

Android System Programming

Porting, customizing, and debugging Android HAL

Roger Ye

BIRMINGHAM - MUMBAI

Android System Programming

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2017

Production reference: 1290517

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78712-536-0

www.packtpub.com

http://www.packtpub.com

Credits

Author
Roger Ye

Copy Editor
Safis Editing

Reviewers
Bin Chen
Chih-Wei Huang
Shen Liu
Nanik Tolaram

Project Coordinator
Ritika Manoj

Commissioning Editor
Amarabha Banerjee

Proofreader
Safis Editing

Acquisition Editor
Shweta Pant

Indexer
Mariammal Chettiyar

Content Development Editor
Arun Nadar

Production Coordinator
Nilesh Mohite

Technical Editor
Prajakta Mhatre

About the Author
Roger Ye has worked in the area of embedded system programming for more than 10 years.
He has worked on system programming for mobile devices, home gateways, and
telecommunication systems for various companies, such as Motorola, Emerson, and Intersil.

Most recently, he has worked as an engineering manager, leading a team of Android
engineers to develop mobile security applications at Intel Security. With extensive
knowledge and experience in the areas of embedded systems and mobile device
development, he published a book called Embedded Programming with Android, Addison-
Wesley, in 2015.

I would like to thank my dearest wife, Bo Quan, and my lovely daughter, Yuxin Ye, for
enduring me to spend significant time on this book over the weekends. They have been very
encouraging and always give me support to work on the things that I am interested in.

About the Reviewers
Bin Chen is a senior engineer from Linaro. He has worked on various Android-based
products since 2010: TV, STB, Galaxy Tab, Nexus Player, and Google Project Ara, in that
order, and now AOSP 96Boards. He occasionally blogs and speaks about all things
Android. He lives in Sydney, Australia.

Chih-Wei Huang is a developer and promoter of free software who lives in Taiwan. He is
famous for his work in the VoIP and internationalization and localization fields in Greater
China.

Huang graduated from National Taiwan University (NTU) in 1993 with a bachelor's degree
in physics, and attained a master's degree in the electrical engineering department of NTU
in 2000. Huang currently works as a chief engineer of Tsinghua Tongfang Co., Ltd.
for the OPENTHOS project. He is one of the founding members of the Software Liberty
Association of Taiwan (SLAT).

Chih-Wei Huang is the founder and coordinator of the Chinese Linux Documentation
Project (CLDP). He is also the second coordinator of the Chinese Linux Extensions (CLE)
and a core developer of GNU Gatekeeper (from 2001 to 2003).

He is a contributor to pyDict, OpenH323, Asterisk, GStreamer, and more. He is working on
a way to leverage the ASUS Eee PC with the power of the free software community and
aims to provide a complete solution for Android on the x86 platform. The Eee PC,
VirtualBox, and QEMU have been tested and are OK.

Chih-Wei Huang and Yi Sun started the Android-x86 open source project in 2009. The
project aims to bring Android to the x86 platform.

About the Reviewers
Shen Liu is a senior engineer, working at Intel China. He used to work at McAfee LLC,
Broadcom Corporation, and Huawei Technologies. He has over 10 years of work experience
on Linux/Android and embedded systems, in different roles. He had taken manager,
architect, and engineer roles during his career. He is mainly responsible for the Android
framework, but is not limited to it, and he has a lot of passion for software design. On top of
that, he loves reading technical books.

Nanik Tolaram works as a senior Android platform engineer for BlocksGlobal in Australia,
where he is responsible for developing Screener (screener.digital) and Lumin
(mylumin.org). He is passionate about Android and is very active within both the local and
international Android developer communities--from talks and teaching to writing articles
for ODROID open source magazine (magazine.odroid.com). In his spare time, he loves to
tinker with electronics and study human psychology and behavior. He lives in Sydney,
Australia, with his lovely wife and two beautiful boys.

http://www.screener.digital/
http://mylumin.org/
http://magazine.odroid.com/

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at www.amazon.com/dp/178712536X.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/178712536X
https://www.amazon.com/dp/178712536X

Table of Contents
Preface 1

Chapter 1: Introduction to Android System Programming 9

What is system programming? 10
What is the scope of this book? 11
Overview of the Android system 13

Kernel 13
HAL 15
Android system services 15
Binder IPC 16
Application framework 16
Recovery 17

The third-party open source projects derived from AOSP 19
LineageOS (CyanogenMod) 19
Android-x86 21
CWM/CMR/TWRP 22

Strategy of integration 23
Virtual hardware reference platforms 24

Introduction to the x86-based Android emulator 24
Introduction to ranchu 25
VirtualBox-based Android emulators 26

Summary 27

Chapter 2: Setting Up the Development Environment 28

Summary of Android versions 28
Installing Android SDK and setting up an Android Virtual Device 31

Creating AVD in an older version of SDK 31
Creating AVD in the latest version of SDK 33
Testing the goldfish emulator 34
Testing ranchu emulator 37

The AOSP build environment and the Android emulator build 39
The AOSP build environment 39

Installing the required packages 39
Installing Open JDK 7 and 8 39
Downloading the AOSP source 41
Installing repo 41

[ii]

Initializing a repo client and downloading the AOSP source tree 41
Building AOSP Android emulator images 42
Testing AOSP images 45

Creating your own repository mirror 47
Repo and manifest 48
Using a local mirror for AOSP 50
Creating your own mirror of GitHub 52
Fetching Git repositories outside GitHub 54
Creating your own manifest for client download 57

Summary 60

Chapter 3: Discovering Kernel, HAL, and Virtual Hardware 61

What is inside the AOSP? 62
Android emulator HAL 63

Calling sequence 65
Goldfish lights HAL 67
The system service and hardware manager 69

Android emulator kernel and hardware 75
Android emulator hardware 77

Goldfish platform bus 77
QEMU pipe device 78
Goldfish audio device 79
Goldfish serial port 80

Goldfish kernel 81
QEMU pipe 82

Summary 84

Chapter 4: Customizing the Android Emulator 85

Why customize the Android emulator 85
Understanding build layers 86
Build variants 88
Creating a new x86emu device 89

Checking out from the AOSP 89
Checking out from a local mirror 90
Creating x86emu device 93
AndroidProducts.mk 94
BoardConfig.mk 97
device.mk 99

Building and testing x86emu 101
Building x86emu 101
Testing x86emu 105

[iii]

Integrating with Eclipse 106
Summary 111

Chapter 5: Enabling the ARM Translator and Introducing Native Bridge 113

Introducing Native Bridge 113
Setting up Native Bridge as part of the ART initialization 116
Pre-initializing Native Bridge 123
Initializing Native Bridge 127
Loading a native library 130

Integrating Houdini to the x86emu device 134
Changing the configuration of the x86emu build 134
Extending the x86emu device 136

Changes to BoardConfig.mk 137
Changes to x86emu_x86.mk 138
Changes to device.mk 138

Using the Android-x86 implementation 139
Analyzing libnb.so 140
Using binfmt_misc 143

Building and testing 146
Testing the command-line application 147
Testing the Android JNI application 147

Summary 150

Chapter 6: Debugging the Boot Up Process Using a Customized
ramdisk 151

Analyzing the Android start up process 152
Bootloader and the kernel 152
Analyzing the init process and ramdisk 153

Actions 155
Services 156
Device-specific actions and services 156

Source code and manifest changes 158
The Android-x86 start up process 160

The first-stage boot using initrd.img 160
Inside initrd.img 161
Inside install.img 166

Building x86emu with initrd.img 168
Creating a filesystem image 170
Kernel changes 173
Booting a disk image on the Android emulator 174
Summary 179

Chapter 7: Enabling Wi-Fi on the Android Emulator 180

[iv]

Wi-Fi on Android 180
The Wi-Fi architecture 181
QEMU networking and wpa_supplicant in Android 190

Adding Wi-Fi to the emulator 191
Enabling wpa_supplicant in BoardConfig.mk 191
Providing a proper wpa_supplicant configuration 192
Creating services in init scripts 194

Initializing network interface eth1 194
Starting up wpa_supplicant 195

Building the source code 196
Getting the source code 196
Enabling boot with initrd.img 198

Testing Wi-Fi on an emulator 201
Booting an Android emulator using initrd.img 201
Booting an Android emulator using ramdisk.img 203
Debugging Wi-Fi start up processes 203

Summary 206

Chapter 8: Creating Your Own Device on VirtualBox 207

HAL of x86vbox 208
The manifest for x86vbox 210

Creating a new x86vbox device 214
Product definition Makefile of x86vbox 214
Board configuration of x86vbox 215
Common x86 devices 216
Getting the source code and building the x86vbox device 220

Boot up process and device initialization 220
Device initialization before Android start-up 221
HAL initialization during the Android start-up 228

Summary 232

Chapter 9: Booting Up x86vbox Using PXE/NFS 233

Setting up a PXE boot environment 234
Preparing PXE Boot ROM 235

Downloading and building the LAN Boot ROM 236
Fixing up the ROM image 236
Configuring the virtual machine to use the LAN Boot ROM 237

Setting up the PXE boot environment 239
Configuring and testing the PXE boot 239

Setting up the virtual machine 240
Using VirtualBox internal PXE booting with NAT 242

[v]

Configuring pxelinux.cfg 243
pxelinux.cfg/default 244

Setting up a serial port for debugging 246
NFS filesystem 248

Preparing the kernel 249
Setting up the NFS server 252

Configuring the PXE boot menu 252
Booting to NFS installation 253
Booting from a hard disk 255
Booting to recovery 255

Summary 258

Chapter 10: Enabling Graphics 259

Introduction to the Android graphics architecture 260
Delving into graphics HAL 262

Loading the Gralloc module 262
Initializing GPU 269
Initializing framebuffer 271
Allocating and releasing the graphic buffer 280

Allocating from framebuffer 285
Allocating from system memory 287
Releasing graphic buffers 289

Rendering framebuffer 291
Graphics HAL of the Android emulator 294

Overview of hardware GLES emulation 295
Initializing GPU0 and FB0 in GLES emulation 299
GPU0 device implementation 302
FB0 device implementation 307

Summary 308

Chapter 11: Enabling VirtualBox-Specific Hardware Interfaces 309

OpenGL ES and graphics hardware initialization 309
Loading OpenGL ES libraries 310

Analyzing the loading process 313
Loading the driver 318
Creating the rendering engine 320

The uvesafb framebuffer driver 322
What is uvesafb? 322
Testing the uvesafb framebuffer driver 322
Initializing uvesafb in x86vbox 328

Integrating VirtualBox Guest Additions 331
Building VirtualBox Guest Additions 333

[vi]

Integrating vboxsf 334
Integrating vboxvideo 337
Building and testing images with VirtualBox Guest Additions 339

Summary 339

Chapter 12: Introducing Recovery 340

Recovery introduction 340
Android device partitions 341

Analyzing recovery 343
BCB 344
Cache partition 347
Main flow of recovery 348
Retrieving arguments from BCB and cache files 352
Factory data reset 356
OTA update 358

Building recovery for x86vbox 364
Building configuration 364
Changes to x86vbox 365
Changes to recovery 368
Changes to newinstaller 369
Testing recovery 371

Summary 371

Chapter 13: Creating OTA Packages 372

What is inside an OTA package 372
Updater 375
The updater script 380
Edify functions 380

Built-in functions 380
Installation functions 381
Block image functions 385
Device extensions 385

Preparing an OTA package for x86vbox 386
Removing dependencies on /system 388

Hardware initialization in recovery 389
Minimum execution environment in recovery 391

Building and testing 394
Summary 397

Chapter 14: Customizing and Debugging Recovery 398

Debugging and testing native Android applications 399

[vii]

Debugging with GDB 400
Integration with Eclipse 403

Extending recovery and the updater 409
Extending recovery 409
Extending the updater 416
Extending the Python module 424
Building and testing the extended recovery and updater 425

Supporting the third-party recovery packages 433
Xposed recovery package 433
Opening GApps 437

Summary 441

Index 442

Preface
Android is the most popular mobile operating system in the world. Since 2013, Android has
around 80% market share worldwide, while the second largest mobile operating system,
iOS, has less than 20% market share. Due to the popularity of Android, there are many
books about Android programming in the market. Most of them are targeted at Android
application developers, which are the largest community in the world of Android
development.

There is also another group of people working on the layer beneath the Android
framework. Many people call them Android system developers. Comparing to Android
application developers, Android system developers use the C/C++ languages, or even
assembly language, to develop system services or device drivers. The scope and the
definition of Android system development is much more vague than comparing to Android
application development. For Android application development, the development
environment and tools are very clear: the Android SDK and Android Studio from Google
should be used and the programming language is Java.

For Android system development, we may use the Android NDK to develop Android
system services or native applications. Many people refer to development based on the
Android Open Source Project (AOSP) as Android system development. Nevertheless,
Android system development encompasses the activities that produces native applications,
services, or device drivers for a particular hardware platform. It closer to the hardware and
the operating system, whereas Android application development is more general and
hardware-independent.

Due to the hardware and operating system dependencies, it is more difficult to teach
Android system programming than Android application programming. From the number
of books in the market, we can see this. It is much easier to teach Android application
development using specific examples. The readers of application programming books can
follow the examples and can test them on most available Android devices. However, most
Android system programming book can only talk about general concepts or ideas. When
the authors want to use examples, they must pertain to a particular hardware platform and
Android version. This makes it difficult for readers to repeat the same process.

Preface

[2]

Virtual hardware platforms
To make the discussion more general and overcome the issue of specific hardware
platforms, I use virtual hardware platforms to demonstrate the work at the Android system
level.

Before this book, I made an attempt to use a virtual hardware platform to explain how we
can learn embedded system programming using an Android emulator in my previous
book, Embedded Programming with Android. It seems many readers liked the idea, because
they can explore the code examples much more easily on a virtual hardware platform that is
available for everyone.

Android version used in this book
Android is still changing at a very fast pace. When I completed the book Embedded
Programming with Android, we were still using Android 5 (Lollipop), and Android 6
(Marshmallow) was on the way to market with preview releases. Now while I am working
on this book, Android 7 devices are available on the market and the next release of Android
8 has been announced with preview releases. We will use Android 7 (Nougat) to build all
source code used in this book.

What this book covers
In this book, we discuss the Android system programming practices. We will use two
projects (x86emu and x86vbox) to teach essential knowledge of Android system
programming. The book is split into includes two parts.

The first part of this book talks about how to customize, extend, and port an Android
system. We will use an Android emulator as the virtual hardware platform to demonstrate
how to customize and extend an Android system. You will learn how to integrate an ARM
translator (Houdini) into the Intel x86-based emulator and how to add Wi-Fi support to an
Android emulator. We will use an x86emu device to learn these topics. After that, we will
learn how to port an Android system to a new platform using VirtualBox. You will learn
how to boot Android in the PXE/NFS environment, how to enable the graphics system, and
how to integrate VirtualBox Guest Additions into the Android system. We will use x86vbox
device to learn these topics.

Preface

[3]

In the second part of this book, we will learn how to update or patch a released system
using recovery. In this part, we will provide a general introduction to recovery first. After
that, we will explore how to build recovery for x86vbox device. With recovery for x86vbox
device, we will demonstrate how to flash an update package to change the system image.
We will use examples such as the Gapps and xposed recovery packages to demonstrate
how to update an Android system image using third-party recovery packages.

Chapter 1, Introduction to Android System Programming, covers a general introduction of
Android system programming. It also explains the scope of this book.

Chapter 2, Setting Up the Development Environment, provides details of the development
environment setup for AOSP programming. After we set up the development environment,
we will build an Android emulator image to test our setup. Other than the environment
setup, we specifically discuss how to create your own source code mirror of AOSP from
GitHub to help your quickly switch between different configurations.

Chapter 3, Discovering Kernel, HAL, and Virtual Hardware, covers an introduction to the
Linux kernel, Hardware Abstraction Layer, and virtual hardware. In this chapter, we look
at all the layers in the Android system software stack related to porting. We also take a in-
depth look at the internals of the virtual hardware that we are going to use in this book.

Chapter 4, Customizing the Android Emulator, covers the development of a new device,
x86emu. We will learn how to customize and extend this device in the next few chapters.

Chapter 5, Enabling the ARM Translator and Introducing Native Bridge, explores a new feature
introduced in Android 5--Native Bridge. Since we created an x86-based device, x86emu, we
have to integrate the ARM translator module (Houdini) into our device so that most ARM-
native applications can run on it.

Chapter 6, Debugging the Boot Up Process Using a Customized ramdisk, introduces an
advanced debugging skill to troubleshoot issues during the boot up stage. The famous
Android-x86 project uses a special ramdisk to start the boot up process. It helps to
troubleshoot device driver and init process issues very easily.

Chapter 7, Enabling Wi-Fi on the Android Emulator, presents details of how to enable Wi-Fi
on our Android emulator. The Android emulator only supports an emulated 3G data
connection, but many applications are aware of data and the Wi-Fi connection. We
demonstrate how to enable Wi-Fi in the Android emulator in this chapter.

Preface

[4]

Chapter 8, Creating Your Own Device on VirtualBox, explores how to port Android on
VirtualBox by introducing a new device x86vbox. The x86emu device is used to
demonstrate how to customize an existing implementation, while x86vbox is used to
demonstrate how to port Android to a new hardware platform.

Chapter 9, Booting Up x86vbox Using PXE/NFS, explains how to boot up Android on
VirtualBox using PXE/NFS. Since VirtualBox is a general virtual hardware, the first problem
that we meet is we need a bootloader to boot the system. We will use the PXE/NFS boot to
solve this issue. This is an advanced debugging skills which can be used in your own
project.

 To discuss a more advanced case about the PXE/NFS setup using an external DHCP/TFTP
server running in the host-only network environment, I have written an article, which you
can find at h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n t /b o o t i n g - a n d r o i d - s y s t e m - u s i n g

- p x e n f s .

Chapter 10, Enabling Graphics, covers the Android graphic system. We introduce the
Android graphics architecture and how to enable it on the x86vbox device.

Chapter 11, Enabling VirtualBox-Specific Hardware Interfaces, explains how to integrate the
device drivers in VirtualBox Guest Additions into the Android system.

Chapter 12, Introducing Recovery, provides an introduction to recovery. We will learn how
to customize and port recovery to a new hardware platform by building a recovery for the
x86vbox device.

Chapter 13, Creating OTA Packages, covers the scripting language used by recovery: Edify.
We will learn how to build and test OTA updates.

Chapter 14, Customizing and Debugging Recovery, expands on the concepts we learned about
recovery and OTA packages. We will customize both recovery and updater for x86vbox
device. We will test third-party OTA packages from Gapps and Xposed using our own
recovery.

What you need for this book
To read this book, you should have essential knowledge of embedded operating systems
and C/C++ programming language.

https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs

Preface

[5]

Who this book is for
Before we talk about who should read this book, we should ask who are the people that
usually do Android system programming in the real world? There are potentially quite a
lot. Here, I can give a few general categories. Firstly, there are a large number of engineers
at Google working on the Android system itself, since Android is a product from Google.
Google usually work with silicon vendors to enable Android on various hardware
platforms.

There are many engineers at silicon chip companies, such as Qualcomm, MTK, or Intel to
enable Android on their platform. They develop HAL layer components or device drivers
to enable hardware platforms. The hardware platforms are usually called reference
platforms, which are provided to OEM/ODM to build the actual products. Then, the
engineers at OEM/ODM companies usually customize the reference platform hardware and
software to add unique features to their products. All these engineers form the major
groups working on system-level programming. Thus, if you are working in any of these
areas, you may want to read this book.

Besides the previously mentioned categories, it is also possible that you are a developer
working for an embedded system company. You may work on projects such as embedded
system for automobile, video surveillance, or smart home. Many of these systems use
Android nowadays. One of the fastest growing areas in embedded systems is Internet of
Things (IoT) devices. Google announced Brillo as the operating system for IoT devices.
Brillo is a simplified embedded operating system based on Android. The source code of
Brillo is also included in the AOSP. This book is also relevant to people who use Brillo.

For Android application developers, system-level knowledge can help you to resolve
complex issues as well. If you are working on projects that involve new hardware features,
you may want to extend your knowledge to the system level.

This book is also useful for people teaching Android system programming or embedded
system programming. There is plenty of source code in this book that can be used to form
your own lesson plans.

Preface

[6]

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The
general Android kernel source code is in the kernel/common folder , which looks very
much like the Vanilla kernel."

A block of code is set as follows:

static struct hw_module_methods_t lights_module_methods = {
 .open = open_lights,
};

Any command-line input or output is written as follows:

$ ls
Light.java LightsManager.java LightsService.java

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "We should set the launch
type to Standard Create Process Launcher."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

Preface

[7]

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /A n d r o i d - S y s t e m - P r o g r a m m i n g . We also have other code bundles from our rich
catalog of books and videos available at h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /. Check
them out!

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/Android-System-Programming
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[8]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Introduction to Android System

Programming
This book is about Android system programming. In this chapter, we will start with a
discussion on system programming and the scope of Android system programming (to give
a high-level view of this book). After that, we will look at the Android system architecture.
From the architecture, we can see the layers that we will focus on in this book. We will also
talk about the virtual hardware platforms and third-party open source projects that we will
use in this book. In summary, we will cover the following topics in this chapter:

Introduction to Android system programming
Overview of the Android system architecture
Introduction to the third-party projects used in this book
Introduction to virtual hardware platforms

Introduction to Android System Programming

[10]

What is system programming?
When we talk about what system programming is, we can start with the definition of
system programming in Wikipedia:

"System programming (or systems programming) is the activity of programming system
software. The primary distinguishing characteristic of systems programming when
compared to application programming is that application programming aims to produce
software which provides services to the user (e.g. word processor), whereas systems
programming aims to produce software and software platforms which provide services to
other software, are performance constrained, or both (e.g. operating systems,
computational science applications, game engines and AAA video games, industrial
automation, and software as a service applications). "

From the preceding definition, we can see that when we talk about system programming
we actually deal with the building blocks of the computer system itself. We may depict the
system architecture and how it looks like inside the system. As an example, we can refer to
system programming books for Windows or Linux. The book Linux System
Programming published by O'Reilly Media, Inc. includes topics about file I/O, process
management, memory management, interrupt handling, and so on. There is another book called
Windows System Programming published by Addison-Wesley Professional that includes very
similar topics to its Linux counterpart.

You may expect similar content in this book for Android, but you will find that the topics in
this book are quite different from the classic system programming book. First of all, it
doesn't really make sense to have a system programming book for Android talk about file
I/O, process management, or memory management, because the Linux System Programming
book can cover almost the same topics for Android (Android uses Linux kernels and device
driver models).

When you want to explore kernel space system programming, you can read books such as
Linux Device Drivers by O'Reilly or Essential Linux Device Drivers from Prentice Hall. When
you want to explore user space system programming, you can read the book that I
mentioned before, Linux System Programming by O'Reilly. Then you may wonder, Do we
need an Android System Programming book in this case? To answer this question, it depends
on how we look at system programming for Android. Or in other words, it depends on
which angle we look at Android System Programming from. We can tell people different
things about the same world from different perspectives. In that sense, we may need more
than one book to talk about Android system programming.

Introduction to Android System Programming

[11]

To talk about Android system programming, we can talk about it theoretically or
practically. In this book, we will do it practically with a few actual projects and hands-on
examples. Our focus will be how to customize the Android system and how to port it to a
new platform.

What is the scope of this book?
As we know, there are two kinds of programming for Android: application programming
and system programming.

Usually, it is hard to draw a line between system programming and application
programming, especially for C language-based operating systems, such as Linux and all
kinds of Unix system. With the Android framework, the application layer is separated
nicely from the rest of the system. You may know that Android application programming
uses the Java language and Android system programming using Java, C/C++, or assembly
languages. To make it simple, we can treat everything other than application programming
in the Android world as the scope of system programming. In this sense, the Android
framework is also in the scope of system programming.

From the perspective of the audiences of this book, they may want to learn more about the
layers they may touch on in their project work. The Android framework is a layer that will
be changed by Google only in most cases. From this point of view, we won't spend too
much time talking about the framework itself. Instead, we will focus on how to port the
system including the Android framework from the standard platforms in Android Open
Source Project (AOSP) to other platforms. We will focus on the layers that need to be
changed during the porting process in this book.

After we have done the porting work, a new Android system will be available. One thing
that we need to do for the new system is deliver the changes for the new system to the end
users from time to time. It could be a major system update or bug fixing. This is supported
by over-the-air (OTA) updates in Android. This is also one of the topics in this book.

Traditionally, all Unix programming was system-level programming. Unix or Linux
programming is built around three cornerstones, which are system calls, the C library, and
the C compiler. This is true for Android system programming as well. On top of the system
calls and C library, Android has an additional layer of abstraction for the Android
application level. This is the Android framework and Java virtual machine.

Introduction to Android System Programming

[12]

In that sense, most Android applications are built using Android SDK and Java language.
You may be wondering whether it is possible to do Android application development using
C/C++ or even do system level programming using Java. Yes, all these are possible. Besides
Android SDK, we can also develop native applications using Android NDK. There are also
a lot of Android framework components developed using the Java language. We can even
develop Android applications using C# with Visual Studio (Xamarin). However, we won't
go to that kind of complexity in this book. We will focus on the layers below the application
framework. Again, the focus will be on customizing and extending the existing system or
porting the entire system to a new hardware platform.

The reason why we will focus on the porting of Android systems and the customization of
Android systems is because these are what most people working on the Android system
level will do. After Google releases a new version of Android, silicon vendors need to port
the new version to their reference platform. When OEM/ODM companies get the reference
platform, they have to customize the reference platform to their products. The
customization includes the build of the initial system itself and the deployment of the
updates to the deployed system. In the first part of this book, we will discuss the porting of
Android systems. In the second part of this book, we will discuss how to update the
existing system.

If we consider the architecture of Android in the right-hand side of the following figure, we
can see that most porting work will focus on the Kernel and Hardware Abstraction Layer
(HAL) in the Android system architecture. This is true for other Android derivatives as
well. The knowledge and concepts in this book can apply to Android wearables and Brillo
as well. The left-hand side of the following figure, it shows the architecture diagram of
Brillo. Brillo is the IoT operating system from Google for IoT devices. It is a simpler and
smaller version of Android for IoT devices. However, the porting layer is still the same as
Android.

Comparison of Android and Brillo system architecture

Introduction to Android System Programming

[13]

The Brillo/Weave architecture diagram on the left-hand side is created by
referring to the presentation by Bruce Beare, from OpenIoT Summit.
Thanks, Bruce Beare for the great presentation and video on YouTube,
which gives a very comprehensive introduction to the Brillo/Weave
architecture.

Overview of the Android system
As we can see from the architecture diagram, the architecture layers of Android include
Application Framework, Android System Services, HAL, and Kernel. Binder IPC is used
as a mechanism for inter-process communication. We will cover each of them in this section.
Since recovery is also part of the system programming scope, we will also give an overview
of recovery in this section.

You can find more information about key porting layers and system
architecture internals at the following Google website:
http://source.android.com/devices/index.html

Kernel
As we know, Android uses the Linux kernel. Linux was developed by Linus Torvalds in
1991. The current Linux kernel is maintained by the Linux Kernel Organization Inc. The
latest mainline kernel releases can be found at h t t p s ://w w w . k e r n e l . o r g .

Android uses a slightly customized Linux kernel. The following is a concise list of the
changes to the Linux kernel:

ashmem (Android Shared Memory): A file-based shared memory system to user
space
Binder: An interprocess communication (IPC) and remote procedure call (RPC)
system
logger: A high-speed in-kernel logging mechanism optimized for writes
paranoid networking: A mechanism to restrict network I/O to certain processes
pmem (physical memory): A driver for mapping large chunks of physical
memory into user space

http://source.android.com/devices/index.html
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org

Introduction to Android System Programming

[14]

Viking Killer: A replacement OOM killer that implements Android's "kill least
recently used process" logic under low-memory conditions
wakelocks: Android's unique power management solution, in which the default
state of the device is sleep and explicit action is required (via a wakelock) to
prevent that

Most of the changes were implemented as device drivers with little or no changes necessary
to the core kernel code. The only significant subsystem-spanning change is wakelocks.

There are many Android patches accepted by the mainline Linux kernel today. The
mainline kernel can even boot up Android directly. There is a blog from Linaro about how
to boot Nexus 7 running a mainline kernel. If you want to try it, you can find the
instructions at h t t p s ://w i k i . l i n a r o . o r g /L M G /K e r n e l /F o r m F a c t o r E n a b l e m e n t .

If a Linux device driver is available for a hardware device, it usually can work on Android
as well. The development of device drivers is the same as the development of a typical
Linux device driver. If you want to find out the merges on the mainline kernel related to
Android, you can check the kernel release notes at h t t p s ://k e r n e l n e w b i e s . o r g /L i n u x V e r

s i o n s .

The Android kernel source code is usually provided by SoC vendors, such as Qualcomm or
MTK. The kernel source code for Google devices can be found at h t t p s ://a n d r o i d . g o o g l e

s o u r c e . c o m /k e r n e l /.

Google devices use SoC from various vendors so that you can find kernel source code from
different vendors here. For example, the kernel source of QualComm SoC is under
kernel/msm and the kernel source of Mediatek is under kernel/mediatek. The general
Android kernel source code is in the folder kernel/common, which looks much like the
Vanilla kernel.

The default build of AOSP is for various devices from Google, such as Nexus or Pixel. It
started to include some reference boards from silicon vendors as well recently, such as
hikey-linaro, and so on. If you need a vendor-specific Android kernel for your reference
platform, you should get the kernel source code from your platform vendors.

There are also open source communities maintaining Android kernels. For example, the
kernel for the ARM architecture can be found at Linaro for many reference boards. For Intel
x86 architecture, you can find various versions of kernels in the Android-x86 project. As
you can see from the following Linaro Linux Kernel status website, the linaro-android
tree is a forward port of the out-of-tree AOSP patches. It provides a preview of what
Google's next AOSP kernel/common.git tree "might" look like.

https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/

Introduction to Android System Programming

[15]

The Linaro Android kernel tree can be found at h t t p s ://a n d r o i d . g i t . l i

n a r o . o r g /g i t w e b /k e r n e l /l i n a r o - a n d r o i d . g i t .
The status of this kernel tree can be seen
at https://wiki.linaro.org/LMG/Kernel/Upstreaming.

HAL
HAL defines a standard interface for hardware vendors to implement and allows Android
to be agnostic about lower-level driver implementations. HAL allows you to implement
functionality without affecting or modifying the higher level system. HAL implementations
are packaged into module (.so) files and loaded by the Android system at the appropriate
time. This is one of the focuses for porting Android systems to a new platform. We will
discover more about HAL in Chapter 3, Discovering Kernel, HAL, and Virtual Hardware.
Throughout this book, I will give a very detailed analysis of the HAL layer for various
hardware interfaces.

Android system services
Functionality exposed by application framework APIs communicates with system services
to access the underlying hardware. There are two groups of services that application
developers may interact mostly with. They are system (services such as window manager
and notification manager) and media (services involved in playing and recording media).
These are the services that provide application interfaces as part of the Android framework.

Besides these services, there are also native services supporting these system services, such
as SurfaceFlinger, netd, logcatd, rild, and so on. Many of them are very similar to Linux
daemons that you may find in a Linux distribution. In a complicated hardware module,
such as graphic, both system services and native services need to access HAL in order to
provide the framework API to the application layer. We will talk about system services
when we debug the init process in Chapter 6, Enabling Wi-Fi on the Android Emulator to
Chapter 9, Booting Up x86vbox Using PXE/NFS.

https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://android.git.linaro.org/gitweb/kernel/linaro-android.git
https://wiki.linaro.org/LMG/Kernel/Upstreaming

Introduction to Android System Programming

[16]

Binder IPC
The Binder IPC mechanism allows the application framework to cross process boundaries
and call into the Android system services code. This enables high-level framework APIs to
interact with Android system services. An Android application usually runs in its own
process space. It doesn't have the ability to access system resources or the underlying
hardware directly. It has to talk to system services through Binder IPC to access the system
resource. Since applications and system services run in different processes, the Binder IPC
provides a mechanism for this purpose.

The Binder IPC proxies are the channel by which the application framework can access
system services in different process spaces. It does not mean it is a layer between the
application framework and system services. Binder IPC is the inter-process communication
mechanism that can be used by any process that wants to talk to another process. For
example, system services can use Binder IPC to talk to each other as well.

Application framework
The application framework provides APIs to the applications. It is used most often by
application developers. After an interface is invoked by the applications, application
frameworks talk to the system services through the Binder IPC mechanism. An Android
application framework is not just a set of libraries for the application developers to use. It
provides much more than that.

The break-through technology that the Android application framework brought to the
developer community is a very nice separation between application layers and system
layers. As we know Android application development uses the Java language and Android
applications run in an environment similar to the Java virtual machine. In this kind of setup,
the application layer is separated from the system layer very clearly.

The Android application framework also provides a unique programming model together
with a tight integration with the integrated development environment (IDE) from Google.
With this programming model and related tools, Android developers can work on
application development with great efficiency and productivity. All these are key reasons
why Android has gained so much traction in the mobile device world.

I have given an overall introduction to all the layers in the previous Android system
architecture diagram. As I mentioned about the scope of Android system programming
before, we can consider all programming in Android systems as within the scope of system
programming other than application programming. With this concept in mind, we actually
missed one piece in the previous architecture diagram, which is recovery.

Introduction to Android System Programming

[17]

Recovery
In this chapter, we want to have a brief look at recovery as well, since we have three
chapters about it in the second part of this book.

Recovery is a tool that can be used to upgrade or reinstall Android systems. It is part of the
AOSP source code. The source code for recovery can be found at
$AOSP/bootable/recovery.

The unique point about recovery compared to the other parts of Android is that it is a self-
contained system by itself. We can look at recovery using the following diagram, and
compare it to the Android and Brillo architectures that we talked about before:

Recovery is a separate system from Android that shares the same kernel with the Android
system that it supports. We can treat it as a mini operating system or an embedded
application that we can find in many embedded devices. It is a dedicated application
running on top of the same Linux kernel as Android and it performs a single task, which is
to update the current Android system.

When the system boots to recovery mode, it boots from a dedicated partition in the flash.
This partition includes the recovery image that includes a Linux kernel and a special
ramdisk image. If we look at Nexus 5 partitions, we will see the following list:

parted /dev/block/mmcblk0
parted /dev/block/mmcblk0
GNU Parted 1.8.8.1.179-aef3
Using /dev/block/mmcblk0
Welcome to GNU Parted! Type 'help' to view a list of commands.
(parted) print
print
print
Model: MMC SEM32G (sd/mmc)
Disk /dev/block/mmcblk0: 31.3GB
Sector size (logical/physical): 512B/512B

Introduction to Android System Programming

[18]

Partition Table: gpt

Number Start End Size File system Name Flags
 1 524kB 67.6MB 67.1MB fat16 modem
 2 67.6MB 68.7MB 1049kB sbl1
 3 68.7MB 69.2MB 524kB rpm
 4 69.2MB 69.7MB 524kB tz
 5 69.7MB 70.3MB 524kB sdi
 6 70.3MB 70.8MB 524kB aboot
7 70.8MB 72.9MB 2097kB pad
8 72.9MB 73.9MB 1049kB sbl1b
9 73.9MB 74.4MB 524kB tzb
10 74.4MB 75.0MB 524kB rpmb
11 75.0MB 75.5MB 524kB abootb
12 75.5MB 78.6MB 3146kB modemst1
13 78.6MB 81.8MB 3146kB modemst2
14 81.8MB 82.3MB 524kB metadata
15 82.3MB 99.1MB 16.8MB misc
16 99.1MB 116MB 16.8MB ext4 persist
17 116MB 119MB 3146kB imgdata
18 119MB 142MB 23.1MB laf
19 142MB 165MB 23.1MB boot

20 165MB 188MB 23.1MB recovery

21 188MB 191MB 3146kB fsg
22 191MB 192MB 524kB fsc
23 192MB 192MB 524kB ssd
24 192MB 193MB 524kB DDR
25 193MB 1267MB 1074MB ext4 system
26 1267MB 1298MB 31.5MB crypto
27 1298MB 2032MB 734MB ext4 cache
28 2032MB 31.3GB 29.2GB ext4 userdata
29 31.3GB 31.3GB 5632B grow

The list includes 29 partitions and recovery partition is one of them. The recovery ramdisk
of recovery, it has a similar directory structure to the normal ramdisk. In the init script of
recovery ramdisk, init starts the recovery program and it is the main process of the recovery
mode. The recovery itself is the same as other native daemons in the Android system. The
programming for recovery is part of the scope of Android system programming. The
programming language and debug method for recovery is also the same as native Android
applications. We will discuss this in more depth in the second part of this book.

Introduction to Android System Programming

[19]

The third-party open source projects derived
from AOSP
As we know, AOSP source code is the major source that we can start to work with in
system-level programming. Various silicon vendors usually work with Google to enable
their reference platforms. This is a huge effort and they won't publish everything to the
world except for their customers. This brings a limitation to the open source world. Since
the AOSP source code is mainly for Google devices, such as emulator, Nexus, or Pixel
series, there is no problem for developers who use Nexus devices as hardware reference
platforms. How about other devices? Manufacturers may release the kernel source code for
their devices, but nothing else. In the open source world, several third-party organizations
provide solutions for this situation. We will have a brief look at the ones that we used in this
book in the following sections.

LineageOS (CyanogenMod)
LineageOS is a community providing aftermarket firmware distribution for many popular
Android devices. It is the successor to the highly popular CyanogenMod. If you cannot
build the ROM for your devices from AOSP source code, you may look at LineageOS source
code. Because there are many devices supported by LineageOS, many major third-party
ROM images are built on top of its predecessor CyanogenMod. From the famous MIUI in
China to the latest OnePlus device, they all use CyanogenMod source code as the base start
from. The major contributions of LineageOS/CyanogenMod to the open source world are
the adaptation of the Linux kernel and HAL to various Android devices.

The source code of LineageOS is maintained in GitHub and you can find it
at h t t p s ://g i t h u b . c o m /L i n e a g e O S .

To build LineageOS source code for your device, the overall build process is similar to the
AOSP build. The key difference is the large number of devices supported by LineageOS. For
each device, there is a web page to give information about how to build for a device. We use
Nexus 5 as an example. You can go to the following page for detailed information:

h t t p s ://w i k i . l i n e a g e o s . o r g /d e v i c e s /h a m m e r h e a d

https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://github.com/LineageOS
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead
https://wiki.lineageos.org/devices/hammerhead

Introduction to Android System Programming

[20]

In the information page, you can find information about how to download the ROM image,
how to install the image, and how to build the image. There is a build guide for devices and
we can find the build guide for Nexus 5 at h t t p s ://w i k i . l i n e a g e o s . o r g /d e v i c e s /h a m m e r

h e a d /b u i l d .

To build LineageOS for Nexus 5, the two key elements are Kernel and Device. The Kernel
includes the Linux kernel and Nexus 5-specific device drivers, while the Device includes the
major part of the device-specific HAL code. The naming convention for both the Kernel and
Device folder is android_kernel/device_{manufacturer}_{code name}.

The code name for Nexus 5 is hammerhead and the manufacturer is lge, which is LG.

We can find the following two Git repositories for Kernel and Device:
h t t p s ://g i t h u b . c o m /L i n e a g e O S /a n d r o i d _ k e r n e l _ l g e _ h a m m e r h e a d
https://github.com/LineageOS/android_device_lge_hammerhead

Other than the Kernel and Device, other important information is the LineageOS version.
You may find it on the same device information page. For Nexus 5, the versions that can be
used are 11, 12, 12.1, 13, and 14.1. You may be wondering how to match LineageOS versions
to AOSP versions.

The information can be found at the following two pages at Wikipedia
about CyanogenMod and LineageOS:
h t t p s ://e n . w i k i p e d i a . o r g /w i k i /C y a n o g e n M o d #V e r s i o n _ h i s t o r y
https://en.wikipedia.org/wiki/LineageOS#Version_history

The LineageOS/CyanogenMod and AOSP versions supported for Nexus 5 are CM11
(Android 4.4), CM 12 (Android 5.0), CM 12.1 (Android 5.1), CM 13 (Android 6.0), and CM
14.1 (Android 7.1.1).

You will not be able to access the links related to CyanogenMod while you
read this book, since the infrastructure behind CyanogenMod has been
shut down recently. You can read the following post to find out more:
https://plus.google.com/+CyanogenMod/posts/RYBfQ9rTjEH

https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://wiki.lineageos.org/devices/hammerhead/build
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_device_lge_hammerhead
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/LineageOS#Version_history
https://plus.google.com/+CyanogenMod/posts/RYBfQ9rTjEH

Introduction to Android System Programming

[21]

Nevertheless, the idea from the preceding configuration is that the key pieces of code to
differentiate one device from another are the Kernel and Device. It is possible to share the
rest of the code across devices. This is one of the goals for the projects in this book. We try to
keep the changes for different hardware platforms within the Kernel and the Device, while
keeping the rest of the AOSP source code untouched. This is not 100% possible, but we can
try to do it as much as possible. The benefit is that we can keep our code separated from
AOSP code and it is much easier to update to a new AOSP version.

Android-x86
While LineageOS/CyanogenMod provides excellent support for a large number of Android
devices, many of these devices are ARM-based devices from various silicon vendors, such
as Qualcomm, Samsung, MTK, and so on. Similarly, there is an open source community for
Intel-based Android devices as well. This is another famous open source project, Android-
x86. Even though the number of Intel x86-based Android devices on the market cannot
compare to the number of ARM-based devices, there is another market using the Intel x86
Android build extensively. This is the Android emulator market. For commercial Android
emulator products, you can find AMI DuOS, Genymotion, Andy, and so on.

The project Android-x86 uses a very different approach to support various Intel x86-based
devices compared to LineageOS/CyanogenMod. Its goal is to provide Board Support
Package (BSP) for any Intel x86 devices. It is similar to how you install Microsoft Windows
or Linux on your PC. You have only one copy of the release and you can install it on any
Intel PCs. There is no special build of Windows or Linux for each different PC or laptop.

To achieve this goal on Android, Android-x86 customized the Android boot up process
significantly. There are two stages of boot up process in Android-x86. The first stage is
booting up a minimal Linux environment using a special ramdisk--initrd.img. After the
system can boot up to this Linux environment, it starts the second stage through the
chroot or switch_root command. In this stage, it will boot up the actual Android system.

This is a very smart way to resolve the new challenge using existing technology. Essentially,
we try to resolve the problem in two steps. In the first stage of the boot up process, since
both Windows and Linux can boot on Intel x86 PCs without a dedicated build, you should
be able to boot Linux on an Intel device without too much effort. This is exactly what the
first stage of Android-x86 boot up does. After the minimal Linux system can run properly,
this means the minimum set of hardware devices is initialized and you are able to debug or
boot the rest of the system using this minimal Linux environment. In the second stage, a
common Android image for Intel x86 can be started with limited hardware initialization.
This approach can be used in the debugging of hardware devices as well. We will show
how we can do the same thing on the Android emulator in this book.

Introduction to Android System Programming

[22]

The official website of the Android-x86 project is http://www.android-x86.org/. You can
find the information about the Android-x86 project there. To build Android-x86, it is a little
tricky to get the source code. The original source code was hosted at
http://git.android-x86.org and it was maintained by volunteers from Taiwan Linux
User Group (TLUG). It was valid for several years. However, it ceased to work from April
2015.

You can always find the latest status from the Google discussion group at
https://groups.google.com/forum/#!forum/android-x86. There is an official
announcement about the issue of git.android-x86.org at the discussion group from the
maintainer Chih-Wei Huang. Later, the hosting was moved to SourceForge for a short
period. However, issues retrieving source code from SourceForge have been reported again
since July 2016. Currently, the source code is hosted at OSDN and you can search the
announcement from Chih-Wei Huang on September 8, 2016 at the Android-x86 discussion
group. Since most open source projects are maintained by volunteers, they may be up and
down from time to time. It is always good to keep your own mirror of the projects that you
work on. We will discuss this issue in this book as well so that you can have full control of
your own work.

We know that many open source projects are related to each other and this is true for both
Android-x86 and LineageOS/CyanogenMod as well. Starting from January 2016, Jaap Jan
Meijer did the initial porting of CyanogenMod to Android-x86 and this makes
CyanogenMod available on most Intel devices. If you are interested in this topic, you can
search for CM porting plan in the Android-x86 discussion group.

CWM/CMR/TWRP
As a part of system-level programming, we introduced recovery in the previous section.
The original recovery from AOSP only supports very limited functionalities so there are
many third-party recovery projects.

ClockworkMod recovery (CWM) is one of the famous open source recovery projects,
written by Koushik Dutta. Even though many people still use ClockworkMod recovery
now, this project ceased development some time ago.

Another recovery project is CyanogenMod recovery (CMR). CMR is maintained by the
CyanogenMod team and it is quite similar to ClockworkMod recovery.

http://www.android-x86.org/
https://groups.google.com/forum/#!forum/android-x86

Introduction to Android System Programming

[23]

TWRP or TeamWin Recovery Project is another very widely used custom recovery. It is
fully touch-driven and has one of the most complete feature sets available. TWRP is the
default recovery of OmniROM and its source code is hosted in GitHub as part of
OmniROM at https://github.com/omnirom/android_bootable_recovery/.

Strategy of integration
In the preceding sections, we talked about Android architecture, AOSP, and third-party
open source projects for Android. The software industry has been there for decades. There
are so many existing source codes that can be reused and the need to create something from
scratch is very rare. The porting and customization for a new platform is basically art of
integration.

In this book, we will use the AOSP source code as the foundation and try to build
everything on top of it. However, we may not be able to rely on AOSP source code only. In
fact, we want to demonstrate how to support a platform that is not supported by AOSP.
How are we going to do this? Do we create something from scratch? The answer is no. We
will demonstrate how we can integrate all existing projects together to create a new
platform. That's the reason why we discuss third-party open source projects.

In our case, VirtualBox is not supported by AOSP and we are going to enable it using AOSP
and Android-x86. We need to use projects from both AOSP and Android-x86 to build a
system for VirtualBox. However, our goal is to create a new build system for VirtualBox
with minimal changes to the AOSP source code tree. This is also the goal of many other
projects based on AOSP.

Based on the previous understanding, we have four categories of projects in our integration
process:

The original unmodified AOSP projects: In these kinds of projects, we will use
AOSP projects without any changes.
The third-party projects: In this category, the projects are added by the third-
party projects and are not part of AOSP, so there are no changes involved as well.
Projects modified by both AOSP and one of the third-party projects: This is
complicated. We need to review the third-party changes and decide whether we
want to include them in our system or not.
Projects modified by multiple open source projects and AOSP: This is the most
complicated case that we should avoid to integrate or change.

https://github.com/omnirom/android_bootable_recovery/

Introduction to Android System Programming

[24]

It is very easy to understand that we should try to reuse projects in category 1 and 2 as
much as possible. The challenges and major work will be in category 3, while we should try
to avoid category 4 whenever possible.

Virtual hardware reference platforms
The new Android releases usually come with two reference platforms. Developers can test
the new Android releases on Android emulator first. This can be very useful in the preview
stages. After the official release, the Google hardware platforms, such as Nexus or Pixel,
usually become the devices for developers. The emulator and Nexus/Pixel builds are the
earliest builds available in AOSP.

In this book, we will use Android emulator as the virtual hardware reference platform for
our topics. Since the Android emulator build is already available in AOSP, you may wonder
what we can do with it. Actually, we can customize an existing platform by adding new
features to it. This is what OEM/ODM companies usually do using a reference platform
from a silicon vendor. With Android emulator, we will demonstrate how to create a new
device so that we can customize it. If you know any commercial emulator products, such as
Genymotion and AMI DuOS, then you may know what features these products added to
the emulator. We will extend Android emulator in a very similar way.

After we explore the topics about the customization of a new device, we will explore more
advanced topics about porting. The major work with porting is the changes to the kernel
and HAL. To discuss advanced topics about porting and debugging, we will also use
VirtualBox as another virtual hardware reference platform. Even though VirtualBox has
been used by many commercial emulator products, such as Genymotion, AMI DuOS,
Leapdroid, and so on, it is not supported by AOSP directly. Most Android emulators for the
PC are based on VirtualBox and they are designed for gamers to run Android games. In this
book, we will learn how to create a similar build using various open source resources.

Introduction to the x86-based Android emulator
Android emulator has been changed dramatically as well in Android 4, 5, 6, and 7. Before
Android 5, Android emulator was built on a virtual hardware reference board called
goldfish.

Introduction to Android System Programming

[25]

The hardware specification of the goldfish virtual hardware platform can
be found in the AOSP source tree
at $AOSP/platform/external/qemu/docs/GOLDFISH-VIRTUAL-
HARDWARE.TXT. In this book, we will refer to the AOSP root directory as
$AOSP.

The goldfish virtual hardware platform was built on QEMU 1.x to emulate ARM devices on
the x86 environment. The x86 host environments could be a Windows, Linux, or macOS X
computer. Since the target device architecture is emulated using QEMU, the performance is
poor. The emulator is very slow and difficult to use for application developers. However,
QEMU is actively developed on the x86 architecture and widely used together with various
virtualization technologies, such as VT-x, AMD-V, and so on.

Since Android 4.x, Intel developed an x86-based Android emulator using KVM on Linux
and Intel HAXM for Windows and macOS X. With the introduction of virtualization
technology to the emulator, the Intel x86-based emulator is much faster than the emulated
one for the ARM or MIPS architecture. For the sake of Android application developers,
Google officially integrated the Intel x86-based Android emulator to Android SDK. The
Intel x86-based Android emulator has become the recommended choice for developers to
test their Android applications.

Introduction to ranchu
With the introduction of Android 5 (Lollipop), the 64-bit hardware architecture is available
for both ARM and Intel platforms. However, 64-bit hardware devices for Android were still
under development at that time. The only choice for developers was to get a hardware
reference platform from silicon vendors.

To help developers test their applications on 64-bit architecture, the engineers at Linaro did
an excellent job enabling a virtual hardware platform on QEMU to test ARMv8-A 64-bit
architecture. They gave this virtual hardware platform a code name, ranchu. You may refer
to the blog at Linaro by Alex Bennée at h t t p s ://w w w . l i n a r o . o r g /b l o g /c o r e - d u m p /r u n n i n

g - 64b i t - a n d r o i d - l - q e m u /.

This change was adopted by Google later and was used as the hardware reference platform
for the next generation of Android emulators. If you install the Android SDK images, you
can see two kernel images starting from Android 5. The kernel image kernel-qemu is the
image to be used with the goldfish virtual hardware platform and the image kernel-
ranchu is the image to be used with the ranchu virtual hardware platform.

https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/

Introduction to Android System Programming

[26]

To respond to this change, both Intel and MIPS worked on their architectures to support
their 64-bit hardware emulation in ranchu. You can refer to the group discussions at h t t p s

://g r o u p s . g o o g l e . c o m /f o r u m /#!t o p i c /a n d r o i d - e m u l a t o r - d e v /d l t B n U W _ H z U .

The ranchu hardware platform is based on a newer QEMU version and the architecture is
changed to have less dependency on Google modification and goldfish-specific devices. For
example, it uses virtio-block devices to emulate the NAND and SD card. This has the
potential of providing much better performance and also makes it possible to utilize the
features provided by the latest QEMU code base. The ranchu kernel is built on a new
version in the android-goldfish-3.10 branch, while the latest goldfish kernel is in the
android-goldfish-3.4 branch. You can notice this difference by running your Android
virtual device using different kernels from Android SDK.

VirtualBox-based Android emulators
With the ever evolving nature of virtualization technology, there are many commercial
Android emulator products developed on the market as well. You may have heard of some
of them such as Genymotion, AMIDuOS, Andy, BlueStacks, and so on. Many of them are
built using VirtualBox from Oracle, such as Genymotion, AMIDuOS, and Andy. The reason
that VirtualBox is used instead of other solutions such as VMware is because VirtualBox is
an open source solution.

To achieve the best performance and user experience, both host and target need to be
customized in the commercial emulator products. Besides Android emulator, we will also
use VirtualBox as the virtual hardware platform to demonstrate how to port Android to a
new platform. The reason that we need another virtual hardware platform in this book is
because Android emulator is already supported in AOSP. We will use Android emulator as
a platform to teach how to extend and customize an existing platform. While VirtualBox is
not supported in AOSP, it can be used as a target platform to teach how to port Android to
a new platform. Even though Android has been ported to VirtualBox by Genymotion, AMI,
and others, none of them are open source products.

https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU
https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU

Introduction to Android System Programming

[27]

Summary
In this chapter, we discussed what Android system programming is and the scope involved
in system-level programming in this book. After that, we took an overview of the Android
system architecture and talked about the layers that we will focus on in this book. We also
discussed the virtual hardware platforms that we use in this book. In this book, we use the
code from various third-party projects, so we also took a brief overview of each of them in
this chapter. In the next chapter, we will start to learn about the development environment
setup for Android system programming. This includes both development tools and the
source code repository setup.

2
Setting Up the Development

Environment
After the introduction about system programming in the last chapter, we need to set up a
development environment first before we can go further. We need to know how to build
and test Android Open Source Project (AOSP) while we explore various Android system
programming topics in this book. We will cover the following topics in this chapter:

Installing the Android SDK and setting up an Android Virtual Device
Setting up the AOSP build environment and building a testing image
Creating your own source code repository mirror

Summary of Android versions
Since we will use Android emulator as one of the virtual hardware platforms, we need to
use one particular Android version throughout this book. At the time of writing, the latest
Android version is Android 7 (Nougat). We will use Android 7 throughout the book. I
started work on this book with Android 6, so the source code for Android 6 is also available
in my GitHub repository at h t t p s ://g i t h u b . c o m /s h u g a o y e .

From the first release to Android 7, both the development environment and the AOSP
source code have been changed a lot. We will have a brief look at various Android versions
first before we talk about the development environment setup.

https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye
https://github.com/shugaoye

Setting Up the Development Environment

[29]

To set up the AOSP build environment, there are two things that you need to pay special
attention to the host environment and Java SDK. Even though the recommended host
environment is Ubuntu running on Intel architecture, the hardware architecture and
Ubuntu versions have changed from release to release. You can always refer to the
following URL at Google for the latest AOSP build environment setup:

h t t p s ://s o u r c e . a n d r o i d . c o m /s o u r c e /i n d e x . h t m l

For Gingerbread (2.3.x) and above, a 64-bit build environment is required. For older
versions, the build environment is 32-bit systems.

The Ubuntu versions used range from Ubuntu 10.04 to 14.04, but for each release there is a
recommended Ubuntu version. If it is a new setup, it is suggested to use the recommended
Ubuntu version to make the job easier. However, there are no hard requirements here. You
should be able to use any Ubuntu version higher than the recommended Ubuntu version.
There are also many articles about how to set up the AOSP build using a different Linux
distribution such as RedHat or Debain.

Oracle JDK was used to build AOSP until Lollipop. From Lollipop and the above, OpenJDK
was used instead of Oracle JDK.

The following table summarizes all Android releases, required hosts, and JDK
environments until Nougat; you can refer to it for full details.

AOSP releases:

Nickname AOSP SDK
API
level

Host JDK OS/Ubuntu Goldfish Ranchu

Cupcake 1.5 3 x86 Oracle JDK 5 10.04 x

Donut 1.6 4 x86 Oracle JDK 5 10.04 x

Eclair 2.0/2.1 5 x86 Oracle JDK 5 10.04 x

Eclair 2.0.1 6 x86 Oracle JDK 5 10.04 x

Eclair 2.1 7 x86 Oracle JDK 5 10.04 x

Froyo 2.2 8 x86 Oracle JDK 5 10.04 x

Gingerbread 2.3.1 9 x64 Oracle JDK 6 12.04 x

Gingerbread 2.3.3 10 x64 Oracle JDK 6 12.04 x

Honeycomb 3.0 11 x64 Oracle JDK 6 12.04 x

https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com/source/index.html

Setting Up the Development Environment

[30]

Honeycomb 3.1 12 x64 Oracle JDK 6 12.04 x

Honeycomb 3.2 13 x64 Oracle JDK 6 12.04 x

Ice Cream
Sandwich

4.0 14 x64 Oracle JDK 6 12.04 x

Ice Cream
Sandwich

4.0.3 15 x64 Oracle JDK 6 12.04 x

Jelly Bean 4.1.2 16 x64 Oracle JDK 6 12.04 x

Jelly Bean 4.2.2 17 x64 Oracle JDK 6 12.04 x

Jelly Bean 4.3.1 18 x64 Oracle JDK 6 12.04 x

KitKat 4.4.2 19 x64 Oracle JDK 6 12.04 x x

KitKat 4.4W.2 20 x64 Oracle JDK 6 12.04 x x

Lollipop 5.0.1 21 x64 Open JDK 7 12.04 x x

Lollipop 5.1.1 22 x64 Open JDK 7 12.04 x x

Mashmallow 6.0 23 x64 Open JDK 7 14.04 x x

Nougat 7.0.x 24 x64 Open JDK 8 14.04 x x

Nougat 7.1.1 25 x64 Open JDK 8 14.04 x x

From the preceding table, you can see that the ranchu emulator is supported by KitKat and
the others. If you install and download the system image of Kitkat or the others on Android
SDK, you should be able to find two kernel files, kernel-qemu and kernel-ranchu.

There are two API levels in the Nougat releases. Android 7.0.0 and 7.1.0 are API level 24.
Android 7.1.1 and 7.1.2 are API level 25. All source code in this book can support up to API
level 25.

The code name of the original Android emulator is goldfish. It is based on
an older version of QEMU. A new Android emulator version was released
based on QEMU 2.x in 2016. The code name of this new emulator is
ranchu. It is supported by KitKat and the others.

Setting Up the Development Environment

[31]

Installing Android SDK and setting up an
Android Virtual Device
Ideally, if you have an AOSP build environment, you can build everything including
Android SDK from scratch. However, it is much more convenient to have an Android SDK
installation to help with virtual device creation or running emulator images.

You can always download the latest Android SDK from the following website:

h t t p s ://d e v e l o p e r . a n d r o i d . c o m /i n d e x . h t m l

The host environment that we use in this book is Ubuntu 14.04. Download the Android
SDK for Linux and decompress it to a folder in your Home directory.

The tools in Android SDK have been changed since API level 25. You may use an older
version of Android SDK or the latest Android SDK so I gave the instructions for both cases
here.

Creating AVD in an older version of SDK
For the older version of SDK, such as android-sdk_r24.4.1-linux.tgz, it includes all
necessary components and we can use it after decompression. We can find the following
contents after decompressing:

$ ls android-sdk-linux
add-ons platforms SDK Readme.txt temp
build-tools platform-tools system-images tools

You can add the platform-tools and tools directory to your PATH environment
variable.

We will use a virtual device based on API level 25 in this book to test our image.

https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html

Setting Up the Development Environment

[32]

To create a virtual device, we can launch Android Virtual Device (AVD) Manager using
the following command, as shown in the following screenshot:

$ android avd

AVD Manager

Setting Up the Development Environment

[33]

Click the Create... button in AVD Manager and create a new virtual device named a25x86
with the following configuration, as shown in the following screenshot:

Android 7.1.1 - API level 25
1024 MB RAM
400 MB SD card
400 MB internal storage
Display size at 480 x 800: hdpi

Android Virtual Device a25x86

Setting Up the Development Environment

[34]

Creating AVD in the latest version of SDK
For the newer versions, there is only SDK command-line tools available for download. For
example, if you download the command-line tools for r25, such as tools_r25.2.3-
linux.zip, you can find the tools folder only. In this case, you need to use Android SDK
Manager at tools/bin/sdkmanager to download the rest of SDK components. To
download the rest of SDK components, you can use the following command:

$ sdkmanager --update

If you use the latest version of Android SDK, you may get the following error message, if
you follow the previous instructions:

$ android avd

The "android" command is deprecated.
For manual SDK, AVD, and project management, please use Android Studio.
For command-line tools, use tools/bin/sdkmanager and tools/bin/avdmanager

Invalid or unsupported command "avd"

Supported commands are:
android list target
android list avd
android list device
android create avd
android move avd
android delete avd
android list sdk
android update sdk

In this case, you can create AVD using the following command.

$ avdmanager create avd -n a25x86 --tag google_apis -k 'system-
images;android-25;google_apis;x86'
Auto-selecting single ABI x86
Do you wish to create a custom hardware profile? [no]

Testing the goldfish emulator
In Android 7, both the ranchu and goldfish emulators are supported. Let's test the goldfish
emulator first. We can run this virtual device in the goldfish emulator using the following
command:

$ emulator @a25x86 -verbose -show-kernel -shell -engine classic

Setting Up the Development Environment

[35]

emulator:Found AVD name 'a25x86'
emulator:Found AVD target architecture: x86
emulator:Looking for emulator-x86 to emulate 'x86' CPU
...
 kernel.path = /home/roger/android-sdk-linux/system-images/android-
 25/default/x86/kernel-qemu
...

To monitor the status of a virtual device, we can use the following Android emulator
options:

-verbose: Shows the emulator debug information.
-show-kernel: Shows kernel debug information.
-shell: Uses stdio as the command line prompt.
-engine: Selects the emulator engine. The choice can be auto, classic, or
qemu2. The classic option is to use the goldfish emulator and the qemu2 option
is to use the ranchu emulator. If the option is auto or without the engine option,
the system will check the environment and try to launch ranchu first. If it fails, it
will fall back to goldfish.

From the preceding log, we can see that the kernel-qemu kernel file is used for the
goldfish emulator.

Both the ranchu and goldfish emulators are developed on top of QEMU, but they use
different kernel and QEMU versions. We can verify the QEMU version used for either
goldfish or ranchu using the following emulator commands.

To verify the QEMU version used by goldfish, we can run the following command:

$ emulator -engine classic -qemu -version
QEMU PC emulator version 0.10.50 Android, Copyright (c) 2003-2008 Fabrice
Bellard

From the preceding output, we can see that QEMU version 0.10.50 is used for the goldfish
emulator.

For the latest emulator version, it seems there is a bug with regard to handling the classic
engine. You may get the following error message, when you execute the preceding
command:

$ emulator -engine classic -qemu -version
emulator: ERROR: android_qemud_get_serial_line: can't create charpipe to
serial port

Setting Up the Development Environment

[36]

The emulator command is a wrapper for QEMU. Any command-line
options after -qemu are passed to QEMU as the command lines of QEMU
directly.
To find out the emulator version, we can use the following command:
$ emulator -version

The following command will show the QEMU version:
$ emulator -qemu -version

After the Android device has started successfully, from the Android UI, we can go to
Settings -> About Phone and see the screen shown in the following screenshot:

Android kernel version of goldfish

Setting Up the Development Environment

[37]

Pay attention to the following information on the About Phone screen:

Android version: 7.1
Kernel version: 3.4.67
Build number: sdk_google_phone_x86-userdebug 7.1 NPF26K 3479480 test-
keys

As we can see from the preceding information, the kernel version is 3.4.67 and the
filesystem build number is sdk_google_phone_x86-userdebug 7.1 NPF26K 3479480
test-keys for goldfish emulator. In the next section, we can see that ranchu emulator uses
a different kernel version, even though both emulators share the same filesystem.

The Android system build includes two parts: the AOSP system and an Android-
compatible Linux kernel. The build result of the AOSP system includes all image files for
the Android system except the kernel image. They are built separately and are also under
difference licenses. The preferred license for the AOSP is the Apache Software License,
while the Linux kernel is under the GPLv2 License. Be aware of this difference. It also
means that the AOSP build doesn't include the kernel build. We have to build the kernel
separately. We can also use different kernel images with the same filesystem as in the test of
the goldfish and ranchu emulator.

When we talk about the Android version, we have to look into the details of the kernel
version and filesystem build number.

Testing ranchu emulator
We can test ranchu emulator as well with the same virtual device. We can use a similar
command without the -engine option or with the -engine qemu2 option to start ranchu
emulator:

$ emulator @a25x86 -verbose -show-kernel -shell
emulator:Found AVD name 'a25x86'
emulator:Found AVD target architecture: x86
emulator: Found directory: /home/roger/android-sdk-linux/system-
images/android-25/default/x86/

emulator:Probing for /home/roger/android-sdk-linux/system-
images/android-25/default/x86//kernel-ranchu: file exists
emulator:Auto-config: -engine qemu2 (based on configuration)
emulator:Found target-specific 64-bit emulator binary: /home/roger/android-
sdk-linux/tools/qemu/linux-x86_64/qemu-system-i386
...

Setting Up the Development Environment

[38]

From the preceding log, we can see that the kernel file kernel-ranchu is used in ranchu
emulator.

We can also verify the QEMU version used by ranchu emulator using the following
command:

$ emulator -qemu -version
QEMU emulator version 2.2.0 , Copyright (c) 2003-2008 Fabrice Bellard

We can see that ranchu uses a much newer QEMU version that can support many new
features, which we will discuss later in this book.

Again, let's review the version information in Settings as we did for goldfish emulator;
refer to the following screenshot:

Android kernel version of ranchu

Setting Up the Development Environment

[39]

We can see that the ranchu emulator uses the kernel version 3.10.0, which is different from
the goldfish emulator. The filesystem build is the same as for the goldfish emulator.

The AOSP build environment and the
Android emulator build
In order to create our own Android system, we have to set up the AOSP build environment
and build our own AOSP target for the Android emulator. Since Android is under rapid
development, the build process and environment setup can change from time to time. You
can always refer to Google's website for the latest information, h t t p s ://s o u r c e . a n d r o i d . c

o m /s o u r c e /b u i l d i n g . h t m l .

While the Google website and other sources can give general guidelines and procedures
about the AOSP build, in this section we will look specifically at how to build AOSP for
Android emulator image for API level 25.

The AOSP build environment
Since we want to set up a build environment for API level 25, you can refer to the table of
AOSP releases for the basic requirements about the host and JDK. It is recommended to use
the Ubuntu 14.04 64-bit host with Open JDK 8. For the hardware requirement, you may
want to have a powerful enough computer with at least 8 GB RAM and 500 GB hard disk
space.

Installing the required packages
We use the Ubuntu 14.04 64-bit version as our host operating system. After
installing Ubuntu 14.04, the first thing you have to do is to install all necessary software
packages as follows. If you use a different Linux distribution, you can refer to Google's
website or search on the Internet for the relevant setup procedures. Let's execute the
following commands to install all necessary packages for Ubuntu 14.04:

$ sudo apt-get install git-core gnupg flex bison gperf build-essential\
 zip curl zlib1g-dev gcc-multilib g++-multilib libc6-dev-i386\
 lib32ncurses5-dev x11proto-core-dev libx11-dev lib32z-dev ccache\
 libgl1-mesa-dev libxml2-utils xsltproc unzip

https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html
https://source.android.com/source/building.html

Setting Up the Development Environment

[40]

Installing Open JDK 7 and 8
We will install both Open JDK 7 and 8 so we can build both Android 6 and 7 in our build
environment.

To build Android API level 23, we need to install OpenJDK 7. We can execute the following
commands from the Linux console to install OpenJDK 7:

$ sudo apt-get update
$ sudo apt-get install openjdk-7-jdk

For Android 7, we need to use OpenJDK 8 to build. There are no available supported
OpenJDK 8 packages for Ubuntu 14.04 yet, but the Ubuntu 15.04 OpenJDK 8 packages have
been used successfully with Ubuntu 14.04. We need to install OpenJDK 8 on Ubuntu 14.04
using the following instructions.

Download the .deb packages for 64-bit architecture from archive.ubuntu.com:

openjdk-8-jre-headless_8u45-b14-1_amd64.deb with SHA256
0f5aba8db39088283b51e00054813063173a4d8809f70033976f83e214ab56c0
openjdk-8-jre_8u45-b14-1_amd64.deb with SHA256
9ef76c4562d39432b69baf6c18f199707c5c56a5b4566847df908b7d74e15849
openjdk-8-jdk_8u45-b14-1_amd64.deb with SHA256
6e47215cf6205aa829e6a0a64985075bd29d1f428a4006a80c9db371c2fc3c4c

Optionally, confirm the checksums of the downloaded files against the SHA256 string listed
with each preceding package.

For example, with the sha256sum tool:

$ sha256sum {downloaded.deb file}

Install the packages:

$ sudo apt-get update

Run dpkg for each of the .deb files you downloaded. It may produce errors due to missing
dependencies:

$ sudo dpkg -i {downloaded.deb file}

To fix missing dependencies:

$ sudo apt-get -f install

http://archive.ubuntu.com

Setting Up the Development Environment

[41]

With both OpenJDK 7 and 8 installed, we can update the default Java version by running
the following commands:

$ sudo update-alternatives --config java
$ sudo update-alternatives --config javac

We have a build environment ready now. You may want to refer to Google's website to set
up other things. For example, we may want to use cache to speed up the build or set up a
separate output directory out of the AOSP tree.

Downloading the AOSP source
Once we have a build environment ready, we need to get the AOSP source code. Again,
refer to Google's website or the Internet to get more information.

You need to download the Android 7 source code from source.android.com.

Installing repo
AOSP consists of a large number of Git repositories, and we have to use the repo tool to
manage these Git repositories. To download and install repo, we can use the following
commands:

$ mkdir ~/bin
$ PATH=~/bin:$PATH
$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

Initializing a repo client and downloading the AOSP
source tree
After we have the repo tool, we can initialize the repo and download the AOSP source tree
by executing the following commands:

$ repo init -u https://android.googlesource.com/platform/manifest -b
android-7.1.1_r4
$ repo sync

Pay attention to the AOSP tag android-7.1.1_r4 here. This is the version of AOSP source
code that we use throughout this book.

https://source.android.com/

Setting Up the Development Environment

[42]

It will take quite a long time to get the AOSP source tree. After we get the source tree, let's
take a look at the top level folders:

$ ls -F
abi/ cts/ docs/ libcore/ packages/ tools/
art/ dalvik/ external/ libnativehelper/ pdk/
bionic developers filelist Makefile prebuilts
bootable development frameworks ndk sdk
build device hardware out system

I won't explore the details about the source tree here; we will cover this in Chapter 3,
Discovering Kernel, HAL, and Virtual Hardware.

Building AOSP Android emulator images
In this book, we will use x86-based emulators. The x86-based emulator can use
virtualization technology on the host, so it is much faster than the ARM emulator. We want
to build the one that comes with the AOSP source code first. To create an Android emulator
build, we can execute the following commands from the AOSP top-level folder:

$. build/envsetup.sh
including device/generic/mini-emulator-arm64/vendorsetup.sh
including device/generic/mini-emulator-armv7-a-neon/vendorsetup.sh
including device/generic/mini-emulator-mips/vendorsetup.sh
including device/generic/mini-emulator-x86_64/vendorsetup.sh
including device/generic/mini-emulator-x86/vendorsetup.sh
including sdk/bash_completion/adb.bash
$ lunch

You're building on Linux

Lunch menu... pick a combo:
 1. aosp_arm-eng
 2. aosp_arm64-eng
 3. aosp_mips-eng
 4. aosp_mips64-eng
 5. aosp_x86-eng
 6. aosp_x86_64-eng
 7. mini_emulator_arm64-userdebug
 8. m_e_arm-userdebug
 9. mini_emulator_mips-userdebug
 10. mini_emulator_x86_64-userdebug
 11. mini_emulator_x86-userdebug

Which would you like? [aosp_arm-eng] 5

Setting Up the Development Environment

[43]

==
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=7.1.1
TARGET_PRODUCT=aosp_x86
TARGET_BUILD_VARIANT=eng
TARGET_BUILD_TYPE=release
TARGET_BUILD_APPS=
TARGET_ARCH=x86
TARGET_ARCH_VARIANT=x86
TARGET_CPU_VARIANT=
TARGET_2ND_ARCH=
TARGET_2ND_ARCH_VARIANT=
TARGET_2ND_CPU_VARIANT=
HOST_ARCH=x86_64
HOST_2ND_ARCH=x86
HOST_OS=linux
HOST_OS_EXTRA=Linux-4.2.0-27-generic-x86_64-with-Ubuntu-14.04-trusty
HOST_CROSS_OS=windows
HOST_CROSS_ARCH=x86
HOST_CROSS_2ND_ARCH=x86_64
HOST_BUILD_TYPE=release
BUILD_ID=NMF26O
OUT_DIR=out
==

We set up the environment variables first using the startup script envsetup.sh. After that,
we execute the command lunch to choose a build target. To build for the Android-x86
emulator, we can choose the target aosp_x86-eng, which will build an Android emulator
version for x86. To learn more about the script file envsetup.sh and command lunch,
refer to the Google website at h t t p s ://s o u r c e . a n d r o i d . c o m .

The actual build is started after we execute the following make command:

$ make -j4
==
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=7.1.1
TARGET_PRODUCT=aosp_x86
TARGET_BUILD_VARIANT=eng
TARGET_BUILD_TYPE=release
TARGET_BUILD_APPS=
TARGET_ARCH=x86
TARGET_ARCH_VARIANT=x86
TARGET_CPU_VARIANT=
TARGET_2ND_ARCH=
TARGET_2ND_ARCH_VARIANT=
TARGET_2ND_CPU_VARIANT=

https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com
https://source.android.com

Setting Up the Development Environment

[44]

HOST_ARCH=x86_64
HOST_OS=linux
HOST_OS_EXTRA=Linux-4.2.0-27-generic-x86_64-with-Ubuntu-14.04-trusty
HOST_BUILD_TYPE=release
BUILD_ID=MOB30M
OUT_DIR=out
==
including ./abi/cpp/Android.mk ...
including ./art/Android.mk ...
...
make_ext4fs -S out/target/product/generic_x86/root/file_contexts -l
576716800 -a system
out/target/product/generic_x86/obj/PACKAGING/systemimage_intermediates/syst
em.img out/target/product/generic_x86/system
+ make_ext4fs -S out/target/product/generic_x86/root/file_contexts -l
576716800 -a system
out/target/product/generic_x86/obj/PACKAGING/systemimage_intermediates/syst
em.img out/target/product/generic_x86/system
Creating filesystem with parameters:
 Size: 576716800
 Block size: 4096
 Blocks per group: 32768
 Inodes per group: 7040
 Inode size: 256
 Journal blocks: 2200
 Label:
 Blocks: 140800
 Block groups: 5
 Reserved block group size: 39
Created filesystem with 1277/35200 inodes and 82235/140800 blocks
+ '[' 0 -ne 0 ']'
Install system fs image: out/target/product/generic_x86/system.img
out/target/product/generic_x86/system.img+ maxsize=588791808 blocksize=2112
 total=576716800 reserve=5947392

The entire build time is dependent on your hardware configuration. Even on a high-end
CORE i7 Intel processor, it may take about 40 minutes. The option -j4 starts the parallel
build using four processor cores. You can choose the number according to your computer
hardware.

Setting Up the Development Environment

[45]

Testing AOSP images
After the build is completed, we find all images in the output folder, as shown in the
following screenshot:

Build output of generic_x86

The AOSP build output is stored under the $AOSP/out folder. This folder includes the
build results for both target and host. The build results for different devices are stored
separately at $AOSP/out/target/product/{device name}. In our case, it is
$AOSP/out/target/product/generic_x86.

The images system.img, userdata.img, and ramdisk.img are necessary to run the
emulator, but as you can see there is no kernel image. We will discuss kernel builds later in
this book. For now, we will use the kernel image from Android SDK to test our AOSP build.

To test using our AOSP images, we can create a script as follows:

#!/bin/sh

emulator @a25x86 -verbose -show-kernel -system $OUT/system.img -ramdisk
$OUT/ramdisk.img -initdata $OUT/userdata.img

Setting Up the Development Environment

[46]

We can put this script test_aosp.sh in the $HOME/bin folder. Usually, we can add
$HOME/bin to the executable search path variable so that we can run this script
test_aosp.sh from the command line as follows:

$ test_aosp.sh

If you test your AOSP build using Android 6 or earlier, you need to use
classic engines instead of ranchu. The ranchu build has a problem in the
Android 6 AOSP build, but this issue has been fixed in the Android 7
build. To support ranchu in the 6.0.1 AOSP build, we have to change the
manifest to include the latest emulator device. The Android SDK release
doesn't have this issue. Google fixed this issue internally, but didn't
publish the fixes until Android 7.

After the emulator starts, we can check the version information as we did before. In the
following screenshot, we can see the version information in AOSP images:

Android version of AOSP image

Setting Up the Development Environment

[47]

As we can see, kernel version 3.10.0 is used; this is because we use the ranchu emulator.
Let's compare the information with SDK images that we tested before. From the following
table, we can see that the model number is AOSP on IA Emulator instead of sdk. The
Android version is 7.1 for SDK and 7.1.1 for AOSP. The AOSP image build number is the
build target aosp_x86-eng, which we chose previously, and this also includes the date and
time of the build.

SDK and AOSP versions:

SDK (goldfish) SDK (ranchu) AOSP

Model sdk sdk AOSP on IA
Emulator

Android
version

7.1 7.1 7.1.1

Kernel
version

3.4.67 3.10.0 3.10.0

Build
number

sdk_google_phone_x86-userdebug
7.1 NPF26K 3479480 test-keys

sdk_google_phone_x86-userdebug
7.1 NPF26K 3479480 test-keys

aosp_x86-eng
7.1.1 NMF26O
eng.sgye
20170126.183237
test-keys

Creating your own repository mirror
It usually takes a very long time to download the AOSP source code. After you have
downloaded the AOSP source code, you have actually downloaded a specific version of the
AOSP source code from the remote repository. You may have to test different
configurations or versions in your development work. It is a very time-consuming task to
switch to a different version or create a new copy of the AOSP source code.

In this book, we will use the AOSP source code as the base for our development. To reuse
some of the existing open source projects that are not included in AOSP, we have to modify
the repo manifest from time to time. This involves changing the repo configuration. To
work more efficiently, we can use a local mirror. It can save a lot of time to create a local
mirror instead of downloading source code from remote repositories for all configuration
changes. It may take hours to change a configuration from a remote repository, but it will
need just a few minutes with the local repository.

Setting Up the Development Environment

[48]

When we work with open source projects, the server to host the project may change from
time to time. It is always good to have your own mirror so that we won't rely too much on
the remote repositories. With a local mirror, we can still work without too much impact
even though the remote server may be not available for a certain period. This is exactly the
issue that I face when I try to integrate Android-x86 projects in the later part of this book.

I will explain how to create a mixed local mirror of AOSP, Android-x86, and GitHub in this
section.

Repo and manifest
To create and manage repository mirrors, we need to understand the repo command and
the directory structure managed by repo a little more. The repo command deals with a
XML file manifest and it stores everything in a folder called .repo.

After we run the repo init command as we did in the previous section, a .repo folder is
created under the current folder. If we take a look at the .repo folder, we can see the
following contents:

$ ls -F .repo
manifests/ manifests.git/ manifest.xml@ repo/

Three folders and a symbolic link are created. The following is an explanation of each:

manifests: This is a working copy of the Git repository of the manifest itself.
manifests.git: This is the Git repository of the manifest. The manifest itself is
under the version control using Git.
manifest.xml: This is a symbolic link to the
file .repo/manifests/default.xml. This file is the main configuration file
used by repo. We will look into the details later.
repo: The repo tool itself is written in the Python language. Python scripts are
stored in this folder.

After we run the repo init command to initialize the repo data structure, we can run the
repo sync command to retrieve a working copy. If we look at the .repo folder again after
the repo sync command, we can see that there are two project related folders created:

$ ls -F .repo
manifests/ manifest.xml@ project-objects/ repo/
manifests.git/ project.list projects/

Setting Up the Development Environment

[49]

The following is an explanation of the newly created file and folders:

project.list: This is a list of all projects downloaded.
project-objects: This is a copy of the remote repository.
projects: This is the repository hierarchy matching the working copy. The path
may be rearranged after a repository is copied to local. The contents in this folder
are symbolic links to the items in project-objects.

The most important file in the .repo folder is .repo/manifests/default.xml or its
symbolic link manifest.xml. The detailed specification of this file can be found in the
document under the .repo folder at .repo/repo/docs/manifest-format.txt. We
won't go into any details, but let's take look at the most commonly used elements.

<?xml version="1.0" encoding="UTF-8"?>
<manifest>

 <remote name="aosp"
 fetch=".." />
 <default revision="refs/tags/android-7.1.1_r4"
 remote="aosp"
 sync-j="4" />

 <project path="build" name="platform/build" groups="pdk" >
 <copyfile src="core/root.mk" dest="Makefile" />
 </project>
 <project path="abi/cpp" name="platform/abi/cpp" groups="pdk" />
 <project path="art" name="platform/art" groups="pdk" />
 <project path="bionic" name="platform/bionic" groups="pdk" />
...
</manifest>

In the preceding code snippet, we can see that there are three XML elements inside
manifest:

remote: The remote element provides the details about remote repository. We
can give it a name such as aosp. The URL of the remote repository can be
specified in the fetch field. It can be a relative path or a full path.
default: There are multiple remote elements that can be specified in manifest.
The default element defines which remote is the default one.

Setting Up the Development Environment

[50]

project: Each project element defines a Git repository. The path field
supplies the local path after it is downloaded. The name field supplies the remote
path of the Git repository. The revision field supplies the branch that we want
to get and the remote field tells us which remote server we use to get the Git
repository.

There are other XML elements that can be used in manifest as well. You can find out what
they are by looking at the preceding specification yourself.

Using a local mirror for AOSP
If you refer to the article from the Google website about downloading the source, you can
find a section called Using a local mirror. It reveals that if you need two different
configurations of the AOSP build environment, the download for two clients is larger than
the size of a full mirror of the repository. It is very simple to set up a mirror as follows:

$ mkdir -p /usr/local/mirror/aosp
$ cd /usr/local/mirror/aosp
$ repo init -u https://android.googlesource.com/mirror/manifest --mirror
$ repo sync

From the preceding commands, we can see that we actually use a different manifest to
create a mirror. If we look at the content of the manifest for a mirror, we can see the
following XML code:

<?xml version="1.0" encoding="UTF-8"?>
<manifest>
 <remote name="aosp"
 fetch=".." />
 <default revision="master"
 remote="aosp"
 sync-j="4" />
 <project name="accessories/manifest" />
 <project name="brillo/manifest" />
...
</manifest>

We can see that for all projects, there are only the project names without other information
in each project item. This is because we actually copy each Git repository to the local as a
bare Git repository. We won't check out a working copy, so we don't need to worry about
the version.

Setting Up the Development Environment

[51]

If we look at the manifest to check out a working copy, we will see the following:

<?xml version="1.0" encoding="UTF-8"?>
<manifest>

 <remote name="aosp"
 fetch=".." />
 <default revision="refs/tags/android-6.0.1_r61"
 remote="aosp"
 sync-j="4" />

 <project path="build" name="platform/build" groups="pdk" >
 <copyfile src="core/root.mk" dest="Makefile" />
 </project>
 <project path="abi/cpp" name="platform/abi/cpp" groups="pdk" />
 <project path="art" name="platform/art" groups="pdk" />
...
</manifest>

It includes more items than the one to create a mirror. The name field specifies the path at
the remote repository and the path field specifies the local path after the repository is
downloaded to the local. We also need to specify revision that we want to retrieve.

After we have a mirror, we can check out a copy of the AOSP source from that mirror as
follows:

$ mkdir -p $HOME/aosp/master
$ cd $HOME/aosp/master
$ repo init -u /usr/local/mirror/aosp/platform/manifest.git
$ repo sync

If you need, you can check out multiple copies from the local mirror. No matter if you check
out multiple copies or you change to a different version, you can save a lot of time
compared to checking out from a remote repository.

When you work on a system-level project, you may need projects out of the AOSP source.
For example, in this book, we use multiple projects from CyanogenMod, Android-x86, and
my own projects in GitHub. In this case, we can actually create our own manifest to mix all
projects that we need together from our local mirror. Our local mirror will become a
superset of the public mirror. We can create branches and tags from time to time in local
repositories, but we only push the baselines that we want to release to the public
repositories. This is exactly what the Google development team does in their private
repositories.

Setting Up the Development Environment

[52]

Creating your own mirror of GitHub
All source code used in this book is stored in GitHub. We also use source from other
projects in GitHub, because many open source projects are hosted on GitHub, such as
CyanogenMod, OmniROM, Team Win Recovery, and so on. We can create a mirror for all
projects that we have used in local storage so that we can commit any changes and create
our own baselines. If you want to make changes to any projects that are not owned by
yourself, you can create your own copy using the Fork function of GitHub.

To create your own manifest for GitHub, you can create a repository in GitHub, call it
mirror, and then add an XML file called default.xml to it as follows:

<?xml version="1.0" encoding="UTF-8"?>
<manifest>

 <remote name="cm"
 fetch="git://github.com/CyanogenMod"
 review="review.cyanogenmod.org"
 revision="refs/heads/cm-13.0" />

 <remote name="twrp"
 fetch="git://github.com/TeamWin"
 revision="master" />

 <remote name="omnirom"
 fetch="https://github.com/omnirom" />

 <remote name="github"
 fetch=".." />
 <default revision="master"
 remote="github"
 sync-j="4" />

 <!-- configuration of github repositories v1.0 -->
 <project name="manifests" />
 <project name="manifest" />
 <project name="mirror" />
 <project name="local_manifests" />
...
 <!-- CyanogenMod -->
 <project name="android_bootable_recovery" remote="cm" />
 <project name="android_external_busybox" remote="cm" />
 <project name="android" remote="cm" />

 <!-- Team Win Recovery Project -->
 <project name="Team-Win-Recovery-Project" remote="twrp" />
 <project name="android_device_emulator_twrp" remote="twrp" />

Setting Up the Development Environment

[53]

 <project name="android_device_emulator_twrpx86" remote="twrp" />
 <project name="android_device_emulator_twrpx8664" remote="twrp" />

 <!-- omnirom -->
 <project path="external/lz4" name="android_external_lz4" remote="omnirom"
 revision="android-6.0" groups="pdk-cw-fs,pdk-fs" />

 <!-- from original Android repositories -->
...
</manifest>

From the preceding default.xml, we can see that we actually fetch multiple projects from
CyanogenMod, TWRP, OmniROM, and our own GitHub repositories using a single XML
file. We put all of them together to form our own GitHub local mirror.

To create the local mirror, we can use the following commands:

$ mkdir -p /media/aosp-mirror/github
$ cd /media/aosp-mirror/github
$ repo init -u https://github.com/shugaoye/mirror.git --mirror
$ repo sync

After we have created the local mirror, we can check what we have downloaded via the
following screen:

Content of the local mirror

Setting Up the Development Environment

[54]

From the preceding screenshot, we can see that all Git repositories that we specified in
default.xml are copied to our local storage. The manifest file for the local mirror that I use
in this book can be found at h t t p s ://g i t h u b . c o m /s h u g a o y e /m i r r o r .

Fetching Git repositories outside GitHub
As we can see from the preceding example, we created our manifest repository for the
GitHub mirror. After that, we use it to initialize our mirror repo. Then we use the repo
sync command to fetch all Git repositories from GitHub to our local mirror.

How about repositories that we don't have write access to? In this book, we use a lot of
projects from Android-x86. However, we don't have write permission to Android-x86
repositories. The Android-x86 project also doesn't have a mirror manifest available for use.

We can actually create a mirror manifest file from the original Android-x86 manifest. We
can refer to the document at the following link for how to get Android-x86 source code:

http://www.android-x86.org/getsourcecode

The previous document mentioned that we can use the following command to initialize and
sync repo from the Android-x86 repository:

$ mkdir android-x86
$ cd android-x86
$ repo init -u git://git.osdn.net/gitroot/android-x86/manifest -b $branch
$ repo sync

We can clone the preceding Android-x86 manifest repository to a folder and analyze it:

$ git clone git://git.osdn.net/gitroot/android-x86/manifest -b marshmallow-
x86
$ ls
cm.xml default.xml

After we clone it, we can find the preceding two files. default.xml is used to initialize the
Android-x86 repo and cm.xml is used to initialize Android-x86 for the CyanogenMod
build.

https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
http://www.android-x86.org/getsourcecode

Setting Up the Development Environment

[55]

If we look at the content of default.xml, we can see the following code snippet:

<?xml version="1.0" encoding="UTF-8"?>
<manifest>

 <remote name="aosp"
 fetch="https://android.googlesource.com/" />
 <remote name="x86"
 fetch="." />
 <default revision="refs/tags/android-6.0.1_r61"
 remote="aosp"
 sync-c="true"
 sync-j="4" />

 <!-- from x86 port repositories -->
 <project path="build" name="platform/build" groups="pdk" remote="x86"
 revision="marshmallow-x86" >
 <copyfile src="core/root.mk" dest="Makefile" />
 </project>
 <project path="kernel" name="kernel/common" remote="x86"
 revision="kernel-4.4" />
 <project path="art" name="platform/art" groups="pdk" remote="x86"
 revision="marshmallow-x86" />
...
 <!-- from original Android repositories -->
 <project path="abi/cpp" name="platform/abi/cpp" groups="pdk" />
 <project path="bootable/recovery" name="platform/bootable/recovery"
 groups="pdk" />
...
</manifest>

We can see that the Android-x86 manifest includes two parts. The first part is Android-x86,
its own repositories, and the rest are the original AOSP repositories.

We can retrieve the first part and compose a mirror manifest for Android-x86. Where
should we put this file? We can put it in a branch of the same mirror manifest repository in
our GitHub.

Setting Up the Development Environment

[56]

In the working copy of our GitHub mirror repository, we can create a branch called
android-x86. We can replace default.xml in our GitHub mirror with the first part in
Android-x86 manifest and we get the one in the following listing:

<?xml version="1.0" encoding="UTF-8"?>
<manifest>

 <remote name="github"
 fetch=".." />

 <remote name="x86"
 fetch=" git://git.osdn.net/gitroot/android-x86/" />

 <default revision="android-x86"
 remote="github"
 sync-j="4" />

 <!-- from x86 port repositories -->
 <project name="manifest" remote="x86" />
 <project name="platform/build" remote="x86" />
 <project name="kernel/common" remote="x86" />
 <project name="platform/art" remote="x86" />
...
 <project name="platform/system/extras" remote="x86" />
 <project name="platform/system/vold" remote="x86" />

</manifest>

As we can see from the preceding listing, we removed unnecessary fields such as path or
groups, and so on. With this manifest for the Android-x86 mirror, we can create a local
mirror for Android-x86 now as follows:

$ mkdir -p /media/aosp-mirror/android-x86
$ cd /media/aosp-mirror/android-x86
$ repo init -u https://github.com/shugaoye/mirror.git -b android_x86 --
mirror
$ repo sync

Setting Up the Development Environment

[57]

After we download all Git repositories, we can see the content as follows:

Local mirror of android-x86

Creating your own manifest for client download
With all local mirrors, we can create our own manifest to check out our source code now.
We can put it in our GitHub in a new repository called manifests. In this repository, we
can create an XML file, default.xml, as follows:

<?xml version="1.0" encoding="UTF-8"?>
<manifest>

 <remote name="github"
 fetch="." />

 <remote name="aosp"
 fetch="../android" />

 <remote name="x86"
 fetch="../android-x86" />

Setting Up the Development Environment

[58]

 <default revision="refs/tags/android-7.1.1_r4"
 remote="aosp"
 sync-c="true"
 sync-j="4" />

 <!-- android-x86 -->
 <project path="bootable/newinstaller"
 name="platform/bootable/newinstaller"
 remote="x86" revision="nougat-x86" />
...
 <!-- GitHub -->
 <project path="external/busybox" name="android_external_busybox"
 remote="github" revision="cm-14.0" />
...
 <!-- TWRP, use the below repositories for TWRP build -->
 <project path="bootable/recovery" name="Team-Win-Recovery-Project"
 remote="github" groups="pdk" revision="android-7.0" />
...
 <!-- AOSP -->
 <project path="build" name="platform/build" groups="pdk" >
 <copyfile src="core/root.mk" dest="Makefile" />
 </project>
 <project path="abi/cpp" name="platform/abi/cpp" groups="pdk" />
...
 <project path="tools/swt" name="platform/tools/swt"
 groups="notdefault,tools" />
 <project path="tools/tradefederation"
 name="platform/tools/tradefederation"
 groups="notdefault,tradefed" />

</manifest>

In the preceding listing, this is a manifest modified based on the AOSP release
android-7.1.1_r4 manifest. In this file, we combined multiple projects from AOSP,
Android-x86, TWRP, and our own GitHub projects into one. Usually, we have to do this
using local_manifests to fetch all non-AOSP projects into our local copy. This approach
usually takes a very long time and it is difficult to create baselines for our own
configurations.

The local_manifests file can be used to overwrite the configuration of
the manifest file temporarily. You can refer to Appendix B of Embedded
Programming with Android to find out more details.

Setting Up the Development Environment

[59]

With a local mirror and our own manifest, we can find a clean way to do this. When you
have one copy for AOSP and one copy for Android-x86, you have a lot of duplicated
projects in your storage because Android-x86 manifests include many original projects from
AOSP. With the preceding setup, there are no duplicated projects in your local mirror.

To check out a working copy, we can use the following commands:

$ mkdir -p $HOME/aosp/android
$ cd $HOME/aosp/android
$ repo init -u /usr/local/mirror/github/manifests.git
$ repo sync

If we want to check out a build of Android-x86, it becomes a different configuration instead
of a totally different repository now:

$ cd $HOME/aosp/android
$ repo init -u /usr/local/mirror/github/manifests.git -b nougat-x86
$ repo sync

Since we have our own local mirror, we can use the sync-c="true" option in the manifest,
as we can see in the previous listing. With this option, the repo command will only check
out the version we need in our working copy instead of creating the Git repositories with all
revisions. This can save a lot of space for the working copy. However, this is not
recommended without a local mirror, because it will take even longer when you switch to a
different version.

You can find the manifest to check out a working copy at my GitHub h t t p s ://g i t h u b . c o m

/s h u g a o y e /m a n i f e s t s .

We will use this to manage all different build configurations in this book.

I introduced two kinds of manifest files here:

To create a local mirror, you can refer to the manifest file at h t t p
s ://g i t h u b . c o m /s h u g a o y e /m i r r o r

To check out a working copy, you can refer to the manifest file
at h t t p s ://g i t h u b . c o m /s h u g a o y e /m a n i f e s t s

https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/mirror
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests
https://github.com/shugaoye/manifests

Setting Up the Development Environment

[60]

Summary
In this chapter, we set up the environment for SDK and AOSP. We built the Android
emulator images for AOSP. We also tested and compared the Android images in Android
SDK and AOSP. All these steps are necessary before we continue exploring how to create
our own Android system later. We also spent some time discussing how to set up our own
repo mirror. This tip can help us later, when we start to create projects from multiple open
source projects. In the next chapter, we will start to explore the architecture of Android. We
will look into the details of layers related to the porting and customization of the Android
system.

3
Discovering Kernel, HAL, and

Virtual Hardware
Once we set up the development environment and get the source code ready to use. We can
start to explore the Android system architecture in more depth. We will look at the AOSP
source tree first. After that, we will study the virtual hardware platforms that we are going
to use in this book. Based on our understanding of the virtual hardware, we will look at the
layers related to the system customization. In this chapter, we will cover the following
topics:

Deep analysis of Android HAL using the goldfish lights service
Review the hardware specification for goldfish
Overview about QEMU pipe implementation in the goldfish kernel

Discovering Kernel, HAL, and Virtual Hardware

[62]

What is inside the AOSP?
Before we move to the details, let's take a look at the top level of the AOSP source code tree
again:

The following table gives a brief description about each folder. We will look at some of
them throughout this book:

Directory Description

packages Stock Android applications.

libcore Core Java library. Apache Harmony is used before
Nougat. OpenJDK is used with Nougat. Some features of
Java 8 are used in Nougat.

frameworks/* Android framework core components.

frameworks/base/services Android system services.

art Android runtime.

dalvik Dalvik virtual machine.

libnativehelper Helper functions for use with JNI.

system/* Native services and libraries.

system/core A minimal Linux system to boot Android.

bionic C library.

external External projects imported into the AOSP. It includes
both the HAL layer and system services.

Discovering Kernel, HAL, and Virtual Hardware

[63]

hardware HAL and hardware libraries.

device Device-specific files and components.

bootable Recovery and bootloader.

abi Minimal C++ runtime type information support.

build Build system and Makefiles.

sdk Android SDK.

cts Compatibility test suite.

development Development tools.

ndk Android NDK.

tools Various IDE tools.

prebuilts Prebuilt images and binaries.

For a particular module or component, we may have to dig into multiple levels of
subfolders to figure out what is included in it. This is especially true for the frameworks,
system, and external folders. The subfolders in frameworks include Android framework
layer code, but Android system services also reside in frameworks/base/services and
we will look at them later in this session. The same is true for the contents in the system
and external folders.

Android emulator HAL
We built the Android emulator in Chapter 2, Setting Up the Development Environment. In
order to have an overview of Android emulator HAL, we can take a look at the
$OUT/system/lib/hw folder as follows:

Discovering Kernel, HAL, and Virtual Hardware

[64]

We can see that there is a list of shared libraries. These are the shared libraries of goldfish
HAL. The source code of the preceding shared libraries can be found in the
device/generic/goldfish folder. The following table shows the relationship between
the shared library, device node, and hardware module:

Hardware Device Lib (HAL)

audio /dev/eac audio.primary.goldfish.so

camera /dev/qemu_pipe camera.goldfish.jpeg.so
camera.goldfish.so

fingerprint /dev/qemu_pipe fingerprint.goldfish.so

gps /dev/qemu_pipe gps.goldfish.so

lights /dev/qemu_pipe lights.goldfish.so

power /dev/qemu_pipe power.goldfish.so

sensors /dev/qemu_pipe sensors.goldfish.so

vibrator /dev/qemu_pipe vibrator.goldfish.so

graphics /dev/qemu_pipe gralloc.goldfish.so

serial /dev/ttyS[0 - 2] simple device don't need a separate shared library

As we can see from the preceding table, except for the serial port and audio, all the other
hardware modules use a device node /dev/qemu_pipe to talk to the kernel. The QEMU
pipe device provides a bridge between emulated devices and Android emulator. Since the
QEMU pipe is an important device for the emulator, we will introduce it later in this
chapter.

Usually, the HAL implementation is a shared library and it will be loaded by system service
at runtime. It actually depends on the complexity of the hardware itself when it comes to
deciding the actual implementation. For example, there is no separate shared library for
simple hardware such as serial ports. The system service implementation of a serial port
accesses the device node directly.

For more complicated hardware devices, such as graphics, there is a dedicated daemon
SurfaceFlinger running in the background as well as multiple shared libraries associated
with it.

Discovering Kernel, HAL, and Virtual Hardware

[65]

In this chapter, we will analyze the HAL of device goldfish lights and use it as an example
to understand the relationship between frameworks, system servers, and HAL
implementation. After that, we will go through the hardware interface for goldfish devices.
Finally, we will analyze the QEMU pipe implementation in the goldfish kernel.

Calling sequence
We will use the lights hardware interface as an example to explain how HAL, system
services, and hardware managers work together.

Lights HAL, system service, and hardware manager

Discovering Kernel, HAL, and Virtual Hardware

[66]

As shown in the preceding figure, when an application wants to access hardware resources,
it has to get an instance of the hardware manager first. For goldfish lights, the code in the
application may look as follows:

LightsManager lights =
LocalServices.getService(LightsManager.class);
mBacklight = lights.getLight(LightsManager.LIGHT_ID_BACKLIGHT);
mBacklight.setBrightness(brightness);

The hardware manager talks to the system service to get hardware access. Usually, the
hardware manager is implemented in Java. It calls to the system service using a binder
interface since the hardware manager and system service run in different process spaces.
The upper layer of the system service also implements in Java. After the system service gets
the request, it will call to HAL library using JNI since the HAL is implemented using C or
C++ usually.

Calling sequence of lights service

The preceding figure shows the calling sequence when an application wants to change the
light on the device. We will use a bottom-up approach in this section to look at the calling
sequence from HAL to the application layer.

Discovering Kernel, HAL, and Virtual Hardware

[67]

Goldfish lights HAL
The goldfish lights HAL implementation can be found in the
$AOSP/device/generic/goldfish/lights folder. To implement the HAL layer, the
hardware vendor usually needs to implement the following three data structures:

struct hw_module_t;
struct hw_module_methods_t;
struct hw_device_t;

All the preceding three data structures are implemented in the lights_qemu.c file for
goldfish. In the HAL implementation, we need to define struct hw_module_t named
HAL_MODULE_INFO_SYM first as follows. This registers the hardware module ID
LIGHTS_HARDWARE_MODULE_ID in the system. After this, lights system service can get the
module using the hw_get_module function:

/*
 * The emulator lights Module
 */
struct hw_module_t HAL_MODULE_INFO_SYM = {
 .tag = HARDWARE_MODULE_TAG,
 .version_major = 1,
 .version_minor = 0,
 .id = LIGHTS_HARDWARE_MODULE_ID,
 .name = "Goldfish lights Module",
 .author = "The Android Open Source Project",
 .methods = &lights_module_methods,
};

You may notice that the method field has a pointer of lights_module_methods inside the
preceding data structure. It is defined as follows:

static struct hw_module_methods_t lights_module_methods = {
 .open = open_lights,
};

This defines the second HAL data structure hw_module_methods_t. Inside this data
structure, it defines an open_lights method, which is the HAL function to initialize the
hardware. Let's take a look at this function as follows:

/** Open a new instance of a lights device using name */
static int
open_lights(const struct hw_module_t* module, char const *name,
struct hw_device_t **device)
{
 void* set_light;

Discovering Kernel, HAL, and Virtual Hardware

[68]

 if (0 == strcmp(LIGHT_ID_BACKLIGHT, name)) {
 set_light = set_light_backlight;
 } else if (0 == strcmp(LIGHT_ID_KEYBOARD, name)) {
 set_light = set_light_keyboard;
 } else if (0 == strcmp(LIGHT_ID_BUTTONS, name)) {
 set_light = set_light_buttons;
 } else if (0 == strcmp(LIGHT_ID_BATTERY, name)) {
 set_light = set_light_battery;
 } else if (0 == strcmp(LIGHT_ID_NOTIFICATIONS, name)) {
 set_light = set_light_notifications;
 } else if (0 == strcmp(LIGHT_ID_ATTENTION, name)) {
 set_light = set_light_attention;
 } else {
 D("%s: %s light isn't supported yet.", __FUNCTION__, name);
 return -EINVAL;
 }

struct light_device_t *dev =
 malloc(sizeof(struct light_device_t));
 if (dev == NULL) {
 return -EINVAL;
 }
 memset(dev, 0, sizeof(*dev));

 dev->common.tag = HARDWARE_DEVICE_TAG;
 dev->common.version = 0;
 dev->common.module = (struct hw_module_t*)module;
 dev->common.close = (int (*)(struct hw_device_t*))close_lights;
 dev->set_light = set_light;

 device = (struct hw_device_t)dev;
 return 0;
}

Inside open_lights, it allocates the memory for the light_device_t data structure,
which inherits the third HAL data structure, hw_device_t. When it initializing the data
structure light_device_t, it registers two functions, close_lights and set_light, so
the system service can call these functions to change the light or close the device. The
function pointer set_light is set to a specific function according to the type of light.

Discovering Kernel, HAL, and Virtual Hardware

[69]

Inside each set_light_xxx function, it talks to the kernel space through the QEMU pipe
device /dev/qemu_pipe. For example, we can take a look at set_light_backlight:

static int
set_light_backlight(struct light_device_t* dev, struct light_state_t
const* state)
{
 /* Get Lights service. */
 intfd = qemud_channel_open(LIGHTS_SERVICE_NAME);

 if (fd < 0) {
 ...

 /* send backlight command to perform the backlight setting. */
 if (qemud_channel_send(fd, buffer, -1) < 0) {
 E("%s: could not query lcd_backlight: %s",
 __FUNCTION__, strerror(errno));
 close(fd);
 return -1;
 }

 close(fd);
 return 0;
}

Inside the set_light_backlight function, it calls qemud_channel_open and
qemud_channel_send to do the actual work. Both functions use the QEMU pipe device
/dev/qemu_pipe eventually.

The system service and hardware manager
To analyze how the application accesses light hardware, refer to the figure of the lights
service calling sequence. In an application, what calls the
getService(LightsManager.class) function to get an instance of LightsManager as
follows:

LightsManager lights =
LocalServices.getService(LightsManager.class);
mBacklight = lights.getLight(LightsManager.LIGHT_ID_BACKLIGHT);

Usually the hardware manager and system service are implemented in different processes
for most hardware interfaces. However, the hardware of the light is so simple, so both the
system service and hardware manager are implemented in the same process.

Discovering Kernel, HAL, and Virtual Hardware

[70]

The system service includes two parts: Java and JNI. The JNI implementation can be found
at frameworks/base/services/core/jni, while the Java implementation can be found
at frameworks/base/services/core/java/com/android/server. Both
LightsManager and LightsService are implemented in
frameworks/base/services/core/java/com/android/server/lights.

There are three files in this folder as follows. They implement both LightsManager and
LightsService:

$ ls
Light.java LightsManager.java LightsService.java

Let's look at LightsManager first. We can see from the following snippet that
LightsManager only returns an abstract class, Light, to the caller:

package com.android.server.lights;

public abstract class LightsManager {
 public static final intLIGHT_ID_BACKLIGHT = 0;
 public static final intLIGHT_ID_KEYBOARD = 1;
 public static final intLIGHT_ID_BUTTONS = 2;
 public static final intLIGHT_ID_BATTERY = 3;
 public static final intLIGHT_ID_NOTIFICATIONS = 4;
 public static final intLIGHT_ID_ATTENTION = 5;
 public static final intLIGHT_ID_BLUETOOTH = 6;
 public static final intLIGHT_ID_WIFI = 7;
 public static final intLIGHT_ID_COUNT = 8;

 public abstract Light getLight(int id);
}

Let's follow the code to look at the abstract class Light. In the abstract class Light, it
defines a list of functions that have to be implemented for Light. These functions are
implemented in the LightsService class:

package com.android.server.lights;

public abstract class Light {
 public static final intLIGHT_FLASH_NONE = 0;
 public static final intLIGHT_FLASH_TIMED = 1;
 public static final intLIGHT_FLASH_HARDWARE = 2;

 /**
 * Light brightness is managed by a user setting.
 */
 public static final intBRIGHTNESS_MODE_USER = 0;

Discovering Kernel, HAL, and Virtual Hardware

[71]

 /**
 * Light brightness is managed by a light sensor.
 */
 public static final intBRIGHTNESS_MODE_SENSOR = 1;

 public abstract void setBrightness(int brightness);
 public abstract void setBrightness(int brightness,
 intbrightnessMode);
 public abstract void setColor(int color);
 public abstract void setFlashing(int color, int mode, intonMS,
 intoffMS);
 public abstract void pulse();
 public abstract void pulse(int color, intonMS);
 public abstract void turnOff();
}

In LightsService.java in the following snippet, it implements the list of functions
defined by the Light class:

...
private final class LightImpl extends Light {

 private LightImpl(int id) {
 mId = id;
 }

 @Override
 public void setBrightness(int brightness) {
 setBrightness(brightness, BRIGHTNESS_MODE_USER);
 }
...

This set of functions in the abstract class Light calls a setLightLocked function to do the
actual work. In this function, it calls a native function, setLight_native, to invoke the
native part of LightsService:

private void setLightLocked(int color, int mode, int onMS, int offMS, int
brightnessMode) {
 if (color != mColor || mode != mMode || onMS != mOnMS
 || offMS != mOffMS) {
 if (DEBUG) Slog.v(TAG, "setLight #" + mId + ": color=#"
 + Integer.toHexString(color));
 mColor = color;
 mMode = mode;
 mOnMS = onMS;
 mOffMS = offMS;
 Trace.traceBegin(Trace.TRACE_TAG_POWER,
 "setLight(" + mId + ", 0x" +

Discovering Kernel, HAL, and Virtual Hardware

[72]

 Integer.toHexString(color) + ")");
 try {
 setLight_native(mNativePointer,
 mId, color, mode, onMS, offMS,
 brightnessMode);
 } finally {
 Trace.traceEnd(Trace.TRACE_TAG_POWER);
 }
 }
}

Besides setLight_native, LightService also calls two more native functions,
init_native and finalize_native. We can see this in the following code snippet. These
two functions call to the HAL layer functions, as we discussed in the previous section:

public LightsService(Context context) {
 super(context);

 mNativePointer = init_native();

 for (inti = 0; i<LightsManager.LIGHT_ID_COUNT; i++) {
 mLights[i] = new LightImpl(i);
 }
}

...

@Override
protected void finalize() throws Throwable {
 finalize_native(mNativePointer);
 super.finalize();
}

...

private static native long init_native();
private static native void finalize_native(long ptr);

static native void setLight_native(long ptr, int light, int color, int
mode, int onMS, int offMS, int brightnessMode);

Discovering Kernel, HAL, and Virtual Hardware

[73]

We have looked at the implementation of LightsManager and the Java implementation of
LightsService. Now let's explore the JNI part of the LightsService implementation.
The JNI part is implemented in com_android_server_lights_LightsService.cpp,
which can be found in the $AOSP/frameworks/base/services/core/jni folder. We
will look at how these three native functions used in LightsService are connected to the
HAL layer:

static jlong init_native(JNIEnv* /* env */, jobject /* clazz */)
{
 int err;
 hw_module_t* module;
 Devices* devices;

 devices = (Devices*)malloc(sizeof(Devices));

 err = hw_get_module(LIGHTS_HARDWARE_MODULE_ID,
 (hw_module_tconst**)&module);
 if (err == 0) {
 devices->lights[LIGHT_INDEX_BACKLIGHT]
 = get_device(module, LIGHT_ID_BACKLIGHT);
 devices->lights[LIGHT_INDEX_KEYBOARD]
 = get_device(module, LIGHT_ID_KEYBOARD);
 devices->lights[LIGHT_INDEX_BUTTONS]
 = get_device(module, LIGHT_ID_BUTTONS);
 devices->lights[LIGHT_INDEX_BATTERY]
 = get_device(module, LIGHT_ID_BATTERY);
 devices->lights[LIGHT_INDEX_NOTIFICATIONS]
 = get_device(module, LIGHT_ID_NOTIFICATIONS);
 devices->lights[LIGHT_INDEX_ATTENTION]
 = get_device(module, LIGHT_ID_ATTENTION);
 devices->lights[LIGHT_INDEX_BLUETOOTH]
 = get_device(module, LIGHT_ID_BLUETOOTH);
 devices->lights[LIGHT_INDEX_WIFI]
 = get_device(module, LIGHT_ID_WIFI);
 } else {
 memset(devices, 0, sizeof(Devices));
 }

 return (jlong)devices;
}

Discovering Kernel, HAL, and Virtual Hardware

[74]

In the init_native function, it calls the hw_get_module function to get the light HAL
module using LIGHTS_HARDWARE_MODULE_ID as the hardware ID. If you look back, it is
defined in the HAL. This function loads the shared library of HAL implementations. In this
case, it loads lights.goldfish.so. After loading the shared library, it calls get_device
to initialize all the light devices. We can see the implementation of get_device in the
following snippet:

static light_device_t* get_device(hw_module_t* module, char const* name)
{
 int err;
 hw_device_t* device;
 err = module->methods->open(module, name, &device);
 if (err == 0) {
 return (light_device_t*)device;
 } else {
 return NULL;
 }
}

In get_device, it invokes the open method and gets the instance of HAL data structure
hw_device_t. We discussed the open method in the goldfish lights HAL.

Now let's look at another native function, setLight_native:

static void setLight_native(JNIEnv* /* env */, jobject /* clazz */, jlong
ptr, jint light, jint colorARGB, jint flashMode, jint onMS, jint offMS,
jint brightnessMode)
{
 Devices* devices = (Devices*)ptr;
 light_state_t state;

 if (light < 0 || light >= LIGHT_COUNT || devices->lights[light] ==
 NULL) {
 return ;
 }

 memset(&state, 0, sizeof(light_state_t));
 state.color = colorARGB;
 state.flashMode = flashMode;
 state.flashOnMS = onMS;
 state.flashOffMS = offMS;
 state.brightnessMode = brightnessMode;

 {
 ALOGD_IF_SLOW(50, "Excessive delay setting light");
 devices->lights[light]->set_light(devices->lights[light],
 &state);

Discovering Kernel, HAL, and Virtual Hardware

[75]

 }
}

In the setLight_native function, it gets the pointer of the data structure Devices first.
After that, it calls the HAL function set_light to do the actual work.

Finally, let's look at the implementation of the native method, finalize_native:

static void finalize_native(JNIEnv* /* env */, jobject /* clazz */, jlong
ptr)
{
 Devices* devices = (Devices*)ptr;
 if (devices == NULL) {
 return;
 }

 free(devices);
}

We can see that the finalize_native function just frees all resources used.

Android emulator kernel and hardware
We use goldfish lights as an example to perform the calling sequence analysis from an
application to the goldfish HAL. Now we can look at the kernel layer and the
underlying hardware. We can also take an overview from the top to the bottom again to
understand how the entire system works.

Discovering Kernel, HAL, and Virtual Hardware

[76]

The goldfish architecture

We use the preceding figure to explain goldfish kernel and hardware in detail. As you can
see, the preceding figure is similar to the architecture diagram that we saw in Chapter 1,
Introduction to Android System Programming. This architecture diagram is the general
architecture diagram for Android, but the preceding figure is specific to goldfish.

Discovering Kernel, HAL, and Virtual Hardware

[77]

From the diagram, we can see the parts that we are interested in the goldfish kernel and
emulator hardware. From the top to the bottom, the application utilizes the Android
framework to implement functionalities and access the hardware. The framework usually
resides in a different process from the system service layer, so they use Binder IPC to
communicate with each other. The system service talks to the HAL using JNI, since HAL
usually implements in the native language. The HAL is the user space implementation of
hardware control and it communicates to the device driver in the kernel space through
system calls. In the case of the goldfish hardware, the device driver accesses the virtual
hardware through memory I/O registers, as we will see in the following section on Android
emulator hardware.

Android emulator hardware
Unlike real hardware, most Android emulator hardware interfaces are emulated using
QEMU, which is a popular open source emulator engine used by many open source
projects. The Android development team customized QEMU and added a virtual hardware
platform called goldfish. As we mentioned in Chapter 2, Setting Up the Development
Environment, there are currently two versions of Android emulator available in the latest
SDK. The code name for the original Android emulator is goldfish and the new one is
ranchu. However, the virtual hardware code base for device emulation in QEMU is the
same for both versions.

Detailed information about goldfish hardware interfaces can be found in the document
GOLDFISH-VIRTUAL-HARDWARE.TXT. This document can be found in the AOSP source
code at $AOSP/platform/external/qemu/docs/GOLDFISH-VIRTUAL-HARDWARE.TXT.

For different kernel versions, the hardware interfaces may have some differences. In this
book, we will look at the Intel x86-based ranchu virtual hardware, which uses Android
Linux version 3.10.0. Let's look at the goldfish devices that we will discuss in this chapter.

Goldfish platform bus
In the architecture diagram for goldfish, we have a detailed diagram for the kernel and
goldfish hardware. We can see that all goldfish devices are enumerated through the
goldfish platform bus. The platform bus is a special device that is capable of enumerating
other platform devices found on the system to the kernel. This flexibility allows us to
customize which virtual devices are available when running a given emulated system
configuration. The following table defines goldfish platform bus registers.

Discovering Kernel, HAL, and Virtual Hardware

[78]

Goldfish platform bus 32-bit I/O registers:

Offset Name Abstract

0x00 BUS_OP R: Iterate to the next device in enumeration.
W: Start device enumeration.

0x04 GET_NAME W: Copy device name to kernel memory.

0x08 NAME_LEN R: Read length of current device's name.

0x0c ID R: Read ID of the current device.

0x10 IO_BASE R: Read I/O base address of the current device.

0x14 IO_SIZE R: Read I/O base size of the current device.

0x18 IRQ_BASE R: Read base IRQ of the current device.

0x1c IRQ_COUNT R: Read IRQ count of the current device.

0x20 NAME_ADDR_HIGH # For 64-bit guest architectures only:
W: Write high 32-bit of kernel address of name buffer used by
GET_NAME. Must be written to before the GET_NAME write.

QEMU pipe device
One of the most important emulated devices in goldfish hardware is the QEMU pipe
device. This is a special device that is totally specific to QEMU, but allows guest processes
to communicate directly with the emulator with extremely high performance. This is
achieved by avoiding any in-kernel memory copies, relying on the fact that QEMU can
access guest memory at runtime (under proper conditions controlled by the kernel). As we
can see from the goldfish architecture diagram, many other hardware interfaces, such as
GPS, sensors, basebands, cameras, and so on, are emulated through the QEMU pipe. The
following table defines QEMU pipe device registers.

QEMU pipe device registers:

Offset Name Abstract

0x00 COMMAND W: Write to perform command (see the following).

0x04 STATUS R: Read status.

0x08 CHANNEL RW: Read or set current channel ID.

0x0c SIZE RW: Read or set current buffer size.

Discovering Kernel, HAL, and Virtual Hardware

[79]

0x10 ADDRESS RW: Read or set current buffer physical address.

0x14 WAKES R: Read wake flags.

0x18 PARAMS_ADDR_LOW RW: Read/set low bytes of parameter's block address.

0x1c PARAMS_ADDR_HIGH RW: Read/set high bytes of parameter's block address.

0x20 ACCESS_PARAMS W: Perform access with parameter block.

Refer to the AOSP document ANDROID-QEMU-PIPE.TXT for details about the device's
operations.

Goldfish audio device
The goldfish audio device implements a virtual sound card with the following properties:

Stereo output at fixed 44.1 kHz frequency, using signed 16-bit samples. This is
mandatory.
Mono input at fixed 8 kHz frequency, using signed 16-bit samples. This is
optional.

The following table defines goldfish audio device registers:

Offset Name Abstract

0x00 INT_STATUS

0x04 INT_ENABLE

0x08 SET_WRITE_BUFFER_1 W: Set address of first kernel output buffer.

0x0c SET_WRITE_BUFFER_2 W: Set address of second kernel output buffer.

0x10 WRITE_BUFFER_1 W: Send first kernel buffer samples to output.

0x14 WRITE_BUFFER_2 W: Send second kernel buffer samples to output.

0x18 READ_SUPPORTED R: Reads 1 if input is supported, 0 otherwise.

0x1c SET_READ_BUFFER

0x20 START_READ

0x24 READ_BUFFER_AVAILABLE

Discovering Kernel, HAL, and Virtual Hardware

[80]

0x28 SET_WRITE_BUFFER_1_HIGH # For 64-bit guest CPUs:
W: Set high 32 bits of the first kernel output buffer
address.

0x30 SET_WRITE_BUFFER_2_HIGH # For 64-bit guest CPUs:
W: Set high 32 bits of second kernel output buffer
address.

0x34 SET_READ_BUFFER_HIGH # For 64-bit guest CPUs:
W: Set high 32 bits of kernel input buffer address.

Goldfish serial port
Android emulator has its own implementation of a virtual serial port. It always reserves the
first two virtual serial ports:

The first one is used to receive kernel messages. This is done by adding the
console=ttyS0 parameter to the kernel command line.
The second one is used to set up the legacy qemud channel, used on older
Android platform revisions. This is done by adding android.qemud=ttyS1 on
the kernel command line. The qemud channel is implemented as a Linux daemon
process used as a channel between the guest and emulator. In the latest emulator
version, a QEMU pipe is used instead of qemud.

The following table defines goldfish serial port registers:

Offset Name Abstract

0x00 PUT_CHAR W: Write a single 8-bit value to the serial port.

0x04 BYTES_READY R: Read the number of available buffered input bytes.

0x08 CMD W: Send command (see the following).

0x10 DATA_PTR W: Write kernel buffer address.

0x14 DATA_LEN W: Write kernel buffer size.

0x18 DATA_PTR_HIGH # For 64-bit guest CPUs only:
W: Write high 32 bits of kernel buffer address.

Discovering Kernel, HAL, and Virtual Hardware

[81]

The CMD I/O register is used to send various commands to the device, identified by the
following values:

0x00 CMD_INT_DISABLE Disable device.
0x01 CMD_INT_ENABLE Enable device.
0x02 CMD_WRITE_BUFFER Write buffer from kernel to device.
0x03 CMD_READ_BUFFER Read buffer from device to kernel.

Each device instance uses one IRQ, raised to indicate that there is incoming/buffered data to
read.

Goldfish kernel
Goldfish kernel can be downloaded from the AOSP source repository. You can download
and build the kernel source code using the following command:

$ git clone https://android.googlesource.com/kernel/goldfish.git
$ cd goldfish
$ git checkout -b android-goldfish-3.10 origin/android-goldfish-3.10
$ make i386_ranchu_defconfig
$ make

The following table is a list of goldfish device drivers. This is based on kernel version 3.10.0.
At the moment, kernel version 3.10.0 is for ranchu and 3.4.67 is for goldfish. The following
table lists some goldfish specific devices. In ranchu, Virtio devices are used as block devices
to simulate EMMC. Virtio devices are paravirtualized devices in QEMU that have better
performance than emulated hardware devices.

Device Path

goldfish platform bus drivers/platform/goldfish/pdev_bus.c

QEMU pipe drivers/platform/goldfish/goldfish_pipe.c

Frame buffer drivers/video/goldfishfb.c

goldfish audio drivers/staging/goldfish/goldfish_audio.c

goldfish NAND drivers/staging/goldfish/goldfish_nand.c

goldfish battery drivers/power/goldfish_battery.c

goldfish events drivers/input/keyboard/goldfish_events.c

goldfish MMC drivers/mmc/host/android-goldfish.c

goldfish serial drivers/tty/goldfish.c

Discovering Kernel, HAL, and Virtual Hardware

[82]

QEMU pipe
Since QEMU pipe is used as a channel to emulate many goldfish devices, we can review one
of the major functions, goldfish_pipe_read_write, to understand data transmission
between guest and host:

static ssize_t goldfish_pipe_read_write(struct file *filp, char __user
*buffer, size_t bufflen, int is_write)
{
...
 /* Now, try to transfer the bytes in the current page */
 spin_lock_irqsave(&dev->lock, irq_flags);
 if (access_with_param(dev, is_write ? CMD_WRITE_BUFFER :
 CMD_READ_BUFFER, xaddr, avail, pipe, &status)) {
 writel((u32)(u64)pipe, dev->base + PIPE_REG_CHANNEL);
#ifdef CONFIG_64BIT
 writel((u32)((u64)pipe >> 32), dev->base + PIPE_REG_CHANNEL_HIGH);
#endif
 writel(avail, dev->base + PIPE_REG_SIZE);
 writel(xaddr, dev->base + PIPE_REG_ADDRESS);
#ifdef CONFIG_64BIT
 writel((u32)((u64)xaddr>> 32), dev->base + PIPE_REG_ADDRESS_HIGH);
#endif
 writel(is_write ? CMD_WRITE_BUFFER : CMD_READ_BUFFER,
 dev->base + PIPE_REG_COMMAND);
 status = readl(dev->base + PIPE_REG_STATUS);
}
 spin_unlock_irqrestore(&dev->lock, irq_flags);

if (status > 0 && !is_write)
 set_page_dirty(page);
put_page(page);
...

As we can see from the preceding code, it invokes the access_with_param function first.
This is the fastest way to transfer data between the guest and emulator using shared
memory. With this method, the goldfish kernel allocates a piece of memory at boot time.
The guest and emulator will use this shared memory to transfer parameters between them.
If the access_with_param function fails, it will use the following sequence to transfer data
through the QEMU pipe device:

write_channel(<channel>)
write_address(<buffer-address>)
REG_SIZE = <buffer-size>
REG_CMD = CMD_WRITE_BUFFER/CMD_READ_BUFFER
status = REG_STATUS

Discovering Kernel, HAL, and Virtual Hardware

[83]

Now let's take a look at the access_with_param function as follows:

/* A value that will not be set by qemu emulator */
#define INITIAL_BATCH_RESULT (0xdeadbeaf)
static int access_with_param(struct goldfish_pipe_dev *dev, const int cmd,
unsigned long address, unsigned long avail, struct goldfish_pipe *pipe, int
*status)
{
 struct access_params *aps = dev->aps;

 if (aps == NULL)
 return -1;

 aps->result = INITIAL_BATCH_RESULT;
 aps->channel = (unsigned long)pipe;
 aps->size = avail;
 aps->address = address;
 aps->cmd = cmd;
 writel(cmd, dev->base + PIPE_REG_ACCESS_PARAMS);
 /*
 * If the aps->result has not changed, that means
 * that the batch command failed
 */
 if (aps->result == INITIAL_BATCH_RESULT)
 return -1;
 *status = aps->result;
 return 0;
}

The address of aps is the pre-allocated shared memory between the guest and emulator. All
data structures that need to be used for a single operation are filled in this data structure
aps. The command will be written to register PIPE_REG_ACCESS_PARAMS. The write to
PIPE_REG_ACCESS_PARAMS will trigger the operation. QEMU will read the content of the
access_params block, use its fields to perform the operation, and then write back the
return value into aps->result. The difference between shared memory aps and the
QEMU pipe device is similar to DMA and register-based device I/O. The shared memory or
DMA is much more efficient in large blocks of memory access.

You can explore the rest of the goldfish device drivers by yourself.

Discovering Kernel, HAL, and Virtual Hardware

[84]

Summary
In this chapter, we introduced the content of the AOSP source code. After that, we used
goldfish lights HAL as an example to analyze the calling sequence from the application to
HAL. Finally, we reviewed the Android architecture again using the Android system for
the emulator. We also reviewed goldfish kernel and hardware to understand how they
work together with the rest of the software stacks. In the next chapter, we will start to work
on our own x86emu device and use it to explore how to extend an emulator to support
additional functionalities.

4
Customizing the Android

Emulator
In the last chapter, we spent some time exploring the details of the Android system
architecture. With our knowledge about kernel, HAL, and system service, we can start to
customize the Android system ourselves. In this chapter, we will cover the following topics:

Why customize the Android emulator?
Creating a new x86emu device
Building and testing the new x86emu device

Why customize the Android emulator
You may be wondering why we want to customize Android emulator. Google already
provides it in the Android SDK and we can just use it without any additional effort.
However, as a developer, you may find that it may not be good enough to meet your
expectations. For example, in the most recent Android Studio or SDK releases, the Intel x86
emulator is recommended for developers, since it is much faster than the ARM version. One
problem with using the Intel x86 emulator is that many Android applications with native
code cannot run properly, because the x86 native library is not built into these applications.

To resolve this issue, we can integrate Houdini libraries from Intel to the emulator. With
Houdini libraries, we can execute ARM native code on the Intel x86 platform. Another
common request for Android emulator is that Google Mobile Services (GMS) is not
included in it. Many developers develop applications with the assumption that GMS should
be available on the device. In the next few chapters, we will learn how to create a x86emu
device to customize Android emulator so that we can integrate components such as
Houdini or enable additional hardware interfaces, such as Wi-Fi, in Android emulator.

Customizing the Android Emulator

[86]

Armed with the knowledge about how to create the x86emu device, you can create your
own Android emulator to meet your requirements.

It is possible, we always avoid changing too much AOSP code directly. This is because the
more we change, the harder it is for us to port it to the latest version of Android. Google
constantly releases new Android code from time to time. Sometime, new releases may be
difficult to merge because of the architecture change.

From this chapter to Chapter 7, Enabling Wi-Fi on the Android Emulator, we will teach a way
to customize existing devices with minimal changes to the AOSP source code. From
Chapter 8, Creating Your Own Device on VirtualBox to Chapter 11, Enabling VirtualBox-
Specific Hardware Interfaces, we will discuss the porting to a new platform that we have to
change to AOSP code directly. Even in that case, we still have to plan and consider the
merge effort to a new Android release.

Understanding build layers
The AOSP build system includes the abstraction layers to build a device. After we
understand the ideas behind these layers, it will help us to understand the relationship of
the various Makefiles for a device. It is always good to refer to the original Google
document at the following URL, when you start to create a new device. The information
will usually be updated when a new Android release is available: h t t p ://s o u r c e . a n d r o i d

. c o m /s o u r c e /a d d - d e v i c e . h t m l .

In this section, we will apply the information from the previous Google document to the
specific Android emulator virtual hardware that we are going to work on. In this way, we
can derive all device-specific Makefiles according to the general guidance from the previous
Google document. Throughout the process from generic to specific, we can apply the
inheritance of object-oriented concepts to the Makefile system.

There are three layers, Product, Board/Device, and Architecture, in the device build system.
These layers can be considered as different dimensions to measure the characteristic of a
product. Each layer relates to the one above it in a one-to-many relationship, which is
similar to the inheritance or composition relationship in the object-oriented terms. For
example, one kind of hardware architecture can have more than one board and each board
can have more than one product. We will see how this method works when we create a new
device in this chapter later.

http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html
http://source.android.com/source/add-device.html

Customizing the Android Emulator

[87]

The following table is a list of layers used in an AOSP build system. I created this table by
modifying the one from the Google document and added my comments specific to the
x86emu device, which we are going to work on in this chapter.

Layer Description

Product The Product layer defines the feature specifications of the shipping product
such as the modules to build, locales supported, and the configuration for
various locales. In other words, this is the name of the overall product.
Product-specific variables are defined in product definition Makefiles. A
product can inherit from other product definitions, which simplifies
maintenance. A common method is to create a base product that contains
features that apply for all products, then creating product variants based
on that base product.
In this chapter, we inherit from a generic device for an Android emulator
in AOSP to create our x86emu device. For the x86emu device, we can also
create two products that differ only by their architecture variants (we can
have different builds for x86 or x86_64).

Board/Device The Board/Device layer represents the physical layer of plastic on the
device (that is, the industrial design of the device). For example, North
American devices probably include QWERTY keyboards, whereas devices
sold in France probably include AZERTY keyboards.
This layer also represents the bare schematics of a product. These include
the peripherals on the board and their configuration. In the x86emu device,
we need to define the size of the filesystem, the graphics hardware and
camera, and so on. In Chapter 7, Enabling Wi-Fi on the Android Emulator, we
want to support Wi-Fi in the emulator. We need to specify it in the board
configuration file.

Arch The Architecture layer describes the processor configuration and
Application Binary Interface (ABI) running on the board.

Customizing the Android Emulator

[88]

Build variants
When building for a particular product, it's often useful to have minor variations on what is
ultimately the final release build. By using different build variants, it can help the different
parties in the product development cycle. There are primarily three kinds of build variant in
the AOSP so far. The engineering build is the default one and is suitable for development
work. In this type of build, the product security policy is not fully enforced and the
debugging mechanisms are turned on. It is easy for engineers to test and fix issues with an
engineering build.

The second flavor is user build, which is used for the final release. All debugging
mechanisms are turned off and the product security policy is fully enforced. The third
flavor is userdebug, which is in between the engineering build and user build. This type of
build can be used in the field test, which is also used by the end users.

All components in the AOSP build are called modules. In a module definition, the module
can specify tags with LOCAL_MODULE_TAGS, which can be one or more values of optional
(default), debug, or eng. With a tag, we can define the usage of a module. For example, all
debug tools will only be included in the engineering build.

If a module doesn't specify a tag (by LOCAL_MODULE_TAGS), its tag defaults to optional.
An optional module is installed only if it is required by product configuration with
PRODUCT_PACKAGES. We usually specify packages needed by a product in the device
Makefile using the PRODUCT_PACKAGES variable. This way, we can easily define modules
that are only suitable for a particular build.

The following table shows the AOSP-defined build variants documented in the preceding
Google URL:

Build variants Description

eng This is the default flavor:
• Installs modules tagged with: eng and/or debug
• Installs modules according to the product definition files, in addition to tagged
modules
• ro.secure=0
• ro.debuggable=1
• ro.kernel.android.checkjni=1
• adb is enabled by default

Customizing the Android Emulator

[89]

user This is the flavor intended to be the final release:
• Installs modules tagged with user
• Installs modules according to the product definition files, in addition to tagged
modules.
• ro.secure=1
• ro.debuggable=0
• adb is disabled by default

userdebug The same as user, except:
• Also installs modules tagged with debug
• ro.debuggable=1
• adb is enabled by default

Creating a new x86emu device
To customize Android emulator, we need to create a new device based on Android
emulator and make our customization on this new device. We will work on this from the
original AOSP source code.

Checking out from the AOSP
As I mentioned before, I try to avoid unnecessary changes to the AOSP source code as much
as I can. In this chapter, in order to set up the build environment, you can check out the
android-7.1.1_r4 version of the AOSP source code and clone the kernel and x86emu
source to the AOSP source tree as follows:

$ mkdir android-x86emu
$ cd android-x86emu
$ repo init -u https://android.googlesource.com/platform/manifest -b
android-7.1.1_r4
$ repo sync
$ git clone https://github.com/shugaoye/goldfish.git -b
android-7.1.1_r4_x86emu_ch04_r1 kernel
$ cd device/generic
$ git clone https://github.com/shugaoye/x86emu.git -b
android-7.1.1_r4_x86emu_ch04_r1

Now we have retrieved the source code step by step. The project x86emu is the new device
that we create in this chapter and can be used to customize Android emulator in the next
few chapters. The goldfish project is the kernel that I forked from the AOSP goldfish kernel:
https://android.googlesource.com/kernel/goldfish/.

https://android.googlesource.com/kernel/goldfish/

Customizing the Android Emulator

[90]

The android-7.1.1_r4_x86emu_ch04_r1 tag is the baseline of this chapter's source code
release. All source code created or changed in this book is baselined using the naming
convention {Android version}_{project}_{chapter number}_{release number}.
Here is the explanation of this naming convention:

Android version is the original AOSP version number
project can be x86emu or x86vbox
chapter number is what chapter we create a baseline for the source code
release number is used to indicate the number of releases

These can work in the simple configuration of this chapter. This method is not good enough
when we use source code from multiple sources as we will do in other chapters later in this
book. We will use our own manifest file to manage the source code in this book.

Checking out from a local mirror
To use our own manifest file, we can use either a local mirror or a remote repository. If we
use a local mirror, we have to change manifest.xml of android-7.1.1_r4 a little to
make our own. We copy .repo/manifest.xml to our manifests/default.xml and
make the following changes:

<?xml version="1.0" encoding="UTF-8"?>
<manifest>

 <remote name="github"
 fetch="." />
 <remote name="aosp"
 fetch="../android" />
 <default revision="refs/tags/android-7.1.1_r4"
 remote="aosp"
 sync-j="4" />

 <!-- github/shugaoye -->
 <project path="kernel" name="goldfish"
 remote="github" revision="refs/tags/
 android-7.1.1_r4_x86emu_ch04_r1" />
 <project path="device/generic/x86emu" name="x86emu" remote="github"
 revision="refs/tags/android-7.1.1_r4_x86emu_ch04_r1" />
 <!-- AOSP -->
 <project path="build" name="platform/build" groups="pdk" >
 <copyfile src="core/root.mk" dest="Makefile" />
 </project>
 <project path="abi/cpp" name="platform/abi/cpp" groups="pdk" />

Customizing the Android Emulator

[91]

...
</manifest>

This manifest file has an assumption that our local mirror has the following directory
structure:

$ ls -F
android/ android-x86/ github/

The AOSP mirror is created under the android folder. GitHub mirror is created under the
github folder. We need to use android-x86 source code as well later. We can put it under
the android-x86 folder. Our own manifest is stored at github/manifests and the
preceding manifest file is github/manifests/default.xml. In this file, we add
additional lines to retrieve the Android kernel and x86emu device from GitHub.

With this manifest, we can get the source code using the following command:

$ mkdir android-x86emu
$ cd android-x86emu
$ repo init -u {your mirror URL}/github/manifests.git -b
android-7.1.1_r4_ch04
$ repo sync

We can also retrieve all source code from the remote repository directly using our own
manifest file. With that, we need to change the manifest file a little as follows:

<?xml version="1.0" encoding="UTF-8"?>
<manifest>

 <remote name="github"
 fetch="." />

 <remote name="aosp"
 fetch="https://android.googlesource.com/" />
 <default revision="refs/tags/android-7.1.1_r4"
 remote="aosp"
 sync-c="true"
 sync-j="1" />

 <!-- github/shugaoye -->
 <project path="kernel" name="goldfish" remote="github"
 revision="refs/tags/android-7.1.1_r4_x86emu_ch04_r1" />
 <project path="device/generic/x86emu" name="x86emu" remote="github"
 revision="refs/tags/android-7.1.1_r4_x86emu_ch04_r1" />

 <!-- aosp -->
 <project path="build" name="platform/build" groups="pdk,tradefed" >

Customizing the Android Emulator

[92]

 <copyfile src="core/root.mk" dest="Makefile" />
 </project>
...

As you can see, we changed the URL of the remote aosp to use the absolute path in this
revision of the manifest file. To check out the source code using this revision, we can run the
following commands:

$ mkdir android-x86emu
$ cd android-x86emu
$ repo init -u https://github.com/shugaoye/manifests -b
android-7.1.1_r4_ch04_aosp
$ repo sync

Because there are multiple repositories involved in this book, I strongly encourage you to
use a local mirror. This can make the build and debug process more efficient.

It is also possible to use local_manifests to set up your workspace. You
can refer to Appendix B, Using Repo in This Book, in the book Embedded
Programming with Android. A sample file can be found at h t t p s ://g i t h u b .

c o m /s h u g a o y e /b u i l d /b l o b /m a s t e r /l o c a l _ m a n i f e s t . x m l .

In this book, I use branches for the manifest file to manage the different versions of source
code. To create a baseline of the source code in a chapter, I use the following naming
convention:

{Android version}_{chapter number}_{remote (optional)}

Android version is the original AOSP version number
chapter number is what chapter we create a baseline for the source code
remote is used to indicate how to check out the source code from the remote
repositories

For example, from the following screenshot, we can see that the branch
android-7.1.1_r4_ch04 is used to check out the source code of chapter 4 from a local
mirror. The branch android-7.1.1_r4_ch04_aosp is used to check out the source code
for chapter 4 from the remote repository. Since I am in China, I don't have access to the
AOSP source code all the time. I created revisions (android-7.1.1_r4_ch04_tuna and
android-7.1.1_r4_ch04_ustc) for chapter 4 to check out the source code from AOSP
mirrors in China and GitHub. You may change the manifest file according to your needs.

https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml
https://github.com/shugaoye/build/blob/master/local_manifest.xml

Customizing the Android Emulator

[93]

Creating x86emu device
After we check out the source code, we can look at how to create a new x86emu device in
the $AOSP/device folder. The hierarchy in the device folder is in the vendor-
name/device-name format. For example, the Nexus S from Samsung can be found in the
samsung/crespo folder. The device name of Nexus S is crespo. We can create our device
under a common folder, generic, as follows. The folder name for our device is
generic/x86emu:

$ cd device/generic
$ mkdir x86emu

Customizing the Android Emulator

[94]

This is the project that we create in this chapter and you can find the source code at h t t p s

://g i t h u b . c o m /s h u g a o y e /x 86e m u . g i t .

We will create a list of Makefiles in this folder to build the device. Refer to the build layers
in the previous section. Here is a list of Makefiles that need to be included in the device
skeleton:

AndroidProducts.mk: This is a Makefile to describe the various products that
can be built for this device
BoardConfig.mk: This is a board configuration Makefile for the hardware board
device.mk: This is the device Makefile that is used to declare the files and
modules needed for the device
vendorsetup.sh: This is a shell script that can be used to add your product (a
"lunch combo") to the build along with a build variant separated by a dash
{Product Makefile}.mk: This is the product definition Makefile and it is used
to create a specific product based on the device

Now we can create Makefiles for our device one by one according to the preceding list.

AndroidProducts.mk
We included all product definition Makefiles in this file. The AOSP build system will start
to search all product definitions using this file. The following is the content
of AndroidProducts.mk:

PRODUCT_MAKEFILES := \
 $(LOCAL_DIR)/x86emu_x86.mk \
 $(LOCAL_DIR)/x86emu_x86_64.mk \

As we can see, we defined two product variants for x86 and x86_64 builds.

Both x86emu_x86.mk and x86emu_x86_64.mk are very similar. They define the same set
of product definition variables for 32 bit and 64 bit.

https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git
https://github.com/shugaoye/x86emu.git

Customizing the Android Emulator

[95]

The following table compares the product definition Makefiles for 32-bit and 64-bit build:

x86emu_x86.mk x86emu_x86_64.mk

$(call inherit-product,
device/generic/x86emu/device.mk)
$(call inherit-product,
$(SRC_TARGET_DIR)/product/full.mk)
Overrides
PRODUCT_BRAND := x86emu_x86
PRODUCT_NAME := x86emu_x86
PRODUCT_DEVICE = x86emu
PRODUCT_MODEL := x86emu_x86_ch4
TARGET_ARCH := x86
TARGET_KERNEL_CONFIG :=
i386_ranchu_defconfig
$(call inherit-product,
$(LOCAL_PATH)/x86emu_base.mk)

$(call inherit-product,
device/generic/x86emu/device.mk)
$(call inherit-product,
$(SRC_TARGET_DIR)/product/full_x86_64.mk)
Overrides
PRODUCT_BRAND := x86emu_x86_64
PRODUCT_NAME := x86emu_x86_64
PRODUCT_DEVICE = x86emu
PRODUCT_MODEL := x86emu_x86_64_ch4
TARGET_SUPPORTS_32_BIT_APPS := true
TARGET_SUPPORTS_64_BIT_APPS := true
TARGET_ARCH := x86_64
TARGET_KERNEL_CONFIG :=
x86_64_ranchu_defconfig
$(call inherit-product,
$(LOCAL_PATH)/x86emu_base.mk)

You may notice that we inherit the common product definition files for 32-bit and 64-bit
first at the beginning:

$(call inherit-product, $(SRC_TARGET_DIR)/product/full.mk)

And:

$(call inherit-product, $(SRC_TARGET_DIR)/product/full_x86_64.mk)

There are many generic product definitions defined by the AOSP build system. You can
find them at $AOSP/build/target/product:

$ ls build/target/product
AndroidProducts.mk full_base.mk sdk_base.mk
aosp_arm64.mk full_base_telephony.mk sdk_mips.mk
aosp_arm.mk full_mips64.mk sdk.mk
aosp_base.mk full_mips.mk sdk_phone_arm64.mk
aosp_base_telephony.mk full.mk sdk_phone_armv7.mk
aosp_mips64.mk full_x86_64.mk sdk_phone_mips64.mk
aosp_mips.mk full_x86.mk sdk_phone_mips.mk
aosp_x86_64.mk generic_armv5.mk sdk_phone_x86_64.mk
aosp_x86.mk generic_mips.mk sdk_phone_x86.mk
base.mk generic.mk sdk_x86_64.mk
core_64_bit.mk generic_no_telephony.mk sdk_x86.mk
core_base.mk generic_x86.mk security
core_minimal.mk languages_full.mk telephony.mk
core.mk languages_small.mk vboot.mk

Customizing the Android Emulator

[96]

core_tiny.mk locales_full.mk verity.mk
embedded.mk runtime_libart.mk
emulator.mk sdk_arm64.mk

After that, a set of product definition variables PRODUCT_BRAND, PRODUCT_NAME,
PRODUCT_DEVICE, and PRODUCT_MODEL are defined with different values. TARGET_ARCH
and TARGET_KERNEL_CONFIG are also defined for 32 bit and 64 bit separately. Pay attention
to PRODUCT_MODEL. Since we will change Makefiles in each chapter, in this book we use
PRODUCT_MODEL to indicate the build for each chapter. In this chapter, we define
PRODUCT_MODEL as x86emu_x86_ch4 for the build in this chapter. At the end of the file, we
also include a common Makefile x86emu_base.mk for both 32-bit and 64-bit products.
This file includes additional configurations for the kernel build:

TARGET_KERNEL_SOURCE := kernel

PRODUCT_OUT ?= out/target/product/x86emu

include $(TARGET_KERNEL_SOURCE)/AndroidKernel.mk

define build targets for kernel
.PHONY: $(TARGET_PREBUILT_KERNEL)

LOCAL_KERNEL := $(TARGET_PREBUILT_KERNEL)

PRODUCT_COPY_FILES += \
 $(LOCAL_KERNEL):kernel \

The kernel build is usually not included in the AOSP build. You have to build them
separately according to the instructions from Google. In this book, we integrate the kernel
build in our own Makefile here. The kernel AndroidKernel.mk Makefile is created based
on the Makefile of the Qualcomm kernel source at h t t p s ://a n d r o i d . g o o g l e s o u r c e . c o m /k

e r n e l /m s m /.

There are many product definition variables used in the preceding Makefiles. Let's review
the product definition variables that we used here. Refer to the Google documents for the
complete list:

PRODUCT_BRAND: This is the brand that the software is customized for. We just
defined it as our device name.
PRODUCT_NAME: This is the product name that we give to the device. We set it to
x86emu_x86 in this book. It is also the prefix that we can select in the lunch
combo, such as x86emu_x86-eng. The suffix is the build variants.

https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/

Customizing the Android Emulator

[97]

PRODUCT_DEVICE: The name of the actual product. TARGET_DEVICE derives from
this variable. This is also the board name that the build system uses to
locate BoardConfig.mk. It is the x86emu for our device and it is also the
directory name of our device at $AOSP/device/generic/x86emu.
PRODUCT_MODEL: This is the name that we can see in the settings in Model. As I
mentioned earlier, we use this variable to differentiate the build of each chapter
in this book.
PRODUCT_OUT: This is the output folder of the build result. It is the same as the
environment variable $OUT.
PRODUCT_COPY_FILES: This is a list of specific files that we would like to copy to
the target's filesystem. The list of words looks like
source_path:destination_path. The file at the source path should be copied
to the destination path during the build process.

BoardConfig.mk
BoardConfig.mk defines the board-specific configurations. We define CPU/ABI, the target
architecture, OpenGLES configurations, and so on in this file. We also define the image file
size, format, and so on:

TARGET_NO_BOOTLOADER := true
TARGET_NO_KERNEL := true
TARGET_CPU_ABI := x86
TARGET_ARCH := x86
TARGET_ARCH_VARIANT := x86
TARGET_PRELINK_MODULE := false

The IA emulator (qemu) uses the Goldfish devices
HAVE_HTC_AUDIO_DRIVER := true
BOARD_USES_GENERIC_AUDIO := true

no hardware camera
USE_CAMERA_STUB := true

customize the malloced address to be 16-byte aligned
BOARD_MALLOC_ALIGNMENT := 16

Enable dex-preoptimization to speed up the first boot sequence
of an SDK AVD. Note that this operation only works on Linux for now
ifeq ($(HOST_OS),linux)
WITH_DEXPREOPT := true
endif

Customizing the Android Emulator

[98]

Build OpenGLES emulation host and guest libraries
BUILD_EMULATOR_OPENGL := true

Build and enable the OpenGL ES View renderer. When running on the
emulator,
the GLES renderer disables itself if host GL acceleration isn't
available.
USE_OPENGL_RENDERER := true

TARGET_USERIMAGES_USE_EXT4 := true
BOARD_SYSTEMIMAGE_PARTITION_SIZE := 1342177280
BOARD_USERDATAIMAGE_PARTITION_SIZE := 576716800
BOARD_CACHEIMAGE_PARTITION_SIZE := 69206016
BOARD_CACHEIMAGE_FILE_SYSTEM_TYPE := ext4
BOARD_FLASH_BLOCK_SIZE := 512
TARGET_USERIMAGES_SPARSE_EXT_DISABLED := true

BOARD_SEPOLICY_DIRS += \
 build/target/board/generic/sepolicy \
 build/target/board/generic_x86/sepolicy

This file is copied from a predefined AOSP board configuration at
$AOSP/build/target/board/generic_x86/BoardConfig.mk with minor changes.

We can also use the system-defined board configuration directly and overwrite predefined
variables as follows:

include $(SRC_TARGET_DIR)/board/generic_x86/BoardConfig.mk

#
Overwrite predefined variables.
#

TARGET_USERIMAGES_USE_EXT4 := true
BOARD_SYSTEMIMAGE_PARTITION_SIZE := 1610612736
BOARD_USERDATAIMAGE_PARTITION_SIZE := 576716800
BOARD_CACHEIMAGE_PARTITION_SIZE := 69206016
BOARD_CACHEIMAGE_FILE_SYSTEM_TYPE := ext4
BOARD_FLASH_BLOCK_SIZE := 512
TARGET_USERIMAGES_SPARSE_EXT_DISABLED := true

BOARD_KERNEL_CMDLINE += androidboot.selinux=permissive

If we look at the folder of $AOSP/build/target/board/generic_x86, it contains a few
other files:

$ ls -F
BoardConfig.mk device.mk README.txt sepolicy/ system.prop

Customizing the Android Emulator

[99]

We need to copy system.prop to our device folder as well, since this file defines the
Radio Interface Layer (RIL) configuration for the emulator as follows:

rild.libpath=/system/lib/libreference-ril.so
rild.libargs=-d /dev/ttyS0

Without this, you will find that the data connection cannot work properly in the build.

device.mk
You may notice that there is a device.mk file in the generic_x86 folder. Yes, we can reuse
that file directly. The following is our device.mk file:

$(call inherit-product, $(SRC_TARGET_DIR)/board/generic_x86/device.mk)

As we can see, in our device.mk file, we simply inherit the common device.mk from the
generic_x86 device.

We can look at the device.mk file for the generic_x86 device as follows:

PRODUCT_PROPERTY_OVERRIDES := \
 ro.ril.hsxpa=1 \
 ro.ril.gprsclass=10 \
 ro.adb.qemud=1

PRODUCT_COPY_FILES := \
device/generic/goldfish/data/etc/apns-conf.xml:system/etc/
apns-conf.xml \
device/generic/goldfish/camera/media_profiles.xml:system/etc/
media_profiles.xml \
frameworks/av/media/libstagefright/data/media_codecs_google_audio.xml:syste
m/etc/media_codecs_google_audio.xml \
frameworks/av/media/libstagefright/data/media_codecs_google_telephony.xml:s
ystem/etc/media_codecs_google_telephony.xml \
frameworks/av/media/libstagefright/data/media_codecs_google_video.xml:syste
m/etc/media_codecs_google_video.xml \
device/generic/goldfish/camera/media_codecs.xml:system/etc/media_codecs.xml

PRODUCT_PACKAGES := \
 audio.primary.goldfish \
 vibrator.goldfish

In the preceding device.mk file for the generic_x86 device, it overwrites a few properties
and copies configuration files to the system folder. It also includes the HAL layers for the
goldfish device.

Customizing the Android Emulator

[100]

Now we can add our device build to the build system using the following command:

$ add_lunch_combo <product_name>-<build_variant>
$ lunch <product_name>-<build_variant>

Such as:

$ add_lunch_combo x86emu_x86-eng
$ lunch x86emu_x86-eng

To automatically add this to the build system, we can add a script vendorsetup.sh. In this
script, we can create all the build variants for x86emu_x86:

for i in eng userdebug user; do
 add_lunch_combo x86emu_x86-${i}
done

Be aware that the 64-bit build for the x86emu device is not tested in this
book. You must make the necessary changes by yourself if you want to
test a 64-bit build.

In this section, besides product-level variables as I explained before, there are also variables
for the target device and board-level variables. The following is a list of variables for the
target devices that are defined in BoardConfig.mk, device.mk, or product definition
Makefiles:

TARGET_ARCH: This is the architecture of the device. It is usually something such
as arm, x86, and so on.
TARGET_USERIMAGES_USE_EXT4: This variable needs to be set as true to build a
filesystem in ext4 format. The filesystem can be built into other formats such as
yaffs2 in the older Android version prior to Android 4.4.
TARGET_KERNEL_SOURCE: This is the path for the kernel source code. In our case,
the kernel source code can be found at $AOSP/kernel.
TARGET_KERNEL_CONFIG : The kernel configuration file that we use to build the
kernel source.

The following is a list of board-level variables that we used in this chapter:

BOARD_SYSTEMIMAGE_PARTITION_SIZE: The size of the filesystem partition for
the system image (system.img)

Customizing the Android Emulator

[101]

BOARD_USERDATAIMAGE_PARTITION_SIZE: The size of the filesystem partition
for the user data (userdata.img)
BOARD_CACHEIMAGE_FILE_SYSTEM_TYPE: The filesystem format of cache
partition
BOARD_FLASH_BLOCK_SIZE: The block size of the flash device

Building and testing x86emu
Once we have the source code, we can start to build and test our x86emu device in this
section.

Building x86emu
Before we start to build x86emu, let's have a quick look at the Android build system first.
The major difference between the Android build system from other make-based build
systems is that the Android build system doesn't rely on recursive Makefiles. Android
Makefiles end in the extension .mk; the main Makefile for a particular source directory is
named Android.mk. The build system imports all Android.mk from various folders to
create one large Makefile to start the build, as we can see from the following code snippet:

$ make -j4
==
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=7.1.1
TARGET_PRODUCT=x86emu
TARGET_BUILD_VARIANT=eng
TARGET_BUILD_TYPE=release
TARGET_BUILD_APPS=
...
HOST_BUILD_TYPE=release
BUILD_ID=MOB30Z
OUT_DIR=out
==
including ./abi/cpp/Android.mk ...
including ./art/Android.mk ...
including ./bionic/Android.mk ...
...

Customizing the Android Emulator

[102]

Before we start the build, we must set up the build environment first. The Android build
system provides a build/envsetup.sh script for the build environment setup. We can set
up the build environment by running the following command:

$ source build/envsetup.sh

After this, we need to specify the target that we want to build. In Android build system
terms, this is called a lunch-combo. We can specify a lunch-combo directly:

$ lunch x86emu_x86-eng

Or select it from a list in a menu:

$ lunch

You're building on Linux

Lunch menu... pick a combo:
 1. aosp_arm-eng
 2. aosp_arm64-eng
 3. aosp_mips-eng
 4. aosp_mips64-eng
 5. aosp_x86-eng
 6. aosp_x86_64-eng
 7. x86emu_x86-eng
 8. x86emu_x86-userdebug
 9. x86emu_x86-user

Which would you like? [aosp_arm-eng] 7

==
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=7.1.1
TARGET_PRODUCT=x86emu_x86
TARGET_BUILD_VARIANT=eng
TARGET_BUILD_TYPE=release
TARGET_BUILD_APPS=
TARGET_ARCH=x86
TARGET_ARCH_VARIANT=x86
TARGET_CPU_VARIANT=
TARGET_2ND_ARCH=
TARGET_2ND_ARCH_VARIANT=
TARGET_2ND_CPU_VARIANT=
HOST_ARCH=x86_64
HOST_2ND_ARCH=x86
HOST_OS=linux
HOST_OS_EXTRA=Linux-4.2.0-27-generic-x86_64-with-Ubuntu-14.04-trusty
HOST_CROSS_OS=windows

Customizing the Android Emulator

[103]

HOST_CROSS_ARCH=x86
HOST_CROSS_2ND_ARCH=x86_64
HOST_BUILD_TYPE=release
BUILD_ID=NMF26O
OUT_DIR=out
==

We learnt this in Chapter 2, Setting Up the Development Environment, when we built the
Android emulator image. You may notice that the difference here in the menu items is that
the menu includes the device configurations added by us in this chapter.

The lunch-combo that we select here is x86emu_x86-eng. We can start to build the target
now using the following command:

$ make -j4

Or:

$ m -j4

The -j4 option is used to specify the number of concurrent make sessions. It is related to
the number of CPU cores that you have on your system, for example, you may choose -j8
in a more powerful hardware platform. The m command is available after we execute
source build/envsetup.sh. It is equivalent to croot; make -j4.

If you want to see the actual commands in the build, you can use the showcommands option
on the command line:

$ make -j4 showcommands

You may use other frequently used build targets. Here is a list of them that you may refer to
in your build:

make sdk: Build the tools that are part of an SDK (adb, fastboot, and so on).
make snod: Build the system image from the current software binaries.
make all: Make everything, whether it is included in the product definition or
not.
make clean: Remove all built files (prepare for a new build). It is the same as rm
-rf out/<configuration>/.
make modules: Shows a list of submodules that can be built (a list of all
LOCAL_MODULE definitions).
make <local_module>: Make a specific module (note that this is not the same
as the directory name. It is the LOCAL_MODULE definition in the Android.mk file).

Customizing the Android Emulator

[104]

make clean-<local_module>: Clean a specific module.
make bootimage TARGET_PREBUILT_KERNEL=/path/to/bzImage: Create a
new boot image with custom bzImage.
make recoveryimage: Make the recovery in bootable/recovery/.

Besides the build targets, there are some helper macros and functions that are installed
when you source envsetup.sh. You can find out what they are by using the
hmm command:

$ hmm
Invoke ". build/envsetup.sh" from your shell to add the following functions
to your environment:
- lunch: lunch <product_name>-<build_variant>
- tapas: tapas [<App1> <App2> ...]
[arm|x86|mips|armv5|arm64|x86_64|mips64] [eng|userdebug|user]
- croot: Changes directory to the top of the tree.
- m: Makes from the top of the tree.
- mm: Builds all of the modules in the current directory, but not
their dependencies.
- mmm: Builds all of the modules in the supplied directories, but not
their dependencies.
 To limit the modules being built use the syntax: mmm
dir/:target1,target2.
- mma: Builds all of the modules in the current directory, and their
dependencies.
- mmma: Builds all of the modules in the supplied directories, and their
dependencies.
- cgrep: Greps on all local C/C++ files.
- ggrep: Greps on all local Gradle files.
- jgrep: Greps on all local Java files.
- resgrep: Greps on all local res/*.xml files.
- mangrep: Greps on all local AndroidManifest.xml files.
- sepgrep: Greps on all local sepolicy files.
- sgrep: Greps on all local source files.
- godir: Go to the directory containing a file.

Environemnt options:
- SANITIZE_HOST: Set to 'true' to use ASAN for all host modules. Note that
 ASAN_OPTIONS=detect_leaks=0 will be set by default until
 the build is leak-check clean.

Look at the source to view more functions. The complete list is:
addcompletions add_lunch_combo cgrep check_product check_variant
choosecombo chooseproduct choosetype choosevariant core coredump_enable
coredump_setup cproj croot findmakefile get_abs_build_var getbugreports
get_build_var getdriver getlastscreenshot get_make_command getprebuilt

Customizing the Android Emulator

[105]

getscreenshotpath getsdcardpath gettargetarch gettop ggrep godir hmm is
isviewserverstarted jgrep key_back key_home key_menu lunch _lunch m make
mangrep mgrep mm mma mmm mmma pez pid printconfig print_lunch_menu qpid
rcgrep resgrep runhat runtest sepgrep set_java_home setpaths
set_sequence_number set_stuff_for_environment settitle sgrep smoketest
stacks startviewserver stopviewserver systemstack tapas tracedmdump
treegrep

After we build the target successfully, we can find the images at
out/target/product/x86emu in our case. We can also use the environment variable
$OUT as follows to list the build output:

$ ls -F $OUT
Android-info.txt dex_bootjars/ ramdisk.img symbols/
boot.img gen/ ramdisk-recovery.img system/
cache/ installed-files.txt recovery/
system.img
cache.img kernel recovery.id
userdata.img
clean_steps.mk obj/ recovery.img
data/ previous_build_config.mk root/

Testing x86emu
To test x86emu, we can use the AVD a25x86 that we created in Chapter 2, Setting Up the
Development Environment. To use our own system images, we can create a shell script
~/bin/test-ch04.sh as follows:

#!/bin/sh

emulator @a25x86 -verbose -show-kernel -shell -selinux disabled -system
${OUT}/system.img -ramdisk ${OUT}/ramdisk.img -initdata ${OUT}/userdata.img
-kernel ${OUT}/kernel

You can see from the preceding shell script that the images for x86emu are used to start the
AVD a25x86. You need to set your Android SDK path so you can use the emulator from
Android SDK:

$ test-ch04.sh

Customizing the Android Emulator

[106]

After you start the emulator, you can go to Settings | About phone to check the build
information, as shown in the following screenshot:

x86emu build information

We can see from About phone that Model is x86emu_android-7.1.1_r4_ch04, which we
specified in the product definition Makefile x86emu_x86.mk. Kernel version is 3.10.0 and
Build number is the build target x86emu_x86-eng.

If you want to test the images in this chapter without setting up your own build, you can
download the images from SourceForge at h t t p s ://s o u r c e f o r g e . n e t /p r o j e c t s /A n d r o i d -

s y s t e m - p r o g r a m m i n g /f i l e s /a n d r o i d - 7/c h 04/.

https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/
https://sourceforge.net/projects/Android-system-programming/files/android-7/ch04/

Customizing the Android Emulator

[107]

Integrating with Eclipse
You may use an Integrated Development Environment (IDE) for your development work.
It is possible to integrate the AOSP build environment and selected projects into your
favorite IDE. Here, I will use Eclipse as an example to explain how to integrate our projects
and AOSP build environment in Eclipse. Be aware that since AOSP can only be built in the
Linux environment, this can only work for Linux as well.

Even though Android Studio is the default IDE for Android application development, I
prefer Eclipse for Android system programming. With Eclipse, we can build both native
and Java applications. We can also integrate AOSP builds in Eclipse projects.

To set up the Eclipse environment, you can use the latest Eclipse with ADT plugin or you
can download an old ADT bundle from Google.

For Linux x86 or x86_64:

http://dl.google.com/Android/adt/adt-bundle-linux-x86_64-20140702.zip

http://dl.google.com/Android/adt/adt-bundle-linux-x86-20140702.zip

To use Eclipse, we need to create a Makefile for our x86emu device build as follows:

all:
 cd ../../..;make -j8 showcommands 2>&1 | tee x86emu-`date +%Y%m%d`.txt

x86emu:
 cd ../../..;make -j4

snod:
 cd ../../..;make snod

initrd:
 cd ../../..;make initrd USE_SQUASHFS=0

ramdisk:
 cd ../../..;make -j4

clean-ramdisk:
 rm ${OUT}/ramdisk.img
 rm -rf ${OUT}/root

clean-initrd:
 rm ${OUT}/initrd.img
 rm -rf ${OUT}/installer

http://dl.google.com/Android/adt/adt-bundle-linux-x86_64-20140702.zip
http://dl.google.com/Android/adt/adt-bundle-linux-x86-20140702.zip

Customizing the Android Emulator

[108]

We need to define a few build targets that can be used in Eclipse. Let's see how to import an
x86emu device build into the Eclipse project. We will use Eclipse from the ADT bundle to
explain the process. To integrate the AOSP build with Eclipse, we must launch Eclipse in
the AOSP build environment. Let's start Eclipse as follows:

$ source build/envsetup.sh
$ lunch x86emu_x86-eng
${SDK_ROOT}/eclipse/eclipse

After we have installed the ADT bundle, we can find Eclipse in the preceding directory
under the SDK installation path. After we launch Eclipse, select the C/C++ Perspective, as
shown in the following screenshot:

Select the C/C++ perspective

Customizing the Android Emulator

[109]

We can import the x86emu directory as an existing Makefile project to Eclipse by selecting
File | Import... | Existing Code as Makefile Project, as shown in the following screenshot:

Importing existing code as a Makefile project

Customizing the Android Emulator

[110]

Click on Next and navigate to the $AOSP/device/generic/x86emu folder to import the
source code, as shown in the following screenshot:

Import existing code

Customizing the Android Emulator

[111]

Once we import the project, we should be able to see that all files under the x86emu folder
are shown on the right-hand side in Project Explorer, as we can see in the following
screenshot. Then we can click the right mouse button to see the menu list for the project and
select Make Targets | Create... | Create Make Target. We can add the build target that we
defined in the Makefile in the Target name field. If we define the default build target all,
the default build in Eclipse will trigger the build target all in our Makefile. This is what
we defined for build target all:

all:
 cd ../../..;make -j8 showcommands 2>&1 | tee x86emu-`date +%Y%m%d`.txt

What we do here is launch the AOSP build at the AOSP root directory. We also generate a
log file for the build using a naming convention, x86emu-{$DATE}.txt, and you can find
this log file at the AOSP root folder after the build is completed.

Creating a Make Target in Eclipse

After we create all build targets, we can build AOSP from Eclipse by selecting Project |
Build All or use the shortcut Ctrl + B to launch the build.

Customizing the Android Emulator

[112]

Summary
In this chapter, we learnt how to create a new device based on the Android emulator build
for Intel x86 architecture. We explained the different build layers in the AOSP built system
and how these build layers associate with Makefiles for a device. After that, we build and
tested the new x86emu device. Finally, to improve the efficiency of development work, we
integrated the AOSP build in Eclipse. In the next chapter, we will extend Android emulator
to support ARM binary translation using the x86emu device.

5
Enabling the ARM Translator

and Introducing Native Bridge
We created a new x86emu device in the last chapter. This is the foundation of further
customization and extension. As we know, if the application includes native libraries,
it cannot run on a different processor architecture. Most Android applications are built for
the ARM platform. We usually have problems with running these applications with ARM
native libraries on Intel x86 platform. However, Google provides a solution for this situation
from Android 5 and above called Native Bridge. We will delve into the Native Bridge and
Intel Houdini implementation to extend x86emu to support the ARM native application in
this chapter. In this chapter, we will cover the following topics:

Introducing Native Bridge
Integrating the Houdini library to the x86emu device
Building and testing the image with Houdini integration

Introducing Native Bridge
Native Bridge is implemented as a part of Android Runtime (ART) in the Android
architecture. It is used to support running native libraries in a different processor
architecture so that an application with native libraries can run on a broader range of
devices. The Intel ARM translator called Houdini is one of the use cases of Native Bridge. In
ART, there are two stages for the Native Bridge to be initialized:

In the first stage, the Native Bridge is loaded in the system as part of the ART1.
initialization process. This is common for all applications.

Enabling the ARM Translator and Introducing Native Bridge

[114]

In the second stage, when an application with native libraries is started, it will be2.
forked from Zygote. At this time, the Native Bridge will be initialized and ready
to be used for the application. This is a process that is specific for individual
applications. For example, if there are no native libraries being used, Native
Bridge won't be initialized for this application.

Zygote
Android at its core has a process they call the Zygote, which starts up at
init. This process is a "warmed-up" process, which means it's a process
that's been initialized and has all the core libraries linked in. When you
start an application, the Zygote is forked to create the new process. The
real speedup is achieved by not copying the shared libraries. This memory
will only be copied if the new process tries to modify it. This means that
all of the core libraries can exist in a single place because they are read-
only.

When the application starts to load a native library from a different processor architecture,
the Native Bridge will help to resolve the loading of this library. For example, when we load
an ARM library on Intel the x86 architecture, the Native Bridge will use Houdini to load
and execute this ARM library in the Intel x86 environment.

Native Bridge in Android architecture

Enabling the ARM Translator and Introducing Native Bridge

[115]

Native Bridge is built as a libnativebridge.so shared library as part of the Android
system libraries, as shown in the preceding diagram. The implementation can be found at
$AOSP/system/core/libnativebridge. Within the Native Bridge implementation, it has
five states defined in native_bridge.cc, as follows:

enum class NativeBridgeState {
 kNotSetup, // Initial state.
 kOpened, // After successful dlopen.
 kPreInitialized, // After successful pre-initialization.
 kInitialized, // After successful initialization.
 kClosed // Closed or errors.
};

When the Android system has just started, Native Bridge is in a kNotSetup state. During
the initialization of ART, it will be loaded into the system and the stage changes to
kOpened.

These two states are in the first stage of the Native Bridge initialization. When the user
starts an application with native libraries, the system will fork a new process from Zygote.
At this time, the system will do some pre-initialization work for Native Bridge, and we will
see this later in this chapter. The state changes to kPreInitialized at this time. After the
process is forked from Zygote, Native Bridge is initialized as part of the process creation
and its state becomes kInitialized. The kClosed state is usually not used unless there is
an error and Native Bridge is closed. These three states fall into the second stage of the
Native Bridge initialization.

With the overview about Native Bridge in Android system architecture, we will have to
delve into the details of each stage about Native Bridge used at runtime.

Enabling the ARM Translator and Introducing Native Bridge

[116]

Setting up Native Bridge as part of the ART
initialization
First of all, let's take a look at how Native Bridge is loaded in the system. Native Bridge is
loaded as part of the initialization of ART. As shown in the following diagram, it includes
function calls from ART to the Native Bridge implementation. At the end of this stage, the
state of Native Bridge will be set to kOpened.

Loading Native Bridge

When the system is initializing ART, the Runtime::Init function is called. Inside
Runtime::Init, a LoadNativeBridge function is invoked to load the Native Bridge
shared library. We can see this in the following code snippet:

bool Runtime::Init(const RuntimeOptions& raw_options, bool
ignore_unrecognized) {
 ATRACE_BEGIN("Runtime::Init");
 CHECK_EQ(sysconf(_SC_PAGE_SIZE), kPageSize);
 ...
 std::string native_bridge_file_name =
 runtime_options.ReleaseOrDefault(Opt::NativeBridge);
 is_native_bridge_loaded_ =
 LoadNativeBridge(native_bridge_file_name);
 ...
}

Enabling the ARM Translator and Introducing Native Bridge

[117]

This LoadNativeBridge function is part of ART and it is implemented in the
native_bridge_art_interface.cc file, as shown in the following snippet. This function
simply calls to another function, android::LoadNativeBridge, in the namespace
android, while it itself is in the namespace of art. The functions in the namespace of
android are part of the Native Bridge implementation, as shown in the preceding diagram,
and we will see more of this later in this chapter. We can see the implementation of
LoadNativeBridge in the following code snippet:

static android::NativeBridgeRuntimeCallbacks native_bridge_art_callbacks_ {
 GetMethodShorty, GetNativeMethodCount, GetNativeMethods
};

bool LoadNativeBridge(std::string& native_bridge_library_filename) {
 VLOG(startup) << "Runtime::Setup native bridge library: "
 << (native_bridge_library_filename.empty() ? "(empty)" :
 native_bridge_library_filename);
 return android::LoadNativeBridge(native_bridge_library_filename.c_str(),
 &native_bridge_art_callbacks_);
}

The android::LoadNativeBridge function in the android namespace has an extra
native_bridge_art_callbacks parameter compared to the art:LoadNativeBridge
function in the art namespace. The type of this parameter is a pointer of struct
NativeBridgeRuntimeCallbacks, which is defined in native_bridge.h. In struct
NativeBridgeRuntimeCallbacks, it defines three callback methods as follows:

// Runtime interfaces to native bridge.
struct NativeBridgeRuntimeCallbacks {
 // Get shorty of a Java method. The shorty is supposed to be
 persistent in
 // memory.
 //
 // Parameters:
 // env [IN] pointer to JNIenv.
 // mid [IN] Java methodID.
 // Returns:
 // short descriptor for method.
 const char* (*getMethodShorty)(JNIEnv* env, jmethodID mid);

 // Get number of native methods for specified class.
 //
 // Parameters:
 // env [IN] pointer to JNIenv.
 // clazz [IN] Java class object.
 // Returns:
 // number of native methods.

Enabling the ARM Translator and Introducing Native Bridge

[118]

 uint32_t (*getNativeMethodCount)(JNIEnv* env, jclass clazz);

 // Get at most 'method_count' native methods for specified class
 'clazz'.
 // Results are outputed
 // via 'methods' [OUT]. The signature pointer in JNINativeMethod is
 reused
 // as the method shorty.
 //
 // Parameters:
 // env [IN] pointer to JNIenv.
 // clazz [IN] Java class object.
 // methods [OUT] array of method with the name, shorty, and fnPtr.
 // method_count [IN] max number of elements in methods.
 // Returns:
 // number of method it actually wrote to methods.
 uint32_t (*getNativeMethods)(JNIEnv* env, jclass clazz,
 JNINativeMethod* methods, uint32_t method_count);
};

These three callback functions that are part of ART are implemented in the
native_bridge_art_interface.cc file. These callback functions provide a way for
native methods to call JNI native functions. We will see how this callback data structure is
passed to the actual Native Bridge implementation later. In our case, the actual
implementation is the Houdini library.

The native_bridge.h file defines another callback function data structure,
NativeBridgeCallbacks, which is used as the Native Bridge interface of its actual
implementation. In our case, this implementation is the Houdini library. The Houdini
library needs to implement these callback functions and pass the pointers to Native Bridge
so that ART can use them. The following figure depicts the relationship between these two
groups of callback functions:

Enabling the ARM Translator and Introducing Native Bridge

[119]

ART, Native Bridge, and Houdini

In the preceding figure, we can see that ART calls Native Bridge functions to load and
initialize the Native Bridge module. The Native Bridge module invokes the callback
functions registered by Houdini to handle all ARM native binary translations. During the
initialization of Native Bridge, NativeBridgeRuntimeCallbacks are passed to the Houdini
library so that the methods in the Houdini library can call JNI native functions.

Now let's take a look at the implementation of android::LoadNativeBridge:

bool LoadNativeBridge(const char* nb_library_filename,
 const NativeBridgeRuntimeCallbacks* runtime_cbs) {

 if (state != NativeBridgeState::kNotSetup) {
 // Setup has been called before. Ignore this call.
 if (nb_library_filename != nullptr) {
 ALOGW("Called LoadNativeBridge for an already set up native
 bridge. State is %s.", GetNativeBridgeStateString(state));
 }
 had_error = true;
 return false;
 }

 if (nb_library_filename == nullptr || *nb_library_filename == 0)
 {
 CloseNativeBridge(false);
 return false;
 } else {
 if (!NativeBridgeNameAcceptable(nb_library_filename)) {
 CloseNativeBridge(true);
 } else {

Enabling the ARM Translator and Introducing Native Bridge

[120]

 // Try to open the library.
 void* handle = dlopen(nb_library_filename, RTLD_LAZY);
 if (handle != nullptr) {
 callbacks =
 reinterpret_cast<NativeBridgeCallbacks*>(dlsym(handle,
 kNativeBridgeInterfaceSymbol));
 if (callbacks != nullptr) {
 if (VersionCheck(callbacks)) {
 // Store the handle for later.
 native_bridge_handle = handle;
 } else {
 callbacks = nullptr;
 dlclose(handle);
 ALOGW("Unsupported native bridge interface.");
 }
 } else {
 dlclose(handle);
 }
 }

 if (callbacks == nullptr) {
 CloseNativeBridge(true);
 } else {
 runtime_callbacks = runtime_cbs;
 state = NativeBridgeState::kOpened;
 }
 }
 return state == NativeBridgeState::kOpened;
 }
}

As we can see from the preceding code snippet, android::LoadNativeBridge checks the
state first. It should be in a kNotSetup state. Otherwise, it will report an error and return.

To be convenient, we will refer to the function in the Android namespace
as LoadNativeBridge instead of android::LoadNativeBridge in the
next few paragraphs. The files that will be discussed can be found at:
$AOSP/art/runtime/runtime.c
$AOSP/art/runtime/native_bridge_art_interface.c
$AOSP/system/core/libnativebridge/native_bridge.cc

After that, it will check whether the first parameter is NULL and the filename is good to use
or not. If everything is good, it will open the library through dlopen using the filename
nb_library_filename.

Enabling the ARM Translator and Introducing Native Bridge

[121]

So what is the content of the nb_library_filename filename? As we can see from the
Runtime::Init function, the first parameter of LoadNativeBridge is initialized using a
Opt::NativeBridge property:

std::string native_bridge_file_name =
runtime_options.ReleaseOrDefault(Opt::NativeBridge);

This property is initialized from the default property ro.dalvik.vm.native.bridge,
which is defined in the default.prop file of the Android system. This is done in the
AndroidRuntime::startVm function, as you can see in the following snippet. This
function is defined in the $AOSP/frameworks/base/core/jni/AndroidRuntime.cpp
file:

int AndroidRuntime::startVm(JavaVM** pJavaVM, JNIEnv** pEnv, bool zygote)
{
...
 // Native bridge library. "0" means that native bridge is disabled.
 property_get("ro.dalvik.vm.native.bridge", propBuf, "");
 if (propBuf[0] == '\0') {
 ALOGW("ro.dalvik.vm.native.bridge is not expected to be
 empty");
 } else if (strcmp(propBuf, "0") != 0) {
 snprintf(nativeBridgeLibrary, sizeof("-XX:NativeBridge=") +
 PROPERTY_VALUE_MAX, "-XX:NativeBridge=%s", propBuf);
 addOption(nativeBridgeLibrary);
 }
...
}

When Native Bridge is enabled, the ro.dalvik.vm.native.bridge property usually
includes a shared library filename. In our case, it is libhoudini.so for Intel devices or
libnb.so for Android-x86. If Native Bridge is disabled, its value is 0. Once the library is
loaded successfully, it will use the kNativeBridgeInterfaceSymbol symbol to get the
memory location and cast the location to a pointer of NativeBridgeCallbacks. This
means that the Houdini library provides an implementation of NativeBridgeCallbacks.
Let's look at what it is inside NativeBridgeCallbacks:

struct NativeBridgeCallbacks {
 uint32_t version;
 bool (*initialize)(const NativeBridgeRuntimeCallbacks*
 runtime_cbs, const char* private_dir, const char*
 instruction_set);
 void* (*loadLibrary)(const char* libpath, int flag);
 void* (*getTrampoline)(void* handle, const char* name, const
 char* shorty, uint32_t len);
 bool (*isSupported)(const char* libpath);

Enabling the ARM Translator and Introducing Native Bridge

[122]

 const struct NativeBridgeRuntimeValues* (*getAppEnv)(const char*
 instruction_set);
 bool (*isCompatibleWith)(uint32_t bridge_version);
 NativeBridgeSignalHandlerFn (*getSignalHandler)(int signal);
};

From the preceding code snippet, we can see that NativeBridgeCallbacks includes a
variable and seven callback functions:

version: This is the version number of the interface. So far, there are two
versions. Version 1 defines the first five callback functions and version 2 adds
another two new functions, which we will see very shortly.
initialize: This function initializes an instance of Native Bridge. Native
Bridge's internal implementation must ensure multithread safety and Native
Bridge is initialized only once.
loadLibrary : This function loads a shared library that is supported by the
Native Bridge.
getTrampoline : This function gets a Native Bridge trampoline for the specified
native method.
isSupported : This function checks whether the instance of Native Bridge is
valid and whether it is for an ABI that is supported by Native Bridge.

In version 2, the following two functions are added:

isCompatibleWith: This function checks whether the bridge is compatible with
the given version of library. A bridge may decide not to be forward- or
backward-compatible, and libnativebridge will then stop using it.
getSignalHandler: A callback function to retrieve a Native Bridge's signal
handler for the specified signal. The runtime will ensure that the signal handler is
being called after the runtime's own handler, but before all chained handlers. The
native bridge should not try to install the handler by itself, as that will potentially
lead to cycles.

Now we have concluded the first stage of the Native Bridge initialization. As we can see
from the preceding lists, Native Bridge is loaded at the startup of ART. At this stage, the
initialization is not process-specific. The library name is defined in the
ro.dalvik.vm.native.bridge property. In our case, ART loads the libhoudini.so
library through the LoadNativeBridge function defined in libnativebridge.so. After
Native Bridge is loaded successfully, the state is set to kOpened.

Enabling the ARM Translator and Introducing Native Bridge

[123]

Pre-initializing Native Bridge
In the second stage of Native Bridge initialization, it becomes process-specific. Native
Bridge can be used by an Android application to load a native library in a different
processor architecture than the current device. The other two states, kPreInitialized and
kInitialized, are related to the creation of Android applications, as we know that all
applications are forked from Zygote in Android. Let's look at the pre-initialization of Native
Bridge first, as shown in the following diagram:

Pre-initialization of Native Bridge

During the creation of an application, the ForkAndSpecializeCommon function is called.
The pre-initialization of Native Bridge is done in this function. This function is defined in
the $AOSP/frameworks/base/core/jni/com_android_internal_os_Zygote.cpp file:

static pid_t ForkAndSpecializeCommon(JNIEnv* env, uid_t uid, gid_t
 gid, jintArray javaGids, jint debug_flags, jobjectArray
 javaRlimits, jlong permittedCapabilities, jlong
 effectiveCapabilities, jint mount_external, jstring
 java_se_info, jstring java_se_name, bool is_system_server,
 jintArray fdsToClose, jstring instructionSet, jstring dataDir) {
 SetSigChldHandler();

#ifdef ENABLE_SCHED_BOOST
 SetForkLoad(true);
#endif
...
 pid_t pid = fork();

 if (pid == 0) {
 // The child process.
...
 bool use_native_bridge = !is_system_server && (instructionSet !=
 NULL) && android::NativeBridgeAvailable();
 if (use_native_bridge) {

Enabling the ARM Translator and Introducing Native Bridge

[124]

 ScopedUtfChars isa_string(env, instructionSet);
 use_native_bridge =
 android::NeedsNativeBridge(isa_string.c_str());
 }
 if (use_native_bridge && dataDir == NULL) {
 use_native_bridge = false;
 ALOGW("Native bridge will not be used because dataDir == NULL.");
 }

 if (!MountEmulatedStorage(uid, mount_external, use_native_bridge)) {
 ALOGW("Failed to mount emulated storage: %s", strerror(errno));
 if (errno == ENOTCONN || errno == EROFS) {
 } else {
 RuntimeAbort(env, __LINE__, "Cannot continue without emulated
 storage");
 }
 }

 if (!is_system_server) {
 int rc = createProcessGroup(uid, getpid());
 if (rc != 0) {
 if (rc == -EROFS) {
 ALOGW("createProcessGroup failed, kernel missing
 CONFIG_CGROUP_CPUACCT?");
 } else {
 ALOGE("createProcessGroup(%d, %d) failed: %s", uid,
 pid, strerror(-rc));
 }
 }
 }

 SetGids(env, javaGids);

 SetRLimits(env, javaRlimits);

 if (use_native_bridge) {
 ScopedUtfChars isa_string(env, instructionSet);
 ScopedUtfChars data_dir(env, dataDir);
 android::PreInitializeNativeBridge(data_dir.c_str(),
 isa_string.c_str());
 }
...
 env->CallStaticVoidMethod(gZygoteClass,
 gCallPostForkChildHooks,
 debug_flags, is_system_server ? NULL : instructionSet);
...
 } else if (pid > 0) {
 // the parent process

Enabling the ARM Translator and Introducing Native Bridge

[125]

#ifdef ENABLE_SCHED_BOOST
 // unset scheduler knob
 SetForkLoad(false);
#endif

 }
 return pid;
}

In this ForkAndSpecializeCommon function, it checks whether the current process is not a
SystemServer process and if the Native Bridge is ready to use. After that, it calls the
NeedsNativeBridge function to check whether the current process needs to use Native
Bridge or not:

bool NeedsNativeBridge(const char* instruction_set) {
 if (instruction_set == nullptr) {
 ALOGE("Null instruction set in NeedsNativeBridge.");
 return false;
 }
 return strncmp(instruction_set, kRuntimeISA,
 strlen(kRuntimeISA) + 1) != 0;
}

The NeedsNativeBridge function compares instruction_set with the current Android
platform instruction set. If these two instruction sets are different, then we need to use
Native Bridge; otherwise, we don't. The NeedsNativeBridge function is implemented in
native_bridge.cc.

If Native Bridge is needed by the application, then PreInitializeNativeBridge, which
is also implemented in native_bridge.cc, is going to be called with two parameters,
app_data_dir_in and instruction_set:

bool PreInitializeNativeBridge(const char* app_data_dir_in,
 const char* instruction_set) {
 if (state != NativeBridgeState::kOpened) {
 ALOGE("Invalid state: native bridge is expected to be opened.");
 CloseNativeBridge(true);
 return false;
 }

 if (app_data_dir_in == nullptr) {
 ALOGE("Application private directory cannot be null.");
 CloseNativeBridge(true);
 return false;
 }

 const size_t len = strlen(app_data_dir_in) +

Enabling the ARM Translator and Introducing Native Bridge

[126]

 strlen(kCodeCacheDir) + 2; // '\0' + '/'
 app_code_cache_dir = new char[len];
 snprintf(app_code_cache_dir, len, "%s/%s", app_data_dir_in,
 kCodeCacheDir);

 state = NativeBridgeState::kPreInitialized;

#ifndef __APPLE__
 if (instruction_set == nullptr) {
 return true;
 }
 size_t isa_len = strlen(instruction_set);
 if (isa_len > 10) {
 ALOGW("Instruction set %s is malformed, must be less than or equal
 to 10 characters.", instruction_set);
 return true;
 }

 char cpuinfo_path[1024];

#if defined(__ANDROID__)
 snprintf(cpuinfo_path, sizeof(cpuinfo_path), "/system/lib"
#ifdef __LP64__
 "64"
#endif // __LP64__
 "/%s/cpuinfo", instruction_set);
#else // !__ANDROID__
 snprintf(cpuinfo_path, sizeof(cpuinfo_path), "./cpuinfo");
#endif

 // Bind-mount.
 if (TEMP_FAILURE_RETRY(mount(cpuinfo_path,
 "/proc/cpuinfo",
 nullptr,
 MS_BIND,
 nullptr)) == -1) {
 ALOGW("Failed to bind-mount %s as /proc/cpuinfo: %s", cpuinfo_path,
 strerror(errno));
 }
#else // __APPLE__
 UNUSED(instruction_set);
 ALOGW("Mac OS does not support bind-mounting. Host simulation of
 native bridge impossible.");
#endif

 return true;
}

Enabling the ARM Translator and Introducing Native Bridge

[127]

From the preceding code snippet, we can see that it will check whether the state is kOpened
or not. Then PreInitializeNativeBridge will do two things. Firstly, it creates a code
cache directory using the first parameter, app_data_dir_in, for Native Bridge in the data
folder of the application. Next, it uses the second parameter, instruction_set, to find the
/system/lib/<isa>/cpuinfo path and it does a bind-mount of it to /proc/cpuinfo. If
Houdini is available in the device, you can find the /system/lib/arm/cpuinfo file in the
system folder. Once the preceding two tasks are completed, the state of Native Bridge will
be set to kPreInitialized.

Initializing Native Bridge
After the state is changed to kPreInitialized, the creation of the new Android
application will continue in the ForkAndSpecializeCommon function. At the end of this
function, it calls a callPostForkChildHooks registered function through a global
variable, gCallPostForkChildHooks. The call stack will eventually go to a
ZygoteHooks_nativePostForkChild function, which is the JNI implementation of the
postForkChild Java method. The postForkChild function is called by Zygote in the
child process after every fork. The following table is a summary of the call stack:

Function Class Language

ForkAndSpecializeCommon C++

gCallPostForkChildHooks C++

callPostForkChildHooks Zygote Java

postForkChild ZygoteHooks Java

ZygoteHooks_nativePostForkChild JNI (postForkChild) C++

The ZygoteHooks_nativePostForkChild function is implemented in the $AOSP/
art/runtime/native/dalvik_system_ZygotHooks.cc file. The DidForkFromZygote
function is implemented in the $AOSP/art/runtime/runtime.cc file.

Enabling the ARM Translator and Introducing Native Bridge

[128]

The following diagram is a summary of functions involved in the second stage of the
initialization of Native Bridge. Be aware that we are in the child process now. We can see
that the Runtime::DidForkFromZygote function in ART will call the following Native
Bridge interface functions: InitializeNativeBridge and SetupEnvironment. The Native
Bridge interface functions will eventually call the registered callback functions in the
Houdini library.

Initialization of Native Bridge

Let's look at the JNI implementation of postForkChild:

static void ZygoteHooks_nativePostForkChild(JNIEnv* env,
 jclass, jlong token, jint debug_flags,
 jstring instruction_set) {
...
 if (instruction_set != nullptr) {
 ScopedUtfChars isa_string(env, instruction_set);
 InstructionSet isa =
 GetInstructionSetFromString(isa_string.c_str());
 Runtime::NativeBridgeAction action =
 Runtime::NativeBridgeAction::kUnload;
 if (isa != kNone && isa != kRuntimeISA) {
 action = Runtime::NativeBridgeAction::kInitialize;
 }
 Runtime::Current()->DidForkFromZygote(env, action,
 isa_string.c_str());

Enabling the ARM Translator and Introducing Native Bridge

[129]

 } else {
 Runtime::Current()->DidForkFromZygote(env,
 Runtime::NativeBridgeAction::kUnload, nullptr);
 }
}

Here, it checks the instruction set again to decide whether we need Native Bridge for the
application. Then it calls the Runtime::DidForkFromZygote function to initialize Native
Bridge in the new process:

void Runtime::DidForkFromZygote(JNIEnv* env,
 NativeBridgeAction action, const char* isa) {
 is_zygote_ = false;

 if (is_native_bridge_loaded_) {
 switch (action) {
 case NativeBridgeAction::kUnload:
 UnloadNativeBridge();
 is_native_bridge_loaded_ = false;
 break;

 case NativeBridgeAction::kInitialize:
 InitializeNativeBridge(env, isa);
 break;
 }
 }
...
}

As we can see, Runtime::DidForkFromZygote calls the InitializeNativeBridge
based on the action. Now let's dive into the InitializeNativeBridge function, which is
implemented in native_bridge.cc:

bool InitializeNativeBridge(JNIEnv* env,
 const char* instruction_set) {

 if (state == NativeBridgeState::kPreInitialized) {
 // Check for code cache: if it doesn't exist try to create it.
 struct stat st;
 if (stat(app_code_cache_dir, &st) == -1) {
 if (errno == ENOENT) {
 if (mkdir(app_code_cache_dir, S_IRWXU | S_IRWXG | S_IXOTH)
 == -1) {
 ALOGW("Cannot create code cache directory %s: %s.",
 app_code_cache_dir, strerror(errno));
 ReleaseAppCodeCacheDir();
 }

Enabling the ARM Translator and Introducing Native Bridge

[130]

 } else {
 ALOGW("Cannot stat code cache directory %s: %s.",
 app_code_cache_dir, strerror(errno));
 ReleaseAppCodeCacheDir();
 }
 } else if (!S_ISDIR(st.st_mode)) {
 ALOGW("Code cache is not a directory %s.", app_code_cache_dir);
 ReleaseAppCodeCacheDir();
 }

 if (state == NativeBridgeState::kPreInitialized) {
 if (callbacks->initialize(runtime_callbacks, app_code_cache_dir,
 instruction_set)) {
 SetupEnvironment(callbacks, env, instruction_set);
 state = NativeBridgeState::kInitialized;
 ReleaseAppCodeCacheDir();
 } else {
 // Unload the library.
 dlclose(native_bridge_handle);
 CloseNativeBridge(true);
 }
 }
 } else {
 CloseNativeBridge(true);
 }

 return state == NativeBridgeState::kInitialized;
}

In the InitializeNativeBridge function, it creates the folder for the code cache first.
Then, it invokes the initialize function, implemented by the Houdini library in our case.

The shared library is libhoudini.so in Intel devices. If you run Android-
x86 on an Intel device, the shared library is libnb.so. We will discuss
libnb.so later in this chapter.

After that, it calls another SetupEnvironment function in native_bridge.cc to set up
the environment for the Native Bridge in the current application. Finally, it sets the state to
kInitialized. Now Native Bridge is ready for the current application to use.

Loading a native library
Once Native Bridge is ready to use, we can have a look at what happens when an
application loads a native library in a different processor architecture.

Enabling the ARM Translator and Introducing Native Bridge

[131]

We know that, if we implement a native method in a shared library, we need to implement
a JNI_OnLoad entry point, which is used to register native methods. The Java code needs to
make a call to either System.load or System.loadLibrary to load this shared library. In
the following table, it is the call stack from System.loadLibrary to JNI_OnLoad:

Function Class Language

System.loadLibrary Runtime Java

doLoad Runtime Java

nativeLoad Runtime JNI

Runtime_nativeLoad Runtime C++

LoadNativeLibrary JavaVMExt C++

JNI_OnLoad C++

Let's look into the details of JavaVMExt::LoadNativeLibrary. This function is defined in
$AOSP/art/runtime/jni_internal.cc. The following diagram is the part
of JavaVMExt::LoadNativeLibrary related to Native Bridge:

Loading native library

Enabling the ARM Translator and Introducing Native Bridge

[132]

Android applications call to this function when they load native libraries. Usually, we refer
to the native library in the same processor architecture here. With Native Bridge, we can
load supported native libraries in a different processor architecture with this function as
well:

bool JavaVMExt::LoadNativeLibrary(JNIEnv* env,
 const std::string& path, jobject class_loader,
 std::string* error_msg) {
...
 const char* path_str = path.empty() ? nullptr : path.c_str();
 void* handle = dlopen(path_str, RTLD_NOW);
 bool needs_native_bridge = false;
 if (handle == nullptr) {
 if (android::NativeBridgeIsSupported(path_str)) {
 handle = android::NativeBridgeLoadLibrary(path_str, RTLD_NOW);
 needs_native_bridge = true;
 }
 }
...
 bool was_successful = false;
 void* sym;
 if (needs_native_bridge) {
 library->SetNeedsNativeBridge();
 sym = library->FindSymbolWithNativeBridge("JNI_OnLoad", nullptr);
 } else {
 sym = dlsym(handle, "JNI_OnLoad");
 }
...
 typedef int (*JNI_OnLoadFn)(JavaVM*, void*);
 JNI_OnLoadFn jni_on_load = reinterpret_cast<JNI_OnLoadFn>(sym);
 int version = (*jni_on_load)(this, nullptr);
...
}

The LoadNativeLibrary function will call to dlopen to load the shared library first. If it is
a shared library in a different processor architecture, such as an open ARM library on an
Intel x86 platform, the dlopen call should fail. In this case, it will try to load the library
again using Native Bridge instead of returning an error.

To use Native Bridge, it calls to the NativeBridgeIsSupported function first to check
whether Native Bridge is supported or not. The NativeBridgeIsSupported function calls
to the Houdini callback function, isSupported, to check whether the given shared library
can be supported by Native Bridge or not:

bool NativeBridgeIsSupported(const char* libpath) {
 if (NativeBridgeInitialized()) {

Enabling the ARM Translator and Introducing Native Bridge

[133]

 return callbacks->isSupported(libpath);
 }
 return false;
}

If the library can be supported by Native Bridge, LoadNativeLibrary will call another
Native Bridge function, android::NativeBridgeLoadLibrary, to load the library:

void* NativeBridgeLoadLibrary(const char* libpath, int flag) {
 if (NativeBridgeInitialized()) {
 return callbacks->loadLibrary(libpath, flag);
 }
 return nullptr;
}

The Native Bridge NativeBridgeLoadLibrary function will make a call to the Houdini
callback function loadLibrary to load the library. After the native library is loaded
successfully, the JNI_OnLoad entry point will be found in the library and the system will
call it to register the native methods registered by the native library. For a normal native
library, the system function dlsym is used to get the JNI_OnLoad method, but the
FindSymbolWithNativeBridge function is used to get JNI_OnLoad from the Houdini
library:

void* FindSymbolWithNativeBridge(const std::string& symbol_name,
const char* shorty) {
 CHECK(NeedsNativeBridge());

 uint32_t len = 0;
 return android::NativeBridgeGetTrampoline(handle_,
 symbol_name.c_str(), shorty, len);
}

FindSymbolWithNativeBridge calls to the NativeBridgeGetTrampoline Native
Bridge function, while NativeBridgeGetTrampoline calls to the getTrampoline
Houdini callback function to do the actual work:

void* NativeBridgeGetTrampoline(void* handle, const char* name,
const char* shorty, uint32_t len) {
 if (NativeBridgeInitialized()) {
 return callbacks->getTrampoline(handle, name, shorty, len);
 }
 return nullptr;
}

Enabling the ARM Translator and Introducing Native Bridge

[134]

From the preceding analysis, we can see that the ARM translator library Houdini uses the
Native Bridge in Android to support ARM binary translation. The interfaces between the
Houdini library and the system are two sets of callback functions. The callback functions
defined in NativeBridgeCallbacks are used by the system to perform the function calls
to the ARM native library, while the callback functions defined in
NativeBridgeRuntimeCallbacks can be used by the functions in the Houdini library to
call JNI functions in the system.

Integrating Houdini to the x86emu device
The goal of this chapter is to support Houdini ARM binary translation in Android emulator.
After we have an overview of the internals of Native Bridge, which is the foundation of the
Houdini library, we can work on Houdini support for our x86emu device.

Since the Houdini library is an Intel proprietary library, it is not available publicly. For
those people who want to add Houdini to a new device, such as an Android emulator that
is not supported by Intel, the only possible way is to copy the Houdini library from a
supported device and add it to the unsupported device.

Fortunately, the open source project Android-x86 provides basic support for Houdini to any
Intel devices, which we can use as a reference in this book. In this chapter, we will add
Houdini to an Android emulator based on the Android-x86 project.

Changing the configuration of the x86emu build
The basic steps to support Houdini on a new device are:

Change the device configurations according to what we have discussed in
Chapter 4, Customizing the Android Emulator, in the Why customize the Android
emulator? section
Copy a suitable version of the Houdini library to the system folder

To work on the preceding two steps, let's start with the changes to the x86emu device
configurations first. What we will do for this is that we will use the source code in Chapter
4, Customizing the Android Emulator as the baseline and make changes on top of it. This is
also the approach that we will use in most of the chapters in this book. We will make
independent changes based on the simplest code base for each topic. What I mean is that
the source code for x86emu in Chapter 4, Customizing the Android Emulator is the simplest
code base for the x86emu device.

Enabling the ARM Translator and Introducing Native Bridge

[135]

Given that we already have a working copy of the AOSP source code for x86emu, we can
make changes for this chapter in a new branch:

$ cd device/generic/x86emu
$ git checkout android-7.1.1_r4_x86emu_ch04_r1
$ git branch android-7.1.1_r4_ch05
$ git checkout android-7.1.1_r4_ch05

I created a tag for each chapter and we can use that as the start for the new development.
The android-7.1.1_r4_x86emu_ch04_r1 tag is the baseline for Chapter 4, Customizing
the Android Emulator. From the preceding commands, we create a new branch,
android-7.1.1_r4_ch05, for the development work in this chapter. I didn't push the
development branches to GitHub, but I pushed all the tags to GitHub. After we complete all
the changes in this chapter, we will create a new tag,
android-7.1.1_r4_x86emu_ch05_r1, for this chapter.

After we make all the changes, we also need to update the manifest file so that we can have
a manifest to download the code for this chapter. Instead of using tags, I use branches to
manage manifests. The branch for this chapter's manifests is
android-7.1.1_r4_ch05_aosp. We can use the following command to download the
source code of:

$ repo init -u https://github.com/shugaoye/manifests -b
android-7.1.1_r4_ch05_aosp
$ repo sync

If you set up the local mirror as we discussed in Chapter 2, Setting Up the Development
Environment, you can check out the source code as follows:

$ repo init -u {your local mirror}/github/manifests.git -b
android-7.1.1_r4_ch05
$ repo sync

You need to create an android-7.1.1_r4_ch05 branch for your own local mirror
referring to the android-7.1.1_r4_ch05_aosp branch.

After we create a working copy of the source code using the preceding manifest, we can
look at the .repo/manifest.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<manifest>

 <remote name="github"
 fetch="." />

 <remote name="aosp"

Enabling the ARM Translator and Introducing Native Bridge

[136]

 fetch="https://android.googlesource.com/" />
 <default revision="refs/tags/android-7.1.1_r4"
 remote="aosp"
 sync-c="true"
 sync-j="1" />

 <!-- github/shugaoye -->
 <project path="kernel" name="goldfish" remote="github"
 revision="refs/tags/android-7.1.1_r4_x86emu_ch05_r1" />
 <project path="device/generic/common" name="device_generic_common"
 groups="pdk"
 remote="github" revision="refs/tags/android-7.1.1_r4_x86emu_ch05_r1" />
 <project path="device/generic/goldfish"
 name="device_generic_goldfish"
 remote="github" groups="pdk" revision="refs/tags/android-
 7.1.1_r4_x86emu_ch05_r1" />
 <project path="device/generic/x86emu" name="x86emu" remote="github"
 revision="refs/tags/android-7.1.1_r4_x86emu_ch05_r1" />

 <!-- aosp -->
 <project path="build" name="platform/build" groups="pdk,tradefed" >
 <copyfile src="core/root.mk" dest="Makefile" />
...
</manifest>

In the preceding manifest file, we use the android-7.1.1_r4_x86emu_ch05_r1 tag to tag
all projects that are not in AOSP projects. The device/generic/common project is
duplicated from Android-x86 and the device/generic/goldfish project is duplicated
from AOSP. Besides kernel and device/generic/x86emu, these are the two projects that
we need to change in this chapter.

Extending the x86emu device
Once we have done all the changes for the source code configuration, we can start to extend
the x86emu device to support Houdini now. What are the changes that we have to make?
Since I have done all the changes before I explained them here, let's use a tool to compare
the difference between the source code in Chapter 4, Customizing the Android Emulator and
this chapter's code.

Enabling the ARM Translator and Introducing Native Bridge

[137]

Changes to support Houdini

As we can see in the preceding screenshot, we added a system folder and we modified four
Makefiles. We can ignore the x86emu_x86_64.mk Makefile, since we won't discuss 64-bit
builds in this book. The changes to x86emu_x86_64.mk are similar to those for
x86emu_x86.mk, so we save ourselves the effort of discussing similar things twice. It won't
be a significant effort for you to enable a 64-bit build for x86emu by yourself. The other two
files, .cproject and .project, are generated due to Eclipse integration and we can ignore
them too. Let's look at BoardConfig.mk, x86emu_x86.mk, and device.mk one by one.

Changes to BoardConfig.mk
In the board configuration file, we need to add an ARM instruction set to the CPU ABI list
so that the program can detect support for the ARM instruction set as follows:

...
houdini
Native Bridge ABI List
NATIVE_BRIDGE_ABI_LIST_32_BIT := armeabi-v7a armeabi
NATIVE_BRIDGE_ABI_LIST_64_BIT := arm64-v8a
TARGET_CPU_ABI_LIST_32_BIT := $(TARGET_CPU_ABI) $(TARGET_CPU_ABI2)
$(NATIVE_BRIDGE_ABI_LIST_32_BIT)
TARGET_CPU_ABI_LIST := $(TARGET_CPU_ABI_LIST_32_BIT)

BUILD_ARM_FOR_X86 := $(WITH_NATIVE_BRIDGE)
...

You may have noticed the BUILD_ARM_FOR_X86 macro. This macro is used by Android-x86
Houdini support and we will discuss it later.

Enabling the ARM Translator and Introducing Native Bridge

[138]

Changes to x86emu_x86.mk
In the product definition Makefile, x86emu_x86.mk, we set the
persist.sys.nativebridge property to 1. Then we copy all files under the
$AOSP/device/generic/x86emu/system folder to the $OUT/system image. All the files
under the $AOSP/device/generic/x86emu/system/lib/arm folder are a copy of the
Houdini libraries:

...
PRODUCT_PROPERTY_OVERRIDES := \
 persist.sys.nativebridge=1 \

NB_PATH := $(LOCAL_PATH)
NB_LIB_PATH := system/lib
NB_ARM_PATH := $(NB_LIB_PATH)/arm
NB_NBLIB_PATH := $(NB_ARM_PATH)/nb
NB_BIN_PATH := system/bin

PRODUCT_COPY_FILES += $(foreach LIB, $(filter-out nb liblog_legacy.so
libbinder_legacy.so,\
 $(notdir $(wildcard $(NB_PATH)/$(NB_ARM_PATH)/*))),
$(NB_PATH)/$(NB_ARM_PATH)/$(LIB):$(NB_ARM_PATH)/$(LIB):intel)
PRODUCT_COPY_FILES += $(foreach NB, $(filter-out libbinder_legacy.so,
$(notdir $(wildcard $(NB_PATH)/$(NB_NBLIB_PATH)/*))),\
 $(NB_PATH)/$(NB_NBLIB_PATH)/$(NB):$(NB_NBLIB_PATH)/$(NB):intel)
...

Changes to device.mk
In the device Makefile device.mk, we only added one line to include another Makefile,
nativebridge.mk, in the device/generic/common/nativebridge directory. As we
discussed in the section on source configuration, we use the one from Android-x86 to
support Houdini integration. We will analyze the nativebridge.mk Makefile in the next
section:

...
Get native bridge settings
$(call inherit-product-if-
exists,device/generic/common/nativebridge/nativebridge.mk)
...

Enabling the ARM Translator and Introducing Native Bridge

[139]

Using the Android-x86 implementation
Since we use Houdini support from the Android-x86 project, we can see that we only need
to make very minor changes to the x86emu Makefiles.

Now let's look at nativebridge.mk in Android-x86:

Enable native bridge
WITH_NATIVE_BRIDGE := true

Native Bridge ABI List
NATIVE_BRIDGE_ABI_LIST_32_BIT := armeabi-v7a armeabi
NATIVE_BRIDGE_ABI_LIST_64_BIT := arm64-v8a

LOCAL_SRC_FILES := bin/enable_nativebridge

PRODUCT_COPY_FILES := $(foreach
f,$(LOCAL_SRC_FILES),$(LOCAL_PATH)/$(f):system/$(f))

PRODUCT_PROPERTY_OVERRIDES := \
 ro.dalvik.vm.isa.arm=x86 \
 ro.enable.native.bridge.exec=1 \

ifeq ($(TARGET_SUPPORTS_64_BIT_APPS),true)
PRODUCT_PROPERTY_OVERRIDES += \
 ro.dalvik.vm.isa.arm64=x86_64 \
 ro.enable.native.bridge.exec64=1
endif

PRODUCT_DEFAULT_PROPERTY_OVERRIDES := ro.dalvik.vm.native.bridge=libnb.so

PRODUCT_PACKAGES := libnb

$(call inherit-product-if-exists,vendor/intel/houdini/houdini.mk)

nativebridge.mk copies an enable_nativebridge script to the system folder first.
After that, it sets the ro.dalvik.vm.isa.arm and ro.enable.native.bridge.exec
properties. These two properties will be added to system/build.prop in the system
image. It also sets the default property ro.dalvik.vm.native.bridge to libnb.so. This
property is used by ART to find the Houdini library. Android-x86 uses the libnb.so
library instead of libhoudini.so, which all supported Intel devices use. The libnb.so
library is a wrapper of libhoudini.so. Since we use libnb.so as the ARM binary
translation library, we need to add this package to the build.

Enabling the ARM Translator and Introducing Native Bridge

[140]

Analyzing libnb.so
Since the libnb.so library is the key starting point for Native Bridge support in Android-
x86, we will dive into the details of it now. The Makefile to build libnb.so can be found at
device/generic/common/nativebridge/Android.mk. The source code for libnb.so
includes only one file, libnb.cpp, as follows:

#define LOG_TAG "libnb"

#include <dlfcn.h>
#include <cutils/log.h>
#include <cutils/properties.h>
#include "nativebridge/native_bridge.h"

namespace android {

static void *native_handle = nullptr;

static NativeBridgeCallbacks *get_callbacks()
{
 static NativeBridgeCallbacks *callbacks = nullptr;

 if (!callbacks) {
 const char *libnb = "/system/"
 #ifdef __LP64__
 "lib64/arm64/"
 #else
 "lib/arm/"
 #endif
 "libhoudini.so";
 if (!native_handle) {
 native_handle = dlopen(libnb, RTLD_LAZY);
 if (!native_handle) {
 ALOGE("Unable to open %s", libnb);
 return nullptr;
 }
 }
 callbacks = reinterpret_cast<NativeBridgeCallbacks *>
 (dlsym(native_handle, "NativeBridgeItf"));
 }
 return callbacks;
}

// NativeBridgeCallbacks implementations
static bool native_bridge2_initialize(const
 NativeBridgeRuntimeCallbacks *art_cbs, const char
 *app_code_cache_dir, const char *isa)

Enabling the ARM Translator and Introducing Native Bridge

[141]

{
 ALOGV("enter native_bridge2_initialize %s %s",
 app_code_cache_dir, isa);
 if (property_get_bool("persist.sys.nativebridge", 0)) {
 if (NativeBridgeCallbacks *cb = get_callbacks()) {
return cb->initialize(art_cbs, app_code_cache_dir, isa);
 }
 } else {
 ALOGW("Native bridge is disabled");
 }
 return false;
}

static void *native_bridge2_loadLibrary(const char *libpath, int flag)
{
 ALOGV("enter native_bridge2_loadLibrary %s", libpath);
 NativeBridgeCallbacks *cb = get_callbacks();
 return cb ? cb->loadLibrary(libpath, flag) : nullptr;
}

static void *native_bridge2_getTrampoline(void *handle,
 const char *name, const char* shorty, uint32_t len)
{
 ALOGV("enter native_bridge2_getTrampoline %s", name);
 NativeBridgeCallbacks *cb = get_callbacks();
 return cb ? cb->getTrampoline(handle, name, shorty, len)
 : nullptr;
}

static bool native_bridge2_isSupported(const char *libpath)
{
 ALOGV("enter native_bridge2_isSupported %s", libpath);
 NativeBridgeCallbacks *cb = get_callbacks();
 return cb ? cb->isSupported(libpath) : false;
}

static const struct NativeBridgeRuntimeValues
*native_bridge2_getAppEnv(const char *abi)
{
 ALOGV("enter native_bridge2_getAppEnv %s", abi);
 NativeBridgeCallbacks *cb = get_callbacks();
 return cb ? cb->getAppEnv(abi) : nullptr;
}

static bool native_bridge2_is_compatible_compatible_with(uint32_t version)
{
 // For testing, allow 1 and 2, but disallow 3+.
 return version <= 2;

Enabling the ARM Translator and Introducing Native Bridge

[142]

}

static NativeBridgeSignalHandlerFn native_bridge2_get_signal_handler(int
signal)
{
 ALOGV("enter native_bridge2_getAppEnv %d", signal);
 NativeBridgeCallbacks *cb = get_callbacks();
 return cb ? cb->getSignalHandler(signal) : nullptr;
}

static void __attribute__ ((destructor)) on_dlclose()
{
 if (native_handle) {
 dlclose(native_handle);
 native_handle = nullptr;
 }
}

extern "C" {

NativeBridgeCallbacks NativeBridgeItf = {
 version: 2,
 initialize: &native_bridge2_initialize,
 loadLibrary: &native_bridge2_loadLibrary,
 getTrampoline: &native_bridge2_getTrampoline,
 isSupported: &native_bridge2_isSupported,
 getAppEnv: &native_bridge2_getAppEnv,
 isCompatibleWith: &native_bridge2_is_compatible_compatible_with,
 getSignalHandler: &native_bridge2_get_signal_handler,
};

} // extern "C"
} // namespace android

In libnb.cpp, we can see that it loads the libhoudini.so library, which is the original
Houdini library from Intel, and it makes only two changes. It checks the
persist.sys.nativebridge property before it does the initialization. The rest of the code
provides a wrapper of NativeBridgeCallbacks and the wrapper functions call the one in
the Houdini library directly.

Enabling the ARM Translator and Introducing Native Bridge

[143]

Using binfmt_misc
Up to now, what we have discussed is how to load an ARM shared library in the Intel x86
architecture. Houdini can also support running standalone ARM applications on Intel
devices as well. To do this, it uses a mechanism called binfmt_misc. binfmt_misc, which
is a capability of the Linux kernel that allows arbitrary executable file formats to be
recognized and passed to certain user space applications, such as emulators and virtual
machines.

According to the Linux kernel documentation, this kernel feature allows you to invoke
almost every program by simply typing its name in the shell. This includes, for example,
compiled Java (TM), Python, or Emacs. To achieve this, you must tell binfmt_misc which
interpreter should be invoked with which binary. binfmt_misc recognizes the binary-type
by matching some bytes at the beginning of the file with a magic byte sequence (masking
out specified bits) that you have supplied. binfmt_misc can also recognize a filename
extension such as .com or .exe.

To use this method, first we must mount binfmt_misc:

$ mount binfmt_misc -t binfmt_misc /proc/sys/fs/binfmt_misc

To register a new binary type, we must set up a string that looks as follows:

:name:type:offset:magic:mask:interpreter:flags

Then we need to add it to /proc/sys/fs/binfmt_misc/register.

Here is what the fields mean:

name is an identifier string. A new /proc file will be created with this name
below the /proc/sys/fs/binfmt_misc directory.
type is the type of recognition. It gives M for magic and E for extension.
offset is the offset of the magic/mask in the file, counted in bytes. This defaults
to 0 if you omit it (that is, you write :name:type::magic...).
magic is the byte sequence that binfmt_misc is matching for. The magic string
may contain hex-encoded characters such as \x0a or \xA4. In a shell
environment, you should write \\x0a to prevent the shell from eating your \. If
you chose the matching filename extension, this is the extension to be recognized
(without the ., the \x0a specials are not allowed). Extension matching is case-
sensitive.

Enabling the ARM Translator and Introducing Native Bridge

[144]

mask is a (optional, defaults to all 0xff) mask. You can mask out some bits from
matching by supplying a string like magic.
interpreter is the program that should be invoked with the binary as the first
argument (specify the full path).
flags is an optional field that controls several aspects of the invocation of the
interpreter. It is a string of capital letters and each controls a certain aspect.

In nativebridge.mk, it copies an enable_nativebridge script to the system folder.
This file is used to enable Houdini in Android-x86. In Android-x86, Houdini is not enabled
by default. This can be turned on at any time using an option in Settings app of Android-
x86. Of course, this is not supported in the AOSP source code. When you turn on Houdini
in Android-x86, it calls the enable_nativebridge script. This script does two things:

It downloads Houdini from the third-party project repository to the local1.
repository and installs it in the /system/lib/arm system directory. It also sets
the persist.sys.nativebridge property to 1.
In the second part of this script, it creates the binfmt_misc files in the /proc2.
directory.

We won't use the enable_nativebridge script directly, but we want to run the second
part of enable_nativebridge at the system start. With the second part, Houdini is
enabled in the Android emulator by default. This can be done by adding the second part of
enable_nativebridge to device/generic/goldfish/init.goldfish.sh. The
following is the code snippet that we added to the end of init.goldfish.sh. This is the
script that is used to set up the environment for the Android emulator during system
startup:

...
#
Houdini integration (Native Bridge)
#
houdini_bin=0
dest_dir=/system/lib$1/arm$1
binfmt_misc_dir=/proc/sys/fs/binfmt_misc

if you don't see the files 'register' and 'status' in
/proc/sys/fs/binfmt_misc
then run the following command:
mount -t binfmt_misc none /proc/sys/fs/binfmt_misc

this is to add the supported binary formats via binfmt_misc

if [! -e $binfmt_misc_dir/register]; then

Enabling the ARM Translator and Introducing Native Bridge

[145]

 mount -t binfmt_misc none $binfmt_misc_dir
fi

cd $binfmt_misc_dir
if [-e register]; then
 # register Houdini for arm binaries
 if [-z "$1"]; then
 echo
':arm_exe:M::\\x7f\\x45\\x4c\\x46\\x01\\x01\\x01\\x00\\x00\\x00\\x00\\x00\\
x00\\x00\\x00\\x00\\x02\\x00\\x28::'"$dest_dir/houdini:P" > register
 echo
':arm_dyn:M::\\x7f\\x45\\x4c\\x46\\x01\\x01\\x01\\x00\\x00\\x00\\x00\\x00\\
x00\\x00\\x00\\x00\\x03\\x00\\x28::'"$dest_dir/houdini:P" > register
 else
 echo
':arm64_exe:M::\\x7f\\x45\\x4c\\x46\\x02\\x01\\x01\\x00\\x00\\x00\\x00\\x00
\\x00\\x00\\x00\\x00\\x02\\x00\\xb7::'"$dest_dir/houdini64:P" > register
 echo
':arm64_dyn:M::\\x7f\\x45\\x4c\\x46\\x02\\x01\\x01\\x00\\x00\\x00\\x00\\x00
\\x00\\x00\\x00\\x00\\x03\\x00\\xb7::'"$dest_dir/houdini64:P" > register
 fi
 if [-e arm${1}_exe]; then
 houdini_bin=1
 fi
else
 log -pe -thoudini "No binfmt_misc support"
fi

if [$houdini_bin -eq 0]; then
 log -pe -thoudini "houdini$1 enabling failed!"
else
 log -pi -thoudini "houdini$1 enabled"
fi

["$(getprop ro.zygote)" = "zygote64_32" -a -z "$1"] && exec $0 64

After we rebuild the image and start the emulator, we can verify the changes using the
following command:

$ adb shell
root@x86emu:/ # ls /proc/sys/fs/binfmt_misc/
arm_dyn
arm_exe
register
status

Enabling the ARM Translator and Introducing Native Bridge

[146]

We can see that we registered two binfmt_misc types: arm_dyn and arm_exe. The /proc
file arm_dyn is used to load the shared library and arm_exe is used to load the ARM
executable:

root@x86emu:/ # cat /proc/sys/fs/binfmt_misc/arm_exe
enabled
interpreter /system/lib/arm/houdini
flags: P
offset 0
magic 7f454c46010101000000000000000000020028

If we look at the content of arm_exe, from the preceding output we can see that the
/system/lib/arm/houdini interpreter is used to interpret ARM binaries.

Building and testing
We have made all the code changes to enable Houdini now. We can build the system image
using the following commands:

$ source build/envsetup.sh
$ lunch x86emu_x86-eng
$ m -j4

After we build the system image, we can test it. Of course, we can test the images using any
Android application that can run on the ARM architecture. However, in order to get details
about the test targets, we will use two unit test applications to verify our work in this
chapter. The first one is a standalone ARM application that can be run from the command
line. The second one is an Android application with a JNI shared library for ARM only. The
Android emulator images and test binaries in this chapter can be downloaded from h t t p s
://s o u r c e f o r g e . n e t /p r o j e c t s /a n d r o i d - s y s t e m - p r o g r a m m i n g /f i l e s /a n d r o i d - 7/c h 05/c

h 05. z i p /d o w n l o a d .

The source code for these two test applications is hosted on GitHub. You can get the source
code at h t t p s ://g i t h u b . c o m /s h u g a o y e /a s p - s a m p l e /t r e e /m a s t e r /c h 05.

To build the test applications, you need to have both Android SDK and NDK so that you
can build both Android applications and native applications.

https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch05/ch05.zip/download
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05
https://github.com/shugaoye/asp-sample/tree/master/ch05

Enabling the ARM Translator and Introducing Native Bridge

[147]

Testing the command-line application
After you clone the preceding Git repository for test applications, you can build and test
them. Let's test the command-line application first. It is a very simple "hello world"
application to print just one line message to standard output as follows:

#include <stdio.h>

void main()
{
 printf("This is built using NDK r12.n");
}

You can build it and test it in the emulator as follows:

$ cd ch05/test1
$./build.sh
[armeabi-v7a] Install : ch05_test => libs/armeabi-v7a/ch05_test
$ file libs/armeabi-v7a/ch05_test
libs/armeabi-v7a/ch05_test: ELF 32-bit LSB shared object, ARM, EABI5
version 1 (SYSV), dynamically linked (uses shared libs),
BuildID[sha1]=b3cf0ae12c0d5b192053dc40c31f665196145039, stripped
$ adb push libs/armeabi-v7a/ch05_test /data/local/tmp
[100%] /data/local/tmp/ch05_test
$ adb shell
root@x86emu:/ # cd /data/local/tmp
127|root@x86emu:/data/local/tmp # ./ch05_test
This is built using NDK r12.

After you build it, you can check the file format using the file command. You can see that
the output is a 32-bit ARM ELF file. You can push this binary to the emulator using adb and
run it. You will see that it can print the output message to standard output correctly.

Testing the Android JNI application
Next, let's test the Android application with the ARM JNI library.

The JNI library can be found at ch05/test2/jni. The processor architecture that can be
supported is defined in Application.mk as follows:

Build both ARMv5TE and ARMv7-A and x86 machine code.
armeabi armeabi-v7a
APP_ABI := armeabi armeabi-v7a
APP_PLATFORM := android-23

Enabling the ARM Translator and Introducing Native Bridge

[148]

We can see that we build the JNI library for armeabi and armeabi-v7a. Let's build the JNI
library using NDK first:

$ cd ch05/test2/jni
$./build.sh
[armeabi] Install : libHelloJNI.so => libs/armeabi/libHelloJNI.so
[armeabi-v7a] Install: libHelloJNI.so => libs/armeabi-v7a/libHelloJNI.so

After we build the JNI library, we can import the Android source code to Eclipse or
Android Studio to build the application itself. We won't explain the details of importing
and building Android applications. You can read books on how to develop an Android
application and how to develop a JNI library to find out more. What we want to investigate
here is the test result. After we have the APK file, we can install it in the emulator and run
it. At the same time, we can catch the debug log using logcat. Here is the log from my
environment:

...
10-02 00:44:57.871: I/ActivityManager(1527): START u0
{act=android.intent.action.MAIN cat=[android.intent.category.LAUNCHER]
flg=0x10200000 cmp=fr.myrddin.hellojni/.HelloJNIActivity (has extras)} from
uid 10008 on display 0
10-02 00:44:57.900: I/ActivityManager(1527): Start proc
2652:fr.myrddin.hellojni/u0a53 for activity
fr.myrddin.hellojni/.HelloJNIActivity
10-02 00:44:57.902: I/art(2652): Late-enabling JIT
10-02 00:44:57.903: D/houdini(2652): [2652] Initialize library(version:
6.1.1a_x.48413 RELEASE)... successfully.
10-02 00:44:57.907: W/art(2652): Unexpected CPU variant for X86 using
defaults: x86
10-02 00:44:57.907: I/art(2652): JIT created with code_cache_capacity=2MB
compile_threshold=1000
10-02 00:44:58.546: W/art(1527): Long monitor contention event with owner
method=int
com.android.server.wm.WindowManagerService.relayoutWindow(com.android.serve
r.wm.Session, android.view.IWindow, int,
android.view.WindowManager$LayoutParams, int, int, int, int,
android.graphics.Rect, android.graphics.Rect, android.graphics.Rect,
android.graphics.Rect, android.graphics.Rect, android.graphics.Rect,
android.content.res.Configuration, android.view.Surface) from
WindowManagerService.java:3104 waiters=0 for 632ms
10-02 00:44:58.580: W/dex2oat(2667): Unexpected CPU variant for X86 using
defaults: x86
10-02 00:44:58.581: W/dex2oat(2667): Mismatch between dex2oat instruction
set features (ISA: X86 Feature string: smp,-ssse3,-sse4.1,-sse4.2,-avx,-
avx2) and those of dex2oat executable (ISA: X86 Feature string: smp,ssse3,-
sse4.1,-sse4.2,-avx,-avx2) for the command line:
10-02 00:44:58.581: W/dex2oat(2667): /system/bin/dex2oat --runtime-arg -

Enabling the ARM Translator and Introducing Native Bridge

[149]

classpath --runtime-arg --compiler-filter=interpret-only --instruction-
set=x86 --instruction-set-features=smp,ssse3,-sse4.1,-sse4.2,-avx,-avx2 --
runtime-arg -Xrelocate --boot-image=/system/framework/boot.art --runtime-
arg -Xms64m --runtime-arg -Xmx512m --compiler-filter=verify-at-runtime --
instruction-set-variant=x86 --instruction-set-features=default --dex-
file=/data/app/fr.myrddin.hellojni-1/base.apk --oat-file=/data/dalvik-
cache/x86/data@app@fr.myrddin.hellojni-1@base.apk@classes.dex
10-02 00:44:58.581: E/dex2oat(2667): Failed to create oat file:
/data/dalvik-cache/x86/data@app@fr.myrddin.hellojni-1@base.apk@classes.dex:
Permission denied
10-02 00:44:58.581: I/dex2oat(2667): dex2oat took 774.330us (threads: 2)
10-02 00:44:58.582: W/art(2652): Failed execv(/system/bin/dex2oat --
runtime-arg -classpath --runtime-arg --compiler-filter=interpret-only --
instruction-set=x86 --instruction-set-features=smp,ssse3,-sse4.1,-sse4.2,-
avx,-avx2 --runtime-arg -Xrelocate --boot-image=/system/framework/boot.art
--runtime-arg -Xms64m --runtime-arg -Xmx512m --compiler-filter=verify-at-
runtime --instruction-set-variant=x86 --instruction-set-features=default --
dex-file=/data/app/fr.myrddin.hellojni-1/base.apk --oat-file=/data/dalvik-
cache/x86/data@app@fr.myrddin.hellojni-1@base.apk@classes.dex) because
non-0 exit status
10-02 00:44:58.603: D/houdini(2652): [2652] Added shared library
/data/app/fr.myrddin.hellojni-1/lib/arm/libHelloJNI.so for ClassLoader by
Native Bridge.
10-02 00:44:58.603: E/JNI(2652): Number : 4
...
10-02 00:44:59.906: I/ActivityManager(1527): Displayed
fr.myrddin.hellojni/.HelloJNIActivity: +2s9ms
...

We can see from the preceding log message that Houdini is initialized successfully and that
the libHelloJNI.so JNI library is loaded by Native Bridge.

Enabling the ARM Translator and Introducing Native Bridge

[150]

Summary
In this chapter, we introduced Native Bridge in Android architecture first so that we can
understand how it works. Based on our understanding of Native Bridge, we extended the
x86emu device with Houdini support. We changed the Makefiles of the x86emu device and
we also utilized the open source project Android-x86 to save the effort of integration. After
we integrated Houdini in x86emu, we tested two scenarios of Houdini use:

A standalone command-line application
An Android application with a native shared library built with JNI

In the next chapter, we will explore more about the x86emu start up process and we will
learn how to debug the start up process using a customized ramdisk image.

6
Debugging the Boot Up

Process Using a Customized
ramdisk

In the last chapter, we learnt to enable Houdini in the Android emulator using our own
x86emu device. With that, we can move on to more challenging tasks in the next few
chapters. Most device- or system-level customization will involve changes to the Android
system start up sequence. In this chapter, we will analyze the Android system start up
sequence and learn the knowledge related to the customization and debugging of the start
up sequence. In this chapter, we will cover the following topics:

Android start up process analysis
Starting up process for the Android-x86
Creating a filesystem for the Android-x86 initrd.img

We will start with the analysis of a normal Android boot up process. After that, we will
introduce the Android-x86 two-stage boot up. We will build a filesystem for the Android
emulator that can work with Android-x86 initrd.img. This method provides a flexible
way to help the debugging of start up process.

Debugging the Boot Up Process Using a Customized ramdisk

[152]

Analyzing the Android start up process
The Android system boot up sequence is similar to other embedded Linux systems that
start from the Boot ROM inside the processor. The Boot ROM will find the bootloader. The
bootloader will load the kernel and ramdisk image. The kernel uses the ramdisk as the root
filesystem. In a desktop Linux environment, once the kernel initializes the essential devices,
it will remount the root filesystem on physical storage such as a hard disk. In Android, the
various partitions (system, data, cache, and so on) will be mounted to the root filesystem in
memory instead of a storage device. The kernel will invoke the init process in the ramdisk
to start the rest of the system, as shown in the following figure:

Bootloader and the kernel
As we can see, we won't be able to avoid the bootloader when we build our own devices.
However, we won't spend too much time on this topic, since the bootloader is not our focus
in this book. In the Android emulator, it is not necessary to have a bootloader, since there is
a minimal bootloader built inside the emulator itself.

Debugging the Boot Up Process Using a Customized ramdisk

[153]

A very small bootloader in QEMU to boot Linux
If you are interested in the small bootloader in QEMU, you can refer to the
AOSP source code at $AOSP/external/qemu/hw/arm/boot.c.
Since the bootloader is hardware platform-specific, the bootloader
implementation in QEMU is different for various hardware architectures,
such as ARM, x86, or MIPS. The reason why I refer to the ARM
implementation is because it is the cleanest and easiest to understand.
You can refer to the book Embedded Programming with Android written by
myself and published by Addison-Wesley Professional to find out more
about bootloader for the Android emulator.

For VirtualBox, which we will use as the virtual hardware from Chapter 8, Creating Your
Own Device on VirtualBox till Chapter 11, Enabling VirtualBox-Specific Hardware Interfaces, we
will use the network boot to resolve the bootloader issue.

The Linux kernel is one of the key elements to support various hardware devices. We will
discuss the customization and configuration of the Linux kernel throughout this book. In
this chapter, we will focus on the init process and see how it works in the Android system.

Analyzing the init process and ramdisk
The implementation of the init process can be found in the $AOSP/system/core/init
directory. If we look at the main function in init.cpp, it includes the code for ueventd
and watchdogd, as shown in the following code snippet:

int main(int argc, char** argv) {
 if (!strcmp(basename(argv[0]), "ueventd")) {
 return ueventd_main(argc, argv);
 }

 if (!strcmp(basename(argv[0]), "watchdogd")) {
 return watchdogd_main(argc, argv);
 }
 ...

We won't discuss ueventd and watchdogd, since they are not related to our topics. We will
focus on the mainline code of init.cpp. The mainline code of init implements the
following logic:

Preparation for the environment, such as creating system folders, setting up1.
the standard I/O, initialization of logging systems, and so on. The environment
setup also includes the SELinux setup and loading the SELinux policy.

Debugging the Boot Up Process Using a Customized ramdisk

[154]

Parsing init scripts init.rc, init.${ro.hardware}.rc, and so on. Add items2.
from the init scripts to the action or service in action_list and service_list.
Execute the early-init action in action_list.3.
Execute the init action in action_list.4.
Execute the late-init action in action_list.5.
Enter an infinite loop to perform the following tasks:6.

Execute the action in action_queue.1.
Restart the service marked as SVC_RESTARTING in service_list.2.
Provide the property service, handling /dev/keychord events.3.
Monitor system property changes, signals, and keyboard events.4.

The init scripts are stored in the ramdisk and are loaded in memory by the bootloader
during boot up. If we look at the content of the x86emu ramdisk.img, we will see the
following files:

The init scripts define two types of element: actions and services. The init process parses all
the scripts and runs the tasks depending on the type of element.

Debugging the Boot Up Process Using a Customized ramdisk

[155]

Actions
The action syntax is as follows:

on <trigger>
 <command>
 <command>
 <command>
 ...

Actions begin with the keyword on, followed by a trigger. Actions are left-aligned and the
commands that follow are indented, as shown in the preceding snippet.

For example, we mount all partitions for the emulator using fstab.goldfish on trigger
fs:

on fs
 mount_all /fstab.goldfish

Triggers are strings that can be used to match certain kinds of event and they are used to
cause an action to occur. There are two types of action triggers: predefined triggers and
triggers activated on property-value changes.

Predefined triggers could be early-init, init, early-fs, fs, post-fs, early-boot, or
boot as defined in the init scripts.

Property-value triggers are in the following form:

<name>=<value>

Triggers of this form occur when the <name> property is set to a specific value <value>.

For example, when the sys.init_log_level property is changed, we need to reset the log
level as follows:

on property:sys.init_log_level=*
 loglevel ${sys.init_log_level}

Commands in init scripts reassemble the shell commands and also add init-specific ones.

Debugging the Boot Up Process Using a Customized ramdisk

[156]

Services
Services are programs that init launches and (optionally) restarts when they exit. Services
take the form of:

service <name> <pathname> [<argument>]*
 <option>
 <option>
 ...

The service will be known by init as <name>. The actual name of the binary that is pointed
to by <pathname> will not be recognized.

Options are modifiers to services. They affect how and when init runs the service. We can
use the following goldfish-specific service as an example:

service goldfish-setup /system/etc/init.goldfish.sh
 user root
 group root
 oneshot

The name of the service is goldfish-setup and it runs the init.goldfish.sh script as
the root user. The oneshot option means that this service won't restart when it exits.

A complete list of init commands and service options can be found in
the following file:
$AOSP/system/core/init/readme.txt

Device-specific actions and services
The source code of system-generated init scripts is located in the
$AOSP/system/core/rootdir folder. They are copied to $OUT/root in the build process.

The init process parses the init.rc script first. All other scripts are imported by init.rc
and then parsed by the init process. If we look at the following code snippet of init.rc, we
can see that there are a few scripts that are imported by init.rc:

Copyright (C) 2012 The Android Open Source Project
#
IMPORTANT: Do not create world writable files or directories.
This is a common source of Android security bugs.
#

import /init.environ.rc

Debugging the Boot Up Process Using a Customized ramdisk

[157]

import /init.usb.rc
import /init.${ro.hardware}.rc
import /init.usb.configfs.rc
import /init.${ro.zygote}.rc
import /init.trace.rc

on early-init
...

The init.${ro.hardware}.rc script is the one that can be used to customize for device-
specific changes. The ro.hardware property is passed to init at runtime so that init can
load the right one for the device. We should try to avoid changes to other init scripts and
keep the device-specific changes in init.${ro.hardware}.rc only.

If we look at the goldfish or ranchu device specifically, there are init.goldfish.rc and
init.ranchu.rc scripts for them, respectively. Both scripts are part of the goldfish device,
which can be found at $AOSP/device/generic/goldfish, as we can see in the following
snippet. They are copied to $OUT/root in the build process:

$ ls device/generic/goldfish
audio fstab.ranchu libqemu qemu-props
camera gps lights sensors
data init.goldfish.rc opengl ueventd.goldfish.rc
fingerprint init.goldfish.sh power ueventd.ranchu.rc
fstab.goldfish init.ranchu.rc qemud vibrator

Inside init.goldfish.rc or init.ranchu.rc, a goldfish-setup service is defined as
follows:

service goldfish-setup /system/etc/init.goldfish.sh
 user root
 group root
 oneshot

In the last chapter, we added Houdini initialization to the init.goldfish.sh script and
this is how Houdini can be initialized during boot up.

Debugging the Boot Up Process Using a Customized ramdisk

[158]

The hardware name in the Android emulator is passed by the kernel command line. When
you start the emulator with -verbose and -show-kernel, you will see the following
command-line parameters in the console:

...
emulator: argv[08] = "-append"
emulator: argv[09] = "qemu=1 clocksource=pit androidboot.console=ttyGF2
android.checkjni=1 console=ttyS0,38400 androidboot.hardware=ranchu
qemu.gles=1 android.qemud=1"
...

These parameters are passed to the kernel as kernel command-line parameters and then
used by init to decide the hardware name. Since we cannot change the kernel parameters in
the emulator, we cannot use our own script such as init.x86emu.rc in our device. If we
want to customize the start up sequence, we should change the code in
$AOSP/device/generic/goldfish and this is what we did in the last chapter.

The ideal approach to customizing the start up sequence is to keep all customizations under
our own device folder, such as $AOSP/device/generic/x86emu. In that case, we can
upgrade to the newer Android version very easily. The more general AOSP code we
change, the more difficult it is to move to a new Android version.

If we can have control of the bootloader, we can pass our own kernel parameters through
the bootloader. We will see this when we work on the x86vbox device in Chapter 8, Creating
Your Own Device on VirtualBox till Chapter 11, Enabling VirtualBox-Specific Hardware
Interfaces.

If you really need to change init.rc so that you can fully customize the boot up sequence,
you can define the TARGET_PROVIDES_INIT_RC := true variable in your
BoardConfig.mk. With this definition, you can copy init.rc to your device folder and
change it for your device.

Source code and manifest changes
Now that we have been introduced to Android start up processes, we will now apply the
two-stage boot up process from the Android-x86 project to the Android emulator. Before
we talk about the two-stage boot up process, let's have a look at the changes for the AOSP
source code and manifest file.

https://epic.packtpub.com/index.php?module=oss_Chapters&action=DetailView&record=2e7afcf2-5e5f-39eb-5f4a-57ce5bfd0a6e

Debugging the Boot Up Process Using a Customized ramdisk

[159]

If we look at the following manifest file that we will use for this chapter, we can see that we
only changed kernel, the x86emu device, and newinstaller from the Android-x86
project:

<?xml version="1.0" encoding="UTF-8"?>
<manifest>

 <remote name="github"
 revision="refs/tags/android-7.1.1_r4_x86emu_ch06_r1"
 fetch="." />

 <remote name="aosp"
 fetch="https://android.googlesource.com/" />
 <default revision="refs/tags/android-7.1.1_r4"
 remote="aosp"
 sync-c="true"
 sync-j="1" />

 <!-- github/shugaoye -->
 <project path="kernel" name="goldfish" remote="github" />
 <project path="device/generic/x86emu" name="x86emu"
 remote="github" />
 <project path="bootable/newinstaller"
 name="platform_bootable_newinstaller" remote="github" />

 <!-- aosp -->
 <project path="build" name="platform/build" groups="pdk,tradefed" >
 <copyfile src="core/root.mk" dest="Makefile" />
 </project>
...
</manifest>

With the newinstaller project, we will build another ramdisk image, initrd.img, which
will be used in the two stage boot up process.

A Git tag, android-7.1.1_r4_x86emu_ch06_r1, is used to baseline the source code
changes in this chapter.

Debugging the Boot Up Process Using a Customized ramdisk

[160]

The Android-x86 start up process
In Chapter 1, Introduction to Android System Programming, we introduced the Android-x86
project, which is an open source project to provide the Android Board Support Package
(BSP) for Intel devices. It uses an approach similar to Microsoft Windows or Linux
distributions for desktops by using universal media to boot all kinds of Intel devices.

In order to achieve the goal of using one medium to boot all devices, it splits the boot
sequence into two stages. The first stage is to boot a minimum embedded Linux
environment to enable hardware devices. In the second stage, it switches to the Android
system through chroot or switch_root. The second stage of the boot process is the same
as we discussed previously. Let's look at the first stage of the Android-x86 boot process in
detail. We will reuse it for the Android emulator in this chapter. This approach can help to
simplify the start up process and it can also help us a lot with the debugging of start up
processes.

The first-stage boot using initrd.img
The first stage of the start up process in Android-x86 uses a specific ramdisk initrd.img.
The source code can be found at $AOSP/bootable/newinstaller. This project is
duplicated from the Android-x86 project. As it is hosted in GitHub, I can make my own
changes:

$ ls -1 -F
Android.mk
boot/
editdisklbl/
initrd/
install/

Debugging the Boot Up Process Using a Customized ramdisk

[161]

If we look at the contents in this newinstaller folder, we can see the preceding folders
and files. The following is the explanation about the content of newinstaller:

boot: This is the bootloader for the installation media. The images of Android-
x86 can be built into different formats (ISO, UEFI, and so on)
editdisklbl: A host tool used to edit system image partitions
initrd: The ramdisk for the first-stage boot
install : The installer for Android-x86
Android.mk : Android Makefile for newinstaller

If we build newinstaller, it can generate a few different image formats, such as ISO, USB,
or UEFI. To build a specified image, you can run the following command after you set up
the environment and choose a build target:

$ make iso_img/usb_img/efi_img

Besides an installation image, it also produces another two images, initrd.img and
install.img:

initrd.img : The ramdisk image for the first stage boot up
install.img : The image contains the Android-x86 installer

We will look at the details about both initrd.img and install.img to understand how
the first stage boot works in Android-x86.

Inside initrd.img
If we look at the initrd folder, we can see the following contents:

$ cd bootable/newinstaller/initrd
$ ls -1F
bin/
init*
lib/
sbin/
scripts/

Debugging the Boot Up Process Using a Customized ramdisk

[162]

The content of initrd.img consists of a minimal Linux environment based on busybox.
We can find busybox at bin/busybox and shared libraries required by busybox at lib/.
There is an executable init file and a few folders inside the initrd folder. We know that
the init process is the first process invoked by the kernel when the system starts. Android-
x86 provides a separate init process to start the system inside initrd.img. This version of
init is actually a shell script instead of a binary executable file:

This shell script will perform the tasks shown in the preceding figure:

When the kernel invokes the script, it prepares the environment first. This1.
includes the controlling tty setup, the initialization of debug logs, and the debug
level.

After the environment is ready, it will try to find either an existing Android2.
system or an installation media on the storage devices. In this step, ramdisk.img
must be found, otherwise, it will return with an error.

Debugging the Boot Up Process Using a Customized ramdisk

[163]

Once an Android system or installation media is found; it will extract3.
ramdisk.img to the working folder /android. If the INSTALL variable is set, it
will extract install.img to the filesystem root as well. The working folder
/android is used as the root of the Android system, while the current root is the
image of initrd.img.
It now loads all additional scripts to prepare for the next steps. If the environment4.
variable INSTALL is set to 1, it will invoke the installation script to install
Android-x86 to a storage device such as a hard disk.
Before it switches to the Android system, it will load all the kernel modules for5.
the devices, mount data and SD card partitions, set up the touch screen and
display DPI, and so on.
Once everything is ready, it switches to the Android system using /android as6.
the new root and invokes /init under the new root. The Android system will be
started from this point onwards.

Let's look at a few important code snippets in the script to get a real feel for it:

#!/bin/busybox sh
#
By Chih-Wei Huang <cwhuang@linux.org.tw>
and Thorsten Glaser <tg@mirbsd.org>
#
Last updated 2015/10/23
#
License: GNU Public License
We explicitely grant the right to use the scripts
with Android-x86 project.
#

PATH=/sbin:/bin:/system/bin:/system/xbin; export PATH
...
echo -n Detecting Android-x86...
...
while :; do
 for device in ${ROOT:-/dev/[hmsv][dmr][0-9a-z]*}; do
 check_root $device && break 2
 mountpoint -q /mnt && umount /mnt
 done
 sleep 1
 echo -n .
done
...

Debugging the Boot Up Process Using a Customized ramdisk

[164]

In the preceding code snippet, we can see that it invokes the shell function check_root to
find the root of the Android system in an infinite loop. If it could not find the root file
system, it is stuck in this loop.

In the following check_root function, the environment variable SRC is passed from the
kernel command line and specifies the path of the filesystem root. It will check whether a
ramdisk.img can be found in this path or not. If a ramdisk.img can be found, it will be
extracted to the /android path, which is the current directory, otherwise; it will return an
error:

...
check_root()
{
...
 if [-n "$iso" -a -e /mnt/$iso]; then
 mount --move /mnt /iso
 mkdir /mnt/iso
 mount -o loop /iso/$iso /mnt/iso
 SRC=iso
 elif [! -e /mnt/$SRC/ramdisk.img]; then
 return 1
 fi
 zcat /mnt/$SRC/ramdisk.img | cpio -id > /dev/null
...

After the root filesystem is detected, it will check the environment variable INSTALL. This
INSTALL variable is also passed from the kernel command line. If INSTALL is set, it will
extract install.img to the current root. This will overwrite some of the files in
initrd.img and we will discuss this in more detail later:

...
if [-n "$INSTALL"]; then
 zcat /src/install.img | (cd /; cpio -iud > /dev/null)
fi
...

Then it will load all other shell scripts from either the /scripts or /src/scripts folders:

...
load scripts
for s in `ls /scripts/* /src/scripts/*`; do
 test -e "$s" && source $s
done
...

Debugging the Boot Up Process Using a Customized ramdisk

[165]

Once all the shell scripts are loaded in memory, it will check the INSTALL variable again to
see whether it should execute the installation script:

...
[-n "$INSTALL"] && do_install

load_modules
mount_data
mount_sdcard
setup_tslib
setup_dpi
post_detect
...
exec ${SWITCH:-switch_root} /android /init

avoid kernel panic
while :; do
 echo
 echo ' Android-x86 console shell. Use only in emergencies.'
 echo
 debug_shell fatal-err
done

No matter whether it executes the installation script or not, it will prepare the environment
for the Android system to start. It will load kernel modules, mount data/sdcard
partitions, and set up all other environment-related requirements. Lastly, it will
execute switch_root or chroot to switch to the Android system. The Android system will
be started from this point onwards.

The main difference between switch_root and chroot
switch_root is intended to switch the complete system over to a new root
directory and remove dependencies on the old one, so that you can
unmount the original root directory and proceed as if it had never been in
use.
chroot is intended to be applied for the lifetime of a single process, with
the rest of the system continuing to run in the old root directory, and the
system being unchanged when the chrooted process exits.
In Android-x86, switch_root is used in release mode and chroot is used
in debug mode.

Debugging the Boot Up Process Using a Customized ramdisk

[166]

Inside install.img
We have analyzed most of the first stage start up processes for Android-x86. One thing that
we want to do more analysis on is how install.img works in the first stage start up
process.

If the INSTALL environment variable is set, install.img will be extracted. This will
overwrite some of the contents from initrd.img. Let's take a look at this now. If we list the
contents of both directories initrd and install, we can see that bin/, lib/, sbin/, and
scripts/ are duplicated in both images in the following screenshot:

In the bin/, sbin/, and lib/ folders, there are tools such as cfdisk, cgdisk,
mkntfs, grub, and so on. These are the tools used to partition hard disks, format extra
filesystems, and so on.

The scripts/ folder includes the installation script and we will look at scripts/ to
explore how the Android-x86 installation works.

If we look at the script files in both the initrd and install folders, we find that both
include a 1-install script. initrd.img is used as the root filesystem in the first stage
boot. If the INSTALL variable is set, install.img will be extracted to the root as well. In
that case, the one in the install folder will overwrite the one in the initrd folder. We can
see from the following figure how initrd.img, ramdisk.img, and install.img are
integrated to form the first stage and the second-stage filesystem:

Debugging the Boot Up Process Using a Customized ramdisk

[167]

If we look at 1-install under the initrd/scripts folder, we will see the following shell
script function:

do_install()
{
 error -e 'n Android-x86 installer is not available.\n
 Press RETURN to run live version.\n'
 read
 cd /android
}

It implements a do_install function, which will return an error message. If this script is
not overwritten by the one from install.img, it means the installer is not available. If
install.img is extracted, the real do_install function will be invoked to start the
installation:

do_install()
{
 until install_hd; do
 if [$retval -eq 255]; then
 dialog --title ' Error! ' --yes-label Retry --no-label Reboot

Debugging the Boot Up Process Using a Customized ramdisk

[168]

 --yesno 'nInstallation failed! Please check if you have enough
 free disk space to install Android-x86.' 8 51
 [$? -eq 1] && rebooting
 fi
 done

 [-n "$VESA"] || runit="Run Android-x86"
...
}

The do_install function will call another function, install_hd, and install_hd will
call an install_to function to perform the actual installation. The install_to function
takes a parameter that is the target device for the installation. It will perform the following
installation tasks:

It will format the target device first and then mount the device to the /hd folder.
It will install GRUB as the bootloader.
It will create a folder using the android-$VER naming convention in the /hd
folder as the target installation folder. For example, as our device is x86emu, the
installation target will be /hd/android-x86emu.
It will use the cpio command to copy the files from the installation media to the
installation target. These files include kernel, initrd.img, ramdisk.img, and
everything under the system folder from the AOSP build. It depends on the
configuration; it may either copy the system.sfs or system.img image file, or it
may copy everything in the system folder directly to /hd/android-
$VER/system.

In the following sections, we need to repeat the installation procedure to create a filesystem
that can be used for the Android-x86 two-stage boot sequence.

Building x86emu with initrd.img
After we did all the analysis of initrd.img for Android-x86, we can build a similar one for
the Android emulator now. Be aware that this can work only with ranchu, but not with
goldfish. The goldfish emulator uses an older version of QEMU and it doesn't support the
additional storage devices for the emulator. To support the boot from initrd.img, we
have to change the layout of the filesystem. It is not good to change the original filesystem
image in AOSP. We will create another file image to be used for the boot with initrd.img.

Debugging the Boot Up Process Using a Customized ramdisk

[169]

In the ranchu emulator, the images are emulated as virtio block devices. After we start the
emulator, we can inspect the mount points, as shown in the following screenshot. We can
see that system.img is mounted as /dev/block/vda, userdata.img as
/dev/block/vdb, and cache.img as /dev/block/vdc:

ranchu images emulated as virtio block devices

All partitions in the ranchu emulator are mounted using the fstab.ranchu file, as we can
see in the following snippet:

...
/dev/block/vda /system ext4 ro wait
/dev/block/vdb /cache ext4
noatime,nosuid,nodev,nomblk_io_submit,errors=panic wait
/dev/block/vdc /data ext4
noatime,nosuid,nodev,nomblk_io_submit,errors=panic wait
...

Debugging the Boot Up Process Using a Customized ramdisk

[170]

With the ranchu emulator, we can easily add another storage device with the -hda QEMU
option. With this option, we can see that a new block device, /dev/block/sda, is available
after the emulator starts. We will discuss this in more detail later. Before we can test this
idea, we need to create the disk image first.

Creating a filesystem image
There are many ways that we can create disk images. QEMU can support many disk image
formats. If you want to find details about the image formats that can be supported by
QEMU, you can check using the following Linux command:

$ man qemu-img

The supported image formats are:

raw: This plain disk image format has the advantage of being simple and easily
exportable to all other emulators.
qcow2: This is the QEMU image format, which is the most versatile format. It is a
compressed image format, so it has a smaller image size and can support
snapshots.
qcow: This is the old QEMU image format.
cow: This is the User Mode Linux Copy-On-Write image format.
vdi: This is the VirtualBox 1.1-compatible image format.
vmdk: This is the VMware 3- and 4-compatible image format.
vpc: This is the VirtualPC-compatible image format (VHD).
cloop: This is the Linux compressed loop image, useful only to reuse directly
compressed CD-ROM images present, for example, in Knoppix CD-ROMs.

We will use the qcow2 file format to test our initrd.img for the Android emulator. In
order to create a file image in qcow2 format, we need to add the following code in the
Android.mk Makefile of bootable/newinstaller:

...
initrd: $(BUILT_IMG)

X86EMU_EXTRA_SIZE := 100000000
X86EMU_DISK_SIZE := $(shell echo
${BOARD_SYSTEMIMAGE_PARTITION_SIZE}+${X86EMU_EXTRA_SIZE} | bc)
X86EMU_TMP := x86emu_tmp

qcow2_img: $(BUILT_IMG)

Debugging the Boot Up Process Using a Customized ramdisk

[171]

 mkdir -p $(PRODUCT_OUT)/${X86EMU_TMP}/${TARGET_PRODUCT}
 cd $(PRODUCT_OUT)/${X86EMU_TMP}/${TARGET_PRODUCT}; mkdir data
 mv $(PRODUCT_OUT)/initrd.img
$(PRODUCT_OUT)/${X86EMU_TMP}/${TARGET_PRODUCT}
 mv $(PRODUCT_OUT)/install.img
$(PRODUCT_OUT)/${X86EMU_TMP}/${TARGET_PRODUCT}
 mv $(PRODUCT_OUT)/ramdisk.img
$(PRODUCT_OUT)/${X86EMU_TMP}/${TARGET_PRODUCT}
 mv $(PRODUCT_OUT)/system.img
$(PRODUCT_OUT)/${X86EMU_TMP}/${TARGET_PRODUCT}
 make_ext4fs -T -1 -l $(X86EMU_DISK_SIZE)
$(PRODUCT_OUT)/${TARGET_PRODUCT}.img $(PRODUCT_OUT)/${X86EMU_TMP}
 mv $(PRODUCT_OUT)/${X86EMU_TMP}/${TARGET_PRODUCT}/*.img $(PRODUCT_OUT)/
 qemu-img convert -c -f raw -O qcow2 $(PRODUCT_OUT)/${TARGET_PRODUCT}.img
$(PRODUCT_OUT)/${TARGET_PRODUCT}-qcow2.img
 cd $(PRODUCT_OUT); qemu-img create -f qcow2 -b
 ./${TARGET_PRODUCT}-qcow2.img ./${TARGET_PRODUCT}.img
...

The first thing that we have to do in the preceding Makefile is to create a directory layout
that can be used by initrd.img, as shown in the following snippet:

Directory layout of x86emu_x86.img

We create a data folder to be used as data storage. Then, we move existing image files in
the AOSP output folder to the $OUT/x86emu_tmp/x86emu_x86 directory in order to create
the preceding directory structure. These file images will be moved back after the file image
is generated.

Once we have the right directory structure, we can use the make_ext4fs command to
create a raw filesystem image with the following options:

make_ext4fs -T {timestamp} -l {size of file system} {image file name}
{source directory} {target out directory}

Debugging the Boot Up Process Using a Customized ramdisk

[172]

The size of the filesystem is BOARD_SYSTEMIMAGE_PARTITION_SIZE;
additionally, X86EMU_EXTRA_SIZE. BOARD_SYSTEMIMAGE_PARTITION_SIZE is defined in
the board configuration file for the system image size. X86EMU_EXTRA_SIZE is for the space
of ramdisk and kernel images.

The next step is to generate the qcow2 format from the raw file image using the qemu-img
command. Both raw and qcow2 format images can be used by the emulator, but the raw file
image is much larger than the qcow2 image.

Since the qcow2 image can support the snapshot feature, we can also generate a snapshot
image (x86emu_x86.img) based on the qcow2 image (x86emu_x86-qcow2.img). If we use
the snapshot image, we can restore to the original qcow2 image at any time. The snapshot
image can be created using the following commands:

$ cd $OUT
$ qemu-img create -f qcow2 -b ./x86emu_x86-qcow2.img ./x86emu_x86.img

After the image is generated, we can inspect it using the qemu-img command as follows:

$ qemu-img info x86emu_x86.img
image: x86emu_x86.img
file format: qcow2
virtual size: 1.3G (1442177024 bytes)
disk size: 196K
cluster_size: 65536
backing file: ./x86emu_x86-qcow2.img
Format specific information:
 compat: 1.1
 lazy refcounts: false

We see that the x86emu_x86.img image is the snapshot image of x86emu_x86-
qcow2.img.

In the image that we just created, there are no partitions created. When we mount it in the
Android emulator, it will appear as a /dev/sda or /dev/block/sda device. If we want to
create partitions for the image file, we need to use the edit_mbr tool to do so. You can
explore this option on your own. With multiple partitions, we can put the system, data, and
cache into different partitions, which is closer to the disk layout in most mobile devices.

Debugging the Boot Up Process Using a Customized ramdisk

[173]

Kernel changes
With effect from Android 4.4, SELinux is on by default. When we change the filesystem in
Android, we have to take care of the SELinux settings as well. This will make the
configuration more complicated than what we expect. If you are interested in this, you can
do your homework to configure SELinux for this case.

In this book, we will disable SELinux by default so that we can concentrate on our topics. To
disable SELinux, we have to make some changes the kernel configuration file. You can
check the changes using the git command as follows:

$ cd $AOSP/kernel
$ git branch
* android-x86emu-3.10
$ gitk

We can see the changes in the android-x86emu-3.10 branch using gitk, as shown in the
following screenshot. We can see that we set the default security to DAC and removed the
SELinux setting, CONFIG_SECURITY_SELINUX=y:

Disabling SELinux in the ranchu kernel

Debugging the Boot Up Process Using a Customized ramdisk

[174]

Booting a disk image on the Android
emulator
Once we have done all the changes, we can build the qcow2 image using the following
command:

$ make qcow2_img USE_SQUASHFS=0
...
make_ext4fs -T -1 -S out/target/product/x86emu/root/file_contexts -L
system -l 1342177280 -a system
out/target/product/x86emu/obj/PACKAGING/systemimage_intermediates/system.im
g out/target/product/x86emu/system out/target/product/x86emu/system
Creating filesystem with parameters:
 Size: 1342177280
 Block size: 4096
 Blocks per group: 32768
 Inodes per group: 8192
 Inode size: 256
 Journal blocks: 5120
 Label: system
 Blocks: 327680
 Block groups: 10
 Reserved block group size: 79
Created filesystem with 2122/81920 inodes and 178910/327680 blocks
Install system fs image: out/target/product/x86emu/system.img

As we can see from the preceding command-line output, system.img will be built as usual.
After that, the ramdisk image, initrd.img, will be created as follows. Pay attention to the
VER environment variable. We changed the script to set it as x86emu. The original one in
Android-x86 is the current date, such as 2016-11-11:

VER ?= $(shell date +"%F")

This variable is used as part of the installation folder name. Let's continue reviewing the
build log:

out/target/product/x86emu/system.img+ maxsize=1370278272 blocksize=2112
total=1342177280 reserve=13842048
rm -rf out/target/product/x86emu/installer
out/host/linux-x86/bin/acp -pr bootable/newinstaller/initrd
out/target/product/x86emu/installer
ln -s /bin/ld-linux.so.2 out/target/product/x86emu/installer/lib
mkdir -p out/target/product/x86emu/installer/android
out/target/product/x86emu/installer/iso
out/target/product/x86emu/installer/mnt
out/target/product/x86emu/installer/proc

Debugging the Boot Up Process Using a Customized ramdisk

[175]

out/target/product/x86emu/installer/sys
out/target/product/x86emu/installer/tmp
out/target/product/x86emu/installer/sfs
out/target/product/x86emu/installer/hd
echo "VER=x86emu" > out/target/product/x86emu/installer/scripts/00-ver
out/host/linux-x86/bin/mkbootfs out/target/product/x86emu/installer | gzip
-9 > out/target/product/x86emu/initrd.img

After ramdisk initrd.img is created, the raw and qcow2 file images will be created as we
have added in the Android.mk file for bootable/newinstaller:

mkdir -p out/target/product/x86emu/x86emu_tmp/x86emu_x86
cd out/target/product/x86emu/x86emu_tmp/x86emu_x86; mkdir data
mv out/target/product/x86emu/initrd.img
out/target/product/x86emu/x86emu_tmp/x86emu_x86
mv out/target/product/x86emu/install.img
out/target/product/x86emu/x86emu_tmp/x86emu_x86
mv out/target/product/x86emu/ramdisk.img
out/target/product/x86emu/x86emu_tmp/x86emu_x86
mv out/target/product/x86emu/system.img
out/target/product/x86emu/x86emu_tmp/x86emu_x86
make_ext4fs -T -1 -l 1442177280 out/target/product/x86emu/x86emu_x86.img
out/target/product/x86emu/x86emu_tmp out/target/product/x86emu/x86emu_tmp
Creating filesystem with parameters:
 Size: 1442177024
 Block size: 4096
 Blocks per group: 32768
 Inodes per group: 8016
 Inode size: 256
 Journal blocks: 5501
 Label:
 Blocks: 352094
 Block groups: 11
 Reserved block group size: 87
Created filesystem with 17/88176 inodes and 340722/352094 blocks
mv out/target/product/x86emu/x86emu_tmp/x86emu_x86/*.img
out/target/product/x86emu/
qemu-img convert -c -f raw -O qcow2
out/target/product/x86emu/x86emu_x86.img
out/target/product/x86emu/x86emu_x86-qcow2.img
cd out/target/product/x86emu; qemu-img create -f qcow2 -b ./x86emu_x86-
qcow2.img ./x86emu_x86.img
Formatting './x86emu_x86.img', fmt=qcow2 size=1442177024
backing_file='./x86emu_x86-qcow2.img' encryption=off cluster_size=65536
lazy_refcounts=off

Debugging the Boot Up Process Using a Customized ramdisk

[176]

We have the x86emu_x86-qcow2.img qcow2 image and the x86emu_x86.img snapshot
image now. In order to test the images, we can use a shell script to help us. The shell script
can be downloaded from GitHub at the following URL:

h t t p s ://g i t h u b . c o m /s h u g a o y e /a s p - s a m p l e /b l o b /m a s t e r /s c r i p t s /t e s t - i n i t r d . s h

To run this script, you should set up your SDK environment first so that we can find the
emulator in the $PATH environment variable:

#!/bin/sh

if [-z "$1"]; then
 EMULATOR1=emulator
else
 EMULATOR1="/opt/VirtualGL/bin/vglrun emulator"
fi

if [-z "$OUT"]; then
 IMG_ROOT=.
else
 IMG_ROOT=$OUT
fi

$EMULATOR1 @a23x86 -verbose -show-kernel -shell -system
$IMG_ROOT/system.img -ramdisk $IMG_ROOT/initrd.img -initdata
$IMG_ROOT/userdata.img -kernel $IMG_ROOT/kernel -qemu -append "qemu=1
clocksource=pit android.checkjni=1 DEBUG=2 console=ttyS0,11520
androidboot.hardware=ranchu qemu.gles=1 android.qemud=1 root=/dev/sda
SRC=x86emu_x86" -hda $IMG_ROOT/x86emu_x86.img

To launch this script, you can use the AOSP build result directly or you can download the
images from SourceForge at the following URL:

h t t p s ://s o u r c e f o r g e . n e t /p r o j e c t s /a n d r o i d - s y s t e m - p r o g r a m m i n g /f i l e s /a n d r o i d -
7/c h 06/c h 06. z i p /d o w n l o a d

If you use the AOSP build result, the script will use the $OUT environment variable to look
for the images. If the $OUT environment variable is not set, it will assume that the images
are stored in the current directory.

https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://github.com/shugaoye/asp-sample/blob/master/scripts/test-initrd.sh
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch06/ch06.zip/download

Debugging the Boot Up Process Using a Customized ramdisk

[177]

To run the Android emulator in a remote X window session, we need to use VirtualGL for
OpenGL ES support. With any command-line parameter, the script will launch the emulator
using VirtualGL. If you use a Linux machine with a local X window session, you don't have
to do this.

To use initrd.img as the ramdisk, we can see that we specify initrd.img in the -
ramdisk option in the emulator command line. The next thing that we need to pay
attention to is the QEMU options. We can specify QEMU options after the -qemu Android
emulator option. We use two QEMU options, -append and -hda. With the -hda option, we
can add the x86emu_x86-qcow2.img image or the x86emu_x86.img snapshot image as
another hard disk for the emulator. With the -append option, we can provide kernel
parameters that we want to pass to the ranchu kernel. All other kernel parameters are the
same as the one provided by the emulator except for the following parameters:

DEBUG=2: This option sets the debug level to 2 so that we can get the debug
console during boot up
root=/dev/sda: This option specifies the root device as /dev/sda, which is the
x86emu_x86-qcow2.img image or the x86emu_x86.img snapshot image that
we provide as a QEMU option
SRC=x86emu_x86: This option defines the folder name on the root device that init
can use to find all images

You can launch the script from the command line and you will see the following screen
output:

$ test-initrd.sh
...
(debug-found)@android:/android # mount
rootfs on / type rootfs (rw)
proc on /proc type proc (rw,relatime)
sys on /sys type sysfs (rw,relatime)
tmpfs on /android type tmpfs (rw,relatime)
/dev/block/sda on /mnt type ext4 (rw,relatime,data=ordered)
/dev/loop0 on /android/system type ext4 (rw,relatime,data=ordered)
(debug-found)@android:/android # losetup -a
/dev/loop0: 0 /mnt/x86emu_x86/system.img

Debugging the Boot Up Process Using a Customized ramdisk

[178]

In the command-line log and the following screenshot, you can see that the /dev/sda root
device is found and mounted at /mnt. The Android system image is mounted as a loop
device to /dev/loop0:

Debug console of initrd.img

After you exit the shell console, the Android system will start up as usual. With this
approach, you can get a debug console at the point when you want to troubleshoot any
issues. You can also change any Android startup scripts on-the-fly without rebuilding a
new image to test. All the flexibilities in this setup will help debugging of the boot up
process a lot.

Debugging the Boot Up Process Using a Customized ramdisk

[179]

Summary
In this chapter, we learnt about the startup process for the Android system. After that, we
dived deep into the startup process for Android-x86. We found a new way to boot up the
system to a minimum Linux environment first and then use that environment to boot the
Android system. In this process, we can gain control by obtaining a shell console so that we
can examine the system at a given point. To support this kind of boot, we learnt how to
build a system image that can be used together with initrd.img.

In the next chapter, we will continue exploring how to customize the Android emulator by
adding a Wi-Fi connection to it.

7
Enabling Wi-Fi on the Android

Emulator
In the last three chapters, we have explored ways to customize and extend the Android
emulator. In this chapter, we will pursue this topic to add Wi-Fi support in the Android
emulator. If you are a developer using the Android emulator, you may notice that there is
only data connection in the Android emulator. Some applications may be aware of the
connection type and exhibit different behaviors according to the connection type. In this
case, you cannot use an emulator to test your applications. In this chapter, we will cover the
following topics:

Introducing Wi-Fi architecture in Android
Extending the x86emu device to support Wi-Fi connections
Testing a Wi-Fi connection on the x86emu device

The topics in this chapter are at an advanced level. We will analyze the Wi-Fi source code at
the beginning of the chapter to help understand the Wi-Fi architecture. I recommend that
you open a source code editor and locate the functions under discussion. This is a very
efficient way to understand the source code analysis part in this chapter.

Wi-Fi on Android
In Chapter 3, Discovering Kernel, HAL, and Virtual Hardware, we discussed the porting layers
related to the Android system, we used goldfish lights as an example to depict the calling
sequence from an application to HAL to access the hardware. We will use a similar
approach in this chapter to explore the Wi-Fi architecture of Android. Based on what we
understand about Wi-Fi architecture, we will add Wi-Fi to the emulator later in this chapter.

Enabling Wi-Fi on the Android Emulator

[181]

The Wi-Fi architecture
As we know from previous chapters, Android applications use managers to access system
services. The managers will use various system services to access Hardware Abstraction
Layer (HAL). The Wi-Fi architecture also follows the same approach for applications to
access Wi-Fi hardware.

Android Wi-Fi architecture

As we can see from the preceding diagram showing Wi-Fi layers in the Android system,
WifiSettings is the application in the default AOSP build used to control Wi-Fi connections.
WifiSettings uses WifiManager to get access to Wi-Fi services.

Enabling Wi-Fi on the Android Emulator

[182]

WifiManager provides the following functionalities:

Providing a list of configured networks--the attributes of individual entries can
be modified.
Monitoring the current active Wi-Fi network, if any. Connectivity can be
established or torn down, and dynamic information about the state of the
network can be queried.
Providing the results of access point scans, containing enough information to
make decisions about what access point to connect to.
Defining the names of various intent actions that are broadcast upon any sort of
change in the Wi-Fi state.

When WifiManager is created, it gets an interface of IWifiManager, as shown in the
following code snippet. This interface is implemented by WifiService through the binder
mechanism:

public WifiManager(Context context, IWifiManager service, Looper looper) {
 mContext = context;
 mService = service;
 mLooper = looper;
 mTargetSdkVersion = context.getApplicationInfo().targetSdkVersion;
}

WifiManager is defined in the
$AOSP/frameworks/base/wifi/java/android/net/wifi/WifiManager.java file.

In the WifiService implementation, it uses WifiStateMachine to manage Wi-Fi states:

public final class WifiServiceImpl extends IWifiManager.Stub {
 private static final String TAG = "WifiService";
 private static final boolean DBG = true;
 private static final boolean VDBG = false;

 final WifiStateMachine mWifiStateMachine;
 private final Context mContext;
...

WifiServiceImpl is defined in the
$AOSP/frameworks/opt/net/wifi/service/java/com/android/server/wifi/Wifi

ServiceImpl.java file.

Enabling Wi-Fi on the Android Emulator

[183]

We can see how the Wi-Fi HAL is initialized through WifiStateMachine in the following
sequence diagram:

There is a very good Android source code cross-reference tool at h t t p ://x

r e f . o p e r s y s . c o m /.
You can search the definition of functions and locate the location of source
code using this cross reference tool.

Sequence diagram of Android Wi-Fi initialization

http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/

Enabling Wi-Fi on the Android Emulator

[184]

WifiStateMachine processes requests from WifiManager. When the system initializes
Wi-Fi by sending a CMD_START_SUPPLICANT command, WifiStateMachine will call its
processMessage method to handle this request as shown in the following code snippet:

Enabling Wi-Fi on the Android Emulator

[185]

The processMessage method calls to native methods through WifiNative to load the Wi-
Fi driver (loadDriver) and start the Wi-Fi HAL (startHAL).

Pay attention to the function calls mWifiNative.loadDriver, and
WifiNative.startHal, as shown in the following flow diagram:

Enabling Wi-Fi on the Android Emulator

[186]

The WifiNative implementation includes the Java part and the native part. The Java
implementation can be found at
$AOSP/frameworks/opt/net/wifi/service/java/com/android/server/wifi/Wifi

Native.java.

The native implementation can be found
at $AOSP/frameworks/opt/net/wifi/service/jni/com_android_server_wifi_Wif
iNative.cpp.

When the instance of the WifiNative class is created, it loads the Wi-Fi service shared
library first and calls to a registerNatives function to register all native functions as
follows:

public class WifiNative {
...
 static {
 /* Native functions are defined in libwifi-service.so */
 System.loadLibrary("wifi-service");
 registerNatives();
 }

 private static native int registerNatives();

 public native static boolean loadDriver();
...

The native implementation of registerNatives is shown in the following snippet. It
registers the native functions through a gWifiMethods global variable:

/* User to register native functions */
extern "C"
jint Java_com_android_server_wifi_WifiNative_registerNatives(JNIEnv* env,
jclass clazz) {
 return AndroidRuntime::registerNativeMethods(env,
 "com/android/server/wifi/WifiNative", gWifiMethods,
 NELEM(gWifiMethods));
}

Enabling Wi-Fi on the Android Emulator

[187]

In this function, it calls to another framework function, registerNativeMethods, to
register native methods at the Java layer so that the Java layer can call the functions
implemented in WifiNative. You might know the function registerNativeMethods, if
you have worked on Android NDK programming. We can look at the gWifiMethods
global variable in the following snippet. The gWifiMethods global variable includes a list
of native functions that are implemented in WifiNative, which should be exported as Java
native methods of the WifiNative class. We can see that loadDriver and
startHalNative are in the list:

The loadDriver method is implemented in the android_net_wifi_loadDriver
function as follows:

static jboolean android_net_wifi_loadDriver(JNIEnv* env, jobject)
{
 return (::wifi_load_driver() == 0);
}

It calls to a wifi_load_driver function, which is a part of Wi-Fi HAL at
$AOSP/hardware/libhardware_legacy/wifi/wifi.c.

int wifi_load_driver()
{
 char driver_status[PROPERTY_VALUE_MAX];
 #ifdef WIFI_DRIVER_MODULE_PATH
 FILE *proc;
 char line[sizeof(DRIVER_MODULE_TAG)+10];
 #endif

Enabling Wi-Fi on the Android Emulator

[188]

 if (!property_get(DRIVER_PROP_NAME, driver_status, NULL)
 || strcmp(driver_status, "ok") != 0) {
 return 0; /* driver not loaded */
 }
 #ifdef WIFI_DRIVER_MODULE_PATH
 /*
 * If the property says the driver is loaded, check to
 * make sure that the property setting isn't just left
 * over from a previous manual shutdown or a runtime
 * crash.
 */
 if ((proc = fopen(MODULE_FILE, "r")) == NULL) {
 ALOGW("Could not open %s: %s", MODULE_FILE, strerror(errno));
 property_set(DRIVER_PROP_NAME, "unloaded");
 return 0;
 }
 while ((fgets(line, sizeof(line), proc)) != NULL) {
 if (strncmp(line, DRIVER_MODULE_TAG, strlen(DRIVER_MODULE_TAG))
 == 0)
 {
 fclose(proc);
 return 1;
 }
 }
 fclose(proc);
 property_set(DRIVER_PROP_NAME, "unloaded");
 return 0;
 #else
 return 1;
 #endif
}

The WIFI_DRIVER_MODULE_PATH macro needs to be defined to specify the path of the
driver module, if there is a specific Wi-Fi driver that needs to be used. After the driver has
loaded successfully, a wlan.driver.status property is set to the value ok.

Now we will look at another method, startHalNative. It is implemented in the
android_net_wifi_startHal function:

static jboolean android_net_wifi_startHal(JNIEnv* env, jclass cls) {
 JNIHelper helper(env);
 wifi_handle halHandle = getWifiHandle(helper, cls);
 if (halHandle == NULL) {
 if(init_wifi_hal_func_table(&hal_fn) != 0) {
 ALOGD("Can not initialize the basic function pointer
 table");
 return false;

Enabling Wi-Fi on the Android Emulator

[189]

 }

 wifi_error res = init_wifi_vendor_hal_func_table(&hal_fn);
 if (res != WIFI_SUCCESS) {
 ALOGD("Can not initialize the vendor function pointer
 table");
 return false;
 }

 int ret = set_iface_flags("wlan0", 1);
 if(ret != 0) {
 return false;
 }

 res = hal_fn.wifi_initialize(&halHandle);
 if (res == WIFI_SUCCESS) {
 helper.setStaticLongField(cls, WifiHandleVarName,
 (jlong)halHandle);
 ALOGD("Did set static halHandle = %p", halHandle);
 }
 env->GetJavaVM(&mVM);
 mCls = (jclass) env->NewGlobalRef(cls);
 ALOGD("halHandle = %p, mVM = %p, mCls = %p", halHandle, mVM,
 mCls);
 return res == WIFI_SUCCESS;
 } else {
 return (set_iface_flags("wlan0", 1) == 0);
 }
}

Wi-Fi chip vendors usually provide two components the Wi-Fi implementations. The first
one is a kernel driver as we discussed in the loadDriver and the second one is a vendor
HAL library. The startHalNative function is used to hook vendor-implemented
functions to a pre-defined list of functions. As we can see in the preceding code snippet, the
init_wifi_hal_func_table function is called to initialize the list of functions in hal_fn.
After that, the init_wifi_vendor_hal_func_table function is called to initialize the
function pointers in hal_fn. If this operation is successful, it will call to the vendor
initialization function, hal_fn.wifi_initialize.

Enabling Wi-Fi on the Android Emulator

[190]

QEMU networking and wpa_supplicant in Android
At HAL, wpa_supplicant is used to support the authentication between the device and
access point. It starts as a native daemon in the Android system. Control requests from the
upper layer are sent to wpa_supplicant and wpa_supplicant deals with device drivers
and kernel networking systems to provide the network connections.

Since the Android emulator uses QEMU, the networking system is provided by the QEMU
networking system. QEMU provides multiple network backends including TAP, VDE,
socket, and SLIRP. The Android emulator uses user networking (SLIRP), which is the
default networking backend of QEMU. Since SLIRP is a software implementation of TCP/IP
networking stacks, it does not require root privileges to support networking functionalities.
As a software implementation, it has the following limitations:

Lot of overhead so the performance is poor
In general, ICMP traffic does not work so you cannot use ping within a guest
On Linux hosts, ping can work within the guest if the initial setup is done by root
The guest is not directly accessible from the host or the external network

The following is a typical diagram of what SLIRP networking looks like in the Android
emulator:

A QEMU SLIRP network

Enabling Wi-Fi on the Android Emulator

[191]

In the preceding diagram, the client has an IP address of 10.0.2.15 and the gateway has an IP
address of 10.0.2.2. The default DNS IP address is 10.0.2.3. It may support SMB, which is
optional. If you start an Android emulator, the default network interface is eth0 with an IP
address of 10.0.2.15. This is usually used to simulate a cellular data connection. To simulate
a Wi-Fi connection, we can add one more network interface, eth1, using the following
QEMU options:

-netdev user,id=mynet1,net=10.0.2.0/24,dhcpstart=10.0.2.50 -device virtio-
net,netdev=mynet1

With the -device QEMU option, we add a new network device, mynet1, which uses virtio
network hardware. QEMU can simulate many existing network hardware types and we
choose virtio network hardware in this chapter. You may choose others if you like.

With the -netdev QEMU option, we specify the attributes of this network device by
providing an IP address range and the starting address for DHCP protocol.

Be aware that the previous option can only work with ranchu not goldfish. To start the
Android emulator with the preceding QEMU option, we can run the following command:

$ emulator @a25x86 -qemu -netdev
user,id=mynet1,net=10.0.2.0/24,dhcpstart=10.0.2.50 -device virtio-
net,netdev=mynet1

Adding Wi-Fi to the emulator
With the introduction of Wi-Fi architecture in Android, we can now extend the emulator to
support Wi-Fi. To add Wi-Fi in the emulator, we need to build wpa_supplicant for the
emulator and choose the right device driver for the eth1 network interface.

Enabling wpa_supplicant in BoardConfig.mk
In the default emulator build, wpa_supplicant is not built. To enable
building wpa_supplicant for the emulator, we can add the following lines in our
BoardConfig.mk:

BOARD_WPA_SUPPLICANT_DRIVER := WIRED
WPA_SUPPLICANT_VERSION := VER_0_8_X VER_2_1_DEVEL
BOARD_WLAN_DEVICE := eth1

Enabling Wi-Fi on the Android Emulator

[192]

When BOARD_WPA_SUPPLICANT_DRIVER is defined, the following configuration in
external/wpa_supplicant_8/wpa_supplicant/Android.mk will be changed to true:

ifneq ($(BOARD_WPA_SUPPLICANT_DRIVER),)
 CONFIG_DRIVER_$(BOARD_WPA_SUPPLICANT_DRIVER) := y
endif

The value of BOARD_WPA_SUPPLICANT_DRIVER tells which driver should be built. Since we
use a wired Ethernet connection to simulate Wi-Fi, we will choose the wired driver, which
can be found at external/wpa_supplicant_8/src/drivers/driver_wired.c.

We also define the wpa_supplicant version to use and the wired Ethernet interface.

Providing a proper wpa_supplicant configuration
To make wpa_supplicant work correctly, we need to prepare a wpa_supplicant.conf
configuration file with the right permission. Wi-Fi-related configuration files are stored in
the /data/misc/wifi/ directory. This directory is owned by the wifi user, which is also
the user that the wpa_supplicant runs as.

The wpa_supplicant.conf configuration file for the eth1 wired connection can be found
in the following snippet:

ctrl_interface=eth1
ap_scan=2
update_config=1
device_name=x86emu
manufacturer=unknown
serial_number=
device_type=10-0050F204-5
config_methods=physical_display virtual_push_button
external_sim=1

network={
 ssid="WiredSSID"
 key_mgmt=NONE
 engine=1
 priority=1
}

In this configuration file, we defined the network SSID to be used and the authentication
method to establish the connection. Since this is a predefined wired connection, we set the
authentication method as key_mgmt=NONE, which means we don't need to use any
authentication method for this case.

Enabling Wi-Fi on the Android Emulator

[193]

To copy wpa_supplicant.conf to the /data/misc/wifi/ directory with the right
permission, we need to change device.mk as follows:

Wi-Fi support
PRODUCT_PROPERTY_OVERRIDES := \
 wifi.interface=eth1

PRODUCT_PACKAGES += \
 libwpa_client \
 hostapd \
 dhcpcd.conf \
 wlutil \
 wpa_supplicant \
 wpa_supplicant.conf

These are the hardware-specific features
PRODUCT_COPY_FILES += \
frameworks/native/data/etc/android.hardware.wifi.xml:system/etc/
permissions/android.hardware.wifi.xml

For android_filesystem_config.h
PRODUCT_PACKAGES += \
 fs_config_files

PRODUCT_COPY_FILES += \
device/generic/x86emu/wpa_supplicant.conf:data/misc/wifi/
wpa_supplicant.conf \

In device.mk, we define the wifi.interface to eth1 as we discussed previously. After
that, we add all Wi-Fi-related modules to PRODUCT_PACKAGES so that they can be added to
the system image. We copy the wpa_supplicant.conf configuration file to the
/data/misc/wifi directory so that it can be accessed with read and write permissions by
wpa_supplicant. This file is owned by the wifi user with permission 0555.

From the Android 6 release, the system permission for files from the vendor is defined in an
android_filesystem_config.h file under the device folder. PRODUCT_PACKAGES must
include fs_config_dirs and/or fs_config_files in order to install them to
/system/etc/fs_config_dirs and /system/etc/fs_config_files, respectively. The
generated fs_config_dirs and fs_config_files files are used to set the runtime
permission. We can see the owner and permission defined in
android_filesystem_config.h in the following snippet:

#include <private/android_filesystem_config.h>

#define NO_ANDROID_FILESYSTEM_CONFIG_DEVICE_DIRS
/* static const struct fs_path_config android_device_dirs[] = { }; */

Enabling Wi-Fi on the Android Emulator

[194]

/* Rules for files.
** These rules are applied based on "first match", so they
** should start with the most specific path and work their
** way up to the root. Prefixes ending in * denotes wildcard
** and will allow partial matches.
*/
static const struct fs_path_config android_device_files[] = {
 { 00555, AID_WIFI, AID_WIFI, 0, "data/misc/wifi/wpa_supplicant.conf" },
#ifdef NO_ANDROID_FILESYSTEM_CONFIG_DEVICE_DIRS
 { 00000, AID_ROOT, AID_ROOT, 0, "system/etc/fs_config_dirs" },
#endif
};

The last change in device.mk is related to the settings user interface. The Wi-Fi settings
user interface is not available in the emulator build. To enable the Wi-Fi settings, we need to
add android.hardware.wifi.xml to the system/etc/permissions folder.

Creating services in init scripts
To initialize network interface eth1 and start wpa_supplicant, we need to define related
services in init scripts.

Initializing network interface eth1
To initialize eth1, we can refer to the initialization of eth0 in the emulator. The network
interface eth0 is initialized in the system/etc/init.goldfish.sh shell script as follows:

#!/system/bin/sh

Setup networking when boot starts
ifconfig eth0 10.0.2.15 netmask 255.255.255.0 up
route add default gw 10.0.2.2 dev eth0
...

As we can see, a fixed IP address 10.0.2.15 is assigned to the eth0 interface. We can add
the following commands to initialize the interface eth1:

ifconfig eth1 up
dhcpcd -d eth1

In the preceding commands, we enable the interface eth1 first using the ifconfig
command. Then, instead of using a fixed IP address, we use the DHCP client to get the IP
address for eth1.

Enabling Wi-Fi on the Android Emulator

[195]

As we discussed when covering the init process of Android in Chapter 6, Debugging the
Boot Up Process Using a Customized ramdisk, the init process will process the init.rc script
during the system startup. The init.rc script will include a hardware-specific init script,
init.${ro.hardware}.rc. In our case, the ro.hardware is ranchu, so the hardware-
specific init script is init.ranchu.rc.

In the init.ranchu.rc init script, a service, as shown in the following snippet, is defined
to run the init.goldfish.sh shell script:

...
service goldfish-setup /system/etc/init.goldfish.sh
 user root
 group root
 oneshot
...

That's how the goldfish- or ranchu- related setup process is done in an emulator.

Starting up wpa_supplicant
We can add a service in the init.ranchu.rc script to start wpa_supplicant. The
following are the services that we added to the init.ranchu.rc script:

service wpa_supplicant /system/bin/wpa_supplicant -ieth1 -Dwired -
c/data/misc/wifi/wpa_supplicant.conf -e/data/misc/wifi/entropy.bin -
g@android:wpa_eth1
 class main
 socket wpa_eth1 dgram 660 wifi wifi
 disabled
 oneshot

This service is used to start or restart the eth1 interface using the DHCP client. For the
service of wpa_supplicant, we start it with the following options:

-i: Use the network interface eth1 for Wi-Fi
-D: Use the wired driver for Wi-Fi on the interface eth1
-c: Use the configuration file at /data/misc/wifi/wpa_supplicant.conf
-e: Define the path of the entropy file
-g: Define the global ctrl_interface as @android:wpa_eth1

Enabling Wi-Fi on the Android Emulator

[196]

If we refer to the sequence diagram of Wi-Fi initialization earlier in this chapter, the
wpa_supplicant start sequence can be explained using the following steps:

WifiStateMachine processes the CMD_START_SUPPLICANT command.1.
WifiStateMachine calls the startSupplicant method of WifiNative.2.
The startSupplicant method is a native method implemented as the3.
android_net_wifi_startSupplicant native function. This native function
calls the wifi_start_supplicant function defined in Wi-Fi HAL wifi.c.

The wifi_start_supplicant function starts the wpa_supplicant through setting the
ctl.start system property. ctl.start and ctl.stop are two system properties
implemented by the property service that can be used to start or stop a service defined in
the init scripts:

int wifi_start_supplicant(int p2p_supported)
{
 char supp_status[PROPERTY_VALUE_MAX] = {'\0'};
 ...
 property_get("wlan.interface", primary_iface, WIFI_TEST_INTERFACE);

 property_set("ctl.start", supplicant_name);
 sched_yield();
 ...
}

Building the source code
We have made all the changes required to support Wi-Fi in emulators now. Let's build the
AOSP source code for this chapter so that we can test the Wi-Fi connection.

Getting the source code
As we have done in previous chapters, we will have a look at the projects that we have
changed in this chapter. We can check this from the manifest file for this chapter:

<?xml version="1.0" encoding="UTF-8"?>
<manifest>

 <remote name="github"
 revision="refs/tags/android-7.1.1_r4_x86emu_ch07_r2"
 fetch="." />

Enabling Wi-Fi on the Android Emulator

[197]

 <remote name="aosp"
 fetch="https://android.googlesource.com/" />
 <default revision="refs/tags/android-7.1.1_r4"
 remote="aosp"
 sync-c="true"
 sync-j="1" />

 <!-- github/shugaoye -->
 <project path="kernel" name="goldfish" remote="github" />
 <project path="device/generic/x86emu" name="x86emu" remote="github" />
 <project path="bootable/newinstaller"
 name="platform_bootable_newinstaller"
 remote="github" />
 <project path="device/generic/goldfish"
 name="device_generic_goldfish"
 remote="github" groups="pdk" />

 <!-- aosp -->
 <project path="build" name="platform/build" groups="pdk,tradefed" >
 <copyfile src="core/root.mk" dest="Makefile" />
 </project>

 ...
</manifest>

The preceding code is the default.xml file at
https://github.com/shugaoye/manifests/blob/android-7.1.1_r4_ch07_aosp/d

efault.xml.

We can see that we have an android-7.1.1_r4_x86emu_ch07_r2 tag for this chapter. In
this chapter, we have our own projects, kernel, x86emu, newinstaller, and goldfish.
We will use this manifest to download or update the source code for this chapter:

$ repo init https://github.com/shugaoye/manifests -b
android-7.1.1_r4_x86emu_ch07_r2
$ repo sync

After we have the source code for this chapter, we can set the environment and build the
system as follows:

$. build/envsetup.sh
$ lunch x86emu_x86-eng
$ make -j4

Enabling Wi-Fi on the Android Emulator

[198]

Enabling boot with initrd.img
As we learnt in Chapter 6, Debugging the Boot Up Process Using a Customized ramdisk, we can
boot the emulator in two stages. This is very helpful to debug the init process and
troubleshoot issues at system level. in Chapter 6, Debugging the Boot Up Process Using a
Customized ramdisk, we create a separate disk image, x86emu_x86.img, to store all the
necessary file images to support a first-stage boot up similar to Android-x86. The
x86emu_x86.img image appears in the system as /dev/sda and includes all
images: system.img, install.img, initrd.img, ramdisk.img, kernel, and so on.

In this chapter, we will change the Android-x86 newinstaller further to support two-
stages boot up just using system.img instead of creating a separate image. We will use the
first stage boot to help our debugging of Wi-Fi initialization later in this chapter.

In the first stage of boot-up, the init script in initrd.img will mount the system image and
extract ramdisk.img to a filesystem in memory. Since we will use system.img directly, we
need to put ramdisk.img inside the system.img. We do this using the Makefile in the
x86emu device instead of changing the AOSP source code. The following is the build target
that we add to device/generic/x86emu/Makefile:

qcow2_img:
 mkdir -p ${OUT}/system/x86emu_ch07
 cp ${OUT}/ramdisk.img ${OUT}/system/x86emu_ch07
 cd ../../..;make qcow2_img USE_SQUASHFS=0

In the qcow2_img build target, we create an x86emu_ch07 folder in the system image and
we copy ramdisk.img to this folder. After that, we build a system image in QCOW2
format.

Enabling Wi-Fi on the Android Emulator

[199]

To build the system image in QCOW2 format, we need to change Android.mk in the
bootable/newinstaller folder:

diff in bootable/newinstaller/Android.mk

From the preceding diff tool output, we can see that we changed the VER variable to
x86emu_ch07. The init script of initrd.img uses this variable to find the folder of images.
The second change is to add a build target to generate the QCOW2 image using the qemu-img
tool.

Finally, we need to change the init script in initrd.img as follows to extract ramdisk.img
inside system.img:

...
check_root()
{
 if ["`dirname $1`" = "/dev"]; then
 [-e $1] || return 1
 blk=`basename $1`
 [! -e /dev/block/$blk] && ln $1 /dev/block
 dev=/dev/block/$blk
 else
 dev=$1
 fi
 try_mount ro $dev /mnt || return 1
 if [-n "$iso" -a -e /mnt/$iso]; then
 mount --move /mnt /iso
 mkdir /mnt/iso
 mount -o loop /iso/$iso /mnt/iso
 SRC=iso

Enabling Wi-Fi on the Android Emulator

[200]

 elif [! -e /mnt/$SRC/ramdisk.img]; then
 return 1
 fi
 zcat /mnt/$SRC/ramdisk.img | cpio -id > /dev/null
 if [-e /mnt/$SRC/system.sfs]; then
 mount -o loop /mnt/$SRC/system.sfs /sfs
 mount -o loop /sfs/system.img system
 elif [-e /mnt/$SRC/system.img]; then
 remount_rw
 mount -o loop /mnt/$SRC/system.img system
 elif [-d /mnt/$SRC/system]; then
 remount_rw
 mount --bind /mnt/$SRC/system system
 else
 echo Moving mount point to /android/system
 mount --move /mnt /android/system
 fi
 mkdir mnt
 echo " found at $1"
 rm /sbin/mke2fs
 hash -r
}
...
echo -n Detecting x86emu...
export DEBUG=2
export SRC=x86emu_ch07
...

The original script will try to find the system image in SQUASH format (system.sfs) or a
plain image (system.img). If none of the system images can be found, it will try to find a
system/ folder as the system image. After that, it will mount the image file or the folder to
/android/system. In our case, the system image is already mounted at /mnt, so we just
move the mount point from /mnt to /android/system.

The second change to the init script is to define the DEBUG and SRC environment variables.
These two variables are passed from the kernel command line in Chapter 6, Debugging the
Boot Up Process Using a Customized ramdisk. Here, we define them inside the script, so we
don't need to worry about the kernel command line in our test script.

Once we have done all these changes, we can build the initrd.img and system image as
follows:

$ cd device/generic/x86emu
$ make qcow2_img
...
Created filesystem with 1976/81920 inodes and 158476/327680 blocks

Enabling Wi-Fi on the Android Emulator

[201]

Install system fs image: out/target/product/x86emu/system.img
out/target/product/x86emu/system.img+ maxsize=1370278272 blocksize=2112
total=1342177280 reserve=13842048
rm -rf out/target/product/x86emu/installer
out/host/linux-x86/bin/acp -pr bootable/newinstaller/initrd
out/target/product/x86emu/installer
ln -s /bin/ld-linux.so.2 out/target/product/x86emu/installer/lib
mkdir -p out/target/product/x86emu/installer/android
out/target/product/x86emu/installer/iso
out/target/product/x86emu/installer/mnt
out/target/product/x86emu/installer/proc
out/target/product/x86emu/installer/sys
out/target/product/x86emu/installer/tmp
out/target/product/x86emu/installer/sfs
out/target/product/x86emu/installer/hd
echo "VER=x86emu_ch07" > out/target/product/x86emu/installer/scripts/00-ver
out/host/linux-x86/bin/mkbootfs out/target/product/x86emu/installer | gzip
-9 > out/target/product/x86emu/initrd.img
qemu-img convert -c -f raw -O qcow2 out/target/product/x86emu/system.img
out/target/product/x86emu/system-qcow2.img
make[1]: Leaving directory `/home/roger/src/android-6'

make completed successfully (03:30 (mm:ss))

We can see from the preceding output that initrd.img is created and system-qcow2.img
is generated from system.img.

Testing Wi-Fi on an emulator
We have now prepared all the images that we need for the testing process. The prebuilt test
images for this chapter can be downloaded from the following URL:

https://sourceforge.net/projects/android-system-programming/files/android-7/ch0
7/ch07.zip/download

Booting an Android emulator using initrd.img
We can execute the following command to boot the system using initrd.img first:

$ cd $OUT
$ emulator @a25x86 -ranchu -verbose -show-kernel -system ./system-qcow2.img
-ramdisk ./initrd.img -initdata ./userdata-qcow2.img -kernel ./kernel -qemu
-netdev user,id=mynet1,net=10.0.2.0/24,dhcpstart=10.0.2.50 -device virtio-
net,netdev=mynet1

https://sourceforge.net/projects/android-system-programming/files/android-7/ch07/ch07.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch07/ch07.zip/download

Enabling Wi-Fi on the Android Emulator

[202]

In the preceding command, we use QCOW2-format images for both system and user data,
since they are much smaller than the plain file images. We use initrd.img as the ramdisk
so that we can debug the configuration in the first stage of boot up. We can also change this
script to use ramdisk.img directly. In this case, it is the normal start up process of the
emulator.

Once we start the emulator using initrd.img, we can enter the debug console, in which
we can check the configuration and make necessary changes before we move forward.

From the output, we can see that the system image on the device, /dev/block/vda, is
mounted to /android/system. At this point, we have an opportunity to check and change
any start up scripts before we launch them. For example, we can edit init.ranchu.rc to
increase the debug level of wpa_supplicant with the -dd option before we start the
Android system.

Enabling Wi-Fi on the Android Emulator

[203]

Booting an Android emulator using ramdisk.img
To boot the system using ramdisk.img, we can execute the following command:

$ cd $OUT
$ emulator @a25x86 -ranchu -verbose -show-kernel -system ./system-qcow2.img
-ramdisk ./ramdisk.img -initdata ./userdata-qcow2.img -kernel ./kernel -
qemu -netdev user,id=mynet1,net=10.0.2.0/24,dhcpstart=10.0.2.50 -device
virtio-net,netdev=mynet1

Debugging Wi-Fi start up processes
Once the system starts, we can check the wpa_supplicant debug message using logcat as
follows:

$ adb logcat -s "wpa_supplicant"

Enabling Wi-Fi on the Android Emulator

[204]

We can see that wpa_supplicant started successfully using Ethernet eth1 and global
control socket wpa_eth1. This global control socket is specified in init.ranchu.rc as part
of the wpa_supplicant service as follows:

service wpa_supplicant /system/bin/wpa_supplicant -ieth1 -Dwired -
c/data/misc/wifi/wpa_supplicant.conf -e/data/misc/wifi/entropy.bin -
g@android:wpa_eth1 -dd
 class main
 socket wpa_eth1 dgram 660 wifi wifi
 disabled
 oneshot

We can also check the network status using the ifconfig command in the following
snippet. We can see that eth0 is assigned a fixed IP address, 10.0.2.15, and eth1 is
assigned the IP address 10.0.2.50 through DHCP:

Enabling Wi-Fi on the Android Emulator

[205]

Once the system starts up, we can go to Settings | Wi-Fi and we will see the following
screen. The access point SSID is WiredSSID and we can turn Wi-Fi on or off as we expect:

Enabling Wi-Fi on the Android Emulator

[206]

Summary
In this chapter, we introduced the Wi-Fi architecture in Android and we also did an
analysis of the Wi-Fi initialization process. Based on that, we modified our x86emu device
to support simulated Wi-Fi through a wired Ethernet interface eth1. We used the advanced
features in QEMU to add the second network interface to the ranchu emulator. With all
these changes to x86emu, we built and tested the image. In order to help with debugging,
we reused the technique that we learnt from Chapter 6, Debugging the Boot Up Process Using
a Customized ramdisk, to boot the system using initrd.img so that we can get a debug
console before the Android system is started.

With all the knowledge from Chapter 4, Customizing the Android Emulator to Chapter 7,
Enabling Wi-Fi on the Android Emulator, we learnt how to create a new device based on an
existing one. We also learnt how to customize and extend the device to support new
features. From the next chapter to Chapter 11, Enabling VirtualBox-Specific Hardware
Interfaces, we will take on a new challenge to support a new platform that is not supported
by AOSP. We will create and build a new x86vbox device to explore more advanced topics
in the Android system programming world.

8
Creating Your Own Device on

VirtualBox
We have learned how to customize and enhance an existing device to support new features
using x86emu. The x86emu device is a device created on top of the following Android
emulators: goldfish and ranchu. From this chapter to Chapter 11, Enabling VirtualBox-
Specific Hardware Interfaces, we will move to an advanced topic: porting Android systems.
What can we do with a hardware platform that is not supported by AOSP?

In this chapter, we will move to a new device, x86vbox. We will create this new x86vbox
device to run it on VirtualBox. Since VirtualBox is virtual hardware that is not supported by
AOSP directly, we have to create the HAL layer by ourselves. Creating the HAL layer by
ourselves doesn't mean we have to create everything from scratch. As I mentioned earlier,
porting and customization are the art of integration. We can integrate device drivers for the
devices that we need from other open source projects. In this chapter, we will cover the
following topics:

Analyzing the HAL of the Android-x86 project and using the Android-x86 HAL
for the x86vbox device
Creating the x86vbox device based on the analysis of Android-x86 HAL
Analyzing the start-up process for x86vbox

Creating Your Own Device on VirtualBox

[208]

HAL of x86vbox
Before we create the new x86vbox device, we need to resolve a key issue: creating the HAL
for x86vbox. What this means is that we need to support the hardware devices that appear
on VirtualBox. As we said previously, the Android-x86 project is a project that aims to
provide Board Support Package (BSP) for any x86-based computing devices. Even though
VirtualBox is a virtualized x86 hardware environment, we can still use part of Android-x86
projects to support it. In the following table, we can see a list of projects that we reused from
Android-x86. There are three project categories that we need to include in our build from
Android-x86:

Linux kernel: Android-x86 provides a kernel that can work with Android for
Intel x86 architecture.
HAL for Intel x86 architecture: Android-x86 includes HAL support on most
devices that you can find on your PC.
Android system projects and framework projects: Android-x86 changed some
projects under the system/ and frameworks/ directories to meet x86
architecture-specific requirements. For example, init and init.rc under
system/core have been changed to work with the two-stage start up of
Android-x86.

In the following table, we can also look at the projects in another dimension:

AOSP projects changed by Android-x86.
Android-x86 only projects.
x86vbox--only projects.

In this chapter and the following chapters, we will create the x86vbox device and make
changes to some of the following projects to run x86vbox on VirtualBox.

In the following table, all kernel- and HAL-related projects from AOSP, Android-x86, and
x86vbox are listed. The projects that are created or changed by them are marked with X:

Project AOSP Android-x86 x86vbox HAL module

kernel X X X

device/generic/x86vbox X

bionic X X

bootable/newinstaller X X

device/generic/common X X X

Creating Your Own Device on VirtualBox

[209]

device/generic/firmware X

external/alsa-lib X

external/alsa-utils X

external/bluetooth/bluez X bluetooth.default
audio.a2dp.default

external/bluetooth/glib X

external/bluetooth/sbc X

external/busybox X

external/drm_gralloc X X gralloc.drm

external/drm_hwcomposer X X hwcomposer.drm

external/e2fsprogs X X

external/ffmpeg X

external/libdrm X X

external/libpciaccess X

external/libtruezip X

external/llvm X X

external/mesa X

external/s2tc X

external/stagefright-plugins X

external/v86d X

frameworks/av X X

frameworks/base X X X

frameworks/native X X

hardware/broadcom/wlan X X

hardware/gps X gps.default
gps.huawei

hardware/intel/audio_media X X audio.primary.hdmi

hardware/intel/libsensors X sensors.hsb

hardware/libaudio X audio.primary.x86

Creating Your Own Device on VirtualBox

[210]

hardware/libcamera X camera.x86

hardware/libhardware X X libhardware

hardware/libhardware_legacy X X audio_policy.default

hardware/liblights X lights.default

hardware/libsensors X sensors.hdaps
sensors.iio
sensors.kbd
sensors.s103t
sensors.w500

hardware/ril X X

hardware/x86power X power.x86

system/core X X

The manifest for x86vbox
Based on an analysis of the preceding table, we can create the manifest file for x86vbox.
From the preceding table, we can see that we reuse 39 projects from Android-x86 to form
the HAL of VirtualBox. Out of these 39 projects, 16 of them are from AOSP and changed by
Android-x86. To run our x86vbox device on VirtualBox, we need to create the device
x86vbox at device/generic/x86vbox. We also need to change four projects: kernel,
bootable/newinstaller, device/generic/common, and frameworks/base.

In the manifest of the x86vbox, we will include the preceding projects for the x86 kernel,
HAL, and have modified system/ as well as frameworks/:

<?xml version="1.0" encoding="UTF-8"?>
<manifest>

 <remote name="github"
 revision="refs/tags/android-7.1.1_r4_x86vbox_ch08_r1"
 fetch="." />

 <remote name="aosp"
 fetch="https://android.googlesource.com/" />
 <default revision="refs/tags/android-7.1.1_r4"
 remote="aosp"
 sync-c="true"
 sync-j="1" />

 <!-- github/android-7.1.1_r4_ch08 -->

Creating Your Own Device on VirtualBox

[211]

 <project path="kernel" name="goldfish" remote="github" />
 <project path="bootable/newinstaller"
 name="platform_bootable_newinstaller"
 remote="github" />
 <project path="device/generic/common" name="device_generic_common"
 groups="pdk"
 remote="github" />
 <project path="device/generic/x86vbox" name="x86vbox"
 remote="github" />
 <project path="bootable/recovery" name="android_bootable_recovery"
 remote="github" groups="pdk" />

 <project path="frameworks/base" name="platform_frameworks_base"
 groups="pdk-cw-fs,pdk-fs" remote="github" />

 <project path="bionic" name="platform_bionic" groups="pdk"
 remote="github" />
 <project path="device/generic/firmware"
 name="device_generic_firmware"
 remote="github" />
 <project path="external/alsa-lib" name="platform_external_alsa-lib"
 remote="github" />
 <project path="external/alsa-utils"
 name="platform_external_alsa-utils"
 remote="github" />
 <project path="external/bluetooth/bluez"
 name="platform_external_bluetooth_bluez" remote="github" />
 <project path="external/bluetooth/glib"
 name="platform_external_bluetooth_glib"
 remote="github" />
 <project path="external/bluetooth/sbc"
 name="platform_external_bluetooth_sbc"
 remote="github" />
 <project path="external/busybox" name="platform_external_busybox"
 remote="github" />
 <project path="external/drm_gralloc"
 name="platform_external_drm_gralloc"
 groups="drm_gralloc" remote="github" />
 <project path="external/drm_hwcomposer"
 name="platform_external_drm_hwcomposer"
 groups="drm_hwcomposer" remote="github" />
 <project path="external/e2fsprogs" name="platform_external_e2fsprogs"
 groups="pdk" remote="github" />
 <project path="external/ffmpeg" name="platform_external_ffmpeg"
 remote="github" />
 <project path="external/libdrm" name="platform_external_libdrm"
 groups="pdk"
 remote="github" />

Creating Your Own Device on VirtualBox

[212]

 <project path="external/libtruezip"
 name="platform_external_libtruezip"
 remote="github" />
 <project path="external/llvm" name="platform_external_llvm"
 groups="pdk"
 remote="github" />
 <project path="external/mesa" name="platform_external_mesa"
 remote="github" />
 <project path="external/s2tc" name="platform_external_s2tc"
 remote="github" />
 <project path="external/stagefright-plugins"
 name="platform_external_stagefright-plugins" remote="github" />
 <project path="external/v86d" name="platform_external_v86d"
 remote="github" />
 <project path="frameworks/av" name="platform_frameworks_av"
 groups="pdk"
 remote="github" />
 <project path="frameworks/native" name="platform_frameworks_native"
 groups="pdk" remote="github" />
 <project path="hardware/broadcom/wlan"
 name="platform_hardware_broadcom_wlan"
 groups="pdk,broadcom_wlan" remote="github" />
 <project path="hardware/gps" name="platform_hardware_gps"
 remote="github" />
 <project path="hardware/intel/audio_media"
 name="platform_hardware_intel_audio_media" groups="intel"
 remote="github" />
 <project path="hardware/intel/libsensors"
 name="platform_hardware_intel_libsensors" remote="github" />
 <project path="hardware/libaudio" name="platform_hardware_libaudio"
 remote="github" />
 <project path="hardware/libcamera" name="platform_hardware_libcamera"
 remote="github" />
 <project path="hardware/libhardware"
 name="platform_hardware_libhardware"
 groups="pdk" remote="github" />
 <project path="hardware/libhardware_legacy"
 name="platform_hardware_libhardware_legacy" groups="pdk"
 remote="github" />
 <project path="hardware/liblights" name="platform_hardware_liblights"
 remote="github" />
 <project path="hardware/libsensors"
 name="platform_hardware_libsensors"
 remote="github" />
 <project path="hardware/ril" name="platform_hardware_ril"
 groups="pdk"
 remote="github" />
 <project path="hardware/x86power" name="platform_hardware_x86power"

Creating Your Own Device on VirtualBox

[213]

 remote="github" />
 <project path="system/core" name="platform_system_core" groups="pdk"
 remote="github" />

 <!-- aosp -->
 <project path="build" name="platform/build" groups="pdk,tradefed" >
 <copyfile src="core/root.mk" dest="Makefile" />
 </project>

...
</manifest>

We can see that the manifest of x86vbox includes two parts. The first part includes the x86
kernel, x86vbox HAL, and modified AOSP projects that are all in GitHub. The second part
includes the original AOSP projects. All the projects in the second part are not touched by
either Android-x86 or x86vbox. The majority of projects in the first part are changed by
Android-x86 only so we don't have to do anything for these projects as well.

In the first part of manifest, all the projects in the external/ or hardware/ directory are
x86 HAL-related projects. The only AOSP project that you may have questions is bionic.
You may be wondering why it is changed by Android-x86, since it is the C library of
Android. You may know that system calls are implemented in the C library in the Linux
system. There are two system calls ioperm and iopl missing from the original bionic and
they are needed by the external/v86d project, which is the user space daemon for the
vesafb frame buffer driver.

All the preceding analysis helps us to clarify the scope of work. As we can see, the scope of
work is not as big as we thought at the beginning. There are many open source projects
available nowadays. If we can reuse them as much as possible, the amount of work usually
can be reduced dramatically.

All Android-x86 projects in GitHub are forked from the Android-x86
mirror so that we can change them.

Creating Your Own Device on VirtualBox

[214]

Creating a new x86vbox device
Once we have the HAL for VirtualBox, we can create a new device named x86vbox now. If
we review how we created the x86emu device in Chapter 4, Customizing the Android
Emulator, we know that we need to have a board/device configuration Makefile and a
product definition Makefile for a new device. We can also create a new device by inheriting
it from an existing device. If we look at the preceding table of x86 HAL, we can see that
there is a common x86 device project, device/common, which can be found in Android-x86.
We will create our new device x86vbox by inheriting from this common device for x86. The
x86vbox that we create in this chapter is a 32-bit x86 device. You can follow the same
instructions to create an x86_64 device by yourself.

As we did in Chapter 4, Customizing the Android Emulator, we create an
AndroidProducts.mk Makefile to include the product definition Makefile for x86vbox as
follows:

PRODUCT_MAKEFILES := \
 $(LOCAL_DIR)/x86vbox.mk

Product definition Makefile of x86vbox
As we know, the AOSP build system will look for AndroidProducts.mk to find the
product definition Makefile for a particular device. Let's review the product definition
Makefile x86vbox.mk as follows:

includes the base of Android-x86 platform
$(call inherit-product,device/generic/common/x86.mk)

Overrides
PRODUCT_NAME := x86vbox
PRODUCT_BRAND := Android-x86
PRODUCT_DEVICE := x86vbox
PRODUCT_MODEL := x86vbox_ch8

TARGET_KERNEL_SOURCE := kernel
TARGET_KERNEL_CONFIG := android-x86_defconfig
TARGET_ARCH := x86

PRODUCT_OUT ?= out/target/product/$(PRODUCT_DEVICE)

include $(TARGET_KERNEL_SOURCE)/AndroidKernel.mk

define build targets for kernel
.PHONY: $(TARGET_PREBUILT_KERNEL)

Creating Your Own Device on VirtualBox

[215]

LOCAL_KERNEL := $(TARGET_PREBUILT_KERNEL)

PRODUCT_COPY_FILES += \
 $(LOCAL_KERNEL):kernel \

As we can see, the product definition Makefile is very simple. It does the following things:

It includes the general x86 product definition Makefile,
device/generic/common/x86.mk

It defines product definition variables such as PRODUCT_NAME, PRODUCT_BRAND,
PRODUCT_DEVICE, PRODUCT_MODEL, and so on
It specifies how to build the kernel for x86vbox

It looks even simpler than the one we created in Chapter 4, Customizing the Android
Emulator for x86emu. The inherited x86.mk Makefile did most actual work and we will
analyze it in greater depth later.

Board configuration of x86vbox
Another Makefile that we will create for x86vbox is the board configuration Makefile
BoardConfig.mk as follows:

TARGET_NO_BOOTLOADER := true

TARGET_ARCH := x86
TARGET_CPU_ABI := x86

TARGET_CPU_ABI_LIST_32_BIT := $(TARGET_CPU_ABI) $(TARGET_CPU_ABI2)
$(NATIVE_BRIDGE_ABI_LIST_32_BIT)
TARGET_CPU_ABI_LIST := $(TARGET_CPU_ABI_LIST_32_BIT)

TARGET_USERIMAGES_USE_EXT4 := true
BOARD_SYSTEMIMAGE_PARTITION_SIZE := 1153433600
BOARD_USERDATAIMAGE_PARTITION_SIZE := 419430400
BOARD_CACHEIMAGE_PARTITION_SIZE := 69206016
BOARD_CACHEIMAGE_FILE_SYSTEM_TYPE := ext4
BOARD_FLASH_BLOCK_SIZE := 512
TARGET_USERIMAGES_SPARSE_EXT_DISABLED := true

BOARD_SEPOLICY_DIRS += build/target/board/generic/sepolicy
BOARD_SEPOLICY_DIRS += build/target/board/generic_x86/sepolicy

include device/generic/common/BoardConfig.mk

Creating Your Own Device on VirtualBox

[216]

This looks very simple as well. It defines the target architecture--specific variables
TARGET_ARCH, TARGET_CPU_ABI, TARGET_CPU_ABI_LIST_32_BIT, and
TARGET_CPU_ABI_LIST. Then it defines the parameters for the system image file. Finally, it
includes the common board configuration the Makefile
device/generic/common/BoardConfig.mk and we will look at this in a moment.

Common x86 devices
In the Android-x86 project, it defines a common x86 device so that everybody can create a
specific x86 device based on it. The inherited device can be either a 32-bit or a 64-bit x86
device.

We can have a look at the content of device/generic/common first as follows:

We can see that there are a lot of files and directories. We will start the analysis from the
BoardConfig.mk and x86.mk Makefiles first.

In BoardConfig.mk, the variables needed by the build system are defined as follows:

TARGET_BOARD_PLATFORM := android-x86

Some framework code requires this to enable BT
BOARD_HAVE_BLUETOOTH := true

Creating Your Own Device on VirtualBox

[217]

BOARD_USE_LEGACY_UI := true

BOARD_SYSTEMIMAGE_PARTITION_SIZE = $(if $(MKSQUASHFS),0,1610612736)

customize the malloced address to be 16-byte aligned
BOARD_MALLOC_ALIGNMENT := 16

Enable dex-preoptimization to speed up the first boot sequence
of an SDK AVD. Note that this operation only works on Linux for now
ifeq ($(HOST_OS),linux)
WITH_DEXPREOPT := true
WITH_DEXPREOPT_PIC := true
endif

the following variables could be overridden
TARGET_PRELINK_MODULE := false
TARGET_NO_KERNEL ?= false
TARGET_NO_RECOVERY ?= true
TARGET_EXTRA_KERNEL_MODULES := tp_smapi
ifneq ($(filter efi_img,$(MAKECMDGOALS)),)
TARGET_KERNEL_ARCH ?= x86_64
endif
TARGET_USES_64_BIT_BINDER := $(if $(filter x86_64,$(TARGET_ARCH)
$(TARGET_KERNEL_ARCH)),true)

BOARD_USES_GENERIC_AUDIO ?= false
BOARD_USES_ALSA_AUDIO ?= true
...

It is a long list. It defines audio, Wi-Fi, GPU, and Bluetooth-related features. It is also a
disabled emulator-related build.

Now, let's have a look at x86.mk:

PRODUCT_PROPERTY_OVERRIDES := \
 ro.com.android.dateformat=MM-dd-yyyy \

$(call inherit-product,$(LOCAL_PATH)/device.mk)
$(call inherit-product,$(LOCAL_PATH)/packages.mk)

Get a list of languages.
$(call inherit-product,$(SRC_TARGET_DIR)/product/locales_full.mk)

Get everything else from the parent package
$(call inherit-product,$(SRC_TARGET_DIR)/product/full.mk)

Creating Your Own Device on VirtualBox

[218]

In x86.mk, it includes two generic Makefiles, full.mk and locales_full.mk, from the
AOSP build system. If we recall the device definition Makefile for x86emu, it also includes
these two Makefiles from the build system.

There are another two local Makefiles, device.mk and packages.mk, imported by x86.mk.
In packages.mk, the HAL module packages are defined as follows:

PRODUCT_PACKAGES := \
 camera.x86 \
 com.android.future.usb.accessory \
 drmserver \
 gps.default \
 gps.huawei \
 hwcomposer.x86 \
 io_switch \
 libGLES_android \
 libhuaweigeneric-ril \
 lights.default \
 power.x86 \
 powerbtnd \
 sensors.hsb \
 tablet-mode \
 v86d \
 wacom-input \

PRODUCT_PACKAGES += \
 libwpa_client \
 hostapd \
 wpa_supplicant \
 wpa_supplicant.conf \

This is not an exhaustive list of packages. There are more components added to
PRODUCT_PACKAGES in device.mk as follows:

PRODUCT_DIR := $(dir $(lastword $(filter-out device/common/%,$(filter
device/%,$(ALL_PRODUCTS)))))

PRODUCT_PROPERTY_OVERRIDES := \
 ro.ril.hsxpa=1 \
 ro.ril.gprsclass=10 \
 keyguard.no_require_sim=true \
 ro.com.android.dataroaming=true

PRODUCT_DEFAULT_PROPERTY_OVERRIDES := \
 ro.arch=x86 \
 persist.rtc_local_time=1 \

Creating Your Own Device on VirtualBox

[219]

PRODUCT_COPY_FILES := \...
PRODUCT_TAGS += dalvik.gc.type-precise

PRODUCT_CHARACTERISTICS := tablet

PRODUCT_AAPT_CONFIG := normal large xlarge mdpi hdpi
PRODUCT_AAPT_PREF_CONFIG := mdpi

DEVICE_PACKAGE_OVERLAYS := $(LOCAL_PATH)/overlay

Get the firmwares
$(call inherit-product,device/generic/firmware/firmware.mk)

Get the touchscreen calibration tool
$(call inherit-product-if-exists,external/tslib/tslib.mk)

Get the alsa files
$(call inherit-product-if-exists,hardware/libaudio/alsa.mk)

Get GPS configuration
$(call inherit-product-if-exists,device/common/gps/gps_as.mk)

Get the hardware acceleration libraries
$(call inherit-product-if-exists,$(LOCAL_PATH)/gpu/gpu_mesa.mk)

Get the sensors hals
$(call inherit-product-if-exists,hardware/libsensors/sensors.mk)

Get tablet dalvik parameters
$(call inherit-product,frameworks/native/build/tablet-10in-xhdpi-2048-
dalvik-heap.mk)

Get GMS
$(call inherit-product-if-exists,vendor/google/products/gms.mk)

Get native bridge settings
$(call inherit-product-if-
exists,$(LOCAL_PATH)/nativebridge/nativebridge.mk)

In device.mk, it defines the properties for x86 devices and it is followed by a long list of
files to be copied. At the end, it includes individual Makefiles for various components, such
as firmware, touchscreen a calibration tool, audio, GPS, a sensor and native bridge, and so
on. You can find and investigate each of them in the respective folders by yourself. In this
chapter, we just give an overview about how we can create the x86vbox device. We will
delve into the details of some hardware interfaces in later chapters.

Creating Your Own Device on VirtualBox

[220]

Getting the source code and building the x86vbox
device
To build the x86vbox device, we can get the source code from GitHub and AOSP using the
following command:

$ repo init https://github.com/shugaoye/manifests -b
android-7.1.1_r4_ch08_aosp
$ repo sync

The android-7.1.1_r4_ch08_aosp tag is used to baseline the changes in this chapter.

After we get the source code for this chapter, we can set the environment and build the
system as follows:

$ source build/envsetup.sh
$ lunch x86vbox-eng
$ make -j4

Boot up process and device initialization
Since we use the Android-x86 kernel and HAL for x86vbox, we will further analyze about
the start-up process of x86vbox in this section. From the analysis, we can understand how
Android-x86 supports multiple devices using one codebase. You can review the two-stage
start-up process that we discussed in Chapter 6, Debugging the Boot Up Process using a
Customized ramdisk. We will work on a more detailed analysis on top of that introduction
now.

The kernel of Android-x86 is different from the kernel that we used in Chapter 6,
Debugging the Boot Up Process using a Customized ramdisk for emulators. The Android-x86
kernel does not have any idea about what hardware interfaces it needs to support, so it
builds as many device drivers as possible with it. On the other hand, the goldfish kernel
does know what hardware it needs to support. This difference means they are built in two
different ways. The goldfish kernel includes all devices supported inside the kernel, so it
does not use kernel modules at all. However, it is impossible for Android-x86 kernel to do
this, since it would make the size of the kernel too big. The kernel of Android-x86 uses
kernel modules extensively.

We will focus on an analysis about how device nodes are created and how the kernel
modules are loaded during the start-up process in this chapter. Since Android-x86 boots up
in two stages, the device initialization is also split into two stages.

Creating Your Own Device on VirtualBox

[221]

Device initialization before Android start-up
The boot-up process will start with an embedded Linux environment as the first stage. Most
devices will be initialized during this stage. The good thing is that Android-x86 can enter a
shell environment with a debug console using a defined environment variable. In this
console, we can check the system status to find out whether we have the right configuration
that we want to create. The default init script comes with two debug checkpoints. The first
checkpoint is after the root device is mounted. The second checkpoint is entered after all the
drivers are loaded. Of course, you can set up as many checkpoints as you want by changing
the init script.

The following is the part of the init script that we want to look at before we enter the first
checkpoint:

PATH=/sbin:/bin:/system/bin:/system/xbin; export PATH
...
early boot
if test x"$HAS_CTTY" != x"Yes"; then
 # initialise /proc and /sys
 busybox mount -t proc proc /proc
 busybox mount -t sysfs sys /sys
 # let busybox install all applets as symlinks
 busybox --install -s
 # spawn shells on tty 2 and 3 if debug or installer
 if test -n "$DEBUG" || test -n "$INSTALL"; then
 # ensure they can open a controlling tty
 mknod /dev/tty c 5 0
 # create device nodes then spawn on them
 mknod /dev/tty2 c 4 2 && openvt
 mknod /dev/tty3 c 4 3 && openvt
 fi
 if test -z "$DEBUG" || test -n "$INSTALL"; then
 echo 0 0 0 0 > /proc/sys/kernel/printk
 fi
 # initialise /dev (first time)
 mkdir -p /dev/block
 echo /sbin/mdev > /proc/sys/kernel/hotplug
 mdev -s
 # re-run this script with a controlling tty
 exec env HAS_CTTY=Yes setsid cttyhack /bin/sh "$0" "$@"
fi
...

Creating Your Own Device on VirtualBox

[222]

In the early boot stage, the init script mounts the /proc and /sys filesystems using by
kernels. After that, it sets up the symbolic links of busybox so that we can use all the
commands of busybox. Then, it will set /sbin/mdev as the handler for hotplug. The mdev
command is a minimal implementation of udev. mdev can dynamically manage the device
nodes under /dev, when a new device is detected by the kernel. mdev is part of busybox so
we need to create all busybox symbolic links first. It also requires the /proc and /sys
filesystem. After the hotplug is set, the script runs the command mdev -s to find all
existing devices currently found by the kernel. At this point, all device nodes under /dev
are created.

udev and mdev
udev is a device manager for the Linux kernel. As the successor to devfsd
and hotplug, udev primarily manages device nodes in the /dev directory.
At the same time, udev also handles all user space events raised while
hardware devices are added into the system or removed from it, including
firmware loading as required by certain devices.
mdev is a minimum implementation of udev in busybox. It is used in
embedded systems to replace udev. mdev lacks some features in udev,
such as completed implementation of device driver loading, and so on. We
can see that Android-x86 uses mdev in the first start up stage.

Let's look at the kernel modules and device nodes at this stage:

Kernel modules and device nodes

Creating Your Own Device on VirtualBox

[223]

As we can see from the preceding screenshot, all device nodes are created under /dev.
However, there is only one kernel module loaded at this time. We are in the first checkpoint
now.

Let's move on and see what happens in the script before we hit another checkpoint in the
following code snippet. To exit from the first checkpoint, we need to run
the exit command to continue executing the script.

(debug-found)@android:/android # exit

After exit from the first checkpoint, it will continue to execute the following script:

...
[-n "$INSTALL"] && do_install

load_modules
mount_data
mount_sdcard
setup_tslib
setup_dpi
post_detect

if [0$DEBUG -gt 1]; then
 echo -e "\nUse Alt-F1/F2/F3 to switch between virtual consoles"
 echo -e "Type 'exit' to enter Android...\n"

 debug_shell debug-late
fi

...

We can see that the init script performs the following tasks before it enters the next
checkpoint:

Loads kernel modules.1.
Mounts the data partition.2.
Mounts the SD card.3.
Sets up the touch screen calibration tool.4.
Sets up the screen DPI.5.
Performs any other post-boot detection.6.

Creating Your Own Device on VirtualBox

[224]

You can study the script for tasks 2 to 6 by yourself, since they are very straightforward and
easy to understand. We want to look at the first task in more detail here:

auto_detect()
{
 tmp=/tmp/dev2mod
 echo 'dev2mod() { while read dev; do case $dev in' > $tmp
 sort -r /lib/modules/`uname -r`/modules.alias | \
 sed -n 's/^alias *\([^]*\) *\(.*\)/\1)busybox modprobe
 \2;;/p' >> $tmp
 echo 'esac; done; }' >> $tmp
 sed -i '/brcmfmac/d' $tmp
 source $tmp
 cat /sys/bus/*/devices/*/uevent | grep MODALIAS | sed
 's/^MODALIAS=//'
 | sort -u | dev2mod
 cat /sys/devices/virtual/wmi/*/modalias | dev2mod
}

load_modules()
{
 if [-z "$FOUND"]; then
 auto_detect
 fi

 # 3G modules
 for m in $EXTMOD; do
 busybox modprobe $m
 done
}

The load_modules script function is implemented in the script file 0-auto-detect, as
shown in the preceding snippet. It calls another function, auto-detect, to do the actual
work. This function is not that easy to understand. Let's explain what it does now. The
purpose of this function is to create a shell command called dev2mod on-the-fly. What this
dev2mod function does is take the module alias as a parameter and load the respective
driver module according to the module alias. After the dev2mod command is created,
auto_detect will call this function using the devices found by the kernel under the
/sys/bus folder.

Creating Your Own Device on VirtualBox

[225]

All the kernel modules of the Android-x86 kernel can be found in the
/lib/modules/4.x.x-android-x86/modules.alias file. This file is processed to add
the modprobe command at the end of each line so that the kernel module can be loaded
with the module alias as a parameter. The temporary script file can be found at
/tmp/dev2mod and it looks like the following code snippet:

cat /tmp/dev2mod
dev2mod() { while read dev; do case $dev in
xts)busybox modprobe xts;;
xtea)busybox modprobe tea;;
xeta)busybox modprobe tea;;
xcbc)busybox modprobe xcbc;;
wp512)busybox modprobe wp512;;
wp384)busybox modprobe wp512;;
wp256)busybox modprobe wp512;;
...
acpi*:80860ABC:*)busybox modprobe intel_lpss_acpi;;
acpi*:80860AAC:*)busybox modprobe intel_lpss_acpi;;
acpi*:193C9890:*)busybox modprobe snd_soc_max98090;;
acpi*:10EC5670:*)busybox modprobe snd_soc_rt5670;;
acpi*:10EC5650:*)busybox modprobe snd_soc_rt5645;;
acpi*:10EC5645:*)busybox modprobe snd_soc_rt5645;;
acpi*:10EC5642:*)busybox modprobe snd_soc_rt5640;;
acpi*:10EC5640:*)busybox modprobe snd_soc_rt5640;;
acpi)busybox modprobe acpi_cpufreq;;
esac; done; }

Before the devices in the /sys filesystem are passed to the dev2mod function, we can take a
look at how the output looks like on my system as follows:

cat /sys/bus/*/devices/*/uevent | grep MODALIAS | sed 's/^MODALIAS=//'
| sort -u
acpi:ACPI0003:
acpi:APP0001:SMC-NAPA:
acpi:LNXCPU:
acpi:LNXPWRBN:
acpi:LNXSLPBN:
acpi:LNXSYBUS:
acpi:LNXSYSTM:
acpi:LNXVIDEO:
acpi:PNP0000:
acpi:PNP0100:
acpi:PNP0103:PNP0C01:
acpi:PNP0200:
acpi:PNP0303:
acpi:PNP0400:
acpi:PNP0501:

Creating Your Own Device on VirtualBox

[226]

acpi:PNP0700:
acpi:PNP0A03:
acpi:PNP0B00:
acpi:PNP0C02:
acpi:PNP0C0A:
acpi:PNP0C0F:
acpi:PNP0F03:
acpi:PNP8390:
cpu:type:x86,ven0000fam0006mod003A:feature:,0000,0001,0002,0003,0004,0005,0
006,0
hdaudio:v83847680r00103401a01
hid:b0003g0001v000080EEp00000021
pci:v0000106Bd0000003Fsv00000000sd00000000bc0Csc03i10
pci:v00001AF4d00001000sv00001AF4sd00000001bc02sc00i00
pci:v00008086d00001237sv00000000sd00000000bc06sc00i00
pci:v00008086d0000265Csv00000000sd00000000bc0Csc03i20
pci:v00008086d00002668sv00008384sd00007680bc04sc03i00
pci:v00008086d00007000sv00000000sd00000000bc06sc01i00
pci:v00008086d00007111sv00000000sd00000000bc01sc01i8A
pci:v00008086d00007113sv00000000sd00000000bc06sc80i00
pci:v000080EEd0000BEEFsv00000000sd00000000bc03sc00i00
pci:v000080EEd0000CAFEsv00000000sd00000000bc08sc80i00
platform:alarmtimer
platform:goldfish_pdev_bus
platform:i8042
platform:microcode
platform:pcspkr
platform:platform-framebuffer
platform:reg-dummy
platform:rtc_cmos
platform:serial8250
scsi:t-0x00
scsi:t-0x05
serio:ty01pr00id00ex00
serio:ty06pr00id00ex00
usb:v1D6Bp0001d0404dc09dsc00dp00ic09isc00ip00in00
usb:v1D6Bp0002d0404dc09dsc00dp00ic09isc00ip00in00
usb:v80EEp0021d0100dc00dsc00dp00ic03isc00ip00in00
virtio:d00000001v00001AF4

As we can see from the preceding output, it includes all module aliases found by the kernel.
The preceding output of module aliases will be passed to the shell script function dev2mod
through a pipe. The dev2mod function will load all respective kernel modules found by the
kernel.

Creating Your Own Device on VirtualBox

[227]

After the load_modules are executed, we enter the second checkpoint and we can take a
look at the system status now:

Kernel modules are loaded

We can see from the preceding screenshot that there are many kernel modules loaded in the
system now. From the kernel module name, we can see that the audio, mouse, and
keyboard drivers are loaded. This is how the device drivers are loaded automatically by the
Android-x86 init script in initrd.img. At the end of the init script, it will invoke chroot
or switch_root according to the setting of the environment variable DEBUG. In either case,
the root filesystem will be changed to the Android ramdisk.img and will start the Android
init process as follows:

...
[-n "$DEBUG"] && SWITCH=${SWITCH:-chroot}

We must disable mdev before switching to Android
since it conflicts with Android's init
echo > /proc/sys/kernel/hotplug

exec ${SWITCH:-switch_root} /android /init
...

Creating Your Own Device on VirtualBox

[228]

The Android init process will perform the hardware initialization for these devices
that cannot be detected by the kernel automatically. The init process will also initialize the
HAL of Android-x86.

HAL initialization during the Android start-up
Let's look in greater detail into the hardware initialization of devices that cannot be detected
by the kernel automatically, and the initialization of Android-x86 HAL, in this section. One
of the peripherals that haven't been initialized is the frame buffer for the graphic user
interface in Android. We will use it as an example to explain how hardware is initialized by
the init process in Android's ramdisk.img.

If we recall the analysis of the init process in Chapter 6, Debugging the Boot Up Process Using
a Customized ramdisk, the init process will execute the init.rc script, which is general for
all Android devices. In the init.rc script, it will import a device-specific script
init.${ro.hardware}.rc. In our case, this script is init.x86vbox.rc on the target
device. The ro.hardware property is set according to the kernel command-line parameter,
androidboot.hardware, which we set it to x86vbox. The source code of
init.x86vbox.rc can be found at device/generic/common/init.x86.rc. It is copied
to the target output using the following line in device.mk. Be aware that the script name is
changed after the copy:

...
PRODUCT_COPY_FILES := \
 $(if $(wildcard
$(PRODUCT_DIR)init.rc),$(PRODUCT_DIR)init.rc:root/init.rc) \
 $(if $(wildcard
$(PRODUCT_DIR)init.sh),$(PRODUCT_DIR),$(LOCAL_PATH)/)init.sh:system/etc/ini
t.sh \
...
 $(if $(wildcard
$(PRODUCT_DIR)init.$(TARGET_PRODUCT).rc),$(PRODUCT_DIR)init.$(TARGET_PRODUC
T).rc,$(LOCAL_PATH)/init.x86.rc):root/init.$(TARGET_PRODUCT).rc \
 $(if $(wildcard
$(PRODUCT_DIR)ueventd.$(TARGET_PRODUCT).rc),$(PRODUCT_DIR)ueventd.$(TARGET_
PRODUCT).rc,$(LOCAL_PATH)/ueventd.x86.rc):root/ueventd.$(TARGET_PRODUCT).rc
\
...

Another thing that we can see from the preceding code snippet is that a shell script,
init.sh, is also copied to the system image at /system/etc/init.sh. This is the script
used to load device drivers and initialize HAL in init.x86vbox.rc.

Creating Your Own Device on VirtualBox

[229]

In init.x86vbox.rc, an action trigger is defined as follows:

on post-fs
 exec -- /system/bin/logwrapper /system/bin/sh /system/etc/init.sh

In the predefined trigger, post-fs, the init.sh script will be executed as part of the
initialization process. The following is the code snippet of init.sh:

...
PATH=/sbin:/system/bin:/system/xbin

DMIPATH=/sys/class/dmi/id
BOARD=$(cat $DMIPATH/board_name)
PRODUCT=$(cat $DMIPATH/product_name)

import cmdline variables
for c in `cat /proc/cmdline`; do
 case $c in
 BOOT_IMAGE=*|iso-scan/*|*.*=*)
 ;;
 =)
 eval $c
 if [-z "$1"]; then
 case $c in
 HWACCEL=*)
 set_property debug.egl.hw $HWACCEL
 ;;
 DEBUG=*)
 [-n "$DEBUG"] && set_property debug.logcat 1
 ;;
 esac
 fi
 ;;
 esac
done

[-n "$DEBUG"] && set -x || exec &> /dev/null

import the vendor specific script
hw_sh=/vendor/etc/init.sh
[-e $hw_sh] && source $hw_sh

case "$1" in
 netconsole)
 [-n "$DEBUG"] && do_netconsole
 ;;
 bootcomplete)
 do_bootcomplete

Creating Your Own Device on VirtualBox

[230]

 ;;
 hci)
 do_hci
 ;;
 init|"")
 do_init
 ;;
esac

return 0

As we can see from the preceding code snippet, the init.sh script processes the kernel
command line first. After that, it runs into a multi-selection statement. It executes a function
according to the first parameter passed to it. This parameter is used to let the do_init
function initialize a particular HAL module. In the case of the first parameter, it's init or
without parameter, it will execute the do_init function. In this case, all HAL modules will
be initialized and this is the case that we want to investigate now. We can see what the
do_init function does as follows:

function do_init()
{
 init_misc
 init_hal_audio
 init_hal_bluetooth
 init_hal_camera
 init_hal_gps
 init_hal_gralloc
 init_hal_hwcomposer
 init_hal_lights
 init_hal_power
 init_hal_sensors
 init_tscal
 init_ril
 post_init
}

The do_init function will call individual HAL module initialization functions one by one.
We won't look at all of them here. We will take a look at how the frame buffer device is
initialized in the init_hal_gralloc function. This is the one that we will investigate more
in Chapter 10, Enabling Graphics, since graphic support is one of the most important tasks
when it comes to porting:

function init_uvesafb()
{
 case "$PRODUCT" in
 ET2002*)

Creating Your Own Device on VirtualBox

[231]

 UVESA_MODE=${UVESA_MODE:-1600x900}
 ;;
 *)
 ;;
 esac

 ["$HWACCEL" = "0"] && bpp=16 || bpp=32
 modprobe uvesafb mode_option=${UVESA_MODE:-1024x768}-$bpp
 ${UVESA_OPTION:-mtrr=3 scroll=redraw}
}

function init_hal_gralloc()
{
 case "$(cat /proc/fb | head -1)" in
 *virtiodrmfb)
 # set_property ro.hardware.hwcomposer drm
 ;&
 0*inteldrmfb|0*radeondrmfb|0*nouveaufb|0*svgadrmfb)
 set_property ro.hardware.gralloc drm
 set_drm_mode
 ;;
 "")
 init_uvesafb
 ;&
 0*)
 ;;
 esac

 [-n "$DEBUG"] && set_property debug.egl.trace error
}

In the init_hal_gralloc function, it will perform the respective tasks according to the
content of /proc/fb. From /proc/fb, it can detect the type of graphic hardware on the
device. If the type of graphic hardware cannot be detected, it will use a general VESA frame
buffer (uvesafb), which is used in our case for VirtualBox. It will call another shell function,
init_uvesafb, to load the VESA frame buffer driver. The uvesafb driver will start a user
space daemon v86d to execute the x86 BIOS code. The code is executed in a controlled
environment and the results are passed back to the kernel via the netlink interface. This is
how the graphic driver is initialized in our environment.

Creating Your Own Device on VirtualBox

[232]

Summary
In this chapter, we analyzed the Android-x86 HAL and integrated it to x86vbox so that we
are able to boot x86vbox over the next few chapters. We also analyzed the start-up process
of Android-x86. We used the debug console in the first stage of the start-up process to
analyze the kernel module loading process. Before we can actually boot the x86vbox on
VirtualBox, one issue that we haven't resolved is which bootloader we should use. Unlike
the emulator, it does not need a bootloader, since the emulator uses a built-in mini
bootloader to load the kernel and ramdisk. VirtualBox is very similar to real hardware. We
won't be able to boot up an operating system without a proper bootloader.

In the next chapter, we will discuss this issue and we will explain how we can resolve
it using PXE boot supported by VirtualBox.

9
Booting Up x86vbox Using

PXE/NFS
In the last chapter, we created the x86vbox device and we were able to build it in our
environment. In this chapter, we will start to debug the boot up process for x86vbox. The
first thing that we meet in the boot up process is the bootloader issue. We could use the
same GRUB bootloader as Android-x86. With GRUB, we still have issues about how to
configure and install it on the storage media. If we go this way, we need to spend some time
talking about the topics related to bootloader.

Using VirtualBox as a virtual hardware platform, we have a much simpler solution. We can
use the built-in PXE boot mechanism to avoid bootloader issues. From a debugging point of
view, PXE boot can make the entire boot up process more transparent to us. With PXE boot,
we can move the installation of bootloader out of the picture so we can concentrate on
debugging the Android system itself. In this chapter, we will cover the following topics:

Setting up a PXE boot environment
Configuring VirtualBox to boot from PXE
Setting up the root filesystem using NFS

Booting Up x86vbox Using PXE/NFS

[234]

Setting up a PXE boot environment
What is PXE? PXE means Preboot Execution Environment. To build a Linux environment,
what we need is to find a way to load the kernel and ramdisk to the system memory. This is
one of the major tasks performed by most Linux bootloaders. The bootloader usually
fetches the kernel and ramdisk from some kind of storage device, such as flash storage, hard
disk, USB, and so on. It can also be retrieved from a network connection. PXE is a method
that can boot a device with LAN connection and a PXE-capable network interface
controller (NIC).

As shown in the following diagram, PXE uses the DHCP and TFTP protocols to complete
the boot process. In the simplest environment, a PXE server is set up as both a DHCP and
TFTP server. The NIC client obtains the IP address from the DHCP server and uses the
TFTP protocol to get the kernel and ramdisk images to start the boot process:

PXE boot environment

Booting Up x86vbox Using PXE/NFS

[235]

In this section, we will learn how to prepare a PXE-capable ROM for a VirtualBox virtio
network adapter so that we can use this ROM and boot the system via PXE. We will also
learn how to set up a PXE server, which is the key element in the PXE setup. In VirtualBox,
it includes a built-in PXE server. We will use this built-in PXE server to boot the Android
system.

Preparing PXE Boot ROM
Even though PXE boot is supported by VirtualBox, the setup is not consistent on a different
NIC. You may get error messages such as PXE-E3C - TFTP Error - Access
Violation during the boot. This is because PXE boot depends on LAN Boot ROM. When
you choose different network adapters, you may get different test results. To get a
consistent test result, you can use the LAN Boot ROM from the Etherboot/gPXE project.
gPXE is an open source (GPL) network bootloader. It provides a direct replacement for
proprietary PXE ROMs, with many extra features such as DNS, HTTP, iSCSI, and so on.
There is a page at the gPXE project website about how to set up LAN Boot ROM for
VirtualBox:

h t t p ://w w w . e t h e r b o o t . o r g /w i k i /r o m b u r n i n g /v b o x

The following table lists network adapters supported by VirtualBox:

VirtualBox
adapters

PCI vendor
ID

PCI device
ID

Mfr
name

Device name

Am79C970A 1022h 2000h AMD PCnet-PCI II (AM79C970A)

Am79C973 1022h 2000h AMD PCnet-PCI III (AM79C973)

82540EM 8086h 100Eh Intel Intel PRO/1000 MT Desktop
(82540EM)

82543GC 8086h 1004h Intel Intel PRO/1000 T Server
(82543GC)

82545EM 8086h 100Fh Intel Intel PRO/1000 MT Server
(82545EM)

virtio 1AF4h 1000h Paravirtualized Network (virtio-
net)

Since paravirtualized networks have better performance in most situations, we will explore
how to support PXE boot using the virtio-net network adapter.

http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox
http://www.etherboot.org/wiki/romburning/vbox

Booting Up x86vbox Using PXE/NFS

[236]

Downloading and building the LAN Boot ROM
There may be LAN Boot ROM binary images available on the Internet, but they are not
provided at the gPXE project. We have to build from source code according to the
instructions from the gPXE project website.

Let's download and build the source code using the following commands:

$ git clone git://git.etherboot.org/scm/gpxe.git
$ cd gpxe/src
$ make bin/1af41000.rom # for virtio 1af4:1000

Fixing up the ROM image
Before the ROM image can be used, the ROM image has to be updated due to VirtualBox
having the following requirements on ROM image size:

Size must be 4K aligned (that is, a multiple of 4,096)
Size must not be greater than 64K

Let's check the image size first and make sure that it is not larger than 65,536 bytes (64K):

$ ls -l bin/1af41000.rom | awk '{print $5}'
62464

We can see that it is less than 64K. Now we have to pad the image file to a 4K boundary. We
can do this using the following commands:

$ python
>>> 65536 - 62464 # Calculate padding size
3072
>>> f = open('bin/1af41000.rom', 'a')
>>> f.write('\0' * 3072) # Pad with zeroes
>>> f.close()

We check the image file size again:

$ ls -l bin/1af41000.rom | awk '{print $5}'
65536

As we can see, the file size is 64K now. To be convenient, I will upload this file at the
following link and you can download it:

https://sourceforge.net/projects/android-system-programming/files/android-7/ch1
4/1af41000.rom/download

https://sourceforge.net/projects/android-system-programming/files/android-7/ch14/1af41000.rom/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch14/1af41000.rom/download

Booting Up x86vbox Using PXE/NFS

[237]

Configuring the virtual machine to use the LAN Boot
ROM
The user-based VirtualBox configuration can be stored in the $HOME/.VirtualBox folder
and we need to use this folder for the built-in PXE server.

This folder is not created by default, so we need to create it first:

$ mkdir .VirtualBox

After we create this folder, we can launch VirtualBox and quit. Then, let's look at the
content of the $HOME/.VirtualBox folder again, as shown in the following screenshot:

From the preceding screenshot, we can see that the content of this folder is empty before we
run VirtualBox. After we execute VirtualBox and quit, there are a list of files that are created
by VirtualBox in this folder.

Now, we can change the configuration to use the LAN Boot ROM we just created. To use
this LAN Boot ROM, we can use the VBoxManage command to update VirtualBox settings.
We use the following command to set the LanBootRom path:

$ VBoxManage setextradata global
VBoxInternal/Devices/pcbios/0/Config/LanBootRom
$HOME/.VirtualBox/1af41000.rom

We copied the LAN Boot ROM to $HOME/.VirtualBox/1af41000.rom. We use
global here, then all VMs will use the gPXE LAN Boot ROM. We can change global to a
specific virtual machine name. In that case, the gPXE LAN Boot ROM will only be used by
that virtual machine.

Booting Up x86vbox Using PXE/NFS

[238]

Having set up the configuration, let's look at the $HOME/.VirtualBox/VirtualBox.xml
configuration file:

<?xml version="1.0"?>
<!--
** DO NOT EDIT THIS FILE.
** If you make changes to this file while any VirtualBox related
application
** is running, your changes will be overwritten later, without taking
effect.
** Use VBoxManage or the VirtualBox Manager GUI to make changes.
-->
<VirtualBox xmlns="http://www.virtualbox.org/" version="1.12-linux">
 <Global>
 <ExtraData>
 <ExtraDataItem name="GUI/DetailsPageBoxes"
 value="general,system,preview,display,storage,audio,
 network,usb,sharedFolders,description"/>
 <ExtraDataItem name="GUI/LastWindowPosition"
 value="475,240,770,550"/>
 <ExtraDataItem name="GUI/SplitterSizes" value="255,511"/>
 <ExtraDataItem name="GUI/UpdateCheckCount" value="2"/>
 <ExtraDataItem name="GUI/UpdateDate" value="1 d, 2017-05-15,
 stable, 5.1.2"/>
<ExtraDataItem
 name="VBoxInternal/Deices/pcbios/o/Config/LanBootRom"
 value="/home/roger/.VirtualBox/1af41000.rom"/>
 </ExtraData>
...

As we can see, the VBoxInternal/Deices/pcbios/o/Config/LanBootRom
configuration is set in this configuration file.

To remove the preceding configuration, we just have to reset the path value as follows. The
$VM_NAME argument can be global or a virtual machine name:

$ VBoxManage setextradata $VM_NAME
VBoxInternal/Devices/pcbios/0/Config/LanBootRom

You can also check the current configuration using the following command:

$ VBoxManage getextradata $VM_NAME
VBoxInternal/Devices/pcbios/0/Config/LanBootRom
Value: /home/roger/.VirtualBox/1af41000.rom

Booting Up x86vbox Using PXE/NFS

[239]

Setting up the PXE boot environment
With a proper PXE ROM installed, we can set up the PXE server now. Before we set up a
PXE server, we need to think about the network connections. There are three ways a virtual
machine in VirtualBox can connect to the network:

Bridged network: This connects to the same physical network as the host. It looks
like the virtual machine connects to the same LAN connection as the host.
Host-only network: This connects to a virtual network that is only visible by the
virtual machine and the host. In this configuration, the virtual machine cannot
connect to an outside network, such as the Internet.
NAT network: This one connects to the host network through NAT. This is the
most common choice. In this configuration, the virtual machine can access the
external network, but the external network cannot connect to the virtual machine
directly. For example, if you set up a FTP service on the virtual machine, the
computers on the LAN of the host cannot access this FTP service. If you want to
publish this service, you have to use port forwarding settings to do this.

With these concepts in mind, if you want to use a dedicated machine as the PXE server, you
can use a bridged network in your environment. However, you must be very careful using
this setup. This is usually done by the IT group in your organization, since you cannot set
up a DHCP server on the LAN without affecting others. We won't use this option here.

The host-only network is actually a good choice for this case, because this kind of network
is an isolated network configuration. The network connection only exists between the host
and the virtual machine. It is possible to use the host-only network to set up the PXE server,
but we won't use this option in our setup.

In VirtualBox, PXE booting in the NAT network is supported. With this option, we don't
need to set up a separate PXE server by ourselves. We will use this built-in PXE server in
this book. The test environment from this chapter to Chapter 14, Customizing and Debugging
Recovery will use this setup.

Configuring and testing the PXE boot
We can create a virtual machine instance to test the environment. We will demonstrate this
in the Ubuntu 14.04 environment. The same setup can be duplicated to the Windows or OS
X environment as well.

Booting Up x86vbox Using PXE/NFS

[240]

Setting up the virtual machine
Let's create a virtual machine called pxeAndroid in VirtualBox first. After starting the
VirtualBox, we can click the New button to create a new virtual machine, as shown in the
following screenshot:

We call it pxeAndroid and choose Linux as the type of virtual machine. We can just follow
the wizard to create this virtual machine with a suitable configuration. After the virtual
machine is created, we need to make a few changes to the settings.

The first thing that needs to be changed is the network configuration. We need to set the
network adapter as a NAT network. We can click the name of the virtual machine,
pxeAndroid, first and then click on the Settings button to change the settings. Select the
Network option on the left-hand side, as we can see in the following screenshot:

Booting Up x86vbox Using PXE/NFS

[241]

We select Adapter 1, the default for the NAT network. We need to change the Adapter
Type to Paravirtualized Network (virtio-net) since we will use the PXE ROM that we just
built. The NAT network can connect to the outside network. It supports port forwarding so
that we can access certain services in the virtual machine. The one that we need to set up
here is the ADB service. We need to use ADB to debug the x86vbox device later. We can set
up the port forwarding for ADB as follows:

Booting Up x86vbox Using PXE/NFS

[242]

Next, we can click on the System option to specify that the default boot order is to boot
from the network interface, as shown in the following screenshot:

Using VirtualBox internal PXE booting with NAT
Once we set up the virtual machine, we can use the built-in PXE server of VirtualBox for
PXE boot using the NAT network. To use the built-in PXE server, we need to set it up using
the following steps:

Create a $HOME/.VirtualBox/TFTP folder. The built-in TFTP root is at1.
$HOME/.VirtualBox/TFTP on Linux or %USERPROFILE%\.VirtualBox\TFTP
on Windows.
Usually, the default boot image name is pxelinux.0 for PXE boot, but it is2.
vmname.pxe for the VirtualBox built-in PXE. For example, if we use pxeAndroid
as the virtual machine name, we have to make a copy of pxelinux.0 and name
it pxeAndroid.pxe under the TFTP root folder.

Booting Up x86vbox Using PXE/NFS

[243]

Configuring pxelinux.cfg
Before we can test the virtual machine that we just set up, we need to specify it in the
configuration file to let the PXE boot know where to find the kernel and ramdisk images.

The PXE boot process is something like this:

When the pxeAndroid virtual machine powers on, the client will get the IP1.
address through DHCP.
After the DHCP configuration is found, the configuration includes the standard2.
information such as IP address, subnet mask, gateway and DNS, and so on. In
addition, it also provides the location of the TFTP server and the filename of a
boot image. The name of the boot image is usually pxelinux.0. The name of the
boot image is vmname.pxe for the built-in PXE boot environment where the
vmname should be the name of virtual machine. For example, it is
pxeAndroid.pxe for our virtual machine.
The client contacts the TFTP server to obtain the boot image. The boot image3.
should be put under TFTP root, which is $HOME/.VirtualBox/TFTP in our case.
The TFTP server sends the boot image (pxelinux.0 or vmname.pxe), and the4.
client executes it.
By default, the boot image searches the pxelinux.cfg directory on the TFTP5.
server for boot configuration files.
The client downloads all the files it needs (kernel, ramdisk, root filesystem, and6.
so on) and then loads them.
The pxeAndroid target machine reboots.7.

In step 5, the boot image searches the boot configuration files in the following steps:

First, it searches for the boot configuration file that is named according to the1.
MAC address represented in lower case hexadecimal digits with dash separators.
For example, for the MAC address 08:00:27:90:99:7B, it searches for the file
08-00-27-90-99-7b.
Then, it searches for the configuration file using the IP address (of the machine2.
that is being booted) in upper-case hexadecimal digits. For example, for the IP
address 192.168.56.100, it searches for the C0A83864 file.
If that file is not found, it removes one hexadecimal digit from the end and tries3.
again. However, if the search is still not successful, it finally looks for a file
named default (in lower case).

Booting Up x86vbox Using PXE/NFS

[244]

For example, if the boot filename is $HOME/.VirtualBox/TFTP/pxeAndroid.pxe, the
Ethernet MAC address is 08:00:27:90:99:7B, and the IP address is 192.168.56.100, the boot
image looks for filenames in the following order:

$HOME/.VirtualBox/TFTP/pxelinux.cfg/08-00-27-90-99-7b
$HOME/.VirtualBox/TFTP/pxelinux.cfg/C0A83864
$HOME/.VirtualBox/TFTP/pxelinux.cfg/C0A8386
$HOME/.VirtualBox/TFTP/pxelinux.cfg/C0A838
$HOME/.VirtualBox/TFTP/pxelinux.cfg/C0A83
$HOME/.VirtualBox/TFTP/pxelinux.cfg/C0A8
$HOME/.VirtualBox/TFTP/pxelinux.cfg/C0A
$HOME/.VirtualBox/TFTP/pxelinux.cfg/C0
$HOME/.VirtualBox/TFTP/pxelinux.cfg/C
$HOME/.VirtualBox/TFTP/pxelinux.cfg/default

The pxelinux.0 boot image is part of an open source project the Syslinux. We can get the
boot image and the menu user interface from the Syslinux project using the following
command:

$ sudo apt-get install syslinux

After Syslinux is installed, pxelinux.0 can be copied to the TFTP root folder as follows:

$ cp /usr/lib/syslinux/pxelinux.0 $HOME/.VirtualBox/TFTP/pxelinux.0

To have a better user interface, we can copy menu.c32 to the TFTP folder as well:

$ cp /usr/lib/syslinux/menu.c32 $HOME/.VirtualBox/TFTP/menu.c32

pxelinux.cfg/default
Now, we will look at how to configure the boot configuration file
$HOME/.VirtualBox/TFTP/pxelinux.cfg/default. In our setup, it looks like the
following code snippet:

prompt 1
default menu.c32
timeout 100

label 1. NFS Installation (serial port) - x86vbox
menu x86vbox_install_serial
kernel x86vbox/kernel
append ip=dhcp console=ttyS3,115200 initrd=x86vbox/initrd.img root=/dev/nfs
rw androidboot.hardware=x86vbox INSTALL=1 DEBUG=2 SRC=/x86vbox
ROOT=10.0.2.2:/home/sgye/vol1/android-x86vbox/out/target/product qemu=1
qemu.gles=0

Booting Up x86vbox Using PXE/NFS

[245]

label 2. x86vbox (ROOT=/dev/sda1, serial port)
menu x86vbox_sda1
kernel x86vbox/kernel
append ip=dhcp console=ttyS3,115200 initrd=x86vbox/initrd.img
androidboot.hardware=x86vbox DEBUG=2 SRC=/android-x86vbox ROOT=/dev/sda1
...

The preceding file can be download from h t t p s ://g i t h u b . c o m /s h u g a o y e /a s p - s a m p l e /b l o

b /m a s t e r /c h 09/p x e l i n u x . c f g /d e f a u l t .

You can copy it from the above mentioned GitHub URL and you need to change the NFS
shared folder to your own ROOT=10.0.2.2:/{your NFS shared folder}.

The syntax in the boot configuration file can be found at the following URL from the
Syslinux project:

http://www.syslinux.org/wiki/index.php?title=SYSLINUX

In the preceding configuration file that we use in this chapter, we can see the following
commands and options:

prompt: It will let the bootloader know if it will show a LILO-style boot: prompt.
With this command-line prompt, you can input the option directly. All the boot
options are defined by the command label.
default: It defines the default boot option.
timeout: If more than one label entry is available, this directive indicates how
long to pause at the boot: prompt until booting automatically, in units of 1/10 s.
The timeout is cancelled when any key is pressed, the assumption being that the
user will complete the command line. A timeout of zero will disable the timeout
completely. The default is 0.
label: A human-readable string that describes a kernel and options. The
default label is linux, but you can change this with the DEFAULT keyword.
kernel: The kernel file that the boot image will boot.
append: The kernel command line that can be passed to the kernel during the
boot.

In the preceding configuration file, we show two boot options. In the first option, we can
boot to a minimum Linux environment using the NFS root filesystem. We can install the
x86vbox images from that environment to the hard disk. In the second option, we can boot
x86vbox from the /dev/sda1 disk partition. We will explore these options in detail later.

https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
https://github.com/shugaoye/asp-sample/blob/master/ch09/pxelinux.cfg/default
http://www.syslinux.org/wiki/index.php?title=SYSLINUX

Booting Up x86vbox Using PXE/NFS

[246]

Setting up a serial port for debugging
The reason why we want to boot Android using PXE and NFS is because we want to use a
very simple bootloader and find an easier way to debug the system. In order to see the
debug log, we want to redirect the debug output from the video console to a serial port so
that we can separate the graphic user interface from the debug output. We need to do two
things in order to meet our goals.

The Linux kernel debug message can be redirected to a specific channel using kernel
command-line arguments. We specify this in PXE boot configuration with the
console=ttyS3,115200 option. This is defined in pxelinux.cfg/default as follows:

label 1. NFS Installation (serial port) - x86vbox
menu x86vbox_install_serial
kernel x86vbox/kernel
append ip=dhcp console=ttyS3,115200 initrd=x86vbox/initrd.img root=/dev/nfs
rw androidboot.hardware=x86vbox INSTALL=1 DEBUG=2 SRC=/x86vbox
ROOT=10.0.2.2:/home/sgye/vol1/android-x86vbox/out/target/product qemu=1
qemu.gles=0

We will explain the details about kernel parameters in the append option later in this
chapter. The next thing is that we need to create a virtual serial port that we can connect to.
We configure this in the virtual machine settings page, as shown in the following
screenshot:

Booting Up x86vbox Using PXE/NFS

[247]

We use a host pipe to simulate the virtual serial port. We can set the path as something like
/tmp/pxeAndroid_p.

The mapping between COMx to /dev/ttySx is as follows:

/dev/ttyS0 - COM1
/dev/ttyS1 - COM2
/dev/ttyS2 - COM3
/dev/ttyS3 - COM4

To connect to the host pipe, we can use a tool such as minicom. If you don't have minicom
installed, you can install and configure minicom as follows:

$ sudo apt-get install minicom

To set up minicom, we can use the following command:

$ sudo minicom -s

After minicom starts, select Serial port setup, and set Serial Device as
unix#/tmp/pxeAndroid_p. Once this is done, select Save setup as dfl and Exit from
Minicom as shown in the following screenshot. Now we can connect to the virtual serial
port using minicom.

Booting Up x86vbox Using PXE/NFS

[248]

After we have made all the changes for the x86vbox configuration, we can power on the
virtual machine and test it. We should be able to see the following boot up screen:

We can see from the preceding screenshot that the virtual machine loads the
pxelinux.cfg/default file and waits on the boot prompt. We are ready to boot from PXE
ROM now.

NFS filesystem
We created the x86vbox device in Chapter 8, Creating Your Own Device on VirtualBox, and
we were able to build it. However, we did not discuss how to boot images. The issue here is
the output from the build is the standard AOSP images. They are not able to be used by
VirtualBox directly. For example, system.img can be used by the emulator, but not
VirtualBox. VirtualBox can use standard virtual disk images in VDI, VHD, or VMDK
formats, but not a raw disk image such as system.img.

Booting Up x86vbox Using PXE/NFS

[249]

In the Android-x86 build, the output is an installation image, such as ISO or USB disk image
formats. With an installation image, it can be burnt to a CDROM and USB drive. Then, we
can boot VirtualBox from CDROM or USB to install the system just as we install Windows
on our PC. It is quite tedious and not efficient to use this method when we are debugging a
system. As a developer, we want a simple and quick way so that we can start the debugging
immediately after we build the system.

The method that we will use here is to boot the system using the NFS filesystem. The key
point is that we will treat the output folder of the AOSP build as the root filesystem directly
so that we can boot the system using it without any additional work.

If you are an embedded system developer, you may have used this method in your work
already. When we work on the initial debugging phase of an embedded Linux system, we
often use the NFS filesystem as the root filesystem. With this method, we can avoid flashing
the images to the flash storage every time after the build.

Preparing the kernel
To support NFS boot, we need a Linux kernel with NFS filesystem support. The default
Linux kernel for Android doesn't have NFS boot support. In order to boot Android and
mount the NFS directory as the root filesystem, we have to recompile the Linux kernel with
the following options enabled:

CONFIG_IP_PNP=y
CONFIG_IP_PNP_DHCP=y
CONFIG_IP_PNP_BOOTP=y
CONFIG_IP_PNP_RARP=y
CONFIG_USB_USBNET=y
CONFIG_USB_NET_SMSC95XX=y
CONFIG_USB=y
CONFIG_USB_SUPPORT=y
CONFIG_USB_ARCH_HAS_EHCI=y
CONFIG_NETWORK_FILESYSTEMS=y
CONFIG_NFS_FS=y
CONFIG_NFS_V3=y
CONFIG_NFS_V3_ACL=y
CONFIG_ROOT_NFS=y

We can use menuconfig to change the kernel configuration or copy a configuration file
with NFS support.

Booting Up x86vbox Using PXE/NFS

[250]

To configure the kernel build using menuconfig, we can use the following commands:

$ source build/envsetup.sh
$ lunch x86vbox-eng
$ make -C kernel O=$OUT/obj/kernel ARCH=x86 menuconfig

We can also use the configuration file with NFS enabled in my GitHub. We can observe the
difference between this configuration file and the default kernel configuration file from
Android-x86 as follows:

$ diff kernel/arch/x86/configs/android-x86_defconfig ~/src/android-
x86_nfs_defconfig
216a217
> # CONFIG_SYSTEM_TRUSTED_KEYRING is not set
1083a1085
> CONFIG_DNS_RESOLVER=y
1836c1838
< CONFIG_VIRTIO_NET=m

> CONFIG_VIRTIO_NET=y
1959c1961
< CONFIG_E1000=m

> CONFIG_E1000=y
5816a5819
> # CONFIG_ECRYPT_FS is not set
5854,5856c5857,5859
< CONFIG_NFS_FS=m
< CONFIG_NFS_V2=m
< CONFIG_NFS_V3=m

> CONFIG_NFS_FS=y
> CONFIG_NFS_V2=y
> CONFIG_NFS_V3=y
5858c5861
< # CONFIG_NFS_V4 is not set

> CONFIG_NFS_V4=y
5859a5863,5872
> CONFIG_NFS_V4_1=y
> CONFIG_NFS_V4_2=y
> CONFIG_PNFS_FILE_LAYOUT=y
> CONFIG_PNFS_BLOCK=y
> CONFIG_NFS_V4_1_IMPLEMENTATION_ID_DOMAIN="kernel.org"
> # CONFIG_NFS_V4_1_MIGRATION is not set
> CONFIG_NFS_V4_SECURITY_LABEL=y
> CONFIG_ROOT_NFS=y
> # CONFIG_NFS_USE_LEGACY_DNS is not set

Booting Up x86vbox Using PXE/NFS

[251]

> CONFIG_NFS_USE_KERNEL_DNS=y
5861,5862c5874,5875
< CONFIG_GRACE_PERIOD=m
< CONFIG_LOCKD=m

> CONFIG_GRACE_PERIOD=y
> CONFIG_LOCKD=y
5865c5878,5880
< CONFIG_SUNRPC=m

> CONFIG_SUNRPC=y
> CONFIG_SUNRPC_GSS=y
> CONFIG_SUNRPC_BACKCHANNEL=y
5870a5886
> # CONFIG_CIFS_UPCALL is not set
5873a5890
> # CONFIG_CIFS_DFS_UPCALL is not set
6132c6149,6153
< # CONFIG_KEYS is not set

> CONFIG_KEYS=y
> # CONFIG_PERSISTENT_KEYRINGS is not set
> # CONFIG_BIG_KEYS is not set
> # CONFIG_ENCRYPTED_KEYS is not set
> # CONFIG_KEYS_DEBUG_PROC_KEYS is not set
6142a6164
> # CONFIG_INTEGRITY_SIGNATURE is not set
6270a6293
> # CONFIG_ASYMMETRIC_KEY_TYPE is not set
6339a6363
> CONFIG_ASSOCIATIVE_ARRAY=y
6352a6377
> CONFIG_OID_REGISTRY=y

We can copy this configuration file and use it to build the Linux kernel. The following
commands just show how to build the kernel separately. You don't have to do this if you
build x86vbox by checking out the source code of this chapter. This is included in the
x86vbox device Makefiles:

$ repo init https://github.com/shugaoye/manifests -b
android-7.1.1_r4_x86vbox_ch08_r1
$ repo sync
$ source build/envsetup.sh
$ lunch x86vbox-eng
$ make -C kernel O=$OUT/obj/kernel ARCH=x86

Booting Up x86vbox Using PXE/NFS

[252]

After the build, we can copy the kernel and ramdisk files to the TFTP root at
$HOME/.VirtualBox/TFTP/x86vbox.

Setting up the NFS server
When we have a NFS-capable kernel, we need to set up the NFS server on our development
host so that we can mount to the NFS folders exported by our NFS server. We can check
whether the NFS server is already installed or not using the following command:

$ dpkg -l | grep nfs

If the NFS server is not installed, we can install it using the following command:

$ sudo apt-get install nfs-kernel-server

Once we have a NFS server ready, we need to export our root filesystem through NFS. We
will use the AOSP build output folder as we mentioned previously. We can add the
following line to the /etc/exports configuration file:

$AOSP/out/target/product/ *(rw,sync,insecure,no_subtree_check,async)

After that, we execute the following command to export the $AOSP/out/target/product
folder. You need to replace $AOSP with the absolute path in your setup:

$ sudo exportfs -a

Configuring the PXE boot menu
When we have a real bootloader such as PXE Boot ROM, we have a way to support the boot
path like a real Android device. As we know, Android devices can boot to three different
modes--bootloader mode, recovery mode, and the normal start-up.

With PXE Boot ROM, we can easily support the same and more. By configuring the
pxelinux.cfg/default file, we can allow x86vbox to boot in different paths. We will
configure multiple boot paths here.

Booting Up x86vbox Using PXE/NFS

[253]

Booting to NFS installation
Since we cannot use AOSP image files to boot x86vbox directly, we need to install AOSP
images to the VirtualBox hard disk. This is very similar to Android-x86. In Android-x86, we
need to use a CDROM or USB stick to install the system so that we can boot Android after
the installation. Instead of using a CDROM or USB image for the installation, we can install
the system from the NFS path directly. If we set the NFS path to the
$AOSP/out/target/product path, we can install the system right after the completion of
the build.

We can boot the system to an installation mode so that we can use the Android-x86
installation script that we discussed to install x86vbox images to the virtual hard disk:

label 1. NFS Installation (serial port) - x86vbox
menu x86vbox_install_serial
kernel x86vbox/kernel
append ip=dhcp console=ttyS3,115200 initrd=x86vbox/initrd.img root=/dev/nfs
rw androidboot.hardware=x86vbox INSTALL=1 DEBUG=2 SRC=/x86vbox
ROOT=10.0.2.2:$AOSP/out/target/product

In the preceding configuration, we use the NFS-capable kernel from the TFTP folder such as
$HOME/.VirtualBox/TFTP/x86vbox/kernel. The initrd.img ramdisk image is also
stored in the same folder. Both files under the TFTP folder can actually be symbolic links to
the AOSP output. In this case, we don't have to copy them after the build, as we can see
from the following screenshot:

Booting Up x86vbox Using PXE/NFS

[254]

We use the following three options to configure the NFS boot:

ip=dhcp: Use DHCP to get the IP address from the DHCP server. The DHCP
server can be the built-in DHCP server of VirtualBox or an external DHCP server.
root=/dev/nfs: Use the NFS boot.
ROOT=10.0.2.2:$AOSP/out/target/product: The root is the AOSP output
folder in the development host. If we use the built-in PXE, the IP address
10.0.2.2 is the default host IP address in the NAT network. It could be changed
using the VirtualBox configuration. In your configuration, you need to replace
$AOSP with an absolute path.

We want to monitor the debug output so we set the console to the virtual serial port that we
configured previously as console=ttyS3,115200. We can use a host pipe to connect to it
using minicom.

We set three kernel parameters by using the Android-x86 init script and installation script:

INSTALL=1: Tells the init script that we want to install the system
DEBUG=2: This will bring us to the debug console during the boot process
SRC=/x86vbox : This is the directory for the root filesystem

Finally, the androidboot.hardware=x86vbox option is passed to the Android init process
to tell it which init script to run. In this case, the device init script init.x86vbox.rc will be
executed as we discussed in the previous chapter.

In our PXE boot menu, we can add another configuration for the installation without the
console=ttyS3,115200 option. In this case, all debug output will print on the screen,
which is the default standard output.

To find out what is installed on the harddisk, you can refer to Chapter 6, Debugging the Boot
Up Process Using a Customized ramdisk. The filesystem layout on the hard disk is similar to
the directory layout for x86emu_x86.img.

Booting Up x86vbox Using PXE/NFS

[255]

Booting from a hard disk
We can have another option, as follows,to boot the system from the hard disk after we
install the system using the previous configuration:

label 2. x86vbox (ROOT=/dev/sda1, serial port)
menu x86vbox_sda1_S3
kernel x86vbox/kernel
append ip=dhcp console=ttyS3,115200 initrd=x86vbox/initrd.img
androidboot.hardware=x86vbox DEBUG=2 SRC=/android-x86vbox ROOT=/dev/sda1

In the preceding configuration, we use the /dev/sda1 device as the root and we don't have
the INSTALL=1 option. With this configuration, the virtual machine will boot to the
Android system from the hard disk /dev/sda1 and the debug output will print to the
virtual serial port.

We can use another similar configuration that prints the debug output to the screen.

Booting to recovery
With the PXE boot menu, we can configure the system to boot to recovery as well. We can
use the following configuration:

label 5. x86vbox recovery (ROOT=/dev/sda2)
menu x86vbox_recovery
kernel x86vbox/kernel
append ip=dhcp console=ttyS3,115200 initrd=x86vbox/ramdisk-recovery.img
androidboot.hardware=x86vbox DEBUG=2 SRC=/android-x86vbox ROOT=/dev/sda2

We will use a configuration similar to this in Chapter 12, Introducing Recovery to Chapter
14, Customizing and Debugging Recovery, when we explore recovery programming. The
difference here is that we use a recovery ramdisk instead of initrd.img. Since recovery is
a self-contained environment, we can set the ROOT variable to other partitions as well.

Be aware that the x86vbox recovery configuration cannot be tested in
this chapter. We will test this in Chapter 12, Introducing Recovery to
Chapter 14, Customizing and Debugging Recovery.

Booting Up x86vbox Using PXE/NFS

[256]

With all the preceding setup, we can boot to the PXE boot menu, as shown in the following
screenshot:

We can select the first option from the preceding PXE boot menu to boot to a debug console
as follows:

Booting Up x86vbox Using PXE/NFS

[257]

From the preceding debug output, we can see that the virtual machine obtains the IP
address 10.0.2.15 from DHCP server 10.0.2.2. The NFS root is found at IP address
10.0.2.2, which is the development host. In the default VirtualBox NAT network setup,
the IP address of the DHCP server or the host is 10.0.2.2. The IP address of the built-in
TFTP server is 10.0.2.4. The DNS server IP address is 10.0.2.3.

It is possible to boot the Android system from the $OUT/system directory
using the NFS filesystem. However, we need to make changes to netd to
disable flushing the routing rules. The changes can be done in the
following file in the flushRules function:
$AOSP/system/netd/server/RouteController.cpp

Without this change, the network connection will be reset after the routing
rules are flushed. However, we can still use NFS boot to perform the first
stage-boot or install the system to hard disk.

Booting Up x86vbox Using PXE/NFS

[258]

Summary
In this chapter, we learnt a debugging method using a combination of PXE boot and the
NFS root filesystem. This is a common practice in the embedded Linux development world.
We try to use a similar setup for Android system development. As we can see, this setup
can make the development and debugging process more efficient. We can use this setup to
remove the bootloader dependency. We can also reduce the time to flash or provision build
images to the device.

I wrote an article to discuss a more advanced case about the PXE/NFS setup using an
external DHCP/TFTP server running in the host-only network environment. If you are
interested in this topic, you can read it at the following URL:
h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n t /b o o t i n g - a n d r o i d - s y s t e m - u s i n g - p x e n f s

In the next chapter, we will continue our journey on the boot up process of x86vbox. We
will explore and learn how to enable the graphic system on VirtualBox so that we can bring
up the Android system eventually for the x86vbox device.

https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs
https://www.packtpub.com/books/content/booting-android-system-using-pxenfs

10
Enabling Graphics

In the last chapter, we learnt how to boot the x86vbox device using PXE and NFS. We can
boot the device to an embedded Linux environment, which is the first stage of the Android-
x86 boot. In this stage, we can use a debug console to verify the status of the system so that
we can make sure everything is right before we start the real Android system. In this
chapter, we will talk about the first issue we meet during Android system boot up. This is
about how to enable the Android graphics system for the x86vbox device. We will cover the
following topics in this chapter:

Overview of Android graphics architecture
Delving into graphics HAL
Analyzing the Android emulator graphics HAL for comparison

The graphics system probably is the most complicated software stack in
the Android system architecture.
As you will see, the content in this chapter is much longer than the rest.
Reading and understanding the content in this chapter may be harder.
What I suggest is that you can open a source code editor and load the
relevant source code while you read this chapter. This will help you a lot
to understand the source code and the points that I want to address in this
chapter.

Enabling Graphics

[260]

Introduction to the Android graphics
architecture
The graphics system in Android is similar to the architecture that we discussed in Chapter
3, Discovering Kernel, HAL, and Virtual Hardware. There we used goldfish lights HAL as an
example to do a detailed analysis from the application level to the HAL and device driver
layer. This analysis helps us to understand the Android architecture vertically.

However, the graphics system could be the most complicated system in the Android
architecture. It would require another book to give a detailed introduction to the Android
graphics system. The focus of this book is on how we can port Android systems to a new
hardware platform. To focus on this goal, we will address the graphics HAL in this chapter
instead of discussing the entire graphics system. The graphics system will work if we can
choose the right graphics HAL and configure it right.

According to Google documents about the implementation of graphics, Android graphics
support requires the following components:

EGL driver
OpenGL ES 1.x driver
OpenGL ES 2.0 driver
OpenGL ES 3.x driver (optional)
Vulkan (optional)
Gralloc HAL implementation
Hardware Composer HAL implementation

In the preceding list, OpenGL ES implementation is the most complicated component in the
graphics system. We will discuss how it is chosen and integrated in an Android emulator
and Android-x86. We won't go into the details of how to analyze the OpenGL ES
implementation, but we will have an overview about the underlying OpenGL ES libraries.
OpenGL ES 1.x and 2.0 must be supported in an Android system. OpenGL ES 3.x is an
optional component at the moment. EGL driver is usually implemented as part of the
OpenGL ES implementation and we will see this when we discuss the Android emulator
and Android-x86 (x86vbox) graphics system.

Enabling Graphics

[261]

Vulkan is a new generation of GPU API from Khronos Group. Vulkan is new and optional
and was only introduced in Android 7. Covering Vulkan is beyond the scope of this book,
so we won't discuss it. Gralloc HAL is the one that handles the graphics hardware and it is
our focus for a deep analysis. In most of the porting work of the graphics system, Gralloc
HAL is the key to enabling graphics.

Hardware composer is part of the graphics HAL. However, it is not a component that we
must have for Android emulator or Android-x86. The Hardware Composer (HWC) HAL is
used to composite surfaces to the screen. The HWC abstracts objects such as overlays and
helps offload some work that would normally be done with OpenGL.

Android graphics architecture

Enabling Graphics

[262]

As we can see from the preceding Android graphics architecture diagram, we can also
divide related components into different layers in the Android architecture as we did in
previous chapters. This architecture diagram is a simplified view of a graphics system.
SurfaceFlinger is the system service to the application layer for graphics-related system
support. SurfaceFlinger will connect to the OpenGL ES library and HAL layer components
to perform the actual work. In the HAL, we have HWC, gralloc, and a vender-specific GPU
library that will talk to the drivers in the kernel space.

Delving into graphics HAL
After we have an overview of graphics system architecture, we will analyze the Gralloc
module, which is the graphics HAL. In the AOSP source code, the skeleton of Gralloc HAL
implementation can be found at the following folder:

$AOSP/hardware/libhardware/modules/gralloc

This is a general implementation that provides a reference for developers to create their
own Gralloc module. Gralloc will access framebuffer and GPU to provide services to the
upper layer. In this section, we will analyze this general implementation first. After the
analysis of this general Gralloc HAL module, we will introduce the Gralloc HAL of the
Android emulator.

Loading the Gralloc module
When application developers draw images to the screen, there are two ways to do it. They
can use Canvas or OpenGL. Beginning in Android 4.0, both methods use hardware
acceleration by default. To use hardware acceleration, we need to use Open GL libraries and
eventually the Gralloc module will be loaded as part of the graphics system initialization.
As we saw in Chapter 3, Discovering Kernel, HAL, and Virtual Hardware, each HAL module
has a reference ID that can be used by the hw_get_module function to load it to memory.
The hw_get_module function is defined in the
$AOSP/hardware/libhardware/hardware.c file:

int hw_get_module(const char *id, const struct hw_module_t **module)
{
 return hw_get_module_by_class(id, NULL, module);
}

Enabling Graphics

[263]

In hw_get_module, it actually calls another function, hw_get_module_by_class, to do
the work:

int hw_get_module_by_class(const char *class_id, const char *inst,
 const struct hw_module_t **module)
{
 int i = 0;
 char prop[PATH_MAX] = {0};
 char path[PATH_MAX] = {0};
 char name[PATH_MAX] = {0};
 char prop_name[PATH_MAX] = {0};

 if (inst)
 snprintf(name, PATH_MAX, "%s.%s", class_id, inst);
 else
 strlcpy(name, class_id, PATH_MAX);

 snprintf(prop_name, sizeof(prop_name), "ro.hardware.%s", name);
 if (property_get(prop_name, prop, NULL) > 0) {
 if (hw_module_exists(path, sizeof(path), name, prop) == 0) {
 goto found;
 }
 }

 for (i=0 ; i<HAL_VARIANT_KEYS_COUNT; i++) {
 if (property_get(variant_keys[i], prop, NULL) == 0) {
 continue;
 }
 if (hw_module_exists(path, sizeof(path), name, prop) == 0) {
 goto found;
 }
 }

 /* Nothing found, try the default */
 if (hw_module_exists(path, sizeof(path), name, "default") == 0) {
 goto found;
 }

 return -ENOENT;

found:
 return load(class_id, path, module);
}

Enabling Graphics

[264]

In the preceding function, it tries to find the Gralloc module shared library using the
following names in /system/lib/hw or /vendor/lib/hw:

gralloc.<ro.hardware>.so
gralloc.<ro.product.board>.so
gralloc.<ro.board.platform>.so
gralloc.<ro.arch>.so

If any of the preceding files exist, they will call the load function to load the shared library.
If none of them exist, a default shared library, gralloc.default.so, will be used. The
hardware module ID for Gralloc is defined in the gralloc.h file as follows:

#define GRALLOC_HARDWARE_MODULE_ID "gralloc"

The load function will call dlopen to load the library and will call dlsym to get the address
of the data structure hw_module_t:

static int load(const char *id,
 const char *path,
 const struct hw_module_t **pHmi)
{
 int status = -EINVAL;
 void *handle = NULL;
 struct hw_module_t *hmi = NULL;

 handle = dlopen(path, RTLD_NOW);
 if (handle == NULL) {
 char const *err_str = dlerror();
 ALOGE("load: module=%s\n%s", path, err_str?err_str:"unknown");
 status = -EINVAL;
 goto done;
 }

 const char *sym = HAL_MODULE_INFO_SYM_AS_STR;
 hmi = (struct hw_module_t *)dlsym(handle, sym);
 if (hmi == NULL) {
 ALOGE("load: couldn't find symbol %s", sym);
 status = -EINVAL;
 goto done;
 }

 if (strcmp(id, hmi->id) != 0) {
 ALOGE("load: id=%s != hmi->id=%s", id, hmi->id);
 status = -EINVAL;
 goto done;
 }

Enabling Graphics

[265]

 hmi->dso = handle;

 status = 0;

 done:
 if (status != 0) {
 hmi = NULL;
 if (handle != NULL) {
 dlclose(handle);
 handle = NULL;
 }
 } else {
 ALOGV("loaded HAL id=%s path=%s hmi=%p handle=%p",
 id, path, *pHmi, handle);
 }

 *pHmi = hmi;

 return status;
}

After we get the address of the data structure hw_module_t, we can call the open method
defined in Gralloc HAL to initialize the framebuffer and GPU.

As we discussed in Chapter 3, Discovering Kernel, HAL, and Virtual Hardware, the hardware
vendor needs to implement three HAL data structures as follows:

struct hw_module_t;
struct hw_module_methods_t;
struct hw_device_t;

After the HAL shared library is loaded, the data structure hw_module_t is used to discover
the HAL module, as we can see in the preceding code snippet. Each HAL module should
implement an open method in the data structure hw_module_methods_t, which is
responsible for the initialization of hardware. We can see that the gralloc_device_open
function is defined as the open method in the following code snippet for the Gralloc
module:

static struct hw_module_methods_t gralloc_module_methods = {
 .open = gralloc_device_open
};

struct private_module_t HAL_MODULE_INFO_SYM = {
 .base = {
 .common = {
 .tag = HARDWARE_MODULE_TAG,
 .version_major = 1,

Enabling Graphics

[266]

 .version_minor = 0,
 .id = GRALLOC_HARDWARE_MODULE_ID,
 .name = "Graphics Memory Allocator Module",
 .author = "The Android Open Source Project",
 .methods = &gralloc_module_methods
 },
 .registerBuffer = gralloc_register_buffer,
 .unregisterBuffer = gralloc_unregister_buffer,
 .lock = gralloc_lock,
 .unlock = gralloc_unlock,
 },
 .framebuffer = 0,
 .flags = 0,
 .numBuffers = 0,
 .bufferMask = 0,
 .lock = PTHREAD_MUTEX_INITIALIZER,
 .currentBuffer = 0,
};

In the data structure hw_module_methods_t, the open method is assigned as a static
function, gralloc_device_open. The HAL_MODULE_INFO_SYM symbol is defined as
struct private_module_t.

You may notice that we actually cast the HAL_MODULE_INFO_SYM_AS_STR symbol to
hw_module_t, while we loaded the Gralloc module. In this default Gralloc module, the
data structure hw_module_t is implemented using another two inherited data structures,
private_module_t and gralloc_module_t. Let's look at the relationship between
private_module_t, gralloc_module_t, and hw_module_t.

If you feel a little lost with the analysis, I suggest you look at the source
code while you read this section. If you don't have the AOSP source code
available, there is a very good cross-reference site for AOSP code at h t t p

://x r e f . o p e r s y s . c o m /.
You can visit this site and search for the data structures that we are
discussing.

The data structure private_module_t is defined in the following file:

$AOSP/hardware/libhardware/modules/gralloc/gralloc_priv.h

struct private_module_t {
 gralloc_module_t base;

 private_handle_t* framebuffer;
 uint32_t flags;
 uint32_t numBuffers;

http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/

Enabling Graphics

[267]

 uint32_t bufferMask;
 pthread_mutex_t lock;
 buffer_handle_t currentBuffer;
 int pmem_master;
 void* pmem_master_base;

 struct fb_var_screeninfo info;
 struct fb_fix_screeninfo finfo;
 float xdpi;
 float ydpi;
 float fps;
};

As we can see, the first base field, or member variable in C++ terms, is the data structure
gralloc_module_t. The second member variable framebuffer is a pointer of data type
private_handle_t. It is a handle pointing to the framebuffer and we will explore it later.

The member variable flags is used to indicate whether the system can support double
buffering. If it is supported the PAGE_FLIP bit is set to 1; otherwise, it is set to 0.

The numBuffers member variable indicates the number of buffers in the framebuffer. It is
related to the visible resolution and virtual resolution. For example, if the visible resolution
of the display is 800 x 600, the virtual resolution can be 1600 x 600. In this case, the
framebuffer can have two buffers for the display and the system can support double buffers
for the display.

The bufferMask member variable is used to mark the use of buffers in a framebuffer
device. If we assume there are two buffers in the framebuffer, the bufferMask variable can
have four values in binary 00, 01, 10, and 11. The value 00 indicates both buffers are empty.
The value 01 means the first buffer is in use and the second buffer is empty. The value 10
means the first buffer is empty and the second buffer is in use. The value 11 means both
buffers are busy.

The lock member variable is used to protect access to private_module_t.

The currentBuffer member variable is used to track the current buffer for rendering.

The info and finfo member variables are data types fb_var_screeninfo and
fb_fix_screeninfo. They are used to store the properties of the display device. The
properties in fb_var_screeninfo are programmable while the properties in
fb_fix_screeninfo are read-only.

Enabling Graphics

[268]

The xdpi and ydpi member variables are used to describe the pixel density in terms of
horizontal and vertical.

The fps member variable is the refresh rate of the display in frames per second.

The gralloc_module_t data structure is defined in the following file:

$AOSP/hardware/libhardware/include/hardware/gralloc.h

typedef struct gralloc_module_t {
 struct hw_module_t common;
 int (*registerBuffer)(struct gralloc_module_t const* module,
 buffer_handle_t handle);
 int (*unregisterBuffer)(struct gralloc_module_t const* module,
 buffer_handle_t handle);
 int (*lock)(struct gralloc_module_t const* module,
 buffer_handle_t handle, int usage,
 int l, int t, int w, int h,
 void** vaddr);
 int (*unlock)(struct gralloc_module_t const* module,
 buffer_handle_t handle);
 ...
}

As we expect, the first field in gralloc_module_t is hw_module_t from the preceding
code snippet. The relationship among these three data structures is similar to the following
UML class diagram in object-oriented notation:

Relationship between Gralloc data structures

Enabling Graphics

[269]

This is the way to simulate inheritance relationships in the C language. In this way, we can
cast data types of private_module_t to gralloc_module_t or hw_module_t.

A set of member functions is defined in gralloc_module_t. We will look at four of them
in this chapter.

The registerBuffer and unregisterBuffer member functions are used to register or
unregister a buffer. To register a buffer, we map a buffer to the process space of the
application.

The lock and unlock member functions are used to lock or unlock a buffer. The buffer is
described using buffer_handle_t as a parameter of the function. We can use the l, t, w,
and h parameters to provide the position and the size of the buffer. After the buffer is
locked, we can get the address of the buffer in the vaddr output parameter. We should
unlock the buffer after use.

Initializing GPU
We have talked about HAL data structures hw_module_t and hw_module_methods_t for
the Gralloc module. The last one, hw_device_t, is initialized in the open method of the
Gralloc HAL module. Now we can look at the open method of the Gralloc module as
follows:

int gralloc_device_open(const hw_module_t* module, const char* name,
 hw_device_t** device)
{
 int status = -EINVAL;
 if (!strcmp(name, GRALLOC_HARDWARE_GPU0)) {
 gralloc_context_t *dev;
 dev = (gralloc_context_t*)malloc(sizeof(*dev));

 memset(dev, 0, sizeof(*dev));

 dev->device.common.tag = HARDWARE_DEVICE_TAG;
 dev->device.common.version = 0;
 dev->device.common.module = const_cast<hw_module_t*>(module);
 dev->device.common.close = gralloc_close;

 dev->device.alloc = gralloc_alloc;
 dev->device.free = gralloc_free;

 *device = &dev->device.common;
 status = 0;
 } else {

Enabling Graphics

[270]

 status = fb_device_open(module, name, device);
 }
 return status;
}

As we can see here, the gralloc_device_open function can be used to initialize two kinds
of device, GRALLOC_HARDWARE_GPU0 and GRALLOC_HARDWARE_FB0, according to the name
input parameter.

Let's look at the initialization of the GPU0 device first. The output parameter of the open
method is the address of the hw_device_t data structure. After the calling applications get
an instance of hw_device_t, they can use the hardware device to do their work. In the
open method of Gralloc HAL, it allocates the memory for the gralloc_context_t data
structure first. After that, it populates its device member variable and assigns the output
parameter to the address of the dev->device.common member variable. As we expect, the
output is the address of an hw_device_t instance. Let's look at the relationship
between gralloc_context_t, alloc_device_t, and hw_device_t:

As we can see from the preceding diagram, the first field or member variable of
gralloc_context_t is device, which is data type alloc_device_t:

struct gralloc_context_t {
 alloc_device_t device;
 /* our private data here */
};

Enabling Graphics

[271]

The following is the definition of the alloc_device_t data structure. It is defined in the
gralloc.h file:

typedef struct alloc_device_t {
 struct hw_device_t common;

 int (*alloc)(struct alloc_device_t* dev,
 int w, int h, int format, int usage,
 buffer_handle_t* handle, int* stride);

 int (*free)(struct alloc_device_t* dev,
 buffer_handle_t handle);

 void (*dump)(struct alloc_device_t *dev, char *buff, int buff_len);

 void* reserved_proc[7];
} alloc_device_t;

We can see that the data type of the first field of alloc_device_t is hw_device_t. This is
the technique for simulating inheritance relationships in the C language that we mentioned
when we discussed the relationship between private_module_t, gralloc_module_t and
hw_module_t.

The alloc and free methods of the Gralloc device are implemented in the
gralloc_alloc and gralloc_free functions in the gralloc.cpp file.

Initializing framebuffer
If we call the open method of the Gralloc module with the name value
as GRALLOC_HARDWARE_FB0, it will initialize the framebuffer device. The fb_device_open
function is called to open the framebuffer device:

status = fb_device_open(module, name, device);

The fb_device_open function is implemented in the framebuffer.cpp file as follows:

int fb_device_open(hw_module_t const* module, const char* name,
 hw_device_t** device)
{
 int status = -EINVAL;
 if (!strcmp(name, GRALLOC_HARDWARE_FB0)) {
 /* initialize our state here */
 fb_context_t *dev = (fb_context_t*)malloc(sizeof(*dev));
 memset(dev, 0, sizeof(*dev));

Enabling Graphics

[272]

 /* initialize the procs */
 dev->device.common.tag = HARDWARE_DEVICE_TAG;
 dev->device.common.version = 0;
 dev->device.common.module = const_cast<hw_module_t*>(module);
 dev->device.common.close = fb_close;
 dev->device.setSwapInterval = fb_setSwapInterval;
 dev->device.post = fb_post;
 dev->device.setUpdateRect = 0;

 private_module_t* m = (private_module_t*)module;
 status = mapFrameBuffer(m);
 if (status >= 0) {
 int stride = m->finfo.line_length /
 (m->info.bits_per_pixel >> 3);
 /*
 * Auto detect current depth and select mode
 */
 int format;
 if (m->info.bits_per_pixel == 32) {
 format = (m->info.red.offset == 16) ?
 HAL_PIXEL_FORMAT_BGRA_8888
 : (m->info.red.offset == 24) ?
 HAL_PIXEL_FORMAT_RGBA_8888 :
 HAL_PIXEL_FORMAT_RGBX_8888;
 } else if (m->info.bits_per_pixel == 16) {
 format = HAL_PIXEL_FORMAT_RGB_565;
 } else {
 ALOGE("Unsupported format %d", m->info.bits_per_pixel);
 return -EINVAL;
 }
 const_cast<uint32_t&>(dev->device.flags) = 0;
 const_cast<uint32_t&>(dev->device.width) = m->info.xres;
 const_cast<uint32_t&>(dev->device.height) = m->info.yres;
 const_cast<int&>(dev->device.stride) = stride;
 const_cast<int&>(dev->device.format) = format;
 const_cast<float&>(dev->device.xdpi) = m->xdpi;
 const_cast<float&>(dev->device.ydpi) = m->ydpi;
 const_cast<float&>(dev->device.fps) = m->fps;
 const_cast<int&>(dev->device.minSwapInterval) = 1;
 const_cast<int&>(dev->device.maxSwapInterval) = 1;
 *device = &dev->device.common;
 }
 }
 return status;
}

Enabling Graphics

[273]

In the fb_device_open function, it allocates memory for the fb_context_t data
structure. After that, it populates the fields in the data structure. As we discussed in the
GPU0 initialization, we expect the output as an instance of the hw_device_t data structure
so that the caller can use the framebuffer device through the hw_device_t HAL data
structure. We have a similar inheritance relationship between these three data structures,
fb_context_t, framebuffer_device_t, and hw_device_t, as shown in the following
diagram:

Relationship between fb_context_t, framebuffer_device_t, and hw_device_t

The fb_context_t data structure includes framebuffer_device_t as the first field as
follows:

struct fb_context_t {
 framebuffer_device_t device;
};

In turn, the framebuffer_device_t data structure includes hw_device_t as the first
field, so fb_context_t can be used as either framebuffer_device_t or hw_device_t:

typedef struct framebuffer_device_t {
 struct hw_device_t common;

 const uint32_t flags;

 const uint32_t width;
 const uint32_t height;

 const int stride;

Enabling Graphics

[274]

 const int format;

 const float xdpi;
 const float ydpi;

 const float fps;

 const int minSwapInterval;

 const int maxSwapInterval;

 const int numFramebuffers;

 int reserved[7];
 int (*setSwapInterval)(struct framebuffer_device_t* window,
 int interval);
 int (*setUpdateRect)(struct framebuffer_device_t* window,
 int left, int top, int width, int height);
 int (*post)(struct framebuffer_device_t* dev, buffer_handle_t
 buffer);
 int (*compositionComplete)(struct framebuffer_device_t* dev);
 void (*dump)(struct framebuffer_device_t* dev, char *buff, int
 buff_len);
 int (*enableScreen)(struct framebuffer_device_t* dev, int enable);
 void* reserved_proc[6];

} framebuffer_device_t;

As for the rest of the fields in framebuffer_device_t, they are:

flags: Used to describe some attributes of the framebuffer.
width and height: Dimensions of the framebuffer in pixels.
stride: Framebuffer stride in pixels or the number of pixels per line.
format: Framebuffer pixel format. It can be HAL_PIXEL_FORMAT_RGBX_8888,
HAL_PIXEL_FORMAT_565, and so on.
xdpi and ydpi: Resolution of the framebuffer's display panel in pixels per inch.
fps: Display panel refresh rate in frames per second.
minSwapInterval: Minimum swap interval supported by this framebuffer.
maxSwapInterval: Maximum swap interval supported by this framebuffer.
numFramebuffers: Number of framebuffers supported.

Enabling Graphics

[275]

Before it can fill in all the fields of framebuffer_device_t, the fb_device_open function
calls a mapFrameBuffer function to get the information about the framebuffer. Besides
getting framebuffer information, this mapFrameBuffer function also maps the framebuffer
to the current process space so that the current process can use it. In Android, the Gralloc
module is owned and managed by SurfaceFlinger.

Let's have a look at the mapFrameBuffer function now:

static int mapFrameBuffer(struct private_module_t* module)
{
 pthread_mutex_lock(&module->lock);
 int err = mapFrameBufferLocked(module);
 pthread_mutex_unlock(&module->lock);
 return err;
}

As we can see, mapFrameBuffer acquires a mutex first and calls another function,
mapFrameBufferLocked, to do the rest of the work:

int mapFrameBufferLocked(struct private_module_t* module)
{
 // already initialized...
 if (module->framebuffer) {
 return 0;
 }

 char const * const device_template[] = {
 "/dev/graphics/fb%u",
 "/dev/fb%u",
 0 };

 int fd = -1;
 int i=0;
 char name[64];

 while ((fd==-1) && device_template[i]) {
 snprintf(name, 64, device_template[i], 0);
 fd = open(name, O_RDWR, 0);
 i++;
 }
 if (fd < 0)
 return -errno;
 ...

Enabling Graphics

[276]

In the mapFrameBufferLocked function, it checks whether there is a /dev/graphics/fb0
or /dev/fb0 device node. If the device node exists, it tries to open it and stores the file
descriptor in the fd variable:

 ...
 struct fb_fix_screeninfo finfo;
 if (ioctl(fd, FBIOGET_FSCREENINFO, &finfo) == -1)
 return -errno;

 struct fb_var_screeninfo info;
 if (ioctl(fd, FBIOGET_VSCREENINFO, &info) == -1)
 return -errno;
 ...

Next, it will use ioctl commands to get framebuffer information. There are two
framebuffer data structures, fb_fix_screeninfo and fb_var_screeninfo, which can be
used to communicate with framebuffer. The fb_fix_screeninfo data structure stores
fixed framebuffer information and the fb_var_screeninfo data structure stores
programmable framebuffer information:

 ...
 info.reserved[0] = 0;
 info.reserved[1] = 0;
 info.reserved[2] = 0;
 info.xoffset = 0;
 info.yoffset = 0;
 info.activate = FB_ACTIVATE_NOW;

 /*
 * Request NUM_BUFFERS screens (at lest 2 for page flipping)
 */
 info.yres_virtual = info.yres * NUM_BUFFERS;

 uint32_t flags = PAGE_FLIP;
#if USE_PAN_DISPLAY
 if (ioctl(fd, FBIOPAN_DISPLAY, &info) == -1) {
 ALOGW("FBIOPAN_DISPLAY failed, page flipping not supported");
#else
 if (ioctl(fd, FBIOPUT_VSCREENINFO, &info) == -1) {
 ALOGW("FBIOPUT_VSCREENINFO failed, page flipping not supported");
#endif
 info.yres_virtual = info.yres;
 flags &= ~PAGE_FLIP;
 }

 if (ioctl(fd, FBIOGET_FSCREENINFO, &finfo) == -1)

Enabling Graphics

[277]

 return -errno;

 if (finfo.smem_len <= 0)
 return -errno;

 if (finfo.smem_len / finfo.line_length < info.yres_virtual)
 info.yres_virtual = finfo.smem_len / finfo.line_length;

 if (info.yres_virtual < info.yres * 2) {
 // we need at least 2 for page-flipping
 info.yres_virtual = info.yres;
 flags &= ~PAGE_FLIP;
 ALOGW("page flipping not supported (yres_virtual=%d,
 requested=%d)",
 info.yres_virtual, info.yres*2);
 }
 ...

After it gets the framebuffer information, it tries to set the virtual resolution of the
framebuffer device. The xres and yres fields are used to store the visible resolution of the
framebuffer device while the xres_virtual and yres_virtual fields are used to store
the virtual resolution of the framebuffer device.

To set the virtual resolution, it tries to increase the virtual vertical resolution as the
info.yres * NUM_BUFFERS value. NUM_BUFFERS is a macro for the number of buffers that
can be used in the framebuffer devices. In our case, the NUM_BUFFERS value is 2, so we can
use the double buffer technology for the display. It sets the virtual resolution using the
ioctl command FBIOPUT_VSCREENINFO. If it can set the virtual resolution successfully, it
will set the PAGE_FLIP bit in flags; otherwise, it will clear the PAGE_FLIP bit:

 ...
 if (ioctl(fd, FBIOGET_VSCREENINFO, &info) == -1)
 return -errno;

 if (finfo.smem_len / finfo.line_length < info.yres_virtual)
 info.yres_virtual = finfo.smem_len / finfo.line_length;

 uint64_t refreshQuotient =
 (
 uint64_t(info.upper_margin + info.lower_margin + info.yres) *
 (info.left_margin + info.right_margin + info.xres) *
 info.pixclock
);

 /* Beware, info.pixclock might be 0 under emulation, so avoid
 * a division-by-0 here (SIGFPE on ARM) */
 int refreshRate = refreshQuotient > 0 ? (int)(1000000000000000LLU /

Enabling Graphics

[278]

 refreshQuotient) : 0;

 if (refreshRate == 0) {
 // bleagh, bad info from the driver
 refreshRate = 60*1000; // 60 Hz
 }
 ...

After it sets the virtual resolution, it will calculate the refresh rate. To understand the
calculation of the refresh rate, you can refer to the document in the Linux kernel source
code at Documentation/fb/framebuffer.txt:

 ...
 if (int(info.width) <= 0 || int(info.height) <= 0) {
 // the driver doesn't return that information
 // default to 160 dpi
 info.width = ((info.xres * 25.4f)/160.0f + 0.5f);
 info.height = ((info.yres * 25.4f)/160.0f + 0.5f);
 }

 float xdpi = (info.xres * 25.4f) / info.width;
 float ydpi = (info.yres * 25.4f) / info.height;
 float fps = refreshRate / 1000.0f;

 module->finfo = finfo;
 module->xdpi = xdpi;
 module->ydpi = ydpi;
 module->fps = fps;
 ...

Next, it will calculate the pixel density for both horizontal and vertical. It also converts the
refresh rate to frames per second and stores this to fps. After it has all the information, it
will store them to the fields of the data structure, private_module_t.

Finally, it will map the framebuffer to the process address space:

 ...
 while (info.yres_virtual > 0) {
 size_t fbSize = roundUpToPageSize(finfo.line_length *
 info.yres_virtual);
 module->numBuffers = info.yres_virtual / info.yres;
 void* vaddr = mmap(0, fbSize, PROT_READ|PROT_WRITE, MAP_SHARED,
 fd, 0);
 if (vaddr != MAP_FAILED) {
 module->info = info;
 module->flags = flags;
 module->bufferMask = 0;
 module->framebuffer = new private_handle_t(dup(fd),

Enabling Graphics

[279]

 fbSize, 0);
 module->framebuffer->base = intptr_t(vaddr);
 memset(vaddr, 0, fbSize);
 return 0;
 }

 ALOGE("Error mapping the framebuffer (%s)", strerror(errno));

 info.yres_virtual -= info.yres;
 ALOGW("Fallback to use fewer buffer: %d", info.yres_virtual /
 info.yres);
 if (ioctl(fd, FBIOPUT_VSCREENINFO, &info) == -1)
 break;

 if (info.yres_virtual <= info.yres)
 flags &= ~PAGE_FLIP;
 }

 return -errno;
}

The size of the framebuffer by virtual resolution is finfo.line_length *
info.yres_virtual. The value of finfo.line_length is equal to the number of bytes
per line and the value of info.yres_virtual is the number of lines per frame. In order to
do memory mapping, we have to round the size to the page boundary using the
roundUpToPageSize function.

The actual number of buffers that can be used in the framebuffer device is
info.yres_virtual divided by info.yres and it is stored in the numBuffers field. The
bufferMask field is set to 0 and this means all buffers are empty and can be used.

It calls the mmap system call to map the framebuffer to the current process address space.
The starting address of the framebuffer in the current process address space is vaddr,
which is returned from the mmap system call. It is stored to the framebuffer->base field,
so that the Gralloc module can use it to allocate buffers for the applications later.

Up to now, we have completed the analysis of the mapFrameBuffer function. This function
is the one that is responsible for most of the work in initializing framebuffer devices in the
Gralloc HAL module.

Enabling Graphics

[280]

Allocating and releasing the graphic buffer
So far in this chapter, we have discussed loading the Gralloc module and the open method
provided by the Gralloc module. Let's now review the points when the upper layer loads,
initializes, and uses the Gralloc module:

For example, the Gralloc module is used mostly by SurfaceFlinger.
SurfaceFlinger uses Gralloc; when it creates an instance of
FramebufferNativeWindow, in the FramebufferNativeWindow constructor, it
will call hw_get_module to get an instance of hw_module_t.
In the hw_module_t data structure, it has a field called methods with data type
hw_module_methods_t. In hw_module_methods_t, it has an open method that
returns a hw_device_t data structure.
With hw_device_t, SurfaceFlinger can use the alloc and free methods
inside hw_device_t to allocate or release graphic buffers.

Let's look at how the Gralloc module allocates and releases graphic buffers in this section.
We will look at the source code of gralloc_alloc first:

static int gralloc_alloc(alloc_device_t* dev,
 int w, int h, int format, int usage,
 buffer_handle_t* pHandle, int* pStride)
{
 if (!pHandle || !pStride)
 return -EINVAL;

 size_t size, stride;

 int align = 4;
 int bpp = 0;
 switch (format) {
 case HAL_PIXEL_FORMAT_RGBA_8888:
 case HAL_PIXEL_FORMAT_RGBX_8888:
 case HAL_PIXEL_FORMAT_BGRA_8888:
 bpp = 4;
 break;
 case HAL_PIXEL_FORMAT_RGB_888:
 bpp = 3;
 break;
 case HAL_PIXEL_FORMAT_RGB_565:
 case HAL_PIXEL_FORMAT_RAW16:
 bpp = 2;
 break;
 default:
 return -EINVAL;

Enabling Graphics

[281]

 }

 private_module_t* m = reinterpret_cast<private_module_t*>(
 dev->common.module);

 size_t bpr = usage & GRALLOC_USAGE_HW_FB ? m->finfo.line_length :
 (w*bpp + (align-1)) & ~(align-1);
 size = bpr * h;
 stride = bpr / bpp;

 int err;
 if (usage & GRALLOC_USAGE_HW_FB) {
 err = gralloc_alloc_framebuffer(dev, size, usage, pHandle);
 } else {
 err = gralloc_alloc_buffer(dev, size, usage, pHandle);
 }

 if (err < 0) {
 return err;
 }

 *pStride = stride;
 return 0;
}

As we can see in the preceding code snippet, the alloc method is implemented in the
gralloc_alloc function. gralloc_alloc has the following parameters:

dev: It has an alloc_device data type that inherits from hw_device_t.
w : It is the width of the graphic buffer.
h: It is the height of graphic buffer.
format : It defines the color format of pixels. For example, the format can be
HAL_PIXEL_FORMAT_RGBA_8888, HAL_PIXEL_FORMAT_RGB_888,
HAL_PIXEL_FORMAT_RGB_565, and so on.
usage : It defines the use of graphic buffer. For example, if the
GRALLOC_USAGE_HW_FB bit is set, the buffer will be allocated from the
framebuffer.
pHandle : It has a buffer_handle_t data type. We will discuss the details of
this data structure. It is used to store the allocated buffer.
pStride : The number of pixels per line.

Enabling Graphics

[282]

In gralloc_alloc, it checks the format of pixels to decide the size of pixels. It can be 32
bits, 24 bits, 16 bits, and so on. The size of the pixel is stored in the bpp variable. The bpr
variable is the number of bytes per line and it is calculated using w multiplied by bpp. The
bpr variable needs to be aligned to four bytes boundary for memory allocation. The size of
the buffer can be calculated using h multiplied by bpr.

After the size of the buffer is calculated, it will call the gralloc_alloc_framebuffer or
gralloc_alloc_buffer functions according to the GRALLOC_USAGE_HW_FB bit.

The graphic buffer that is allocated by gralloc_alloc is stored in the buffer_handle_t
data type. buffer_handle_t is defined as a pointer of native_handle. native_handle
is used as a parent class of private_handle_t. private_handle_t is the actual data type
used to manage the graphic buffer and it is a hardware-dependent data structure.

Relationship between private_handle_t and native_handle

The preceding diagram shows the relationship between private_handle_t and
native_handle. The following is the definition of native_handle:

typedef struct native_handle
{
 int version; /* sizeof(native_handle_t) */
 int numFds; /* number of file-descriptors at &data[0] */
 int numInts; /* number of ints at &data[numFds] */
 int data[0]; /* numFds + numInts ints */
} native_handle_t;

Enabling Graphics

[283]

The version field is set to the size of native_handle. The numFds and numInts fields
describe the number of file descriptors and integers in the data array. The data array is
used to store hardware-specific information, which we can see in the following definition of
private_handle_t:

#ifdef __cplusplus
struct private_handle_t : public native_handle {
#else
struct private_handle_t {
 struct native_handle nativeHandle;
#endif

 enum {
 PRIV_FLAGS_FRAMEBUFFER = 0x00000001
 };

 // file-descriptors
 int fd;
 // ints
 int magic;
 int flags;
 int size;
 int offset;

 // FIXME: the attributes below should be out-of-line
 uint64_t base __attribute__((aligned(8)));
 int pid;

#ifdef __cplusplus
 static inline int sNumInts() {
 return (((sizeof(private_handle_t) -
 sizeof(native_handle_t))/sizeof(int)) - sNumFds);
 }
 static const int sNumFds = 1;
 static const int sMagic = 0x3141592;

 private_handle_t(int fd, int size, int flags) :
 fd(fd), magic(sMagic), flags(flags), size(size), offset(0),
 base(0), pid(getpid())
 {
 version = sizeof(native_handle);
 numInts = sNumInts();
 numFds = sNumFds;
 }
 ~private_handle_t() {
 magic = 0;
 }

Enabling Graphics

[284]

 static int validate(const native_handle* h) {
 const private_handle_t* hnd = (const private_handle_t*)h;
 if (!h || h->version != sizeof(native_handle) ||
 h->numInts != sNumInts() || h->numFds != sNumFds ||
 hnd->magic != sMagic)
 {
 ALOGE("invalid gralloc handle (at %p)", h);
 return -EINVAL;
 }
 return 0;
 }
#endif
};

The fd member variable is a file descriptor that is used to describe a framebuffer or shared
memory region. The magic member variable is stored as a magic number defined in the
sMagic static variable. The flags member variable is used to describe the type of graphic
buffer. For example, if it is equal to PRIV_FLAGS_FRAMEBUFFER, this buffer is allocated
from framebuffer. The size member variable is the size of the graphic buffer. The offset
member variable is the offset from the starting address in memory. The base member
variable is the address allocated for the buffer. The pid member variable is the process ID of
the creator of the graphic buffer.

The constructor fills in the member variables of native_handle. The validate member
function is used to validate whether the graphic buffer is an instance of
private_handle_t or not.

As we mentioned previously, the Gralloc module that we are analyzing is the default
implementation in AOSP, and is built as galloc.default.so. In this implementation,
GPU is not used and the buffer will be allocated either in the framebuffer or shared
memory. Even though this is not the ideal case for performance, it has the least hardware
dependency, which is good as a reference to understand a more complicated Gralloc
module implementation.

Enabling Graphics

[285]

Allocating from framebuffer
As we can see from the gralloc_alloc function, when the usage bit is set to
GRALLOC_USAGE_HW_FB, the gralloc_alloc_framebuffer function is called. The
gralloc_alloc_framebuffer function will allocate the buffer from the framebuffer
device:

static int gralloc_alloc_framebuffer_locked(alloc_device_t* dev,
 size_t size, int usage, buffer_handle_t* pHandle)
{
 private_module_t* m = reinterpret_cast<private_module_t*>(
 dev->common.module);

 // allocate the framebuffer
 if (m->framebuffer == NULL) {
 // initialize the framebuffer, the framebuffer is mapped once
 // and forever.
 int err = mapFrameBufferLocked(m);
 if (err < 0) {
 return err;
 }
 }

 const uint32_t bufferMask = m->bufferMask;
 const uint32_t numBuffers = m->numBuffers;
 const size_t bufferSize = m->finfo.line_length * m->info.yres;
 if (numBuffers == 1) {
 // If we have only one buffer, we never use page-flipping.
 // Instead we return a regular buffer which will be
 // memcpy'ed to the main screen when post is called.
 int newUsage = (usage & ~GRALLOC_USAGE_HW_FB) |
 GRALLOC_USAGE_HW_2D;
 return gralloc_alloc_buffer(dev, bufferSize, newUsage,
 pHandle);
 }

 if (bufferMask >= ((1LU<<numBuffers)-1)) {
 // We ran out of buffers.
 return -ENOMEM;
 }

 // create a "fake" handles for it
 intptr_t vaddr = intptr_t(m->framebuffer->base);
 private_handle_t* hnd = new private_handle_t(dup(m->framebuffer-
 >fd),
 size, private_handle_t::PRIV_FLAGS_FRAMEBUFFER);

Enabling Graphics

[286]

 // find a free slot
 for (uint32_t i=0 ; i<numBuffers ; i++) {
 if ((bufferMask & (1LU<<i)) == 0) {
 m->bufferMask |= (1LU<<i);
 break;
 }
 vaddr += bufferSize;
 }

 hnd->base = vaddr;
 hnd->offset = vaddr - intptr_t(m->framebuffer->base);
 *pHandle = hnd;

 return 0;
}

static int gralloc_alloc_framebuffer(alloc_device_t* dev,
 size_t size, int usage, buffer_handle_t* pHandle)
{
 private_module_t* m = reinterpret_cast<private_module_t*>(
 dev->common.module);
 pthread_mutex_lock(&m->lock);
 int err = gralloc_alloc_framebuffer_locked(dev, size, usage,
 pHandle);
 pthread_mutex_unlock(&m->lock);
 return err;
}

gralloc_alloc_framebuffer acquires a mutex first and calls to another function,
gralloc_alloc_framebuffer_locked. In the locked version, it calls to a
mapFrameBufferLocked function, which we analyzed before to get the framebuffer
information and map it to the current process address space.

It will check whether the framebuffer device can support double buffering or not. If it can
support double buffering, it creates a new private_handle_t instance and fills in the
information in this instance and returns to the caller. If the buffer is allocated from the
framebuffer device, it will mark the flags member variable of private_handle_t to
PRIV_FLAGS_FRAMEBUFFER. It will also set the framebuffer usage status in bufferMask,
which is a member variable of private_module_t.

If it cannot support double buffering, it calls to gralloc_alloc_buffer to allocate a
buffer from the system memory and returns to the caller.

Enabling Graphics

[287]

Allocating from system memory
When the usage bit is not set to GRALLOC_USAGE_HW_FB or the system cannot support
double buffering, we have to allocate the buffer from system memory using
gralloc_alloc_buffer. Let's look at the implementation of gralloc_alloc_buffer:

static int gralloc_alloc_buffer(alloc_device_t* dev,
 size_t size, int /*usage*/, buffer_handle_t* pHandle)
{
 int err = 0;
 int fd = -1;

 size = roundUpToPageSize(size);

 fd = ashmem_create_region("gralloc-buffer", size);
 if (fd < 0) {
 ALOGE("couldn't create ashmem (%s)", strerror(-errno));
 err = -errno;
 }

 if (err == 0) {
 private_handle_t* hnd = new private_handle_t(fd, size, 0);
 gralloc_module_t* module = reinterpret_cast<gralloc_module_t*>(
 dev->common.module);
 err = mapBuffer(module, hnd);
 if (err == 0) {
 *pHandle = hnd;
 }
 }

 ALOGE_IF(err, "gralloc failed err=%s", strerror(-err));

 return err;
}

In gralloc_alloc_buffer, it rounds up the buffer size to the page size first. Then it
creates an anonymous shared memory region using ashmem_create_region. It creates a
new private_handle_t instance to represent this shared memory region.

Enabling Graphics

[288]

This shared memory region is described as a file descriptor. To use it, we need to map it to
the current process address space. This is done with the mapBuffer function:

int mapBuffer(gralloc_module_t const* module,
 private_handle_t* hnd)
{
 void* vaddr;
 return gralloc_map(module, hnd, &vaddr);
}

mapBuffer calls to another function, gralloc_map, to do the memory mapping:

static int gralloc_map(gralloc_module_t const* /*module*/,
 buffer_handle_t handle,
 void** vaddr)
{
 private_handle_t* hnd = (private_handle_t*)handle;
 if (!(hnd->flags & private_handle_t::PRIV_FLAGS_FRAMEBUFFER)) {
 size_t size = hnd->size;
 void* mappedAddress = mmap(0, size,
 PROT_READ|PROT_WRITE, MAP_SHARED, hnd->fd, 0);
 if (mappedAddress == MAP_FAILED) {
 ALOGE("Could not mmap %s", strerror(errno));
 return -errno;
 }
 hnd->base = uintptr_t(mappedAddress) + hnd->offset;
 //ALOGD("gralloc_map() succeeded fd=%d, off=%d, size=%d, vaddr=%p",
 // hnd->fd, hnd->offset, hnd->size, mappedAddress);
 }
 vaddr = (void)hnd->base;
 return 0;
}

In grallo_map, if the file descriptor in private_handle_t is a framebuffer device, we
don't have to do the mapping again, since the framebuffer is initialized and mapped to the
SurfaceFlinger address space in fb_device_open, as we analyzed before.

If it is a shared memory region, it needs to be mapped to the current process address space
using the mmap system function.

Enabling Graphics

[289]

Releasing graphic buffers
As we mentioned previously, the Gralloc module can be used to allocate and release
graphic buffers. Now that we have learnt how to allocate buffers from framebuffer devices
or system memory, let's have a look at how to release graphic buffers.

To release graphic buffers, the gralloc_free function is used:

static int gralloc_free(alloc_device_t* dev,
 buffer_handle_t handle)
{
 if (private_handle_t::validate(handle) < 0)
 return -EINVAL;

 private_handle_t const* hnd = reinterpret_cast<private_handle_t const*>
 (handle);
 if (hnd->flags & private_handle_t::PRIV_FLAGS_FRAMEBUFFER) {
 // free this buffer
 private_module_t* m = reinterpret_cast<private_module_t*>(
 dev->common.module);
 const size_t bufferSize = m->finfo.line_length * m->info.yres;
 int index = (hnd->base - m->framebuffer->base) / bufferSize;
 m->bufferMask &= ~(1<<index);
 } else {
 gralloc_module_t* module = reinterpret_cast<gralloc_module_t*>(
 dev->common.module);
 terminateBuffer(module, const_cast<private_handle_t*>(hnd));
 }

 close(hnd->fd);
 delete hnd;
 return 0;
}

To release a graphic buffer, the buffer is described using buffer_handle_t.
gralloc_free will validate the buffer first using the private_handle_t::validate
static function.

The handle parameter can be cast to a pointer of private_handle_t as we recall from the
discussion on private_handle_t and native_handle previously. If the flags field of
hnd is PRIV_FLAGS_FRAMEBUFFER, it means the buffer is allocated from the framebuffer
device. It will update bufferMask to release it from the framebuffer.

Enabling Graphics

[290]

If the buffer is allocated from system memory, it will call the terminateBuffer function to
release the memory:

int terminateBuffer(gralloc_module_t const* module,
 private_handle_t* hnd)
{
 if (hnd->base) {
 // this buffer was mapped, unmap it now
 gralloc_unmap(module, hnd);
 }

 return 0;
}

The terminateBuffer function calls to another function, gralloc_unmap, to release the
memory:

static int gralloc_unmap(gralloc_module_t const* /*module*/,
 buffer_handle_t handle)
{
 private_handle_t* hnd = (private_handle_t*)handle;
 if (!(hnd->flags & private_handle_t::PRIV_FLAGS_FRAMEBUFFER))
 {
 void* base = (void*)hnd->base;
 size_t size = hnd->size;
 //ALOGD("unmapping from %p, size=%d", base, size);
 if (munmap(base, size) < 0) {
 ALOGE("Could not unmap %s", strerror(errno));
 }
 }
 hnd->base = 0;
 return 0;
}

In gralloc_unmap, again, it checks that this buffer is not from the framebuffer and it calls
the munmap system function to release it.

Enabling Graphics

[291]

Rendering framebuffer
As we discussed previously in this chapter, the Gralloc module can support two kinds of
device: Gralloc devices and framebuffer devices. In the open method of the Gralloc device,
it creates a device named GRALLOC_HARDWARE_GPU0 and supports two methods, alloc
and free, as we can see in the following snippet. We have discussed both methods in detail
earlier in this chapter:

 ...
 if (!strcmp(name, GRALLOC_HARDWARE_GPU0)) {
 gralloc_context_t *dev;
 dev = (gralloc_context_t*)malloc(sizeof(*dev));

 /* initialize our state here */
 memset(dev, 0, sizeof(*dev));

 /* initialize the procs */
 dev->device.common.tag = HARDWARE_DEVICE_TAG;
 dev->device.common.version = 0;
 dev->device.common.module = const_cast<hw_module_t*>(module);
 dev->device.common.close = gralloc_close;

 dev->device.alloc = gralloc_alloc;
 dev->device.free = gralloc_free;

 *device = &dev->device.common;
 ...

In the open method of the framebuffer device, it creates a device named
GRALLOC_HARDWARE_FB0 and supports four methods close, setSwapInterval, post,
and setUpdateRect:

 ...
 if (!strcmp(name, GRALLOC_HARDWARE_FB0)) {
 /* initialize our state here */
 fb_context_t *dev = (fb_context_t*)malloc(sizeof(*dev));
 memset(dev, 0, sizeof(*dev));

 /* initialize the procs */
 dev->device.common.tag = HARDWARE_DEVICE_TAG;
 dev->device.common.version = 0;
 dev->device.common.module = const_cast<hw_module_t*>(module);
 dev->device.common.close = fb_close;
 dev->device.setSwapInterval = fb_setSwapInterval;
 dev->device.post = fb_post;
 dev->device.setUpdateRect = 0;

Enabling Graphics

[292]

 private_module_t* m = (private_module_t*)module;
 ...

You can refer to the AOSP source code or the following URL for information about the
implementation of these methods:

http://xref.opersys.com/android-7.0.0_r1/xref/hardware/libhardware/modules/gral
loc/framebuffer.cpp

Let's look at the post method, which is implemented in fb_post:

static int fb_post(struct framebuffer_device_t* dev, buffer_handle_t
buffer)
{
 if (private_handle_t::validate(buffer) < 0)
 return -EINVAL;

 fb_context_t* ctx = (fb_context_t*)dev;

 private_handle_t const* hnd = reinterpret_cast<private_handle_t const*>
 (buffer);
 private_module_t* m = reinterpret_cast<private_module_t*>(
 dev->common.module);

 if (hnd->flags & private_handle_t::PRIV_FLAGS_FRAMEBUFFER) {
 const size_t offset = hnd->base - m->framebuffer->base;
 m->info.activate = FB_ACTIVATE_VBL;
 m->info.yoffset = offset / m->finfo.line_length;
 if (ioctl(m->framebuffer->fd, FBIOPUT_VSCREENINFO, &m->info) == -1)
{
 ALOGE("FBIOPUT_VSCREENINFO failed");
 m->base.unlock(&m->base, buffer);
 return -errno;
 }
 m->currentBuffer = buffer;

 } else {
 // If we can't do the page_flip, just copy the buffer to the front
 // FIXME: use copybit HAL instead of memcpy

 void* fb_vaddr;
 void* buffer_vaddr;

 m->base.lock(&m->base, m->framebuffer,
 GRALLOC_USAGE_SW_WRITE_RARELY,
 0, 0, m->info.xres, m->info.yres, &fb_vaddr);

 m->base.lock(&m->base, buffer,

http://xref.opersys.com/android-7.0.0_r1/xref/hardware/libhardware/modules/gralloc/framebuffer.cpp
http://xref.opersys.com/android-7.0.0_r1/xref/hardware/libhardware/modules/gralloc/framebuffer.cpp

Enabling Graphics

[293]

 GRALLOC_USAGE_SW_READ_RARELY,
 0, 0, m->info.xres, m->info.yres, &buffer_vaddr);

 memcpy(fb_vaddr, buffer_vaddr, m->finfo.line_length * m-
 >info.yres);

 m->base.unlock(&m->base, buffer);
 m->base.unlock(&m->base, m->framebuffer);
 }

 return 0;
}

After an application has prepared the graphic buffer, it needs to post the buffer to the
display so that users can see it on the screen. This fb_post function is used to display the
graphic buffer to the screen. It takes two parameters, dev and buffer. The dev parameter is
the pointer of an instance of the data structure of framebuffer_device_t, which was
discussed previously (refer to the diagram about the relationship between fb_context_t
and framebuffer_device_t). As per the previous discussion, dev can be cast to ctx,
which is a pointer of fb_context_t.

After we have an instance of the device, we can get the instance of the Gralloc module from
it as follows:

private_module_t* m = reinterpret_cast<private_module_t*>(
dev->common.module);

Another parameter is buffer and it has a buffer_handle_t data type. It includes the
buffer to be posted. As we discussed previously, it can be cast as a point of
private_handle_t and it is stored in the hnd variable. This buffer can be a graphic buffer
in system memory or it can be part of the framebuffer. Based on the value of the
hnd->flags member variable, we can find out what kind of buffer it is.

Enabling Graphics

[294]

If it is a buffer as part of the framebuffer, we need to activate it as the buffer for the display.
This can be done using the framebuffer's ioctl function. To call the ioctl function, we
need a data structure of fb_var_screeninfo and this can be found in m->info. To swap
the buffer in double buffering, we just need to set the vertical offset and activate it as
follows:

 ...
 m->info.activate = FB_ACTIVATE_VBL;
 m->info.yoffset = offset / m->finfo.line_length;
 if (ioctl(m->framebuffer->fd, FBIOPUT_VSCREENINFO, &m->info) == -1)
{
 ...

If it is a buffer allocated in system memory, we need to copy it to the framebuffer. In this
case, it tries to lock both the graphic buffer and framebuffer first, and then it copies the
graphic buffer using memcpy:

memcpy(fb_vaddr, buffer_vaddr, m->finfo.line_length * m->info.yres);

Graphics HAL of the Android emulator
After we have analyzed the default Gralloc module implementation, we want to briefly
look at another Gralloc module implementation so that we can compare how a Gralloc
module should be implemented on varying Graphic hardware.

The Gralloc module we will analyze in this section is the Gralloc module used by the
Android emulator. The default Gralloc module gralloc.default.so only uses
framebuffer devices and it doesn't use GPU. If the default Gralloc module is used, OpenGL
support has to be implemented in the software layer. This is the case with VirtualBox for the
time being, since there is no Mesa/DRM-compliant implementation in the VirtualBox host
side for OpenGL. This doesn't mean VirtualBox doesn't support OpenGL. It does support
OpenGL and 3D hardware acceleration, but the implementation is not compliant with the
open source Mesa/DRM architecture.

Enabling Graphics

[295]

If you are interested in this topic about OpenGL support on VirtualBox,
you may read the following threads in the Android-x86 discussion group:
https://groups.google.com/forum/?hl=en#!starred/android-x86/gZYx
6oWx4LI

Overview of hardware GLES emulation
3D graphics support on Andriod emulator is implemented in different ways as follows:

host: This is the default mode. This is also called hardware GLES emulation. It
uses specific translator libraries to convert guest EGL/GLES commands into host
GL ones. This requires valid OpenGL drivers installed on the host machine.
swiftshader: This is a software library for high-performance graphics rendering
on the CPU. It takes advantage of SIMD on modern CPUs to perform graphics
rendering.
mesa: This is deprecated. It is a software library using the Mesa3D library. It is
slower than swiftshader mode, and slower than the host mode by a large
margin.
guest: This is a pure software implementation on the guest side.

To choose a graphic mode in the emulator, you can either specify it on the command line
with the -gpu option or define it in the config.ini configuration file as follows:

hw.gps=yes
hw.gpu.enabled=yes
hw.gpu.mode=swiftshader

We will look at the Gralloc module implementation in the host mode here. In the hardware
GLES emulation, there are several host "translator" libraries implemented: EGL, GLES 1.1,
and GLES 2.0 ABIs (Application Binary Interface) defined by Khronos. These libraries
translate the corresponding function calls into calls to the appropriate host OpenGL APIs.

https://groups.google.com/forum/?hl=en#!starred/android-x86/gZYx6oWx4LI
https://groups.google.com/forum/?hl=en#!starred/android-x86/gZYx6oWx4LI

Enabling Graphics

[296]

There are the same set of system libraries implemented inside the emulated guest system
for EGL, GLES 1.1, and GLES 2.0 ABIs. They collect the sequence of EGL/GLES function
calls and translate them into a custom wire protocol stream that is sent to the emulator
program through a high-speed communication channel called a "QEMU pipe." The pipe is
implemented with a custom kernel driver and it can provide a very fast channel for
communication between the host and the guest system. I have given a brief introduction
about the QEMU pipe in Chapter 3, Discovering Kernel, HAL, and Virtual Hardware and you
can refer to it for more information.

Hardware GLES emulation

Enabling Graphics

[297]

You can find the preceding diagram in the emulator source code at
$AOSP/external/qemu/distrib/android-emugl/DESIGN.

The emulator source code is not downloaded using the manifest file in this chapter. You can
refer to the following URL:

https://android.googlesource.com/platform/external/qemu/+/master/distrib/androi
d-emugl/DESIGN

Or you can get the entire repository using the following command:

$ git clone https://android.googlesource.com/platform/external/qemu

The preceding diagram shows components on both the host (emulator) side and the guest
side for the GLES emulation. We may treat the host side implementation as GPU, and
QEMU PIPE is the connection between GPU and CPU. There are two things that need to
access GPU for 3D graphics acceleration: the Gralloc module and the vendor library. The
vendor library here refers to the hardware GLES emulation library for Android emulator.
The Gralloc module is the one that we want to explore in this section.

The GLES hardware emulation Gralloc module is very similar to the default Gralloc module
that we have discussed in this chapter. It needs to implement the following three HAL data
structures:

struct hw_module_t;
struct hw_module_methods_t;
struct hw_device_t;

For the first data structure, hw_module_t, both Gralloc modules have their own
implementation called private_module_t, which is inherited from hw_module_t, but the
definitions are different, as we can see in the following snippet.

The private_module_t in the default Gralloc module is as follows:

struct private_module_t {
 gralloc_module_t base;

 private_handle_t* framebuffer;
 uint32_t flags;
 uint32_t numBuffers;
 uint32_t bufferMask;
 pthread_mutex_t lock;
 buffer_handle_t currentBuffer;
 int pmem_master;
 void* pmem_master_base;

https://android.googlesource.com/platform/external/qemu/+/master/distrib/android-emugl/DESIGN
https://android.googlesource.com/platform/external/qemu/+/master/distrib/android-emugl/DESIGN

Enabling Graphics

[298]

 struct fb_var_screeninfo info;
 struct fb_fix_screeninfo finfo;
 float xdpi;
 float ydpi;
 float fps;
};

The private_module_t in the GLES emulation Gralloc module is as follows:

struct private_module_t {
 gralloc_module_t base;
};

For the hw_device_t data structure implementation, we can get the details from the
following table. We can create two kinds of devices, GPU0 and FB0, using the open method
in the hw_module_methods_t data structure. In both implementations, data structures
inherited from hw_device_t are used:

hw_device_t in
Gralloc module

GPU0 FB0

Android emulator gralloc_device_t fb_device_t

Default Gralloc gralloc_context_t fb_context_t

We have analyzed both gralloc_context_t and fb_context_t in the Initializing GPU
section. We can look at the definitions of gralloc_device_t and fb_device_t in the
following GLES emulation implementation:

struct gralloc_device_t {
 alloc_device_t device;

 AllocListNode *allocListHead; // double linked list of allocated
buffers
 pthread_mutex_t lock;
};

struct fb_device_t {
 framebuffer_device_t device;
};

Enabling Graphics

[299]

Initializing GPU0 and FB0 in GLES emulation
As we know, device initialization is done in the open method defined in the
hw_module_methods_t data structure. Let's look at the implementation of the open
method in GLES emulation. It is implemented in the gralloc_device_open function, as
we can see in the following snippet:

static int gralloc_device_open(const hw_module_t* module,
 const char* name,
 hw_device_t** device)
{
 int status = -EINVAL;

 D("gralloc_device_open %s\n", name);

 pthread_once(&sFallbackOnce, fallback_init);
 if (sFallback != NULL) {
 return sFallback->common.methods->open(&sFallback->common,
 name, device);
 }

 if (!strcmp(name, GRALLOC_HARDWARE_GPU0)) {

 // Create host connection and keep it in the TLS.
 // return error if connection with host can not be established
 HostConnection *hostCon = HostConnection::get();
 if (!hostCon) {
 ALOGE("gralloc: failed to get host connection
 while opening %s\n",
 name);
 return -EIO;
 }

 //
 // Allocate memory for the gralloc device (alloc interface)
 //
 gralloc_device_t *dev;
 dev = (gralloc_device_t*)malloc(sizeof(gralloc_device_t));
 if (NULL == dev) {
 return -ENOMEM;
 }

 // Initialize our device structure
 //
 dev->device.common.tag = HARDWARE_DEVICE_TAG;
 dev->device.common.version = 0;
 dev->device.common.module = const_cast<hw_module_t*>(module);

Enabling Graphics

[300]

 dev->device.common.close = gralloc_device_close;

 dev->device.alloc = gralloc_alloc;
 dev->device.free = gralloc_free;
 dev->allocListHead = NULL;
 pthread_mutex_init(&dev->lock, NULL);

 *device = &dev->device.common;
 status = 0;
 }
 else if (!strcmp(name, GRALLOC_HARDWARE_FB0)) {
 ...
 }

 return status;
}

The preceding code snippet is part of the GPU0 initialization. Before it creates the devices for
GPU0 or FB0, it will call a fallback_init function to check the system settings
for hardware emulation. In fallback_init, it will check a ro.kernel.qemu.gles system
property. If this property is set to 0, the GPU emulation will be disabled. The default Gralloc
module will be used. In this case, the open method defined in the default Gralloc module,
sFallback, will be called.

For the GPU0 initialization, it will check whether the device name is equal to
GRALLOC_HARDWARE_GPU0 or not. If it is GPU0, it will get the host connection first. The host
connection is the QEMU pipe link between the host and the guest system as we discussed
before.

After that, it initializes the GPU0 device as the initialization process that we discussed for the
default Gralloc module.

Next, let's have a look at the FB0 initialization as follows:

static int gralloc_device_open(const hw_module_t* module,
 const char* name,
 hw_device_t** device)
{
 int status = -EINVAL;

 D("gralloc_device_open %s\n", name);

 pthread_once(&sFallbackOnce, fallback_init);
 if (sFallback != NULL) {
 return sFallback->common.methods->open(&sFallback->common,
 name, device);

Enabling Graphics

[301]

 }

 if (!strcmp(name, GRALLOC_HARDWARE_GPU0)) {
 ...
 }
 else if (!strcmp(name, GRALLOC_HARDWARE_FB0)) {

 // return error if connection with host can not be established
 DEFINE_AND_VALIDATE_HOST_CONNECTION;

 //
 // Query the host for Framebuffer attributes
 //
 D("gralloc: query Frabuffer attribs\n");
 EGLint width = rcEnc->rcGetFBParam(rcEnc, FB_WIDTH);
 D("gralloc: width=%d\n", width);
 EGLint height = rcEnc->rcGetFBParam(rcEnc, FB_HEIGHT);
 D("gralloc: height=%d\n", height);
 EGLint xdpi = rcEnc->rcGetFBParam(rcEnc, FB_XDPI);
 D("gralloc: xdpi=%d\n", xdpi);
 EGLint ydpi = rcEnc->rcGetFBParam(rcEnc, FB_YDPI);
 D("gralloc: ydpi=%d\n", ydpi);
 EGLint fps = rcEnc->rcGetFBParam(rcEnc, FB_FPS);
 D("gralloc: fps=%d\n", fps);
 EGLint min_si = rcEnc->rcGetFBParam(rcEnc,
 FB_MIN_SWAP_INTERVAL);
 D("gralloc: min_swap=%d\n", min_si);
 EGLint max_si = rcEnc->rcGetFBParam(rcEnc,
 FB_MAX_SWAP_INTERVAL);
 D("gralloc: max_swap=%d\n", max_si);

 //
 // Allocate memory for the framebuffer device
 //
 fb_device_t *dev;
 dev = (fb_device_t*)malloc(sizeof(fb_device_t));
 if (NULL == dev) {
 return -ENOMEM;
 }
 memset(dev, 0, sizeof(fb_device_t));

 // Initialize our device structure
 //
 dev->device.common.tag = HARDWARE_DEVICE_TAG;
 dev->device.common.version = 0;
 dev->device.common.module = const_cast<hw_module_t*>(module);
 dev->device.common.close = fb_close;
 dev->device.setSwapInterval = fb_setSwapInterval;

Enabling Graphics

[302]

 dev->device.post = fb_post;
 dev->device.setUpdateRect = 0; //fb_setUpdateRect;
 dev->device.compositionComplete = fb_compositionComplete;

 const_cast<uint32_t&>(dev->device.flags) = 0;
 const_cast<uint32_t&>(dev->device.width) = width;
 const_cast<uint32_t&>(dev->device.height) = height;
 const_cast<int&>(dev->device.stride) = width;
 const_cast<int&>(dev->device.format) =
 HAL_PIXEL_FORMAT_RGBA_8888;
 const_cast<float&>(dev->device.xdpi) = xdpi;
 const_cast<float&>(dev->device.ydpi) = ydpi;
 const_cast<float&>(dev->device.fps) = fps;
 const_cast<int&>(dev->device.minSwapInterval) = min_si;
 const_cast<int&>(dev->device.maxSwapInterval) = max_si;
 *device = &dev->device.common;

 status = 0;
 }

In the FB0 initialization, it tries to get the host connection and an rcEnc pointer, which is an
instance of the renderControl_encoder_context_t data structure, using
the DEFINE_AND_VALIDATE_HOST_CONNECTION macro. With rcEnc, it can get the
framebuffer attributes (width, height, xdpi, ydpi, fps, min_si, and max_si) from the
host connection. After that, it creates an instance of the fb_device_t data structure and
fills in the framebuffer attributes in this instance of fb_device_t.

GPU0 device implementation
As we did for the default Gralloc module, we will analyze the alloc and free methods in
the GPU0 device. The alloc method is implemented in the gralloc_alloc function. The
gralloc_alloc function is much longer than the one in the default Gralloc module, but it
basically does three things:

Checks the usage parameter and decides the pixel format to decide the size of
the pixel.
According to the information provided by the usage parameter, w, h, format,
and usage create a shared memory region and allocate buffers in the host side
(GPU).
Stores both the shared memory region and host side (GPU) buffer information in
the Gralloc device data structure grdev.

Enabling Graphics

[303]

Now let's take a look at the code for gralloc_alloc:

static int gralloc_alloc(alloc_device_t* dev,
 int w, int h, int format, int usage,
 buffer_handle_t* pHandle, int* pStride)
{
 D("gralloc_alloc w=%d h=%d usage=0x%x\n", w, h, usage);

 gralloc_device_t *grdev = (gralloc_device_t *)dev;
 if (!grdev || !pHandle || !pStride) {
 ALOGE("gralloc_alloc: Bad inputs (grdev: %p, pHandle: %p,
 pStride: %p",
 grdev, pHandle, pStride);
 return -EINVAL;
 }

 //
 // Note: in screen capture mode, both sw_write
 // and hw_write will be on
 // and this is a valid usage
 //
 bool sw_write = (0 != (usage & GRALLOC_USAGE_SW_WRITE_MASK));
 bool hw_write = (usage & GRALLOC_USAGE_HW_RENDER);
 bool sw_read = (0 != (usage & GRALLOC_USAGE_SW_READ_MASK));
 bool hw_cam_write = usage & GRALLOC_USAGE_HW_CAMERA_WRITE;
 bool hw_cam_read = usage & GRALLOC_USAGE_HW_CAMERA_READ;
 bool hw_vid_enc_read = usage & GRALLOC_USAGE_HW_VIDEO_ENCODER;

 // Keep around original requested format for later validation
 int frameworkFormat = format;
 // Pick the right concrete pixel format given the endpoints as
 // encoded in the usage bits.
 // Every end-point pair needs explicit listing here.
 if (format == HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED) {
 // Camera as producer
 ...
 if (usage & GRALLOC_USAGE_HW_FB) {
 // keep space for postCounter
 ashmem_size += sizeof(uint32_t);
 }

 if (sw_read || sw_write || hw_cam_write || hw_vid_enc_read) {
 // keep space for image on guest memory if SW access is needed
 // or if the camera is doing writing
 if (yuv_format) {
 size_t yStride = (w*bpp + (align - 1)) & ~(align-1);
 size_t uvStride = (yStride / 2 + (align - 1)) & ~(align-1);
 size_t uvHeight = h / 2;

Enabling Graphics

[304]

 ashmem_size += yStride * h + 2 * (uvHeight * uvStride);
 stride = yStride / bpp;
 } else {
 size_t bpr = (w*bpp + (align-1)) & ~(align-1);
 ashmem_size += (bpr * h);
 stride = bpr / bpp;
 }
 }

 D("gralloc_alloc format=%d, ashmem_size=%d, stride=%d,
 tid %d\n", format,
 ashmem_size, stride, gettid());

In the preceding code of gralloc_alloc, it creates an instance of data structure
gralloc_device_t first. After that, it checks the usage and format parameters to decide
the size of the pixels and the corresponding GLES color format and pixel type to store in the
bpp, glFormat, and glType variables. With the necessary information, it can calculate the
size of the shared memory that needs to be allocated for the graphic buffer and stores it in
the ashmem_size variable:

 //
 // Allocate space in ashmem if needed
 //
 int fd = -1;
 if (ashmem_size > 0) {
 // round to page size;
 ashmem_size = (ashmem_size + (PAGE_SIZE-1)) & ~(PAGE_SIZE-1);

 fd = ashmem_create_region("gralloc-buffer", ashmem_size);
 if (fd < 0) {
 ALOGE("gralloc_alloc failed to create ashmem region: %s\n",
 strerror(errno));
 return -errno;
 }
 }

 cb_handle_t *cb = new cb_handle_t(fd, ashmem_size, usage,
 w, h, frameworkFormat, format,
 glFormat, glType);

 if (ashmem_size > 0) {
 //
 // map ashmem region if exist
 //
 void *vaddr;
 int err = map_buffer(cb, &vaddr);
 if (err) {

Enabling Graphics

[305]

 close(fd);
 delete cb;
 return err;
 }

 cb->setFd(fd);
 }

 //
 // Allocate ColorBuffer handle on the host (only if h/w access is
 //allowed) only do this for some h/w usages, not all.
 //
 if (usage & (GRALLOC_USAGE_HW_TEXTURE | GRALLOC_USAGE_HW_RENDER |
 GRALLOC_USAGE_HW_2D | GRALLOC_USAGE_HW_COMPOSER |
 GRALLOC_USAGE_HW_FB)) {
 DEFINE_HOST_CONNECTION;
 if (hostCon && rcEnc) {
 cb->hostHandle = rcEnc->rcCreateColorBuffer(rcEnc, w, h,
 glFormat);
 D("Created host ColorBuffer 0x%x\n", cb->hostHandle);
 }

 if (!cb->hostHandle) {
 // Could not create colorbuffer on host !!!
 close(fd);
 delete cb;
 return -EIO;
 }
 }

As for the shared memory size ashmem_size, it allocates a shared memory region using the
ashmem_create_region function and it obtains the shared memory region as an fd file
descriptor. To store the shared memory region and the GPU buffer (the host side buffer),
which we will discuss now, it creates an instance of the cb_handle_t data structure. If we
recall, we used the private_handle_t data structure in the default Gralloc module to
represent an allocated graphic buffer. Here, cb_handle_t is an equivalent
of private_handle_t:

struct cb_handle_t : public native_handle {

 cb_handle_t(int p_fd, int p_ashmemSize, int p_usage,
 int p_width, int p_height, int p_frameworkFormat,
 int p_format, int p_glFormat, int p_glType) :
 ...
 // file-descriptors
 int fd;

Enabling Graphics

[306]

 // ints
 int magic;
 int usage;
 int width;
 int height;
 int frameworkFormat;
 int format;
 int glFormat;
 int glType;
 int ashmemSize;

 union {
 intptr_t ashmemBase;
 uint64_t padding;
 } __attribute__((aligned(8)));

 int ashmemBasePid;
 int mappedPid;
 int lockedLeft;
 int lockedTop;
 int lockedWidth;
 int lockedHeight;
 uint32_t hostHandle;
};

Because cb_handle_t is a large data structure, in the preceding code snippet we did not
show all the member functions of cb_handle_t. From the member variables, we can see
that they are similar to private_handle_t. You can refer to the section
on private_handle_t for an explanation of most member variables. Pay attention to the
last member variable, hostHandle, which is used to store the buffer allocated on GPU (the
host side in GLES emulation). If you are interested in host side GLES emulation, you can
refer to the QEMU source code.

Let's look at the last piece of code for gralloc_alloc:

 //
 // alloc succeeded - insert the allocated handle to the allocated
 // list
 //
 AllocListNode *node = new AllocListNode();
 pthread_mutex_lock(&grdev->lock);
 node->handle = cb;
 node->next = grdev->allocListHead;
 node->prev = NULL;
 if (grdev->allocListHead) {
 grdev->allocListHead->prev = node;
 }

Enabling Graphics

[307]

 grdev->allocListHead = node;
 pthread_mutex_unlock(&grdev->lock);

 *pHandle = cb;
 if (frameworkFormat == HAL_PIXEL_FORMAT_YCbCr_420_888) {
 *pStride = 0;
 } else {
 *pStride = stride;
 }
 return 0;
}

After the buffer is allocated on GPU and the shared memory region is acquired from the
system memory, they are stored in the grdev variable and added to a linked list node to the
double linked list in gralloc_device_t.

For the free method of gralloc_device_t, it is much simpler than alloc. To save space,
I won't list the source code here. The free method is implemented in the gralloc_free
function. What it does is:

Validate the buffer_handle_t point to a valid cb_handle_t data structure.1.
Release the buffer on the host side (GPU), calling the rcCloseColorBuffer2.
function.
Un-map the buffer in the shared memory region and release the shared memory.3.
Remove the node from the linked list.4.
Free the memory used by the cb_handle_t data structure.5.

FB0 device implementation
For the implementation of the FB0 device, we will look at the post method as we did for
the default Gralloc module analysis. This is implemented in the fb_post function and we
can look at the implementation as follows:

static int fb_post(struct framebuffer_device_t* dev, buffer_handle_t
buffer)
{
 fb_device_t *fbdev = (fb_device_t *)dev;
 cb_handle_t *cb = (cb_handle_t *)buffer;

 if (!fbdev || !cb_handle_t::validate(cb) || !cb->canBePosted()) {
 return -EINVAL;
 }

Enabling Graphics

[308]

 // Make sure we have host connection
 DEFINE_AND_VALIDATE_HOST_CONNECTION;

 // increment the post count of the buffer
 intptr_t *postCountPtr = (intptr_t *)cb->ashmemBase;
 if (!postCountPtr) {
 // This should not happen
 return -EINVAL;
 }
 (*postCountPtr)++;

 // send post request to host
 rcEnc->rcFBPost(rcEnc, cb->hostHandle);
 hostCon->flush();

 return 0;
}

What it does is very simple; it increases the post count of the buffer and calls to the
rcFBpost function to update the buffer in GPU.

We have completed our analysis of Android emulator graphics HAL now. I hope the
analysis of the generic graphics HAL and Android emulator graphics HAL has helped you
understand the graphics HAL in your system.

Summary
In this chapter, we explored and reviewed two Gralloc HAL module implementations, the
default Gralloc module and the one used by Android emulator. The default Gralloc HAL
uses framebuffer devices only and the OpenGLES support uses a software implementation.
The one used by Android emulator is a hardware emulation on the host side. The
implementation is similar to the GPU-based Gralloc module.

Since graphics systems are so complex, we will continue exploring this topic a little more
when looking at VirtualBox-specific implementation in the next chapter. We will explain the
loading process of Gralloc HAL and OpenGL ES libraries. We will build a VirtualBox
extension pack for Android so that we can utilize the capability provided by VirtualBox.

11
Enabling VirtualBox-Specific

Hardware Interfaces
In the last chapter, we did a deep analysis of Android Gralloc HAL modules. We analyzed
the default Gralloc module and the hardware GPU emulation Gralloc HAL for the Android
emulator. We don't have time to walk through the boot up process related to the graphics
system yet. In this chapter, we will walk through the boot up process of the graphics system
and explore the VirtualBox-specific hardware drivers. At the end of this chapter, we will
have a relatively complete system on VirtualBox. We will cover the following topics in this
chapter:

OpenGL ES and graphics hardware initialization
Integration of VirtualBox Guest Additions

OpenGL ES and graphics hardware
initialization
In Android systems, the initialization of the graphics system is done by SurfaceFlinger.
Besides the Gralloc HAL that we discussed in Chapter 10, Enabling Graphics, another
important part of graphics system initialization is the loading of OpenGL ES libraries. In
our VirtualBox implementation, we use most of the HAL modules from Android-x86. The
graphics system support includes the following components:

Gralloc HAL
Mesa lib for OpenGL ES
uvesafb framebuffer driver or VirtualBox video driver

Enabling VirtualBox-Specific Hardware Interfaces

[310]

We have discussed Gralloc HAL in the last chapter. We will explore the loading of the
OpenGL ES library and uvesafb framebuffer driver in this chapter. We will use the default
uvesafb framebuffer driver in the introduction of graphics system initialization. We will
also introduce how to use the native graphic driver from VirtualBox when we talk about the
integration of VirtualBox Guest Additions later in this chapter.

Loading OpenGL ES libraries
OpenGL ES stands for Open GL Embedded System, which is a subset of OpenGL from
Khronos. EGL is an interface between OpenGL ES and the underlying native platform. The
API of EGL is supposed to be platform-agnostic, but the implementation of the EGL API is
not.

The implementation of OpenGL ES in Android includes the Java API and native
implementation. These two parts can be found at:

Java API: $AOSP/frameworks/base/opengl
OpenGL ES native: $AOSP/frameworks/native/opengl

These two parts of the OpenGL implementation depend on a vendor implementation to
provide the full function of the OpenGL ES API. During the system start-up, the system will
search for paths /system/lib/egl or /vendor/lib/egl to find the vendor OpenGL
libraries.

The OpenGL ES vendor libraries should follow the following naming conventions. If the
vendor library is a single library, it should use the name as libGLES_*.so. In our case, the
OpenGL ES library for VirtualBox is libGLES_mesa.so, which is provided as a single
library.

If the vendor libraries are provided as separate libraries, they must be something like the
following:

/system/lib/egl/libEGL_*.so

/system/lib/egl/libGLESv1_CM_*.so

/system/lib/egl/libGLESv2_*.so

Enabling VirtualBox-Specific Hardware Interfaces

[311]

This is the case for the Android emulator hardware emulation libraries. We can find the
following ones for the Android emulator:

/system/lib/egl/libEGL_emulation.so

/system/lib/egl/libGLESv1_CM_emulation.so

/system/lib/egl/libGLESv2_emulation.so

The vendor libraries are loaded during the SurfaceFlinger initialization. Before we go to
the details about the start up process, let's have a look at the message from the debug log
first.

I removed the timestamp from the following log so that we can have a better format:

I SurfaceFlinger: SurfaceFlinger is starting
I SurfaceFlinger: SurfaceFlinger's main thread ready to run. Initializing
graphics H/W...
D libEGL : loaded /system/lib/egl/libGLES_mesa.so
W linker : /system/lib/libglapi.so has text relocations. This is wasting
memory and prevents security hardening. Please fix.
I HAL : loaded HAL id=gralloc path=/system/lib/hw/gralloc.default.so
hmi=0x5 handle=0xb7145664
I EGL-DRI2: found extension DRI_Core version 1
I EGL-DRI2: found extension DRI_SWRast version 5
I EGL-DRI2: found extension DRI_TexBuffer version 2
I EGL-DRI2: found extension DRI_IMAGE version 11
I HAL : loaded HAL id=gralloc path=/system/lib/hw/gralloc.default.so
hmi=0x0 handle=0xb7145664
I powerbtn: open event0(Power Button) ok fd=4
W gralloc : page flipping not supported (yres_virtual=768, requested=1536)
I gralloc : using (fd=12)
I gralloc : id = VESA VGA
I gralloc : xres = 1024 px
I gralloc : yres = 768 px
I gralloc : xres_virtual = 1024 px
I gralloc : yres_virtual = 768 px
I gralloc : bpp = 32
I gralloc : r = 16:8
I gralloc : g = 8:8
I gralloc : b = 0:8
I gralloc : a = 24:8
I gralloc : stride = 4096
I gralloc : fbSize = 12582912
I gralloc : width = 163 mm (159.568100 dpi)
I gralloc : height = 122 mm (159.895081 dpi)
I gralloc : refresh rate = 65.46 Hz
E SurfaceFlinger: hwcomposer module not found

Enabling VirtualBox-Specific Hardware Interfaces

[312]

As we can see, when the main thread of SurfaceFlinger is ready to run, it loads the
/system/lib/egl/libGLES_mesa.so library during the x86vbox device boot up. After
that, it loads and initializes the gralloc.default.so Gralloc module:

I SurfaceFlinger: EGL information:
I SurfaceFlinger: vendor : Android
I SurfaceFlinger: version : 1.4 Android META-EGL
I SurfaceFlinger: extensions: EGL_KHR_get_all_proc_addresses
EGL_ANDROID_presentation_time EGL_KHR_swap_buffers_with_damage
EGL_KHR_image_base EGL_KHR_gl_texture_2D_image EGL_KHR_gl_texture_3D_image
EGL_KHR_gl_texture_cubemap_image EGL_KHR_gl_renderbuffer_image
EGL_KHR_reusable_sync EGL_KHR_fence_sync EGL_KHR_create_context
EGL_KHR_surfaceless_context EGL_ANDROID_image_native_buffer
EGL_KHR_wait_sync EGL_ANDROID_recordable
I SurfaceFlinger: Client API: OpenGL_ES
I SurfaceFlinger: EGLSurface: 8-8-8-8, config=0xb46a3800

Next, SurfaceFlinger initializes the EGL library as the preceding log message. The EGL
version in our environment is 1.4:

I SurfaceFlinger: OpenGL ES informations:
I SurfaceFlinger: vendor : VMware, Inc.
I SurfaceFlinger: renderer : Gallium 0.4 on llvmpipe (LLVM 3.7, 256 bits)
I SurfaceFlinger: version : OpenGL ES 3.0 Mesa 12.0.1 (git-c3bb2e3)
I SurfaceFlinger: extensions: GL_EXT_blend_minmax GL_EXT_multi_draw_arrays
GL_EXT_texture_compression_dxt1 GL_EXT_texture_format_BGRA8888
GL_OES_compressed_ETC1_RGB8_texture GL_OES_depth24
GL_OES_element_index_uint GL_OES_fbo_render_mipmap GL_OES_mapbuffer
GL_OES_rgb8_rgba8 GL_OES_standard_derivatives GL_OES_stencil8
GL_OES_texture_3D GL_OES_texture_float GL_OES_texture_float_linear
GL_OES_texture_half_float GL_OES_texture_half_float_linear
GL_OES_texture_npot GL_EXT_texture_sRGB_decode GL_OES_EGL_image
GL_OES_depth_texture GL_OES_packed_depth_stencil
GL_EXT_texture_type_2_10_10_10_REV GL_OES_get_program_binary
GL_APPLE_texture_max_level GL_EXT_discard_framebuffer
GL_EXT_read_format_bgra GL_NV_fbo_color_attachments
GL_OES_EGL_image_external GL_OES_EGL_sync GL_OES_vertex_array_object
GL_ANGLE_texture_compression_dxt3 GL_ANGLE_texture_compression_dxt5
GL_EXT_texture_rg GL_EXT_unpack_subimage GL_NV_draw_buffers
GL_NV_read_buffer GL_NV_read_depth GL_NV_read_depth_stencil
GL_NV_read_stencil GL_EXT_draw_buffers GL_EXT_map_buffer_ra
I SurfaceFlinger: GL_MAX_TEXTURE_SIZE = 8192
I SurfaceFlinger: GL_MAX_VIEWPORT_DIMS = 8192
D SurfaceFlinger: Open /dev/tty0 OK
I HAL : loaded HAL id=gralloc path=/system/lib/hw/gralloc.default.so
hmi=0xb769a108 handle=0xb7145664
I HAL : loaded HAL id=gralloc path=/system/lib/hw/gralloc.default.so

Enabling VirtualBox-Specific Hardware Interfaces

[313]

hmi=0xb769a108 handle=0xb7145664
D SurfaceFlinger: Set power mode=2, type=0 flinger=0xb70e2000
D SurfaceFlinger: shader cache generated - 24 shaders in 25.081509 ms

After EGL initialization, the OpenGL ES library is initialized, as we can see from the
preceding log message. We can see that OpenGL ES 3.0 is supported by the Mesa library.
The rendering engine is a software implementation using Gallium with llvmpipe.

Each graphics hardware vendor usually has their own implementation of
OpenGL. Mesa is an open source implementation of OpenGL. Mesa has
multiple backends for OpenGL support. It can support both hardware and
software implementation according to the hardware GPU. If you don't
have a hardware GPU, Mesa has three CPU-based implementations:
swrast, softpipe, and llvmpipe. The one that we used in x86vbox is
llvmpipe. There are two architectures for Mesa driver implementation.
Gallium is the new architecture for the Mesa driver implementation.

Analyzing the loading process
After we have a general introduction about OpenGL ES implementation in x86vbox (reuse
from Android-x86), we will analyze the source code to have another level of understanding.
Since the detail implementation of graphics systems and OpenGL ES is huge, we won't be
able to cover them in a chapter. We will focus on the loading process of graphics systems
and the OpenGL ES library in our analysis.

Again, you may feel frustrated while we walk through the source code.
The best way to help with this is to open your source code editor while
you read this chapter. If you don't have AOSP source code at hand, you
can always refer to the following website:
h t t p ://x r e f . o p e r s y s . c o m /

You can just search for the function name that we discuss in this chapter to
locate the source code.

From the preceding debug log, we will start from the point where we see the first debug
message related to the graphics system and SurfaceFlinger, as follows:

I SurfaceFlinger: SurfaceFlinger is starting
I SurfaceFlinger: SurfaceFlinger's main thread ready to run. Initializing
graphics H/W...

The first message is printed by the constructor of SurfaceFlinger and the second message
is printed out from the init method of SurfaceFlinger.

http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/
http://xref.opersys.com/

Enabling VirtualBox-Specific Hardware Interfaces

[314]

The source code of SurfaceFlinger can be found at:
$AOSP/frameworks/native/services/surfaceflinger/SurfaceFlinger.cpp.

We will start our analysis from SurfaceFlinger:init, according to the flow shown in the
following diagram:

Loading of OpenGL ES libraries

In SurfaceFlinger:init, as shown in the following code snippet, it calls the EGL
function eglGetDisplay first. After that, it tries to create a hardware composer instance.
With the instances of display mEGLDisplay and hardware composer mHwc, it creates a
rendering engine using the underlying OpenGL ES implementation:

void SurfaceFlinger::init() {
 ALOGI("SurfaceFlinger's main thread ready to run. "
 "Initializing graphics H/W...");

 Mutex::Autolock _l(mStateLock);

 // initialize EGL for the default display
 mEGLDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
 eglInitialize(mEGLDisplay, NULL, NULL);

 ...

 // Initialize the H/W composer object. There may or may not
 // be an actual hardware composer underneath.
 mHwc = new HWComposer(this,

Enabling VirtualBox-Specific Hardware Interfaces

[315]

 *static_cast<HWComposer::EventHandler *>(this));

 // get a RenderEngine for the given display / config
 mRenderEngine = RenderEngine::create(mEGLDisplay, mHwc-
 >getVisualID());

 // retrieve the EGL context that was selected/created
 mEGLContext = mRenderEngine->getEGLContext();

Let's analyze the EGL function eglGetDisplay first. The eglGetDisplay function is
implemented in the frameworks/native/opengl/libs/EGL/eglApi.cpp file, as shown
in the following code snippet:

EGLDisplay eglGetDisplay(EGLNativeDisplayType display)
{
 clearError();

 uintptr_t index = reinterpret_cast<uintptr_t>(display);
 if (index >= NUM_DISPLAYS) {
 return setError(EGL_BAD_PARAMETER, EGL_NO_DISPLAY);
 }

 if (egl_init_drivers() == EGL_FALSE) {
 return setError(EGL_BAD_PARAMETER, EGL_NO_DISPLAY);
 }

 EGLDisplay dpy = egl_display_t::getFromNativeDisplay(display);
 return dpy;
}

In eglGetDisplay, it checks the index of display to be initialized first. In the current
Android code, the EGL_DEFAULT_DISPLAY parameter is zero and the definition of
NUM_DISPLAYS is 1. This means it can only support one display in the current Android
implementation. What does this mean here? For example, if you have a laptop, you can
connect it to a projector. In this case, you can have two displays at the same time. Some new
computers can even connect to three displays at the same time nowadays. After checking
the number of displays, it calls the egl_init_drivers function to load the OpenGL ES
libraries:

static EGLBoolean egl_init_drivers_locked() {
 if (sEarlyInitState) {
 // initialized by static ctor. should be set here.
 return EGL_FALSE;
 }

 // get our driver loader
 Loader& loader(Loader::getInstance());

Enabling VirtualBox-Specific Hardware Interfaces

[316]

 // dynamically load our EGL implementation
 egl_connection_t* cnx = &gEGLImpl;
 if (cnx->dso == 0) {
 cnx->hooks[egl_connection_t::GLESv1_INDEX] =
 &gHooks[egl_connection_t::GLESv1_INDEX];
 cnx->hooks[egl_connection_t::GLESv2_INDEX] =
 &gHooks[egl_connection_t::GLESv2_INDEX];
 cnx->dso = loader.open(cnx);
 }

 return cnx->dso ? EGL_TRUE : EGL_FALSE;
}

static pthread_mutex_t sInitDriverMutex = PTHREAD_MUTEX_INITIALIZER;

EGLBoolean egl_init_drivers() {
 EGLBoolean res;
 pthread_mutex_lock(&sInitDriverMutex);
 res = egl_init_drivers_locked();
 pthread_mutex_unlock(&sInitDriverMutex);
 return res;
}

The egl_init_drivers function acquires a mutex and calls to another function,
egl_init_drivers_locked, to load the OpenGL ES libraries. In the
egl_init_drivers_locked function, it gets an instance of a Loader class, which is
defined using the singleton pattern. After that, it initializes the global variable gEGLImpl,
which is defined as the data structure egl_connection_t:

struct egl_connection_t {
 enum {
 GLESv1_INDEX = 0,
 GLESv2_INDEX = 1
 };

 inline egl_connection_t() : dso(0) { }
 void * dso;
 gl_hooks_t * hooks[2];
 EGLint major;
 EGLint minor;
 egl_t egl;

 void* libEgl;
 void* libGles1;
 void* libGles2;
};

Enabling VirtualBox-Specific Hardware Interfaces

[317]

In the egl_connection_t data structure, it defines the following fields:

dso: This is a pointer that points to a driver_t data structure defined inside the
Loader class. This driver_t data structure stores the handle of OpenGL ES
libraries after they are loaded by the Loader class.
hooks: This is an array of the pointers of the gl_hooks_t data structure. The
gl_hooks_t data structure is used to define all the function pointers of the
OpenGL ES API. After the OpenGL ES libraries are loaded, the OpenGL ES
functions inside the libraries will be initialized and assigned to the hooks field.
There are two OpenGL ES versions that are defined in enum { GLESv1_INDEX ,
GLESv2_INDEX }. The hooks[GLESv1_INDEX] is used to store OpenGL ES
version 1 APIs and it points to the gHooks[GLESv1_INDEX] global variable. The
same is for GLESv2_INDEX. The list of OpenGL ES APIs can be found in the
following file: $AOSP/frameworks/native/opengl/libs/entries.in
major and minor: These two are used to store the EGL version.
egl: This is defined as egl_t, which is used to store the EGL APIs. The list of
EGL APIs can be found in the following file:
$AOSP/frameworks/native/opengl/libs/EGL/egl_entries.in

libEgl, libGles1, and libGles2: These are the handles of OpenGL ES
wrapper libraries. We will see the initialization of these libraries in a moment.

After the cnx data structure is initialized, it calls the loader.open function to load the
libraries. Let's look at the loader.open function:

void* Loader::open(egl_connection_t* cnx)
{
 void* dso;
 driver_t* hnd = 0;

 dso = load_driver("GLES", cnx, EGL | GLESv1_CM | GLESv2);
 if (dso) {
 hnd = new driver_t(dso);
 } else {
 // Always load EGL first
 dso = load_driver("EGL", cnx, EGL);
 if (dso) {
 hnd = new driver_t(dso);
 hnd->set(load_driver("GLESv1_CM", cnx, GLESv1_CM),
 GLESv1_CM);
 hnd->set(load_driver("GLESv2", cnx, GLESv2), GLESv2);
 }
 }

Enabling VirtualBox-Specific Hardware Interfaces

[318]

 LOG_ALWAYS_FATAL_IF(!hnd, "couldn't find an OpenGL ES
 implementation");

#if defined(__LP64__)
 cnx->libEgl = load_wrapper("/system/lib64/libEGL.so");
 cnx->libGles2 = load_wrapper("/system/lib64/libGLESv2.so");
 cnx->libGles1 = load_wrapper("/system/lib64/libGLESv1_CM.so");
#else
 cnx->libEgl = load_wrapper("/system/lib/libEGL.so");
 cnx->libGles2 = load_wrapper("/system/lib/libGLESv2.so");
 cnx->libGles1 = load_wrapper("/system/lib/libGLESv1_CM.so");
#endif
 LOG_ALWAYS_FATAL_IF(!cnx->libEgl,
 "couldn't load system EGL wrapper libraries");

 LOG_ALWAYS_FATAL_IF(!cnx->libGles2 || !cnx->libGles1,
 "couldn't load system OpenGL ES wrapper libraries");

 return (void*)hnd;
}

In Loader::open, it tries to load a single OpenGL ES library first. If it fails, it tries to load
the separated libraries one by one. If the libraries are loaded successfully, it stores the
handles to the driver_t data structure. We explained about driver_t previously when
we talked about the dso field in the egl_connection_t data structure. The actual loading
process is done in the load_driver function and we will look at it soon. After the OpenGL
ES libraries are loaded, it also tries to load the wrapper libraries using the load_wrapper
function. The load_wrapper function just calls the dlopen system call and returns the
handle so we don't need to investigate it.

Loading the driver
Let's analyze the load_driver function, which is the one that finds and loads the OpenGL
ES user space driver:

void *Loader::load_driver(const char* kind,
 egl_connection_t* cnx, uint32_t mask)
{
 class MatchFile {
 public:
 static String8 find(const char* kind) {
 ...
 };

Enabling VirtualBox-Specific Hardware Interfaces

[319]

 String8 absolutePath = MatchFile::find(kind);
 if (absolutePath.isEmpty()) {
 // this happens often, we don't want to log an error
 return 0;
 }
 const char* const driver_absolute_path = absolutePath.string();

 void* dso = dlopen(driver_absolute_path, RTLD_NOW | RTLD_LOCAL);
 if (dso == 0) {
 const char* err = dlerror();
 ALOGE("load_driver(%s): %s", driver_absolute_path, err?
 err:"unknown");
 return 0;
 }

 ALOGD("loaded %s", driver_absolute_path);

 if (mask & EGL) {
 getProcAddress = (getProcAddressType)dlsym(dso,
 "eglGetProcAddress");

 ALOGE_IF(!getProcAddress,
 "can't find eglGetProcAddress() in %s",
 driver_absolute_path);

 egl_t* egl = &cnx->egl;
 __eglMustCastToProperFunctionPointerType* curr =
 (__eglMustCastToProperFunctionPointerType*)egl;
 char const * const * api = egl_names;
 while (*api) {
 char const * name = *api;
 __eglMustCastToProperFunctionPointerType f =
 (__eglMustCastToProperFunctionPointerType)dlsym(dso,
 name);
 if (f == NULL) {
 // couldn't find the entry-point, use
 // eglGetProcAddress()

 f = getProcAddress(name);
 if (f == NULL) {
 f = (__eglMustCastToProperFunctionPointerType)0;
 }
 }
 *curr++ = f;
 api++;
 }
 }

Enabling VirtualBox-Specific Hardware Interfaces

[320]

 if (mask & GLESv1_CM) {
 init_api(dso, gl_names,
 (__eglMustCastToProperFunctionPointerType*)
 &cnx->hooks[egl_connection_t::GLESv1_INDEX]->gl,
 getProcAddress);
 }

 if (mask & GLESv2) {
 init_api(dso, gl_names,
 (__eglMustCastToProperFunctionPointerType*)
 &cnx->hooks[egl_connection_t::GLESv2_INDEX]->gl,
 getProcAddress);
 }

 return dso;
}

In the load_driver function, it defines a MatchFile inner class. It uses the
MatchFile::find method to find the path of the libraries. The load_driver function has
three parameters: kind, cnx, and mask. According to the kind of libraries, the parameter
kind could be GLES, EGL, GLESv1_CM, or GLESv2. Once it gets the absolute path of a library,
it calls the dlopen system function to open the shared library. The mask parameter is a bit
map of the kind parameter. Using the mask parameter, it can initialize the cnx parameter
according to the kind of library. As we mentioned before, the cnx parameter, which is an
instance of egl_connection_t, has an egl field to store all the EGL function pointers. It
has another field, hooks[GLESv1_INDEX]/ hooks[GLESv2_INDEX], to store all OpenGL
ES functions.

If the library type is EGL, it gets the address of the eglGetProcAddress function by first
calling the dlsym system function. After that, it will loop through all the function names
defined in the egl_names global variable to find out the addresses and store them in
cnx->egl. During the process, it tries to get the address using the dlsym system function
first. If the call to dlsym fails, it will try it again using the eglGetProcAddress function.

If the library type is either GLESv1_CM or GLESv2, it calls another function, init_api, to
initialize all OpenGL ES function pointers. In the init_api function, it will loop through
all the function names defined in the gl_names global variable to find out the addresses
and store them in cnx->hooks[egl_connection_t::GLESv?_INDEX]->gl.

Now we have done all the initialization of the OpenGL ES user space drivers and we can
use the egl_connection_t data structure to access all OpenGL ES vendor APIs.

Enabling VirtualBox-Specific Hardware Interfaces

[321]

Creating the rendering engine
After the OpenGL ES vendor libraries are loaded, SurfaceFlinger:init will create the
rendering engine:

mRenderEngine = RenderEngine::create(mEGLDisplay, mHwc->getVisualID());

Inside RenderEngine::create, it will call RenderEngine::chooseEglConfig, which
will print out the debug message for EGL:

EGLConfig RenderEngine::chooseEglConfig(EGLDisplay display, int format) {
 status_t err;
 EGLConfig config;

 // First try to get an ES2 config
 err = selectEGLConfig(display, format, EGL_OPENGL_ES2_BIT,
 &config);
 ...
 eglGetConfigAttrib(display, config, EGL_ALPHA_SIZE, &a);
 ALOGI("EGL information:");
 ALOGI("vendor : %s", eglQueryString(display, EGL_VENDOR));
 ALOGI("version : %s", eglQueryString(display, EGL_VERSION));
 ALOGI("extensions: %s", eglQueryString(display, EGL_EXTENSIONS));
 ALOGI("Client API: %s", eglQueryString(display,
 EGL_CLIENT_APIS)?:"Not
 Supported");
 ALOGI("EGLSurface: %d-%d-%d-%d, config=%p", r, g, b, a, config);

 return config;
}

At the end of RenderEngine::create, it will print out the OpenGL ES initialization
information as follows:

RenderEngine* RenderEngine::create(EGLDisplay display, int hwcFormat) {
 EGLConfig config = EGL_NO_CONFIG;
 if (!findExtension(
 eglQueryStringImplementationANDROID(display,
 EGL_EXTENSIONS),
 "EGL_ANDROIDX_no_config_context")) {
 config = chooseEglConfig(display, hwcFormat);
 }

 ...

 engine->setEGLHandles(config, ctxt);

 ALOGI("OpenGL ES informations:");

Enabling VirtualBox-Specific Hardware Interfaces

[322]

 ALOGI("vendor : %s", extensions.getVendor());
 ALOGI("renderer : %s", extensions.getRenderer());
 ALOGI("version : %s", extensions.getVersion());
 ALOGI("extensions: %s", extensions.getExtension());
 ALOGI("GL_MAX_TEXTURE_SIZE = %zu", engine->getMaxTextureSize());
 ALOGI("GL_MAX_VIEWPORT_DIMS = %zu", engine->getMaxViewportDims());

 eglMakeCurrent(display, EGL_NO_SURFACE, EGL_NO_SURFACE,
 EGL_NO_CONTEXT);
 eglDestroySurface(display, dummy);

 return engine;
}

The uvesafb framebuffer driver
Th framebuffer driver is the third component that we need to support the graphics system
for x86vbox. Since you may run VirtualBox on different Intel devices, they may use
different graphics hardware, such as Nvidia, AMD, or Intel. To get the best performance in
a virtualization environment, you may want to explore various GPU virtualization
technologies, such as GPU passthrough, GPU sharing, GPU software emulation, and so on.
To have a simple solution, we use the default solution from Android-x86, which is the
uvesafb framebuffer driver.

What is uvesafb?
The uvesafb is a user space VESA framebuffer driver that works with VESA 2.0-compliant
graphic cards. VESA BIOS extensions provide the primary functionality of VESA standard
through the BIOS interface. On Linux, uvesafb needs a user space daemon called v86d as a
backend for kernel drivers that need to execute x86 BIOS code. Since BIOS code can only be
executed in a controlled environment, the code executed by v86d can be run either in a fully
software-emulated environment or a virtualized environment supported by the CPU. The
v86d has been ported to Android by the Android-x86 project. It can be found
at $AOSP/external/v86d. Since the v86d project needs additional system calls such as
ioperm and iopl, the Android-x86 project changed the bionic library to support these
system calls.

You can refer to the following kernel document to find out more about uvesafb:

https://www.kernel.org/doc/Documentation/fb/uvesafb.txt

https://www.kernel.org/doc/Documentation/fb/uvesafb.txt

Enabling VirtualBox-Specific Hardware Interfaces

[323]

Testing the uvesafb framebuffer driver
Before we try to understand how uvesafb is loaded in our environment, we can test it using
two framebuffer testing tools, fbset and fbtest.

As we know, we can boot to a debug console using two stages boot of Android-x86 from
Chapter 9, Booting Up x86vbox Using PXE/NFS. We can test uvesafb in the debug console
with fbset and fbtest.

fbset is a system tool to show or change the settings of the framebuffer device. You can
refer to the help page of Linux commands to find out how to use fbset. In our
environment, we use busybox in the first stage boot and we use toybox or toolbox in the
Android environment. fbset is supported by busybox, so we can use it in the first stage or
the second stage boot through busybox.

fbtest is a framebuffer test program that can be found at h t t p s ://g i t . k e r n e l . o r g /p u b /s

c m /l i n u x /k e r n e l /g i t /g e e r t /f b t e s t . g i t .

I cloned it from the kernel Git repository and ported it to the Android environment. The
source code for Android can be found at GitHub via the following link:

https://github.com/shugaoye/fbtest

To build fbtest, we can get it from GitHub and build it in the AOSP build environment:

$ cd {your AOSP root folder}
$ source build/envsetup.sh
$ lunch x86vbox-eng

After we set up the AOSP build environment, we can check out and build the fbtest
source code using the following commands:

$ cd $HOME
$ git clone https://github.com/shugaoye/fbtest
$ cd fbtest
$ git checkout -b android-x86 remotes/origin/android-x86
$ make

https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://git.kernel.org/pub/scm/linux/kernel/git/geert/fbtest.git
https://github.com/shugaoye/fbtest

Enabling VirtualBox-Specific Hardware Interfaces

[324]

Be aware that I changed the Makefile and that it depends on the AOSP environment
variable $OUT, as follows:

Paths and settings
TARGET_PRODUCT = x86vbox
ANDROID_ROOT = $(OUT)/../../../..
BIONIC_LIBC = $(ANDROID_ROOT)/bionic/libc
PRODUCT_OUT = $(ANDROID_ROOT)/out/target/product/$(TARGET_PRODUCT)
CROSS_COMPILE = \
 $(ANDROID_ROOT)/prebuilts/gcc/linux-x86/x86/x86_64-linux-android-
 4.9/bin/x86_64-linux-android-

ARCH_NAME = x86

Tool names
AS = $(CROSS_COMPILE)as
AR = $(CROSS_COMPILE)ar
...

If we look at the preceding fbtest/Rules.make Makefile, we use the $OUT environment
variable to find the right AOSP build environment. After that, we can use prebuilt
toolchains and the bionic library to build fbtest.

After we build fbtest, we can copy it to the $OUT/system/bin folder so that we can use it
in the test environment later. As we remember from Chapter 9, Booting Up x86vbox Using
PXE/NFS, we can boot to a debug console in the first stage boot using PXE/NFS. In this case,
we can change and test fbtest without rebooting the x86vbox, since we can access the
build result through NFS from x86vbox.

Let's boot x86vbox to the debug console in the first stage boot and perform the tests. As we
recall, we have a minimal embedded Linux environment in the debug console of the first
stage boot. We have a built-in busybox available in this environment. Before we test the
framebuffer device, we must load the uvesafb module manually, as shown in the
following screenshot:

Enabling VirtualBox-Specific Hardware Interfaces

[325]

We use the following command to load the uvesafb module:

(debug-late)@android: /android # system/xbin/modprobe uvesafb

From the debug output, we can see that the underlying graphic hardware is Oracle VM
VirtualBox VBE Adapter.

After the uvesafb module is loaded, we can find the /dev/fb0 device. We can use fbset
to change the settings of the framebuffer device. For example, we can switch to different
supported resolutions as we want. Let's just run the fbset command and see what
happens. If we run fbset without any parameters, we can see the following output:

(debug-late)@android:/android # fbset

mode "640x480-60"
 # D: 23.845 MHz, H: 29.844 kHz, V: 60.048 Hz
 geometry 640 480 640 9830 16
 timings 41937 80 16 13 1 63 3
 accel false
 rgba 5/11,6/5,5/0,0/0
endmode

Enabling VirtualBox-Specific Hardware Interfaces

[326]

If fbset is run without any parameters, it just prints out the current settings of the
framebuffer device. As we can see from the output, if we load uvesafb without any
parameters, the default resolution is 640 x 480 in 16-bit colors.

We can try to change the resolution with the name of the resolution as follows:

(debug-late)@android:/android # fbset vga
fbset: /etc/fb.modes: No such file or directory
fbset: unknown video mode 'vga'

We got an error message that tells us that the resolution is not defined in the
/etc/fb.modes file. We need to create this file to change resolutions. We can add the
following resolutions in /etc/fb.modes as follows:

mode "640x480-60"
 # D: 23.845 MHz, H: 29.844 kHz, V: 60.048 Hz
 geometry 640 480 640 9830 16
 timings 41937 80 16 13 1 63 3
 accel false
 rgba 5/11,6/5,5/0,0/0
endmode

mode "1024x768-60"
 # D: 64.033 MHz, H: 47.714 kHz, V: 60.018 Hz
 geometry 1024 768 1024 768 32
 timings 15617 159 52 23 1 107 3
 accel false
 rgba 8/16,8/8,8/0,8/24
endmode

Now we can test the resolution change. If we run the following command, we can change to
a higher resolution with true color:

(debug-late)@android:/android # fbset 1024x768-60

After we load the framebuffer driver and test the configuration changes, we can test the
framebuffer by drawing something on the screen. Using the fbtest command that we built
in this section, we can run a set of framebuffer test cases. First, let's find out how many test
cases fbtest can run:

(debug-late)@android:/android # fbtest -f /dev/fb0 -l
Listing all tests
test001: Draw a 16x12 checkerboard pattern
test002: Draw a grid and some circles
test003: Draw the 16 Linux console colors
test004: Show the penguins
test005: Draw the default color palette

Enabling VirtualBox-Specific Hardware Interfaces

[327]

test006: Draw grayscale bands
test007: DirectColor test
test008: Draw the UV color space
test009: Show the penguins using copy_rect
test010: Hello world
test011: Panning test
test012: Filling squares

If we run fbtest with the -l option, it prints out the list of test cases available. We can see
that we have 12 test cases:

(debug-late)@android:/android # fbtest -f /dev/fb0 test002

As an example, we can run test case 002 and we will see the following screen. Feel free to
test any of the preceding test cases yourself.

Enabling VirtualBox-Specific Hardware Interfaces

[328]

Initializing uvesafb in x86vbox
The initialization of uvesafb in x86vbox is done in the start up script init.sh. If we recall
the discussion on HAL initialization in Chapter 8, Creating Your Own Device on VirtualBox,
we can see the following code in init.sh. We discussed the initialization of graphics HAL
in Chapter 8, Creating Your Own Device on VirtualBox briefly, and we can look into the
details now:

function init_uvesafb()
{
 case "$PRODUCT" in
 ET2002*)
 UVESA_MODE=${UVESA_MODE:-1600x900}
 ;;
 *)
 ;;
 esac

 ["$HWACCEL" = "0"] && bpp=16 || bpp=32
 modprobe uvesafb mode_option=${UVESA_MODE:-1024x768}-$bpp
${UVESA_OPTION:-
 mtrr=3 scroll=redraw}
}

function init_hal_gralloc()
{
 case "$(cat /proc/fb | head -1)" in
 *virtiodrmfb)
set_property ro.hardware.hwcomposer drm
 ;&
 0*inteldrmfb|0*radeondrmfb|0*nouveaufb|0*svgadrmfb)
 set_property ro.hardware.gralloc drm
 set_drm_mode
 ;;
 "")
 init_uvesafb
 ;&
 0*)
 ;;
 esac

 [-n "$DEBUG"] && set_property debug.egl.trace error
}

Enabling VirtualBox-Specific Hardware Interfaces

[329]

In our current setup, let's see what the content of /proc/fb is. We can check this from
either the debug console or the adb console. Before a framebuffer device is initialized, the
content of /proc/fb is empty. In our case, it is empty, since there is no framebuffer device
available until the init.sh script is executed. If the output is empty, the init.sh script
will call the init_uvesafb function to initialize uvesafb. After the framebuffer device is
initialized, we can see the content of /proc/fb as follows:

root@x86vbox:/ # cat /proc/fb
0 VESA VGA

If there is a framebuffer device available before init.sh is called, init_hal_gralloc will
set the ro.hardware.gralloc system property for DRM drivers. For the devices that
init_hal_gralloc cannot handle, it will do nothing.

In init_uvesafb, the actual command to load uvesafb can be extended to the following
one:

modprobe uvesafb mode_option=1024x768-32 mtrr=3 scroll=redraw

The options of uvesafb are:

mtrr:n: Set up memory type range registers for the framebuffer, where n can be:
0: Disabled (equivalent to the nomtrr option)
3: Write-combining (default)

The memory type range registers are a set of processor supplementary
capabilities control registers in Intel processors. Write-combining allows bus
write transfers to be combined into a larger transfer before bursting them
over the bus. This can help to improve the graphics performance.

redraw: Scroll by redrawing the affected part of the screen.
mode_option: Set the resolution to a supported one.

Enabling VirtualBox-Specific Hardware Interfaces

[330]

After uvesafb is loaded, we can find all the supported resolutions using the following
command:

cat /sys/bus/platform/drivers/uvesafb/uvesafb.0/vbe_modes
640x400-8, 0x0100
640x480-8, 0x0101
800x600-8, 0x0103
1024x768-8, 0x0105
1280x1024-8, 0x0107
320x200-15, 0x010d
320x200-16, 0x010e
320x200-24, 0x010f
640x480-15, 0x0110
640x480-16, 0x0111
640x480-24, 0x0112
800x600-15, 0x0113
800x600-16, 0x0114
800x600-24, 0x0115
1024x768-15, 0x0116
1024x768-16, 0x0117
1024x768-24, 0x0118
1280x1024-15, 0x0119
1280x1024-16, 0x011a
1280x1024-24, 0x011b
320x200-32, 0x0140
640x400-32, 0x0141
640x480-32, 0x0142
800x600-32, 0x0143
1024x768-32, 0x0144
1280x1024-32, 0x0145
320x200-8, 0x0146
1600x1200-32, 0x0147
1152x864-8, 0x0148
1152x864-15, 0x0149
1152x864-16, 0x014a
1152x864-24, 0x014b
1152x864-32, 0x014c

Enabling VirtualBox-Specific Hardware Interfaces

[331]

Integrating VirtualBox Guest Additions
Up to now, we can boot x86vbox to Android. What we can do further is integrate
VirtualBox Guest Additions to x86vbox.

VirtualBox is a virtualization environment. We can install a guest operating system as it is
in VirtualBox. However, there are some limitations to working in this way. To run a guest
operating system in a host environment, you may expect more things than just hardware
virtualization. For example, you may find the mouse cursor to behave badly when you
move between the host and guest system. You may want to share data between the hosts
and guests easily, such as shared clipboard, shared folder, and so on. To meet these
requirements, the host and guest need to know each other and have a way to talk to each
other. In VirtualBox architecture, there is a component called Host-Guest Communication
Manager (HGCM). On the host side, VirtualBox implements a service called HGCM service
that can serve the requests from the guest. On the guest side, there are a few kernel drivers
from VirtualBox that can be used to communicate to the host.

The additional features that VirtualBox provides for the host and guest integration are
usually included in a package called VirtualBox Extension Pack. In the VirtualBox
Extension Pack, it includes the necessary files for both the host side and the guest side. The
VirtualBox Extension Pack can be download at h t t p s ://w w w . v i r t u a l b o x . o r g /w i k i /D o w n l

o a d s .

For the guest side, there are binary tools and source code for device drivers, which are
included in a separate distribution package called VirtualBox Guest Additions. There are
separate VirtualBox Guest Additions for Windows, Linux, and OS X. There are no Guest
Additions for Android. However, since Android uses the Linux kernel, we can build the
kernel drivers for Android using the source code for Linux. After we install the VirtualBox
Extension Pack, we can find an image file VBoxGuestAdditions.iso, as follows:

$ cd /usr/share/virtualbox
$ ls
nls src VBoxSysInfo.sh
rdesktop-vrdp-keymaps VBoxCreateUSBNode.sh
rdesktop-vrdp.tar.gz VBoxGuestAdditions.iso

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads

Enabling VirtualBox-Specific Hardware Interfaces

[332]

We can extract this image file and can find the following files inside VirtualBox Guest
Additions:

$ ls
deffiles routines.sh vboxadd-x11 x86
installer vboxadd VBoxGuestAdditions-amd64.tar.bz2
install.sh vboxadd-service VBoxGuestAdditions-x86.tar.bz2

There are two compressed files: VBoxGuestAdditions-amd64.tar.bz2 and
VBoxGuestAdditions-x86.tar.bz2. As we can see its content from the following
screenshot, this is a list of folders and files of the Guest Additions for Intel x86 Linux guest:

VirtualBox Guest Additions

Enabling VirtualBox-Specific Hardware Interfaces

[333]

There are source codes for three drivers available in the Guest Additions: vboxguest,
vboxsf, and vboxvideo:

vboxguest: This module provides the basic services in the guest operating
system to communicate to the host.
vboxsf: This module is a kernel driver to provide the capability to share files
between host and guest.
vboxvideo: This module is a video driver for the guest. With this driver, we can
use graphics hardware acceleration through the host.

We will build and integrate these three drivers to x86vbox.

Building VirtualBox Guest Additions
The only dependency of the drivers in Guest Additions is the kernel source code. It is very
easy to build the drivers for Android. To build the Guest Additions, you can get the source
code from your VirtualBox installation, or you can get a version from my GitHub as
follows:

$ source build/envsetup.sh
$ lunch x86vbox-eng
$ cd $HOME
$ git clone https://github.com/shugaoye/vboxguest-linux-modules
$ cd vboxguest-linux-modules
$ make BUILD_TARGET_ARCH=x86 KERN_DIR=$OUT/obj/KERNEL_OBJ

After we have built the drivers successfully, we can find the driver modules as follows:

$ ls
build_in_tmp Makefile vboxguest.ko vboxsf.ko vboxvideo.ko
LICENSE vboxguest vboxsf vboxvideo

We can store the kernel modules in a vbox folder under our x86vbox device folder, so we
can copy them to the filesystem in the build process:

$ croot
$ cd device/generic/x86vbox
$ ls vbox
vboxguest.ko vboxsf.ko vboxvideo.ko

Enabling VirtualBox-Specific Hardware Interfaces

[334]

After we have the loadable modules of Guest Additions, we can add them to our x86vbox
device Makefile x86vbox.mk, as follows:

...
PRODUCT_COPY_FILES += \
device/generic/x86vbox/vbox/vboxguest.ko:system/vendor/vbox/vboxguest.ko \
 device/generic/x86vbox/vbox/vboxsf.ko:system/vendor/vbox/vboxsf.ko \
device/generic/x86vbox/vbox/vboxvideo.ko:system/vendor/vbox/vboxvideo.ko \
...

These three modules will be copied to the /system/vendor/vbox folder in the system
image.

Integrating vboxsf
With the loadable module vboxsf.ko, we have the capability to exchange files between the
host and the guest at the runtime of the Android system. To create a shared folder between
the host and guest, we need to load the vboxsf.ko module first.

To use vboxsf.ko, we need a tool called mount.vboxsf, which can be used to mount a
shared folder on the host filesystem to the Android filesystem. This mount.vboxsf tool is
part of the utilities provided by VirtualBox Guest Additions. We put it under our x86vbox
device folder as follows:

$ ls mount.vboxsf/
Android.mk mount.vboxsf.c vbsfmount.h

It includes a C file and a header file. We created the following Android Makefile to build it:

LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)

LOCAL_SRC_FILES:= mount.vboxsf.c

LOCAL_CFLAGS:=-O2 -g
#LOCAL_CFLAGS+=-DLINUX

LOCAL_MODULE:=mount.vboxsf
LOCAL_MODULE_TAGS := optional

include $(BUILD_EXECUTABLE)

Enabling VirtualBox-Specific Hardware Interfaces

[335]

To include it in the system image, we also need to add it to the x86vbox.mk Makefile as
follows:

...
PRODUCT_PACKAGES += \
 mount.vboxsf \
...

In order to load vboxsf.ko during the system boot up, we need to add the loading of
vboxsf.ko to the start up script in initrd.img. If we recall from Chapter 6, Debugging the
Boot Up Process Using a Customized Ramdisk, we discussed the init script in the initrd.img.
The shell script function load_modules is called to load most of the device drivers in the
first stage boot up. We can change this script to load VirtualBox device drivers as follows:

load_modules()
{
 if [-z "$FOUND"]; then
 auto_detect
 fi

 # 3G modules
 for m in $EXTMOD; do
 busybox modprobe $m
 done

 if [-n "$VBOX_GUEST_ADDITIONS"]; then
 echo "Loading VBOX_GUEST_ADDITIONS ..."
 insmod /android/system/vendor/vbox/vboxguest.ko
 insmod /android/system/vendor/vbox/vboxsf.ko
 if [! -e /android$SDCARD]; then
 mkdir /android$SDCARD
 /android/system/bin/mount.vboxsf sdcard /android$SDCARD
 fi
 fi
}

We defined a VBOX_GUEST_ADDITIONS kernel parameter, which can be used to enable the
loading of VirtualBox-specific device drivers. If this kernel parameter is defined, we will
load both loadable modules, vboxguest.ko and vboxsf.ko. Another kernel parameter,
SDCARD, is also defined so that we can mount the shared folder to be an external SD card
storage. The SDCARD kernel parameter is used by the shell script function mount_sdcard as
well.

Enabling VirtualBox-Specific Hardware Interfaces

[336]

To define these two kernel parameters on the kernel command line, we need to change the
PXE boot script at $HOME/.VirtualBox/TFTP/pxelinux.cfg/default as follows:

label 1. x86vbox (2 stages boot)
menu x86vbox_initrd
kernel x86vbox/kernel
append ip=dhcp console=ttyS3,115200 androidboot.selinux=permissive
buildvariant=eng initrd=x86vbox/initrd.img androidboot.hardware=x86vbox
DEBUG=2 SRC=/android-x86vbox ROOT=/dev/sda1 VBOX_GUEST_ADDITIONS=1
SDCARD=vendor DATA=sda2 X86VBOX=1

Pay attention to the two variables SDCARD and VBOX_GUEST_ADDITIONS. They are the two
new kernel parameters that we added to support the loading of VirtualBox device drivers.
To mount the shared folder, we add the following command in the script:

/android/system/bin/mount.vboxsf sdcard /android$SDCARD

The first parameter to mount.vboxsf is the shared folder that we defined in the VirtualBox
settings, as shown in the following screenshot:

With all the changes related to the shared folder, we can have a method that can be used to
share data between the host and the guest very easily.

Enabling VirtualBox-Specific Hardware Interfaces

[337]

Integrating vboxvideo
In the VirtualBox Guest Additions, there is another device driver that can be used in
Android, which is vboxvideo.ko. This is a device driver for video hardware. It provides a
much more powerful video driver compared to the uvesafb that we just discussed in this
chapter.

The uvesafb is a standard framebuffer driver based on VESA 2.0 standard and it does not
support hardware acceleration on VirtualBox. The vboxvideo.ko is a DRM/DRI-based
video driver with hardware acceleration support.

Direct Rendering Infrastructure (DRI) is a new architecture of the X
Window system on the Linux platform to allow X clients to talk to the
graphics hardware directly. Direct Rendering Manager (DRM) is the
kernel side of the DRI architecture.

The Android-x86 project is the first open source project that brought Mesa/DRM to the
Android platform. This is an open source OpenGL ES implementation for the supported
graphics hardware. With the following components, we should be able to support hardware
acceleration for OpenGL ES on Android:

external_libdrm

external_mesa

external_drm_gralloc

We have the DRM driver with vboxvideo on VirtualBox, but the related implementation
still needs to add to external_mesa and external_drm_gralloc to support OpenGL ES
using the host GPU.

Without the VirtualBox-specific implementation in external_mesa and
external_drm_gralloc, we can only use the same software-based implementation in
Mesa for OpenGL ES and the default Gralloc module, gralloc.default.so. This is why
most VirtualBox-based emulator solutions such as Genymotion, Andy, or AMI DuOS are
still using hardware GPU emulation, which is similar to the one we discussed in the
Overview of hardware GLES emulation section in Chapter 10, Enabling Graphics.

Enabling VirtualBox-Specific Hardware Interfaces

[338]

To load vboxvideo.ko, we need to add these additional three lines in load_modules:

 if [-n "$VBOX_VIDEO_DRIVER"]; then
 modprobe ttm
 modprobe drm_kms_helper
 insmod /android/system/vendor/vbox/vboxvideo.ko
 fi

The ttm and drm_kms_helper kernel modules are two kernel modules needed by
vboxvideo.ko. We also use a VBOX_VIDEO_DRIVER kernel parameter to configure the
loading of vboxvideo.ko. With this kernel parameter, we can switch between the uvesafb
framebuffer and the VirtualBox framebuffer. After the system boot up, we can see the
following log message. We can see that vboxvideo is loaded successfully:

[25.240357] vboxguest: misc device minor 53, IRQ 20, I/O port d040, MMIO
at)
[25.261044] [drm] Initialized drm 1.1.0 20060810
[25.290777] [drm] VRAM 08000000
[25.309754] [TTM] Zone kernel: Available graphics memory: 440884 kiB
[25.337733] [TTM] Zone highmem: Available graphics memory: 1034776 kiB
[25.349078] [TTM] Initializing pool allocator
[25.349735] fbcon: vboxdrmfb (fb0) is primary device
[25.360984] Console: switching to colour frame buffer device 100x37
[25.380299] vboxvideo 0000:00:02.0: fb0: vboxdrmfb frame buffer device
[25.388745] [drm] Initialized vboxvideo 1.0.0 20130823 for 0000:00:02.0
on m0

From the log message, we can see that a vboxdrmfb framebuffer device is created by
vboxvideo. We can check the framebuffer settings using fbset as we did before. We can
see that the hardware acceleration is set to true for vboxdrmfb:

(debug-late)@android:/android # fbset

mode "800x600-0"
 # D: 0.000 MHz, H: 0.000 kHz, V: 0.000 Hz
 geometry 800 600 800 600 32
 timings 0 0 0 0 0 0 0
 accel true
 rgba 8/16,8/8,8/0,0/0
endmode

Enabling VirtualBox-Specific Hardware Interfaces

[339]

We can also check the output from /proc/fb. Since the output is 0 vboxdrmfb, the
init_hal_gralloc shell function in init.sh won't load uvesafb:

(debug-late)@android:/android # cat /proc/fb
0 vboxdrmfb

With this setup, we can launch x86vbox using the vboxvideo driver instead of uvesafb.
As I mentioned, there is still a lot of work that needs to be done before we can fully utilize
all the potential capabilities from vboxvideo.

Building and testing images with VirtualBox
Guest Additions
To build and test the image in this chapter, we can use the repo tool to retrieve the source
code in this chapter as follows:

We can get the source code from GitHub and AOSP using the following command:

$ repo init https://github.com/shugaoye/manifests -b
android-7.1.1_r4_ch11_aosp
$ repo sync

After we get the source code for this chapter, we can set the environment and build the
system as follows:

$ source build/envsetup.sh
$ lunch x86vbox-eng
$ make -j4

To build initrd.img, we can run the following command:

$ make initrd USE_SQUASHFS=0

Summary
In this chapter, we learned the start up process of graphics systems. This includes the
OpenGL ES libraries, Gralloc module, and device driver. We discussed the Gralloc module
in the last chapter. In this chapter, we analyzed another two components, OpenGL ES
libraries and the framebuffer driver. With all this knowledge in mind, we integrated the
drivers from VirtualBox Guest Additions to the x86vbox device. In the next chapter, we will
start to work on another project to explore how recovery works in Android systems.

12
Introducing Recovery

In this book, we have completed two projects so far. With the first x86emu project, we learnt
how to extend an existing device to support additional features. After that, we learnt how to
create a new device using the second project, x86vbox. There is another important topic at
the system-level programming of Android, which is how to patch or update a released
system.

In Android systems, the way to patch or update a released system is using a tool called
recovery. In the next three chapters, we will learn how to build recovery on an x86vbox
device. Since x86vbox is a built for VirtualBox, we will use VirtualBox as virtual hardware
for this chapter to Chapter 14, Creating OTA Update Packages. We will also prepare and test
a few update packages using the recovery that we build. In this chapter, we will cover the
following topics:

Recovery introduction
Analyzing recovery source code
Building recovery for x86vbox

Recovery introduction
In Android, recovery is a minimal Linux environment including a kernel and a dedicated
ramdisk. When this minimal Linux environment boots up, it runs a binary tool, recovery, to
enter the so-called recovery mode. The Linux kernel and ramdisk of recovery mode are
usually stored in a dedicated bootable partition. In recovery mode, both the kernel and the
root filesystem are in memory so it can manage other partitions without any dependencies.

Introducing Recovery

[341]

There are two ways to update devices in the field. The first method is to use fastboot
protocol through bootloader. The devices can be reflashed using bootloader. In this case,
you can boot your device in fastboot mode and flash your device using the fastboot tool
from Android SDK. The second way to flash a device is to use the recovery mode. If you
boot the devices into recovery mode, you can flash the device using an image file on the
storage or providing an image through USB in sideload mode.

The image files that can be used by bootloader and recovery are different. The image files
from the AOSP build output can be used by bootloader directly. We can flash image files
system.img, userdata.img, boot.img or recovery.img directly using the fastboot
tool in bootloader. We cannot use these image files for recovery. We have to build image
files for recovery specially using tools provided in AOSP. We will cover this topic in the
next chapter.

The key advantage of recovery mode over the fastboot protocol is the over-the-air (OTA)
update support. If an update is available from the OTA servers, the users will receive a
notification. The users can download the update to a cache or data partition. After the
update package is verified using its signature, the users can respond to the update
notification. After that, the device will reboot into recovery mode. In recovery mode, the
recovery binary is started and it will use the command-line arguments stored in the
/cache/recovery/command file to find the update package to update the system image.

Android device partitions
To enable recovery on a device, we need to look at the device partitions again. In Android
SDK, we have the following image files that can be used by the emulator:

$ ls system-images/android-25/default/x86
build.prop kernel-ranchu ramdisk.img system.img
kernel-qemu NOTICE.txt source.properties userdata.img

After we boot up the emulator, we can see that the following partitions are mounted:

root@x86emu:/ # mount
rootfs / rootfs ro,seclabel,relatime 0 0
tmpfs /dev tmpfs rw,seclabel,nosuid,relatime,mode=755 0 0
devpts /dev/pts devpts rw,seclabel,relatime,mode=600 0 0
proc /proc proc rw,relatime 0 0
sysfs /sys sysfs rw,seclabel,relatime 0 0
selinuxfs /sys/fs/selinux selinuxfs rw,relatime 0 0
debugfs /sys/kernel/debug debugfs rw,seclabel,relatime 0 0
none /acct cgroup rw,relatime,cpuacct 0 0
none /sys/fs/cgroup tmpfs rw,seclabel,relatime,mode=750,gid=1000 0 0
tmpfs /mnt tmpfs rw,seclabel,relatime,mode=755,gid=1000 0 0

Introducing Recovery

[342]

none /dev/cpuctl cgroup rw,relatime,cpu 0 0
/dev/block/vda /system ext4 ro,seclabel,relatime,data=ordered 0 0
/dev/block/vdb /cache ext4
rw,seclabel,nosuid,nodev,noatime,errors=panic,data=ordered 0 0
/dev/block/vdc /data ext4
rw,seclabel,nosuid,nodev,noatime,errors=panic,data=ordered 0 0
...

We can see that system, data, and cache partitions are mounted as virtio block devices.
Since virtio is a virtualization standard for network and disk device drivers, the
performance should be better than physical device drivers. With only these partitions, we
won't be able to create a system that can use the recovery tool. In the following figure, these
are the minimum partitions that we need to have on the storage device to support both
fastboot and recovery:

Android device partitions

boot: This is the partition that contains the kernel and ramdisk image.
system: This is the partition that contains the Android system. It is usually
mounted as read-only and can only be changed during an OTA update.
vendor: This is the partition that contains the private system files from the
vendor. It is similar to the system partition, which is mounted as read-only and
can only be changed during an OTA update.

Introducing Recovery

[343]

userdata: This partition contains the data saved by applications installed by the
user. This partition is usually not touched by the OTA update process.
cache: This partition holds temporary data. The OTA package installations can
use it as a workspace.
recovery: This partition contains a Linux kernel and a ramdisk for recovery. It is
similar to the boot partition except the ramdisk image is the one used by recovery
mode only.
misc: This partition is used by recovery to store information across different boot
sessions.

In this chapter, we will build recovery for the x86vbox device. As we learnt from Chapter 8,
Creating Your Own Device on VirtualBox, to Chapter 11, Enabling VirtualBox-Specific Hardware
Interfaces, we use only one partition to store everything for the x86vbox device. We will
extend the x86vbox device to use multiple partitions according to the preceding explanation
in this chapter later.

Analyzing recovery
Before we start to build recovery for our x86vbox device, we will analyze the code flow of
recovery to understand how it works. There are two ways to enter recovery mode from the
end user perspective. When users want to perform a factory reset or an OTA update is
available, the main system can write a recovery command to the bootloader control block
(BCB) and cache partition before resetting the system.

The second way to enter recovery mode is to use a key combination manually. After turning
off the phone, press a key combination at the same time to enter the recovery mode
manually. The key combination is defined by the device manufacturing, for example, it can
be a combination of volume down and power buttons.

Introducing Recovery

[344]

In both cases, entering the recovery mode is closely related to the implementation of
bootloader. The Android system, recovery, and bootloader communicate with each other
using two interfaces: the partitions /cache and /misc. We can depict the communication
interfaces using the following diagram:

Interfaces of the Android system, recovery, and bootloader

In the preceding diagram, bootloader uses BCB in the /misc partition to communicate with
the Android system and recovery. The Android system and recovery use the information in
the /cache partition to talk to each other. Let's look into the details of these two
communication channels.

BCB
BCB is the communication interface of bootloader to the main system and recovery.

The Android system is also referred to as the main system in the recovery
source code. We use the term main system as equivalent to Android
system in this chapter.

Introducing Recovery

[345]

BCB is stored in the /misc partition in a raw partition format, which means this partition is
used just like a binary file without any filesystem.

Recovery uses a recovery.fstab file to mount all partitions in the system. If we look at
the filesystem type of the /misc partition in recovery.fstab, it is emmc that is one of the
raw filesystems used in recovery:

/dev/block/by-name/misc /misc emmc defaults defaults

There are five supported filesystem types in recovery including two raw filesystems and
three normal filesystems.

The two supported raw filesystems are:

mtd: This is the partition used in old Android devices. These devices use NAND
flash and MTD partitions.
emmc: This is a raw eMMC block device used in the recent Android devices.

The partitions for boot, recovery, and misc can be the mtd or emmc filesystem types.

The supported normal filesystem types are:

yaffs2: A yaffs2 filesystem is usually used for MTD devices for system,
userdata, or cache partitions. This is usually used in older Android devices.
ext4: In the latest Android devices, the eMMC block devices are used. The
standard Linux ext4 filesystem is usually used on top of eMMC block devices.
The same as the yaffs2 filesystem type, system, userdata, or cache partitions
can use the ext4 format.
vfat : This is the filesystem type used for external storage such as SD card or
USB.

Let's come back to the topic of BCB. BCB is defined as a data structure as follows in the
$AOSP/bootable/recovery/bootloader.h file:

struct bootloader_message {
 char command[32];
 char status[32];
 char recovery[768];
 char stage[32];
 char reserved[224];
};

Introducing Recovery

[346]

The command field is used by the main system when it wants to reboot the device into
recovery. This can be the case when users select factory reset from the settings or an OTA
update is available. This field can be used by bootloader as well, when the bootloader
completes the firmware update it may want to boot to recovery for any final clean up.

The status field is updated by the bootloader after it completes the firmware update.

The recovery field is used by the main system to send a message to recovery or the
recovery may use this field to send a message to the main system.

The stage field is used to indicate the stage of an update. In some cases, the installation of
an update package may require restarting multiple times. The recovery UI can use this field
to show the current stage of the installation:

Introducing Recovery

[347]

In the preceding diagram, the bootloader logic related to the checking of key combination
and BCB is shown. The implementation can be vendor specific as long as the bootloader
processes BCB according to the AOSP recovery definition. Usually, the bootloader checks
the key combination first to decide whether the users want to enter the recovery mode. If
there is no key combination pressed, it checks the BCB to decide the boot path.

Cache partition
There are three files in the cache partition, which can be used as the communication
channels between the main system and recovery tool. These three files are:

/cache/recovery/command: This is a file for input parameters from the
recovery point of view. There is one command per line in this file. The arguments
that may be supplied in the file are:

-send_intent=anystring: The main system may use this
command to send a message back to itself after recovery exit
-update_package=path : This command specifies a path to install
an OTA package file
-wipe_data: This command tells recovery to erase user data (and
cache), and then reboot

Introducing Recovery

[348]

-wipe_cache: This command tells recovery to wipe cache (but not
user data), then reboot
-set_encrypted_filesystem=on|off: Enables/disables
encrypted filesystems
-just_exit: Does nothing; exits and reboots

/cache/recovery/log: The runtime log file of recovery is at
/tmp/recovery.log. Before recovery exits, it will back up the old log file and
move the current log file to /cache/recovery/log.
/cache/recovery/intent: Before recovery exits, it will check if there is any
intent that needs to be sent to the main system using this file. The intent can be
the message that the main system sends to recovery using the -send_intent
command in the /cache/recovery/command file.

Main flow of recovery
After we have all the background knowledge about recovery and the components related to
recovery, let's have a look at the main workflow of recovery. We will use the following
diagram to explore the workflow of recovery:

When recovery is started, it will set the log file to /tmp/recovery.log first.1.
After that, it checks the --adbd option. If this option is specified, it will run a2.
daemon for the sideloading using adb. You can refer to the source code at
$AOSP/bootable/recovery/adb_install.cpp about how to launch recovery
as adb daemon.
It retrieves and processes the arguments from cache partition and BCB by calling3.
the get_args function.
Based on the commands retrieved from get_args, it may call the4.
install_package function to install an update, or call the wipe_data or
wipe_cache functions to erase user data or cache partition.
If there is no command for either updating a package or erasing data, it will call5.
the prompt_and_wait function to enter the recovery user interface. Based on the
user input, it may call apply_from_adb or apply_from_sdcard to update
packages from USB or SD card. It may call the wipe_data or wipe_cache
functions to erase user data or cache partition, and so on.

Introducing Recovery

[349]

After all the tasks are completed or the users select entries to exit from recovery,6.
it will call the cleanup function, finish_recovery, to do the final clean up.
After that, it will reboot or shut down the system:

Recovery workflow

Introducing Recovery

[350]

Based on the preceding flow analysis, we can look at the code snippet of the main function
at $AOSP/bootable/recovery/recovery.cpp as follows:

int
main(int argc, char **argv) {
 time_t start = time(NULL);

 redirect_stdio(TEMPORARY_LOG_FILE);

 ...
 if (argc == 2 && strcmp(argv[1], "--adbd") == 0) {
 adb_main(0, DEFAULT_ADB_PORT);
 return 0;
 }

 printf("Starting recovery (pid %d) on %s", getpid(),
 ctime(&start));

 load_volume_table();
 get_args(&argc, &argv);

 ...
 ui->Print("Supported API: %d\n", RECOVERY_API_VERSION);

 int status = INSTALL_SUCCESS;

 if (update_package != NULL) {
 status = install_package(update_package, &should_wipe_cache,
 TEMPORARY_INSTALL_FILE, true);
 if (status == INSTALL_SUCCESS && should_wipe_cache) {
 wipe_cache(false, device);
 }
 ...
 } else if (should_wipe_data) {
 if (!wipe_data(false, device)) {
 status = INSTALL_ERROR;
 }
 } else if (should_wipe_cache) {
 if (!wipe_cache(false, device)) {
 status = INSTALL_ERROR;
 }
 } else if (sideload) {
 ...
 Device::BuiltinAction after = shutdown_after ? Device::SHUTDOWN :
 Device::REBOOT;
 if ((status != INSTALL_SUCCESS && !sideload_auto_reboot) || ui-
 >IsTextVisible()) {
 Device::BuiltinAction temp = prompt_and_wait(device, status);

Introducing Recovery

[351]

 if (temp != Device::NO_ACTION) {
 after = temp;
 }
 }

 // Save logs and clean up before rebooting or shutting down.
 finish_recovery(send_intent);

 switch (after) {
 case Device::SHUTDOWN:
 ui->Print("Shutting down...\n");
 property_set(ANDROID_RB_PROPERTY, "shutdown,");
 break;

 case Device::REBOOT_BOOTLOADER:
 ui->Print("Rebooting to bootloader...\n");
 property_set(ANDROID_RB_PROPERTY, "reboot,bootloader");
 break;

 default:
 ui->Print("Rebooting...\n");
 property_set(ANDROID_RB_PROPERTY, "reboot,");
 break;
 }
 sleep(5); // should reboot before this finishes
 return EXIT_SUCCESS;
}

After we have an overview of the recovery workflow, we will look at how recovery
retrieves arguments from either BCB or cache files in the get_args function. After that, we
will look at the two important workflows, factory reset and OTA update, from the user's
perspective.

Introducing Recovery

[352]

Retrieving arguments from BCB and cache files
As we can see in the main function of recovery, it calls to the get_args function to retrieve
arguments from the main system or bootloader. The following is the flow diagram of
get_args. It is in the same $AOSP/bootable/recovery/recovery.cpp file as the main
function of recovery.

Flow diagram of get_args

Introducing Recovery

[353]

From the following code snippet, we can see that it calls to the get_bootloader_message
function to get the BCB data structure, boot:

static void
get_args(int *argc, char ***argv) {
 struct bootloader_message boot;
 memset(&boot, 0, sizeof(boot));
 get_bootloader_message(&boot); // this may fail, leaving a zeroed
 //structure
 stage = strndup(boot.stage, sizeof(boot.stage));
 ...

If there are no arguments, the value of argc will be less or equal to 1. It will try to get the
arguments from BCB, as in the following code snippet. In the recovery field of BCB, the
command will start with recovery\n. The content after recovery\n is the same format as
the cache command file, /cache/recovery/command:

if (*argc <= 1) {
 boot.recovery[sizeof(boot.recovery) - 1] = '\0';
 const char *arg = strtok(boot.recovery, "\n");
 if (arg != NULL && !strcmp(arg, "recovery")) {
 *argv = (char **) malloc(sizeof(char *) * MAX_ARGS);
 (*argv)[0] = strdup(arg);
 for (*argc = 1; *argc < MAX_ARGS; ++*argc) {
 if ((arg = strtok(NULL, "\n")) == NULL) break;
 (*argv)[*argc] = strdup(arg);
 }
 LOGI("Got arguments from boot message\n");
 } else if (boot.recovery[0] != 0 && boot.recovery[0] != 255) {
 LOGE("Bad boot message\n\"%.20s\"\n", boot.recovery);
 }
}

If the arguments can be retrieved from BCB, it will skip the cache command file. Otherwise,
it will try to read arguments from the cache command file as follows:

if (*argc <= 1) {
 FILE *fp = fopen_path(COMMAND_FILE, "r");
 if (fp != NULL) {
 char *token;
 char *argv0 = (*argv)[0];
 *argv = (char **) malloc(sizeof(char *) * MAX_ARGS);
 (*argv)[0] = argv0; // use the same program name

 char buf[MAX_ARG_LENGTH];
 for (*argc = 1; *argc < MAX_ARGS; ++*argc) {
 if (!fgets(buf, sizeof(buf), fp)) break;

Introducing Recovery

[354]

 token = strtok(buf, "\r\n");
 if (token != NULL) {
 (*argv)[*argc] = strdup(token);
 } else {
 --*argc;
 }
 }

 check_and_fclose(fp, COMMAND_FILE);
 LOGI("Got arguments from %s\n", COMMAND_FILE);
 }
}

After processing both BCB and the cache command file, it will write the BCB block to the
/misc partition so that if there is any error during the process of update or erase, the same
process will continue after the reboot:

strlcpy(boot.command, "boot-recovery", sizeof(boot.command));
strlcpy(boot.recovery, "recovery\n", sizeof(boot.recovery));
int i;
for (i = 1; i < *argc; ++i) {
 strlcat(boot.recovery, (*argv)[i], sizeof(boot.recovery));
 strlcat(boot.recovery, "\n", sizeof(boot.recovery));
}
set_bootloader_message(&boot);

From the preceding code analysis, we can see that the cache command file is just a normal
text file. It can be accessed by just using the standard C functions. To access the /misc
partition for BCB data structure, the get_bootloader_message function is used to read
BCB and the set_bootloader_message function is used to write BCB. The BCB data
structure bootloader_message is defined in the bootloader.h file and related functions
are implemented in the bootloader.cpp file.

The /misc partition is a raw partition and it is used by the code in bootloader.cpp as a
normal file instead of a filesystem volume.

We can have a quick look at the get_bootloader_message function and its support
function, get_bootloader_message_block, as follows:

int get_bootloader_message(struct bootloader_message *out) {
 Volume* v = volume_for_path("/misc");
 if (v == NULL) {
 LOGE("Cannot load volume /misc!\n");
 return -1;
 }
 if (strcmp(v->fs_type, "mtd") == 0) {

Introducing Recovery

[355]

 return get_bootloader_message_mtd(out, v);
 } else if (strcmp(v->fs_type, "emmc") == 0) {
 return get_bootloader_message_block(out, v);
 }
 LOGE("unknown misc partition fs_type \"%s\"\n", v->fs_type);
 return -1;
}

In the get_bootloader_message function, it will call another function according to the
type of partition, /misc. As we can see, the supported raw filesystem types are mtd and
emmc. We can look at the emmc version, get_bootloader_message_block, as follows:

static int get_bootloader_message_block(struct bootloader_message *out,
const Volume* v) {
 wait_for_device(v->blk_device);
 FILE* f = fopen(v->blk_device, "rb");
 if (f == NULL) {
 LOGE("Can't open %s\n(%s)\n", v->blk_device, strerror(errno));
 return -1;
 }
 struct bootloader_message temp;
 int count = fread(&temp, sizeof(temp), 1, f);
 if (count != 1) {
 LOGE("Failed reading %s\n(%s)\n", v->blk_device,
 strerror(errno));
 return -1;
 }
 if (fclose(f) != 0) {
 LOGE("Failed closing %s\n(%s)\n", v->blk_device,
 strerror(errno));
 return -1;
 }
 memcpy(out, &temp, sizeof(temp));
 return 0;
}

As we can see, in the get_bootloader_message_block function, it accesses the /misc
partition as a normal file using C functions fopen, fread, and fclose.

Now we have done the analysis of BCB and cache file processing. We will look at the
following two most important workflows of recovery in the next two sections:

Factory data reset
OTA update

Introducing Recovery

[356]

Factory data reset
One of the major functions of recovery is to support factory data reset. The factory data
reset can usually be selected by users from Settings on the device, as shown in the
following screenshot:

Factory data reset

The entire process can be divided into the following steps:

The user selects Factory data reset from Settings.1.
Main system writes --wipe_data to /cache/recovery/command.2.

Introducing Recovery

[357]

Main system reboots the device into recovery. We have done the analysis about3.
this when we talked about BCB in the previous section.
Recovery retrieves arguments from BCB or /cache/recovery/command in4.
get_args(). After read arguments, recovery will write BCB with boot-
recovery and --wipe_data.
Recovery erases both /data and /cache partitions. After this point, any5.
following reboots will continue this step until the erase can be completed or the
user takes other actions from recovery user interfaces to exit from recovery.
After erasing /data and /cache partitions, recovery calls to the6.
finish_recovery function to erase BCB.
Recovery reboots the device to the main system.7.

We have analyzed most of the preceding steps except finish_recovery. Let's look at the
finish_recovery function:

static void
finish_recovery(const char *send_intent) {
 // By this point, we're ready to return to the main system...
 if (send_intent != NULL) {
 FILE *fp = fopen_path(INTENT_FILE, "w");
 if (fp == NULL) {
 LOGE("Can't open %s\n", INTENT_FILE);
 } else {
 fputs(send_intent, fp);
 check_and_fclose(fp, INTENT_FILE);
 }
 }

 if (locale != NULL) {
 LOGI("Saving locale \"%s\"\n", locale);
 FILE* fp = fopen_path(LOCALE_FILE, "w");
 fwrite(locale, 1, strlen(locale), fp);
 fflush(fp);
 fsync(fileno(fp));
 check_and_fclose(fp, LOCALE_FILE);
 }

 copy_logs();

 struct bootloader_message boot;
 memset(&boot, 0, sizeof(boot));
 set_bootloader_message(&boot);

 if (ensure_path_mounted(COMMAND_FILE) != 0 ||
 (unlink(COMMAND_FILE) && errno != ENOENT)) {

Introducing Recovery

[358]

 LOGW("Can't unlink %s\n", COMMAND_FILE);
 }

 ensure_path_unmounted(CACHE_ROOT);
 sync(); // For good measure.
}

In the finish_recovery function, it writes the intent to /cache/recovery/intent.
Then, it processes the local file and creates the log file backup. Finally, it erases BCB by
calling set_bootloader_message and removes /cache/recovery/command to restore
the normal boot process.

OTA update
OTA update is another major function of recovery. OTA packages can be updated using the
recovery user interface after entering the recovery mode manually. It can also be updated
automatically after an update notification is received. In both cases, the path of the update
package may be different, but the installation process is the same. In this section, we will
look at the flow after the device received an OTA update notification. Then, we will look
into the details of the installation process:

After an OTA update notification is received by the device, main system1.
downloads the OTA package to /cache/update.zip.
Main system writes a --update_package=/cache/update.zip command to2.
/cache/recovery/command.
Main system reboots the device into recovery.3.
Recovery retrieves arguments from BCB or /cache/recovery/command in4.
get_args(). After read arguments, recovery will write BCB with boot-
recovery and update_package=....
Recovery calls install_package to install the update. At this step, any5.
following reboots will continue this step until the installation can be completed.
If the installation is failed, the prompt_and_wait function is called to show an6.
error and wait for user action. If the installation completes successfully, it will
move to the next step.
Recovery calls to the finish_recovery function to erase BCB and remove the7.
/cache/recovery/command file.
Recovery reboots the device to the main system.8.

Introducing Recovery

[359]

Once the update package is downloaded, the installation is done by the install_package
function:

int
install_package(const char* path, bool* wipe_cache, const char*
install_file, bool needs_mount)
{
 modified_flash = true;

 FILE* install_log = fopen_path(install_file, "w");
 if (install_log) {
 fputs(path, install_log);
 fputc('\n', install_log);
 } else {
 LOGE("failed to open last_install: %s\n", strerror(errno));
 }
 int result;
 if (setup_install_mounts() != 0) {
 LOGE("failed to set up expected mounts for install;
 aborting\n");
 result = INSTALL_ERROR;
 } else {
 result = really_install_package(path, wipe_cache, needs_mount);
 }
 if (install_log) {
 fputc(result == INSTALL_SUCCESS ? '1' : '0', install_log);
 fputc('\n', install_log);
 fclose(install_log);
 }
 return result;
}

In the install_package function, it sets the installation log file first. The log file path is
/tmp/last_install. Then, it calls to setup_install_mounts to mount the relevant
partitions. The actual installation is done in the really_install_package function, as
shown in the following code snippet:

static int
really_install_package(const char *path, bool* wipe_cache, bool
needs_mount)
{
 ui->SetBackground(RecoveryUI::INSTALLING_UPDATE);
 ...

 MemMapping map;
 if (sysMapFile(path, &map) != 0) {
 LOGE("failed to map file\n");

Introducing Recovery

[360]

 return INSTALL_CORRUPT;
 }

 int numKeys;
 Certificate* loadedKeys = load_keys(PUBLIC_KEYS_FILE, &numKeys);
 if (loadedKeys == NULL) {
 LOGE("Failed to load keys\n");
 return INSTALL_CORRUPT;
 }
 LOGI("%d key(s) loaded from %s\n", numKeys, PUBLIC_KEYS_FILE);

 ui->Print("Verifying update package...\n");

 int err;
 err = verify_file(map.addr, map.length, loadedKeys, numKeys);
 free(loadedKeys);
 LOGI("verify_file returned %d\n", err);
 if (err != VERIFY_SUCCESS) {
 LOGE("signature verification failed\n");
 sysReleaseMap(&map);
 return INSTALL_CORRUPT;
 }

 /* Try to open the package.
 */
 ZipArchive zip;
 err = mzOpenZipArchive(map.addr, map.length, &zip);
 if (err != 0) {
 LOGE("Can't open %s\n(%s)\n", path, err != -1 ? strerror(err) :
 "bad");
 sysReleaseMap(&map);
 return INSTALL_CORRUPT;
 }

 /* Verify and install the contents of the package.
 */
 ui->Print("Installing update...\n");
 ui->SetEnableReboot(false);
 int result = try_update_binary(path, &zip, wipe_cache);
 ui->SetEnableReboot(true);
 ui->Print("\n");

 sysReleaseMap(&map);

 return result;
}

Introducing Recovery

[361]

In the really_install_package function, it initializes the user interface and shows the
package location on the screen. Then, it creates a memory map for the update package. This
is needed by the zip functions. After that, it verifies the update package using its signature.
Finally, it calls to another function, try_update_binary, to do the installation.

The try_update_binary function performs three tasks:

Extracts update_binary from the update package.1.
Prepares the environment to execute update_binary.2.
Monitors the progress of installation.3.

Let's look into the details of these three tasks:

static int
try_update_binary(const char* path, ZipArchive* zip, bool* wipe_cache) {
 const ZipEntry* binary_entry =
 mzFindZipEntry(zip, ASSUMED_UPDATE_BINARY_NAME);
 if (binary_entry == NULL) {
 mzCloseZipArchive(zip);
 return INSTALL_CORRUPT;
 }

 const char* binary = "/tmp/update_binary";
 unlink(binary);
 int fd = creat(binary, 0755);
 if (fd < 0) {
 mzCloseZipArchive(zip);
 LOGE("Can't make %s\n", binary);
 return INSTALL_ERROR;
 }
 bool ok = mzExtractZipEntryToFile(zip, binary_entry, fd);
 close(fd);
 mzCloseZipArchive(zip);

 if (!ok) {
 LOGE("Can't copy %s\n", ASSUMED_UPDATE_BINARY_NAME);
 return INSTALL_ERROR;
 }

It tries to extract update_binary from the update package. The path of update_binary
in the update package is predefined at META-INF/com/google/android/update-
binary.

Introducing Recovery

[362]

If update_binary can be extracted successfully, it will be copied to
/tmp/update_binary:

int pipefd[2];
pipe(pipefd);
const char** args = (const char**)malloc(sizeof(char*) * 5);
args[0] = binary;
args[1] = EXPAND(RECOVERY_API_VERSION); // defined in Android.mk
char* temp = (char*)malloc(10);
sprintf(temp, "%d", pipefd[1]);
args[2] = temp;
args[3] = (char*)path;
args[4] = NULL;

pid_t pid = fork();
if (pid == 0) {
 umask(022);
 close(pipefd[0]);
 execv(binary, (char* const*)args);
 fprintf(stdout, "E:Can't run %s (%s)\n", binary, strerror(errno));
 _exit(-1);
}

As we can see from the preceding code snippet, after extracting update_binary, it will
prepare the environment to execute update_binary. The installation of the update
package is actually done by update_binary using a script. The following parameters are
passed to update_binary for the execution:

The path of update_binary
Recovery version
A pipe for the communication between the parent and child processes
The path of the update package

After the environment is ready, it will fork a child process to run update_binary. The
parent process will monitor the installation progress by talking to the child process through
a pipe:

 close(pipefd[1]);

 *wipe_cache = false;

 char buffer[1024];
 FILE* from_child = fdopen(pipefd[0], "r");
 while (fgets(buffer, sizeof(buffer), from_child) != NULL) {
 char* command = strtok(buffer, " \n");

Introducing Recovery

[363]

 if (command == NULL) {
 continue;
 } else if (strcmp(command, "progress") == 0) {
 char* fraction_s = strtok(NULL, " \n");
 char* seconds_s = strtok(NULL, " \n");

 float fraction = strtof(fraction_s, NULL);
 int seconds = strtol(seconds_s, NULL, 10);

 ui->ShowProgress(fraction * (1-VERIFICATION_PROGRESS_FRACTION),
 seconds);
 } else if (strcmp(command, "set_progress") == 0) {
 char* fraction_s = strtok(NULL, " \n");
 float fraction = strtof(fraction_s, NULL);
 ui->SetProgress(fraction);
 } else if (strcmp(command, "ui_print") == 0) {
 char* str = strtok(NULL, "\n");
 if (str) {
 ui->Print("%s", str);
 } else {
 ui->Print("\n");
 }
 fflush(stdout);
 } else if (strcmp(command, "wipe_cache") == 0) {
 *wipe_cache = true;
 } else if (strcmp(command, "clear_display") == 0) {
 ui->SetBackground(RecoveryUI::NONE);
 } else if (strcmp(command, "enable_reboot") == 0) {
 ui->SetEnableReboot(true);
 } else {
 LOGE("unknown command [%s]\n", command);
 }
 }
 fclose(from_child);

 int status;
 waitpid(pid, &status, 0);
 if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) {
 LOGE("Error in %s\n(Status %d)\n", path, WEXITSTATUS(status));
 return INSTALL_ERROR;
 }

As we can see from the preceding code snippet, the parent process will receive commands
from the child process to show the progress, print out information to the screen, or set the
clean up configuration after the installation.

Introducing Recovery

[364]

Building recovery for x86vbox
After analyzing the workflow and key elements in the recovery source code, we can now
start to build it for our x86vbox device.

The changes to support the recovery build include the changes to x86vbox devices and the
changes to recovery and newinstaller.

Building configuration
Before we look at the changes for this chapter, let's look at the configuration files first. As
usual, we have a manifest file for each chapter. We make changes for this chapter based on
the source code of Chapter 11, Enabling VirtualBox-Specific Hardware Interfaces. The
following are the projects that we are going to change:

<?xml version="1.0" encoding="UTF-8"?>
<manifest>

 <remote name="github"
 revision="refs/tags/android-7.1.1_r4_x86vbox_ch12_r1"
 fetch="." />

 <remote name="aosp"
 fetch="https://android.googlesource.com/" />
 <default revision="refs/tags/android-7.1.1_r4"
 remote="aosp"
 sync-c="true"
 sync-j="1" />

 ...
 <project path="bootable/newinstaller"
 name="platform_bootable_newinstaller" remote="github" />
 <project path="device/generic/common" name="device_generic_common"
 groups="pdk" remote="github" />
 <project path="device/generic/x86vbox" name="x86vbox" remote="github"
 />
 <project path="bootable/recovery" name="android_bootable_recovery"
 remote="github" groups="pdk" />
 ...

We can see that we need to change four projects: recovery, newinstaller, common, and
x86vbox. We use an android-7.1.1_r4_x86vbox_ch12_r1 tag to baseline the source
code in this chapter.

Introducing Recovery

[365]

We can get the source code from GitHub and AOSP using the following command:

$ repo init -u https://github.com/shugaoye/manifests -b
android-7.1.1_r4_ch12_aosp
$ repo sync

After we get the source code for this chapter, we can set the environment and build the
system as follows:

$ source build/envsetup.sh
$ lunch x86vbox-eng
$ make -j4

To build initrd.img, you can run the following command:

$ make initrd USE_SQUASHFS=0

Changes to x86vbox
For the x86vbox device, we need to change the Makefiles device first. Since we inherited
x86vbox from the common Android-x86 device, we have only the following Makefiles:

$ ls *.mk
AndroidProducts.mk BoardConfig.mk x86vbox.mk

AndroidProducts.mk is the entry of the Android build system, which includes our
x86vbox.mk Makefile. In x86vbox.mk, we add the following recovery related files:

PRODUCT_COPY_FILES += \
...
device/generic/x86vbox/recovery.fstab:recovery/root/etc/recovery.fstab \
device/generic/x86vbox/recovery/root/init.recovery.x86vbox.rc:root/init.rec
overy.x86vbox.rc \
device/generic/x86vbox/recovery/root/sbin/network_start.sh:recovery/root/sb
in/network_start.sh \
device/generic/x86vbox/recovery/root/sbin/create_partitions.sh:recovery/roo
t/sbin/create_partitions.sh \
...

These changes include two parts. The first part is related to the environment setup specific
for VirtualBox, since we run recovery on the virtual hardware of VirtualBox. The x86vbox
specific init script, init.recovery.x86vbox.rc, will be executed by the init process
during the system startup.

Introducing Recovery

[366]

The second part is related to the partitions of the storage device. As we discussed in
previous chapters, we won't be able to use recovery with a single partition as we did in
Chapter 8, Creating Your Own Device on VirtualBox, to Chapter 11, Enabling VirtualBox-
Specific Hardware Interfaces. The partition table is defined in the recovery.fstab file. Let's
look at the startup script, init.recovery.x86vbox.rc, first:

on init
 exec -- /system/bin/logwrapper /system/bin/sh /system/etc/init.sh

service network_start /sbin/network_start.sh
 user root
 seclabel u:r:recovery:s0
 oneshot

service console /system/bin/sh
 class core
 console
 disabled
 user shell
 group shell log
 seclabel u:r:shell:s0

on property:ro.debuggable=1
 start console

As the init script of Android, recovery also has a device specific init script,
init.recovery.${ro.hardware}.rc. In our case, it is init.recovery.x86vbox.rc.
Inside init.recovery.x86vbox.rc, it calls to the Android-x86 HAL initialization script,
/system/etc/init.sh. In the HAL initialization during the Android start up section of
Chapter 8, Creating Your Own Device on VirtualBox, we had a detailed explanation about the
/system/etc/init.sh script.

We added two services, network_start and console, in init.recovery.x86vbox.rc.
With these two services, we are able to enable VirtualBox-specific network interfaces and
we can also have a console after boot up. With this debug console, we are able to debug
recovery much easier later in this book.

Introducing Recovery

[367]

Another important part in x86vbox.mk is we add a recovery.fstab partition table for
recovery as follows:

/dev/block/sda1 /system ext4 ro wait
/dev/block/sda2 /data ext4 noatime,... wait
/dev/block/sda3 /sdcard vfat defaults voldmanaged=sdcard:auto
/dev/block/sda5 /cache ext4 noatime,... wait
/dev/block/sda6 /misc emmc defaults defaults
/dev/block/sda7 /recovery emmc defaults defaults

As we can see, we have six partitions now. We don't really have a bootloader that can
support fastboot protocol and recovery BCB now, so we don't really use /boot and
/recovery partitions. However, we do have a two stage boot process from Android-x86
and we can have a workaround without bootloader support. We will see this in a moment
when we look at the changes to newinstaller later in this chapter.

The recovery.fstab partition table is used by recovery and we need to change the related
partition table for the Android main system as well, which is the file at
device/generic/common/fstab.x86.

We need to add two entries in device/generic/common/fstab.x86, as follows:

/dev/block/sda3 /sdcard vfat defaults voldmanaged=sdcard:auto
/dev/block/sda5 /cache ext4 noatime,... wait

This fstab.x86 file will be copied to the system image as fstab.x86vbox during the
build process. The init process will process it to mount partitions. You may be wondering
why we don't have /system and /data in the partition table. We use two stage boots and
they are mounted in the first stage boot before Android starts. The source of both /system
and /data can be configured through kernel parameters, as we discussed in previous
chapters when we explained the two-stage boot process.

Be aware that both recovery and main system should mount the same block device
partitions. For example, if recovery and main system mount different partitions for /cache,
they won't be able to communicate with each other using the command file at
/cache/recovery/command.

That's all about the changes to x86vbox.mk, so now let's look at another Makefile,
BoardConfig.mk. To enable the build of recovery, we need to add the following two
macros in BoardConfig.mk:

TARGET_NO_KERNEL := false
TARGET_NO_RECOVERY := false

Introducing Recovery

[368]

The default values for both macros are set to true, which means both kernel and recovery
are not built in the default configuration.

We added another macro that is related to the changes of recovery source code and we will
look at the source code changes later:

Double buffer cannot work well on virtualbox
RECOVERY_GRAPHICS_FORCE_SINGLE_BUFFER := true

The RECOVERY_GRAPHICS_FORCE_SINGLE_BUFFER macro is borrowed from the latest code
of Team Win Recovery Project (TWRP). With the changes to x86vbox Makefiles, we can
actually build TWRP as well. This is a third-party recovery commonly used by many third-
party ROMs, such as LineageOS/CyanogenMod, Omnirom, and so on.

Changes to recovery
The AOSP recovery code can work quite well on VirtualBox. There is only an issue related
to the display. To fix the display issue, we need to change two files in the recovery source
code.

We use the RECOVERY_GRAPHICS_FORCE_SINGLE_BUFFER macro as we mentioned earlier
to configure the frame buffer changes. We need to add it to the recovery Makefile
minui/Android.mk first as follows:

ifeq ($(RECOVERY_GRAPHICS_FORCE_SINGLE_BUFFER), true)
LOCAL_CFLAGS += -DRECOVERY_GRAPHICS_FORCE_SINGLE_BUFFER
endif

Since double buffer cannot work well on VirtualBox for the time being, we have to disable it
as follows:

...
 /* check if we can use double buffering */
#ifndef RECOVERY_GRAPHICS_FORCE_SINGLE_BUFFER
 if (vi.yres * fi.line_length * 2 <= fi.smem_len) {
 double_buffered = true;

 memcpy(gr_framebuffer+1, gr_framebuffer, sizeof(GRSurface));
 gr_framebuffer[1].data = gr_framebuffer[0].data +
 gr_framebuffer[0].height * gr_framebuffer[0].row_bytes;

 gr_draw = gr_framebuffer+1;

 } else {
#else

Introducing Recovery

[369]

 {
 printf("RECOVERY_GRAPHICS_FORCE_SINGLE_BUFFER := true\n");
#endif
 double_buffered = false;

 gr_draw = (GRSurface*) malloc(sizeof(GRSurface));
 memcpy(gr_draw, gr_framebuffer, sizeof(GRSurface));
 gr_draw->data = (unsigned char*) malloc(gr_draw->height *
 gr_draw->row_bytes);
 if (!gr_draw->data) {
 perror("failed to allocate in-memory surface");
 return NULL;
 }
 }
...

With a similar change to TWRP, TWRP can be built for x86vbox as well.
The branch for building TWRP is included in the source code at GitHub
and you can try it yourself.

Changes to newinstaller
As we discussed in the BCB section, bootloader decides the boot path according to the
arguments stored in BCB. The recovery command stored in BCB is the same as the one in
the /cache partition at /cache/recovery/command. We can actually move the same logic
to the first stage boot in initrd.img. In this case, we can achieve the same result with the
help of the first stage boot. The logic for factory data reset and OTA update will become the
following steps:

The user chooses factory data reset or an OTA update available.1.
Main system writes a command --wipe_data or --2.
update_package=/cache/update.zip to /cache/recovery/command.
Main system reboots the device.3.
In the first stage boot, the init script will check whether the4.
/cache/recovery/command file exists in the /cache partition.
If /cache/recovery/command exists, it will load ramdisk-recovery.img,5.
otherwise, it will load ramdisk.img.
The rest of the steps will be the same as the normal boot process or the recovery6.
boot process.

Introducing Recovery

[370]

To implement the preceding logic, we added a shell function, find_ramdisk, to the
$AOSP/bootable/newinstaller/initrd/init file as follows:

find_ramdisk()
{
 busybox mount /dev/sda5 /hd
 if [! -e /hd/recovery/command]; then
 busybox umount /hd
 if ["$RECOVERY" = "1"]; then
 RAMDISK=/mnt/$SRC/ramdisk-recovery.img
 else
 RAMDISK=/mnt/$SRC/ramdisk.img
 fi
 else
 busybox umount /hd
 RAMDISK=/mnt/$SRC/ramdisk-recovery.img
 return
 fi
 echo boot using $RAMDISK ...
}

In this function, we mount the cache partition to /hd and check whether
/hd/recovery/command exists or not. If it exists, we set the RAMDISK variable to ramdisk-
recovery.img; otherwise, we set it to ramdisk.img. The init script will extract the
ramdisk contained in the RAMDISK variable to the memory later as follows:

...
 zcat $RAMDISK | cpio -id > /dev/null
...

There is another variable called RECOVERY that is defined in find_ramdisk, which can be
passed to the init script from the kernel command line. With this variable, we can force to
boot to recovery.

Introducing Recovery

[371]

Testing recovery
After we build the recovery and AOSP images, we can test them in VirtualBox. As we learnt
from Chapter 9, Booting Up x86vbox using PXE/NFS, we can use PXE boot to boot the
system and use NFS to access the AOSP images. To test recovery, we can add an option in
the $HOME/.VirtualBox/TFTP/pxelinux.cfg/default file to boot using kernel and
ramdisk/recovery.img. Even though we can boot the system to recovery now, we won't
be able to update the system using the recovery in this chapter. We will find out more in the
next two chapters.

Summary
We have done all the analysis and implementation of recovery for the x86vbox device. We
have analyzed the workflow and key elements in the recovery source code in the first part
of this chapter. In the second part of this chapter, we applied the knowledge that we gained
in the first part to the implementation of the recovery for the x86vbox device. We changed
the x86vbox device itself to add the recovery support. We also changed recovery source
code to fix the display issue. Finally, we modified newinstaller so that we can have a
complete boot flow for both main system and recovery.

In the next chapter, we will discuss how to create a recovery package and explain what is
inside a recovery package.

13
Creating OTA Packages

In the last chapter, we analyzed the internals of recovery and learnt how it works. As we
saw, one of the major functionalities of recovery is to support OTA update. In this chapter,
we will look at the OTA package and study the process of the OTA package update. We
will cover the following topics:

We will look at what is inside an OTA package. We will study the internals of
updater and updater-script.
We will learn the process about how to build an OTA package.
Finally, we need to improve recovery to remove the dependencies from the
Android system.

What is inside an OTA package
Before we start to build an OTA package, let's look at what's inside an OTA package. The
OTA package can be used to update the system to a new release. The new release can be a
major release or a minor release. For example, it could be a minor update to the existing
Android version to fix critical issues or security flaws. It could also be the major update
from Android 6 to Android 7. Let's look at the content of the OTA package that we are
going to create in this chapter to find out what is inside an OTA package. The OTA package
that we are going to create in this chapter is an OTA update package of our entire ROM. We
can use recovery to flash the OTA package to our VirtualBox device. This is another way to
install the system image that we build to the virtual device.

Creating OTA Packages

[373]

Let's look at the content of the OTA package that we will build in this chapter. The OTA
package itself is a ZIP file. After we extract the ZIP file, we can list the content of the ZIP file
as follows:

$ ls -F
boot.img* file_contexts* META-INF/ recovery/ system/

We can see that it includes two files and three folders. After we flash this update package
using recovery, it will update the /boot partition and the /system partition:

boot.img: The image of the /boot partition, which includes kernel and ramdisk.
file_contexts: This file is used to assign labels to files according to SELinux
policy. SELinux is enabled by default in the latest Android system. After the
recovery updates the system partition, it must apply labels using this file.
META-INF: This folder includes the signature of the OTA package, the updater,
and updater script. We will look at the details of this folder later.
recovery: This folder includes an install-recovery.sh shell script and a
recovery-from-boot.p patch file.
system: This is the system folder that recovery will update to the /system
partition.

OTA packages are usually used to update /boot and /system partitions. It does not
update itself. The update of the /recovery partition is in the normal boot up process.
During the boot up, the init will execute install-recovery.sh in the init.rc script
through the following flash_recovery service:

service flash_recovery /system/bin/install-recovery.sh
 class main
 oneshot

Creating OTA Packages

[374]

The install-recovery.sh script installs recovery using the recovery-from-boot.p
patch file as follows:

#!/system/bin/sh
if ! applypatch -c
EMMC:/dev/block/sda7:7757824:853301871de495db2b8c93f7a37779b9eeccb169; then
 applypatch -b /system/etc/recovery-resource.dat
EMMC:/dev/block/sda8:6877184:2f58cc1a4035176c8fefc19be70c00e625acc16b
EMMC:/dev/block/sda7 853301871de495db2b8c93f7a37779b9eeccb169 7757824
2f58cc1a4035176c8fefc19be70c00e625acc16b:/system/recovery-from-boot.p &&
log -t recovery "Installing new recovery image: succeeded" || log -t
recovery "Installing new recovery image: failed"
else
 log -t recovery "Recovery image already installed"
fi

In our environment setup, the /recovery partition is in the /dev/block/sda7 partition.
This script will check the sha1 hash of the /dev/block/sha7 partition. If the sha1 hash
value is not the same, it will update the /recovery partition.

Now let's look at the META-INF folder, as shown in the following screenshot:

Creating OTA Packages

[375]

As we can see, the signature of the update package, updater, and updater script are
included in the META-INF folder. Before the recovery applies the update, it will verify the
package signature in the META-INF folder against the trusted certificates at
/system/etc/security/otacerts.zip.

The updater is an executable at META-INF/com/google/android/update-binary. It
interprets a script in the META-INF/com/google/android/updater-script file. The
script is written in an extensible scripting language (edify) that supports commands for
typical update related tasks.

Since the updater and the updater script are the key components in the OTA package to
support an OTA update, we will look into the details of them.

Updater
updater is an individual executable for the target device in the AOSP source tree. It can be
found in the $AOSP/bootable/recovery/updater folder. Let's look at the main function
in the updater.cpp file. Since the main function is a little long, let's look at it in several
paragraphs:

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>

#include "edify/expr.h"
#include "updater.h"
#include "install.h"
#include "blockimg.h"
#include "minzip/Zip.h"
#include "minzip/SysUtil.h"

#include "register.inc"

#define SCRIPT_NAME "META-INF/com/google/android/updater-script"

extern bool have_eio_error;

struct selabel_handle *sehandle;

int main(int argc, char** argv) {
 setbuf(stdout, NULL);
 setbuf(stderr, NULL);

Creating OTA Packages

[376]

 if (argc != 4 && argc != 5) {
 printf("unexpected number of arguments (%d)\n", argc);
 return 1;
 }

 char* version = argv[1];
 if ((version[0] != '1' && version[0] != '2' && version[0] != '3')
 ||
 version[1] != '\0') {
 // We support version 1, 2, or 3.
 printf("wrong updater binary API; expected 1, 2, or 3; "
 "got %s\n",
 argv[1]);
 return 2;
 }

The updater has four arguments. The first thing it will do is check whether there are four
arguments passed to it. As we can see from the code, these four arguments are:

The first argument is the executable name, which is update-binary here
The second argument is the updater version
The third argument is the pipe that can be used to communicate to the recovery
The fourth argument is the OTA package path

It will check the updater version before it continues:

// Set up the pipe for sending commands back to the parent process.

int fd = atoi(argv[2]);
FILE* cmd_pipe = fdopen(fd, "wb");
setlinebuf(cmd_pipe);

// Extract the script from the package.

const char* package_filename = argv[3];
MemMapping map;
if (sysMapFile(package_filename, &map) != 0) {
 printf("failed to map package %s\n", argv[3]);
 return 3;
}
ZipArchive za;
int err;
err = mzOpenZipArchive(map.addr, map.length, &za);
if (err != 0) {
 printf("failed to open package %s: %s\n",
 argv[3], strerror(err));
 return 3;

Creating OTA Packages

[377]

}
ota_io_init(&za);

const ZipEntry* script_entry = mzFindZipEntry(&za, SCRIPT_NAME);
if (script_entry == NULL) {
 printf("failed to find %s in %s\n", SCRIPT_NAME, package_filename);
 return 4;
}

char* script = reinterpret_cast<char*>(malloc(script_entry->uncompLen+1));
if (!mzReadZipEntry(&za, script_entry, script, script_entry->uncompLen)) {
 printf("failed to read script from package\n");
 return 5;
}
script[script_entry->uncompLen] = '\0';

The next thing to do is to open the pipe to establish the communication channel with
recovery. Then it extracts updater-script from the OTA package to prepare for the
execution of the script:

// Configure edify's functions.

RegisterBuiltins();
RegisterInstallFunctions();
RegisterBlockImageFunctions();
RegisterDeviceExtensions();
FinishRegistration();

// Parse the script.

Expr* root;
int error_count = 0;
int error = parse_string(script, &root, &error_count);
if (error != 0 || error_count > 0) {
 printf("%d parse errors\n", error_count);
 return 6;
}

struct selinux_opt seopts[] = {
 { SELABEL_OPT_PATH, "/file_contexts" }
};

sehandle = selabel_open(SELABEL_CTX_FILE, seopts, 1);

if (!sehandle) {
 fprintf(cmd_pipe, "ui_print Warning: No file_contexts\n");
}

Creating OTA Packages

[378]

// Evaluate the parsed script.

UpdaterInfo updater_info;
updater_info.cmd_pipe = cmd_pipe;
updater_info.package_zip = &za;
updater_info.version = atoi(version);
updater_info.package_zip_addr = map.addr;
updater_info.package_zip_len = map.length;

State state;
state.cookie = &updater_info;
state.script = script;
state.errmsg = NULL;

if (argc == 5) {
 if (strcmp(argv[4], "retry") == 0) {
 state.is_retry = true;
 } else {
 printf("unexpected argument: %s", argv[4]);
 }
}

char* result = Evaluate(&state, root);

if (have_eio_error) {
 fprintf(cmd_pipe, "retry_update\n");
}

if (result == NULL) {
 if (state.errmsg == NULL) {
 printf("script aborted (no error message)\n");
 fprintf(cmd_pipe, "ui_print script aborted (no error
 message)\n");
 } else {
 printf("script aborted: %s\n", state.errmsg);
 char* line = strtok(state.errmsg, "\n");
 while (line) {
 if (*line == 'E') {
 if (sscanf(line, "E%u: ", &state.error_code) != 1) {
 printf("Failed to parse error code: [%s]\n", line);
 }
 }
 fprintf(cmd_pipe, "ui_print %s\n", line);
 line = strtok(NULL, "\n");
 }
 fprintf(cmd_pipe, "ui_print\n");
 }

Creating OTA Packages

[379]

 if (state.error_code != kNoError) {
 fprintf(cmd_pipe, "log error: %d\n", state.error_code);
 if (state.cause_code != kNoCause) {
 fprintf(cmd_pipe, "log cause: %d\n", state.cause_code);
 }
 }

 free(state.errmsg);
 return 7;
} else {
 fprintf(cmd_pipe, "ui_print script succeeded: result was [%s]\n",
 result);
 free(result);
}

if (updater_info.package_zip) {
 mzCloseZipArchive(updater_info.package_zip);
}
sysReleaseMap(&map);
free(script);

return 0;
}

Before it can start to execute the update script, it needs to register functions to interpret
edify language inside the update script. As we can see from the preceding code, these
functions include the following four categories:

Built-in functions to support the edify language syntax. These functions are
implemented in bootable/recovery/edify/expr.cpp.
Package installation related functions. These functions are implemented in
bootable/recovery/updater/install.cpp.
Functions to handle block-based OTA packages. In Android 4.4 and earlier
versions, the file-based OTA updates are used. In Android 5.0 and later versions,
the block-based OTA updates are used. Refer to the following URL about file
versus block OTAs:
https://source.android.com/devices/tech/ota/block.html

The block-based functions are implemented in
bootable/recovery/updater/blockimg.cpp.
The developers can extend recovery and updater to provide device-specific OTA
extensions.

After it registers all functions, it calls the parse_string function to parse the script.
Finally, it calls the Evaluate function to execute the script.

https://source.android.com/devices/tech/ota/block.html

Creating OTA Packages

[380]

The updater script
After we explore the implementation of updater, we will look at the updater script in this
section. The updater script is the one that performs the update operations in the target
device. The updater script is written in a simple script language called edify. An edify script
is a list of expressions, one expression per line. It supports the following operators:

The comparison operators, such as == (string equal) and != (string not equal)
The logical operators, such as || (logical or), && (logical and), and ! (logical not)
The concatenation operator +

The only reserved keywords are conditional keywords if, then, else, and endif.

All values in edify are strings. Empty strings are false in a Boolean context and all other
strings are true.

You can refer to the following URL to learn more about edify syntax:
h t t p s ://s o u r c e . a n d r o i d . c o m /d e v i c e s /t e c h /o t a /i n s i d e _ p a c k a g e s

Edify functions
The major functionalities of the edify language are implemented as edify functions and the
edify functions are registered in the preceding updater source code. To support the OTA
update, the edify functions include built-in functions, installation functions, block image
functions, and device extensions. We will look at each category in the following sections.

Built-in functions
The built-in functions are used to support edify language syntax. The built-in functions are
registered by RegisterBuiltins. We can look at the following source code:

void RegisterBuiltins() {
 RegisterFunction("ifelse", IfElseFn);
 RegisterFunction("abort", AbortFn);
 RegisterFunction("assert", AssertFn);
 RegisterFunction("concat", ConcatFn);
 RegisterFunction("is_substring", SubstringFn);
 RegisterFunction("stdout", StdoutFn);
 RegisterFunction("sleep", SleepFn);

https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages
https://source.android.com/devices/tech/ota/inside_packages

Creating OTA Packages

[381]

 RegisterFunction("less_than_int", LessThanIntFn);
 RegisterFunction("greater_than_int", GreaterThanIntFn);
}

The RegisterBuiltins function registers the following built-in functions:

ifelse(cond, e1[, e2]): Evaluates cond, and if it is true it evaluates and
returns the value of e1, otherwise it evaluates and returns e2 (if present).
abort([msg]): Aborts execution of the script immediately, with the optional
msg. If the user has turned on text display, msg appears in the recovery log and
on screen.
assert(expr[, expr, ...]): Evaluates each expr in turn. If any is false, it
immediately aborts execution with the message assert failed.
concat(expr[, expr, ...]): Evaluates each expression and concatenates
them.
is_substring(substring, string): Returns true if a substring can be found.
stdout(expr[, expr, ...]): Evaluates each expression and dumps its value
to stdout. This is useful for debugging.
sleep(secs): Sleeps for secs seconds.
less_than_int(a, b): Returns true if and only if a (interpreted as an integer)
is less than b (interpreted as an integer).
greater_than_int(a, b): Returns true if and only if a (interpreted as an
integer) is greater than b (interpreted as an integer).

Installation functions
The installation-related functions are registered by RegisterInstallFunctions. The
following is the source code of it:

void RegisterInstallFunctions() {
 RegisterFunction("mount", MountFn);
 RegisterFunction("is_mounted", IsMountedFn);
 RegisterFunction("unmount", UnmountFn);
 RegisterFunction("format", FormatFn);
 RegisterFunction("show_progress", ShowProgressFn);
 RegisterFunction("set_progress", SetProgressFn);
 RegisterFunction("delete", DeleteFn);
 RegisterFunction("delete_recursive", DeleteFn);
 RegisterFunction("package_extract_dir", PackageExtractDirFn);
 RegisterFunction("package_extract_file", PackageExtractFileFn);
 RegisterFunction("symlink", SymlinkFn);

Creating OTA Packages

[382]

 RegisterFunction("set_metadata", SetMetadataFn);
 RegisterFunction("set_metadata_recursive", SetMetadataFn);
 RegisterFunction("getprop", GetPropFn);
 RegisterFunction("file_getprop", FileGetPropFn);
 RegisterFunction("write_raw_image", WriteRawImageFn);
 RegisterFunction("apply_patch", ApplyPatchFn);
 RegisterFunction("apply_patch_check", ApplyPatchCheckFn);
 RegisterFunction("apply_patch_space", ApplyPatchSpaceFn);
 RegisterFunction("wipe_block_device", WipeBlockDeviceFn);
 RegisterFunction("read_file", ReadFileFn);
 RegisterFunction("sha1_check", Sha1CheckFn);
 RegisterFunction("rename", RenameFn);
 RegisterFunction("wipe_cache", WipeCacheFn);
 RegisterFunction("ui_print", UIPrintFn);
 RegisterFunction("run_program", RunProgramFn);
 RegisterFunction("reboot_now", RebootNowFn);
 RegisterFunction("get_stage", GetStageFn);
 RegisterFunction("set_stage", SetStageFn);
 RegisterFunction("enable_reboot", EnableRebootFn);
 RegisterFunction("tune2fs", Tune2FsFn);
}

As we can see, most functions are registered here; we will now have a look at them:

mount(fs_type, partition_type, name, mount_point): This function
mounts a filesystem of fs_type at mount_point. The partition_type
argument must be one of MTD or EMMC. The name argument is the name of a
partition (system, userdata or cache, and so on). Recovery does not mount any
filesystems by default and the updater script must mount any partitions it needs
to modify.
is_mounted(mount_point): Returns true if there is a filesystem mounted at
mount_point.
unmount(mount_point): Unmounts the filesystem mounted at mount_point.
format(fs_type, partition_type, location, fs_size,

mount_point): This function formats a given partition. The fs_type argument
can be yaffs2, ext4, or f2fs. The partition_type argument can be MTD or
EMMC. The location argument is either the name of the partition or device.
The fs_size argument is the filesystem size and mount_point is the mount
point name.

Creating OTA Packages

[383]

show_progress(frac, secs): Advances the progress meter over the next
frac of its length over the secs seconds. The secs argument may be zero, in
which case the meter is not advanced automatically, but by the use of the
set_progress function defined as follows:

set_progress(frac): This function sets the position of the
progress meter within the chunk defined by the most recent
show_progress call.

delete([filename, ...]): Deletes all the filenames listed. Returns the
number of files successfully deleted.
delete_recursive([dirname, ...]): Recursively deletes dirname and all
their contents. Returns the number of directories successfully deleted.
package_extract_dir(package_dir, dest_dir): Extracts all files from the
package underneath package_dir and writes them to the corresponding tree
beneath dest_dir. Any existing files are overwritten.
package_extract_file(package_file[, dest_file]): Extracts a single
package_file from the update package and writes it to dest_file,
overwriting existing files if necessary.
symlink(target[, source, ...]): Creates all sources as symlinks to target.
set_metadata(filename, key1, value1[, key2 , value2, ...]): Sets
the keys of the given filename to values.
set_metadata_recursive(dirname, key1, value1[, key2, value2,

...]): Recursively sets the keys of the given dirname and all its children to
values.
getprop(key): Returns the value of the system property key (or the empty
string, if it's not defined).
file_getprop(filename, key): Reads the given filename, interprets it as a
properties file (for example, /system/build.prop), and returns the value of the
given key, or the empty string if the key is not present.
write_raw_image(filename_or_blob, partition): Writes the image in
filename_or_blob to the MTD partition.
apply_patch(src_file, tgt_file, tgt_sha1, tgt_size,

patch1_sha1, patch1_blob, [...]): Applies a binary patch to src_file to
produce tgt_file.
apply_patch_check(filename, sha1[, sha1, ...]): Returns true if the
contents of filename or the temporary copy in the cache partition (if present)
have a SHA1 checksum equal to one of the given sha1 values.

Creating OTA Packages

[384]

apply_patch_space(bytes): Returns true if at least bytes of scratch space is
available for applying binary patches.
wipe_block_device(block_dev, len): Wipes the len bytes of the given
block device, block_dev.
read_file(filename): Reads filename and returns its contents as a binary
blob.
sha1_check(blob[, sha1]): The blob argument is a blob of the type returned
by read_file or the one-argument form of package_extract_file. With no
sha1 arguments, this function returns the SHA1 hash of the blob. With one or
more sha1 arguments, this function returns the SHA1 hash if it equals one of the
arguments, or the empty string if it does not equal any of them.
rename(src_filename, tgt_filename): Renames src_filename to
tgt_filename.
wipe_cache(): Causes the cache partition to be wiped at the end of a successful
installation.
ui_print([text, ...]): Concatenates all text arguments and prints the result
to the UI.
run_program(path[, arg, ...]): Executes the binary at path with
arguments arg. Returns the program's exit status.
reboot_now(name[, arg, ...]): Reboots the device immediately. The name
argument is the partition name passed to the Android reboot property.
get_stage(name): This function returns the value saved by the set_stage
function. The name argument is the block device for the /misc partition.
set_stage(name, stage): This function stores a string value that future
invocations of recovery can access. The name argument is the block device for the
/misc partition. The stage is the string to store.
enable_reboot(): Sends the enable_reboot command to recovery through
the pipe.
tune2fs(arg, ...): Changes the filesystem parameters on an ext2/ext3
filesystem.

Creating OTA Packages

[385]

Block image functions
In Android 5.0 or above, the block-based OTA packages can be used. The block-based OTA
packages treat the entire partition as a single file and update it at block level. The functions
for block-based OTA packages are registered by the RegisterBlockImageFunctions
function:

void RegisterBlockImageFunctions() {
 RegisterFunction("block_image_verify", BlockImageVerifyFn);
 RegisterFunction("block_image_update", BlockImageUpdateFn);
 RegisterFunction("range_sha1", RangeSha1Fn);
}

The block-based update implementation includes three functions:

block_image_verify(partition, transfer_list, new, patch): The
partition argument is the device that the update will do. Usually, it is the
/system partition. The transfer_list argument is a text file containing
commands to transfer data from one place to another on the target partition.
This command only performs a dry run without writing to test if an update can
proceed.
block_image_update(partition, transfer_list, new, patch): This
function is the same as block_image_verify except it performs the actual
update.
range_sha1(partition, range): This function checks the SHA1 hash of a
partition in the specified range.

Device extensions
As Android system developers, we can extend the edify language to meet our device-
specific requirements. To extend the edify language with our own functions, we can register
our functions using the following function call:

RegisterDeviceExtensions();

We will explain how to extend the edify language in the next chapter.

Creating OTA Packages

[386]

Preparing an OTA package for x86vbox
We have understood updater and the updater script inside an OTA package so far. We can
build an OTA package for our x86vbox device now. To build an OTA package, we can use
the following commands:

$ mkdir -p dist_output
$ make dist DIST_DIR=dist_output

The default OTA package build in Android 5 or above is to build the block-based OTA
package, but we will get an error building block-based OTA packages for x86vbox. There
are a lot more configurations that are needed to be done to support block-based OTA
packages in our environment. All the third-party recovery packages cannot use block-based
update packages as well.

To avoid this error, we need to change the following build/core/Makefile file to remove
the --block option:

$(INTERNAL_OTA_PACKAGE_TARGET): $(BUILT_TARGET_FILES_PACKAGE) $(DISTTOOLS)
 @echo "Package OTA: $@"
 $(hide) PATH=$(foreach
 p,$(INTERNAL_USERIMAGES_BINARY_PATHS),$(p):)$$PATH
 MKBOOTIMG=$(MKBOOTIMG) \
 ./build/tools/releasetools/ota_from_target_files -v \
 --block \
 -p $(HOST_OUT) \
 -k $(KEY_CERT_PAIR) \
 $(if $(OEM_OTA_CONFIG), -o $(OEM_OTA_CONFIG)) \
 $(BUILT_TARGET_FILES_PACKAGE) $@

After the build is completed, we can check the OTA package as follows:

$ ls dist_output/**-ota-*.zip
dist_output/x86vbox-ota-eng.sgye.zip

Let's take a look at the updater script inside the OTA package that we just built:

(!less_than_int(1482376066, getprop("ro.build.date.utc"))) || abort("Can't
install this package (Thu Dec 22 11:07:46 CST 2016) over newer build (" +
getprop("ro.build.date") + ").");
getprop("ro.product.device") == "x86vbox" || abort("This package is for
\"x86vbox\" devices; this is a \"" + getprop("ro.product.device") + "\".");
ui_print("Target: Android-
x86/x86vbox/x86vbox:7.1.1/MOB30Z/roger12221103:eng/test-keys");
show_progress(0.750000, 0);
format("ext4", "EMMC", "/dev/block/sda1", "0", "/system");
mount("ext4", "EMMC", "/dev/block/sda1", "/system",

Creating OTA Packages

[387]

"max_batch_time=0,commit=1,data=ordered,barrier=1,errors=panic,nodelalloc")
;
package_extract_dir("system", "/system");
symlink("../../gm200/acr/bl.bin",
"/system/lib/firmware/nvidia/gm204/acr/bl.bin",
 "/system/lib/firmware/nvidia/gm206/acr/bl.bin");
...
symlink("wl127x-nvs.bin", "/system/lib/firmware/ti-connectivity/wl1271-
nvs.bin",
 "/system/lib/firmware/ti-connectivity/wl12xx-nvs.bin");
set_metadata_recursive("/system", "uid", 0, "gid", 0, "dmode", 0755,
"fmode", 0644, "capabilities", 0x0, "selabel",
"u:object_r:system_file:s0");
set_metadata_recursive("/system/bin", "uid", 0, "gid", 2000, "dmode", 0755,
"fmode", 0755, "capabilities", 0x0, "selabel",
"u:object_r:system_file:s0");
set_metadata("/system/bin/app_process32", "uid", 0, "gid", 2000, "mode",
0755, "capabilities", 0x0, "selabel", "u:object_r:zygote_exec:s0");
...
set_metadata("/system/xbin/su", "uid", 0, "gid", 2000, "mode", 04751,
"capabilities", 0x0, "selabel", "u:object_r:su_exec:s0");
show_progress(0.050000, 5);
package_extract_file("boot.img", "/dev/block/sda8");
show_progress(0.200000, 10);
unmount("/system");

In the updater script, it checks the build information of the current system first. If the
current system is newer than the OTA package, it won't update the system. After that, it
also checks the device name of the running system and the OTA package, both should
match each other. Otherwise, we may update the system using a wrong OTA package.

After all verification work has been done, the script will format the /system partition and
create a new system folder from the OTA package. Once the system files are installed, the
script will create all necessary soft-links and apply properties for SELinux.

Finally, it will update the /boot partition with a new kernel and ramdisk.

Once we build the OTA package for the x86vbox device, and we also build recovery in
Chapter 12, Introducing Recovery, we can update our system to the OTA package. We
should be able to update the system using this OTA package, but the system may not be
able to boot up at the moment. We have two issues that need to be resolved before we can
do more.

Creating OTA Packages

[388]

Recalling how we built recovery for x86vbox, we reuse the source code that we developed
from Chapter 8, Creating Your Own Device on VirtualBox, to Chapter 11, Enabling VirtualBox-
Specific Hardware Interfaces as much as possible. This means we inherited the following
features in the recovery build in Chapter 12, Introducing Recovery:

The first problem inherited from the two stages boot is that we use the
components in the Android system folder to boot recovery. Ideally, the recovery
should not depend on anything else. It should be a self-contained system. For
example, the recovery should work properly, even though the system image is
damaged. We can repair the system using recovery.
We use the two stages boot process from the Android-x86 project. As we can see
from the previous chapters, the system disk layout for a two stages boot is
different from the standard Android system. The system that we create using the
OTA package is the standard Android system disk layout. We can only use the
standard boot process to boot the system after the OTA update. This means we
have to boot the system using ramdisk.img instead of initrd.img.

Removing dependencies on /system
The dependencies to the Android /system folder include two parts:

All kernel modules for device drivers are located at:
$OUT/system/lib/modules/4.x.x-android-x86.
We need to run some basic Linux commands during the recovery boot process.
For example, we do hardware initialization using the following command:
on init
exec -- /system/bin/logwrapper /system/bin/sh
/system/etc/init.sh

Let's work on the preceding two points one by one in the following sections.

Creating OTA Packages

[389]

Hardware initialization in recovery
To load the minimum device drivers needed by recovery, we have to change the execution
of the shell script for Android system start. This is a customization process from general to
specific, which is different from the goal of the Android-x86 project. In the Android-x86
project, all possible device drivers are available, while we should only include the drivers
needed by recovery for VirtualBox here. As we can see when we introduce a two stages
boot, all possible device drivers are compiled and available in the
$OUT/system/lib/modules/4.x.x-android-x86 folder.

The kernel modules will be loaded to the system depending on the hardware found by the
kernel dynamically. In our case, we will remove the dynamically loading process and keep
the minimum kernel modules only necessary for the recovery boot up. Let's look at the
original startup script for x86vbox:

on init
 exec -- /system/bin/logwrapper /system/bin/sh /system/etc/init.sh

During the startup, the init process will run the preceding command line to execute the
/system/etc/init.sh script. The commands /system/bin/logwrapper and
/system/bin/sh are both part of the Android system in the /system/bin folder. They are
not available to recovery, since the /system partition is not mounted after recovery boot
up.

To resolve this issue, we will use the busybox binary in initrd.img to provide a
minimum environment to execute Linux shell commands in recovery environments. We
cannot execute the /system/etc/init.sh script either, since it is stored in the
/system/etc folder, which is also not available to recovery. We will replace it by creating
another script, init.x86vbox.sh, in /sbin in the recovery environment.

We changed init.recovery.x86vbox.rc to the following one to remove the dependency
from /system:

on early-init
 # for /bin/busybox
 symlink /bin/ld-linux.so.2 /lib/ld-linux.so.2
 symlink /bin/busybox /bin/sh

on init
 mkdir /vendor
 exec -- /bin/sh /sbin/init.x86vbox.sh

service network_start /sbin/network_start.sh
 user root

Creating OTA Packages

[390]

 seclabel u:r:recovery:s0
 oneshot

service console /bin/sh
 class core
 console
 group shell log
 seclabel u:r:shell:s0

on property:ro.debuggable=1
 start console

During the early-init stage, we create the soft-links to make /bin/sh available. We
replaced /system/bin/sh with /bin/sh residing in recovery ramdisk.

In the init.x86vbox.sh script, we load the device drivers needed by recovery as follows:

#!/bin/busybox sh

echo -n "Initializing x86vbox hardware ..."
PATH=/bin:/sbin:/bin; export PATH

cd /bin;busybox --install -s

cd /x86vbox
insmod atkbd.ko
insmod cn.ko
insmod vboxguest.ko
insmod vboxsf.ko
insmod uvesafb.ko mode_option=${UVESA_MODE:-1024x768}-32

/sbin/mount.vboxsf sdcard /vendor

As we can see, in the shell script init.x86vbox.sh, we created all soft-links for busybox
first. Then, we loaded all necessary device drivers. We also mounted a shared folder of
VirtualBox under the /vendor folder so that we can exchange data between the host and
the guest. We will use this folder in the next chapter.

Creating OTA Packages

[391]

Minimum execution environment in recovery
As we can see from both scripts, init.recovery.x86vbox.rc and init.x86vbox.sh,
we need to execute some Linux commands so that we can perform our tasks during the
boot up process.

We need to include all these Linux commands in ramdisk-recovery.img so that they are
available to recovery. However, the problem is not as simple as we think so far. Most of the
commands are dynamically linked instead of static linked in AOSP build output.

In our case, we have two sets of shared libraries that we need to include in ramdisk-
recovery.img. The busybox binary in initrd.img from Android-x86 is prebuilt out of
the AOSP tree, so they have their own dependencies. If we go to the newinstaller folder
bootable/newinstaller/initrd, we can see the list of executable and shared libraries:

$ ls -1 lib
libcrypt.so.1
libc.so.6
libdl.so.2
libm.so.6
libntfs-3g.so.31
libpthread.so.0
librt.so.1
$ ls -1 bin
busybox
ld-linux.so.2
lndir

There are eight shared libraries besides the busybox binary, as we can see in the preceding
snippet.

Besides busybox, we also have some executables that are built as part of the AOSP source
tree. They have a different set of shared libraries, which need to be included in ramdisk-
recovery.img as well. For example, the display uvesafb driver needs a user space
daemon /sbin/v86d, which is built as part of the AOSP tree. Without a set of shared
libraries in place, it won't be able to work properly. To allow us to run these executable files,
we need to include the following shared libraries in ramdisk-recovery.img:

$ ls -1 recovery/root/system/lib
libc.so
libc++.so
libcutils.so
libext2_uuid.so
liblog.so
libm.so

Creating OTA Packages

[392]

libpcre.so
libselinux.so

You may be wondering how to find the shared library dependencies. One way that we can
do this is to get the linkage information using the following command:

$ readelf -d $OUT/recovery/root/sbin/v86d

Dynamic section at offset 0x3e68 contains 29 entries:
 Tag Type Name/Value
 0x00000003 (PLTGOT) 0x4f7c
0x00000002 (PLTRELSZ) 240 (bytes)
0x00000017 (JMPREL) 0x5b0
0x00000014 (PLTREL) REL
0x00000011 (REL) 0x5a8
0x00000012 (RELSZ) 8 (bytes)
0x00000013 (RELENT) 8 (bytes)
0x00000015 (DEBUG) 0x0
0x00000006 (SYMTAB) 0x1a0
0x0000000b (SYMENT) 16 (bytes)
0x00000005 (STRTAB) 0x3d0
0x0000000a (STRSZ) 324 (bytes)
0x6ffffef5 (GNU_HASH) 0x514
0x00000001 (NEEDED) Shared library: [libc++.so]
0x00000001 (NEEDED) Shared library: [libdl.so]
0x00000001 (NEEDED) Shared library: [libc.so]
0x00000001 (NEEDED) Shared library: [libm.so]
0x00000020 (PREINIT_ARRAY) 0x4e50
0x00000021 (PREINIT_ARRAYSZ) 0x8
0x00000019 (INIT_ARRAY) 0x4e58
0x0000001b (INIT_ARRAYSZ) 8 (bytes)
0x0000001a (FINI_ARRAY) 0x4e60
0x0000001c (FINI_ARRAYSZ) 8 (bytes)
0x0000001e (FLAGS) BIND_NOW
0x6ffffffb (FLAGS_1) Flags: NOW
0x6ffffff0 (VERSYM) 0x540
0x6ffffffe (VERNEED) 0x588
0x6fffffff (VERNEEDNUM) 1
0x00000000 (NULL) 0x0

As we can see from the preceding output, we can find the shared libraries needed by
/sbin/v86d using the readelf command. We also need to verify the dependencies
through the testing in the recovery environment, which we will discuss more in the next
chapter.

Creating OTA Packages

[393]

To include all the discussed kernel modules and shared libraries in ramdisk-
recovery.img, we changed a part of x86vbox.mk as follows:

Creating OTA Packages

[394]

Building and testing
After we have done all the analysis in this chapter, we can build and test our code now.

As usual, we have a manifest file for each chapter. We make changes for this chapter based
on the source code of Chapter 12, Introducing Recovery. The following are the projects that
we changed in this chapter:

<?xml version="1.0" encoding="UTF-8"?>
<manifest>

 <remote name="github"
 revision="refs/tags/android-7.1.1_r4_x86vbox_ch13_r1"
 fetch="." />

 <remote name="aosp"
 fetch="https://android.googlesource.com/" />
 <default revision="refs/tags/android-7.1.1_r4"
 remote="aosp"
 sync-c="true"
 sync-j="1" />

 <!-- github/android-7.1.1_r4_ch13 -->
 <project path="kernel" name="goldfish" remote="github" />
 <project path="bootable/newinstaller"
 name="platform_bootable_newinstaller" remote="github" />
 <project path="device/generic/common" name="device_generic_common"
 groups="pdk" remote="github" />
 <project path="device/generic/x86vbox" name="x86vbox" remote="github"
 />
 <project path="bootable/recovery" name="android_bootable_recovery"
 remote="github" groups="pdk" />
...

We can see that we need to change four projects: recovery, newinstaller, common, and
x86vbox. We have an android-7.1.1_r4_x86vbox_ch13_r1 tag as the baseline of the
source code for this chapter.

Creating OTA Packages

[395]

To get the source code from GitHub and AOSP directly, the following command can be
used:

$ repo init -u https://github.com/shugaoye/manifests -b
android-7.1.1_r4_ch13_aosp
$ repo sync

After the source code is ready for use, we can set the environment and build the system as
follows:

$. build/envsetup.sh
$ lunch x86vbox-eng
$ make -j4

To build initrd.img, we can run the following command:

$ make initrd USE_SQUASHFS=0

To build the OTA package for the x86vbox device, we can run the following command:

$ mkdir -p dist_output
$ make dist DIST_DIR=dist_output

To test the AOSP images in VirtualBox, we need to use PXE boot and NFS as we introduced
in Chapter 9, Booting Up x86vbox Using PXE/NFS.

After the build is completed, we can add an entry in the PXE boot configuration file,
$HOME/.VirtualBox/TFTP/pxelinux.cfg/default, as follows to test recovery:

label 3. Recovery - x86vbox
menu x86vbox_ramdisk_recovery
kernel x86vbox/kernel
append ip=dhcp console=ttyS3,115200 initrd=x86vbox/ramdisk-recovery.img
androidboot.hardware=x86vbox

Creating OTA Packages

[396]

After the recovery is started, we can see the following screen of recovery on the x86vbox
device:

The user interface of recovery for x86vbox looks the same on any Android device.

Before you download the source code and build everything by yourself, you can also
download and test the pre-built image in this chapter at h t t p s ://s o u r c e f o r g e . n e t /p r o j e c

t s /a n d r o i d - s y s t e m - p r o g r a m m i n g /f i l e s /a n d r o i d - 7/c h 13/c h 13. z i p /d o w n l o a d .

https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch13/ch13.zip/download

Creating OTA Packages

[397]

Summary
In this chapter, we learnt about the workflow of updater, which is the one actually to do the
work of the OTA update. The updater interprets the updater script inside the OTA package
to perform the update. We don't have to create the updater script by ourselves. It is created
during the build process automatically. You may have some questions here, since you may
use some recovery packages created by open source developers or ROM developers. You
may even use recovery distributed by LineageOS/CyanogenMod or TWRP. How do they
relate to the topics that we discussed in this chapter? These are the topics that we will cover
in the next chapter.

14
Customizing and Debugging

Recovery
In the last chapter, we created an OTA package for our x86vbox device. We also improved
the recovery to remove all dependencies from the Android system so that it becomes a self-
contained environment. We can run recovery and update the system using the OTA
package we created. After the system is updated, we cannot use a two stages boot since the
system becomes a standard Android system image layout.

In this chapter, we will enhance both recovery and the updater to support both standard
and two stages boot using one system image. We will also enhance recovery to resolve one
issue that we haven't talked about, which is how we pick up the OTA package in the
recovery environment. In this chapter, we will cover the following topics:

Introducing the Android native application debug skill, which we can use to
debug both recovery and the updater
Extending recovery and the updater to support the enhanced system image and
load the OTA package via the shared folder of VirtualBox
Exploring the famous third-party recovery packages such as Xposed, GApps, and
so on

Customizing and Debugging Recovery

[399]

Debugging and testing native Android
applications
Since the recovery environment is a self-contained environment, both recovery and the
updater are static linked so they don't depend on the C runtime shared libraries. We talked
about the C runtime shared libraries in the last chapter, when we removed the
dependencies from the /system folder. In such an environment, the production release
may contain only recovery itself, so it is very difficult to debug the recovery or updater in
such an environment.

The only way that we can identify the potential issues is to look at the log files stored in the
cache partition. At runtime, recovery prints the debug messages to the
/tmp/recovery.log log file. Before it prepares to reboot the system, it will store the log
file to the cache partition at /recovery/last_log. If the updater is executed to update the
system, it will store the log file at /recovery/last_install in the cache partition.

To debug recovery or the updater in the production release, the developers can build the
new version and flash it to the recovery partition. After that, the system needs to be
rebooting to recovery to perform the test cases. Then, the developers need to check the log
files in the cache partition to identify any potential issues. This process is very tedious and
not efficient.

To make life easier, the developers may add a console service to the debug environment
and remove it later in the production release. This is exactly what we do in our recovery
build. We can add the following console service in the init.recovery.x86vbox.rc
script:

service console /bin/sh
 class core
 console
 group shell log
 seclabel u:r:shell:s0

To have a console service, we need to include a shell environment. We can choose the
toolbox or toybox in AOSP. We can also use the more powerful tool, busybox, which is
the common tool used in many embedded systems.

After we have a debug console, we have a lot of flexibility to do many things. We can
monitor the log messages at runtime instead of checking them offline. We can even include
the gdbserver to the debug environment so that we can do source level debugging using
gdb.

Customizing and Debugging Recovery

[400]

In this chapter, I will introduce how to do source-level debugging of both recovery and the
updater. I will also introduce how to integrate the source-level debugging into Eclipse so
that we can have an environment that is similar to the normal native Android application
development, which is highly efficient for the developers who work on Android recovery.

Debugging with GDB
To use GDB to debug recovery and the updater, we need to tweak the start up script a little
so that it won't start the recovery automatically. With this change, after the system boot up,
we can start it using gdbserver in the debug console. To do this, we need to make a change
to the $OUT/recovery/root/init.rc script as follows:

service recovery /sbin/recovery
 seclabel u:r:recovery:s0
 disabled

We add the disabled option to the recovery service. After the system boot up, we can start
it manually or we can execute the recovery from the command line directly.

Both AOSP and Android NDK include gdb and gdbserver, so the developers can do
source-level debugging for native applications.

In AOSP environments, gdb can be found at the following path:

$AOSP/prebuilts/gdb/linux-x86/bin/gdb

gdbserver is included in the system image by default. It can be found at:

$OUT/system/bin/gdbserver

We can copy gdbserver from the system image to ramdisk-recovery.img in the
recovery debug environment.

In the embedded system or Android, gdbserver and gdb work in client/server mode. On
Android devices, gdbserver invokes the debug target as a server. On the host side, gdb
can connect to gdbserver through the network protocol. The network protocol is TCP over
the adb connection.

To debug recovery, we can run the following command in the debug console:

gdbserver :10000 /sbin/recovery

Customizing and Debugging Recovery

[401]

The debug port of the TCP protocol is 10000 here. We need to use adb to forward this port
to the host side, since the network ports on the device side are invisible to the host. On the
host side, we can run the following command to do the port forwarding:

$ adb forward tcp:10000 tcp:10000

After this, we can start gdb on the host side to establish the connection. We use gdb to
debug recovery as an example here:

$ gdb $OUT/recovery/root/sbin/recovery

Pay attention to the fact that we use the gdb command from AOSP here and use the $OUT
environment variable to locate the executable for the build output. Set up your environment
variables correctly or use the absolute path. All our commands in this chapter are executed
in the AOSP build environment. To set the AOSP build environment, we can run the
following commands:

$ source build/envsetup.sh
$ lunch x86vbox-eng

After we start gdb to debug recovery, we may find an error message to complain that there
are no debugging symbols in the executable. We need to load the debugging symbols and
set the paths so that gdb can find the symbols for both recovery and any libraries loaded.
We need to execute the following three commands in the gdb command line:

(gdb) symbol-file
$OUT/obj/EXECUTABLES/recovery_intermediates/LINKED/recovery
(gdb) set solib-absolute-prefix $OUT/symbols
(gdb) set solib-search-path $OUT/symbols/system/lib

For convenience, I use the $OUT environment variable to represent the output folder of the
AOSP build. We can use it in the AOSP build shell console, but we cannot use it in the gdb
command line. Convert it to the absolute path in your environment.

We can connect to gdbserver now. To connect to gdbserver, we can run the following
command in the gdb command-line prompt:

(gdb) target remote :10000

The port 10000 tells gdb to connect to the localhost port 10000, which we forward from the
device using the adb command. We can debug recovery at source code level now.

Customizing and Debugging Recovery

[402]

To make the debugging process more convenient, we can put the symbol loading to the gdb
start up script so that we don't have to do this every time. When gdb starts, it will look for a
.gdbinit file at the Home directory. If gdb can find this file, it will run the command inside
this file automatically. We can put the previous symbol loading in .gdbinit as follows for
recovery:

python
import os
gdb.execute('symbol-file ' + os.environ['OUT'] +
'/obj/EXECUTABLES/recovery_intermediates/LINKED/recovery')
gdb.execute('set solib-absolute-prefix '+ os.environ['OUT'] + '/symbols')
gdb.execute('set solib-search-path ' + os.environ['OUT'] +
'/symbols/system/lib')
end

As we can see, we actually create a short Python script in .gdbinit. The gdb command line
supports Python binding, so we can run python in the gdb command line. With python,
we can use the $OUT environment variable, so we can make this script portable.

Even though this script is portable, without using the absolute paths, this script is for
recovery only. We need to change it when we debug the updater. We will integrate gdb into
Eclipse later. With Eclipse integration, we can run different gdb start up scripts for different
debugging targets. We can create two gdb start up scripts, one for recovery and one for the
updater. We can name them recovery.gdb and updater.gdb. The content of
recovery.gdb is the same as the previous content. updater.gdb looks as follows:

python
import os
gdb.execute('symbol-file ' + os.environ['OUT'] +
'/obj/EXECUTABLES/updater_intermediates/LINKED/updater')
gdb.execute('set solib-absolute-prefix '+ os.environ['OUT'] + '/symbols')
gdb.execute('set solib-search-path ' + os.environ['OUT'] +
'/symbols/system/lib')
end

Before we move to the next topic on Eclipse integration, we still have one last issue that
needs to be resolved for the source-level debugging. To run recovery, we can just execute it
without any command-line arguments. For the updater, we need to provide the following
three command-line arguments; if we recall, we talked about the internals of the updater in
the last chapter:

Updater version
Pipe to communicate with recovery
Path of OTA package

Customizing and Debugging Recovery

[403]

We can run the updater in the debug console as follows to start gdbserver:

gdbserver :10000 {path of updater}/updater 3 1 {path of OTA package}

From the preceding snippet, we can see that we need to resolve two paths. Where do we
store the updater and where do we store the OTA package?

When the users perform an update in recovery, recovery extracts the updater to the /tmp
folder from the OTA package and starts it from there. In the normal debugging of recovery
and the updater, the developers use the sideloading methods provided by recovery. There
are two ways to load the OTA package using sideloading. One way is to load from an SD
card and the other one is to load the OTA package from the adb connection in sideloading
mode. In our configuration, we have a separate partition--the virtual hard disk for SD card
if we refer to recovery.fstab:

...
/dev/block/sda3 /sdcard vfat defaults voldmanaged=sdcard:auto
...

We can find a way to load both the updater and the OTA package to this SD card partition,
but it is not convenient for us. In our case, since we use VirtualBox, we can use the shared
folder between the host and the guest of VirtualBox to resolve this problem very easily. If
you don't remember this, you can refer to Chapter 11, Enabling VirtualBox Specific-Hardware
Interfaces, as we discussed this topic in detail there. We can map the shared folder to the
/vendor folder in our recovery environment. We can copy the updater and the OTA
package to this folder or we can even map the AOSP build output to this folder directly.
After we set up this folder, we can invoke the updater using gdbserver as follows:

gdbserver :10000 /vendor/sbin/updater 3 1 /vendor/update-x86vbox-ch14.zip

We can debug both recovery and the updater now.

Integration with Eclipse
As we use Eclipse as the Integrated Development Environment (IDE) in this book, we can
integrate the source-level debugging to the Eclipse environment so we can have a much
better user interface compared to the command line-based gdb.

Before we can debug recovery or the updater in Eclipse, we need to import projects x86vbox
and recovery to Eclipse. Refer to Chapter 4, Customizing the Android Emulator; there is a
section called Integrating with Eclipse that shows how to do this.

Customizing and Debugging Recovery

[404]

As we know, Eclipse uses different plugins to support different programming languages.
Google used to provide the Android Development Tooling (ADT) plugin for Eclipse as the
Android application development environment. For the Android native applications, we
usually use C/C++ Development Tooling (CDT) for the C/C++ language development. To
integrate the source-level debugging of recovery and the updater with Eclipse, we need to
configure CDT to do so. This configuration process is general to all Android native
application developments. You can use any latest Eclipse with CDT to follow the
instructions in this section. In our case, we use the Eclipse version that comes with the ADT
bundle. It may still be available at the following URL:

https://dl.google.com/android/adt/adt-bundle-linux-x86_64-20140702.zip

To configure CDT to use gdb from AOSP, we can select the menu Run and Debug
Configurations to create a new debug configuration in the C/C++ Application item called
recovery debug, as shown in the following screenshot. We will use this debug configuration
to debug recovery. We can create the debug configuration for the updater to use the same
setup process:

https://dl.google.com/android/adt/adt-bundle-linux-x86_64-20140702.zip

Customizing and Debugging Recovery

[405]

In the Main tab, we can set Project to recovery, which we import to Eclipse from the
AOSP source code. We can set C/C++ Application to recovery or updater in the AOSP
output folder using the Browse... button.

At the bottom of the dialog box, we can select the launcher to use. If we click the
highlighted text Select other..., we will see the following dialog box:

We should choose the launch type Standard Create Process Launcher.

Customizing and Debugging Recovery

[406]

Next, we should go to the Debugger tab, as shown in the following screenshot, to set the
debugger configuration. In this Debugger tab, we should set Debugger as gdbserver. In the
Debugger Options group, there are multiple tabs as well. We should set GDB debugger as
x86_64-linux-android-gdb for Android 6 or gdb for Android 7. In both cases, gdb in the
prebuilts/ folder of AOSP should be used. For GDB command file, we should set
recovery.gdb for recovery and updater.gdb for the updater. The GDB command file is
the GDB script that we talked about in the Debugging with GDB section. We start Eclipse
from the AOSP build console so that all the paths for the AOSP prebuilt tools have been set
up properly in the AOSP build console. Otherwise, we should use the absolute path:

Customizing and Debugging Recovery

[407]

To configure the connection with gdbserver, we need to go to the Connection tab in the
Debugger Options group, as we can see in the following screenshot. The Type should be
set to TCP. The Host name or IP address should be localhost. We set the Port number to
10000:

Customizing and Debugging Recovery

[408]

Now we have set up all the necessary configurations in CDT for gdbserver. We can start to
debug recovery or the updater from the device console using the following command:

gdbserver :10000 /sbin/recovery

Or:

gdbserver :10000 /vendor/sbin/updater 3 1 /vendor/update-x86vbox-ch14.zip

Once we start gdbserver on the device, we need to forward the TCP port 10000 to
localhost using the following command:

$ adb forward tcp:10000 tcp:10000

After this, we can click the Debug button in the preceding screenshot to start a debugging
session, and we will see the following screen in the Eclipse debug perspective:

Customizing and Debugging Recovery

[409]

Extending recovery and the updater
After we have set up the debug environment for both recovery and the updater, we will
extend both in this chapter to achieve the following goals:

Customized update package: We will create a single system image that can be
used for a standard Android boot and a two stages boot.
Creating partitions: We introduced how to install x86vbox images to hard disk
using NFS in Chapter 9, Booting Up x86vbox Using PXE/NFS. We will use
recovery as a method to install x86vbox images in this chapter. To install x86vbox
images on a blank hard disk, we need to add an option to allow the users to
create partitions on the hard disk.
VBox shared folder: In order to access the x86vbox update images conveniently,
we will enhance recovery to be able to use the VirtualBox shared folder to store
update packages. Since the VirtualBox shared folder can be accessed from both
the host and the device, the developers can choose to map the AOSP output
folder as shared storage or can copy update packages to the shared storage
manually.

The AOSP recovery system has defined a proper way to extend both recovery and the
updater to perform device-specific tasks. The third-party recovery programs such as TWRP
or Cyanogen use a similar way to extend the AOSP recovery. The method introduced in this
chapter is a good reference for manufacturing or ROM developers about how to extend or
enhance the original AOSP recovery and updater.

Extending recovery
The original AOSP recovery is written in C++ language. The implementation of key
functionalities is encapsulated in two classes. In the documentation of AOSP, it is
recommended to extend recovery to create your own classes by inheriting these two classes.

Customizing and Debugging Recovery

[410]

The first class that we will extend is class Device defined in $AOSP/
bootable/recovery/device.h and the second one is the ScreenRecoveryUI class
defined in $AOSP/bootable/recovery/screen_ui.h. The ScreenRecoveryUI class is
inherited from another class, RecoveryUI, which is used by recovery to perform user
interaction functions. The AOSP recovery uses the polymorphism of C++ so that we can
extend both the Device and RecoveryUI classes to let recovery use our version of these
two classes to include additional features as we want. We can look at the code of recovery
initialization as follows:

...
RecoveryUI* ui = NULL;
...
 Device* device = make_device();
 ui = device->GetUI();
 gCurrentUI = ui;

 ui->SetLocale(locale);
 ui->Init();
...

During the initialization, recovery creates an instance of the Device class by calling the
make_device function. Inside the device instance, a RecoveryUI class instance is
initialized as well. Recovery gets it by calling the device->GetUI() function and stores it
in the ui global variable. To initialize the graphic system, it calls to the
ui->Init() function to do the graphic system initialization.

The AOSP recovery allows the developers to overwrite the make_device function to
extend the Device and RecoveryUI classes through inheritance.

Let's come back to the goals that we want to achieve to extend recovery. We want to add the
following two enhanced features to the recovery of the x86vbox device:

Create partitions according to the recovery.fstab file.1.
Enable to apply updates from the VirtualBox shared folder.2.

We start with the changes to extend the ScreenRecoveryUI class as follows:

#include <linux/input.h>
#include <sys/types.h>
#include <sys/wait.h>

#include "common.h"
#include "screen_ui.h"
#include "device.h"

Customizing and Debugging Recovery

[411]

// defined in "roots.h"
int unmount_format_volumes(int format);

class X86vboxUI : public ScreenRecoveryUI {
public:
 virtual KeyAction CheckKey(int key) {
 if (key == KEY_HOME) {
 return TOGGLE;
 }
 return ENQUEUE;
 }
};

The X86vboxUI class is created in the file under the device x86vbox folder as follows:

$AOSP/device/generic/x86vbox/recovery/recovery_x86vbox.cpp

As we can see, we overwrite a CheckKey virtual function to handle the key press. We use
the methods from the parent class, ScreenRecoveryUI, for all other functions.

Next, we extend the Device class to add our features as follows:

class X86vboxDevice : public Device {
private:
 X86vboxUI* ui_;

public:
 X86vboxDevice(X86vboxUI* ui) : Device(ui), ui_(ui) { }

 virtual const char* const* GetMenuItems();
 virtual BuiltinAction InvokeMenuItem(int menu_position);
 X86vboxUI* GetUI() { return ui_; }
 int CreatePartitions();
};

In our X86vboxDevice class, we overwrite the GetMenuItems, InvokeMenuItem, and
GetUI methods to change the menu items and support sideloading from the VirtualBox
shared folder. We add a new method, CreatePartitions, to allow the users to create
partitions on hard disk:

static const char* MENU_ITEMS[] = {
 "Reboot system now",
 "Reboot to bootloader",
 "Apply update from VBox shared storage",
 "Apply update from SD card",
 "Wipe data/factory reset",
 "Wipe cache partition",

Customizing and Debugging Recovery

[412]

 "Mount /system",
 "View recovery logs",
 "Create partitions",
 "Power off",
 NULL
};

const char* const* X86vboxDevice::GetMenuItems() {
 return MENU_ITEMS;
}

As we can see from the preceding code, we changed the original menu item "Apply
update from ADB" to "Apply update from VBox shared storage" and we added an
additional menu item "Create partitions". When the users select an action from the
preceding menu item, the following InvokeMenuItem function will be called eventually:

Device::BuiltinAction X86vboxDevice::InvokeMenuItem(int menu_position) {
 switch (menu_position) {
 case 0: return REBOOT;
 case 1: return REBOOT_BOOTLOADER;
 case 2: return APPLY_ADB_SIDELOAD; // Apply update from VBox shared
 // storage
 case 3: return APPLY_SDCARD;
 case 4: return WIPE_DATA;
 case 5: return WIPE_CACHE;
 case 6: return MOUNT_SYSTEM;
 case 7: return VIEW_RECOVERY_LOGS;
 case 8:
 // Create partition
 CreatePartitions();
 return NO_ACTION;
 case 9: return SHUTDOWN;
 default: return NO_ACTION;
 }
}

As we can see, there are a set of default actions that are defined in the BuiltinAction
enum as follows. These actions are handled by recovery itself:

NO_ACTION: Do nothing.
REBOOT: Exit recovery and reboot the device normally.
REBOOT_BOOTLOADER: Exit recovery and reboot the device to bootloader.
APPLY_EXT, APPLY_CACHE, and APPLY_ADB_SIDELOAD: Install an update
package from various places. It can be a storage on an SD card or a connection
from adb.

Customizing and Debugging Recovery

[413]

WIPE_DATA: Reformat the user data and cache partitions, also known as a factory
data reset.
WIPE_CACHE: Reformat the cache partition only.
MOUNT_SYSTEM: Mount the System folder.
VIEW_RECOVERY_LOGS: View recovery logs.
SHUTDOWN: Power off the device.

We reuse the APPLY_ADB_SIDELOAD member of the BuiltinAction enum to install an
update package from the VirtualBox shared folder for the x86vbox device. The changes
were made in the bootable/recovery/recovery.cpp file and we will talk about this in a
moment.

To create partitions, we call the CreatePartitions member function and return
NO_ACTION. There is no action needed to be done in the upper layer:

static const char *X86VBOX_PARTITION_SCRIPT = "/sbin/create_partitions.sh";
static char* const x86vbox_argv[] = {"create_partitions.sh", NULL};
int X86vboxDevice::CreatePartitions() {
 int status;
 pid_t child;

 status = unmount_format_volumes(0);
 if (status != 0) {
 LOGE("failed to un-mount the partitions; aborting\n");
 return status;
 }

 if ((child = vfork()) == 0) {
 execv(X86VBOX_PARTITION_SCRIPT, x86vbox_argv);

 status = unmount_format_volumes(1);
 if (status != 0) {
 LOGE("failed to format the volumes; aborting\n");
 return status;
 }
 _exit(-1);
 }
 waitpid(child, &status, 0);
 if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) {
 LOGE("%s failed with status %d\n", X86VBOX_PARTITION_SCRIPT,
 WEXITSTATUS(status));
 }
 return WEXITSTATUS(status);
}

Customizing and Debugging Recovery

[414]

In CreatePartitions, we call the unmount_format_volumes function to unmount hard
disk volumes first, if there are any of them in use. Then, we execute a
/sbin/create_partitions.sh shell script to create partitions. Finally, we call the
unmount_format_volumes function again to unmount and format hard disk volumes. The
argument of the unmount_format_volumes function tells us whether we want to format
the partition after we create it. Let's look at this function as follows:

#ifdef X86VBOX_RECOVERY
//
// Unmount or format volumes
// format - if it is not zero, format the volume.
//
int unmount_format_volumes(int format) {
 if (fstab == NULL) {
 LOGE("can't set up install mounts: no fstab loaded\n");
 return -1;
 }
 for (int i = 0; i < fstab->num_entries; ++i) {
 Volume* v = fstab->recs + i;

 if (strcmp(v->mount_point, "/tmp") == 0) {
 if (ensure_path_mounted(v->mount_point) != 0) {
 LOGE("failed to mount %s\n", v->mount_point);
 return -1;
 }
 } else {
 if (ensure_path_unmounted(v->mount_point) != 0) {
 LOGE("failed to unmount %s\n", v->mount_point);
 return -1;
 }
 if (format) {
 if(strcmp(v->mount_point, "/system") == 0 ||
 strcmp(v->mount_point, "/data") == 0 ||
 strcmp(v->mount_point, "/cache") == 0) {
 int result = format_volume(v->mount_point);
 if (result != 0) {
 LOGE("failed to format volume:%s; aborting\n", v-
 >mount_point);
 return result;
 }
 }
 }
 }
 }
 return 0;
}
#endif

Customizing and Debugging Recovery

[415]

We changed the bootable/recovery/roots.cpp recovery code to add this function, so
we add an X86VBOX_RECOVERY macro to enable or disable it.

Now, let's look at how we implement the installation of an update package from the
VirtualBox shared folder. We reuse the APPLY_ADB_SIDELOAD action to call our
apply_from_x86vbox function to do this. After InvokeMenuItem is returned, it returns to
a recovery function, prompt_and_wait. This is where recovery waits for user input and
takes the corresponding actions:

...
case Device::APPLY_ADB_SIDELOAD:
case Device::APPLY_SDCARD:
 {
 bool adb = (chosen_action == Device::APPLY_ADB_SIDELOAD);
 if (adb) {
 #ifdef X86VBOX_RECOVERY
 status = apply_from_x86vbox(device, &should_wipe_cache);
 #else
 status = apply_from_adb(ui, &should_wipe_cache,
 TEMPORARY_INSTALL_FILE);
 #endif
 } else {
 status = apply_from_sdcard(device, &should_wipe_cache);
 }
...

We changed the bootable/recovery/recovery.cpp recovery code, so we conditionally
compile the code using the X86VBOX_RECOVERY macro.

The apply_from_x86vbox function is also implemented in the same file, as follows:

#ifdef X86VBOX_RECOVERY
static const char *X86VBOX_ROOT = "/vendor";

static int apply_from_x86vbox(Device* device, bool* wipe_cache) {
 modified_flash = true;

 char* path = browse_directory(X86VBOX_ROOT, device);
 if (path == NULL) {
 ui->Print("\n-- No package file selected.\n");
 return INSTALL_ERROR;
 }

 ui->Print("\n-- Install %s ...\n", path);
 set_sdcard_update_bootloader_message();
 void* token = start_sdcard_fuse(path);

Customizing and Debugging Recovery

[416]

 int status = install_package(FUSE_SIDELOAD_HOST_PATHNAME,
 wipe_cache, TEMPORARY_INSTALL_FILE, false);

 finish_sdcard_fuse(token);
 return status;
}
#endif

As we can see, we reuse the code from the apply_from_sdcard function and change the
path to /vendor, which is the mount point for the VirtualBox shared folder.

Finally, we overwrite the make_device function to create an instance of the
X86vboxDevice class instead of the Device class:

Device* make_device() {
 return new X86vboxDevice(new X86vboxUI);
}

After we make all the changes, we can run the code in the gdb debugger as we explained in
an earlier part of this chapter.

After we start gdb and connect to the target device, we can set the debug point at:

(gdb) b make_device
(gdb) b X86vboxDevice::InvokeMenuItem

We can trace and debug our code now.

Extending the updater
We have three goals in this chapter to support additional features for the x86vbox device.
We implemented VirtualBox shared folder support and created partitions in recovery code.
The last one is that we want to create a customized update package. We can use this image
to support both the standard Android boot process and the two stages boot.

Customizing and Debugging Recovery

[417]

If we want to create an image that can support both boot up processes, let's look at the
following diagram:

Layout of images for two stages boot

In the preceding diagram, we show the layout of three image files involved in both the
normal boot up process and the two stages boot up process.

In the normal boot up process, there are only ramdisk.img and system.img involved.
When kernel and ramdisk.img are loaded into memory, the layout of ramdisk.img is
used as the root filesystem. The init process is in charge of mounting the rest of the
filesystems to the root filesystem. system.img is mounted at the /system folder.

In the two stages boot up process, there are four image files involved: initrd.img,
ramdisk.img, system.img, and the image file for the first stage boot. The image file for
the first stage is an image like the x86emu_x86.img that we introduced in Chapter 6,
Debugging the Boot Up Process Using a Customized ramdisk. The image files ramdisk.img and
system.img are included inside x86emu_x86.img. At the beginning, kernel and
initrd.img are loaded into memory. The layout of initrd.img is the root filesystem of
the first stage boot. A separate image file containing both ramdisk.img and system.img is
mounted at the /mnt/android-x86vbox folder.

Customizing and Debugging Recovery

[418]

The init script inside initrd.img extracts ramdisk.img to the /android folder. This
folder will be used as the root filesystem of the second stage boot. The init script will do a
bind mount of system.img to the /android/system folder, so we will have a complete
Android filesystem layout under the /android folder.

To combine the first stage image file like x86emu_x86.img to system.img, we can create
an android-x86vbox folder in the system.img and put both ramdisk.img and
ramdisk-recovery.img in this folder. In the two stages boot, system.img is mounted at
/mnt. The init script in initrd.img can find ramdisk.img or ramdisk-recovery.img at
/mnt/android-x86vbox, which is the same as before. For system.img, we need to change
the init script a little. Instead of doing a bind mount from /mnt/android-
x86vbox/system.img to /android/system, we need to move the mount point /mnt to
/android/system. The following figure shows the layout of images after we combine the
two stages boot into system.img:

Layout of images using system.img for two stages boot

Customizing and Debugging Recovery

[419]

We can change the check_root function in the init script as shown in the following code
snippet. This function is in the bootable/newinstaller/initrd/init file. We move the
mount point using the mount command with the --move option. We also use an X86VBOX
kernel argument to handle this. If this variable is not defined, the behavior of the init script
won't change:

check_root()
{
 if ["`dirname $1`" = "/dev"]; then
 [-e $1] || return 1
 blk=`basename $1`
 [! -e /dev/block/$blk] && ln $1 /dev/block
 dev=/dev/block/$blk
 else
 dev=$1
 fi
 try_mount ro $dev /mnt || return 1
 find_ramdisk
 if [-n "$iso" -a -e /mnt/$iso]; then
 mount --move /mnt /iso
 mkdir /mnt/iso
 mount -o loop /iso/$iso /mnt/iso
 SRC=iso
 elif [! -e $RAMDISK]; then
 return 1
 fi
 zcat $RAMDISK | cpio -id > /dev/null
 if [-e /mnt/$SRC/system.sfs]; then
...
 else
 if [-n "$X86VBOX"]; then
 mount --move /mnt /android/system
 else
 rm -rf *
 return 1
 fi
 fi
 mkdir mnt
 echo " found at $1"
 rm /sbin/mke2fs
 hash -r
}

Customizing and Debugging Recovery

[420]

In the standard build of the OTA package, we won't be able to include ramdisk.img and
ramdisk-recovery.img into the system.img. Luckily, the AOSP recovery provides a
way to support this kind of situation. To make this change we need to provide additional
functions in our code, and the build system will include the code in the build process
automatically.

To support this, we need to do two things. The first one is we need to add additional steps
to the OTA build process so that we can create a data file that we can apply to the system
during the OTA update. To do this, we can add an additional Python script that will be
invoked during the OTA build. This Python script will add our customized edify function
to the updater script.

The second one is we need to enhance the updater to process our edify functions during the
OTA update. If we recall, we covered the RegisterDeviceExtensions function when we
walked through the implementation of the updater in Chapter 13, Creating OTA Packages.
This is how the updater can register device extensions during the initialization.

To extend the updater, we can create a file in our device folder at
device/generic/x86vbox/recovery/recovery_updater.c

We add a device-specific edify function, x86vbox.reprogram, in this file as follows:

#include <stdlib.h>
#include <string.h>

#include "edify/expr.h"
#include "minzip/Zip.h"
#include "minzip/SysUtil.h"

extern struct selabel_handle *sehandle;

Value* ReprogramX86vboxFn(const char* name, State* state, int argc, Expr*
argv[]) {
 bool success = false;

 if (argc != 2) {
 return ErrorAbort(state, "%s() expects 2 args, got %d", name,
 argc);
 }

 char* zip_path;
 char* dest_path;
 if (ReadArgs(state, argv, 2, &zip_path, &dest_path) < 0) return NULL;

 /* Start to extract files. */
 MemMapping map;

Customizing and Debugging Recovery

[421]

 if (sysMapFile(zip_path, &map) != 0) {
 printf("failed to map package %s\n", zip_path);
 goto done;
 }

 ZipArchive za;
 int err;
 err = mzOpenZipArchive(map.addr, map.length, &za);
 if (err != 0) {
 printf("failed to open package %s: %s\n",
 zip_path, strerror(err));
 goto done;
 }

 struct utimbuf timestamp = { 1217592000, 1217592000 }; // 8/1/2008
 // default

 success = mzExtractRecursive(&za, "android-x86vbox", dest_path,
 ×tamp,
 NULL, NULL, sehandle);
 /* End to extract files. */
 done:
 mzCloseZipArchive(&za);
 sysReleaseMap(&map);
 unlink(zip_path);
 free(zip_path);
 free(dest_path);

 return StringValue(strdup(success ? "t" : ""));
}

void Register_librecovery_updater_x86vbox() {
 RegisterFunction("x86vbox.reprogram", ReprogramX86vboxFn);
}

We can see that we register this edify function in
Register_librecovery_updater_x86vbox.

The implementation is done in the ReprogramX86vboxFn function. The
ReprogramX86vboxFn function has a list of standard arguments of all edify functions:

name: This is the name of the edify function
state: This is the context that the edify function is working at
argc: This is the number of arguments that pass to the edify function from the
updater script
argv: This is the list of arguments

Customizing and Debugging Recovery

[422]

What this function does is that it takes the path of a ZIP and the path of the destination
folder as the arguments. It extracts the contents of this ZIP to the destination folder. The ZIP
file is the one that includes both ramdisk.img and ramdisk-recovery.img so that they
can be used by the init script of initrd.img. The destination folder is /android-x86vbox,
which the init script will search for.

In the preceding function, both the ZIP file path and the destination folder are retrieved by
calling the ReadArgs function. After that, an instance of the data structure ZipArchive is
created to be used to extract files.

With all the code changes, we need to create an Android Makefile at:

device/generic/x86vbox/recovery/Android.mk

The following is the code of the Makefile. We will build recovery_x86vbox.cpp as the
librecovery_ui_x86vbox library and recovery_updater.c as the
librecovery_updater_x86vbox library:

LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)

LOCAL_MODULE_TAGS := eng
LOCAL_C_INCLUDES += bootable/recovery
LOCAL_SRC_FILES := recovery_x86vbox.cpp

should match TARGET_RECOVERY_UI_LIB set in BoardConfig.mk
LOCAL_MODULE := librecovery_ui_x86vbox

include $(BUILD_STATIC_LIBRARY)

include $(CLEAR_VARS)
LOCAL_MODULE_TAGS := eng
LOCAL_C_INCLUDES += bootable/recovery
LOCAL_SRC_FILES := recovery_updater.c

LOCAL_MODULE := librecovery_updater_x86vbox
include $(BUILD_STATIC_LIBRARY)

We also need to add the following two macros in BoardConfig.mk so that both recovery
and the updater will link to these two libraries:

device-specific extensions to the recovery UI
TARGET_RECOVERY_UI_LIB := librecovery_ui_x86vbox

add device-specific extensions to the updater binary
TARGET_RECOVERY_UPDATER_LIBS += librecovery_updater_x86vbox

Customizing and Debugging Recovery

[423]

We have extended both recovery and the updater to support the additional features we
need so far, but we still have two things missing. We need to create the ZIP file that will be
used by ReprogramX86vboxFn during the OTA update. We also need to add a few lines of
edify script in the updater script so that the ReprogramX86vboxFn function will be called
during the update.

To add the ZIP file to the OTA package, we can add a new Android Makefile,
AndroidBoard.mk, to our x86vbox device as follows:

LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)

$(call add-radio-file,images/x86vbox.dat)

These are called radio files for historical reasons. They may have nothing to do with the
device radio. The Android build system simply includes this x86vbox.dat file in the OTA
package.

To generate this x86vbox.dat file, we do this in our x86vbox device Makefile to avoid the
changes to the AOSP code:

X86VBOX_BOOT_IMAGES_DIR := images/android-x86vbox

...

dist:
 if [-d "images"]; then \
 echo "Find images folder."; \
 rm -rf images; \
 fi
 mkdir -p ${X86VBOX_BOOT_IMAGES_DIR}
 cp ${OUT}/ramdisk.img ${X86VBOX_BOOT_IMAGES_DIR}
 cp ${OUT}/ramdisk-recovery.img ${X86VBOX_BOOT_IMAGES_DIR}
 cp ${OUT}/kernel ${X86VBOX_BOOT_IMAGES_DIR}
 cd images; zip x86vbox.dat android-x86vbox/*
 cd ../../..;mkdir -p dist_output
 cd ../../..;make dist DIST_DIR=dist_output 2>&1 | tee x86vbox-`date
 +%Y%m%d`.txt

The preceding lines are added to device/generic/x86vbox/Makefile, so we will build
the OTA package in the device/generic/x86vbox folder as follows:

$ make dist

Now the only thing that we need to do is add the edify script to updater-script inside
the update package.

Customizing and Debugging Recovery

[424]

Extending the Python module
To extend the release tools, we can create a Python module named releasetools.py in
our device folder. The build system will check this file in the device folder. If it presents,
it will be called:

import common

def FullOTA_InstallEnd(info):
 info.script.Print("Full OTA update, Writing x86vbox images...")
 # copy the data into the package.
 x86vbox_dat = info.input_zip.read("RADIO/x86vbox.dat")
 common.ZipWriteStr(info.output_zip, "x86vbox.dat", x86vbox_dat)

 # emit the script code to install this data on the device
 info.script.AppendExtra(
 """package_extract_file("x86vbox.dat", "/tmp/x86vbox.zip");""")
 info.script.AppendExtra(
 """x86vbox.reprogram("/tmp/x86vbox.zip", "/system/android-
 x86vbox");""")

def IncrementalOTA_InstallEnd(info):
 info.script.Print("Incremental OTA update, Writing x86vbox
 images...")
 # copy the data into the package.
 source_x86vbox_dat = info.source_zip.read("RADIO/x86vbox.dat")
 target_x86vbox_dat = info.target_zip.read("RADIO/x86vbox.dat")

 if source_x86vbox_dat == target_x86vbox_dat:
 # x86vbox.dat is unchanged from previous build; no
 # need to reprogram it
 return

 # include the new x86vbox.dat in the OTA package
 common.ZipWriteStr(info.output_zip, "x86vbox.dat",
 target_x86vbox_dat)

 # emit the script code to install this data on the device
 info.script.AppendExtra(
 """package_extract_file("x86vbox.dat", "/tmp/x86vbox.zip");""")
 info.script.AppendExtra(
 """x86vbox.reprogram("/tmp/x86vbox.zip", "/system/android-
 x86vbox");""")

Customizing and Debugging Recovery

[425]

We implemented two Python functions that will be called by the build system. Both
FullOTA_InstallEnd and IncrementalOTA_InstallEnd will be called at the end of the
script generation. At this point, we can do additional things on top of the normal OTA
update. As we can guess from their names, FullOTA_InstallEnd is called for the full OTA
update and IncrementalOTA_InstallEnd is used for the incremental OTA update.

In both functions, we use Python to generate the following lines of edify script in
updater-script:

package_extract_file("x86vbox.dat", "/tmp/x86vbox.zip");
x86vbox.reprogram("/tmp/x86vbox.zip", "/system/android-x86vbox");

The first line, package_extract_file, is the edify function that we introduced in
Chapter 13, Creating OTA Packages. We use it to extract the x86vbox.dat ZIP file to
/tmp/x86vbox.zip. The second function, x86vbox.reprogram, is our extension of the
edify function that extracts files from /tmp/x86vbox.zip to /android-x86vbox.

Building and testing the extended recovery and
updater
With all the preceding changes, we can build and test the enhanced recovery and updater
now.

As usual, we have a manifest file for each chapter. We make changes for this chapter based
on the source code of Chapter 13, Creating OTA Packages. The following are the projects that
we changed in this chapter:

<?xml version="1.0" encoding="UTF-8"?>
<manifest>

 <remote name="github"
 revision="refs/tags/android-7.1.1_r4_x86vbox_ch14_r1"
 fetch="." />

 <remote name="aosp"
 fetch="https://android.googlesource.com/" />
 <default revision="refs/tags/android-7.1.1_r4"
 remote="aosp"
 sync-c="true"
 sync-j="1" />

 <project path="kernel" name="goldfish" remote="github" />
 <project path="bootable/newinstaller"

Customizing and Debugging Recovery

[426]

 name="platform_bootable_newinstaller" remote="github" />
 <project path="device/generic/common" name="device_generic_common"
 groups="pdk" remote="github" />
 <project path="device/generic/x86vbox" name="x86vbox" remote="github"
 />
 <project path="bootable/recovery" name="android_bootable_recovery"
 remote="github" groups="pdk" />

...
</manifest>

We can see that we need to change four projects: recovery, newinstaller, common, and
x86vbox.

To get the source code from GitHub and AOSP directly, we can check out the
android-7.1.1_r4_ch14_aosp branch as follows:

$ repo init https://github.com/shugaoye/manifests -b
android-7.1.1_4_ch14_aosp
$ repo sync

After the source code is ready for use, we can set the environment and build the system as
follows:

$ source build/envsetup.sh
$ lunch x86vbox-eng
$ make -j4

To build initrd.img, we can run the following command:

$ make initrd USE_SQUASHFS=0

After we build the system and generate initrd.img, we can create the OTA update
package. Since we need to generate x86vbox.dat, we should build OTA inside the
x86vbox device folder to call our own Makefile as follows:

$ cd device/generic/x86vbox
$ make dist

Customizing and Debugging Recovery

[427]

As x86vbox is built for VirtualBox, in this book we use the PXE/NFS setup to test our
images. You may refer to Chapter 9, Booting Up x86vbox Using PXE/NFS for the test
environment setup. After the build is completed, we can use the following PXE boot
configuration file to test recovery. The PXE configuration file can be found at
$HOME/.VirtualBox/TFTP/pxelinux.cfg/default:

prompt 1
default menu.c32
timeout 100

label 1. x86vbox (2 stages boot)
menu x86vbox_debug
kernel x86vbox/kernel
append ip=dhcp console=ttyS3,115200 initrd=x86vbox/initrd.img
androidboot.hardware=x86vbox DEBUG=2 SRC=/android-x86vbox ROOT=/dev/sda1
VBOX_GUEST_ADDITIONS=1 SDCARD=vendor DATA=sda2 X86VBOX=1

label 2. x86vbox
menu x86vbox_ramdisk
kernel x86vbox/kernel
append ip=dhcp console=ttyS3,115200 initrd=x86vbox/ramdisk.img
androidboot.hardware=x86vbox

label 3. Recovery - x86vbox
menu x86vbox_recovery
kernel x86vbox/kernel
append ip=dhcp console=ttyS3,115200 initrd=x86vbox/ramdisk-recovery.img
androidboot.hardware=x86vbox

After we power on the virtual device, we can see the following boot menu from PXE
bootloader. We have three options:

The first option is the two stages the boot of x86vbox
The second option is the normal Android boot of x86vbox
The third option is the recovery boot of x86vbox

As we discussed before, we don't have a bootloader that can support recovery. For example,
we cannot support the case if the user selects the factory reset--the system will boot to
recovery to clear the user data automatically.

Customizing and Debugging Recovery

[428]

With the two stages boot, we can do it in our environment as well. The default boot option
is x86vbox two stages boot. If the init script in initrd.img finds the recovery command in
the /cache partition, it will boot to recovery automatically:

Customizing and Debugging Recovery

[429]

To test recovery, we will select option 3 manually to start recovery. After the recovery has
started, we will see the following screen of recovery on the x86vbox device. We can see that
there is an option for us to apply updates from VirtualBox shared storage. There is another
option to create partitions. These are the options that we added in this chapter:

If we select the option to apply updates from VirtualBox shared storage, we will see the
following screen, which allows us to select an update package.

Customizing and Debugging Recovery

[430]

The update-x86vbox-ch14.zip update package is the OTA package that we built in this
chapter. This package can be downloaded from the following SourceForge link, so you can
download it and test it right away:

https://sourceforge.net/projects/android-system-programming/files/android-7/ch1
4/ch14.zip/download

https://sourceforge.net/projects/android-system-programming/files/android-7/ch14/ch14.zip/download
https://sourceforge.net/projects/android-system-programming/files/android-7/ch14/ch14.zip/download

Customizing and Debugging Recovery

[431]

Once the update package is selected, the update process is started as shown in the following
screenshot:

Customizing and Debugging Recovery

[432]

When the update is completed, we will see the following screenshot with a successful
message:

Customizing and Debugging Recovery

[433]

Supporting the third-party recovery
packages
In Chapter 12, Introducing Recovery, we mainly give the detailed introduction about the
recovery from the original AOSP. There are many open source recovery projects derived
from the AOSP recovery such as TWRP or Cyanogen Recovery (CMR). They allow the users
to update various update packages which cannot be done using the original recovery.

Internally, there is not too much difference between these recovery projects and the original
one. They extend the original one in many different ways to meet various needs. We won't
talk about these recovery projects in this book, but we can explore some third-party update
packages to find out what we can do to support these famous update packages. From
testing these and minor fixes, we know how to improve our recovery to suit the needs of
various open source update packages.

If the third-party recovery packages are written using edify, we should not have any
problem applying them. The problems come from the way that they update their data. To
be convenient for their development, they may not use edify language to write their
updater-script. This is because recovery can execute any update-binary and
updater-script as long as it follows the same packaging method documented by Google.

Xposed recovery package
The first third-party recovery package that we are going to look at is the famous Xposed
recovery package. To install Xposed on our devices, we can install it after we root our
device or we can apply an update package using recovery.

The Xposed update packages can be downloaded from the following URL:

http://dl-xda.xposed.info/framework/

The version that we will use in this section is version 87 (xposed-v87-sdk23-x86.zip).

http://dl-xda.xposed.info/framework/

Customizing and Debugging Recovery

[434]

Since the update package is a ZIP file, we can extract it to a temporary space and look at the
internal details inside the update package:

$ ls -1F META-INF/com/google/android/
flash-script.sh
genymotion-ready
update-binary
updater-script
$ cat META-INF/com/google/android/updater-script
this is a dummy file, the magic is in update-binary and flash-script.sh

As we can see, the updater-script is just a dummy file; updater-binary actually
executes the flash-script.sh script, which is a shell script.

If we power on our x86vbox device and enter recovery to apply this package, we will get
the following error message in /tmp/recovery.log:

...

Xposed framework installer zip

- Mounting /system and /vendor read-write
I:1 key(s) loaded from /res/keys
Verifying update package...
I:comment is 1738 bytes; signature 1720 bytes from end
I:whole-file signature verified against RSA key 0
I:verify_file returned 0
Installing update...

Xposed framework installer zip

- Mounting /system and /vendor read-write
mount: can't find /system in /proc/mounts
! Failed: /system could not be mounted!
E:Error in /sideload/package.zip
(Status 1)

Installation aborted.

We can see from the error message that the flash-script.sh script cannot mount the
/system partition.

Customizing and Debugging Recovery

[435]

To find out the issue, we can look at the following code snippet of this script and compare it
to the preceding error message:

...
echo "******************************"
echo "Xposed framework installer zip"
echo "******************************"

if [! -f "system/xposed.prop"]; then
 echo "! Failed: Extracted file system/xposed.prop not found!"
 exit 1
fi

echo "- Mounting /system and /vendor read-write"
mount /system >/dev/null 2>&1
mount /vendor >/dev/null 2>&1
mount -o remount,rw /system
mount -o remount,rw /vendor >/dev/null 2>&1
if [! -f '/system/build.prop']; then
 echo "! Failed: /system could not be mounted!"
 exit 1
fi
...

As we can see, the reason it fails is because this script assumes the mount command is
available when it executes. In our environment, we do have the mount command available,
but it is not in the execution path by default. The mount command in our environment is a
symbolic link of busybox. This version of mount needs the standard Linux mount table,
/etc/fstab, instead of /etc/recovery.fstab.

With the preceding analysis, we can just simply update our start script to fix the issues as
follows:

On early init:

for /bin/busybox
symlink /bin/ld-linux.so.2 /lib/ld-linux.so.2
symlink /bin/busybox /bin/sh
symlink /bin/busybox /sbin/sh
symlink /etc/recovery.fstab /etc/fstab

Customizing and Debugging Recovery

[436]

On init:

export PATH /bin:/sbin:/system/bin
mkdir /vendor
exec -- /bin/sh /sbin/init.x86vbox.sh
...

In the init.recovery.x86vbox.rc script, we add the /bin path for busybox to the PATH
environment variable. We create a /etc/fstab symbol link to /etc/recovery.fstab.
With these changes, we build recovery and apply the Xposed package again. We can see
from the following screenshot that the package is applied successfully:

Customizing and Debugging Recovery

[437]

Opening GApps
Let's look at another famous open source update package, GApps. The GApps project
provides Google Mobile Services (GMS) replacement using its update packages. There are
many Android devices shipped without GMS. If the users of these devices want to use
Google applications, GApps is one of the major choices for them. They can download a
version of a GApps package suitable for their device and flash an update package using
recovery.

The GApps packages can be downloaded at the following URL:

http://opengapps.org

There are many choices of GApps packages at their website based on platform, Android
version, and variant of packages (super, stock, full, mini, micro, nano, or pico, and so on).

We will use a small size pico variant to test in our environment. As we did for the Xposed
update package, we want to look at update-binary and updater-script first. After we
extract the package to a temporary space, we can see that the updater-script is just a
dummy file and update-binary is a shell script:

$ cat updater-script
Dummy file; update-binary is a shell script.

If we look at update-binary in the following snippet, we can see that it is a shell script
using /sbin/sh to interpret it. We will create a symbolic link, /sbin/sh, to the busybox in
the start up script so we don't have any problems with running it:

#!/sbin/sh
...
export OPENGAZIP="$3"
export OUTFD="/proc/self/fd/$2"
export TMP="/tmp"
case "$(uname -m)" in
 86) export BINARCH="x86";; # e.g. Zenfone is i686
 ar) export BINARCH="arm";; # i.e. armv7l and aarch64
esac
bb="$TMP/busybox-$BINARCH"
l="$TMP/bin"
setenforce 0
for f in app_densities.txt app_sizes.txt bkup_tail.sh gapps-remove.txt
g.prop installer.sh busybox-x86 tar-x86 unzip-x86 zip-x86; do
 unzip -o "$OPENGAZIP" "$f" -d "$TMP";
done
for f in busybox-x86 tar-x86 unzip-x86 zip-x86; do
 chmod +x "$TMP/$f";

http://opengapps.org

Customizing and Debugging Recovery

[438]

done
if [-e "$bb"]; then
 install -d "$l"
 for i in $($bb --list); do
 if ! ln -sf "$bb" "$l/$i" && ! $bb ln -sf "$bb" "$l/$i" && ! $bb
 ln -f "$bb" "$l/$i" ; then
 # create script wrapper if symlinking and hardlinking failed
 because of restrictive selinux policy
 if ! echo "#!$bb" > "$l/$i" || ! chmod +x "$l/$i" ; then
 echo "ui_print ERROR 10: Failed to set-up Open GApps' pre-
 bundled busybox" > "$OUTFD"
 echo "ui_print" > "$OUTFD"
 echo "ui_print Please use TWRP as recovery instead" > "$OUTFD"
 echo "ui_print" > "$OUTFD"
 exit 1
 fi
 fi
 done
 PATH="$l:$PATH" $bb ash "$TMP/installer.sh" "$@"
 exit "$?"
else
 echo "ui_print ERROR 64: Wrong architecture to set-up Open GApps'
 pre-bundled busybox" > "$OUTFD"
 echo "ui_print" > "$OUTFD"
 exit 1
fi

This script expects the same list of arguments, which recovery will pass to update-binary.
It uses the arguments to find the update package ZIP file and extracts a setup of files to
/tmp:

ls -1 /tmp
app_densities.txt
app_sizes.txt
bin
bkup_tail.sh
busybox-x86
g.prop
gapps-remove.txt
installer.sh
last_install
recovery.log
tar-x86
unzip-x86
update_binary
zip-x86

Customizing and Debugging Recovery

[439]

These files are the tools that the GApps package needed for the next stage of installation, as
we can see in the preceding snippet. It includes its own version of busybox and
compression tools. After it extracts all the files, it fixes the permission for executables and
installs the symbol links for busybox. After that, it executes the real installation script,
installer.sh. This is a very complicated shell script, so we won't do further analysis on
it. We can apply the GApps package to our system without any problem, as we can see
from the following screenshot:

Customizing and Debugging Recovery

[440]

The following screenshot shows the screen after we install GApps successfully:

Customizing and Debugging Recovery

[441]

Summary
In this chapter, we started with an introduction of debugging tips for recovery and the
updater. The same method can be used for other native applications as well. After that, we
enhanced both recovery and the updater to support our customized system image, which
can be used as a normal system image and also can be used to support a two stages boot.
We also added features such as apply image from the VirtualBox shared folder and created
partitions in recovery. Finally, we analyzed two famous open source update packages:
Xpose and GApps. We can apply them to x86vbox devices without any problems.

We have concluded the entire book now. I hope as a system developer you can benefit from
the concepts, hands-on practices, and source code in this book. If you can build and test the
two devices, x86emu and x86vbox, in this book yourself, you should be able to get enough
experience to start your own Android system projects without too many issues.

Finally, you can visit my GitHub repository frequently while you read this book. I will
consistently update the source code to fix any issues found:

https://github.com/shugaoye

https://github.com/shugaoye

Index

/
/system folder
 dependencies, removing 388
 hardware initialization, in recovery 389
 minimum execution environment, in recovery

391, 393

3
3D graphics support, Android emulator
 guest 295
 host 295
 mesa 295
 swiftshader 295

A
ADT bundle
 reference 107
 URL 404
Android Development Tooling (ADT) plugin 404
Android device partitions
 analyzing 341
 boot 342
 cache 343
 misc 343
 recovery 343
 system 342
 userdata 343
 vendor 342
Android emulator build
 about 39
 AOSP Android emulator images, building 42, 44
 AOSP images, testing 45, 47
Android emulator HAL
 about 63, 65
 calling sequence 65
 goldfish lights HAL, implementing 67, 69

 hardware manager 69, 71, 75
 system service 69, 71, 75
Android emulator hardware
 about 75, 77
 goldfish audio device 79
 goldfish platform bus 77
 goldfish serial port 80
 QEMU pipe device 78
Android emulator kernel
 about 75
 goldfish kernel 81
Android emulator
 booting, with initrd.img 201
 booting, with ramdisk.img 203
 customizing 85
 disk image, booting 174, 176, 178
 graphics HAL 294
Android graphics architecture 260
Android JNI application
 testing 147
Android Open Source Project (AOSP)
 about 11, 28
 levels 62
Android release
 reference 86
Android Runtime (ART)
 about 113
 initializing, with Native Bridge 116, 119, 122
Android SDK
 installing 31
 URL 31
Android start up process
 analyzing 152
 bootloader 152
 init process, analyzing 153
 kernel 152
 ramdisk, analyzing 153

[443]

Android System Services 13
Android system
 application framework 16
 binder IPC 16
 HAL 15
 kernel 13
 overview 13
 recovery 17, 18
 reference 13
 system services 15
Android versions
 summary 28
Android Virtual Device (AVD)
 goldfish emulator, testing 34, 37
 launching 32
 ranchu emulator, testing 37
 SDK latest version, creating 34
 SDK older version, creating 31
 setting up 31
Android-x86 project
 binfmt_misc, using 146
Android-x86
 about 21
 binfmt_misc, using 143
 implementation, using 139
 libnb.so library, analyzing 140
 reference 22
 source code, URL 54
 start up process 160
 URL 22
AndroidKernel.mk Makefile
 URL 96
AOSP build environment
 about 39
 AOSP source tree, downloading 41
 AOSP source, downloading 41
 Open JDK 7, installing 40
 Open JDK 8, installing 40
 repo client, initializing 41
 Repo, installing 41
 required packages, installing 39
 setting up 39
 URL 39
AOSP source code
 about 19

 boot, enabling with initrd.img 198, 201
 building, for Wi-Fi 196
 modifying 158
 obtaining, for Wi-Fi 196
 third-party open source projects 19
 URL 266
Application Binary Interface (ABI) 87
Application Framework 13

B
Binder IPC 16
bionic 213
block OTAs
 URL 379
Board Support Package (BSP) 21, 160, 208
boot configuration file
 syntax, URL 245
boot up process 220
bootloader control block (BCB)
 about 343, 345, 347
 arguments, retrieving 352, 355
bridged network 239
Brillo 12
build layers
 about 86
 Architecture layer 87
 Board/Device layer 87
 Product layer 87
build variants
 about 88
 eng 88
 user 89
 userdebug 89

C
C/C++ Development Tooling (CDT) 404
cache files
 arguments, retrieving 352, 355
callback functions
 getSignalHandler 122
 getTrampoline 122
 initialize 122
 isCompatibleWith 122
 isSupported 122
 loadLibrary 122

[444]

 version 122
chroot 165
ClockworkMod recovery (CWM) 22
command-line application
 testing 147
cross reference tool
 URL 183
custom repository mirror
 creating 47
 custom manifest, creating for client download 57
 custom mirror, creating of GitHub 52, 54
 Git repositories, fetching outside GitHub 54, 57
 local mirror, using for AOSP 50, 51
 manifest file 48
 repo command, using 48
CyanogenMod recovery (CMR) 22

D
device initialization
 about 220
 before Android start-up 221
 HAL initialization, during Android start-up 228
Direct Rendering Infrastructure (DRI) 337
Direct Rendering Manager (DRM) 337
disk image
 booting, on Android emulator 174, 176, 178

E
Eclipse
 native Android applications, integrating 403
 x86emu, integrating 107, 111
edify functions
 about 380
 block image functions 385
 built-in functions 380
 device extensions 385
 installation functions 381, 384
edify syntax
 reference 380
emulator
 Wi-Fi, adding 191
 Wi-Fi, testing 201
engineering build 88

F
factory data
 resetting 356
FB0 device
 implementation 307
 initializing, in GLES emulation 300
fbtest
 about 323
 reference 323
filesystem image
 creating 170, 172
framebuffer device
 allocating from 285
 initializing 271, 279
 rendering 291, 294

G
GApps
 opening 437
GDB
 used, for debugging native Android applications

400

goldfish kernel
 about:and Virtual 81
 QEMU pipe 82
Google devices
 kernel source code, URL 14
Google Mobile Services (GMS) 85, 437
GPU0 device
 implementation 302
 initializing 270
 initializing, in GLES emulation 300
Gralloc module
 loading 262, 269
graphic buffer
 allocating 280
 framebuffer, allocating from 285
 releasing 280, 289
 system memory, allocating from 287
graphics HAL, Android emulator
 FB0 device, implementation 307
 FB0, initializing in GLES emulation 299
 GPU0 device, implementation 302
 GPU0, initializing in GLES emulation 299

[445]

 hardware GLES emulation, overview 295
graphics HAL
 exploring 262
 framebuffer, initializing 271, 279
 framebuffer, rendering 291, 294
 GPU, initializing 269
 Gralloc module, loading 262, 269
 graphic buffer, allocating 280
 graphic buffer, releasing 280
 of Android emulator 294
graphics hardware initialization 309

H
hammerhead
 about 20
 reference 20
Hardware Abstraction Layer (HAL) 12, 13, 15, 181
Hardware Composer (HWC) 261
hardware GLES emulation
 FB0, initializing 299
 GPU0, initializing 299
 overview 295
 URL 297
Host-Guest Communication Manager (HGCM) 331
host-only network 239
Houdini integration, to x86emu device
 about 134
 Android-x86 implementation, using 139
 BoardConfig.mk file, modifying 137
 device.mk file, modifying 138
 x86emu build configuration, modifying 134
 x86emu device, extending 136
 x86emu_x86.mk file, modifying 138
Houdini library 119

I
image formats
 cloop 170
 cow 170
 qcow 170
 qcow2 170
 raw 170
 vdi 170
 vmdk 170
 vpc 170

init process
 about 152
 actions 155
 analyzing 153
 device-specific actions 156
 device-specific services 156
 services 156
initrd.img
 x86emu, building 168
Integrated Development Environment (IDE) 16,

107, 403
integration process
 about 23
 projects, categories 23

K
kernel
 about 12, 13
 modifying 173
 reference 13, 14

L
LAN Boot ROM
 building 236
 downloading 236
 URL 235
 virtual machine, configuring 237
LineageOS (CyanogenMod)
 about 19
 reference 19
Linux kernel, modifications
 ashmem (Android Shared Memory) 13
 binder 13
 logger 13
 paranoid networking 13
 pmem (physical memory) 13
 Viking Killer 14
 wakelocks 14
local_manifest.xml file
 URL 92

M
manifest files
 modifying 159
 reference 59

[446]

mdev 222
media 15
modules 88

N
NAT network 239
native Android applications
 debugging 399
 debugging, with GDB 400
 integrating, with Eclipse 403
 testing 399
Native Bridge
 about 113, 115
 initialization 127, 128, 130
 native library, loading 130, 132, 134
 pre-initialization 123, 125, 127
 setting up, for ART initialization 116, 119, 122
network interface controller (NIC) 234
NFS filesystem
 about 248
 kernel, preparing 249
 NFS server, setting up 252
normal filesystem
 ext4 345
 vfat 345
 yaffs2 345

O
OmniROM
 reference 23
Open GL Embedded System (OpenGL ES)
 about 309
 driver, loading 318
 libraries, loading 310
 loading process, analyzing 313
 rendering engine, creating 321
 uvesafb framebuffer driver 322
OpenGL ES library 262
OpenGL VirtualBox support
 URL 295
OTA package
 about 372, 375
 edify functions 380
 preparing, for x86vbox 386, 387
 updater 375, 377, 379

 updater script 380
over-the-air (OTA)
 about 11, 341
 updating 358, 363

P
Preboot Execution Environment (PXE) 234
predefined triggers 155
product definition Makefiles 87
property-value triggers 155
PXE boot environment
 configuring 239
 PXE Boot ROM, preparing 235
 pxelinux.cfg, configuring 243
 serial port, setting up for debugging 246
 setting up 234, 239
 testing 239
 virtual machine, setting up 240
 VirtualBox internal PXE boot, using with NAT

242

PXE boot menu
 configuring 252
 hard disk, booting 255
 NFS installation, booting 253
 system, configuring to boot to recovery 255
PXE boot ROM
 LAN Boot ROM, building 236
 LAN Boot ROM, downloading 236
 preparing 235
 ROM image, fixing up 236
 virtual machine, configuring for LAN Boot ROM

237

pxelinux.cfg
 configuring 243
 pxelinux.cfg/default, configuring 244
Python module
 extending 424

Q
QEMU PIPE 297
QEMU
 networking 190

[447]

R
radio files 423
Radio Interface Layer (RIL) 99
ramdisk
 analyzing 153
ranchu
 about 25
 reference 26
raw filesystems
 emmc 345
 mtd 345
recovery, for x86vbox
 building 364
 configuration, building 364
 modifying 368
 newinstaller, modifying 369
 testing 371
 x86vbox, modifying 365, 367
recovery
 about 17, 18, 340
 analyzing 343
 Android device partitions, analyzing 341
 arguments, retrieving from BCB 352, 355
 arguments, retrieving from cache files 352, 355
 bootloader control block (BCB) 344
 building 425
 cache partition 347
 extending 409
 factory data, resetting 356
 main flow 348, 351
 OTA, updating 358, 363
 testing 425
ROM image
 URL 236

S
services
 creating, in init scripts 194
 network interface eth1, initializing 194
 wpa_supplicant, starting up 195
shell script
 URL 176
singleton pattern 316
SourceForge

 URL 106
start up process, of Android-x86
 about 160
 initrd.img, exploring 161, 165
 initrd.img, using 160
 install.img, analyzing 166, 168
SurfaceFlinger 262
switch_root 165
system 15
system memory
 allocating from 287
system programming 10

T
Team Win Recovery Project (TWRP) 23, 368
test applications
 Android JNI application, testing 147
 building 146
 command-line application, testing 147
third-party open source projects
 about 19
 Android-x86 21
 ClockworkMod recovery (CWM) 22
 CyanogenMod recovery (CMR) 22
 LineageOS (CyanogenMod) 19
 Team Win Recovery Project (TWRP) 23
third-party recovery packages
 GApps, opening 437
 supporting 433
 Xposed recovery package 433
triggers 155

U
udev 222
update-x86vbox-ch14.zip update package
 URL 430
updater
 building 425
 extending 409, 416
 testing 425
user build 88
userdebug 88
uvesafb framebuffer driver
 about 322
 initializing, in x86vbox 328

 reference 322
 testing 323

V
vboxvideo
 integrating, with VirtualBox Guest Additions 337
virtual hardware reference platforms
 about 24
 ranchu 25
 VirtualBox based Android emulators 26
 x86 based Android emulator 24
VirtualBox based Android emulators 26
VirtualBox Extension Pack
 about 331
 URL 331
VirtualBox Guest Additions
 building 333
 images, building 339
 images, testing 339
 integrating 331
 vboxsf, integrating 334
 vboxvideo, integrating 337
VirtualBox internal PXE boot
 using, with NAT 242

W
Wi-Fi on Android
 enabling 180
 QEMU, networking 190
 Wi-Fi, architecture 181, 183, 185, 187, 188,

189

 wpa_supplicant, using 190
Wi-Fi
 adding, to emulator 191
 Android emulator, booting with initrd.img 201
 Android emulator, booting with ramdisk.img 203
 AOSP source code, building 196
 services, creating in init scripts 194
 start up processes, debugging 203
 testing, on emulator 201
 wpa_supplicant configuration, providing 192

 wpa_supplicant, enabling in BoardConfig.mk 191
WifiManager 182
WifiNative 186
wpa_supplicant
 using 190

X
x86 based Android emulator 24
x86emu
 about 96
 AndroidProducts.mk file, creating 94
 AOSP goldfish kernel, URL 90
 AOSP source code 89
 BoardConfig.mk file, creating 97, 99
 building 101, 104
 building, with initrd.img 168
 creating 89, 93
 device.mk file, creating 99, 100
 integrating, with Eclipse 107, 111
 local mirror, using 90, 92
 source code, URL 94
 testing 105
x86vbox
 board configuration 215
 building 220
 code, building 394, 396
 code, testing 394, 396
 device, creating 214
 HAL, creating 208
 manifest file, creating 210
 OTA package, preparing 386, 387
 product definition Makefile, reviewing 214
 recovery, building 364
 source code, obtaining 220
 x86 device, creating 216
Xposed recovery package 433
Xposed update packages
 URL 433

Z
Zygote 114

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	About the Reviewers
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Introduction to Android System Programming
	What is system programming?
	What is the scope of this book?
	Overview of the Android system
	Kernel
	HAL
	Android system services
	Binder IPC
	Application framework
	Recovery

	The third-party open source projects derived from AOSP
	LineageOS (CyanogenMod)
	Android-x86
	CWM/CMR/TWRP

	Strategy of integration
	Virtual hardware reference platforms
	Introduction to the x86-based Android emulator
	Introduction to ranchu
	VirtualBox-based Android emulators

	Summary

	Chapter 2: Setting Up the Development Environment
	Summary of Android versions
	Installing Android SDK and setting up an Android Virtual Device
	Creating AVD in an older version of SDK
	Creating AVD in the latest version of SDK
	Testing the goldfish emulator
	Testing ranchu emulator

	The AOSP build environment and the Android emulator build
	The AOSP build environment
	Installing the required packages
	Installing Open JDK 7 and 8
	Downloading the AOSP source
	Installing repo
	Initializing a repo client and downloading the AOSP source tree

	Building AOSP Android emulator images
	Testing AOSP images

	Creating your own repository mirror
	Repo and manifest
	Using a local mirror for AOSP
	Creating your own mirror of GitHub
	Fetching Git repositories outside GitHub
	Creating your own manifest for client download

	Summary

	Chapter 3: Discovering Kernel, HAL, and Virtual Hardware
	What is inside the AOSP?
	Android emulator HAL
	Calling sequence
	Goldfish lights HAL
	The system service and hardware manager

	Android emulator kernel and hardware
	Android emulator hardware
	Goldfish platform bus
	QEMU pipe device
	Goldfish audio device
	Goldfish serial port

	Goldfish kernel
	QEMU pipe

	Summary

	Chapter 4: Customizing the Android Emulator
	Why customize the Android emulator
	Understanding build layers
	Build variants
	Creating a new x86emu device
	Checking out from the AOSP
	Checking out from a local mirror
	Creating x86emu device
	AndroidProducts.mk
	BoardConfig.mk
	device.mk

	Building and testing x86emu
	Building x86emu
	Testing x86emu
	Integrating with Eclipse

	Summary

	Chapter 5: Enabling the ARM Translator and Introducing Native Bridge
	Introducing Native Bridge
	Setting up Native Bridge as part of the ART initialization
	Pre-initializing Native Bridge
	Initializing Native Bridge
	Loading a native library

	Integrating Houdini to the x86emu device
	Changing the configuration of the x86emu build
	Extending the x86emu device
	Changes to BoardConfig.mk
	Changes to x86emu_x86.mk
	Changes to device.mk

	Using the Android-x86 implementation
	Analyzing libnb.so
	Using binfmt_misc

	Building and testing
	Testing the command-line application
	Testing the Android JNI application

	Summary

	Chapter 6: Debugging the Boot Up Process Using a Customized ramdisk
	Analyzing the Android start up process
	Bootloader and the kernel
	Analyzing the init process and ramdisk
	Actions
	Services
	Device-specific actions and services

	Source code and manifest changes
	The Android-x86 start up process
	The first-stage boot using initrd.img
	Inside initrd.img
	Inside install.img

	Building x86emu with initrd.img
	Creating a filesystem image
	Kernel changes
	Booting a disk image on the Android emulator
	Summary

	Chapter 7: Enabling Wi-Fi on the Android Emulator
	Wi-Fi on Android
	The Wi-Fi architecture
	QEMU networking and wpa_supplicant in Android

	Adding Wi-Fi to the emulator
	Enabling wpa_supplicant in BoardConfig.mk
	Providing a proper wpa_supplicant configuration
	Creating services in init scripts
	Initializing network interface eth1
	Starting up wpa_supplicant

	Building the source code
	Getting the source code
	Enabling boot with initrd.img

	Testing Wi-Fi on an emulator
	Booting an Android emulator using initrd.img
	Booting an Android emulator using ramdisk.img
	Debugging Wi-Fi start up processes

	Summary

	Chapter 8: Creating Your Own Device on VirtualBox
	HAL of x86vbox
	The manifest for x86vbox

	Creating a new x86vbox device
	Product definition Makefile of x86vbox
	Board configuration of x86vbox
	Common x86 devices
	Getting the source code and building the x86vbox device

	Boot up process and device initialization
	Device initialization before Android start-up
	HAL initialization during the Android start-up

	Summary

	Chapter 9: Booting Up x86vbox Using PXE/NFS
	Setting up a PXE boot environment
	Preparing PXE Boot ROM
	Downloading and building the LAN Boot ROM
	Fixing up the ROM image
	Configuring the virtual machine to use the LAN Boot ROM

	Setting up the PXE boot environment

	Configuring and testing the PXE boot
	Setting up the virtual machine
	Using VirtualBox internal PXE booting with NAT
	Configuring pxelinux.cfg
	pxelinux.cfg/default

	Setting up a serial port for debugging

	NFS filesystem
	Preparing the kernel
	Setting up the NFS server

	Configuring the PXE boot menu
	Booting to NFS installation
	Booting from a hard disk
	Booting to recovery

	Summary

	Chapter 10: Enabling Graphics
	Introduction to the Android graphics architecture
	Delving into graphics HAL
	Loading the Gralloc module
	Initializing GPU
	Initializing framebuffer
	Allocating and releasing the graphic buffer
	Allocating from framebuffer
	Allocating from system memory
	Releasing graphic buffers

	Rendering framebuffer

	Graphics HAL of the Android emulator
	Overview of hardware GLES emulation
	Initializing GPU0 and FB0 in GLES emulation
	GPU0 device implementation
	FB0 device implementation

	Summary

	Chapter 11: Enabling VirtualBox-Specific Hardware Interfaces
	OpenGL ES and graphics hardware initialization
	Loading OpenGL ES libraries
	Analyzing the loading process
	Loading the driver
	Creating the rendering engine

	The uvesafb framebuffer driver
	What is uvesafb?
	Testing the uvesafb framebuffer driver
	Initializing uvesafb in x86vbox

	Integrating VirtualBox Guest Additions
	Building VirtualBox Guest Additions
	Integrating vboxsf
	Integrating vboxvideo
	Building and testing images with VirtualBox Guest Additions

	Summary

	Chapter 12: Introducing Recovery
	Recovery introduction
	Android device partitions

	Analyzing recovery
	BCB
	Cache partition
	Main flow of recovery
	Retrieving arguments from BCB and cache files
	Factory data reset
	OTA update

	Building recovery for x86vbox
	Building configuration
	Changes to x86vbox
	Changes to recovery
	Changes to newinstaller
	Testing recovery

	Summary

	Chapter 13: Creating OTA Packages
	What is inside an OTA package
	Updater
	The updater script
	Edify functions
	Built-in functions
	Installation functions
	Block image functions
	Device extensions

	Preparing an OTA package for x86vbox
	Removing dependencies on /system
	Hardware initialization in recovery
	Minimum execution environment in recovery

	Building and testing
	Summary

	Chapter 14: Customizing and Debugging Recovery
	Debugging and testing native Android applications
	Debugging with GDB
	Integration with Eclipse

	Extending recovery and the updater
	Extending recovery
	Extending the updater
	Extending the Python module
	Building and testing the extended recovery and updater

	Supporting the third-party recovery packages
	Xposed recovery package
	Opening GApps

	Summary

	Index

