content("~/");

 ExternalLogins = (await
 _signInManager.GetExternalAuthenticationScheme
 sAsync()).ToList();

 if (ModelState.IsValid)

 {

 var user = new Customer {

 FirstName = _cryptoService.Encrypt
 (Input.FirstName, key),

 MiddleName = _cryptoService.Encrypt
 (Input.MiddleName, key),

 LastName = _cryptoService.Encrypt
 (Input.LastName, key),

 DateOfBirth = Input.DateOfBirth,

 UserName = Input.Email,

 Email = Input.Email

 };

Note
The complete code can be found in this book's GitHub repository at
https://github.com/PacktPublishing/ASP.NET-Core-
Secure-Coding-Cookbook\Chapter04.

https://github.com/PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook\Chapter04
https://github.com/PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook\Chapter04

106 Sensitive Data Exposure

3. Notice that the call to the _cryptoService.Encrypt method has a second
argument that accepts a string. This parameter expects to receive a key, but the
key that is being passed is hardcoded in code. The key class field is declared and
assigned with a hardcoded value of BGw3UHkI4z:

[AllowAnonymous]

public class RegisterModel : PageModel

{

 private readonly SignInManager<Customer>
 _signInManager;

 private readonly UserManager<Customer>
 _userManager;

 private readonly ILogger<RegisterModel> _logger;

 private readonly IEmailSender _emailSender;

 private readonly ICryptoService _cryptoService;

 private const string key = "BGw3UHkI4z";

4. We can remediate this issue by retrieving the key from a secure environment such
as an environment variable. Environment variables are variables in your operating
system that are used in a variety of applications and services:

FirstName = _cryptoService.Encrypt(Input.FirstName,
 Environment.GetEnvironmentVariable("securekey",
 EnvironmentVariableTarget.Machine)),

MiddleName = _cryptoService.Encrypt(Input.MiddleName,
 Environment.GetEnvironmentVariable("securekey",
 EnvironmentVariableTarget.Machine)),

LastName = _cryptoService.Encrypt(Input.LastName,
 Environment.GetEnvironmentVariable("securekey",
 EnvironmentVariableTarget.Machine)),

5. We can use the Environment.GetEnvironmentVariable method to retrieve
the value of the key stored in the securekey environment variable.

Fixing hardcoded cryptographic keys 107

6. Create the new securekey environment variable.

If you are a Windows user, follow these steps:

a) Open the Windows Run prompt, type sysdm.cpl, and press OK or Enter:

Figure 4.5 – Windows Run prompt
b) Click the Advanced tab and then click the Environment Variables button:

Figure 4.6 – Advanced System Properties

108 Sensitive Data Exposure

c) Under System variables, click New to create a new system-wide variable:

Figure 4.7 – Environment variables
d) Specify the name of the system variable as securekey and its value as
BGw3UHkI4z:

Figure 4.8 – securekey system variable

Fixing hardcoded cryptographic keys 109

e) Test whether the new system variable has been created by typing the following
command in the command line:

echo %securekey%

The preceding command will show the value of the securekey system variable in
the command prompt.

If you are a Linux/MacOS user, follow these steps:

a) Open the .bashrc file in your home directory. Type the following command to
open the .bashrc file with either the gedit text editor:

gedit ~/.bashrc

Type the following command to open the .bashrc file with the vim text editor:
vi ~/.bashrc

.bashrc is a shell script that Bash executes to initialize an interactive shell session.

The following screenshot shows the .bashrc file open in gedit, the default text
editor in GNOME-based desktop environments. It is commonly seen on Linux:

Figure 4.9 – .bashrc file opened for modification
b) Using a code editor of your choice (vim or gedit), add the following line to your
.bashrc file:

export securekey=" BGw3UHkI4z"

110 Sensitive Data Exposure

The following screenshot shows the gedit text editor with the new environment
variable added:

Figure 4.10 – New environment variable
c) Save the .bashrc file to apply the changes.

d) Open a new Terminal and type following the command to verify that the
environment variable now exists:

echo $securekey

The following screenshot shows that the new securekey environment variable has
been successfully added:

Figure 4.11 – New Terminal

7. Lastly, remove the following line, which declares the key variable:

 private const string key = "BGw3UHkI4z";

Fixing hardcoded cryptographic keys 111

Tip
For large-scale deployments, storing the secrets and keys in the environment
variable may not be ideal. As an option, use cloud-based key stores such as
Azure Key Vault. Follow the quick start instructions to store your secrets in
Azure Key Vault: https://docs.microsoft.com/en-us/azure/
key-vault/secrets/quick-create-net.

Now, let's understand how this recipe works.

How it works…
In the event that an attacker can get hold of the code repository, there is a risk that the bad
actor will be able to see the private key in the code. We must protect these secret keys and
they must be stored externally from the code repository, thus limiting who can see them
to anyone who has access to the system. In our sample Online Banking app, the key was
plainly declared as a variable in code:

private const string key = "BGw3UHkI4z";

This is a risk for accidental exposure through unauthorized access, but this can be
remediated by storing the key in an environment variable.

Here, we created a system variable, making it accessible machine-wide, and retrieved the
key by invoking the Environment.GetEnvironmentVariable method:

FirstName = _cryptoService.Encrypt(Input.FirstName,
 Environment.GetEnvironmentVariable("securekey",
 EnvironmentVariableTarget.Machine)),

The first parameter is the name of the environment variable, while the second
parameter specifies the location where the key is stored. The possible enum values are
EnvironmentVariableTarget.Machine, EnvironmentVariableTarget.
Process, and EnvironmentVariableTarget.User.

We used EnvironmentVariableTarget.Machine to indicate that our variable
is stored in the Windows registry. Its exact location is the Windows registry is
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session
Manager\Environment.

https://docs.microsoft.com/en-us/azure/key-vault/secrets/quick-create-net
https://docs.microsoft.com/en-us/azure/key-vault/secrets/quick-create-net

112 Sensitive Data Exposure

Note
You can automate the process of adding an environment variable to the
web server using your build pipeline. If you're using Azure Pipelines, you
can learn more by reading the Define Variables section of the Microsoft
documentation: https://docs.microsoft.com/en-us/azure/
devops/pipelines/process/variables?view=azure-
devops&tabs=yaml%2Cbatch.

There's more…
Another option for ASP.NET Core web application developers is to use a cloud-based
service that can store keys and secrets. Major cloud providers offer this type of service and
allow you to manage cryptographic keys that use hardware security modules.

To integrate any of these services in your ASP.NET web application, you must have a
subscription and use their specific Software Development Kits. Here are two of them:

• Azure Key Vault: Integrating with this service requires that you install the Azure
SDK and use the Azure Key Vault Configuration Provider for ASP.NET Core to
retrieve the keys.

• AWS Key Management Services (KMS): AWS SDK for .NET will help you quickly
add the KMS service to your ASP.NET Core web application.

Now, let's move on to the next recipe.

Disabling caching for critical web pages
Performance is one of the critical metrics for ASP.NET Core web applications. As
developers, we find ways to make pages load faster, and the concept of caching resources
and pages is nothing new. Browsers implement caching based on the Cache-Control
directive they receive from the server. However, there is a risk associated with caching
pages that contain sensitive data. We must selectively determine which pages are in danger
of leaking information and disable caching from these pages.

Getting ready
We will be using the Online Banking app we used in the previous recipe. Using Visual
Studio Code, open the sample Online Banking app folder at \Chapter04\cache-
data\before\OnlineBankingApp\.

You can perform the steps in this folder to disable caching on the Manage profile page.

https://docs.microsoft.com/en-us/azure/devops/pipelines/process/variables?view=azure-devops&tabs=yaml%2Cbatch
https://docs.microsoft.com/en-us/azure/devops/pipelines/process/variables?view=azure-devops&tabs=yaml%2Cbatch
https://docs.microsoft.com/en-us/azure/devops/pipelines/process/variables?view=azure-devops&tabs=yaml%2Cbatch

Disabling caching for critical web pages 113

How to do it…
Let's take a look at the steps for this recipe:

1. From the starting exercise folder, launch Visual Studio Code by typing the
following command:

code .

2. Open the Areas\Identity\Pages\Account\Manage\Index.cshtml.cs
file. Notice that there is no annotation for the page model, which typically controls
response caching:

namespace OnlineBankingApp.Areas.Identity.Pages.Account.
Manage

{

 public partial class IndexModel : PageModel

 {

This page allows you to manage your profile and change your personal details,
such as your First Name, Last Name, and Date of Birth. Viewing these pages while
caching is turned on can lead to information leakage as the browser caches the data
unless it's instructed not to do so.

3. To disable caching on this particular Razor page, let's annotate the page mode with
the ResponseCache attribute:

namespace OnlineBankingApp.Areas.Identity.Pages.Account.
 Manage

{

 [ResponseCache(Duration = 0, Location =
 ResponseCacheLocation.None, NoStore = true)]

 public partial class IndexModel : PageModel

 {

 private readonly UserManager<Customer>
 _userManager;

 private readonly SignInManager<Customer>
 _signInManager;

Adding the ResponseCache attribute will set the directive of the Cache-Control
response header.

114 Sensitive Data Exposure

Now, let's verify that Cache-Control has been set to no-cache, no-store as part of the
HTTP response.

Validating the Cache-Control HTTP response header
Let's get started:

1. Navigate to Terminal | New Terminal in the menu or simply press Ctrl + Shift + ' in
Visual Studio Code.

2. Type the following command in the Terminal to build and run the sample app:

dotnet run

3. Open a browser and go to https://localhost:5001/.

4. Log in using the following credentials:

a). Email: stanley.s.jobson@lobortis.ca

b). Password: rUj5jtV8jrTyHnx!

5. Once authenticated, you will be redirected to the home page:

Figure 4.12 – Home page authenticated

6. Click stanley.s.jobson@lobortis.ca from the banner to go to the customer's
profile page:

Disabling caching for critical web pages 115

Figure 4.13 – Profile page

7. Press F12 to open the browser's developer tools.

8. Go to the Network tab and select the first piece of HTTP traffic in the traffic list.

9. Once single HTTP traffic has been selected, scroll through the right pane to view
the corresponding HTTP response security headers:

Figure 4.14 – Cache-Control

The Cache-Control header has now been added as part of the HTTP response that was
sent from our sample Online Banking web application.

How it works…
Setting Cache-Control to no-store, no-cache tells the browser to not cache the response.
You can achieve this by using the ResponseCache attribute with the following
properties and their corresponding values and annotating IndexModel:

[ResponseCache(Duration = 0, Location = ResponseCacheLocation.
None, NoStore = true)]

116 Sensitive Data Exposure

Duration is set to 0 seconds, thus setting its matching max-age directive with the same
value. Assigning max-age with a value of 0 seconds indicates that resources should be
retrieved fresh from the web server.

Location is assigned with an enum value of ResponseCacheLocation.None,
which specifies that the browser won't cache the resources.

NoStore, when set to true, configures the no-store directive HTTP response header
and tells the client that the resource is not to be cached.

Tip:
You can configure the caching behavior of an ASP.NET Core web application
centrally by creating CacheProfiles:

using Microsoft.AspNetCore.Mvc;

...

public void ConfigureServices(IServiceCollection
services)

{

...

 services.AddMvc(options =>

 {

 options.CacheProfiles.Add("NoCache",

 new CacheProfile()

 {

 Duration = 30,

 Location = ResponseCacheLocation.
 None,

 NoStore = true

 });

 });

The same values from the preceding recipe have been passed into the CacheProfile
instance to disable caching.

5
XML External

Entities
eXtensible Markup Language (XML) is a standard markup language that's used to
define data. XML is also a format that an ASP.NET Core web application can use to parse
information. To achieve this, a developer can use any number of .NET XML parsers
readily available in the framework.

XML being a source of input is likely to be prone to malicious data injection. A feature
called XML External Entity (XXE) allows XML to define a custom entity using a URL
or file path. This ability to represent external entities in XML can be abused or exploited.
Unrestricted external entity references can allow attackers to send sensitive information
and files outside the applications' trusted domains and into the perpetrator-controlled
server. The existence of this vulnerability can lead to Denial-of-Service (DoS) attacks,
making the whole application inaccessible because of flooded requests, or file inclusion
attacks, where an adversary can gain unauthorized access to files.

To ensure security in code and to prevent these types of XML-based injection attacks,
you must validate XML using XML Schemas (XSD). The use of XSDs ensures the
conformance of the XML with the desired format. Also, choosing which .NET parser
to use must be carefully configured and set to avoid any unexpected behavior from the
XML parser.

118 XML External Entities

In this chapter, we're going to cover the following recipes:

• Enabling XML validation

• Fixing XXE injection with XmlDocument

• Fixing XXE injection with XmlTextReader

• Fixing XXE injection with LINQ to XML

These recipes will teach us how to add XML schema validation to our ASP.NET Core web
applications, as well as how to fix a variety of vulnerabilities in code that allow external
XML entities to be injected and processed.

Technical requirements
This book was written and designed to use with Visual Studio Code, Git, and .NET 5.0.
Code examples in recipes are presented in ASP.NET Core Razor pages. The sample solutions
also use SQLite as the database engine for a more simplified setup. The complete code
examples for this chapter are available at https://github.com/PacktPublishing/
ASP.NET-Core-Secure-Coding-Cookbook/tree/main/Chapter05.

Enabling XML validation
An XSD specifies how XML should be composed. The schema helps define an XML
structure and, with it, prevents unwanted elements, attributes, and text. Without an XSD,
a .NET parser will blindly process the XML data and increase the risk of an XXE injection
vulnerability in code.

This recipe will teach you how to create the use XSD and validate XML data.

Getting ready
To complete the recipes in this chapter, we will need the sample Online Banking app.

Open the command shell and download the sample Online Banking app by cloning the
ASP.NET Secure Coding Cookbook repository, as follows:

git clone https://github.com/PacktPublishing/ASP.NET-Core-
Secure-Coding-Cookbook.git

https://github.com/PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/main/Chapter05
https://github.com/PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/main/Chapter05

Enabling XML validation 119

Run the sample app to verify that there are no build or compile errors. In your command
shell, navigate to the sample app folder at \Chapter05\missing-validation\
before\OnlineBankingApp and run the following command:

dotnet build

The dotnet build command will build our sample OnlineBankingApp project and
its dependencies.

How to do it…
Let's take a look at the steps for this recipe:

1. From the starting exercise folder, launch Visual Studio Code by typing in the
following command:

code .

2. Under the wwwroot directory, right-click and select New File. Name the file
Knowledgebase.xsd:

Figure 5.1 – Adding a new file

120 XML External Entities

3. Add the following markup to the Knowledgebase.xsd file (the entirety of this
xsd file can be found in the completed exercise folder, under \Chapter05\
missing-validation\after\OnlineBankingApp):

<?xml version="1.0" encoding="utf-8"?>

<xs:schema attributeFormDefault="unqualified"
elementFormDefault="qualified" xmlns:xs="http://www.
w3.org/2001/XMLSchema">

 <xs:element name="knowledgebase">

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs="unbounded"
 name="knowledge">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="topic">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">
 <xs:attribute name="lang"
 type="xs:string" use="required"

 />

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

// markup removed for brevity

4. Now that we have created the schema, we will use this xsd file to validate the
format of Knowledgebase.xml, which contains the data for our knowledge base.

5. Open \Services\KnowledgebaseServices.cs and add a reference to the
following namespaces:

using System.Xml.Schema;

using System.IO;

Enabling XML validation 121

6. These namespaces allow you to use the classes you need to validate the XML schema
and provide some methods for file input-output operations on XML files.

7. We will need to refactor code in the Search method so that it can use the schema
we created in step 3. Insert the following code just after where the webroot variable
is declared and just before where file is declared:

var webRoot = _env.WebRootPath;

var schemaSet = new XmlSchemaSet();

var xsdFile = System.IO.Path.Combine(webRoot,
 "Knowledgebase.xsd");

using (System.IO.FileStream stream =
 File.OpenRead(xsdFile))

{

 schemaSet.Add(XmlSchema.Read(stream, (s, e) =>

 {

 var x = e.Message;

 }));

}

XmlReaderSettings settings = new XmlReaderSettings();

settings.ValidationType = ValidationType.Schema;

settings.Schemas = schemaSet;

settings.DtdProcessing = DtdProcessing.Ignore;

var file = System.IO.Path.Combine(webRoot,
 "Knowledgebase.xml");

8. Declare an XmlReader object that will take file and settings as arguments
from the preceding lines of code:

XmlReader reader = XmlReader.Create(file, settings);

122 XML External Entities

9. Modify this line of code so that the XmlDocument instance will load the reader
instead of the file:

xmlDoc.Load(reader);

The XmlDocument object now loads XmlReader, which includes schema validation.

How it works…
The knowledgebase.xsd file contains the valid elements and attributes that
are allowed in knowledgebase.xml. This XSD also describes the expected data
type of the elements. For instance, <xs:element name="sensitivity"
type="xs:string" /> expects that the sensitivity element is of the string
data type. The knowledgebase.xml file is expected to follow this format. Otherwise,
the validation process will fail.

We added a reference to the System.Xml.Schema namespace in \Services\
KnowledgebaseServices.cs, which holds the classes we need for validation. From
this reference, we used the XmlSchemaSet class to store the knowledgebase.xsd
schema. The XmlSchemaSet class can contain more than one schema, but we will only
use one for our recipe.

Then, we created a FileStream object with the File.OpenRead(xsdFile)
method. The xsdFile object represents knowledgebase.xsd and is passed to File.
OpenRead as an argument. The FileStream object is then supplied to the XmlSchema.
Read method, adding knowledgebase.xsd to the schemaSet collection.

The XmlReaderSettings property's ValidationType is assigned with a value of
ValidationType.Schema, which sets the new XmlReader to perform validation
using the XSD schema.

With the XmlReader.Create method, we created a reader instance of XmlReader
using the XmlReaderSettings property we defined in the preceding lines. Lastly, we
passed the reader object to the XmlDocument instance for the application to start parsing
the knowledgebase.xml file.

Note
Similar to XML, XSDs can also have external references and can come from
untrusted resources. Additional verification is needed to ensure that the source
is trusted and that you are not using malicious strings from a rogue XSD.

Enabling XML validation 123

There's more…
Another form of XML is eXtensible Stylesheet Language Transformation, or XSLT for
short. This language is used to transform XML documents into other document formats,
such as plain text files or HTML.

You can load an XSLT into your ASP.NET web application by using the
XslCompiledTransform class from the System.Xml.Xsl namespace. Call the
Load and Transform methods to load the XSLT and transform it into a certain format:

XslCompiledTransform xslt = new XslCompiledTransform();

xslt.Load("Knowledgebase.xsl");

xslt.Transform("Knowledgebase.xml", "Knowledgebase.html");

However, just like with any form of input, XSLT can be tainted or compromised to load
malicious XXEs. To safely compile XSLT, pass a null XmlResolver to stop resolving
external resources and set the XmlReaderSetting's DtdProcessing to Ignore.

To prevent XSLTs from embedding script blocks and using the dangerous document()
function, we set the xsltSetting's EnableScript and EnableDocumentFunction
to false:

XslCompiledTransform xslt = new XslCompiledTransform();

XmlReaderSettings settings = new XmlReaderSettings();

settings.DtdProcessing = DtdProcessing.Ignore;

var file = System.IO.Path.Combine(webRoot,
 "Knowledgebase.xsl");

XmlReader reader = XmlReader.Create(file, settings);

XsltSettings xsltSettings = new XsltSettings();

xsltSettings.EnableDocumentFunction = false;

xsltSettings.EnableScript = false;

xslt.Load(reader, xsltSettings, null);

Note
By default, the EnableDocumentFunction and EnableScript
properties are disabled and set to false.

Configuring these objects with proper settings before passing them into the overloaded
Load method helps prevent XSLT injection and XXE attacks.

124 XML External Entities

Fixing XXE injection with XmlDocument
The XmlDocument class has been the de facto XML parser for .NET applications. This
XML parser object is often used to load, modify, and delete XML in-memory. It has an
XmlResolver property, which enables the use of external XML resources such as DTDs.

Document Type Definition, most commonly known as DTD, is similar to XML files
but holds information about an XML's composition or structure. It can have an ENTITY
element, which can be internal or external. When an XDocument parses an XML file with
a DTD, this XML parser will process it, along with its ENTITY declarations.

Let's look at some content of an XML file with malicious injected ENTITY declarations.
This is a known classic example of the Billion Laughs attack, which is a Denial-of-Service
(DoS) attack that targets XML parsers such as XmlDocument. Loading this XML will
cause your ASP.NET Core web app to crash or become unresponsive:

<?xml version="1.0"?>

<!DOCTYPE lolz [

<!ENTITY lol "lol">

<!ENTITY lol2 "&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&l
ol;">

<!ENTITY lol3 "&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;
&lol2;&lol2;">

]>

<lolz>&lol3;</lolz>

Also, accidentally setting your unsafe custom XmlResolver could allow DTDs from an
untrusted source or host to be included in knowledgebase.xml parsed, potentially
leading to XXE injections.

This recipe will show you how to disable DTDs, thus making your code safer when
parsing XML.

Getting ready
Using Visual Studio Code, open the sample Online Banking app folder at \Chapter05\
xxe-injection01\before\OnlineBankingApp\.

Fixing XXE injection with XmlDocument 125

How to do it…
Let's take a look at the steps for this recipe:

1. From the starting exercise folder, launch Visual Studio Code by typing the
following command:

code .

2. Open the Services\KnowledgebaseService.cs file and notice the line that
gets assigned to the XmlUrlResolver object:

XmlUrlResolver resolver = new XmlUrlResolver();

XmlDocument xmlDoc = new XmlDocument();

xmlDoc.XmlResolver = resolver;

xmlDoc.Load(file);

3. Assign the XmlResolver property of xmlDoc to null:

XmlDocument xmlDoc = new XmlDocument();

xmlDoc.XmlResolver = null;

xmlDoc.Load(file);

Setting XmlResolver to null will disable DTDs from loading inside the
knowledgebase.xml file.

Note
When an external entity or DTD exists in an XML document, an
XMLException is thrown when your application tries to parse the XML.

How it works…
In our OnlineBankApp sample application, an XMLResolver gets instantiated and
assigned to the xmlDoc's XmlResolver property. Setting a value for the XmlResolver
property indicates that loading DTDs or resolving external entity references is allowed.

However, to mitigate this vulnerability in code, we must nullify XmlResolver
references, thus preventing nefarious DTDs from being loaded.

126 XML External Entities

There's more…
If it's necessary to parse DTDs in your ASP.NET Core web application, you must
use the XmlSecureResolver class and assign its instance to the XmlResolver
property of XmlDocument. XmlSecureResolver is a secure implementation of the
XmlResolver class that limits access to resources.

To achieve safe DTD parsing with this class, define the allowed resource by simply
passing the URL as the second argument of the XmlSecureResolver constructor. The
https://localhost:5001 URL is explicitly declared to indicate that we only allow
resources that come from this URL:

XmlSecureResolver resolver =
 new XmlSecureResolver(new XmlUrlResolver(),
 "https://localhost:5001");

XmlDocument xmlDoc = new XmlDocument();

xmlDoc.XmlResolver = resolver;

xmlDoc.Load(file);

The XmlSecureResolver object wraps the XmlResolver object with a
PermissionSet that specifies the access that's allowed. Internally, it makes a call to the
PermitOnly method, which, as its name implies, sets permissions that do not cause the
invoking code to fail.

Fixing XXE injection with XmlTextReader
Similar to XmlDocument, another fast, non-cached, forward-only parser to XML option
is XmlTextReader. A major drawback of this high-performance parser is its lack of data
validation. XmlTextReader also allows you to process DTDs by default, which can be a
concern if your XML sources are untrusted.

This recipe will show you how to disable DTD processing with XmlTextReader.

Getting ready
Using Visual Studio Code, open the sample Online Banking app folder at \Chapter05\
xxe-injection02\before\OnlineBankingApp\.

https://localhost:5001
https://localhost:5001

Fixing XXE injection with XmlTextReader 127

How to do it…
Let's take a look at the steps for this recipe:

1. From the starting exercise folder, launch Visual Studio Code by typing the
following command:

code .

2. Open the Services\KnowledgebaseService.cs file. This version of the
OnlineBankingApp sample solution is using XmlTextReader to parse the
Knowledgebase.xml file:

XmlTextReader xmlReader = new XmlTextReader(file);

xmlReader.DtdProcessing = DtdProcessing.Parse;

XPathDocument xmlDoc = new XPathDocument(xmlReader);

Assign the DtdProcessing property of xmlReader to the enum value of
DtdProcessing.Ignore:

XmlTextReader xmlReader = new XmlTextReader(file);

xmlReader.DtdProcessing = DtdProcessing.Ignore;

XPathDocument xmlDoc = new XPathDocument(xmlReader);

Setting the DtdProcessing property to DtdProcessing.Ignore will prevent
DTDs from being processed and disregard the DOCTYPE tag. DOCTYPE is a form of
markup that informs the browser of what version of HTML the document is using.

How it works…
Follow these steps:

1. When the XmlTextReader's DtdProcessing property is set to an enum value of
DtdProcessing.Parse, this designates that DTDs will be processed. Allowing
DTDs to be processed could be dangerous if a bad actor injects malicious entity
reference nodes into the knowledgebase.xml file.

2. Specifying the DtdProcessing property of DtdProcessing.Ignore makes
processing DTDs impossible, hence making your code secure.

128 XML External Entities

Fixing XXE injection with LINQ to XML
Language-Integrated Query or LINQ is an API within the .NET framework that provides
query-like syntax for writing declarative code. LINQ comes in different flavors, and LINQ
to XML is one of them. LINQ to XML is an in-memory XML parser that allows you to
perform XML transformations – from modifying elements and nodes to serialization.

In general, LINQ to XML is safe from XXE injection. The XDocument class has DTD
processing disabled by default. However, this can be unsafe when it's instantiated with
an insecure XML parser such as XmlReader. This recipe will show you how to find a
security flaw in your LINQ to XML code and fix the bug by disabling DTD processing.

Getting ready
Using Visual Studio Code, open the sample Online Banking app folder at \Chapter05\
xxe-injection03\before\OnlineBankingApp\.

You can perform the steps for fixing XXE injections with LINQ to XML in this folder.

How to do it…
Let's take a look at the steps for this recipe:

1. From the starting exercise folder, launch Visual Studio Code by typing the
following command:

code .

2. Open the Services\KnowledgebaseService.cs file. This version of the
OnlineBankingApp sample solution is using Linq to XML to parse the
Knowledgebase.xml file.

Notice the use of the XDocument class and the query-like method of parsing XML:

XmlReaderSettings settings = new XmlReaderSettings();

settings.DtdProcessing = DtdProcessing.Parse;

settings.MaxCharactersFromEntities = 1024;

settings.MaxCharactersInDocument = 2048;

XmlReader reader = XmlReader.Create(file, settings);

XDocument xmlDoc = XDocument.Load(reader);

Fixing XXE injection with LINQ to XML 129

var query = from i in xmlDoc.Element("knowledgebase")

 .Elements("knowledge")

 where

 (i.Element("topic").ToString()
 .Contains(input) == true ||

 i.Element("description").ToString()
 .Contains(input) == true) &&

 i.Element("sensitivity").ToString()
 .Contains("Public") == true

 select new

 {

 Topic = (string)i.Element("topic"),

 Description =

 (string)i.Element("description")

 };

3. The Create method of the XmlReader class is invoked with a vulnerable
XmlReaderSettings. As we saw in the previous recipes, we must disable DTD
processing. This can be done by setting DtdProcessing to an enum value of
DtdProcessing.Prohibit:

XmlReaderSettings settings = new XmlReaderSettings();

settings.DtdProcessing = DtdProcessing.Prohibit;

settings.MaxCharactersFromEntities = 1024;

settings.MaxCharactersInDocument = 2048;

4. Changing the DtdProcessing property of the XmlReaderSettings object
from DtdProcessing.Parse to DtdProcessing.Prohibit will prevent
DTD processing, and it will also throw an XmlException in the presence of a
DTD in the XML.

130 XML External Entities

5. Now, we must assign MaxCharactersFromEntities of the
XmlReaderSettings instance with a value of 1024:

XmlReaderSettings settings = new XmlReaderSettings();

settings.DtdProcessing = DtdProcessing.Prohibit;

settings.MaxCharactersFromEntities = 1024;

settings.MaxCharactersInDocument = 2048;

6. Assigning MaxCharactersFromEntities will restrict the size of the expanded
entities and prevent abuse.

7. We must also explicitly assign MaxCharactersInDocument of the
XmlReaderSettings object with a value of 2048:

XmlReaderSettings settings = new XmlReaderSettings();

settings.DtdProcessing = DtdProcessing.Prohibit;

settings.MaxCharactersFromEntities = 1024;

settings.MaxCharactersInDocument = 2048;

Assigning the MaxCharactersInDocument property with a value of 2048
indicates that the maximum allowable number of characters in an XML file is 2048.
Again, this helps prevent potential abuse from an attacker.

Note
Add a try-catch statement to handle the possibility of an
XmlException. Always practice secure error handling in your code. The
last chapter of this book will cover this best practice in detail.

How it works…
In the KnowledgebaseService class, we have a Search method that performs a
search on the entire Knowledgebase.xml file, which contains the Help inquiry data.
When a user hits search on the web page, it invokes this method and creates an instance of
both the XmlReader and XDocument classes.

Fixing XXE injection with LINQ to XML 131

XDocument is instantiated with XmlReader. The properties of XmlReader are based
on the Knowledgebase XML data and its XmlReaderSettings. While this is an
efficient way of populating the parser with the XML data, XmlReaderSettings of
XmlReader have the DtdProcessing property set to DtdProcessing.Parse, thus
setting the XDocument object with an unsafe parser. This setting causes the code to be
vulnerable to XXE injection.

To remediate this, we must choose a better property value – either DtdProcessing.
Ignore or DtdProcessing.Prohibit – and assign it to DtdProcessing of
XmlReaderSettings. Either value can prevent risky DTD processing. We covered
the DtdProcessing.Ignore property value in a previous recipe, so we picked
DtdProcessing.Prohibit here.

To manage the occurrence of a DTD occurring via your XML parser, pick the
DtdProcessing.Prohibit property value over DtdProcessing.Ignore. Having
DtdProcessing.Prohibit raises XmlExceptions that you can handle with a
try-catch block, while DtdProcessing.Ignore completely ignores the DTDs.

Suppose an attacker was able to input an arbitrary XML file with a huge amount of data.
This could cause the system to consume many computing resources that could lead to a
DOS attack. We can prevent this from happening by assigning a reasonable value to both
the MaxCharactersFromEntities and MaxCharactersInDocument properties
of XmlReaderSettings. These properties limit the expansion size of the XML, along
with its elements and attributes.

6
Broken Access

Control
Authorization is just as significant and essential as authentication. It defines what an
authenticated user can perform and execute, and resources and web pages need to
have defined privileges to limit unauthorized access. Permission bypass and missing
or improper access controls are some of the broken access control vulnerabilities
discovered in an ASP.NET Core web application.

In this chapter, we're going to cover the following recipes:

• Fixing insecure direct object references (IDOR)

• Fixing improper authorization

• Fixing missing access control

• Fixing open redirect vulnerabilities

By the end of this chapter, you will have learned how to use the built-in authorization
mechanism in ASP.NET Core. You will properly implement role-based authorization to
prevent unauthorized access to resources in your web application. Also, you will see how
to utilize safer redirection methods to prevent open redirection attacks.

134 Broken Access Control

Technical requirements
This book was written and designed to use with Visual Studio Code, Git, and .NET
5.0. Code examples in recipes are presented in ASP.NET Core Razor pages. The sample
solution also uses SQLite as the database (DB) engine for a more simplified setup. The
complete code examples for this chapter are available at https://github.com/
PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/main/
Chapter06.

Fixing IDOR
When accessing a record in a DB, we often use a form of identifier (ID) that uniquely
identifies a dataset. The DB design and structure rely on these keys, and sometimes
they can be easily guessed or enumerated. Adversaries can find these identifiers in your
requests to your ASP.NET Core web pages. If not adequately safeguarded with access
controls, a malicious user can view, modify, or— at worst—delete these records.

In this recipe, we will discover the IDOR vulnerability in our code and mitigate the
problem by using the identity of the authenticated customer.

Getting ready
For the recipes of this chapter, we will need the sample Online Banking app.

Open the command shell and download the sample Online Banking app by cloning
the ASP.NET-Core-Secure-Coding-Cookbook repository, as follows:

git clone https://github.com/PacktPublishing/ASP.NET-Core-
Secure-Coding-Cookbook.git

Run the sample app to verify that there are no build or compile errors. In your command
shell, navigate to the sample app folder at \Chapter06\insecure-direct-object-
references\before\OnlineBankingApp and run the following command:

dotnet build

The dotnet build command will build our sample OnlineBankingApp project
and its dependencies.

Let's see in action how IDOR vulnerabilities can be exploited.

https://github.com/PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/main/Chapter06
https://github.com/PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/main/Chapter06
https://github.com/PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/main/Chapter06

Fixing IDOR 135

Testing IDOR
Here are the steps:

1. Navigate to Terminal | New Terminal in the menu or do this by simply pressing
Ctrl + Shift + ' in VS Code.

2. Type the following command in the terminal to build and run the sample app:

dotnet run

3. Open a browser and go to https://localhost:5001/Fundtransfers/
Details?id=1.

4. Log in using the following credentials:

a) Email: stanley.s.jobson@lobortis.ca

b) Password: rUj5jtV8jrTyHnx!

5. Once authenticated, you will be redirected to Stanley's fund transfer details page,
as shown in the following screenshot:

Figure 6.1 – Fund transfer details page

136 Broken Access Control

6. Click on Logout to log out from the sample solution, as shown in the
following screenshot:

Figure 6.2 – Logout link

7. Go to https://localhost:5001/FundTransfers/Details?id=1.

8. Now, log in using Axl's credentials:

a) Email: axl.l.torvalds@ut.net

b) Password: 6GKqqtQQTii92ke!

9. Notice in the following screenshot that Axl is able to see Stanley's fund transfer
details page:

Figure 6.3 – Unauthorized access
The preceding test shows that this page is susceptible to an IDOR security bug.

In this recipe, we will fix the IDOR vulnerability in code by adding a validation check
to ascertain whether a specific user can see the fund transfer details page.

Fixing IDOR 137

How to do it…
Let's take a look at the steps for this recipe:

1. From the starting exercise folder, launch VS Code by typing the following command:

code .

2. Open Models\FundTransfer.cs and change the ID property from int to
a Guid type. Globally unique identifiers (GUIDs) are unique identifiers and are
harder to guess:

 [Key]

 public Guid ID { get; set; }

Annotating the ID property with the Key attribute makes this property the primary
key for Entity Framework to identify.

3. Under the Services folder, create a new file and name it
FundTransferIsOwnerAuthorizationHandler.cs.

4. In FundTransferIsOwnerAuthorizationHandler.cs, add references to
the following namespaces:

using Microsoft.AspNetCore.Authorization;

using Microsoft.AspNetCore.Identity;

using System.Threading.Tasks;

using OnlineBankingApp.Models;

5. Next, define a FundTransferIsOwnerAuthorizationHandler class that
inherits from AuthorizationHandler:

namespace OnlineBankingApp.Authorization {

 public class
 FundTransferIsOwnerAuthorizationHandler
 : AuthorizationHandler<
 FundTransferOwnerRequirement,
 FundTransfer>{

 }

}

An authorization handler—as the name implies—handles authorization, and in our
preceding highlighted code, it determines whether a user will have access or not.

138 Broken Access Control

6. Using dependency injection (DI), use the UserManager service to be able to
retrieve the user ID information from the currently logged-in customer:

 UserManager<Customer> _userManager;

 public FundTransferIsOwnerAuthorizationHandler
 (UserManager<Customer>
 userManager){

 _userManager = userManager;

 }

7. Inside the FundTransferIsOwnerAuthorizationHandler class, define
a Task object that will handle the authorization check using the passed
requirement and resource arguments:

 protected override Task

 HandleRequirementAsync(AuthorizationHandlerContext
 context,

 FundTransferOwnerRequirement requirement,

 FundTransfer resource){

 if (context.User == null || resource == null)
{

 return Task.CompletedTask;

 }

 if (resource.CustomerID ==
 _userManager.GetUserId
 (context.User)){

 context.Succeed(requirement);

 }

 return Task.CompletedTask;

 }

 }

8. Define a FundTransferOwnerRequirement class that will inherit from the
IauthorizationRequirement empty marker interface within the same
FundTransferIsOwnerAuthorizationHandler.cs file:

public class FundTransferOwnerRequirement :
 IAuthorizationRequirement { }

}

Fixing IDOR 139

FundTransferOwnerRequirement doesn't need to have any properties
or data, so we will leave the class empty.

9. Open Startup.cs and include the following namespace references:

using OnlineBankingApp.Authorization;

using Microsoft.AspNetCore.Authorization

.Infrastructure;

10. In ConfigureServices, add a new authorization policy and register the
authorization handler we created in Step 3:

services.AddAuthorization(options => {

 options.AddPolicy("Owner", policy =>

 policy.Requirements.Add(new
 FundTransferOwnerRequirement()));

});

services.AddScoped<IAuthorizationHandler,
 FundTransferIsOwnerAuthorizationHandler>();

11. Next, open the \Pages\FundTransfers\Details.cshtml.cs file and add
the following namespace references:

using Microsoft.AspNetCore.Authorization;

using Microsoft.AspNetCore.Identity;

12. Through DI, add the following highlighted code from the authorization service
we registered in Step 5 into the DetailsModel constructor:

protected IAuthorizationService _authorizationService
 { get; }

protected UserManager<Customer> _userManager { get; }

public DetailsModel(OnlineBankingApp.Data
 .OnlineBankingAppContext context,

 IAuthorizationService authorizationService,

 UserManager<Customer> userManager)

{

 _context = context;

 _userManager = userManager;

 _authorizationService = authorizationService;

}

140 Broken Access Control

13. Refactor the whole code under the OnGetAsync page handler:

public async Task<IActionResult> OnGetAsync(Guid? id)

{

 if (!id.HasValue){

 return NotFound();

 }

 if (!User.Identity.IsAuthenticated){

 return Challenge();

 }

 fundTransfer = await _context.FundTransfer

 .Where(f => f.ID == id)

 .Include(f => f.Customer)

 .OrderBy(f => f.TransactionDate)

 .FirstOrDefaultAsync<FundTransfer>();

 var isAuthorized = await
 _authorizationService.AuthorizeAsync
 (User, fundTransfer,"Owner");

 if (!isAuthorized.Succeeded){

 return Forbid();

 }

 return Page();

}

With the steps we performed, we have implemented a more robust way
of authorization using a policy-based authorization approach.

Repeat the steps in the Testing IDOR section to verify that the fix worked, but
instead of using the IDOR-vulnerable Uniform Resource Locator (URL), go to
https://localhost:5001/FundTransfers/Details?id=7c281d46-
f2ab-4027-a4d4-3bb97a60012c, and you should see the following message
on your screen:

https://localhost:5001/FundTransfers/Details?id=7c281d46-f2ab-4027-a4d4-3bb97a60012c
https://localhost:5001/FundTransfers/Details?id=7c281d46-f2ab-4027-a4d4-3bb97a60012c

Fixing IDOR 141

Figure 6.4 – Access denied message
Notice that Axl's account no longer has access to Stanley's fund transfer details page
and was redirected to the Access denied page.

How it works…
First, we change our FundTransfer primary key into a type that cannot be guessed
easily. We use the Guid type to allow us to have a unique ID (UID) as our Key for each
fund transfer:

 [Key]

 public Guid ID { get; set; }

We then implement policy-based authorization by first creating an authorization handler.
Inside the FundTransferIsOwnerAuthorizationHandler class is the code
that determines if the resource's (fund transfer's) CustomerID matches that of the
customer's user ID. If the requirement is satisfied, a call to the Succeed method of
AuthorizationHandlerContext indicates a successful evaluation:

if (resource.CustomerID ==
 _userManager.GetUserId(context.User)){

 context.Succeed(requirement);

}

The authorization handler is registered as a service, and a preconfigured policy is added
using the AddScoped and the AddPolicy methods respectively:

services.AddAuthorization(options => {

 options.AddPolicy("Owner", policy =>

 policy.Requirements.Add(new
 FundTransferOwnerRequirement()));

});

142 Broken Access Control

services.AddScoped<IAuthorizationHandler,
 FundTransferIsOwnerAuthorizationHandler>();

We utilize these services via DI in our DetailsModel page model.

Fixing improper authorization
Incorrectly using ASP.NET Core's authorization components could lead to insecure code.
The authorization feature offers a simple and declarative way to impose authorization,
but mistakes can occur in implementing this. In this recipe, we will correctly implement
the role-based authorization feature of ASP.NET Core in our sample Online Banking
application.

Run the sample app to verify that there are no build or compile errors. In your
command shell, navigate to the sample app folder at \Chapter06\improper-
authorization\before\OnlineBankingApp.

Let's see in action how improper authorization can lead someone to use functions
a customer is not authorized to use.

Testing improper authorization
Here are the steps:

1. Navigate to Terminal | New Terminal in the menu or do this by simply pressing
Ctrl + Shift + ' in VS Code.

2. Type the following command in the terminal to build and run the sample app:

dotnet run

3. Open a browser and go to https://localhost:5001/FundTransfers/
Create.

4. Log in using the following credentials:

a) Email: axl.l.torvalds@ut.net

b) Password: 6GKqqtQQTii92ke!

5. Once authenticated, you will be redirected to a page where you can make a
fund transfer.

Fixing improper authorization 143

Our sample Online Banking solution had only created Axl's customer account; thus,
his roles are Customer and PendingCustomer. Until Axl's account moves into an
ActiveCustomer role, he shouldn't be able to make a fund transfer.

Getting ready
We will use the Online Banking app we used in the previous recipe. Using VS Code, open
the sample Online Banking app folder at \Chapter06\missing-access-control\
before\OnlineBankingApp\.

You can also perform the steps in this folder for Fixing improper authorization recipe.

How to do it…
Let's take a look at the steps for this recipe:

1. From the starting exercise folder, launch VS Code by typing the following command:

code .

2. Open the \Pages\FundTransfers\Create.cshtml.cs file and notice the
Authorize annotation on top of the CreateModel class:

namespace OnlineBankingApp.Pages.FundTransfers

{

 [Authorize(Roles = "Customer,ActiveCustomer")]

 public class CreateModel : AccountPageModel

 {

 private readonly OnlineBankingApp.Data
 .OnlineBankingAppContext _context;

 public CreateModel (OnlineBankingApp.Data
 .OnlineBankingAppContext context)

 {

 _context = context;

 }

// code removed for brevity

144 Broken Access Control

The Authorize annotation appears to have been used properly, but not quite. The
CreateModel page model would only be open to customers who have a Customer
OR an ActiveCustomer role. Setting the Authorize annotation in this format
means customers with either role can send money, which is not what we expect based
on our business rule, allowing only active customers to make fund transfers.

3. Change the way the Authorize annotation is formatted using the following code:

namespace OnlineBankingApp.Pages.FundTransfers

{

 [Authorize(Roles = "Customer")]

 [Authorize(Roles = "ActiveCustomer")]

 public class CreateModel : AccountPageModel

 {

 private readonly OnlineBankingApp.Data
 .OnlineBankingAppContext _context;

 Public CreateModel(OnlineBankingApp.Data
 .OnlineBankingAppContext context)

 {

 _context = context;

 }

// code removed for brevity

4. Navigate to Terminal | New Terminal in the menu or do this by simply pressing
Ctrl + Shift + ' in VS Code.

5. Type the following command in the terminal to build and run the sample app:

dotnet run

6. Open a browser and go to https://localhost:5001/Fundtransfers/
Create.

7. Log in with the following credentials:

a). Email: axl.l.torvalds@ut.net

b). Password: 6GKqqtQQTii92ke!

8. Notice that you will be redirected to the Access denied page, as shown in the
following screenshot:

Fixing missing access control 145

Figure 6.5 – Access denied page

Setting the AuthorizeAttribute property configures the necessary authorization
in the CreateModel page model. This requires that an authenticated user has both
Customer AND ActiveCustomer roles.

How it works…
Declarative role checks enable web developers to add authorization in a page model easily,
but there is a big difference between the annotations. For example, have a look at this one:

 [Authorize(Roles = "Customer,ActiveCustomer")]

Now, contrast it with these annotations:

 [Authorize(Roles = "Customer")]

 [Authorize(Roles = "ActiveCustomer")]

The first one indicates that an authenticated user with either a Customer or an
ActiveCustomer role can access the fund transfer page. The latter specifies that
a customer needs both roles to have the authority to send money.

Tip
A policy-based authorization check is also a necessary technique to accompany
declarative authorization, to ensure a user is authorized to view a fund transfer.
Please refer to the Fixing IDOR recipe for more information and details on how
to implement this type of authorization.

Fixing missing access control
An access control vulnerability can allow a malicious actor to access your ASP.NET Core
web application just by simply registering an account and getting authenticated. This
security flaw can lead to unauthorized access to sensitive information.

146 Broken Access Control

In this recipe, we add roles to the sample Online Banking app to integrate a
policy-based authorization.

Getting ready
We will use the Online Banking app we used in the previous recipe. Using VS Code, open
the sample Online Banking app folder at \Chapter06\missing-access-control\
before\OnlineBankingApp\.

You can also perform the steps in this folder for the Fixing missing access control recipe.

How to do it…
Let's take a look at the steps for this recipe.

1. From the starting exercise folder, launch VS Code by typing the following command:

code .

2. Open the \Pages\FundTransfers\Create.cshtml.cs file and notice the
Authorize annotation on top of the CreateModel class:

namespace OnlineBankingApp.Pages.FundTransfers

{

 [Authorize]

 public class CreateModel : AccountPageModel

 {

 private readonly OnlineBankingApp.Data
 .OnlineBankingAppContext _context;

 public CreateModel(OnlineBankingApp.Data
 .OnlineBankingAppContext context)

 {

 _context = context;

 }

// code removed for brevity

Fixing missing access control 147

The Authorize attribute in the CreateModel class provides the
most basic authorization indicating that this Razor pages model requires
authorization. However, a lack of defined roles as to which types of customers can
make a fund transfer opens up an opportunity for an adversary to abuse this.

3. We need to implement policy-based authorization with criteria defined based on
the current roles that our customer has. Under the Models folder, create a new file,
name it PrincipalPermission.cs, and add the following code:

using System;

using System.Collections.Generic;

using Microsoft.AspNetCore.Authorization;

using OnlineBankingApp.Models;

namespace OnlineBankingApp.Authorization{

 public static class PrincipalPermission{

 public static List
 <Func<AuthorizationHandlerContext, bool>>
 Criteria = new List<Func
 <AuthorizationHandlerContext, bool>>

 {

 CanCreateFundTransfer

 };

 public static bool CanCreateFundTransfer
 (this AuthorizationHandlerContext ctx){

 return ctx.User.IsInRole
 (Role.ActiveCustomer.ToString());

 }

 }

}

In the preceding code snippet, we used Func to fulfill a policy. Func is
a delegate that will point to our CanCreateFundTransfer method. We also
created an instance of List<Func<AuthorizationHandlerContext,
bool>> to configure a Criteria list for our policy. We defined the
CanCreateFundTransfer method as one of our criteria, indicating that
only customers with an ActiveCustomer role can create fund transfers.

148 Broken Access Control

Note
You can define more criteria for a customer to be able to submit fund transfers,
but to simplify the example, we will use the customer's current role.

4. Open Startup.cs, and in ConfigureServices, add a reference to
OnlineBankingApp.Authorization, which is the namespace for
our PrincipalPermission class:

using OnlineBankingApp.Authorization;

5. Include the following highlighted code in the authorization middleware:

services.AddAuthorization(options =>

{

 options.FallbackPolicy = new
 AuthorizationPolicyBuilder()

 .RequireAuthenticatedUser()

 .Build();

 foreach (var criterion in PrincipalPermission
 .Criteria)

 {

 options.AddPolicy(criterion.Method.Name,

 policy =>

 policy.RequireAssertion(criterion));

 }

});

We loop into each of the criteria lists we defined and create an authorization policy
for each.

6. Open Pages\FundTransfers\Create.cshtml.cs and annotate the
CreateModel page model with the highlighted code:

namespace OnlineBankingApp.Pages.FundTransfers

{

 [Authorize(Policy =
 nameof(PrincipalPermission
 .CanCreateFundTransfer))]

 public class CreateModel : AccountPageModel

Fixing missing access control 149

 {

// code removed for brevity

Placing the preceding highlighted attribute will apply the authorization policy that
we added to the authorization service.

7. Navigate to Terminal | New Terminal in the menu or do this by simply pressing
Ctrl + Shift + ' in VS Code.

8. Type the following command in the terminal to build and run the sample app:

dotnet run

9. Open a browser and go to https://localhost:5001/Fundtransfers/
Create.

10. Log in with the following credentials:

a) Email: axl.l.torvalds@ut.net

b) Password: 6GKqqtQQTii92ke!

Notice that the user is redirected to the https://localhost:5001/Identity/
Account/AccessDenied?ReturnUrl=%2FFundTransfers%2FCreate
Access denied URL:

Figure 6.6 – Access denied page for users with PendingCustomer roles
Axl is pre-assigned a PendingCustomer role (see Models\SeedData.cs),
which prevents him from submitting a fund transfer based on the policy we created.

150 Broken Access Control

How it works…
The policy-based approach gives ASP.NET Core web developers the granularity needed
to define authorization matrices. In our preceding recipe, we used a simple example of
using roles as criteria for our authorization policy. In fulfilling a policy, we supplied a
List of Func<AuthorizationHandlerContext, bool> that holds each of the
Criteria we defined:

public static List<Func<AuthorizationHandlerContext, bool>>
 Criteria = new List<Func
 <AuthorizationHandlerContext, bool>>

{

 CanCreateFundTransfer,

 CanViewFundTransfer

};

The Criteria represent a delegate that will be used to set the conditional access. In our
case, we will use the customer's role as a criterion, but you can expand it if necessary:

public static bool CanCreateFundTransfer(this
 AuthorizationHandlerContext ctx)

{

 return ctx.User.IsInRole(Role.ActiveCustomer
 .ToString());

}

Finally, we use the RequireAssertion policy to build our policies with our List
of Criteria:

foreach (var criterion in PrincipalPermission.Criteria)

{

 options.AddPolicy(criterion.Method.Name,

 policy => policy.RequireAssertion(criterion));

}

Fixing open redirect vulnerabilities 151

Fixing open redirect vulnerabilities
A user can be tricked into clicking a link generated from your ASP.NET Core web
application, but this can eventually redirect them to a malicious website. Open redirection
can happen when a user-controlled parameter determines that the URL to redirect to has
no validation or whitelisting. In this recipe, we will remediate the risk of open redirect
attacks in code by utilizing safer redirect methods.

First, let's take a look at how an open redirect vulnerability is exploited.

Getting ready
We will use the Online Banking app we used in the previous recipe. Using VS Code, open
the sample Online Banking app folder at \Chapter06\unvalidated-redirect\
before\OnlineBankingApp\.

You can also perform the steps in this folder for the Fixing open redirect vulnerability recipe.

Testing open redirection
Here are the steps:

1. Navigate to Terminal | New Terminal in the menu or do this by simply pressing
Ctrl + Shift + ' in VS Code.

2. Type the following command in the terminal to build and run the sample app:

dotnet run

3. Open a browser and go to https://localhost:5001/Identity/Account/
Login?ReturnUrl=https://www.packtpub.com.

4. Log in using the following credentials:

a) Email: stanley.s.jobson@lobortis.ca

b) Password: rUj5jtV8jrTyHnx!

5. Once authenticated, you will be redirected to the Packt Publishing website.

The preceding test shows that this page is vulnerable to an open redirect attack.

152 Broken Access Control

How to do it…
Let's take a look at the steps for this recipe.

1. From the starting exercise folder, launch VS Code by typing the following command:

code .

2. Open Areas\Identity\Pages\Account\Login.cshtml.cs and notice
the Redirect method call:

public async Task<IActionResult> OnPostAsync(string
 url = null)

{

// code removed for brevity

 var signInResult = await _signInManager
 .PasswordSignInAsync(Input.Email,
 Input.Password, Input.RememberMe,
 lockoutOnFailure: false);

 if (signInResult .Succeeded)

 {

 _log.LogInformation("User logged in.");

 if (string.IsNullOrEmpty(HttpContext
 .Session.GetString(SessionKey)))

 {

 HttpContext.Session.SetString(SessionKey,
 Input.Email);

 }

 return Redirect(url);

 }

// code removed for brevity

The Redirect method, when invoked, sends a temporary redirect response to
the browser. With no URL validation in place, the URL redirection can be abused
and sent to a website controlled by an attacker whenever a tricked customer clicks
a malicious URL.

Fixing open redirect vulnerabilities 153

3. Another security flaw found in this sample Online Banking app is in its logout page
redirection. Open Areas\Identity\Pages\Account\Logout.cshtml.cs
and go to the OnGet method of the page method:

public async Task<IActionResult> OnGet(string url =
 null)

{

 await _signInManager.SignOutAsync();

 _log.LogInformation("User logged out.");

 if (url != null)

 {

 return Redirect(url);

 }

 else

 {

 return RedirectToPage();

 }

}

// code removed for brevity

Again, the redirection is invalidated, and an adversary can craft a URL that could
redirect to a hacker-controlled website delivered through phishing or some other
deceptive means.

4. To remediate these security flaws, open Areas\Identity\Pages\Account\
Login.cshtml.cs and change the Redirect method to LocalRedirect:

if (ModelState.IsValid)

{

 // This doesn't count login failures towards
 account lockout

 // To enable password failures to trigger account
 lockout, set lockoutOnFailure: true

 var signInResult = await _signInManager
 .PasswordSignInAsync(Input.Email,
 Input.Password, Input.RememberMe,
 lockoutOnFailure: false);

 if (signInResult.Succeeded)

 {

154 Broken Access Control

 _log.LogInformation("User logged in.");

 if (string.IsNullOrEmpty
 (HttpContext.Session.GetString(SessionKey)))

 {

 HttpContext.Session.SetString(SessionKey,
 Input.Email);

 }

 return LocalRedirect(url);

 }

// code removed for brevity

The LocalRedirect method performs the same redirection, except it will throw
an InvalidOperationException exception when the URL is trying to redirect
to a website that is not local.

5. Another way to fix this security bug is to use the Url.IsLocalUrl method.
Open Areas\Identity\Pages\Account\Logout.cshtml.cs and go
to the OnGet method of the page method. Change the method from OnGet to
OnPost for this method to be invoked on HyperText Transfer Protocol (HTTP)
POST requests, not HTTP GET requests. Replace the Redirect method call with
a validation check using the IsLocalUrl method:

public async Task<IActionResult> OnPost(string url =
 null)

{

 await _signInManager.SignOutAsync();

 _log.LogInformation("User logged out.");

 if (url != null)

 {

 if (Url.IsLocalUrl(url))

 return Redirect(url);

 else

 return RedirectToPage();

 }

 else

 {

Fixing open redirect vulnerabilities 155

 return RedirectToPage();

 }

}

// code removed for brevity

A call to the Url.IsLocalUrl method checks if the URL is local, preventing the
customer running the risk of getting redirected to an arbitrary URL.

How it works…
A malicious website could imitate a legitimate website and deceive the user into using
their credentials to log in, ultimately stealing usernames and passwords from victims.
We use both the LocalRedirect and Url.IsLocalUrl methods, replacing the
dangerous Redirect method to validate the URLs received as parameters. Implementing
these safer functions can protect us from getting redirected to unwanted URLs.

If certain use cases require users to be redirected to an external URL, a whitelist validation
technique must be applied to determine whether a URL is allowed.

7
Security

Misconfiguration
An oversight in disabling security controls in any application layer, most especially in
code, could leave an ASP.NET Core web application susceptible to much more varied
attacks. Overlooking disabling debugging in production, inadvertently logging traces,
missing necessary attributes in cookies, and HTTP security headers are just a few of the
root causes of security misconfiguration. Hardening your web application for security
starts with code and can also be the weak link of an app if not done correctly.

In this chapter, we're going to cover the following recipes:

• Disabling debugging features in non-development environments

• Fixing disabled security features

• Disabling unnecessary features

• Fixing information exposure through an error message

• Fixing information exposure through insecure cookies

By the end of this chapter, you will have learned how to prevent security misconfiguration
by turning debugging off in code, adding security features, and stopping unwanted
information leaks to prying attackers with proper application settings.

158 Security Misconfiguration

Technical requirements
This book was written and designed to use with Visual Studio Code, Git, and .NET
5.0. Code examples in recipes are presented in ASP.NET Core Razor pages. The sample
solution also uses SQLite as the database engine for a more simplified setup. The
complete code examples for this chapter are available at https://github.com/
PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/main/
Chapter07.

Disabling debugging features in non-
development environments
Debugging is an essential part of a web developer's task when writing code and running
tests. ASP.NET Core enables developers to have easy access to a configuration that will
quickly enable or disable debugging in a particular environment with configuration files
or code. However, negligence or configuration mismanagement could cause debugging
to be enabled in a non-development environment such as staging or production. In this
recipe, we will fix the enabled debugging feature in a non-development environment.

Getting ready
For the recipes in this chapter, we will need a sample Online Banking app.

Open the command shell and download the sample Online Banking app by cloning the
ASP.NET Secure Coding Cookbook repository as follows:

git clone https://github.com/PacktPublishing/ASP.NET-Core-
Secure-Coding-Cookbook.git

Run the sample app to verify that there are no build or compile errors. In your command
shell, navigate to the sample app folder at \Chapter07\debug-enabled\before\
OnlineBankingApp and run the following command:

dotnet build

The dotnet build command will build our sample OnlineBankingApp project and
its dependencies.

https://github.com/PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/main/Chapter07
https://github.com/PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/main/Chapter07
https://github.com/PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/main/Chapter07

Disabling debugging features in non-development environments 159

How to do it…
Let's take a look at the steps for this recipe:

1. From the starting exercise folder, launch Visual Studio Code by typing the
following command:

code .

2. Open OnlineBankingApp\Startup.cs and go to the
Configure startup method. The Configure method makes a call to
UseDeveloperExceptionPage even if it is in a non-development environment:

public void Configure(IApplicationBuilder appBuilder,
 IWebHostEnvironment environment)

{

 if (environment.IsDevelopment())

 {

 appBuilder.UseDeveloperExceptionPage();

 }

 else

 {

 appBuilder.UseDeveloperExceptionPage();

 // appBuilder.UseExceptionHandler("/Error");

 appBuilder.UseHsts();

 }

// code removed for brevity

UseDeveloperExceptionPage will generate an HTML page with details
of SystemException. An exception can provide vital information to attackers
from the stack traces and debugging information it shows, so it is not ideal to have
these exposed in either Staging or Production environments.

3. We avoid the unnecessary exception details shown either in Staging or Production
by removing the line of code that calls UseDeveloperExceptionPage and
uncommenting the line that invokes UseExceptionHandler:

public void Configure(IApplicationBuilder appBuilder,
 IWebHostEnvironment environment)

{

160 Security Misconfiguration

 if (environment.IsDevelopment())

 {

 appBuilder.UseDeveloperExceptionPage();

 }

 else

 {

 appBuilder.UseExceptionHandler("/Error");

 appBuilder.UseHsts();

 }

Making a call to the UseExceptionHandler middleware will catch the
exceptions and handle the exceptions to return a friendlier OnlineBankingApp\
Pages\Error.cshtml page.

How it works…
Debugging is useful for ASP.NET web developers to understand what is going on with
their apps. In the case of our sample Online Banking web application, misplacing the call
to the UseDeveloperExceptionPage method in code will allow exception details to
be displayed in Staging or Production.

We fix the code by placing the UseDeveloperExceptionPage method under
the conditional check of whether the web app is running under the Development
environment using the environment.IsDevelopment method. This prevents
debugging and inspection in either Staging or Production, which in turn avoids exposing
vulnerable information to hackers.

Fixing disabled security features
Adding layers of defense and protection helps an ASP.NET Core web application from
getting exploited. Web application servers have built-in security features such as security
headers configured to be sent as a part of the HTTP response back to the client, instructing
browsers to enable the security mechanism. Not all of these security headers are turned on
or added by default, so enabling it in code is left in the web developers' hands.

In this recipe, we are going to add the missing HTTP security headers to enable protection
in our sample Online Banking app.

Fixing disabled security features 161

Getting ready
We will use the Online Banking app we used in the previous recipe. Using Visual Studio
Code, open the sample Online Banking app folder at \Chapter07\disabled-
security-features\before\OnlineBankingApp\.

You can perform the steps in this folder to fix the missing security features in this recipe.

How to do it…
Let's take a look at the steps for this recipe:

1. From the starting exercise folder, launch Visual Studio Code by typing the
following command:

code .

2. Open Startup.cs and look at the Use method call in Configure. The
middleware is adding the X-XSS-Protection HTTP security header but the
value is set to 0:

app.Use(async (context, next) =>

{

 context.Response.Headers.Add("X-XSS-Protection", "0"
);

 await next();

});

Setting the X-XSS-Protection response header with a value of 0 will instruct
the browser to disable its XSS filtering and its protection against Cross-Site
Scripting (XSS). XSS Filters is a browser security feature that defends users from
Cross-Site Scripting attacks. Fixing XSS vulnerabilities will be covered in Chapter 8,
Cross-Site Scripting.

Other security headers such as X-Content-Type-Options and X-Frame-
Options are also missing, making our sample Online Banking application lack
protection against attacks.

162 Security Misconfiguration

3. To include these missing security features, we replace the old code with the
following lines, which will protect our sample Online Banking web application:

app.Use(async (context, next) =>

{

 context.Response.Headers.Add("X-XSS-Protection",
 "1; mode=block");

 context.Response.Headers
 .Add("X-Content-Type-Options", "nosniff");

 context.Response.Headers
 .Add("X-Frame-Options", "DENY");

 context.Response.Headers.Add("Referrer-Policy",
 "no-referrer");

 await next();

});

Each of these HTTP response headers serves a security purpose, which will be
explained in the How it works… section.

Note
While X-XSS-Protection is already deprecated, it is still a useful HTTP
header to enable in your web application if you anticipate users will still
be utilizing older browsers. Another alternative is to implement Content-
Security-Policy, which we will cover in Chapter 13, Best Practices.

Validating the security headers
Here are the steps:

1. Navigate to Terminal | New Terminal in the menu or by simply pressing
Ctrl + Shift + ' in Visual Studio Code.

2. Type the following command in the terminal to build and run the sample app:

dotnet run

3. Open a browser and go to https://localhost:5001/.

4. Log in using the following credentials:

a). Email: stanley.s.jobson@lobortis.ca

b). Password: rUj5jtV8jrTyHnx!

Fixing disabled security features 163

5. Once authenticated, you will be redirected to the Home page:

Figure 7.1 – Home page authenticated

6. Press F12 to open the browser's developer tools.

7. Go to the Network tab and select the first HTTP traffic in the traffic list.

8. Once a single HTTP traffic is selected, scroll through in the right pane to view the
corresponding HTTP response security headers:

Figure 7.2 – Security headers
The security headers are now added as part of the HTTP response sent from our
sample Online Banking web application.

How it works…
When HTTP security headers are specified as part of the response that the web server
or web application sends, this instructs the web browser to enable protection from XSS,
clickjacking, and other types of web application-related vulnerabilities. In the preceding
code, we added the following HTTP security headers:

• X-XSS-Protection: The X-XSS-Protection security header tells browsers to
enable their XSS filter when the directive is set to 1. The XSS filter protects against
XSS and stops a page from loading when XSS is detected.

164 Security Misconfiguration

• X-Content-Type-Options: The X-Content-Type-Options header, if
assigned with a nosniff directive, prevents MIME sniffing. MIME-type sniffing is
a browser behavior where it guesses what the MIME-type is of a resource of a page,
but this behavior can be tricked into executing malicious content. This response
header tells the browser to believe the Content-Type header's value and not
attempt to guess the page's mime type implicitly.

The absence of the Content-Type response header is usually marked as a
vulnerability finding by most Dynamic Application Security Testing tools. Use
X-Content-Type-Options: nosniff in conjunction with an explicitly
declared Content-Type response header. The X-Content-Type-Options
header is supported in all major browsers, such as Firefox, Chrome, and Edge.

• X-Frame-Options: X-Frame-Options is also an HTTP response header,
which when set to DENY will tell the browser to not allow the page to be rendered
or embedded in any of the following HTML elements: <iframe>, <frame>,
<embed>, or <object>. Malicious websites abuse these HTML elements to
masquerade as authentic by embedding or framing the legitimate websites inside.
Users are tricked in to clicking on the UI on what they presume rendered in front of
the browser is a legit website. This attack is called Click-Jacking.

Tip:
To allow one of your web pages to be framed inside your web app, which is
of the same origin, assign the X-Frame-Options header with a value of
SAMEORIGIN:

context.Response.Headers.Add("X-Frame-Options",
"SAMEORIGIN");

• Referrer-Policy: Lastly, to keep sensitive information in your ASP.NET
Core web application URLs from getting exposed during cross-site requests, set
your Referrer-Policy to no-referrer. The Referrer header shows the
URL where the user's request originated, and the no-referrer value explicitly
instructs the browser to remove the Referrer from the HTTP header.

Other values may be more fitting to your ASP.NET Core web application requirements.
Visit the Referrer-Policy documentation from the Mozilla Developer Network for
alternative values at https://developer.mozilla.org/en-US/docs/Web/
HTTP/Headers/Referrer-Policy.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy

Disabling unnecessary features 165

Disabling unnecessary features
Most ASP.NET Core web application features are useful, but some can be unnecessary
or sometimes even harmful. Web developers must consider whether a web server or
application functionality needs to be enabled in code. We need to remove some features to
keep our ASP.NET Core web applications secure.

In this recipe, we are going to remove the Server HTTP header to prevent web server
information disclosure.

Getting ready
We will use the Online Banking app we used in the previous recipe. Using Visual Studio
Code, open the sample Online Banking app folder at \Chapter07\unnecessary-
features\before\OnlineBankingApp\.

You can perform the steps in this folder to disable unnecessary features in this recipe.

How to do it…
Let's take a look at the steps for this recipe:

1. From the starting exercise folder, launch Visual Studio Code by typing
following command:

code .

2. Open Program.cs and notice the value of one of the properties of the
KestrelOptions AddServerHeader:

public static IHostBuilder CreateHostBuilder(string[]
 args) =>

 Host.CreateDefaultBuilder(args)

 .ConfigureWebHostDefaults(webHost =>

 {

 webHost.UseKestrel(kestrelOptions =>

 {

 kestrelOptions.AddServerHeader = true;

 kestrelOptions.ConfigureHttpsDefaults
 (https =>

 {

166 Security Misconfiguration

 https.SslProtocols =
 SslProtocols.Tls12 |
 SslProtocols.Tls13;

 });

 });

 webHost.UseStartup<Startup>();

 });

The AddServerHeader property adds a Server HTTP header in the response
when this Boolean property is set to true. This header is not required but would give
a malicious actor information on what platform the web application is built with.

3. We remove this unnecessary HTTP header by setting the value of the
AddServerHeader property to false:

public static IHostBuilder CreateHostBuilder(string[]
 args) =>

 Host.CreateDefaultBuilder(args)

 .ConfigureWebHostDefaults(webHost =>

 {

 webHost.UseKestrel(kestrelOptions =>

 {

 kestrelOptions.AddServerHeader = false;

 kestrelOptions.ConfigureHttpsDefaults
 (https =>

 {

 https.SslProtocols = SslProtocols.Tls12
 | SslProtocols.Tls13;

 });

 });

 webHost.UseStartup<Startup>();

 });

When set to false, the Server HTTP header will no longer be sent in the
response to the client, limiting the information provided to bad actors.

Disabling unnecessary features 167

Note
Other unwanted HTTP headers include X-Powered-By and X-AspNet-Version.
Both HTTP headers divulge software information about the web host that may
benefit a threat actor.

If you're hosting your ASP.NET Core web application in IIS, these headers
are typically present by default, and it best to remove them. To remove the
X-Powered-By or the X-AspNet-Version header, follow the steps
in the customheaders section of the IIS reference from Microsoft's official
documentation: https://docs.microsoft.com/en-us/iis/
configuration/system.webServer/httpProtocol/
customHeaders/.

How it works…
By default, Kestrel is the web server used with our sample Online Banking application, but
the Server header is available to any web server type. Some web servers have it already
available in their default instance or configured through the web application's code. Using
the browser's developer tools, we can see that our ASP.NET Core web app sent a Server
HTTP header, giving us details that our web server is running Kestrel:

Figure 7.3 – Server HTTP header

In our recipe, we disable sending this Server header back to the browser as a response,
limiting the malicious agent's information as to what type of platform the web application
is running on. Knowing this detail gives the bad actor leverage on what specific exploits it
could execute against the app.

https://docs.microsoft.com/en-us/iis/configuration/system.webServer/httpProtocol/customHeaders/
https://docs.microsoft.com/en-us/iis/configuration/system.webServer/httpProtocol/customHeaders/
https://docs.microsoft.com/en-us/iis/configuration/system.webServer/httpProtocol/customHeaders/

168 Security Misconfiguration

Fixing information exposure through an error
message
Logs can help determine events that are occurring inside an app. Application traces,
debugging information, errors, warnings, and other information are also available and
are written in logs. Unfortunately, sensitive data can also be carelessly logged in ASP.NET
Core web applications, and inadvertent disclosure poses a risk.

In this recipe, we are going to change the misconfigured log provider properties to prevent
logging information that is too sensitive to be stored in logs.

Getting ready
We will use the Online Banking app we used in the previous recipe. Using Visual Studio
Code, open the sample Online Banking app folder at \Chapter07\information-
exposure1\before\OnlineBankingApp\.

You can perform the steps in this folder to fix information exposure through an error
message recipe.

How to do it…
Let's take a look at the steps for this recipe:

1. From the starting exercise folder, launch Visual Studio Code by typing the
following command:

code .

2. Open appsettings.json and look at the current LogLevel values:

{

 "Logging": {

 "LogLevel": {

 "Default": "Trace",

 "Microsoft": "Trace",

 "Microsoft.Hosting.Lifetime": "Trace"

 }

 },

 "AllowedHosts": "*",

 "ConnectionStrings": {

Fixing information exposure through an error message 169

 "OnlineBankingAppContext": "Data Source
 = OnlineBank.db"

 }

}

The Trace value specifies that our sample Online Banking web application
will write trace logs into all log providers. This value is at its minimum level,
which specifies that anything else higher will also be logged, including sensitive
debugging information.

3. We fix the issue by setting these values to Warning, which is levels higher
than Trace:

{

 "Logging": {

 "LogLevel": {

 "Default": "Warning",

 "Microsoft": "Warning",

 "Microsoft.Hosting.Lifetime": "Warning"

 }

 },

 "AllowedHosts": "*",

 "ConnectionStrings": {

 "OnlineBankingAppContext": "Data
 Source=OnlineBank.db"

 }

}

Assigning these categories with Warning property values will instruct the logger
to write error logs that occur from unexpected events that don't make our sample
Online Banking web application crash.

How it works
Logging in an ASP.NET Core web application is configured in the Logging section
of appsettings.json. In each of the log categories (Default, Microsoft,
and Microsoft.Hosting.Lifetime) defined in this file, their values are set to
Trace, which is the lowest LogLevel with a value of 0. This LogLevel is not best
for a production environment, which is why we modified the values and changed them
to Warning.

170 Security Misconfiguration

Fixing information exposure through insecure
cookies
Cookies are essential in maintaining state in ASP.NET Core web applications. Sensitive
cookies, such as the ones that are used for authenticated sessions should only be
transmitted over HTTPS and marked as HTTP-Only to stop attackers from stealing
information stored in these cookies.

In this recipe, we are going to configure cookie policies that will prevent our ASP.NET
Core sample web application from generating persistent cookies.

Getting ready
We will use the Online Banking app we used in the previous recipe. Using Visual Studio
Code, open the sample Online Banking app folder at \Chapter07\information-
exposure2\before\OnlineBankingApp\.

You can perform the steps in this folder to fix information exposure through the persistent
cookies recipe.

How to do it…
Let's take a look at the steps for this recipe:

1. From the starting exercise folder, launch Visual Studio Code by typing the
following command:

code .

2. Open Startup.cs and look at the following sections of code under
ConfigureServices:

services.AddSession(options =>

{

 options.Cookie.Name = ".OnlineBanking.Session";

 options.IdleTimeout = TimeSpan.FromSeconds(10);

 options.Cookie.HttpOnly = false;

 options.Cookie.SecurePolicy =
 CookieSecurePolicy.None;

 options.Cookie.IsEssential = true;

});

Fixing information exposure through insecure cookies 171

Setting the SecurePolicy property of CookiePolicyOptions with an enum
value of CookieSecurePolicy.None, this configuration indicates that the
session cookie in our sample app will not have a Secure attribute.

Also, having the HttpOnly property of the session cookies assigned with a false
value makes the session cookies readable by a client-side script.

3. To prevent a malicious arbitrary JavaScript code from reading the values of our
session cookies, we set the HttpOnly property of the session state service to true:

services.AddSession(options =>

{

 options.Cookie.Name = ".OnlineBanking.Session";

 options.IdleTimeout = TimeSpan.FromSeconds(10);

 options.Cookie.HttpOnly = true;

4. To also ensure that the cookie policy middleware will mark the cookies of
our sample Online Banking web application with a Secure attribute, we
assign the SecurePolicy property of the CookiePolicyOptions with
CookieSecurePolicy.Always:

options.Cookie.SecurePolicy =
 CookieSecurePolicy.Always;

 options.Cookie.IsEssential = true;

});

Enabling the HttpOnly property will mark the session cookies with an
HttpOnly attribute.

Validating the session cookie attributes
Here are the steps:

1. Navigate to Terminal | New Terminal in the menu or by simply pressing
Ctrl + Shift + ' in Visual Studio Code.

2. Type the following command in the terminal to build and run the sample app:

dotnet run

3. Open a browser and go to https://localhost:5001/.

172 Security Misconfiguration

4. Log in using the following credentials:

a). Email: axl.l.torvalds@ut.net

b). Password: 6GKqqtQQTii92ke!

5. Once authenticated, you will be redirected to the Home page:

Figure 7.4 – Home page authenticated

6. Press F12 to open the browser's developer tools.

7. Expand the Cookies tree on the left pane of the developer tools:

Figure 7.5 – Cookies section

Fixing information exposure through insecure cookies 173

8. Go to the Application tab (the Storage tab in Firefox) and notice that the columns
for the HttpOnly and Secure attributes are checked:

Figure 7.6 – Session cookies
This shows that the Secure and HttpOnly attributes are enabled in the cookies.

How it works
HttpOnly and Secure are two of the most important attributes in cookies yet are
optional. These cookie attributes must be explicitly declared and configured as part of
the cookie policy middleware. We append the HttpOnly attribute in session cookies by
setting the HttpOnly property to true:

options.Cookie.HttpOnly = true;

Without the HttpOnly attribute, an arbitrary client-side script can read cookie values
that potentially could contain sensitive data. No JavaScript code will be able to retrieve
values from the document.cookie property.

Note
Cookies that we typically mark with an HttpOnly attribute contain values
that may be at risk of exploitation from attacks such as Session Hijacking or
Cross-Site Scripting (XSS).

We also include the Szecure attribute in our application cookies by configuring the
cookie policy in our middleware service pipeline:

options.Cookie.SecurePolicy = CookieSecurePolicy.Always;

CookieSecurePolicy.Always ensures that the cookie is only sent over HTTPS.

8
Cross-Site Scripting

Cross-site scripting is still one of the widespread vulnerabilities in web applications today.
Also known as XSS, it is a security flaw that allows an attacker to insert malicious
client-side code into an ASP.NET Core web page. The injected input is made possible
because of the lack of sanitization and filtering, and the browser processes the unwanted
arbitrary code.

An unknowing user can view a vulnerable web page in an XSS attack where the malicious
script runs in the browser. Once the code executes, the attacker can potentially redirect
the user to a rogue website, potentially steal its session cookies, or deface your ASP.NET
Core web application.

In this chapter, we're going to cover the following recipes:

• Fixing reflected XSS

• Fixing stored/persistent XSS

• Fixing DOM XSS

By the end of this chapter, you will learn how to protect your ASP.NET Core web
application from the different types of XSS by properly encoding and escaping output. You
will also discover ways to escape output by using a third-party library function to mitigate
cross-site scripting attacks.

176 Cross-Site Scripting

Technical requirements
This book was written and designed to use with Visual Studio Code, Git, and .NET
5.0. Code examples in recipes are presented in ASP.NET Core Razor pages. The sample
solution also uses SQLite as the database engine for a more simplified setup. The
complete code examples for this chapter are available at https://github.com/
PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/main/
Chapter08.

Fixing reflected XSS
Reflected cross-site scripting is one type of XSS where a bad actor could inject code
as part of the HTTP response. The reflected XSS is non-persistent and not stored in the
database, but the attack payload is delivered back to the browser, reflecting the untrusted
input.

The reflected XSS vulnerability is possible when output is not encoded and exploited when
tricked users click a malicious link containing the XSS payload. In this recipe, we will fix
the reflected XSS vulnerability by using the built-in encoding features of the Razor page.

Getting ready
For the recipes in this chapter, we will need the sample Online Banking app.

Open the command shell and download the sample Online Banking app by cloning the
ASP.NET Secure Coding Cookbook repository as follows:

git clone https://github.com/PacktPublishing/ASP.NET-Core-
Secure-Coding-Cookbook.git

Run the sample app to verify that there are no build or compile errors. In your command
shell, navigate to the sample app folder at \Chapter08\reflected-xss\before\
OnlineBankingApp and run the following command:

dotnet build

The dotnet build command will build our sample OnlineBankingApp project and
its dependencies.

Let's now see in action how reflected XSS vulnerabilities can be exploited.

https://github.com/PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/main/Chapter08
https://github.com/PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/main/Chapter08
https://github.com/PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/main/Chapter08

Fixing reflected XSS 177

Testing reflected XSS
Here are the steps:

1. Navigate to Terminal | New Terminal in the menu or simply press Ctrl + Shift + ' in
Visual Studio Code.

2. Type the following command in the terminal to build and run the sample app:

dotnet run

3. Open a browser and go to https://localhost:5001/Loans.

4. Log in using the following credentials:

a) Email: stanley.s.jobson@lobortis.ca

b) Password: rUj5jtV8jrTyHnx!

5. Once authenticated, you will be redirected to the Loans page:

Figure 8.1 – Loans page

178 Cross-Site Scripting

6. Type Packt as the keyword to search in the textbox on top of the empty table and
hit the Filter button. Notice that the search term is displayed as a message:

Figure 8.2 – Keyword search

7. To test whether our sample Online Banking solution is vulnerable to XSS, we enter
the XSS payload <script>alert("Pwned")</script> in the search bar and
hit the Filter button. Examine the result of this test:

Figure 8.3 – Reflected XSS

Notice that an alert box was displayed indicating that the XSS injection was successful
and proved that the Loans page is vulnerable to reflected XSS. Examine the URL that the
test has generated. An attacker can send this URL to an unknowing user via email
or social engineering tactics: https://localhost:5001/Loans?SearchString=
%3Cscript%3Ealert%28%22Pwned%22%29%3C%2Fscript%3E.

Fixing reflected XSS 179

How to do it…
Let's take a look at the steps for this recipe:

1. From the starting exercise folder, launch Visual Studio Code by typing the
following command:

code .

2. Open Pages\Loans\Index.cshtml and observe the markup just after the
HTML table element:

<table class="table">

 @{

 if(Model.SearchString is not null){

 <h2>Your searched for
 @Html.Raw(@Model.SearchString) returned
 @Model.Loan.Count results</h2>

 }

 }

// code removed for brevity

The loan notes search term entered is displayed on the page using Html.Raw,
allowing the unfiltered string rendered within the <h2> HTML markup. A bad
actor can exploit the absence of output encoding by entering malicious cross-site
scripting payload attacks into the search textbox.

3. To remediate the security flaw in our code, we remove the call to the
Html.Raw method:

<table class="table">

 @{

 if(Model.SearchString is not null){

 <h2>Your searched for
 @Model.SearchString returned
 @Model.Loan.Count results</h2>

 }

 }

Html.Raw should not be used to render user-controlled input. Avoid using
this method.

180 Cross-Site Scripting

4. To test whether the code fix worked, repeat steps 1-7 in the Testing reflected XSS
section and see the result:

Figure 8.4 – Reflected XSS mitigated

Note that the reflected XSS payload no longer works.

How it works…
The Loans page offers a search feature to enter a keyword to locate and return the
matching records. This page was vulnerable when the search term is displayed back
using the Html.Raw method. Html.Raw is a method that returns an unencoded string,
exposing this page to a reflected XSS attack.

We mitigate this risk and prevent exploitation by removing the call to the Html.Raw
method and use the built-in Razor syntax instead to render markup for SearchString.
Razor syntax that evaluates to a string type returns an escaped string that makes the
SearchString output safe for rendering.

Fixing stored/persistent XSS
Stored or persistent XSS is another type of cross-site scripting vulnerability. ASP.NET
Core web applications that store data can be vulnerable to this XSS attack variant. Stored
XSS happens when the tainted data supplied by the attacker gets saved in a persistent store
or database, eventually delivered to the users by viewing these vulnerable ASP.NET Core
web pages without the app output escaping the data first. In this recipe, we will fix the
stored XSS vulnerability by using encoded values when displaying data on a page.

Let's see in action how the reflected XSS vulnerability can be exploited.

Fixing stored/persistent XSS 181

Testing stored XSS
Here are the steps:

1. Navigate to Terminal | New Terminal in the menu or simply press Ctrl + Shift + ' in
Visual Studio Code.

2. Type the following command in the terminal to build and run the sample app:

dotnet run

3. Open a browser and go to https://localhost:5001/Loans.

4. Log in using the following credentials:

a) Email: axl.l.torvalds@ut.net

b) Password: 6GKqqtQQTii92ke!

5. Once authenticated, you will be redirected to the Loans page. Notice the message
that gets displayed:

Figure 8.5 – Stored XSS

An alert box was displayed indicating that data on the Loans page is tainted, thereby
making our sample Online Banking application prone to stored XSS.

Getting ready
We will use the Online Banking app we used in the previous recipe. Using Visual Studio
Code, open the sample Online Banking app folder at \Chapter08\stored-xss\
before\OnlineBankingApp\.

You can perform the steps in this folder to fix the missing security features in this recipe.

182 Cross-Site Scripting

How to do it…
Let's take a look at the steps for this recipe:

1. From the starting exercise folder, launch Visual Studio Code by typing the
following command:

code .

2. Open Pages\Loans\Index.cshtml and examine the data cell that displays
Note in the <td> tag:

@foreach (var item in Model.Loan) {

 <tr>

 <td>

 @Html.DisplayFor(modelItem => item.Amount)

 </td>

 <td>

 @Html.DisplayFor(modelItem =>
 item.PeriodInMonths)

 </td>

 <td>

 @Html.DisplayFor(modelItem =>
 item.TransactionDate)

 </td>

 <td>

 @(new HtmlString(item.Note))

 </td>

 <td>

 <a asp-page="./Edit" asp-route-
 id="@item.ID">Approve Loan |

 </td>

 </tr>

}

Fixing stored/persistent XSS 183

Rendered in the cell is the Note data from the database using the HtmlString
class, but, by default, an instance of the HtmlString class is unencoded, and
displaying the page's output will lead to an XSS vulnerability.

3. To fix this stored XSS security bug, we use the Value property of the
HtmlString object:

@foreach (var item in Model.Loan) {

 <tr>

 <td>

 @Html.DisplayFor(modelItem => item.Amount)

 </td>

 <td>

 @Html.DisplayFor(modelItem =>
 item.PeriodInMonths)

 </td>

 <td>

 @Html.DisplayFor(modelItem =>
 item.TransactionDate)

 </td>

 <td>

 @(new HtmlString(item.Note).Value)

 </td>

 <td>

 <a asp-page="./Edit" asp-route-
 id="@item.ID">Approve Loan |

 </td>

 </tr>

}

The Value property returns the HTML-encoded value of the Note field, which
makes our Loans page safe from stored or persistent XSS attacks.

184 Cross-Site Scripting

4. To test whether the code fix worked, repeat steps 1-5 in the Testing stored XSS
section and see the result:

Figure 8.6 – Mitigated stored XSS vulnerability

Note that the persistent XSS payload did not execute.

How it works…
Our sample Online Banking web application is seeded with loan data at Models\
SeedData.cs. We populate our SQLite database with one loan application:

Loans = new List<Loan>{

 new Loan {

 Amount = 35000.00m,

 TransactionDate = DateTime.Now,

 PeriodInMonths = 24,

 Note = "<script>alert('Pwned')</script>",

 Status = LoanStatus.Pending

 }

}

Notice that the Note property was assigned with a persistent XSS payload. This abuse
case mimics the scenario where the attacker saved tainted data in the database due to a
lack of validation.

Fixing DOM XSS 185

As the Loans page is loaded, we see that the alert JavaScript function gets executed,
and an alert box pops out. The stored XSS payload ran successfully because item.Note
is rendered using HtmlString. The HtmlString class returns an unescaped string
by default, making the persistent XSS attack possible. We fix the security problem in our
code by simply utilizing the Value property of the HtmlString class, which returns the
string encoded and secures our web application from stored XSS exploitation.

There's more…
Another way to mitigate the risk is to use the HtmlEncoder class. As we have learned
in the Output encoding using HtmlEncoder recipe from Chapter 1, Secure Coding
Fundamentals, the HtmlEncoder class has an Encode method that escapes the string
passed in to the method's argument.

Similar to steps 2 and 3, you start by adding an @inject directive on top of the Pages\
Loans\Index.cshtml Razor page markup to inject the HtmlEncoder service:

@inject System.Text.Encodings.Web.HtmlEncoder htmlEncoder

Then, a call is made to the HtmlEncoder service's Encode method, passing
item.Note:

 <td>

 @(htmlEncoder.Encode(item.Note))

 </td>

The Encode method will escape the value of item.Note, thereby fixing the persistent
XSS problem.

Fixing DOM XSS
The Document Object Model (DOM) is an object interface that represents an HTML
page. This interface allows client-side scripts to manipulate, add or remove elements
from the document. The client-side script used in conjunction with the JavaScript
programming language can be written insecurely and opens up security vulnerabilities
such as DOM-based XSS.

DOM XSS, in contrast to reflected and stored XSS, is not a server-side exploit. The
weakness is in the client-side code when it attempts to modify the DOM to display data,
but instead interprets the input into code due to a lack of encoding and proper escaping.
In this recipe, we will fix the DOM-based XSS vulnerability by using an encoding function
from a JavaScript library.

186 Cross-Site Scripting

Let's now see in action how a DOM XSS vulnerability can be tested.

Testing DOM XSS
Here are the steps:

1. Navigate to Terminal | New Terminal in the menu or simply press Ctrl + Shift + ' in
Visual Studio Code.

2. Type the following command in the terminal to build and run the sample app:

dotnet run

3. Open a browser and go to https://localhost:5001/Loans.

4. Log in using the following credentials:

a) Email: stanley.s.jobson@lobortis.ca

b) Password: rUj5jtV8jrTyHnx!

5. Once authenticated, you will be redirected to the Loans page:

Figure 8.7 – Loans page

6. Type car as the keyword to search in the textbox on top of the empty table and
hit the Filter button. Notice that the search term is displayed as a message and a
matching record is displayed:

Fixing DOM XSS 187

Figure 8.8 – Keyword search

7. To test whether our sample Online Banking solution is vulnerable to DOM-based
XSS, we enter the XSS payload, <script>alert("Pwned")</script>, in the
search bar and hit the Filter button. Examine the result of this test:

Figure 8.9 – DOM XSS

Notice that an alert box was displayed, indicating that the XSS injection was successful
and proving that the Loans page is vulnerable to DOM XSS. Examine the URL that the
test has generated. A bad actor can send this URL to an unknowing user through an email
or social engineering.

188 Cross-Site Scripting

Getting ready
We will use the Online Banking app we used in the previous recipe. Using Visual
Studio Code, open the sample Online Banking app folder at \Chapter08\dom-xss\
before\OnlineBankingApp\.

You can perform the steps in this folder to fix the DOM XSS in this recipe.

How to do it…
Let's take a look at the steps for this recipe:

1. From the starting exercise folder, launch Visual Studio Code by typing the
following command:

code .

2. Open Pages\Loans\Index.cshtml and notice the JavaScript code at the lower
part of the cshtml page within @section Scripts:

@section Scripts {

 @{

 if(Model.SearchString is not null){

 <script>

 $(document).ready(function () {

 var param = new URLSearchParams
 (window.location.search);

 var searchString = param.get
 ('SearchString');

 var message = '
<h2> You
 searched for ' + searchString
 + '</h2>';

 $('#searchForm').append(message);

 });

 </script>

 }

 }

}

Fixing DOM XSS 189

Dynamically appended to the page is the help knowledge-base search term
retrieved from the URL's query string. Without output escaping the untrusted
message string added to the page's document object model, this insecure code
could lead to a DOM-based XSS.

One way of fixing this security issue in code is to use a JavaScript library that
has an excellent encoding function. One of the popular JavaScript libraries is
underscore.js.

3. To start the remediation, we open Areas\Identity\Pages_
ValidationScriptsPartial.cshtml and add a reference to the
underscore.js library:

<environment exclude="Development">

 <script src="https://cdn.jsdelivr.net/npm/
 underscore@1.12.0/underscore-min.js"></script>

 <script src=https://ajax.aspnetcdn.com/ajax/
 jquery.validate/1.17.0/jquery.validate.min.js

// code removed for brevity

You can host your own copy of the underscore.js library or add
a reference from the Content Delivery Network (CDN). You specify the URL
in _ValidationScriptsPartial.cshtml to make its functions available
in the whole sample Online Banking solution.

4. We add a reference to _ValidationScriptsPartial.cshtml and make
a call to the _.escape function of the underscore.js library:

@section Scripts {

 <partial name="_ValidationScriptsPartial" />

 @{

 if(Model.SearchString is not null){

 <script>

 $(document).ready(function () {

 var param = new URLSearchParams
 (window.location.search);

 var searchString = param.get
 ('SearchString');

 var message = '
<h2> You
 searched for ' + _.escape
 (searchString) + '</h2>';

190 Cross-Site Scripting

 $('#searchForm').append(message);

 });

 </script>

 }

 }

Calling the _.escape function encodes searchString and replaces characters
such as <, >, &, ', and ", which can be potentially nefarious.

5. To test whether the code fix worked, repeat steps 1-7 in the Testing DOM XSS
section and see the result:

Figure 8.10 – DOM XSS fixed

Notice that the alert box no longer shows and that the HTML page's DOM is not
appended with a malicious <script> tag.

How it works…
Using the jQuery Unobtrusive AJAX library, we tried to display the searchString
URL query string parameter by blindly appending the raw string from the window.
location.search value. The original intention was to show the keyword used for the
search. However, without the necessary and appropriate encoding of searchString, a
perpetrator could craft a payload and assign it to the querystring parameter. Through
this malicious link, a bad actor may trick the user into clicking it and unintentionally
executing the payload.

Fixing DOM XSS 191

We remediate the issue by using a third-party library called underscore.js.
underscore.js has plenty of useful functions and one of them escapes strings.
The ._escape function replaces characters that could lead to DOM XSS vulnerabilities,
with its HTML entity counterpart transforming searchString into a harmless string.

As a general rule, avoid calls to JavaScript methods such as document.write that can
render unfiltered and unencoded data. A bad actor can exploit this vector by dynamically
manipulating the DOM and executing arbitrary client-side code.

9
Insecure

Deserialization
.NET has full support for serialization and deserialization of data. This language
feature allows ASP.NET Core web applications to convert in-memory objects into a
stream of bytes (serialize) and rebuild these byte streams back to an object (deserialize).
Serialization makes the transfer, storage, and caching of data possible, as well as state
persistence between systems.

In the process of deserialization, the data format can be either JavaScript Object Notation
(JSON) or Extensible Markup Language (XML), and it can also be in binary format.
However, as with any input type, the data source can be untrustworthy or tampered
with before it gets deserialized back into a web application as an in-memory object. This
vulnerability is commonly known as insecure deserialization. The use of obsolete and
dangerous deserializers, missing data validation, and misconfigured libraries are some of
the root causes that have been identified as to why insecure deserialization attacks occur.
This security flaw can be attributed to insecure code that can cause, at worst, denial-of-
service (DoS) attacks and remote code execution (RCE).

194 Insecure Deserialization

In this chapter, we're going to cover the following recipes:

• Fixing unsafe deserialization

• Fixing the use of insecure deserializers

• Fixing untrusted data deserialization

By the end of this chapter, you will have learned how to safely deserialize input using
properly configured libraries, how to mitigate risks that an obsolete .NET class brings into
your ASP.NET Core web application, and how to use a better deserializer alternative to
securely deserialize data streams.

Technical requirements
This book was written and designed to use with Visual Studio Code, Git, and .NET 5.0.
Code examples in recipes are presented in ASP.NET Core Razor pages. The sample
solution also uses SQLite as the database engine for a more simplified setup. The
complete code examples for this chapter are available at https://github.com/
PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/main/
Chapter09.

Fixing unsafe deserialization
Json.NET had always been a popular framework for processing JSON among .NET
developers until .NET recently introduced its own set of serializer/deserializer classes
under the System.Text.Json namespace. This new set of classes removes prior
versions of .NET Core's dependency on the library.

Json.NET has a type-handling feature that can make your ASP.NET Core web application
vulnerable to insecure deserialization if misused. The automatic type handling will allow
the Json.NET stream deserializer to use the declared .NET type in an incoming request.
Allowing your app to automatically deserialize objects based on the declared .NET type
from an untrusted source can be harmful and may cause the instantiation of unexpected
objects, causing arbitrary code execution in the host. In this recipe, we will fix this unsafe
deserialization and prevent harmful automatic type handling.

https://github.com/PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/main/Chapter09
https://github.com/PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/main/Chapter09
https://github.com/PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/main/Chapter09

Fixing unsafe deserialization 195

Getting ready
For the recipes of this chapter, we will need the sample Online Banking app.

Open the command shell and download the sample Online Banking app by cloning the
ASP.NET-Core-Secure-Coding-Cookbook repository, as follows:

git clone https://github.com/PacktPublishing/ASP.NET-Core-
Secure-Coding-Cookbook.git

Run the sample app to verify that there are no build or compile errors. In your command
shell, navigate to the sample app folder at \Chapter09\unsafe-deserialization\
before\OnlineBankingApp and run the following command:

dotnet build

The dotnet build command will build our sample OnlineBankingApp project and
its dependencies.

Let's see how we can use tools to discover unsafe deserialization vulnerabilities.

Testing unsafe deserialization
To search for code vulnerabilities, we can use tools such as code analyzers or linters to
perform static application security testing (SAST). This recipe will use an open source
DevSkim VS Code extension to search for security flaws in code. We begin by installing
the plugin and reviewing the result:

1. From the starting exercise folder, launch VS Code by typing the following command:

code .

2. Open the Extensions view by simply pressing Ctrl + Shift + X or by clicking on the
Extensions icon in the Activity Bar on the left-side panel of VS Code.

196 Insecure Deserialization

3. In the Search box, type in devskim to bring up the DevSkim extension, as shown
in the following screenshot:

Figure 9.1 – DevSkim VS Code extension

4. Click Install to install the DevSkim VS Code extension, as shown next:

Figure 9.2 – Installation

Fixing unsafe deserialization 197

5. Once installed, let's configure the extension settings by clicking the gear icon in the
DevSkim view and selecting Extension Settings:

Figure 9.3 – Extension Settings option

6. Enable these DevSkim settings, as shown in the following screenshot:

Figure 9.4 – Enabling optional settings

198 Insecure Deserialization

These two settings will enable rules that remind ASP.NET Core developers of the
best practices in writing secure code:

a) Enable Best Practice Rules

b) Enable Manual Review Rules

7. Open Pages\Loans\Upload.cshtml.cs and examine the code underlined
with a squiggly line in one of the lines of code under the OnPostAsync
method, indicating that a secure coding rule has been triggered, as shown in the
following screenshot:

Figure 9.5 – Warning

8. Press Ctrl + Shift + M to view details of the finding in the PROBLEMS tab or hover
the mouse over the squiggly line to learn more about the security finding, as shown
in the following screenshot:

Fixing unsafe deserialization 199

Figure 9.6 – DevSkim fix guidance
The fix guidance will suggest that you not deserialize untrusted data and instead use
TypeNameHandling.None.

Note
The full-featured version of the Visual Studio integrated development
environment (IDE) has built-in code analysis with security rules that match
the rule that our DevSkim plugin tool has:

CA2300: Do not use insecure deserializer BinaryFormatter

CA2301: Do not call BinaryFormatter.Deserialize without first setting
BinaryFormatter.Binder

CA2302: Ensure BinaryFormatter.Binder is set before calling BinaryFormatter.
Deserialize

To learn more about the different VS Code Analysis security rules, see Security
rules in the .NET fundamentals official documentation at https://docs.
microsoft.com/en-us/dotnet/fundamentals/code-
analysis/quality-rules/security-warnings.

https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/security-warnings
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/security-warnings
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/security-warnings

200 Insecure Deserialization

How to do it…
Let's take a look at the steps for this recipe:

1. Open Pages\Loans\Upload.cshtml.cs and locate the vulnerable code in the
OnPostAsync method, as pointed out by the DevSkim extension:

using (var reader = new StreamReader
 (Upload.OpenReadStream())) {

 string fileContent = reader.ReadToEnd ();

 emptyLoan = (Loan) Newtonsoft.Json.JsonConvert
 .DeserializeObject(fileContent,
 new JsonSerializerSettings

 {

 TypeNameHandling = TypeNameHandling.All

 });

}

2. Change the TypeNameHandling property to TypeNameHandling.None:

using (var reader = new StreamReader
 (Upload.OpenReadStream())) {

 string fileContent = reader.ReadToEnd ();

 emptyLoan = (Loan) Newtonsoft.Json.JsonConvert
 .DeserializeObject(fileContent,
 new JsonSerializerSettings

 {

 TypeNameHandling = TypeNameHandling.None

 });

}

Notice that in the following screenshot, the DevSkim VS Code extension no longer
marks the code for review:

Fixing unsafe deserialization 201

Figure 9.7 – Unsafe deserialization remediated
Changing the property no longer marks the TypeNameHandling property for
security code review.

How it works…
JSON is the standard data format, and it is no surprise that ASP.NET Core web
developers use a framework such as Json.NET that will handle the task of deserializing
this data format. Most libraries have features that can help with deserialization (such as
automatic type handling), but these features can cause security concerns. In this recipe,
we have seen that enabling type handling with JsonSerializerSettings set to
TypeNameHandling.All raises a Do not deserialize untrusted data security rule
from our DevSkim tool. Assigning the TypeNameHandling property other than
TypeNameHandling.None includes the .NET type name during serialization, which
opens our sample Online Banking web application to insecure deserialization attacks. We
fix this security flaw in the code by simply setting the TypeNameHandling property to
TypeNameHandling.None, preventing automatic .NET type resolution.

202 Insecure Deserialization

Tips
Ensure that you are using the latest version of the serializer/deserializer
libraries. Older versions may have a publicly known vulnerability that a threat
actor may exploit.

It is also important to log deserialization exceptions and failures. Throw
exceptions when the incoming type (Loan) is not the expected type by using
strongly typed objects.

Here is a revised code snippet where we use strongly typed objects, implement
proper logging (more on this in Chapter 11, Insufficient Logging and
Monitoring), and perform exception handling (more on this in Chapter 13,
Best Practices):

try {

 emptyLoan = (Loan) Newtonsoft.Json.JsonConvert
 .DeserializeObject<Loan>(fileContent,
 new JsonSerializerSettings

 {

 TypeNameHandling = TypeNameHandling.None

 });

}

catch (JsonException je) {

 _logger.LogError($"Unexpected error
 deserializing data '{je.Message}'.");

 throw new JsonException(je.Message);

}

There's more…
Commercial SAST vendors offer an enterprise-grade solution for testing the security of
your code. These solutions are either hosted on-premises or are cloud-based. They allow
users and developers to run scans and generate reports listing different vulnerabilities
by severity and category. The reports provide remediation and ways to fix security bugs
found in your solution, and can point to the exact line of code on which an issue was
discovered. SAST solutions also display data-flow graphs (DFGs) for users to understand
how a vulnerability propagates from the source to the sink.

Fixing the use of insecure deserializers 203

To learn more about SAST, go to the Open Web Application Security Project (OWASP)
Source Code Analysis Tools documentation. This OWASP reference will provide tips on
your SAST selection process to determine which solution fits your organization, and can
be found at the following link: https://owasp.org/www-community/Source_
Code_Analysis_Tools.

Fixing the use of insecure deserializers
BinaryFormatter is one of the types that an ASP.NET developer can use to serialize
and deserialize data. Microsoft's official BinaryFormatter Security Guide documentation
has a strict warning about the use of BinaryFormatter as a deserializer.
BinaryFormatter is an insecure type to utilize because this deserializer does not check
the type that it deserializes.

Getting ready
We will use the Online Banking app we used in the previous recipe. Using VS Code,
open the sample OnlineBankingApp folder at \Chapter09\insecure-
deserializer\before\OnlineBankingApp\.

You can perform the steps in this folder to fix the use of an insecure deserializer.

How to do it…
Let's take a look at the steps for this recipe.

1. Open Pages\Loans\Upload.cshtml.cs and examine the code in the
OnPostAsync method that makes use of the dangerous BinaryFormatter class
to deserialize FileStream:

public async Task OnPostAsync()

{

 Loan emptyLoan = null;

 var file = Path.Combine(_environment
 .ContentRootPath, "uploads", Upload.FileName);

 using (var fileStream = new FileStream(file,
 FileMode.Create))

 {

 await Upload.CopyToAsync(fileStream);

 BinaryFormatter formatter = new

 BinaryFormatter();

https://owasp.org/www-community/Source_Code_Analysis_Tools
https://owasp.org/www-community/Source_Code_Analysis_Tools

204 Insecure Deserialization

 fileStream.Position = 0;

 emptyLoan = (Loan) formatter.Deserialize
 (fileStream);

 }

2. Navigate to Terminal | New Terminal in the menu or do this by simply pressing
Ctrl + Shift + ' in VS Code.

3. Type the following command in the terminal to build and run the sample app:

dotnet build

Notice that the build succeeded but a warning appeared:

warning SYSLIB0011: 'BinaryFormatter.Deserialize(Stream)' is
obsolete: 'BinaryFormatter serialization is obsolete and should
not be used.

See https://aka.ms/binaryformatter for more information.

More than being obsolete, BinaryFormatter is also unsafe. It is highly
recommended to avoid this class and to use a more secure serializer/deserializer.

4. To remediate the risk, we must use a SerializationBinder class to validate
the type that is being deserialized. We begin by adding a new file under the Models
folder by pressing Ctrl + N and name it LoanDeserializationBinder.cs:

Figure 9.8 – LoanDeserializationBinder.cs

Fixing the use of insecure deserializers 205

5. Define a LoanDeserializationBinder class that inherits from
SerializationBinder and add the following code:

using System;

using System.Runtime.Serialization;

namespace OnlineBankingApp.Models

{

 public class LoanDeserializationBinder :
 SerializationBinder

 {

 public override Type BindToType(string
 assemblyName, string typeName)

 {

 if (typeName.Equals
 ("OnlineBankingApp.Models.Loan")){

 return typeof(Loan);

 }

 return null;

 }

 }

}

6. Next, we refactor the code that uses BinaryFormatter, assigning its Binder
property with the instance of the LoanDeserializationBinder class:

using (var fileStream = new FileStream(file,
 FileMode.Create))

{

 await Upload.CopyToAsync(fileStream);

 BinaryFormatter formatter = new BinaryFormatter();

 formatter.Binder = new LoanDeserializationBinder();

 fileStream.Position = 0;

 emptyLoan = (Loan) formatter.Deserialize
 (fileStream);

}

206 Insecure Deserialization

By using the LoanDeserializationBinder class, we can check the type
that is being deserialized, preventing our sample Online Banking web app from
getting exploited.

Note
This sample Online Banking web application is able to use
BinaryFormatter because of the settings enabled in the project file.

Inside the OnlineBankingApp.csproj file is a Boolean-based
EnableUnsafeBinaryFormatterSerialization node that
allows your app to use the unsafe BinaryFormatter class:

<PropertyGroup>

<TargetFramework>net5.0</TargetFramework>

<EnableUnsafeBinaryFormatterSerialization>true
</EnableUnsafeBinaryFormatterSerialization>

<UserSecretsId>4869bcd3-3dab-4dae-a167-
31816b317c8b</UserSecretsId>

</PropertyGroup>

It is highly advised to avoid enabling this setting.

How it works…
Without the Binder property set, BinaryFormatter can be harmful to our sample
Online Banking web application. On its own, BinaryFormatter takes the incoming
type as it is, with no validation. To resolve our code security problem, we define a new
class that inherits from the SerializationBinder class and assign this to the Binder
property of the BinaryFormatter instance:

formatter.Binder = new LoanDeserializationBinder();

The LoanDeserializationBinder class checks the type and ensures that it returns
the expected Loan object:

if (typeName.Equals("OnlineBankingApp.Models.Loan")){

 return typeof(Loan);

}

Fixing the use of insecure deserializers 207

However, while this approach reduces the risk of unwanted data deserialization, it does
not entirely prevent other types of attack.

There's more…
Assessing your ASP.NET Core web application's risk profile is crucial to determine
if BinaryFormatter is a fit deserializer for the job. It is recommended to avoid
using this type and to lean into much safer alternatives. Depending on the data to
process, secure options such as DataContractSerializer, XmlSerializer,
BinaryReader, BinaryWriter—or even the classes under the System.Text.Json
namespace—are far better choices.

For instance, to use the DataContractSerializer class in code, we change the
namespace reference from System.Runtime.Serialization.Formatters.
Binary to this:

using System.Runtime.Serialization;

We then remove BinaryFormatter to replace it with the
DataContractSerializer class:

using (var fileStream = new FileStream(file, FileMode.Create))

{

 await Upload.CopyToAsync(fileStream);

 var safeDeserializer = new DataContractSerializer
 (typeof(OnlineBankingApp.Models.Loan));

 fileStream.Position = 0;

 emptyLoan = (OnlineBankingApp.Models.Loan)
 safeDeserializer.ReadObject(fileStream);

}

Using the DataContractSerializer class provides automatic type checking, making
attacks such as DoS and RCE harder to execute successfully.

208 Insecure Deserialization

Fixing untrusted data deserialization
Missing type checks are not the only thing to look out for when it comes to
deserialization—the data itself must be validated for its integrity.

Let's see in action how untrusted data deserialization can exploit our sample Online
Banking web application.

Testing untrusted data deserialization
To test if our sample Online Banking web application is vulnerable to untrusted data
deserialization, we follow these steps and use a tainted file:

1. Navigate to Terminal | New Terminal in the menu or do this by simply pressing
Ctrl + Shift + ' in VS Code.

2. Type the following command in the terminal to build and run the sample app:

dotnet run

3. Open a browser and go to https://localhost:5001/Loans/Upload.

4. Log in using the following credentials:

a) Email: axl.l.torvalds@ut.net

b) Password: 6GKqqtQQTii92ke!

5. Once authenticated, you will be redirected to the Upload Loan Application page.
This page will allow a loan officer to process a loan application by uploading a loan
binary file:

Figure 9.9 – Upload Loan Application page

Fixing untrusted data deserialization 209

6. Start uploading a file by clicking Choose File, browse to the current directory, and
select file.dat. Hit Submit to upload the file.dat file:

Figure 9.10 – file.dat
Let's see what happens when we upload a presumed trusted file.

210 Insecure Deserialization

7. Open the DB Browser for SQLite (DB4S) tool and select the OnlineBank.db file
to view the loan record:

Figure 9.11 – DB4S

8. To view the records under the Loan table, go to the Browse Data tab and select
Loan in the Table drop-down list, as shown in the following screenshot:

Figure 9.12 – Tampered-with loan application

Fixing untrusted data deserialization 211

Note that the Status setting is instantly in an approved state as the uploaded file is
tampered with. This security bug exists due to a lack of data validation in code.

Getting ready
We will use the Online Banking app we used in the previous recipe. Using VS Code,
open the sample OnlineBankingApp folder at \Chapter09\deserialized-
untrusted-data\before\OnlineBankingApp\.

You can perform the steps in this folder to fix the untrusted data deserialization.

How to do it…
Let's take a look at the steps for this recipe:

1. Open Pages\Loans\Upload.cshtml.cs and examine the code in the
OnPostAsync method. Observe that there are no data checks or validations
performed that will set the loan status to its initial expected value of
LoanStatus.Pending:

using (var fileStream = new FileStream(file,
 FileMode.Create))

{

 await Upload.CopyToAsync(fileStream);

 BinaryFormatter formatter = new BinaryFormatter();

 formatter.Binder = new LoanDeserializationBinder();

 fileStream.Position = 0;

 emptyLoan = (Loan)
 formatter.Deserialize(fileStream);

}

var loggedInUser = HttpContext.User;

var customerId = loggedInUser.Claims.FirstOrDefault
 (x => x.Type == ClaimTypes.NameIdentifier).Value;

 emptyLoan.CustomerID = customerId;

emptyLoan.TransactionDate = DateTime.Now;

if (await TryUpdateModelAsync<Loan>(

 emptyLoan,

 "loan",

 l => l.ID, l => l.CustomerID, l => l.Amount, l =>
 l.PeriodInMonths, l => l.TransactionDate, l =>
 l.Note))

212 Insecure Deserialization

{

 _context.Loan.Add(emptyLoan);

 await _context.SaveChangesAsync();

}

2. To fix this security bug, we make sure that the business rules are followed and the
state of important properties such as LoanStatus is initialized:

var loggedInUser = HttpContext.User;

var customerId = loggedInUser.Claims.FirstOrDefault

 (x => x.Type == ClaimTypes.NameIdentifier).Value;

emptyLoan.CustomerID = customerId;

emptyLoan.TransactionDate = DateTime.Now;

emptyLoan.Status = LoanStatus.Pending;

With the preceding code addition, we prevent potential data tampering during
deserialization.

How it works…
Data validation checks keep attackers at bay from abusing our sample Online Banking
web app. When reviewing code for security flaws, we must understand the business rules
behind every ASP.NET Core web page. In the preceding recipe, we performed a test and
looked at the integrity of the data stored. We discovered that the file.dat file had been
tampered with, and submitting the file caused the loan application to be automatically
approved. Security controls were missing, and we deserialized the file blindly without
any integrity checks. We fixed this issue by initializing the Loan object with initial values
properly, setting the Loan.Status property to LoanStatus.Pending.

10
Using Components

with Known
Vulnerabilities

ASP.NET Core web developers rely on third-party commercial and open source
frameworks, libraries, and packages to build web applications. This approach speeds up
development time to support the rapid pace of business needs. While this saves developers
a lot of time, there is a risk associated with using externally developed components. Code
security in these libraries is often not guaranteed and, as with any other software, there
will be security flaws. Software composition analysis (SCA) is necessary to find out
whether your ASP.NET Core web application is using outdated and vulnerable packages.

In this chapter, we're going to cover the following recipes:

• Fixing the use of a vulnerable third-party JavaScript library

• Fixing the use of a vulnerable NuGet package

• Fixing the use of a library hosted from an untrusted source

214 Using Components with Known Vulnerabilities

By the end of this chapter, you will have learned how to use browser add-ons and
command-line tools to find vulnerable versions of libraries, how to update the framework
to a safer version of the NuGet package, how to determine what an untrusted source is,
and how to take steps to remediate the risk such sources introduce in code.

Technical requirements
This book was written and designed to use with Visual Studio Code, Git, and .NET 5.0.
Code examples in recipes are presented in ASP.NET Core Razor page . The sample solution
also uses SQLite as the database engine for a more simplified setup. The complete code
examples for this chapter are available at https://github.com/PacktPublishing/
ASP.NET-Core-Secure-Coding-Cookbook/tree/main/Chapter10.

Fixing the use of a vulnerable third-party
JavaScript library
Web development wouldn't be complete without JavaScript libraries as they help
developers perform Document Object Model (DOM) manipulation and process
Asynchronous JavaScript And XML (AJAX) in web pages. jQuery is one such
library. However efficient the jQuery JavaScript library is, there are many Common
Vulnerabilities and Exposures (CVEs) associated with previous versions of the jQuery
library. CVEs are publicly known vulnerabilities that detail the weaknesses of particular
software or components. Let's see how we can use browser extensions to discover
vulnerable versions of jQuery.

Getting ready
For the recipes in this chapter, we will need a sample Online Banking app.

Open the command shell and download the sample Online Banking app by cloning the
ASP.NET-Core-Secure-Coding-Cookbook repository, as follows:

git clone https://github.com/PacktPublishing/ASP.NET-Core-
Secure-Coding-Cookbook.git

Run the sample app to verify that there are no build or compile errors. In your command
shell, navigate to the sample app folder at \Chapter10\vulnerable-jquery1\
before\OnlineBankingApp and run the following command:

dotnet build

https://github.com/PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/main/Chapter10
https://github.com/PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/main/Chapter10

Fixing the use of a vulnerable third-party JavaScript library 215

The dotnet build command will build our sample OnlineBankingApp project and
its dependencies.

Testing outdated and vulnerable third-party libraries
To determine if your application is using a vulnerable JavaScript component, we can use
a tool such as Retire.js. The following steps will instruct us on how to install
Retire.js and use it to test outdated and vulnerable third-party libraries in our sample
Online Banking web application:

1. Using your preferred browser, install the Retire.js browser extension. The steps
to install Retire.js are more or less the same for most browsers.

a) With Chrome, type the following in the address bar to open the Chrome
Web Store:

https://chrome.google.com/webstore/category/
extensions?hl=en-US&authuser=1

b) Once the Chrome Web Store loads, you will see a search bar on the left side of
the page. Type Retire.js and hit Enter:

Figure 10.1 – Retire.js in Chrome Web Store

https://chrome.google.com/webstore/category/extensions?hl=en-US&authuser=1
https://chrome.google.com/webstore/category/extensions?hl=en-US&authuser=1

216 Using Components with Known Vulnerabilities

c) Select retire.js from the search result. You will now be redirected to the
Retire.js extensions page where you can install the extension. Click the Add to
Chrome button to begin the installation:

Figure 10.2 – Retire.js extensions page
d) Once installed, you will see a message pop out that will inform you retire.js has
been added to Chrome:

Figure 10.3 – Retire.js successful installation

2. From the starting exercise folder, launch VS Code by typing the following
command:

code .

3. Navigate to Terminal | New Terminal in the menu or do this by simply pressing
Ctrl + Shift + ' in VS Code.

Fixing the use of a vulnerable third-party JavaScript library 217

4. Type the following command in the terminal to build and run the sample app:

dotnet run

5. Open a browser and go to https://localhost:5001/Loans.

6. Log in using the following credentials:

a) Email: stanley.s.jobson@lobortis.ca

b) Password: rUj5jtV8jrTyHnx!

7. Once authenticated, you will be redirected to the Loans page.

8. Notice that the retire.js plugin is loaded in the toolbar and is marked with a
red exclamation point. Clicking it will show you details of the warning:

Figure 10.4 – Retire.js in action

9. The retire.js plugin will display a pop-up window that shows the CVE
information. Our Online Banking solution is using jQuery version 3.4.1,
which is known to have a vulnerability with a Medium severity.

In this recipe, we will fix the vulnerable third-party component by using the latest version
of the library.

How to do it…
Let's take a look at the steps for this recipe:

1. From the starting exercise folder, launch VS Code by typing the following command:

code .

218 Using Components with Known Vulnerabilities

2. Open Pages\Shared_Layout.cshtml and notice the script tag referencing
an external jquery-3.4.1.min.js JavaScript file:

<script src="https://code.jquery.com/jquery-3.4.1.min.js"
integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8H
fCJo=" crossorigin="anonymous"></script>

This jQuery version is vulnerable to cross-site scripting (XSS).

3. To remediate this security risk, we update the jQuery script reference to the latest
version of jQuery as recommended by the jQuery team, which is to upgrade to
version 3.5.0 (or use the latest version).

4. In your browser, go to https://code.jquery.com/jquery/.

5. Scroll down until you find the latest version of jQuery Core (as of this writing, it is
jQuery Core 3.6.0):

Figure 10.5 – jQuery CDN references

6. Click the minified link to display the Code Integration pop-up window for the
minified version of jQuery 3.6.0, and then click the Copy to Clipboard icon to copy
the whole script tag reference to the jQuery CDN.

7. Once we have the CDN script reference to the latest version of jQuery, we update
our _Layout.html file by replacing the whole vulnerable script element:

<script src="https://code.jquery.com/
jquery-3.6.0.min.js" integrity="sha256-/
xUj+3OJU5yExlq6GSYGSHk7tPXikynS7ogEvDej/m4="
crossorigin="anonymous"></script>

8. To test if the code fix worked, repeat Steps 3-9 in the Testing outdated and vulnerable
third-party libraries section and see the result:

https://code.jquery.com/jquery/

Fixing the use of a vulnerable third-party JavaScript library 219

Figure 10.6 – No vulnerability found
Notice that the Retire.js plugin no longer shows that the page is vulnerable.

How it works…
Retire.js is a useful free open source browser add-on that scans your web pages for
vulnerable JavaScript libraries. Retire.js executes a passive scan of resources loaded
in the page and identifies vulnerable JavaScript libraries based on Uniform Resource
Locators (URLs), filenames, file content, or hashes.

We install this browser add-on to identify that our Loans page is vulnerable to XSS based
on CVE-2020-11022. We remediate the risk of XSS exploitation by updating the jQuery
library to the latest version.

There's more…
Let's discover and fix another vulnerability using the Retire.js browser plugin:

1. Open the sample OnlineBankingApp folder at \Chapter10\jquery2\
before\OnlineBankingApp\.

2. Navigate to Terminal | New Terminal in the menu or do this by simply pressing
Ctrl + Shift + ' in VS Code.

3. Type the following command in the terminal to build and run the sample app:

dotnet run

4. Open a browser and go to https://localhost:5001/Loans.

220 Using Components with Known Vulnerabilities

5. Log in using the following credentials:

a) Email: axl.l.torvalds@ut.net

b) Password: 6GKqqtQQTii92ke!

6. Once authenticated, you will be redirected to the Loans page.

7. Notice that the Retire.js browser add-on's icon has an exclamation in
the toolbar.

8. Click the Retire.js icon and the extension will display a pop-up window that
shows the vulnerability information:

Figure 10.7 – Scan result
The add-on indicates that there are at least four CVEs that are of Medium severity
found in the jQuery library.

9. Click one of the hyperlinks beside each CVE to see details of the vulnerabilities.
One of the items in the list shows that the page has a vulnerable jQuery version
based on CVE-2015-9251, CVE-2019-11358, CVE-2020-11022, and
CVE-2020-11023, all of which are XSS vulnerabilities.

Fixing the use of a vulnerable third-party JavaScript library 221

Tip
Your application may or may not be directly affected by the CVE. For instance,
2019-11358 affects Drupal and Backdrop content management systems
(CMSes). However, it is still a good idea to remediate the risk even if your ASP.
NET Core web application is not directly affected.

10. You can hit the Save button to save the information into a page. A window will
appear, asking if you want to view it in a browser:

Figure 10.8 – Saving as a file

11. The rendered page displays the same information as what is shown in the
browser add-on:

Figure 10.9 – Saved report

222 Using Components with Known Vulnerabilities

To fix this security issue, we also need to upgrade to the latest version of jQuery by
updating the CDN reference.

12. Open Pages\Shared_Layout.cshtml and notice the script tag
referencing an external jquery-3.0.0-rc1.js JavaScript file:

<script src="https://code.jquery.com/
jquery-3.0.0-rc1.js"></script>

13. Repeat Steps 4-6 in the How to do it… section of this recipe.

14. Replace the reference to jquery-3.0.0-rc1.js with the content from
the clipboard:

<script src="https://code.jquery.com/
jquery-3.6.0.min.js" integrity="sha256-/
xUj+3OJU5yExlq6GSYGSHk7tPXikynS7ogEvDej/m4="
crossorigin="anonymous"></script>

<script src="~/lib/bootstrap/dist/js/
bootstrap.bundle.min.js"></script>

<script src="~/js/site.js" asp-append-version="true"></
script>

After rebuilding the project and loading the page again while the extension is
enabled, the add-on will display that there are no vulnerabilities found:

Figure 10.10 – No vulnerabilities found

Note
As with any software, a browser extension can also have vulnerabilities. Be
cautious when using browser add-ons and keep abreast of their latest versions
and updates.

Fixing the use of a vulnerable NuGet package 223

See also
You can build your own software composition and library/package analysis tools
that retrieve CVE information by utilizing the National Institute of Standards and
Technology's (NIST's) National Vulnerability Database (NVD) data feeds and
application programming interfaces (APIs).

The NVD holds a collection of data of all publicly known vulnerabilities. The
documentation for their APIs can be found at this link: https://nvd.nist.gov/
vuln/data-feeds#APIS.

Fixing the use of a vulnerable NuGet package
Libraries and components can be installed and consumed from a package manager such
as NuGet. VS Code has native support, which eases the installation process for ASP.NET
Core web developers. With this, it quickly introduces the risk of installing and using a
vulnerable NuGet package.

Getting ready
We will use the Online Banking app we used in the previous recipe. Using VS Code, open
the sample OnlineBankingApp folder at \Chapter10\vulnerable-package\
before\OnlineBankingApp\.

Let's see how we can use tools to discover vulnerable NuGet packages in our app.

Testing vulnerable NuGet packages
To determine if your application is using a vulnerable NuGet package, we can use another
tool such as Dotnet Retire. To begin, we first install the dotnet retire vulnerability
scanner in our sample Online Banking app:

1. From the starting exercise folder, launch VS Code by typing the following command:

code .

2. Navigate to Terminal | New Terminal in the menu or do this by simply pressing
Ctrl + Shift + ' in VS Code.

3. Type the following command in the terminal to install dotnet-retire:

dotnet tool install -g dotnet-retire

https://nvd.nist.gov/vuln/data-feeds#APIS
https://nvd.nist.gov/vuln/data-feeds#APIS

224 Using Components with Known Vulnerabilities

Upon successful installation, you will see the following message:
You can invoke the tool using the following command:
dotnet-retire

Tool 'dotnet-retire' (version '5.0.0') was successfully
installed.

4. Next, execute the tool by typing the following command:

dotnet-retire

Notice the result of the scan:
info: RetireNet.Packages.Tool.Services.RetireLogger[0]

 Scan starting

info: RetireNet.Packages.Tool.Services.RetireLogger[0]

 Analyzing 'OnlineBankingApp'

fail: RetireNet.Packages.Tool.Services.RetireLogger[0]

 Found use of 1 vulnerable libs in 2 dependency
 paths.

 * Microsoft Security Advisory 4021279:
 Vulnerabilities in.NET Core, ASP.NET Core Could
 Allow Elevation of Privilege in
 System.Net.Http/4.3.1

 https://github.com/dotnet/corefx/issues/19535

info: RetireNet.Packages.Tool.Services.RetireLogger[0]

 Scan complete.

The scan results indicate that there is one vulnerable library, which is version
4.3.1 of the System.Net.Http package.

You can perform the steps in this folder to fix the vulnerable NuGet package.

How to do it…
Let's take a look at the steps for this recipe.

1. From the starting exercise folder, launch VS Code by typing the following command:

code .

Fixing the use of a vulnerable NuGet package 225

2. Open OnlineBankingApp.csproj. Notice that one of the packages referenced
is the vulnerable version of System.Net.Http:

<PackageReference Include="Microsoft.Extensions.Logging.
Debug" Version="5.0.0" />

<PackageReference Include="Microsoft.VisualStudio.Web.
CodeGeneration.Design" Version="5.0.1" />

<PackageReference Include="SendGrid" Version="9.22.0" />

<PackageReference Include="System.Net.Http"
Version="4.3.1" />

<PackageReference Include="System.Text.Encodings.Web"
Version="5.0.1" />

To fix this security flaw, we upgrade the NuGet package to the latest version.

3. Navigate to Terminal | New Terminal in the menu or do this by simply pressing
Ctrl + Shift + ' in VS Code.

4. Type the following command in the terminal to install the latest version of the
System.Net.Http package:

dotnet add package System.Net.Http

5. Upon successful installation, you will see that the version is updated in
OnlineBankingApp.csproj:

<PackageReference Include="Microsoft.Extensions.Logging.
Debug" Version="5.0.0" />

<PackageReference Include="Microsoft.VisualStudio.Web.
CodeGeneration.Design" Version="5.0.1" />

<PackageReference Include="SendGrid" Version="9.22.0" />

<PackageReference Include="System.Net.Http"
Version="4.3.4" />

<PackageReference Include="System.Text.Encodings.Web"
Version="5.0.1" />

6. Omitting --version or -v in the dotnet add package command will install
the latest NuGet package.

7. To test if the code fix worked, repeat Step 4 in the Testing vulnerable NuGet packages
section and see the result:

info: RetireNet.Packages.Tool.Services.RetireLogger[0]

 Scan starting

226 Using Components with Known Vulnerabilities

info: RetireNet.Packages.Tool.Services.RetireLogger[0]

 Analyzing 'OnlineBankingApp'

info: RetireNet.Packages.Tool.Services.RetireLogger[0]

 Found no usages of vulnerable libs!

info: RetireNet.Packages.Tool.Services.RetireLogger[0]

 Scan complete.

Observe the result. The dotnet retire tool did not find any vulnerable packages.

How it works…
dotnet retire is a command-line tool that helps developers understand the ASP.NET
Core application's dependencies. These dependencies often have vulnerabilities that we
should all be aware of, so it is necessary to execute security scans.

Security scans from dotnet retire search for referenced vulnerable NuGet libraries
to prevent our sample Online Banking web app from getting exploited with publicly
known vulnerabilities.

Fixing the use of a library hosted from an
untrusted source
The sources of the libraries and components we use must be from a secure and trusted
source. The hosts of these libraries, which are most of the time hosted in CDNs, can also
be attacked and abused.

Getting ready
We will use the Online Banking app we used in the previous recipe. Using VS Code, open
the sample OnlineBankingApp folder at \Chapter10\untrusted-source\
before\OnlineBankingApp\.

You can perform the steps in this folder to fix the use of a package hosted from an
untrusted source.

Fixing the use of a library hosted from an untrusted source 227

How to do it…
Let's take a look at the steps for this recipe:

1. From the starting exercise folder, launch VS Code by typing the following command:

code .

2. Open Pages\Loans\Index.cshtml and examine the script reference below
the markup:

<script src="http://code.jquery.com/
jquery-3.6.0.min.js" integrity="sha256-/
xUj+3OJU5yExlq6GSYGSHk7tPXikynS7ogEvDej/m4="
crossorigin="anonymous"></script>

<script src="~/lib/bootstrap/dist/js

/bootstrap.bundle.min.js"></script>

<script src="~/js/site.js" asp-append-version="true"></
script>

Notice that while the jQuery version is the latest version, the protocol is HyperText
Transfer Protocol (HTTP).

3. Simply change the protocol from http to https:

<script src="https://code.jquery.com/
jquery-3.6.0.min.js" integrity="sha256-/
xUj+3OJU5yExlq6GSYGSHk7tPXikynS7ogEvDej/m4="
crossorigin="anonymous"></script>

<script src="~/lib/bootstrap/dist/js
/bootstrap.bundle.min.js"></script>

<script src="~/js/site.js" asp-append-version="true"></
script>

Changing the protocol from http to https ensures that the reference to the
JavaScript library in CDN is secure and will not be prone to weaknesses brought in by
insecure transport.

Tip
Aside from hosts that serve resources over insecure HTTP, we must also
be aware of utilizing JavaScript libraries that are hosted in shady and
lesser-known domains.

228 Using Components with Known Vulnerabilities

How it works…
ASP.NET Core web developers must ensure that a library is coming from a proper source,
and in our case, we are utilizing the official CDN from code.jquery.com, which is
trusted. Developers must also add a reference to the jQuery library (or any JavaScript
library) through secure links with HTTP Secure (HTTPS):

https://code.jquery.com/jquery-3.6.0.min.js

There's more…
There is also a risk of hosts and CDNs getting compromised, so to verify the integrity of
a resource, developers must use the Subresource Integrity (SRI) security feature. SRI
in browsers provides integrity checks of resources our ASP.NET Core web application
fetches. It allows developers to pass a hash generated from the original and untampered
resource it expects against the hash of the resource that the web app is trying to fetch from
the host:

<script src="https://code.jquery.com/jquery-3.6.0.min.js"
integrity="sha256-/xUj+3OJU5yExlq6GSYGSHk7tPXikynS7ogEvDej
/m4=" crossorigin="anonymous"></script>

Most CDNs provide you the hash, but you can generate your own using command-line
tools or do this from an online tool such as the SRI Hash Generator (https://www.
srihash.org/).

To learn more about the details of SRI, read the Mozilla Developer Network (MDN)
documentation on SRI, found at https://developer.mozilla.org/en-US/
docs/Web/Security/Subresource_Integrity.

http://code.jquery.com
https://www.srihash.org/
https://www.srihash.org/
https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity
https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity

11
Insufficient Logging

and Monitoring
Attacks on ASP.NET Core web applications can happen at any given moment in time.
Developers must empower their security teams to reconstruct an incident by generating
adequate logs from web applications. Logging the right information will help determine
an event's details and identify critical data for auditing purposes. The downside of failing
to log key security information prevents security teams from producing proper analysis
or reports. Too much logging, however, can lead to sensitive data exposure. Applying a
necessary and immediate response to act on such security events is only possible through
active monitoring. Developers must enable monitoring in the logs that our ASP.NET Core
web applications generate for a more real-time defense.

In this chapter, we're going to cover the following recipes:

• Fixing insufficient logging of exceptions

• Fixing insufficient logging of database (DB) transactions

• Fixing excessive information logging

• Fixing a lack of security monitoring

230 Insufficient Logging and Monitoring

By the end of this chapter, you will have learned how to correctly add proper exception
logging in our sample Online Banking app, how to log a critical DB transaction, how to
prevent logging too much data or information, and how to enable security monitoring.

Technical requirements
This book was written and designed to use with Visual Studio Code (VS Code), Git, and
.NET Core 5.0. The code examples in the recipes are presented mostly in ASP.NET Core
Razor Pages. The sample solution also uses SQLite as the DB engine for a more simplified
setup. The complete code examples for this chapter are available at https://github.
com/PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/
main/Chapter11.

Fixing insufficient logging of exceptions
Security-related events such as user authentication or enabling and disabling of
two-factor authentication (2FA)—when this occurs—must be recorded and kept track
of. These events are essential for auditing in order to understand the sequence of events
when a security incident happens.

In this recipe, we will fix the insufficient logging of security-related exceptions by utilizing
ASP.NET Core's built-in logging provider.

Getting ready
For the recipes of this chapter, we will need a sample Online Banking app.

Open the command shell and download the sample Online Banking app by cloning the
ASP.NET-Core-Secure-Coding-Cookbook repository, as follows:

git clone https://github.com/PacktPublishing/ASP.NET-Core-
Secure-Coding-Cookbook.git

Run the sample app to verify that there are no build or compile errors. In your command
shell, navigate to the sample app folder at \Chapter11\insufficient-logging-
exception\before\OnlineBankingApp and run the following command:

dotnet build

The dotnet build command will build our sample OnlineBankingApp project and
its dependencies.

https://github.com/PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/main/Chapter11
https://github.com/PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/main/Chapter11
https://github.com/PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/main/Chapter11

Fixing insufficient logging of exceptions 231

How to do it…
Let's take a look at the steps for this recipe:

1. From the starting exercise folder, launch VS Code by typing the following command:

code .

2. Open Areas\Identity\Pages\Account\Manage\Disable2fa.cshtml.
cs and notice the code under OnGet:

public async Task<IActionResult> OnGet()

{

 var customer = await
 _customerManager.GetUserAsync(User);

 if (customer== null)

 {

 return NotFound($"Unable to load customer with
 ID '{_ customerManager.GetUserId(User)}'.");

 }

 if (!await _customerManager
 .GetTwoFactorEnabledAsync(customer))

 {

 throw new InvalidOperationException($"Cannot
 disable 2FA for customer with ID
 '{_customerManager.GetUserId(User)}'
 as it's not currently enabled.");

 }

 return Page();

}

232 Insufficient Logging and Monitoring

3. Also, notice the code under the OnPostAsync method:

public async Task<IActionResult> OnPostAsync()

{

 var customer = await
 _customerManager.GetUserAsync(User);

 if (customer == null)

 {

 return NotFound($"Unable to load customer with
 ID '{_customerManager.GetUserId(User)}'.");

 }

 var disable2faResult = await
 _customerManager.SetTwoFactorEnabledAsync
 (customer, false);

 if (!disable2faResult.Succeeded)

 {

 throw new InvalidOperationException
 ($"Unexpected error occurred disabling 2FA for
 customer with ID '{_customerManager
 .GetUserId (User)}'.");

 }

 _logger.LogInformation("Customer with ID
 '{UserId}' has disabled 2fa.",
 _customerManager.GetUserId(User));

 StatusMessage = "2fa has been disabled. You can
 reenable 2fa when you setup an authenticator
 app";

 return
 RedirectToPage("./TwoFactorAuthentication");

}

Both methods have a line of code where an InvalidOperationException
exception is thrown. The exception indicates that an attempt to disable 2FA was
made but failed. These events should be considered anomalies and logged. These
events can be considered anomalies, and each should be logged.

Fixing insufficient logging of exceptions 233

4. To fix a lack of event logging, we refactor the OnGet method and add logging when
the InvalidOperationException exception is thrown:

public async Task<IActionResult> OnGet()

{

 var customer = await
 _customerManager.GetUserAsync(User);

 if (customer == null)

 {

 return NotFound($"Unable to load customer with
 ID '{_customerManager.GetUserId(User)}'.");

 }

 if (!await
 _customerManager.GetTwoFactorEnabledAsync
 (user))

 {

 _logger.LogError($"Cannot disable 2FA for
 customer with ID '{_customerManager
 .GetUserId(User)}' as it's not
 currently enabled.");

 throw new InvalidOperationException($"Cannot
 disable 2FA for customer with ID
 '{_customerManager.GetUserId(User)}'
 as it's not currently enabled.");

 }

 return Page();

}

234 Insufficient Logging and Monitoring

5. We also refactor the OnPostAsync method, as shown here:

public async Task<IActionResult> OnPostAsync()

{

 var customer = await
 _customerManager.GetUserAsync(User);

 if (customer == null)

 {

 return NotFound($"Unable to load customer with
 ID '{_customerManager.GetUserId(User)}'.");

 }

 var disable2faResult = await
 _customerManager.SetTwoFactorEnabledAsync
 (customer, false);

 if (!disable2faResult.Succeeded)

 {

 _logger.LogError($"Unexpected error occurred
 disabling 2FA for customer with ID
 '{_customerManager.GetUserId
 (User)}'.");

 throw new InvalidOperationException
 ($"Unexpected error occurred disabling 2FA
 for customer with ID'{_customerManager
 .GetUserId(User)}'.");

 }

 _logger.LogInformation("Customer with ID
 '{UserId}' has disabled 2fa.",
 _customerManager.GetUserId(User));

 StatusMessage = "2fa has been disabled. You can
 reenable 2fa when you setup an authenticator
 app";

 return
 RedirectToPage("./TwoFactorAuthentication");

}

We used the _logger object from the dependency injection (DI) to call the
LogError method, which writes an error log in the current logging provider.

Fixing insufficient logging of exceptions 235

How it works…
We have preconfigured our sample Online Banking app to add Windows event logging by
calling the ConfigureLogging method. The ConfigureLogging method will create
an ILogger object for the Windows EventLog provider. We set the SourceName
property of the ILogger object to OnlineBankingApp to identify the logs generated
by our sample Online Banking application:

public static IHostBuilder CreateHostBuilder(string[] args) =>

 Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>

 {

 logging.AddEventLog(eventLogSettings =>

 {

 eventLogSettings.SourceName =
 "OnlineBankingApp";

 });

 })

We also have configured informational logging by adding an entry in the Logging
section of the appsettings.json file. This will create an OnlineBankingApp
category with its log level set to Information:

{

 "Logging": {

 "EventLog": {

 "LogLevel": {

 "Default": "Warning",

 "OnlineBankingApp": "Information"

 }

 },

With these settings in place, we can now use the Windows EventLog provider for
our logging. The instance of the ILogger object, _logger, is already made available
through DI. We now simply make a call to the ILogger object's LogError method in
the lines of code where a critical exception occurred.

236 Insufficient Logging and Monitoring

Note
It is important to note that the location and how the logs are stored are
essential criteria. The configuration or the code shouldn't place the logs in the
same location as the web server. We must implement proper access control to
prevent unauthorized viewing of logs. There are open source and enterprise
security solutions that provide tools to view, collect, and store logs securely.

Fixing insufficient logging of DB transactions
Basic DB transactions such as creating, reading, and deleting records are essential to have
audit trails, especially when an error occurs as a DB function is performed.

In this recipe, we will fix the insufficient logging of a failed DB transaction, when a related
exception is thrown.

How to do it…
Let's take a look at the steps for this recipe:

1. From the starting exercise folder, launch VS Code by typing the following command:

code .

2. Open Pages\Backups\Edit.cshtml.cs and notice a lack of DB operation
logging in the OnPostAsync method:

public async Task<IActionResult> OnPostAsync()

{

 if (!ModelState.IsValid){

 return Page();

 }

 _context.Attach(Backup).State =
 EntityState.Modified;

 try{

 await _context.SaveChangesAsync();

 }

Fixing insufficient logging of DB transactions 237

 catch (DbUpdateException){

 if (!BackupExists(Backup.ID)){

 return NotFound();

 }

 else{

 throw;

 }

 }

 return RedirectToPage("./Index");

}

However, DB operations such as performing a backup and updating its related
records should be logged.

3. To fix the missing logging of high-value DB transactions, let's add a logger using
the ILogger interface through DI. Begin by defining a _logger member of
type ILogger:

public class EditModel : PageModel

{

 private readonly OnlineBankingApp.Data
 .OnlineBankingAppContext _context;

 private readonly ILogger<EditModel> _logger;

// code removed for brevity

4. Next, inject the ILogger member into the EditModel constructor:

public EditModel(OnlineBankingApp.Data
 .OnlineBankingAppContext context,
 ILogger<EditModel> logger)

{

 _logger = logger;

 _context = context;

}

5. In the try-catch block, add the following lines of code:

try{

 await _context.SaveChangesAsync();

}

238 Insufficient Logging and Monitoring

catch (DbUpdateException ex){

 if (!BackupExists(Backup.ID)){

 _logger.LogError("Backup not found");

 return NotFound();

 }

 else{

 _logger.LogError($"An error occurred in

 backing up the DB { ex.Message } ");

 throw;

 }

}

Adding these lines of code will write an error log in the EventLog logging provider
using the same logging settings that were explained in the preceding recipe.

How it works…
During a sensitive DB operation such as a DB backup, an unexpected error can occur.
Such exceptions may cause a faulty system or—worse—an attack in our sample Online
Banking app. We mitigate the risk of losing data integrity by keeping track of these DB
operations and knowing when an event happened. We make a call to the LogError
function to write a log into the Windows event log:

if (!BackupExists(Backup.ID)){

 _logger.LogError("Backup not found");

 return NotFound();

}

else{

 _logger.LogError($"An error occurred in backing up the
 DB { ex.Message } ");

 throw;

}

As a best practice, we provide an appropriate error log message for specific exceptions
(DbUpdateException) that we anticipate and, at the most, log only the Message
property of the generic exception, avoiding revealing sensitive information in the logs that
we create (more about best practices on exception handling in Chapter 13, Best Practices).

Fixing excessive information logging 239

Fixing excessive information logging
As we learned in Chapter 4, Sensitive Data Exposure, ensuring you prevent the exposure
of personal details is the key to keeping your application secure, and the same goes
for logging information. While logs are helpful, there is also a risk involved in logging
excessive data. Perpetrators will find ways to get useful information, and the log store is
one source they will try to discover.

In this recipe, we will fix the excessive logging of information such as usernames
and passwords.

How to do it…
Let's take a look at the steps for this recipe:

1. From the starting exercise folder, launch VS Code by typing the following command:

code .

2. Open Areas\Identity\Pages\Account\Login.cshtml.cs and locate the
lines of code that send too much sensitive information into the logs:

 if (ModelState.IsValid)

 {

 // This doesn't count login failures towards
 account lockout

 // To enable password failures to trigger
 account lockout, set lockoutOnFailure: true

 var signInResult = await
 _signInManager.PasswordSignInAsync
 (Input.Email, Input.Password,
 Input.RememberMe, lockoutOnFailure
 : false);

 if (signInResult.Succeeded)

 {

 _logger.LogInformation($"Customer with
 email { Input.Email } and password
 { Input.Password } logged in");

240 Insufficient Logging and Monitoring

3. To fix the issue, we replace the line with a proper log entry:

if (ModelState.IsValid)

{

 // This doesn't count login failures towards
 account lockout
 // To enable password failures to trigger account
 lockout, set lockoutOnFailure: true

 var signInResult = await
 _signInManager.PasswordSignInAsync
 (Input.Email, Input.Password,
 Input.RememberMe, lockoutOnFailure:
 false);

 if (signInResult.Succeeded)

 {

 _logger.LogInformation("User logged in.");

 if (string.IsNullOrEmpty(HttpContext
 .Session.GetString(SessionKeyName)))

 {

 HttpContext.Session.SetString
 (SessionKeyName, Input.Email);

 }

Refactoring the code to remove sensitive information such as usernames and
passwords prevents an incident where a perpetrator can get hold of the log store and
use the information gathered to exploit our sample Online Banking app.

How it works…
We can view the logs generated by our sample Online Banking app by opening the
Windows Event Viewer via the Run command. Here are the steps to do this:

1. Type Windows + R, and once the Run window shows up, as shown in the following
screenshot, type eventvwr.msc:

Fixing excessive information logging 241

Figure 11.1 – Run command

2. In Event Viewer (Local), expand Windows Logs, then Application. Look for the
logs where the Source name is equivalent to OnlineBankingApp:

Figure 11.2 – Event Viewer
The informational logs you see in Event Viewer are the records generated by the
LogInformation method call in the preceding recipe. We have modified the
code to prevent explici.t logging of sensitive information such as a user's credentials.
We use a generic informational message to remediate the issue of exposing details
we would not want anyone to misuse.

242 Insufficient Logging and Monitoring

Fixing a lack of security monitoring
Monitoring allows us to actively observe events that occur in our ASP.NET Core web
applications. Missing out on incidents as they happen in real time can lead to an attacker
causing more damage as each minute goes by. Developers must enable monitoring in their
ASP.NET Core web applications to have early preventive detection.

In this recipe, we will fix a lack of security monitoring in our sample Online Banking web
app by implementing Azure Application Insights.

How to do it…
Let's take a look at the steps for this recipe:

1. From the starting exercise folder, launch VS Code by typing the following command:

code .

2. Navigate to Terminal | New Terminal in the menu or do this by simply pressing
Ctrl + Shift + ' in VS Code.

3. Install the Application Insights software development kit (SDK) by running the
following command in the VS Code terminal:

dotnet add package Microsoft.ApplicationInsights.
AspNetCore

4. Open Startup.cs and make a call to the
AddApplicationInsightsTelemetry method under ConfigureServices:

public void ConfigureServices(IserviceCollection
 services)

{

 services.AddApplicationInsightsTelemetry();

// code removed for brevity

The AddApplicationInsightsTelemetry method, as the name implies, will
add an Insights telemetry collection to our sample Online Banking app.

Fixing a lack of security monitoring 243

5. Open the appsettings.json file to add the instrumentation key:

{

 "ApplicationInsights": {

 "InstrumentationKey": "My-Instrumentation-Key"

 },

 "Logging": {

 "EventLog": {

 "LogLevel": {

 "Default": "Warning",

 "OnlineBankingApp": "Information"

 }

 },

Note
To generate an instrumentation key, follow the Create an Application Insights
resource instructions in the Microsoft official online documentation for
Azure Monitor, found at https://docs.microsoft.com/en-us/
azure/azure-monitor/app/create-new-resource.

6. Type the following command in the terminal to build and run the sample app:

dotnet run

7. Open a browser and go to https://localhost:5001/:.

Incoming requests will now be collected by the Application Insights SDK, including
the ILogger logs with Medium, Error, and Critical severity.

How it works…
We implement telemetry collection by integrating our sample Online Banking web
application with Azure Application Insights. Application Insights collects more than
performance metrics and logs generated by our ILogger provider—it also performs
analysis and application security detection. This cloud-based service sends alerts and
notifications in the event of a security issue such as an unsecured form, insecure Uniform
Resource Locator (URL) access, and shady user activity.

https://docs.microsoft.com/en-us/azure/azure-monitor/app/create-new-resource
https://docs.microsoft.com/en-us/azure/azure-monitor/app/create-new-resource

244 Insufficient Logging and Monitoring

There's more…
The preceding steps for the recipe are there to enable the telemetry collection from the
server side. Here are the steps to enable monitoring from the client side:

1. Open Pages_ViewImports.cshtml and inject th'e JavaScriptSnippet
service from the Application Insights SDK:

@using OnlineBankingApp

@namespace OnlineBankingApp.Pages

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

@inject Microsoft.ApplicationInsights.AspNetCore.
JavaScriptSnippet JavaScriptSnippet

2. Open Pages\Shared_Layout.cshtml and insert the JavaScript snippet in
the head section, with a call to the Html.Raw helper method:

...

 <link rel="stylesheet" href="~/lib/bootstrap/
 dist/css/bootstrap.min.css" />

 <link rel="stylesheet" href="~/css/site.css" />

 @Html.Raw(JavaScriptSnippet.FullScript)

</head>

By placing the JavaScript in the _Layout.cshtml file, we enable client-side monitoring
on all pages that use the layout template of our sample Online Banking web app.

12
Miscellaneous
Vulnerabilities

The OWASP Top 10 is the de facto standard for lists used by security professionals to learn
about the most common web application vulnerabilities. It is one of the flagship projects
by the Open Web Application Security Project (OWASP) organization. As you may have
noticed, chapters 2-11 of this book covered each of the 2017 OWASP Top 10 security risks.
This report changes every 3 to 4 years, depending on the information collected by security
experts in OWASP. New or old risks may be introduced or removed from this collection,
but this document is not a complete list, and there are other vulnerabilities that are not
covered. This chapter will talk about a few more of the existing risks, some of which are no
longer a part of the OWASP Top 10 but are still critical to know.

In this chapter, we're going to cover the following recipes:

• Fixing the disabled anti-Cross-Site Request Forgery protection

• Preventing Server-Side Request Forgery

• Preventing log injection

• Preventing HTTP response splitting

• Preventing clickjacking

• Fixing insufficient randomness

246 Miscellaneous Vulnerabilities

In this chapter, you will learn how to use ASP.NET Core's protection features against
Cross-Site Request Forgery (CSRF). You will also understand how Server-Side
Request Forgery (SSRF) can be introduced in your code and ways to prevent it from
happening. Additionally, you will discover how response splitting can occur and how
to use one of the fundamentals of secure coding, validation, for added protection. Next,
you will implement the frame-ancestor Content Security Policy (CSP), sent as an
HTTP response from your ASP.NET Core web application, to stop clickjacking attacks.
Furthermore, you will practice a basic sanitization technique to stop attackers from
injecting and forging your logs. Lastly, you will learn how to generate a cryptographically
secure and random number to protect your hashed passwords from being deciphered.

Technical requirements
This book was written and designed for use with Visual Studio Code, Git, .NET 5.0. Code
examples in recipes are presented in ASP.NET Core Razor pages. The sample solution will
also use SQLite as the database engine for a more simplified setup. The complete code
examples for this chapter are available at https://github.com/PacktPublishing/
ASP.NET-Core-Secure-Coding-Cookbook/tree/main/Chapter12.

Fixing the disabled anti-Cross-Site Request
Forgery protection
There is an inherent trust between the browser and web server that adversaries can often
abuse. Users of web applications, typically issued with an authenticated session by the ASP.
NET Core web application, are tricked by perpetrators into performing an unintentional
action by simply visiting or interacting with a malicious website. This method of attack
abuses the already established authenticated state of the user by making the browser send
a specially crafted request from a malicious website. This Cross-Site Request Forgery
(CSRF) vulnerability prompts us to review our code and enable request validation, which
we will learn about in this recipe.

Getting ready
For the recipes in this chapter, we will need a sample Online Banking app.

Open the command shell and download the sample Online Banking app by cloning the
ASP.NET Secure Coding Cookbook repository, as follows:

git clone https://github.com/PacktPublishing/ASP.NET-Core-
Secure-Coding-Cookbook.git

https://github.com/PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/main/Chapter12
https://github.com/PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/main/Chapter12

Fixing the disabled anti-Cross-Site Request Forgery protection 247

Run the sample app to verify that there are no build or compile errors. In your command
shell, navigate to the sample app folder at \Chapter12\cross-site-request-
forgery\before\OnlineBankingApp and run the following command:

dotnet build

The dotnet build command will build our sample OnlineBankingApp project and
its dependencies.

In this recipe, we will fix the Razor pages where the CSRF protection is disabled.

How to do it…
Let's take a look at the steps for this recipe:

1. From the starting exercise folder, launch Visual Studio Code by typing the
following command:

code .

2. Open Startup.cs and locate the code in ConfigureServices that configures
the filter to skip the anti-forgery token validation process:

services.AddRazorPages(options =>

{

 options.Conventions.AuthorizeAreaFolder("Identity,
 "/Account/Manage");

 options.Conventions.AuthorizeAreaPage("Identity",
 "/Account/Logout");

})

.AddRazorPagesOptions(options =>

{

 options.Conventions.ConfigureFilter(new
 IgnoreAntiforgeryTokenAttribute());

});

Passing an instance of IgnoreAntiforgeryTokenAttribute to the
ConfigureFilter method adds the attribute globally to our sample Online
Banking web application.

248 Miscellaneous Vulnerabilities

3. Change the type of token attribute that you pass into the ConfigureFilter
method and replace it with AutoValidateAntiforgeryTokenAttribute:

.AddRazorPagesOptions(options =>

{

 options.Conventions.ConfigureFilter(new
 AutoValidateAntiforgeryTokenAttribute());

});

AutoValidateAntiforgeryTokenAttribute will require request
verification using the anti-forgery tokens it receives from unsafe HTTP verbs such
as HTTP POST.

4. Next, open Pages\Loans\Create.cshtml.cs and find the
IgnoreAntiforgeryToken attribute, which annotates the
OnlineBankingApp.Pages.Loans.CreateModel view model:

using OnlineBankingApp.Models;

using System.Security.Claims;

namespace OnlineBankingApp.Pages.Loans

{

 [IgnoreAntiforgeryToken(Order = 1001)]

 public class CreateModel : PageModel

 {

 private readonly OnlineBankingApp.Data
 .OnlineBankingAppContext _context;

 // code removed for brevity

While we have re-enabled the request verification globally in Startup.
cs, we can still disable the CSRF protection on a per-view model using
IgnoreAntiforgeryToken.

Fixing the disabled anti-Cross-Site Request Forgery protection 249

5. Replace this attribute from PageModel with
AutoValidateAntiforgeryToken to explicitly enable anti-forgery tokens to
be sent to unsafe HTTP requests:

using OnlineBankingApp.Models;

using System.Security.Claims;

namespace OnlineBankingApp.Pages.Loans

{

 [AutoValidateAntiforgeryToken]

 public class CreateModel : PageModel

 {

 private readonly OnlineBankingApp.Data
 .OnlineBankingAppContext _context;

 // code removed for brevity

Note
Since we have enabled AutoValidateAntiforgeryToken globally
from Startup.cs, it is good to know that we can use this attribute at the
action level.

How it works…
When dealing with cross-site requests, the common mistake is to disable the
validation of anti-forgery tokens to make this request possible across a different
domain. In our sample Online Banking web app, we have disabled this globally within
AddRazorPagesOptions, which configures the Razor views, and by setting the filter
with IgnoreAntiforgeryTokenAttribute, thus removing the request validation
from every page:

.AddRazorPagesOptions(options =>

{

 options.Conventions
 .ConfigureFilter(new
 IgnoreAntiforgeryTokenAttribute());

});

250 Miscellaneous Vulnerabilities

Similarly, you can disable this at the class level by annotating the class with
IgnoreAntiforgeryToken. An Order with a number of 1001 is specified along
with this attribute to determine the sequence of the filter's execution:

[IgnoreAntiforgeryToken(Order = 1001)]

Each approach poses a huge risk, so anti-forgery tokens must be generated and the
request validated by the web server to prevent CSRF and verify its authenticity. Due to
this, we have used AutoValidateAntiforgeryTokenAttribute to configure the
filter instead:

.AddRazorPagesOptions(options =>

{

 options.Conventions
 .ConfigureFilter(new
 AutoValidateAntiforgeryTokenAttribute());

});

Another way of doing this is at the class level, where you can annotate the class with
AutoValidateAntiforgeryToken on top of the class definition:

[AutoValidateAntiforgeryToken]

public class CreateModel : PageModel

The preceding code enables the validation of anti-forgery tokens for unsafe HTTP
methods, which are HTTP verbs other than GET, OPTIONS, HEAD, and TRACE.

There's more…
The Synchronizer Token Pattern (STP) is a secure coding and development pattern
where tokens are sent as part of the request to the web server, proving that it is genuine.
The web server then validates the token to confirm its authenticity. Manually creating your
tokens is possible with a Globally Unique Identifier (GUID), but it is advisable to rely on
the built-in tokens generated by .NET Framework.

Anti-forgery tokens are also generated from HTML elements in the form of hidden fields.
Generating these tokens alone is not a complete solution to stop CSRF vulnerabilities in
your code. Request validation from the server side must also be enabled.

Preventing Server-Side Request Forgery 251

JavaScript-based applications can make an AJAX call to send HTTP requests
with these anti-forgery tokens. The client-side script will explicitly look for the
__RequestVerificationToken hidden form field and retrieve its value. Here is
an example of what __RequestVerificationToken looks like when rendered into
the HTML page:

<input name="__RequestVerificationToken"
type="hidden" value="CfDJ8NZYeppsy75Pga3ZTfYs_
GOXLIV7qV8nWInxNkWX2KTNH5O6U08mXz8qZYB3UPum5QFFO0zm
E1IyE8her6r0wf85eobep6SYfJCP6UBDeTe9Jpao8cEgdiUYK
yY5IWfQX4MhzYupGn5uciC74mbfQ0U" />

If your request validation fails, it might be that the form tag helper's asp-antiforgery
value is set to false. Always be on the lookout for this tag and either set it to true or
remove the asp-antiforgery attribute, making the __RequestVerificationToken
hidden form field render automatically by default:

<form method="post" asp-antiforgery="true" >

Another way to generate tokens in your Razor pages is to use the AntiForgeryToken
HTML helper method. Place the following code inside your markup:

@Html.AntiForgeryToken()

The AntiForgeryToken HTML helper will create the __
RequestVerificationToken hidden form field with the encrypted value.

Preventing Server-Side Request Forgery
ASP.NET Core web applications are composed of different layers and components to make
it a whole working system. Most of the time, it requires a backend service that will either
process or provide data to the base web application. These disparate services interconnect
to form a cohesive and functioning web application. This is either done in the form of a
web service or a REST-based API hosted internally or externally from the system, and our
code then calls the operations of these APIs and web services (or microservices).

However, without proper filtering or being able to validate the data that's been sent to
these services, the host could start executing unexpected actions. This vulnerability is
otherwise known as Server-Side Request Forgery (SSRF), with adversaries exploiting the
lack of validation or sanitization available.

252 Miscellaneous Vulnerabilities

Getting ready
Run the sample app to verify that there are no build or compile errors. In your command
shell, navigate to the sample app folder at \Chapter12\server-side-request-
forgery \before\OnlineBankingApp and run the following command:

dotnet build

The dotnet build command will build our sample OnlineBankingApp project and
its dependencies.

We also need to install an older version of MongoDB (version 3.4). Follow the Install
MongoDB instructions at https://docs.mongodb.com/v3.4/installation.

Once installed, ensure that the mongod service executable runs with the --rest switch.
This will enable MongoDB's REST API. See the following example:

C:\Program Files\MongoDB\Server\3.4\bin\mongod.exe" --rest
--service --config="C:\Program Files\MongoDB\Server\3.4\mongod.
cfg"

Populate MongoDB with data by running the following command:

db.createCollection('Payees')

Also, run the following command:

db.Payees.insertMany([{'Name':'Mint Mobile','Address':'P.O.
Box 15124 Albany, NY 12212-5124','PhoneNo':'1(800)
683-7392','AccountNo':'8244-1044','Description':'Business
Line'},{'Name':'Private Internet Access VPN','Address':'5555
DTC Parkway, Suite 360. Greenwood Village, CO
80111','PhoneNo':'(720) 277-9121','AccountNo':'6510-
2236','Description':'VPN Personal Subscription'}])

The first MongoDB command, db.createCollection, creates our Payees
collection, which we will use in our sample Online Banking app. db.Payees.
insertMany adds data to our Payees collection.

Now, we are ready to complete this recipe.

https://docs.mongodb.com/v3.4/installation

Preventing Server-Side Request Forgery 253

How to do it…
Let's take a look at the steps for this recipe:

1. From the starting exercise folder, launch Visual Studio Code by typing the
following command:

code .

2. Open \Pages\Payees\Index.cshtml.cs and go to the OnGetAsync
method, where a call to PayeeService is executed:

public async Task OnGetAsync()

{

 var mongouri = Request.Query["mongouri"];

 mongouri = string.IsNullOrWhiteSpace(mongouri)

 ? "http://localhost:28017/test/Payees/"

 : Request.Query["mongouri"];

 Roots = await _payeeService.GetPayeesAsync
 (mongouri);

}

Notice that the code accepts input from the mongouri query string parameter.
mongouri is the URL to the MongoDB REST interface where a list of payees is
retrieved. This can be potentially exploited by an attacker and be used to send an
arbitrary URL or abuse to the MongoDB instance using its available REST API
operations. This requires no access control or checks.

3. To remediate the vulnerable code, we can add a validation using regular
expressions to make sure that the URL is in a format that we expect. We will begin
by adding a reference to the Regex class namespace; that is, System.Text.
RegularExpression:

using System.Text.RegularExpressions;

254 Miscellaneous Vulnerabilities

4. Next, create a new method and name it IsValidMongoRestUri using the
following code:

private bool IsValidMongoRestUri(string mongouri)

{

 string pattern = @"^http://localhost:28017/
 test/Payees/\\?$";

 Regex regex = new Regex(pattern, RegexOptions
 .IgnoreCase);

 return regex.IsMatch(mongouri);

}

5. Add a reference to the System.Http.Net namespace.

6. Invoke the IsValidMongoRestUri method to validate the mongouri string
that was passed via the query string:

public async Task OnGetAsync()

{

 var mongouri = Request.Query["mongouri"];

 if (string.IsNullOrWhiteSpace(mongouri))

 {

 mongouri =
 "http://localhost:28017/test/Payees/";

 }

 else

 {

 if(!IsValidMongoRestUri(mongouri))

 {

 throw new HttpRequestException("Invalid
 Request");

 }

 }

 Roots = await _payeeService.GetPayeesAsync
 (mongouri);

}

The preceding code will also throw an HttpRequestException when
mongouri is in an unexpected format.

Preventing Server-Side Request Forgery 255

How it works…
When we blindly allow a querystring parameter to be controlled, this vector of attack
gives a bad actor an avenue to exploit our sample Online Banking web application. We
use the mongouri query string to retrieve the REST API endpoint. Since validation is
missing, a malicious user can pass along a URI that could potentially execute an unwanted
action. For instance, we can assign this value to the mongouri parameter, and the
MongoDB REST API will execute this operation:

mongouri=http://localhost:28017/admin/$cmd/?

 filter_eval=function()

 {ifdb.version().charAt(0)=='3'){sleep(2000)}}&limit=1';

Breaking down the value of mongouri, this contains a series of continuous MongoDB
statements and functions that will cause a 2-second suspension of the JavaScript execution
context if the first character of the MongoDB version (which is 3 in this case) equates to
true. If we were to print this in a pretty format, here is what these continuous statements
and function would look like:

filter_eval=function(){

 if(db.version().charAt(0)=='3'){

 sleep(2000)

 }

 }

To prevent this unwanted execution of an arbitrary command, we can use regular
expressions to validate that the URL is correct according to the format that we expected,
stopping anyone from using MongoDB's db command through its HTTP interface. We
created a boolean method called IsValidMongoRestUri that checks if the mongouri
value it receives matches the URL we expect:

private bool IsValidMongoRestUri(string mongouri)

{

 string pattern = @"^http://localhost:28017/test/

 Payees/\\?$";

 Regex regex = new Regex(pattern,
 RegexOptions.IgnoreCase);

 return regex.IsMatch(mongouri);

}

256 Miscellaneous Vulnerabilities

One of the fundamentals of secure coding being used, in this case, is proper input
validation to prevent SSRF.

There's more…
In addition to your URI validation, you can either use the Uri.CheckHostName or
IPAddress.TryParse method. Uri.CheckHostName helps us check if the DNS or
domain is valid, while IPAddress.TryParse verifies whether the IP address is valid.

Preventing log injection
In Chapter 11, Insufficient Logging and Monitoring, we learned about the importance of
logging. Logging provides us with the necessary visibility to find out about a series of
important events in our ASP.NET Core web application. However, hackers can also exploit
logging if the user-controlled log information we create is not validated. Having malicious
inputs in our log entries can also exploit the vulnerabilities of a log viewer, if one exists.

For instance, a web-based log viewer might have a cross-site script vulnerability, and
viewing the log entries with an XSS payload, along with the data, can exploit this
weakness. In this recipe, we will prevent the log injection vulnerability in our code by
implementing input sanitization.

Getting ready
Run the sample app to verify that there are no build or compile errors. In your command
shell, navigate to the sample app folder at \Chapter12\log-injection\before\
OnlineBankingApp and run the following command:

dotnet build

The dotnet build command will build our sample OnlineBankingApp project and
its dependencies.

How to do it…
Let's take a look at the steps for this recipe:

1. From the starting exercise folder, launch Visual Studio Code by typing the
following command:

code .

Preventing log injection 257

2. Open Pages\Loans\Create.cshtml.cs and locate the code in
OnPostAsync, where it logs a warning when the app is unable to submit a loan:

if (await TryUpdateModelAsync<Loan>(

 emptyLoan,

 "loan",

 l => l.ID, l => l.CustomerID, l => l.Amount, l =>
 l.PeriodInMonths, l => l.TransactionDate,
 l => l.Note))

{

 _context.Loan.Add(emptyLoan);

 await _context.SaveChangesAsync();

}

else {

 _logger.LogWarning("Problem creating loan:" +
 emptyLoan.CustomerID + ";" + emptyLoan.Amount
 + ";" + emptyLoan.PeriodInMonths + ";"+
 emptyLoan.Note);

}

Creating a log entry without sanitizing the input could expose our sample Online
Banking web app to log injection.

3. Applying what we have learned from the basics of secure coding from Chapter 1,
Secure Coding Fundamentals, we can use methods such as String.Replace or
Regex.Replace to replace malicious characters from the input. We will begin by
validating whether Note is not empty or null before we sanitize the input:

else {

 if (!String.IsNullOrEmpty(emptyLoan.Note)) {
 emptyLoan.Note = Regex.Replace(value, @"^[a
 zA-Z0-9]+$", string.Empty);

 }

 _logger.LogWarning("Problem creating loan:" +
 emptyLoan.CustomerID + ";"

 + emptyLoan.Amount + ";"

 + emptyLoan.PeriodInMonths + ";"

258 Miscellaneous Vulnerabilities

 + emptyLoan.Note);

}

By using the Regex.Replace method, we can use pattern matching to replace
potentially dangerous characters from the logs.

How it works…
In our sample Online Banking web application, we have a loans application page where
we can submit a loan application. On this page, we can enter information such as the loan
amount, loan period, and an optional note, which is provided as free form text.

If there's an issue in saving the loan submission, we can log the information that was
entered, including the unvalidated Note data:

_logger.LogWarning("Problem creating loan:" + emptyLoan
 .CustomerID + ";"

 + emptyLoan.Amount + ";"

 + emptyLoan.PeriodInMonths + ";"

 + emptyLoan.Note);

While it is good to create a log entry for this bank transaction to understand why it failed
to save, the note can be an entry point for log injection. We can prevent log injection by
sanitizing the Note field using the Replace.Regex method:

if (!String.IsNullOrEmpty(emptyLoan.Note))

{

 emptyLoan.Note = Regex.Replace(value, @"^[a-zA-Z0-9
]+$", string.Empty);

}

We can verify if Note is null or empty before making a call to the Regex.Replace
method. We can use the ^[a-zA-Z0-9]+$ regular expression pattern here, which specifies
that alphanumeric characters and spaces are only allowed as valid input for Note.

There's more…
If parts of a log entry are user-controlled and not validated or sanitized, an attacker can
exploit this weakness by feeding logs with forged and false information. Adversaries can
inject non-sensical information into our logs and leave a lot of noise behind, preventing
an effective security incident analysis. This vulnerability is known as log forging. The code
presented in this recipe should also be able to mitigate this security flaw.

Preventing HTTP response splitting 259

Preventing HTTP response splitting
HTTP response splitting or CRLF injection is another injection vulnerability where
the attacker can send an unfiltered HTTP request that includes a carriage return and line
feed characters. Allowing a carriage return (%0d, in URL encoded form) and line feed
(%0a, also in URL encoded form) in the request introduces a split in the HTTP response
headers, thus changing the behavior of the ASP.NET Core web application. This HTTP
response header modification can lead to the exploitation of many other vulnerabilities,
such as open redirection or cross-site scripting, to name a couple.

In this recipe, we will prevent HTTP response splitting in our code by adding a validation
check to the \n and \r characters.

Getting ready
Run the sample app to verify that there are no build or compile errors. In your command
shell, navigate to the sample app folder at \Chapter12\crlf-injection\before\
OnlineBankingApp and run the following command:

dotnet build

The dotnet build command will build our sample OnlineBankingApp project and
its dependencies.

How to do it…
Let's take a look at the steps for this recipe:

1. From the starting exercise folder, launch Visual Studio Code by typing the
following command:

code .

2. Open Areas\Identity\Pages\Account\Login.cshtml.cs and locate the
lines of code where a parameter can be potentially injected with a carriage return
and a line feed character.

3. Notice the highlighted code in the OnGetAsync method:

public async Task OnGetAsync(string returnUrl = null)

{

 if (!string.IsNullOrEmpty(ErrorMessage))

 {

260 Miscellaneous Vulnerabilities

 ModelState.AddModelError(string.Empty,
 ErrorMessage);

 }

 returnUrl ??= Url.Content("~/");

//code removed for brevity

4. Also, notice the highlighted code in the OnPostAsync method:

public async Task<IActionResult> OnPostAsync(string

 returnUrl = null)

{

 returnUrl ??= Url.Content("~/");

 ExternalLogins = (await
 _signInManager.GetExternalAuthentication
 SchemesAsync()).ToList();

//code removed for brevity

In both these methods, returnUrl is the argument that we will need to validate.

5. To remediate the potential security flaw, we will add a new method called
SplitExist. The helper is a boolean method called SplitExist that takes
a string as input and validates each of the characters to check for any CRLF
injection attempts:

private bool SplitExist(string input)

{

 return input.FirstOrDefault(c => c == 0x13 ||
 c == 0x10) != 0

 ? true

 : false;

}

6. Use the SplitExist method to validate returnUrl. Refactor the code in
OnGetAsync, as follows:

public async Task OnGetAsync(string returnUrl = null)

{

 if (!string.IsNullOrEmpty(ErrorMessage))

 {

Preventing HTTP response splitting 261

 ModelState.AddModelError(string.Empty,

 ErrorMessage);

 }

 if (!string.IsNullOrEmpty(returnUrl))

 {

 if(SplitExist(returnUrl))

 {

 throw new
 InvalidOperationException(string
 .Format("Invalid character in the
 return URL"));

 }

 }

 else

 {

 returnUrl = Url.Content("~/");

 }

7. Also, refactor the code in OnPostAsync, as follows:

public async Task<IActionResult> OnPostAsync(string
returnUrl = null)

{

 if (!string.IsNullOrEmpty(returnUrl))

 {

 if(SplitExist(returnUrl))

 {

 throw new InvalidOperationException
 (string.Format("Invalid character
 in the return url"));

 }

 }

 else

 {

 returnUrl = Url.Content("~/");

262 Miscellaneous Vulnerabilities

 }

 ExternalLogins = (await _signInManager
 .GetExternalAuthenticationSchemes
 Async()).ToList();

If the returnUrl parameter is not null, a call to the SplitExist method occurs
to check if the string has either a carriage return or a line feed character.

How it works…
If an HTTP response splitting vulnerability exists, it is due to a lack of or improper
validation for the possible entry points and inputs. In this recipe, we pointed out that
returnUrl is a potential target, so we added a new method called SplitExist that
checks for the carriage return and line feed characters in the string:

private bool SplitExist(string input)

{

 return input.FirstOrDefault(c => c == 0x13 ||
 c == 0x10) != 0

 ? true

 : false;

}

This method goes through the returnUrl string character by character and verifies that
any of its characters are neither 0x13, which is the ASCII equivalent of a carriage return
character, nor 0x10, which is the ASCII equivalent of a line feed.

Note
This vulnerability used to exist within the framework itself from a prior version
of ASP.NET Core (ASP.NET Core version 5, Release Candidate 1) but was
resolved in the succeeding version.

There's more…
The validation approach in this recipe may no longer be necessary to implement,
considering that the ASP.NET Core team has already implemented their own
character validation.

Preventing HTTP response splitting 263

As an example, while the sample Online Banking application is in a running state,
try to open up a browser and go to https://localhost:5001/Identity/
Account/Login?ReturnUrl=%2FAccount%0D%0ALocation%3A%20
http%3A%2F%2Fwww.packtpub.com.

Notice the exception shown on the page:

Figure 12.1 – InvalidOperationException

The web app threw an InvalidOperationException because the ASP.NET framework
detects the existence of the carriage return and line feed character in the URL. If the
request was successful, it will split the HTTP request, adding a location HTTP header
and redirecting the user to www.packtpub.com:

HTTP/2 302 Found

cache-control: no-cache, no-store

date: Tue, 11 May 2021 17:18:39 GMT

pragma: no-cache

content-type: text/html; charset=utf-8

location: http://www.packtpub.com

server: Kestrel

x-xss-protection: 1; mode=block

x-content-type-options: nosniff

Although there is a check in place, the ASP.NET Core framework is an ever-growing and
changing platform. A vulnerability may or may not be introduced in code in the future.

https://localhost:5001/Identity/Account/Login?ReturnUrl=%2FAccount%0D%0ALocation%3A%20http%3A%2F%2Fwww.packtpub.com
https://localhost:5001/Identity/Account/Login?ReturnUrl=%2FAccount%0D%0ALocation%3A%20http%3A%2F%2Fwww.packtpub.com
https://localhost:5001/Identity/Account/Login?ReturnUrl=%2FAccount%0D%0ALocation%3A%20http%3A%2F%2Fwww.packtpub.com

264 Miscellaneous Vulnerabilities

Preventing clickjacking
Clickjacking occurs when your web application allows itself to render inside a nefarious
website (typically through IFrames), thus altering the whole UI. The user is then presented
with a different-looking page, tricking them into executing an unbeknownst action on
your web application by having the user think that they are interacting with the deceiving
page, while they are actually entering information and clicking buttons on your web
application instead.

To protect your ASP.NET Core web application from falling victim to clickjacking
exploitation, you can implement a CSP that will stop an IFrame from a malicious website
from rendering your web app.

Getting ready
We will be using the Online Banking app we used in the previous recipe here. Run
the sample app to verify that there are no build or compile errors. In your command
shell, navigate to the sample app folder at \Chapter12\clickjacking\before\
OnlineBankingApp and run the following command:

dotnet build

The dotnet build command will build our sample OnlineBankingApp project and
its dependencies.

Clickjacking proof of concept (PoC)
To understand the threat of clickjacking, follow and observe these steps:

1. Open wwwroot\iframe-demo.html and notice that our sample Online
Banking web app has been placed inside an IFrame:

<!DOCTYPE html>

<html>

<body>

<h1>iframe Demo</h1>

<iframe src="https://localhost:5001/Identity/Account
/Login?ReturnUrl=%2F" title="iFrame Demo">
</iframe>

</body>

</html>

Preventing clickjacking 265

2. Navigate to Terminal | New Terminal in the menu or by simply pressing
Ctrl + Shift + ' in Visual Studio Code.

3. Type the following command in the Terminal to build and run the sample app:

dotnet run

This step is necessary for us to view the sample Online Banking web app in
the IFrame.

4. Open wwwroot\iframe-demo.html in a browser and observe that our sample
Online Banking web app is rendered inside the IFrame:

Figure 12.2 – Online Banking web app inside an IFrame

Imagine an adversary making its web page more deceiving than our proof of concept
(PoC). This could lead you to clicking or executing unwanted transactions in our sample
Online Banking web app.

Note
The clickjacking vulnerability is made possible by mistakenly suppressing the
X-Frame-Options: sameorigin HTTP response header, which is
sent with every response by default:

services.AddAntiforgery(options =>{

 options.SuppressXFrameOptionsHeader = true;

});

266 Miscellaneous Vulnerabilities

How to do it…
Using Visual Studio Code, open the sample Online Banking app folder at \Chapter12\
click-jacking\before\OnlineBankingApp\.

Perform the following steps in this folder to add a content security policy that will prevent
your web application from being rendered inside an IFrame:

1. From the starting exercise folder, launch Visual Studio Code by typing the
following command:

code .

2. Open Startup.cs and look at the Use method call in Configure. The
middleware is adding the necessary security headers, as we learned in Chapter 7,
Security Misconfiguration:

app.Use(async (context, next) =>

{

 context.Response.Headers.Add("X-XSS-
 Protection", "1; mode=block");

 context.Response.Headers.Add
 ("X-Content-Type-Options", "nosniff");

 await next();

});

Notice that there are no HTTP response headers preventing the web application
from getting rendered inside an IFrame.

3. To include a content security policy HTTP header, we can add a new line:

app.Use(async (context, next) =>

{

 context.Response.Headers.Add("X-XSS-
 Protection", "1; mode=block");

 context.Response.Headers.Add("X-Content-Type-
 Options", "nosniff");

 context.Response.Headers.Add("X-Frame-Options",
 "DENY");

Preventing clickjacking 267

 context.Response.Headers.Add("Content-Security-
 Policy", " frame-ancestors 'none'");

 await next();

});

These HTTP response headers serve a security purpose and will be explained in the
following section.

4. Remove the following lines of code, which suppress the X-Frame-Options:
sameorigin header:

services.AddAntiforgery(options =>

{

 options.SuppressXFrameOptionsHeader = true;

});

5. Alternatively, you can assign SuppressXFrameOptionHeader with a value
of false:

services.AddAntiforgery(options =>

{

 options.SuppressXFrameOptionsHeader = false;

});

This will un-suppress the X-Frame-Options header and will make it available as
part of the HTTP response.

Validating the CSP HTTP header
Follow these steps:

1. Navigate to Terminal | New Terminal in the menu or simply press Ctrl + Shift + ' in
Visual Studio Code.

2. Type the following command in the Terminal to build and run the sample app:

dotnet run

3. Open a browser and go to https://localhost:5001/.

4. Log in using the following credentials:

a). Email: stanley.s.jobson@lobortis.ca

b). Password: rUj5jtV8jrTyHnx!

268 Miscellaneous Vulnerabilities

5. Once authenticated, you will be redirected to the Online Banking app's Home page:

Figure 12.3 – Home page authenticated

6. Press F12 to open the browser's developer tools.

7. Go to the Network tab and select the first piece of HTTP traffic in the traffic list.

8. Once you've selected a form of HTTP traffic, scroll through the right-hand pane to
view the corresponding HTTP response security headers:

Figure 12.4 – CSP HTTP response header
The Content Security Policy HTTP security header has now been added as part of
the HTTP response being sent from our sample Online Banking web application,
thus protecting it from clickjacking attacks.

9. Repeat the steps provided in the Clickjacking proof of concept (PoC) section of this
recipe and notice that our sample Online Banking web app is no longer rendered
inside the IFrame:

Fixing insufficient randomness 269

Figure 12.5 – Framing denied
Adding the CSP for frame-ancestors and re-enabling the X-Frame-Options
HTTP header stops our sample Online Banking web app from being framed.

How it works…
Security headers such as Content Security Policy and X-Frame-Options help protect our
ASP.NET Core web applications from being exposed to a wide variety of vulnerabilities,
including clickjacking. This vulnerability propagates if we enable or disable such services.

There are also valid reasons to consider why you would want to have your web application
rendered in an IFrame. Some integration with Content Management Systems requires
framing, so the best way to get around this is to specify the whitelisted hosts in the CSP:

Content-Security-Policy: frame-ancestors 'self' https://www.
packpub.com

The self value indicates that we are allowing our sample Online Banking web app to be
rendered inside an IFrame from our own origin (excluding subdomains). The value of
https://www.packpub.com specifies that we are allowing the Packt website to have
our web app placed inside its IFrame.

Fixing insufficient randomness
Pseudo-random numbers may suffice for less than critical operations, but these numbers
are not genuinely random. Computers use mathematical formulas to produce these
pseudo-random numbers, but they are not random enough to be used in cryptographic
operations such as salt creation. The predictability and deterministic nature of the data
that's produced by these random methods and function generators increases the chance of
a password hash being cracked, thus causing hash collision attacks.

270 Miscellaneous Vulnerabilities

Getting ready
Using Visual Studio Code, open the sample Online Banking app folder at \Chapter13\
insufficient-randomness\before\OnlineBankingApp.

How to do it…
Let's take a look at the steps for this recipe:

1. Type the following command in the Terminal to build the sample app to confirm
there are no compilation errors:

dotnet build

2. Open the \Chapter13\insufficient-randomness\before\
OnlineBankingApp\Areas\Identity\PasswordHasher.cs file and
notice the CreateSalt method:

private byte[] CreateSalt()

{

 var buffer = new byte[SaltBytes];

 Random rnd = new Random();

 rnd.NextBytes(buffer);

 return buffer;

}

3. The CreateSalt method generates a salt using the Random class and makes
a call to NextBytes to fill in the buffer, which is an array of bytes. While the
NextBytes method does a decent job of generating a random sequence of
numbers and bytes, it is not strong enough for the purposes of our salt generation.

4. We can refactor our code to use RNGCryptoServiceProvider to generate a
cryptographically secure and random number instead, replacing the Random class
we used previously:

private byte[] CreateSalt()

{

 var buffer = new byte[SaltBytes];

 var rng = new RNGCryptoServiceProvider();

Fixing insufficient randomness 271

 rng.GetBytes(buffer);

 rng.Dispose();

 return buffer;

}

The GetBytes method loads a cryptographically strong array of random bytes.

How it works…
A salt is a piece of random data that's included with sensitive information (such as
passwords) before it's fed into a hashing method or function and saved in a persistent
store. Salt offers additional protection as this piece of arbitrary data makes keys or
passwords less predictable.

We can use the RNGCryptoServiceProvider class to generate random numbers to
protect our hashed passwords from being deciphered:

 var rng = new RNGCryptoServiceProvider();

 rng.GetBytes(buffer);

Note
There is a performance difference when generating a random array of
bytes with RNGCryptoServiceProvider compared to the Pseudo-
Random Number Generator (PRNG) class, such as Random, but
RNGCryptoServiceProvider provides more randomness quality and
is cryptographically better.

Here is the rest of the code, which makes a call to the CreateSalt method. There is a
GetHash method that expects a hash as a second parameter, along with the password to
be hashed. If the salt is null, it will make a call to the CreateSalt method to generate
a salt:

private string GetHash(string password, byte[] salt)

{

 var saltBytes = salt ?? CreateSalt();

 var argon2 = new Argon2id(Encoding.UTF8
 .GetBytes(password))

272 Miscellaneous Vulnerabilities

 {

 Salt = saltBytes,

 DegreeOfParallelism = Threads,

 Iterations = Iterations,

 MemorySize = Memory

 };

The value of saltBytes is used to configure the Argon2id class constructor's Salt
property to hash the password.

13
Best Practices

Overall, the security of your ASP.NET Core web application typically relies on the steps
a developer takes to implement security measures and write secure code. In the previous
chapters and recipes of this book, we've learned what insecure code would look like, the
risks such weaknesses introduce, and, most importantly, how to mitigate these security
issues. But beyond the basics of secure coding are proven methods of writing code that
are efficient for security. This is because they enable the necessary defensive or protective
mechanisms available in the .NET framework, all of which we will examine in this chapter.

In this final chapter, we're going to cover the following recipes:

• Proper exception handling

• Using security-related cookie attributes

• Using a Content Security Policy

• Fixing leftover debug code

By the end of this chapter, you will have learned how to handle errors and exception safely,
use attributes in cookies that will help protect your application from various security
threats, apply a Content Security Policy (CSP) to create trust boundaries in the resources
that you use in your ASP.NET Core web application, and, finally, learn how to write
debugging code properly.

274 Best Practices

Technical requirements
This book was written and designed to be used with Visual Studio Code, Git, and
.NET 5.0. The code examples in these recipes will be presented in ASP.NET Core Razor
pages. The sample solution also uses SQLite as the database engine for a more simplified
setup. The complete code examples for this chapter are available at https://github.
com/PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/
main/Chapter13.

Getting ready
For the recipes in this chapter, we will need a sample Online Banking app.

Open the command shell and download the sample Online Banking app by cloning the
ASP.NET Secure Coding Cookbook repository, as follows:

git clone https://github.com/PacktPublishing/ASP.NET-Core-
Secure-Coding-Cookbook.git

Run the sample app to verify that there are no build or compile errors. In your command
shell, navigate to the sample app folder at \Chapter13\exception-handling\
before\OnlineBankingApp and run the following command:

dotnet build

The dotnet build command will build our sample OnlineBankingApp project and
its dependencies.

Proper exception handling
The practice of handling errors and exceptions is part of clean and efficient coding. This
technique is added in development to make our code more readable and maintainable.
But more often than not, a bug arises in code due to improper error handling. This
statement is also true not just with ordinary bugs. but with security bugs too. Mishandled
exceptions occur because of the incorrect ways of catching these anomalies, which induces
unwanted exploitation.

In this recipe, we will fix the improper handling of exceptions and prevent our sample
Online Banking web app from swallowing exceptions.

Getting ready
Using Visual Studio Code, open the sample Online Banking app folder at \Chapter13\
exception-handling\before\OnlineBankingApp\.

https://github.com/PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/main/Chapter13
https://github.com/PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/main/Chapter13
https://github.com/PacktPublishing/ASP.NET-Core-Secure-Coding-Cookbook/tree/main/Chapter13

Proper exception handling 275

How to do it…
Let's take a look at the steps for this recipe:

1. From the starting exercise folder, launch Visual Studio Code by typing the
following command:

code .

2. Open Services\KnowledgebaseService.cs and observe the try-catch
block in the Search method:

using (XmlReader reader = XmlReader.Create(file,
 settings))

{

 try {

 XDocument xmlDoc = XDocument.Load(reader);

 // code removed for brevity

 return searchResult;

 }

 catch (Exception){

 return searchResult;

 }

}

Notice that the try-catch block is only catching a single and generic exception.
The catch block also ignores the exception that may occur in our sample Online
Banking web application by swallowing the exception.

As a best practice, we need to be specific with our exception handling. So, let's
refactor our code by specifying a type of Exception type that is likely to occur,
closest to what the block of code is trying to execute.

3. To apply the best practice in exception handling, we must add new catch blocks and
rethrow the exception by instantiating its corresponding FileFormatException
and XmlException types:

using (XmlReader reader = XmlReader.Create(file,
 settings))

{

 try {

 XDocument xmlDoc = XDocument.Load(reader);

276 Best Practices

 // code removed for brevity

 return searchResult;

 }

 catch (XmlException ex){

 _logger.LogCritical(String.Format("Reader
 error: {0}", ex.Message));

 throw new XmlException(ex.Message);

 }

 catch (Exception ex){

 _logger.LogCritical(String.Format("Reader
 error: {0}", ex.Message));

 throw new XmlException(ex.Message);

 }

}

Note
Throwing a new instance of either Exception or XmlException will
make us lose the original details of the exception, which includes the stack
trace information. The downside of this approach is that it will be harder
to debug an application if an issue arises in production. The risk of leaking
sensitive information from the stack trace, however, will be minimized.

How it works…
Ignoring exceptions and not catching them is bad practice and a habit that ASP.NET Core
web developers should avoid. Neglecting error conditions is an avenue for a bad actor to
take advantage of and cause malicious behavior from being seen or flagged. Ensure that
you rethrow the exceptions with fewer details to prevent information leakage. We can
do this by catching the specific exception and just gathering the exception's Message
property, so that we can pass it into the new instance we create with the rethrow:

catch (XmlException ex) {

 throw new XmlException(ex.Message);

}

We should anticipate that an XmlException type may occur since we are processing
XML files. We can add a new catch statement for this specific exception type. Using a
single catch for the generic Exception type is not useful if we have specific ways of
handling the exception for each type.

Using security-related cookie attributes 277

There's more…
Unhandled exceptions are also handled by the web server. For our sample Online Banking
web application, the Kestrel web server handles the exceptions that are thrown by the
app and sends an HTTP 500 Internal Error status code response before the rest of
the HTTP headers are sent. Kestrel closes the connection afterward. This event could lead
to the stack trace from the exception details being exposed if the trace was sent as part
of the response. Following the steps in this recipe will prevent the exception details from
being leaked.

Using security-related cookie attributes
Cookies are an essential part of web application development. It is a means to maintain
a state in a stateless HTTP protocol and carry the most vital information that's used in
security-like tokens and session data. As we learned in the Fixing information exposure
through insecure cookies recipe of Chapter 7, Security Misconfiguration, the cookie
attributes that we enable or disable a cookie's protection from abuse. In that recipe, we
learned how the Secure and HTTP Only attributes make our cookies limited, in that
they can either be sent only through secure transport, persist in the browser, or prevent
arbitrary client-side scripts from reading their sensitive values.

In this recipe, we are going to learn how to use another security-related cookie attribute,
SameSite. SameSite is a relatively new cookie attribute (at the time of writing) and is
utilized to limit third-party websites from accessing a cookie marked with the context of a
first party.

Getting ready
We will be using the Online Banking app we used in the previous recipe. Using Visual
Studio Code, open the sample Online Banking app folder at \Chapter13\secure-
cookie-policy\before\OnlineBankingApp\.

How to do it…
Let's take a look at the steps for this recipe:

1. From the starting exercise folder, launch Visual Studio Code by typing the
following command:

code .

278 Best Practices

2. Open Startup.cs and begin adding a cookie policy globally to the middleware by
adding a reference to the Microsoft.AspNetCore.CookiePolicy namespace:

using Microsoft.AspNetCore.Mvc;

using Microsoft.AspNetCore.CookiePolicy;

3. Next, we must add the following lines of code under the ConfigureServices
method:

public void ConfigureServices(IserviceCollection
 services)

{

 services.Configure<CookiePolicyOptions>(options =>

 {

 options.MinimumSameSitePolicy =
 SameSiteMode.Strict;

 options.Secure = Environment.IsDevelopment()

 ? CookieSecurePolicy.None :
 CookieSecurePolicy.Always;

 options.HttpOnly = HttpOnlyPolicy.Always;

 });

// truncated

The preceding example adds the necessary security-related cookie attributes for
the cookies that are generated by our sample Online Banking web app, with the
addition of MinimumSameSitePolicy, which controls the behavior of the
SameSite attribute of the cookies for our sample Online Banking web app. The
MinimumSameSitePolicy property of the cookie policy's options is assigned
with the SameSiteMode.Strict value, marking the SameSite cookie attribute
with a Strict value.

4. To implement the same secure cookie policy with the Anti-CSRF token stored in
the cookie, assign the SecurePolicy property to the CookieSecurePolicy.
Always enum value:

services.AddAntiforgery(options =>

{

 options.SuppressXFrameOptionsHeader = false;

 options.Cookie.SecurePolicy =
 CookieSecurePolicy.Always;

});

Using security-related cookie attributes 279

5. Although the global cookie policy that's set via ConfigureServices will make
your Anti-CSRF tokens in the cookie be marked with a SameSite attribute, you can
also explicitly indicate this property to SameSiteMode.Strict. This means that
the Anti-CSRF cookie will only be sent to the server if it is within same-site requests:

services.AddAntiforgery(options =>

{

 options.SuppressXFrameOptionsHeader = false;

 options.Cookie.SecurePolicy =
 CookieSecurePolicy.Always;

 options.Cookie.SameSite = SameSiteMode.Strict;

});

6. If session state cookies from the session middleware are a concern, you can limit
the session state cookies to the first-party context by assigning the same SameSite
property with SameSiteMode.Strict:

services.AddSession(options =>

{

 options.Cookie.Name = ".OnlineBanking.Session";

 options.Cookie.SameSite = SameSiteMode.Strict;

 options.Cookie.SecurePolicy =

 CookieSecurePolicy.Always;

 options.IdleTimeout = TimeSpan.FromSeconds(10);

});

7. Execute the cookie policy middleware by making a call to the UseCookiePolicy
method in Configure:

app.UseRouting();

app.UseCookiePolicy();

app.UseAuthentication();

UseCookiePolicy, when invoked, applies the global cookie policy we have
defined in ConfigureServices.

280 Best Practices

How it works…
Setting the SameSite cookie attribute to Strict limits the context as to when the
cookies are sent as part of a request. As the name implies, cookies are only strictly sent
within same-site and first-party requests, thus preventing third-party websites or web
applications from sending the cookie when initiating the requests. This can be configured
with the Session and Antiforgery service options:

options.Cookie.SameSite = SameSiteMode.Strict;

This can be done in the global cookie policy options as well:

options.MinimumSameSitePolicy = SameSiteMode.Strict;

There are a couple of things to note regarding some of the nuances of the SameSite attribute:

• Using the SameSite attribute requires the Secure attribute. Modern browsers will
automatically reject the cookie if the SameSite attribute is not accompanied by a
Secure attribute.

• Modern browsers, by default, will set your cookie's SameSite attribute to Lax if you
don't explicitly specify a value. Lax allows the cookie to be sent in requests when a
user follows a link.

Limiting your cookies to first-party requests also prevents your ASP.NET Core web application
from cross-site attacks and vulnerabilities such as Cross-Site Request Forgery (CSRF).

Note
A fair warning: If your ASP.NET Core web application integrates with third-
party websites extensively, and these sites need to use your cookies, users might
experience some malfunctioning because of the restrictive nature of the Strict
SameSite attribute.

Depending on the risk level of your web app, you may want to lower the
restriction to SameSiteMode.Lax.

Using a Content Security Policy
Central to the web security ecosystem is the software we use daily to interact with our
ASP.NET Core web application – the modern browser. Browsers have built-in security
mechanisms to protect its users from attacks, making the overall user experience safe
from web-based vulnerabilities. Additionally, how we write our code in our web apps is
crucial to instructing the browser on how to enable these security features.

Using a Content Security Policy 281

In the Fixing disabled security features recipe of Chapter 7, Security Misconfiguration, we
learned that we can send special HTTP response headers to trigger the security features
and tell the browser how to behave. We can tell the browser which hosts are safe to pull
resources from and where it is safe to execute the scripts. These whitelisting rules can be
defined using a CSP.

In this recipe, we will learn how to implement a basic CSP so that we can whitelist where
the browser will retrieve our web resources.

Getting ready
We will be using the Online Banking app we used in the previous recipe. Using Visual
Studio Code, open the sample Online Banking app folder at \Chapter13\content-
security-policy\before\OnlineBankingApp\.

How to do it…
Let's take a look at the steps for this recipe:

1. From the starting exercise folder, launch Visual Studio Code by typing the
following command:

code .

2. Open Startup.cs and look at the Use method call in Configure. The
middleware adds the HTTP security headers that we learned about in Chapter 7,
Security Misconfiguration, in the Fixing disabled security features recipe:

app.Use(async (context, next) =>

{

 context.Response.Headers.Add("X-XSS-Protection",
 "1; mode=block");

 context.Response.Headers.Add("X-Content-Type-
 Options", "nosniff");

 context.Response.Headers.Add("X-Frame-Options",
 "DENY");

 await next();

});

app.UseHttpsRedirection();

app.UseStaticFiles();

282 Best Practices

3. Let's add an additional layer of defense by adding a CSP to the collection of HTTP
response headers:

app.Use(async (context, next) =>

{

 context.Response.Headers.Add("X-XSS-Protection",
 "1; mode=block");

 context.Response.Headers.Add("X-Content-Type-
 Options", "nosniff");

 context.Response.Headers.Add("X-Frame-Options",
 "DENY");

string scriptSrc = "script-src 'self'
 https://code.jquery.com;";

string styleSrc = "style-src 'self' 'unsafe-inline';";

string imgSrc = "img-src 'self'
 https://www.packtpub.com/;";

string objSrc = "object-src 'none'";

string defaultSrc = "default-src 'self';";

string csp = $"{defaultSrc}{scriptSrc}{styleSrc}
 {imgSrc}{objSrc}";

context.Response.Headers.Add($"Content-Security-
 Policy", csp);

 await next();

});

Here, we have defined string variables to hold each of the most common CSP
headers and their source locations. Then, we added them to the HTTP response
headers collection as a Content-Security-Policy HTTP header.

Validating the Content Security Policy HTTP headers
Follow these steps to verify that the CSP is now being sent as part of the HTTP response:

1. Navigate to Terminal | New Terminal from the menu or simply press Ctrl + Shift + '
in Visual Studio Code.

Using a Content Security Policy 283

2. Type the following command in the Terminal to build and run the sample app:

dotnet run

3. Open a browser and go to https://localhost:5001/.

4. Log in using the following credentials:

a) Email: stanley.s.jobson@lobortis.ca

b) Password: rUj5jtV8jrTyHnx!

5. Once authenticated, you will be redirected to the home page:

Figure 13.1 – Home page authenticated

6. Press F12 to open the browser's developer tools.

7. Go to the Network tab and select the first piece of HTTP traffic in the traffic list.

8. Once you have selected a form of HTTP traffic, scroll through the right-hand pane
to view the corresponding HTTP response security headers:

Figure 13.2 – Content Security Policy
By doing this, the security headers will be added as part of the HTTP response that's
sent by our sample Online Banking web application.

How it works…
Each of the string variables corresponds to a CSP header.

284 Best Practices

scriptSrc defines a list of trusted source locations to load JavaScript from. The
self value pertains to our sample Online Banking web app itself and the host
(https://code.jquery.com) where we downloaded the jQuery library:

string scriptSrc = "script-src 'self' https://code.jquery.
com;";

styleSrc defines a list of trusted source locations for loading stylesheets. We are using
self here to indicate that it is acceptable to load stylesheets local to our web app, but
we are also using unsafe-inline to allow the use of inline <style> elements. It is
generally not safe to use unsafe-inline, but since there is no user-controlled input
that can influence the stylesheet of our sample Online Banking web app, I have approved
its use, as shown here:

string styleSrc = "style-src 'self' 'unsafe-inline';";

Note
We can't say that CSS injection will not occur. Future versions of the sample
web app may allow user-controlled data to manage the stylesheet properties.

For more information on CSS injection, visit the Testing for CSS injection
section of the OWASP Web Security Testing Guide (WSTG):

https://owasp.org/www-project-web-security-
testing-guide/stable/4-Web_Application_Security_
Testing/11-Client-side_Testing/05-Testing_for_CSS_
Injection.html.

Next, we must define the acceptable values for the img-src CSP header. We can add the
https://www.packtpub.com/ host as a trusted source for our images:

string imgSrc = "img-src 'self' https://www.packtpub.com/;";

To have a safe CSP, object-src needs to be set to none. This CSP header will list
the acceptable sources for plugins and was kept for legacy applets, which is an obsolete
technology. Not placing this header indicates a high severity for being unsafe by Google's
CSP Validator (more information about this tool can be found in the There's more…
section of this recipe):

string objSrc = "object-src 'none'";

https://code.jquery.com
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/11-Client-side_Testing/05-Testing_for_CSS_Injection.html
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/11-Client-side_Testing/05-Testing_for_CSS_Injection.html
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/11-Client-side_Testing/05-Testing_for_CSS_Injection.html
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/11-Client-side_Testing/05-Testing_for_CSS_Injection.html
https://www.packtpub.com/

Using a Content Security Policy 285

Finally, the default-src CSP header is the fallback for all other CSP headers that
weren't defined.

string defaultSrc = "default-src 'self';";

string csp = $"{defaultSrc}{scriptSrc}{styleSrc}
 {imgSrc}{objSrc}";

context.Response.Headers.Add($"Content-Security-Policy", csp);

The preceding code also concatenates the CSP headers using string interpolation and adds
them to the HTTP response headers collection.

There's more…
You must include a nonce as the source for script-src or style-src if you need
to place inline scripts and styles in your Razor pages. This cryptographic string must be
unique in every request, to ensure that a malicious actor does not inject the inline scripts
or styles that are executed and rendered through an XSS vulnerability in your ASP.NET
Core web application. To enable this security feature quickly and to relieve the task of
generating an unguessable nonce, use the NWebsec TagHelpers for ASP.NET
Core by performing the following steps:

1. Install the necessary package:

dotnet add package NWebsec.AspNetCore.Mvc.TagHelpers

2. Import the NWebSec tag helpers into _ViewImports.cshtml:

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

@addTagHelper *, NWebsec.AspNetCore.Mvc.TagHelpers

Then, utilize the nws-csp-add-nonce helper within your script or
style tags:

@model IndexModel

@{

 ViewData["Title"] = "Home page";

}

<style nws-csp-add-nonce="true"></style>

<script nws-csp-add-nonce="true">

 console.log('nonce added');

286 Best Practices

</script>

this in turn will render the following markup

<style nonce="QqTsxf7Oqqu0GOLPa36y21IV"></style>

<script nonce="HlbkIsOBsmI66GXwH5635KBk">

 console.log('nonce added');

</script>

Furthermore, the CSP header we used in this recipe is not comprehensive. To learn more
about other CSP headers, read the CSP documentation on the Mozilla Developer Network
(MDN) website: https://developer.mozilla.org/en-US/docs/Web/HTTP/
Headers/Content-Security-Policy.

There are tools online that you can use to generate your own CSP. The Report URI CSP
Generator allows you to simply tick the CSP headers you want to include in your CSP and
fill in the textboxes with acceptable hosts, as shown here:

Figure 13.3 – Report URI CSP Generator

Here is the link to the online tool: https://report-uri.com/home/generate.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://report-uri.com/home/generate

Fixing leftover debug code 287

Another excellent tool you can use to validate the safety of the generated CSP is Google's
CSP validator, available at https://csp-evaluator.withgoogle.com/:

Figure 13.4 – Google's CSP Validator

The CSP Validator was developed by Lukas Weichselbaum, one of Google's Staff
Information Security Engineers. With this tool, you can verify the policy you've placed
in the box against different versions of CSP, and verify whether your CSP has a strong
defense against Cross-Site Scripting (XSS).

Fixing leftover debug code
Debugging and testing your code is part of an overall cycle of building an ASP.NET Core
web application. The .NET platform offers a wide array of libraries and components for
debugging, including diagnostics and tracing effectively. However, it is a bad practice for
developers to leave debugging code as-is and neglect to remove it from the repository or
add conditional checks, thus leading to unnecessary code being deployed in production.

https://csp-evaluator.withgoogle.com/

288 Best Practices

In this recipe, we will learn how to ensure that environment validation is applied to verify
whether the necessary debugging methods are called.

Getting ready
We will be using the Online Banking app we used in the previous recipe. Using Visual
Studio Code, open the sample Online Banking app folder at \Chapter13\leftover-
debug-code\before\OnlineBankingApp\.

How to do it…
Let's take a look at the steps for this recipe:

1. From the starting exercise folder, launch Visual Studio Code by typing the
following command:

code .

2. Open Startup.cs and, at Configure, notice the call to the following function:

app.UseStatusCodePages(
 "text/plain", "Status code page, status code: {0}");

UseStatusCodePages is a piece of middleware that provides status code
as a response. This is useful for determining what status code was returned by our
sample Online Banking app, but these status codes are not useful to our users.

3. In the same Startup.cs file, notice the call to the following statement:

services.AddDatabaseDeveloperPageExceptionFilter();

AddDatabaseDeveloperPageExceptionFilter is an exception filter that
provides exception details related to database operations. This method is useful for
debugging and finding resolutions to DB-related issues. However, it must not be
called in a production environment.

4. To prevent these debugging methods from being executed in production, add a
check that will verify whether the current context is running in a development
environment before making these calls:

if (Environment.IsDevelopment())

{

 services.AddDatabaseDeveloperPageExceptionFilter();

}

Fixing leftover debug code 289

5. UseStatusCodePages is also placed in a code block that will only be invoked
when the environment is in development due to the IsDevelopment() method:

if (env.IsDevelopment())

{

 app.UseDeveloperExceptionPage();

 app.UseStatusCodePages(
 "text/plain", "Status code page, status code:
 {0}");

}

else

{

 app.UseExceptionHandler("/Error");

 app.UseHsts();

}

This prevents our sample Online Banking web application from divulging sensitive
information when an unexpected error occurs.

How it works…
The IsDevelopment method checks whether the code is running under
the context of a development environment. This method is a useful test
before we execute debugging methods such as UseStatusCodePages and
AddDatabaseDeveloperPageExceptionFilter.

AddDatabaseDeveloperPageExceptionFilter could potentially expose sensitive
information when invoked by a database error. Performing secure code reviews regularly
and executing static application security testing as part of the development cycle can help
detect these problems early.

There's more…
Secure software development is a broad subject and writing secure code is just a subset
of this practice. Every ASP.NET Core web developer must ensure that the basic tenets of
security (Confidentiality, Integrity, and Availability) are applied in code. Write code with
these security requirements in mind.

290 Best Practices

While this chapter discussed how to fix security issues and bugs, the techniques we've
learned about here can be used to proactively review code and search for vulnerabilities
early in the process. Detecting security problems in code beforehand and having that Shift
Left culture helps developers further reduce risk, resulting in a more attack-resilient ASP.
NET Core web application at the end of each cycle.

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

292 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

An Atypical ASP.NET Core 5 Design Patterns Guide
Carl-Hugo Marcotte
ISBN: 978-1-78934-609-1

• Apply the SOLID principles for building flexible and maintainable software

• Get to grips with .NET 5 dependency injection

• Work with GoF design patterns such as strategy, decorator, and composite

• Explore the MVC patterns for designing web APIs and web applications using Razor

• Discover layering techniques and tenets of clean architecture

• Become familiar with CQRS and vertical slice architecture as an alternative to layering

• Understand microservices, what they are, and what they are not

• Build ASP.NET UI from server-side to client-side Blazor

https://www.packtpub.com/product/an-atypical-asp-net-core-5-design-patterns-guide/9781789346091

Other Books You May Enjoy 293

ASP.NET Core 5 and Angular - Fourth Edition

Valerio De Sanctis

ISBN: 978-1-80056-033-8

• Implement a web API interface with ASP.NET Core and consume it with Angular
using RxJS observables

• Set up an SQL database server using a local instance or a cloud data store

• Perform C# and TypeScript debugging using Visual Studio 2019

• Create TDD and BDD unit tests using xUnit, Jasmine, and Karma

• Perform DBMS structured logging using third-party providers such as SeriLog

• Deploy web apps to Windows and Linux web servers, or Azure App Service, using
IIS, Kestrel, and nginx

https://www.packtpub.com/product/asp-net-core-5-and-angular-fourth-edition/9781800560338

294

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished ASP.NET Core 5 Secure Coding Cookbook, we'd love to hear your
thoughts! If you purchased the book from Amazon, please click here to go straight to the
Amazon review page for this book and share your feedback or leave a review on the site
that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/180107156X
https://packt.link/r/180107156X

Index

A
ADO.NET

SQL injection, fixing in 47-50
application programming

interfaces (APIs) 223
Argon2 81
ASP.NET Core web application

assessing 207
Asynchronous JavaScript And

XML (AJAX) 214
AWS Key Management

Services (KMS) 112
Azure Application Insights 242
Azure Key Vault 112

B
bcrpypt hashing function 79, 81
blacklisting validation 2, 20
Blowfish cipher 79

C
Cache-Control directive 112
Cache-Control HTTP Response header

validating 114-116
caching

disabling, for critical web pages 112-114
CAPTCHA 74
clickjacking

about 164
preventing 264-267

client-side validation 12
command injection

fixing 53-58
testing 54, 55

Common Vulnerabilities and
Exposures (CVEs) 214

content management systems (CMSs) 221
Content Security Policy (CSP)

about 269
using 280-287

Content Security Policy HTTP headers
validating 282, 283

CRLF injection 259

296 Index

Cross-Site Request Forgery
(CSRF) 246, 280

Cross-Site Scripting
(XSS) 161, 175, 218, 287

cryptographic keys 104
CSP HTTP header

validating 267-269
CSS context 27
custom validation attribute

creating, to implement
semantic validation 13

D
Data Annotation Attribute (DAA) 4
Database Management System

(DBMS) 42
data-flow graphs (DFGs) 202
Data Protection API

used, for protecting sensitive data 34-39
Data Protection API (DPAPI) 34, 38
DB transactions

insufficient logging, fixing 236-238
debugging 158
debugging features

disabling, in non-development
environments 158-160

Denial-of-Service (DoS) 124
dependency injection (DI) 138, 234
DevSkim 195
disabled anti-Cross-Site Request

Forgery protection
fixing 246-250

disabled security features
fixing 160-164

Document Object Model (DOM) 185, 214
Document Type Definition

(DTD) 124, 125

DOM XSS
about 185
fixing 188-190
testing 186, 187

Dotnet Retire 223

E
EmailRep

URL 13
EmailRep Query API 20
encrypt 38
Entity Framework

SQL injection, fixing with 42-47
Entity Framework Core (EF Core) 42
error message

information exposure, fixing
through 168, 169

exceptions, insufficient logging
fixing 230-235

excessive authentication attempts
incorrect restrictions, fixing 70-78
restrictions, testing 70-72

excessive information logging
fixing 239-241

eXtensible Markup Language (XML) 125
eXtensible Stylesheet Language

Transformation (XSLT) 123

F
FluentValidation library

using, for whitelist validation 8-11

G
Globally Unique Identifier

(GUID) 37, 137, 250

Index 297

Google's CSP Validator 284
Google's reCAPTCHA 74

H
hardcoded cryptographic keys

fixing 104-111
HTML 27
HTML attribute context 27
HtmlEncoder

using, for output encoding 27, 28
HTMLSanitizer library

used, for sanitizing input 24-26
HTTP response splitting

preventing 259-263
HTTP Secure (HTTPS) 228
HTTP Strict Transport

Security (HSTS) 96
HyperText Transfer Protocol

(HTTP) 154, 227

I
identifier (ID) 134
improper authorization

fixing 142
testing 142-145

information exposure
fixing, through error message 168, 169
fixing, through insecure

cookies 170-173
input

sanitizing 20-23
sanitizing, with HTMLSanitizer

library 24-26
input validation

about 2
blacklisting 3

ways 2
whitelisting 3

insecure cookies
information exposure, fixing

through 170-173
insecure deserializers

usage, fixing 203-206
insecure direct object references (IDOR)

fixing 134-141
testing 135, 136

insufficiently protected credentials
fixing 78-81

insufficient protection of data, in transit
fixing 92-95

insufficient randomness
fixing 269-272

insufficient session expiration
fixing 87-89

integrated development
environment (IDE) 199

J
JavaScript context 27
JavascriptEncoder

using, for output encoding 31-34
jQuery Unobtrusive Ajax library 190
Json.NET 194

K
Kestrel 104

L
lack of security monitoring

fixing 242-244

298 Index

Lambda expression 52
LDAP injection

fixing 59-62
leftover debug code

fixing 287-289
library hosted

usage, fixing from untrusted
source 226-228

Light Directory Access
Protocol (LDAP) 59

LINQ to XML
XXE injection, fixing with 128-131

log forging 258
log injection

preventing 256-258

M
MD5 hashing algorithm 81
Microsoft SQL Server 50
missing access control

fixing 145-150
missing HSTS headers

fixing 96-100
MongoDB filter 52
Mozilla Developer Network (MDN) 228
multi-factor authentication (MFA) 87

N
National Institute of Standards and

Technology's (NIST's) 223
National Vulnerability Database

(NVD) 223
non-development environments

debugging features, disabling in 158-160
NoSQL databases 51

NoSQL injection
fixing 51-53

NuGet 223

O
Object-Relational Mapping (ORM) 42
Online Banking web app, exceptions

improper handling, fixing 274-276
open redirect vulnerabilities

fixing 151-155
testing 151

Open Web Application Security
Project (OWASP) 203

outdated third-party JavaScript library
testing 215-217

output encoding
about 26, 27
with HtmlEncoder 27, 28
with JavascriptEncoder 31-34
with UrlEncoder 29-31

P
Personally identifiable

information (PII) 34
preload flag 100
production 158
proof of concept (PoC)

about 265
clickjacking 264, 265

R
reflected cross-site scripting (XSS)

fixing 179
testing 177, 178

Remote Code Execution (RCE) 55

Index 299

S
SameSite 277
Secure Sockets Layer (SSL) 96, 101
security headers

validating 162, 163
security-related cookie attributes

using 277-280
semantic validation

about 12-20
custom validation attribute,

creating to implement 13
sensitive data

protecting, with Data
Protection API 34-39

Server-Side Request Forgery (SSRF)
about 251
preventing 251-256

server-side validation 12
session cookie attributes

validating 171, 173
Session Hijacking 173
software development kit (SDK) 242
SQL injection

about 42
fixing, in ADO.NET 47-50
fixing, with Entity Framework 42-47
testing 43, 44

SQLite 50
SRI Hash Generator 228
staging 158
Standard Query Language (SQL) 42
static application security

testing (SAST) 195
stored/persistent XSS

fixing 180-184
Strict-Transport-Security header 100
Subresource Integrity (SRI) 228

Synchronizer Token Pattern (STP) 250
syntactic validation 12-20

T
TLS 92
two-factor authentication (2FA) 230

U
Uniform Resource Locator

(URL) 140, 219, 243
unique ID (UID) 141
unnecessary features

disabling 165-167
unsafe deserialization

fixing 194, 195
testing 195-202

untrusted data deserialization
fixing 208-212
testing 208-211

UrlEncoder
using, for output encoding 29-31

user enumeration
fixing 81-84
testing 82

V
validation attributes

used, for enabling whitelist
validation 4-8

vulnerable NuGet package
testing 223, 224
usage, fixing 223-226

vulnerable third-party JavaScript library
testing 215-217
usage, fixing 214-222

300 Index

W
weak hashing algorithm 78
weak password requirements

fixing 84-87
weak protocols

fixing 101-103
whitelisting mechanism 26
whitelist validation

about 2
enabling, with validation attributes 4-8
FluentValidation library, using 8-11

X
X-Frame-Options 269
XmlDocument

XXE injection, fixing with 124-126
XML Schemas (XSD) 118
XmlTextReader

XXE injection, fixing with 126, 127
XML validation

enabling 118-123
XPath 63, 66
XPath injection

fixing 63-68
XXE injection

fixing, with LINQ to XML 128-131
fixing, with XmlDocument 124-126
fixing, with XmlTextReader 126, 127

	Cover
	Copyright
	Foreword
	Contributors
	Table of Contents
	Preface
	Chapter 1: Secure Coding Fundamentals
	Technical requirements
	Input validation
	Enabling whitelist validation using validation attributes
	Getting ready
	How to do it…
	How it works…

	Whitelist validation using the FluentValidation library
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also…

	Syntactic and semantic validation
	Creating a custom validation attribute to implement semantic validation
	Getting ready
	How to do it…
	How it works…

	Input sanitization
	Getting ready
	How to do it…
	How it works…

	Input sanitization using the HTMLSanitizer library
	Getting ready
	How to do it…
	How it works…

	Output encoding
	Output encoding using HtmlEncoder
	Getting ready
	How to do it…
	How it works…

	Output encoding using UrlEncoder
	Getting ready
	How to do it…
	How it works…

	Output encoding using JavascriptEncoder
	Getting ready
	How to do it…
	How it works…

	Protecting sensitive data using the Data Protection API
	Getting ready
	How to do it…
	How it works…
	See also

	Chapter 2: Injection Flaws
	Technical requirements
	What is SQL injection?
	Fixing SQL injection with Entity Framework
	Getting ready
	How to do it…
	How it works…
	There's more…

	Fixing SQL injection in ADO.NET
	Getting ready
	How to do it…
	How it works…
	There's more…

	Fixing NoSQL injection
	Getting ready
	How to do it…
	How it works…
	There's more…

	Fixing command injection
	Getting ready
	How to do it…
	How it works…
	There's more…

	Fixing LDAP injection
	Getting ready
	How to do it…
	How it works…

	Fixing XPath injection
	Getting ready
	How to do it…
	How it works…
	There's more…

	Chapter 3: Broken Authentication
	Technical requirements
	Fixing the incorrect restrictions of excessive authentication attempts
	Getting ready
	How to do it…
	How it works…
	There's more…

	Fixing insufficiently protected credentials
	Getting ready
	How to do it…
	How it works…

	Fixing user enumeration
	Getting ready
	How to do it…
	How it works…

	Fixing weak password requirements
	Getting ready
	How to do it…
	How it works…

	Fixing insufficient session expiration
	Getting ready
	How to do it…
	How it works…

	Chapter 4: Sensitive Data Exposure
	Technical requirements
	Fixing insufficient protection of data in transit
	Getting ready
	How to do it…
	How it works…

	Fix missing HSTS headers
	Getting ready
	How to do it…
	How it works…
	There's more…

	Fixing weak protocols
	Getting ready
	How to do it…
	How it works…

	Fixing hardcoded cryptographic keys
	Getting ready
	How to do it…
	How it works…
	There's more…

	Disabling caching for critical web pages
	Getting ready
	How to do it…
	How it works…

	Chapter 5: XML External Entities
	Technical requirements
	Enabling XML validation
	Getting ready
	How to do it…
	How it works…
	There's more…

	Fixing XXE injection with XmlDocument
	Getting ready
	How to do it…
	How it works…
	There's more…

	Fixing XXE injection with XmlTextReader
	Getting ready
	How to do it…
	How it works…

	Fixing XXE injection with LINQ to XML
	Getting ready
	How to do it…
	How it works…

	Chapter 6: Broken Access Control
	Technical requirements
	Fixing IDOR
	Getting ready
	How to do it…
	How it works…

	Fixing improper authorization
	Testing improper authorization
	Getting ready
	How to do it…
	How it works…

	Fixing missing access control
	Getting ready
	How to do it…
	How it works…

	Fixing open redirect vulnerabilities
	Getting ready
	How to do it…
	How it works…

	Chapter 7: Security Misconfiguration
	Technical requirements
	Disabling debugging features in non-development environments
	Getting ready
	How to do it…
	How it works…

	Fixing disabled security features
	Getting ready
	How to do it…
	How it works…

	Disabling unnecessary features
	Getting ready
	How to do it…
	How it works…

	Fixing information exposure through an error message
	Getting ready
	How to do it…
	How it works

	Fixing information exposure through insecure cookies
	Getting ready
	How to do it…
	How it works

	Chapter 8: Cross-Site Scripting
	Technical requirements
	Fixing reflected XSS
	Getting ready
	How to do it…
	How it works…

	Fixing stored/persistent XSS
	Getting ready
	How it works…
	There's more…

	Fixing DOM XSS
	Getting ready
	How to do it…
	How it works…

	Chapter 9: Insecure Deserialization
	Technical requirements
	Fixing unsafe deserialization
	Getting ready
	Testing unsafe deserialization
	How to do it…
	How it works…
	There's more…

	Fixing the use of insecure deserializers
	Getting ready
	How to do it…
	How it works…
	There's more…

	Fixing untrusted data deserialization
	Testing untrusted data deserialization
	Getting ready
	How to do it…
	How it works…

	Chapter 10: Using Components with Known Vulnerabilities
	Technical requirements
	Fixing the use of a vulnerable third-party JavaScript library
	Getting ready
	Testing outdated and vulnerable third-party libraries
	How to do it…
	How it works…
	There's more…
	See also

	Fixing the use of a vulnerable NuGet package
	Getting ready
	Testing vulnerable NuGet packages
	How to do it…
	How it works…

	Fixing the use of a library hosted from an untrusted source
	Getting ready
	How to do it…
	How it works…
	There's more…

	Chapter 11: Insufficient Logging and Monitoring
	Technical requirements
	Fixing insufficient logging of exceptions
	Getting ready
	How to do it…
	How it works…

	Fixing insufficient logging of DB transactions
	How to do it…
	How it works…

	Fixing excessive information logging
	How to do it…
	How it works…

	Fixing a lack of security monitoring
	How to do it…
	How it works…
	There's more…

	Chapter 12: Miscellaneous Vulnerabilities
	Technical requirements
	Fixing the disabled anti-Cross-Site Request Forgery protection
	Getting ready
	How to do it…
	How it works…
	There's more…

	Preventing Server-Side Request Forgery
	Getting ready
	How to do it…
	How it works…
	There's more…

	Preventing log injection
	Getting ready
	How to do it…
	How it works…
	There's more…

	Preventing HTTP response splitting
	Getting ready
	How to do it…
	How it works…
	There's more…

	Preventing clickjacking
	Getting ready
	Clickjacking proof of concept (PoC)
	How to do it…
	How it works…

	Fixing insufficient randomness
	Getting ready
	How to do it…
	How it works…

	Chapter 13: Best Practices
	Technical requirements
	Getting ready

	Proper exception handling
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using security-related cookie attributes
	Getting ready
	How to do it…
	How it works…

	Using a Content Security Policy
	Getting ready
	How to do it…
	How it works…
	There's more…

	Fixing leftover debug code
	Getting ready
	How to do it…
	How it works…
	There's more…

	Other Books You May Enjoy
	Index

